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Abstract 

 

  This research work considers the problem of accurate estimation of radio frequency 

(RF), pulse amplitude (PA), angle-of-arrival (AOA), and modulation on pulse (MOP) in the 

background of its application to new generation electronic intelligence (ELINT) system. The 

estimation algorithms for the above parameters must be computationally fast, highly accurate, 

and will need to be implemented using digital hardware for processing. 

  The received signal is digitized and the signal is preprocessed before signal detection. 

Noise cancellation using spectral subtraction is performed as part of preprocessing for 

improvement of signal-to-noise ratio. Noise cancellation is carried out by estimating the 

average noise from the electromagnetic environment. The estimated average noise magnitude 

is subtracted from the magnitude of the incoming noisy signal without affecting the phase and 

restored signal is obtained. It is applied on both in-phase and quadrature-phase channels and 

restored signal is computed for both the channels. Then moving autocorrelation with different 

delays is performed on the complex signal to further enhance the signal and reduce the effect 

of noise. Autocorrelation is computationally intensive but an efficient technique is used for 

implementation and an instantaneous amplitude profile is obtained. 

  Noise estimation with different delays are performed using amplitude profile and 

signal is detected. The leading edge and trailing edge of the pulses are also detected using 

amplitude profile for pulsed signal. Whereas, to compute an accurate instantaneous frequency 

profile of the received signal the multilevel autocorrelation algorithm is proposed. This 

frequency profile is used for modulation identification as the modulation information is lost in 

the amplitude profile. 

  Three antenna-based virtual baseline interferometry is proposed as a suitable algorithm 

for AOA estimation that meets the operational requirements of high altitude electronic 

intelligence system. However, phase measurements ambiguity occurs in sparse array 

geometries due to phase wrapping effects. Hence, phase ambiguities are resolved using the 

extensive ambiguities resolution algorithms using three antennas. 

  A novel decision-tree algorithm based on the time-domain digital technique is 

developed for the identification and classification of diverse radar intra-pulse modulated 

signals in real-time. This includes no-modulation continuous wave (NMCW), frequency 



iv               Abstract 
  

modulated continuous wave (FMCW), no-modulation on pulse (NMOP), linear frequency 

modulation (LFM), non-linear frequency modulation (NLFM), stepped frequency modulation 

(SFM), and bi-phase modulation (BPM), LFM with SFM, and SFM with BPM. The proposed 

algorithm is employed on instantaneous frequency profile and modulations are recognized in 

real-time. The modulation type and modulation parameter are important for specific emitter 

identification where similar radars are operating in a dense environments. Simulations are 

carried out at various signal-to-noise ratio conditions and results are presented for modulation 

recognition.  

  This thesis will introduce the noise cancellation technique to improve the signal-to-

noise ratio and signal estimation is carried out. Moving autocorrelation will be used to 

estimate instantaneous amplitude profile and a multilevel autocorrelation technique will be 

introduced for instantaneous frequency estimation. FFT-based frequency is also estimated 

using interpolation techniques. The virtual antenna-based baseline interferometry for AOA 

estimation using three antennas is proposed which is SWaP optimized. The decision-tree 

algorithm for real-time modulation recognition will be used to estimate the modulation and 

their parameters. The models for all the algorithms are developed using a system generator 

and implemented in FPGA. These results are compared with existing digital in-phase and 

quadrature-phase techniques. 

  Finally, AOA and MOP parameters are highly useful for specific emitter 

identification. This will be able to identify emitters operating nearby frequencies in the 

vicinity because MOP is expected to be different even for similar AOA of emitters. 

 

Keywords: Autocorrelation, Noise cancellation, Digital in-phase quadrature-phase, Virtual 

baseline interferometry, Modulation recognition, Decision-tree algorithm. 
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Chapter 1 

 
 
 

Introduction 
 

 This chapter aims to provide background, introduce electronic intelligence systems, the 

importance of modulation identification, and motivation. The problem statement, objectives, 

scope of work presented, and significant contributions have also been revealed in this chapter. 

Finally, the thesis organization has been presented to give an overview of the individual 

chapters. 

1.1 Introduction 

  The research work aims to investigate fast and highly accurate modulation on pulse 

(MOP), radio frequency (RF), and angle-of-arrival (AOA) algorithms that can be 

implemented in ELINT systems for real-time electronic surveillance or electronic support 

(ES). This will lead to the correct specific identification of emitters. Though the problem of 

estimation of the above parameters has been studied extensively in radar, communication, 

sonar, astrology metrology, it has specific application to the electronic support environment 

that necessitate additional attention due to the specific and challenging operational 

requirements of ELINT systems. 

  The AOA and MOP are the two important parameters to be estimated by ELINT 

systems. The estimation of AOA is expected from any ELINT systems whereas the estimation 

of MOP cannot be expected from all ELINT systems in real-time. Both the parameters are 

exploited and in several strategic and operationally useful ways. However, due to a tradeoff 

generally exists between accuracy and computational time of algorithms, the accurate 

algorithm is chosen based on the balance between accuracy and high-speed. The research 

work aims to investigate high accuracy, but possible sub-optimal, estimation algorithms for 

AOA and MOP that are computationally fast and that are suited for real-time application for 

radar ELINT systems.  

  AOA is the parameter that can’t be camouflaged by radar operators, and MOP is not 

been identified by most of the intercept receivers in real-time. Both the parameters are helpful 
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to identify specific emitters in a dense environment where radars with nearby frequencies are 

operating simultaneously.  

  MOP identification has become an active area over the two decades. Various 

researchers have proposed different techniques most of them are frequency domain techniques 

which are based on spectral analysis. These techniques are useful for offline processing. The 

details of this research area are described in the literature survey. 

1.2 Background 

Electronic Warfare (EW) systems preserves the electromagnetic (EM) spectrum for 

friendly use where same time deny its use to the hostile systems. EW systems are classified 

based on the functionality, frequency coverage, and their function etc. [1]-[2]. 

EW systems are categorized into three types of systems Electronic Support (ES), 

Electronic Attack (EA), and Electronic Protection (EP). ES is also known as Electronic 

Support Measure (ESM) systems. It does the search of the emissions present in the 

environment. It does the capturing and detection of the emitters. It locates the emitters present 

based the signals detected. Further, it record the signals in digital domain and processed 

parameters which is used to analyse the signals in future or after the mission is completed. 

This information is used to formulate the electronic order of battle (EOB). It can also provide 

the information to electronic attack (EA) in real-time for the counter measure. EA systems are 

used to reduce the impact of hostile systems. It is also known as electronic counter measure 

(ECM). Electronic Protection (EP) systems are the capability of our own radar systems used 

to protect own systems. These systems are capable to misguide the hostile systems. It is also 

known as electronic counter counter measure (ECCM). 

 EW systems are classified as strategic system or tactical system based on their 

function. Strategic systems are systems which are used for offline analysis. They measure 

more parameters with high accuracy. These systems are useful to form the EOB which is 

useful to build the radar library. The deployment of systems can be obtained based on the 

available data. Usually ELINT systems are categorized as strategic system. The tactical 

systems provides the limited information but in real-time. The parameters measured in real-

time by ES systems are useful for EA systems for immediate use. Tactical systems are useful 

for dynamic deployment and dynamic change of mode of emitters. The information obtained 

by tactical systems can be used to form EOB and threat library also can be prepared. But 
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presently, the ELINT systems are being used as tactical systems to get the advantage of high 

sensitivity and measures more parameters compared to ES system. 

 Radar ES Systems are categorized as Radar Warning Receiver (RWR), Electronic 

Support Measures (ESM), and Electronic Intelligence (ELINT). The RWR receivers are with 

quick reaction time, wide frequency coverage, spatial coverage, and with highest probability-

of-intercept (POI). It provides the warning to the pilot immediately after detecting the radar 

which is used to guide the weapons. Once radar main beam looks to the target the receiver 

with a reasonable sensitivity detects it. It uses the range advantage to detect and indicate a 

threat. Generally, it is the simplest form of ESM receivers [3]. 

 The ESM systems are mainly wideband, spatial coverage with high POI and also known 

as ES systems. These systems extracts most of the parameters about radar and establish the 

EOB. They are more complex and higher measured parameters accuracy than RWR receivers. 

Basically an ELINT system measures various parameters and these parameters are helpful for 

strategic planning. The measurement of various parameters are comparatively little slow but 

helpful for fine grain analysis and requires high SNR compared to ES systems. Its 

instantaneous bandwidth is less than the ES system and hence its POI is also less.  If collected 

data is not possible to process immediately in the field or collection station due to time 

constraint, it can be stored and processed later at main station. 

  In this thesis work, a new generation ELINT system is proposed which can measure 

most of the parameters including modulation information in real-time. These systems can be 

used for tactical operations as the mode of adversary radars will be certainly different from 

peacetime. The need for all adversary radars parameter measurement is important in real-time 

to recognize the threat in the field itself. 

1.3 Electronic Intelligence System 

  The interception and exploitation of electromagnetic energy of radar signals have been 

an important objective of military reconnaissance since the existence of radar. Electronic 

support (ES) systems gathered the information from intercept receivers mainly used by 

military platforms viz. ground, mobile vehicle, ship borne, airborne, and space borne based to 

enhance the situation awareness of the operating environment, provide self-protection and 

contribute to electronic intelligence (ELINT) databases. 

  A new generation ELINT system identifies the radars by analyzing their signal 

waveforms. This is achieved by using hardware that can detect reliably and measure the 
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characteristics of all radar signals in the environment. The characteristics of intercepted radar 

signals that are generally estimated include the following parameters  

 Emitter Type (ET) 

 Radio Frequency (RF) 

 Pulse Amplitude (PA) 

 Pulse width (PW) or Pulse duration 

 Time-of-arrival (TOA) 

 Angle-of-arrival (AOA) 

 Inter-pulse modulation characteristics i.e. Pulse repetition interval (PRI) and PRI type 

[23] 

 Intra-pulse modulation characteristics or modulation on pulse (MOP) parameter i.e.  

 Modulation type (MT) and their modulation parameters (MP) [59], [126], [127] 

 

  Among the above parameters modulation on pulse (MOP) parameter is an important 

evaluation parameter in the proposed research work. Further, RF, PA, and AOA parameters 

are also used for performance evaluation and all the parameters are SNR dependent. 

 

 

Figure 1.1: Block diagram of functions performed by electronic intelligence receiver. 

 

 Once the characteristics of all radar signals have been estimated, electronic intelligence 

receivers use the estimated parameters to sort the collection of intercepted signals to identify 

all the intercepts which belong to a single radar emitter. An ELINT database of known radar 

emitters is then consulted and matched to find a radar emitter that exhibits parameters that 

best matches estimated characteristics of observed intercept.  

  ES systems are divided into the category of ELINT system and tactical ES system. 

The ELINT systems are designed to get the high fidelity data to generate high-quality 

representations of radar signals. These signals are used to contribute to the ELINT database 

which is used by ES systems to identify the radars observed in the field. The estimation 

accuracy is more important compared to execution time for ELINT systems as the analysis 

can be performed often offline. 
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  On the other hand, the tactical ES systems are designed to provide the operators of 

military platforms with real-time, early warning of radar receivers that are operating in the 

vicinity of the platform. Sometimes tactical ES systems are known as Early Warning 

Receivers. Traditionally, tactical ES systems are designed as Electronic Support Measure 

(ESM) and Radar Warning receivers (RWR). Usually, ESM systems are interactively 

operated by human operator whereas RWR systems are fully automated. In extreme operating 

environments, a tactical ES system may receive over hundreds or thousands of radar 

intercepts per second. The accuracy of estimation algorithms is important, the data throughput 

can be sustained is an important consideration. As a result, tactical ES systems may need to 

trade off some accuracy in the parameter estimation algorithms for the sake of improvements 

in the data throughput. A new generation ELINT systems emphasize on both estimation 

accuracy and execution time. The development of computationally fast algorithms for 

detection and parameter measurements is a major driver of the research presented in this 

thesis which is implementable for real-time applications. 

1.4 Importance of modulation recognition on radar signals 

The importance of MOP along with AOA measurements are particularly important 

parameters among the characteristics of the Radar signals because they can be exploited in 

many operationally useful ways: 

 enhance situational awareness [1]-[3] 

 enhance signal de-interleaving (or sorting) algorithms [3] 

 enhance identification of emitters operating in the dense environments [3], [12] 

 prompt electronic attack (EA) [2], [49], [126], and 

 improve signal collection [127], for nearby operating radars are discussed below. 

1.4.1 Situational awareness  

Situational awareness of the operating environment is critically important to help and 

determine the engagement priorities, tactics and to formulate electronic order of battle (EOB) 

[1]-[2], [49]. Correct MOP and accurate AOA estimates can help to improve situational 

awareness by associating lines of bearing with their intra-pulse characteristics to each 

detected platform. When MOP from multiple radar intercept receivers is used in conjunction 

with AOA algorithms, it is possible to further identify the detected platforms. 
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1.4.2 Sorting or de-interleaving 

Radar intercept receivers typically receive anywhere hundreds or thousands of radar 

intercepts per second from multiple emitters [1], [126]. As part of its typical processing, radar 

intercept receivers must sort through the collected data and associate all of the intercepts to 

their respective emitters. This process is known as signal sorting or signal de-interleaving. 

Parameters such as the signal radar frequency, pulse duration, pulse train parameters 

such as PRI and PRI types are traditionally effective de-interleaving parameters [23], [49]. 

However, the traditional de-interleaving parameters are not effective against radars with 

similar transmission characteristics or modern parameter-agile radars that are capable of 

changing their transmission parameters viz. frequency, pulse duration, and PRI on a pulse-by-

pulse basis. On the other hand, since the AOA of a signal cannot be camouflaged practically, 

high precision AOA estimate along with MOP can be used to effectively sort the signal from 

these types of radars, provided that the radars are sufficiently separated in angle [1], [3], [23], 

[49]. MOP helps in sorting the intercepts which are coming from the emitters which are 

marginally separated bearing and frequency in the environment. 

1.4.3 Enhance identification of emitter operating in a dense environment 

When multiple radars operate in an environment with nearby frequencies and the 

environment becomes dense. In that condition, identification of emitter with measuring 

conventional parameters is not sufficient. To overcome this problem, measurement of 

modulation becomes compulsory. Measurement of MOP using high accuracy RF 

measurements with AOA provides an advantage to identify the emitter [3], [12]. This also 

helps in signal sorting. 

1.4.4 Electronic attack and electronic protection 

Knowing of an adversary bearing and intra-pulse waveform can assist the platform’s 

electronic attack (EA) systems (such as jammers) and electronic protection (EP) systems 

(such as chaff) by more efficiently directing the platform’s resources to deal with a threat 

from a given bearing and with specific modulation characteristics [2], [49], [126]. 

1.4.5 Signal enhancement 

Preprocessing is exploited prior to the extraction of parameters. As part of 

preprocessing, noise cancellation is employed for signal enhancement to improve the quality 

of the signal. Noise cancellation is done by estimating the noise from the system chain. The 
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estimated noise magnitude is computed for the duration of noise alone. This noise is 

subtracted from the noisy signal spectrum and signal enhancement is done [127]. 

1.5   Motivation 

The problem of identification of modulation on pulse (MOP) is related to the use of 

information. This information cannot be utilized for tactical application with the present 

ELINT systems which is crucial. When hostile radars operate during peacetime, they do not 

change their operating modes frequently. But hostile radars change their operating modes 

rapidly during tactical operations. So, the library which is generated over some time for 

electronic order of battle (EOB) may not be much constructive. The research work on this 

topic will be helpful, to use this information tactically in the field environment. This proposed 

research work will identify MOP in real-time which can be used for de-interleaving and 

specific emitter identification effectively. 

Some researchers have proposed techniques for modulation identification using 

frequency domain techniques and convolutional neural network (CNN) [62]-[64], [74], [84], 

[92]. These research contributions are only for offline processing and real-time processing is 

not considered by them. As computational complexities are high for real-time processing. 

Hence, it is able to reduce the computation’s complexities. Further, hardware portability’s are 

also required to test the proposed architecture for modulation recognition in real-time for the 

ELINT system. The aspect of radar signals modulation recognition in real-time has been 

motivated to take up this work for classifying various radar signals modulations for a new 

generation ELINT systems. The noise cancellation technique as part of preprocessing, 

instantaneous amplitude measurement, noise estimation for adaptive threshold computation, 

high accuracy instantaneous frequency measurement, FFT based frequency estimation, and 

three-antenna based virtual baseline interferometry for AOA measurement algorithms are also 

developed to achieve the above goal. FFT based frequency estimation along with various 

interpolation techniques enhances the frequency accuracy without increasing the number of 

FFT points.  All the parameters are required to be measured accurately to achieve the 

objectives of the proposed research work. 

1.6 Problem statement 

A research problem is proposed as “real-time modulation recognition of radar signals 

using digital techniques for new generation ELINT systems”. The main focus of this thesis is 

the real-time characterization of radar signals. 
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1.7  Aim and Objectives 

  The research work has undertaken aims at developing modulation recognition 

algorithms of radar signals in real-time.  

 The following are the aims and objectives of the proposed research work: 

 To implement noise cancellation using spectral subtraction technique as part of 

preprocessing and thus enhancing the radar signal. 

 To carry out high accuracy instantaneous frequency measurement and amplitude 

measurement. 

 To estimate noise for the signal duration and compute the adaptive threshold for 

detection of radar signal (instantaneous amplitude). 

 To measure AOA with three antennas BLI algorithm which results in lightweight 

ELINT system. 

 To find out the MOP and their modulation parameter using instantaneous frequency in 

real-time. 

1.8 Scope of work and significant contributions 

 Scope of work presented and significant contributions are given in this section. 

1.8.1 Scope of work presented 

  The scope of this thesis entails to identify and classify radar signals modulations. Total 

sixteen types of modulations and their parameters are measured using proposed algorithms. 

Various radar signals are generated at different SNR conditions and measurements are carried 

out. The efficacy of these algorithms is also verified using field data. Signal enhancement, 

frequency estimation, and AOA estimation are also part of the scope of a thesis as these 

parameter estimations are also important for modulation recognition. 

1.8.2  Significant contributions from investigations 

The real-time measurement of all the parameters including modulation information is 

carried out in this research work. The various parameters measurement including direction 

finding, type of signal, RF frequency, Pulse width, Pulse repletion interval, amplitude, type of 

modulation, modulation parameter is estimated and formed pulse descriptor word (PDW). All 

the processing algorithms are designed using a system generator, implemented on a hardware 

platform, and results are presented. 

FPGA provides the hardware environment in which dedicated DSP processing 

capabilities can be implemented and tested for their functionality. They perform very high-
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speed operations that cannot be realized by a DSP processor because of hardware limitations. 

The primary advantage that FPGA offers is parallel architecture, fine grain resources, 

availability of MACs known as DSP slices in the order of thousands, re-programmability etc. 

These capabilities of FPGAs made the preferred choice of hardware platform over DSP 

processors. 

The Digital Signal Processors is the correct choice for the ELINT system for strategic 

use. But they are not useful for ELINT systems for tactical application. As they are not giving 

real-time performance because the required sampling rate is high. The reason is, the 

maximum number of MACs available in the processor is limited and the same MACs is re-

used for computation. Whereas in FPGA a large number of MACs are available so that the 

parallel architecture is possible. 

 Improving the performance of the ELINT system by measuring all the parameters in 

real-time. So that the ELINT system can be utilized for tactical applications. Various signal 

processing algorithms are implemented on the FPGA platform to enhance the speed and 

maintain the accuracy of parameters. The details of the contribution are explained below: 

 Signal enhancement is carried out using spectral subtraction. Spectrum on incoming 

digitized IF data is computed continuously and an average of noise is estimated. Later, 

these average noise components are subtracted from the data spectrum and the 

enhanced signal is achieved by inverse spectrum. This signal enhancement or noise 

cancellation is implemented and provides an SNR advantage. 

 An autocorrelation algorithm is used to generate instantaneous amplitude and a 

multilevel autocorrelation algorithm is used to generate instantaneous frequency 

profiles. Again SNR advantage is achieved when performance of autocorrelation 

algorithm is compared with DIQ technique. The high-frequency accuracy is achieved 

at lower SNR which is useful for AOA and MOP estimation. 

 The noise estimation is done using standard deviation. The fast and easy approach is 

implemented which gives comparable results with standard deviation implemented. 

The detection logic is implemented in the FPGA which is based on the comparison 

with either noise riding threshold or fixed threshold. 

 SWaP optimized three antenna-based BLI algorithm is proposed for AOA estimation. 

This algorithm along with noise cancellation provide an advantage equivalent to four 

antenna BLI arrays. AOA is useful for emitter sorting. 



10  Chapter 1, Section 1.8
 

 Instantaneous frequency profile is used for the MOP estimation using a decision-tree 

algorithm. Various modulations are identified using the proposed approach which is 

useful for specific emitter identification.  

1.9  Organization of Thesis 

The research thesis writing is organized in eight chapters. The following is the brief of 

each chapter.  

Chapter 1, introduces the electronic intelligence systems, importance, and application of 

these systems. In addition to this, motivation, problem statement, objectives, the scope of work, 

significant contribution, and chapter organization of thesis have been given in this chapter. 

In Chapter 2, a detailed literature survey has been provided. Literature that are related to 

the work are reviewed carefully and cited in the thesis.   

In Chapter 3, the theory of contemporary frequency measurements techniques is 

presented. This chapter will show the suitable frequency estimation technique, angle-of-arrival 

measurement technique, and modulation parameter measurement for implementation in radar 

intercept receivers. The general performance of each technique and its advantages and 

disadvantages are discussed. 

In Chapter 4, the theory of signal estimation techniques is presented which includes noise 

cancellation, amplitude measurement based on moving autocorrelation, frequency measurement 

algorithm based on multilevel autocorrelation, AOA measurement using three antennas is 

presented.  SNR advantage using noise cancellation is explained. Noise estimation for pulse 

detection is also mentioned. 

In Chapter 5, proposed modulation recognition is presented. It includes frequency and 

phase modulation and they are measured in real-time. The type of modulation is measured using 

a decision-tree based algorithm applied on instantaneous frequency profile along with 

instantaneous amplitude profile. The results are compared with existing techniques. 

In Chapter 6, the ELINT operation methodology is discussed which includes frequency 

scan operation, test setup hardware, test conditions, and experimental results. Various stages of 

testing and field data results are also given. The modulation recognition algorithms are applied to 

the field data to experimentally validate their performance.  

Finally, the thesis will be concluded in Chapter 7. The key findings of the thesis and the 

major contributions of this research will be concluded. This chapter will also identify areas that 

may warrant further research.  
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Chapter 2 

 
 
 

Review of Literature 
 

This chapter presents a detailed literature review of existing research contributions. 

2.1  Introduction 

  Electronic Intelligence (ELINT) system extracts information related to modulations 

schemes in detail from electromagnetic (EM) environment for its survivability but denies or 

limits it to the adversary. The information of measured emitter parameters then can be utilized 

to affect the hostile operations to block its communication channel and radar can be stopped 

from firing the weapons.  

 There is a need for recognition of radar signal modulation for electronic intelligence 

systems in real-time. During the past two or three decades electronic intelligence system was 

configured for offline processing. Researchers whose contributions are given in this chapter 

are offline related. However, the modulation types and their modulation parameters are 

required to be measured in real-time. Hence, real-time processing systems are needed. 

Relevant publications in this field are identified and studied. This chapter consists of the 

details of critical appraisal of previous work published literature pertaining to the topic of the 

investigation. 

2.2 Radar signal modulations estimation 

Finding MOP which is an intra-pulse parameter is a useful parameter to classify radar 

emitters in a dense electromagnetic environment. The inter-pulse parameters alone are not 

sufficient to classify radar emitters in this environment. Estimation of MOP is a composite 

work that requires instantaneous frequency measurement, instantaneous amplitude 

measurement, adaptive threshold estimation, pulse detection, and direction-finding. 

The following radar signal modulations are measured using a decision-tree algorithm. 

(a) Continuous wave signal  
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(i)  No-Modulation Continuous Wave (NMCW) 

(ii) Frequency Modulated Continuous Wave (FMCW) 

(b) Pulsed signal 

(i) No Modulation on Pulse (NMOP) 

(ii) Linear Frequency Modulation (LFM) 

(iii) Non-Linear Frequency Modulation (NLFM) 

(iv) Stepped Frequency Modulation (SFM) 

(v) Phase Modulation (PM) 

(vi) Hybridization of LFM and BPM 

(vii) Hybridization of SFM and BPM 

2.3  Summary of literature review  

  The summary of a literature review is given in Table 2.1. 

Table 2.1: Summary of literature review 

S. No. Study by Features Technique Outcome Limitations 

1. Nandi & 

Azzouz 

(1995, 96) 

[65, 66] 

Automatic 

Analogue 

modulation 

recognition 

Decision 

theoretic 

algorithm 

Success rate 

more than 

90% at SNR 

of 10 dB 

 

Applicable for 

communication 

signals 

2. Chan & 

Gadbois 

(1989) [69] 

Identification 

of 

modulation 

types 

Identification 

using envelope 

properties 

SNR 

requirement 

of 7 dB 

Applicable for 

communication 

signals 

3. Dubuc, C. et 

al. (1999) 

[68] 

AMR 

algorithm for 

spectrum 

monitoring 

Decision-tree 

algorithm 

Classify with 

more than 

55% at SNR 

of 5 dB 

Applicable for 

communication 

signals 

4. Lopez-

Risuefio et al. 

(2003) [115] 

CWLFM, 

Chirp, BPSK, 

QPSK, and 

FSK 

STFT, AD, 

and DFT 

90% 

detection up 

to -11.5 dB 

SNR 

Real-time 

performance is 

not achieved 

5. Kawalec & Intra-pulse LDA and TKL 90% Real-time 
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Owczarek 

(2003) [17] 

modulation 

recognition 

techniques recognition 

accuracy for 

SEI 

performance is 

not achieved 

6. You, H. et al. 

(2004) [70] 

LFM signals 

detection 

WVD Hough 

transform 

SNR 

requirement 

of -3 dB 

Real-time 

performance is 

not achieved 

7. Gross & 

Chen (2005) 

[10] 

Comparison 

of detection 

techniques 

LPI signals Requirement 

of detection 

threshold of 

12 dB SNR 

SNR 

requirement is 

high 

8. Aly, O.A.M. 

et al. 

(2006) [5] 

Detection and 

de-noising 

Wavelet-based Detection up 

to -24 dB 

SNR 

Suitable for 

offline 

processing 

9. Carpentieri & 

Cuomo 

(2008) [9] 

Pulse 

detection 

using 

adaptive 

threshold 

Instantaneous 

frequency 

measurement 

(IFM) 

75 dB 

dynamic 

range 

Modulation 

measurement is 

not attempted 

10. Helton, J. et 

al. (2008) 

[25] 

Frequency 

measurement 

Hilbert 

transform 

2 MHz 

Frequency 

accuracy for 

every 100 ns 

Frequency 

measurement  

accuracy is not 

sufficient 

11. Upperman et 

al. (2008) 

[36] 

Detection of 

LPI signals 

Choi-Williams 

distribution 

LPI signal 

detection at 0 

dB SNR 

Suitable for near 

real-time 

processing 

12. Simin, Z. et 

al. (2009) 

[22] 

FPGA based 

detection 

Autocorrelatio

n technique 

3 dB SNR 

required 

SNR 

requirement is 

high 

13. Mahlooji & 

Mohammadi 

(2009) [24] 

Frequency 

measurement 

IFM technique High-

frequency 

accuracy of 

43 kHz 

accuracy at 

30 dB high 

SNR 

SNR 

requirement is 

high for 

measurement 
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14. Xu S.W., & 

Shui, P.L. 

(2010) [71] 

Detection of 

FM signals 

Fractional 

Fourier 

transform 

(FrFT) 

SNR 

requirement 

of 

-5 dB 

Real-time 

performance is 

not achieved 

15. Pandolfi, C. 

et al. (2010) 

[26] 

Comparison 

of frequency 

measurement 

Analog IFM 

and digital FM 

technique 

Frequency 

accuracy 

achieved at     

0 dB SNR 

(i) IFM: 2 

MHz 

(ii) DFM: 0.5 

MHz 

Frequency 

measurement  

accuracy is not 

sufficient 

16. Peter, Q.C. et 

al. (2012) 

[121] 

AOA 

measurement 

using 3 

Antenna 

BLI Technique RMSE of 

1.620  at 5 dB 

SNR 

SNR 

requirement is 

high 

17. Wang, P. et 

al. (2016) 

[92] 

Radar pulse 

modulation 

classification 

Modulation 

component 

analysis 

96% 

accuracy at 

above 2 dB 

SNR 

Real-time 

implementation 

is not achieved 

18. Shin, J. et al. 

(2016) [7] 

Detection of 

LPI signals 

Continuous 

wavelet 

transform 

(CWT) 

Detection up 

to 

-5 dB SNR 

Suitable for 

offline 

processing 

19. Gurel, A.E. et 

al. (2017) 

[52] 

FPGA 

Implementati

on of DF 

approach 

 

Amplitude and 

Phase 

Comparison 

DF approaches 

A 

requirement 

of 10 dB 

SNR is 

required 

Requirement of 

high SNR 

20. Fan, X. et al. 

(2017) [91] 

Polyphase 

and Frank 

Codes 

recognition 

IQPF and FrFT 

algorithms 

100% 

recognition 

above 0 dB 

of SNR 

Real-time 

implementation 

is not addressed 

21. Park, B., & 

Ahn, J.M. 

Intra-pulse 

modulation 

Frequency 

modulation 

90% 

accuracy 

SNR 

requirement is 
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(2017) [62] recognition identification 

algorithm 

above 10 dB 

SNR 

high 

22. Selim, A. et 

al. (2017) 

[94] 

Spectrum 

monitoring 

for radar 

bands 

Amplitude 

Phase CNN 

and Spectrum 

CNN 

Detection at 

above 5 dB 

SNR (AP-

CNN) and 7 

dB (S-CNN) 

Real-time 

implementation 

is not addressed 

23. Orduyilmaz,  

A. et al. 

(2018) [51] 

DOA 

estimation 

Concentric 

Circular Array 

(CCA) 

DOA RMSE 

of 0.25 

degree at 5 

dB SNR 

SNR 

requirement is 

high 

24. Moghaddam 

& Masoumi 

(2018) [8] 

Detection and 

frequency 

measurement 

Instantaneous 

frequency 

measurement  

Detection up 

to 

-65 dBm 

Modulation 

measurement is 

not attempted 

25. Juan Zhang 

et al. (2018) 

[64] 

Modulation 

classification 

for FM 

signals 

Time-

frequency 

distribution 

and CNN 

Classification 

is good at 

above 5 dB 

SNR 

Real-time 

performance is 

not addressed 

26. Tian Xi et al. 

(2018) [84] 

Intra-pulse 

intentional 

modulation 

recognition 

Singular value 

decomposition 

(SVD) 

Suitable at 

lower SNR 

Real-time 

implementation 

is not achieved 

27. E. Yar et al. 

(2019) [63] 

Detection and 

modulation 

classification 

STFT, Hough 

transform, and 

CNN 

Accuracy of 

93.73% is 

achieved at  

10 dB SNR 

Real-time 

implementation 

is not achieved 

28. Lauren et al. 

(2019) [74] 

Emitter 

identification 

CNN IQ 

imbalance 

estimators 

Working well 

above 10 dB 

SNR 

Real-time 

implementation 

is not achieved 

 

2.4  Detailed literature review  

  ELINT systems which is the division of Radar EW systems measure various 

parameters [1]-[3]. The waveform generated by radars with magnetron and traveling wave 

tube (TWT) exhibit differences with the serial number of radars. In other words, waveforms 
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generated by different serial numbers of radars of the same model will be different. To 

overcome this, electronic support should have the capability to distinguish among radars of 

the same model. The features which broadly change from one serial number to another are 

rise time, fall time, overshoot, and undershoot characteristics of pulses. These features are 

changed among different serial numbers of radars due to their aging effect and their non-

repetitive performances. The non-repetitive performances are basically due to the analog 

nature of magnetron and TWT. 

  Advanced radars are based on digital techniques and Transmit/Receive (T/R) module. 

These multiple T/R modules are combined with multiple active antenna phase array and 

produce the required gain. Each T/R module provides the gain of the order of 20 to 50 Watts. 

It produces about 100 dB gain on combining all modules. Their performance is repetitive as 

they are based on solid-state devices. The radars with these capabilities will generate a similar 

waveforms with different serial numbers of radars. They will have the same rise time, fall 

time, overshoot, and undershoot. These radars can generate adaptive waveforms from time to 

time. Their characteristics also can be changed. To identify the serial number of such radars, 

the ES system needs to rely on other parameters such as AOA and MOP. These two 

parameters also help to identify magnetron and TWT-based radars. The fact is that radars 

based on magnetron and TWT are not repetitive across different serial numbers. Due to the 

different performances of magnetron and TWT, radar’s pulse waveforms are different. 

2.4.1   Signal estimation techniques 

 The basic parameters of radar signals are radio frequency (RF), pulse width (PW), 

Pulse amplitude (PA), pulse repetition frequency (PRF). These parameters are measured using 

generated instantaneous amplitude profile and instantaneous frequency profile. The noise 

reduction is also carried out using spectral subtraction before generating these profiles. 

 Both inter-pulse and intra-pulse parameters are required to be measured accurately of 

radar signals. The emitter identification system becomes critical when multiple radars are 

operating in a dense environment. It becomes a challenging task to uniquely identify them as 

radars of same kind exhibit minor variations in the transmitted pulses [4]. These systems are 

required to classify and identify them even with same make and model by utilizing 

unintentional variations within the pulse. These parameters constitute the fine grain 

parameters of the radars. The decisions taken based on these fine grain parameters the 

accurate identification of the radars can be established. 
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  O.A.M. Aly et al. [5], proposed a wavelet-based algorithm for radar pulse detection 

and de-noising. This algorithm can detect the signal up to -24 dB SNR but it can work on 

stored data and it is not implementable for real-time applications. Aceros-Moreno & 

Rodriguez [6], proposed a discrete Chirp Fourier transform (DCFT) detect chirp signals only. 

But the detection of only chirp signal is not sufficient as the environment is unknown. Shin et 

al. [7], proposed wavelet-based detection of weak radar signal at -5 dB SNR but this approach 

is also not implementable for real-time application.  

  Moghaddam & Masoumi [8], proposed instantaneous frequency measurement for 

pulse detection using adaptive threshold, detects signal up to -65 dBm power level for 2-4 

GHz band, and measures basic parameters. Carpentieri & Cuomo [9], proposed the radar 

pulse detection up to 75 dB dynamic range using an adaptive threshold. Gross & Chen [10], 

proposed the various detection techniques which require 12 dB of SNR. But these researchers 

focussed on basic parameter measurements and have not attempted intra-pulse modulation 

measurement. Various LPI radar signals [11] are mentioned. These signals are difficult to 

measure in real-time. It becomes critical to extract these radars and recognize them 

appropriately in real-time. 

  M. Conning and F. Potgieter [12], used phase-based detection, measurement using 

in-phase and quadrature-phase, and identification are done on the measured data. S. Davis and 

I. Bucher [13], have presented the single tone frequency estimation using the linear least 

square (LLS) technique. They have been carried out offline processing and are not addressed 

for hardware implementation. Manish Gupta et al. [14], have presented a statistical solutions 

for the issues related to drifting and aging of emitters. These researchers considered the 

offline processing techniques. 

  J. Dudczyk et al. [15]-[16], have carried out extensive research and presented the 

identification method using fractal features and graphical representation of the distribution of 

radar signal parameters. A. Kawalec et al. [17] have presented the emitter recognition using 

intra-pulse data. S. Deng [18] describes the identification based on the RF fingerprints. Y. Pan 

[19] has presented the identification based on the high fidelity symbol synchronization. K. 

Michel and K. Adams [20] have implemented the matched filter in FPGA for a radar systems. 

These researchers have not concentrated on real-time modulation identification which is 

required for tactical operations. 

  An approach based on digital in-phase and quadrature-phase (DIQ) for intra-pulse 

parameter measurement perform reasonably well for high processing SNR as demonstrated by 
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RK Niranjan and BR Naik [21]. Z. Simin et al. [22], demonstrated a pulse detection approach 

which requires 3 dB SNR. J.B.Y. Tsui [23], S. Mahlooji and K. Mohammadi [24], James 

Helton et al. [25], and C. Pandolfi [26] have presented digital instantaneous frequency 

measurement techniques for frequency estimation. However, they have shown frequency 

estimation with high accuracy at high SNR. But their performance is not adequate at lower 

SNR. These authors have not concentrated on intra-pulse modulation identification. 

  Various digital receiver front-end configurations and digital receiver techniques are 

presented by H. Pekau and J.W. Haslett [27], S.G. Kaiser [28], M.A. Sanchez [29], and A.K. 

Singh and S.K. Rao [30]. These digital receiver configurations used frequency measurement 

using FFT-based detection. These techniques are good for detection and parameter 

measurement due to FFT’s inherent processing gain. But, intra-pulse modulation 

measurement is not possible using this technique in real-time. FPGA implementation for the 

digital IQ method is presented by RK Niranjan and BR Naik [31]. This work is carried out for 

parameter measurement for 40 MHz bandwidth and not concentrated on intra-pulse parameter 

measurement.  

 H. Akima [32] has presented a smooth curve fitting method which is used for frequency 

estimation. B.G. Quinn [33], shown the estimating frequency by interpolation technique using 

Fourier coefficient. P. Voglewede [34] has presented a parabola approximation for peak 

frequency determination. S. Djukanovi has shown frequency estimation of a real sinusoid. 

These frequency estimation technique does not provide the SNR advantage but these 

techniques have been used effectively to achieve better frequency accuracy with less FFT 

number of points.  

 G.J. Upperman et al. [36], studied Choi-Williams distribution for detection of LPI 

signals but near real-time performance only could achieve. S.U. Dan et al. [37], have carried 

out the comparative analysis of frequency estimation techniques. But researcher has not 

concentrated frequency estimation in real-time. S. Sajedian et al. [38], have presented a 

frequency estimation technique using a neural network. But it takes about one second 

processing time. 

 Frequency estimation techniques presented by H.C. So and K.W. Chan [39], H.C. So 

et al. [40], H.C. So and K.W. Chan [41], H.C. So et al. [42], L. Liu [43], F.K.W. Chan [44], 

S.M. Kay [45], R. Stoica and R. Moses [46], and B. Zeng [47], but real-time performance is 

not achieved using these techniques. These techniques do the frequency estimation offline. 
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2.4.2  Angle-of-arrival techniques 

 Minimum two antennas are required for baseline interferometry (BLI). But usually, 

four antennas are used to get better DF accuracy. A system designed using four antennas with 

BLI approach requires four antennas, four channel switch filter bank, four channel down-

converter, four ADCs for one quadrant. The front-end becomes bulky with four channel, 

weight and power dissipation will be more. For each quadrant, three different types of 

antennas are required based on frequency coverage to cover complete 0.5 to 18 GHz range. 

So, practically twelve antennas are required instead four antennas and their outputs are being 

switched internally in the switched filter bank. Such four quadrants are required to cover 

complete 3600 azimuth. 

  Three antenna based BLI algorithm is proposed for DOA extraction. In this, three 

antennas, three channels switch filter bank, three channel down-converters, three ADCs for 

one quadrant. No. of antenna to cover complete frequency range will be nine. This concept is 

also known as virtual antenna-based BLI algorithm. The measured error will be more 

compared to four antennas based BLI algorithms. This is compensated by using noise 

cancellation technique on raw IF data. This will improve the SNR and it is used only for space 

ELINT where requirement of FOV is limited. Hence, the performance becomes similar to four 

antenna based BLI. Total hardware reduction will be around one forth. 

  High altitude or space-based electronic intelligence (ELINT) systems has the 

advantage of uninterrupted receiving of airborne radars, tracking radars, etc. These radars can 

be captured from the high altitude easily and classify them by ELINT systems. The 

requirement of space-borne systems are small SWaP. The proposed algorithms along with 

proposed configurations are useful for space ELINT systems. The performance of these 

systems expected better than ground-based systems [1]-[3], [48]. Many direction-finding 

techniques and mentioned by Lipsky [49]. 

 K.R. Sundaram [50] et al. has presented a modulo conversion method for resolving 

phase ambiguity. This modulo conversion method is complex and requires more 

computations. A. Orduyilmaz et al. [51] has introduced four-channel phase comparison for 

direction finding. The hardware design using this technique requires four antennas, four 

coherent down-converters, four-channel processors and hence it becomes bulky.  A.E. Gurel 

et al. [52] presented amplitude and phase comparison direction-finding techniques in real-

time. This requires high SNR for processing. S.O. Ata et al. [53] have shown the high-

resolution direction of arrival using Concentric Circular Arrays. But this type of array is not 
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possible for all types of platforms. Q. Yuan et al. [54] have introduced the direction of arrival 

simulation using an array antenna with arbitrary geometry. But, real-time implementation is 

not addressed by researchers. H. Sakai [55] has shown the direction of arrival estimation 

using magic-T circuit’s array antenna. This type of arrays antenna is not possible for all types 

of platforms. L. Osman [56] has shown the multiple signal classification for direction-of-

arrival estimation using four antenna array. But this type of hardware configuration is not 

possible in all types of platforms. 

2.4.3 Different techniques used for modulation recognition 

 Modulation on radar pulse is one of the most important features and one of the vital 

problems in the analysis of non-cooperative radar signals is modulation classification for 

emitter identification [3], [13], [15], [18]. The modulation classification plays a very 

important role in Electronic Intelligence (ELINT) systems. Firstly, the modulation type of a 

signal is important to identify the radar type. Second, on identifying the correct modulation 

type the carrier frequency is re-estimated. Third, it helps to distinguish similar radars 

deployed in proximity. But for radar signals, the modulation classification in real-time is very 

challenging due to the possibility of various modulations within a very short pulse width. 

The earlier generation of Electronic Support (ES) systems was based on instantaneous 

frequency measurement (IFM) receiver and pulse measurement using log video. The time-

domain technique was used for noise estimation and signal detection [21] and frequency was 

measured using time-frequency analysis [10], [24]-[25]. But during conversion from radio 

frequency (RF) or intermediate frequency (IF) to log video, the phase and hence the 

modulation information is lost. Due to this reason these systems measure only basic 

parameters like radar frequency (RF), Pulse width (PW), Pulse Repetition Interval (PRI), and 

Pulse Amplitude (PA). These parameters broadly are called inter-pulse parameters. But the 

measurement of these parameters alone is not sufficient against modern RADARs.  

 F.B. Gross and K. Chen [57] have demonstrated the comparison of detectability radar 

waveforms in classic passive receivers. Researcher has not concentrated on modulation 

identification in his work. X. Fan et al. [58] have shown polyphase pulse compression codes 

detectability of 90% at above -7 dB SNR using integrated quadratic phase function (IQPF) 

and fractional Fourier transform (FRFT). But researcher has not concentrated on the real-time 

processing aspect. L. Nadav and M. Eli [59] have mentioned various radar signals. These 

signals are used in generator of modern radar waveforms. 
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E.E. Azzouz and A.K. Nandi [60] have given various techniques of modulation 

recognition of various signals. L. Yun and M. Chunguang [61] has presented automatic 

modulation recognition of communication signals using Haar Wavelet Transform (HWT). 

They have achieved modulation recognition accuracy of more than 90% at more than 5 dB 

SNR. This high SNR requirement is not sufficient for ELINT systems and researchers have 

not addressed real-time implementation.  

B. Park and J.M. Ahn [62] had demonstrated radar modulation recognition of FSK, 

LFM, and NLFM using pulse description words and complex waveforms. The recognition 

accuracy of 90% is achieved at above 10 dB SNR. But researchers have not concentrated on 

modulation recognition in real-time and SNR requirement is also high. E. Yar et al. [63] have 

shown the pulse detection and modulation classification for cognitive electronic warfare using 

short-time Fourier transform (STFT) and Hough transform. Frequency and phase modulations 

are classified with 93.73% accuracy at 10 dB SNR.  

J. Zhang et al. [64] have presented the frequency modulation classification using time-

frequency distribution and CNN. Classification accuracy is achieved well at above 5 dB SNR. 

Real-time classification is not addressed by the researchers.  E.E. Azzouz and A.K. Nandi 

[65] have demonstrated the automatic identification of digital modulation types. The 

identification accuracy of more than 90% is achieved at above 10 dB SNR. The requirement 

of 10 dB SNR is not sufficient. The real-time identification of modulation is not addressed by 

researchers. 

A.K. Nandi and E.E. Azzouz [66] did the automatic analog modulation recognition with 

more than 90% accuracy at above 10 dB SNR. However, this technique is applicable for the 

recognition of communication signals and this requires high SNR. A.K. Nandi and E.E. 

Azzouz [67] have presented decision-theoretic algorithms for automatic modulation 

recognition of communication signals. The recognition is carried out using an artificial neural 

network (ANN). Total 96% accuracy is achieved at above 15 dB SNR which is not sufficient. 

C. Dubuc et al. [68] introduced an automatic modulation recognition algorithm for 

spectrum monitoring applications using a decision-tree algorithm at 5 dB SNR. In this, 

researchers have not concentrated on real-time identification. Y.T. Chan and L.G. Gadbois 

[69] Identification of the modulation type of communication signal using envelope 

characteristics above 7 dB SNR. The SNR requirement of this technique is more. 

 Detection of LFM signals is proposed by H. You et al., using Wigner-Ville 

Distribution (WVD) - Hough Transform at low SNR [70]. But the detection of other signals is 
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not mentioned. S.W. Xu and P.L. Shui [71] have demonstrated the detection of frequency-

modulated signals using fractional Fourier transform at above -8 dB SNR. But researchers 

have not concentrated on real-time implementation of this technique. 

 Y. Qun e al. [72] has proposed specific emitter identification using the carrier frequency 

feature.  Fixed and chirp signals are considered for specific emitter identification. The 

frequency is measured with 140 kHz accuracy but modulation identification is not addressed 

by researchers. J. Dudczyk and A. Kawalec [73] has proposed a fast-decision identification 

algorithm of emission source pattern with 92% level accuracy. The algorithm is fast but 

considered basic radar parameters RF, PW, and PRI. Intra-pulse modulations are not 

measured and are not considered for identification. 

 L.J. Wong et al. [74] have presented specific emitter identification using convolutional 

neural network (CNN) based IQ imbalance estimators. Good SEI performance is achieved at 

above 15 dB SNR. But researchers have not concentrated on modulation measurement and 

have not used this parameter for SEI. J. Matuszewski [75] has demonstrated analysis of 

modern radar signals parameters for electronic intelligence system. The basic parameters RF, 

PA, PW, PRI, and AOA are measured and modulation parameters are not measured by the 

researcher.  

 H. Zanga and Y. Li [76] have presented an overview of radar intra-pulse modulation 

recognition. Various approaches time domain, frequency domain, time-frequency analysis, 

delayed sub-autocorrelation, fractal measure, and wavelet transform. All approaches are not 

possible to implement for real-time applications. Z. Qu et al. [77] have demonstrated radar 

signal intra-pulse modulation recognition based on convolutional neural network (CNN) and 

deep Q-learning network (DQN). Recognition accuracy is more than 94% but researchers 

have not concentrated on the real-time implementation aspect. 

 R.K. Chilukuri et al. [78] have demonstrated estimation of polyphase and polytime 

codes of LPI radars using the cyclostationary method. But researcher has not demonstrated 

algorithms porting on hardware for real-time application. A. Kawalec et al. [79] show the 

radar-specific emitter recognition using intra-pulse data. The researcher has not shown the 

intra-pulse measurement approaches for real-time applications. S. Guo et al. [80] have shown 

the specific emitter identification using signal transients. Intra-pulse modulation measurement 

is not carried out for identification. 

 C. Erdem et al. [81] has demonstrated specific emitter identification using the 

characteristic of video signals. H. Jiang et al. [82] have proposed specific radar emitter 



Review of Literature  23 
 
 

 

 

identification based on a digital channelized receiver. The identification is carried out using 

different shapes of video signals and it is effective at above 20 dB SNR. But the above 

researchers have not concentrated on basic parameter measurement and modulation 

measurement. 

  B.W. Gillespie et al. [83] proposed a classification based on time-frequency features. 

But the real-time implementation is not addressed by the researchers. T. Xi et al. [84] have 

demonstrated intra-pulse intentional modulation recognition of radar signals at 5 dB SNR. But 

the researchers have not shown the real-time implementation of modulation identification. 

 W. Fenghua et al. [85] have proposed an autocorrelation-based approach for intra-pulse 

modulation recognition using first and second-order phase differences. The recognition 

performance is demonstrated better at above 6 dB SNR.  K.C. Ho et al. [86] have 

demonstrated modulation identification using wavelet transform at above 13 dB SNR. The 

SNR requirement is high for modulation recognition and real-time performance is not 

demonstrated by these researchers. 

 Q. Shi and Y. Karasawa [87] have shown the automatic modulation identification using 

the probability density function of the signal phase. L. Mingquan et al. [88] have 

demonstrated modulation recognition using cyclic spectral features. H. Haderer et al. [89] 

have shown the comparison of phase-coded CW radar modulation schemes for integrated 

radar sensors. Zhou et al. [90] have demonstrated time-frequency atomic dictionary analysis 

for radar intra-pulse modulation signal sparse representation. But above researchers have not 

demonstrated the real-time implementation of the proposed approaches. 

 X. Fan et al. [91] have demonstrated polyphase pulse compression codes modulation 

recognition using integrated quadratic phase function (IQPF) and fractional Fourier transform 

(FrFT). Correct recognition of 90% is achieved at above -7 dB SNR. But researcher has not 

demonstrated the real-time implementation of these approaches. P. Wang et al. [92] have 

proposed the radar pulse modulation classification using modulation component analysis. 

Classification accuracy of 96% is achieved at above 2 dB SNR, but real-time implementation 

is not addressed. 

 J. Lunden et al. [93] demonstrated automatic radar waveform recognition with 90% 

accuracy at above 6 dB SNR. A. Selim [94] has shown Spectrum monitoring for radar bands 

using deep convolutional neural networks (DCNN) at above 7 dB SNR. These researchers 

also have not demonstrated real-time hardware implementation of these approaches. The 

requirement of SNR is also high. 
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 Z. Shun [95] has presented a radar signal intra-pulse modulation characteristic analysis 

method. W. Fenghua et al. [96] have shown an effective method for intra-pulse modulation. 

Z. Germany et al. [97] have given the identification of intra-pulse modulated signal types 

based on the phase difference. H. W. Wang et al. [98] have shown identification of radar 

emitter using pulse envelope characteristics. L. Zheng et al. [99] have demonstrated signal 

recognition of radiation source based on wavelet transform. But these researchers have not 

concentrated on real-time implementation of modulation recognition. 

 Till the earlier generation of EW systems, these offline analysis tools are either add-on 

or they are integrated with the main ES systems or ELINT systems. Identification of 

modulations by ELINT system in real-time is still a challenge. Various digital methods are 

discussed for modern digital implementation [60]-[64] and decision-theoretic approaches are 

mentioned for modulation classification [65]-[69]. These approaches are used for COMINT 

systems for measuring communication signal modulations. They are easy to implement as 

bandwidth is less for these systems. 

 Modulations can be identified using frequency domain techniques using offline 

systems for ELINT systems [70]-[99]. Implementation of these techniques in Field 

Programmable Gate Array (FPGA) for real-time application is not a viable solution as they 

consume a lot of hardware resources. Due to this reason, the implementation of signal 

classification techniques is attempted in FPGA using the time-domain technique for real-time 

application. IF signal is digitized by ADC and samples are captured, processed, and further 

analysed in FPGA. These are possible to implement in FPGA due to parallelism, high density, 

and high-speed component cores.  

 Z. Ge et al. [100] have demonstrated an improved algorithm of radar pulse repetition 

interval deinterleaving based on pulse correlation. V. Iglesias [101] has demonstrated a real-

time radar basic pulse parameter extractor for RWR application. In this work intra-pulse 

modulation has not been demonstrated by the researchers. 

 M. Bagheri [102] has presented pulse deinterleaving based on adaptive thresholding. L. 

Zhang-Meng [103] has presented online pulse deinterleaving with finite automata. F. Fuhua 

and Y. Xuezhong [104] have demonstrated deinterleaving using stagger PRI. P. Barnwal 

[105] has shown radar PRI classification based on features estimation. H. Li et al. [106] have 

given signals deinterleaving using an improved CFSFDP algorithm. G. Noone [107] has 

demonstrated radar pulse train parameter estimation and tracking using neural networks. S. 

Wei et al. [108] have shown PRI modulation recognition based on squeeze-and-excitation 
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networks. Y. Xi et al. [109] have demonstrated an algorithm for multi-signals deinterleaving 

and two-dimensional imaging recognition based on short-time PRI transform. M. Jawad [110] 

has shown PRI characteristics analysis under the complex environment of spurious and 

missing observations. X. Li [111] demonstrated attention-based radar PRI modulation 

recognition with recurrent neural networks. U.I. Ahmed et al. [112] have shown pulse 

repetitions interval (PRI) Classification Schemes. X. Li et al. [113] have demonstrated 

deinterleaving of pulse streams with denoising auto encoders. Z. Shi et al. [114] have shown 

feature extraction for PRI modes based on the auto-correlation function. G. Lbpez-Risuefio et 

al. [115] have demonstrated two digital receivers based on time-frequency analysis for signal 

interception. 

The de-interleaving based on the basic parameters (DOA, RF, PW, and PRI) is not 

very effective due to the dense environment where similar radars are operating in the 

environment [100]-[114]. Modulations and their parameters measured offline are used for de-

interleaving and similar radars can be segregated effectively [70]-[99]. But this information 

can’t be used for tactical application. When these parameters are measured in real-time, they 

can be used for de-interleaving, and in this case and similar radars can be segregated 

effectively. This information will be useful for tactical purposes. The advantage in using 

modulation information for de-interleaving is co-located radars operating with similar 

frequency can be identified for same reported DOA parameters. 

 This thesis proposes new processing algorithms i.e. noise cancellation and 

autocorrelation. The noise cancellation is used to enhance the SNR of the incoming signal. It 

is being carried out based on spectral subtraction. It is being by estimating the average noise 

of the system. This estimated noise average is subtracted from the incoming signal and 

restored signal is obtained without affecting the phase of the signal [117].  Autocorrelation 

technique is also able to detect the signal at lower SNR. When both the techniques are used 

together, all the targeted signal is being detected upto 1 dB SNR. Hence, identification is also 

improved at lower SNR. 

Researchers are identifying radar signal modulations using frequency domain 

techniques, wavelet transforms and convolutional neural network (CNN) based techniques but 

these techniques can’t be implemented on the FPGA platform for real-time application. 

Literature are available for online modulation identification but they are applicable for 

communication signals which is used for COMINT systems. Detection and identification of 

Frank codes, Polyphase codes, and Polytime codes are carried out offline. These techniques 
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are required resource-intensive hardware for real-time identification. Hence, these techniques 

are out of the scope of the proposed research work. 

2.5 Concluding remarks 

 In literature, approaches available are frequency domain, wavelet transform, and 

convolution neural network, etc. for ELINT applications. These approaches cannot be used 

for real-time application. The comparison of proposed techniques with existing frequency 

domain techniques is unfair as some existing techniques will get inherent processing gain. As 

various methods of signal estimations and modulation recognition for radar signals exists, it is 

difficult to draw meaningful conclusions about the merits of anyone approach over another. 

The techniques developed in this thesis are useful as this leads to improve the SNR advantage 

of signal and modulation recognition is carried out in real-time. 

Researchers have concentrated on offline processing. In this proposed research work, 

real-time processing techniques are investigated. With this concluding remark, the research 

problem is stated as “real-time modulation recognition of radar signals using digital 

techniques for new generation ELINT systems”. 
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Chapter 3 

 
 
 

Contemporary Parameter Measurement Techniques 
 

 
Electronic Support (ES) systems have been in development predominantly since world 

war-II. In this chapter, some of the contemporary frequency measurement receivers, digital 

frequency measurement techniques, direction-finding techniques, and measurement of 

modulation techniques for electronic support systems are discussed. 

ES systems are designed based on the requirement of frequency and direction finding 

(DF) measurement techniques. Generally, ES receivers measure quantitatively the following 

parameters 

(a) Radio frequency (RF) 

(b) Angle-of-arrival (AOA) 

(c) Pulse width (PW) 

(d) Pulse amplitude (PA) 

(e) Time-of-arrival (TOA) 

(f) Pulse repetition interval (PRI) 

(g) Modulation information 

The frequency is measured using frequency measurement receivers and AOA using 

the DF receiver technique. The parameters listed from (c) to (f) are measured using the 

amplitude information. Modulation information is measured using the conventional DIQ 

technique. 

3.1 Frequency measurement receivers 

Many microwave receivers exist which are used to measure radio frequency (RF). 

Various contemporary measurement receivers are described below [1]-[3].  
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3.1.1 Crystal video receiver 

 Crystal video receiver is the simplest in structure and most common in use among all 

types of receivers. The output of the diode detector i.e. crystal detector is amplified enough by 

a video amplifier. The output voltage of detector is a function of input power since detector 

operate in a square low region. Crystal video receiver (CVR) consist the series of pulses with 

amplifier proportional to input RF power. Usually, the sensitivity of CVR is in the range of     

-35 dBm to -50 dBm. Usually, CRV are used in RWR receivers. The block diagram of the 

crystal video receiver is shown in Figure 3.1. 

 

 

Figure 3.1: Block diagram of Crystal video receiver. 

3.1.2 Superheterodyne receiver 

Superhet receivers are used in radar receivers as well as communication receivers. 

Since the instantaneous frequency coverage is very narrow, Superhet provides a high 

sensitivity of the order of -90 dBm, wide dynamic range, and excellent frequency selectivity 

& accuracy. The POI is less due to its narrow bandwidth. These receivers are also designed 

for different bandwidth coverage to enhance POI. 

 

Figure 3.2: Block diagram of Superheterodyne receiver. 

The block diagram of the basic Superheterodyne receiver is shown in Figure 3.2. This 

receiver transforms the information of a portion of its RF frequency into an intermediate 
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frequency (IF) band using a mixer and tuned local oscillator (LO). A tunable band pass filter 

(BPF) is used as a pre-selector filter before the pre-amplifier or mixer to avoid and isolate the 

interfering signals from the other part of the wide RF bandwidth.  

 Quad-superhet receiver (QSHR) is the four-channel Superhet receiver. This receiver 

down-converts four RF signals coming from antennas to IF signals simultaneously. These IF 

signals are used by four-channel digital receivers and parameter measurements are carried out. 

ELINT systems are designed often using these receivers. 

3.1.3 Instantaneous frequency measurement receiver 

The instantaneous frequency measurement (IFM) receiver uses the phase delay line 

and phase differences is measured. The frequency is measured using these phase differences. 

The RF or IF signal splits into two paths direct path and delayed path (𝜏). The phase angle 

between direct and delayed path can be written as 𝜙 = 𝜔𝜏. The frequency can be measured 

using the phase angle (𝜙) and delay time (𝜏). The Phase relation of sinusoidal waves with 

constant phase delay for IFM Receiver is shown in Figure 3.3. 

The following equations shows the frequency computation of IFM receiver 

𝐴 =  𝑥 𝐶𝑜𝑠 𝜙     (3.1) 

𝐵 =  𝑥 𝑆𝑖𝑛 𝜙      (3.2) 

𝜙 = 𝑡𝑎𝑛ିଵ (𝐵/𝐴)    (3.3) 

𝑓 = ቀ
థ

ଶగఛ
ቁ     (3.4) 

where 𝑥 is the amplitude information. 

 

Figure 3.3: Intermediate frequency measurement receiver. 
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Limiting amplifier is the first component and then power divider is being used. The 

direct signal and delayed signal are given to phase correlator. Phase correlator multiplies both 

direct path and delayed path signals and sine and cosine video signals are obtained. Both 

signals are digitized by the different ADCs. Digitized data is stored in the ROM, which 

performs 𝜔 = ቀ
ଵ

ఛ
ቁ 𝑡𝑎𝑛ିଵ ቀ

ௌ௜௡ థ

஼௢௦ థ
ቁ. The frequency is thus directly computed. Number of phase 

delay line computes the frequency accuracy and resolution, whereas the shortest delay line are 

measuring the explicit bandwidth. The frequency measurement is also carried out using the 

conventional ways by comparing the amplitude in comparators. Grey code equivalent to 

frequency is obtained. The drawback of IFM is there when number of emitters present in the 

environment is two or more. It will measure only highest amplitude signals. 

3.1.4 Channelized receiver 

 The basic channelized receiver is shown in Figure 3.4. A switched filter bank is an 

essential component in this receiver apart from other generic components like pre-amplifier, 

video detector, etc. This receiver splits the wide input bandwidth into multiple narrow bands 

through the use of a contiguous filter-bank as part of a fixed tuned Superheterodyne receiver. 

The sensitivity of the receiver is enhanced using this technique without compromising on 

wide bandwidth coverage. The channelized receiver has high sensitivity, wide dynamic range, 

and fine frequency resolution. Parallel video processing blocks for entire channels are 

required to achieve 100% POI. 

 

Figure 3.4: Block diagram of Channelized receiver. 

 The Channelized receiver provides better POI than the Superhet receiver because it’s 

parallel nature. A large number of parallel channels makes this receiver bulky, highly 

hardware intensive, and expensive which has limited use in current EW applications. 

However, Surface Acoustic Wave (SAW) devices and millimetric wave integrated circuits 

(MMICs) hold promise for the future of Channelized receivers which helps in reducing the 

size and cost. 
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3.1.5 Homodyne receiver 

A Homodyne receiver is a special case of a Superheterodyne receiver. In 

Superhetodyne receiver, the LO is derived externally. But in the Homodyne receiver, the 

frequency of the local oscillator (LO) is same as the frequency of the input RF signal. Since 

the LO is derived from the incoming weak signals with the use of large amplification, the 

sensitivity is limited which is similar to a wide-open receiver. 

 

Figure 3.5: Block diagram of Homodyne receiver. 

 The block diagram of the Homodyne receiver is shown in Figure 3.5. The homodyne 

reference-LO is the high gain RF front-end and an image rejection (IR) mixer. The homodyne 

LO is derived from the incoming signal by mixing with an IF frequency of interest as 

indicated in that figure. The IR mixer rejects that one of the first sidebands (i.e. the image of 

either RF+IF or RF-IF) of mixer output. These receivers are wideband receivers and work for 

the complete frequency band. But they suffer from sensitivity due to their wide coverage. 

3.1.6 Compressive or Microscan receiver 

The compressive receiver is similar to a Superheterodyne receiver but for the rapid 

tuning, characteristics supported by a compressive filter or dispersive delay line (DDL). The 

delay time of DDL is inversely proportional to the frequency. It is also called a Microscan 

because of the use of fast LO to convert RF into frequency modulated (FM) signal before 

detecting. The detected outputs from a compressive receiver are narrow pulses arriving in 

series in the time domain. By measuring the positions of these compressed pulses, the 

frequency of the input signals can be determined. The block diagram of Compressive or 

Microscan receiver is shown in Figure 3.6. 
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Figure 3.6: Block diagram of Compressive or Microscan receiver. 

The structure of this receiver is complicated and high-speed logic circuits are required 

as the detected pulses are very narrow and very close in time. Advances in Surface Acoustic 

Wave (SAW) devices technology and high-speed logic circuits have revitalized the interest in 

developing Compressive receivers.  

These receivers can handle signals effectively that are transmitted by pulse 

compressive radars. The frequency spectrum intercepted by the ESM receiver is scanned at a 

very high speed to enhance the POI. The sensitivity and dynamic range of these receivers are 

moderately high and the input bandwidth is moderately wide. 

3.1.7 Bragg Cell or Accousto-Optic receiver 

Bragg Cell receiver is optical signal processors which perform their function by 

spatially modulating the phase or amplitude of an optical beam with an input RF signal. The 

optical or light beam in optical signal processors can be modulated by means of an acoustic 

(sound) wave, hence this is termed as Accousto-optical receiver. The modulated light beam is 

then passed through a Bragg Cell that performs an optical Fourier transform to display the 

frequency domain characteristics of the input signal as a spatial distribution of light energy. 

The block diagram of Bragg Cell or Accousto-Optic receiver is shown in Figure 3.7.  

 

Figure 3.7: Block diagram of Bragg Cell or Accousto-Optic receiver. 

The Bragg cell is an Electro-optic device. An entire Bragg cell receiver can be 

constructed on a single substrate as an integrated optical circuit (IOC) by using modern 
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integrated circuit technology. The technology is still under development stage. The structure 

of the Bragg-cell receiver is complicated, but the size is very small. The instantaneous 

bandwidth of the Bragg-cell receiver is around 2 GHz and provides fine frequency resolution. 

Simultaneous signals can be processed by this receiver. The sensitivity of Bragg Cell is high 

but the dynamic range is limited to 25 dB. 

 

3.1.8 Hybrid receiver 

 To accomplish some specific missions, often one kind of receiver can’t fulfil the 

requirements. The present-day radar threat scenario is highly dense with complex signals and 

hence demands the need for selection of a combination of ES or ELINT receivers to encounter 

this situation. Based on the system requirements & technical specifications and considering 

the size and weight constraints, the ES or ELINT system designer has to optimize the 

configuration by selecting one or more receiver technologies. Such receiver combinations are 

called Hybrid receivers. 

 

Figure 3.8: Block diagram of Hybrid Receiver. 

 The typical configuration of a Hybrid receiver is shown in Figure 3.8. The homodyne 

receiver is the basic structure for the Hybrid receivers, which covers wide bandwidth. By 
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using the external LO for homodyne-LO, the receiver will be functioning similarly to 

superheterodyne receiver. Similarly, by inserting a switched-filter-bank at the homodyne LO, 

the receiver functions as the channelized receiver. By introducing detectors at appropriate 

places, the crystal video receiver is obtained. Similarly, the IFM receiver is obtained by 

introducing a few delay lines and mixers. 

 A Hybrid receiver is configured to have the best combination of salient features of 

some of the commonly used conventional receivers into a single receiver. Importantly, the 

hybrid receiver should have superheterodyne receiver feature for higher sensitivity, a crystal 

video receiver for wide-openness, channelized receiver for handling multiple signal 

environments, and a digital receiver for handling multiple simultaneous signals within a 

narrow bandwidth. Also, direction-of-arrival, frequency, and pulse parameters should be 

measured for all kinds of options. ELINT systems frequently used Digital receivers along 

with Quad-superhet receivers which is one of the examples of Hybrid receivers. 

3.2 Digital Receiver configurations for frequency measurement 

Radars employing pulse compression techniques cannot be detected by conventional 

receivers. The advances in digital hardware and signal processing techniques made it possible 

to realize digital receivers for the detection and processing of these signals by applying 

matched filtering and correlation techniques. 

In many EW applications, a digital receiver must be able to digitize input signals that 

can occupy a wide frequency range. Currently, ADC converters do not possess sufficient 

bandwidth to directly digitize these input signals. Therefore, the A/D converter is usually 

preceded by a Superhet receiver that down-converts the signal of interest to an IF frequency. 

The digitized samples of the input signal are usually stored in a digital memory where they 

are available for analysis. There is a vast array of digital techniques for performing detailed 

signal analysis [27]-[30]. The block diagram of the digital receiver is shown in Figure 3.9. 

 

Figure 3.9: Block diagram of Digital receiver. 
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An extension of the basic digital receiver produces a digital RF memory (DRFM). 

DRFM allows for the storage of intercepted radar signatures (RF signal) in a digital memory 

and reconstruct the signal waveform, which is used widely in ECM applications for Jamming 

radars. Advanced DRFMs are now being configured as ASICs, enhancing the memory size 

and performance. 

In present days the digital receivers are commonly used receiver. A number of 

frequency measurement algorithms are available for frequency measurement. It includes fast 

Fourier transform (FFT) based technique, digital instantaneous frequency measurement 

(DIFM), and digital in-phase quadrature-phase (DIQ). 

These measurement algorithms are ported in digital receivers. But digital receivers 

can’t digitize directly RF, whereas it digitizes IF. The RF to IF conversion to lower frequency 

is carried out using Superhet receiver, Channelized receiver, and IFM receiver. These 

receivers will be in the front end and Digital receivers are used for digitization and algorithms 

are used at our choice. The various algorithms are described as below: 

3.2.1 Fast Fourier transform technique 

 FFT is the frequency measurement method and it is the abbreviation of fast Fourier 

transform. Frequency is measured using FFT has the resolution of (fs/N), where fs is the 

sampling frequency and N is the number of FFT points. It says, if FFT points are more, the 

resolution will be more. But, keeping more FFT points is not useful from the point of view of 

pulse width and pulse repetition interval. The accuracy of these two parameters degrades on 

increasing the N. The frequency is computed from the frequency spectrum as k*(fs/N). Where 

k is the bin number. 

 
Figure 3.10: Frequency spectrum. 
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 One option to keep the resolution is to use the FFT in an overlap fashion with more 

N. Another option is to use the interpolation method, where if the frequency falls between two 

bins it will be measured with higher accuracy.  

3.2.2 Digital instantaneous frequency measurement technique 

The various types of receivers listed above for frequency measurement, Digital 

instantaneous frequency measurement (DIFM) is mostly used in frequency measurement 

receiver in EW system because of its inherent characteristics and makes them suitable for 

both ESM and ELINT applications. The block diagram of the DIFM Receiver is shown in 

Figure 3.11.  

  

        Figure 3.11: Block diagram of DIFM Receiver. 
 

 The following are the characteristics of the DIFM receivers 

1. Wide instantaneous RF band width  

2. Wide instantaneous dynamic range  

3. Good frequency accuracy  

4. Measure short pulse with high-frequency accuracy  

5. Adequate sensitivity for practical applications  

The DIFM receiver has only one disadvantage that when multiple signal 

environments, only one strongest signal will be measured. 

 
3.2.3 Digital In-phase Quadrature-phase technique 

In the DIQ technique [21], the digitized IF samples are converted into in-phase and 

quadrature-phase samples using a numerically controlled oscillator (NCO). These samples are 

passed through the low pass filter to discard the high-frequency component. The Equations 

given below describes the DIQ approach for calculating instantaneous phase in radian, 

frequency in Hertz, and amplitude in Volts. The detection is carried out on this amplitude 
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profile ( )R n and pulse is detected. The block diagram of the DIQ technique is shown in 

Figure 3.12. 

 

Figure 3.12: Block diagram of DIQ technique. 

 The input IF signal is defined as 𝑥(𝑡) = 𝐴 cos(𝜃) and the digitized IF sequence is 

described as 𝑥(𝑛𝑡௦) = 𝑥(𝑛) =  𝐴 cos(2𝜋𝑓𝑛𝑡௦). The frequency (𝑓௖) of NCO is chosen as 𝑓௖ =

𝑓௦/4. Where 𝑓 is the is signal frequency, 𝑡௦ is the sampling time, n = 0,1,2,...,N-1, is the 

sample number, N is the total number of samples, and 𝑓௦ is sampling frequency. The 

advantage of choosing NCO frequency as 𝑓௖ = 𝑓௦/4 is shown below. The cosine and sine 

components of NCO becomes as 

𝑥௖  = 𝑐𝑜𝑠(2𝜋𝑓௖𝑛𝑡௦) = [1, 0, -1, 0, 1,.......]  (3.5) 

𝑥௦  = 𝑠𝑖𝑛(2𝜋𝑓௖𝑛𝑡௦) = [0, 1, 0, -1, 0,.......]  (3.6) 

 Finally, the signal x is multiplied with [1, 0, -1] values which is nothing but sign change 

of input signal. The frequency translation (or multiplier) is performed without any 

multiplication.  

   𝑖ᇱ(𝑛) =  𝑥. 𝑥௖  =  [𝑥, 0, −𝑥, 0]   (3.7) 

   𝑞′(𝑛) =  𝑥. 𝑥௦  =  [ 0, 𝑥, 0, −𝑥]   (3.8) 

 These signals are passed through low pass filter to filter out 𝑓 + 𝑓௖ signal and passes only 

desired 𝑓 − 𝑓௖ signal. Based on i(n) and q(n) signals the following are obtained after filtering: 

𝑖(𝑛)  =  𝐿𝑃𝐹 [𝑖’(𝑛)]    (3.9) 

𝑞(𝑛)  =  𝐿𝑃𝐹 [𝑞’(𝑛)]    (3.10) 
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 The instantaneous phase, frequency, and amplitude are obtained using the following 

equation 3.11 to equation 3.13 

Phase   𝜙(𝑛) =  tanିଵ ቀ
௤(௡)

௜(௡)
ቁ     (3.11) 

 

  Frequency    𝐹(𝑛)  =  ቀ
ிೞ

ଶగ
ቁ 𝛥𝜙(𝑛)                   (3.12) 

 

Amplitude  𝑅(𝑛)  =  ඥ{𝑖(𝑛)}ଶ + {𝑞(𝑛)}ଶ   (3.13) 
 

 There is a requirement of above 12 dB SNR using the DIQ technique for instantaneous 

phase, frequency, and amplitude measurements of the pulse. 

3.3 Direction finding techniques 

A direction finding (DF) system gives the direction of emitter [1]-[3], [48]-[49]. It is 

often important to determine the location of the emitter. Two or more DF systems are 

necessary to obtain the location of the emitter by triangulation. Alternatively, the DF system 

can move in space and taking measurement at different times, it is possible to locate the 

emitter. But this is not possible most of the time. There is a number of ways of determining 

the AOA. In this section, some of the contemporary direction-finding methods that are 

suitable for implementation in electronic intelligence receivers are discussed. 

3.3.1 Rotary DF 

One of the first direction finding (DF) techniques was the mechanically spinning 

antenna based which is highly directional. It is physically rotated in azimuth (and elevation) to 

search for radar signals. The AOA for the intercept radar is simply the angle at which the 

spinning antenna received the radar signal. The modern spinning antenna system can estimate 

the radar AOA at the accuracy of one-tenth of antenna beam width (typically of the order of 

10 to 50 RMS). 

Rotary-based DF systems are easy to understand, easy to implement, low cost, and 

highly relevant in radar intercept receivers in today’s system also. These types of directional 

antennas provide inherently directional isolation between the intercept radar with other signals 

coming from the other direction. Hence, they are able to collect the data of intercepted radar 

only in direction. Intercept receiver antenna receives the signals while rotating and radar 

system antenna transmit signals also may be rotating. The coincidence of receiving the radar 
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signal by intercept receiver may or may not be met. The probability of this happening is 

known as the probability of intercept (POI). 

The inherently poor POI performance of this technique is one of the main drawbacks 

of using spinning antennas for a surveillance system. Ongoing antenna maintenance with the 

physical wear and tear of mechanical parts also makes the spinning antenna system 

unattractive. 

3.3.2 Amplitude based DF 

Amplitude-based DF measurement requires 4 to 16 directional antennas. The beam 

width of each antenna BW is given by, BW=(360/N) where N is the number of antennas. A 

larger number of antennas will also give better DF accuracy due to narrower beam width and 

resultant greater amplitude gradient. More number of antennas will also give better system 

sensitivity due to higher antenna gain. Spiral antennas are used for ultra-broadband (multi-

octave) performance and constant beam width horn antennas are used for medium bandwidth 

(octave) and narrow bandwidth. Designing a DF system to cover 3600 azimuth is simpler than 

for partial azimuth. Outputs of two to three antennas (maximum signal amplitude) are 

processed for AOA estimation. Single antenna output can also be processed for signals close 

to bore sight of any one of the antennas especially if 12 element or 16 element arrays are used. 

The front-end hardware has to be calibrated to remove bias errors and to improve DF 

accuracy. DF accuracy degradation is graceful for larger amplitude mismatch between the 

front-end hardware. Loss of sensitivity (in dB) is one-half of the peak-to-peak gain mismatch 

among front-end hardware components. 

 Using twelve antenna ADF system AOA is computed as below 

  𝐴𝑂𝐴 =  𝜃௡  ± [15 –  1.25 ∗ (𝛥𝐴)]      (3.14) 

Where 𝜃௡ is the principal direction in which the antenna with the highest amplitude faces (00, 

300, 600, etc.) and ΔA is the amplitude difference between highest peak and second peak 

amplitude in ± 15଴ roll-off regions. The + or – sign is used depending on whether the second 

peak occurs from the antenna to the left of the peak amplitude antenna or the right. Ultra-

broadband coverage using spiral antennas reasonably good accuracy of 20 to 50 RMS simple 

processing algorithms. But this approach is prone to DF errors due to reflections, multi-path 

effects, and DF accuracy heavily dependent on calibration. 
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3.3.3 FDOA based DF 

 Frequency difference of arrival (FDOA) techniques exploit the Doppler effects to 

estimate the AOA of the received signal. In this system, one antenna is physically rotated 

around a reference antenna. The circular motion of the moving antenna causes a sinusoidal 

Doppler shift relative to the frequency measured by the reference antenna. The angle at which 

the Doppler shift goes from positive to negative is the AOA of the signal. In practical 

systems, the rotating antenna can be replaced by a circular array of antennas that are switched 

sequentially into the receiver. Direction finding systems have been known to achieve angular 

accuracies of about 30 RMS. 

3.3.4 TDOA based DF 

 The time difference of arrival (TDOA) technique is based on the difference in the time 

of arrival of the signals received by two sensors due to the physical separation of the antennas. 

Consider two antennas receiving the same RF signal as signal in Figure 3.13. The difference 

in time of arrival of the signal at the two antennas ‘t’ is given by: 

 𝑡 =  𝑑 ∗ 𝑠𝑖𝑛(𝜃)/𝑐     (3.15) 

 

Figure 3.13: Two Antennas based TDOA. 

where d is the distance between the antenna in meters, θ is the angle of arrival and c is the 

velocity of light. 

 The AOA, θ can be computed as 

  𝜃 = 𝑠𝑖𝑛ିଵ(𝑡 ∗ 𝑐/𝑑)      (3.16) 

 The AOA accuracy is given by:  

𝜎𝜃 = 𝜎𝑡 ∗ 𝑐/[𝑑 ∗ 𝑐𝑜𝑠(𝜃)]      (3.17) 
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Figure 3.14: Two Antennas based TDOA showing signal arrival from two different directions. 

 Front to back ambiguity in the AOA will be there because a signal from the mirror 

image direction also gives identical AOA since the time difference is the same as shown in 

Figure 3.14 where θa and θm are the actual AOA and mirror image of AOA. 

 To resolve these front to back ambiguities a third antenna is introduced so that two 

(orthogonal) baselines are available. The time delays for the two (orthogonal) baselines are 

given by: t1=d*sin(θ)/c and t2=d*sin(θ)/c. The AOA is given by: θ=tan-1(t1/t2). Similar 

equations can be derived for other types of non-orthogonal geometries. 

In the TDOA method, the AOA is computed based on the difference in the time of 

arrival of the intercepted signal by two adjacent antennas. Four antenna based TDOA is 

shown in Figure 3.15. The difference in the arrival time of the RF signal at each pair of 

antennas concerning the baseline formed by the two antennas is measured which is 

proportional to the AOA (i.e. A1-A2, A2-A4, A4-A3, A3-A1, A1-A4, and A2-A3). The time 

difference arrival in turn depends on the span (distance between the antennas) of the baseline. 

 

Figure 3.15: Four Antennas based TDOA. 

The TDOA approach yields high DF accuracy, but the limitations are the requirement 

of large baselines and high-speed  processing circuits to measure the time difference of the 

order of nanoseconds very accurately. TDOA approach is useful for pulsed signals only. The 

present day technology is to use high-speed ECL ICs and GaAs ASICs for time difference 

measurement. Hence, for platforms where large baselines are available, TDOA DF is highly 

recommended. DF accuracy for 14 m spans, is less than 20 achievable. 
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3.3.5 BLI based DF 

 The baseline interferometry (BLI) principle of operation is shown in Figure 3.16. The 

phase delay ѱ across the two antenna outputs is given by, 

 

 

Figure 3.16: BLI principle of operation. 

  

    Ѱ = 2𝜋 ∗ (𝐷/𝜆) ∗ 𝑆𝑖𝑛(𝜃)     (3.18) 

 

where 𝜃 is the AOA with respect to the bore-sight axis, 𝜆 is the wavelength of the incident 

signal, and D is the spacing between the two antenna elements. If the phase delay is measured 

and the frequency (and hence wavelength) is known the Direction of Arrival of the signal can 

be computed as, 𝜃 = 𝑆𝑖𝑛ିଵ (Ѱ𝜆/2𝜋𝐷). The DF accuracy is computed as below: 

  𝜎ఏ = 𝜎థ ∗  𝜆 /[2 ∗ 𝜋 ∗ 𝐷 ∗ 𝐶𝑜𝑠(𝜃)]    (3.19) 

 

 Higher DF accuracy requires a larger baseline. Baseline spacing has to be less than 

(λ/2) to avoid ambiguous phase measurement. This requirement cannot be met practically for 

broadband systems with good DF accuracy specifications. Good DF accuracy can be obtained 

only by large baselines i.e. several wavelengths. Multiple antenna elements (typically 4 to 5 

antennas have to be used to resolve phase ambiguity. Maximum likelihood Estimation, Least 

Mean Square Estimation, and Chinese Remainder Theorem (CRT) are extensively used to 

resolve the ambiguity in phase measurement. The phase error margin is the single most 

important criterion in the design of Interferometer DF Systems. This technique gives gross DF 

errors if the actual phase error exceeds the error margin provided in the algorithm. Phase 

Error Margin is a function of the Prime Integer Ratio of the Baselines used for resolving 

ambiguity. A ratio of 1:2 gives a ±600 phase error margin. The general Phase Error Margin Δϕ 

for resolving Mod 2π phase data using CRT is given by 𝛥𝜙 = 180/(𝑃 + 𝑄) where 𝑃: 𝑄 is the 

prime integer ratio of the baselines whose phase data have to be resolved. Signals coming 
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from outside the Unambiguous FOV should be suppressed at any cost. The other important 

parameters to be considered while synthesizing array spacing’s are: 

Specified DF accuracy, Azimuth coverage (generally ±300 to ±450), Elevation 

coverage (Including coning errors), Frequency coverage, Antenna Dimensions, Post 

Calibration Phase errors in antenna and RF Front End hardware components, SNR 

requirements and Interference immunity, Interference includes reflections, multipath, time 

coincident signals, mutual coupling, etc. 

 Phase calibration is a very important requirement in this type of DF system. 

Calibration is used to remove static bias phase errors in the Front End hardware. Calibration 

data is stored in a look-up table (LUT) for each frequency. Antenna phase errors are stored in 

a separate LUT. It is generally possible to bring down phase errors to within 12 degrees 

(peak) using calibration LUTs. It is to be noted that the phase error margin should not be 

compromised just because the hardware is calibrated. The phase error margin is required to 

take care of what happens to the input signal even before it enters the antenna array. 

Multipath, reflections, Interference, SNR, etc. will alter the phase relationships. A course 

amplitude based DF system is also required if Inter Sector ambiguity is to be resolved. The 

peak error in the Amplitude DF system has to be less than half the unambiguous FOV of the 

Interference. 

3.4 Intra-pulse analysis 

 Intra-pulse analysis of radar signals is carried out in ELINT systems using offline 

analysis [21]-[23]. RF signal is down-converted into IF signal using front-end i.e. down-

converter. This IF signal is digitized by high-speed data acquisition systems and it is stored in 

the memory. This data is sent to DSP for further analysis. Figure 3.17 shows the block 

diagram of the conventional ELINT system.  

 

Figure 3.17: Block diagram of conventional ELINT system. 
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3.4.1 Down-conversion and digitization of IF signal 

 Superheterodyne receiver, Channelized receiver, or homodyne receiver are tuned for 

down-conversion and IF signals are obtained. The IF signals are down-converted to the centre 

frequencies of 1000 MHz ± 250 MHz, 160 MHz ± 20 MHz, or 70 MHz ± 5 MHz. These IF 

signals are digitized by high-speed data acquisition systems. The IF signal of 1000 MHz is 

sampled at 1333 MSPS to cater the bandwidth of 500 MHz using band pass sampling. IF 

signal of 160 MHz or 70 MHz is sampled at 500 MSPS using low pass sampling. In L and S 

radar bands, the IF of 160 MHz or 70 MHz is used. The IF of 1 GHz is used for higher radar 

bands. 

3.4.2 Storing of IF data and preprocessing 

 The digitized IF signal is stored in the double data rate DDR SDRAM memory in real-

time for pulse data. The pulse data comprises of pulse duration, pre-trigger, and post-trigger. 

Pre-trigger, and post-trigger data are captured to measure the rise-time or fall-time. Pre-

processing is also carried out to measure the course parameters like RF, PW, and PRI. These 

course measurements are useful for initial plotting. 

 When the Data acquisition unit completes the acquisition of the required number of 

pulses, it sends the digitized data to DSP.  In case, data is not received within a specified time 

limit, the timeout interrupt is generated indicating that the emitter is not available and the 

controller terminates the process. 

3.4.3 Modulation measurement 

The threshold applied for detection can be either fixed or noise riding. The TOA of 

each pulse is obtained by applying the selected or calculated threshold on the instantaneous 

amplitude of the signal and measuring the point where the signal crosses the threshold. From 

the TOA of each of the pulses in the pulse train, PRF is calculated. The measurement of PW 

of the signal is similar to that of TOA, where the time duration over which the signal crosses 

the threshold is measured. As with the other parameters, a statistical analysis of PW and PRF 

is carried out. The various quantified characteristics thus obtained are passed for post-

processing and fine grain data is generated. Block diagram of DSP processor based 

modulation measurement in shown in Figure 3.18. 

 The pulse parameter measurement along with modulation measurement is carried out 

using DSP processors. These processors are having a limited number of Multiply-Accumulate 
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(MAC) units. The received digitized IF data for the signal is processed. Parameters are 

measured for each pulse along with intra-pulse modulation and a pulse descriptor word 

(PDW) is formed. 

 

Figure 3.18: Block diagram of DSP processor based modulation measurement. 

3.4.4 Sorting 

 The PDW for each pulse is passed for sorting. De-interleaving is done on the PDW 

to perform a one-to-many mapping of the track. The initial sorting required for segregating 

the pulses is done in the primary de-interleaving stage. The parameters used for this 

segregation are frequency and pulse width. Using these two parameters, emitters are grouped 

by sorting the pulse data with similar parameters into pulse chains employing the Pigeon Hole 

technique. After the initial sorting is done, secondary de-interleaving does the task of further 

sorting and classifying. The process of secondary de-interleaving uses the important 

parameter, TOA with the techniques of histogram analysis to perform this job. From the TOA 

parameter of each PDW, the type of PRF and the corresponding parameter for this type of 

PRF are measured. These tracks are formed based on emitters available in the environment. 

3.4.5 Emitter Identification 

The Identification unit identifies the incoming radar with the radars stored in the 

library by using the track parameters, which are measured by the DSP Unit. The controller 

sends the incoming track parameters to the Identification unit for matching. 

 The parameters of the library can be scaled and sorted into groups like Frequency, 

PRI, and PW, etc. For each group, identification is done by passing the parameters through 

suitable windows and using some distance metrics to find the error between the input 

parameters and the radar library parameters. The windows for each parameter will depend 

upon the variance of the parameter, noise, system accuracy, etc. The weights are assigned to 

each parameter depending upon its importance. 
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3.5 Summary 

 This chapter has discussed many contemporary parameter measurements techniques 

which include frequency measurement receivers, frequency measurement techniques, 

direction-finding techniques, and modulation measurement techniques. Homodyne receivers 

are used for wideband coverage and it is frequently used for wideband ES systems but 

achieves less sensitivity. Superhet receiver is also the most important receiver which is used 

for the ELINT system. The achieved sensitivity and dynamic range are very high. Superhet 

receiver is used in conjunction with digital receiver for ELINT system. 

The spinning antenna is the simplest of all direction-finding techniques but has a 

relatively course AOA estimation performance and poor POI performance. However, given 

spinning antennas are still used due to their low implementation costs. Baseline interferometer 

is best-suited direction-finding technique among the discussed DF techniques. This provides 

high DF accuracy.  

Existing ELINT receivers use the Superhet receiver due to its feature. This 

downconverts RF signal into IF signal based on the tuning frequency. The IF signal is 

digitized by high-speed ADC. This digitized IF data is stored in memory for further 

processing by the DSP processor. This extracts the features along with modulation which is 

used for sorting, track formation, and emitter identification. Since, IF data is stored the 

process after this remains offline. Hence, the modulation measurement is also offline 

processing. The systems based on DSP hardware is categorized as a strategic system due to 

offline processing for ELINT systems.  
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Chapter 4 

 
 
 

Signal Estimation and Direction Finding  
 
 
In the previous chapter contemporary electronic intelligence receivers with digital 

frequency measurement techniques and direction-finding techniques are described. The 

modulation measurement techniques are also presented which are useful for offline analysis. 

In this chapter, noise cancellation technique is used as part of preprocessing of the signal. 

Further instantaneous amplitude and instantaneous frequency profiles are extracted using the 

autocorrelation technique. FFT-based frequency estimation using interpolation techniques and 

three antennas based direction-finding techniques are also described. The simulation results 

are also presented for all the mentioned techniques and these are implementable for real-time 

application. 

4.1 Introduction  

The signal is received and noise cancellation is employed as part of the preprocessing. 

In noise cancellation, average noise is estimated for fixed time duration by ensuring signal 

absence. If signal is present during noise estimate the average will be estimated wrongly. The 

incoming signal spectrum subtraction is carried out with average noise estimate and same 

time incoming signal phase is not being disturbed. The recovered signal is called as restored 

signal [117]. This technique is applied for both the I and Q channels as further processing is 

based on the complex signal. Later, autocorrelation with different delays are computed using 

both I and Q channels to reduce the impact of noise. Implementation of autocorrelation 

algorithm consumes more hardware resources. An efficient technique is innovated to reduce 

the hardware consumption. To measure the highly accurate intra-pulse parameters a new 

system configuration has been proposed with various proposed signal processing algorithms. 

Estimation of frequency is carried out based on the Rectangular window, Hanning 

window, Curve fitting, Curve fitting with Hanning window interpolation techniques. 

Interpolation techniques results are compared with FFT measured frequency which improves 

the accuracy of frequency reporting. The correct frequency is useful for AOA measurement 
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which is an important parameter because it can’t be camouflaged. This parameter can be 

exploited in many ways which include improving situational awareness, signal sorting or 

deinterleaving, prompt electronic attack measures (such as jammers) or electronic protection 

measures (such as chaff), and many more. Accurate DOA measurement is required with 

available space and resources. There are many contemporary directions finding methods that 

are suitable for implementation in electronic intelligence receivers such as Rotary Direction 

Finding (RDF), Amplitude Comparison Direction Finding (ADF), Time Difference of Arrival 

(TDOA), Phase Difference of Arrival (PDOA), and Frequency Difference of Arrival (FDOA). 

The PDOA is also known as interferometry [3], [49]. 

4.2 Preprocessing of signal 

Figure 4.1 shows the block diagram of fine grain parameter (FGP) measurement which 

is carried out by enhancement of signal-to-noise ratio (SNR) and sample-to-sample 

measurement of amplitude and frequency. The algorithms shown are used on digitized IF 

signal and instantaneous amplitude and frequency profiles are obtained. Measured parameters 

constitute the fine grain parameters and computed using both autocorrelation approach and 

DIQ approach. The signal is pre-processed using the noise cancellation technique before 

being processed by these algorithms. Noise estimation is also carried out to estimate the noise 

riding threshold which is used for pulse detection and FGP is measured. 

  

 

Figure 4.1: Block diagram of fine-grain parameter measurement. 

Pre-processing of the signal is carried out at the initial stage just after aligning of data 

at the FPGA. The data is received thru SERDES in FPGA. Total eight samples are captured 

four samples at the positive clock and four at the negative clock. Preprocessing is carried out 

to improve the SNR of the signal. 

4.2.1 Noise cancellation by spectral subtraction 
 

Many receivers having the single input channel. Noise has to be estimated with the 

same input channel. It can reduce the effect of noise in the channel. Hence, the average of 

noise is estimated for the time duration. This average noise estimate is subtracted from input 
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signal spectrum. In this process phase of the incoming signal is not distorted. The incoming 

phase is attached after spectrum subtraction. Hence, this restored signal can be used for 

direction finding systems also as phase of the input signal will be intact. 

Noise cancellation is performed as part of the pre-processing of the signal. Input signal 

which is noisy and hence it is called a noisy signal. The sum of the clean signal x(m) and the 

noise n(m) is modelled as noisy signal y(m) i.e. y(m) = x(m) + n(m) where the m is the 

integer variable known as discrete-time index. The FFT of 1024 points is carried out 

continuously on the noisy data. An overlap ratio of 75% is considered. Noise data are 

collected from the system chain when the front-end is connected to the BITE port in signal off 

condition for a minimum time of 50 us for a good estimate. A total of 50 us of noisy data is 

considered to carry out the estimated average amplitude of FFT bins. Spectrum subtraction is 

carried out to get a restored signal which reduces the SNR requirement at the input signal. 

Then the estimated average of noise spectrum 𝑁௠
തതതത is subtracted from the noisy signal 

spectrum 𝑌௠ to get an estimate of the instantaneous magnitude spectrum of restored signal 

𝑋௠. 

𝑋௠ =  𝑌௠ − 𝑁௠
തതതത              (4.1) 

  

 
 

Figure 4.2: Block diagram of noise cancellation using spectral subtraction. 
 
 Restored time-domain signal (𝑋௠) is obtained by combining an estimate of the 

instantaneous magnitude spectrum of restored signal with the phase of the noisy signal, and 

transforming via an inverse discrete Fourier transform to the time domain [117]. 

  𝑥(𝑚) = ∑ (𝑋௠𝑒௝ఏ௒ೖ)(𝑒
ೕమഏೖ೘

ಿ )ேିଵ
௞ୀ଴       (4.2) 

 
Where,  𝑚  = 0, 1, 2, ..., N-1 

𝑥(𝑛)  = Time domain signal 

𝑋௠   = Restored signal spectrum  

𝑁௠
തതതത   = Noise spectrum 

𝑌௠   = Noisy signal spectrum 

𝑥(𝑚)  = Restored time domain signal 

𝑚, 𝑛  = Index number 

𝑘   = Bin number 
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Ɵ𝑌௞
   = Phase of the noisy signal frequency spectrum 𝑌௠ 

4.2.2 Signal flow graph of noise cancellation 

 The signal flow graph of the noise cancellation technique is shown in Figure 4.3. The 

IF data is captured and overlapped FFT of 1024 points is computed continuously upto 50 us 

of duration. So, the computed number of FFT frames (FF) is compared with incoming FFT 

frames (Nt). An estimated average of spectrum for all the frames is carried out after 

completion of FFT computations. This average is subtracted from the incoming signal 

spectrum and the restored spectrum is obtained. This spectrum is combined with the phase of 

the incoming signal or noisy signal. Inverse FFT is computed to get the restored time-domain 

signal. These samples are used for instantaneous measurements and signal detection.  

 

Figure 4.3: Signal flow graph of noise cancellation. 
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4.2.3 Simulation results of noise cancellation 

  Noise estimate is computed using the FFT during the noise region as shown in Figure 

4.4. These averaged noise estimate is subtracted from input signal spectrum. The output 

restored signal is produced as shown in Figure 4.5. The 80,000 samples are taken for the pre-

trigger region which consists mainly of noise and 8000 samples are taken for the pulse signal 

which consists of signal as well as noise. Total 33,333 samples are considered for 50 us noise 

estimates. In this case, only one pulse is taken. The additive white Gaussian noise (AWGN) is 

considered for this purpose. It is visible in output restored signal that has reduced noise and 

thus helps in improving the accuracy of further analysis. The restored signal is applied on 

both baseband signals of In-phase (I) and Quadrature-phase (Q) components.  

  The noisy signal generated along with for eight pulses as shown in Figure 4.6 at 4 dB 

SNR. This signal is generated with a total of 150,000 samples. Out of which 33,333 samples 

are used for noise estimate. Figure 4.7, shows the restored signal obtained using the noise 

cancellation technique at 4 dB SNR for eight pulses.  

.  

Figure 4.4: Noisy signal (input signal) generated with noise and one pulse. Simulation 

parameters: f = 1.1 GHz, η = 4 dB, N = 80,000 samples, and ts = 1.5 ns. 
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Figure 4.5: Restored signal obtained for noise and one pulse. Simulation parameters: f = 1.1 

GHz, η = 4 dB, N = 80,000 samples, and ts = 1.5 ns. 
 

 

Figure 4.6: Noisy signal (input signal) generated with noise and eight pulses. Simulation 

parameters: f = 1.1 GHz, η = 4 dB, N = 150,000 samples, and ts = 1.5 ns. 
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Figure 4.7: Restored signal obtained for noise and eight pulses. Simulation parameters: f = 1.1 

GHz, η = 4 dB, N = 150,000 samples, and ts = 1.5 ns. 

 
 The noisy signal generated along with for eight pulses as shown in Figure 4.8 at 2 dB 

SNR. This signal is generated with a total of 150,000 samples. Out of which 66,666 samples 

are used for noise estimate. Figure 4.9, shows the restored signal obtained using the noise 

cancellation technique at 2 dB SNR for eight pulses. 

 

 
Figure 4.8: Noisy signal (input signal) generated with noise and eight pulses. Simulation 

parameters: f = 1.1 GHz, η = 2 dB, N = 150,000 samples, and ts = 1.5 ns. 
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Figure 4.9: Restored signal obtained for noise and eight pulses. Simulation parameters: f = 1.1 

GHz, η = 2 dB, N = 150,000 samples, and ts = 1.5 ns. 

 
 Similarly, Figure 4.10 shows the restored signal obtained using noise cancellation 

technique at 0 dB SNR for eight pulses and Figure 4.11 shows the output restored signal using 

noise cancellation technique at -2 dB SNR for eight pulses. 

 

 
 
Figure 4.10: Restored signal obtained for noise and eight pulses. Simulation parameters: f = 

1.1 GHz, η = 0 dB, N = 150,000 samples, and ts = 1.5 ns. 
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Figure 4.11: Restored signal obtained for noise and eight pulses. Simulation parameters: f = 

1.1 GHz, η = -2 dB, N = 150,000 samples, and ts = 1.5 ns. 

 
4.2.4 Advantage of noise cancellation 
  

The noise cancellation technique traditionally was used for communication signals. 

But this technique became useful for radar signals also, due to the availability of high density 

and high-speed processing hardware. This technique gives the SNR advantage and effective 

upto -2 dB SNR with 1024 point FFT and 75% overlapping ratio. This SNR advantage 

directly translates into sensitivity improvement. This technique is required to be used as part 

of preprocessing before detection of the pulse. After detection of pulse, this technique will not 

provide an advantage at the stage of detection. If FFT-based detection is used, the same FFT 

output may be used for noise estimate. 

 In radar signal restoration process, the objective is to estimate the instantaneous signal 

spectrum. The restored magnitude spectrum is combined with the phase of the incoming 

signal to form the restored radar signal. Spectral subtraction has to be implemented carefully 

can result in a substantial improvement in the identification performance. The main attraction 

of spectral subtraction is its relative simplicity, in that it only requires an estimate of the noise 

power spectrum. 
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4.3 Generation of instantaneous amplitude and frequency 

profiles 

 The moving autocorrelation technique is used for the generation of instantaneous 

amplitude profile and instantaneous frequency profile. Amplitude profile is generated on 

multiplying in-phase and delayed quadrature-phase signals. Since the input signals are in 

quadrature and hence it is a complex signal. This complex signal after multiplying gives an 

envelope of the IF signal. In the case of the DIQ technique, the complex signal is generated 

using a real signal. 

Multiplication requirements are reduced compared to the DIQ approach. The 

multiplications required for the proposed approach are eight for two complex multiplications. 

Whereas multiplications required for the DIQ approach are more for low pass filters 

implementations. 

4.3.1 Moving autocorrelation technique for amplitude generation 

 The moving autocorrelation technique is computationally efficient and occupies fewer 

FPGA resources. It also provides a detection advantage. It is performed on the signal x(n). 

The received signal is expressed in complex form as 

x(n) = Ae୨ଶπ୤୬ ౩e୨∅ + w(n)            (4.3) 

Where Ae୨ଶπ୤୬୲౩ is the received signal, A is the signal amplitude, ∅ is the initial phase, 

tୱ is the sampling interval, f is the carrier frequency, and w(n) is the sampled zero-mean, 

additive Gaussian white noise (AGWN). 

The autocorrelation result is computed based on the absolute value of the pulse and 

according to the features of a digital wideband pulse. The autocorrelation function is given by 

[22], 

𝑋௡(𝑛) = ෍ |𝑥(𝑛 + 𝑖)| |𝑥∗(𝑛 + 𝑖 + 1)|
ேିଵ

௜ୀ଴
 

           = ∑ ห𝐴ଶ𝑒௝ଶగ௙௡ ೞ𝑒௝∅ +  𝐴𝑒௝∅𝑒௝ଶగ௙(௡ା௜)௧ೞ  𝑤∗(𝑛 + 𝑖 + 1) +ேିଵ
௜ୀ଴

𝐴𝑒ି௝∅𝑒ି௝ଶగ(௡ା௜ାଵ)௧ೞ  𝑤(𝑛 + 𝑖) +  𝑤(𝑛 + 𝑖)ห        

   (4.4) 

X୬(n) can be updated by iterated means and can be easily implemented on hardware by using, 

𝑋௡(𝑛 + 1) = 𝑋௡(𝑛) + |𝑥(𝑛 + 𝑁)𝑥∗(𝑛 + 𝑁 + 1)| − |𝑥(𝑛)𝑥∗(𝑛 + 1)|                      (4.5) 
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Figure 4.12: Block diagram of autocorrelation-based parameter estimation. 

Initial autocorrelation will be performed with length N samples. Then subsequently 

new autocorrelation output will be obtained by subtracting the first sample autocorrelation 

output and adding new sample autocorrelation to the correlation value. N samples 

autocorrelation is performed in a recursive way to reduce the computational burden. The 

block diagram of autocorrelation-based parameter estimation is shown in Figure 4.12. 

Autocorrelation output will be compared with a threshold to check for start of the 

pulse. If the start of a pulse is detected, then IF data will be stored and the time of arrival will 

be stored. N should be selected in such a way that it should detect minimum pulse width. As 

N increases noise reduction is improved. So a selection of N is a trade-off between minimum 

pulse width and noise suppression. Value of N, more than 16 is optimum. The following 

equations are rewritten and simplified as below, 

𝑥(𝑛) = 𝑥௜ (𝑛) + 𝑗𝑥௤ (𝑛)             (4.6) 

𝑋ே(𝑛) = ∑ ൣ𝑥௜(𝑛) + 𝑗𝑥௤(𝑛)൧ൣ𝑥௜(𝑛 + 1) + 𝑗𝑥௤(𝑛 + 1)൧ேିଵ
௡ୀ଴             (4.7) 

𝑋ே(𝑛 + 1) = 𝑋ே(𝑛) + ൣ𝑥௜(𝑛 + 𝑁 − 1) + 𝑗𝑥௤(𝑛 + 𝑁 − 1)൧ൣ𝑥௜(𝑛 + 𝑁) + 𝑗𝑥௤(𝑛 + 𝑁)൧ −

ൣ𝑥௜(𝑛) + 𝑗𝑥௤(𝑛)൧ൣ𝑥௜(𝑛 + 1) + 𝑗𝑥௤(𝑛 + 1)൧          (4.8) 

𝑌ே(𝑛) = ൣ𝑥௜(𝑛 + 𝑁 − 1) + 𝑗𝑥௤(𝑛 + 𝑁 − 1)൧ ൣ𝑥௜(𝑛 + 𝑁) + 𝑗𝑥௤(𝑛 + 𝑁)൧    (4.9) 

𝑌ଵ(𝑛) = ൣ𝑥௜(𝑛) + 𝑗𝑥௤(𝑛)൧ൣ𝑥௜(𝑛 + 1) + 𝑗𝑥௤(𝑛 + 1)൧               (4.10) 

 𝑋ே(𝑛 + 1) =  𝑋ே(𝑛) + 𝑌ே(𝑛) − 𝑌ଵ(𝑛)                                              (4.11) 

𝑋ே (𝑛) is computed for every new sample. Here only four real multiplications are required for 

every new sample.  

 𝑋ே(𝑛 + 1) =  𝑘 + 𝑌ே(𝑛) − 𝑌ଵ(𝑛)                                       (4.12) 
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4.3.2  Multilevel autocorrelation technique for frequency generation 

  Baseband signal is used to perform the autocorrelation which reduce the impact of 

noise [22]. Total thirty-two samples are used to perform the autocorrelation recursively to 

reduce the computational requirement. Thirty-two samples of autocorrelation is selected to 

cater to the minimum pulse width requirement of 50 ns when sampling time is 1.5 ns. Delay 

m is 1 in the case of amplitude measurement. The first element of thirty-two samples 

autocorrelation is calculated as: 

𝑋ே(𝑛) = ቀ
ଵ

ே
ቁ ∑ ൣ𝑥௜(𝑛) + 𝑗𝑥௤(𝑛)൧ൣ𝑥௜(𝑛 + 1) + 𝑗𝑥௤(𝑛 + 1)൧ேିଵ

௡ୀ଴      (4.13) 

Where, x* is a conjugate of x. It is implemented in recursively as below: 

𝑋ே(𝑛 + 1) = 𝑋ே(𝑛) + |𝑌ே(𝑛) − 𝑌ଵ(𝑛)|               (4.14) 

Typically N is considered 32 which is optimum for all pulse widths varying from 50 

ns to 1 ms. Where n varies from 1 to the size of samples. This equation is further optimized by 

replacing the first element of thirty-two samples autocorrelation with fixed value:    

        𝑋ே(𝑛) = 𝑎 + 𝑗𝑏      (4.15) 

  Where a and b are constant values. This does not require the measurement of an initial 

average of thirty-two samples autocorrelation output. Measurement of frequency parameters 

involves the calculation of autocorrelation variables with different delays using baseband 

signal. Four autocorrelation variables 𝑋1, 𝑋2, 𝑋4, and 𝑋8 with four different delays 𝑚 =

 1, 2, 4, and 8 are calculated from the correlated signal with different delays. Multilevel phase 

differences are calculated from the correlated signals with different delays, which in turn are 

used to compute the frequency. Frequency 𝐹1(𝑛) is measured as: 

𝐹ଵ(𝑛) = 𝐹௦
Δః(௡)

ଶగ
        (4.16) 

Where, 𝐹௦ is the sampling frequency and 𝛷(𝑛) is the phase derived from 𝑋ଵ, and  

𝛥𝛷(𝑛) is the phase of the signal. Now 𝐹ଵ(𝑛) measurement determines the zone in which 

phase belongs according to the following equation. 

 𝑍௠ = 𝐶𝑒𝑖𝑙 ቀ
௠ிభ(௡)

ிೞ
ቁ         (4.17) 

  Here unwrapping of phases which are required for complex signals is not required as 

different phases are calculated from auto-correlated variables with different delays and are 

mapped to appropriate zones which are obtained with the help of frequency 𝐹௠ିଵ(𝑛) [23]-
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[24]. Likewise, 𝐹2(𝑛) serves as a guide for Фସ by determining the zone it should be merged to. 

Similarly, 𝐹4(𝑛) determines the zone for Ф଼. The final frequency parameter 𝐹8(𝑛) is based on 

the mapping of Ф଼. 

  𝐹௠(𝑛) = ቀ
ிೞ

ଶగ௠
ቁ (Δ𝛷௠(𝑛) + 2𝜋𝑍௠)          (4.18) 

  Using the improved instantaneous frequency, the various intra-pulse modulations. 

Frequency modulation, bi-phase modulation, and stepped frequency modulations are also 

classified. The instantaneous frequency is used to extract the modulation of the signal. 

4.3.3 Simulation results of amplitude profile generation 

  An instantaneous amplitude profile is generated for the following four different 

approaches at different SNR conditions. This will show at what value of SNR particular 

techniques start generating correct amplitude profile. 

(i) DIQ technique without noise cancellation 

(ii) DIQ technique with noise cancellation 

(iii) Moving autocorrelation technique without noise cancellation 

(iv) Moving autocorrelation technique with noise cancellation 

  Simulation parameters considered to generate following amplitude plots are input 

frequency (f) = 1.1 GHz, No. of samples (N) = 80,000 samples, and sampling time (ts) = 1.5 

ns. The simulations are carried out for various SNR (η) conditions to establish the benefits of 

the above techniques with respect to SNR. 

4.3.3.1 Simulation results at -2 dB SNR 

  Figure 4.13 shows the noisy signal generated with eight pulses with SNR of -2 dB. 

Whereas restored signal is obtained for -2 dB SNR as shown in Figure 4.14 using noise 

cancellation technique. 

 The instantaneous amplitude is computed using correlated signal x(n) at the SNR 

condition of -2 dB. The instantaneous amplitude profile computed using the DIQ technique 

without noise cancellation is plotted as Figure 4.15 at SNR conditions of -2 dB. The input 

signal is improved using the noise cancellation technique. Figure 4.16 shows, the 

instantaneous amplitude profile using the DIQ technique with noise cancellation. This 

confirms that DIQ technique and DIQ technique with noise cancellation are not working 

effectively at SNR of -2 dB. 
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Figure 4.13: Noisy signal (input signal) generated with eight pulses. Simulation parameters:     

f = 1.1 GHz, η = -2 dB, N = 80,000 samples, and ts = 1.5 ns. 

 

Figure 4.14: Restored signal obtained using noise cancellation for eight pulses. Simulation 

parameters: f = 1.1 GHz, η = -2 dB, N = 80,000 samples, and ts = 1.5 ns. 
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Figure 4.15: Instantaneous amplitude profile using DIQ technique without noise cancellation 

for eight pulses. Simulation parameters: f = 1.1 GHz, η = -2 dB, N = 80,000 samples, and ts = 

1.5 ns. 

 
Figure 4.16: Instantaneous amplitude profile using DIQ technique with noise cancellation for 

eight pulses. Simulation parameters: f = 1.1 GHz, η = -2 dB, N = 80,000 samples, and ts = 1.5 

ns. 

The instantaneous amplitude profile computed using autocorrelation technique without 

noise cancellation is plotted as Figure 4.17 at SNR conditions of -2 dB. It confirms that 

autocorrelation technique is not working effectively at SNR of -2 dB. Figure 4.18 shows, the 

instantaneous amplitude profile using the autocorrelation technique with noise cancellation. 

This confirms that autocorrelation technique with noise cancellation is working effectively at 
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SNR of -2 dB as there is sufficient clearance between pulse lower amplitude and noise peak 

amplitude. 

  
Figure 4.17: Instantaneous amplitude profile using moving autocorrelation technique without 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = -2 dB, N = 

80,000 samples, and ts = 1.5 ns. 

 
Figure 4.18: Instantaneous amplitude profile using moving autocorrelation technique with 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = -2 dB, N = 

80,000 samples, and ts = 1.5 ns. 
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4.3.3.2 Simulation results at 4 dB SNR 

A noisy signal is generated at 4 dB SNR and a restored signal is obtained from the 

noisy signal. The noisy signal is represented in Figure 4.19 and the restored signal is 

represented in Figure 4.20.  Both the DIQ technique and autocorrelation technique is applied 

to the restored signal and results are shown in subsequent figures. 

 

Figure 4.19: Noisy signal (input signal) generated with eight pulses. Simulation parameters:       

f = 1.1 GHz, η = 4 dB, N = 80,000 samples, and ts = 1.5 ns. 

 

Figure 4.20: Restored signal obtained using noise cancellation for eight pulses. Simulation 

parameters: f = 1.1 GHz, η = 4 dB, N = 80,000 samples, and ts = 1.5 ns. 
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Instantaneous amplitude profile is obtained for 4 dB SNR using DIQ technique and 

DIQ technique without noise cancellation technique and results are plotted at Figure 4.21 and 

Figure 4.22 respectively. This confirms that DIQ technique and DIQ technique with noise 

cancellation are not working effectively at SNR of 4 dB. 

 
Figure 4.21: Instantaneous amplitude profile using DIQ technique without noise cancellation 

for eight pulses. Simulation parameters: f = 1.1 GHz, η = 4 dB, N = 80,000 samples, and ts = 

1.5 ns. 

 

Figure 4.22: Instantaneous amplitude profile using DIQ technique with noise cancellation for 

eight pulses. Simulation parameters: f = 1.1 GHz, η = 4 dB, N = 80,000 samples, and ts = 1.5 

ns. 
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Instantaneous amplitude profile is obtained for 4 dB SNR using autocorrelation 

technique and autocorrelation technique with noise cancellation and results are plotted at 

Figure 4.23 and Figure 4.24 respectively. This confirms that autocorrelation technique and 

autocorrelation technique with noise cancellation are working effectively at SNR of 4 dB 

 

 Figure 4.23: Instantaneous amplitude profile using moving autocorrelation technique without 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 4 dB, N = 80,000 

samples, and ts = 1.5 ns. 

 

Figure 4.24: Instantaneous amplitude profile using moving autocorrelation technique with 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 4 dB, N = 80,000 

samples, and ts = 1.5 ns. 
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4.3.3.3 Simulation results at 8 dB SNR 

The noisy signal is generated at 8 dB SNR and the restored signal is obtained. Figure 

4.25 shows the noisy signal at 8 dB SNR and Figure 4.26 shows the restored signal of noisy 

signal at 8 dB SNR.  

 
Figure 4.25: Noisy signal (input signal) generated with eight pulses. Simulation parameters:       

f = 1.1 GHz, η = 8 dB, N = 80,000 samples, and ts = 1.5 ns. 

 
Figure 4.26: Restored signal obtained using noise cancellation for eight pulses. Simulation 

parameters: f = 1.1 GHz, η = 8 dB, N = 80,000 samples, and ts = 1.5 ns. 
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Instantaneous amplitude profile is obtained for 8 dB SNR using DIQ technique and 

DIQ technique with noise cancellation technique and results are plotted at Figure 4.27 and 

Figure 4.28 respectively. It confirms that DIQ technique is not working effectively at SNR of 

8 dB and DIQ technique with noise cancellation technique is working satisfactorily. 

 

Figure 4.27: Instantaneous amplitude profile using DIQ technique and without noise 

cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 8 dB, N = 80,000 

samples, and ts = 1.5 ns. 

 

Figure 4.28: Instantaneous amplitude profile using DIQ technique with noise cancellation for 

eight pulses. Simulation parameters: f = 1.1 GHz, η = 8 dB, N = 80,000 samples, and ts = 1.5 

ns. 
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Instantaneous amplitude profile is obtained for 8 dB SNR using autocorrelation 

technique and autocorrelation technique with noise cancellation technique and results are 

plotted at Figure 4.29 and Figure 4.30 respectively. This confirms that both the techniques are 

working satisfactorily at 8 dB SNR. 

 

Figure 4.29: Instantaneous amplitude profile using moving autocorrelation technique without 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 8 dB, N = 80,000 

samples, and ts = 1.5 ns. 

 

Figure 4.30: Instantaneous amplitude profile using moving autocorrelation technique with 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 8 dB, N = 80,000 

samples, and ts = 1.5 ns. 
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4.3.3.4 Simulation results at 18 dB SNR 

The noisy signal is generated at 18 dB SNR and the restored signal is obtained as 

shown in Figure 4.31 and Figure 4.32 respectively.  

 
 

Figure 4.31: Noisy signal (input signal) generated with eight pulses. Simulation parameters:       

f = 1.1 GHz, η = 18 dB, N = 80,000 samples, and ts = 1.5 ns. 
 

 
 

Figure 4.32: Restored signal obtained using noise cancellation for eight pulses. Simulation 

parameters: f = 1.1 GHz, η = 18 dB, N = 80,000 samples, and ts = 1.5 ns. 
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Instantaneous amplitude profile is obtained for 18 dB SNR using DIQ technique and 

DIQ technique without noise cancellation technique and results are plotted at Figure 4.33 and 

Figure 4.34 respectively. This confirms that both the techniques are working satisfactorily at 

18 dB SNR. 

 
 

Figure 4.33: Instantaneous amplitude profile using DIQ technique without noise cancellation 

for eight pulses. Simulation parameters: f = 1.1 GHz, η= 18 dB, N = 80,000 samples, and ts = 

1.5 ns. 

 

 
 

Figure 4.34: Instantaneous amplitude profile using DIQ technique with noise cancellation for 

eight pulses. Simulation parameters: f = 1.1 GHz, η= 18 dB, N = 80,000 samples, and ts = 1.5 

ns. 
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Instantaneous amplitude profile is obtained for 18 dB SNR using autocorrelation 

technique and autocorrelation technique with noise cancellation technique and results are 

plotted at Figure 4.35 and Figure 4.36 respectively. These figures confirms that both the 

techniques are working satisfactorily at 18 dB SNR. 

 

Figure 4.35: Instantaneous amplitude profile using moving autocorrelation technique without 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 18 dB, N = 

80,000 samples, and ts = 1.5 ns. 

 

Figure 4.36: Instantaneous amplitude profile using moving autocorrelation technique with 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 18 dB, N = 

80,000 samples, and ts = 1.5 ns. 
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Table 4.1: Amplitude profile generation results suitable for pulse detection for different 

approaches at various SNR. 

Detection Approach Amplitude Profile Suitable for Correct Detection 
 # SNR(η) 

-4 -2 0 2 4 6 8 10 12 14 16 18 
DIQ without Noise 
Cancellation 

N N N N N N N N N N N Y 

DIQ with Noise Cancellation N N N N N N Y Y Y Y Y Y 
Autocorrelation without 
Noise Cancellation 

N N N N Y Y Y Y Y Y Y Y 

Autocorrelation with Noise 
Cancellation 

N Y Y Y Y Y Y Y Y Y Y Y 

 
 
 The amplitude profile results are summarized in Table 4.1 at various SNR. This shows 

DIQ technique alone can generate an amplitude profile at 18 dB SNR. When the DIQ 

technique is used with noise cancellation, it can generate amplitude profile at 8 dB. Similarly, 

moving autocorrelation technique alone generates an amplitude profile at 4 dB. When this 

technique is used with noise cancellation, it generates the correct amplitude profile at -2 dB 

itself. The correct amplitude profile generation means it should have clearance between pulse 

lowest amplitude and noise highest amplitude which is the requirement for correct detection.  

4.3.4 Simulation results of frequency profile generation 

  Instantaneous frequency profile is generated for the following four different 

approaches at different SNR conditions. This will show at what value of SNR a particular 

technique start reporting correct frequency. 

(i) DIQ technique without noise cancellation 

(ii) DIQ technique with noise cancellation 

(iii) Multilevel autocorrelation technique without noise cancellation 

(iv) Multilevel autocorrelation technique with noise cancellation 

 Simulation parameters considered to generate following frequency plots are input 

frequency (f) = 1.1 GHz, No. of samples (N) = 80,000 samples, and sampling time (ts) = 1.5 

ns. The simulations are carried out for various SNR (η) conditions. 
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4.3.4.1 Simulation results at -2 dB SNR 

  Instantaneous frequency profile is computed from the conventional DIQ technique 

without noise cancellation technique as shown in Figure 4.37. This shows that the frequency 

plot is broken and it cannot be measured at -2 dB SNR using this technique. Instantaneous 

frequency profile is computed from the DIQ technique with noise cancellation technique as 

shown in Figure 4.38. This shows that frequency measurement is not possible at -2 dB SNR 

using this technique. Frequency variation is very high which is not useful. 

 

Figure 4.37: Instantaneous frequency profile using DIQ technique without noise cancellation 

for eight pulses. Simulation parameters: f = 1.1 GHz, η = -2 dB, N = 80,000 samples, and ts = 

1.5 ns. 

 

Figure 4.38: Instantaneous frequency profile using DIQ technique with noise cancellation for 

eight pulses. Simulation parameters: f = 1.1 GHz, η = -2 dB, N = 80,000 samples, and ts = 1.5 

ns. 
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  Instantaneous frequency profile is generated from the multilevel autocorrelation 

technique without noise cancellation technique as shown in Figure 4.39. This is evident from 

the figure that frequency measurement is not possible at -2 dB SNR using this technique. 

Instantaneous frequency profile is generated from the multilevel autocorrelation technique 

with noise cancellation technique as shown in Figure 4.40. This is evident from the figure that 

frequency measurement is possible at -2 dB SNR using this technique because there is no 

break in the frequency. It shows that the correct measurement of frequency for 1.1 GHz input 

frequency. 

 

Figure 4.39: Instantaneous frequency profile using moving autocorrelation technique without 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = -2 dB, N = 

80,000 samples, and ts = 1.5 ns. 

 

Figure 4.40: Instantaneous frequency profile using moving autocorrelation technique with 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = -2 dB, N = 

80,000 samples, and ts = 1.5 ns. 
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4.3.4.2 Simulation results at 4 dB SNR 

  Instantaneous frequency profile is computed from the conventional DIQ technique 

without noise cancellation technique as shown in Figure 4.41. This plot shows that frequency 

is broken and it cannot be measured at 4 dB SNR using this technique.  Instantaneous 

frequency profile is computed from the DIQ technique with noise cancellation technique as 

shown in Figure 4.42. This plot shows that frequency is measured at 4 dB SNR using this 

technique. But frequency variation is more which is not useful. 

 

Figure 4.41: Instantaneous frequency profile using DIQ technique without noise cancellation 

for eight pulses. Simulation parameters: f = 1.1 GHz, η = 4 dB, N = 80,000 samples, and ts = 

1.5 ns. 

 

Figure 4.42: Instantaneous frequency profile using DIQ technique with noise cancellation for 

eight pulses. Simulation parameters: f = 1.1 GHz, η = 4 dB, N = 80,000 samples, and ts = 1.5 

ns. 
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  Instantaneous frequency profile is generated from the multilevel autocorrelation 

technique without noise cancellation technique as shown in Figure 4.43. This plot shows that 

frequency is broken and measurement is not possible. Instantaneous frequency profile is 

generated from the multilevel autocorrelation technique with noise cancellation technique as 

shown in Figure 4.44. This plot shows frequency measurement is possible at 4 dB SNR using 

this technique. It shows that the measured frequency is 1.1 GHz against 1.1 GHz input 

frequency. 

 

Figure 4.43: Instantaneous frequency profile using moving autocorrelation technique without 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 4 dB, N = 80,000 

samples, and ts = 1.5 ns. 

 

Figure 4.44: Instantaneous frequency profile using moving autocorrelation technique with 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 4 dB, N = 80,000 

samples, and ts = 1.5 ns. 
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4.3.4.3 Simulation results at 10 dB SNR 

 Instantaneous frequency profile is computed from the conventional DIQ technique 

without noise cancellation technique as shown in Figure 4.45. This plot shows that frequency 

is broken and it cannot be measured at 10 dB SNR using this technique. The total frequency 

variation is about ±100 MHz which is not useful. Instantaneous frequency profile is computed 

from the DIQ technique with noise cancellation technique as shown in Figure 4.46. This plot 

show that frequency is measured at 10 dB SNR using this technique. 

 

Figure 4.45: Instantaneous frequency profile using DIQ technique without noise cancellation 

for eight pulses. Simulation parameters: f = 1.1 GHz, η = 10 dB, N = 80,000 samples, and ts = 

1.5 ns. 

 

Figure 4.46: Instantaneous frequency profile using DIQ technique with noise cancellation for 

eight pulses. Simulation parameters: f = 1.1 GHz, η = 10 dB, N = 80,000 samples, and ts = 1.5 

ns. 
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  Instantaneous frequency profile is generated from the multilevel autocorrelation 

technique without noise cancellation technique as shown in Figure 4.47. Instantaneous 

frequency profile is generated from the multilevel autocorrelation technique with noise 

cancellation technique as shown in Figure 4.48. This plot shows frequency measurement is 

possible at 10 dB SNR using these techniques. It shows that the measured frequency is 1.1 

GHz against 1.1 GHz input frequency. 

 

Figure 4.47: Instantaneous frequency profile using moving autocorrelation technique without 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 10 dB, N = 

80,000 samples, and ts = 1.5 ns. 

 

Figure 4.48: Instantaneous frequency profile using moving autocorrelation technique with 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 10 dB, N = 

80,000 samples, and ts = 1.5 ns. 
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4.3.4.4 Simulation results at 18 dB SNR 

 Instantaneous frequency profile is computed from the conventional DIQ technique 

without noise cancellation technique as shown in Figure 4.49. Instantaneous frequency profile 

is computed from the DIQ technique with noise cancellation technique as shown in Figure 

4.50. These plots show that frequency is measured correctly at 18 dB SNR using these 

techniques. 

 

Figure 4.49: Instantaneous frequency profile using DIQ technique without noise cancellation 

for eight pulses. Simulation parameters: f = 1.1 GHz, η = 18 dB, N = 80,000 samples, and ts = 

1.5 ns. 

 

Figure 4.50: Instantaneous frequency profile using DIQ technique with noise cancellation for 

eight pulses. Simulation parameters: f = 1.1 GHz, η = 18, N = 80,000 samples, and ts = 1.5 ns. 
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Instantaneous frequency profile is generated from the multilevel autocorrelation 

technique without noise cancellation technique as shown in Figure 4.51. Instantaneous 

frequency profile is generated from the multilevel autocorrelation technique with noise 

cancellation technique as shown in Figure 4.52. This plot shows frequency measurement is 

possible at 18 dB SNR using these techniques. It shows that the measured frequency is 1.1 

GHz against 1.1 GHz input frequency. 

 

Figure 4.51: Instantaneous frequency profile using moving autocorrelation technique without 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 18 dB, N = 

80,000 samples, and ts = 1.5 ns. 

 

 

Figure 4.52: Instantaneous frequency profile using moving autocorrelation technique with 

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, η = 18 dB, N = 

80,000 samples, and ts = 1.5 ns. 
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The frequency profile results are summarized in Table 4.2 at various SNR. This shows 

DIQ technique alone can generate the frequency profile upto 18 dB SNR. When the DIQ 

technique is used with noise cancellation, it is able to generate frequency profile upto 4 dB 

SNR itself. Similarly, the moving autocorrelation technique alone generates the frequency 

profile upto 10 dB SNR. When this technique is used with noise cancellation, it generates the 

correct frequency profile upto -2 dB SNR. The correct frequency profile generation means the 

mean of frequency should be within 100 kHz within the pulse region. 

Table 4.2: Frequency profile generation results suitable for correct reporting for different 

approaches at various SNR. 

Detection Approach Correct frequency measurement # SNR (η) 
-4 -2 0 2 4 6 8 10 12 14 16 18 

DIQ without Noise 
Cancellation 

N N N N N N N N N N N Y 

DIQ with Noise Cancellation N N N N Y Y Y Y Y Y Y Y 
Autocorrelation without Noise 
Cancellation 

N N N N N N N Y Y Y Y Y 

Autocorrelation with Noise 
Cancellation 

N Y Y Y Y Y Y Y Y Y Y Y 

 

The results from Table 4.1 and Table 4.2 are combined and presented in Table 4.3. 

This shows the improvement of amplitude and frequency measurement using autocorrelation 

technique. It shows further improvement, when these techniques are used with noise 

cancellation technique. 

Table 4.3: Amplitude Profile suitable for pulse detection and frequency measurement by 

different approaches at SNR. 

Detection 
Approach 

Correct pulse detection and frequency measurement # SNR (η) 
 -4 -2 0 2 4 6 8 10 12 14 16 18 

DIQ without 
Noise 
Cancellation 

Amplitude N N N N N N N N N N N Y 

Frequency N N N N N N N N N N N Y 

DIQ with Noise 
Cancellation 
 

Amplitude N N N N N N Y Y Y Y Y Y 

Frequency N N N N Y Y Y Y Y Y Y Y 

Autocorrelation 
without Noise 
Cancellation 

Amplitude N N N N Y Y Y Y Y Y Y Y 

Frequency N N N N N N N Y Y Y Y Y 

Autocorrelation 
with Noise 
Cancellation 

Amplitude N Y Y Y Y Y Y Y Y Y Y Y 

Frequency N Y Y Y Y Y Y Y Y Y Y Y 
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Figure 4.53: Comparison of the RMSE of autocorrelation and DIQ approaches without noise 

cancellation as a function of SNR. Simulation parameters: f = 1.1 GHz, N = 80,000 samples, 

and ts = 1.5 ns. 

 

 There is improvement in frequency accuracy with a reduction of SNR requirement at 

the input in comparison to the DIQ technique as observed through Figure 4.53. This figure is 

generated without noise cancellation. This shows that the autocorrelation technique is able to 

process the signal at 10 dB SNR and whereas the DIQ technique fails. The DIQ technique 

requires an SNR of 18 dB. 

 Figure 4.54 depicts the frequency accuracy with respect to SNR using both techniques.  

This figure is generated with noise cancellation. This shows that the autocorrelation technique 

is able to process the signal at -2 dB SNR and whereas the DIQ technique fails. The DIQ 

technique requires an SNR of 8 dB. 
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Figure 4.54: Comparison of the RMSE of autocorrelation and DIQ approaches with noise 

cancellation as a function of SNR. Simulation parameters: f = 1.1 GHz, N = 80,000 samples, 

and ts = 1.5 ns. 

 

  The field data is also introduced to check the efficacy of the proposed algorithms. 

Instantaneous amplitude and frequency profiles are depicted in Figure 4.55 and Figure 4.56 

using the autocorrelation approach and DIQ approach. These results are generated with the 

noise cancellation technique. It is evident from instantaneous amplitude and instantaneous 

frequency profiles generated using autocorrelation approach having better results compared 

with DIQ approach. 

 

4.3.5  Summary 

Amplitude and frequency profiles are generated with autocorrelation technique with 

noise cancellation technique upto -2 dB SNR. Both autocorrelation and noise cancellation 

techniques provide SNR advantage as shown in Table 4.3. These techniques are useful for 

correct signal detection and correct frequency reporting within 100 kHz at -2 dB SNR. 

 



84  Chapter 4, Section 4.3
 

Figure 4.55: Comparison of first field data set result using autocorrelation and DIQ techniques 

as a function of SNR. Simulation parameters: f = unknown, N = 10,00,000 and ts = 1.5 ns. 
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Figure 4.56: Comparison of second field data set result using autocorrelation and DIQ 

techniques as a function of SNR. Simulation parameters: f = unknown, N = 500,000 and ts = 

1.5 ns. 
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4.4 Frequency estimation using interpolation 

 Frequency accuracy can be improved by increasing the FFT number of points. But 

more FFT number of points requires more multiplications and results in various processing 

complexities. To avoid this, interpolation is the correct choice to improve the frequency 

accuracy. This provides the advantage for detecting the radar pulses also. 

 Discrete spectrum is used to measure the frequency of incoming signal. These 

measurements are possible after digitizing the IF signal and apply the appropriate windowing 

operation. Finally compute the spectrum amplitude through FFT analysis. Frequency of the 

input signal is computed using bin number. This bin number is multiplied by the resolution 

which depends upon the number of samples considered for FFT computation. Considering 

higher FFT number of samples is restricted due to computation time and other parameters 

accuracy. This will restrict the resolution and it affects the frequency accuracy. Curve-fitting 

or interpolation of inter-bin on FFT output is applied. Both theoretical and practical results are 

taken and compared. This can be done in real-time as not much hardware resources are 

required to implement the interpolation.  

There are other methods for frequency estimation such as Quinn's methods, Grandke's 

methods, Gaussian interpolation, parabolic or quadratic interpolation, and many more. So it is 

required to find out the suitable algorithm which meets the system requirement. In this thesis, 

a theoretical and experimental work has been carried out and due to its simplicity and 

accuracy, "Parabolic Interpolation or Quadratic Peak Interpolation" in Fast Fourier Transform 

(FFT) has been chosen for sinusoidal parameter estimation in communication and non-

communication applications. 

4.4.1 Interpolation techniques  

FFT output is used to implement interpolation technique. The FFT equation is given 

by 

𝑆௣ = ∑ 𝑥(𝑛)𝑒ି௝ଶగ௣ /ேேିଵ
௡ୀ଴     (4.19) 

Where p=0,1,2,….,N-1. The limits of p can also be written as -N/2 to N/2. The 

measured frequency is equivalent to p*fs/N where the spectrum is having the highest value for 

that peak 𝑝. Figure 4.57 shows the FFT spectrum. 
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Figure 4.57: FFT spectrum showing three peaks. 
 

The interpolation technique is used to improve the frequency accuracy without 

increasing the FFT number of points. Different techniques namely Rectangular window-

based, Hanning window-based, curve-fitting based, and curve-fitting when FFT is performed 

with Hanning window are used for this purpose. The frequency is estimated by all four 

methods. The FFT output spreads across the bins due to the presence of non-coherent signals 

and white Gaussian noise. Since the input frequency or set frequency is not always the 

multiple of FFT resolution or least significant bit (LSB) of fs/N. The spectral component 

spreads and reported peak frequency will not be the same as the set frequency. Amplitude is 

extracted from the spectrum at three different bins. The highest-peak (S0) at bin p, the second 

highest peak (S1) at p-1, and the third highest peak (S2) at p+1 is extracted from the spectrum. 

The delta bin which is away from the peak by ±δp is computed. The delta bin for the 

rectangular window is given by [23] 

𝛿𝑝 = (𝑆ଵ − 𝑆ଶ)/(𝑆ଵ + 𝑆ଶ)    (4.20) 

The delta bin for the Hanning window is given by [23] 

𝛿𝑝 = (2𝑆ଵ − 𝑆଴)/(𝑆଴ + 𝑆ଵ)    (4.21) 

These techniques are similar to zero paddings. The windowing methods don’t change 

the shape of the spectrum. But it provides a better estimation of the peak frequency. These 
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techniques provide an accurate result when only a single frequency is available at the input 

signal. 

When S0 is very close to the main peak above two techniques are sensitive to noise. 

Under this situation, S1 and S2 are very close to the minima and noise may reverse their 

amplitudes. The peak will move in the wrong direction using the above equations. When the 

amplitudes of S1 and S2 are reversed then there will be more errors [23].  

Curve-fitting is the process of generating a mathematical function which is the best fit 

to a series of data points. These data points are subjected to constraint. It involves either 

interpolation, where an exact fit to the data is required, or smoothing, in this the smooth 

function is constructed that approximately fits the data. Similarly, the delta bin can be written 

as using the curve fitting technique [32]-[34]. 

𝛿𝑝 =  (𝑆ଵ − 𝑆ଶ)/(𝑆ଵ − 2𝑆଴ + 𝑆ଶ)   (4.22) 

Finally, the estimated frequency is computed using the delta bin δp as (𝑝 +  𝛿𝑝 )*fs/N. 

Hanning window is applied on IF data and FFT are performed. The curve-fitting technique is 

applied to the FFT output to get the delta bin 𝛿𝑝 from equation 4.22. The modified 

interpolation technique block diagram is shown in Figure 4.58. 

 

 

 
Figure 4.58: Block diagram of modified interpolation technique. 

  
The application of interpolation technique is for real-time systems also. The steps to 

be followed for interpolation to estimate the frequency is given below:  

1) Carry out coarse estimate of the input signal frequency by locating the maximizer of the 

FFT output magnitude. 

2) Isolate the FFT outputs local to the bin determined in step 1. 

3) To increase the frequency resolution and magnate estimate on isolated samples apply 

algorithm. 
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It is important to observe that decisive success depends on the ability of step (1) to 

provide the correct FFT output bin number. It is important to consider the limitations of the 

FFT algorithm itself for this reason. 

4.4.2 Simulation results of interpolation  

 The input signal is generated for the band of input frequencies. The set frequencies are 

varied from 1100 MHz to 1120 MHz with the step of 0.5 MHz to check the accuracy of 

algorithms. Figure 4.59 shows the estimated frequency using a Rectangular window, Hanning 

window, Curve fitting, Curve fitting with Hanning window estimation techniques. All the 

results are generated using 256 points FFT and compared with set frequency. The result of 

interpolation techniques is compared with FFT measured frequency alone. Figure 4.60 shows 

the root mean square error (RMSE) using all frequency estimation techniques versus set 

frequency.  

 

 

Figure 4.59: Plot of measured frequency versus set frequency using FFT technique, 

Rectangular window, Hanning window interpolation technique, curve-fitting interpolation 

technique, and curve-fitting interpolation technique with Hanning window respectively. 

Simulation parameters: f = 1100 to 1120 MHz, FFT Points = 256, ∆f = 0.5 MHz, and ts = 0.75 

ns. 
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Figure 4.60: RMS Error versus set frequency using FFT technique, Rectangular window, 

Hanning window interpolation technique, curve-fitting interpolation technique, and curve-

fitting interpolation technique with Hanning window respectively. Simulation parameters: f = 

1100 to 1120 MHz, FFT Points = 256, ∆f = 0.5 MHz, and ts = 0.75 ns. 

 

 

Figure 4.61: Plot of RMS Error versus SNR using FFT technique, Rectangular window, 

Hanning window interpolation technique, curve-fitting interpolation technique, and curve-

fitting interpolation technique with Hanning window respectively. Simulation parameters: f = 

1100 to 1120 MHz, FFT Points = 256, ∆f = 0.5 MHz, and ts = 0.75 ns. 
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The simulation is carried out at different SNRs varying from -2 to 40 dB. Figure 4.61 

shows the RMSE versus SNR using all frequency estimation techniques versus set frequency. 

 

Table 4.4: RMSE of estimated frequency for interpolation techniques. 

 Interpolation 

 Technique 

RMSE (MHz)  # N Point FFT 

256 512 1024 2048 4096 

 FFT Measured 

 Frequency  

1.5280 0.7566 0.3702 0.1843 0.0916 

 Rectangular  Window  1.0954 0.5742 0.2929 0.1503 0.0765 

 Hanning Window  0.7969 0.4584 0.2467 0.1308 0.0681 

 Curve Fitting      

 Technique (CFT) 

0.6561 0.3169 0.1573 0.0787 0.0402 

 CFT with Hanning  

 window 

0.0609 0.0297 0.0148 0.0074 0.0038 

 
 

Table 4.5: Peak Error of estimated frequency for interpolation techniques.  

 Interpolation 

 Technique 

Peak Error (MHz)  # N Point FFT 

256 512 1024 2048 4096 

 FFT Measured 

 Frequency   

2.5977 1.2988 0.6094 0.3076 0.1567 

 Rectangular  Window  1.8745 0.9872 0.4832 0.2512 0.1309 

 Hanning Window  1.2722 0.7577 0.3982 0.2149 0.1148 

 Curve Fitting   Technique  

 (CFT) 

0.9051 0.4423 0.2197 0.1093 0.0545 

 CFT with Hanning window 0.0820 0.0418 0.0209 0.0104 0.0052 

 

Based on the frequency accuracy error computed using different interpolation 

techniques the RMSE and peak error are calculated and tabulated as Table 4.4 and Table 4.5 

respectively. It is found from the result that RMSE calculated from measured frequency using 

256 points FFT is 1.528 MHz. In the case of the rectangular window interpolation technique, 

Hanning window interpolation technique, Curve fitting interpolation technique, and Curve 

fitting interpolation technique with Hanning window the RSME is 1.0954 MHz, 0.7969 MHz, 

0.6561 MHz, and 0.0609 MHz respectively. The RMSE is lowest in the case of the curve 

fitting interpolation technique with the Hanning window. The peak error is also the lowest of 
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0.0820 MHz in the case of the curve-fitting interpolation technique with the Hanning window. 

This performs equivalent to multiple times the number of points FFT results without 

interpolation. 

4.4.3 Summary 

 Discrete spectra can be used to measure frequencies of sinusoidal signal components 

Such a measurement consists in digitizing a compound signal, performing windowing of the 

signal samples, and computing their discrete magnitude spectrum, usually utilizing the Fast 

Fourier Transform algorithm. Frequencies of individual components can be evaluated from 

their locations in the discrete spectrum with a resolution depending on the number of samples. 

Computational or other limitations often restrict the number of samples which may be 

processed, which correspondingly restricts the resolution of the estimate provided by the FFT. 

 If the actual frequency of a signal does not fall on the centre frequency of an FFT bin 

several bins near the actual frequency will appear to have a signal component. In that case, 

use the magnitudes of the nearby bins to determine the actual signal frequency. There are 

different frequency estimation algorithms from which few are discussed already. Other 

algorithms are also there and their formulas are written below. 

 
4.5  Direction finding 

 AOA measurement is carried out using three-antenna based BLI direction-finding 

techniques. This technique is SWaP optimized as reduction of size, weight, and power 

compared to four antenna based BLI. There is one advantage of interferometry that it 

measures the phase accurately using digital hardware even at a reasonable sampling rate. 

Therefore DOA with high accuracy can be obtained with shorter baselines and without the 

challenging timing constraints. These interferometers achieve fraction of degree accuracies. 

Further, preprocessing is used with interferometers and accurately estimates the AOA of 

multiple signals. 

4.5.1 Virtual baseline interferometer using 3 antennas based array 

The linear combinations of antennas forms the baseline. Minimum two antennas are 

sufficient to form the baseline. Two antennas baseline does not provide the sufficient phase 

measurement accuracy. That is the reason, BLI is used with more than two antennas. Due to 

the advancement of high density and high speed devices BLI processing capabilities can be 
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implemented in hardware. Digital interferometers are frequently used in the in the ES and 

ELINT systems. 

 

Figure 4.62: Linear array separation of antenna versus propagation phase delay of the incident 

signal. 

In Figure 4.62, a linear array of antennas has been depicted. Since ELINT receivers are 

used to provide early warning to the presence of emitters, the ELINT receiver usually opted at 

large distances from the emitter. The radar signal arriving at the ELINT receiver antenna array 

can therefore be reasonably approximated as a uniform plane wave. Here 1, 2, 3 …, N are the 

antennas, θ is the intercept angle and dN1 are distances between antennas. The DOA of the 

signal is estimated as below, by estimating the frequency and phase delay of signal between 

the two antennas outputs.  

𝜃 = 𝑆𝑖𝑛ିଵ  ቀ
ఒѰ

ଶగ
ቁ    (4.23) 

Where wavelength 𝜆 = 𝑐/𝑓. The baseline of the interferometer is often referred to as antenna 

separation ‘𝑑’. The accuracy of DOA estimate can be improved by one of the factors such as 

 Increasing the SNR of the signal,  

 Increasing the signal duration  i.e. number of samples,  

 Increasing the signal frequency,  

 Operating closer to broadside, and  

 Increasing the antenna separation.   
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Since the parameters of the radar are beyond the control of the ELINT receiver, the 

first three parameters can be changed. Some improvement in DOA estimate accuracy can be 

gained by actively rotating the interferometer baseline to operate closer to the broadside 

region. For moving platforms, this can be achieved by changing the trajectory of the platform, 

while for stationary platforms, this can be achieved by using multiple, short baseline 

interferometers with different orientations and appropriate switching between the baselines on 

an intercept-by-intercept basis. However, these methods will only provide a small 

improvement in the DOA estimation performance and may be impractical to achieve. The 

most practical method to improve the DOA estimation performance is to utilize long baseline 

interferometers. While long baseline interferometers offer improved DOA estimation 

performance, they also introduce an ambiguity issue because the phase delays can only be 

measured between  ,  . This leads to ambiguities as the theoretical phase delay can 

exceed ±π. This effect is known as phase wrapping. The ambiguity resolution using other 

independent, non-interferometric DOA estimation methods is generally imposing additional 

constraints on the design of the direction-finding systems. Also, the accuracy of these 

algorithms is not being sufficient to resolve the ambiguities of the long baseline 

interferometers at higher frequencies. The ambiguity resolution using a short baseline 

interferometer requires that at least one pair of antennas be spaced no more than one half a 

wavelength apart (at the highest frequency of separation). In practice, these design constraints 

may not be achievable due to the size of the antenna or mounting characteristics of the 

platform.  

 

Figure 4.63: Plot of a simple set of interferometer baselines comprising of 4 antennas 

 

Figure 4.64: Plot of an extended set of interferometer baselines comprising of 4 antennas 
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Alternative ambiguity resolution methods which make use of multiple long baseline 

interferometers are based on the Chinese Remainder Theorem (CRT) and require 

appropriately chosen interferometer baselines. For larger aperture, unambiguous DOA 

estimates can generally be obtained with fewer intermediate baselines than the short baseline 

ambiguity resolution method. Figure 4.63 describes a simple set of interferometer baselines 

comprising 4 antennas whereas Figure 4.64 describes an extended set of interferometer 

baselines comprising of 4 antennas. The longest baseline 41d  provide the best DOA estimation. 

In order to increase the DOA accuracy further the number of baselines required to be 

increased and also to process the such number of antenna either more number of switching to 

be done which decrease the Probability of Intercept (POI) of radar signal or it is required to do 

the parallel processing that will increase the system hardware, system power. Also, there is 

space constraint for the space system; it is difficult to increase the number of antennas. For 

Space ELINT system, instead of increasing the number of antennas, there is a demand to 

decrease it. So that further SWaP can be reduced for better reliability and better durability. So 

there is system configuration analysis where 4 antennas configuration has been replaced by 3 

antennas system which can provide the same DOA estimation with certain constraints such as 

the decrease in FOV and little more prone to phase error than earlier configuration. 

The first constraint can be possible to resolve by changing the trajectory of the vehicle 

during the predefined mission. Whereas the later can be resolved by choosing the good 

hardware component which should be reliable for a particular phase margin of the algorithm 

so that it could not give wrong DOA estimates.  

Based on the above constraint, there is an alternative interferometric algorithm Virtual 

Baseline Interferometer (VBI) which is based on a second-order difference array. This VBI is 

computationally as fast as a conventional interferometer and also provides unambiguous DOA 

estimation using two long baselines.  

 

Figure 4.65: Plot of virtual baseline interferometer comprising of 3 antennas 
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Figure 4.66: Plot of physical interpretation of virtual baseline interferometer 

Figure 4.65 describes the concept of a virtual baseline interferometer, where only 3 

antennas are required. The unambiguous first-order phase delays for d21, and d32 baselines i.e. 

ѱ21 and ѱ32 respectively are derived as below using equation 4.23, 

ѱଶଵ =  ቀ
ଶగௗమభ

ఒ
ቁ 𝑠𝑖𝑛𝜃    (4.24) 

ѱଷଶ =  ቀ
ଶగௗయమ

ఒ
ቁ 𝑠𝑖𝑛𝜃    (4.25) 

Where it is assumed that 𝑑ଶଵ < 𝑑ଷଶ, (𝜆୫୧୬/2)  <<  𝑑21 and 𝜆୫୧୬ corresponds to the 

wavelength of the highest frequency of interest. The long baselines suggest that the phase 

delays are highly ambiguous. The second-order phase delay ѱఋ can be calculated as the 

difference between the first-order delays as follows using equations 4.24 and 4.25,  

ѱఋ =  ѱଷଶ − ѱଶଵ =  
ଶగ(ௗయమିௗమభ)

ఒ
𝑠𝑖𝑛𝜃 =

ଶగௗഃ

ఒ
𝑠𝑖𝑛𝜃   (4.26) 

 Where 𝑑ఋ = 𝑑ଷଶ − 𝑑ଶଵ and this is equivalent to the creation of an antenna virtual pair 

with a baseline of 𝑑ఋ  as depicted in Figure 4.66.  

 This virtual baseline phase delay can be unambiguous provided that the baseline is 

sufficiently short. It means, that it satisfied the following constraint, 0 < 𝑑ఋ ≤ (
ఒౣ౟౤

ଶ
) where  

𝜆୫୧୬ is the wavelength of the highest frequency of interest. The unambiguous estimate of 

DOA of the signal using the basic interferometer equation is written as  

𝜃 = 𝑆𝑖𝑛ିଵ  ቀ
ఒѰ

ଶగௗഃ
ቁ    (4.27) 

The RMS error of the virtual baseline interferometer is expected to be degraded 

compared to first-order interferometer with a physical baseline of 𝑑ఋ. It is attributed to the 

fact that three-antenna outputs are used to estimate the phase delay of a virtual two antenna 

interferometer. The extra antenna output is expected to introduce more noise to the phase 

delay estimation and hence lead to a reduced DOA estimation performance. This error can be 
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reduced by using the longest baseline of the antennas array. The equation 4.27 is limited to 

virtual short baseline, dδ and does not take advantage of the higher accuracy offered by the 

longer physical first order baselines i.e. 𝑑ଶଵ, 𝑑ଷଶ, or 𝑑ଷଵ. The longest first-order baseline 𝑑ଷଵ 

is offered an improvement in the DOA estimation by a factor as below:  

 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 =  √3 ∗ (𝑑ଷଵ/𝑑ఋ)    (4.28) 

 Hence, this method provides better performance with a smaller number of antennas, 

and hence at a reduced cost, reduced weight, size, and power. 

4.5.2 FOV requirement for high altitude ELINT 

 The field-of-view (FOV) of an interferometer is an important design consideration as 

it specifies the range of angles that the interferometer can estimate the AOA of a signal with 

reasonable accuracy. There are two aspects to the FOV consideration, namely the range of 

angles that can be viewed and the accuracy associated with the FOV. 

 For a linear array, the range of angles that can be estimated by an interferometer is 

limited by its AOA estimation performance in the end-fire region. In these regions, the AOA 

approaches ± 900 and so the corresponding phase delay approaches ± π. With the addition of 

noise errors, the measured phase delay can cross the ± π boundary which results in large AOA 

estimation errors since a signal arriving from 900 may be estimated arriving at – 900 and vice-

versa. These large AOA estimation errors, therefore, reduce the practical FOV of the 

interferometer.   

By virtue of the lower RMS error performance, long baseline interferometer also has 

an increased field-of-view (FOV). For a given RMS error tolerances, δθtol, the maximum 

positive and negative AOA that can be estimated by an interferometer, ±θmax can be 

approximated as below 

 ±θ୫ୟ୶ ≈ ±arccos ቆ
ଵ

ඥఎே
 . ቀ

ఒ

ଶగ௙ௗఋ ೟೚೗
ቁቇ   (4.29) 

The FOV then, for an interferometer can therefore be written as  

FOV =  θ୫ୟ୶ − θ୫୧୬ ≈ 2. arccos ቆ
ଵ

ඥఎே
 . ቀ

ఒ

ଶగ௙ௗఋఏ೟೚೗
ቁቇ  (4.30) 

FOV requirement for high altitude is +/-20 degrees. ELINT system at an altitude of 

approximately 700 km covers almost of approximately 2000 sqkm swath at the ground. The 

swath means the area covered from high altitude by these systems. Covering this much area is 

sufficient to capture the radar signals and extract their parameters. Since the FOV requirements 
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of these systems are less, three antenna BLI techniques become useful. This technique used with 

noise cancellation provides the advantage equivalent to four antenna BLI arrays. 

4.5.3 Phase error margin 

 It seen that in case of an error occurs in phase measurement, non-integer results being 

generated for certain computations in the algorithm which ideally should have been integers. 

Rounding off the results to the nearest integer does not affect the algorithm provided the 

errors are below a specific value. The phase error margin is defined as the maximum 

permissible error in the phase measurement below which the algorithm described will not 

break down. The breakdown of the algorithm is said to take place if rounding off gives a 

wrong result due to excess phase errors while estimating the modulo integer. This will result 

in gross errors in DOA computation. 

The phase error margin is calculated as below: 

The following condition should meet to avoid breakdown in the algorithm, 

 (2 𝛿𝛷ଵ − 𝛿𝛷ଶ) / 2𝜋 <  0.5    (4.31) 

Where,  𝛿𝛷ଵ is the error in 𝛷ଵ and 𝛿𝛷ଶ is the error in 𝛷ଶ i.e. 

(2𝛿𝛷ଵ − 𝛿𝛷ଶ)  <  𝜋    (4.32) 

The RF front end following all the antennas in the array are identified and so are the 

phase measurement and digitization units. Hence, we can assume that the error statistics for 

phase measurements are independents of the spacing. We can also assume that the error 

statistics for all the phase measurements are identical. Let the peak error in phase 

measurement in any channel be δΦ, Hence we get from equation 4.32 

     3 𝛿𝛷 =  𝜋     (4.33) 

Hence, the available phase error margin in the algorithm is ±600 for the first step in the 

algorithm. It can be similarly shown that the phase error margin for the second and final steps 

in the algorithm are ±510 and ±550 respectively. Therefore the system phase error margin is 

the minimum of all the above, three i.e. ±510. In case higher phase error margins are required 

the array spacing has to be suitably synthesized. 

  



Signal Estimation and Direction Finding  99 
 
 

 

 

4.5.4 Accuracy considerations 

The theoretical accuracy of the DF system is estimated by differentiating the 

interference equation i.e.  

𝜎ఏ  =  
ఙ೻ఒ

ଶగ஽ ௖௢௦ఏ
     (4.34) 

Practically measured values of σΦ are around 150 RMS for the receiver front end 

channel including antenna, amplifiers, phase correlators, and phase digitizer. Substituting, this 

value in equation 4.34 we get a DF accuracy of 10 RMS for an IFOV of ±450 even at the 

lowest frequency i.e. 8 GHz. In general, phase interferometers give better DF accuracy at 

higher frequencies. The spacing D4 had been considered for calculating the DF accuracy. 

The interferometer DF system is generally configured only for FOVs of ±450 since the 

accuracy will suffer drastically beyond this angle. Four separate sectors each covering ±450 

are used to cover the full azimuth of 3600. The accuracy of the interferometer will also be 

affected by other parameters like frequency measurement accuracy, phase centre variations in 

antennas, signal to noise ratio, the elevation of the emitters etc. However, these contribute 

much less to the overall accuracy compared to the phase measurement errors. 

4.5.5 Calibration 

 Calibration of the system is not required if all the front-end components are perfectly 

phase matched. In such an ideal situation, when a signal is radiated at bore sight i.e.  00. In a 

practical situation, the RF front end of the DF system will have phase matching of ±300 only. 

This is due to the practical difficulties in manufacturing the broadband microwave 

components and the antennas. It is possible to measure the residual phase errors across the 

channels by calibrating the RF front end components. This data is used to remove the phase 

errors from the practically measured data. This is done by injecting a signal of known 

frequency and sorting the residual phase error data in a memory (Look-up table). Whenever 

signals have intercepted the error for that frequency is algebraically subtracted to give the 

corresponding phase data. It may be noted that except for the antennas the phase errors in all 

the other corresponds are only frequency dependents whereas the phase error in the antennas 

is dependent on both frequency and the DOA of the signal. The phase matching in the antenna 

array will have a much larger impact on the DF accuracy than the phase matching in the RF 

front end. The second stage of calibration is done by radiating a signal from 00 azimuths so 

that the phase errors including the error in the antennas are measured at convenient frequency 

intervals. Calibrations by radiation is generally done only at 00 azimuths since the antenna 
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phase mismatch is most likely to remain static throughout the FOV. The two levels of 

calibration look-up table (LUT) are required since the antenna being a passive component, is 

likely to fail and hence has to be replaced. Whenever an RF font-end component is replaced, 

the LUT corresponding to the injected mode calibration data only needs to be modified. 

The phase differences of the outputs of the spiral antennas after the FER are measured 

with the Quad Digital receiver to give a digital representation of the phase differences of input 

RF. These phase differences are then processed in the Phase DF processor to extract the DOA 

of the signal.  The processor also takes the amplitude and frequency data for calibration and 

correction of offset errors (which occur due to phase mismatch in the RF channels over the 

specified frequency range) and then processed to compute the DOA. High-performance 

ambiguity resolution algorithms will be implemented in high-speed, high-capacity Xilinx 

FPGAs to minimize power consumption. Sufficient onboard memory is provided to store the 

calibration and offset data. 

4.5.6 Simulation Results for direction finding 

 The multi-channel digital receiver configuration block diagram is shown in Figure 

4.67. This does the digitization of various intermediate frequencies (IFs) signals which is 

down-converted by multi-channel superhet receivers. In this various algorithms are applied to 

extract the pulse descriptor word (PDW) of the signal. 

 

Figure 4.67: Direction finding receiver configuration with noise cancellation. 

Virtual antenna based BLI algorithm for AOA extraction, FFT-based interpolation 

algorithm for frequency extraction, and DDC-based algorithms for PW and PRI extraction are 

employed. All proposed algorithms are described below. 
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Four antenna based BLI and three antenna based BLI is considered for simulation. The 

unambiguous phase is found out for the largest BLI from the ambiguous phase. Finally, the 

results are compared. The performance of the virtual baseline interferometer algorithm has 

been simulated for frequency bands 6 - 18 GHz.  

(a) Four Antennas BLI: The spacing between the antennas are 21d  = 45 mm, d32 = 52.5 mm. 

Ambiguous phases d32, d31, and d41 for four antennas BLI are plotted in Figure 4.68, Figure 

4.69, and Figure 4.70 respectively. 

 

Figure 4.68: Ambiguous phase for d32 baseline using four antenna baseline interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°. 

 

Figure 4.69: Ambiguous phase for d31 baseline using four antennas baseline interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°. 
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Figure 4.70: Ambiguous phase for d41 baseline using four antennas baseline interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°. 

The unambiguous phase d21 and derived unambiguous phases d32, d31, and d41 for four 

antennas BLI are plotted in Figure 4.71, Figure 4.72, Figure 4.73, and Figure 4.74 

respectively. 

 

Figure 4.71: Unambiguous phase for d21 baseline using four antennas baseline interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°. 
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Figure 4.72: Unambiguous Phase for d32 baseline using four antennas baseline interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°. 

 

Figure 4.73: Unambiguous phase for d31 baseline using four antennas baseline interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°. 
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Figure 4.74: Unambiguous phase for d41 baseline using four antennas baseline interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°. 

 
(b) Three Antennas BLI: The performance of the virtual baseline interferometer algorithm 

has been simulated for frequency bands 0.5 - 18 GHz. The spacing between the antennas are 

21d  = 45 mm, d32 = 52.5 mm. The dδ is calculated as 32 21d d d    =7.5 mm. The distance 

21d  and d32 are chosen such that dδ < (λmin/2). The ambiguous phase for the 21d  baseline and 

d32 baseline is shown in Figure 4.75, and Figure 4.76 respectively. Whereas, 𝑑ఋ  which is 

derived by virtual baseline interferometer, estimates the unambiguous phase shown in Figure 

4.77. 

 

 
 
Figure 4.75: Ambiguous phase for d21 baseline using three antennas virtual interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°. 
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Figure 4.76: Ambiguous phase for d32 baseline using three antennas virtual interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°. 

 

 
 
Figure 4.77: Unambiguous phase for dδ baseline using three antennas virtual interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°. 

The derived unambiguous phases d21, and d32, and d31 for three antenna virtual BLI are 

plotted in Figure 4.78, Figure 4.79, and Figure 4.80 respectively. 
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Figure 4.78: Unambiguous Phase for d21 baseline using three antennas virtual interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°. 

 
Figure 4.79: Unambiguous phase for d32 baseline using three antennas virtual interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°.   

  
 Figure 4.81 shows the simulation results for error at 6 GHz between set AOA and 

measured error and RMSE for 6 to 18 GHz with ±45° FOV. The simulation result of 4 

antennas is better compared to 3 antennas interferometers. This is obvious as RMSE measured 

using the smallest physical antenna gives an advantage of √3 times RMSE for the smallest 

virtual antenna. 
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Figure 4.80: Unambiguous Phase for d31 baseline using three antennas virtual interferometer. 

Simulation parameters: f = 18 GHz and FOV = ±45°. 

 

Figure 4.81: Comparison for Set AOA vs Error between four and three antennas 

interferometers. Simulation parameters: f = 18 GHz and FOV = ±45°. 
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Figure 4.82: Comparison for frequency vs RMSE between four antennas and three antennas 

interferometers. Simulation parameters: f = 18 GHz and FOV = ±25°. 

 

The comparison of result is generated for ±25° FOV which is sufficient for the ELINT 

system for space application as shown in Figure 4.82. This result is generated without and 

with the noise cancellation technique [117]. The system noise of 200 frames is captured and 

computed 256 points FFT. This is carried out when input is connected to the BITE port and 

BITE is in signal OFF condition. The estimated average of the noise spectrum is computed for 

all frames. In system ON condition when input is connected to antenna port and the signal 

spectrum is computed continuously which is noisy. The estimated noise spectrum is 

subtracted from the noisy input signal spectrum and an instantaneous magnitude spectrum is 

computed which is called a restored signal. Again restored time-domain signal is computed by 

inverse FFT. The SNR of 6 to 8 dB is improved when the signal is passed through this. This 

result shows that 3 antenna interferometer provides comparable results with 4 antenna 

interferometer. It shows, on reducing one antenna alone approximately one-fourth of 

hardware is reduced. Usually, to cover a complete 0.5 to 18 GHz band three different types of 

antennas are required. With 3 antennas approach, a total of 9 antennas covers the complete 

band instead of 12 antennas. Hence, further reduction will be there in processing electronics 

also. 
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4.5.7 Discussions  

The effect of receiver noise is an important consideration in all practical electronic 

systems. Unlike systematic errors, which can be compensated through calibration, receiver 

noise errors cannot be eliminated but their effect can be minimized through the careful 

selection of algorithms. In interferometry, the receiver noise errors affect the AOA estimation 

by manifesting as random errors in the frequency and phase delay estimation. For estimating 

the AOA, the frequency error is assumed negligible. This section will, therefore assume that 

the noise errors are noticeable entirely as phase delay estimation errors. 

4.6 Conclusions 

  Pre-processing of data using noise cancellation will help in moving autocorrelation as 

well as DIQ approaches. This technique is used for the generation of amplitude profile and 

frequency profile. This technique has a lot of practical significance in the present scenario. 

The proposed algorithms are evaluated with the field data to evaluate the efficacy of the 

technique. Most of the results are generated using AWGN noise data. This technique is tested 

with uniformly distributed noise. 

  The proposed technique based on moving autocorrelation and noise estimation has 

significantly improved the measurement accuracy of instantaneous amplitude and the 

instantaneous frequency at low SNR conditions. These techniques will help in the 

measurement of the basic parameters as well as intra-pulse modulation information of radar 

signals. This will lead to a very efficient and accurate emitter identification. The advancement 

in signal processing algorithms, coupled with high-performance FPGA has enabled for 

improvement of the unique emitter identification and also achieves a real-time performance. 

This is useful for real-time modulation classification based on instantaneous frequency 

profile. 

 It is evident from the proposed approaches that there is an improvement in resolution 

and accuracy of measurement for various parameters direction-of-arrival, frequency, etc. with 

fewer hardware resources. In case of direction finding, less number of front ends and antennas 

combinations can be realized in the system that provide RMS DOA error of less than 0.1 

degrees with less weight and small size which is the requirement of space platform. The 

frequency measurement accuracies achieved is less than 0.0609 MHz RMS with this approach 

against 1.528 MHz RMS with simple FFT spectrum analysis using 256 points FFT. The 

autocorrelation with the FFT combination approach improves the PW and TOA 

measurements that can be measured with high accuracy with very few resources. It also helps 
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to reduce power consumption which is high in today’s system. SWaP optimized three 

antennas based BLI technique for AOA measurement provides results equivalent to four 

antennas based BLI. These measurement techniques will help to realize a new generation 

ELINT system based on proposed digital techniques for space applications. 
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Chapter 5 

 
 
 

Signal Detection and Modulation Recognition 

 
In the previous chapter signal estimation techniques are described which include noise 

cancellation, instantaneous amplitude measurement, instantaneous frequency measurement, 

FFT-based frequency estimation, and direction-finding techniques. The simulation results are 

also presented along with the algorithms. In this chapter, noise is estimated on instantaneous 

amplitude and an adaptive threshold is computed for detection of the signal. SNR and 

sensitivity are also computed after the detection of the signal. Intra-pulse modulation 

recognition of radar signals is carried out using instantaneous frequency profiles. These will 

be supportive parameters for sorting and specific emitter identification.  

5.1 Introduction  

Modulation in radar signals is one of the important features and modulation 

recognition is one of the vital problems in the analysis of non-cooperative reception of radar 

signals. The modulation recognition for communication signals in real-time is quite common 

due to its lower frequency of operation and less bandwidth. But, in the case of radar signals, 

the modulation recognition in real-time is being done for limited signals. Whereas the 

modulation recognition of radar signals is carried out offline by a small number of ELINT 

systems. These systems can be an add-on to the main systems or they are integrated with the 

main systems. To meet today’s requirement ELINT systems has to classify modulation of 

radar signals in real-time. This classification helps in the de-interleaving of emitters. 

Conventional radars have a simple pulsed waveform or continuous waveform with no 

modulation. These pulsed radars sometimes have variations in PW or PRI. But complex 

radars are having various modulations within the pulse alongwith the above variations. The 

modulation can be linear frequency modulation (LFM), non-linear frequency modulation 

(NLFM), stepped frequency modulation (SFM), bi-phase modulation (BPM), and 

hybridization of modulations. These modulations are recognized in real-time using decision-



112  Chapter 5, Section 5.1
 

tree algorithms. The implementation of these signals classification is carried out in FPGA 

using time-domain techniques for real-time application.  

5.2 Signal detection 

 In this section, noise estimation, pulse detection, sensitivity, and SNR computations are 

discussed. Noise estimation is carried out on an instantaneous amplitude profiles. 

5.2.1  Noise estimation 

(i) Approach-1: The standard deviation (𝜎) of signal 𝑥(𝑛) which is obtained by computing 

the mean of noise is given by equation5.1. To compute the mean, that many samples have to 

be stored. Finally, summation, squaring and square root functions have to be used to compute 

the standard deviation. The standard deviation is defined as equation 5.1 and its 

implementation block diagram is shown in Figure 5.1. 

𝜎 = ට∑
(௫(௡)ି௫ೌೡ೒)మ

ே
ேିଵ
௡ୀ଴     (5.1) 

 

Figure 5.1: Block diagram of standard deviation computation. 

 Standard deviation gives the actual estimate of the noise present. But this approach 

requires large computations and takes time to compute the estimate. All samples have to be 

stored to compute the standard deviation, hence real-time estimate is not done. 

(ii) Approach-2: Estimation of noise is carried out using two-point averaging. This reduces 

the computations required for estimation. Approximated standard deviation (𝜎ଵ) is calculated 

using two-point averaging as given by equation 5.2. 

𝜎ଵ = 𝑘ଵ ∗ |𝑥(𝑛) + 𝑥(𝑛 + 1)|   (5.2) 

where 𝑘ଵis the constant and set based on minimum error. This approach is faster than 

the above approach. But the result obtained using this approach is not very close to standard 

deviation. 
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(iii) Approach-3: The efficient method of computing standard deviation is discussed in this 

section. Estimation of noise is done for signal detection which reduces the computation 

requirement and storage requirement. The mean of the modulus of the noise samples are taken 

and the approximate standard deviation is computed. The absolute of input signal samples 

𝑥(𝑛)is taken which makes all negative samples positive. The shape of the probability density 

function (PDF) will be the same but doubles the peak value. 

If the input signal is 𝑥(𝑡) and absolute of 𝑥(𝑡) is 𝑎𝑏𝑠(𝑥). The absolute value of input 

samples makes negative samples positive. The shape of the PDF will be the same but doubles 

the peak value. The mean value of the signal at point 𝑐 and point 𝑏 is the same. 

µ
௖
(𝑁)  =  µ

௕
(𝑁)     (5.3)  

µ
௖
(𝑆 + 𝑁)  =  µ

௕
(𝑆 + 𝑁)     (5.4)  

If 𝑥(𝑡) is the input signal, 𝐵 is the bandwidth of the signal and averaged for time 𝑇. 

The variance at point 𝑐 is 1/(2𝐵𝑇) times the variance at point b.  

𝜎௖
ଶ(𝑁)  =  

ఙ್
మ(ே)

ଶ஻்
    (5.5) 

 

Figure 5.2: Block diagram showing mean and variance at different points. 

 

If 2BT is greater than 20, the central limit theorem allows approximation for a 

waveform with Gaussian PDF at point c, 

𝑃௖
′(𝑦) =

ଵ

ටଶగఙ೎
మ

𝑒
ି

(೤షµ೎)మ

మ഑೎
మ      (5.6)  

The Gaussian PDF for waveform at point a with zero mean is given as  

𝑃௔
′ (𝑥) =

ଵ

ටଶగ(ఙೣ
మାఙ೐

మ)

𝑒
ି

ೣమ

మ(഑ೣ
మశ഑೐

మ)    (5.7)  

The Gaussian PDF at point b is given as,  

 𝑄௕
′ (𝑥) = 2𝑃௔

′ (𝑥) = ට
ଶ

గ(ఙೣ
మାఙ೐

మ)
𝑒

ି
ೣమ

మ(഑ೣ
మశ഑೐

మ)    (5.8)  
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when both signal and noise is present, the mean at point 𝑏 is given below 

µ
௕

(𝑆 + 𝑁) =< 𝑥 >௕= ∫ 𝑥𝑑𝑄௕
′ (𝑥) =

ଵ

଴ ට
ଶ

గ(ఙೣ
మାఙ೐

మ)
∫ 𝑥𝑒

ି
ೣమ

మ(഑ೣ
మశ഑೐

మ)𝑑𝑄௕
′ (𝑥)

ଵ

଴
  (5.9) 

 This equation is reduced to  

µ
௕

(𝑆 + 𝑁) = ට
ଶ

గ
ඥ(𝜎௫

ଶ + 𝜎௘
ଶ)    (5.10)  

When only noise is present, the mean at point b is written as 

µ
௕

(𝑁) = ට
ଶ

గ
𝜎௘     (5.11)  

When only noise is present, the mean of noise will reduce at point c and point b to, 

µ
௖
(𝑁) = µ

௕
(𝑁) = ට

ଶ

గ
𝜎௘   (5.12)  

The standard deviation when only noise is present, is written as below using equation 

(5.11),  

𝜎௘ = µ
௕

(𝑁)ට
గ

ଶ
    (5.13)  

Considering,  𝜎ଶ = 𝜎௘, 𝑘ଶ =
ଵ

ே
ට

గ

ଶ
 and  µ

௕
(𝑁) =

ଵ

ே
∑ |𝑥(𝑛)|ேିଵ

௡ୀ଴    

 The above equation shows that by computing the mean of noise and multiply with the 

multiplication factor, the result will be equivalent to the standard deviation of signal 𝑥(𝑡). The 

efficient digital implementation of noise estimation is proposed. The absolute value of signal 

𝑥(𝑛) is computed and multiplied with constant (𝑘ଶ) and is derived as equation 5.14 which is 

approximately equivalent to the standard deviation of the signal 𝑥(𝑛). The block 

implementation of approximate standard deviation is shown in Figure 5.3. 

𝜎ଶ = 𝑘ଶ ∗ ∑ |𝑥(𝑛)|ேିଵ
௡ୀ଴     (5.14) 

 

Figure 5.3: Block diagram for approximate standard deviation computation. 

 

The random noise is computed and results are tabulated using both the approaches as 

shown in Table 5.1. Error is also computed with standard deviation. The error (𝐸ଵ) computed 
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is less than 20% using the first approach whereas the error (𝐸ଶ) is less than 10% using the 

second approach. Usually, two-level threshold is used which will have a difference of 6 dB. 

Hence the error computed is less and it is efficient also in hardware implementation. Figure 

5.4 shows the comparison of the estimated noise for different approaches as a function of 

SNR. 

 

Figure 5.4: Comparison of the estimated noise for different approaches as a function of SNR. 

Simulation parameters: N = 80,000 samples, and ts = 1.5 ns. 

Table 5.1: Comparison of noise estimation results using a different approach. 

Iteration 
Number 

Approach-1 
Std. Dev. (σ)  

A 

Approach-2 
(σ1) 
B 

Error-1 
E1= 
A-B 

 
 
 

Approach-3 
(σ2) 
C 

Error-2 
E2= 
A-C 

1  5.825 5.593 0.232  5.296 0.529 
2  5.784 5.339 0.445  5.343 0.441 
3  4.852 5.756 -0.904  5.305 -0.453 
4  5.567 5.838 -0.271  5.281 0.286 
5  4.787 5.598 -0.811  5.256 -0.469 
6  5.063 6.008 -0.945  5.323 -0.26 
7  5.629 5.663 -0.034  5.324 0.305 
8  5.276 5.576 -0.3  5.196 0.08 
9  5.091 6.023 -0.932  5.195 -0.104 
10  4.466 5.213 -0.747  4.789 -0.323 

 

The noise present in the ELINT system is Gaussian. The standard deviation is 

computed for the period for which noise is to be estimated. The threshold selected is nothing 

but, it is the standard deviation of the noise. If the threshold selected is equivalent to standard 
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deviation. The probability of detection or probability density function (PDF) is 68.27%. If the 

threshold selected is equivalent to twice the standard deviation. The probability of detection 

will be 95.45%. If the threshold selected is equivalent to three times the standard deviation. 

The probability of detection will be 99.73%. Threshold more than three times has not much 

impact on the probability of detection. But it will limit the receiver sensitivity. 

5.2.2 Signal detection using adaptive threshold 

The fixed threshold is constant and hence it is not capable to prevent false detection 

and missed detection. The adaptive threshold has an advantage over the fixed threshold for 

pulse detection. The noise present in the system varies in the wide frequency band. Therefore, 

the noise is computed for different time constants, which is selectable. In the case of radar 

EW, the signal is non-cooperative and pulse width is unknown. Hence lowest time constant is 

selected, say 1 us. This is useful for all the pulsed signals and continuous wave (CW) signals 

detection. Hence, the noise estimation is carried out for every 666 samples during pulse-off 

time.  

The adaptive threshold should be higher than the noise estimated to avoid false 

detection. This threshold correction is applied as a fixed value. The adaptive threshold will 

keep updating itself at each selected time constant. The conventional and proposed efficient 

noise estimation is discussed next. 

Once the threshold is estimated, it is also important that how this threshold is applied 

for detection. There are two ways to detect the pulse. One is single-level threshold and the 

other is two-level threshold. The single-level threshold is suitable when pulse on amplitude 

variation is more. Pulse on amplitude variation is more at lower SNR. The leading edge is 

detected with one threshold and the trailing edge is detected with another threshold. Figure 

5.5 shows the block diagram of signal detection with two-level threshold.  

 

 

 
Figure 5.5: Signal detection with two-level adaptive threshold. 
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Both higher level and lower level thresholds are estimated for detection.  High-level 

threshold (𝑇ு) is computed using estimated noise and accordingly, low-level threshold (𝑇௅) is 

set as 𝑇௅ = (𝑇ு/8). 𝑇ு is used to detect pulse leading edge (LE) or pulse start and 𝑇௅ is used 

for pulse trailing edge (TE) or pulse end. The threshold is adaptive for better detection and 

analysis of pulses. This is also helpful when noise increases due to system temperature and 

accordingly noise is estimated and the threshold is set. 

5.2.3 Signal flow graph for noise estimation and signal detection 

 The signal flow graph of noise estimation and signal detection is shown in Figure 5.6.  

Noise cancellation is performed on the data capture as given in section 4.2. Instantaneous 

parameter measurement is carried out on restored signal. Further the noise is estimated on the 

instantaneous amplitude profile. This is carried out during signal-off duration. Signal is detected 

based on higher (TH) and lower (TL) threshold which detects leading and trailing edge of the 

pulse. Later signal parameters are estimated along with modulation parameters.  

 

Figure 5.6: Signal Flow graph of noise estimation and signal detection. 
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5.2.4 SNR and sensitivity computations 

In this section, the SNR and sensitivity computations are discussed. The computation of 

SNR is carried out during signal presence after detection of the signal using instantaneous 

amplitude profile. 

5.2.4.1 SNR Computations 

  The signal is mixed with noise is written as 𝑥(𝑛) = 𝑠(𝑛) + 𝑒(𝑛). The signal power 

and noise power are also measured [128]. The Px is the signal power of x(n) which is tainted 

by noise when signal is mixed with noise. The Ps is signal power when a signal without noise 

is measured. Accordingly, signal-to-noise (SNR) is declared. 

     𝑆𝑁𝑅 = 10 log ቀ
௉ೞ

௉ೣ ି௉ೞ
ቁ  = 10 log ቀ

௉ೞ

௉೐
ቁ  (5.15) 

  Where, Ps and Px are given by, 

𝑃௦ =
ଵ

ே
∑ |𝑠(𝑛)|ଶே

௡ୀଵ      (5.16) 

𝑃௫ =
ଵ

ே
∑ |𝑥(𝑛)|ଶே

௡ୀଵ      (5.17) 

The 𝑃௫  is known and 𝑃௦ is unknown and has to be computed to declare the SNR. The 𝑃௘ 

is the noise power which is computed during noise presence. 

5.2.4.2 Sensitivity computations 

 Sensitivity of the ELINT system using proposed techniques is defined as [116], 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  – 114 + 10 𝑙𝑜𝑔ଵ଴ ቆට൫2𝐵௥𝐵௩– 𝐵௩
ଶ൯ቇ + 𝑁𝐹 + 𝜂 + 𝐺௔ + 𝐺௣        (5.18) 

Where,   𝐵௥ = Resolution bandwidth (500 MHz) 

𝐵௩ = Video bandwidth (500 MHz) 

𝑁𝐹 = Noise Figure (12 dB) 

𝜂  = SNR (1 dB) 

𝐺௔ = Horn Antenna Gain (6 dBi Minimum) 

𝐺௣ = Processing Gain  

 
(i) Sensitivity for IF 1 GHz IF without FFT overlapping: 

Sensitivity is computed with above parameters for 1 dB SNR using moving 

autocorrelation technique with 𝐺௣ of 7 dB. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  – 114 + 10 𝑙𝑜𝑔ଵ଴(𝐵௥) + 𝑁𝐹 + 𝜂 + 𝐺௔ + 𝐺௣ 

    =  –114 + 10 log10(500) + 12 + 1 – 6 – 7 
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    =  –114 + 26.99 + 12 + 1 – 6 – 7 

    =  – 87.01 dBm 

   =  – 87 dBm (Approx.) 

 Minimum SNR required using moving autocorrelation algorithm and DIQ algorithm is 1 

dB and 8 dB respectively to process all types of modulated signals. Based on this, the 

summary of sensitivity achieved is given in Table 5.2. 

Table 5.2: Sensitivity achieved with different techniques without FFT overlapping. 

Proposed 

technique with 

Minimum 

SNR required 

without noise 

cancellation 

(dB) 

Achieved 

sensitivity 

without noise 

cancellation 

(dBm) 

Minimum 

SNR required 

with noise 

cancellation 

(dB) 

Achieved 

sensitivity 

with noise 

cancellation 

(dBm) 

Moving 

autocorrelation 
8 – 80  1 – 87  

DIQ 15 – 73 8 – 80 

  

(ii) Sensitivity for IF 1 GHz IF with FFT overlapping of 75%: 

 Sensitivity is computed with the above parameters for 1 dB SNR using moving 

autocorrelation technique with 𝐺௣ of 9 dB for the case with FFT overlapping. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  – 114 + 10 𝑙𝑜𝑔ଵ଴(𝐵௥) + 𝑁𝐹 + 𝜂 + 𝐺௔ + 𝐺௣ 

    =  –114 + 10 log10(500) + 12 + 1 – 6 – 9 

    =  –114 + 26.99 + 12 + 1 – 6 – 9 

    =  – 89.01 dBm 

   =  – 89 dBm (Approx.) 

Table 5.3: Sensitivity achieved with different technique with 75% FFT overlapping. 

Proposed 

technique with 

Minimum 

SNR required 

without noise 

cancellation 

(dB) 

Achieved 

sensitivity 

without noise 

cancellation 

(dBm) 

Minimum 

SNR required 

with noise 

cancellation 

(dB) 

Achieved 

sensitivity 

with noise 

cancellation 

(dBm) 

Moving 

autocorrelation 
6 - 82  - 2 - 89  

DIQ 13 - 75 6 - 82 
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Minimum SNR required using moving autocorrelation algorithm and DIQ algorithm is 

1 dB and 8 dB respectively to process all types of modulated signals. Based on this, the 

summary of sensitivity achieved is given in Table 5.3. 

5.2.5 Measurement of pulse parameters 

The pulse parameters of the radar signals like Pulse Width, Pulse Amplitude, and PRI 

are also measured using the proposed approaches. The various parameter measurements are 

discussed below. 

SNR Requirement  

Proper identification of emitter demands a high signal-to-noise ratio (SNR) for reliable 

and consistent analysis.  For this reason, only those pulses, which have SNR more than 1 dB, 

will be processed for parameter estimation. SNR of 1 dB is also sufficient for detection 

purposes for all modulated signals. 

Storage Requirement 

The digitizer card digitizes the IF for the period of segment length, which is derived 

from pre-trigger, pulse width, and post-trigger. Pre-trigger and post-trigger are added to 

measure the pulse width. It saves a huge memory space and reduces transfer time. This data is 

stored to process it in the future for offline processing. To extract the features offline only raw 

data and time-of-arrival (TOA) information is sufficient. 

Selection of processing hardware 

The FPGA based digital processing hardware involves computational intensive 

operations like moving autocorrelation, digital I-Q method, noise cancellation, etc. It has to 

perform these operations on large input data. To achieve these computations on large input 

data with a good reaction time, a state-of-the-art FPGA is required. Computational round-off 

is an important problem that can limit the accuracy of computations. 

Dynamic Range  

The dynamic range of ELINT receivers depends on the two factors, the dynamic range 

of the front-end receiver, and the dynamic range of digital processor hardware. The dynamic 

range of digital processor hardware further depends on the effective number of bits (ENOB) 

of ADC used for data acquisition. The digital processor hardware uses 12 bits ADCs and 

ENOB is approximately 8-bits. Theoretically, a dynamic range can be achieved up to 48 dB.  
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But due to consideration of practical scenario, the dynamic range has been achieved of 40 dB. 

Another 7 dB advantage is achieved by the noise cancellation technique. Hence, the 

practically minimum dynamic range of 47 dB is achieved. 

Detection of the Pulse 

Detection is carried out on the pulse envelope. Pulse envelope is generated using the 

moving autocorrelation technique. Detection is done using both a higher threshold and a 

lower threshold. Higher threshold is used to detect rising edge and lower threshold is used to 

detect falling threshold. The lower threshold is kept 8 dB lower compared to the higher 

threshold. 

Frequency Measurement 

Frequency measurement is carried out during the stable region of the pulse. In case of 

no modulation on pulse, the average is taken and frequency is reported. In the case of 

frequency modulation centre frequency, frequency deviation, frequency agility, etc. are 

reported by measuring frequency at different points during the stable region of the pulse. 

Pulse Width measurement 

Pulse Width is measured from the detected output from the pulse envelope. The 

difference between the trailing edge and leading edge is considered the raw pulse width. 

Further, the 3 dB down from the peak amplitude is considered the practical pulse width. This 

region is also considered the stable region. The envelope is generated by measuring every 1.5 

ns. The measured resolution of pulse width is also 1.5 ns. The counter starts at the leading 

edge and a trailing edge of this counter value is registered as pulse width and reset after two 

clocks. 

TOA Measurement 

TOA measurement is required to get the PRI of the intercepted radar signals. The 

digitized samples from ADCs are fed to FPGA for implementing the signal processing 

algorithms. The free-running counter is implemented to register the time of arrival of pulse at 

the leading edge. The counter value multiplied by the resolution of TOA will yield TOA 

measurement.  

Pulse Amplitude Measurement 

Pulse amplitude is measured from the pulse envelope. The peak value of the envelope 

is registered and converted to dBm and it is reported. Finally, the calibration is done and 
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amplitude is calibrated at the input of receiving antenna. All components gain and losses are 

considered in calibration at a few hundred MHz step frequency. 

Pulse Descriptor word formation 

  Pulse descriptor word constitutes the parameters measured by the ELINT receiver. All 

the parameters allot the definite number of bits and it is used during de-interleaving and 

emitter identification. 

De-interleaving 

The ESM processor is required to track up to 1000 emitters simultaneously for pulse 

density of the order of 1,000,000 pulses per second. In such a dense electromagnetic 

environment, the large number of independent emitters will cause the ESM system to receive 

a seemingly random pulse train consisting of interleaved pulse trains. To identify individual 

emitters, their pulse trains must be de-interleaved. The de-interleaving process is essentially 

the process of determining whether the newly intercepted radar pulse belongs to one of the 

already processed emitters or a new emitter.  Ideally, there will be a one-to-one 

correspondence between each pulse train identified by the de-interleaving process and the 

emitters in the environment. In practice, pulses from several emitters may be combined into 

one chain, and pulses from one emitter may be split into several chains. The de-interleaving 

process will take into account the expected characteristics of the radar environment, the 

known characteristics of the measurement system, and all foreseeable sources of data 

corruption. 

The de-interleaving process is followed by PRI analysis for each pulse chain. This PRI 

analysis will determine if more than one emitter is mapped to the chain. After PRI analysis, 

scan analysis and identity search are performed for each emitter pulse chain. 

 
Emitter Identification 
 
 These measured parameters which the PDW is useful for de-interleaving because it 

consists of the AOA and MOP information. The availability of these two parameters in real-time 

is very important. This will solve the de-interleaving issue in a dense environment signal coming 

from the same direction within 50 km but having different modulation information. 

 Finally, the perfect de-interleaving will be helpful for specific emitter identification as the 

tracks will be formed without any ambiguities in real-time.  
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5.3 Modulation recognition of radar signal 

Conventional radars have a simple pulsed waveform or continuous waveform with no 

modulation. These pulsed radars sometimes have variations in PW or PRI. But complex 

radars are having various modulations within the pulse along with the above variations. These 

intra-pulse modulations can be Linear Frequency Modulation (LFM), Non-Linear Frequency 

Modulation (NLFM), Stepped Frequency Modulation (SFM), Bi-Phase Modulation (BPM), 

LFM with BPM, and SFM with BPM. Typically, these modulations are identified by the 

ELINT system using offline analysis [70]-[99]. Till the earlier generation of Electronic 

Warfare (EW) systems, these offline analysis tools are either add-on or they are integrated 

with the main ES systems or ELINT systems. Identification of modulations by the ELINT 

system in real-time is still a challenge. Various digital methods are discussed for modern 

digital implementation [60]-[64] and decision-theoretic approaches are mentioned for 

modulation classification [65]-[69]. 

  Modulations can be identified using frequency domain techniques using offline 

systems [70]-[71]. Implementation of these techniques in Field Programmable Gate Array 

(FPGA) for real-time applications is not a viable solution as they consume a lot of hardware 

resources. Due to this reason, the implementation of signal classification techniques is 

attempted in FPGA using a time-domain technique for real-time applications. IF signal is 

digitized in ADC and samples are captured, processed, and further analysed in FPGA. These 

are possible to implement in FPGA due to parallelism, high density, and high-speed 

component cores. 

 The decision-tree based algorithm is proposed to identify the modulation in real-time. 

The RF pulse (RFP) is generated based on the instantaneous amplitude profile. The complete 

instantaneous frequency profile data is stored in the Random Access Memory (RAM) during 

RF pulse. The frequency at different points in the pulse region is fetched from RAM and the 

algorithm is applied in real-time. The modulation is measured within shadow time based on 

the frequency parameters. 

5.3.1 Modulation types and modulation parameters handling 
  

The following modulations and their parameters are identified using a decision-tree 

algorithm: 

(i)  No-Modulation Continuous Wave (NMCW) 

(ii) Frequency Modulated Continuous Wave (FMCW) 
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(iii) No Modulation on Pulse (NMOP) 

(iv) Linear Frequency Modulation (LFM) 

(a) LFM ascending (LFMa) 

(b) LFM descending (LFMd) 

(c) LFM ascending - descending (LFMad) 

(d) LFM descending - ascending (LFMda) 

(v) Non-Linear Frequency Modulation (NLFM) 

(a) NLFM forward (NLFMf) 

(b) NLFM reverse (NLFMr) 

(vi) Stepped Frequency Modulation (SFM) of 2 Level, 4 Level, and 8 Level 

 (a) SFM ascending (SFMa) 

 (b) SFM descending (SFMd) 

(vii) Phase Modulation (PM) 

(a) Bi-Phase Modulation (BPM) of  2-bit, 3-bit, 4-bit, 5-bit, 7 bit, 11 bit, and 13 bit 

(viii) Hybridization of LFM and BPM 

 (a) LFMa with BPM 

 (b) LFMd with BPM 

(ix) Hybridization of SFM and BPM 

 (a) SFMa with BPM 

 (b) SFMd with BPM 

Total sixteen types of modulations are measured using decision-tree algorithms. 

5.3.2 Modelling and characteristics of complex radar signals 
 
 Modern radars are exhibiting complex radar waveforms. These waveforms include 

NMCW, FMCW, NMOP, LFM, NLFM, SFM, BPM, LFM with BPM, and SFM with BPM. 

The following signal including exotic signals is considered and modelled. They are described 

as below: 

(i) Signal with No Modulation: No-modulation continuous wave (NMCW) and no-

modulation on pulse (NMOP) signals does not consist of any modulation. The discrete 

version of time-domain signal 𝑥(𝑡) is given as, 

𝑥(𝑛) = 𝐴. 𝑒𝑥𝑝[𝑗(2𝜋𝑓𝑛𝑡௦ + 𝜙)]    (5.19) 

Where 𝐴 denotes the carrier amplitude, 𝜙 denotes the initial phase, f  denotes carrier 

frequency, 𝑡௦ denotes sampling time, and 𝑛 = 1, 2, 3, … 𝑁. for NMOP signals. For simplicity, 

ѱ(𝜃) = 0, and 𝜀(𝑛) = 0. 



Signal Detection and Modulation Recognition 125 
 
 

 

 

 When n=1,2,3,…,∞ and signals with T > 1 ms are considered as NMCW and below 

1ms, they are considered as pulsed signals, where T denotes the time duration. 

(ii) Linear Frequency Modulation (LFM): LFM ascending (LFMa), LFM descending 

(LFMd), LFM ascending-descending (LFMad), and LFM descending-ascending (LFMda) 

chirp signals are considered as LFM signals. These signals are also known as Triangular FM. 

(a) LFMa: LFMa signal is generated as given by [127],  

𝑥(𝑛) = 𝐴. 𝑒𝑥𝑝[𝑗(2𝜋𝑓𝑛𝑡௦ + 𝜙 +  𝜋𝛼𝑛ଶ𝑡ଶ)]   (5.20) 

 for n = (-N/2), (-N/2)+1, ….., -1 

Where 𝛼 is the slope of the LFMa.  

(b) LFMd: LFMd signal is generated as given by [127], 

𝑥(𝑛) = 𝐴. 𝑒𝑥𝑝[𝑗(2𝜋𝑓𝑛𝑡௦ + 𝜙 +  𝜋𝛽𝑛ଶ𝑡ଶ)]   (5.21) 

 for n = 0, 1, 2, ….,, (-N/2)-1.  

Where 𝛽 is the slope of the LFMd. Usually, LFMa and LFMd signals have the same slope, i.e. 

𝛽 = 𝛼. 

(c) LFMad and LFMda: LFMad and LFMda signals are generated using a combination of 

the above two equations. The frequency 𝑓 is the instantaneous frequency at the peak of the 

triangular frequency variation, which is the maximum instantaneous frequency within the 

observation duration in the case of LFMad. The slope 𝛼 and 𝛽 are calculated as 2𝛿𝑓/𝜏, where 

𝛿𝑓 is the bandwidth with in the time period 𝜏. The parameter 𝜏 is a fixed value. The waveform 

is characterized by 𝑓, 𝛿𝑓, 𝛼, and 𝛽. 

 

(iii) Non-Linear Frequency Modulation (NLFM): NLFM signal is represented as given by 

[127],  

𝑥(𝑛) = 𝐴. 𝑒𝑥𝑝[𝑗(2𝜋𝑓𝑛𝑡௦ + 𝜙 +  (𝛿𝑓 2𝑓௠⁄ )sin (2𝜋𝑓௠𝑛𝑡௦))]   (5.22) 

Where the 𝛿𝑓/2 is the peak deviation, 𝑓௠ is the frequency of the sinusoidal modulating 

frequency, n = 1, 2, 3,…, N if the signal is narrowband, it means 
δ୤

ଶ୤೘
«1. It is assumed that 

only a fraction of the cycle is sampled over an observation time. In the case of the wideband 

FM signal, 
δ୤

ଶ୤೘
»1. NLFM forward and NLFM reverse is represented as NLFMf and NLFMr 

respectively. 
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(iv) Stepped Frequency Modulation (SFM): SFM signal is generated as below   

𝑥(𝑛) = 𝐴. 𝑒𝑥𝑝[𝑗(2𝜋𝑓௛𝑛𝑡௦ + 𝜙)]   (5.23) 

 for n = 1,2,3, ...,N.  

Where 𝑓௛ is the frequency of hth step, and h=1,2,3,…,H. H is the number of steps. Usually, H 

is in the sequence of 2, 4, 8,…etc. SFM ascending and SFM descending is represented as 

SFMa and SFMd respectively. 

 

(v) Phase Modulation (PM): Bi-phase Modulation (BPM) is one of the phase modulations 

and it is generated as given by [127], 

𝑥(𝑛) = 𝐴. 𝑒𝑥𝑝[𝑗(2𝜋𝑓𝑛𝑡௦ + 𝜙 +  𝜃(𝑛))]    (5.24) 

Where 𝜃(𝑛) = 𝜋(1 − 𝑛), when the zero bits of the code sequences are sampled and 𝜃(𝑛) =

𝜃, when the one bits of the code sequence are sampled. The phase shift 𝜃 can be 00 and 1800 

in the case of BPM. 

(vi) LFM with BPM:  

(a) LFMa with BPM: LFM ascending with BPM exotic signal is generated below: 

𝑥(𝑛) = 𝐴. 𝑒𝑥𝑝[𝑗(2𝜋𝑓𝑛𝑡௦ + 𝜙 + 𝜋𝛼𝑛ଶ𝑡ଶ + 𝜃(𝑛))]    (5.25) 

(b) LFMd with BPM: LFM descending with BPM exotic signal is generated below: 

𝑥(𝑛) = 𝐴. 𝑒𝑥𝑝[𝑗(2𝜋𝑓𝑛𝑡௦ + 𝜙 − 𝜋𝛽𝑛ଶ𝑡ଶ + 𝜃(𝑛))]    (5.26) 

(vii) SFM with BPM: SFM with BPM exotic signal is generated below: 

𝑥(𝑛) = 𝐴. 𝑒𝑥𝑝[𝑗(2𝜋𝑓ℎ𝑛𝑡௦ + 𝜙 + 𝜃(𝑛))]     (5.27) 

5.3.3 Practical significance of modulations 

Pulse compression  

 Pulse compression is one of the popular modulations which is used on radar pulses. 

The LFM, NLFM, and PM are the type of pulse compression waveforms. Pulse compression 

permit radars to utilize a long pulse to achieve large radiated energy, but simultaneously to get 

the range resolution of a short pulse.  It realizes this by employing frequency modulation or 

phase modulation. Pulse compression is very much useful when the peak power required of a 

short-pulse radar cannot be achieved with practical transmitters. 
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Comparison of linear FM and phase-coded pulse compression 

 Both the modulated waveforms have their application, but linear FM pulse 

compression has probably been more widely used. The time side lobe of the phase-coded 

pulse is of the order of 1/BT. The peak side lobe of the chirp waveform is generally higher but 

with low SNR. 

Other Pulse compression waveforms 

 Other pulse-compression methods include nonlinear FM, discrete frequency-shift, 

poly-phase codes, compound Barker codes, code sequencing, complementary codes, pulse 

burst, and stretch.  

Nonlinear FM 

 The nonlinear-FM waveform with a constant-amplitude time envelope provides a 

compressed waveform with low time-side lobes at the output of the receiver. The nonlinear 

FM is more sensitive to Doppler-frequency shifts and is not Doppler-tolerant. 

Discrete frequency-shift or time-frequency coded 

 The discrete frequency-shift or time-frequency coded waveform is generated by 

dividing a long pulse into a series of contiguous sub pulses and shifting the carrier frequency 

from sub pulse to sub pulse. The frequency steps are separated by the reciprocal of the sub 

pulse width. This provides a less range resolution. 

Application of short pulse to radar 

 Conventionally short-pulse is used by radar for the following purposes: 

(i) Range resolution 

(ii) Range accuracy 

(iii) Clutter reduction 

(iv) Clint reduction 

(v) Multipath resolution 

(vi) Minimum range 

(vii) Target classification 

(viii) ECCM 

(ix) Doppler tolerance 
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 A short-pulse radar is also having some disadvantages. It requires more bandwidth 

with the possibility for interference to other users of the band. Pulse compression is a method 

for achieving most of the benefits of a short pulse while keeping within the practical 

constraints of the peak power limitation.  

5.3.4 Decision-tree modulation recognition algorithm 

The IF signal is a down-converted signal of RF signal digitized at the sampling 

frequency sf which is equivalent to 4 / 3s cf f , where cf is the center frequency of the IF 

signal[48]. Four samples are latched into FPGA coming from ADC at the clock rate of 𝑓௦ 4⁄ . 

The samples are latched at both the clock edges. All eight samples are processed in parallel at 

𝑓௦ 8⁄  clock rate and results are combined at the output.  

 
 

Figure 5.7: LFMad signal and their amplitude and frequency profiles. 
 

The instantaneous amplitude and instantaneous frequency profiles are generated using 

the moving autocorrelation approach. LFMad and FMCW signals frequency profiles are 

shown in Figure 5.7 and Figure 5.8 respectively for presentation purposes. In the case of 

pulsed signals, the pre-trigger and post-trigger region of the pulse is also captured to get the 

complete intra-pulse information including rise-time and fall-time. The pre-trigger region is 

captured based on the circular buffer memory concept which is implemented in first-in-first-

out (FIFO) memory. The instantaneous frequency profile is used to extract frequency at 

various points. The frequency is extracted at an equal time interval at five different points 
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from the stored instantaneous frequency profiles as shown in Figure 5.5. These frequencies 

are known as leading edge frequency (𝐹௅ா), trailing edge frequency (𝐹்ா), center frequency 

during the pulse (𝐹஼ே்), the frequency at the first intermediate pint (𝐹ூ௉ଵ), and the frequency 

at the second intermediate point (𝐹ூ௉ ). The 𝐹௅ா and 𝐹்ா are latched at the leading edge (LE) 

and trailing edge (TE) of the RFP pulse. The RFP is generated using an instantaneous 

amplitude profile. Whereas to extract frequency at other three points the frequency data is 

stored during the pulse region in RAM which is generated using block RAM resource of 

FPGA. The frequency at these three points i.e. 𝐹ூ௉ଵ, 𝐹஼ே், and 𝐹ூ௉  are fetched from RAM 

based on the address calculated from the pulse region.   

 

Figure 5.8: FMCW signal and their amplitude and frequency profiles. 
 
 

  In the case of the FMCW signal, the maximum frequency (𝐹௠௔௫) and minimum 

frequency (𝐹௠௜௡) are computed in real-time and stored. The frequency tolerance limit (∆𝑓) 

and phase tolerance limit (∆𝜙) are used during comparisons and windows are fixed. 

 The flow chart for the proposed decision-tree modulation recognition algorithm is 

shown in Figure 5.9. First, the IF signal is captured and amplitude and frequency profiles are 

computed. The pulse start and pulse end are detected based on high and low-level thresholds 

respectively. As per the flow chart initially, the signal is distinguished between pulsed and 

CW signals. If PW is greater than the predefined time limit 𝑇, it is declared as MMCW, 

otherwise, this is considered as a pulsed signal. The frequency profile of the NMCW signal is  
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Figure 5.9: Decision-tree algorithm flow chart for modulation recognition. 
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shown in Figure 5.10.  If the signal is CW, the algorithm will look for frequency variations 

within that period. If 𝐹௠௔௫ and 𝐹௠௜௡ are within the set tolerance limit (∆𝑓) i.e. frequency is 

constant, it will be declared as NMCW signal. Whereas, if the difference of 𝐹௠௔௫  and 𝐹௠௜௡ is 

more than the ∆𝑓, it will be declared as an FMCW signal. The frequency profile of the 

FMCW signal is shown in Figure 5.11. 

 

Figure 5.10: NMCW signal frequency profile. Simulation parameters: f = 1.1 GHz, N = 

7,00,000 samples, and ts = 1.5 ns. 

 

Figure 5.11: FMCW signal frequency profile and zoomed portion only due to visibility, 

Simulation parameters: f = 1.1 GHz, FD= ±50 MHz,  N = 7,00,000 samples, and ts = 1.5 ns. 
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If the signal is below predefined time limit 𝑇, and if the frequency is constant in the 

pulse region and there is no frequency discontinuity it is declared as No modulation on pulse 

(NMOP). The frequency profile of the NMOP signal is shown in Figure 5.12. 

 
 
Figure 5.12: NMOP signal frequency profile. Simulation parameters: f = 1.1 GHz, N = 8,000 

samples, and ts = 1.5 ns. 

When there is an abrupt change in frequency profile due to a sudden change in phase, 

it will be declared as BPM in which phase changes occur closed to pi. The number of phase 

changes and minimum duration is stored. The total width of the signal is divided by the 

minimum duration and the BPM pattern is identified. BPM pattern starts with 1’s and each 

phase change is represented by 0’s from 1’s and 1’s from 0’s and when there is no phase 

change it will continue with the same 1’s or 0’s.  

 There are different lengths of phase modulation that exists and their bit pattern will be 

different. Table 5.4 shows the different lengths of phase modulation [126]: 

Table 5.4: BPM codes with side lobe level 

S. No. Code length Bi-phase code Side lobe level (dB) 
1 2-bit 10 -6.0 
2 3-bit 110 -9.5 
3 4-bit 1101, 1110 -12.0 
4 5-bit 11101 -14.0 
5 7-bit 1110010 -16.9 
6 11-bit 11100010010 -20.8 
7 13-bit 1111100110101 -22.3 
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  If there is a sudden change in frequency, this change is recognized and noted. If there 

is only one change, both the portion before and after the change are equal. The bit-pattern is 

identified as {10} which is 2-bit BPM. If there is only one change but the first half bit time is 

double than the second half. The bit-pattern is identified as {110} which is 3-bit BPM. The 2-

bit and 3-bit BPM signal frequency profiles are shown in Figure 5.13 and Figure 5.14 

respectively. 

 

 
Figure 5.13: BPM 2-bit signal frequency profile. Simulation parameters: f = 1.1 GHz, N = 

8,000 samples, and ts = 1.5 ns. 

 

 
Figure 5.14: BPM 3-bit signal frequency profile. Simulation parameters: f = 1.1 GHz, N = 

8,000 samples, and ts = 1.5 ns. 
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 If there are two changes in frequency profile, and the first portion consists of the two-

bit widths. Accordingly, the bit pattern is identified as {1101} which is 4-bit BPM. If there 

are two changes in frequency profile, and the first portion consists of three-bit widths. The bit-

pattern is identified as {11101} which is 5-bit BPM. The 4-bit and 5-bit BPM signal 

frequency profiles are shown in Figure 5.15 and Figure 5.16 respectively. 

 

 
Figure 5.15: BPM 4-bit signal frequency profile. Simulation parameters: f = 1.1 GHz, N = 

8,000 samples, and ts = 1.5 ns. 

 

 
Figure 5.16: BPM 5-bit signal frequency profile. Simulation parameters: f = 1.1 GHz, N = 

8,000 samples, and ts = 1.5 ns. 
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  If there are three changes in frequency profile and based on phase changes the bit-

pattern is identified as {1110010} which is 7-bit BPM. If there are five changes in frequency 

profile and based on phase changes the bit-pattern is identified as {11100010010} which is 

11-bit BPM. The 7-bit and 11-bit BPM signal frequency profiles are shown in Figure 5.17 and 

Figure 5.18 respectively. 

 

 
Figure 5.17: BPM 7-bit signal frequency profile. Simulation parameters: f = 1.1 GHz, N = 

8,000 samples, and ts = 1.5 ns. 

 

 
Figure 5.18: BPM 11-bit signal frequency profile. Simulation parameters: f = 1.1 GHz, N = 

8,000 samples, and ts = 1.5 ns. 
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The bit-pattern for 13-bit BPM code is represented as {1111100110101} based on total 

of six phase changes. The frequency profile of 13-bits BPM is represented in Figure 5.19. 

Practically, 13-bit BPM is frequently used in radar systems as it gives a minimum side lobe 

level of -22.3 dB. 

 

 
Figure 5.19: BPM 13-bit signal frequency profile. Simulation parameters: f = 1.1 GHz, N = 

8,000 samples, and ts = 1.5 ns. 

 

  The signal is declared as NLFMf when 𝐹𝐼𝑃2 is less than 𝐹𝐼𝑃1 as well as frequency 

is sinusoidal. Whereas, if 𝐹𝐼𝑃1 is greater than 𝐹𝐼𝑃2 as well as frequency is sinusoidal, the signal 

is declared as NLFMr. SFMa is declared when 𝐹𝐼𝑃2 is greater than 𝐹𝐼𝑃1 as well as frequency 

changes in steps. If 𝐹𝐼𝑃1 is greater than 𝐹𝐼𝑃2 as well as frequency changes in steps, the signal is 

declared as SFMd. In SFM signals, there will be a step-change in the frequency. NLFM signals 

are generated based on the approximation of SFM signals. The frequency profiles of NLFM 

and SFM signals are represented in Figure 5.20 to Figure 5.27. More than two steps are 

identified when the frequency is latched with more number of intermediate points on the 

frequency profile. 
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Figure 5.20: NLFM forward signal frequency profile, Simulation parameters: f = 1.1 GHz, N 

= 8,000 samples, and ts = 1.5 ns. 

 

 
Figure 5.21: NLFM reverse signal frequency profile, Simulation parameters: f = 1.1 GHz, N = 

8,000 samples, and ts = 1.5 ns. 
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Figure 5.22: SFMa - 2 level signal frequency profile. Simulation parameters: f = 1.1 GHz, N = 

8,000 samples, and ts = 1.5 ns. 

 
Figure 5.23: SFMa - 4 level signal frequency profile. Simulation parameters: f = 1.1 GHz, N = 

8,000 samples, and ts = 1.5 ns. 
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Figure 5.24: SFMa - 8 level signal frequency profile. Simulation parameters: f = 1.1 GHz, N = 

8,000 samples, and ts = 1.5 ns. 

 

 

Figure 5.25: SFMd - 2 level signal frequency profile. Simulation parameters: f = 1.1 GHz, N 

= 8,000 samples, and ts = 1.5 ns. 
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Figure 5.26: SFMd - 4 level signal frequency profile. Simulation parameters: f = 1.1 GHz, N 

= 8,000 samples, and ts = 1.5 ns. 

 

 
Figure 5.27: SFMd - 8 level signal frequency profile. Simulation parameters: f = 1.1 GHz, N 

= 8,000 samples, and ts = 1.5 ns. 
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 When the linear change of frequency trend is ascending, descending or both in the pulse 

region the modulation present is known as LFM. Modulation is declared as LFMa when 𝐹𝐼𝑃2 is 

greater than 𝐹𝐼𝑃1 as well as frequency changes linearly. Whereas, if 𝐹𝐼𝑃2 is less than 𝐹𝐼𝑃1 and 

frequency changes in ascending-descending order, the signal modulation is declared as LFMad. 

When 𝐹𝐼𝑃1 is greater than 𝐹𝐼𝑃2 and frequency changes linearly, the signal modulation is declared 

as LFMd. If 𝐹𝐼𝑃1 is less than 𝐹𝐼𝑃2 and frequency changes in descending-ascending order, the 

signal is declared as LFMda. Above mentioned LFM signals frequency profile is illustrated in 

Figure 5.28 to Figure 5.32. 

  The frequency profile shown in Figure 5.28, is generated for frequency deviation of 500 

MHz i.e. ±250 MHz. This shows that the multilevel autocorrelation algorithm used to identify 

LFM signals will work well as this algorithm is not breaking anywhere in the band of interest 

of 750 MHz to 1250 MHz. 

 

 

Figure 5.28: LFMa signal frequency profile. Simulation parameters: fc = 1 GHz, FD = ±250 

MHz, N = 8,000 samples, and ts = 1.5 ns. 
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Figure 5.29: LFMa signal frequency profile. Simulation parameters: fc = 1.1 GHz, FD = ±100 

MHz, N = 8,000 samples, and ts = 1.5 ns. 

 

Figure 5.30: LFMd signal frequency profile. Simulation parameters: fc = 1.1 GHz, FD = ±100 

MHz, N = 8,000 samples, and ts = 1.5 ns. 
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Figure 5.31: LFMad signal frequency profile. Simulation parameters: fc = 1.1 GHz, FD = 

±100 MHz, N = 8,000 samples, and ts = 1.5 ns. 

 

Figure 5.32: LFMda signal frequency profile. Simulation parameters: fc = 1.1 GHz, FD = 

±100 MHz, N = 8,000 samples, and ts = 1.5 ns. 
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When a pulsed signal is detected and frequency modulation exists. If the frequency is 

linear with an ascending trend and there is an abrupt change in frequency, the modulation will 

be declared as LFMa with BPM. The frequency profile of LFMa with 13-bit BPM is shown in 

Figure 5.33. Otherwise, it will be declared as LFMa itself. Similarly, if the frequency is linear 

with a descending trend and there is an abrupt change in frequency, the modulation will be 

declared as LFMd with BPM. The frequency profile of LFMd with 13-bit BPM is shown in 

Figure 5.34. Otherwise, it will be declared as LFMd alone. 

If there is stepped frequency in pulsed waveform exists. If the frequency is stepped 

with an ascending trend and there is an abrupt change in frequency within each step. It will be 

declared as SFMa with BPM. The frequency profile of SFMa with 13-bit BPM is shown in 

Figure 5.35. Steps with ascending trend and without abrupt change in frequency will be 

declared as SFMa. If it is found that frequency is stepped with the descending trend and there 

is an abrupt change in frequency within each step. It will be declared as SFMd with BPM. The 

frequency profile of SFMd with 13-bit BPM is shown in Figure 5.36. Steps with the 

descending trend and without an abrupt change in the frequency will be declared as SFMd. 

 

 

Figure 5.33: Signal frequency profile of LFMa with BPM 13-bit. Simulation parameters: fc = 

1.1 GHz, FD = ±100 MHz, N = 8,000 samples, and ts = 1.5 ns. 
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Figure 5.34: Signal frequency profile of LFMd with BPM 13-bit. Simulation parameters: fc = 

1.1 GHz, FD = ±100 MHz, N = 8,000 samples, and ts = 1.5 ns. 

 

Figure 5.35: Signal frequency profile of SFMa with BPM 13-bit. Simulation parameters: fc = 

1.1 GHz, FD = ±100 MHz, N = 8,000 samples, and ts = 1.5 ns. 
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Figure 5.36: Signal frequency profile of SFMd with BPM 13-bit. Simulation parameters: fc = 

1.1 GHz, FD = ±100 MHz, N = 8,000 samples, and ts = 1.5 ns. 

 Once the type of modulation is found out, their parameter is also estimated like slope 

in the case of LFM, which is known as chirp rate in MHz/us. Similarly, a number of steps, 

BPM code is the parameters in case of SFM and BPM signals respectively. Both modulation 

type (MT) and modulation parameter (MP) are represented using four bytes in Table 5.5 and 

Table 5.6 respectively. 

Table 5.5: Representation of bit-pattern for modulation type (MT) 

Modulation Type 
(MT) 

Bit-pattern for MT 
B[15:12] B[11:8] B[7:4] B[3:0] 

NMCW 0000 0000 0000 0001 
FMCW 0000 0000 0000 0010 
NMOP  0000 0000 0000 0100 
LFMa 0000 0000 0000 1000 
LFMad 0000 0000 0001 0000 
LFMd 0000 0000 0010 0000 
LFMda 0000 0000 0100 0000 
NLFMf 0000 0000 1000 0000 
NLFMr 0000 0001 0000 0000 
SFMa 0000 0010 0000 0000 
SFMd 0000 0100 0000 0000 
BPM 0000 1000 0000 0000 
LFMa with BPM 0000 1000 0000 1000 
LFMd with BPM 0000 1000 0010 0000 
SFMa with BPM 0000 1010 0000 0000 
SFMd with BPM 0000 1100 0000 0000 
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Table 5.6: Representation of bit-pattern for modulation parameter (MP) 

Modulation Type 
(MT) 

Bit-pattern for MP 
B[15:12] B[11:8] B[7:4] B[3:0] 

NMCW 0000 0000 0000 0000 
FMCW DF (kHz) FD (MHz) 
NMOP  0000 0000 0000 0000 
LFMa 0000 0000 UCR (MHz/us) 
LFMad DCR (MHz/us) UCR (MHz/us) 
LFMd DCR (MHz/us) 0000 0000 
LFMda DCR (MHz/us) UCR (MHz/us) 
NLFMf 0000 0000 0000 0000 
NLFMr 0000 0000 0000 0000 
SFMa 0000 0000 No. of Steps 
SFMd 0000 0000 No. of Steps 
BPM 0000 0000 BPM Code 
LFMa with BPM UCR (MHz/us) BPM Code 
LFMd with BPM DCR (MHz/us) BPM Code 
SFMa with BPM No. of Steps BPM Code 
SFMd with BPM No. of Steps BPM Code 

 
 

  Minimum SNR required using moving autocorrelation technique and DIQ technique is 

1 dB and 8 dB respectively to process all types of modulated signals. Based on this, the 

sensitivity achieved is -87 dBm and -80 dBm using the proposed algorithm with moving 

autocorrelation technique and DIQ technique respectively. 

  The comparison of this work with other similar works is not reasonable because the 

frequency domain techniques get the inherent processing gain. But they suffer from PW and 

PRI measurement accuracies. The minimum PW measurement is restricted to the number of 

FFT points and its percentage of overlapping. Whereas, the proposed time-domain technique 

measures the minimum PW of the order of 50 ns. The fact of the matter is that lower PW does 

not have the modulation but still, any processing method should meet all basic system 

requirements along with critical requirements.  

 Classification of modulation presented are based on the frequency domain processing 

and they are implemented on DSP processors for ELINT applications [70]-[71]. Due to the 

limitations of the number of MACs in the DSP processor these techniques are not suitable for 

tactical operations. The proposed decision-tree algorithm is implemented on FPGA hardware 

which provides real-time performance. 
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5.3.5  Matlab results using field data 

  Field data is generated using the system front-end. This field data is used to 

demonstrate the effectiveness and performance of the proposed decision-tree algorithm for 

modulation recognition.  

(i) Field data #1: The field data shown in Figure 5.37 is used as input signal generated using 

vector signal generator which is contaminated with widely used additive white Gaussian noise 

(AWGN) and SNR is measured of -2 dB SNR. The same signal is used in the simulation for 

generating instantaneous amplitude and frequency profile using the autocorrelation technique 

which is shown in Figure 5.38 and Figure 5.39 respectively. 

 
Figure 5.37: Captured signal. Vector signal generator parameters: f = 9.1 GHz, PW = 7 us, 

PRI = 10 us, fc = 1.1 GHz, samples captured N = 28800 samples, η = -2 dB, and ts = 1.5 ns. 

 
Figure 5.38: Instantaneous amplitude profile. Vector signal generator parameters: f = 9.1 

GHz, PW = 7 us, PRI = 10 us, fc = 1.1 GHz, samples captured N = 28800 samples, η = -2 dB, 

and ts = 1.5 ns. 



Signal Detection and Modulation Recognition 149 
 
 

 

 

 
 

 
Figure 5.39: Instantaneous frequency profile. Vector signal generator parameters: f = 9.1 

GHz, PW = 7 us, PRI = 10 us, fc = 1.1 GHz, samples captured N = 28800 samples, η = -2 dB, 

and ts = 1.5 ns. 

(i) Field data #2: This field data is captured in the field with the system front end. Data is 

sampled at 666 MSPS and stored in the system. Only initial pulses of data are shown in 

Figure 5.40. 

 

 
Figure 5.40: Field data with LFMad modulation. Parameters: f = X-band, PW = 19 us, PRI = 

100 of us, fc = 1.0 GHz (±250 MHz), samples captured N = 10,00,000 samples, η = variable, 

and ts = 1.5 ns. 
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Initial 13 pulses are zoomed and shown in Figure 5.41. These samples are considered 

for noise cancellation and the signal is restored after spectral subtraction. Noise samples are 

taken from the pre and post samples of the pulses. Restored field data is shown in Figure 5.42. 

 

 
Figure 5.41: Field data with LFMad modulation. Parameters: f = X-band, PW = 19 us, PRI = 

100 of us, No. of Pulses = 13, fc = 1.0 GHz (±250 MHz), samples captured N = 2,50,000 

samples, η = variable, and ts = 1.5 ns. 

 
Figure 5.42: Restored field data with LFMad modulation. Parameters: f = X-band, PW = 19 

us, PRI = 100 of us, No. of Pulses = 13, fc = 1.0 GHz (±250 MHz), samples captured N = 

2,50,000 samples, η = variable, and ts = 1.5 ns. 
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Figure 5.43 shows the first pulse to show the simulation results. This pulse data is used 

to generate an instantaneous amplitude profiles using the DIQ technique as shown in Figure 

5.44. 

 

Figure 5.43: Field data with LFMad modulation (first pulse). Parameters: f = X-band, PW = 

19 us, PRI = 100 of us, No. of Pulses = 1, fc = 1.0 GHz (±250 MHz), samples captured N = 

16,400 samples, η = variable, and ts = 1.5 ns. 

 

 
Figure 5.44: Instantaneous amplitude profile using DIQ technique without noise cancellation 

(fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, fc = 

1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, and ts = 1.5 ns. 
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Instantaneous frequency profile is generated using the DIQ technique as shown in 

Figure 5.45. Both amplitude and frequency profiles are generated using the DIQ technique 

without noise cancellation shows this algorithm is failed as the received signal SNR is less. 

The instantaneous amplitude profile generated using the autocorrelation technique is shown in 

Figure 5.46. 

 
 
Figure 5.45: Instantaneous frequency profile using DIQ technique without noise cancellation 

(first pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, fc = 1.0 

GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, and ts = 1.5 ns. 

 

Figure 5.46: Instantaneous amplitude profile using Autocorrelation Technique without noise 

cancellation (first pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses 

= 1, fc = 1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, and ts = 

1.5 ns. 
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Instantaneous frequency profile is generated using the autocorrelation technique as 

shown in Figure 5.47. Both amplitude and frequency profiles are generated using the 

autocorrelation technique without noise cancellation shows this algorithm is failed as the 

received signal SNR is less. Further, these techniques are used after noise cancellation. The 

restored signal obtained after noise cancellation is shown in Figure 5.48. 

 
Figure 5.47: Instantaneous frequency profile using autocorrelation technique without noise 

cancellation (first pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses 

= 1, fc = 1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, and ts = 

1.5 ns. 

 

Figure 5.48: Restored field data with LFMad modulation with noise cancellation (first pulse). 

Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, fc = 1.0 GHz (±250 

MHz), samples captured N = 16,400 samples, η = variable, and ts = 1.5 ns. 
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The instantaneous amplitude profile generated using the DIQ technique with noise 

cancellation is shown in Figure 5.49. Instantaneous frequency profile is generated using the 

DIQ technique with noise cancellation as shown in Figure 5.50. Both amplitude and 

frequency profiles are generated using the DIQ technique with noise cancellation show this 

algorithm is still failing as signal SNR is less. 

 

 
 
Figure 5.49: Instantaneous amplitude profile using DIQ technique with noise cancellation 

(first pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, fc = 1.0 

GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, and ts = 1.5 ns. 

 

 
 
Figure 5.50: Instantaneous frequency profile using DIQ technique with noise cancellation 

(first pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, fc = 1.0 

GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, and ts = 1.5 ns. 
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The instantaneous amplitude profile generated using the autocorrelation technique 

with noise cancellation is shown in Figure 5.51. Instantaneous frequency profile is generated 

using autocorrelation technique with noise cancellation as shown in Figure 5.52. Both 

amplitude and frequency profiles are generated using the autocorrelation technique with noise 

cancellation shows this algorithm is able to generate the profiles correctly at lower signal 

SNR itself. 

 
Figure 5.51: Instantaneous amplitude profile using autocorrelation technique with noise 

cancellation (first pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses 

= 1, fc = 1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, and ts = 

1.5 ns. 

 
Figure 5.52: Instantaneous frequency profile using autocorrelation technique with noise 

cancellation (first pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses 

= 1, fc = 1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, and ts = 

1.5 ns. 
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Figure 5.53 shows the fourth pulse to show the simulation results. This pulse data is 

used to generate an instantaneous amplitude profiles using the DIQ technique as shown in 

Figure 5.54. 

 

Figure 5.53: Field data with LFMad modulation (fourth pulse). Parameters: f = X-band, PW = 

19 us, PRI = 100 of us, No. of Pulses = 1, fc = 1.0 GHz (±250 MHz), samples captured N = 

16,400 samples, η = variable, and ts = 1.5 ns. 

 
Figure 5.54: Instantaneous amplitude profile using DIQ technique without noise cancellation 

(fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, fc = 

1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, and ts = 1.5 ns. 
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Instantaneous frequency profile is generated for the fourth pulse using the DIQ 

technique as shown in Figure 5.55. Both amplitude and frequency profiles are generated using 

the DIQ technique without noise cancellation shows this algorithm is failed as the received 

signal SNR is less. The instantaneous amplitude profile generated using the autocorrelation 

technique is shown in Figure 5.56. 

 

Figure 5.55: Instantaneous frequency profile using DIQ technique without noise cancellation 

(fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, fc = 

1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, and ts = 1.5 ns. 

 

 

Figure 5.56: Instantaneous amplitude profile using Autocorrelation Technique without noise 

cancellation (fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of 

Pulses = 1, fc = 1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, 

and ts = 1.5 ns. 
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Instantaneous frequency profile is generated using the autocorrelation technique as 

shown in Figure 5.57. Both amplitude and frequency profiles are generated correctly using the 

autocorrelation technique without noise cancellation shows this algorithm is working at lower 

SNR also. Further, these techniques are used after noise cancellation. The restored signal of 

the fourth pulse obtained after noise cancellation is shown in Figure 5.58. 

 

 

Figure 5.57: Instantaneous frequency profile using autocorrelation technique without noise 

cancellation (fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of 

Pulses = 1, fc = 1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, 

and ts = 1.5 ns. 

 

Figure 5.58: Restored field data with LFMad modulation with noise cancellation (first pulse). 

Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, fc = 1.0 GHz (±250 

MHz), samples captured N = 16,400 samples, η = variable, and ts = 1.5 ns. 
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The instantaneous amplitude profile generated using the DIQ technique with noise 

cancellation is shown in Figure 5.59. Instantaneous frequency profile is generated using the 

DIQ technique with noise cancellation as shown in Figure 5.60. Both amplitude and 

frequency profiles are generated using the DIQ technique with noise cancellation show this 

algorithm is still failing as signal SNR is less. 

 
Figure 5.59: Instantaneous amplitude profile using DIQ technique with noise cancellation 

(fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, fc = 

1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, and ts = 1.5 ns. 

 
 
Figure 5.60: Instantaneous frequency profile using DIQ technique with noise cancellation 

(fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, fc = 

1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, and ts = 1.5 ns. 
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The instantaneous amplitude profile generated using autocorrelation technique with 

noise cancellation is shown in Figure 5.61. Instantaneous frequency profile is generated using 

autocorrelation technique with noise cancellation as shown in Figure 5.62. Both amplitude 

and frequency profiles are generated using the autocorrelation technique with noise 

cancellation shows this algorithm is able to generate the profiles correctly at this SNR as 

expected. 

 

Figure 5.61: Instantaneous amplitude profile using autocorrelation technique with noise 

cancellation (fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of 

Pulses = 1, fc = 1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, 

and ts = 1.5 ns. 

 

Figure 5.62: Instantaneous frequency profile using autocorrelation technique with noise 

cancellation (fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of 

Pulses = 1, fc = 1.0 GHz (±250 MHz), samples captured N = 16,400 samples, η = variable, 

and ts = 1.5 ns. 
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 The detection performance of modulation recognition is given in Table 5.7. Extensive 

simulation is carried out to test the performance. Total 1000 different signal sequences are 

generated to test each modulation. All sixteen types of modulation have been verified and the 

result is tabulated. The detection performance of all modulations is given in Table 5.8. 

 
Table 5.7: Success rate for modulation recognition. 

Modulation 
Type 

SNR of Input Signal 
-4 -3 -2 -1 0 1 2 3 4 

NMCW 98 99 100 100 100 100 100 100 100 
FMCW - - - - - 99 100 100 100 
NMOP - - 98 100 100 100 100 100 100 
LFM - - - - 99.9 100 100 100 100 
NLFM - - - - - 97.9 100 100 100 
SFM - - 97.5 100 100 100 100 100 100 
BPM - - - - - - 99.2 100 100 
LFM with BPM - - - - - 97.2 98.0 99.2 100 
SFM with BPM - - - - - 97.0 98.4 99.0 100 

 
 

Table 5.8: Detection Performance of Modulation Recognition. 

Modulation 
Type 

Proposed 
Technique 

Existing 
Technique 

Correct 
Classification 

NMCW -2 5 99 
FMCW -1 7 98 
NMOP -2 6 99 
LFM 0 7 98 
NLFM 1 8 98 
SFM -2 5 99 
BPM 1 8 97 
LFM with BPM 1 8 97 
SFM with BPM 1 8 97 

  The confusion matrix is extracted from the detection performance at SNR of -2 dB for 

the proposed algorithm with moving autocorrelation as shown in Table 5.9. The result shows 

the detection performance with 99% accuracy at -2 dB SNR for NMCW, NMOP, and SFM 

signals. The probability of correct identification is dropped below the respective SNR of all 

modulations. The different modulations are compared for the SNR required for set modulation 

and declared modulation. 

 Minimum SNR required using moving autocorrelation technique and DIQ technique is 

1 dB and 8 dB respectively to process all types of modulated signals. Based on this, the 

sensitivity achieved is -87 dBm and -80 dBm using the proposed algorithm with moving 

autocorrelation technique and DIQ technique respectively. 
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Table 5.9: Confusion Matrix of modulation identification at SNR of -2 dB. 

Declared  
MT -> 
Set MT (Below) 

NMCW FMCW NMOP LFM NLFM SFM BPM LFM 
with 
BPM 

SFM 
with 
BPM 

NMCW 99% 1% - - - - - - - 
FMCW 5% 95% - - - - - - - 
NMOP - - 99% - - - 1% - - 
LFM - - - 94% 4.5% 1.5% - - - 
NLFM - - - 3.5% 95% 1.5% - - - 
SFM - - - 0.5% 0.5% 99% - - - 
BPM - - 4% 2.5% 1.5% 1% 91% - - 
LFM with BPM - - 2.5% 1.5% 1.5% 1% 2.5% 91% - 
SFM with BPM - - 2.5% 1.5% 1.5% 1% 2.5% - 91% 

 

5.3.6 Discussions 

  In this work, NMCW, FMCW, NMOP LFM, NLFM, SFM, BPM, LFM with BPM, and 

SFM with BPM modulations have been identified using the decision-tree algorithm. This 

decision-tree algorithm, hence a unique method for modulation identification has been 

proposed. The length of the input signal is assumed constant to generate a particular type of 

modulated signal. The advancement in signal processing algorithms, tied with high-

performance hardware has enabled the improvement of emitter identification and also 

achieved a real-time performance. It will meet the 1 million pulses per second (MSPS) 

requirement of ELINT system which has the PRI of 1 us. It will measure all the parameters 

within 300 ns of TE of pulse. Hence all the parameter measurements are in real-time. The 

real-time measurement of parameters is shown in Figure 5.63. 

 

Figure 5.63: Real-time measurement of parameters. 
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5.4 Significance of angle-of-arrival and modulation parameters 

chosen for Specific Emitter Identification (SEI) 

 In the modern battlefield, due to proliferation of the similar radars growing demand for 

specific emitter identification. Identifying these radars uniquely in real-time is a challenge to 

understand the deployment pattern. Present ELINT systems are required to decipher the exotic 

modulations on a pulse to pulse basis to achieve specific emitter identification of military 

radars. Measured modulations contribute to the de-interleaving of signals.  

  Various fire control and weapon locating radars operate nearby which makes the 

electronic environment very dense, especially in L and S bands. Measuring conventional 

parameters are not sufficient to distinguish them. Intra-pulse measurement with exotic 

modulation measurement is the requirement in the present scenario [59]. Electronic 

intelligence (ELINT) systems that are capable to measure this information will have an edge 

in the field. 

 ELINT systems estimated many parameters which together are called pulse descriptor 

word (PDW) includes direction-of-arrival (DOA), radio-frequency (RF), pulse-width (PW), 

time-of-arrival (TOA), etc. [3]. These systems do the intra-pulse analysis including 

modulation measurement of radar signals on a pulse-by-pulse basis using stored data to match 

the speed of processing hardware. Measurement of exotic modulation in real-time is a 

challenge along with other parameter measurements. 

 The following process is adopted for emitter identification. In which matching is 

carried in three levels. 

Level 1: The level 1 matching is carried out based on AOA parameter matching  

  (i)   AOA parameter with ±100 window 

Level 2: The level 2 matching is carried out based on attribute matching and basic parameter 

window matching  

  (i)   Type of emitter - Pulsed/CW 

  (ii)  Modulation - modulation type 

  (iii) Basic parameters with course windows  

   RF - 10 MHz, PW - 200 ns, PRI - 100 ns 

Level 3: The level 3 matching is carried out with the following parameters  

(i) Basic parameters with fine windows  

   RF - 2 MHz , PW - 20 ns, PRI - 10 ns 
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  (ii) Intrapulse parameters matching - 

   Rise Time - 10 ns, Fall Time - 10 ns 

  (iii) Parameters of Freq. Agility, PW Agility, PRI Agility 

  (iv) Modulation Parameters with tolerance window 

Accurate identification of radar and its platform is possible as Angle-of-arrival (AOA) 

parameter will be used for matching as present radar waveform generation is based on DDS-

based technology and not much variation is found in Rise Time, Fall Time, overshoot, and    

Undershoot. To overcome this issue, the AOA parameter has to be used for matching. It will 

also help for nearby frequency radars coming from different directions. 

Conventionally, de-interleaving is performed based on the DOA, RF, and PW. On 

arrival of the first PDW, one bucket is created with PDW parameter (DOA, RF, and PW). If 

the next PDW parameters (DOA, RF, and PW) falls within the tolerance limit, they will be 

stored in the same bucket. If all three parameter (i.e. DOA, RF, and PW) are not falling within 

the tolerance limit, another bucket will be created. Pulse repetition interval (PRI) is the 

derived parameter that is computed from the time-of-arrival (TOA) of each successive pulse. 

This is estimated after all the buckets are created for a time slice. 

 

 

Figure 5.64: Plot of distance versus emitter location 

Considering, the DOA RMS value of approximately 2 degrees in L and S bands. The 

tolerance of DOA will be ± 3 times of RMS value. The total error will be 12 degrees. This 

total DOA error will translate into a 21 Km error in azimuth from a 100 Km distance. It 

means a target located at 21 Km apart, will be considered for the same basket. Figure 5.64 
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shows the DOA error versus emitter location in azimuth. Similarly, the RF of 500 kHz and 

PW of 20 ns RMS value will translate into 3 MHz and 120 ns tolerance windows respectively. 

 

Figure 5.65: Block diagram of the de-interleaving process. 

 

The other parameters are the modulation type and modulation parameter, which is 

used here for de-interleaving. This helps to improve the de-interleaving and reduces the effect 

of DOA inaccuracies. If signals are coming from identical DOA within tolerance, having the 

modulation parameter for de-interleaving is precious. Figure 5.65 shows the block diagram of 

the de-interleaving process. 

Accuracy of parameters 

The accuracy with which the parameters are measured determines the ability to 

differentiate one emitter from the other. Therefore in an ideal scenario, it is better to have as 

much accuracy as possible. The two most important factors that determine the accuracy in 

measurement of various parameters like amplitude, frequency, and phase are the number of 

bits of A/D and the sampling frequency. The selection of the high sampling frequency is a 

necessity to cover the required bandwidth of interest without aliasing. Due to the 

technological limitation at the high sampling frequency, the maximum resolution available for 

an A/D is 12 bits.  These two constraints put a limit on the accuracy of the parameters that can 

be obtained. However, based on the scenario, better accuracy can be obtained by using 

improved techniques and algorithms with the existing limitations. The parameters whose 

accuracy can be improved this way are the resolution of frequency in the STFT method, 

wherein based on the bandwidth, the sampling frequency is reduced by decimating in the 

DSP. Similarly in the DIQ method, the frequency accuracy is improved whenever there is no 

ambiguity with the bandwidth of the signal.  

Since the extraction of all the parameters is done in software, computational noise due 

to finite word lengths can limit the accuracy of parameters. To reduce these errors, the 

processing is done using a floating-point DSP processor.  
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5.5 Conclusions 

The modulation identification is based on a time-domain technique which identifies 

the complex modulated signals i.e. NMCW, FMCW, NMOP, LFM, NLFM, SFM, LFM with 

BPM, and SFM with BPM. This technique is also implementable on FPGA as this technique 

consumes limited hardware resources. Even if the radar signal is coming from the same 

direction but having a different modulation within the pulse identifies as a different emitter. 

Such an idea to utilize modulation information will become a crucial parameter for PDW for 

better de-interleaving of specific emitter identification having a group of similar radars 

operating in the proximity. 

The ability to specific emitter identification from a class of emitters would be of 

strategic advantage to the ELINT activity.  The task of specific emitter identification becomes 

even more challenging in dense environments consisting of a wide variety of agile emitters. 

But due to the availability of the AOA parameter, the process of identification can be 

simplified if a specific characteristic can be ascribed to each emitter. This specific 

characteristic is the ‘Specific Identification’ of the emitter. 

Identification refers to the specific identification of emitters among the same model of 

radars. The specific identification is based on intra-pulse analysis of radar waveforms and 

measures the frequency, phase, and amplitude variations within the pulse of that radar. These 

variations may be intentional and/or unintentional. The intentional modulations on pulse 

(IMOP) are well known, the simplest being linear chirp and Barker code phase modulation.  

The unintentional modulations on pulse (UMOP) are due to the inherent characteristics of all 

high-powered radar transmitters.  The amount and type of modulation vary with the transmitter 

type.  These modulations are present in the output of high power transmitting tubes and are 

due to pushing, pulling, and other effects such as temperature, aging, and poor maintenance. 

The modulations - IMOP and/or UMOP generate minute variations in the signal characteristics 

of every emitting system creating a specific signature for the emitter. 

To capture the minute variations, which may be due to intentional and/or unintentional 

modulation, an intra-pulse analysis is needed. Such an intra-pulse analysis, extracts as many 

parameters (features) of radar pulses as possible with fine grain accuracy. With these 

extracted features the unique emitter identification attempted will be highly effective. 
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Chapter 6 

 
 
 

ELINT Operation Methodology 
 

In the previous chapter, noise estimation, adaptive threshold, radar signal detection, 

sensitivity computation, and SNR computation are described. Various radar signal modulation 

recognition using the decision-tree algorithms are also elaborated. In this chapter, details on 

ELINT operation methodology which includes frequency scan operation, experimental setups, 

setup hardware, and test conditions are discussed. Various levels of test setups are also 

considered. The FPGA implementation results obtained using System Generator and Vivado 

simulation tool. The discussion on the results is also presented in the later part of the chapter. 

6.1 Introduction  

The ELINT operation methodology is developed for frequency scan operation, 

experimental test setup, and hardware used. Defence Electronics Research Laboratory 

(DLRL) of India is located in Hyderabad, India. The ELINT test setup exists in the single-

channel and multichannel configurations. Single-channel configuration is used to demonstrate 

and evaluate signal processing algorithms, such as noise cancellation, signal estimation, and 

modulation estimation for ELINT applications. The four-channel configuration of the ELINT 

test setup was used to evaluate the AOA estimation algorithms proposed in the thesis. The 

following hardware is used for ELINT test setup for single-channel configuration 

(a) Vector signal generator 

(b) RF front end 

(c) Data acquisition board 

(d) Xtreme DSP development kit 

Whereas for multi-channel configuration the following hardware is used 

(e) RFSoC evaluation board 

The high-speed data acquisition board is designed to digitize the IF signal of 1 GHz 

and 160 MHz. The author contribution to the development of the ELINT setup is as follows: 

 designing of high-speed data acquisition board used for digitizing the IF signal 
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 developing the software front-end for data collection and analysis, and 

 used the single-channel front end as per thesis requirement 

 validating the performance of the ELINT setup through experimentation by the 

organization and actively participating in several data collection field trials and 

through extensive analysis of the trial data. 

A total of five different types of ELINT Test setups are used for modelling, 

simulation, validation, and testing for the thesis work. The following software tools are also 

used for the testing of the algorithms.  

(a) Matlab 2015 

(b) Xilinx Vivado 2016.4 

(c) Xilinx System Generator 2016.4 

(d) Xilinx Simulator 2016.4 

  RF front end is used for down-conversion in both fixed frequency and scan operation. 

Whereas the high-speed data acquisition board is used to digitize the IF signal. The following 

test graphic user interfaces (GUI) is used for tuning the RF front-end and data acquisition. 

(a) RF front-end test GUI 

(b) Data acquisition test GUI 

 While the development of signal processing theory is important, the practical value of 

any algorithm can only be realized if it can be successfully transitioned into hardware. In this 

chapter, the parameter estimation algorithms including the real-time modulation measurement 

technique (Chapter 4-5), will be experimentally validated using data collected from the 

ELINT setup (Chapter 6). 

  During the course of this Ph.D. research, a total of five separate modulation 

recognition experiments, or “field trials”, were conducted between the years 2017 to 2020. 

The initial experiment, were conducted to test and debug the ELINT setup and so the 

collected data was saved in the data files. This experiment was specifically conducted to 

capture data to experimentally validate the algorithms discussed in this thesis using the latest 

and most stable iteration of the ELINT setup. This chapter will therefore focus on the results 

obtained from the Field Trial and results obtained after implementation on FPGA hardware. 

6.2 Experimental test setups 

  The various experimental test setups are used during the collection of data and 

validation of results. The first test setup TS-1 considered is shown in Figure 6.1 used for 
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modulated signal generation, instantaneous amplitude and frequency measurements, noise 

cancellation, noise estimation and pulse detection using amplitude profile, extraction of 

frequencies at various points in pulse region, and validation of results using decision-tree 

algorithms in Matlab. In this setup, all modulation signal is generated using Matlab itself with 

different SNR. This setup is used to generate most of the results mentioned in chapter-4 and 

chapter-5. The design and modelling of algorithms are carried out using the Matlab in the 

initial stages and these algorithms validation is also carried out using Matlab itself with the 

generated data.  

 

Figure 6.1: Test setup TS-1 modulated signal generation, instantaneous measurements, pulse 

detection, extraction of frequencies, and validation of results using decision-tree algorithms in 

Matlab.  

The test setup TS-2 is shown in Figure 6.2. In this vector signal generator (VSG)  is 

used to generate various complex modulated radar signals, single-channel front end is used 

for down-conversion of RF signal to IF signal, and high-speed analog to digital converter 

board is used for collection of data. The data collected is saved into the data file and this data 

file is used as an input data file in Matlab for validation of algorithms. In this setup following 

algorithms are validated i.e. noise cancellation, instantaneous amplitude profile and 

instantaneous frequency profile generation using autocorrelation technique and DIQ 

technique, noise estimation for pulse detection, extraction of frequency at various points, and 

decision-tree algorithm for modulation measurement. All these algorithms are the part of the 

last block i.e. Matlab algorithms. This setup is used to generate few results mentioned in   

chapter-5. 

 

 

Figure 6.2: Test setup TS-2 for generation of modulated signals, down-conversion, collection 

of data, and measurements using Matlab. 
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The test setup TS-3 is shown in Figure 6.3. In this vector signal generator (VSG) is 

used to generate various complex signals. Single-channel front-end is used for down-

conversion of RF signal to IF signal and high-speed analog to digital converter board is used 

for capturing, collection and storing of data. The data collected is saved into the data file and 

this data file is used as input for the Xilinx FPGA hardware for the validation of results. In 

this setup these algorithms noise cancellation, instantaneous amplitude profile and 

instantaneous frequency profile generation using autocorrelation technique and DIQ 

technique, noise estimation for pulse detection, extraction of frequency at various points, and 

decision-tree algorithm for modulation measurement are implemented in FPGA using system 

generator. Data collected for complex signals are used to validate the algorithms implemented 

in FPGA hardware. This setup is used to generate few results mentioned in chapter-6. In this 

FPGA hardware results were checked using the Xilinx Vivado simulation tool. The simulation 

results are matched with the input data file and verified. 

 
 

Figure 6.3: Test setup TS-3 for generation of modulated signals, collection of data, 

implementation of Xilinx FPGA platform, and validation of results with Xilinx Vivado tool. 

 
  The setup TS-4 is shown in Figure 6.4 with the RFSoC evaluation board. In this setup 

vector signal generator (VSG) is used to generate various complex signals and other stages 

are implemented in the RFSoC evaluation board. AOA algorithms are implemented in the 

RFSoC evaluation board and results are obtained. RFSoC devices consist the high-speed 

analog to digital converter to sample the IF signal of 750 MHz to 1250 MHz at high speed. 

The design is carried out using a system generator to generate the phase-shift between various 

channels. Both four antenna and three antenna based BLI algorithms are verified using TS-4 

as mentioned in chapter-4. The results are generated at each 500 MHz steps and comparison is 

carried out. 

 

Figure 6.4: Test setup TS-4 for RFSoC hardware implementation of algorithms and 

simulation. 
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Figure 6.5: Test setup TS-5 for receiving a signal with an antenna to capture radar signals in 

the field. 

The test setup TS-5 is shown in Figure 6.5 along with the radiation setup. The antenna 

is used to receive the electromagnetic signals in the form of radar signals. Antenna output is 

used by single-channel front-end for down-conversion of RF signal to IF signal. High-speed 

ADC board is used to digitize the IF signal. This setup is used to capture the radar signals 

including hostile radars in the field. This setup is also used to generate various results 

mentioned in chapter-5. 

6.3 Frequency scan operation 

The four-channel front end provides four IF outputs on four channels. Either 1 GHz IF 

or 160 MHz IF can be selected independently from the IF output. IF of 1 GHz is selected to 

carry out this work. In place of four-channel front-end, the RFSoC evaluation board is used 

for this purpose. 

  A total of 0.5 to 18 GHz frequency band is considered for the thesis work. The front-

end receiver (or down-converters) down-converts the RF signal into an IF signal. The front 

end tuned for the RF frequency is mapped to the 750 to 1250 MHz band. This is for the case 

of fixed frequency. Scan operation is required to cover complete frequency band coverage to 

enhance the POI. 

  In the case of scan, the front-end scans the entire band of 0.5 - 18 GHz. The scan band 

is defined based on sub-band or spot frequencies. At the start of a scan, the front-end will tune 

at F-1, then it will tune to F-2, …., and finally, it will tune at F-N, where F-1 is the first 

frequency of the given band, F-2 is the second frequency of the given band, and F-N is the 

Nth frequency of the given band. Figure 6.6 shows the ELINT operation in the case of scan 

mode of operation. The first signal is Start of Scan (SS), this will be high for few micro 

seconds and indicates the scan start. After reaching at end of the scan, again SS signal will go 

high for few micro seconds. The second signal is Lock Signal (LS). This signal shows the 

tuning of the front-end for a scan frequency. It will toggle multiple times based on a number 
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of tuning frequencies given in a scan band. Instead of scan band spot frequencies also possible 

to select for scan operation. Under the lock signal, the available IF signal is detected, 

captured, and parameters will be measured. All three signals SS, LS and IF are available from 

the front end. 

 

 

 

Figure 6.6: ELINT operation for scan mode of operation. 

 

ELINT operation from 8.5 GHz to 9.5 GHz scan band is shown in Figure 6.7. Total 

five LS will be generated in one scan. The length of LS depends upon the set dwell time. The 

front end will dwell sequentially to all frequencies of the scan band for a given dwell time 

with 250 MHz steps. In this case, the signal frequency set is 9.0 GHz. The corresponding IF 

signal will appear at 750 MHz, 1000 MHz, and 1250 MHz for the tuning frequency 8.75 GHz, 

9 GHz, and 9.25 GHz respectively. 

 

 

 

Figure 6.7: ELINT scan operation from 8.5 GHz to 9.5 GHz scan band. 

 The power level of the IF signal is depends upon the 500 MHz band pass filter (BPF). 

Usually, lower side and upper side power levels will be less compared to center frequency. 

This happens as 3 dB bandwidth is considered for the BPF bandwidth. This variation of 

power is shown in the IF signal power level at 8.75 GHz and 9.25 GHz frequencies which 

corresponds to 750 MHz and 1250 MHz IFs. 
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 Test GUI for RF front-end tuning is shown in Figure 6.8. This GUI is used to keep 

the front end in scan mode of operation. In this RF attenuation, RF Chain mode, Scan dwell-

time, and No. of Scan Freq can be set. Depending upon these parameters the front-end will be 

tuned to each frequency and data capture will be carried out by data acquisition card. 

 

Figure 6.8: RF front-end control panel for tuning the 0.5 to 18 GHz RF tuner. 

 

Figure 6.9: Lock signal and video signal captured on an oscilloscope in scan mode of 

operation. 
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 The lock signal and video signal captured on an oscilloscope in scan mode of 

operation are shown in Figure 6.9. In this dwell-time of 20 ms is selected, hence about 20 

pulses are being captured in each lock signal where pulsed signal with 1 us PW and 1 ms PRI 

is selected.  

6.4 Data collection hardware 

6.4.1 Design objectives 

The objective of the ELINT Setup is to provide a research and development platform to 

implement and evaluate new algorithms and architectures for next generation electronic 

intelligence receivers. The current implementation of the ELINT Setup is designed to meet 

the specifications described in Section 1.4.1 as follows: 

 be able to monitor signals in the frequency range of 0.5-18 GHz 

 be able to operate in simultaneous wide bandwidth of 500 MHz 

 be able to operate in a narrow band (bandwidth 40 MHz) and wide band (500 MHz or 

more) simultaneously 

 be able to exploit multiple simultaneously instructive signals 

 maintain in real-time operation in a high signal density environment, 

 maintain a high POI at all times, 

 be cost-effective 

The ELINT Setup is implemented in a modular fashion using commercial off-the-shelf 

(COTS) components and indigenous components. A modular architecture was intentionally 

chosen to allow the system to be added for different operations. The use of COTS components 

and proven indigenous components reduces the risk, cost, and development time of the system 

compared to the development of custom hardware. 

6.4.2  Sampling architecture 

The signal models and associated parameters estimation theory discussed in this thesis 

have assumed a complex signal model. In practice, the digital representation of the complex 

signal consists of in-phase (real) and quadrature-phase (imaginary) components. Both 

components must be available before the application of the parameter estimation algorithms. 

While the reception of the in-phase component is straight forward, reception of quadrature-

phase component can either be explicitly performed using quadrature sampling techniques or 

generated from the in-phase component using real-signal sampling or band pass sampling 
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techniques. The sampling architecture of the ELINT setup was chosen to implement a band 

pass sampling architecture to achieve the computational efficiencies in quadrature generation, 

filter design, and base banding. Both low pass and band pass sampling are used to sample the 

signal. Band pass sampling is suitable as it reduces the data load and hence helps the signal 

processing in real-time. 

6.4.3 Sampling band pass signals  

Band pass sampling is used to sample a continuous band pass signal that is centred 

about some frequency other than 0 Hz. Band pass sampling 

 reduces the speed requirement of ADC below that necessary with traditional low pass 

sampling, 

 reduces the amount of digital memory necessary to capture a given time interval of a 

continuous signal. 

 Consider sampling the band limited signal shown in Figure 6.8 centred at 𝑓௖  = 1000 

MHz, with bandwidth B = 500 MHz (i.e. ± 250 MHz) signal. Band pass sampling is used for 

the process of sampling continuous signals whose centre frequency has been translated up 

from zero hertz, it is also called IF sampling, harmonic sampling, sub-Nyquist sampling, and 

under sampling. It is more concerned with a signal’s bandwidth than its highest frequency 

component in band pass sampling. 

 

Figure 6.10: Bandpass sampling (a) original continuous signal spectrum (b) sampled signal 

spectrum replications. 
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 In this example, highest frequency component is 1250 MHz. Confirming the Nyquist 

criteria (sampling at twice the highest frequency content of the signal) implies that the 

sampling frequency must be a minimum of 2500 MHz. Consider the effect of the sampling 

rate is 1333 MHz as shown in Figure 6.10. Note that the original spectral components remain 

located at ±𝑓௖, and spectral replications are located exactly at the base band. Instead, the 

spectral replication effect is used. It should satisfy the following relation  

  ቀ
ଶ௙ೞି஻

௠
ቁ ≥  𝑓௦  ≥  ቀ

ଶ௙ೞା஻

௠ାଵ
ቁ, and               (6.1) 

 

    𝑓௦  ≥  2𝐵      (6.2) 

Greater computational efficiencies can be obtained in the signal processing that 

typically occurs immediately after digitization, such as quadrature generation, filtering and 

base banding, when the signal of the interest is centred at 𝑓௦/4. An efficient signal processing 

“trick” that can be used to shift a signal centred at 𝑓௖ to 𝑓௦/4 is to specifically choose a sample 

rate that satisfies the following, 

𝑓௦ =  
ସ௙೎

௠೚೏೏
     (6.3) 

Where 𝑓௦ is the sample rate, 𝑓௖ is the centre frequency of the signal and 𝑚௢ௗௗ is an odd 

integer. At this specific sample rate, aliasing effects are intentionally exploited to shift the 

signal from 𝑓௖ to 𝑓௦/4 without any explicit frequency translation operation. Note that the 

choice of 𝑚௢ௗௗ must be still ensured that the Nyquist criterion is satisfied, i.e. 𝑓௦ ≥ 2𝐵 MSPS. 

While the chosen sample rate as equation 6.1 is often faster than the minimum necessary by 

the Nyquist criteria, the computational advantages offered by this choice of sample rate are 

often a good trade-off against the cost of a faster ADC as will be discussed below. 

Figure 6.10, illustrates the frequency spectrum of a typical real signal at various stages 

of the band pass sampling process. In this figure, the signal is assumed to be centred at 𝑓௖ with 

bandwidth B MHz. The sample rate is chosen to be 𝑓௦ = 4𝑓௖/3. i.e. 𝑚௢ௗௗ = 3. Figure 6.10(a) 

depicts the frequency spectrum of the real signal prior to sampling. The trapezoid centred at 𝑓௖ 

represents the signal energy at the positive frequency component and the trapezoid centred at 

−𝑓௖ represents the signal energy at the negative frequency component. Note that the negative 

frequency component is spectrally inverted. After sampling at a rate of 𝑓௦ = 4𝑓௖/3, aliasing 

causes the positive frequency component to be “copied” to -𝑓௦/4 and the negative frequency 

component to be copied to 𝑓௦/4. In signal processing, base banding of a signal (i.e. frequency 
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translation to 0 MHz) is a commonly operation. Another advantage of centring the signal at 

𝑓௦/4 is that base banding can also be performed without the use of any multiplications [48]. 

Finally, filtering is a common operation that is performed in digital signal processing. 

The digital filters instead to allow frequencies within the pass band of the filter to pass 

through the system while rejecting all frequencies outside the pass band (i.e. the stop band). In 

practice, all digital filters designs require some transition bandwidth between the pass band 

and the stop band [23], [48]. The sample rate of practical digital receivers will therefore need 

to be faster than the Nyquist rate to provide a buffer in the frequency spectrum to allow for 

the transition bandwidth of digital filters. Another advantage of centring the signal at 𝑓௦/4 is 

that the maximum transition bandwidth is available for the digital filters for a given sample 

rate. In general, a wider transition bandwidth allows simpler digital filters to be used. 

6.4.4  Selection of sampling rate 

The sampling architecture of the ELINT Setup was chosen to implement band pass 

sampling of the signal centred at 𝑓௦/4 due to the computational efficiencies it offers in 

quadrature generation, filter design, and base banding. Currently, many commercially 

available, microwave (super-heterodyne) tuners exist which are designed to operate between 

2-18 GHz. These quad superhet receivers commonly down-converts the radio frequency (RF) 

to intermediate frequency (IF) of 1 GHz and provide an instantaneous bandwidth of 500 MHz. 

Using these specifications with equation 6.3, the sample rate of the ELINT setup was chosen 

to be 

𝑓௦ =  
ସ௫ଵீு

ଷ
 = 1333.33 MSPS      (6.4) 

Where the centre frequency is set to the IF of 1 GHz and 𝑚௢ௗௗ = 3. For a signal with 

a 500 MHz instantaneous bandwidth, the Nyquist criteria requires that the sample rate be at 

least 1000 MSPS, and so the above sample rate satisfies the Nyquist criteria. The sample 

interval of the ELINT Setup will therefore be 𝑡௦ =1/𝑓௦ =0.75 ns.  

The above sampling rate is alright for the DIQ technique where I and Q signal 

conversion will be carried out based on translation and the real signal itself. But for the 

autocorrelation technique where I and Q signals are readily required for the algorithms. So, 

data sampled at 1333.33 MSPS is converted to I and Q signals using the Hilbert transform. 

Further, these signals can be decimated by 2 as the sampling rate of 666.66 MSPS is 

sufficient. Both I and Q signals can be directly sampled at 666.66 MSPS if they are available 

in analog form. 
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Note that the down-conversion of the radar signal from RF to IF changes the measured 

carrier frequency of the signal, however, the signal’s original RF can still be determined since 

the local oscillator frequency is known. The phase of the signal remains unchanged after 

down-conversion and so the phase delays will still be directly related to the signals original 

RF. 

6.4.5  Data capture hardware 

The ELINT Setup follows a conventional digital receiver design with a band pass 

sampling architecture and is illustrated in Figure 6.10. Microwave radars signals are received 

at the antennas and down-converted from RF to IF using single-channel, wideband microwave 

tuners. Signal conditioning (i.e. amplification and filtering) is performed at both RF and IF to 

improve the fidelity of the down-conversion. The IF is digitized using parallel high-speed 

ADCs and then transferred to a laptop and stored in a data file named adc_data.dat. All 

components of the ELINT Testbed are discrete, commercially available components that are 

connected using RF and IF cables with SMA connectors. 

 

Figure 6.11: VPX based high-speed data acquisition card. 

VPX based high-speed data acquisition card is shown in Figure 6.11. The researcher 

has designed this board with two input channels, one external trigger input, one external clock 

input, and one signal monitoring output. Channel-1 is having a 10 dB higher gain compared to 

channel-2 which is used for data collection. The data acquisition hardware is designed with 

the ADC (P/N: ADC12D1800RF) to sample IF signal at 1333 MSPS. Only pulse data is 

captured along with pre-trigger and post-trigger portions to measure rise-time and fall-time. 

Off-time between the pulses is not captured which saves a lot of memory space and reduces 

the power consumption. It also enhances the maximum pulses storing capability. This card 
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has the PCIe and Ethernet interfaces with the controller. Ethernet interface is used to capture 

the data on the laptop directly. 

Test GUI shown in Figure 6.12 is used to control the data acquisition cards and 

capture the IF signal based on the settings. The captured data is stored in the trig_data.dat file 

along with the time-of-arrival (TOA) of each pulse, reported frequency, etc. in trig_info.txt 

file. This digitized IF data is used to validate the algorithms at various levels. This hardware is 

used to capture the radar signals in the field along with the front-end. 

 

Figure 6.12: VPX acquisition card control panel. 

The sample rate of the 12-bit high-speed ADC was set to 1333 MSPS and was 

specifically chosen to produce an intentionally aliased digital IF recording centred 1000 MHz. 

The process of capturing data is as follows: 

 Turn off the ELINT Setup and vector signal generator 

 Ensure that the RF switch is set to direct injection from the signal generator. (i.e. 

Ensure no signal enters the system through the antennas) 

 Power-up the ELINT Setup 
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- wait a few seconds to ensure that all components have fully powered-up 

 Turn on the vector signal generator 

 Capture 10-100 pulses and readout trig_data.dat file 

 Use this file as input data in Matlab and apply the following algorithms 

 Perform noise cancellation in each channel using spectral subtraction 

 Estimate instantaneous amplitude and frequency profiles 

 Estimate the noise in one channel using instantaneous amplitude profile 

 Detection of pulse using adaptive threshold on same channel 

 Estimate the other parameters using amplitude and frequency profiles. 

 Estimate the modulation and their parameters using instantaneous frequency profile 

 

6.4.6 Data collection methodology 

 The data was recorded using a time-domain and frequency-based triggering system 

with a set pulse width. This is a spectrum-based triggering system that activates a data 

recording when the signal energy in one or more chosen frequency bins of an FFT spectrum 

exceeds a specified threshold. When a trigger signal is detected, a set number of pulses data is 

collected with the pre-trigger and post-trigger data. This pre-trigger and post-trigger data is 

collected based on the pulse width. Pre-trigger data is collected based on the circular memory 

concept and this facilitates to measure of the rise-time. The pulse data is recorded adaptively 

based on the pulse region. It will also continue to record beyond falling edge equivalent to the 

pre-trigger region.  

This data was also captured with continuous mode for low SNR conditions. The VSG 

was set with pulsed width of 5 us and pulse repetition interval of 7 us. The data is collected in 

this manner to obtain more information in less time duration as the simulation tools also 

having the limit, in which more data loading consumes more time. Instead of that pulsed data 

is fed in the form of CW collected data and used for simulation as well as for FPGA 

simulation. When a trigger signal is detected, a burst of 100 us of continuous data is recorded. 

For this particular collection, each trigger is expected to capture approximately 14 pulses. 

6.5 Test setup hardware  

Two different types of Xilinx FPGA hardware are used to test the algorithms i.e. 

XtreamDSP development kit and RFSoC evaluation kit. Both the boards consist ADCs to 

digitize the signals and DACs to convert the digital words into analog signals.  
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6.5.1 XtremeDSP development kit 

The XtremeDSP development kit-4 is used as a development platform with Virtex-4 

FPGA technology which is used to design scalable systems based on signal processing 

algorithms available from M/s Nallatech. This board has dual-channel high-speed ADCs and 

DACs, as well as the programmable Virtex-4 device which is used to implement signal 

processing algorithms for software defined radio, radar, and EW applications. The block 

diagram of the Nallatek development kit is shown in Figure 6.13. 

 

Figure 6.13: Block diagram of Nallatek development kit. 

 

  Figure 6.14: Nallatek Xilinx Virtex-4 FPGA development kit. 
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The photograph of Nallatek Xilinx Virtex-4 FPGA development kit is shown in Figure 

6.14. The development kit consists of three Xilinx FPGAs namely a Virtex-4 User FPGA, a 

Virtex-II FPGA for clock management, and a Spartan-II FPGA for interfaces. The Virtex-4 

device is available exclusively for User designs while the Spartan-II is used for pre-

configured firmware for peripheral component interface (PCI). The PCI interfacing firmware 

can be used for user designs or applications. The Interface FPGA also communicates directly 

with the User FPGA. The Virtex-4 XC4VSX35-10FF668 device is intended to be used for the 

main part of a User’s design. The Virtex-II XC2V80-4CS144 is used for clock configuration 

in a design. The clock generated by this FPGA is used for User designs. 

 

USB JTAG Downloading Cable  

 Figure 6.15 shows the JTAG USB downloading cable. The .bit file is generated using 

the Xilinx ISE tool is downloaded into the FPGA using this cable, The iMPACT tool is used 

to download the bit file into Xilinx FPGA. The ChipScope Pro Analyzer tool also can be used 

to download the .bit file. 

 

Figure 6.15: Xilinx USB Jtag cable. 

 
ADC Clocking  

The clock is generated by Virtex-II XC2V80-4CS144 FPGA is called clock FPGA. 

This clock is used for ADC clocking also. This signal is differential LVPCL. The same FPGA 

is used for DAC clocking. Based on bit files ADCs can be clocked in different ways. The 

following various clocks can be used through clock FPGA: 

 Onboard clock of 105 MHz generated using a crystal oscillator. 

 External clock input is given through the middle MCX connector. 

 Various programmable oscillators clock are available in the kit. 

The onboard clock of 105 MHz is used to drive the FPGA logic. 
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Synthesis and Implementation Settings  

This synthesis and implementation settings are given in this section, which are used 

for the development and implementation of FPGA designs to run on the Nallatech board. 

 
Synthesis Options 

To synthesize HDL code for user designs no specific settings are required for Nallatek 

hardware. But the synthesis tool is required to synthesize the FPGA code. 

Implementation Options 

To develop, synthesize and implement user design, the Xilinx implementation tool is 

required. The synthesis tool which is part of Xilinx Implementation tools is used to synthesize 

the user design to the target device. Now, these tools are part of Xilinx Vivado tools. 

 

Necessary Settings 

The following mandatory settings are required which need to mention for the user 

design to configure and run on Nallatek hardware. 

1. Select Enable Readback and Reconfiguration 

2. Select the JTAG Startup Clock in the bit file generation properties. 

Downloading the .bit File  

The Xilinx iMPACT tool is used to configure the User FPGAs in the XtremeDSP 

development kit-IV. This section details how the iMPACT tool is used with the kit. 

Connect a JTAG Download Cable 

The JTAG download cable is required to configure Xilinx Virtex-IV User FPGA. 

Parallel-IV cable is supported which is connected to FPGA with the header and the other side 

is connected to the laptop with a USB interface.  

Detect the Card and Enable Power Supplies 

The power supply is to be switched on to detect all the three FPGAs on the board 

through JTAG. All power good LEDs will become green after red immediately. 
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If using the Kit standalone with the external power supply 

Board can be used in PCI slot of the personal computer and it can be also used with 

their standalone power supply. Once the power supply module is connected to the supply and 

it starts power to the board. 

 The sampling rate of this board is limited to 105 MSPS which can be enhanced to 250 

MSPS with the external clock. This sampling rate is sufficient for 160 MHz IF signal but it is 

not sufficient for the sampling of 1000 MHz IF signal at 1333 MSPS. Due to this reason, the 

digitized IF data trig_data.dat file is used in this board to validate the algorithms. This board 

is used for test setup TS-3 in section 6.3. 

6.5.2 RFSoC evaluation kit 

Zync Kintex UltraScale plus RFSoC ZCU111 is the high density, high speed, RFSoC 

evaluation board. ZCU111 is used for high-performance RF applications. This kit features a 

Zynq UltraScale plus RFSoC supporting eight 12-bit, 4.096GSPS ADCs, and eight 14-bit 

6.554GSPS DACs. This kit provides a rapid, comprehensive RF Analog-to-Digital signal 

chain prototyping platform 

 

Figure 6.16: ZCU111 RFSoC evaluation kit. 

The kit is equipped with the industry’s only single-chip adaptable radio device. The 

Zync UltraScale plus RFSoC ZCU111 evaluation kit is the ideal platform for both rapid 
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prototyping and high-performance RF application development. The included ZU28DR is 

Xilinx’s highest ADC sample rate RFSoC device, designed for applications requiring wide 

instantaneous bandwidth. Eight integrated SD-FEC cores provide forward error correction at 

80% lower power consumption than soft implementations, making the ZU28DR ideal for 

microwave backhaul, and small cell applications. References add-on cards and connectivity 

options make the ZCU111 kit suitable for developing complexity and improving time to 

market. Figure 6.17 shows the mezzanine card to connect the ADC and DAC ports.  

The algorithms are tested with four channel hardware with four Analog-to-digital 

converters (ADCs) and four Digital-to-analog converters DACs). It consists of Zync Ultra 

Scale Plus RFSoC ZU24DR FPGA which consists of the following: 

Zync UltraScale plus RFSoC ZCU111 XCZU28DR-2FFVG1517E RFSoC: 

System Logic Cell   930K 

Memory    60.5 Mb 

DSP Slices    4,272 

Transceivers    16 

 

Figure 6.17: ZCU111 RF mezzanine board for ADC and DAC. 

 

Figure 6.18: AOA algorithms testing setup using ZCU111 RFSoC evaluation kit. 
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The AOA algorithms are verified in the detailed setup as shown in Figure 6.18. In this, 

a single IF input goes to one of the ADC channels. Phase shift is provided to this channel 

according to the angle of incident of electromagnetic waves to four or three antennas. The 

digital data with a phase shift to all channels is diverted to DAC for conversion to the analog 

signal. These analog signals are taken out and again connected to four or three ADC inputs 

from the mezzanine card to digitize these signals. AOA algorithms are applied to these 

digitized data and verified the measured AOA. 

6.6 System generator models  

  All algorithms are implemented with a system generator using Xilinx Vivado 2016.4 

tool. The Xilinx device selected is Virtex-7 XC7VX415T FPGA. The synthesis is carried out 

for netlist generation, mapping for exact mapping of components, and place & route is carried 

out.  

6.6.1 Amplitude and frequency measurement models 

 The following models are generated as part of the amplitude and frequency 

measurement as shown in Figure 6.19 to Figure 6.21. Their performance is verified first in 

simulation using the system generator itself. The autocorrelation approach is implemented for 

amplitude and the multilevel autocorrelation approach is used for frequency generation block. 

 

 

Figure 6.19: Instantaneous amplitude and frequency measurement system generator models. 
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Figure 6.20: Detailed instantaneous amplitude measurement system generator model. 

 

 

 

Figure 6.21: Detailed instantaneous frequency measurement system generator model. 
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6.6.2 AOA measurement model 

 The angle-of-arrival measurement model is generated using a system generator as 

shown in Figure 6.22. The frequency measurement is carried out using FFT based technique. 

The frequency is estimated using FFT based interpolation techniques which are used to an 

estimate the AOA.  

 

Figure 6.22: Detailed AOA Measurement system generator model. 
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6.6.3 Modulation measurement model 

 The modulation recognition system generator model is shown in Figure 6.23. In this 

amplitude and frequency profiles are generated using the autocorrelation technique. 

Modulation recognition is carried out using decision-tree algorithms using frequency profiles. 

 

 

Figure 6.23: Modulation recognition system generator model. 
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6.7  Implementation Results 

6.7.1  Instantaneous amplitude and frequency results 

  The instantaneous amplitude and frequency profiles results are generated using a 

system generator model for different frequencies 750 MHz, 1000 MHz, and 1250 MHz as 

shown in Figures 6.24, 6.25, and 6.26 respectively.  

 

Figure 6.24: System generator simulation result for frequency 750 MHz. 

 

 

Figure 6.25: System generator simulation result for frequency 1000 MHz. 
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Figure 6.26: System generator simulation result for frequency 1250 MHz. 

6.7.2 Modulation recognition results 

 Figure 6.27 shows the system generator result for LFMad modulation. In this first half 

of pulse frequency increases and the second half frequency decreases. LFMa modulation type 

is measured 0x5 and modulation parameter is ascending and descending chirp rate which is 

measured as 0xc8c8. The minimum frequency measured is 1000 MHz and the maximum 

frequency is measured as 1200 MHz.  

 

 

Figure 6.27: Simulation result for LFMad modulation recognition feature at 0 dB SNR. 

 



192  Chapter 6, Section 6.7
 

 The system generator result for SFMa - 2 level modulation is shown in Figure 6.28. In 

this, the first half of pulse and the second half of pulse there is a step change in the frequency. 

The modulation type is declared as 0xa and the modulation parameter as 0x0002 which shows 

the number of steps in the pulse. Figure 6.29 shows the BPM modulation. In BPM 

modulation, the phase is changed by 1800. Due to this reason sudden change occurs in the 

frequency. The modulation type is declared as 0xc and modulation parameter as 0x1f35 which 

is equivalent to the 13-bit BPM. 

 

 
Figure 6.28: Simulation result for SFMa modulation recognition feature at 0 dB SNR. 

 

 

Figure 6.29: Simulation result for BPM modulation recognition feature at 0 dB SNR. 
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Resource Utilization Summary 

     The proposed autocorrelation algorithm is implemented with a system generator using 

Xilinx Vivado 2016.4 tool. The Xilinx device selected is Virtex-4 XC4VSX35-10FF668 

FPGA. The synthesis is carried out for netlist generation, mapping for exact mapping of 

components, place, and route is carried out. The utilization summary is compared for various 

FPGA resources with the existing DIQ technique and is shown in Table 6.1. Mainly, 

consumption of DSP resources are very less using proposed algorithm with moving 

autocorrelation technique compared to the proposed algorithm with DIQ technique. This is 

possible as no filter implementation is required in autocorrelation approach. 

Table 6.1: FPGA resource utilization summary for modulation measurement with amplitude 

and frequency measurement (Device: XC4VSX35) 

FPGA Resource 
Utilization with Max 
Operating Freq. 

Proposed 
algorithm with 
autocorrelation 
technique 

Proposed 
algorithm 
with DIQ 
technique 

Savings in 
% 

Maximum Clock 
Frequency (MHz) 238.6  231.9 2.89 
Slice F/Fs 2334 4353 46.38 
LUT (4 Inputs) 2883 4136 30.29 
DSP Slices 12 42 71.43 
Block RAM (FIFO) 15 15 - 
Total Power (mW) 546 782 30.18 

 

 The AOA estimation is implemented on the Xilinx Kintex Ultra Scale FPGA 

XCKU060-FFVA1517 which is footprint compatible with radiation tolerant device 

XQRKU060-CNA1509 for AOA estimation. The resources are compared with the four 

antennas and three antenna based BLI approaches and mentioned in Table 6.2. BLI algorithms 

are also implemented in ZCU111 kit and similar results are obtained. 

Table 6.2: Resource comparison AOA estimation (Xilinx FPGA: XCKU060-FFVA1517) 

FPGA Resource 
Utilization 

3 Antenna  
Based 
Proposed 
Approach 

4 
Antenna  
Based 
Approach 

Savings  
in % 

Registers 16567 21355 22.4 
LUTs 12893 16283 20.81 
36 Kb Block RAM 757 1026 26.21 
18 Kb Block RAM 1532 2042 25.02 
DSP48 Slices 40 50 20.0 
Total Power (mW) 16464 21152 22.16 
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6.8 Summary 

  A significant part of this Ph.D. research is concerned with the experimental validation 

of the algorithms discussed in this thesis. In this chapter, the hardware architecture of the 

single-channel and multi-channel ELINT Setup that was used to collect the data for 

experimental validation was presented. A significant portion of the author’s time during this 

Ph.D. candidature was spent in testing, debugging, and calibrating the ELINT setup to allow 

single-channel and multi-channel data to be collected. In particular, data collected with 

different SNR conditions and different modulations for single-channel was a critical 

contribution to the development of real-time modulation measurement for functional ELINT 

systems. 

 This chapter has experimentally validated that the real-time modulation identification 

of signals is performed well when instantaneous amplitude and frequency measurements are 

carried out using the autocorrelation based techniques compared to the DIQ technique. This is 

verified till -2 dB of SNR and above 1 dB of SNR for targeted all 16 types of modulations are 

recognized correctly. These modulations are identified after the signal is preprocessed with a 

noise cancellation algorithm and SNR advantage has been achieved. This restored signal is 

used for instantaneous measurements and modulation measurements. To check the efficacy of 

algorithms, these algorithms are implemented in FPGA based hardware and results are 

verified. These results are matching with Matlab performance. The error introduced by 

converting floating point numbers into fixed point numbers has not impacted as a sufficient 

fractional portion in terms of bits has been chosen. 

 Similarly, the virtual BLI based AOA estimation algorithms have been chosen 

compared to four channel BLI estimation algorithms. As the FOV requirement is limited to 

±25 degree, the virtual BLI based AOA estimation along with noise cancellation technique is 

performed similarly to four channel BLI based algorithms. This configuration becomes the 

size, weight, and power (SWaP) optimized as one-fourth of saving will be there compared to 

other configurations. The performance of these algorithms was quantified at 4 dB SNR with a 

3-antenna and 4-antenna array geometry and their experimental performance was compared.  

ELINT systems come under the category of hard real-time as they are used for tactical 

missions and missing the deadline may cause serious consequences. These systems complete 

the critical tasks within a response time. This requires that all the delays in the system be 

bounded from the falling edge of the pulse. These timelines should be met for the formation 

of PDW. The formation of track based on de-interleaving using the required number of pulses 

should also be bounded to meet the real-time requirement.  
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Conclusions and Future Scope 

In the previous chapter ELINT operation methodology is discussed. This includes scan 

strategy, experimental setups, the hardware used, and various test conditions along with FPGA 

implementation results. This chapter presents the summary, and conclusions of the thesis. The 

future scope of the work is also given in the later part of the chapter. 

7.1 Conclusions 

 This thesis is considered the problem of estimating the signal estimation, angle-of-

arrival (AOA) estimation, and modulation measurement of intercepted radar signals using 

ELINT receiver for real-time surveillance (Chapter 1). Due to the tactical and operational 

requirements of ELINT receivers, especially estimation algorithms need to be 

computationally fast and highly accurate. Wide frequency surveillance from a large distance 

requires identifying emitters accurately. 

Many contemporary intercept receivers are described. All the receiver advantages and 

disadvantages are also discussed. It is found that a single channel or multi-channel superhet or 

a channelized receiver is the best choice for the electronic intelligence receiver. The prime 

requirement of an electronic intelligence receivers is sensitivity. Simultaneously achieving 

high sensitivity and large bandwidth is not possible. This will impact on the probability of 

intercept (POI). When radar transmitter antenna and ELINT receiver antenna are looking at 

each other within the antenna beam width. In this condition, ELINT receiver will receive the 

radar pulses. The POI problem is reduced by scanning fast for the complete coverage of the 

frequency band of 0.5 to 18 GHz. The scanning is controlled by dwell time. If prior 

knowledge is available of radars and their frequency coverage. The scanning can be planned 

for those bands only. 

A novel technique based on noise cancellation has been developed the first time for 

electronic intelligence receivers to overcome the effect of noise at low SNR conditions. So far 

it was used for communication receivers. In this noise spectrum of fixed time duration during 
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noise region is computed. Noise average is obtained from all FFT outputs. The spectrum of 

the incoming signal is also obtained and it is subtracted from the noise average. Inverse FFT 

is computed on subtracted output and restored signal is obtained. The phase of the incoming 

signal is combined with the restored signal. This technique of noise cancellation enhances the 

SNR of the incoming signal by 6 to 14 dB (Refer Table 4.3). 

A novel technique based on optimized autocorrelation has been developed to calculate 

accurate instantaneous amplitude profile till 4 dB SNR for pulse detection and other pulse 

parameter measurements. The autocorrelation technique result is compared with the DIQ 

technique and found advantages of about 6 to 14 dB (Refer Table 4.3). Instantaneous 

frequency profile is also computed using the multilevel autocorrelation technique. This 

technique enables the measurement of intra-pulse parameters. It can be utilized for feature 

extraction and identification of modulated signals also. Using this technique the instantaneous 

amplitude and frequency parameters of a pulse can be measured to -2 dB SNR. The total 

advantage of about 20 dB is achieved if autocorrelation techniques are used after the noise 

cancellation technique compared with DIQ technique without noise cancellation technique.  

Time-domain techniques have limited use due to their less sensitivity compared to 

frequency domain techniques. But these techniques are capable of instantaneous 

measurements of frequency and amplitude which gives certain advantages of modulation 

measurement. But frequency domain techniques provide processing gain advantage 

inherently. If hardware is capable, this gain can be further improved by increasing the FFT 

number of points. Fast Fourier Transform (FFT) is used to detect the activity, measurement of 

frequency, pulse width, and pulse repetition interval. FFT with interpolation technique is 

proposed to get the frequency accuracy advantage without increasing the FFT number of 

points. The advantage in detection is also achieved as FFT output itself is used for detection. 

 In chapter 4, the noise cancellation technique based on spectral subtraction is used 

which provides a significant SNR advantage. The SNR advantage is also achieved when the 

autocorrelation technique is used for computing instantaneous amplitude profile and 

instantaneous frequency profile. These advantages are not possible with the contemporary 

DIQ technique. Contemporary phase-based interferometric algorithms are computationally 

fast and offer high accuracy AOA estimation using a less number of antennas. However, the 

requirement to use physically large wideband antennas for electronic surveillance applications 

introduces a significant ambiguity problem to the AOA estimation. To perform unambiguous 

AOA estimation, the antenna positions must be carefully chosen and coupled with ambiguity 
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resolution algorithms. Further, three antennas based AOA estimation technique provides 

SWaP advantage for high altitude applications. 

 It was shown that the ambiguity problem can be completely avoided by using a virtual 

array to create a virtual short-baseline interferometer. This algorithm was shown to be 

computationally efficient and operated effectively over the entire microwave frequency range 

between 0.5 - 18 GHz. The performance of this algorithm was also shown to be limited to the 

smaller aperture but it is also independent of the physical antenna spacing. Accurate 

frequency estimation is shown using FFT based technique with interpolation. This accurate 

measurement of frequency is used for estimating the AOA using the interferometry technique. 

Both four antenna and three antenna based baseline interferometry are described. Virtual 

interferometry using three antenna based provides better results when it is used with noise 

cancellation. 

 In chapter 5, it was shown that the noise estimation is carried out efficiently for 

selectable time duration on instantaneous amplitude profiles. The estimated noise is used for 

computing the adaptive threshold which is used for the detection of the radar signals. The 

detection of the radar signals is carried out using an amplitude profile. The instantaneous 

frequency profile generated using the multilevel autocorrelation approach is used for 

estimating the modulations using the decision-tee algorithm. This algorithm is based on the 

time-domain based which estimates the modulation in real-time.  

 In chapter 6, the ELINT receiver methodology is discussed. In this chapter, different 

level of testing is explained. The data capture is generated using Matlab initially with different 

SNR and with various modulations and algorithms are verified. This signal is generated with a 

vector signal generator and captured using a VPX data acquisition card and the digitized IF 

data is stored in the file. This file is used to validate the algorithms. Later this file is used to 

verify hardware implementation using FPGA boards. The performance of signal estimation 

and modulation estimation methods were experimentally validated using the hardware 

developed. 

 In chapter 7, a summary of the thesis, overall conclusions, and future scope are 

given. 

7.2 Future scope  

 This thesis was presented several computationally fast modulation recognition 

algorithm including signal estimation and evaluated their theoretical and experimental 
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performance. However, many areas of this work may warrant further investigation. These 

areas will be briefly discussed below: 

 Experimental Validation of Other Frequencies - Due to the time constraints and the 

safety and licensing of transmitting RF signals, the experimental validation of the algorithms 

in this was only performed for 0.5-18 GHz. Since the objective is to have a radar intercept 

receiver that can operate between 0.175-40 GHz, it would be desirable to experimentally 

validate the performance of algorithms at other frequencies. 

 Experimental Validation Using Different Transmitters - Due to time constraints, 

the experimentally validation of AOA estimation could not complete with antenna array 

hardware. This was done using an RFSoC board where three-antenna delay was manually 

generated instead of between three-antenna output and work was completed. In order to fully 

validate the experimental performance of the algorithms, it would be desirable to use one 

transmitter for the calibration signal and a different transmitter for the AOA estimation. 

 LPI signal - Few low probability intercept (LPI) signals are already attempted in this 

thesis. But due to the availability of resource-intensive FPGAs the identification of LPI 

signals may be extended in real-time for polyphase and polytime signals also. But this work 

requires lot of resources because processing algorithms are frequency domain based which 

needs to be implemented in processing hardware. But initially, simple LPI signals detection 

may be tried. 

In the future, the modulation identification will be extended for additional signals and 

other practical combinations of signals. Artificial Intelligence (AI) based algorithms to be 

developed for the specific emitter identification. This will be an unconventional way of 

matching. Conventionally, the matching is carried out based on the parameter matching 

within their window. AI based matching will be helpful to train the algorithm for all available 

emitters. But implementation feasibility for real-time application will have to be verified. 

 Third-order spectra (Bispectra) are used to get the high accuracy in amplitude and 

frequency measurements. But their processing time is large as N (FFT length) is considered 

the highest possible. Hence, it is difficult to use for real-time ELINT systems where accuracy 

is achieved in hundreds of kHz. It is used where accuracy is more important i.e. instrument 

identification where the data rate is comparatively slow. It is useful in analysis based ELINT 

systems also. In the future, this may be possible to use for real-time systems also. 
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Modelling of signal 

 Conventional narrowband radar signal can be modelled as a single tone and as a 

function of time as below: 

𝑠(𝑡) = 𝐴𝑒௝(ଶగ௙௧ା )     (A.1) 

 Where 𝐴 is the amplitude, 𝑓 is the carrier frequency, 𝑡 is time and 𝜑 is the initial phase. 

The variation in frequency will be visible. Practically, the ideal signal is corrupted by additive 

noise component 𝜖(𝑡). For a multi-channel system with K antennas, the signal of the kth 

antenna with respect to lth antenna is represented as: 

𝑥௞௟(𝑡) = 𝑠(𝑡 + 𝜏௞௟) + 𝜖௞(𝑡) = 𝐴𝑒௝(ଶగ௙௧ା ) + 𝜖௞(𝑡)   (A.2) 

 

Where, k=1,2,3,….K and 𝜏௞௟  is the time taken from kth antenna to lth antenna.  The 𝜏௞௟ is given 

as 

𝜏௞௟ =
ௗೖ೗

௖
 𝑠𝑖𝑛 𝜃 cos ϕ      (A.3) 

Assuming only incident wave azimuth angle is 𝜃 and elevation angle is ϕ=00. The above 

equation is reduced to, 

𝜏௞௟ =
ௗೖ೗

௖
 𝑠𝑖𝑛 𝜃      (A.4) 

The receiver noise in the kth channel is modelled as an independent and ideally 

distributed with zero mean and Gaussian random noise with 𝜎ఢೖ
ଶ  variance. The receiver noise 

is assumed to be independent for each receiver. The real and imaginary component of 𝜖௞(𝑡) 

has an equal variance that is equal to 𝜎௞
ଶ = 𝜎ఢೖ

ଶ 2⁄  . It is generally assumed that each receiver 

channel having the same noise power and the complex receiver noise power is written as 

𝜎ఢ
ଶ =  𝜎ఢଵ

ଶ =  𝜎ఢଶ
ଶ =. . . … . . =  𝜎ఢ௄

ଶ , and the corresponding real and imaginary noise power can 

be written as 𝜎ଶ = 𝜎ଵ
ଶ = 𝜎ଶ

ଶ = ⋯ … … . . = 𝜎௄
ଶ. The signal-to-noise ratio (SNR) of the signal η, 

can be defined as below: 

    η =
୅మ

ఙച
మ =

஺మ

ଶఙమ
       (A.5) 
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For a narrowband signal and a linear array geometry, propagation time can be 

converted into a phase as below: 

𝜓௞௟ = 2𝜋𝑓𝜏௞௟ = 2𝜋𝑓
ௗೖ೗

௖
 𝑠𝑖𝑛 𝜃     (A.6) 

For a multi-channel digital receiver, the digital sampling of signal occurs at a regular, 

discrete-time intervals, 𝑡௦. For a collection of 𝑛𝑡௦ samples, the nth sample of digital sample of 

a narrowband signal model can be re-written as below: 

𝑥௞௟(𝑛𝑡௦) = 𝐴𝑒௝(ଶగ௙௡௧ೞାఝାటೖ೗) + 𝜖௞(𝑛𝑡௦)    (A.7) 

The 𝑛𝑡௦ sample is commonly written as 𝑛 and the above equation is modified as 

below: 

𝑥௞௟(𝑛) = 𝐴𝑒௝(ଶగ௙௡ାఝାటೖ೗) + 𝜖௞(𝑛)     (A.8) 

which corresponds to the time instant 𝑡 = 𝑛𝑡௦ = 𝑛, and n = 0, 1, 2….., (N-1). 

It should be noted that the time propagation 𝜏௞௟, is actually the time advances for 

positive 𝜃 and time delay for negative 𝜃. Similarly, the propagation phase 𝜓௞௟, is a phase 

advance for positive 𝜃 and phase delay for negative 𝜃. However, for notation conciseness, this 

thesis will generally refer to 𝜏௞௟ and 𝜓௞௟ propagation delay and phase delay respectively.  
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Fixed Point Presentation of Numbers 

 

 The implementation of signal processing algorithms with fixed point numbers (or 

integer numbers) provides a considerable enhancement in speed. The reason behind is the 

fixed point numbers support for field programmable gate array or processors. This will also 

reduce the complexity of software to follow multiplication and division operations. This 

enhancement of speed achieves with the cost of reduced range and accuracy of the signal 

processing algorithms variables. If sufficient numbers of bits are chosen for the required range 

and accuracy, then true speed is achieved. 

 To further improve the execution speed or throughput the calculations are carried out 

with two’s complement signed fixed-point representations. This requires the virtual decimal 

placed in between given bits of data. Q-point is the notation used for representing fixed point 

numbers. This is represented below 

𝑄[𝑄𝐼]. [𝑄𝐹] 

Where 𝑄𝐼 = Number of integer bits, and 𝑄𝐹 = Number of fractional bits 

 The number of integer bits (𝑄𝐼) plus the number of fractional bits (𝑄𝐹) yields the total 

number of bits used to represent the number. The sum 𝑄𝐼 + 𝑄𝐹 is known as the word length 

(𝑊𝐿). For example, a 𝑄8.8 number would be a 16-bit value with eight integer bits and eight 

fractional bits. 

 

B.1    Fixed point range – integer portion    

  The range of floating point variable (i.e. Min to Max range) in an algorithm sets the 

number of bits (𝑄𝐼) required to represent the integer portion of the number. This is defined for 

unsigned numbers as below:  

𝑄𝐼 = 𝐶𝑒𝑖𝑙 ቀlogଶ൫𝑎𝑏𝑠(𝛼)൯ቁ     (B.1) 

Where 𝛼 is the floating point variable and 0 ≤ 𝛼 ≤ 2ொூ. 

  For signed numbers (±𝛼), the relationship is defined as: 
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𝑄𝐼 − 1 = 𝐶𝑒𝑖𝑙൫logଶ(max (𝑎𝑏𝑠[𝛼௠௔௫, 𝛼௠௜௡]))൯           (B.2) 

 Where 𝛼 is the floating point variable, and −2ொூିଵ ≤ 𝛼 < 2ொூିଵ. 

 For example when input frequency varies from 140 to 180 MHz. Integer portion 8 bits 

are enough because it can cover from 0 to 255 MHz. If the input frequency is varied from 750 

to 1250 MHz, the integer portion is chosen 11 bits. Whereas for amplitude number of the 

integer portion chosen is 8-bits. 

 

B.2   Fixed point resolution – fractional portion  

 The resolution is limited for a given word length (WL). Since the integer portion is 

already fixed based on the range and dynamic range of the number the remaining bits will be 

used for the fractional portion (QF) of the number. In case, where required resolution of a 

number is high, the world length has to be increased to accommodate the required resolution. 

The resolution  , of a fixed point number is defined by the following equation: 

𝜀 =
ଵ

ଶೂಷ
       (B.3) 

 However, since 𝑄𝐹 is an integer value only. Therefore, the number of fractional bits 

(QF) required for a particular resolution is defined by the equation: 

𝑄𝐹 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 ቀlogଶ ቀ
ଵ

ఌ
ቁቁ       (B.4) 

 The fractional number of bits is chosen for amplitude and frequency of #B-bits for this 

requirement. 
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Abstract

In this paper, a decision tree algorithm based on time-domain digital technique is developed for the identification 
and classification of diverse radar intra-pulse modulated signals for the electronic intelligence system in real-time. This 
includes linear frequency modulation, non-linear frequency modulation, stepped frequency modulation and bi-phase 
modulation. The received signal is digitised and the instantaneous phase and high accuracy instantaneous frequency 
are estimated. The instantaneous amplitude is also estimated to get the start and stop of the pulse. Instantaneous 
parameters are estimated using a moving autocorrelation technique. The proposed algorithm is employed on the 
instantaneous frequency and the modulation is identified. The modulation type and modulation parameter are important 
for unique radar identification when similar radars are operating in a dense environment. Simulations are carried out 
at various SNR conditions and results are presented. The model for algorithm is developed using a system generator 
and implemented in FPGA. These results are compared when the proposed algorithm is used with the existing digital 
in-phase and quadrature-phase (DIQ) technique of instantaneous frequency and amplitude estimation.

Keywords:	Complex radar signals; Instantaneous frequency profile; Intra-pulse modulation; moving autocorrelation 
technique; Digital in-phase and quadrature-phase technique
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NOMENCLATURE
x(t)	 Continuous-time signal
x(n)	 Discrete-time signal
ts	 Sampling time
fs	 Sampling frequency
f	 Initial phase of the signal
t	 Fixed time period
a	 Ascending chirp rate
b	 Descending chirp rate
T	 Time duration
fc	 Centre frequency of IF signal
Fmax	 Maximum frequency of FMCW signal
Fmin	 Minimum frequency of FMCW signal
FLE	 Leading edge frequency
FTE	 Trailing edge frequency
FCNT	 Center frequency during the pulse 
FIP1	 Frequency at the first intermediate point
FIP2	 Frequency at the second intermediate point
df	 Frequency deviation
fm	 Sinusoidal modulating frequency
Df	 Frequency tolerance limit
Df	 Phase tolerance limit
		

1.	 INTRODUCTION
Modulation on radar pulse is one of the most important 

features and one of the vital problems in the analysis of non-
cooperative radar signals is modulation classification for 

emitter identification1-2. The modulation classification plays 
a very important role in electronic intelligence (ELINT) 
systems4-5.  Firstly, the modulation type of a signal is important 
to identify the radar type. Second, on identifying the correct 
modulation type the carrier frequency is re-estimated. Third, it 
helps to distinguish similar radars deployed in proximity. But 
for radar signals, the modulation classification in real-time is 
very challenging due to the possibility of various modulations 
within a very short pulse.

An earlier generation of electronic support (ES) systems 
was based on instantaneous frequency measurement (IFM) 
receiver and pulse measurement using log video. The time-
domain technique was used for noise estimation and signal 
detection6 and frequency were measured using time-frequency 
analysis7-9. But during conversion from radio frequency (RF) or 
intermediate frequency (IF) to log video, the phase and hence 
the modulation information is lost. Due to this reason these 
systems measure only basic parameters like RF, Pulse width 
(PW), pulse repetition interval (PRI) and pulse amplitude (PA). 
These parameters broadly are called inter-pulse parameters. 
But the measurement of these parameters alone is not sufficient 
against modern RADARs. 

Conventional radars have simple pulsed waveform or 
continuous waveform with no modulation. These pulsed radars 
sometimes have the variations in PW or PRI. But complex 
radars are having various modulations within the pulse along 
with the above variations. These intra-pulse modulations can 
be linear frequency modulation (LFM), non-linear frequency 
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modulation (NLFM), stepped frequency modulation (SFM) 
and bi-phase modulation (BPM). Typically, these modulations 
are identified by the ELINT system using offline analysis10-

15. Till the earlier generation of electronic warfare (EW) 
systems, these offline analysis tools are either add-on or they 
are integrated with the main ES systems or ELINT systems. 
Identification of modulations by the ELINT system in real-
time is still a challenge. Various digital methods are discussed 
for modern digital implementation16-21 and decision-theoretic 
approaches are mentioned for modulation classification22-26.

Modulations can be identified using frequency domain 
techniques using offline systems27-28. Implementation of these 
techniques in Field Programmable Gate Array (FPGA) for real-
time applications is not a viable solution as they consume a lot 
of hardware resources. Due to this reason, the implementation 
of signal classification techniques is attempted in FPGA using 
time-domain technique for real-time applications. IF signal 
is digitised in ADC and samples are captured, processed and 
further analysed in FPGA. These are possible to implement 
in FPGA due to parallelism, high density and high-speed 
component cores.

In this paper, an algorithm to identify modulation in real-
time has been discussed and elaborated. The decision-tree 
based algorithm is proposed to identify the modulation. The RF 
pulse (RFP) is generated based on the instantaneous amplitude 
profile. The complete instantaneous frequency profile data 
is stored in the random access memory (RAM) during RF 
pulse. The frequency at different points in the pulse region is 
fetched from RAM and the algorithm is applied in real-time. 
The modulation is measured within shadow time based on the 
frequency parameters. 

The validity of the algorithm has been tested with various 
modulated signals at different SNR conditions. In section-2, 
modelling and characteristics of various radar signals are 
given. The proposed modulation recognition algorithm is 
discussed in section-3. The performance and effectiveness of 
the algorithm are presented in section-4 through simulations 
and implementation on FPGA hardware is given in section-5.

2.	 Modelling and Characteristics of 
various Radar Signals
The RF signal is down-converted to the IF signal using 

a superhet receiver and it is digitised. The instantaneous 
amplitude, phase and frequency are estimated. Pulse is detected 
using amplitude and modulation is identified using phase and 
frequency. The block diagram of FPGA based modulation 
identification is shown in Fig. 1.

Modern radars are exhibiting complex radar waveforms. 
These waveforms include No-Modulation Continuous Wave 
(NMCW), Frequency Modulated Continuous Wave (FMCW), 
No-Modulation On Pulse (NMOP), LFM, NLFM, SFM and 
BPM. The following signals are considered and modelled. 
They are described as below:
(i)	 Signal with No Modulation: NMCW and NMOP signals 

do not consist of any modulation. The discrete version of 
the time-domain signal  x(t) is given as29,

(2 )( ) sj fntx n Ae π +f= 		                                        (1)
where, A denotes the carrier amplitude, f  denotes the initial 
phase, f denotes carrier frequency, st  denotes sampling time 
and for 1,2,3...,n N=  for NMOP signal. 

When 1,2,3...,n = ∞ and signals are with PW more 
than predefined time duration T considered as continuous 
wave (CW). If PW is below T, they are considered as pulsed 
signals.
(ii) 	 Linear Frequency Modulation (LFM): LFM ascending 

(LFMa), LFM descending (LFMd), LFM ascending-
descending (LFMad) and LFM descending-ascending 
(LFMda) chirp signals are considered as LFM signals. 
These signals are also known as Triangular FM.
(a) LFMa signal is generated as given by29

2 2(2 )( ) s sj fnt n tx n te π +f+πa= 		                         (2)

for , 1,..., 1.
2 2
N Nn − −   = + −   

   
where, a  is the slope of the LFMa. 

(b) LFMd signal is generated as given by29

2 2(2 )( ) s sj fnt n tx n te π +f−πb= 	                                       (3)

for 0,1,2,..., 1.
2
Nn  = − 

 
where, b  is the slope of the LFMd. Usually, LFMa and LFMd 
signals have the same slope, i.e. b = a .

(c) LFMad and LFMda signals are generated using a 
combination of the above two equations. The frequency f  
is the instantaneous frequency at the peak of the triangular 
frequency variation, which is the maximum instantaneous 
frequency within the observation duration in the case of 
LFMad. The slope a  and b  is calculated as 2 /fd t , where the 

fd  is the bandwidth within the time period t . The parameter 
t  is a fixed value. The waveform is characterised by f , fd , 
a  and b .
(iii) 	Non-Linear Frequency Modulation (NLFM): NLFM 

signal is generated as given by29.

(2 sin(2 ))
2( )

s m s
m

fj fnt f nt
fx n Ae

 d
π +f+ π  

 =                                 (4)
where, the / 2fd  is the peak deviation, mf  is the sinusoidal 
modulating frequency, 1, 2,3...n N= , if the signal is 
narrowband, it means / 2 1mf fd �<<1. It is assumed that only 
a fraction of the cycle is sampled over an observation time. 
In case of the wideband FM signal, / 2 1mf fd �>>1. NLFM 
forward and NLFM reverse is represented as NLFMf and 
NLFMr respectively.Figure 1. FPGA based modulation identification.
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(iv) 	Stepped Frequency Modulation (SFM): SFM is generated 
as below

(2 )( ) h sj f ntx n e π +f= 			                          (5)
for 1,2,3,...,n N=

where, hf  is the frequency of thh  step, and 1,2,3,...,h H=  is 
the number of steps. Usually H is in the sequence of 2,4,8,...
etc. For 2H = , 1,2h =  similarly for 4H = , 1,2,3,4h = , 
and so on. SFM ascending and SFM descending signals are 
represented as SFMa and SFMd, respectively.
(v) 	 Phase Modulation (PM): Bi-Phase Modulation (BPM) is 

one of the phase modulations and it is generated as given 
by29

(2 ( ))( ) sj fnt nx n Ae π +f+θ= 	                                                    (6)

where, ( ) (1 )n nθ = π − , when the zero bits of the code 
sequences are sampled and ( )nθ = θ , when the one bits of the 
code sequence are sampled. The phase shift θ  can be 0° or  
180° in the case of BPM.

3.	 Proposed Decision Tree Modulation 
Identification Algorithm
The IF signal is down-converted signal of RF signal 

digitised at the sampling frequency sf  which is equivalent to 
4 / 3s cf f= , where cf  is the center frequency of the IF signal30. 

Four samples are latched into FPGA coming from ADC at the 
clock rate of / 4sf  . The samples are latched at both the clock 
edges. All eight samples are processed in parallel at / 8sf  clock 
rate and results are combined at the output. The instantaneous 
frequency profile generated using the moving autocorrelation 
approach31 is given by

( ) ( )( )2
2

s
m m m

F
F n n Z

m
 = DΦ + π π 

		          (7)

where, sF  is the sampling frequency, ΔΦm(n) is the phase 
difference derived from zone Zm

 of  phase and m is 16. The 
instantaneous amplitude profile is generated as given by31

* *( 1) ( ) | ( 32). ( 32 ) | | ( ). ( ) |X n x n x n x n m x n x n m+ = + + + + − +    (8)

where, *x  is a conjugate of signal x, n  is the sample number 
and delay m is 1. The Eqn (8) is optimised by keeping 

(1)X a jb= +  where, a and b are constant values.
In Fig. 2, LFMad and FMCW signals frequency profiles 

are shown for presentation purposes. In the case of pulsed 
signals, pre-trigger and post-trigger region of the pulse is also 
captured to get the complete intra-pulse information including 
rise time and fall time. The pre-trigger region is captured based 
on the circular buffer memory concept which is implemented in 
first-in-first-out (FIFO) memory. The instantaneous frequency 
profile is used to extract frequency at various points. The 
frequency is extracted at an equal time interval at five different 
points from stored instantaneous frequency profile as shown in 
Fig. 2. These frequencies are known as leading edge frequency 
( LEF ), trailing edge frequency ( TEF ), center frequency during 
the pulse ( CNTF ), frequency at the first intermediate pint ( 1IPF ) 
and frequency at the second intermediate point ( 2IPF ). The LEF  and TEF  are latched at the leading edge (LE) and trailing 
edge (TE) of the RFP pulse. The RFP is generated using an 

instantaneous amplitude profile. Whereas to extract frequency 
at other three points the frequency data is stored during the 
pulse region in RAM which is generated using block RAM 
resource of FPGA. The frequency at these three points i.e. 1IPF , 

CNTF  and  2IPF are fetched from RAM based on the address 
calculated from the pulse region.

In the case of the FMCW signal, the maximum frequency 
( maxF ) and minimum frequency ( minF ) are computed in real-
time and stored. The frequency tolerance limit ( fD ) and phase 
tolerance limit (Df) are used during comparisons and windows 
are fixed.

	The amplitude and frequency profiles are computed from 
the digitised signals using the moving autocorrelation technique. 
The approximated standard deviation ( 1σ ) is computed for 
noise estimation31 using the instantaneous amplitude profile 

( )X n  as given below. 

01
1 ( )N

n

X nk
N

−

=
σ = ∑ 				            (9)

where, k  is constant which is determined based on the minimum 
error between standard deviation and its approximated value 
and N is the number of samples. High-level threshold ( HT ) is 
computed using estimated noise and accordingly, low-level 
threshold ( LT ) is set during the noisy region. HT  is used to 
detect pulse leading edge (or pulse start) and LT  for the pulse 
trailing edge (or pulse end). The threshold is adaptive for 
better detection and analysis of pulses. Based on the adaptive 
threshold the pulse detection is carried out. The signal power 
and noise power is also measured32. Accordingly, signal-to-
noise (SNR) is declared.

The flow chart for the proposed decision tree modulation 
recognition algorithm is shown in Fig. 3. First, the IF signal is 
captured and amplitude and frequency profiles are computed. 
The pulse start and pulse end are detected based on high and 
low-level threshold respectively. As per the flow chart initially, 
the signal is distinguished between pulsed and CW signals. If 
PW is greater than the predefined time limit T, it is declared 
as CW, otherwise, this is considered as a pulsed signal. If the 
signal is CW, the algorithm will look for frequency variations 

Figure 2. Frequency profiles of LFMad and FMCW signals.
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within that period. If maxF  and minF are within the set tolerance 
limit ( fD ) i.e. frequency is constant, it will be declared as 
NMCW signal. Whereas, if the difference of maxF  and minF  
is more than the fD , it will be declared as FMCW signal. 
When the signal PW is below predefined time limit T, it is 
known as a pulsed signal. If the frequency is constant in pulse 
region and there is no frequency discontinuity it is declared 
as No nodulation on pulse (NMOP). When there is an abrupt 
change in frequency due to sudden change in phase, it will be 
declared as BPM in which phase changes occur closed to pi. 
Phase changes and their numbers are detected. The minimum 
duration between two phase changes is measured and stored. 
The total width of the signal is divided by the minimum 
duration and the BPM pattern is identified. BPM pattern starts 
with 1’s and each phase change is represented by 0’s from 
1’s and 1’s from 0’s and when there is no phase change it 

will continue with the same 1’s or 0’s. The representation of 
the 13-bit BPM code is “1111100110101”. The frequency 
profiles of NMCW, FMCW, NMOP and BPM are represented  
in Fig. 4.

The signal is declared as NLFMf when 2IPF  is greater 
than 1IPF  as well as frequency is sinusoidal. Whereas, if 1IPF  
is greater than 2IPF  as well as frequency is sinusoidal, the 
signal is declared as NLFMr. SFMa is declared when 2IPF  is 
greater than 1IPF  as well as frequency changes in steps. If 1IPF  
is greater than 2IPF  as well as frequency changes in steps, the 
signal is declared as SFMd. In SFM signals, there will be a step 
change in the frequency. NLFM signals are generated based on 
the approximation of SFM signals. The frequency profiles of 
NLFM and SFM signals are represented in Fig. 5.

When the linear change of frequency trend is ascending, 
descending or both in pulse region the modulation present is 
known as LFM. Modulation is declared as LFMa when 2IPF  
is greater than 1IPF   as well as frequency changes linearly. 

Figure 3.	 Proposed decision tree algorithm flow chart for 
modulation identification.

Figure 5. NLFM and SFM signals frequency profile.

nlfmf nlfmr

sfmdsfma

Figure 4.	 NMCW, FMCW, NMOP and BPM signals frequency 
profile.

nMCW

nMop bpm

FMCW
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Whereas, if 2IPF  is less than 1IPF  and frequency changes 
in ascending-descending order, the signal modulation is 
declared as LFMad. When 1IPF  is greater than 2IPF  and 
frequency changes linearly, the signal modulation is declared 
as LFMd. If 1IPF  is less than 2IPF and frequency changes 
in descending-ascending order, the signal is declared as 
LFMda. Above mentioned LFM signals frequency profile is  
illustrated in Fig. 6.

Table 3. Confusion matrix of modulation identification at SNR of -2 dB

Declared MT ->
Set MT (Below) NMCW FMCW NMOP LFM NLFM SFM BPM

NMCW 99% 1% - - - - -
FMCW 5% 95% - - - - -
NMOP - - 99% - - - 1%
LFM - - - 94% 4.5% 1.5% -
NLFM - - - 3.5% 95% 1.5% -
SFM - - - 0.5% 0.5% 99% -
BPM - - 4% 2.5% 1.5% 1% 91%

Table 1.	R epresentation of bit-pattern for modulation type 
(MT) and modulation parameter (MP)

MT 
code

Bit-pattern for 
MT MP

B2[3:0] B1[15:12] B1[11:8] B1[7:4] B1[3:0]
NMCW 0001 0000 0000 0000 0000
FMCW 0010 FMR (KHz) FD (MHz)
NMOP 0011 0000 0000 0000 0000
LFMa 0100 0000 0000 ACR (MHz/us)
LFMad 0101 DCR (MHz/us) ACR (MHz/us)
LFMd 0110 DCR (MHz/us) 0000 0000
LFMda 0111 DCR (MHz/us) ACR (MHz/us)
NLFMf 1000 0000 0000 0000 0000
NLFMr 1001 0000 0000 0000 0000
SFMa 1010 0000 0000 No. of Steps
SFMd 1011 0000 0000 No. of Steps
BPM 1100 BPM Code

Table 2. Detection performance of modulation identification

Modulation 
type

Proposed algorithm 
with moving 
autocorrelation

Proposed 
algorithm with 
DIQ technique

Correct 
identification

NMCW -2 5 99
FMCW -1 7 98
NMOP -2 6 99
LFM 0 7 98
NLFM 1 8 98
SFM -2 5 99
BPM 1 8 97

The confusion matrix is extracted from the detection 
performance at SNR of -2 dB for the proposed algorithm 
with moving autocorrelation as shown in Table 3. The result 
shows the detection performance with 99% accuracy at -2 dB 
SNR for NMCW, NMOP and SFM signals. The probability of 
correct identification is dropped below respective SNR of all 
modulations. The different modulations are compared for the 
SNR required for set modulation and declared modulation.

Minimum SNR required using moving autocorrelation 
technique and DIQ technique is 1 dB and 8 dB respectively 
to process all types of modulated signals. Based on this, the 
sensitivity achieved is -87 dBm and -80 dBm using proposed 
algorithm with moving autocorrelation technique and DIQ 
technique, respectively.

Once the type of modulation is found out, their parameter 
is also estimated like slope in the case of LFM, which is known 
as chirp rate in MHz/us. Similarly, the number of steps and 
BPM code are the parameters in the case of SFM and BPM 
respectively. Both modulation type (MT) and modulation 
parameter (MP) are represented using five nibbles in Table 1. 
Each MT is bit encoded and represented by one nibble, 
whereas, MP is represented by four nibbles. In Table, frequency 
deviation, frequency modulation rate, ascending chirp rate 
and descending chirp rate are represented as FD, FMR,  
ACR and DCR.

4.	 Simulation Results
	In this section, simulation at various SNR is presented 

to demonstrate the effectiveness and performance of the 
proposed decision tree algorithm for modulation identification. 
The input signal is generated with widely used additive white 
Gaussian noise (AWGN). A similar signal is used in the 
simulation for computing instantaneous frequency profile using 
moving autocorrelation31 and DIQ techniques for 
generating results for various signals.

	The detection performance of modulation 
identification is given in Table 2. An extensive 
simulation is carried out to test the performance. 
Total of 400 different signal sequences are 
generated to test each modulation. All types of 
modulation have been verified and the result is 
tabulated. The different modulations are identified 
at various SNR using the proposed algorithm with 
moving autocorrelation technique and proposed 
technique with DIQ technique.

Figure 6. LFM signals frequency profile.

lfma lfmd

lfmdalfmad
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The comparison of this work with other similar works is 
not reasonable because the frequency domain techniques get 
the inherent processing gain. But they suffer from PW and PRI 
measurement accuracies. The minimum PW measurement is 
restricted to the number of FFT points and its percentage of 
overlapping. Whereas, the proposed time-domain technique 
measures the minimum PW of the order of 50 ns. The fact 
of the matter is that lower PW does not have the modulation 
but still, any processing method should meet all basic system 
requirements along with critical requirements. 

	Classification of modulation27-28 presented are based on 
the frequency domain processing and they are implemented on 
DSP processor for ELINT applications. Due to the limitations 
of the number of MACs in the DSP processor these techniques 
are not suitable for tactical operations. The proposed decision-
tree algorithm is implemented on FPGA hardware which 
provides real-time performance.

5.	 Implementation On FPGA Hardware 
	The proposed algorithm is implemented with a system 

generator using Xilinx Vivado 2016.4 tool as shown in Fig. 7. 
The Xilinx device selected is Virtex-7 XC7VX415T FPGA. 
The synthesis is carried out for netlist generation, mapping for 
exact mapping of components, place and route is carried out. 

	The utilisation summary is compared for various FPGA 
resources with the existing DIQ technique and shown in  
Table 4. Mainly, DSP resources are utilised very less in the 
proposed algorithm with moving autocorrelation technique 
compared to the proposed algorithm with DIQ technique as no 
filter implementation is required.

The simulation result using the proposed algorithm is 
shown in Fig. 8 for the LFMad signal. The same input data is 
used which was used for Matlab simulations. Only two pulses 
data along with pre and post region is shown to facilitate the 
simulation. The Mod_Type code can be cross verified as 0x5 
(i.e. 0101) with Table 1 for the LFMad signal. This code is 
generated after 8 clock cycles from the end of the pulse.

Figure 7. Model generated using system generator.

Table 4. FPGA resource utilisation summary (Device: XC7VX415T)

FPGA resource 
utilisation

Proposed technique 
with moving 
autocorrelation

Proposed 
technique with 
DIQ technique

Savings 
in %

Slice F/Fs 2334 4353 46.38
LUT (4 inputs) 2883 4136 30.29
DSP48E1 12 42 71.43
Block RAM 300 300 -
Total power (mW) 546 782 30.18

Figure 8. Simulation result for modulation identification feature.
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6.	Con clusions
In this work, NMCW, FMCW, NMOP, LFM, NLFM, 

SFM and BPM modulations have been identified using the 
decision tree algorithm. This decision tree algorithm used with 
the moving autocorrelation approach is implemented in FPGA 
and identified all mentioned modulated signals at 1 dB SNR. 
Hence, a unique time-domain digital technique for modulation 
identification has been proposed.  The assumptions have been 
made that at any given point of time one modulation type is 
present in the input signal. The length of the input signal is 
assumed constant to generate a particular type of modulated 
signal in case of the pulsed signal. The advancement in signal 
processing algorithms, tied with high-performance hardware 
has enabled to improve the emitter identification and also to 
achieve a real-time performance. In the future, modulation 
identification work will be extended for additional signals and 
a combination of signals.
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Abstract 

 Space-based electronic intelligence system provides wide coverage and unrestricted access to adversary radar 
signals. These systems play a vital role in strategic intelligence gathering for assessing electronic order of battle. 
These systems need to be SWaP optimized with highly efficient algorithms to extract accurate radar parameters.  
The realization of such a system is a persistent challenge due to the limited availability of space graded components 
and associated tools. Towards this, the paper deliberates upon various signal processing algorithms to achieve highly 
accurate direction-of-arrival (DOA), high-frequency resolution and precise timing information for pulse width and 
pulse repetition frequency extraction. All the proposed algorithms have been implemented, ported and tested on Xilinx 
Kintex Ultra Scale FPGA KU060 and being evaluated in the radiation setups to establish the performance. High DOA 
accuracy and frequency accuracy of the order of 0.3 degree and 0.64 MHz respectively have been achieved.
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Nomenclature 
q	 Incident angle
ykl	 First-order virtual phase delay
yd	 Second-order virtual phase delay
f	 Radio frequency
d	 Antenna separation
dNL	 Distance between N and L antenna’s 
c	 Speed of light
l	 Wavelength 
l min	 Wavelength of the highest frequency
dd 	 Virtual antenna separation 
m	 Peak frequency bin
Sf	 Sampling rate 
M	 FFT number of points
p	 Interpolated peak location
A0	 Magnitude of peak bin 
A1	 Magnitude of previous peak bin
A2	 Magnitude of next peak bin

1.	 Introduction
Surveillance of radar signals is an important operation of 

electronic warfare (EW). It is having the significance for tactical 
as well as strategic use to form the electronic order of battle 
(EOB). In the modern EW scenario, space-based electronic 
intelligence (ELINT) systems playing a crucial role in gathering 
information of the global radar threat. They are also having the 
advantages of very wide coverage and an uninterrupted signal 
interception. The prime requirement of spaceborne systems is 
a small size, weight and power (SWaP). The digital techniques 
meeting the above requirements are preferred in designing 

spaceborne ELINT systems. The performance of these systems 
to be comparable with ground-based ELINT systems1-3.

Basic parameters of radar signals are frequency, 
pulsewidth (PW), power, pulse repetition frequency (PRF) and 
direction-of-arrival (DOA). To extract the information of radar 
signals the system configuration with new signal processing 
algorithms has been proposed.

The DOA of a radar signal is an important parameter 
because it can’t be camouflaged. This parameter can be 
exploited in many ways which include improving situational 
awareness, signal sorting or deinterleaving, prompt electronic 
attack measures (such as jammers) or electronic protection 
measures (such as chaff) and many more. Accurate DOA 
measurement is required with available space and resources. 
There are many contemporary directions finding methods that 
are suitable for implementation in microwave radar intercept 
receivers such as rotary direction finding (RDF), amplitude 
comparison direction finding (ADF), time difference of arrival 
(TDOA), phase difference of arrival (PDOA) and frequency 
difference of arrival (FDOA). The PDOA is also known as 
interferometry4-5.

The baseline interferometry (BLI) approach based on 
four antennas is used to get less DOA error6-7. But the system 
designed using this approach will have more weight because 
of the requirement of 4 antennae, 4 channel down-conversion, 
analog-to-digital converters (ADC) and processing blocks. 
When processing elements are more the power consumption 
also will be more. Finally, size also increases based on the 
number of antennae and processing elements. Practically, 
three different types of antennae are required for coverage 
of 0.5 GHz to 18 GHz band which requires 12 antennae for  
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azimuth coverage alone. Similarly, 12 more antennas are 
required for coverage of elevation. The requirement of 
hardware increases as per system design. 

A virtual antenna based BLI algorithm using three 
antennae and three-channel receiver are proposed for DOA 
extraction. The hardware requirement is further optimized with 
a common master antenna for azimuth and elevation. Measured 
DOA root-mean-square error (RMSE) using virtual 3 antennae 
based BLI is more compared to 4 antennae based BLI. This 
is compensated by using a noise cancellation technique on 
digitized intermediate frequency (IF) data. Smallest virtual 
antenna distance also can be increased beyond λmin/2 due to 
less field-of-view (FOV) requirement of space ELINT system 
which improves DOA RMSE. 

The frequency-domain detection based on FFT itself is 
frequently used in digital receivers8. Frequency extraction is 
proposed based on the FFT interpolation. Overlapped FFT 
is used to get the pulse width and pulse repetition interval 
accuracy advantage. But still, it is difficult to get the advantage 
equivalent to time-domain processing9. Moving autocorrelation 
algorithm is used to extract pulse repetition interval and pulse 
width10. Emitter identification is effective if parameters are 
measured accurately11-12.

2.	 Proposed Algorithms
The space ELINT receiver configuration is shown in 

Fig. 1. It uses three-antenna array in virtual BLI formation  
followed by three-channel superhet receiver. Three-channel 
ADC does the digitization of all three IFs signals which are 
down-converted by the superhet receiver. In this, various 
algorithms are applied to extract the pulse descriptor word 
(PDW) of the signal.

Virtual antenna based BLI algorithm for DOA extraction, 
FFT based interpolation algorithm for frequency extraction 
and autocorrelation algorithm for amplitude, PW and PRI 
extraction are employed. Amplitude is used for pulse detection. 
All proposed algorithms are described as follows. 

programmable gate arrays (FPGAs) and digital computing had 
led to the development of high fidelity digital receivers. With 
modern technologies, the implementation of phase-coherent, 
multi-channel digital receivers have become increasingly more 
cost-effective. Furthermore, the flexibility of digital computing 
has allowed the implementation of higher performance 
algorithms compared to traditional analog counterparts. The 
interest to use, digital interferometers are increased in recent 
years to provide fast and accurate DOA estimate for military 
ES and ELINT systems.

The ELINT receivers are intended to provide early 
warning to the presence of radars. They are generally positioned 
at large distances from the radar. The radar signal arriving at 
the ELINT receiver antenna array can, therefore be reasonably 
approximated as a uniform plane wave. Here 1, 2, 3 …, N are 
the antennas, q  is the intercept angle and dNL are distances 
between antennas.

The DOA of the signal is estimated as below, by estimating 
the frequency and phase delay of the signal between the two 
antennas outputs. 

1 ˆˆ sin
2 d

− yl =  


q
π

                                                            (1)

where wavelength /c fl = . The baseline of the interferometer 
is often referred to as antenna separation d. The accuracy of 
DOA estimate can be improved by one of the factors such as
•	 Increasing the SNR of the signal, 
•	 Increasing the signal duration (number of samples), 
•	 Increasing the signal frequency, 
•	 Operating closer to broadside, and 
•	 Increasing the antenna separation.  

The first three parameters can be changed by the radar 
as the parameters of the radar are beyond the control of the 
ELINT receiver. 

Higher baseline Interferometers are designed to achieve 
higher DF Accuracy. The most popular ambiguity resolution 
method is based on the Chinese remainder theorem (CRT) 
and requires appropriately chosen interferometer baselines13-14. 

For larger aperture, unambiguous DOA estimates can 
generally be obtained with fewer intermediate baselines 
than the short baseline ambiguity resolution method. 
Figure 2(a) describes a simple set of interferometer  
baselines comprising 4 antennas whereas Fig. 2(b)  
describes an extended set of interferometer baselines 
comprising of 4 antennas15. The longest baseline d41 
provides the best DOA estimation.

DOA accuracy is further increased with more number 
of baselines i.e. antenna. To process more number of antennas 
either parallel processing to be carried out that will increase 
the system hardware and system power or more switching to 
be done which decreases the probability of intercept (POI) 
of the radar signal. The effort has been to achieve higher DF 
accuracy using three channels per Antenna system with certain 
constraints such as a decrease in FOV and lesser phase margin 
than earlier configuration and also use of noise cancellation 
before computing the DOA.

The first constraint is possible to resolve by changing 
the path of the space vehicle during the predefined mission. 

Figure 1. Space ELINT receiver configuration.

2.1	 Virtual Antenna based Direction of Arrival 
Extraction
One advantage of Interferometry is that very accurate 

phase measurements can be obtained with digital hardware at a 
moderate sampling rate and so high accuracy DOA estimate can 
be obtained with shorter baselines and without the demanding 
timing constraints. Modern digital Interferometers achieve 
sub-degree accuracies. Interferometry exploits the propagation 
phase delay between two spatially alienated antennas to estimate 
the DOA of a signal. In recent decades, the advent of high-speed 
analog to digital converter (ADC), high-performance field 
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Whereas the phase errors are minimized by choosing the good 
hardware component which is reliable for a particular phase 
margin of the algorithm so that it could not give wrong DOA 
estimates. 

Based on the above constraint, there is an alternative 
interferometric algorithm Virtual Baseline Interferometer 
(VBI) which is based on a second-order difference array16. This 
VBI is computationally as fast as a conventional interferometer 
and also provides unambiguous DOA estimation using two 
long baselines. 

Figure 3(a) describes the concept of the Virtual Baseline 
Interferometer, where only 3 antennae are required. The 
ambiguous first-order phase delays for d21 and d32 baselines i.e. 

21y  and 32y  respectively are derived as below using Eqn (1),

21
21 s n2 id

y
l
π

= q                                                           (2)

32
32 s n

2
i

d
y

l
π

= q                                                           (3)

It is assumed that d32>d21 and 32 21 min / 2d d> l  where minl  
corresponds to the wavelength of the highest frequency of 
interest. The long baselines suggest that the phase delays are 
highly ambiguous. The second-order phase delay dy , can be 
calculated as the difference between the first-order delays using 
Eqns. (2) and (3), 

32 21
32 212 (

sin sin
) 2d d d

d
dy = y −y = q = q

l l
π − π               (4)

where, 32 21d d dd = − , this is equivalent to the creation of 
antennae virtual pair with a baseline of dd as depicted in  
Fig. 3(b).	

This virtual baseline phase delay can be unambiguous 
provided that the baseline is sufficiently short. It means, that 
it satisfied the following constraint, min0 / 2dd< ≤ l . The 
unambiguous estimate of DOA of the signal using the basic 
interferometer equation is written as 

1 ˆˆ sin
2 d

−

d

y l
=  


q

π
                                                           (5)

The RMS error of the virtual baseline interferometer 
is expected to be degraded compared to the first-order 
interferometer with a physical baseline dd . It is attributed to 
the fact that three antennae outputs are used to estimate the 
phase delay of a virtual two antenna interferometer. The extra 
antenna output is expected to introduce more noise to the 
phase delay estimation and hence lead to a reduction in DOA 
estimation performance. This error can be reduced by using the 
longest baseline of the antennas array. The Eqn (5) is limited 
to a virtual short baseline of dd and does not take advantage of 
the higher accuracy offered by the longer physical first-order 
baselines i.e. d21, d32, or d31. The longest first-order baseline 
d31 offers an improvement in the DOA estimation by a factor 
as below: 

Improvement 313 *( )d dd=                                         (6)

	At 6 GHz with d21 = 45 mm, d32 = 52.5 mm and hence 
d31 = 97.5 mm the DOA RMSE achieved is 13.7981° using 
virtual smallest baseline ( dd ). Whereas, DOA RMSE achieved 
is 0.6427° using the longest baseline (d31). The factor of 
improvement using the longest baseline is 21.4679. The 
theoretical factor of improvement is 22.516 using Eqn. (6). 
This shows the factor of improvement is approximately 
matching the theoretical value. The range for 6-18 GHz is 
0.2102° to 0.6432° using 3 antennas. Hence, this method 
provides comparable results with a less number of antennas, 
and hence it is an SWaP optimized approach.

2.2	 Frequency Extraction
Fast Fourier transform (FFT) is used frequently to 

estimate the frequency of the signal. The FFT number of points 
is limited due to computational requirements. This restricts 
the frequency resolution of the FFT. The number of points is 
selected as a trade-off between the collected data for processing 
and the frequency resolution or frequency accuracy. The higher 
FFT number of points provides fine frequency resolution and 
accuracy which is hardware intensive and consumes more 
power.  

Here Curve Fitting or Interpolation technique has been 

Figure 2.	 (a) A simple set of interferometer baselines comprising 
of 4 antennas and (b) An extended set of interferometer 
baselines comprising of 4 antennas.

Figure 3. (a) Virtual baseline interferometer comprising of 3 
antennas and (b) Physical interpretation of virtual 
baseline interferometer.

(a)

(b)

(a)

(b)
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used to achieve better frequency accuracy with less FFT 
number of points17-22. The frequency of each component is 
computed from their respective bin number in the spectrum 
with a resolution that depends on sample length. If the signal 
frequency is not the multiple of frequency resolution i.e. 

fS M , it will not fall on the peak. However, it will distribute 
near actual frequency and appear on several bins. In this 
case, the magnitudes of close by bins are used to estimate the 
actual signal frequency. The curve fitting using interpolation 
is used to improve the frequency resolution of the measured  
signal frequency component. Figure 4 shows the FFT frequency 
response for M points FFT spectrum. The x-axis represents the 
frequency bin and magnitude is represented by the y-axis. The 
location of the previous peak bin is represented as 1m − , peak 
bin as m and next peak bin as 1m +  of the spectrum. The 1A , 

0A , 2A  are the respective magnitudes. The center point at p in 
fractional bins gives us an interpolated peak location.

The proposed frequency estimation using the curve fitting 
interpolation method calculates the offset p in frequency bin m 
using the three maximum amplitude samples for high accuracy 
frequency estimation of the signal. 

	 The measured course frequency of the signal using FFT 
spectrum analysis is given as

2.3	 Pulse width and Time of Arrival Extraction
	Measurement of time of arrival (TOA) is a critical 

parameter of the ELINT system. The accuracy of TOA 
determines the accuracy of PW and PRF. In the digital domain 
traditionally, FFT based approach is used to measure this 
parameter. But the TOA resolution is limited by the FFT 
size. The autocorrelation approach is used extensively to 
overcome this limitation. This technique requires in-phase 
and quadrature-phase data and carries out autocorrelation to 
find out TOA. The TOA resolution is improved to the order 
of the basic clock. This technique is optimized towards the 
least possible resource consumption without compromising 
the sensitivity and dynamic range of the ELINT system. 
This approach has been proposed for TOA, PW and PRF  
measurements10.

3.	 Simulation Result and Discussions 
Three antennae based BLI algorithm is implemented 

in Matlab. The first ambiguous phase is converted into an 
unambiguous phase from the smallest baseline unambiguous 
phase. Measured AOA error and RMSE are shown for 
±45° FOV between 4 antennae and 3 antennae. These 
results are also generated using an experimental set-up 
for ±25° FOV. The simulation using noise cancellation 
technique is given for 3 antennae and comparison is shown 
without the noise cancellation technique. These results are  
shown below.

3.1	 Simulation Result for Direction of Arrival
The performance of the virtual baseline interferometer 

algorithm has been simulated for frequency band 6 - 18 GHz. 
The spacing between the antennas are d21 = 45 mm, d32 = 52.5 
mm. Using Eqn. (8) the 32 21d d dd = −  =7.5 mm. The distance 
d21 and d32 are chosen such that dδ < (λmin/2). The ambiguous 
phase for the d21 baseline and d32 baseline is shown in Fig. 5. 
Whereas dδ which is derived by virtual baseline interferometer, 
estimates the unambiguous phase shown in Fig. 6. 

Figure 7 shows the simulation results for error at 6 GHz 
between set AOA and measured error and RMSE for 6 GHz to 
18 GHz with ±45° FOV. It is evident that the simulation result 
of 4 antennae is better compared to 3 antennae interferometers. 
This is obvious as RMSE measured using the smallest physical 
antenna gives an advantage of √3 times RMSE for the smallest 
virtual antenna. 

Figure 4.	 FFT frequency response with curve f i t t ing 
interpolation.

 Course Frequency *( )fm S M=                                  (7)
The frequency bin offset or peak location computed using 

interpolation is given in bins by

1 2

1 2 0

( )
2( 2 )

A Ap
A A A

−
=

+ −
                                                     (8)

The estimated frequency bin is measured as

PeakEstimatedBin m p= ±                                            (9)

And estimated frequency is measured as

( )*( )fFrequencyEstimated m p S M= ±                   (10)

	The sufficient fractional number of bits is to be allocated 
for p to get the more advantage of estimation for hardware 
implementation. Accordingly, the number of bits allocation for 
m is also increased. Figure 5.	 Ambiguous phase for (a) d21 (b) d32 baseline at 18GHz 

with FOV = ±45°.

(a) (b)
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	 Figure 8 shows the experimental result generated for 
±25° FOV. The phase data is collected in radiation mode. 
The transmission set-up was kept at a 20 meter distance at the 
same height as the receiver BLI antennae. The experimental 
result shows the improvement compared to simulation results 
as shown in Fig. 7. This is because, the simulation results 
are generated with a maximum allowable phase error. This 
performance improvement is attributed to the effects of hardware 
perfections for space-qualified components. The experimental 
result is generated for ±25° FOV which is sufficient for the 
ELINT system for space application.

Figure 9, shows the experimental result for 3 antenna 
interferometer with ±25° FOV. This result is generated without 
and with Noise Cancellation technique10,23. The system noise 
of 200 frames is captured and computed 256 points FFT. 
This is carried out when input is connected to BITE port and 
BITE is in signal OFF condition. The estimated average of 
the noise spectrum is computed for all frames. In system ON 
condition when input is connected to antenna port and the 
signal spectrum is computed continuously which is noisy. The 
estimated noise spectrum is subtracted from the noisy input 
signal spectrum and an instantaneous magnitude spectrum is 
computed which is called a restored signal. Again restored 
time-domain signal is computed by inverse FFT. The SNR 
of 4 to 5 dB is improved when the signal is passed through 
this. This result shows that 3 antenna interferometer provides 
comparable results with 4 antenna interferometer. It shows, 
on reducing one antenna alone approximately one-fourth of 
hardware is reduced. Usually, to cover a complete 0.5 to 18 
GHz band three different types of antennae are required. With 
3 antennas approach, a total of 9 antennae covers complete 
band instead of 12 antennae. Hence, the further reduction will 
be there in processing electronics also.

3.2	 Simulation Result for Frequency Extraction
The simulation for frequency estimation is carried out 

in MATLAB for 256 points FFT. The sampling frequency 

Figure 9.	 Experimental result with FOV = ±25° for 3 
antenna.

Figure 6.	U nambiguous Phase for (a) dδ (b) d21 (c) d32 (d) d31 
Baseline at 18 GHz with FOV = ±45° using Virtual 
Baseline Interferometer.

Figure 8.	 Experimental result with radiation set-up and FOV 
= ±25° (a) Set AOA vs error and (b) Frequency vs 
RMSE.

Figure 7. Simulation result with FOV = ±45° (a) Set AOA vs 
Error and (b) Frequency vs RMSE.

for bandpass sampling of ADC is chosen as 1.333 GHz. The 
performance is validated for various power levels and pulse 
widths. The step size of 0.5 MHz is chosen to vary the frequency 
of the input signal and frequency measurement RMS error is 

(a)

(c)

(b)

(d)

(a)

(b)

(a)

(b)
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calculated. The input frequency of 1200 MHz and a pulse 
width of 200 ns are chosen for MATLAB simulation. The 
measured frequency error is 2.3828 MHz using normal FFT 
analysis whereas, the measured frequency error is 0.5218 
MHz using the frequency estimation algorithm.

Figure 10 shows the MATLAB simulation output of 
256 points FFT. The measurement frequency RMS error 
is computed in this simulation for the frequency range of 
1200 to 1220 MHz. The measured frequency RMS error is 
1.4905 MHz and peak frequency error is 2.5313 MHz using 
normal FFT analysis. Whereas, the measured frequency 
RMS error is 0.6399 MHz and peak frequency error is 
0.9179 MHz using the frequency estimation algorithm.

4.	 FPGA Implementation 
Three antennae based baseline interferometry and 

frequency estimation approach is implemented in field-
programmable gate array (FPGA) using Xilinx system 
generator. The system generator design is given in Fig. 
11. FFT of 256 points is computed on all three channels 
and phase is computed. The phase difference is computed 
using the phase of each channel and DOA is measured. In 
one of the channel frequency interpolation is implemented. 
The detection is carried out on the instantaneous amplitude 
profile which is computed from the same antenna channel. 
The PRI and PW are also computed using the instantaneous  
amplitude profile. 

The design is implemented on the Xilinx Kintex Ultra Scale 
FPGA XCKU060-FFVA1517 which is footprint compatible 
with radiation tolerant device XQRKU060-CNA1509. The 
resources are compared with the four antennae based BLI 
approach and mentioned in Table 1.

Table 1.	 Resource comparison (Xilinx FPGA: XCKU060-
FFVA1517)

FPGA resource 
utilisation

3 Antenna 
based proposed 

approach

4 Antenna 
based

approach
Savings 

in %

Registers 16567 21355 22.4
LUTs 12893 16283 20.81
36 Kb Block RAM 757 1026 26.21
18 Kb Block RAM 1532 2042 25.02
DSP48 Slices 40 50 20.0
Total Power (mW) 16464 21152 22.16

5.	 Conclusions 
It is evident from proposed approaches that there is an 

improvement in resolution and accuracy of measurement 
for various parameters direction-of-arrival, frequency etc. 
with fewer hardware resources.  In case of direction finding, 
less number of front ends and antennas combinations can be 
realizable in the system that provide RMS DOA error of less 
than 0.3 degree with less weight and small size which is the 
requirement of space platform. The frequency measurement 
accuracies achieved is less than 0.6399 MHz RMS with 
this approach against 1.4905 MHz RMS with simple FFT 
spectrum analysis using 256 points FFT. The autocorrelation Figure 11. System generator design.

Figure 10.	(a) Set Frequency vs Measured Freq (b) Set Frequency vs 
RMS Error for 256 Points FFT.

(a)

(b)
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with FFT combination approach improves the PW and TOA 
measurements that can be measured with high accuracy 
with very few resources. It also helps to reduce the power 
consumption which is high in today’s system.

Apart from the measurement of the basic parameters, there 
is more scope in the future to measure the more complicated 
parameters like intra-pulse modulation parameters information 
of radar. These measurement techniques will be helpful for 
realizing a better ELINT system based on a digital receiver for 
space applications.
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Abstract

Radar identification is one of the vital operations in an electronic intelligence system. The conventional methods 
based on basic parameters comparison of unique identification of a radar in a cluster of similar radars, is prone to 
ambiguities. To meet the current tactical requirements of unique identification of a radar, the methodology needs to 
be based on better feature extraction, even in low SNR conditions. The paper explores a novel technique based on 
moving autocorrelation for the extraction of intra-pulse and inter-pulse radar parameters. Extensive simulation and 
empirical studies have been carried out to establish the approach to extend accurate radar parameters in noisy and 
low SNR conditions. The technique is found to be promising even in field data conditions. The paper describes the 
methodology, simulation results, FPGA implementation using system generator and resource utilisation summary.
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Nomenclature 
x(n)	 Time domain signal
Xm 	 Restored signal spectrum 
Nm 	 Noise spectrum
Ym 	 Noisy signal spectrum
x(m)	 Restored time domain signal
m,n	 Index number
k 	 Bin number
qYk

	 Phase of the Frequency Spectrum
Fs 	 Sampling Frequency
F(n)	 Phase of the signal
DF(n)	 Phase difference
Fm (n)	 Multilevel Frequency

1.	 Introduction
The modern electronic intelligence (ELINT) system 

should be capable to identify radar signal emissions uniquely 
in a dense environment. The evolving radar technology, 
utilising frequency, pulse width (PW) and pulse repetition 
interval (PRI) agility requires complex signal processing 
techniques to facilitate unique emitter identification. The dense 
electromagnetic environment, with complex radar waveforms, 
results in pulse on pulse in radar signals being overlapped in 
time, frequency and azimuth. It poses serious challenge to 
ELINT reconnaissance process.

The efficient emitter identification system is vital which 
extracts distinctive and accurate intra-pulse and inter-pulse 
parameter to handle the above challenges. The radars of 
the same kind exhibit slight differences in their transmitted 
pulses1. The identification system needs to classify and identify 

similar radars i.e. radars of the same make and model using 
the unintentional intra-pulse parameters in addition to the 
intentional parameters. These extracted features constitute the 
finger print or signature of the radar. Based on signature of 
the radar, the decision making and correct identification of the 
radar can be established.

The intra-pulse parameters include frequency, amplitude, 
rise time, fall time, type of modulation for each pulse. As part 
of intra-pulse analysis, instantaneous variations in frequency, 
amplitude, phase and their first and second order statistical 
variations are computed2-4. Instantaneous frequency is an 
important parameter to describe the characteristics which 
changes with time. The identification was presented using 
various methods5-9. Michel & Adams10 presented the FPGA 
implementation aspects for radar system. Accurate measurement 
of parameters ensures the correct radar identification. 
Measurements carried out using proposed approach improve 
the identification as discussed5-9.

The conventional method of handling pulse on pulse 
signals is given based on extraction of basic parameters, 
viz frequency, PW and direction of arrival (DOA)11-12. This 
method is prone to ambiguities and often result in erroneous 
identification. To overcome this, the intra-pulse parameters of 
the radar also need to be extracted. With the advent of radars 
exhibiting agility in frequency, PW and PRI, there is a need to 
measure the intra-pulse group parameters. And also with the 
rapid deployment of LPI radars13-14, it is crucial to handle these 
radars and identify them correctly.

A better methodology is based on digital in phase and 
quadrature phase (DIQ) for intra-pulse analysis. This technique 
performs reasonably well for SNR conditions better than 12 
dB as demonstrated15. Pulse detection approach is discussed 
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which needs about 3 dB SNR16. Digital instantaneous 
frequency measurement technique is presented for frequency 
measurement17-20. However they measure the frequency with 
high accuracy at high SNR. But their performance is not good 
at lower SNR.

	This paper proposes for unique identification a much 
better methodology, in a low SNR condition of order of 0 
dB. The signal is preprocessed, prior to the extraction of 
parameters. As part of preprocessing, noise cancellation is 
employed for signal enhancement to improve the quality of the 
signal. Noise cancellation is done by estimating the noise from 
electromagnetic environment. The estimated noise magnitude 
is subtracted from the magnitude of noisy signal without 
affecting the phase to get restored signal21. Noise cancellation 
is applied on both in phase and quadrature phase components 
and restored signal is computed for both. Thereafter, moving 
autocorrelation with different delays is performed on the 
complex signal to further enhance the signal and reduces the 
effect of noise. Performing autocorrelation is computationally 
intensive. So, an efficient technique for implementation has 
been devised. The intra-pulse parameters so extracted are 
highly accurate even at low SNR conditions.

The efficacy of the algorithms has been tested with live 
radar data. The analysis has been conducted on different radar 
modes and different radar signals to verify the robustness of 
the features extraction algorithm. In subsequent section, the 
instantaneous measurement techniques based on autocorrelation 
alongwith noise cancellation and noise estimation, simulation 
results and implementation of FPGA hardware is discussed. 

2.	 Fine Grain Parameter Measurements 
Techniques
The accurate intra-pulse information amalgamated with the 

inter-pulse information of RF, PRI, PW and scan provides the 
comprehensive characterisation of the emitter thereby arriving 
at the fine grain parameters of each emitter, which are highly 
accurate and grain parameters of each emitter and stable for 
identification of the emitter. Intentional parameters are measured 
using time domain and frequency domain techniques. 

Figure 1 shows the block diagram of Fine Grain Parameter 
(FGP) measurement. The algorithms shown are applied on 
digitised baseband or IF signal and finally instantaneous 
amplitude profile, instantaneous frequency profile and fine grain 
parameters are generated using both autocorrelation approach 
and DIQ approach. The signal is also pre-processed using noise 
cancellation technique before applying these algorithms. Noise 
estimation is carried out for finding out the noise riding threshold 
which is used for pulse detection and FGP are measured. 

2.1	 Noise Cancellation
Subtraction of noise from the noisy signal is done to get 

a restored signal which reduces the SNR requirement at the 

input signal. Noise samples are collected from the system 
chain when front end is connected to built-in test equipment 
(BITE) port in signal off condition for minimum time of 50 us 
for better estimate. Then estimated average of noise spectrum 

mN  is subtracted from the noisy signal spectrum mY  to get 
estimate of the instantaneous magnitude spectrum of restored 
signal Xm.

m m mX Y N= − 	      	                                      (1)
	Restored time-domain signal ( mX ) is obtained by 

combining an estimate of the instantaneous magnitude 
spectrum of restored signal (with phase of the noisy signal), 
and transforming via an inverse discrete Fourier transform to 
the time domain21.
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	Noise estimate subtraction technique is applied to the 
input signal, to produce the output restored signal as shown 
in Fig. 2. The 66650 samples are taken for pre-trigger region 
which consists mainly noise and 8000 samples are taken 
for pulse signal which consists signal as well as noise. The 
additive white Gaussian noise (AWGN) is considered. It is 
visible in output restored signal that has reduced noise and 
thus helps in improving accuracy of further analysis. Restored 
signal is applied on both baseband signals of in-phase (I) and 
quadrature-phase (Q) components.

2.2	 Instantaneous Amplitude and Frequency 
Measurement
	Autocorrelation is performed on the baseband signal to 

reduce the effect of noise16. Thirty two samples autocorrelation 
is performed in a recursive way to reduce the computational 

Figure 1. Fine grain parameter measurement.
Figure 2. (a) Input at 1 GHz with 0 dB SNR and (b) Restored 

signal.

(a)

(b)
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requirement. Thirty two samples autocorrelation is selected 
to cater the minimum pulse width requirement of 50 ns when 
sampling time is 1.5 ns. Delay m is 1 in case of amplitude 
measurement. First element of thirty-two samples auto 
correlation is calculated as:

*(1) ( (1: 32). (1 : 32 ))X mean x x m m= + +                       (3)
where  *x  is a conjugate of x . It is implemented in recursively 
as below:

* *( 1) ( ) | ( 32). ( 32 ) | | ( ). ( ) |X n x n x n x n m x n x n m+ = + + + + − + 	
                    (4)

where n  varies from n  to the size of samples. This equation 
is further optimised by replacing first element of thirty-two 
samples auto correlation with fixed value:

(1)X a jb= + 			                          (5)
where a and b are constant values. This does not require the 
measurement of initial average of thirty-two samples auto 
correlation output. Measurement of frequency parameters 
involves calculation of autocorrelation variables with different 
delays using baseband signal. Four autocorrelation variables 

1X , 2X , 4X  and 8X  with four different delays m  = 
1, 2, 4 and 8 are calculated from the correlated signal with 
different delays. Multilevel phase differences are calculated 
from the correlated signals with different delays, which in 
turn are used to compute the frequency. Frequency ( 1( )F n ) is  
measured as:

1
(( )

2
)

s
nF n F D =  π 

F                                                        (6)

where Fs is sampling frequency and ( )nDF  is the phase 
difference derived from 1X . Now 1( )F n  measurement 
determines the zone in which phase belongs according to the 
following equation.

1( )
m

s

m nCeil FZ
F

 
=  

 
	  	                                       (7)

	Here unwrapping of phases which is required for complex 
signals is not required as different phases are calculated 
from auto-correlated variables with different delays and are 
mapped to appropriate zones which are obtained with the 
help of frequency 1( )mF n−

17-18. Likewise 2 ( )F n  serves as a 
guide for 4F  by determining the zone it should be merged to.  
Similarly, ( )4F n  determines the zone for 8F . The 
final frequency parameter ( )8F n  is based on the 
mapping of 8F .

( ) ( )( )2
2

s
m m m

F
F n n Z

m
 = DF + π π 

                 (8)

Using the improved instantaneous frequency, 
the various intra-pulse modulations. Bi-phase, quad-
phase and poly-phase signals are also classified. The 
instantaneous frequency is median filtered to suppress 
impulses caused due to the noise, but to retain the 
main trend. The standard deviation of the median 
filtered instantaneous frequency profile is utilised to 
differentiate conventional bi-phase and quad-phase 
signals from poly-phase signals.

2.3	 Noise Estimation
	Estimation of noise is done for pulse detection which 

reduces the computation requirement and storage requirement. 
Mean of the modulus of the noise samples are taken and 
approximate standard deviation is computed. The absolute of 
input signal samples ( )x n  are taken which makes all negative 
samples positive. The shape of probability density function 
(PDF) will be same but doubles the peak value.
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The Eqn. (9) shows standard deviation (s ) of signal  
( )x n  which is obtained by computing mean of noise.  Absolute 

value of signal ( )x n  is computed and multiplied with constant 
( )1 / 2k  and result ( 1s ) is derived as Eqn. (10) which is 
approximately equivalent to standard deviation of signal ( )x n
. Similarly, based on two point averaging also approximate 
standard deviation ( 2s ) is calculated using Eqn. (11). 
Constants 1k  and 2k  are decided based on minimum error. The 
random noise is computed and results are tabulated using both 
the approaches as shown in Table 1. Error is also computed 
with standard deviation. The error ( 1E ) computed is less than 
10% using first approach whereas error ( 2E ) is less than 20 
% using second approach. Usually, two level threshold is used 
which will have difference of 6 dB. Hence the first approach is 
appropriate as error computed is less and it is efficient also in 
hardware implementation.

2.4	D IQ Technique
Equations given below describes the DIQ approach for 

calculating instantaneous phase, frequency, and amplitude. 
The detection is carried out on this amplitude profile ( )R n  and 
pulse is detected.

( ) 1 ( )tan
( )

q nn
i n

−  
F =  

 
                                                   (12)

Table 1. Comparison of noise estimation approach

Iteration 
No.

Standard 
deviation

A

Approach-1
(s1)
B

Error-1
E1=A-B

Approach-2
(s2)
C

Error-2 
E2=A-C

1 5.825 5.296 0.529 5.593 0.232
2 5.784 5.343 0.441 5.339 0.445
3 4.852 5.305 -0.453 5.756 -0.904
4 5.567 5.281 0.286 5.838 -0.271
5 4.787 5.256 -0.469 5.598 -0.811
6 5.063 5.323 -0.26 6.008 -0.945
7 5.629 5.324 0.305 5.663 -0.034
8 5.276 5.196 0.08 5.576 -0.3
9 5.091 5.195 -0.104 6.023 -0.932
10 4.466 4.789 -0.323 5.213 -0.747
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( ) ( )
2

sF
F n n = DF π 

                                                  (13)

2 2( ) ( ) ( )R n i n q n= +                                                  (14)

There is a requirement of above 8 dB SNR using 
DIQ technique for instantaneous amplitude and frequency 
measurement of pulse.

A novel technique based on optimised autocorrelation 
and noise estimation has been developed to calculate accurate 
intra-pulse parameters and to overcome the effect of noise at 
low SNR conditions. It can be utilised for feature extraction 
and identification of LPI signals also. Using this technique the 
instantaneous amplitude and frequency parameters of a pulse 
can be measured with 0 dB.

3.	 Simulation Results
	The input signal generated at 0 dB and 9 dB SNR is plotted 

in Fig. 3. The same signal is used in simulation for generating 
autocorrelation and DIQ technique outputs.

	The envelope or instantaneous amplitude is computed 
using correlated signal ( )x n  at SNR conditions of 0 dB and  
9 dB which is plotted in Fig. 4. First the input signal is improved 
using noise cancellation technique. The envelope computed 
using DIQ technique is plotted in Fig. 5 at SNR conditions 
of 0 dB and 9 dB. It is observed from Figures, that there is 
a improvement of 9 dB to 10 dB in the correlated signal as 
compared to the DIQ technique.

	Figure 6 shows the instantaneous frequency output 
calculated from multilevel correlation coefficients and Fig. 7 
shows the instantaneous frequency output as computed from 
the conventional DIQ technique using the same input pulse 

signals at 0 dB SNR and 9 dB SNR. Frequency measurement 
accuracy of 500 kHz at 0 dB SNR has been achieved using the 
multilevel correlation technique as we see in Fig. 6. 

Improvement in frequency measurement accuracy with 
reduction in SNR requirement at the input is achieved in 
comparison with DIQ technique as observed through Fig. 7.	

Figure 3. Input signal at (a) 0 dB and (b) 9 dB SNR.

Figure 4.	 Amplitude profile using autocorrelation approach at 
0 dB and 9 dB SNR.

Figure 5.	 Amplitude Profile using DIQ approach at (a) 0 dB 
and (b) 9 dB SNR.

(b)

(a)

(b)

(a)

(b)

(a)
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	Figure 8 depicts the frequency accuracy with respect to 
SNR using both the techniques. This shows that autocorrelation 
technique is able to process the signal at 0 dB SNR, whereas 
DIQ technique fails. The DIQ technique requires the SNR 
more than of 9 dB.

	The field data is also introduced to check the efficacy 
of the proposed algorithms. The same data is used for 
DIQ approach and results are provided as shown in Fig. 
9. It is clearly evident from instantaneous amplitude and  

instantaneous frequency profiles generated using proposed 
approach having better results compared with DIQ approach.

4.	 Implementation On FPGA Hardware 
and Simulation Results
	Conventional and Proposed approaches are implemented 

using System generator, Matlab and Xilinx Vivado 2016.4 tools. 
The system generator models are generated as shown in Fig. 10. 
The design is implemented on Xilinx Virtex-7 XC7VX415T 
FPGA device. The synthesis for netlist generation, mapping, 
place and route is carried out. The comparison of FPGA 
resource utilisation summary is shown in Table 2. The overall 
requirements of resources are reduced in proposed approach. 
Total eight DSP48E1 component are required as proposed 
approach is having only two complex multiplications. Whereas 
DIQ approach requires more multiplications as it require low 
pass filters. 

Figure 9.	 Field data result using Autocorrelation and DIQ 
approach.

Figure 8. SNR vs frequency accuracy plot.

Figure 7.	 Frequency profile using DIQ approach at (a) 0 dB 
and (b) 9 dB SNR.

Figure 6.	 Frequency profile using autocorrelation approach at 
(a) 0 dB and (b) 9 dB SNR.

(b)

(a)

(b)

(a)

(a) Input Signal

(b) Instantaneous Amplitude (Autocorrelation Approach)

(d) Instantaneous Amplitude (DIQ Approach)

(e) Instantaneous Frequency (DIQ Approach)

(c) Instantaneous Frequency (Autocorrelation Approach)
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	Simulation result using proposed approach is shown in 
Fig. 11 at 0 dB SNR. Only pulse on time along with pre and post 
region is shown to facilitate the simulation for multiple pulses. 
Amp_Out shows the instantaneous amplitude profile which is 
clearly visible and Freq_Out is the instantaneous frequency 
profile. 

Table 2.	 FPGA resource utilisation summary (Device: 
XC7VX415T)

FPGA resource utilisation 
with max operating Freq.

Proposed 
approach

DIQ 
approach

Savings 
in %

Maximum clock frequency 
(MHz)

238.1 231.8 2.72

Slice F/Fs 2003 4052 50.52
LUT (4 Inputs) 2546 3799 32.98
DSP48E1 8 38 78.94
Total power (mW) 472 708 33.33

5.	 Conclusions
The proposed technique based on moving autocorrelation 

and noise estimation has significantly improved the 
measurement accuracy of intra-pulse parameters of 
instantaneous amplitude and instantaneous frequency at low 
SNR conditions. The scheme along with finger printing system 
has lead to a very efficient and accurate emitter identification 
system. The advancement in signal processing algorithms, 

coupled with high performance FPGA has enabled to improve 
the unique emitter identification and also achieves a real 
time performance. It is planned for real time modulation 
classification based on instantaneous frequency profile  
in future.
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Abstract :- In the modern battle field, due to proliferation of 

the similar radars growing demand for specific emitter 

identification. To identify these radars uniquely in real-time 

is a challenge to understand the deployment pattern. Present 

ELINT systems are required to decipher the exotic 

modulations on a pulse to pulse basis to achieve specific 

emitter identification of military radars. In this paper, 

instantaneous frequency profile is used to measure the exotic 

modulation and their parameter which includes linear 

frequency modulation (LFM) with bi-phase modulation 

(BPM) and stepped frequency modulation (SFM) with BPM 

along with other modulations. These modulation 

measurements contribute in de-interleaving of signals. The 

proposed algorithm is simulated in Matlab and results are 

verified with different signal-to-noise ratios. This algorithm 

is also implemented on FPGA to demonstrate real-time 

performance. 

 

Keywords - Intra-pulse analysis, de-interleaving, bi-phase 

modulation, linear frequency modulation, stepped frequency 

modulation. 

 

I. INTRODUCTION 

 

Various fire control and weapon locating radars operate 

nearby which makes the electronic environment very 

dense, especially in L and S bands. Measuring 

conventional parameters are not sufficient to distinguish 

them. Intra-pulse measurement with exotic modulation 

measurement is the requirement in the present scenario 

[1]. Electronic intelligence (ELINT) systems that are 

capable to measure this information will have an edge in 

the field. 

 

ELINT systems estimated many parameters which 

together are called pulse descriptor word (PDW) includes 

direction-of-arrival (DOA), radio-frequency (RF), pulse-

width (PW), time-of-arrival (TOA), etc. [2]. These 

systems do the intra-pulse analysis including modulation 

measurement of radar signals on a pulse-by-pulse basis 

using stored data to match the speed of processing 

hardware. Measurement of exotic modulation in real-time 

is a challenge along with other parameter measurements.  

 

The fast Fourier transform (FFT) technique is extensively 

used to detect the radar signals, measures the PDW. 

Although, these techniques provide a processing gain 

advantage but PW and PRI measurement suffers from 

inaccuracies of an order of one FFT frame length. One 

frame of accuracy is not sufficient to measure these 

parameters. To improve these parameters accuracies 

overlap FFT is one of elucidation. Still, the sample-by-

sample accuracy is a difficult task using this technique 

due to their high resources requirement in field-

programmable gate array (FPGA) platform [3], [4]. 

Hence, exotic modulation measurement in real-time is 

also not possible. Whereas, time domain techniques have 

limited use due to their limited sensitivity compared to 

frequency domain techniques [5]. 

 

In this paper time-domain based autocorrelation algorithm 

is performed. The sensitivity is improved by using noise 

cancellation along with this technique [6]. This provides 

the enhancement of gain which is comparable to the 

frequency domain technique. These techniques are 

capable of instantaneous measurements of frequency and 

amplitude which are used for measurements. These 

instantaneous measurements help to measure exotic 

modulations using proposed identification algorithms [7]. 

 

The de-interleaving based on the basic parameters (DOA, 

RF, PW, and PRI) is not very effective due to the dense 

environment where similar radars are operating in 

environment [8]-[11]. The exotic modulations and their 

parameters will be the supportive parameters for de-

interleaving in this case and similar radars can be 

segregated effectively.  

 

The proposed algorithm has been tested with different 

signal-to-noise ratio (SNR) conditions. In section-2, 

modelling of exotic signals is given. Proposed algorithms 

are specified in section-3. In section-4 simulation results, 

FPGA results, and discussions are presented 

 

II. MODELLING OF EXOTIC SIGNALS 

 

The signals with Linear Frequency Modulation (LFM), 

Stepped Frequency Modulation (SFM), and Bi-Phase 

Modulation (BPM) are modeled as below: 

(i) Linear Frequency Modulation (LFM): LFM ascending 

(LFMa) and LFM descending (LFMd) chirp signals are 

considered as LFM signals or Triangular FM. 

(a) LFMa signal generation is expressed as below [12] 

 



 

 

 

2 

                                 (1) 

 

for n = (-N/2), (-N/2)+1, …., -1. Where ϕ is the initial 

phase and α is the LFMa slope.  

 

(b) LFMd signal generation is expressed as below [12] 

 

                                (2) 

 

for n = 0, 1, 2,…., (N/2)-1. Where β is the LFMd slope. 

 

(ii) Stepped Frequency Modulation (SFM): SFM is 

expressed as below  

 

                           (3) 

 

for n=1, 2, 3, …, N. 

where, fh is the frequency of h
th

 step, and h = 1, 2, 3,…., 

H is the number of steps. Usually, H is in the sequence of 

2, 4, 8…. etc. SFM ascending and SFM descending 

signals are represented as SFMa and SFMd respectively. 

 

(iii) Bi-Phase Modulation (BPM): BPM signal is modeled 

as given by [12], 

 

                              (4) 

 

where, θ(n) = π(1-n) when the zero bits of the code 

sequences are sampled and θ(n) = θ, when one bit of the 

code sequence are sampled. The phase shift θ can be 0
0
 or 

180
0
 in the case of bi-phase modulation. 

 

The exotic modulated signals are modeled as below with 

the combination of above signals: 

(i) LFMa with BPM: LFM ascending with BPM exotic 

signal is generated below: 

 

                                     (5) 

 

(ii) LFMd with BPM: LFM descending with BPM exotic 

signal is generated below: 

 

                                     (6) 

 

(iii) SFM with BPM: SFM with BPM exotic signal is 

generated below: 

 

                                   
                         (7) 

 

III.PROPOSED IDENTIFICATION ALGORITHM 

 

The block diagram of the proposed ELINT system is 

given as Fig. 1. RF signals are down-converted to an 

intermediate frequency (IF) which is sampled by high-

speed analog-to-digital converter (ADC). IF signal is the 

matched output to the range of ADC. This will give a 

dynamic range advantage. Noise cancellation technique is 

employed to improve the SNR of the signal by subtracting 

estimating averaged noise from the signal. 

 

 
Fig. 1. Block Diagram of ELINT System. 

 

This enhanced signal is used to estimate the instantaneous 

amplitude and instantaneous frequency. Instantaneous 

amplitude profile is generated based on the time-domain 

processing algorithm known as moving autocorrelation 

technique. This profile is generated on a sample-by-sample 

basis which is used for detection of the pulse and 

measurement of parameters. These parameters form the 

PDW words. Instantaneous frequency profile is also 

generated on the sample-by-sample basis using time-

domain processing known as multilevel autocorrelation 

technique. Modulation on the pulse is computed using an 

instantaneous frequency profile. When the pulse is 

detected, the frequency is noted at various points and these 

points are used for identification of modulation [7].  

 

The representation of flow diagram of proposed exotic 

modulation identification algorithm is given in Fig. 2. The 

proposed algorithm identifies the exotic modulation type 

(LFM with BPM and SFM with BPM) and their 

modulation parameters. Whereas the identification of 

other modulations are attempted using decision-tree 

algorithm [13]. 

 

 
Fig. 2. Representation of Flow of Proposed Exotic 

Modulation Identification. 

 

When a pulsed signal is detected and frequency 

modulation exists. If frequency is linear with an ascending 

trend and there is an abrupt change in frequency, the 

modulation will be declared as LFMa with BPM. 

Otherwise it will be declared as LFMa itself. Similarly, if 

frequency is linear with a descending trend and there is an 

abrupt change in frequency, the modulation will be 

declared as LFMd with BPM. Otherwise, it will be 

declared as LFMd alone. 

 

If there is stepped frequency in pulsed waveform exists. If 

frequency is stepped with an ascending trend and there is 
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an abrupt change in frequency within each step. It will be 

declared as SFMa with BPM. Steps with ascending trend 

and without abrupt change in frequency will be declared as 

SFMa. If it is found that frequency is stepped with the 

descending trend and there is an abrupt change in 

frequency within each step. It will be declared as SFMd 

with BPM. Steps with the descending trend and without an 

abrupt change in the frequency will be declared as SFMd. 

 

Conventionally, de-interleaving is performed based on the 

DOA, RF, and PW. On arrival of first PDW, first bucket is 

created with PDW parameter (DOA, RF, and PW). If the 

next PDW parameter (DOA, RF, and PW) falls within 

tolerance limit, they will be stored in the same bucket. If 

all three parameter (i.e. DOA, RF and PW) are not falling 

within the tolerance limit, another bucket will be created. 

Pulse repetition interval (PRI) is the derived parameter 

which is computed from time-of-arrival (TOA) of each 

successive pulse. This is estimated after all the buckets are 

created for a time slice. 

 

     
 

Fig. 3.  Plot of Emitter Location Ambiguity versus 

Distance. 

 

Considering, the DOA error value of approximately 2 

degree in L and S bands. The tolerance of DOA will be ± 3 

times of RMS value. The total error will be 12 degree. 

This total DOA error will translate into 21 Km error in 

azimuth from 100 Km distance. It means target available 

at 21 Km apart, will be considered for same basket. Fig. 3 

shows the plot of emitter location ambiguity in azimuth 

versus distance. Similarly, the RF of 500 KHz and PW of 

20 ns RMS value will translate into 3 MHz and 120 ns 

tolerance window respectively.  

 

The other parameters are the modulation type and 

modulation parameter, which is used here for de-

interleaving. This helps to improve the de-interleaving and 

reduces the affect of DOA inaccuracies. If signals are 

coming from identical DOA within tolerance, having the 

modulation parameter for de-interleaving is precious. Fig. 

4 shows the representation of de-interleaving process. 

 

 
Fig. 4. Representation of De-interleaving Process. 

 

 

 IV.SIMULATION RESULTS AND DISCUSSIONS 

 

The instantaneous amplitude profile is generated for LFMa 

with BPM signal and shown as Fig. 5. These types of 

exotic modulated signals are found in ground based long 

range surveillance radars. The modulation information 

can’t be measured using amplitude profile which is evident 

from Fig. 5. 

 

 
Fig. 5. Amplitude Profile of LFMa with 13-bit BPM. 

 

The input signals are generated for various exotic 

modulated signals and their frequency profiles are 

generated. Frequency profile of LFM ascending with 

BPM, LFM descending with BPM, SFM ascending with 

BPM and SFM descending with BPM are shown as Fig. 6. 

 

 
Fig. 6. Frequency Profiles of Exotic Modulated Signals 

 

The exotic modulations were generated with different 

SNR and modulation measurement was carried out. The 

Success rate of the modulation recognition algorithm is 

shown in Table I. Total different 500 samples of data 

generated and results were captured. 
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TABLE I.  Success Rate of Modulation Recognition Algorithm 

Modulation 

Recognition 

Success Rate (%) # SNR (dB) 

3 2  1 0  -1 -2  -3 

LFMa with BPM 99.2 
98

.0 

97

.2 

95

.4 

93

.6 

90

.4 

80.

6 

LFMd with BPM 99.4 
98

.0 

97

.4 

95

.4 

93

.4 

90

.6 

80.

4 

SFMa with BPM 99.0 
98

.4 

97

.0 

95

.2 

93

.4 

90

.8. 

79.

6 

SFMd with BPM 99.2 
98

.6 

97

.0 

95

.4 

93

.6 

91

.0 

79.

4 

  

The proposed algorithm is implemented on Xilinx RFSoC 

evaluation board and modulation and their parameters are 

measured. The resource utilization summary is shown in 

Table II. The utilization was compared for proposed 

algorithms with autocorrelation technique and digital in-

phase and quadrature-phase (DIQ) technique [5], [7]. 

 
TABLE II.  Resource Utilization Summary (Device ZCU111) 

FPGA 

Resource  

Proposed Technique Saving 

in % with 

Autocorrelation 

with 

DIQ 

Technique 

Slice F/Fs 2434 4910 50.43 

LUT                       

(4 Inputs) 
2963 4328 31.54 

DSP48E1 22 52 57.69 

Block RAM 300 300 - 

  

IV.CONCLUSIONS 

 

The proposed algorithm of modulation identification is 

based on time-domain technique which identifies the 

exotic modulated signals i.e. LFMa, LFMd, SFMa, and 

SFMd with BPM. This technique is also implementable on 

FPGA as this technique consumes limited hardware 

resources. Such an idea to utilize modulation information 

will become a crucial parameter for PDW for better de-

interleaving of specific emitter identification having a 

group of similar radars operating in the proximity. 
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Abstract - Electronic Intelligence (ELINT) system provides 
significant advantages with enhanced range, high coverage, 
and portability. It has various challenges and is highly 
demanding. These systems should have a highly sensitive 
receiver with a capability to intercept, characterize and 
distinctly identify ground-based, shipborne, and airborne 
radars to meet the platform requirement. This paper 
describes an approach with low computations for real-time 
radar signal detection and pulse parameter estimation 
based on autocorrelation. The detailed feature extraction is 
carried out on the detected pulse data, leading to distinct 
identification of radar referred to as specific emitter 
identification. 

Keywords - Detection, parameter estimation, autocorrelation, 

sensitivity, pulse repetition interval, signal-to-noise ratio. 

 I.  INTRODUCTION 

The ELINT systems do the information gathering of signals 

emitted from radars. Modern radar systems transmit complex 

waveforms with low power [1]. Signal detection is an essential 

requirement of these systems at low signal-to-noise ratio 

(SNR).  

One of the important operations in electronic warfare (EW) is 

radar emitter identification. It is having significance for 

strategic use. To distinguish the emitters from the same class or 

same type in an increasingly dense environment is a 

challenging task for the ELINT receiver. Conventional radar 

identification is based on the basic pulse parameters angle-of-

arrival (AOA), radio frequency (RF), pulse repetition interval 

(PRI), pulse width (PW) are unable to characterize the nature 

of the emitter radar effectively. The extraction of radar signal 

fine features becomes an important task for the ELINT 

receiver. The extraction of fine features includes intentional 

and unintentional, followed by classification and identification 

is referred to as specific emitter identification [2]. The concept 

of specific emitter identification has evolved over the years and 

is an important aspect of ELINT and ES systems. It is a 

primary supplier of information to the pre-programmed 

libraries meant for countermeasures. The pace of technological 

advancement in the field of radars has been rapid. The 

challenge is to act against new, unknown, and adaptive radar 

threats. A high performance computing platform is needed to 

realize ELINT receiver coupled with signal processing 

capability.  

Many digital receiver configurations are used as part of ELINT 

systems. The requirement of hardware resources is varied 

based on their architecture and processing technique [3]-[5]. 

To realize such an ELINT receiver requires a lot of resources, 

solid-state memories. The signal processing approach is 

applied to the signal detection itself. It has become possible due 

to an availability of high speed, high density, signal processing 

intensive Field Programmable Gate Array (FPGA). Still due to 

the usage of low computational approaches requires fewer 

resources and minimizes the power requirement.  

This paper describes the various signal processing detection 
approaches for radar signal detection. The techniques are 
compared in terms of computations, resources, and speed. The 
optimum technique is elaborated along with its hardware 
implementation using FPGA. The performance benchmarks in 
terms of achieved PW, TOA accuracy, and SNR are also 
described.  

II.  VARIOUS TECHNIQUES FOR PARAMETER ESTIMATION 

It is very important to detect the radar signals in real-time and 

get accurate TOA and PW estimation in the field of electronic 

reconnaissance. The accurate TOA and PW estimation are pre-

requisites for measuring amplitude, frequency, phase, and other 

parameters using signal processing techniques. The accuracies 

of these parameters will directly affect the performance and 

efficiency in exploring the EM environment. 

Initially, the radar pulse has to be detected correctly to estimate 

the pulse parameters. The radar pulse has to be digitized and to 

be captured for detection. These are different ways by which 

pulse can be detected and parameters are estimated either in 

time-domain or the frequency domain. 

 

(a) Internal Trigger 

The intermediate frequency (IF) signal is the down-converted 

radio frequency (RF) signal. The trigger is called internal as it 

is generated based on the IF signal itself. The IF signal is 

digitized by high-speed analog to digital (ADC) converter. The 

internal trigger is high for the pulse on time. The trigger pulse 

is used to detect the pulse and IF samples during the pulse on 

time along with TOA are stored for further measurements.  
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(b) External Trigger 

The external trigger is generated based on log video. The log 

video is the logarithmic scale detector output of the IF signal. It 

indicates the envelope of the IF signal [6]. It covers the 

complete dynamic range of the IF signal. The trigger signal of 

a fixed level is generated if it crosses the threshold. 

In the above techniques, no signal processing is involved and 

hence no processing gain is achieved. These techniques do not 

require any kind of processing. The techniques below are 

based on signal processing and processing gain is achieved. 

(c) Digital IQ technique 

The following equations are described the standard digital IQ 
techniques for calculating instantaneous amplitude profile 
which is synthetic amplitude profile. This amplitude profile 
describes the envelope of the IF signal. 

𝑅(𝑛) = √𝑥𝑖
2(𝑛) + 𝑥𝑞

2(𝑛)                  (1) 

The trigger signal is generated based on the amplitude profile. 

But, it requires a signal-to-noise ratio (SNR) of more than 12 

dB. 

(d) FFT Based 

The 256 points FFT is computed continuously on the digitized 

IF signal. The FFT output is compared with the threshold and 

a trigger signal is generated. The trigger signal represents the 

pulse envelope of the IF signal. The output of FFT is 

generated with a 3 dB loss if at least half of the frame (i.e. 128 

samples) is full. The maximum delay of trigger signal to pulse 

IF samples will be two frames and each frame is with 256 

samples. So, the total of two frames of pulse IF samples is 

stored in FIFO to avoid the loosing of pulse IF data [7]. The 

FFT based detection gives the processing advantage compared 

to other techniques. But this technique requires more hardware 

resources compared to any other techniques. 

 

III.  PROPOSED AUTOCORRELATION BASED PULSE 

PARAMETER ESTIMATION  

 

The proposed approach is computationally efficient and 

occupies fewer FPGA resources. It also provides a detection 

advantage. It is performed on the signal x(n).  

 

The received signal is expressed in complex form as 

x(n) = Aej2πfntsej∅ + w(n)        (2) 
 

Where  Aej2πfts is the received signal, A is the signal 

amplitude, ∅ is the initial phase, ts is the sampling interval, f 

is the carrier frequency. w(n) is the sampled zero-mean, 

Gaussian additive white noise. 

The autocorrelation result is computed based on the absolute 

value of the pulse and according to the features of a digital 

wideband pulse. The autocorrelation function is given by [8], 

 

𝑆𝑛(𝑛) = ∑ |𝑥(𝑛 + 𝑖)| |𝑥∗(𝑛 + 𝑖 + 1)|𝑁−1
𝑖=0   

                  =∑ |𝐴2𝑒𝑗2𝜋𝑓𝑛𝑡𝑠𝑒𝑗∅ +𝑁−1
𝑖=0

                 𝐴𝑒𝑗∅𝑒𝑗2𝜋𝑓(𝑛+𝑖)𝑡𝑠  𝑤∗(𝑛 + 𝑖 + 1) +

                 𝐴𝑒−𝑗∅𝑒−𝑗2𝜋(𝑛+𝑖+1)𝑡𝑠 𝑤(𝑛 + 𝑖) +  𝑤(𝑛 + 𝑖)|          (3) 

 

Sn(n) can be updated by iterated means and can be easily 

implemented on hardware by using, 

𝑆𝑛(𝑛 + 1) = 𝑆𝑛(𝑛)+|𝑥(𝑛 + 𝑁)𝑥∗(𝑛 + 𝑁 + 1)| −
                        |𝑥(𝑛)𝑥∗(𝑛 + 1)|                                            (4) 

 

Fig. 1. Block Diagram of Autocorrelation based Parameter Estimation. 

 

Initial autocorrelation will be performed with length N 

samples. Then subsequently new autocorrelation output will 

be obtained by subtracting the first sample autocorrelation 

output and adding new sample autocorrelation to the 

correlation value. N samples autocorrelation is performed in a 

recursive way to reduce the computational burden. The block 

diagram of autocorrelation based parameter estimation is 

shown in Fig. 1. 

Autocorrelation output will be compared with a threshold to 

check for start of the pulse. If the start of a pulse is detected, 

then IF data will be stored and the time of arrival will be 

stored. N should be selected in such a way that it should detect 

minimum pulse width. As N increases noise reduction is 

improved. So a selection of N is a trade-off between minimum 

pulse width and noise suppression. Value of N, more than 16 

is optimum. The following equation is rewritten and simplified 

as below, 

 

𝑥(𝑛) = 𝑥𝑖 (𝑛) + 𝑗𝑥𝑞 (𝑛)          (5) 
 

𝑆𝑁(𝑛) = ∑ [𝑥𝑖(𝑛) + 𝑗𝑥𝑞(𝑛)][𝑥𝑖(𝑛 + 1) + 𝑗𝑥𝑞(𝑛 + 1)]𝑁
𝑛=0            (6) 

 

𝑆𝑁(𝑛 + 1) = 𝑆𝑁(𝑛) + [𝑥𝑖(𝑛 + 𝑁 − 1) + 𝑗𝑥𝑞(𝑛 + 𝑁 − 1)] 

           [𝑥𝑖(𝑛 + 𝑁) + 𝑗𝑥𝑞(𝑛 + 𝑁)] −  

         [𝑥𝑖(𝑛) + 𝑗𝑥𝑞(𝑛)][𝑥𝑖(𝑛 + 1) + 𝑗𝑥𝑞(𝑛 + 1)]          (7) 

 

𝑌𝑁(𝑛) = [𝑥𝑖(𝑛 + 𝑁 − 1) + 𝑗𝑥𝑞(𝑛 + 𝑁 − 1)]  

[𝑥𝑖(𝑛 + 𝑁) + 𝑗𝑥𝑞(𝑛 + 𝑁)]     (8) 

                  

𝑌1(𝑛) = [𝑥𝑖(𝑛) + 𝑗𝑥𝑞(𝑛)][𝑥𝑖(𝑛 + 1) + 𝑗𝑥𝑞(𝑛 + 1)]           (9) 

 

 𝑆𝑁(𝑛 + 1) =  
𝑆𝑁(𝑛)+𝑌𝑁(𝑛)−𝑌1(𝑛)

𝑁
                      (10) 

𝑆𝑁 (𝑛) is computed for every new sample. Here only four real 

multiplications are required for every new sample.  

 𝑆𝑁(𝑛 + 1) =  𝑘 +
𝑌𝑁(𝑛)

𝑁
−

𝑌1(𝑛)

𝑁
                     (11) 
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Proposed Approach vs FFT for detection 

In present days, FFT is frequently used for pulse detection. N 

point FFT requires (N)log2(N) complex multiplications. Total 

2K complex multiplications are required for 256 points FFT. 

Whereas, the proposed approach requires 512 multiplications 

for 256 samples are averaged. Minimum Overlapping of 75% 

is used to improve TOA accuracy but in that case total a 8K 

multiplications are required. The multiplications are 

performed in DSP48 slice of FPGA. Therefore, FFT requires a 

huge number of DSP48 slice operations whereas the proposed 

technique requires only 12 DSP slices operations for 1 sample. 

The TOA error in case of 75% overlapping also will be of the 

order of 64 samples whereas, 4 samples TOA accuracy is 

achieved with the proposed approach. 

Implementation  Architecture 

Autocorrelation is performed on the IF signal. The IF signal is 

then converted to in-phase (I) and quadrature-phase (Q) 

samples. The complex multiplication is performed to compute 

the autocorrelation. After complex multiplication is performed 

all real and imaginary values are added separately as shown in 

Fig. 2.  

Fig. 2. Complex Multiplication of 8 samples in single block 

 

Complex multiplication is computed based on “(6)”. The final 

correlation value is compared with the defined threshold and a 

trigger is generated when it crosses the given threshold value. 

Resource Utilisation and Performance Comparison 

The autocorrelation based pulse detection is implemented on 

the Xilinx Virtex-7 XC7VX415T FPGA using Vivado 2018.3 

tool. The summary of resource utilization is shown in Table I 

and the performance comparison is shown in Table II. Table II 

shows the proposed approach is appropriate compared to other 

approaches. 

TABLE I. RESOURCE UTILIZATION SUMMARY  

Resources 
FFT 

Approach 

IQ 

Approach 

Proposed 

Approach 

Slice F/Fs 4836 3965 1492 

LUT (4 Input) 3526 2380 1022 

DSP48E1 42 38 12 

Total Power (mW) 812 708 528 

TABLE II. PERFORMANCE COMPARISON 

Resources 
FFT 

Approach 

IQ 

Approach 

Proposed 

Approach 

Algorithm 

Complexity 
More More Less 

Hardware 

Requirement 
More More Less 

Processing SNR 

Requirement at 

Sensitivity 

8 dB 12 dB 4 dB 

Dynamic Range 

Achieved 
42 dB 39 dB 47 dB 

TOA Accuracy 64 samples 10 samples 4 samples 

PW Accuracy 64 samples 8 samples 8 samples 

Ability to 

measure 

Rise/Fall Time 

No Yes Yes 

Ability for  

Intra -pulse 

Modulations 

measurement 

No Yes Yes 

 

 

IV. SIMULATION RESULTS AND DISCUSSIONS 

The simulation is carried out using Xilinx Simulator tool for 
various pulse widths. It is varied from very narrow PW of 50 
ns to 1ms and trigger pulse is generated i.e. pulse is detected 
correctly. Fig. 3 to Fig. 5 depicts the trigger pulse generation 
for pulse widths 50 ns, 200 ns and 1 us. Simulation is shown 
for two pulses only due to visibility. Three sequential 
autocorrelations are performed to meet the input sample data 
rate and accordingly, three triggers are generated. Finally, 
based on the three triggers single trigger is generated.  
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Fig. 3. Trigger generation (Pulse detection) for PW of 50 ns 

Fig. 4. Trigger generation (Pulse detection) for PW of 200 ns 

Fig. 5. Trigger generation (Pulse detection) for PW of 1 us 

V.  CONCLUSIONS 

 
This paper describes the algorithm for signal detection based 
on autocorrelation which is more resistant to noise and 
computationally less intensive. The proposed technique has 
been implemented on the Xilinx Virtex-7 XC7VX415T FPGA 
which has DSP slices to carry out signal processing 
functionality. The efficacy of the technique has been tested for 
various Pulse Widths, under varying SNR conditions and 
modulated pulses. It has also been tested with real radar signals 
and results were positive with correct pulse detection and 
without false detection and missed detection. 
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Abstract - Fast Fourier Transform (FFT) is widely used in 
Electronic Intelligence (ELINT) systems for detection as well as 
for frequency measurement. Measurement of the frequency with 
high accuracy is a challenge within the trade-off of hardware 
resources, and without affecting other parameter measurements. 
In this paper, interpolation techniques are used at the output of N-
point FFT, and frequency is estimated. These techniques are 
implemented in Matlab and results are verified for the band of 
input frequencies. 

Keywords - Detection, FFT, Estimated frequency, Windowing, 

Interpolation, Curve fitting. 

 

 I.  INTRODUCTION 

 
Electronic Support (ES) and Electronic Intelligence (ELINT) 
are part of Electronic Warfare (EW) systems. These systems 
are used to detect, acquire, measure, and store the radar signal 
information for intention of tactical as well as to form the 
electronic order of battle (EOB). ES systems are required to be 
wideband to detect signals from the entire frequency band 
simultaneously. Whereas, ELINT systems are meant for high 
sensitivity to detect signals from a large distance. Electronic 
Attack (EA) systems are used to protect our resources by 
jamming action. Electronic Protection (EP) is the capability 
built into radar itself to protect radar systems against enemy 
jamming. EP and EA are also part of EW systems [1]. 

Various parameters are measured by ES and ELINT systems. 
These parameters form pulse descriptor word (PDW) which 
includes direction of arrival (DOA), radio frequency (RF), 
pulse width (PW) and pulse repetition interval (PRI), type of 
PRI, etc [2]. These systems measure the low probability radar 
(LPI) signals [3]. The LPI signals contain low power and 
modulations within the pulse. It becomes difficult to detect 
these signals due to these characteristics. 

Time-domain techniques have restricted use due to their less 
sensitivity compared to frequency domain techniques. The 
sensitivity is further improved if the noise-cancellation 
technique is used along with time-domain techniques [4]. 
These techniques are capable of instantaneous measurements 
of frequency and amplitude which are suitable for intra-pulse 

measurements [5-8]. But frequency domain techniques are 
commonly used to get their inherent processing gain. 

Digital receivers are configured based on Fast Fourier 
Transform (FFT) which is generally used in ELINT systems. 
Intermediate frequency (IF) signal coming from the front-end 
of systems is digitized using a high-speed analog-to-digital 
converter (ADC). IF signal is the down-converted output of the 
RF signal. FFT is used to detect the activity and measure the 
parameters. This provides the frequency resolution of fs/N  
MHz, where fs is the sampling frequency. Interpolation is 
required to perform to enhance the frequency accuracy. 

Frequency accuracy can be improved by increasing the FFT 
number of points. But more FFT number of points requires 
more multiplications and results in various processing 
complexities. To avoid this, interpolation is the correct choice 
to improve the frequency accuracy. This provides the 
advantage for detecting the radar pulses also. 

Four different interpolation techniques have been tested with 
the same input band of signal frequency to check the 
performance of each technique. In section-2, the interpolation 
techniques are discussed. The Matlab simulation results are 
given in section-3. 

 

II.  FREQUENCY ESTIMATION USING DIFFERENT 

INTERPOLATION TECHNIQUES 

 
IF signal is digitized at the fs of 1333 MS/s which is equivalent 
to 4fc/3, where fc is the centre frequency of the IF signal [9]. 
The IF signal is varied from 750 to 1250 MHz with fc of 1 GHz 
and bandwidth of 500 MHz. Demuxed 8 samples are latched 
into FPGA coming from ADC at the dual-edge clock rate of 
fs/4 MS/s. The total collection time for 256 samples is 
256*0.75 ns = 192 ns. The processing of 256 point FFT 
completes before next set of data arrives. Once the data is 
processed, it will be sent to the output stage of FFT. 
Interpolation is performed on this output data. Two parallel 
FFT engines and interpolation blocks are used and the real-
time performance is achieved. Both the FFT engines work in 
ping-pong mode. Fig. 1 shows the block diagram of 
interpolation technique. 
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Fig. 1. Block Diagram of Interpolation Technique. 

The FFT equation is given by 
  

  𝑆𝑝 = ∑ 𝑥(𝑛)𝑒−𝑗2𝜋𝑝𝑛/𝑁𝑁−1
𝑛=0      (1) 

         

where p=0,1,2,….,N-1. The limits of p can also be written as -

N/2 to N/2. The measured frequency is equivalent to p*fs/N 

where the spectrum is having the highest value for that peak 𝑝. 

Fig. 2 shows the FFT spectrum 
 

 

Fig. 2. FFT Spectrum 

Interpolation technique is used to improve the frequency 
accuracy without increasing the FFT number of points. 
Different techniques namely Rectangular window based, 
Hanning window based, curve fitting based and curve fitting 
when FFT is performed with Hanning window are used for this 
purpose. The frequency is estimated by all four methods. The 
FFT output spreads across the bins due to the presence of non-
coherent signal and white Gaussian noise. Since the input 
frequency or set frequency is not always the multiple of FFT 
resolution or least significant bit (LSB) of fs/N. The spectral 
component spreads and reported peak frequency will not be 
exactly the same as the set frequency. Amplitude is extracted 

from the spectrum at three different bins. The highest peak (S0) 

at bin p, the second highest peak (S1) at p-1, and third highest 

peak (S2) at p+1 is extracted from the spectrum. The delta bin 

which is away from the peak by ±δp is computed. The delta 
bin for the rectangular window is given by [10] 

 

𝛿𝑝 = (𝑆1 − 𝑆2)/(𝑆1 + 𝑆2)      (2) 

 

The delta bin for the Hanning window is given by [10] 

𝛿𝑝 = (2𝑆1 − 𝑆0)/(𝑆0 + 𝑆1)       (3) 

 

These techniques are similar to zero padding. The windowing 

methods don’t change the shape of the spectrum. But it 

provides a better estimation of the peak frequency. These 

techniques provide an accurate result when only a single 

frequency is available at the input signal. 

 

When S0 is very close to the main peak above two techniques 

are sensitive to noise. Under this situation, S1 and S2 are very 

close to the minima and noise may reverse their amplitudes. 

The peak will move in the wrong direction using the above 

equations. When the amplitudes of S1 and S2 are reversed then 

there will be more errors [10].  

 

Similarly, the delta bin can be written as using the curve 

fitting technique [11-13] 

 

𝛿𝑝 = (𝑆1 − 𝑆2)/(𝑆1 − 2𝑆0 + 𝑆2) (4) 

 
Finally, the estimated frequency is computed using the delta 

bin δp as (𝑝 +  𝛿𝑝 )*fs/N. 

Hanning window is applied on IF data and FFT is performed. 
Curve fitting technique is applied on FFT output to get the 

delta bin 𝛿𝑝 from “(4)”. The modified interpolation technique 
block diagram is shown in Fig. 3. 

Fig. 3. Block Diagram of Modified Interpolation Technique. 

 

III.  SIMULATION RESULTS AND DISCUSSIONS 

The input signal is generated for the band of input frequencies. 
The set frequencies are varied from 1100 MHz to 1120 MHz 
with the step of 0.5 MHz to check the accuracy of algorithms.  

Fig. 4 shows the frequency estimation using the rectangular 
window interpolation technique using 256 points FFT. The 
FFT frequency and estimated frequency versus set frequency is 
shown in Fig. 4(a). Fig. 4(b) shows the root mean square error 
(RMSE) versus set frequency for both FFT reported frequency 
and estimated frequency. Fig.5, Fig. 6, and Fig.7 show the 
result for Hanning window interpolation technique, curve 
fitting interpolation technique and curve fitting with Hanning 
window interpolation technique respectively. 
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Fig. 4. Frequency Estimation using Rectangular Window (a) Measured 
Frequency vs. Set Frequency and (b) RMSE vs. Set Frequency 

Fig. 5. Frequency Estimation using Hanning Window (a) Measured Frequency 

vs. Set Frequency and (b) RMSE vs. Set Frequency 

Fig. 6. Frequency Estimation using Curve Fitting (a) Measured Frequency vs. 

Set Frequency and (b) RMSE vs. Set Frequency 

Fig. 7. Frequency Estimation using Curve Fitting with FFT along with Hanning 
Window (a) Measured Frequency vs. Set Frequency and (b) RMSE vs. Set 

Frequency 

 

Based on the frequency accuracy error computed using 

different interpolation techniques the RMSE and peak error 

are calculated and tabulated as Table I and Table II 

respectively. It is found from the result that RMSE calculated 

from measured frequency using 256 points FFT is 1.528 MHz. 

In case of the rectangular window interpolation technique, 

Hanning window interpolation technique, Curve fitting 

interpolation technique, and Curve fitting interpolation 

technique with Hanning window the RSME is 1.0954 MHz, 

0.7969 MHz, 0.6561 MHz, and 0.0609 MHz respectively. The 

RMSE is lowest in the case of the curve fitting interpolation 

technique with the Hanning window. The peak error is also 

lowest 0.0820 MHz in the case of the curve fitting 

interpolation technique with the Hanning window. This 

performs equivalent to multiple times the number of points 

FFT results without interpolation. 

 
 

TABLE I. RMSE OF ESTIMATED FREQUENCY FOR INTERPOLATION 

TECHNIQUES 

 Interpolation 

 Technique 

RMSE (MHz)  # N Point FFT 

256  512  1024  2048  4096  

 FFT Measured 

 Frequency  

1.5280 0.7566 0.3702 0.1843 0.0916 

 Rectangular  

Window  

1.0954 0.5742 0.2929 0.1503 0.0765 

 Hanning Window  0.7969 0.4584 0.2467 0.1308 0.0681 

 Curve Fitting   

Technique (CFT) 

0.6561 0.3169 0.1573 0.0787 0.0402 

 CFT with 

Hanning window 

0.0609 0.0297 0.0148 0.0074 0.0038 
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TABLE II. PEAK ERROR OF ESTIMATED FREQUENCY FOR INTERPOLATION 

TECHNIQUES 

 Interpolation 

 Technique 

Peak Error (MHz)  # N Point FFT 

256  512  1024  2048  4096  

 FFT Measured 

 Frequency   

2.5977 1.2988 0.6094 0.3076 0.1567 

 Rectangular  

Window  

1.8745 0.9872 0.4832 0.2512 0.1309 

 Hanning Window  1.2722 0.7577 0.3982 0.2149 0.1148 

 Curve Fitting   

Technique (CFT) 

0.9051 0.4423 0.2197 0.1093 0.0545 

 CFT with 

Hanning window 

0.0820 0.0418 0.0209 0.0104 0.0052 

IV. CONCLUSIONS 

Simulation results of all four interpolation techniques are taken 
and their performance is compared.  The curve fitting 
interpolation technique gives the lowest RMSE compared to 
rectangular window, and Hanning window techniques. The 
RMSE is further improved when FFT is computed with the 
Hanning window and the curve fitting technique is applied. 
This technique is also implementable for real-time applications 
and hence it is useful for ELINT systems where better 
frequency accuracy is required. The estimated frequency is 
further improved if FFT points are increased. But for more 
number of FFT points, the data collection time, and processing 
time increases. Processing hardware should also support the 
resource requirements for implementation. 
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