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Abstract

This research work considers the problem of accurate estimation of radio frequency
(RF), pulse amplitude (PA), angle-of-arrival (AOA), and modulation on pulse (MOP) in the
background of its application to new generation electronic intelligence (ELINT) system. The
estimation algorithms for the above parameters must be computationally fast, highly accurate,

and will need to be implemented using digital hardware for processing.

The received signal is digitized and the signal is preprocessed before signal detection.
Noise cancellation using spectral subtraction is performed as part of preprocessing for
improvement of signal-to-noise ratio. Noise cancellation is carried out by estimating the
average noise from the electromagnetic environment. The estimated average noise magnitude
is subtracted from the magnitude of the incoming noisy signal without affecting the phase and
restored signal is obtained. It is applied on both in-phase and quadrature-phase channels and
restored signal is computed for both the channels. Then moving autocorrelation with different
delays is performed on the complex signal to further enhance the signal and reduce the effect
of noise. Autocorrelation is computationally intensive but an efficient technique is used for

implementation and an instantaneous amplitude profile is obtained.

Noise estimation with different delays are performed using amplitude profile and
signal is detected. The leading edge and trailing edge of the pulses are also detected using
amplitude profile for pulsed signal. Whereas, to compute an accurate instantaneous frequency
profile of the received signal the multilevel autocorrelation algorithm is proposed. This
frequency profile is used for modulation identification as the modulation information is lost in

the amplitude profile.

Three antenna-based virtual baseline interferometry is proposed as a suitable algorithm
for AOA estimation that meets the operational requirements of high altitude electronic
intelligence system. However, phase measurements ambiguity occurs in sparse array
geometries due to phase wrapping effects. Hence, phase ambiguities are resolved using the

extensive ambiguities resolution algorithms using three antennas.

A novel decision-tree algorithm based on the time-domain digital technique is
developed for the identification and classification of diverse radar intra-pulse modulated

signals in real-time. This includes no-modulation continuous wave (NMCW), frequency

il



v Abstract

modulated continuous wave (FMCW), no-modulation on pulse (NMOP), linear frequency
modulation (LFM), non-linear frequency modulation (NLFM), stepped frequency modulation
(SFM), and bi-phase modulation (BPM), LFM with SFM, and SFM with BPM. The proposed
algorithm is employed on instantaneous frequency profile and modulations are recognized in
real-time. The modulation type and modulation parameter are important for specific emitter
identification where similar radars are operating in a dense environments. Simulations are
carried out at various signal-to-noise ratio conditions and results are presented for modulation

recognition.

This thesis will introduce the noise cancellation technique to improve the signal-to-
noise ratio and signal estimation is carried out. Moving autocorrelation will be used to
estimate instantaneous amplitude profile and a multilevel autocorrelation technique will be
introduced for instantaneous frequency estimation. FFT-based frequency is also estimated
using interpolation techniques. The virtual antenna-based baseline interferometry for AOA
estimation using three antennas is proposed which is SWaP optimized. The decision-tree
algorithm for real-time modulation recognition will be used to estimate the modulation and
their parameters. The models for all the algorithms are developed using a system generator
and implemented in FPGA. These results are compared with existing digital in-phase and

quadrature-phase techniques.

Finally, AOA and MOP parameters are highly useful for specific emitter
identification. This will be able to identify emitters operating nearby frequencies in the

vicinity because MOP is expected to be different even for similar AOA of emitters.

Keywords: Autocorrelation, Noise cancellation, Digital in-phase quadrature-phase, Virtual

baseline interferometry, Modulation recognition, Decision-tree algorithm.
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Chapter 1

Introduction

This chapter aims to provide background, introduce electronic intelligence systems, the
importance of modulation identification, and motivation. The problem statement, objectives,
scope of work presented, and significant contributions have also been revealed in this chapter.
Finally, the thesis organization has been presented to give an overview of the individual

chapters.
1.1 Introduction

The research work aims to investigate fast and highly accurate modulation on pulse
(MOP), radio frequency (RF), and angle-of-arrival (AOA) algorithms that can be
implemented in ELINT systems for real-time electronic surveillance or electronic support
(ES). This will lead to the correct specific identification of emitters. Though the problem of
estimation of the above parameters has been studied extensively in radar, communication,
sonar, astrology metrology, it has specific application to the electronic support environment
that necessitate additional attention due to the specific and challenging operational

requirements of ELINT systems.

The AOA and MOP are the two important parameters to be estimated by ELINT
systems. The estimation of AOA is expected from any ELINT systems whereas the estimation
of MOP cannot be expected from all ELINT systems in real-time. Both the parameters are
exploited and in several strategic and operationally useful ways. However, due to a tradeoff
generally exists between accuracy and computational time of algorithms, the accurate
algorithm is chosen based on the balance between accuracy and high-speed. The research
work aims to investigate high accuracy, but possible sub-optimal, estimation algorithms for
AOA and MOP that are computationally fast and that are suited for real-time application for
radar ELINT systems.

AOA is the parameter that can’t be camouflaged by radar operators, and MOP is not

been identified by most of the intercept receivers in real-time. Both the parameters are helpful
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to identify specific emitters in a dense environment where radars with nearby frequencies are

operating simultaneously.

MOP identification has become an active area over the two decades. Various
researchers have proposed different techniques most of them are frequency domain techniques
which are based on spectral analysis. These techniques are useful for offline processing. The

details of this research area are described in the literature survey.

1.2 Background

Electronic Warfare (EW) systems preserves the electromagnetic (EM) spectrum for
friendly use where same time deny its use to the hostile systems. EW systems are classified

based on the functionality, frequency coverage, and their function etc. [1]-[2].

EW systems are categorized into three types of systems Electronic Support (ES),
Electronic Attack (EA), and Electronic Protection (EP). ES is also known as Electronic
Support Measure (ESM) systems. It does the search of the emissions present in the
environment. It does the capturing and detection of the emitters. It locates the emitters present
based the signals detected. Further, it record the signals in digital domain and processed
parameters which is used to analyse the signals in future or after the mission is completed.
This information is used to formulate the electronic order of battle (EOB). It can also provide
the information to electronic attack (EA) in real-time for the counter measure. EA systems are
used to reduce the impact of hostile systems. It is also known as electronic counter measure
(ECM). Electronic Protection (EP) systems are the capability of our own radar systems used
to protect own systems. These systems are capable to misguide the hostile systems. It is also

known as electronic counter counter measure (ECCM).

EW systems are classified as strategic system or tactical system based on their
function. Strategic systems are systems which are used for offline analysis. They measure
more parameters with high accuracy. These systems are useful to form the EOB which is
useful to build the radar library. The deployment of systems can be obtained based on the
available data. Usually ELINT systems are categorized as strategic system. The tactical
systems provides the limited information but in real-time. The parameters measured in real-
time by ES systems are useful for EA systems for immediate use. Tactical systems are useful
for dynamic deployment and dynamic change of mode of emitters. The information obtained

by tactical systems can be used to form EOB and threat library also can be prepared. But
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presently, the ELINT systems are being used as tactical systems to get the advantage of high

sensitivity and measures more parameters compared to ES system.

Radar ES Systems are categorized as Radar Warning Receiver (RWR), Electronic
Support Measures (ESM), and Electronic Intelligence (ELINT). The RWR receivers are with
quick reaction time, wide frequency coverage, spatial coverage, and with highest probability-
of-intercept (POI). It provides the warning to the pilot immediately after detecting the radar
which is used to guide the weapons. Once radar main beam looks to the target the receiver
with a reasonable sensitivity detects it. It uses the range advantage to detect and indicate a

threat. Generally, it is the simplest form of ESM receivers [3].

The ESM systems are mainly wideband, spatial coverage with high POI and also known
as ES systems. These systems extracts most of the parameters about radar and establish the
EOB. They are more complex and higher measured parameters accuracy than RWR receivers.
Basically an ELINT system measures various parameters and these parameters are helpful for
strategic planning. The measurement of various parameters are comparatively little slow but
helpful for fine grain analysis and requires high SNR compared to ES systems. Its
instantaneous bandwidth is less than the ES system and hence its POl is also less. If collected
data is not possible to process immediately in the field or collection station due to time

constraint, it can be stored and processed later at main station.

In this thesis work, a new generation ELINT system is proposed which can measure
most of the parameters including modulation information in real-time. These systems can be
used for tactical operations as the mode of adversary radars will be certainly different from
peacetime. The need for all adversary radars parameter measurement is important in real-time

to recognize the threat in the field itself.

1.3 Electronic Intelligence System

The interception and exploitation of electromagnetic energy of radar signals have been
an important objective of military reconnaissance since the existence of radar. Electronic
support (ES) systems gathered the information from intercept receivers mainly used by
military platforms viz. ground, mobile vehicle, ship borne, airborne, and space borne based to
enhance the situation awareness of the operating environment, provide self-protection and

contribute to electronic intelligence (ELINT) databases.

A new generation ELINT system identifies the radars by analyzing their signal

waveforms. This is achieved by using hardware that can detect reliably and measure the
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characteristics of all radar signals in the environment. The characteristics of intercepted radar

signals that are generally estimated include the following parameters

¢ Emitter Type (ET)

¢ Radio Frequency (RF)

e Pulse Amplitude (PA)

e Pulse width (PW) or Pulse duration

e Time-of-arrival (TOA)

¢ Angle-of-arrival (AOA)

e Inter-pulse modulation characteristics i.e. Pulse repetition interval (PRI) and PRI type
[23]

¢ Intra-pulse modulation characteristics or modulation on pulse (MOP) parameter i.e.

Modulation type (MT) and their modulation parameters (MP) [59], [126], [127]

Among the above parameters modulation on pulse (MOP) parameter is an important
evaluation parameter in the proposed research work. Further, RF, PA, and AOA parameters

are also used for performance evaluation and all the parameters are SNR dependent.

Emitter To
Signal : t itt Display
—> Digitizer [—> Signal 1 N —>1 Sorting [—>] Database [—> Emitter >

Estimation Recognition Identification

Figure 1.1: Block diagram of functions performed by electronic intelligence receiver.

Once the characteristics of all radar signals have been estimated, electronic intelligence
receivers use the estimated parameters to sort the collection of intercepted signals to identify
all the intercepts which belong to a single radar emitter. An ELINT database of known radar
emitters is then consulted and matched to find a radar emitter that exhibits parameters that

best matches estimated characteristics of observed intercept.

ES systems are divided into the category of ELINT system and tactical ES system.
The ELINT systems are designed to get the high fidelity data to generate high-quality
representations of radar signals. These signals are used to contribute to the ELINT database
which is used by ES systems to identify the radars observed in the field. The estimation
accuracy is more important compared to execution time for ELINT systems as the analysis

can be performed often offline.
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On the other hand, the tactical ES systems are designed to provide the operators of
military platforms with real-time, early warning of radar receivers that are operating in the
vicinity of the platform. Sometimes tactical ES systems are known as Early Warning
Receivers. Traditionally, tactical ES systems are designed as Electronic Support Measure
(ESM) and Radar Warning receivers (RWR). Usually, ESM systems are interactively
operated by human operator whereas RWR systems are fully automated. In extreme operating
environments, a tactical ES system may receive over hundreds or thousands of radar
intercepts per second. The accuracy of estimation algorithms is important, the data throughput
can be sustained is an important consideration. As a result, tactical ES systems may need to
trade off some accuracy in the parameter estimation algorithms for the sake of improvements
in the data throughput. A new generation ELINT systems emphasize on both estimation
accuracy and execution time. The development of computationally fast algorithms for
detection and parameter measurements is a major driver of the research presented in this

thesis which is implementable for real-time applications.
1.4 TImportance of modulation recognition on radar signals

The importance of MOP along with AOA measurements are particularly important
parameters among the characteristics of the Radar signals because they can be exploited in
many operationally useful ways:

e cnhance situational awareness [1]-[3]

e cnhance signal de-interleaving (or sorting) algorithms [3]

e cnhance identification of emitters operating in the dense environments [3], [12]
e prompt electronic attack (EA) [2], [49], [126], and

e improve signal collection [127], for nearby operating radars are discussed below.

1.4.1 Situational awareness

Situational awareness of the operating environment is critically important to help and
determine the engagement priorities, tactics and to formulate electronic order of battle (EOB)
[1]-[2], [49]. Correct MOP and accurate AOA estimates can help to improve situational
awareness by associating lines of bearing with their intra-pulse characteristics to each
detected platform. When MOP from multiple radar intercept receivers is used in conjunction

with AOA algorithms, it is possible to further identify the detected platforms.
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1.4.2 Sorting or de-interleaving

Radar intercept receivers typically receive anywhere hundreds or thousands of radar
intercepts per second from multiple emitters [1], [126]. As part of its typical processing, radar
intercept receivers must sort through the collected data and associate all of the intercepts to
their respective emitters. This process is known as signal sorting or signal de-interleaving.

Parameters such as the signal radar frequency, pulse duration, pulse train parameters
such as PRI and PRI types are traditionally effective de-interleaving parameters [23], [49].
However, the traditional de-interleaving parameters are not effective against radars with
similar transmission characteristics or modern parameter-agile radars that are capable of
changing their transmission parameters viz. frequency, pulse duration, and PRI on a pulse-by-
pulse basis. On the other hand, since the AOA of a signal cannot be camouflaged practically,
high precision AOA estimate along with MOP can be used to effectively sort the signal from
these types of radars, provided that the radars are sufficiently separated in angle [1], [3], [23],
[49]. MOP helps in sorting the intercepts which are coming from the emitters which are

marginally separated bearing and frequency in the environment.
1.4.3 Enhance identification of emitter operating in a dense environment

When multiple radars operate in an environment with nearby frequencies and the
environment becomes dense. In that condition, identification of emitter with measuring
conventional parameters is not sufficient. To overcome this problem, measurement of
modulation becomes compulsory. Measurement of MOP using high accuracy RF
measurements with AOA provides an advantage to identify the emitter [3], [12]. This also

helps in signal sorting.

1.4.4 Electronic attack and electronic protection

Knowing of an adversary bearing and intra-pulse waveform can assist the platform’s
electronic attack (EA) systems (such as jammers) and electronic protection (EP) systems
(such as chaff) by more efficiently directing the platform’s resources to deal with a threat

from a given bearing and with specific modulation characteristics [2], [49], [126].

1.4.5 Signal enhancement
Preprocessing is exploited prior to the extraction of parameters. As part of
preprocessing, noise cancellation is employed for signal enhancement to improve the quality

of the signal. Noise cancellation is done by estimating the noise from the system chain. The
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estimated noise magnitude is computed for the duration of noise alone. This noise is

subtracted from the noisy signal spectrum and signal enhancement is done [127].

1.5 Motivation

The problem of identification of modulation on pulse (MOP) is related to the use of
information. This information cannot be utilized for tactical application with the present
ELINT systems which is crucial. When hostile radars operate during peacetime, they do not
change their operating modes frequently. But hostile radars change their operating modes
rapidly during tactical operations. So, the library which is generated over some time for
electronic order of battle (EOB) may not be much constructive. The research work on this
topic will be helpful, to use this information tactically in the field environment. This proposed
research work will identify MOP in real-time which can be used for de-interleaving and
specific emitter identification effectively.

Some researchers have proposed techniques for modulation identification using
frequency domain techniques and convolutional neural network (CNN) [62]-[64], [74], [84],
[92]. These research contributions are only for offline processing and real-time processing is
not considered by them. As computational complexities are high for real-time processing.
Hence, it is able to reduce the computation’s complexities. Further, hardware portability’s are
also required to test the proposed architecture for modulation recognition in real-time for the
ELINT system. The aspect of radar signals modulation recognition in real-time has been
motivated to take up this work for classifying various radar signals modulations for a new
generation ELINT systems. The noise cancellation technique as part of preprocessing,
instantaneous amplitude measurement, noise estimation for adaptive threshold computation,
high accuracy instantaneous frequency measurement, FFT based frequency estimation, and
three-antenna based virtual baseline interferometry for AOA measurement algorithms are also
developed to achieve the above goal. FFT based frequency estimation along with various
interpolation techniques enhances the frequency accuracy without increasing the number of
FFT points. All the parameters are required to be measured accurately to achieve the

objectives of the proposed research work.

1.6 Problem statement

A research problem is proposed as “real-time modulation recognition of radar signals
using digital techniques for new generation ELINT systems”. The main focus of this thesis is

the real-time characterization of radar signals.
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1.7 Aim and Objectives

The research work has undertaken aims at developing modulation recognition
algorithms of radar signals in real-time.

The following are the aims and objectives of the proposed research work:

e To implement noise cancellation using spectral subtraction technique as part of
preprocessing and thus enhancing the radar signal.

e To carry out high accuracy instantaneous frequency measurement and amplitude
measurement.

e To estimate noise for the signal duration and compute the adaptive threshold for
detection of radar signal (instantaneous amplitude).

e To measure AOA with three antennas BLI algorithm which results in lightweight
ELINT system.

e To find out the MOP and their modulation parameter using instantaneous frequency in

real-time.

1.8 Scope of work and significant contributions

Scope of work presented and significant contributions are given in this section.

1.8.1 Scope of work presented

The scope of this thesis entails to identify and classify radar signals modulations. Total
sixteen types of modulations and their parameters are measured using proposed algorithms.
Various radar signals are generated at different SNR conditions and measurements are carried
out. The efficacy of these algorithms is also verified using field data. Signal enhancement,
frequency estimation, and AOA estimation are also part of the scope of a thesis as these

parameter estimations are also important for modulation recognition.

1.8.2 Significant contributions from investigations

The real-time measurement of all the parameters including modulation information is
carried out in this research work. The various parameters measurement including direction
finding, type of signal, RF frequency, Pulse width, Pulse repletion interval, amplitude, type of
modulation, modulation parameter is estimated and formed pulse descriptor word (PDW). All
the processing algorithms are designed using a system generator, implemented on a hardware
platform, and results are presented.

FPGA provides the hardware environment in which dedicated DSP processing

capabilities can be implemented and tested for their functionality. They perform very high-
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speed operations that cannot be realized by a DSP processor because of hardware limitations.
The primary advantage that FPGA offers is parallel architecture, fine grain resources,
availability of MACs known as DSP slices in the order of thousands, re-programmability etc.
These capabilities of FPGAs made the preferred choice of hardware platform over DSP

Processors.

The Digital Signal Processors is the correct choice for the ELINT system for strategic
use. But they are not useful for ELINT systems for tactical application. As they are not giving
real-time performance because the required sampling rate is high. The reason is, the
maximum number of MACs available in the processor is limited and the same MAC:s is re-
used for computation. Whereas in FPGA a large number of MACs are available so that the

parallel architecture is possible.

Improving the performance of the ELINT system by measuring all the parameters in
real-time. So that the ELINT system can be utilized for tactical applications. Various signal
processing algorithms are implemented on the FPGA platform to enhance the speed and

maintain the accuracy of parameters. The details of the contribution are explained below:

e Signal enhancement is carried out using spectral subtraction. Spectrum on incoming
digitized IF data is computed continuously and an average of noise is estimated. Later,
these average noise components are subtracted from the data spectrum and the
enhanced signal is achieved by inverse spectrum. This signal enhancement or noise
cancellation is implemented and provides an SNR advantage.

e An autocorrelation algorithm is used to generate instantaneous amplitude and a
multilevel autocorrelation algorithm is used to generate instantaneous frequency
profiles. Again SNR advantage is achieved when performance of autocorrelation
algorithm is compared with DIQ technique. The high-frequency accuracy is achieved
at lower SNR which is useful for AOA and MOP estimation.

e The noise estimation is done using standard deviation. The fast and easy approach is
implemented which gives comparable results with standard deviation implemented.
The detection logic is implemented in the FPGA which is based on the comparison
with either noise riding threshold or fixed threshold.

e SWaP optimized three antenna-based BLI algorithm is proposed for AOA estimation.
This algorithm along with noise cancellation provide an advantage equivalent to four

antenna BLI arrays. AOA is useful for emitter sorting.
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e Instantaneous frequency profile is used for the MOP estimation using a decision-tree
algorithm. Various modulations are identified using the proposed approach which is

useful for specific emitter identification.
1.9 Organization of Thesis

The research thesis writing is organized in eight chapters. The following is the brief of
each chapter.

Chapter 1, introduces the electronic intelligence systems, importance, and application of
these systems. In addition to this, motivation, problem statement, objectives, the scope of work,
significant contribution, and chapter organization of thesis have been given in this chapter.

In Chapter 2, a detailed literature survey has been provided. Literature that are related to
the work are reviewed carefully and cited in the thesis.

In Chapter 3, the theory of contemporary frequency measurements techniques is
presented. This chapter will show the suitable frequency estimation technique, angle-of-arrival
measurement technique, and modulation parameter measurement for implementation in radar
intercept receivers. The general performance of each technique and its advantages and
disadvantages are discussed.

In Chapter 4, the theory of signal estimation techniques is presented which includes noise
cancellation, amplitude measurement based on moving autocorrelation, frequency measurement
algorithm based on multilevel autocorrelation, AOA measurement using three antennas is
presented. SNR advantage using noise cancellation is explained. Noise estimation for pulse
detection is also mentioned.

In Chapter 5, proposed modulation recognition is presented. It includes frequency and
phase modulation and they are measured in real-time. The type of modulation is measured using
a decision-tree based algorithm applied on instantaneous frequency profile along with
instantaneous amplitude profile. The results are compared with existing techniques.

In Chapter 6, the ELINT operation methodology is discussed which includes frequency
scan operation, test setup hardware, test conditions, and experimental results. Various stages of
testing and field data results are also given. The modulation recognition algorithms are applied to
the field data to experimentally validate their performance.

Finally, the thesis will be concluded in Chapter 7. The key findings of the thesis and the
major contributions of this research will be concluded. This chapter will also identify areas that

may warrant further research.
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Review of Literature

This chapter presents a detailed literature review of existing research contributions.
2.1 Introduction

Electronic Intelligence (ELINT) system extracts information related to modulations
schemes in detail from electromagnetic (EM) environment for its survivability but denies or
limits it to the adversary. The information of measured emitter parameters then can be utilized
to affect the hostile operations to block its communication channel and radar can be stopped

from firing the weapons.

There is a need for recognition of radar signal modulation for electronic intelligence
systems in real-time. During the past two or three decades electronic intelligence system was
configured for offline processing. Researchers whose contributions are given in this chapter
are offline related. However, the modulation types and their modulation parameters are
required to be measured in real-time. Hence, real-time processing systems are needed.
Relevant publications in this field are identified and studied. This chapter consists of the
details of critical appraisal of previous work published literature pertaining to the topic of the

investigation.
2.2 Radar signal modulations estimation

Finding MOP which is an intra-pulse parameter is a useful parameter to classify radar
emitters in a dense electromagnetic environment. The inter-pulse parameters alone are not
sufficient to classify radar emitters in this environment. Estimation of MOP is a composite
work that requires instantaneous frequency measurement, instantaneous amplitude

measurement, adaptive threshold estimation, pulse detection, and direction-finding.

The following radar signal modulations are measured using a decision-tree algorithm.

(a) Continuous wave signal

11
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(1) No-Modulation Continuous Wave (NMCW)
(11) Frequency Modulated Continuous Wave (FMCW)
(b) Pulsed signal
(1) No Modulation on Pulse (NMOP)
(i1) Linear Frequency Modulation (LFM)
(ii1))  Non-Linear Frequency Modulation (NLFM)
(iv)  Stepped Frequency Modulation (SFM)
(V) Phase Modulation (PM)
(vi)  Hybridization of LFM and BPM
(vil)  Hybridization of SFM and BPM
2.3 Summary of literature review
The summary of a literature review is given in Table 2.1.
Table 2.1: Summary of literature review
S. No. Study by Features Technique Outcome Limitations
1. Nandi & Automatic Decision Success rate | Applicable for
Azzouz Analogue theoretic more than communication
(1995, 96) modulation algorithm 90% at SNR signals
[65, 66] recognition of 10 dB
2. Chan & Identification | Identification SNR Applicable for
Gadbois of using envelope | requirement | communication
(1989) [69] modulation properties of 7dB signals
types
3. Dubuc, C. et AMR Decision-tree | Classify with | Applicable for
al. (1999) algorithm for algorithm more than communication
[68] spectrum 55% at SNR signals
monitoring of 5dB
4, Lopez- CWLFM, STFT, AD, 90% Real-time
Risuefio et al. | Chirp, BPSK, and DFT detectionup | performance is
(2003) [115] QPSK, and to-11.5dB not achieved
FSK SNR
5. Kawalec & Intra-pulse | LDA and TKL 90% Real-time
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Owczarek modulation techniques recognition performance is
(2003) [17] recognition accuracy for not achieved
SEI
6. You, H. etal. | LFM signals | WVD Hough SNR Real-time
(2004) [70] detection transform requirement | performance is
of -3dB not achieved
7. Gross & Comparison LPI signals Requirement SNR
Chen (2005) | of detection of detection requirement is
[10] techniques threshold of high
12 dB SNR
8. Aly, O.AM. | Detection and | Wavelet-based | Detection up Suitable for
et al. de-noising to -24 dB offline
(20006) [5] SNR processing
9. Carpentieri & Pulse Instantaneous 75 dB Modulation
Cuomo detection frequency dynamic measurement is
(2008) [9] using measurement range not attempted
adaptive (IFM)
threshold
10. Helton, J. et Frequency Hilbert 2 MHz Frequency
al. (2008) measurement transform Frequency measurement
[25] accuracy for | accuracy is not
every 100 ns sufficient
1. Upperman et | Detection of | Choi-Williams | LPIsignal | Suitable for near
al. (2008) LPI signals distribution detection at 0 real-time
[36] dB SNR processing
12. Simin, Z. et | FPGA based | Autocorrelatio 3 dB SNR SNR
al. (2009) detection n technique required requirement is
[22] high
13. Mahlooji & Frequency | IFM technique High- SNR
Mohammadi | measurement frequency requirement is
(2009) [24] accuracy of high for
43 kHz measurement
accuracy at
30 dB high
SNR
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14. XuS.W., & | Detection of Fractional SNR Real-time
Shui, P.L. FM signals Fourier requirement | performance is
(2010) [71] transform of not achieved
(FrFT) -5dB
15. Pandolfi, C. | Comparison Analog IFM Frequency Frequency
etal. (2010) | of frequency | and digital FM accuracy measurement
[26] measurement technique achieved at accuracy is not
0 dB SNR sufficient
(1) [FM: 2
MHz
(i) DFM: 0.5
MHz
16. | Peter, Q.C. et AOA BLI Technique RMSE of SNR
al. (2012) measurement 1.62° at 5dB | requirement is
[121] using 3 SNR high
Antenna
17. Wang, P. et Radar pulse Modulation 96% Real-time
al. (2016) modulation component accuracy at | implementation
[92] classification analysis above 2 dB is not achieved
SNR
18. Shin, J. etal. | Detection of Continuous Detection up Suitable for
(2016) [7] LPI signals wavelet to offline
transform -5 dB SNR processing
(CWT)
19. | Gurel, A.E. et FPGA Amplitude and A Requirement of
al. (2017) Implementati Phase requirement high SNR
[52] on of DF Comparison of 10 dB
approach DF approaches SNR is
required
20. Fan, X. et al. Polyphase | IQPF and FrFT 100% Real-time
(2017) [91] and Frank algorithms recognition | implementation
Codes above 0 dB | is not addressed
recognition of SNR
21. Park, B., & Intra-pulse Frequency 90% SNR
Ahn, J.M. modulation modulation accuracy requirement is
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(2017) [62] recognition identification | above 10 dB high
algorithm SNR
22. Selim, A. et Spectrum Amplitude Detection at Real-time
al. (2017) monitoring Phase CNN above 5 dB | implementation
[94] for radar and Spectrum SNR (AP- is not addressed
bands CNN CNN) and 7
dB (S-CNN)
23. Orduyilmaz, DOA Concentric DOA RMSE SNR
A. etal. estimation Circular Array of 0.25 requirement is
(2018) [51] (CCA) degree at 5 high
dB SNR
24. Moghaddam | Detection and | Instantaneous | Detection up Modulation
& Masoumi frequency frequency to measurement is
(2018) [8] measurement | measurement -65 dBm not attempted
25. Juan Zhang Modulation Time- Classification Real-time
etal. (2018) | classification frequency is good at performance is
[64] for FM distribution above 5 dB not addressed
signals and CNN SNR
26. Tian Xietal. | Intra-pulse | Singular value Suitable at Real-time
(2018) [84] intentional | decomposition | lower SNR | implementation
modulation (SVD) is not achieved
recognition
27. E. Yaretal. | Detection and | STFT, Hough | Accuracy of Real-time
(2019) [63] modulation | transform, and 93.73% i1s implementation
classification CNN achieved at is not achieved
10 dB SNR
28. Lauren et al. Emitter CNN IQ Working well Real-time
(2019) [74] | identification imbalance above 10 dB | implementation
estimators SNR is not achieved

2.4 Detailed literature review

ELINT systems which is the division of Radar EW systems measure various

parameters [1]-[3]. The waveform generated by radars with magnetron and traveling wave

tube (TWT) exhibit differences with the serial number of radars. In other words, waveforms
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generated by different serial numbers of radars of the same model will be different. To
overcome this, electronic support should have the capability to distinguish among radars of
the same model. The features which broadly change from one serial number to another are
rise time, fall time, overshoot, and undershoot characteristics of pulses. These features are
changed among different serial numbers of radars due to their aging effect and their non-
repetitive performances. The non-repetitive performances are basically due to the analog

nature of magnetron and TWT.

Advanced radars are based on digital techniques and Transmit/Receive (T/R) module.
These multiple T/R modules are combined with multiple active antenna phase array and
produce the required gain. Each T/R module provides the gain of the order of 20 to 50 Watts.
It produces about 100 dB gain on combining all modules. Their performance is repetitive as
they are based on solid-state devices. The radars with these capabilities will generate a similar
waveforms with different serial numbers of radars. They will have the same rise time, fall
time, overshoot, and undershoot. These radars can generate adaptive waveforms from time to
time. Their characteristics also can be changed. To identify the serial number of such radars,
the ES system needs to rely on other parameters such as AOA and MOP. These two
parameters also help to identify magnetron and TWT-based radars. The fact is that radars
based on magnetron and TWT are not repetitive across different serial numbers. Due to the

different performances of magnetron and TWT, radar’s pulse waveforms are different.
2.4.1 Signal estimation techniques

The basic parameters of radar signals are radio frequency (RF), pulse width (PW),
Pulse amplitude (PA), pulse repetition frequency (PRF). These parameters are measured using
generated instantaneous amplitude profile and instantaneous frequency profile. The noise

reduction is also carried out using spectral subtraction before generating these profiles.

Both inter-pulse and intra-pulse parameters are required to be measured accurately of
radar signals. The emitter identification system becomes critical when multiple radars are
operating in a dense environment. It becomes a challenging task to uniquely identify them as
radars of same kind exhibit minor variations in the transmitted pulses [4]. These systems are
required to classify and identify them even with same make and model by utilizing
unintentional variations within the pulse. These parameters constitute the fine grain
parameters of the radars. The decisions taken based on these fine grain parameters the

accurate identification of the radars can be established.
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O.AM. Aly et al. [5], proposed a wavelet-based algorithm for radar pulse detection
and de-noising. This algorithm can detect the signal up to -24 dB SNR but it can work on
stored data and it is not implementable for real-time applications. Aceros-Moreno &
Rodriguez [6], proposed a discrete Chirp Fourier transform (DCFT) detect chirp signals only.
But the detection of only chirp signal is not sufficient as the environment is unknown. Shin et
al. [7], proposed wavelet-based detection of weak radar signal at -5 dB SNR but this approach

is also not implementable for real-time application.

Moghaddam & Masoumi [8], proposed instantaneous frequency measurement for
pulse detection using adaptive threshold, detects signal up to -65 dBm power level for 2-4
GHz band, and measures basic parameters. Carpentieri & Cuomo [9], proposed the radar
pulse detection up to 75 dB dynamic range using an adaptive threshold. Gross & Chen [10],
proposed the various detection techniques which require 12 dB of SNR. But these researchers
focussed on basic parameter measurements and have not attempted intra-pulse modulation
measurement. Various LPI radar signals [11] are mentioned. These signals are difficult to
measure in real-time. It becomes critical to extract these radars and recognize them

appropriately in real-time.

M. Conning and F. Potgieter [12], used phase-based detection, measurement using
in-phase and quadrature-phase, and identification are done on the measured data. S. Davis and
I. Bucher [13], have presented the single tone frequency estimation using the linear least
square (LLS) technique. They have been carried out offline processing and are not addressed
for hardware implementation. Manish Gupta et al. [14], have presented a statistical solutions
for the issues related to drifting and aging of emitters. These researchers considered the

offline processing techniques.

J. Dudczyk et al. [15]-[16], have carried out extensive research and presented the
identification method using fractal features and graphical representation of the distribution of
radar signal parameters. A. Kawalec et al. [17] have presented the emitter recognition using
intra-pulse data. S. Deng [ 18] describes the identification based on the RF fingerprints. Y. Pan
[19] has presented the identification based on the high fidelity symbol synchronization. K.
Michel and K. Adams [20] have implemented the matched filter in FPGA for a radar systems.
These researchers have not concentrated on real-time modulation identification which is

required for tactical operations.

An approach based on digital in-phase and quadrature-phase (DIQ) for intra-pulse

parameter measurement perform reasonably well for high processing SNR as demonstrated by
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RK Niranjan and BR Naik [21]. Z. Simin et al. [22], demonstrated a pulse detection approach
which requires 3 dB SNR. J.B.Y. Tsui [23], S. Mahlooji and K. Mohammadi [24], James
Helton et al. [25], and C. Pandolfi [26] have presented digital instantaneous frequency
measurement techniques for frequency estimation. However, they have shown frequency
estimation with high accuracy at high SNR. But their performance is not adequate at lower

SNR. These authors have not concentrated on intra-pulse modulation identification.

Various digital receiver front-end configurations and digital receiver techniques are
presented by H. Pekau and J.W. Haslett [27], S.G. Kaiser [28], M.A. Sanchez [29], and A.K.
Singh and S.K. Rao [30]. These digital receiver configurations used frequency measurement
using FFT-based detection. These techniques are good for detection and parameter
measurement due to FFT’s inherent processing gain. But, intra-pulse modulation
measurement is not possible using this technique in real-time. FPGA implementation for the
digital 1Q method is presented by RK Niranjan and BR Naik [31]. This work is carried out for
parameter measurement for 40 MHz bandwidth and not concentrated on intra-pulse parameter

measurement.

H. Akima [32] has presented a smooth curve fitting method which is used for frequency
estimation. B.G. Quinn [33], shown the estimating frequency by interpolation technique using
Fourier coefficient. P. Voglewede [34] has presented a parabola approximation for peak
frequency determination. S. Djukanovi has shown frequency estimation of a real sinusoid.
These frequency estimation technique does not provide the SNR advantage but these
techniques have been used effectively to achieve better frequency accuracy with less FFT

number of points.

G.J. Upperman et al. [36], studied Choi-Williams distribution for detection of LPI
signals but near real-time performance only could achieve. S.U. Dan et al. [37], have carried
out the comparative analysis of frequency estimation techniques. But researcher has not
concentrated frequency estimation in real-time. S. Sajedian et al. [38], have presented a
frequency estimation technique using a neural network. But it takes about one second

processing time.

Frequency estimation techniques presented by H.C. So and K.W. Chan [39], H.C. So
et al. [40], H.C. So and K.W. Chan [41], H.C. So et al. [42], L. Liu [43], F. K.W. Chan [44],
S.M. Kay [45], R. Stoica and R. Moses [46], and B. Zeng [47], but real-time performance is

not achieved using these techniques. These techniques do the frequency estimation offline.
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2.4.2 Angle-of-arrival techniques

Minimum two antennas are required for baseline interferometry (BLI). But usually,
four antennas are used to get better DF accuracy. A system designed using four antennas with
BLI approach requires four antennas, four channel switch filter bank, four channel down-
converter, four ADCs for one quadrant. The front-end becomes bulky with four channel,
weight and power dissipation will be more. For each quadrant, three different types of
antennas are required based on frequency coverage to cover complete 0.5 to 18 GHz range.
So, practically twelve antennas are required instead four antennas and their outputs are being
switched internally in the switched filter bank. Such four quadrants are required to cover

complete 360° azimuth.

Three antenna based BLI algorithm is proposed for DOA extraction. In this, three
antennas, three channels switch filter bank, three channel down-converters, three ADCs for
one quadrant. No. of antenna to cover complete frequency range will be nine. This concept is
also known as virtual antenna-based BLI algorithm. The measured error will be more
compared to four antennas based BLI algorithms. This is compensated by using noise
cancellation technique on raw IF data. This will improve the SNR and it is used only for space
ELINT where requirement of FOV is limited. Hence, the performance becomes similar to four

antenna based BLI. Total hardware reduction will be around one forth.

High altitude or space-based electronic intelligence (ELINT) systems has the
advantage of uninterrupted receiving of airborne radars, tracking radars, etc. These radars can
be captured from the high altitude easily and classify them by ELINT systems. The
requirement of space-borne systems are small SWaP. The proposed algorithms along with
proposed configurations are useful for space ELINT systems. The performance of these
systems expected better than ground-based systems [1]-[3], [48]. Many direction-finding
techniques and mentioned by Lipsky [49].

K.R. Sundaram [50] et al. has presented a modulo conversion method for resolving
phase ambiguity. This modulo conversion method is complex and requires more
computations. A. Orduyilmaz et al. [51] has introduced four-channel phase comparison for
direction finding. The hardware design using this technique requires four antennas, four
coherent down-converters, four-channel processors and hence it becomes bulky. A.E. Gurel
et al. [52] presented amplitude and phase comparison direction-finding techniques in real-
time. This requires high SNR for processing. S.O. Ata et al. [53] have shown the high-

resolution direction of arrival using Concentric Circular Arrays. But this type of array is not
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possible for all types of platforms. Q. Yuan et al. [54] have introduced the direction of arrival
simulation using an array antenna with arbitrary geometry. But, real-time implementation is
not addressed by researchers. H. Sakai [55] has shown the direction of arrival estimation
using magic-T circuit’s array antenna. This type of arrays antenna is not possible for all types
of platforms. L. Osman [56] has shown the multiple signal classification for direction-of-
arrival estimation using four antenna array. But this type of hardware configuration is not

possible in all types of platforms.
2.4.3 Different techniques used for modulation recognition

Modulation on radar pulse is one of the most important features and one of the vital
problems in the analysis of non-cooperative radar signals is modulation classification for
emitter identification [3], [13], [15], [18]. The modulation classification plays a very
important role in Electronic Intelligence (ELINT) systems. Firstly, the modulation type of a
signal is important to identify the radar type. Second, on identifying the correct modulation
type the carrier frequency is re-estimated. Third, it helps to distinguish similar radars
deployed in proximity. But for radar signals, the modulation classification in real-time is very

challenging due to the possibility of various modulations within a very short pulse width.

The earlier generation of Electronic Support (ES) systems was based on instantaneous
frequency measurement (IFM) receiver and pulse measurement using log video. The time-
domain technique was used for noise estimation and signal detection [21] and frequency was
measured using time-frequency analysis [10], [24]-[25]. But during conversion from radio
frequency (RF) or intermediate frequency (IF) to log video, the phase and hence the
modulation information is lost. Due to this reason these systems measure only basic
parameters like radar frequency (RF), Pulse width (PW), Pulse Repetition Interval (PRI), and
Pulse Amplitude (PA). These parameters broadly are called inter-pulse parameters. But the

measurement of these parameters alone is not sufficient against modern RADARs.

F.B. Gross and K. Chen [57] have demonstrated the comparison of detectability radar
waveforms in classic passive receivers. Researcher has not concentrated on modulation
identification in his work. X. Fan et al. [58] have shown polyphase pulse compression codes
detectability of 90% at above -7 dB SNR using integrated quadratic phase function (IQPF)
and fractional Fourier transform (FRFT). But researcher has not concentrated on the real-time
processing aspect. L. Nadav and M. Eli [59] have mentioned various radar signals. These

signals are used in generator of modern radar waveforms.
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E.E. Azzouz and A.K. Nandi [60] have given various techniques of modulation
recognition of various signals. L. Yun and M. Chunguang [61] has presented automatic
modulation recognition of communication signals using Haar Wavelet Transform (HWT).
They have achieved modulation recognition accuracy of more than 90% at more than 5 dB
SNR. This high SNR requirement is not sufficient for ELINT systems and researchers have

not addressed real-time implementation.

B. Park and J.M. Ahn [62] had demonstrated radar modulation recognition of FSK,
LFM, and NLFM using pulse description words and complex waveforms. The recognition
accuracy of 90% is achieved at above 10 dB SNR. But researchers have not concentrated on
modulation recognition in real-time and SNR requirement is also high. E. Yar et al. [63] have
shown the pulse detection and modulation classification for cognitive electronic warfare using
short-time Fourier transform (STFT) and Hough transform. Frequency and phase modulations

are classified with 93.73% accuracy at 10 dB SNR.

J. Zhang et al. [64] have presented the frequency modulation classification using time-
frequency distribution and CNN. Classification accuracy is achieved well at above 5 dB SNR.
Real-time classification is not addressed by the researchers. E.E. Azzouz and A.K. Nandi
[65] have demonstrated the automatic identification of digital modulation types. The
identification accuracy of more than 90% is achieved at above 10 dB SNR. The requirement
of 10 dB SNR is not sufficient. The real-time identification of modulation is not addressed by

researchers.

A.K. Nandi and E.E. Azzouz [66] did the automatic analog modulation recognition with
more than 90% accuracy at above 10 dB SNR. However, this technique is applicable for the
recognition of communication signals and this requires high SNR. A.K. Nandi and E.E.
Azzouz [67] have presented decision-theoretic algorithms for automatic modulation
recognition of communication signals. The recognition is carried out using an artificial neural

network (ANN). Total 96% accuracy is achieved at above 15 dB SNR which is not sufficient.

C. Dubuc et al. [68] introduced an automatic modulation recognition algorithm for
spectrum monitoring applications using a decision-tree algorithm at 5 dB SNR. In this,
researchers have not concentrated on real-time identification. Y.T. Chan and L.G. Gadbois
[69] Identification of the modulation type of communication signal using envelope

characteristics above 7 dB SNR. The SNR requirement of this technique is more.

Detection of LFM signals is proposed by H. You et al.,, using Wigner-Ville
Distribution (WVD) - Hough Transform at low SNR [70]. But the detection of other signals is
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not mentioned. S.W. Xu and P.L. Shui [71] have demonstrated the detection of frequency-
modulated signals using fractional Fourier transform at above -8 dB SNR. But researchers

have not concentrated on real-time implementation of this technique.

Y. Qun e al. [72] has proposed specific emitter identification using the carrier frequency
feature. Fixed and chirp signals are considered for specific emitter identification. The
frequency is measured with 140 kHz accuracy but modulation identification is not addressed
by researchers. J. Dudczyk and A. Kawalec [73] has proposed a fast-decision identification
algorithm of emission source pattern with 92% level accuracy. The algorithm is fast but
considered basic radar parameters RF, PW, and PRI Intra-pulse modulations are not

measured and are not considered for identification.

L.J. Wong et al. [74] have presented specific emitter identification using convolutional
neural network (CNN) based 1Q imbalance estimators. Good SEI performance is achieved at
above 15 dB SNR. But researchers have not concentrated on modulation measurement and
have not used this parameter for SEI. J. Matuszewski [75] has demonstrated analysis of
modern radar signals parameters for electronic intelligence system. The basic parameters RF,
PA, PW, PRI, and AOA are measured and modulation parameters are not measured by the

researcher.

H. Zanga and Y. Li [76] have presented an overview of radar intra-pulse modulation
recognition. Various approaches time domain, frequency domain, time-frequency analysis,
delayed sub-autocorrelation, fractal measure, and wavelet transform. All approaches are not
possible to implement for real-time applications. Z. Qu et al. [77] have demonstrated radar
signal intra-pulse modulation recognition based on convolutional neural network (CNN) and
deep Q-learning network (DQN). Recognition accuracy is more than 94% but researchers

have not concentrated on the real-time implementation aspect.

R.K. Chilukuri et al. [78] have demonstrated estimation of polyphase and polytime
codes of LPI radars using the cyclostationary method. But researcher has not demonstrated
algorithms porting on hardware for real-time application. A. Kawalec et al. [79] show the
radar-specific emitter recognition using intra-pulse data. The researcher has not shown the
intra-pulse measurement approaches for real-time applications. S. Guo et al. [80] have shown
the specific emitter identification using signal transients. Intra-pulse modulation measurement

1s not carried out for identification.

C. Erdem et al. [81] has demonstrated specific emitter identification using the

characteristic of video signals. H. Jiang et al. [82] have proposed specific radar emitter
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identification based on a digital channelized receiver. The identification is carried out using
different shapes of video signals and it is effective at above 20 dB SNR. But the above
researchers have not concentrated on basic parameter measurement and modulation

measurement.

B.W. Gillespie et al. [83] proposed a classification based on time-frequency features.
But the real-time implementation is not addressed by the researchers. T. Xi et al. [84] have
demonstrated intra-pulse intentional modulation recognition of radar signals at 5 dB SNR. But

the researchers have not shown the real-time implementation of modulation identification.

W. Fenghua et al. [85] have proposed an autocorrelation-based approach for intra-pulse
modulation recognition using first and second-order phase differences. The recognition
performance is demonstrated better at above 6 dB SNR. K.C. Ho et al. [86] have
demonstrated modulation identification using wavelet transform at above 13 dB SNR. The
SNR requirement is high for modulation recognition and real-time performance is not

demonstrated by these researchers.

Q. Shi and Y. Karasawa [87] have shown the automatic modulation identification using
the probability density function of the signal phase. L. Mingquan et al. [88] have
demonstrated modulation recognition using cyclic spectral features. H. Haderer et al. [89]
have shown the comparison of phase-coded CW radar modulation schemes for integrated
radar sensors. Zhou et al. [90] have demonstrated time-frequency atomic dictionary analysis
for radar intra-pulse modulation signal sparse representation. But above researchers have not

demonstrated the real-time implementation of the proposed approaches.

X. Fan et al. [91] have demonstrated polyphase pulse compression codes modulation
recognition using integrated quadratic phase function (IQPF) and fractional Fourier transform
(FrFT). Correct recognition of 90% is achieved at above -7 dB SNR. But researcher has not
demonstrated the real-time implementation of these approaches. P. Wang et al. [92] have
proposed the radar pulse modulation classification using modulation component analysis.
Classification accuracy of 96% is achieved at above 2 dB SNR, but real-time implementation

is not addressed.

J. Lunden et al. [93] demonstrated automatic radar waveform recognition with 90%
accuracy at above 6 dB SNR. A. Selim [94] has shown Spectrum monitoring for radar bands
using deep convolutional neural networks (DCNN) at above 7 dB SNR. These researchers
also have not demonstrated real-time hardware implementation of these approaches. The

requirement of SNR is also high.
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Z. Shun [95] has presented a radar signal intra-pulse modulation characteristic analysis
method. W. Fenghua et al. [96] have shown an effective method for intra-pulse modulation.
Z. Germany et al. [97] have given the identification of intra-pulse modulated signal types
based on the phase difference. H. W. Wang et al. [98] have shown identification of radar
emitter using pulse envelope characteristics. L. Zheng et al. [99] have demonstrated signal
recognition of radiation source based on wavelet transform. But these researchers have not

concentrated on real-time implementation of modulation recognition.

Till the earlier generation of EW systems, these offline analysis tools are either add-on
or they are integrated with the main ES systems or ELINT systems. Identification of
modulations by ELINT system in real-time is still a challenge. Various digital methods are
discussed for modern digital implementation [60]-[64] and decision-theoretic approaches are
mentioned for modulation classification [65]-[69]. These approaches are used for COMINT
systems for measuring communication signal modulations. They are easy to implement as

bandwidth is less for these systems.

Modulations can be identified using frequency domain techniques using offline
systems for ELINT systems [70]-[99]. Implementation of these techniques in Field
Programmable Gate Array (FPGA) for real-time application is not a viable solution as they
consume a lot of hardware resources. Due to this reason, the implementation of signal
classification techniques is attempted in FPGA using the time-domain technique for real-time
application. IF signal is digitized by ADC and samples are captured, processed, and further
analysed in FPGA. These are possible to implement in FPGA due to parallelism, high density,

and high-speed component cores.

Z. Ge et al. [100] have demonstrated an improved algorithm of radar pulse repetition
interval deinterleaving based on pulse correlation. V. Iglesias [101] has demonstrated a real-
time radar basic pulse parameter extractor for RWR application. In this work intra-pulse

modulation has not been demonstrated by the researchers.

M. Bagheri [102] has presented pulse deinterleaving based on adaptive thresholding. L.
Zhang-Meng [103] has presented online pulse deinterleaving with finite automata. F. Fuhua
and Y. Xuezhong [104] have demonstrated deinterleaving using stagger PRI. P. Barnwal
[105] has shown radar PRI classification based on features estimation. H. Li et al. [106] have
given signals deinterleaving using an improved CFSFDP algorithm. G. Noone [107] has
demonstrated radar pulse train parameter estimation and tracking using neural networks. S.

Wei et al. [108] have shown PRI modulation recognition based on squeeze-and-excitation
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networks. Y. Xi et al. [109] have demonstrated an algorithm for multi-signals deinterleaving
and two-dimensional imaging recognition based on short-time PRI transform. M. Jawad [110]
has shown PRI characteristics analysis under the complex environment of spurious and
missing observations. X. Li [111] demonstrated attention-based radar PRI modulation
recognition with recurrent neural networks. U.I. Ahmed et al. [112] have shown pulse
repetitions interval (PRI) Classification Schemes. X. Li et al. [113] have demonstrated
deinterleaving of pulse streams with denoising auto encoders. Z. Shi et al. [114] have shown
feature extraction for PRI modes based on the auto-correlation function. G. Lbpez-Risuefio et
al. [115] have demonstrated two digital receivers based on time-frequency analysis for signal

interception.

The de-interleaving based on the basic parameters (DOA, RF, PW, and PRI) is not
very effective due to the dense environment where similar radars are operating in the
environment [ 100]-[114]. Modulations and their parameters measured offline are used for de-
interleaving and similar radars can be segregated effectively [70]-[99]. But this information
can’t be used for tactical application. When these parameters are measured in real-time, they
can be used for de-interleaving, and in this case and similar radars can be segregated
effectively. This information will be useful for tactical purposes. The advantage in using
modulation information for de-interleaving is co-located radars operating with similar

frequency can be identified for same reported DOA parameters.

This thesis proposes new processing algorithms i.e. noise cancellation and
autocorrelation. The noise cancellation is used to enhance the SNR of the incoming signal. It
is being carried out based on spectral subtraction. It is being by estimating the average noise
of the system. This estimated noise average is subtracted from the incoming signal and
restored signal is obtained without affecting the phase of the signal [117]. Autocorrelation
technique is also able to detect the signal at lower SNR. When both the techniques are used
together, all the targeted signal is being detected upto 1 dB SNR. Hence, identification is also

improved at lower SNR.

Researchers are identifying radar signal modulations using frequency domain
techniques, wavelet transforms and convolutional neural network (CNN) based techniques but
these techniques can’t be implemented on the FPGA platform for real-time application.
Literature are available for online modulation identification but they are applicable for
communication signals which is used for COMINT systems. Detection and identification of

Frank codes, Polyphase codes, and Polytime codes are carried out offline. These techniques
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are required resource-intensive hardware for real-time identification. Hence, these techniques

are out of the scope of the proposed research work.
2.5 Concluding remarks

In literature, approaches available are frequency domain, wavelet transform, and
convolution neural network, etc. for ELINT applications. These approaches cannot be used
for real-time application. The comparison of proposed techniques with existing frequency
domain techniques is unfair as some existing techniques will get inherent processing gain. As
various methods of signal estimations and modulation recognition for radar signals exists, it is
difficult to draw meaningful conclusions about the merits of anyone approach over another.
The techniques developed in this thesis are useful as this leads to improve the SNR advantage

of signal and modulation recognition is carried out in real-time.

Researchers have concentrated on offline processing. In this proposed research work,
real-time processing techniques are investigated. With this concluding remark, the research
problem is stated as “real-time modulation recognition of radar signals using digital

techniques for new generation ELINT systems”.



Chapter 3

Contemporary Parameter Measurement Techniques

Electronic Support (ES) systems have been in development predominantly since world
war-IL. In this chapter, some of the contemporary frequency measurement receivers, digital
frequency measurement techniques, direction-finding techniques, and measurement of

modulation techniques for electronic support systems are discussed.

ES systems are designed based on the requirement of frequency and direction finding
(DF) measurement techniques. Generally, ES receivers measure quantitatively the following
parameters

(a) Radio frequency (RF)

(b) Angle-of-arrival (AOA)

(c) Pulse width (PW)

(d) Pulse amplitude (PA)

(e) Time-of-arrival (TOA)

(f) Pulse repetition interval (PRI)

(g) Modulation information

The frequency is measured using frequency measurement receivers and AOA using
the DF receiver technique. The parameters listed from (c) to (f) are measured using the
amplitude information. Modulation information is measured using the conventional DIQ

technique.
3.1 Frequency measurement receivers

Many microwave receivers exist which are used to measure radio frequency (RF).

Various contemporary measurement receivers are described below [1]-[3].

27
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3.1.1 Crystal video receiver

Crystal video receiver is the simplest in structure and most common in use among all
types of receivers. The output of the diode detector i.e. crystal detector is amplified enough by
a video amplifier. The output voltage of detector is a function of input power since detector
operate in a square low region. Crystal video receiver (CVR) consist the series of pulses with
amplifier proportional to input RF power. Usually, the sensitivity of CVR is in the range of
-35 dBm to -50 dBm. Usually, CRV are used in RWR receivers. The block diagram of the

crystal video receiver is shown in Figure 3.1.
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Figure 3.1: Block diagram of Crystal video receiver.
3.1.2 Superheterodyne receiver

Superhet receivers are used in radar receivers as well as communication receivers.
Since the instantaneous frequency coverage is very narrow, Superhet provides a high
sensitivity of the order of -90 dBm, wide dynamic range, and excellent frequency selectivity
& accuracy. The POI is less due to its narrow bandwidth. These receivers are also designed

for different bandwidth coverage to enhance POI.

Pre-Amplifier Mixer
Tuning IE I
Band Pass - . Detector
. Amplifier Filter
Filter

Tuning
Control

LO

Figure 3.2: Block diagram of Superheterodyne receiver.

The block diagram of the basic Superheterodyne receiver is shown in Figure 3.2. This

receiver transforms the information of a portion of its RF frequency into an intermediate
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frequency (IF) band using a mixer and tuned local oscillator (LO). A tunable band pass filter
(BPF) is used as a pre-selector filter before the pre-amplifier or mixer to avoid and isolate the

interfering signals from the other part of the wide RF bandwidth.

Quad-superhet receiver (QSHR) is the four-channel Superhet receiver. This receiver
down-converts four RF signals coming from antennas to IF signals simultaneously. These IF
signals are used by four-channel digital receivers and parameter measurements are carried out.

ELINT systems are designed often using these receivers.
3.1.3 Instantaneous frequency measurement receiver

The instantaneous frequency measurement (IFM) receiver uses the phase delay line
and phase differences is measured. The frequency is measured using these phase differences.
The RF or IF signal splits into two paths direct path and delayed path (7). The phase angle
between direct and delayed path can be written as ¢ = wt. The frequency can be measured
using the phase angle (¢) and delay time (7). The Phase relation of sinusoidal waves with

constant phase delay for IFM Receiver is shown in Figure 3.3.

The following equations shows the frequency computation of IFM receiver

A = xCos ¢ (3.1)
B = xSin¢ (3.2)
¢ = tan~*(B/A) (3.3)
r=Gx) G4

where x is the amplitude information.

/2

Cos wt

&= wr Cos ¢ Sin ¢

Delay Line

Figure 3.3: Intermediate frequency measurement receiver.
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Limiting amplifier is the first component and then power divider is being used. The
direct signal and delayed signal are given to phase correlator. Phase correlator multiplies both
direct path and delayed path signals and sine and cosine video signals are obtained. Both
signals are digitized by the different ADCs. Digitized data is stored in the ROM, which

Sin ¢

performs w = (%) tan™t (m) The frequency is thus directly computed. Number of phase

delay line computes the frequency accuracy and resolution, whereas the shortest delay line are
measuring the explicit bandwidth. The frequency measurement is also carried out using the
conventional ways by comparing the amplitude in comparators. Grey code equivalent to
frequency is obtained. The drawback of IFM is there when number of emitters present in the

environment is two or more. It will measure only highest amplitude signals.
3.1.4 Channelized receiver

The basic channelized receiver is shown in Figure 3.4. A switched filter bank is an
essential component in this receiver apart from other generic components like pre-amplifier,
video detector, etc. This receiver splits the wide input bandwidth into multiple narrow bands
through the use of a contiguous filter-bank as part of a fixed tuned Superheterodyne receiver.
The sensitivity of the receiver is enhanced using this technique without compromising on
wide bandwidth coverage. The channelized receiver has high sensitivity, wide dynamic range,
and fine frequency resolution. Parallel video processing blocks for entire channels are

required to achieve 100% POIL.
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Figure 3.4: Block diagram of Channelized receiver.

The Channelized receiver provides better POI than the Superhet receiver because it’s
parallel nature. A large number of parallel channels makes this receiver bulky, highly
hardware intensive, and expensive which has limited use in current EW applications.
However, Surface Acoustic Wave (SAW) devices and millimetric wave integrated circuits
(MMICs) hold promise for the future of Channelized receivers which helps in reducing the

size and cost.
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3.1.5 Homodyne receiver

A Homodyne receiver is a special case of a Superheterodyne receiver. In
Superhetodyne receiver, the LO is derived externally. But in the Homodyne receiver, the
frequency of the local oscillator (LO) is same as the frequency of the input RF signal. Since
the LO is derived from the incoming weak signals with the use of large amplification, the

sensitivity is limited which is similar to a wide-open receiver.
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Figure 3.5: Block diagram of Homodyne receiver.

The block diagram of the Homodyne receiver is shown in Figure 3.5. The homodyne
reference-LO is the high gain RF front-end and an image rejection (IR) mixer. The homodyne
LO is derived from the incoming signal by mixing with an IF frequency of interest as
indicated in that figure. The IR mixer rejects that one of the first sidebands (i.e. the image of
either RF+IF or RF-IF) of mixer output. These receivers are wideband receivers and work for

the complete frequency band. But they suffer from sensitivity due to their wide coverage.
3.1.6 Compressive or Microscan receiver

The compressive receiver is similar to a Superheterodyne receiver but for the rapid
tuning, characteristics supported by a compressive filter or dispersive delay line (DDL). The
delay time of DDL is inversely proportional to the frequency. It is also called a Microscan
because of the use of fast LO to convert RF into frequency modulated (FM) signal before
detecting. The detected outputs from a compressive receiver are narrow pulses arriving in
series in the time domain. By measuring the positions of these compressed pulses, the
frequency of the input signals can be determined. The block diagram of Compressive or

Microscan receiver is shown in Figure 3.6.
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Figure 3.6: Block diagram of Compressive or Microscan receiver.

The structure of this receiver is complicated and high-speed logic circuits are required
as the detected pulses are very narrow and very close in time. Advances in Surface Acoustic
Wave (SAW) devices technology and high-speed logic circuits have revitalized the interest in

developing Compressive receivers.

These receivers can handle signals effectively that are transmitted by pulse
compressive radars. The frequency spectrum intercepted by the ESM receiver is scanned at a
very high speed to enhance the POI. The sensitivity and dynamic range of these receivers are

moderately high and the input bandwidth is moderately wide.
3.1.7 Bragg Cell or Accousto-Optic receiver

Bragg Cell receiver is optical signal processors which perform their function by
spatially modulating the phase or amplitude of an optical beam with an input RF signal. The
optical or light beam in optical signal processors can be modulated by means of an acoustic
(sound) wave, hence this is termed as Accousto-optical receiver. The modulated light beam is
then passed through a Bragg Cell that performs an optical Fourier transform to display the
frequency domain characteristics of the input signal as a spatial distribution of light energy.

The block diagram of Bragg Cell or Accousto-Optic receiver is shown in Figure 3.7.
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Figure 3.7: Block diagram of Bragg Cell or Accousto-Optic receiver.

The Bragg cell is an Electro-optic device. An entire Bragg cell receiver can be

constructed on a single substrate as an integrated optical circuit (IOC) by using modern
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integrated circuit technology. The technology is still under development stage. The structure
of the Bragg-cell receiver is complicated, but the size is very small. The instantaneous
bandwidth of the Bragg-cell receiver is around 2 GHz and provides fine frequency resolution.
Simultaneous signals can be processed by this receiver. The sensitivity of Bragg Cell is high

but the dynamic range is limited to 25 dB.

3.1.8 Hybrid receiver

To accomplish some specific missions, often one kind of receiver can’t fulfil the
requirements. The present-day radar threat scenario is highly dense with complex signals and
hence demands the need for selection of a combination of ES or ELINT receivers to encounter
this situation. Based on the system requirements & technical specifications and considering
the size and weight constraints, the ES or ELINT system designer has to optimize the
configuration by selecting one or more receiver technologies. Such receiver combinations are

called Hybrid receivers.
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Figure 3.8: Block diagram of Hybrid Receiver.

The typical configuration of a Hybrid receiver is shown in Figure 3.8. The homodyne

receiver is the basic structure for the Hybrid receivers, which covers wide bandwidth. By
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using the external LO for homodyne-LO, the receiver will be functioning similarly to
superheterodyne receiver. Similarly, by inserting a switched-filter-bank at the homodyne LO,
the receiver functions as the channelized receiver. By introducing detectors at appropriate
places, the crystal video receiver is obtained. Similarly, the IFM receiver is obtained by

introducing a few delay lines and mixers.

A Hybrid receiver is configured to have the best combination of salient features of
some of the commonly used conventional receivers into a single receiver. Importantly, the
hybrid receiver should have superheterodyne receiver feature for higher sensitivity, a crystal
video receiver for wide-openness, channelized receiver for handling multiple signal
environments, and a digital receiver for handling multiple simultaneous signals within a
narrow bandwidth. Also, direction-of-arrival, frequency, and pulse parameters should be
measured for all kinds of options. ELINT systems frequently used Digital receivers along

with Quad-superhet receivers which is one of the examples of Hybrid receivers.

3.2 Digital Receiver configurations for frequency measurement

Radars employing pulse compression techniques cannot be detected by conventional
receivers. The advances in digital hardware and signal processing techniques made it possible
to realize digital receivers for the detection and processing of these signals by applying

matched filtering and correlation techniques.

In many EW applications, a digital receiver must be able to digitize input signals that
can occupy a wide frequency range. Currently, ADC converters do not possess sufficient
bandwidth to directly digitize these input signals. Therefore, the A/D converter is usually
preceded by a Superhet receiver that down-converts the signal of interest to an IF frequency.
The digitized samples of the input signal are usually stored in a digital memory where they
are available for analysis. There is a vast array of digital techniques for performing detailed

signal analysis [27]-[30]. The block diagram of the digital receiver is shown in Figure 3.9.

Front-end g N-point Peak
receiver Spesd FFT Detection
ADC

Figure 3.9: Block diagram of Digital receiver.
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An extension of the basic digital receiver produces a digital RF memory (DRFM).
DRFM allows for the storage of intercepted radar signatures (RF signal) in a digital memory
and reconstruct the signal waveform, which is used widely in ECM applications for Jamming
radars. Advanced DRFMs are now being configured as ASICs, enhancing the memory size

and performance.

In present days the digital receivers are commonly used receiver. A number of
frequency measurement algorithms are available for frequency measurement. It includes fast
Fourier transform (FFT) based technique, digital instantaneous frequency measurement

(DIFM), and digital in-phase quadrature-phase (DIQ).

These measurement algorithms are ported in digital receivers. But digital receivers
can’t digitize directly RF, whereas it digitizes IF. The RF to IF conversion to lower frequency
is carried out using Superhet receiver, Channelized receiver, and IFM receiver. These
receivers will be in the front end and Digital receivers are used for digitization and algorithms

are used at our choice. The various algorithms are described as below:
3.2.1 Fast Fourier transform technique

FFT is the frequency measurement method and it is the abbreviation of fast Fourier
transform. Frequency is measured using FFT has the resolution of (fy/N), where fs is the
sampling frequency and N is the number of FFT points. It says, if FFT points are more, the
resolution will be more. But, keeping more FFT points is not useful from the point of view of
pulse width and pulse repetition interval. The accuracy of these two parameters degrades on
increasing the N. The frequency is computed from the frequency spectrum as k*(fs/N). Where

k is the bin number.
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Figure 3.10: Frequency spectrum.
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One option to keep the resolution is to use the FFT in an overlap fashion with more
N. Another option is to use the interpolation method, where if the frequency falls between two

bins it will be measured with higher accuracy.
3.2.2 Digital instantaneous frequency measurement technique

The various types of receivers listed above for frequency measurement, Digital
instantaneous frequency measurement (DIFM) is mostly used in frequency measurement
receiver in EW system because of its inherent characteristics and makes them suitable for

both ESM and ELINT applications. The block diagram of the DIFM Receiver is shown in

Figure 3.11.
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Figure 3.11: Block diagram of DIFM Receiver.

The following are the characteristics of the DIFM receivers
1. Wide instantaneous RF band width
2. Wide instantaneous dynamic range
3. Good frequency accuracy
4. Measure short pulse with high-frequency accuracy

5. Adequate sensitivity for practical applications

The DIFM receiver has only one disadvantage that when multiple signal

environments, only one strongest signal will be measured.

3.2.3 Digital In-phase Quadrature-phase technique

In the DIQ technique [21], the digitized IF samples are converted into in-phase and
quadrature-phase samples using a numerically controlled oscillator (NCO). These samples are
passed through the low pass filter to discard the high-frequency component. The Equations
given below describes the DIQ approach for calculating instantaneous phase in radian,

frequency in Hertz, and amplitude in Volts. The detection is carried out on this amplitude
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profile R(n)and pulse is detected. The block diagram of the DIQ technique is shown in

Figure 3.12.
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Figure 3.12: Block diagram of DIQ technique.

The input IF signal is defined as x(t) = Acos(f) and the digitized IF sequence is
described as x(nty) = x(n) = Acos(2rnfnty). The frequency (f;) of NCO is chosen as f, =
fs/4. Where f is the is signal frequency, t,is the sampling time, n = 0,1,2,...,N-1, is the
sample number, N is the total number of samples, and f; is sampling frequency. The
advantage of choosing NCO frequency as f, = f;/4 is shown below. The cosine and sine

components of NCO becomes as
x. = cos2nf.nty)=[1,0,-1,0,1,.......] (3.5
xs = sin(2rnf.nt,)=1[0,1,0,-1,0,.......] (3.6)

Finally, the signal x is multiplied with [1, 0, -1] values which is nothing but sign change
of input signal. The frequency translation (or multiplier) is performed without any

multiplication.
i'n) = x.x, = [x,0,—x,0] (3.7)
q(n) = x.x;, = [0,x,0,—x] (3.8)

These signals are passed through low pass filter to filter out f + f, signal and passes only

desired f — f. signal. Based on i(n) and q(n) signals the following are obtained after filtering:
i(n) = LPF [I'(n)] (3.9)

q(n) = LPF [q'(n)] (3.10)
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The instantaneous phase, frequency, and amplitude are obtained using the following

equation 3.11 to equation 3.13

Phase ¢(n) = tan™?! (%) (3.11)
Frequency  F(n) = () Ap(n) (3.12)
Amplitude R(n) = J{i(n)}2 + {q(n)}? (3.13)

There is a requirement of above 12 dB SNR using the DIQ technique for instantaneous

phase, frequency, and amplitude measurements of the pulse.
3.3 Direction finding techniques

A direction finding (DF) system gives the direction of emitter [1]-[3], [48]-[49]. It is
often important to determine the location of the emitter. Two or more DF systems are
necessary to obtain the location of the emitter by triangulation. Alternatively, the DF system
can move in space and taking measurement at different times, it is possible to locate the
emitter. But this is not possible most of the time. There is a number of ways of determining
the AOA. In this section, some of the contemporary direction-finding methods that are

suitable for implementation in electronic intelligence receivers are discussed.
3.3.1 Rotary DF

One of the first direction finding (DF) techniques was the mechanically spinning
antenna based which is highly directional. It is physically rotated in azimuth (and elevation) to
search for radar signals. The AOA for the intercept radar is simply the angle at which the
spinning antenna received the radar signal. The modern spinning antenna system can estimate
the radar AOA at the accuracy of one-tenth of antenna beam width (typically of the order of
1° to 5° RMS).

Rotary-based DF systems are easy to understand, easy to implement, low cost, and
highly relevant in radar intercept receivers in today’s system also. These types of directional
antennas provide inherently directional isolation between the intercept radar with other signals
coming from the other direction. Hence, they are able to collect the data of intercepted radar
only in direction. Intercept receiver antenna receives the signals while rotating and radar

system antenna transmit signals also may be rotating. The coincidence of receiving the radar
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signal by intercept receiver may or may not be met. The probability of this happening is

known as the probability of intercept (POI).

The inherently poor POI performance of this technique is one of the main drawbacks
of using spinning antennas for a surveillance system. Ongoing antenna maintenance with the
physical wear and tear of mechanical parts also makes the spinning antenna system

unattractive.
3.3.2 Amplitude based DF

Amplitude-based DF measurement requires 4 to 16 directional antennas. The beam
width of each antenna BW is given by, BW=(360/N) where N is the number of antennas. A
larger number of antennas will also give better DF accuracy due to narrower beam width and
resultant greater amplitude gradient. More number of antennas will also give better system
sensitivity due to higher antenna gain. Spiral antennas are used for ultra-broadband (multi-
octave) performance and constant beam width horn antennas are used for medium bandwidth
(octave) and narrow bandwidth. Designing a DF system to cover 360° azimuth is simpler than
for partial azimuth. Outputs of two to three antennas (maximum signal amplitude) are
processed for AOA estimation. Single antenna output can also be processed for signals close
to bore sight of any one of the antennas especially if 12 element or 16 element arrays are used.
The front-end hardware has to be calibrated to remove bias errors and to improve DF
accuracy. DF accuracy degradation is graceful for larger amplitude mismatch between the
front-end hardware. Loss of sensitivity (in dB) is one-half of the peak-to-peak gain mismatch

among front-end hardware components.

Using twelve antenna ADF system AOA is computed as below
AOA = 6, £ [15- 1.25 * (44)] (3.14)

Where 8, is the principal direction in which the antenna with the highest amplitude faces (0°,
30% 60°, etc.) and AA is the amplitude difference between highest peak and second peak
amplitude in + 15° roll-off regions. The + or — sign is used depending on whether the second
peak occurs from the antenna to the left of the peak amplitude antenna or the right. Ultra-
broadband coverage using spiral antennas reasonably good accuracy of 2° to 5° RMS simple
processing algorithms. But this approach is prone to DF errors due to reflections, multi-path

effects, and DF accuracy heavily dependent on calibration.
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3.3.3 FDOA based DF

Frequency difference of arrival (FDOA) techniques exploit the Doppler effects to
estimate the AOA of the received signal. In this system, one antenna is physically rotated
around a reference antenna. The circular motion of the moving antenna causes a sinusoidal
Doppler shift relative to the frequency measured by the reference antenna. The angle at which
the Doppler shift goes from positive to negative is the AOA of the signal. In practical
systems, the rotating antenna can be replaced by a circular array of antennas that are switched
sequentially into the receiver. Direction finding systems have been known to achieve angular

accuracies of about 3° RMS.

3.3.4 TDOA based DF

The time difference of arrival (TDOA) technique is based on the difference in the time
of arrival of the signals received by two sensors due to the physical separation of the antennas.
Consider two antennas receiving the same RF signal as signal in Figure 3.13. The difference

in time of arrival of the signal at the two antennas ‘t’ is given by:

t = d=sin(8)/c (3.15)
OO
)
dsin(0)
S
Al d A2

Figure 3.13: Two Antennas based TDOA.

where d is the distance between the antenna in meters, 0 is the angle of arrival and ¢ is the

velocity of light.
The AOA, 6 can be computed as
0 =sin"(t*c/d) (3.16)
The AOA accuracy is given by:

060 = at *c/[d * cos(0)] (3.17)
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a® Wm O

Figure 3.14: Two Antennas based TDOA showing signal arrival from two different directions.

Front to back ambiguity in the AOA will be there because a signal from the mirror
image direction also gives identical AOA since the time difference is the same as shown in

Figure 3.14 where 0, and 0, are the actual AOA and mirror image of AOA.

To resolve these front to back ambiguities a third antenna is introduced so that two
(orthogonal) baselines are available. The time delays for the two (orthogonal) baselines are
given by: t;=d*sin(0)/c and t,=d*sin(f)/c. The AOA is given by: O=tan’'(ti/ty). Similar

equations can be derived for other types of non-orthogonal geometries.

In the TDOA method, the AOA is computed based on the difference in the time of
arrival of the intercepted signal by two adjacent antennas. Four antenna based TDOA is
shown in Figure 3.15. The difference in the arrival time of the RF signal at each pair of
antennas concerning the baseline formed by the two antennas is measured which is
proportional to the AOA (i.e. A1-A2, A2-A4, A4-A3, A3-Al, A1-A4, and A2-A3). The time

difference arrival in turn depends on the span (distance between the antennas) of the baseline.

Al A2

A3 A4

Figure 3.15: Four Antennas based TDOA.

The TDOA approach yields high DF accuracy, but the limitations are the requirement
of large baselines and high-speed processing circuits to measure the time difference of the
order of nanoseconds very accurately. TDOA approach is useful for pulsed signals only. The
present day technology is to use high-speed ECL ICs and GaAs ASICs for time difference
measurement. Hence, for platforms where large baselines are available, TDOA DF is highly

recommended. DF accuracy for 14 m spans, is less than 2° achievable.
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3.3.5 BLI based DF

The baseline interferometry (BLI) principle of operation is shown in Figure 3.16. The

phase delay y across the two antenna outputs is given by,

D*Sin(0)

Al D A2

Figure 3.16: BLI principle of operation.

W = 21« (D/A) * Sin(6) (3.18)

where 0 is the AOA with respect to the bore-sight axis, 4 is the wavelength of the incident
signal, and D is the spacing between the two antenna elements. If the phase delay is measured
and the frequency (and hence wavelength) is known the Direction of Arrival of the signal can

be computed as, & = Sin~! (WA/2rD). The DF accuracy is computed as below:

09 =0g * A[[2*m*D = Cos(6)] (3.19)

Higher DF accuracy requires a larger baseline. Baseline spacing has to be less than
(A/2) to avoid ambiguous phase measurement. This requirement cannot be met practically for
broadband systems with good DF accuracy specifications. Good DF accuracy can be obtained
only by large baselines i.e. several wavelengths. Multiple antenna elements (typically 4 to 5
antennas have to be used to resolve phase ambiguity. Maximum likelihood Estimation, Least
Mean Square Estimation, and Chinese Remainder Theorem (CRT) are extensively used to
resolve the ambiguity in phase measurement. The phase error margin is the single most
important criterion in the design of Interferometer DF Systems. This technique gives gross DF
errors if the actual phase error exceeds the error margin provided in the algorithm. Phase
Error Margin is a function of the Prime Integer Ratio of the Baselines used for resolving
ambiguity. A ratio of 1:2 gives a £60° phase error margin. The general Phase Error Margin A¢
for resolving Mod 2n phase data using CRT is given by 4¢ = 180/(P + Q) where P: Q is the

prime integer ratio of the baselines whose phase data have to be resolved. Signals coming
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from outside the Unambiguous FOV should be suppressed at any cost. The other important

parameters to be considered while synthesizing array spacing’s are:

Specified DF accuracy, Azimuth coverage (generally +30° to +45°), Elevation
coverage (Including coning errors), Frequency coverage, Antenna Dimensions, Post
Calibration Phase errors in antenna and RF Front End hardware components, SNR
requirements and Interference immunity, Interference includes reflections, multipath, time

coincident signals, mutual coupling, etc.

Phase calibration is a very important requirement in this type of DF system.
Calibration is used to remove static bias phase errors in the Front End hardware. Calibration
data is stored in a look-up table (LUT) for each frequency. Antenna phase errors are stored in
a separate LUT. It is generally possible to bring down phase errors to within 12 degrees
(peak) using calibration LUTs. It is to be noted that the phase error margin should not be
compromised just because the hardware is calibrated. The phase error margin is required to
take care of what happens to the input signal even before it enters the antenna array.
Multipath, reflections, Interference, SNR, etc. will alter the phase relationships. A course
amplitude based DF system is also required if Inter Sector ambiguity is to be resolved. The
peak error in the Amplitude DF system has to be less than half the unambiguous FOV of the

Interference.
3.4 Intra-pulse analysis

Intra-pulse analysis of radar signals is carried out in ELINT systems using offline
analysis [21]-[23]. RF signal is down-converted into IF signal using front-end i.e. down-
converter. This IF signal is digitized by high-speed data acquisition systems and it is stored in
the memory. This data is sent to DSP for further analysis. Figure 3.17 shows the block
diagram of the conventional ELINT system.

IF Signal Digitized IF Tracks
RF Signal i Data : Results
—> Down. —> Acquisition > DSP —> Err.nfcter. —>
conversion . Processor Identification
with Memory

Figure 3.17: Block diagram of conventional ELINT system.
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3.4.1 Down-conversion and digitization of IF signal

Superheterodyne receiver, Channelized receiver, or homodyne receiver are tuned for
down-conversion and IF signals are obtained. The IF signals are down-converted to the centre
frequencies of 1000 MHz + 250 MHz, 160 MHz + 20 MHz, or 70 MHz + 5 MHz. These IF
signals are digitized by high-speed data acquisition systems. The IF signal of 1000 MHz is
sampled at 1333 MSPS to cater the bandwidth of 500 MHz using band pass sampling. IF
signal of 160 MHz or 70 MHz is sampled at 500 MSPS using low pass sampling. In L and S
radar bands, the IF of 160 MHz or 70 MHz is used. The IF of 1 GHz is used for higher radar
bands.

3.4.2 Storing of IF data and preprocessing

The digitized IF signal is stored in the double data rate DDR SDRAM memory in real-
time for pulse data. The pulse data comprises of pulse duration, pre-trigger, and post-trigger.
Pre-trigger, and post-trigger data are captured to measure the rise-time or fall-time. Pre-
processing is also carried out to measure the course parameters like RF, PW, and PRI. These

course measurements are useful for initial plotting.

When the Data acquisition unit completes the acquisition of the required number of
pulses, it sends the digitized data to DSP. In case, data is not received within a specified time
limit, the timeout interrupt is generated indicating that the emitter is not available and the

controller terminates the process.

3.4.3 Modulation measurement

The threshold applied for detection can be either fixed or noise riding. The TOA of
each pulse is obtained by applying the selected or calculated threshold on the instantaneous
amplitude of the signal and measuring the point where the signal crosses the threshold. From
the TOA of each of the pulses in the pulse train, PRF is calculated. The measurement of PW
of the signal is similar to that of TOA, where the time duration over which the signal crosses
the threshold is measured. As with the other parameters, a statistical analysis of PW and PRF
is carried out. The various quantified characteristics thus obtained are passed for post-
processing and fine grain data is generated. Block diagram of DSP processor based

modulation measurement in shown in Figure 3.18.

The pulse parameter measurement along with modulation measurement is carried out

using DSP processors. These processors are having a limited number of Multiply-Accumulate
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(MAC) units. The received digitized IF data for the signal is processed. Parameters are
measured for each pulse along with intra-pulse modulation and a pulse descriptor word

(PDW) is formed.

Digitized
IF Data DIQ Pulse Modulation PDW PDW
—_— > N N AN

Conversion Detection Measurement Formation

Figure 3.18: Block diagram of DSP processor based modulation measurement.
3.4.4 Sorting

The PDW for each pulse is passed for sorting. De-interleaving is done on the PDW
to perform a one-to-many mapping of the track. The initial sorting required for segregating
the pulses is done in the primary de-interleaving stage. The parameters used for this
segregation are frequency and pulse width. Using these two parameters, emitters are grouped
by sorting the pulse data with similar parameters into pulse chains employing the Pigeon Hole
technique. After the initial sorting is done, secondary de-interleaving does the task of further
sorting and classifying. The process of secondary de-interleaving uses the important
parameter, TOA with the techniques of histogram analysis to perform this job. From the TOA
parameter of each PDW, the type of PRF and the corresponding parameter for this type of

PRF are measured. These tracks are formed based on emitters available in the environment.
3.4.5 Emitter Identification

The Identification unit identifies the incoming radar with the radars stored in the
library by using the track parameters, which are measured by the DSP Unit. The controller

sends the incoming track parameters to the Identification unit for matching.

The parameters of the library can be scaled and sorted into groups like Frequency,
PRI, and PW, etc. For each group, identification is done by passing the parameters through
suitable windows and using some distance metrics to find the error between the input
parameters and the radar library parameters. The windows for each parameter will depend
upon the variance of the parameter, noise, system accuracy, etc. The weights are assigned to

each parameter depending upon its importance.
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3.5 Summary

This chapter has discussed many contemporary parameter measurements techniques
which include frequency measurement receivers, frequency measurement techniques,
direction-finding techniques, and modulation measurement techniques. Homodyne receivers
are used for wideband coverage and it is frequently used for wideband ES systems but
achieves less sensitivity. Superhet receiver is also the most important receiver which is used
for the ELINT system. The achieved sensitivity and dynamic range are very high. Superhet

receiver is used in conjunction with digital receiver for ELINT system.

The spinning antenna is the simplest of all direction-finding techniques but has a
relatively course AOA estimation performance and poor POI performance. However, given
spinning antennas are still used due to their low implementation costs. Baseline interferometer
is best-suited direction-finding technique among the discussed DF techniques. This provides

high DF accuracy.

Existing ELINT receivers use the Superhet receiver due to its feature. This
downconverts RF signal into IF signal based on the tuning frequency. The IF signal is
digitized by high-speed ADC. This digitized IF data is stored in memory for further
processing by the DSP processor. This extracts the features along with modulation which is
used for sorting, track formation, and emitter identification. Since, IF data is stored the
process after this remains offline. Hence, the modulation measurement is also offline
processing. The systems based on DSP hardware is categorized as a strategic system due to

offline processing for ELINT systems.
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Signal Estimation and Direction Finding

In the previous chapter contemporary electronic intelligence receivers with digital
frequency measurement techniques and direction-finding techniques are described. The
modulation measurement techniques are also presented which are useful for offline analysis.
In this chapter, noise cancellation technique is used as part of preprocessing of the signal.
Further instantaneous amplitude and instantaneous frequency profiles are extracted using the
autocorrelation technique. FFT-based frequency estimation using interpolation techniques and
three antennas based direction-finding techniques are also described. The simulation results
are also presented for all the mentioned techniques and these are implementable for real-time

application.
4.1 Introduction

The signal is received and noise cancellation is employed as part of the preprocessing.
In noise cancellation, average noise is estimated for fixed time duration by ensuring signal
absence. If signal is present during noise estimate the average will be estimated wrongly. The
incoming signal spectrum subtraction is carried out with average noise estimate and same
time incoming signal phase is not being disturbed. The recovered signal is called as restored
signal [117]. This technique is applied for both the I and Q channels as further processing is
based on the complex signal. Later, autocorrelation with different delays are computed using
both I and Q channels to reduce the impact of noise. Implementation of autocorrelation
algorithm consumes more hardware resources. An efficient technique is innovated to reduce
the hardware consumption. To measure the highly accurate intra-pulse parameters a new

system configuration has been proposed with various proposed signal processing algorithms.

Estimation of frequency is carried out based on the Rectangular window, Hanning
window, Curve fitting, Curve fitting with Hanning window interpolation techniques.
Interpolation techniques results are compared with FFT measured frequency which improves

the accuracy of frequency reporting. The correct frequency is useful for AOA measurement

47
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which is an important parameter because it can’t be camouflaged. This parameter can be
exploited in many ways which include improving situational awareness, signal sorting or
deinterleaving, prompt electronic attack measures (such as jammers) or electronic protection
measures (such as chaff), and many more. Accurate DOA measurement is required with
available space and resources. There are many contemporary directions finding methods that
are suitable for implementation in electronic intelligence receivers such as Rotary Direction
Finding (RDF), Amplitude Comparison Direction Finding (ADF), Time Difference of Arrival
(TDOA), Phase Difference of Arrival (PDOA), and Frequency Difference of Arrival (FDOA).
The PDOA is also known as interferometry [3], [49].

4.2 Preprocessing of signal

Figure 4.1 shows the block diagram of fine grain parameter (FGP) measurement which
is carried out by enhancement of signal-to-noise ratio (SNR) and sample-to-sample
measurement of amplitude and frequency. The algorithms shown are used on digitized IF
signal and instantaneous amplitude and frequency profiles are obtained. Measured parameters
constitute the fine grain parameters and computed using both autocorrelation approach and
DIQ approach. The signal is pre-processed using the noise cancellation technique before
being processed by these algorithms. Noise estimation is also carried out to estimate the noise

riding threshold which is used for pulse detection and FGP is measured.

Digitized In'so:cantl'?medous Detection | Profiles
. mplitude .

IF Data Noise P Noise & & FGP
—_— . > and > ) i —>| >

Cancellation Estimation FGP

Frequency ;

Generation
Measurement

Figure 4.1: Block diagram of fine-grain parameter measurement.

Pre-processing of the signal is carried out at the initial stage just after aligning of data
at the FPGA. The data is received thru SERDES in FPGA. Total eight samples are captured
four samples at the positive clock and four at the negative clock. Preprocessing is carried out

to improve the SNR of the signal.

4.2.1 Noise cancellation by spectral subtraction

Many receivers having the single input channel. Noise has to be estimated with the
same input channel. It can reduce the effect of noise in the channel. Hence, the average of

noise is estimated for the time duration. This average noise estimate is subtracted from input



Signal Estimation and Direction Finding 49

signal spectrum. In this process phase of the incoming signal is not distorted. The incoming
phase is attached after spectrum subtraction. Hence, this restored signal can be used for

direction finding systems also as phase of the input signal will be intact.

Noise cancellation is performed as part of the pre-processing of the signal. Input signal
which is noisy and hence it is called a noisy signal. The sum of the clean signal x(m) and the
noise n(m) is modelled as noisy signal y(m) i.e. y(m) = x(m) + n(m) where the m is the
integer variable known as discrete-time index. The FFT of 1024 points is carried out
continuously on the noisy data. An overlap ratio of 75% is considered. Noise data are
collected from the system chain when the front-end is connected to the BITE port in signal off
condition for a minimum time of 50 us for a good estimate. A total of 50 us of noisy data is
considered to carry out the estimated average amplitude of FFT bins. Spectrum subtraction is
carried out to get a restored signal which reduces the SNR requirement at the input signal.
Then the estimated average of noise spectrum N, is subtracted from the noisy signal
spectrum Y, to get an estimate of the instantaneous magnitude spectrum of restored signal

X,

Xm=Y,— N, (4.1)
Noisy ————— Restored
signal FFT Estimated Subtraction g Inverse signal
—> . > . —> Phase of [ —>
1024 point average of Noise L FFT
Noisy signal

Figure 4.2: Block diagram of noise cancellation using spectral subtraction.

Restored time-domain signal (X,,) is obtained by combining an estimate of the
instantaneous magnitude spectrum of restored signal with the phase of the noisy signal, and

transforming via an inverse discrete Fourier transform to the time domain [117].

j2mwkm

x(m) = T¥ZgXme ) (e ) (4.2)
Where, m =0,1,2,..,N-1
x(n) = Time domain signal
X, = Restored signal spectrum
N,,  =Noise spectrum
Y = Noisy signal spectrum

x(m) = Restored time domain signal
m,n = Index number

k = Bin number
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0Y, = Phase of the noisy signal frequency spectrum Y,

4.2.2 Signal flow graph of noise cancellation

The signal flow graph of the noise cancellation technique is shown in Figure 4.3. The
IF data is captured and overlapped FFT of 1024 points is computed continuously upto 50 us
of duration. So, the computed number of FFT frames (FF) is compared with incoming FFT
frames (Nt). An estimated average of spectrum for all the frames is carried out after
completion of FFT computations. This average is subtracted from the incoming signal
spectrum and the restored spectrum is obtained. This spectrum is combined with the phase of
the incoming signal or noisy signal. Inverse FFT is computed to get the restored time-domain

signal. These samples are used for instantaneous measurements and signal detection.

Start
\/
Data Capture

N
Compute FFT

Frames (FF)=Nt
\/
Perform FFT
1024 Point

Yes

Estimated Average of
Noise Spectrum

Spectral Subtraction

Vi

Phase | Combining Phase of
Noisy Signal
\/
Perform Inverse FFT
1024 Points
\/
Instantaneous measurements
and Signal detection

\
End

Figure 4.3: Signal flow graph of noise cancellation.
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4.2.3 Simulation results of noise cancellation

Noise estimate is computed using the FFT during the noise region as shown in Figure
4.4. These averaged noise estimate is subtracted from input signal spectrum. The output
restored signal is produced as shown in Figure 4.5. The 80,000 samples are taken for the pre-
trigger region which consists mainly of noise and 8000 samples are taken for the pulse signal
which consists of signal as well as noise. Total 33,333 samples are considered for 50 us noise
estimates. In this case, only one pulse is taken. The additive white Gaussian noise (AWGN) is
considered for this purpose. It is visible in output restored signal that has reduced noise and
thus helps in improving the accuracy of further analysis. The restored signal is applied on

both baseband signals of In-phase (I) and Quadrature-phase (Q) components.

The noisy signal generated along with for eight pulses as shown in Figure 4.6 at 4 dB
SNR. This signal is generated with a total of 150,000 samples. Out of which 33,333 samples
are used for noise estimate. Figure 4.7, shows the restored signal obtained using the noise

cancellation technique at 4 dB SNR for eight pulses.

Noisy Signal

15 T T

Amplitude (mV)

_15 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

Time (ns) «10%

Figure 4.4: Noisy signal (input signal) generated with noise and one pulse. Simulation

parameters: f= 1.1 GHz, n =4 dB, N = 80,000 samples, and t; = 1.5 ns.
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10 Restored Signal

Amplitude (mV)

_10 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

Time (ns) x 104

Figure 4.5: Restored signal obtained for noise and one pulse. Simulation parameters: f = 1.1

GHz,n =4 dB, N = 80,000 samples, and t; = 1.5 ns.

Noisy Signal
15 T y olg T

Amplitude (mV)

_15 1 1
0 5 10 15

Time (ns) x10%

Figure 4.6: Noisy signal (input signal) generated with noise and eight pulses. Simulation
parameters: f= 1.1 GHz, =4 dB, N = 150,000 samples, and t; = 1.5 ns.
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10 Restored Signal

Amplitude (mV)

_10 1 1
0 5 10 16

Time (ns) <104

Figure 4.7: Restored signal obtained for noise and eight pulses. Simulation parameters: f= 1.1

GHz, n=4 dB, N = 150,000 samples, and t; = 1.5 ns.

The noisy signal generated along with for eight pulses as shown in Figure 4.8 at 2 dB
SNR. This signal is generated with a total of 150,000 samples. Out of which 66,666 samples
are used for noise estimate. Figure 4.9, shows the restored signal obtained using the noise

cancellation technique at 2 dB SNR for eight pulses.

Noisy Signal
20 T yolg T

Amplitude (mV)

_20 1 1
0 5 10 15

Time (ns) x10%
Figure 4.8: Noisy signal (input signal) generated with noise and eight pulses. Simulation

parameters: f= 1.1 GHz, n =2 dB, N = 150,000 samples, and t; = 1.5 ns.
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10 Restored Signal

Amplitude (mV)

0 5 10 15
Time (ns) x 10%
Figure 4.9: Restored signal obtained for noise and eight pulses. Simulation parameters: f=1.1

GHz,n=2 dB, N = 150,000 samples, and t; = 1.5 ns.

Similarly, Figure 4.10 shows the restored signal obtained using noise cancellation
technique at 0 dB SNR for eight pulses and Figure 4.11 shows the output restored signal using

noise cancellation technique at -2 dB SNR for eight pulses.

s Restored Signal

Amplitude (mV)

_15 1 1
0 5 10 15

Time (ns) «10%

Figure 4.10: Restored signal obtained for noise and eight pulses. Simulation parameters: f =

1.1 GHz, 1 =0 dB, N = 150,000 samples, and ts = 1.5 ns.
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Restored Signal

15 T T

Amplitude (mV)

0 5 10 15
Time (ns) 10

Figure 4.11: Restored signal obtained for noise and eight pulses. Simulation parameters: =

1.1 GHz, n =-2 dB, N = 150,000 samples, and t; = 1.5 ns.

4.2.4 Advantage of noise cancellation

The noise cancellation technique traditionally was used for communication signals.
But this technique became useful for radar signals also, due to the availability of high density
and high-speed processing hardware. This technique gives the SNR advantage and effective
upto -2 dB SNR with 1024 point FFT and 75% overlapping ratio. This SNR advantage
directly translates into sensitivity improvement. This technique is required to be used as part
of preprocessing before detection of the pulse. After detection of pulse, this technique will not
provide an advantage at the stage of detection. If FFT-based detection is used, the same FFT

output may be used for noise estimate.

In radar signal restoration process, the objective is to estimate the instantaneous signal
spectrum. The restored magnitude spectrum is combined with the phase of the incoming
signal to form the restored radar signal. Spectral subtraction has to be implemented carefully
can result in a substantial improvement in the identification performance. The main attraction
of spectral subtraction is its relative simplicity, in that it only requires an estimate of the noise

power spectrum.
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4.3 Generation of instantaneous amplitude and frequency

profiles

The moving autocorrelation technique is used for the generation of instantaneous
amplitude profile and instantaneous frequency profile. Amplitude profile is generated on
multiplying in-phase and delayed quadrature-phase signals. Since the input signals are in
quadrature and hence it is a complex signal. This complex signal after multiplying gives an
envelope of the IF signal. In the case of the DIQ technique, the complex signal is generated

using a real signal.

Multiplication requirements are reduced compared to the DIQ approach. The
multiplications required for the proposed approach are eight for two complex multiplications.
Whereas multiplications required for the DIQ approach are more for low pass filters

implementations.
4.3.1 Moving autocorrelation technique for amplitude generation

The moving autocorrelation technique is computationally efficient and occupies fewer

FPGA resources. It also provides a detection advantage. It is performed on the signal x(n).
The received signal is expressed in complex form as
x(n) = Ael?*n sel® 4 w(n) 4.3)

Where Ael?™™M%s s the received signal, A is the signal amplitude, @ is the initial phase,
ts is the sampling interval, f is the carrier frequency, and w(n) is the sampled zero-mean,

additive Gaussian white noise (AGWN).

The autocorrelation result is computed based on the absolute value of the pulse and
according to the features of a digital wideband pulse. The autocorrelation function is given by

[22],

X (n) = ZI_V__OlIx(n + Dl "+ i+ 1)

i=
= YN A2 sel® 4 AeiPei2M (DL wr(n + i + 1) +
Ae™IPe=2mH Dt (0 + i) + w(n + )|

(4.4)

X, (n) can be updated by iterated means and can be easily implemented on hardware by using,

X,n+1)=X,(n) +|x(n+N)x*(n+ N+ 1| — [x(n)x*(n+ 1)| (4.5)
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Figure 4.12: Block diagram of autocorrelation-based parameter estimation.

Initial autocorrelation will be performed with length N samples. Then subsequently
new autocorrelation output will be obtained by subtracting the first sample autocorrelation
output and adding new sample autocorrelation to the correlation value. N samples
autocorrelation is performed in a recursive way to reduce the computational burden. The

block diagram of autocorrelation-based parameter estimation is shown in Figure 4.12.

Autocorrelation output will be compared with a threshold to check for start of the
pulse. If the start of a pulse is detected, then IF data will be stored and the time of arrival will
be stored. N should be selected in such a way that it should detect minimum pulse width. As
N increases noise reduction is improved. So a selection of N is a trade-off between minimum
pulse width and noise suppression. Value of N, more than 16 is optimum. The following

equations are rewritten and simplified as below,
x(n) = x; (n) + jxg (n) (4.6)
Xn(m) = ZaSs[xi () + jxgM][xi(n+ 1) + jxg(n + 1] (4.7)

Xy(n+1) =Xy(n) + [xl-(n +N-1)+jx,(n+N— 1)][xl-(n + N) + jxs(n+ N)] -

[x:(n) + jx,M)][xi(n + 1) + jxg(n+ 1] (4.8)

Yy(n) = [xi(n +N-1)+jx,(n+ N — 1)] [xi(n + N) + jxs(n+ N)] 4.9
Y, (n) = [x;i(n) + jx,M)][xi(n + 1) + jxy,(n + 1)] (4.10)
Xy(n+1) = Xy(m) +Yy(n) —Y,(n) (4.11)

Xy (n) is computed for every new sample. Here only four real multiplications are required for

every new sample.

Xy(n+1) = k+Yy(n) —Y,(n) (4.12)
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4.3.2 Multilevel autocorrelation technique for frequency generation

Baseband signal is used to perform the autocorrelation which reduce the impact of
noise [22]. Total thirty-two samples are used to perform the autocorrelation recursively to
reduce the computational requirement. Thirty-two samples of autocorrelation is selected to
cater to the minimum pulse width requirement of 50 ns when sampling time is 1.5 ns. Delay
m is 1 in the case of amplitude measurement. The first element of thirty-two samples

autocorrelation is calculated as:

Xy(n) = (%) INZ[xi () + jxg)][xi(n + 1) + jx,(n+ 1)] (4.13)
Where, x* is a conjugate of x. It is implemented in recursively as below:
Xv(n+1) =Xy + |Yy(n) - Y1(n)| (4.14)

Typically N is considered 32 which is optimum for all pulse widths varying from 50
ns to 1 ms. Where n varies from 1 to the size of samples. This equation is further optimized by

replacing the first element of thirty-two samples autocorrelation with fixed value:

Xy(m) =a+jb (4.15)

Where a and b are constant values. This does not require the measurement of an initial
average of thirty-two samples autocorrelation output. Measurement of frequency parameters
involves the calculation of autocorrelation variables with different delays using baseband
signal. Four autocorrelation variables X;, X,, X4, and Xg with four different delays m =
1, 2,4, and 8 are calculated from the correlated signal with different delays. Multilevel phase
differences are calculated from the correlated signals with different delays, which in turn are
used to compute the frequency. Frequency F;(n) is measured as:

A®(n)
21

Fi(n) = F (4.16)

Where, F; is the sampling frequency and @(n) is the phase derived from X;, and
A®(n) is the phase of the signal. Now F;(n) measurement determines the zone in which

phase belongs according to the following equation.

Zyy = Ceil (“22) 4.17)

S

Here unwrapping of phases which are required for complex signals is not required as
different phases are calculated from auto-correlated variables with different delays and are

mapped to appropriate zones which are obtained with the help of frequency F,,_;(n) [23]-
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[24]. Likewise, F,(n) serves as a guide for @, by determining the zone it should be merged to.
Similarly, F,(n) determines the zone for ®g. The final frequency parameter Fg(n) is based on

the mapping of ®g.

E,(n) = (2 ) (AD,,(n) + 21Z,,) (4.18)

Fs
mm
Using the improved instantaneous frequency, the various intra-pulse modulations.

Frequency modulation, bi-phase modulation, and stepped frequency modulations are also

classified. The instantaneous frequency is used to extract the modulation of the signal.

4.3.3 Simulation results of amplitude profile generation

An instantaneous amplitude profile is generated for the following four different
approaches at different SNR conditions. This will show at what value of SNR particular
techniques start generating correct amplitude profile.

(1) DIQ technique without noise cancellation
(i) DIQ technique with noise cancellation
(ii1) Moving autocorrelation technique without noise cancellation

(iv) Moving autocorrelation technique with noise cancellation

Simulation parameters considered to generate following amplitude plots are input
frequency (f) = 1.1 GHz, No. of samples (N) = 80,000 samples, and sampling time (ts) = 1.5
ns. The simulations are carried out for various SNR (1) conditions to establish the benefits of

the above techniques with respect to SNR.

4.3.3.1 Simulation results at -2 dB SNR

Figure 4.13 shows the noisy signal generated with eight pulses with SNR of -2 dB.
Whereas restored signal is obtained for -2 dB SNR as shown in Figure 4.14 using noise

cancellation technique.

The instantaneous amplitude is computed using correlated signal x(n) at the SNR
condition of -2 dB. The instantaneous amplitude profile computed using the DIQ technique
without noise cancellation is plotted as Figure 4.15 at SNR conditions of -2 dB. The input
signal is improved using the noise cancellation technique. Figure 4.16 shows, the
instantaneous amplitude profile using the DIQ technique with noise cancellation. This
confirms that DIQ technique and DIQ technique with noise cancellation are not working

effectively at SNR of -2 dB.
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Noisy Signal at -2 dB SNR
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Figure 4.13: Noisy signal (input signal) generated with eight pulses. Simulation parameters:

f=1.1 GHz, n=-2 dB, N = 80,000 samples, and t; = 1.5 ns.

Restored Signal at -2 dB SNR

15 T

Amplitude (mV)

-15 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
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Figure 4.14: Restored signal obtained using noise cancellation for eight pulses. Simulation

parameters: f= 1.1 GHz, 1= -2 dB, N = 80,000 samples, and t; = 1.5 ns.
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Instantaneous Amplitude at -2 dB SNR
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Figure 4.15: Instantaneous amplitude profile using DIQ technique without noise cancellation

for eight pulses. Simulation parameters: f= 1.1 GHz, n =-2 dB, N = 80,000 samples, and t; =

1.5 ns.
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Figure 4.16: Instantaneous amplitude profile using DIQ technique with noise cancellation for

eight pulses. Simulation parameters: f= 1.1 GHz, n =-2 dB, N = 80,000 samples, and t; = 1.5

ns.

The instantaneous amplitude profile computed using autocorrelation technique without
noise cancellation is plotted as Figure 4.17 at SNR conditions of -2 dB. It confirms that
autocorrelation technique is not working effectively at SNR of -2 dB. Figure 4.18 shows, the
instantaneous amplitude profile using the autocorrelation technique with noise cancellation.

This confirms that autocorrelation technique with noise cancellation is working effectively at
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SNR of -2 dB as there is sufficient clearance between pulse lower amplitude and noise peak

amplitude.

%0 Instantaneous Amplitude at -2 dB SNR
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Time (ns) « 104
Figure 4.17: Instantaneous amplitude profile using moving autocorrelation technique without

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n = -2 dB, N =

80,000 samples, and t; = 1.5 ns.
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Figure 4.18: Instantaneous amplitude profile using moving autocorrelation technique with

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n = -2 dB, N =

80,000 samples, and t; = 1.5 ns.
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4.3.3.2 Simulation results at 4 dB SNR

A noisy signal is generated at 4 dB SNR and a restored signal is obtained from the
noisy signal. The noisy signal is represented in Figure 4.19 and the restored signal is
represented in Figure 4.20. Both the DIQ technique and autocorrelation technique is applied

to the restored signal and results are shown in subsequent figures.

Noisy Signal at 4 dB SNR

15 T T
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Time (ns) «10%

Figure 4.19: Noisy signal (input signal) generated with eight pulses. Simulation parameters:

f=1.1 GHz,n=4 dB, N = 80,000 samples, and ts = 1.5 ns.

Restored Signal at 4 dB SNR
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Time (ns) %104

Figure 4.20: Restored signal obtained using noise cancellation for eight pulses. Simulation

parameters: f=1.1 GHz, n =4 dB, N = 80,000 samples, and t; = 1.5 ns.
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Instantaneous amplitude profile is obtained for 4 dB SNR using DIQ technique and
DIQ technique without noise cancellation technique and results are plotted at Figure 4.21 and
Figure 4.22 respectively. This confirms that DIQ technique and DIQ technique with noise
cancellation are not working effectively at SNR of 4 dB.

Instantaneous Amplitude at 4 dB SNR
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Figure 4.21: Instantaneous amplitude profile using DIQ technique without noise cancellation
for eight pulses. Simulation parameters: f = 1.1 GHz, 1 =4 dB, N = 80,000 samples, and t; =
1.5 ns.
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Figure 4.22: Instantaneous amplitude profile using DIQ technique with noise cancellation for
eight pulses. Simulation parameters: f = 1.1 GHz, n = 4 dB, N = 80,000 samples, and t; = 1.5

ns.
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Instantaneous amplitude profile is obtained for 4 dB SNR using autocorrelation

technique and autocorrelation technique with noise cancellation and results are plotted at

Figure 4.23 and Figure 4.24 respectively. This confirms that autocorrelation technique and

autocorrelation technique with noise cancellation are working effectively at SNR of 4 dB

Instantaneous Amplitude at 4 dB SNR
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Figure 4.23: Instantaneous amplitude profile using moving autocorrelation technique without

noise cancellation for eight pulses. Simulation parameters: f= 1.1 GHz, n =4 dB, N = 80,000

samples, and t; = 1.5 ns.
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Figure 4.24: Instantaneous amplitude profile using moving autocorrelation technique with

noise cancellation for eight pulses. Simulation parameters: f= 1.1 GHz, n =4 dB, N = 80,000

samples, and ts = 1.5 ns.



66 Chapter 4, Section 4.3

4.3.3.3 Simulation results at 8 dB SNR

The noisy signal is generated at 8 dB SNR and the restored signal is obtained. Figure
4.25 shows the noisy signal at 8 dB SNR and Figure 4.26 shows the restored signal of noisy
signal at 8 dB SNR.

Noisy Signal at 8 dB SNR
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Figure 4.25: Noisy signal (input signal) generated with eight pulses. Simulation parameters:

f=1.1 GHz, n=8 dB, N = 80,000 samples, and ts = 1.5 ns.

10 Restored Signal at 8 dB SNR
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Figure 4.26: Restored signal obtained using noise cancellation for eight pulses. Simulation

parameters: f=1.1 GHz, n =8 dB, N = 80,000 samples, and t; = 1.5 ns.
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Instantaneous amplitude profile is obtained for 8 dB SNR using DIQ technique and
DIQ technique with noise cancellation technique and results are plotted at Figure 4.27 and
Figure 4.28 respectively. It confirms that DIQ technique is not working effectively at SNR of

8 dB and DIQ technique with noise cancellation technique is working satisfactorily.

Instantaneous Amplitude at 8 dB SNR
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Figure 4.27: Instantaneous amplitude profile using DIQ technique and without noise
cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n = 8 dB, N = 80,000

samples, and t; = 1.5 ns.
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Figure 4.28: Instantaneous amplitude profile using DIQ technique with noise cancellation for
eight pulses. Simulation parameters: f = 1.1 GHz, 1 =8 dB, N = 80,000 samples, and t; = 1.5

ns.
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Instantaneous amplitude profile is obtained for 8 dB SNR using autocorrelation

technique and autocorrelation technique with noise cancellation technique and results are

plotted at Figure 4.29 and Figure 4.30 respectively. This confirms that both the techniques are

working satisfactorily at § dB SNR.
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Figure 4.29: Instantaneous amplitude profile using moving autocorrelation technique without

noise cancellation for eight pulses. Simulation parameters: f= 1.1 GHz, n = 8 dB, N = 80,000

samples, and t; = 1.5 ns.
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Figure 4.30: Instantaneous amplitude profile using moving autocorrelation technique with

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n =8 dB, N = 80,000

samples, and t; = 1.5 ns.
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4.3.3.4 Simulation results at 18 dB SNR

The noisy signal is generated at 18 dB SNR and the restored signal is obtained as
shown in Figure 4.31 and Figure 4.32 respectively.

Noisy Signal at 18 dB SNR
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Figure 4.31: Noisy signal (input signal) generated with eight pulses. Simulation parameters:
f=1.1 GHz, =18 dB, N = 80,000 samples, and t; = 1.5 ns.

Restored Signal at 18 dB SNR
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Figure 4.32: Restored signal obtained using noise cancellation for eight pulses. Simulation

parameters: f= 1.1 GHz, n =18 dB, N = 80,000 samples, and t; = 1.5 ns.
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Instantaneous amplitude profile is obtained for 18 dB SNR using DIQ technique and
DIQ technique without noise cancellation technique and results are plotted at Figure 4.33 and
Figure 4.34 respectively. This confirms that both the techniques are working satisfactorily at
18 dB SNR.
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Figure 4.33: Instantaneous amplitude profile using DIQ technique without noise cancellation
for eight pulses. Simulation parameters: f = 1.1 GHz, n= 18 dB, N = 80,000 samples, and ts =
1.5 ns.
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Figure 4.34: Instantaneous amplitude profile using DIQ technique with noise cancellation for
eight pulses. Simulation parameters: f= 1.1 GHz, n= 18 dB, N = 80,000 samples, and t; = 1.5

ns.
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Instantaneous amplitude profile is obtained for 18 dB SNR using autocorrelation

technique and autocorrelation technique with noise cancellation technique and results are

plotted at Figure 4.35 and Figure 4.36 respectively. These figures confirms that both the

techniques are working satisfactorily at 18 dB SNR.
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Figure 4.35: Instantaneous amplitude profile using moving autocorrelation technique without

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n = 18 dB, N =

80,000 samples, and t; = 1.5 ns.
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Figure 4.36: Instantaneous amplitude profile using moving autocorrelation technique with

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n = 18 dB, N =

80,000 samples, and ts = 1.5 ns.
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Table 4.1: Amplitude profile generation results suitable for pulse detection for different

approaches at various SNR.

Detection Approach Amplitude Profile Suitable for Correct Detection
# SNR(n)

4 121024 6 | 8 10|12 ] 14| 16 | 18
DIQ without Noise N | NIN|ININ|N|N|N|N|N|N|Y
Cancellation
DIQ with Noise Cancellation | N [N/ N/N|N| N | Y | Y | Y | Y | Y |Y
Autocorrelation without N | ININ|IN|Y| Y Y Y Y Y Y |'Y
Noise Cancellation
Autocorrelation with Noise NIY|Y|IY|Y| Y| Y|Y|Y|Y|Y|Y
Cancellation

The amplitude profile results are summarized in Table 4.1 at various SNR. This shows
DIQ technique alone can generate an amplitude profile at 18 dB SNR. When the DIQ
technique is used with noise cancellation, it can generate amplitude profile at 8 dB. Similarly,
moving autocorrelation technique alone generates an amplitude profile at 4 dB. When this
technique is used with noise cancellation, it generates the correct amplitude profile at -2 dB
itself. The correct amplitude profile generation means it should have clearance between pulse

lowest amplitude and noise highest amplitude which is the requirement for correct detection.

4.3.4 Simulation results of frequency profile generation

Instantaneous frequency profile is generated for the following four different
approaches at different SNR conditions. This will show at what value of SNR a particular
technique start reporting correct frequency.

(1) DIQ technique without noise cancellation
(i1) DIQ technique with noise cancellation
(i11) Multilevel autocorrelation technique without noise cancellation

(iv) Multilevel autocorrelation technique with noise cancellation

Simulation parameters considered to generate following frequency plots are input
frequency (f) = 1.1 GHz, No. of samples (N) = 80,000 samples, and sampling time (ts) = 1.5

ns. The simulations are carried out for various SNR (1)) conditions.
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4.3.4.1 Simulation results at -2 dB SNR

Instantaneous frequency profile is computed from the conventional DIQ technique
without noise cancellation technique as shown in Figure 4.37. This shows that the frequency
plot is broken and it cannot be measured at -2 dB SNR using this technique. Instantaneous
frequency profile is computed from the DIQ technique with noise cancellation technique as
shown in Figure 4.38. This shows that frequency measurement is not possible at -2 dB SNR
using this technique. Frequency variation is very high which is not useful.

14 Instantaneous Frequency at -2 dB SNR

1.3

11
e
)
o 1
(0]
=]
(on
Q09
[T
0.8
0.7
0.6 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
Time (ns) %104

Figure 4.37: Instantaneous frequency profile using DIQ technique without noise cancellation
for eight pulses. Simulation parameters: f = 1.1 GHz, n = -2 dB, N = 80,000 samples, and ts =
1.5 ns.
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Figure 4.38: Instantaneous frequency profile using DIQ technique with noise cancellation for

eight pulses. Simulation parameters: f= 1.1 GHz, n = -2 dB, N = 80,000 samples, and t; = 1.5

ns.
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Instantaneous frequency profile is generated from the multilevel autocorrelation
technique without noise cancellation technique as shown in Figure 4.39. This is evident from
the figure that frequency measurement is not possible at -2 dB SNR using this technique.
Instantaneous frequency profile is generated from the multilevel autocorrelation technique
with noise cancellation technique as shown in Figure 4.40. This is evident from the figure that
frequency measurement is possible at -2 dB SNR using this technique because there is no

break in the frequency. It shows that the correct measurement of frequency for 1.1 GHz input

frequency.
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Figure 4.39: Instantaneous frequency profile using moving autocorrelation technique without
noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n = -2 dB, N =

80,000 samples, and t; = 1.5 ns.
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Figure 4.40: Instantaneous frequency profile using moving autocorrelation technique with
noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n = -2 dB, N =

80,000 samples, and t; = 1.5 ns.
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4.3.4.2 Simulation results at 4 dB SNR

Instantaneous frequency profile is computed from the conventional DIQ technique
without noise cancellation technique as shown in Figure 4.41. This plot shows that frequency
is broken and it cannot be measured at 4 dB SNR using this technique. Instantaneous
frequency profile is computed from the DIQ technique with noise cancellation technique as
shown in Figure 4.42. This plot shows that frequency is measured at 4 dB SNR using this
technique. But frequency variation is more which is not useful.
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Figure 4.41: Instantaneous frequency profile using DIQ technique without noise cancellation
for eight pulses. Simulation parameters: f = 1.1 GHz, n =4 dB, N = 80,000 samples, and ts =
1.5 ns.
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Figure 4.42: Instantaneous frequency profile using DIQ technique with noise cancellation for
eight pulses. Simulation parameters: f = 1.1 GHz, 1 =4 dB, N = 80,000 samples, and t; = 1.5

ns.
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Instantaneous frequency profile is generated from the multilevel autocorrelation
technique without noise cancellation technique as shown in Figure 4.43. This plot shows that
frequency is broken and measurement is not possible. Instantaneous frequency profile is
generated from the multilevel autocorrelation technique with noise cancellation technique as
shown in Figure 4.44. This plot shows frequency measurement is possible at 4 dB SNR using

this technique. It shows that the measured frequency is 1.1 GHz against 1.1 GHz input
frequency.
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Figure 4.43: Instantaneous frequency profile using moving autocorrelation technique without
noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n =4 dB, N = 80,000

samples, and ts = 1.5 ns.
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Figure 4.44: Instantaneous frequency profile using moving autocorrelation technique with

1.

w

-
N

-
N

Frequency (GHz)
o o
o] [(e] -

o
3

0.6

x10%

noise cancellation for eight pulses. Simulation parameters: f= 1.1 GHz, n =4 dB, N = 80,000
samples, and t; = 1.5 ns.
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4.3.4.3 Simulation results at 10 dB SNR

Instantaneous frequency profile is computed from the conventional DIQ technique
without noise cancellation technique as shown in Figure 4.45. This plot shows that frequency
is broken and it cannot be measured at 10 dB SNR using this technique. The total frequency
variation is about £100 MHz which is not useful. Instantaneous frequency profile is computed
from the DIQ technique with noise cancellation technique as shown in Figure 4.46. This plot

show that frequency is measured at 10 dB SNR using this technique.
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Figure 4.45: Instantaneous frequency profile using DIQ technique without noise cancellation

for eight pulses. Simulation parameters: f= 1.1 GHz, n = 10 dB, N = 80,000 samples, and ts =
1.5 ns.
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Figure 4.46: Instantaneous frequency profile using DIQ technique with noise cancellation for
eight pulses. Simulation parameters: f= 1.1 GHz, n =10 dB, N = 80,000 samples, and t; = 1.5

ns.
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Instantaneous frequency profile is generated from the multilevel autocorrelation
technique without noise cancellation technique as shown in Figure 4.47. Instantaneous
frequency profile is generated from the multilevel autocorrelation technique with noise
cancellation technique as shown in Figure 4.48. This plot shows frequency measurement is
possible at 10 dB SNR using these techniques. It shows that the measured frequency is 1.1
GHz against 1.1 GHz input frequency.
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Figure 4.47: Instantaneous frequency profile using moving autocorrelation technique without
noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n = 10 dB, N =

80,000 samples, and t; = 1.5 ns.
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Figure 4.48: Instantaneous frequency profile using moving autocorrelation technique with
noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n = 10 dB, N =

80,000 samples, and t; = 1.5 ns.



Signal Estimation and Direction Finding 79

4.3.4.4 Simulation results at 18 dB SNR

Instantaneous frequency profile is computed from the conventional DIQ technique
without noise cancellation technique as shown in Figure 4.49. Instantaneous frequency profile
is computed from the DIQ technique with noise cancellation technique as shown in Figure
4.50. These plots show that frequency is measured correctly at 18 dB SNR using these

techniques.
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Figure 4.49: Instantaneous frequency profile using DIQ technique without noise cancellation
for eight pulses. Simulation parameters: f= 1.1 GHz, n = 18 dB, N = 80,000 samples, and t; =
1.5 ns.
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Figure 4.50: Instantaneous frequency profile using DIQ technique with noise cancellation for

eight pulses. Simulation parameters: f= 1.1 GHz, n =18, N = 80,000 samples, and t; = 1.5 ns.
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Instantaneous frequency profile is generated from the multilevel autocorrelation
technique without noise cancellation technique as shown in Figure 4.51. Instantaneous
frequency profile is generated from the multilevel autocorrelation technique with noise
cancellation technique as shown in Figure 4.52. This plot shows frequency measurement is
possible at 18 dB SNR using these techniques. It shows that the measured frequency is 1.1
GHz against 1.1 GHz input frequency.
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Figure 4.51: Instantaneous frequency profile using moving autocorrelation technique without

noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n = 18 dB, N =

80,000 samples, and t; = 1.5 ns.
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Figure 4.52: Instantaneous frequency profile using moving autocorrelation technique with
noise cancellation for eight pulses. Simulation parameters: f = 1.1 GHz, n = 18 dB, N =

80,000 samples, and t; = 1.5 ns.
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The frequency profile results are summarized in Table 4.2 at various SNR. This shows

DIQ technique alone can generate the frequency profile upto 18 dB SNR. When the DIQ

technique is used with noise cancellation, it is able to generate frequency profile upto 4 dB

SNR itself. Similarly, the moving autocorrelation technique alone generates the frequency

profile upto 10 dB SNR. When this technique is used with noise cancellation, it generates the

correct frequency profile upto -2 dB SNR. The correct frequency profile generation means the

mean of frequency should be within 100 kHz within the pulse region.

Table 4.2: Frequency profile generation results suitable for correct reporting for different

approaches at various SNR.

Detection Approach Correct frequency measurement # SNR (1)

4121021 4 6 8 | 1012 |14 ] 16 | 18

DIQ without Noise N|N|NIN|N|N|N|N|N|N|N Y

Cancellation

DIQ with Noise Cancellation N|{N|N|N|[Y |Y|Y |Y|Y|Y|Y|Y

Autocorrelation withoutNoise | N [N | N|N| N | N | N | Y |Y|Y| Y |Y

Cancellation

Autocorrelation with Noise N|IYIY| Y| Y| Y| Y|Y|Y|Y|Y|Y

Cancellation

The results from Table 4.1 and Table 4.2 are combined and presented in Table 4.3.

This shows the improvement of amplitude and frequency measurement using autocorrelation

technique. It shows further improvement, when these techniques are used with noise

cancellation technique.

Table 4.3: Amplitude Profile suitable for pulse detection and frequency measurement by

different approaches at SNR.

Detection Correct pulse detection and frequency measurement # SNR (1)
Approach 412102 4|6 |8 [10|12] 14 ] 16 | 18
DIQ without Amplitudke  N| N | N[N | N N | N | N|N|N|N|Y
Nose '~ N|/N|N|N|N|N|N|N|N|N|N
Cancellation
DIQ with Noise |Amplitude | N[N [N | N | N N/ Y |Y | Y |Y | Y |Y
N O NNNNe
Autocorrelation [Amplitude NN N[N | Y |Y | Y | Y| Y |Y | Y |Y
without Nmse NN N N N NN
Cancellation
Autocorrelation |Amplitude [ N | Y | Y |[Y | Y | Y | Y| Y| Y |[Y|Y |Y
with Noise
Cancelation
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SNR vs RMSE
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Figure 4.53: Comparison of the RMSE of autocorrelation and DIQ approaches without noise
cancellation as a function of SNR. Simulation parameters: f = 1.1 GHz, N = 80,000 samples,

and ts = 1.5 ns.

There is improvement in frequency accuracy with a reduction of SNR requirement at
the input in comparison to the DIQ technique as observed through Figure 4.53. This figure is
generated without noise cancellation. This shows that the autocorrelation technique is able to
process the signal at 10 dB SNR and whereas the DIQ technique fails. The DIQ technique
requires an SNR of 18 dB.

Figure 4.54 depicts the frequency accuracy with respect to SNR using both techniques.
This figure is generated with noise cancellation. This shows that the autocorrelation technique
is able to process the signal at -2 dB SNR and whereas the DIQ technique fails. The DIQ
technique requires an SNR of 8 dB.
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SNR vs RMSE
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Figure 4.54: Comparison of the RMSE of autocorrelation and DIQ approaches with noise

cancellation as a function of SNR. Simulation parameters: f = 1.1 GHz, N = 80,000 samples,

and ts = 1.5 ns.

The field data is also introduced to check the efficacy of the proposed algorithms.
Instantaneous amplitude and frequency profiles are depicted in Figure 4.55 and Figure 4.56
using the autocorrelation approach and DIQ approach. These results are generated with the
noise cancellation technique. It is evident from instantaneous amplitude and instantaneous
frequency profiles generated using autocorrelation approach having better results compared

with DIQ approach.

4.3.5 Summary

Amplitude and frequency profiles are generated with autocorrelation technique with
noise cancellation technique upto -2 dB SNR. Both autocorrelation and noise cancellation
techniques provide SNR advantage as shown in Table 4.3. These techniques are useful for

correct signal detection and correct frequency reporting within 100 kHz at -2 dB SNR.
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Figure 4.55: Comparison of first field data set result using autocorrelation and DIQ techniques

as a function of SNR. Simulation parameters: f = unknown, N = 10,00,000 and t; = 1.5 ns.
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Figure 4.56: Comparison of second field data set result using autocorrelation and DIQ
techniques as a function of SNR. Simulation parameters: f = unknown, N = 500,000 and ts =

1.5 ns.
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4.4 Frequency estimation using interpolation

Frequency accuracy can be improved by increasing the FFT number of points. But
more FFT number of points requires more multiplications and results in various processing
complexities. To avoid this, interpolation is the correct choice to improve the frequency

accuracy. This provides the advantage for detecting the radar pulses also.

Discrete spectrum is used to measure the frequency of incoming signal. These
measurements are possible after digitizing the IF signal and apply the appropriate windowing
operation. Finally compute the spectrum amplitude through FFT analysis. Frequency of the
input signal is computed using bin number. This bin number is multiplied by the resolution
which depends upon the number of samples considered for FFT computation. Considering
higher FFT number of samples is restricted due to computation time and other parameters
accuracy. This will restrict the resolution and it affects the frequency accuracy. Curve-fitting
or interpolation of inter-bin on FFT output is applied. Both theoretical and practical results are
taken and compared. This can be done in real-time as not much hardware resources are

required to implement the interpolation.

There are other methods for frequency estimation such as Quinn's methods, Grandke's
methods, Gaussian interpolation, parabolic or quadratic interpolation, and many more. So it is
required to find out the suitable algorithm which meets the system requirement. In this thesis,
a theoretical and experimental work has been carried out and due to its simplicity and
accuracy, "Parabolic Interpolation or Quadratic Peak Interpolation" in Fast Fourier Transform
(FFT) has been chosen for sinusoidal parameter estimation in communication and non-

communication applications.

4.4.1 Interpolation techniques
FFT output is used to implement interpolation technique. The FFT equation is given
by

Sp = Ynzo x(n)e /2P /N (4.19)

Where p=0,1,2,....,N-1. The limits of p can also be written as -N/2 to N/2. The
measured frequency is equivalent to p*f/N where the spectrum is having the highest value for

that peak p. Figure 4.57 shows the FFT spectrum.
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Figure 4.57: FFT spectrum showing three peaks.

The interpolation technique is used to improve the frequency accuracy without
increasing the FFT number of points. Different techniques namely Rectangular window-
based, Hanning window-based, curve-fitting based, and curve-fitting when FFT is performed
with Hanning window are used for this purpose. The frequency is estimated by all four
methods. The FFT output spreads across the bins due to the presence of non-coherent signals
and white Gaussian noise. Since the input frequency or set frequency is not always the
multiple of FFT resolution or least significant bit (LSB) of fi/N. The spectral component
spreads and reported peak frequency will not be the same as the set frequency. Amplitude is
extracted from the spectrum at three different bins. The highest-peak (So) at bin p, the second
highest peak (S1) at p-1, and the third highest peak (S2) at p+1 is extracted from the spectrum.
The delta bin which is away from the peak by +dp is computed. The delta bin for the

rectangular window is given by [23]

6p = (51— 52)/(51 +S2) (4.20)
The delta bin for the Hanning window is given by [23]
8p = (251 = S0)/(So + S1) (4.21)

These techniques are similar to zero paddings. The windowing methods don’t change

the shape of the spectrum. But it provides a better estimation of the peak frequency. These
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techniques provide an accurate result when only a single frequency is available at the input

signal.

When Sy is very close to the main peak above two techniques are sensitive to noise.
Under this situation, S; and S> are very close to the minima and noise may reverse their
amplitudes. The peak will move in the wrong direction using the above equations. When the

amplitudes of S; and S, are reversed then there will be more errors [23].

Curve-fitting is the process of generating a mathematical function which is the best fit
to a series of data points. These data points are subjected to constraint. It involves either
interpolation, where an exact fit to the data is required, or smoothing, in this the smooth
function is constructed that approximately fits the data. Similarly, the delta bin can be written

as using the curve fitting technique [32]-[34].
Op = (S1—52)/(S1— 25+ S2) (4.22)

Finally, the estimated frequency is computed using the delta bin dp as (p + 6p )*f/N.
Hanning window is applied on IF data and FFT are performed. The curve-fitting technique is
applied to the FFT output to get the delta bin dp from equation 4.22. The modified
interpolation technique block diagram is shown in Figure 4.58.

Hanning .
IF Signal | Analog to Window FFT Interpolation PDW PO
—> Digital — Generation
Converter Hafnnlng FFT Interpolation
Window

Figure 4.58: Block diagram of modified interpolation technique.

The application of interpolation technique is for real-time systems also. The steps to

be followed for interpolation to estimate the frequency is given below:

1) Carry out coarse estimate of the input signal frequency by locating the maximizer of the

FFT output magnitude.
2) Isolate the FFT outputs local to the bin determined in step 1.

3) To increase the frequency resolution and magnate estimate on isolated samples apply

algorithm.
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It is important to observe that decisive success depends on the ability of step (1) to
provide the correct FFT output bin number. It is important to consider the limitations of the

FFT algorithm itself for this reason.

4.4.2 Simulation results of interpolation

The input signal is generated for the band of input frequencies. The set frequencies are
varied from 1100 MHz to 1120 MHz with the step of 0.5 MHz to check the accuracy of
algorithms. Figure 4.59 shows the estimated frequency using a Rectangular window, Hanning
window, Curve fitting, Curve fitting with Hanning window estimation techniques. All the
results are generated using 256 points FFT and compared with set frequency. The result of
interpolation techniques is compared with FFT measured frequency alone. Figure 4.60 shows
the root mean square error (RMSE) using all frequency estimation techniques versus set

frequency.

1120 T T
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—<— Hanning Window Est
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Figure 4.59: Plot of measured frequency versus set frequency using FFT technique,
Rectangular window, Hanning window interpolation technique, curve-fitting interpolation
technique, and curve-fitting interpolation technique with Hanning window respectively.
Simulation parameters: f= 1100 to 1120 MHz, FFT Points = 256, Af = 0.5 MHz, and t; = 0.75

ns.
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Figure 4.60: RMS Error versus set frequency using FFT technique, Rectangular window,

Hanning window interpolation technique, curve-fitting interpolation technique, and curve-

fitting interpolation technique with Hanning window respectively. Simulation parameters: f =

1100 to 1120 MHz, FFT Points =256, Af = 0.5 MHz, and t; = 0.75 ns.
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Figure 4.61: Plot of RMS Error versus SNR using FFT technique, Rectangular window,

Hanning window interpolation technique, curve-fitting interpolation technique, and curve-

fitting interpolation technique with Hanning window respectively. Simulation parameters: f =

1100 to 1120 MHz, FFT Points =256, Af = 0.5 MHz, and ts = 0.75 ns.



Signal Estimation and Direction Finding 91

The simulation is carried out at different SNRs varying from -2 to 40 dB. Figure 4.61

shows the RMSE versus SNR using all frequency estimation techniques versus set frequency.

Table 4.4: RMSE of estimated frequency for interpolation techniques.

Interpolation RMSE (MHz) # N Point FFT

Technique 256 512 1024 2048 4096
FFT Measured 1.5280 | 0.7566 | 0.3702 0.1843 0.0916
Frequency

Rectangular Window | 1.0954 | 0.5742 | 0.2929 0.1503 0.0765
Hanning Window 0.7969 | 0.4584 | 0.2467 0.1308 0.0681
Curve Fitting 0.6561 | 0.3169 | 0.1573 0.0787 0.0402
Technique (CFT)

CFT with Hanning 0.0609 | 0.0297 |0.0148 0.0074 0.0038
window

Table 4.5: Peak Error of estimated frequency for interpolation techniques.

Interpolation Peak Error (MHz) # N Point FFT
Technique 256 512 1024 2048 4096
FFT Measured 2.5977 1.2988 0.6094 0.3076 0.1567
Frequency

Rectangular Window 1.8745 0.9872 0.4832 0.2512 0.1309
Hanning Window 1.2722 0.7577 0.3982 0.2149 0.1148
Curve Fitting Technique | 0.9051 0.4423 0.2197 0.1093 0.0545
(CFT)

CFT with Hanning window | 0.0820 0.0418 0.0209 0.0104 0.0052

Based on the frequency accuracy error computed using different interpolation
techniques the RMSE and peak error are calculated and tabulated as Table 4.4 and Table 4.5
respectively. It is found from the result that RMSE calculated from measured frequency using
256 points FFT is 1.528 MHz. In the case of the rectangular window interpolation technique,
Hanning window interpolation technique, Curve fitting interpolation technique, and Curve
fitting interpolation technique with Hanning window the RSME is 1.0954 MHz, 0.7969 MHz,
0.6561 MHz, and 0.0609 MHz respectively. The RMSE is lowest in the case of the curve

fitting interpolation technique with the Hanning window. The peak error is also the lowest of
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0.0820 MHz in the case of the curve-fitting interpolation technique with the Hanning window.
This performs equivalent to multiple times the number of points FFT results without

interpolation.

4.4.3 Summary

Discrete spectra can be used to measure frequencies of sinusoidal signal components
Such a measurement consists in digitizing a compound signal, performing windowing of the
signal samples, and computing their discrete magnitude spectrum, usually utilizing the Fast
Fourier Transform algorithm. Frequencies of individual components can be evaluated from
their locations in the discrete spectrum with a resolution depending on the number of samples.
Computational or other limitations often restrict the number of samples which may be

processed, which correspondingly restricts the resolution of the estimate provided by the FFT.

If the actual frequency of a signal does not fall on the centre frequency of an FFT bin
several bins near the actual frequency will appear to have a signal component. In that case,
use the magnitudes of the nearby bins to determine the actual signal frequency. There are
different frequency estimation algorithms from which few are discussed already. Other

algorithms are also there and their formulas are written below.

4.5 Direction finding

AOA measurement is carried out using three-antenna based BLI direction-finding
techniques. This technique is SWaP optimized as reduction of size, weight, and power
compared to four antenna based BLI. There is one advantage of interferometry that it
measures the phase accurately using digital hardware even at a reasonable sampling rate.
Therefore DOA with high accuracy can be obtained with shorter baselines and without the
challenging timing constraints. These interferometers achieve fraction of degree accuracies.
Further, preprocessing is used with interferometers and accurately estimates the AOA of

multiple signals.
4.5.1 Virtual baseline interferometer using 3 antennas based array

The linear combinations of antennas forms the baseline. Minimum two antennas are
sufficient to form the baseline. Two antennas baseline does not provide the sufficient phase
measurement accuracy. That is the reason, BLI is used with more than two antennas. Due to

the advancement of high density and high speed devices BLI processing capabilities can be
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implemented in hardware. Digital interferometers are frequently used in the in the ES and

ELINT systems.

A 00
Incident
Signal o . Wavefront

Figure 4.62: Linear array separation of antenna versus propagation phase delay of the incident

signal.

In Figure 4.62, a linear array of antennas has been depicted. Since ELINT receivers are
used to provide early warning to the presence of emitters, the ELINT receiver usually opted at
large distances from the emitter. The radar signal arriving at the ELINT receiver antenna array
can therefore be reasonably approximated as a uniform plane wave. Here 1, 2, 3 ..., N are the
antennas, 0 is the intercept angle and dni are distances between antennas. The DOA of the
signal is estimated as below, by estimating the frequency and phase delay of signal between

the two antennas outputs.
— cin-1 (&Y
6 =sin" () (4.23)

Where wavelength A = ¢/f. The baseline of the interferometer is often referred to as antenna
separation ‘d’. The accuracy of DOA estimate can be improved by one of the factors such as

¢ Increasing the SNR of the signal,

e Increasing the signal duration i.e. number of samples,

e Increasing the signal frequency,

e Operating closer to broadside, and

¢ Increasing the antenna separation.
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Since the parameters of the radar are beyond the control of the ELINT receiver, the
first three parameters can be changed. Some improvement in DOA estimate accuracy can be
gained by actively rotating the interferometer baseline to operate closer to the broadside
region. For moving platforms, this can be achieved by changing the trajectory of the platform,
while for stationary platforms, this can be achieved by using multiple, short baseline
interferometers with different orientations and appropriate switching between the baselines on
an intercept-by-intercept basis. However, these methods will only provide a small
improvement in the DOA estimation performance and may be impractical to achieve. The
most practical method to improve the DOA estimation performance is to utilize long baseline
interferometers. While long baseline interferometers offer improved DOA estimation

performance, they also introduce an ambiguity issue because the phase delays can only be

measured between [—71',”]. This leads to ambiguities as the theoretical phase delay can

exceed £m. This effect is known as phase wrapping. The ambiguity resolution using other
independent, non-interferometric DOA estimation methods is generally imposing additional
constraints on the design of the direction-finding systems. Also, the accuracy of these
algorithms is not being sufficient to resolve the ambiguities of the long baseline
interferometers at higher frequencies. The ambiguity resolution using a short baseline
interferometer requires that at least one pair of antennas be spaced no more than one half a
wavelength apart (at the highest frequency of separation). In practice, these design constraints
may not be achievable due to the size of the antenna or mounting characteristics of the

platform.

Figure 4.63: Plot of a simple set of interferometer baselines comprising of 4 antennas
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Figure 4.64: Plot of an extended set of interferometer baselines comprising of 4 antennas
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Alternative ambiguity resolution methods which make use of multiple long baseline
interferometers are based on the Chinese Remainder Theorem (CRT) and require
appropriately chosen interferometer baselines. For larger aperture, unambiguous DOA
estimates can generally be obtained with fewer intermediate baselines than the short baseline
ambiguity resolution method. Figure 4.63 describes a simple set of interferometer baselines
comprising 4 antennas whereas Figure 4.64 describes an extended set of interferometer

baselines comprising of 4 antennas. The longest baseline d, provide the best DOA estimation.

In order to increase the DOA accuracy further the number of baselines required to be
increased and also to process the such number of antenna either more number of switching to
be done which decrease the Probability of Intercept (POI) of radar signal or it is required to do
the parallel processing that will increase the system hardware, system power. Also, there is
space constraint for the space system; it is difficult to increase the number of antennas. For
Space ELINT system, instead of increasing the number of antennas, there is a demand to
decrease it. So that further SWaP can be reduced for better reliability and better durability. So
there is system configuration analysis where 4 antennas configuration has been replaced by 3
antennas system which can provide the same DOA estimation with certain constraints such as

the decrease in FOV and little more prone to phase error than earlier configuration.

The first constraint can be possible to resolve by changing the trajectory of the vehicle
during the predefined mission. Whereas the later can be resolved by choosing the good
hardware component which should be reliable for a particular phase margin of the algorithm

so that it could not give wrong DOA estimates.

Based on the above constraint, there is an alternative interferometric algorithm Virtual
Baseline Interferometer (VBI) which is based on a second-order difference array. This VBI is
computationally as fast as a conventional interferometer and also provides unambiguous DOA

estimation using two long baselines.

@ ® o - 0 o
1 2 3
— > >
dy ds ' * dg™
Physical Virtual
Array Array

Figure 4.65: Plot of virtual baseline interferometer comprising of 3 antennas
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Figure 4.66: Plot of physical interpretation of virtual baseline interferometer

Figure 4.65 describes the concept of a virtual baseline interferometer, where only 3
antennas are required. The unambiguous first-order phase delays for d»1, and ds2 baselines i.e.

21 and 32 respectively are derived as below using equation 4.23,

py = (Z52) sing (4.24)
sz = (2522) sing (4.25)

Where it is assumed that dy; < d3;, (Anin/2) << d21 and A,,;, corresponds to the
wavelength of the highest frequency of interest. The long baselines suggest that the phase
delays are highly ambiguous. The second-order phase delay Y5 can be calculated as the

difference between the first-order delays as follows using equations 4.24 and 4.25,

dsp—d . ds .
Ps = Pz — Py = Msm@ = ZHT‘SSLnB (4.26)
Where ds = d3, — d,; and this is equivalent to the creation of an antenna virtual pair

with a baseline of d g as depicted in Figure 4.66.

This virtual baseline phase delay can be unambiguous provided that the baseline is

Amin
2

sufficiently short. It means, that it satisfied the following constraint, 0 < ds < (——) where

Amin 18 the wavelength of the highest frequency of interest. The unambiguous estimate of

DOA of the signal using the basic interferometer equation is written as

6 =sin" (5

2rtdg

) (4.27)

The RMS error of the virtual baseline interferometer is expected to be degraded
compared to first-order interferometer with a physical baseline of dg. It is attributed to the
fact that three-antenna outputs are used to estimate the phase delay of a virtual two antenna
interferometer. The extra antenna output is expected to introduce more noise to the phase

delay estimation and hence lead to a reduced DOA estimation performance. This error can be
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reduced by using the longest baseline of the antennas array. The equation 4.27 is limited to
virtual short baseline, ds and does not take advantage of the higher accuracy offered by the
longer physical first order baselines i.e. d,, d3,, or d31. The longest first-order baseline d3;

is offered an improvement in the DOA estimation by a factor as below:

Improvements = 3 * (d3;/dg) (4.28)

Hence, this method provides better performance with a smaller number of antennas,

and hence at a reduced cost, reduced weight, size, and power.

4.5.2 FOV requirement for high altitude ELINT

The field-of-view (FOV) of an interferometer is an important design consideration as
it specifies the range of angles that the interferometer can estimate the AOA of a signal with
reasonable accuracy. There are two aspects to the FOV consideration, namely the range of

angles that can be viewed and the accuracy associated with the FOV.

For a linear array, the range of angles that can be estimated by an interferometer is
limited by its AOA estimation performance in the end-fire region. In these regions, the AOA
approaches = 90° and so the corresponding phase delay approaches + . With the addition of
noise errors, the measured phase delay can cross the + © boundary which results in large AOA
estimation errors since a signal arriving from 90° may be estimated arriving at — 90° and vice-
versa. These large AOA estimation errors, therefore, reduce the practical FOV of the

interferometer.

By virtue of the lower RMS error performance, long baseline interferometer also has
an increased field-of-view (FOV). For a given RMS error tolerances, 601, the maximum
positive and negative AOA that can be estimated by an interferometer, +0max can be

approximated as below

1 2
+0max & tarccos <Jn_N .(Mfda ml)) (4.29)
The FOV then, for an interferometer can therefore be written as
1 yl
FOV = 0, — Opnin ~ 2.arccos ( Yo .(Wd _ ewz)> (4.30)

FOV requirement for high altitude is +/-20 degrees. ELINT system at an altitude of
approximately 700 km covers almost of approximately 2000 sqgkm swath at the ground. The
swath means the area covered from high altitude by these systems. Covering this much area is

sufficient to capture the radar signals and extract their parameters. Since the FOV requirements



98 Chapter 4, Section 4.5

of these systems are less, three antenna BLI techniques become useful. This technique used with

noise cancellation provides the advantage equivalent to four antenna BLI arrays.

4.5.3 Phase error margin

It seen that in case of an error occurs in phase measurement, non-integer results being
generated for certain computations in the algorithm which ideally should have been integers.
Rounding off the results to the nearest integer does not affect the algorithm provided the
errors are below a specific value. The phase error margin is defined as the maximum
permissible error in the phase measurement below which the algorithm described will not
break down. The breakdown of the algorithm is said to take place if rounding off gives a
wrong result due to excess phase errors while estimating the modulo integer. This will result

in gross errors in DOA computation.
The phase error margin is calculated as below:
The following condition should meet to avoid breakdown in the algorithm,
(260, —6P,)/2r < 0.5 (4.31)
Where, 6@, is the error in @; and § P, is the error in @, i.e.
(260, —6P,) < m (4.32)

The RF front end following all the antennas in the array are identified and so are the
phase measurement and digitization units. Hence, we can assume that the error statistics for
phase measurements are independents of the spacing. We can also assume that the error
statistics for all the phase measurements are identical. Let the peak error in phase

measurement in any channel be 6@, Hence we get from equation 4.32
360 =1 (4.33)

Hence, the available phase error margin in the algorithm is £60° for the first step in the
algorithm. It can be similarly shown that the phase error margin for the second and final steps
in the algorithm are £51° and +55° respectively. Therefore the system phase error margin is
the minimum of all the above, three i.e. £51°. In case higher phase error margins are required

the array spacing has to be suitably synthesized.
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4.5.4 Accuracy considerations

The theoretical accuracy of the DF system is estimated by differentiating the

interference equation i.e.

O'¢/1
21D cosO

gy = (4.34)

Practically measured values of o are around 15° RMS for the receiver front end
channel including antenna, amplifiers, phase correlators, and phase digitizer. Substituting, this
value in equation 4.34 we get a DF accuracy of 1° RMS for an IFOV of +45° even at the
lowest frequency i.e. 8 GHz. In general, phase interferometers give better DF accuracy at

higher frequencies. The spacing D4 had been considered for calculating the DF accuracy.

The interferometer DF system is generally configured only for FOVs of +45° since the
accuracy will suffer drastically beyond this angle. Four separate sectors each covering £45°
are used to cover the full azimuth of 360°. The accuracy of the interferometer will also be
affected by other parameters like frequency measurement accuracy, phase centre variations in
antennas, signal to noise ratio, the elevation of the emitters etc. However, these contribute

much less to the overall accuracy compared to the phase measurement errors.

4.5.5 Calibration

Calibration of the system is not required if all the front-end components are perfectly
phase matched. In such an ideal situation, when a signal is radiated at bore sight i.e. 0°. In a
practical situation, the RF front end of the DF system will have phase matching of £30° only.
This is due to the practical difficulties in manufacturing the broadband microwave
components and the antennas. It is possible to measure the residual phase errors across the
channels by calibrating the RF front end components. This data is used to remove the phase
errors from the practically measured data. This is done by injecting a signal of known
frequency and sorting the residual phase error data in a memory (Look-up table). Whenever
signals have intercepted the error for that frequency is algebraically subtracted to give the
corresponding phase data. It may be noted that except for the antennas the phase errors in all
the other corresponds are only frequency dependents whereas the phase error in the antennas
is dependent on both frequency and the DOA of the signal. The phase matching in the antenna
array will have a much larger impact on the DF accuracy than the phase matching in the RF
front end. The second stage of calibration is done by radiating a signal from 0° azimuths so
that the phase errors including the error in the antennas are measured at convenient frequency

intervals. Calibrations by radiation is generally done only at 0° azimuths since the antenna
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phase mismatch is most likely to remain static throughout the FOV. The two levels of
calibration look-up table (LUT) are required since the antenna being a passive component, is
likely to fail and hence has to be replaced. Whenever an RF font-end component is replaced,
the LUT corresponding to the injected mode calibration data only needs to be modified.

The phase differences of the outputs of the spiral antennas after the FER are measured
with the Quad Digital receiver to give a digital representation of the phase differences of input
RF. These phase differences are then processed in the Phase DF processor to extract the DOA
of the signal. The processor also takes the amplitude and frequency data for calibration and
correction of offset errors (which occur due to phase mismatch in the RF channels over the
specified frequency range) and then processed to compute the DOA. High-performance
ambiguity resolution algorithms will be implemented in high-speed, high-capacity Xilinx
FPGAs to minimize power consumption. Sufficient onboard memory is provided to store the

calibration and offset data.
4.5.6 Simulation Results for direction finding

The multi-channel digital receiver configuration block diagram is shown in Figure
4.67. This does the digitization of various intermediate frequencies (IFs) signals which is
down-converted by multi-channel superhet receivers. In this various algorithms are applied to

extract the pulse descriptor word (PDW) of the signal.

Digitized
IFs
High FFT AOA
speed [ & Noise [ Exﬁ:?cﬁon >
ADC-1 Cancellation
T T Freq
o RF
RF Inputs IFs High FFT
speed [ & Noise II:E;et(rl::t? SI}I >
ADC-2 Cancellation
5| 4-Channel
Superhet T /I\
R " PW,
N ecerver | High FFT PW and PRI
speed [—f & Noise [ PRI —
ADC-3 Cancellation Extraction PDW
High FFT
speed [—> & Noise
ADC-4 Cancellation

Figure 4.67: Direction finding receiver configuration with noise cancellation.

Virtual antenna based BLI algorithm for AOA extraction, FFT-based interpolation
algorithm for frequency extraction, and DDC-based algorithms for PW and PRI extraction are

employed. All proposed algorithms are described below.
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Four antenna based BLI and three antenna based BLI is considered for simulation. The
unambiguous phase is found out for the largest BLI from the ambiguous phase. Finally, the
results are compared. The performance of the virtual baseline interferometer algorithm has

been simulated for frequency bands 6 - 18 GHz.

(a) Four Antennas BLI: The spacing between the antennas are d,, =45 mm, ds = 52.5 mm.

Ambiguous phases d32, d3i, and d4; for four antennas BLI are plotted in Figure 4.68, Figure
4.69, and Figure 4.70 respectively.
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Figure 4.68: Ambiguous phase for ds» baseline using four antenna baseline interferometer.

Simulation parameters: f = 18 GHz and FOV = £45°,
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Figure 4.69: Ambiguous phase for d3i baseline using four antennas baseline interferometer.

Simulation parameters: f = 18 GHz and FOV = £45°,
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Ambiguous Phase for d41 Baseline
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Figure 4.70: Ambiguous phase for d41 baseline using four antennas baseline interferometer.

Simulation parameters: f = 18 GHz and FOV = +45°.

The unambiguous phase d»1 and derived unambiguous phases ds», ds1, and ds1 for four
antennas BLI are plotted in Figure 4.71, Figure 4.72, Figure 4.73, and Figure 4.74

respectively.
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Figure 4.71: Unambiguous phase for do; baseline using four antennas baseline interferometer.

Simulation parameters: f = 18 GHz and FOV = +45°.
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Unambiguous Phase for d32 Baseline
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Figure 4.72: Unambiguous Phase for ds; baseline using four antennas baseline interferometer.

Simulation parameters: f = 18 GHz and FOV = +45°.

Unambiguous Phase for d31 Baseline

1000 T

800

600

400 [

200

-200

Phase Delay (deg)
o

-400

-600

_1 000 1 1 1 1 1 1 1 1 1
50 40 -30 -20 -10 0 10 20 30 40 50

Angle (deg)

Figure 4.73: Unambiguous phase for d3; baseline using four antennas baseline interferometer.

Simulation parameters: f = 18 GHz and FOV = £45°,
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Unambiguous Phase for d41 Baseline
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Figure 4.74: Unambiguous phase for d41 baseline using four antennas baseline interferometer.

Simulation parameters: f = 18 GHz and FOV = +45°.

(b) Three Antennas BLI: The performance of the virtual baseline interferometer algorithm
has been simulated for frequency bands 0.5 - 18 GHz. The spacing between the antennas are
d,, =45 mm, d3 = 52.5 mm. The ds is calculated as d; =d,, —d,, =7.5 mm. The distance
d,, and ds; are chosen such that ds < (Amin/2). The ambiguous phase for the d,, baseline and

ds> baseline is shown in Figure 4.75, and Figure 4.76 respectively. Whereas, ds which is
derived by virtual baseline interferometer, estimates the unambiguous phase shown in Figure

4.77.
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Figure 4.75: Ambiguous phase for do; baseline using three antennas virtual interferometer.

Simulation parameters: f = 18 GHz and FOV = +45°.
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Ambiguous Phase for d32 Baseline
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Figure 4.76: Ambiguous phase for ds; baseline using three antennas virtual interferometer.

Simulation parameters: f = 18 GHz and FOV = £45°,
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Figure 4.77: Unambiguous phase for ds baseline using three antennas virtual interferometer.

Simulation parameters: f = 18 GHz and FOV = +45°.

The derived unambiguous phases d»1, and d3», and d3; for three antenna virtual BLI are

plotted in Figure 4.78, Figure 4.79, and Figure 4.80 respectively.
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Unambiguou Phase for d21 Baseline
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Figure 4.78: Unambiguous Phase for d»; baseline using three antennas virtual interferometer.

Simulation parameters: f = 18 GHz and FOV = +45°.
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Figure 4.79: Unambiguous phase for d3; baseline using three antennas virtual interferometer.

Simulation parameters: f = 18 GHz and FOV = +45°.

Figure 4.81 shows the simulation results for error at 6 GHz between set AOA and
measured error and RMSE for 6 to 18 GHz with £45° FOV. The simulation result of 4
antennas is better compared to 3 antennas interferometers. This is obvious as RMSE measured
using the smallest physical antenna gives an advantage of V3 times RMSE for the smallest

virtual antenna.
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Unambiguou Phase for d31 Baseline
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Figure 4.80: Unambiguous Phase for d3; baseline using three antennas virtual interferometer.

Simulation parameters: f = 18 GHz and FOV = +45°.
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Figure 4.81: Comparison for Set AOA vs Error between four and three antennas

interferometers. Simulation parameters: f = 18 GHz and FOV = +45°.
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Frequency versus RMSE
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Figure 4.82: Comparison for frequency vs RMSE between four antennas and three antennas

interferometers. Simulation parameters: f = 18 GHz and FOV = £25°.

The comparison of result is generated for £25° FOV which is sufficient for the ELINT
system for space application as shown in Figure 4.82. This result is generated without and
with the noise cancellation technique [117]. The system noise of 200 frames is captured and
computed 256 points FFT. This is carried out when input is connected to the BITE port and
BITE is in signal OFF condition. The estimated average of the noise spectrum is computed for
all frames. In system ON condition when input is connected to antenna port and the signal
spectrum is computed continuously which is noisy. The estimated noise spectrum is
subtracted from the noisy input signal spectrum and an instantaneous magnitude spectrum is
computed which is called a restored signal. Again restored time-domain signal is computed by
inverse FFT. The SNR of 6 to 8 dB is improved when the signal is passed through this. This
result shows that 3 antenna interferometer provides comparable results with 4 antenna
interferometer. It shows, on reducing one antenna alone approximately one-fourth of
hardware is reduced. Usually, to cover a complete 0.5 to 18 GHz band three different types of
antennas are required. With 3 antennas approach, a total of 9 antennas covers the complete
band instead of 12 antennas. Hence, further reduction will be there in processing electronics

also.
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4.5.7 Discussions

The effect of receiver noise is an important consideration in all practical electronic
systems. Unlike systematic errors, which can be compensated through calibration, receiver
noise errors cannot be eliminated but their effect can be minimized through the careful
selection of algorithms. In interferometry, the receiver noise errors affect the AOA estimation
by manifesting as random errors in the frequency and phase delay estimation. For estimating
the AOA, the frequency error is assumed negligible. This section will, therefore assume that

the noise errors are noticeable entirely as phase delay estimation errors.

4.6 Conclusions

Pre-processing of data using noise cancellation will help in moving autocorrelation as
well as DIQ approaches. This technique is used for the generation of amplitude profile and
frequency profile. This technique has a lot of practical significance in the present scenario.
The proposed algorithms are evaluated with the field data to evaluate the efficacy of the
technique. Most of the results are generated using AWGN noise data. This technique is tested

with uniformly distributed noise.

The proposed technique based on moving autocorrelation and noise estimation has
significantly improved the measurement accuracy of instantaneous amplitude and the
instantaneous frequency at low SNR conditions. These techniques will help in the
measurement of the basic parameters as well as intra-pulse modulation information of radar
signals. This will lead to a very efficient and accurate emitter identification. The advancement
in signal processing algorithms, coupled with high-performance FPGA has enabled for
improvement of the unique emitter identification and also achieves a real-time performance.
This is useful for real-time modulation classification based on instantaneous frequency

profile.

It is evident from the proposed approaches that there is an improvement in resolution
and accuracy of measurement for various parameters direction-of-arrival, frequency, etc. with
fewer hardware resources. In case of direction finding, less number of front ends and antennas
combinations can be realized in the system that provide RMS DOA error of less than 0.1
degrees with less weight and small size which is the requirement of space platform. The
frequency measurement accuracies achieved is less than 0.0609 MHz RMS with this approach
against 1.528 MHz RMS with simple FFT spectrum analysis using 256 points FFT. The
autocorrelation with the FFT combination approach improves the PW and TOA

measurements that can be measured with high accuracy with very few resources. It also helps
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to reduce power consumption which is high in today’s system. SWaP optimized three
antennas based BLI technique for AOA measurement provides results equivalent to four
antennas based BLI. These measurement techniques will help to realize a new generation

ELINT system based on proposed digital techniques for space applications.



Chapter 5

Signal Detection and Modulation Recognition

In the previous chapter signal estimation techniques are described which include noise
cancellation, instantaneous amplitude measurement, instantaneous frequency measurement,
FFT-based frequency estimation, and direction-finding techniques. The simulation results are
also presented along with the algorithms. In this chapter, noise is estimated on instantaneous
amplitude and an adaptive threshold is computed for detection of the signal. SNR and
sensitivity are also computed after the detection of the signal. Intra-pulse modulation
recognition of radar signals is carried out using instantaneous frequency profiles. These will

be supportive parameters for sorting and specific emitter identification.
5.1 Introduction

Modulation in radar signals is one of the important features and modulation
recognition is one of the vital problems in the analysis of non-cooperative reception of radar
signals. The modulation recognition for communication signals in real-time is quite common
due to its lower frequency of operation and less bandwidth. But, in the case of radar signals,
the modulation recognition in real-time is being done for limited signals. Whereas the
modulation recognition of radar signals is carried out offline by a small number of ELINT
systems. These systems can be an add-on to the main systems or they are integrated with the
main systems. To meet today’s requirement ELINT systems has to classify modulation of

radar signals in real-time. This classification helps in the de-interleaving of emitters.

Conventional radars have a simple pulsed waveform or continuous waveform with no
modulation. These pulsed radars sometimes have variations in PW or PRI. But complex
radars are having various modulations within the pulse alongwith the above variations. The
modulation can be linear frequency modulation (LFM), non-linear frequency modulation
(NLFM), stepped frequency modulation (SFM), bi-phase modulation (BPM), and

hybridization of modulations. These modulations are recognized in real-time using decision-
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tree algorithms. The implementation of these signals classification is carried out in FPGA

using time-domain techniques for real-time application.
5.2 Signal detection

In this section, noise estimation, pulse detection, sensitivity, and SNR computations are

discussed. Noise estimation is carried out on an instantaneous amplitude profiles.
5.2.1 Noise estimation

(i) Approach-1: The standard deviation (o) of signal x(n) which is obtained by computing
the mean of noise is given by equation5.1. To compute the mean, that many samples have to
be stored. Finally, summation, squaring and square root functions have to be used to compute
the standard deviation. The standard deviation is defined as equation 5.1 and its

implementation block diagram is shown in Figure 5.1.
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Figure 5.1: Block diagram of standard deviation computation.

Standard deviation gives the actual estimate of the noise present. But this approach
requires large computations and takes time to compute the estimate. All samples have to be

stored to compute the standard deviation, hence real-time estimate is not done.

(ii) Approach-2: Estimation of noise is carried out using two-point averaging. This reduces
the computations required for estimation. Approximated standard deviation (g;) is calculated

using two-point averaging as given by equation 5.2.
o, =k * |x(n) + x(n + 1) (5.2)

where kis the constant and set based on minimum error. This approach is faster than
the above approach. But the result obtained using this approach is not very close to standard

deviation.
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(iii) Approach-3: The efficient method of computing standard deviation is discussed in this
section. Estimation of noise is done for signal detection which reduces the computation
requirement and storage requirement. The mean of the modulus of the noise samples are taken
and the approximate standard deviation is computed. The absolute of input signal samples
x(n)is taken which makes all negative samples positive. The shape of the probability density

function (PDF) will be the same but doubles the peak value.

If the input signal is x(t) and absolute of x(t) is abs(x). The absolute value of input
samples makes negative samples positive. The shape of the PDF will be the same but doubles

the peak value. The mean value of the signal at point ¢ and point b is the same.
u(N) = p,(N) (5.3)
u (S+N) = u, (S+N) (5.4)

If x(t) is the input signal, B is the bandwidth of the signal and averaged for time T.

The variance at point ¢ is 1/(2BT) times the variance at point b.

g?(N) = 20 (5.5)
a xo | ©° ) c
X(t) —0—> -0 0> output
abs(x) Integrator

Figure 5.2: Block diagram showing mean and variance at different points.

If 2BT is greater than 20, the central limit theorem allows approximation for a

waveform with Gaussian PDF at point c,

_-up)?

e 20t (5.6)
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The Gaussian PDF for waveform at point a with zero mean is given as

%2

! e 20%+ad) (5.7)

Py(x) = ——
¢ f2n(a,%+a§)

The Gaussian PDF at point b is given as,

%2

Qp(x) = 2P,(x) = |- 2 o 205D (5.8)

2 2
(ox+og)
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when both signal and noise is present, the mean at point b is given below

x2
ty(S+N) =< x>,= folde;,(x) = |—2— [ xe 26%9DdQ, (x) (5.9)

m(og+0§) 10

This equation is reduced to

u,(S+N) = \/%,/(0,? + ad?) (5.10)

When only noise is present, the mean at point b is written as

= [, (5.11)

When only noise is present, the mean of noise will reduce at point ¢ and point b to,

1 W) = 1, ) = 2o, (5.12)

The standard deviation when only noise is present, is written as below using equation

(5.11),

70 =11, () [ (5.13)

Considering, o, = a,, k, = %\E and u,(N) = %Zﬁ;& |x(n)|

The above equation shows that by computing the mean of noise and multiply with the
multiplication factor, the result will be equivalent to the standard deviation of signal x(t). The
efficient digital implementation of noise estimation is proposed. The absolute value of signal
x(n) is computed and multiplied with constant (k,) and is derived as equation 5.14 which is
approximately equivalent to the standard deviation of the signal x(n). The block

implementation of approximate standard deviation is shown in Figure 5.3.

0y = ky * X325 [x ()] (5.14)

x(n) Gy
— | | 2 ky —>

Figure 5.3: Block diagram for approximate standard deviation computation.

The random noise is computed and results are tabulated using both the approaches as

shown in Table 5.1. Error is also computed with standard deviation. The error (E;) computed
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is less than 20% using the first approach whereas the error (E;) is less than 10% using the
second approach. Usually, two-level threshold is used which will have a difference of 6 dB.
Hence the error computed is less and it is efficient also in hardware implementation. Figure
5.4 shows the comparison of the estimated noise for different approaches as a function of

SNR.

SNR vs Estimated Noise
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Figure 5.4: Comparison of the estimated noise for different approaches as a function of SNR.

Simulation parameters: N = 80,000 samples, and t; = 1.5 ns.

Table 5.1: Comparison of noise estimation results using a different approach.

Iteration | Approach-1 | Approach-2 Error-1 Approach-3 Error-2
Number | Std. Dev. () (o1) El= (02) E2=

A B A-B C A-C
1 5.825 5.593 0.232 5.296 0.529
2 5.784 5.339 0.445 5.343 0.441
3 4.852 5.756 -0.904 5.305 -0.453
4 5.567 5.838 -0.271 5.281 0.286
5 4.787 5.598 -0.811 5.256 -0.469
6 5.063 6.008 -0.945 5.323 -0.26
7 5.629 5.663 -0.034 5.324 0.305
8 5.276 5.576 -0.3 5.196 0.08
9 5.091 6.023 -0.932 5.195 -0.104
10 4.466 5.213 -0.747 4.789 -0.323

The noise present in the ELINT system is Gaussian. The standard deviation is
computed for the period for which noise is to be estimated. The threshold selected is nothing

but, it is the standard deviation of the noise. If the threshold selected is equivalent to standard
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deviation. The probability of detection or probability density function (PDF) is 68.27%. If the
threshold selected is equivalent to twice the standard deviation. The probability of detection
will be 95.45%. If the threshold selected is equivalent to three times the standard deviation.
The probability of detection will be 99.73%. Threshold more than three times has not much

impact on the probability of detection. But it will limit the receiver sensitivity.
5.2.2 Signal detection using adaptive threshold

The fixed threshold is constant and hence it is not capable to prevent false detection
and missed detection. The adaptive threshold has an advantage over the fixed threshold for
pulse detection. The noise present in the system varies in the wide frequency band. Therefore,
the noise is computed for different time constants, which is selectable. In the case of radar
EW, the signal is non-cooperative and pulse width is unknown. Hence lowest time constant is
selected, say 1 us. This is useful for all the pulsed signals and continuous wave (CW) signals
detection. Hence, the noise estimation is carried out for every 666 samples during pulse-off

time.

The adaptive threshold should be higher than the noise estimated to avoid false
detection. This threshold correction is applied as a fixed value. The adaptive threshold will
keep updating itself at each selected time constant. The conventional and proposed efficient

noise estimation is discussed next.

Once the threshold is estimated, it is also important that how this threshold is applied
for detection. There are two ways to detect the pulse. One is single-level threshold and the
other is two-level threshold. The single-level threshold is suitable when pulse on amplitude
variation is more. Pulse on amplitude variation is more at lower SNR. The leading edge is
detected with one threshold and the trailing edge is detected with another threshold. Figure

5.5 shows the block diagram of signal detection with two-level threshold.

Fixed Threshold Leading Edge - LE, Trailing Edge - TE
Radio Frequency Pulse - RFP
Threshold Correction Ty LE
Threshold : Y
) Leading Edge TE
Amplitude I Detector | RFi’
Profile : Threshold :
Noise . —> Right Pulse
P Adder Selection : ™
Estimation Shifter N Detection
) T Trailing Edge N
Adaptive L Detector
Threshold

Figure 5.5: Signal detection with two-level adaptive threshold.



Signal Detection and Modulation Recognition 117

Both higher level and lower level thresholds are estimated for detection. High-level
threshold (Ty) is computed using estimated noise and accordingly, low-level threshold (T}) is
set as T, = (Ty/8). Ty is used to detect pulse leading edge (LE) or pulse start and T}, is used
for pulse trailing edge (TE) or pulse end. The threshold is adaptive for better detection and
analysis of pulses. This is also helpful when noise increases due to system temperature and

accordingly noise is estimated and the threshold is set.
5.2.3 Signal flow graph for noise estimation and signal detection

The signal flow graph of noise estimation and signal detection is shown in Figure 5.6.
Noise cancellation is performed on the data capture as given in section 4.2. Instantaneous
parameter measurement is carried out on restored signal. Further the noise is estimated on the
instantaneous amplitude profile. This is carried out during signal-off duration. Signal is detected
based on higher (Tu) and lower (Tv) threshold which detects leading and trailing edge of the

pulse. Later signal parameters are estimated along with modulation parameters.

Start
\/
Data Capture

!

Noise Cancellation

N
Instantaneous Amplitude,
Phase and Frequency
Generation

\/

Noise Estimation

Compare
(Amp>Ty)

Yes, Start Pulse

Compare
(Amp<T,)

Yes, Stop Pulse

Signal Estimation and
Modulation Recognition

\/
End

Figure 5.6: Signal Flow graph of noise estimation and signal detection.
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5.2.4 SNR and sensitivity computations

In this section, the SNR and sensitivity computations are discussed. The computation of
SNR is carried out during signal presence after detection of the signal using instantaneous

amplitude profile.
5.2.4.1 SNR Computations

The signal is mixed with noise is written as x(n) = s(n) + e(n). The signal power
and noise power are also measured [128]. The P is the signal power of x(n) which is tainted
by noise when signal is mixed with noise. The Py is signal power when a signal without noise

is measured. Accordingly, signal-to-noise (SNR) is declared.

Ps _ P
SNR =10 log (ﬁ) =10 log (P—) (5.15)
Where, P, and Py are given by,
1
P= ¥ Is())? (5.16)
1
Py =13 lx(m)|? (5.17)

The P, is known and P; is unknown and has to be computed to declare the SNR. The P,

is the noise power which is computed during noise presence.
5.2.4.2 Sensitivity computations

Sensitivity of the ELINT system using proposed techniques is defined as [116],
Sensitivity = -114 + 10 logy, < (2B,B,- B,?)) +NF+n+G,+G,  (5.18)

Where, B, = Resolution bandwidth (500 MHz)
B, = Video bandwidth (500 MHz)
NF = Noise Figure (12 dB)
1n =SNR (1 dB)
G, = Horn Antenna Gain (6 dBi Minimum)

Gy, = Processing Gain

(i) Sensitivity for IF 1 GHz IF without FFT overlapping:

Sensitivity is computed with above parameters for 1 dB SNR using moving
autocorrelation technique with G, of 7 dB.
Sensitivity = -114 + 10 log,o(B,) + NF +n+ G, + G,
= —114+ 10 log10(500) + 12+ 1 -6 -7
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~114+2699+12+1-6-7
= —87.01 dBm
= — 87 dBm (Approx.)
Minimum SNR required using moving autocorrelation algorithm and DIQ algorithm is 1
dB and 8 dB respectively to process all types of modulated signals. Based on this, the

summary of sensitivity achieved is given in Table 5.2.

Table 5.2: Sensitivity achieved with different techniques without FFT overlapping.

Proposed Minimum Achieved Minimum Achieved

technique with | SNR required sensitivity SNR required sensitivity
without noise | without noise with noise with noise

cancellation cancellation cancellation cancellation
(dB) (dBm) (dB) (dBm)

Moving

autocorrelation ’ ~ 50 : 87

DIQ 15 -73 8 - 80

(ii) Sensitivity for IF 1 GHz IF with FFT overlapping of 75%:

Sensitivity is computed with the above parameters for 1 dB SNR using moving
autocorrelation technique with G, of 9 dB for the case with FFT overlapping.
Sensitivity = -114 + 10 log,o(B,) + NF +n+ G, + G,
= —114 + 10 logio(500) + 12+ 1-6-9
= -114+2699+12+1-6-9
= —89.01 dBm
= — 89 dBm (Approx.)

Table 5.3: Sensitivity achieved with different technique with 75% FFT overlapping.

Proposed Minimum Achieved Minimum Achieved

technique with | SNR required sensitivity SNR required sensitivity

without noise | without noise with noise with noise
cancellation cancellation cancellation cancellation
(dB) (dBm) (dB) (dBm)
Moving
. 6 -82 -2 -89
autocorrelation

DIQ 13 -75 6 -82
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Minimum SNR required using moving autocorrelation algorithm and DIQ algorithm is
1 dB and 8 dB respectively to process all types of modulated signals. Based on this, the

summary of sensitivity achieved is given in Table 5.3.

5.2.5 Measurement of pulse parameters

The pulse parameters of the radar signals like Pulse Width, Pulse Amplitude, and PRI
are also measured using the proposed approaches. The various parameter measurements are

discussed below.
SNR Requirement

Proper identification of emitter demands a high signal-to-noise ratio (SNR) for reliable
and consistent analysis. For this reason, only those pulses, which have SNR more than 1 dB,
will be processed for parameter estimation. SNR of 1 dB is also sufficient for detection

purposes for all modulated signals.
Storage Requirement

The digitizer card digitizes the IF for the period of segment length, which is derived
from pre-trigger, pulse width, and post-trigger. Pre-trigger and post-trigger are added to
measure the pulse width. It saves a huge memory space and reduces transfer time. This data is
stored to process it in the future for offline processing. To extract the features offline only raw

data and time-of-arrival (TOA) information is sufficient.
Selection of processing hardware

The FPGA based digital processing hardware involves computational intensive
operations like moving autocorrelation, digital I-Q method, noise cancellation, etc. It has to
perform these operations on large input data. To achieve these computations on large input
data with a good reaction time, a state-of-the-art FPGA is required. Computational round-off

is an important problem that can limit the accuracy of computations.
Dynamic Range

The dynamic range of ELINT receivers depends on the two factors, the dynamic range
of the front-end receiver, and the dynamic range of digital processor hardware. The dynamic
range of digital processor hardware further depends on the effective number of bits (ENOB)
of ADC used for data acquisition. The digital processor hardware uses 12 bits ADCs and
ENOB is approximately 8-bits. Theoretically, a dynamic range can be achieved up to 48 dB.
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But due to consideration of practical scenario, the dynamic range has been achieved of 40 dB.
Another 7 dB advantage is achieved by the noise cancellation technique. Hence, the

practically minimum dynamic range of 47 dB is achieved.
Detection of the Pulse

Detection is carried out on the pulse envelope. Pulse envelope is generated using the
moving autocorrelation technique. Detection is done using both a higher threshold and a
lower threshold. Higher threshold is used to detect rising edge and lower threshold is used to
detect falling threshold. The lower threshold is kept 8 dB lower compared to the higher
threshold.

Frequency Measurement

Frequency measurement is carried out during the stable region of the pulse. In case of
no modulation on pulse, the average is taken and frequency is reported. In the case of
frequency modulation centre frequency, frequency deviation, frequency agility, etc. are

reported by measuring frequency at different points during the stable region of the pulse.

Pulse Width measurement

Pulse Width is measured from the detected output from the pulse envelope. The
difference between the trailing edge and leading edge is considered the raw pulse width.
Further, the 3 dB down from the peak amplitude is considered the practical pulse width. This
region is also considered the stable region. The envelope is generated by measuring every 1.5
ns. The measured resolution of pulse width is also 1.5 ns. The counter starts at the leading
edge and a trailing edge of this counter value is registered as pulse width and reset after two

clocks.

TOA Measurement

TOA measurement is required to get the PRI of the intercepted radar signals. The
digitized samples from ADCs are fed to FPGA for implementing the signal processing
algorithms. The free-running counter is implemented to register the time of arrival of pulse at
the leading edge. The counter value multiplied by the resolution of TOA will yield TOA

measurement.
Pulse Amplitude Measurement

Pulse amplitude is measured from the pulse envelope. The peak value of the envelope

is registered and converted to dBm and it is reported. Finally, the calibration is done and
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amplitude is calibrated at the input of receiving antenna. All components gain and losses are

considered in calibration at a few hundred MHz step frequency.
Pulse Descriptor word formation

Pulse descriptor word constitutes the parameters measured by the ELINT receiver. All
the parameters allot the definite number of bits and it is used during de-interleaving and

emitter identification.
De-interleaving

The ESM processor is required to track up to 1000 emitters simultaneously for pulse
density of the order of 1,000,000 pulses per second. In such a dense electromagnetic
environment, the large number of independent emitters will cause the ESM system to receive
a seemingly random pulse train consisting of interleaved pulse trains. To identify individual
emitters, their pulse trains must be de-interleaved. The de-interleaving process is essentially
the process of determining whether the newly intercepted radar pulse belongs to one of the
already processed emitters or a new emitter. Ideally, there will be a one-to-one
correspondence between each pulse train identified by the de-interleaving process and the
emitters in the environment. In practice, pulses from several emitters may be combined into
one chain, and pulses from one emitter may be split into several chains. The de-interleaving
process will take into account the expected characteristics of the radar environment, the
known characteristics of the measurement system, and all foreseeable sources of data

corruption.

The de-interleaving process is followed by PRI analysis for each pulse chain. This PRI
analysis will determine if more than one emitter is mapped to the chain. After PRI analysis,

scan analysis and identity search are performed for each emitter pulse chain.

Emitter Identification

These measured parameters which the PDW is useful for de-interleaving because it
consists of the AOA and MOP information. The availability of these two parameters in real-time
is very important. This will solve the de-interleaving issue in a dense environment signal coming

from the same direction within 50 km but having different modulation information.

Finally, the perfect de-interleaving will be helpful for specific emitter identification as the

tracks will be formed without any ambiguities in real-time.
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5.3 Modulation recognition of radar signal

Conventional radars have a simple pulsed waveform or continuous waveform with no
modulation. These pulsed radars sometimes have variations in PW or PRI. But complex
radars are having various modulations within the pulse along with the above variations. These
intra-pulse modulations can be Linear Frequency Modulation (LFM), Non-Linear Frequency
Modulation (NLFM), Stepped Frequency Modulation (SFM), Bi-Phase Modulation (BPM),
LFM with BPM, and SFM with BPM. Typically, these modulations are identified by the
ELINT system using offline analysis [70]-[99]. Till the earlier generation of Electronic
Warfare (EW) systems, these offline analysis tools are either add-on or they are integrated
with the main ES systems or ELINT systems. Identification of modulations by the ELINT
system in real-time is still a challenge. Various digital methods are discussed for modern
digital implementation [60]-[64] and decision-theoretic approaches are mentioned for

modulation classification [65]-[69].

Modulations can be identified using frequency domain techniques using offline
systems [70]-[71]. Implementation of these techniques in Field Programmable Gate Array
(FPGA) for real-time applications is not a viable solution as they consume a lot of hardware
resources. Due to this reason, the implementation of signal classification techniques is
attempted in FPGA using a time-domain technique for real-time applications. IF signal is
digitized in ADC and samples are captured, processed, and further analysed in FPGA. These
are possible to implement in FPGA due to parallelism, high density, and high-speed

component cores.

The decision-tree based algorithm is proposed to identify the modulation in real-time.
The RF pulse (RFP) is generated based on the instantaneous amplitude profile. The complete
instantaneous frequency profile data is stored in the Random Access Memory (RAM) during
RF pulse. The frequency at different points in the pulse region is fetched from RAM and the
algorithm is applied in real-time. The modulation is measured within shadow time based on

the frequency parameters.

5.3.1 Modulation types and modulation parameters handling

The following modulations and their parameters are identified using a decision-tree
algorithm:
(1) No-Modulation Continuous Wave (NMCW)
(i)  Frequency Modulated Continuous Wave (FMCW)
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(ii1))  No Modulation on Pulse (NMOP)
(iv)  Linear Frequency Modulation (LFM)
(a) LFM ascending (LFMa)
(b) LFM descending (LFMd)
(c) LFM ascending - descending (LFMad)
(d) LFM descending - ascending (LFMda)
(v) Non-Linear Frequency Modulation (NLFM)
(a) NLFM forward (NLFMY)
(b) NLFM reverse (NLFMr)
(vi)  Stepped Frequency Modulation (SFM) of 2 Level, 4 Level, and 8 Level
(a) SFM ascending (SFMa)
(b) SFM descending (SFMd)
(vii)  Phase Modulation (PM)
(a) Bi-Phase Modulation (BPM) of 2-bit, 3-bit, 4-bit, 5-bit, 7 bit, 11 bit, and 13 bit
(viii) Hybridization of LFM and BPM
(a) LFMa with BPM
(b) LFMd with BPM
(ix)  Hybridization of SFM and BPM
(a) SFMa with BPM
(b) SFMd with BPM

Total sixteen types of modulations are measured using decision-tree algorithms.
5.3.2 Modelling and characteristics of complex radar signals

Modern radars are exhibiting complex radar waveforms. These waveforms include
NMCW, FMCW, NMOP, LFM, NLFM, SFM, BPM, LFM with BPM, and SFM with BPM.
The following signal including exotic signals is considered and modelled. They are described

as below:

(i) Signal with No Modulation: No-modulation continuous wave (NMCW) and no-
modulation on pulse (NMOP) signals does not consist of any modulation. The discrete

version of time-domain signal x(t) is given as,

x(n) = A.exp[j(2nfnts + ¢)] (5.19)

Where A denotes the carrier amplitude, ¢ denotes the initial phase, f denotes carrier
frequency, t, denotes sampling time, and n = 1,2, 3, ... N. for NMOP signals. For simplicity,
P(6#) =0, and e(n) = 0.
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When n=1,2,3,...,00 and signals with T > | ms are considered as NMCW and below

Ims, they are considered as pulsed signals, where T denotes the time duration.

(ii) Linear Frequency Modulation (LFM): LFM ascending (LFMa), LFM descending
(LFMd), LFM ascending-descending (LFMad), and LFM descending-ascending (LFMda)

chirp signals are considered as LFM signals. These signals are also known as Triangular FM.
(a) LFMa: LFMa signal is generated as given by [127],

x(n) = A.exp[j(2nfnt, + ¢ + man?t?)] (5.20)
for n=(-N/2), (-N/2)+1, ....., -1
Where « is the slope of the LFMa.

(b) LFMd: LFMd signal is generated as given by [127],

x(n) = A.exp[j(2nfnt, + ¢ + npn*t?)] (5.21)
forn=0,1,2, ....,, (-N/2)-1.
Where f is the slope of the LFMd. Usually, LFMa and LFMd signals have the same slope, i.e.
B =a.

(c) LFMad and LFMda: LFMad and LFMda signals are generated using a combination of
the above two equations. The frequency f is the instantaneous frequency at the peak of the
triangular frequency variation, which is the maximum instantaneous frequency within the
observation duration in the case of LFMad. The slope a and £ are calculated as 28f /7, where
6f is the bandwidth with in the time period 7. The parameter 7 is a fixed value. The waveform

is characterized by f, 6f, a, and .

(iii) Non-Linear Frequency Modulation (NLFM): NLFM signal is represented as given by
[127],

x(n) = A.exp[j2rfnts + ¢ + (8f /2fn)sin(2ufynts))] (5.22)

Where the §f /2 is the peak deviation, f,, is the frequency of the sinusoidal modulating
frequency, n = 1, 2, 3,..., N if the signal is narrowband, it means %«1. It is assumed that

only a fraction of the cycle is sampled over an observation time. In the case of the wideband

FM signal, %»1. NLFM forward and NLFM reverse is represented as NLFMf and NLFMr

respectively.
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(iv) Stepped Frequency Modulation (SFM): SFM signal is generated as below

x(n) = A.exp|[j(2rfynts + ¢)] (5.23)

forn=1,2,3, ....N.
Where f;, is the frequency of h' step, and h=1,2,3,...,H. H is the number of steps. Usually, H
is in the sequence of 2, 4, 8,...etc. SFM ascending and SFM descending is represented as

SFMa and SFMd respectively.

(v) Phase Modulation (PM): Bi-phase Modulation (BPM) is one of the phase modulations
and it is generated as given by [127],

x(n) = A.exp[j(2rnfnts + ¢ + 0(n))] (5.24)

Where 6(n) = m(1 — n), when the zero bits of the code sequences are sampled and 8(n) =
6, when the one bits of the code sequence are sampled. The phase shift 8 can be 0° and 180°

in the case of BPM.
(vi) LFM with BPM:
(a) LFMa with BPM: LFM ascending with BPM exotic signal is generated below:

x(n) = A.exp[j(2rfnt, + ¢ + man?t? + 6(n))] (5.25)
(b) LFMd with BPM: LFM descending with BPM exotic signal is generated below:

x(n) = A.exp[j(2rfnts + ¢ — nfn?t? + 6(n))] (5.26)
(vii) SFM with BPM: SFM with BPM exotic signal is generated below:

x(n) = A.exp[j2rfynts + ¢ + 6(n))] (5.27)
5.3.3 Practical significance of modulations
Pulse compression

Pulse compression is one of the popular modulations which is used on radar pulses.
The LFM, NLFM, and PM are the type of pulse compression waveforms. Pulse compression
permit radars to utilize a long pulse to achieve large radiated energy, but simultaneously to get
the range resolution of a short pulse. It realizes this by employing frequency modulation or
phase modulation. Pulse compression is very much useful when the peak power required of a

short-pulse radar cannot be achieved with practical transmitters.
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Comparison of linear FM and phase-coded pulse compression

Both the modulated waveforms have their application, but linear FM pulse
compression has probably been more widely used. The time side lobe of the phase-coded
pulse is of the order of 1/BT. The peak side lobe of the chirp waveform is generally higher but
with low SNR.

Other Pulse compression waveforms

Other pulse-compression methods include nonlinear FM, discrete frequency-shift,
poly-phase codes, compound Barker codes, code sequencing, complementary codes, pulse

burst, and stretch.
Nonlinear FM

The nonlinear-FM waveform with a constant-amplitude time envelope provides a
compressed waveform with low time-side lobes at the output of the receiver. The nonlinear

FM is more sensitive to Doppler-frequency shifts and is not Doppler-tolerant.
Discrete frequency-shift or time-frequency coded

The discrete frequency-shift or time-frequency coded waveform is generated by
dividing a long pulse into a series of contiguous sub pulses and shifting the carrier frequency
from sub pulse to sub pulse. The frequency steps are separated by the reciprocal of the sub

pulse width. This provides a less range resolution.
Application of short pulse to radar

Conventionally short-pulse is used by radar for the following purposes:
(1) Range resolution
(i1) Range accuracy
(i11))  Clutter reduction
(iv)  Clint reduction
(v) Multipath resolution
(vi)  Minimum range
(vii)  Target classification
(viii) ECCM

(ix)  Doppler tolerance
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A short-pulse radar is also having some disadvantages. It requires more bandwidth
with the possibility for interference to other users of the band. Pulse compression is a method
for achieving most of the benefits of a short pulse while keeping within the practical

constraints of the peak power limitation.

5.3.4 Decision-tree modulation recognition algorithm
The IF signal is a down-converted signal of RF signal digitized at the sampling
frequency f which is equivalent to f, =4f, /3, where f is the center frequency of the IF

signal[48]. Four samples are latched into FPGA coming from ADC at the clock rate of f;/4.
The samples are latched at both the clock edges. All eight samples are processed in parallel at

fs/8 clock rate and results are combined at the output.

(a) LFMad Signal
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(b) Amplitude Profile
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(c) Frequency Profile
I:CNT
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Figure 5.7: LFMad signal and their amplitude and frequency profiles.

The instantaneous amplitude and instantaneous frequency profiles are generated using
the moving autocorrelation approach. LFMad and FMCW signals frequency profiles are
shown in Figure 5.7 and Figure 5.8 respectively for presentation purposes. In the case of
pulsed signals, the pre-trigger and post-trigger region of the pulse is also captured to get the
complete intra-pulse information including rise-time and fall-time. The pre-trigger region is
captured based on the circular buffer memory concept which is implemented in first-in-first-
out (FIFO) memory. The instantaneous frequency profile is used to extract frequency at

various points. The frequency is extracted at an equal time interval at five different points
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from the stored instantaneous frequency profiles as shown in Figure 5.5. These frequencies
are known as leading edge frequency (F;f), trailing edge frequency (Frg), center frequency
during the pulse (Fcyr), the frequency at the first intermediate pint (F;p;), and the frequency
at the second intermediate point (F;p ). The F;; and Frp are latched at the leading edge (LE)
and trailing edge (TE) of the RFP pulse. The RFP is generated using an instantaneous
amplitude profile. Whereas to extract frequency at other three points the frequency data is
stored during the pulse region in RAM which is generated using block RAM resource of
FPGA. The frequency at these three points i.e. Fip;, Foyr, and Fjp are fetched from RAM

based on the address calculated from the pulse region.

(a) FMCW Signal
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Figure 5.8: FMCW signal and their amplitude and frequency profiles.

In the case of the FMCW signal, the maximum frequency (F,;,,,) and minimum
frequency (F,,;,) are computed in real-time and stored. The frequency tolerance limit (Af)

and phase tolerance limit (A¢) are used during comparisons and windows are fixed.

The flow chart for the proposed decision-tree modulation recognition algorithm is
shown in Figure 5.9. First, the IF signal is captured and amplitude and frequency profiles are
computed. The pulse start and pulse end are detected based on high and low-level thresholds
respectively. As per the flow chart initially, the signal is distinguished between pulsed and
CW signals. If PW is greater than the predefined time limit T, it is declared as MMCW,
otherwise, this is considered as a pulsed signal. The frequency profile of the NMCW signal is
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Figure 5.9: Decision-tree algorithm flow chart for modulation recognition.
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shown in Figure 5.10. If the signal is CW, the algorithm will look for frequency variations
within that period. If F,,,, and F,,;,, are within the set tolerance limit (Af) i.e. frequency is
constant, it will be declared as NMCW signal. Whereas, if the difference of F,,,, and F,,;;, is
more than the Af, it will be declared as an FMCW signal. The frequency profile of the
FMCW signal is shown in Figure 5.11.
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Figure 5.10: NMCW signal frequency profile. Simulation parameters: f=1.1 GHz, N =
7,00,000 samples, and t; = 1.5 ns.
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Figure 5.11: FMCW signal frequency profile and zoomed portion only due to visibility,
Simulation parameters: f = 1.1 GHz, FD=+50 MHz, N = 7,00,000 samples, and t; = 1.5 ns.
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If the signal is below predefined time limit T, and if the frequency is constant in the

pulse region and there is no frequency discontinuity it is declared as No modulation on pulse

(NMOP). The frequency profile of the NMOP signal is shown in Figure 5.12.
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Figure 5.12: NMOP signal frequency profile. Simulation parameters: f= 1.1 GHz, N = 8,000

samples, and t; = 1.5 ns.

When there is an abrupt change in frequency profile due to a sudden change in phase,

it will be declared as BPM in which phase changes occur closed to pi. The number of phase

changes and minimum duration is stored. The total width of the signal is divided by the

minimum duration and the BPM pattern is identified. BPM pattern starts with 1’s and each

phase change is represented by 0’s from 1’s and 1’s from 0’s and when there is no phase

change it will continue with the same 1’s or 0’s.

There are different lengths of phase modulation that exists and their bit pattern will be

different. Table 5.4 shows the different lengths of phase modulation [126]:

Table 5.4: BPM codes with side lobe level

S. No. | Code length Bi-phase code Side lobe level (dB)
1 2-bit 10 -6.0

2 3-bit 110 -9.5

3 4-bit 1101, 1110 -12.0

4 5-bit 11101 -14.0

5 7-bit 1110010 -16.9

6 11-bit 11100010010 -20.8

7 13-bit 1111100110101 | -22.3
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If there is a sudden change in frequency, this change is recognized and noted. If there
is only one change, both the portion before and after the change are equal. The bit-pattern is
identified as {10} which is 2-bit BPM. If there is only one change but the first half bit time is
double than the second half. The bit-pattern is identified as {110} which is 3-bit BPM. The 2-
bit and 3-bit BPM signal frequency profiles are shown in Figure 5.13 and Figure 5.14

respectively.
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Figure 5.13: BPM 2-bit signal frequency profile. Simulation parameters: f= 1.1 GHz, N =
8,000 samples, and t; = 1.5 ns.
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Figure 5.14: BPM 3-bit signal frequency profile. Simulation parameters: f= 1.1 GHz, N =
8,000 samples, and t; = 1.5 ns.
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If there are two changes in frequency profile, and the first portion consists of the two-
bit widths. Accordingly, the bit pattern is identified as {1101} which is 4-bit BPM. If there
are two changes in frequency profile, and the first portion consists of three-bit widths. The bit-
pattern is identified as {11101} which is 5-bit BPM. The 4-bit and 5-bit BPM signal

frequency profiles are shown in Figure 5.15 and Figure 5.16 respectively.
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Figure 5.15: BPM 4-bit signal frequency profile. Simulation parameters: f=1.1 GHz, N =
8,000 samples, and ts = 1.5 ns.
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Figure 5.16: BPM 5-bit signal frequency profile. Simulation parameters: f=1.1 GHz, N =
8,000 samples, and ts = 1.5 ns.
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If there are three changes in frequency profile and based on phase changes the bit-
pattern is identified as {1110010} which is 7-bit BPM. If there are five changes in frequency
profile and based on phase changes the bit-pattern is identified as {11100010010} which is
11-bit BPM. The 7-bit and 11-bit BPM signal frequency profiles are shown in Figure 5.17 and
Figure 5.18 respectively.
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Figure 5.17: BPM 7-bit signal frequency profile. Simulation parameters: f= 1.1 GHz, N =
8,000 samples, and t; = 1.5 ns.
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Figure 5.18: BPM 11-bit signal frequency profile. Simulation parameters: f=1.1 GHz, N =
8,000 samples, and t; = 1.5 ns.



136 Chapter 5, Section 5.3

The bit-pattern for 13-bit BPM code is represented as {1111100110101} based on total
of six phase changes. The frequency profile of 13-bits BPM is represented in Figure 5.19.
Practically, 13-bit BPM is frequently used in radar systems as it gives a minimum side lobe

level of -22.3 dB.
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Figure 5.19: BPM 13-bit signal frequency profile. Simulation parameters: f = 1.1 GHz, N =
8,000 samples, and t; = 1.5 ns.

The signal is declared as NLFMf when F;p, is less than F;p; as well as frequency
is sinusoidal. Whereas, if F;p; is greater than F;p, as well as frequency is sinusoidal, the signal
is declared as NLFMr. SFMa is declared when F;p, is greater than F;p; as well as frequency
changes in steps. If F;p; is greater than Fjp, as well as frequency changes in steps, the signal is
declared as SFMd. In SFM signals, there will be a step-change in the frequency. NLFM signals
are generated based on the approximation of SFM signals. The frequency profiles of NLFM
and SFM signals are represented in Figure 5.20 to Figure 5.27. More than two steps are
identified when the frequency is latched with more number of intermediate points on the

frequency profile.
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Figure 5.20: NLFM forward signal frequency profile, Simulation parameters: f= 1.1 GHz, N
= 8,000 samples, and t; = 1.5 ns.
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Figure 5.21: NLFM reverse signal frequency profile, Simulation parameters: f=1.1 GHz, N =
8,000 samples, and ts = 1.5 ns.
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SFMa - 2 Level
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Figure 5.22: SFMa - 2 level signal frequency profile. Simulation parameters: f= 1.1 GHz, N =
8,000 samples, and ts = 1.5 ns.
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Figure 5.23: SFMa - 4 level signal frequency profile. Simulation parameters: f= 1.1 GHz, N =
8,000 samples, and ts = 1.5 ns.
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SFMa - 8 Level
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Figure 5.24: SFMa - 8 level signal frequency profile. Simulation parameters: f=1.1 GHz, N =
8,000 samples, and t; = 1.5 ns.
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Figure 5.25: SFMd - 2 level signal frequency profile. Simulation parameters: f= 1.1 GHz, N
= 8,000 samples, and ts = 1.5 ns.
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Figure 5.26: SFMd - 4 level signal frequency profile. Simulation parameters: f=1.1 GHz, N
= 8,000 samples, and t; = 1.5 ns.
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Figure 5.27: SFMd - 8 level signal frequency profile. Simulation parameters: f= 1.1 GHz, N
= 8,000 samples, and t; = 1.5 ns.
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When the linear change of frequency trend is ascending, descending or both in the pulse
region the modulation present is known as LFM. Modulation is declared as LFMa when Fp, is
greater than F;p; as well as frequency changes linearly. Whereas, if F;p, is less than F;p; and
frequency changes in ascending-descending order, the signal modulation is declared as LFMad.
When Fp, is greater than F;p, and frequency changes linearly, the signal modulation is declared
as LFMd. If F;p; is less than F;p, and frequency changes in descending-ascending order, the
signal is declared as LFMda. Above mentioned LFM signals frequency profile is illustrated in

Figure 5.28 to Figure 5.32.

The frequency profile shown in Figure 5.28, is generated for frequency deviation of 500
MHz i.e. £250 MHz. This shows that the multilevel autocorrelation algorithm used to identify
LFM signals will work well as this algorithm is not breaking anywhere in the band of interest
of 750 MHz to 1250 MHz.
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Figure 5.28: LFMa signal frequency profile. Simulation parameters: fc = 1 GHz, FD = £250
MHz, N = 8,000 samples, and t; = 1.5 ns.
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Figure 5.29: LFMa signal frequency profile. Simulation parameters: fc = 1.1 GHz, FD =+100
MHz, N = 8,000 samples, and t; = 1.5 ns.
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Figure 5.30: LFMd signal frequency profile. Simulation parameters: fc = 1.1 GHz, FD =+100
MHz, N = 8,000 samples, and t; = 1.5 ns.
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Figure 5.31: LFMad signal frequency profile. Simulation parameters: fc = 1.1 GHz, FD =
+100 MHz, N = 8,000 samples, and t; = 1.5 ns.
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Figure 5.32: LFMda signal frequency profile. Simulation parameters: fc = 1.1 GHz, FD =
+100 MHz, N = 8,000 samples, and t; = 1.5 ns.
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When a pulsed signal is detected and frequency modulation exists. If the frequency is
linear with an ascending trend and there is an abrupt change in frequency, the modulation will
be declared as LFMa with BPM. The frequency profile of LFMa with 13-bit BPM is shown in
Figure 5.33. Otherwise, it will be declared as LFMa itself. Similarly, if the frequency is linear
with a descending trend and there is an abrupt change in frequency, the modulation will be
declared as LFMd with BPM. The frequency profile of LFMd with 13-bit BPM is shown in
Figure 5.34. Otherwise, it will be declared as LFMd alone.

If there is stepped frequency in pulsed waveform exists. If the frequency is stepped
with an ascending trend and there is an abrupt change in frequency within each step. It will be
declared as SFMa with BPM. The frequency profile of SFMa with 13-bit BPM is shown in
Figure 5.35. Steps with ascending trend and without abrupt change in frequency will be
declared as SFMa. If it is found that frequency is stepped with the descending trend and there
is an abrupt change in frequency within each step. It will be declared as SFMd with BPM. The
frequency profile of SFMd with 13-bit BPM is shown in Figure 5.36. Steps with the

descending trend and without an abrupt change in the frequency will be declared as SFMd.
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Figure 5.33: Signal frequency profile of LFMa with BPM 13-bit. Simulation parameters: fc =
1.1 GHz, FD = 100 MHz, N = 8,000 samples, and t; = 1.5 ns.
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Figure 5.34: Signal frequency profile of LFMd with BPM 13-bit. Simulation parameters: fc =
1.1 GHz, FD =+100 MHz, N = 8,000 samples, and t; = 1.5 ns.
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Figure 5.35: Signal frequency profile of SFMa with BPM 13-bit. Simulation parameters: fc =
1.1 GHz, FD =+100 MHz, N = 8,000 samples, and t; = 1.5 ns.
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Figure 5.36: Signal frequency profile of SFMd with BPM 13-bit. Simulation parameters: fc =
1.1 GHz, FD =100 MHz, N = 8,000 samples, and t; = 1.5 ns.

Once the type of modulation is found out, their parameter is also estimated like slope

in the case of LFM, which is known as chirp rate in MHz/us. Similarly, a number of steps,

BPM code is the parameters in case of SFM and BPM signals respectively. Both modulation

type (MT) and modulation parameter (MP) are represented using four bytes in Table 5.5 and

Table 5.6 respectively.

Table 5.5: Representation of bit-pattern for modulation type (MT)

Modulation Type | Bit-pattern for MT

(MT) B[15:12] | B[11:8] | B[7:4] | B[3:0]
NMCW 0000 0000 0000 0001
FMCW 0000 0000 0000 0010
NMOP 0000 0000 0000 0100
LFMa 0000 0000 0000 1000
LFMad 0000 0000 0001 0000
LFMd 0000 0000 0010 0000
LFMda 0000 0000 0100 0000
NLFMf 0000 0000 1000 0000
NLFMr 0000 0001 0000 0000
SFMa 0000 0010 0000 0000
SFMd 0000 0100 0000 0000
BPM 0000 1000 0000 0000
LFMa with BPM | 0000 1000 0000 1000
LFMd with BPM | 0000 1000 0010 0000
SFMa with BPM | 0000 1010 0000 0000
SFMd with BPM | 0000 1100 0000 0000
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Table 5.6: Representation of bit-pattern for modulation parameter (MP)

Modulation Type | Bit-pattern for MP

(MT) B[15:12] | B[11:8] | B[7:4] | B[3:0]
NMCW 0000 0000 0000 | 0000
FMCW DF (kHz) FD (MHz)
NMOP 0000 0000 0000 | 0000
LFMa 0000 0000 UCR (MHz/us)
LFMad DCR (MHz/us) UCR (MHz/us)
LFMd DCR (MHz/us) | 0000 | 0000
LFMda DCR (MHz/us) UCR (MHz/us)
NLFMf 0000 0000 0000 | 0000
NLFMr 0000 0000 0000 | 0000
SFMa 0000 0000 No. of Steps
SFMd 0000 0000 No. of Steps
BPM 0000 0000 BPM Code

LFMa with BPM UCR (MHz/us) | BPM Code

LFMd with BPM DCR (MHz/us) | BPM Code

SFMa with BPM No. of Steps BPM Code

SFMd with BPM No. of Steps BPM Code

Minimum SNR required using moving autocorrelation technique and DIQ technique is
1 dB and 8 dB respectively to process all types of modulated signals. Based on this, the
sensitivity achieved is -87 dBm and -80 dBm using the proposed algorithm with moving

autocorrelation technique and DIQ technique respectively.

The comparison of this work with other similar works is not reasonable because the
frequency domain techniques get the inherent processing gain. But they suffer from PW and
PRI measurement accuracies. The minimum PW measurement is restricted to the number of
FFT points and its percentage of overlapping. Whereas, the proposed time-domain technique
measures the minimum PW of the order of 50 ns. The fact of the matter is that lower PW does
not have the modulation but still, any processing method should meet all basic system

requirements along with critical requirements.

Classification of modulation presented are based on the frequency domain processing
and they are implemented on DSP processors for ELINT applications [70]-[71]. Due to the
limitations of the number of MACs in the DSP processor these techniques are not suitable for
tactical operations. The proposed decision-tree algorithm is implemented on FPGA hardware

which provides real-time performance.
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5.3.5 Matlab results using field data

Field data is generated using the system front-end. This field data is used to
demonstrate the effectiveness and performance of the proposed decision-tree algorithm for

modulation recognition.

(i) Field data #1: The field data shown in Figure 5.37 is used as input signal generated using
vector signal generator which is contaminated with widely used additive white Gaussian noise
(AWGN) and SNR is measured of -2 dB SNR. The same signal is used in the simulation for
generating instantaneous amplitude and frequency profile using the autocorrelation technique

which is shown in Figure 5.38 and Figure 5.39 respectively.
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Figure 5.37: Captured signal. Vector signal generator parameters: f = 9.1 GHz, PW = 7 us,

PRI= 10 us, fc = 1.1 GHz, samples captured N = 28800 samples, 1 =-2 dB, and t; = 1.5 ns.
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Figure 5.38: Instantaneous amplitude profile. Vector signal generator parameters: f = 9.1

GHz, PW =7 us, PRI =10 us, fc = 1.1 GHz, samples captured N = 28800 samples, 1= -2 dB,

and ts= 1.5 ns.
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Figure 5.39: Instantaneous frequency profile. Vector signal generator parameters: f = 9.1

GHz, PW =7 us, PRI =10 us, fc = 1.1 GHz, samples captured N = 28800 samples, = -2 dB,

and ts= 1.5 ns.

(i) Field data #2: This field data is captured in the field with the system front end. Data is
sampled at 666 MSPS and stored in the system. Only initial pulses of data are shown in
Figure 5.40.
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Figure 5.40: Field data with LFMad modulation. Parameters: f = X-band, PW = 19 us, PRI =
100 of us, fc = 1.0 GHz (+250 MHz), samples captured N = 10,00,000 samples, n = variable,

and ts= 1.5 ns.
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Initial 13 pulses are zoomed and shown in Figure 5.41. These samples are considered
for noise cancellation and the signal is restored after spectral subtraction. Noise samples are

taken from the pre and post samples of the pulses. Restored field data is shown in Figure 5.42.
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Figure 5.41: Field data with LFMad modulation. Parameters: f = X-band, PW = 19 us, PRI =
100 of us, No. of Pulses = 13, f. = 1.0 GHz (+250 MHz), samples captured N = 2,50,000

samples, 1 = variable, and t; = 1.5 ns.
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Figure 5.42: Restored field data with LFMad modulation. Parameters: f = X-band, PW = 19

us, PRI = 100 of us, No. of Pulses = 13, f. = 1.0 GHz (250 MHz), samples captured N =
2,50,000 samples, | = variable, and t; = 1.5 ns.
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Figure 5.43 shows the first pulse to show the simulation results. This pulse data is used
to generate an instantaneous amplitude profiles using the DIQ technique as shown in Figure

5.44.
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Figure 5.43: Field data with LFMad modulation (first pulse). Parameters: f = X-band, PW =
19 us, PRI = 100 of us, No. of Pulses = 1, f. = 1.0 GHz (£250 MHz), samples captured N =
16,400 samples, | = variable, and t; = 1.5 ns.
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Figure 5.44: Instantaneous amplitude profile using DIQ technique without noise cancellation

(fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, f. =
1.0 GHz (£250 MHz), samples captured N = 16,400 samples, | = variable, and t; = 1.5 ns.
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Instantaneous frequency profile is generated using the DIQ technique as shown in
Figure 5.45. Both amplitude and frequency profiles are generated using the DIQ technique
without noise cancellation shows this algorithm is failed as the received signal SNR is less.

The instantaneous amplitude profile generated using the autocorrelation technique is shown in
Figure 5.46.
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Figure 5.45: Instantaneous frequency profile using DIQ technique without noise cancellation
(first pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses =1, f. = 1.0
GHz (£250 MHz), samples captured N = 16,400 samples, | = variable, and t; = 1.5 ns.
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Figure 5.46: Instantaneous amplitude profile using Autocorrelation Technique without noise
cancellation (first pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses

=1, f = 1.0 GHz (£250 MHz), samples captured N = 16,400 samples, n = variable, and ts =
1.5 ns.
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Instantaneous frequency profile is generated using the autocorrelation technique as
shown in Figure 5.47. Both amplitude and frequency profiles are generated using the
autocorrelation technique without noise cancellation shows this algorithm is failed as the
received signal SNR is less. Further, these techniques are used after noise cancellation. The

restored signal obtained after noise cancellation is shown in Figure 5.48.
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Figure 5.47: Instantaneous frequency profile using autocorrelation technique without noise
cancellation (first pulse). Parameters: f= X-band, PW = 19 us, PRI = 100 of us, No. of Pulses
=1, fc = 1.0 GHz (250 MHz), samples captured N = 16,400 samples, n = variable, and t; =
1.5 ns.
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Figure 5.48: Restored field data with LFMad modulation with noise cancellation (first pulse).
Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, f. = 1.0 GHz (250
MHz), samples captured N = 16,400 samples, nj = variable, and t; = 1.5 ns.
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The instantaneous amplitude profile generated using the DIQ technique with noise
cancellation is shown in Figure 5.49. Instantaneous frequency profile is generated using the
DIQ technique with noise cancellation as shown in Figure 5.50. Both amplitude and
frequency profiles are generated using the DIQ technique with noise cancellation show this

algorithm is still failing as signal SNR is less.
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Figure 5.49: Instantaneous amplitude profile using DIQ technique with noise cancellation
(first pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, fc = 1.0
GHz (£250 MHz), samples captured N = 16,400 samples, | = variable, and t; = 1.5 ns.
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Figure 5.50: Instantaneous frequency profile using DIQ technique with noise cancellation
(first pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, fc = 1.0
GHz (£250 MHz), samples captured N = 16,400 samples, | = variable, and t; = 1.5 ns.
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The instantaneous amplitude profile generated using the autocorrelation technique
with noise cancellation is shown in Figure 5.51. Instantaneous frequency profile is generated
using autocorrelation technique with noise cancellation as shown in Figure 5.52. Both
amplitude and frequency profiles are generated using the autocorrelation technique with noise
cancellation shows this algorithm is able to generate the profiles correctly at lower signal

SNR itself.
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Figure 5.51: Instantaneous amplitude profile using autocorrelation technique with noise

cancellation (first pulse). Parameters: f= X-band, PW = 19 us, PRI = 100 of us, No. of Pulses
=1, fc = 1.0 GHz (250 MHz), samples captured N = 16,400 samples, n = variable, and t; =
1.5 ns.
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Figure 5.52: Instantaneous frequency profile using autocorrelation technique with noise
cancellation (first pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses
=1, fc = 1.0 GHz (£250 MHz), samples captured N = 16,400 samples, n = variable, and ts =
1.5 ns.
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Figure 5.53 shows the fourth pulse to show the simulation results. This pulse data is
used to generate an instantaneous amplitude profiles using the DIQ technique as shown in

Figure 5.54.
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Figure 5.53: Field data with LFMad modulation (fourth pulse). Parameters: f = X-band, PW =
19 us, PRI = 100 of us, No. of Pulses = 1, f. = 1.0 GHz (£250 MHz), samples captured N =
16,400 samples, n = variable, and t; = 1.5 ns.
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Figure 5.54: Instantaneous amplitude profile using DIQ technique without noise cancellation
(fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, f. =
1.0 GHz (250 MHz), samples captured N = 16,400 samples, 1 = variable, and t; = 1.5 ns.
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Instantaneous frequency profile is generated for the fourth pulse using the DIQ
technique as shown in Figure 5.55. Both amplitude and frequency profiles are generated using
the DIQ technique without noise cancellation shows this algorithm is failed as the received
signal SNR is less. The instantaneous amplitude profile generated using the autocorrelation

technique is shown in Figure 5.56.
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Figure 5.55: Instantaneous frequency profile using DIQ technique without noise cancellation
(fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, f. =
1.0 GHz (£250 MHz), samples captured N = 16,400 samples, | = variable, and t; = 1.5 ns.
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Figure 5.56: Instantaneous amplitude profile using Autocorrelation Technique without noise
cancellation (fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of
Pulses = 1, f. = 1.0 GHz (£250 MHz), samples captured N = 16,400 samples, n = variable,

and ts= 1.5 ns.
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Instantaneous frequency profile is generated using the autocorrelation technique as
shown in Figure 5.57. Both amplitude and frequency profiles are generated correctly using the
autocorrelation technique without noise cancellation shows this algorithm is working at lower
SNR also. Further, these techniques are used after noise cancellation. The restored signal of

the fourth pulse obtained after noise cancellation is shown in Figure 5.58.
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Figure 5.57: Instantaneous frequency profile using autocorrelation technique without noise
cancellation (fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of
Pulses = 1, f. = 1.0 GHz (£250 MHz), samples captured N = 16,400 samples, n = variable,
and ts = 1.5 ns.
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Figure 5.58: Restored field data with LFMad modulation with noise cancellation (first pulse).
Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, f. = 1.0 GHz (£250
MHz), samples captured N = 16,400 samples, | = variable, and ts = 1.5 ns.
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The instantaneous amplitude profile generated using the DIQ technique with noise
cancellation is shown in Figure 5.59. Instantaneous frequency profile is generated using the
DIQ technique with noise cancellation as shown in Figure 5.60. Both amplitude and

frequency profiles are generated using the DIQ technique with noise cancellation show this

algorithm is still failing as signal SNR is less.
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Figure 5.59: Instantaneous amplitude profile using DIQ technique with noise cancellation
(fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, f. =
1.0 GHz (250 MHz), samples captured N = 16,400 samples, n = variable, and t; = 1.5 ns.
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Figure 5.60: Instantaneous frequency profile using DIQ technique with noise cancellation

(fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of Pulses = 1, f. =

1.0 GHz (250 MHz), samples captured N = 16,400 samples, n = variable, and t; = 1.5 ns.
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The instantaneous amplitude profile generated using autocorrelation technique with
noise cancellation is shown in Figure 5.61. Instantaneous frequency profile is generated using
autocorrelation technique with noise cancellation as shown in Figure 5.62. Both amplitude
and frequency profiles are generated using the autocorrelation technique with noise

cancellation shows this algorithm is able to generate the profiles correctly at this SNR as

expected.
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Figure 5.61: Instantaneous amplitude profile using autocorrelation technique with noise
cancellation (fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of

Pulses = 1, f. = 1.0 GHz (£250 MHz), samples captured N = 16,400 samples, n = variable,
and ts= 1.5 ns.
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Figure 5.62: Instantaneous frequency profile using autocorrelation technique with noise
cancellation (fourth pulse). Parameters: f = X-band, PW = 19 us, PRI = 100 of us, No. of

Pulses = 1, f. = 1.0 GHz (£250 MHz), samples captured N = 16,400 samples, n = variable,
and ts= 1.5 ns.
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The detection performance of modulation recognition is given in Table 5.7. Extensive
simulation is carried out to test the performance. Total 1000 different signal sequences are
generated to test each modulation. All sixteen types of modulation have been verified and the

result is tabulated. The detection performance of all modulations is given in Table 5.8.

Table 5.7: Success rate for modulation recognition.

Modulation SNR of Input Signal

Type -4 3] -2 -1 0 1 2 3 4
NMCW 98 99 | 100 |100 | 100 | 100 100 | 100 100
FMCW - - - - - 99 100 | 100 100
NMOP - - | 98 [100 | 100 | 100 100 | 100 100
LFM - - - - 199.9| 100 100 | 100 100
NLFM - - - - - 97.9 | 100 | 100 100
SFM - - 197.5 [100 | 100 | 100 100 | 100 100
BPM - - - - - - 99.2 | 100 100
LFM with BPM - - - - - 97.2 | 98.0 | 99.2 | 100
SFM with BPM - - - - - 97.0 | 984 | 99.0 | 100

Table 5.8: Detection Performance of Modulation Recognition.

Modulation Proposed | Existing Correct
Type Technique | Technique | Classification
NMCW -2 5 99
FMCW -1 7 98
NMOP -2 6 99
LFM 7 98
NLFM 1 8 98
SFM -2 5 99
BPM 1 8 97
LFM with BPM 1 8 97
SFM with BPM 1 8 97

The confusion matrix is extracted from the detection performance at SNR of -2 dB for
the proposed algorithm with moving autocorrelation as shown in Table 5.9. The result shows
the detection performance with 99% accuracy at -2 dB SNR for NMCW, NMOP, and SFM
signals. The probability of correct identification is dropped below the respective SNR of all
modulations. The different modulations are compared for the SNR required for set modulation

and declared modulation.

Minimum SNR required using moving autocorrelation technique and DIQ technique is
1 dB and 8 dB respectively to process all types of modulated signals. Based on this, the
sensitivity achieved is -87 dBm and -80 dBm using the proposed algorithm with moving

autocorrelation technique and DIQ technique respectively.
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Table 5.9: Confusion Matrix of modulation identification at SNR of -2 dB.
Declared NMCW | FMCW | NMOP | LFM | NLFM | SFM | BPM | LFM | SFM
MT > with | with
Set MT (Below) BPM | BPM

NMCW 99% 1% - - - - - - -
FMCW 5% 95% - - - - - - -
NMOP - - 99% - - - 1% - -
LFM - - - 94% | 4.5% |1.5% | - - -
NLFM - - - 35% | 95% |1.5% | - - -
SFM - - - 0.5% | 0.5% | 99% - - -
BPM - - 4% |2.5% | 1.5% | 1% | 91% - -
LFM with BPM - - 2.5% | 1.5% | 1.5% | 1% |2.5% | 91% -
SFM with BPM - - 25% | 1.5% | 1.5% | 1% | 2.5% - 91%

5.3.6 Discussions

In this work, NMCW, FMCW, NMOP LFM, NLFM, SFM, BPM, LFM with BPM, and

SFM with BPM modulations have been identified using the decision-tree algorithm. This

decision-tree algorithm, hence a unique method for modulation identification has been

proposed. The length of the input signal is assumed constant to generate a particular type of

modulated signal. The advancement in signal processing algorithms, tied with high-

performance hardware has enabled the improvement of emitter identification and also

achieved a real-time performance. It will meet the 1 million pulses per second (MSPS)

requirement of ELINT system which has the PRI of 1 us. It will measure all the parameters

within 300 ns of TE of pulse. Hence all the parameter measurements are in real-time. The

real-time measurement of parameters is shown in Figure 5.63.
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Figure 5.63: Real-time measurement of parameters.
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5.4 Significance of angle-of-arrival and modulation parameters

chosen for Specific Emitter Identification (SEI)

In the modern battlefield, due to proliferation of the similar radars growing demand for
specific emitter identification. Identifying these radars uniquely in real-time is a challenge to
understand the deployment pattern. Present ELINT systems are required to decipher the exotic
modulations on a pulse to pulse basis to achieve specific emitter identification of military

radars. Measured modulations contribute to the de-interleaving of signals.

Various fire control and weapon locating radars operate nearby which makes the
electronic environment very dense, especially in L and S bands. Measuring conventional
parameters are not sufficient to distinguish them. Intra-pulse measurement with exotic
modulation measurement is the requirement in the present scenario [59]. Electronic
intelligence (ELINT) systems that are capable to measure this information will have an edge

in the field.

ELINT systems estimated many parameters which together are called pulse descriptor
word (PDW) includes direction-of-arrival (DOA), radio-frequency (RF), pulse-width (PW),
time-of-arrival (TOA), etc. [3]. These systems do the intra-pulse analysis including
modulation measurement of radar signals on a pulse-by-pulse basis using stored data to match
the speed of processing hardware. Measurement of exotic modulation in real-time is a

challenge along with other parameter measurements.

The following process is adopted for emitter identification. In which matching is

carried in three levels.
Level 1: The level 1 matching is carried out based on AOA parameter matching

(i) AOA parameter with +10° window
Level 2: The level 2 matching is carried out based on attribute matching and basic parameter
window matching

(1) Type of emitter - Pulsed/CW

(i1)) Modulation - modulation type

(111) Basic parameters with course windows

RF - 10 MHz, PW - 200 ns, PRI - 100 ns

Level 3: The level 3 matching is carried out with the following parameters

(1) Basic parameters with fine windows

RF -2 MHz , PW - 20 ns, PRI - 10 ns
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(i) Intrapulse parameters matching -
Rise Time - 10 ns, Fall Time - 10 ns
(i11) Parameters of Freq. Agility, PW Agility, PRI Agility

(iv) Modulation Parameters with tolerance window

Accurate identification of radar and its platform is possible as Angle-of-arrival (AOA)
parameter will be used for matching as present radar waveform generation is based on DDS-
based technology and not much variation is found in Rise Time, Fall Time, overshoot, and
Undershoot. To overcome this issue, the AOA parameter has to be used for matching. It will

also help for nearby frequency radars coming from different directions.

Conventionally, de-interleaving is performed based on the DOA, RF, and PW. On
arrival of the first PDW, one bucket is created with PDW parameter (DOA, RF, and PW). If
the next PDW parameters (DOA, RF, and PW) falls within the tolerance limit, they will be
stored in the same bucket. If all three parameter (i.e. DOA, RF, and PW) are not falling within
the tolerance limit, another bucket will be created. Pulse repetition interval (PRI) is the
derived parameter that is computed from the time-of-arrival (TOA) of each successive pulse.

This is estimated after all the buckets are created for a time slice.
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Figure 5.64: Plot of distance versus emitter location

Considering, the DOA RMS value of approximately 2 degrees in L and S bands. The
tolerance of DOA will be £+ 3 times of RMS value. The total error will be 12 degrees. This
total DOA error will translate into a 21 Km error in azimuth from a 100 Km distance. It

means a target located at 21 Km apart, will be considered for the same basket. Figure 5.64
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shows the DOA error versus emitter location in azimuth. Similarly, the RF of 500 kHz and

PW of 20 ns RMS value will translate into 3 MHz and 120 ns tolerance windows respectively.
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Figure 5.65: Block diagram of the de-interleaving process.

The other parameters are the modulation type and modulation parameter, which is
used here for de-interleaving. This helps to improve the de-interleaving and reduces the effect
of DOA inaccuracies. If signals are coming from identical DOA within tolerance, having the
modulation parameter for de-interleaving is precious. Figure 5.65 shows the block diagram of

the de-interleaving process.

Accuracy of parameters

The accuracy with which the parameters are measured determines the ability to
differentiate one emitter from the other. Therefore in an ideal scenario, it is better to have as
much accuracy as possible. The two most important factors that determine the accuracy in
measurement of various parameters like amplitude, frequency, and phase are the number of
bits of A/D and the sampling frequency. The selection of the high sampling frequency is a
necessity to cover the required bandwidth of interest without aliasing. Due to the
technological limitation at the high sampling frequency, the maximum resolution available for
an A/D is 12 bits. These two constraints put a limit on the accuracy of the parameters that can
be obtained. However, based on the scenario, better accuracy can be obtained by using
improved techniques and algorithms with the existing limitations. The parameters whose
accuracy can be improved this way are the resolution of frequency in the STFT method,
wherein based on the bandwidth, the sampling frequency is reduced by decimating in the
DSP. Similarly in the DIQ method, the frequency accuracy is improved whenever there is no

ambiguity with the bandwidth of the signal.

Since the extraction of all the parameters is done in software, computational noise due
to finite word lengths can limit the accuracy of parameters. To reduce these errors, the

processing is done using a floating-point DSP processor.
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5.5 Conclusions

The modulation identification is based on a time-domain technique which identifies
the complex modulated signals i.e. NMCW, FMCW, NMOP, LFM, NLFM, SFM, LFM with
BPM, and SFM with BPM. This technique is also implementable on FPGA as this technique
consumes limited hardware resources. Even if the radar signal is coming from the same
direction but having a different modulation within the pulse identifies as a different emitter.
Such an idea to utilize modulation information will become a crucial parameter for PDW for
better de-interleaving of specific emitter identification having a group of similar radars

operating in the proximity.

The ability to specific emitter identification from a class of emitters would be of
strategic advantage to the ELINT activity. The task of specific emitter identification becomes
even more challenging in dense environments consisting of a wide variety of agile emitters.
But due to the availability of the AOA parameter, the process of identification can be
simplified if a specific characteristic can be ascribed to each emitter. This specific

characteristic is the ‘Specific Identification’ of the emitter.

Identification refers to the specific identification of emitters among the same model of
radars. The specific identification is based on intra-pulse analysis of radar waveforms and
measures the frequency, phase, and amplitude variations within the pulse of that radar. These
variations may be intentional and/or unintentional. The intentional modulations on pulse
(IMOP) are well known, the simplest being linear chirp and Barker code phase modulation.
The unintentional modulations on pulse (UMOP) are due to the inherent characteristics of all
high-powered radar transmitters. The amount and type of modulation vary with the transmitter
type. These modulations are present in the output of high power transmitting tubes and are
due to pushing, pulling, and other effects such as temperature, aging, and poor maintenance.
The modulations - IMOP and/or UMOP generate minute variations in the signal characteristics

of every emitting system creating a specific signature for the emitter.

To capture the minute variations, which may be due to intentional and/or unintentional
modulation, an intra-pulse analysis is needed. Such an intra-pulse analysis, extracts as many
parameters (features) of radar pulses as possible with fine grain accuracy. With these

extracted features the unique emitter identification attempted will be highly effective.
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ELINT Operation Methodology

In the previous chapter, noise estimation, adaptive threshold, radar signal detection,
sensitivity computation, and SNR computation are described. Various radar signal modulation
recognition using the decision-tree algorithms are also elaborated. In this chapter, details on
ELINT operation methodology which includes frequency scan operation, experimental setups,
setup hardware, and test conditions are discussed. Various levels of test setups are also
considered. The FPGA implementation results obtained using System Generator and Vivado

simulation tool. The discussion on the results is also presented in the later part of the chapter.
6.1 Introduction

The ELINT operation methodology is developed for frequency scan operation,
experimental test setup, and hardware used. Defence Electronics Research Laboratory
(DLRL) of India is located in Hyderabad, India. The ELINT test setup exists in the single-
channel and multichannel configurations. Single-channel configuration is used to demonstrate
and evaluate signal processing algorithms, such as noise cancellation, signal estimation, and
modulation estimation for ELINT applications. The four-channel configuration of the ELINT
test setup was used to evaluate the AOA estimation algorithms proposed in the thesis. The
following hardware is used for ELINT test setup for single-channel configuration

(a) Vector signal generator

(b) RF front end

(c) Data acquisition board

(d) Xtreme DSP development kit
Whereas for multi-channel configuration the following hardware is used

(e) RFSoC evaluation board

The high-speed data acquisition board is designed to digitize the IF signal of 1 GHz
and 160 MHz. The author contribution to the development of the ELINT setup is as follows:

e designing of high-speed data acquisition board used for digitizing the IF signal

167
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e developing the software front-end for data collection and analysis, and

e used the single-channel front end as per thesis requirement

e validating the performance of the ELINT setup through experimentation by the
organization and actively participating in several data collection field trials and

through extensive analysis of the trial data.

A total of five different types of ELINT Test setups are used for modelling,
simulation, validation, and testing for the thesis work. The following software tools are also
used for the testing of the algorithms.

(a) Matlab 2015

(b) Xilinx Vivado 2016.4

(c) Xilinx System Generator 2016.4

(d) Xilinx Simulator 2016.4

RF front end is used for down-conversion in both fixed frequency and scan operation.
Whereas the high-speed data acquisition board is used to digitize the IF signal. The following
test graphic user interfaces (GUI) is used for tuning the RF front-end and data acquisition.

(a) RF front-end test GUI

(b) Data acquisition test GUI

While the development of signal processing theory is important, the practical value of
any algorithm can only be realized if it can be successfully transitioned into hardware. In this
chapter, the parameter estimation algorithms including the real-time modulation measurement
technique (Chapter 4-5), will be experimentally validated using data collected from the
ELINT setup (Chapter 6).

During the course of this Ph.D. research, a total of five separate modulation
recognition experiments, or “field trials”, were conducted between the years 2017 to 2020.
The initial experiment, were conducted to test and debug the ELINT setup and so the
collected data was saved in the data files. This experiment was specifically conducted to
capture data to experimentally validate the algorithms discussed in this thesis using the latest
and most stable iteration of the ELINT setup. This chapter will therefore focus on the results

obtained from the Field Trial and results obtained after implementation on FPGA hardware.
6.2 Experimental test setups

The various experimental test setups are used during the collection of data and

validation of results. The first test setup TS-1 considered is shown in Figure 6.1 used for
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modulated signal generation, instantaneous amplitude and frequency measurements, noise
cancellation, noise estimation and pulse detection using amplitude profile, extraction of
frequencies at various points in pulse region, and validation of results using decision-tree
algorithms in Matlab. In this setup, all modulation signal is generated using Matlab itself with
different SNR. This setup is used to generate most of the results mentioned in chapter-4 and
chapter-5. The design and modelling of algorithms are carried out using the Matlab in the
initial stages and these algorithms validation is also carried out using Matlab itself with the

generated data.

Instantaneous Pulse Extraction Modula.tl.on
: p Recognition
Signal Amplitude detection of HSing
. —> and —> using —> Frequency [—> N,
Generation A ] Decision
Frequency Amplitude at various Teas
Measurement Profile points -

Algorithms

Figure 6.1: Test setup TS-1 modulated signal generation, instantaneous measurements, pulse
detection, extraction of frequencies, and validation of results using decision-tree algorithms in

Matlab.

The test setup TS-2 is shown in Figure 6.2. In this vector signal generator (VSG) is
used to generate various complex modulated radar signals, single-channel front end is used
for down-conversion of RF signal to IF signal, and high-speed analog to digital converter
board is used for collection of data. The data collected is saved into the data file and this data
file is used as an input data file in Matlab for validation of algorithms. In this setup following
algorithms are validated i.e. noise cancellation, instantaneous amplitude profile and
instantaneous frequency profile generation using autocorrelation technique and DIQ
technique, noise estimation for pulse detection, extraction of frequency at various points, and
decision-tree algorithm for modulation measurement. All these algorithms are the part of the

last block i.e. Matlab algorithms. This setup is used to generate few results mentioned in

chapter-5.
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Figure 6.2: Test setup TS-2 for generation of modulated signals, down-conversion, collection

of data, and measurements using Matlab.
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The test setup TS-3 is shown in Figure 6.3. In this vector signal generator (VSG) is
used to generate various complex signals. Single-channel front-end is used for down-
conversion of RF signal to IF signal and high-speed analog to digital converter board is used
for capturing, collection and storing of data. The data collected is saved into the data file and
this data file is used as input for the Xilinx FPGA hardware for the validation of results. In
this setup these algorithms noise cancellation, instantanecous amplitude profile and
instantaneous frequency profile generation using autocorrelation technique and DIQ
technique, noise estimation for pulse detection, extraction of frequency at various points, and
decision-tree algorithm for modulation measurement are implemented in FPGA using system
generator. Data collected for complex signals are used to validate the algorithms implemented
in FPGA hardware. This setup is used to generate few results mentioned in chapter-6. In this
FPGA hardware results were checked using the Xilinx Vivado simulation tool. The simulation

results are matched with the input data file and verified.

Single High Speed Algorithms Xilinx
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) Channel Analog-to- Implemented Vivado
Signal — . — - . .
Down- Digital on Xilinx Simulation
Generator
converter Converters FPGA Results

Figure 6.3: Test setup TS-3 for generation of modulated signals, collection of data,

implementation of Xilinx FPGA platform, and validation of results with Xilinx Vivado tool.

The setup TS-4 is shown in Figure 6.4 with the RFSoC evaluation board. In this setup
vector signal generator (VSG) is used to generate various complex signals and other stages
are implemented in the RFSoC evaluation board. AOA algorithms are implemented in the
RFSoC evaluation board and results are obtained. RFSoC devices consist the high-speed
analog to digital converter to sample the IF signal of 750 MHz to 1250 MHz at high speed.
The design is carried out using a system generator to generate the phase-shift between various
channels. Both four antenna and three antenna based BLI algorithms are verified using TS-4

as mentioned in chapter-4. The results are generated at each 500 MHz steps and comparison is

carried out.

Single Four [ Four . .

- Algorithms Xil
Vector Channel Digital Channel | 5| Channel & ,' i
. L . . Implemented Vivado

Signal  —>{ Digital-to- [—>{ Phase Shift [—>] Digital-to- | . Analog-to- > on Xilinx Simulation
Generator Analog Generation Analog Digital EPGA Results
Converters Converters | ~| Converter

Figure 6.4: Test setup TS-4 for RFSoC hardware implementation of algorithms and

simulation.
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Figure 6.5: Test setup TS-5 for receiving a signal with an antenna to capture radar signals in

the field.

The test setup TS-5 is shown in Figure 6.5 along with the radiation setup. The antenna
is used to receive the electromagnetic signals in the form of radar signals. Antenna output is
used by single-channel front-end for down-conversion of RF signal to IF signal. High-speed
ADC board is used to digitize the IF signal. This setup is used to capture the radar signals
including hostile radars in the field. This setup is also used to generate various results

mentioned in chapter-5.
6.3 Frequency scan operation

The four-channel front end provides four IF outputs on four channels. Either 1 GHz IF
or 160 MHz IF can be selected independently from the IF output. IF of 1 GHz is selected to
carry out this work. In place of four-channel front-end, the RFSoC evaluation board is used
for this purpose.

A total of 0.5 to 18 GHz frequency band is considered for the thesis work. The front-
end receiver (or down-converters) down-converts the RF signal into an IF signal. The front
end tuned for the RF frequency is mapped to the 750 to 1250 MHz band. This is for the case
of fixed frequency. Scan operation is required to cover complete frequency band coverage to
enhance the POL.

In the case of scan, the front-end scans the entire band of 0.5 - 18 GHz. The scan band
is defined based on sub-band or spot frequencies. At the start of a scan, the front-end will tune
at F-1, then it will tune to F-2, ...., and finally, it will tune at F-N, where F-1 is the first
frequency of the given band, F-2 is the second frequency of the given band, and F-N is the
Nth frequency of the given band. Figure 6.6 shows the ELINT operation in the case of scan
mode of operation. The first signal is Start of Scan (SS), this will be high for few micro
seconds and indicates the scan start. After reaching at end of the scan, again SS signal will go
high for few micro seconds. The second signal is Lock Signal (LS). This signal shows the

tuning of the front-end for a scan frequency. It will toggle multiple times based on a number
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of tuning frequencies given in a scan band. Instead of scan band spot frequencies also possible
to select for scan operation. Under the lock signal, the available IF signal is detected,
captured, and parameters will be measured. All three signals SS, LS and IF are available from

the front end.

Start of Scan H Scan -1 H Scan -2
(SS) ZZ
L(CC;'; Signal F1 || F2 || F3 || Fa LZZJ PN | Rl

Figure 6.6: ELINT operation for scan mode of operation.

ELINT operation from 8.5 GHz to 9.5 GHz scan band is shown in Figure 6.7. Total
five LS will be generated in one scan. The length of LS depends upon the set dwell time. The
front end will dwell sequentially to all frequencies of the scan band for a given dwell time
with 250 MHz steps. In this case, the signal frequency set is 9.0 GHz. The corresponding IF
signal will appear at 750 MHz, 1000 MHz, and 1250 MHz for the tuning frequency 8.75 GHz,
9 GHz, and 9.25 GHz respectively.

SS H Scan -1 H Scan -2

LS 8.5 GHz U 8.75 GHZU 9.0 GHz U 9.25 GHZU 9.5GHz | |8.5GHz

—

Figure 6.7: ELINT scan operation from 8.5 GHz to 9.5 GHz scan band.

The power level of the IF signal is depends upon the 500 MHz band pass filter (BPF).
Usually, lower side and upper side power levels will be less compared to center frequency.
This happens as 3 dB bandwidth is considered for the BPF bandwidth. This variation of
power is shown in the IF signal power level at 8.75 GHz and 9.25 GHz frequencies which
corresponds to 750 MHz and 1250 MHz IFs.
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Test GUI for RF front-end tuning is shown in Figure 6.8. This GUI is used to keep
the front end in scan mode of operation. In this RF attenuation, RF Chain mode, Scan dwell-
time, and No. of Scan Freq can be set. Depending upon these parameters the front-end will be

tuned to each frequency and data capture will be carried out by data acquisition card.

- o X
RF Front End Control Panel )
Front End Tuning GUI
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Lock Status -
Scan Table Msg
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P Address | 192.168.1.10 | . . ol
RF Attenuation [0 v| 0-30a8 [0 ~| 0-348
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Figure 6.8: RF front-end control panel for tuning the 0.5 to 18 GHz RF tuner.
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Figure 6.9: Lock signal and video signal captured on an oscilloscope in scan mode of

operation.
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The lock signal and video signal captured on an oscilloscope in scan mode of
operation are shown in Figure 6.9. In this dwell-time of 20 ms is selected, hence about 20
pulses are being captured in each lock signal where pulsed signal with 1 us PW and 1 ms PRI

1s selected.

6.4 Data collection hardware

6.4.1 Design objectives

The objective of the ELINT Setup is to provide a research and development platform to
implement and evaluate new algorithms and architectures for next generation electronic
intelligence receivers. The current implementation of the ELINT Setup is designed to meet
the specifications described in Section 1.4.1 as follows:

e be able to monitor signals in the frequency range of 0.5-18 GHz

e be able to operate in simultaneous wide bandwidth of 500 MHz

e be able to operate in a narrow band (bandwidth 40 MHz) and wide band (500 MHz or

more) simultaneously

e Dbe able to exploit multiple simultaneously instructive signals

e maintain in real-time operation in a high signal density environment,

e maintain a high POI at all times,

e be cost-effective

The ELINT Setup is implemented in a modular fashion using commercial off-the-shelf
(COTS) components and indigenous components. A modular architecture was intentionally
chosen to allow the system to be added for different operations. The use of COTS components
and proven indigenous components reduces the risk, cost, and development time of the system

compared to the development of custom hardware.
6.4.2 Sampling architecture

The signal models and associated parameters estimation theory discussed in this thesis
have assumed a complex signal model. In practice, the digital representation of the complex
signal consists of in-phase (real) and quadrature-phase (imaginary) components. Both
components must be available before the application of the parameter estimation algorithms.
While the reception of the in-phase component is straight forward, reception of quadrature-
phase component can either be explicitly performed using quadrature sampling techniques or

generated from the in-phase component using real-signal sampling or band pass sampling
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techniques. The sampling architecture of the ELINT setup was chosen to implement a band
pass sampling architecture to achieve the computational efficiencies in quadrature generation,
filter design, and base banding. Both low pass and band pass sampling are used to sample the
signal. Band pass sampling is suitable as it reduces the data load and hence helps the signal

processing in real-time.
6.4.3 Sampling band pass signals

Band pass sampling is used to sample a continuous band pass signal that is centred
about some frequency other than 0 Hz. Band pass sampling
e reduces the speed requirement of ADC below that necessary with traditional low pass
sampling,
e reduces the amount of digital memory necessary to capture a given time interval of a

continuous signal.

Consider sampling the band limited signal shown in Figure 6.8 centred at f. = 1000
MHz, with bandwidth B = 500 MHz (i.e. = 250 MHz) signal. Band pass sampling is used for
the process of sampling continuous signals whose centre frequency has been translated up
from zero hertz, it is also called IF sampling, harmonic sampling, sub-Nyquist sampling, and
under sampling. It is more concerned with a signal’s bandwidth than its highest frequency

component in band pass sampling.

.

h |
| T
-f, f, Freq =
Bandpass Signal
Spectrum (discrete)
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! R
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Figure 6.10: Bandpass sampling (a) original continuous signal spectrum (b) sampled signal

spectrum replications.
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In this example, highest frequency component is 1250 MHz. Confirming the Nyquist
criteria (sampling at twice the highest frequency content of the signal) implies that the
sampling frequency must be a minimum of 2500 MHz. Consider the effect of the sampling
rate is 1333 MHz as shown in Figure 6.10. Note that the original spectral components remain
located at +f,, and spectral replications are located exactly at the base band. Instead, the
spectral replication effect is used. It should satisfy the following relation

(E2) 2 £ = (2), and 6.1)

m m+1

f. = 2B (6.2)

Greater computational efficiencies can be obtained in the signal processing that
typically occurs immediately after digitization, such as quadrature generation, filtering and
base banding, when the signal of the interest is centred at f;/4. An efficient signal processing
“trick” that can be used to shift a signal centred at f, to f;/4 is to specifically choose a sample
rate that satisfies the following,

f= =L (6.3)

Modd

Where f; is the sample rate, f, is the centre frequency of the signal and m, 4,4 is an odd
integer. At this specific sample rate, aliasing effects are intentionally exploited to shift the
signal from f. to f;/4 without any explicit frequency translation operation. Note that the
choice of m, 44 must be still ensured that the Nyquist criterion is satisfied, i.e. f; = 2B MSPS.
While the chosen sample rate as equation 6.1 is often faster than the minimum necessary by
the Nyquist criteria, the computational advantages offered by this choice of sample rate are

often a good trade-off against the cost of a faster ADC as will be discussed below.

Figure 6.10, illustrates the frequency spectrum of a typical real signal at various stages
of the band pass sampling process. In this figure, the signal is assumed to be centred at f, with
bandwidth B MHz. The sample rate is chosen to be f; = 4f./3. i.e. m,434 = 3. Figure 6.10(a)
depicts the frequency spectrum of the real signal prior to sampling. The trapezoid centred at f,
represents the signal energy at the positive frequency component and the trapezoid centred at
—f. represents the signal energy at the negative frequency component. Note that the negative
frequency component is spectrally inverted. After sampling at a rate of f; = 4f_./3, aliasing
causes the positive frequency component to be “copied” to -f; /4 and the negative frequency

component to be copied to f;/4. In signal processing, base banding of a signal (i.e. frequency
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translation to 0 MHz) is a commonly operation. Another advantage of centring the signal at

fs/4 is that base banding can also be performed without the use of any multiplications [48].

Finally, filtering is a common operation that is performed in digital signal processing.
The digital filters instead to allow frequencies within the pass band of the filter to pass
through the system while rejecting all frequencies outside the pass band (i.e. the stop band). In
practice, all digital filters designs require some transition bandwidth between the pass band
and the stop band [23], [48]. The sample rate of practical digital receivers will therefore need
to be faster than the Nyquist rate to provide a buffer in the frequency spectrum to allow for
the transition bandwidth of digital filters. Another advantage of centring the signal at f;/4 is
that the maximum transition bandwidth is available for the digital filters for a given sample

rate. In general, a wider transition bandwidth allows simpler digital filters to be used.

6.4.4 Selection of sampling rate

The sampling architecture of the ELINT Setup was chosen to implement band pass
sampling of the signal centred at f;/4 due to the computational efficiencies it offers in
quadrature generation, filter design, and base banding. Currently, many commercially
available, microwave (super-heterodyne) tuners exist which are designed to operate between
2-18 GHz. These quad superhet receivers commonly down-converts the radio frequency (RF)
to intermediate frequency (IF) of 1 GHz and provide an instantaneous bandwidth of 500 MHz.
Using these specifications with equation 6.3, the sample rate of the ELINT setup was chosen

to be

4x1GH

fo= = 1333.33 MSPS (6.4)

Where the centre frequency is set to the IF of 1 GHz and m,44 = 3. For a signal with
a 500 MHz instantaneous bandwidth, the Nyquist criteria requires that the sample rate be at
least 1000 MSPS, and so the above sample rate satisfies the Nyquist criteria. The sample
interval of the ELINT Setup will therefore be t, =1/f; =0.75 ns.

The above sampling rate is alright for the DIQ technique where I and Q signal
conversion will be carried out based on translation and the real signal itself. But for the
autocorrelation technique where I and Q signals are readily required for the algorithms. So,
data sampled at 1333.33 MSPS is converted to I and Q signals using the Hilbert transform.
Further, these signals can be decimated by 2 as the sampling rate of 666.66 MSPS is
sufficient. Both I and Q signals can be directly sampled at 666.66 MSPS if they are available

in analog form.
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Note that the down-conversion of the radar signal from RF to IF changes the measured
carrier frequency of the signal, however, the signal’s original RF can still be determined since
the local oscillator frequency is known. The phase of the signal remains unchanged after
down-conversion and so the phase delays will still be directly related to the signals original

RF.

6.4.5 Data capture hardware

The ELINT Setup follows a conventional digital receiver design with a band pass
sampling architecture and is illustrated in Figure 6.10. Microwave radars signals are received
at the antennas and down-converted from RF to IF using single-channel, wideband microwave
tuners. Signal conditioning (i.e. amplification and filtering) is performed at both RF and IF to
improve the fidelity of the down-conversion. The IF is digitized using parallel high-speed
ADCs and then transferred to a laptop and stored in a data file named adc data.dat. All
components of the ELINT Testbed are discrete, commercially available components that are

connected using RF and IF cables with SMA connectors.

Figure 6.11: VPX based high-speed data acquisition card.

VPX based high-speed data acquisition card is shown in Figure 6.11. The researcher
has designed this board with two input channels, one external trigger input, one external clock
input, and one signal monitoring output. Channel-1 is having a 10 dB higher gain compared to
channel-2 which is used for data collection. The data acquisition hardware is designed with
the ADC (P/N: ADCI2D1800RF) to sample IF signal at 1333 MSPS. Only pulse data is
captured along with pre-trigger and post-trigger portions to measure rise-time and fall-time.
Off-time between the pulses is not captured which saves a lot of memory space and reduces

the power consumption. It also enhances the maximum pulses storing capability. This card
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has the PCle and Ethernet interfaces with the controller. Ethernet interface is used to capture

the data on the laptop directly.

Test GUI shown in Figure 6.12 is used to control the data acquisition cards and
capture the IF signal based on the settings. The captured data is stored in the trig_data.dat file
along with the time-of-arrival (TOA) of each pulse, reported frequency, etc. in trig_info.txt
file. This digitized IF data is used to validate the algorithms at various levels. This hardware is

used to capture the radar signals in the field along with the front-end.
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Figure 6.12: VPX acquisition card control panel.

The sample rate of the 12-bit high-speed ADC was set to 1333 MSPS and was
specifically chosen to produce an intentionally aliased digital IF recording centred 1000 MHz.
The process of capturing data is as follows:

e Turn off the ELINT Setup and vector signal generator
e Ensure that the RF switch is set to direct injection from the signal generator. (i.e.
Ensure no signal enters the system through the antennas)

e Power-up the ELINT Setup
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- wait a few seconds to ensure that all components have fully powered-up
e Turn on the vector signal generator
e Capture 10-100 pulses and readout trig_data.dat file
e Use this file as input data in Matlab and apply the following algorithms
e Perform noise cancellation in each channel using spectral subtraction
e Estimate instantaneous amplitude and frequency profiles
e [Estimate the noise in one channel using instantaneous amplitude profile
e Detection of pulse using adaptive threshold on same channel
e Estimate the other parameters using amplitude and frequency profiles.

e Estimate the modulation and their parameters using instantaneous frequency profile

6.4.6 Data collection methodology

The data was recorded using a time-domain and frequency-based triggering system
with a set pulse width. This is a spectrum-based triggering system that activates a data
recording when the signal energy in one or more chosen frequency bins of an FFT spectrum
exceeds a specified threshold. When a trigger signal is detected, a set number of pulses data is
collected with the pre-trigger and post-trigger data. This pre-trigger and post-trigger data is
collected based on the pulse width. Pre-trigger data is collected based on the circular memory
concept and this facilitates to measure of the rise-time. The pulse data is recorded adaptively
based on the pulse region. It will also continue to record beyond falling edge equivalent to the

pre-trigger region.

This data was also captured with continuous mode for low SNR conditions. The VSG
was set with pulsed width of 5 us and pulse repetition interval of 7 us. The data is collected in
this manner to obtain more information in less time duration as the simulation tools also
having the limit, in which more data loading consumes more time. Instead of that pulsed data
is fed in the form of CW collected data and used for simulation as well as for FPGA
simulation. When a trigger signal is detected, a burst of 100 us of continuous data is recorded.

For this particular collection, each trigger is expected to capture approximately 14 pulses.

6.5 Test setup hardware

Two different types of Xilinx FPGA hardware are used to test the algorithms i.e.
XtreamDSP development kit and RFSoC evaluation kit. Both the boards consist ADCs to
digitize the signals and DACs to convert the digital words into analog signals.
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6.5.1 XtremeDSP development kit

The XtremeDSP development kit-4 is used as a development platform with Virtex-4
FPGA technology which is used to design scalable systems based on signal processing
algorithms available from M/s Nallatech. This board has dual-channel high-speed ADCs and
DACs, as well as the programmable Virtex-4 device which is used to implement signal
processing algorithms for software defined radio, radar, and EW applications. The block

diagram of the Nallatek development kit is shown in Figure 6.13.
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Figure 6.13: Block diagram of Nallatek development kit.

Figure 6.14: Nallatek Xilinx Virtex-4 FPGA development kit.
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The photograph of Nallatek Xilinx Virtex-4 FPGA development kit is shown in Figure
6.14. The development kit consists of three Xilinx FPGAs namely a Virtex-4 User FPGA, a
Virtex-II FPGA for clock management, and a Spartan-Il FPGA for interfaces. The Virtex-4
device is available exclusively for User designs while the Spartan-II is used for pre-
configured firmware for peripheral component interface (PCI). The PCI interfacing firmware
can be used for user designs or applications. The Interface FPGA also communicates directly
with the User FPGA. The Virtex-4 XC4VSX35-10FF668 device is intended to be used for the
main part of a User’s design. The Virtex-II XC2V80-4CS144 is used for clock configuration
in a design. The clock generated by this FPGA is used for User designs.

USB JTAG Downloading Cable

Figure 6.15 shows the JTAG USB downloading cable. The .bit file is generated using
the Xilinx ISE tool is downloaded into the FPGA using this cable, The iMPACT tool is used
to download the bit file into Xilinx FPGA. The ChipScope Pro Analyzer tool also can be used
to download the .bit file.

Figure 6.15: Xilinx USB Jtag cable.

ADC Clocking

The clock is generated by Virtex-II XC2V80-4CS144 FPGA is called clock FPGA.
This clock is used for ADC clocking also. This signal is differential LVPCL. The same FPGA
is used for DAC clocking. Based on bit files ADCs can be clocked in different ways. The
following various clocks can be used through clock FPGA:

» Onboard clock of 105 MHz generated using a crystal oscillator.

» External clock input is given through the middle MCX connector.

» Various programmable oscillators clock are available in the kit.

The onboard clock of 105 MHz is used to drive the FPGA logic.
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Synthesis and Implementation Settings

This synthesis and implementation settings are given in this section, which are used

for the development and implementation of FPGA designs to run on the Nallatech board.

Synthesis Options

To synthesize HDL code for user designs no specific settings are required for Nallatek

hardware. But the synthesis tool is required to synthesize the FPGA code.
Implementation Options

To develop, synthesize and implement user design, the Xilinx implementation tool is
required. The synthesis tool which is part of Xilinx Implementation tools is used to synthesize

the user design to the target device. Now, these tools are part of Xilinx Vivado tools.

Necessary Settings

The following mandatory settings are required which need to mention for the user
design to configure and run on Nallatek hardware.

1. Select Enable Readback and Reconfiguration

2. Select the JTAG Startup Clock in the bit file generation properties.

Downloading the .bit File

The Xilinx iMPACT tool is used to configure the User FPGAs in the XtremeDSP
development kit-IV. This section details how the iIMPACT tool is used with the kit.

Connect a JTAG Download Cable

The JTAG download cable is required to configure Xilinx Virtex-IV User FPGA.
Parallel-IV cable is supported which is connected to FPGA with the header and the other side

is connected to the laptop with a USB interface.

Detect the Card and Enable Power Supplies

The power supply is to be switched on to detect all the three FPGAs on the board
through JTAG. All power good LEDs will become green after red immediately.
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If using the Kit standalone with the external power supply

Board can be used in PCI slot of the personal computer and it can be also used with
their standalone power supply. Once the power supply module is connected to the supply and

it starts power to the board.

The sampling rate of this board is limited to 105 MSPS which can be enhanced to 250
MSPS with the external clock. This sampling rate is sufficient for 160 MHz IF signal but it is
not sufficient for the sampling of 1000 MHz IF signal at 1333 MSPS. Due to this reason, the
digitized IF data trig_data.dat file is used in this board to validate the algorithms. This board
is used for test setup TS-3 in section 6.3.

6.5.2 RFSoC evaluation kit

Zync Kintex UltraScale plus RFSoC ZCU111 is the high density, high speed, RFSoC
evaluation board. ZCU111 is used for high-performance RF applications. This kit features a
Zynq UltraScale plus RFSoC supporting eight 12-bit, 4.096GSPS ADCs, and eight 14-bit
6.554GSPS DACs. This kit provides a rapid, comprehensive RF Analog-to-Digital signal
chain prototyping platform
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Figure 6.16: ZCU111 RFSoC evaluation kit.

The kit is equipped with the industry’s only single-chip adaptable radio device. The
Zync UltraScale plus RFSoC ZCU111 evaluation kit is the ideal platform for both rapid
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prototyping and high-performance RF application development. The included ZU28DR is
Xilinx’s highest ADC sample rate RFSoC device, designed for applications requiring wide
instantaneous bandwidth. Eight integrated SD-FEC cores provide forward error correction at
80% lower power consumption than soft implementations, making the ZU28DR ideal for
microwave backhaul, and small cell applications. References add-on cards and connectivity
options make the ZCUI111 kit suitable for developing complexity and improving time to

market. Figure 6.17 shows the mezzanine card to connect the ADC and DAC ports.

The algorithms are tested with four channel hardware with four Analog-to-digital
converters (ADCs) and four Digital-to-analog converters DACs). It consists of Zync Ultra
Scale Plus RFSoC ZU24DR FPGA which consists of the following:

Zync UltraScale plus RFSoC ZCU111 XCZU28DR-2FFVG1517E RFSoC:

System Logic Cell 930K
Memory 60.5 Mb
DSP Slices 4,272
Transceivers 16
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Figure 6.17: ZCU111 RF mezzanine board for ADC and DAC.
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Figure 6.18: AOA algorithms testing setup using ZCU111 RFSoC evaluation kit.
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The AOA algorithms are verified in the detailed setup as shown in Figure 6.18. In this,
a single IF input goes to one of the ADC channels. Phase shift is provided to this channel
according to the angle of incident of electromagnetic waves to four or three antennas. The
digital data with a phase shift to all channels is diverted to DAC for conversion to the analog
signal. These analog signals are taken out and again connected to four or three ADC inputs
from the mezzanine card to digitize these signals. AOA algorithms are applied to these

digitized data and verified the measured AOA.

6.6 System generator models

All algorithms are implemented with a system generator using Xilinx Vivado 2016.4
tool. The Xilinx device selected is Virtex-7 XC7VX415T FPGA. The synthesis is carried out
for netlist generation, mapping for exact mapping of components, and place & route is carried

out.

6.6.1 Amplitude and frequency measurement models

The following models are generated as part of the amplitude and frequency
measurement as shown in Figure 6.19 to Figure 6.21. Their performance is verified first in
simulation using the system generator itself. The autocorrelation approach is implemented for

amplitude and the multilevel autocorrelation approach is used for frequency generation block.
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Figure 6.19: Instantaneous amplitude and frequency measurement system generator models.
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Figure 6.20: Detailed instantaneous amplitude measurement system generator model.
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6.6.2 AOA measurement model

The angle-of-arrival measurement model is generated using a system generator as
shown in Figure 6.22. The frequency measurement is carried out using FFT based technique.
The frequency is estimated using FFT based interpolation techniques which are used to an

estimate the AOA.
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Figure 6.22: Detailed AOA Measurement system generator model.
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6.6.3 Modulation measurement model

189

The modulation recognition system generator model is shown in Figure 6.23. In this

amplitude and frequency profiles are generated using the autocorrelation technique.

Modulation recognition is carried out using decision-tree algorithms using frequency profiles.
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6.7 Implementation Results

6.7.1 Instantaneous amplitude and frequency results

The instantaneous amplitude and frequency profiles results are generated using a

system generator model for different frequencies 750 MHz, 1000 MHz, and 1250 MHz as
shown in Figures 6.24, 6.25, and 6.26 respectively.

4 Waveform 20164
Fie

S Design_0609_Rkn.wcfg X

s | " Freq Out[19:0] | 750.125

Figure 6.25: System generator simulation result for frequency 1000 MHz.
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Figure 6.26: System generator simulation result for frequency 1250 MHz.

6.7.2 Modulation recognition results

Figure 6.27 shows the system generator result for LFMad modulation. In this first half
of pulse frequency increases and the second half frequency decreases. LFMa modulation type
i1s measured 0x5 and modulation parameter is ascending and descending chirp rate which is
measured as 0xc8c8. The minimum frequency measured is 1000 MHz and the maximum

frequency is measured as 1200 MHz.
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Figure 6.27: Simulation result for LFMad modulation recognition feature at 0 dB SNR.
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The system generator result for SFMa - 2 level modulation is shown in Figure 6.28. In
this, the first half of pulse and the second half of pulse there is a step change in the frequency.
The modulation type is declared as Oxa and the modulation parameter as 0x0002 which shows
the number of steps in the pulse. Figure 6.29 shows the BPM modulation. In BPM
modulation, the phase is changed by 180°. Due to this reason sudden change occurs in the
frequency. The modulation type is declared as Oxc and modulation parameter as 0x1f35 which

is equivalent to the 13-bit BPM.

tbh_top_mod_recog_behav.wcfg — 0@ %

B 1 ™ Amplitude [15:0]
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Figure 6.28: Simulation result for SFMa modulation recognition feature at 0 dB SNR.
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Figure 6.29: Simulation result for BPM modulation recognition feature at 0 dB SNR.
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Resource Utilization Summary

The proposed autocorrelation algorithm is implemented with a system generator using
Xilinx Vivado 2016.4 tool. The Xilinx device selected is Virtex-4 XC4VSX35-10FF668
FPGA. The synthesis is carried out for netlist generation, mapping for exact mapping of
components, place, and route is carried out. The utilization summary is compared for various
FPGA resources with the existing DIQ technique and is shown in Table 6.1. Mainly,
consumption of DSP resources are very less using proposed algorithm with moving
autocorrelation technique compared to the proposed algorithm with DIQ technique. This is

possible as no filter implementation is required in autocorrelation approach.

Table 6.1: FPGA resource utilization summary for modulation measurement with amplitude

and frequency measurement (Device: XC4VSX35)

FPGA Resource Proposed Proposed Savings in
Utilization with Max | algorithm with | algorithm %
Operating Freq. autocorrelation | with DIQ

technique technique
Maximum Clock
Frequency (MHz) 238.6 231.9 2.89
Slice F/Fs 2334 4353 46.38
LUT (4 Inputs) 2883 4136 30.29
DSP Slices 12 42 71.43
Block RAM (FIFO) 15 15 -
Total Power (mW) 546 782 30.18

The
XCKUO060-FFVA1517 which is footprint compatible with radiation tolerant device
XQRKUO060-CNA1509 for AOA estimation. The resources are compared with the four

AOA estimation is implemented on the Xilinx Kintex Ultra Scale FPGA

antennas and three antenna based BLI approaches and mentioned in Table 6.2. BLI algorithms

are also implemented in ZCU111 kit and similar results are obtained.

Table 6.2: Resource comparison AOA estimation (Xilinx FPGA: XCKU060-FFVA1517)

FPGA Resource 3 Antenna 4 Savings
Utilization Based Antenna in %

Proposed Based

Approach Approach
Registers 16567 21355 22.4
LUTs 12893 16283 20.81
36 Kb Block RAM 757 1026 26.21
18 Kb Block RAM 1532 2042 25.02
DSP48 Slices 40 50 20.0
Total Power (mW) 16464 21152 22.16
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6.8 Summary

A significant part of this Ph.D. research is concerned with the experimental validation
of the algorithms discussed in this thesis. In this chapter, the hardware architecture of the
single-channel and multi-channel ELINT Setup that was used to collect the data for
experimental validation was presented. A significant portion of the author’s time during this
Ph.D. candidature was spent in testing, debugging, and calibrating the ELINT setup to allow
single-channel and multi-channel data to be collected. In particular, data collected with
different SNR conditions and different modulations for single-channel was a critical
contribution to the development of real-time modulation measurement for functional ELINT
systems.

This chapter has experimentally validated that the real-time modulation identification
of signals is performed well when instantaneous amplitude and frequency measurements are
carried out using the autocorrelation based techniques compared to the DIQ technique. This is
verified till -2 dB of SNR and above 1 dB of SNR for targeted all 16 types of modulations are
recognized correctly. These modulations are identified after the signal is preprocessed with a
noise cancellation algorithm and SNR advantage has been achieved. This restored signal is
used for instantaneous measurements and modulation measurements. To check the efficacy of
algorithms, these algorithms are implemented in FPGA based hardware and results are
verified. These results are matching with Matlab performance. The error introduced by
converting floating point numbers into fixed point numbers has not impacted as a sufficient

fractional portion in terms of bits has been chosen.

Similarly, the virtual BLI based AOA estimation algorithms have been chosen
compared to four channel BLI estimation algorithms. As the FOV requirement is limited to
+25 degree, the virtual BLI based AOA estimation along with noise cancellation technique is
performed similarly to four channel BLI based algorithms. This configuration becomes the
size, weight, and power (SWaP) optimized as one-fourth of saving will be there compared to
other configurations. The performance of these algorithms was quantified at 4 dB SNR with a

3-antenna and 4-antenna array geometry and their experimental performance was compared.

ELINT systems come under the category of hard real-time as they are used for tactical
missions and missing the deadline may cause serious consequences. These systems complete
the critical tasks within a response time. This requires that all the delays in the system be
bounded from the falling edge of the pulse. These timelines should be met for the formation
of PDW. The formation of track based on de-interleaving using the required number of pulses

should also be bounded to meet the real-time requirement.
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Conclusions and Future Scope

In the previous chapter ELINT operation methodology is discussed. This includes scan
strategy, experimental setups, the hardware used, and various test conditions along with FPGA
implementation results. This chapter presents the summary, and conclusions of the thesis. The

future scope of the work is also given in the later part of the chapter.
7.1  Conclusions

This thesis is considered the problem of estimating the signal estimation, angle-of-
arrival (AOA) estimation, and modulation measurement of intercepted radar signals using
ELINT receiver for real-time surveillance (Chapter 1). Due to the tactical and operational
requirements of ELINT receivers, especially estimation algorithms need to be
computationally fast and highly accurate. Wide frequency surveillance from a large distance

requires identifying emitters accurately.

Many contemporary intercept receivers are described. All the receiver advantages and
disadvantages are also discussed. It is found that a single channel or multi-channel superhet or
a channelized receiver is the best choice for the electronic intelligence receiver. The prime
requirement of an electronic intelligence receivers is sensitivity. Simultaneously achieving
high sensitivity and large bandwidth is not possible. This will impact on the probability of
intercept (POI). When radar transmitter antenna and ELINT receiver antenna are looking at
each other within the antenna beam width. In this condition, ELINT receiver will receive the
radar pulses. The POI problem is reduced by scanning fast for the complete coverage of the
frequency band of 0.5 to 18 GHz. The scanning is controlled by dwell time. If prior
knowledge is available of radars and their frequency coverage. The scanning can be planned

for those bands only.

A novel technique based on noise cancellation has been developed the first time for
electronic intelligence receivers to overcome the effect of noise at low SNR conditions. So far

it was used for communication receivers. In this noise spectrum of fixed time duration during
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noise region is computed. Noise average is obtained from all FFT outputs. The spectrum of
the incoming signal is also obtained and it is subtracted from the noise average. Inverse FFT
is computed on subtracted output and restored signal is obtained. The phase of the incoming
signal is combined with the restored signal. This technique of noise cancellation enhances the

SNR of the incoming signal by 6 to 14 dB (Refer Table 4.3).

A novel technique based on optimized autocorrelation has been developed to calculate
accurate instantaneous amplitude profile till 4 dB SNR for pulse detection and other pulse
parameter measurements. The autocorrelation technique result is compared with the DIQ
technique and found advantages of about 6 to 14 dB (Refer Table 4.3). Instantaneous
frequency profile is also computed using the multilevel autocorrelation technique. This
technique enables the measurement of intra-pulse parameters. It can be utilized for feature
extraction and identification of modulated signals also. Using this technique the instantaneous
amplitude and frequency parameters of a pulse can be measured to -2 dB SNR. The total
advantage of about 20 dB is achieved if autocorrelation techniques are used after the noise

cancellation technique compared with DIQ technique without noise cancellation technique.

Time-domain techniques have limited use due to their less sensitivity compared to
frequency domain techniques. But these techniques are capable of instantaneous
measurements of frequency and amplitude which gives certain advantages of modulation
measurement. But frequency domain techniques provide processing gain advantage
inherently. If hardware is capable, this gain can be further improved by increasing the FFT
number of points. Fast Fourier Transform (FFT) is used to detect the activity, measurement of
frequency, pulse width, and pulse repetition interval. FFT with interpolation technique is
proposed to get the frequency accuracy advantage without increasing the FFT number of

points. The advantage in detection is also achieved as FFT output itself is used for detection.

In chapter 4, the noise cancellation technique based on spectral subtraction is used
which provides a significant SNR advantage. The SNR advantage is also achieved when the
autocorrelation technique is used for computing instantaneous amplitude profile and
instantaneous frequency profile. These advantages are not possible with the contemporary
DIQ technique. Contemporary phase-based interferometric algorithms are computationally
fast and offer high accuracy AOA estimation using a less number of antennas. However, the
requirement to use physically large wideband antennas for electronic surveillance applications
introduces a significant ambiguity problem to the AOA estimation. To perform unambiguous

AOA estimation, the antenna positions must be carefully chosen and coupled with ambiguity
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resolution algorithms. Further, three antennas based AOA estimation technique provides

SWaP advantage for high altitude applications.

It was shown that the ambiguity problem can be completely avoided by using a virtual
array to create a virtual short-baseline interferometer. This algorithm was shown to be
computationally efficient and operated effectively over the entire microwave frequency range
between 0.5 - 18 GHz. The performance of this algorithm was also shown to be limited to the
smaller aperture but it is also independent of the physical antenna spacing. Accurate
frequency estimation is shown using FFT based technique with interpolation. This accurate
measurement of frequency is used for estimating the AOA using the interferometry technique.
Both four antenna and three antenna based baseline interferometry are described. Virtual
interferometry using three antenna based provides better results when it is used with noise

cancellation.

In chapter 5, it was shown that the noise estimation is carried out efficiently for
selectable time duration on instantaneous amplitude profiles. The estimated noise is used for
computing the adaptive threshold which is used for the detection of the radar signals. The
detection of the radar signals is carried out using an amplitude profile. The instantaneous
frequency profile generated using the multilevel autocorrelation approach is used for
estimating the modulations using the decision-tee algorithm. This algorithm is based on the

time-domain based which estimates the modulation in real-time.

In chapter 6, the ELINT receiver methodology is discussed. In this chapter, different
level of testing is explained. The data capture is generated using Matlab initially with different
SNR and with various modulations and algorithms are verified. This signal is generated with a
vector signal generator and captured using a VPX data acquisition card and the digitized IF
data is stored in the file. This file is used to validate the algorithms. Later this file is used to
verify hardware implementation using FPGA boards. The performance of signal estimation
and modulation estimation methods were experimentally validated using the hardware

developed.

In chapter 7, a summary of the thesis, overall conclusions, and future scope are

given.

7.2 Future scope

This thesis was presented several computationally fast modulation recognition

algorithm including signal estimation and evaluated their theoretical and experimental
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performance. However, many areas of this work may warrant further investigation. These

areas will be briefly discussed below:

Experimental Validation of Other Frequencies - Due to the time constraints and the
safety and licensing of transmitting RF signals, the experimental validation of the algorithms
in this was only performed for 0.5-18 GHz. Since the objective is to have a radar intercept
receiver that can operate between 0.175-40 GHz, it would be desirable to experimentally

validate the performance of algorithms at other frequencies.

Experimental Validation Using Different Transmitters - Due to time constraints,
the experimentally validation of AOA estimation could not complete with antenna array
hardware. This was done using an RFSoC board where three-antenna delay was manually
generated instead of between three-antenna output and work was completed. In order to fully
validate the experimental performance of the algorithms, it would be desirable to use one

transmitter for the calibration signal and a different transmitter for the AOA estimation.

LPI signal - Few low probability intercept (LPI) signals are already attempted in this
thesis. But due to the availability of resource-intensive FPGAs the identification of LPI
signals may be extended in real-time for polyphase and polytime signals also. But this work
requires lot of resources because processing algorithms are frequency domain based which
needs to be implemented in processing hardware. But initially, simple LPI signals detection
may be tried.

In the future, the modulation identification will be extended for additional signals and
other practical combinations of signals. Artificial Intelligence (Al) based algorithms to be
developed for the specific emitter identification. This will be an unconventional way of
matching. Conventionally, the matching is carried out based on the parameter matching
within their window. Al based matching will be helpful to train the algorithm for all available

emitters. But implementation feasibility for real-time application will have to be verified.

Third-order spectra (Bispectra) are used to get the high accuracy in amplitude and
frequency measurements. But their processing time is large as N (FFT length) is considered
the highest possible. Hence, it is difficult to use for real-time ELINT systems where accuracy
is achieved in hundreds of kHz. It is used where accuracy is more important i.e. instrument
identification where the data rate is comparatively slow. It is useful in analysis based ELINT

systems also. In the future, this may be possible to use for real-time systems also.
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Modelling of signal

Conventional narrowband radar signal can be modelled as a single tone and as a

function of time as below:

s(t) = AeJ@rft+ ) (A.1)

Where A is the amplitude, f is the carrier frequency, t is time and ¢ is the initial phase.

The variation in frequency will be visible. Practically, the ideal signal is corrupted by additive
noise component €(t). For a multi-channel system with K antennas, the signal of the k™

lth

antenna with respect to 1™ antenna is represented as:

xkl(t) = S(t + Tkl) + Ek(t) = Aej(znft+ ) + Ek(t) (AZ)

Where, k=1,2,3,....K and 7, is the time taken from k™ antenna to 1" antenna. The 7, is given
as
T = % sin 6 cos ¢ (A.3)
Assuming only incident wave azimuth angle is @ and elevation angle is $=0°. The above
equation is reduced to,
T = % sin 6 (A4)
The receiver noise in the k™ channel is modelled as an independent and ideally
distributed with zero mean and Gaussian random noise with a(fk variance. The receiver noise
is assumed to be independent for each receiver. The real and imaginary component of € (t)
has an equal variance that is equal to o7 = afk /2 . It is generally assumed that each receiver

channel having the same noise power and the complex receiver noise power is written as

62 = 64 = 6% =.......= 0, and the corresponding real and imaginary noise power can
be written as 62 = 62 = 0% = - ........ = o¢. The signal-to-noise ratio (SNR) of the signal 1,

can be defined as below:

AZ A2
nN===-=

o2 202

(A.5)
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For a narrowband signal and a linear array geometry, propagation time can be

converted into a phase as below:

Yy = 2nf1Ty = an% sin @ (A.6)
For a multi-channel digital receiver, the digital sampling of signal occurs at a regular,

discrete-time intervals, t;. For a collection of nt, samples, the nth sample of digital sample of

a narrowband signal model can be re-written as below:
X (ntg) = Aed @mts+o+bi) 4 ¢ (nt) (A7)

The nt; sample is commonly written as n and the above equation is modified as

below:
X (n) = AedCrfmto+bi) 4 ¢, (n) (A.8)
which corresponds to the time instant t = nt; = n,andn=0, 1, 2....., (N-1).

It should be noted that the time propagation 7y, is actually the time advances for
positive € and time delay for negative 6. Similarly, the propagation phase y;, is a phase
advance for positive 8 and phase delay for negative 8. However, for notation conciseness, this

thesis will generally refer to t4; and y; propagation delay and phase delay respectively.
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Fixed Point Presentation of Numbers

The implementation of signal processing algorithms with fixed point numbers (or
integer numbers) provides a considerable enhancement in speed. The reason behind is the
fixed point numbers support for field programmable gate array or processors. This will also
reduce the complexity of software to follow multiplication and division operations. This
enhancement of speed achieves with the cost of reduced range and accuracy of the signal
processing algorithms variables. If sufficient numbers of bits are chosen for the required range
and accuracy, then true speed is achieved.

To further improve the execution speed or throughput the calculations are carried out
with two’s complement signed fixed-point representations. This requires the virtual decimal
placed in between given bits of data. Q-point is the notation used for representing fixed point
numbers. This is represented below

Q[QI].[QF]
Where QI = Number of integer bits, and QF = Number of fractional bits
The number of integer bits (QI) plus the number of fractional bits (QF) yields the total
number of bits used to represent the number. The sum QI + QF is known as the word length
(WL). For example, a 98.8 number would be a 16-bit value with eight integer bits and eight

fractional bits.

B.1 Fixed point range — integer portion

The range of floating point variable (i.e. Min to Max range) in an algorithm sets the
number of bits (QI) required to represent the integer portion of the number. This is defined for

unsigned numbers as below:

QI = Ceil (logz(abs(a))) (B.1)
Where « is the floating point variable and 0 < a < 297,

For signed numbers (£ a), the relationship is defined as:
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QI —1= Ceil(log2 (max(abs|max amin]))) (B.2)

Where «a is the floating point variable, and —29/~! < o < 29171,

For example when input frequency varies from 140 to 180 MHz. Integer portion 8 bits
are enough because it can cover from 0 to 255 MHz. If the input frequency is varied from 750
to 1250 MHz, the integer portion is chosen 11 bits. Whereas for amplitude number of the

integer portion chosen is 8-bits.

B.2 Fixed point resolution — fractional portion

The resolution is limited for a given word length (WL). Since the integer portion is
already fixed based on the range and dynamic range of the number the remaining bits will be
used for the fractional portion (QF) of the number. In case, where required resolution of a
number is high, the world length has to be increased to accommodate the required resolution.

The resolution & , of a fixed point number is defined by the following equation:

1
&= J0F (B3)
However, since QF is an integer value only. Therefore, the number of fractional bits

(QF) required for a particular resolution is defined by the equation:

QF = ceiling (logz G)) (B.4)
The fractional number of bits is chosen for amplitude and frequency of #B-bits for this

requirement.
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ABSTRACT

In this paper, a decision tree algorithm based on time-domain digital technique is developed for the identification
and classification of diverse radar intra-pulse modulated signals for the electronic intelligence system in real-time. This
includes linear frequency modulation, non-linear frequency modulation, stepped frequency modulation and bi-phase
modulation. The received signal is digitised and the instantaneous phase and high accuracy instantaneous frequency
are estimated. The instantaneous amplitude is also estimated to get the start and stop of the pulse. Instantaneous
parameters are estimated using a moving autocorrelation technique. The proposed algorithm is employed on the
instantaneous frequency and the modulation is identified. The modulation type and modulation parameter are important
for unique radar identification when similar radars are operating in a dense environment. Simulations are carried out
at various SNR conditions and results are presented. The model for algorithm is developed using a system generator
and implemented in FPGA. These results are compared when the proposed algorithm is used with the existing digital
in-phase and quadrature-phase (DIQ) technique of instantaneous frequency and amplitude estimation.

Keywords: Complex radar signals; Instantaneous frequency profile; Intra-pulse modulation; moving autocorrelation

technique; Digital in-phase and quadrature-phase technique

NOMENCLATURE
x(?) Continuous-time signal
x(n) Discrete-time signal
Sampling time
Sampling frequency
Initial phase of the signal
Fixed time period
Ascending chirp rate
Descending chirp rate
Time duration
Centre frequency of IF signal
Maximum frequency of FMCW signal
Minimum frequency of FMCW signal
Leading edge frequency
Trailing edge frequency
Center frequency during the pulse

:~ _
m§§

]

MM TN TS N R A e

CNT

F, Frequency at the first intermediate point
F, Frequency at the second intermediate point
of Frequency deviation

£, Sinusoidal modulating frequency

Af Frequency tolerance limit

Ad Phase tolerance limit

1. INTRODUCTION

Modulation on radar pulse is one of the most important
features and one of the vital problems in the analysis of non-
cooperative radar signals is modulation classification for
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Accepted : 09 October 2020, Online published : 01 February 2021

emitter identification'2. The modulation classification plays
a very important role in electronic intelligence (ELINT)
systems*>. Firstly, the modulation type of a signal is important
to identify the radar type. Second, on identifying the correct
modulation type the carrier frequency is re-estimated. Third, it
helps to distinguish similar radars deployed in proximity. But
for radar signals, the modulation classification in real-time is
very challenging due to the possibility of various modulations
within a very short pulse.

An earlier generation of electronic support (ES) systems
was based on instantaneous frequency measurement (IFM)
receiver and pulse measurement using log video. The time-
domain technique was used for noise estimation and signal
detection® and frequency were measured using time-frequency
analysis’™. But during conversion from radio frequency (RF) or
intermediate frequency (IF) to log video, the phase and hence
the modulation information is lost. Due to this reason these
systems measure only basic parameters like RF, Pulse width
(PW), pulse repetition interval (PRI) and pulse amplitude (PA).
These parameters broadly are called inter-pulse parameters.
But the measurement of these parameters alone is not sufficient
against modern RADARs.

Conventional radars have simple pulsed waveform or
continuous waveform with no modulation. These pulsed radars
sometimes have the variations in PW or PRI. But complex
radars are having various modulations within the pulse along
with the above variations. These intra-pulse modulations can
be linear frequency modulation (LFM), non-linear frequency
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modulation (NLFM), stepped frequency modulation (SFM)
and bi-phase modulation (BPM). Typically, these modulations
are identified by the ELINT system using offline analysis'™
15, Till the earlier generation of electronic warfare (EW)
systems, these offline analysis tools are either add-on or they
are integrated with the main ES systems or ELINT systems.
Identification of modulations by the ELINT system in real-
time is still a challenge. Various digital methods are discussed
for modern digital implementation'®2! and decision-theoretic
approaches are mentioned for modulation classification?*2.

Modulations can be identified using frequency domain
techniques using offline systems?%, Implementation of these
techniques in Field Programmable Gate Array (FPGA) for real-
time applications is not a viable solution as they consume a lot
of hardware resources. Due to this reason, the implementation
of signal classification techniques is attempted in FPGA using
time-domain technique for real-time applications. IF signal
is digitised in ADC and samples are captured, processed and
further analysed in FPGA. These are possible to implement
in FPGA due to parallelism, high density and high-speed
component cores.

In this paper, an algorithm to identify modulation in real-
time has been discussed and elaborated. The decision-tree
based algorithm is proposed to identify the modulation. The RF
pulse (RFP) is generated based on the instantaneous amplitude
profile. The complete instantaneous frequency profile data
is stored in the random access memory (RAM) during RF
pulse. The frequency at different points in the pulse region is
fetched from RAM and the algorithm is applied in real-time.
The modulation is measured within shadow time based on the
frequency parameters.

The validity of the algorithm has been tested with various
modulated signals at different SNR conditions. In section-2,
modelling and characteristics of various radar signals are
given. The proposed modulation recognition algorithm is
discussed in section-3. The performance and effectiveness of
the algorithm are presented in section-4 through simulations
and implementation on FPGA hardware is given in section-5.
2. MODELLING AND CHARACTERISTICS OF
VARIOUS RADAR SIGNALS
The RF signal is down-converted to the IF signal using
a superhet receiver and it is digitised. The instantaneous
amplitude, phase and frequency are estimated. Pulse is detected
using amplitude and modulation is identified using phase and
frequency. The block diagram of FPGA based modulation
identification is shown in Fig. 1.

RF
Input High Instantancous
Superhet Phase & Modulation
—> perhet || Speed N L‘ . A
Receiver ADC Fl‘L_qll‘-f_lLY Identification
! Estimation
Instantaneous Pulse
Amplitude [ "
L Detection
Estimation

Figure 1. FPGA based modulation identification.
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Modern radars are exhibiting complex radar waveforms.
These waveforms include No-Modulation Continuous Wave
(NMCW), Frequency Modulated Continuous Wave (FMCW),
No-Modulation On Pulse (NMOP), LFM, NLFM, SFM and
BPM. The following signals are considered and modelled.
They are described as below:

(1) Signal with No Modulation: NMCW and NMOP signals
do not consist of any modulation. The discrete version of
the time-domain signal x(7) is given as?,

x(n) = A’ i +6) (D)
where, 4 denotes the carrier amplitude, ¢ denotes the initial
phase, f denotes carrier frequency, ¢, denotes sampling time
and for n=1,2,3..., N for NMOP signal.

When n=1,2,3...,c0and signals are with PW more
than predefined time duration 7 considered as continuous
wave (CW). If PW is below 7, they are considered as pulsed
signals.

(i) Linear Frequency Modulation (LFM): LFM ascending
(LFMa), LFM descending (LFMd), LFM ascending-
descending (LFMad) and LFM descending-ascending
(LFMda) chirp signals are considered as LFM signals.
These signals are also known as Triangular FM.

(a) LFMa signal is generated as given by

x(n) _ tej(anizz\+¢+nanzzf) (2)
for n = (ﬂj,[ﬂjﬂ,...,—l.
2 2
where, o is the slope of the LFMa.
(b) LFMd signal is generated as given by®
X(n) — tej(ZTgfntSer)annztf) (3)

forn = 0,1,2,...,(%)—1.

where, B is the slope of the LFMd. Usually, LFMa and LFMd
signals have the same slope, i.e. f=o .

(¢) LFMad and LFMda signals are generated using a
combination of the above two equations. The frequency f
is the instantaneous frequency at the peak of the triangular
frequency variation, which is the maximum instantaneous
frequency within the observation duration in the case of
LFMad. The slope a and [ is calculated as 28f / T, where the
Of is the bandwidth within the time period t. The parameter
1 is a fixed value. The waveform is characterised by f, 8f,
o and B.

(iii) Non-Linear Frequency Modulation (NLFM): NLFM
signal is generated as given by%.

J(2nfit, +¢+[%Jsin(2nfmn/\ )

Im

x(n) = Ae @)
where, the 6f /2 is the peak deviation, f,, is the sinusoidal
modulating frequency, n=12,3..N, if the signal is
narrowband, it means &f /2 f, <<1. It is assumed that only
a fraction of the cycle is sampled over an observation time.
In case of the wideband FM signal, df /2f, >>1. NLFM

forward and NLFM reverse is represented as NLFMf and
NLFMr respectively.
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(iv) Stepped Frequency Modulation (SFM): SFM is generated
as below

x(n) = o/ it +9) (5)

for n=1,2,3,...N
where, f, is the frequency of h" step, and A =1,2,3,....H is
the number of steps. Usually H is in the sequence of 2,4,8, ...
etc. ForH =2, h=12 similarly for H=4, h=1234,
and so on. SFM ascending and SFM descending signals are
represented as SFMa and SFMd, respectively.
(v) Phase Modulation (PM): Bi-Phase Modulation (BPM) is
one of the phase modulations and it is generated as given
by*

() = A/ 4+ 6)

where, O(n)=mn(l-n), when the zero bits of the code
sequences are sampled and 6(n) =0, when the one bits of the
code sequence are sampled. The phase shift 6 can be 0° or
180° in the case of BPM.

3. PROPOSED DECISION TREE MODULATION

IDENTIFICATION ALGORITHM

The IF signal is down-converted signal of RF signal
digitised at the sampling frequency f, which is equivalent to
f.=4f./3,where f, isthe center frequency of the IF signal®.
Four samples are latched into FPGA coming from ADC at the
clock rate of f, /4 . The samples are latched at both the clock
edges. All eight samples are processed in parallel at f, /8 clock
rate and results are combined at the output. The instantaneous
frequency profile generated using the moving autocorrelation
approach’! is given by

F, (n)= [;—mj (A, (n)+2nz,) (7)

where, F, is the sampling frequency, A® (n) is the phase
difference derived from zone 7 of phase and m is 16. The
instantaneous amplitude profile Is generated as given by?!

X(n+1)=x(n)+ | x(n+32).x (n+32+m) | = | x(n)x (n+m)| (8)

where, x" is a conjugate of signal x, n is the sample number
and delay m is 1. The Eqn (8) is optimised by keeping
X () =a+ jb where, a and b are constant values.

In Fig. 2, LFMad and FMCW signals frequency profiles
are shown for presentation purposes. In the case of pulsed
signals, pre-trigger and post-trigger region of the pulse is also
captured to get the complete intra-pulse information including
rise time and fall time. The pre-trigger region is captured based
on the circular buffer memory concept which is implemented in
first-in-first-out (FIFO) memory. The instantaneous frequency
profile is used to extract frequency at various points. The
frequency is extracted at an equal time interval at five different
points from stored instantaneous frequency profile as shown in
Fig. 2. These frequencies are known as leading edge frequency
(F,;), trailing edge frequency (F};), center frequency during
the pulse (F,,), frequency at the first intermediate pint (£
and frequency at the second intermediate point ( £}, ). The F,,
and F,, are latched at the leading edge (LE) and trailing
edge (TE) of the RFP pulse. The RFP is generated using an

LFMad Signal
FCNT

Freq

(MHz)
Time (ns)
FMICW Signal

Freq ax

(MHz)

Time (ns)
Figure 2. Frequency profiles of LFMad and FMCW signals.

instantaneous amplitude profile. Whereas to extract frequency
at other three points the frequency data is stored during the
pulse region in RAM which is generated using block RAM
resource of FPGA. The frequency at these three pointsi.e. F,, ,
F. and F,, are fetched from RAM based on the address
calculated from the pulse region.

In the case of the FMCW signal, the maximum frequency
(F,,) and minimum frequency (F;) are computed in real-
time and stored. The frequency tolerance limit (Af’) and phase
tolerance limit (A¢) are used during comparisons and windows
are fixed.

The amplitude and frequency profiles are computed from
the digitised signals using the moving autocorrelation technique.
The approximated standard deviation (c,) is computed for
noise estimation®!' using the instantaneous amplitude profile
X (n) as given below.

Nv-1 X(n

0, =ky A ©)
where, k£ is constant which is determined based on the minimum
error between standard deviation and its approximated value
and N is the number of samples. High-level threshold (7},) is
computed using estimated noise and accordingly, low-level
threshold (77) is set during the noisy region. 7, is used to
detect pulse leading edge (or pulse start) and 7, for the pulse
trailing edge (or pulse end). The threshold is adaptive for
better detection and analysis of pulses. Based on the adaptive
threshold the pulse detection is carried out. The signal power
and noise power is also measured®. Accordingly, signal-to-
noise (SNR) is declared.

The flow chart for the proposed decision tree modulation
recognition algorithm is shown in Fig. 3. First, the IF signal is
captured and amplitude and frequency profiles are computed.
The pulse start and pulse end are detected based on high and
low-level threshold respectively. As per the flow chart initially,
the signal is distinguished between pulsed and CW signals. If
PW is greater than the predefined time limit 7, it is declared
as CW, otherwise, this is considered as a pulsed signal. If the
signal is CW, the algorithm will look for frequency variations
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| Capture of Data |
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Figure 3. Proposed decision tree algorithm flow chart for

|LFMda | | SFMd |

modulation identification.

within that period. If F, and F, are within the set tolerance
limit (Af) i.e. frequency is constant, it will be declared as
NMCW signal. Whereas, if the difference of £ and F,,
is more than the Af, it will be declared as FMCW signal.
When the signal PW is below predefined time limit 7, it is
known as a pulsed signal. If the frequency is constant in pulse
region and there is no frequency discontinuity it is declared
as No nodulation on pulse (NMOP). When there is an abrupt
change in frequency due to sudden change in phase, it will be
declared as BPM in which phase changes occur closed to pi.
Phase changes and their numbers are detected. The minimum
duration between two phase changes is measured and stored.
The total width of the signal is divided by the minimum
duration and the BPM pattern is identified. BPM pattern starts
with 1’s and each phase change is represented by 0’s from
I’s and 1’s from 0’s and when there is no phase change it

82

will continue with the same 1°s or 0’s. The representation of
the 13-bit BPM code is “1111100110101”. The frequency
profiles of NMCW, FMCW, NMOP and BPM are represented
in Fig. 4.

The signal is declared as NLFMf when F),, is greater
than F,, as well as frequency is sinusoidal. Whereas, if Fj,,
is greater than F),, as well as frequency is sinusoidal, the
signal is declared as NLFMr. SFMa is declared when F),, is
greater than F,, as well as frequency changes in steps. If F
is greater than F),, as well as frequency changes in steps, the
signal is declared as SFMd. In SFM signals, there will be a step
change in the frequency. NLFM signals are generated based on
the approximation of SFM signals. The frequency profiles of
NLFM and SFM signals are represented in Fig. 5.

When the linear change of frequency trend is ascending,
descending or both in pulse region the modulation present is
known as LFM. Modulation is declared as LFMa when F),,
is greater than F,,, as well as frequency changes linearly.
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H 140 B 1400

= = .

= 120( S120f !T,

c 5 PAAAAAAAM AL

c]DU[ 510{[ u:u.l:. -..n.“‘.;.,,

g‘ a_ L

® 809 % 609

- (18

60 &
0 2 0 1 2 3

Time {ns) Time (ns) .10
NMOP BPM

-
=
=

Freguency (MHz )
=2
L= = T =

300 1000 1500 2000

60
0 500 1000 1500 2000 o
Time (ns)

Time (ns)

Figure 4. NMCW, FMCW, NMOP and BPM signals frequency
profile.
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Figure 5. NLFM and SFM signals frequency profile.
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Whereas, if £y, is less than Fj;; and frequency changes
in ascending-descending order, the signal modulation is
declared as LFMad. When F,, is greater than F,, and
frequency changes linearly, the signal modulation is declared
as LFMd. If F,, is less than F),, and frequency changes
in descending-ascending order, the signal is declared as
LFMda. Above mentioned LFM signals frequency profile is
illustrated in Fig. 6.

— LFMa — LFMd
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Figure 6. LFM signals frequency profile.

Once the type of modulation is found out, their parameter
is also estimated like slope in the case of LFM, which is known
as chirp rate in MHz/us. Similarly, the number of steps and
BPM code are the parameters in the case of SFM and BPM
respectively. Both modulation type (MT) and modulation
parameter (MP) are represented using five nibbles in Table 1.
Each MT is bit encoded and represented by one nibble,
whereas, MP is represented by four nibbles. In Table, frequency
deviation, frequency modulation rate, ascending chirp rate
and descending chirp rate are represented as FD, FMR,
ACR and DCR.

4. SIMULATION RESULTS

In this section, simulation at various SNR is presented
to demonstrate the effectiveness and performance of the
proposed decision tree algorithm for modulation identification.
The input signal is generated with widely used additive white
Gaussian noise (AWGN). A similar signal is used in the
simulation for computing instantaneous frequency profile using
moving autocorrelation®' and DIQ techniques for
generating results for various signals.

Table 1. Representation of bit-pattern for modulation type
(MT) and modulation parameter (MP)
Bit-pattern for
c“:i MT MP
B2[3:0] BI1[15:12] BI1[11:8] BI1[7:4] B1[3:0]
NMCW 0001 0000 0000 0000 0000
FMCW 0010 FMR (KHz) FD (MHz)
NMOP 0011 0000 0000 0000 0000
LFMa 0100 0000 0000 ACR (MHz/us)
LFMad 0101 DCR (MHz/us) ACR (MHz/us)
LFMd 0110 DCR (MHz/us) 0000 0000
LFMda 0111 DCR (MHz/us) ACR (MHz/us)
NLFMf 1000 0000 0000 0000 0000
NLFMr 1001 0000 0000 0000 0000
SFMa 1010 0000 0000 No. of Steps
SFMd 1011 0000 0000 No. of Steps
BPM 1100 BPM Code

Table 2. Detection performance of modulation identification

Proposed algorithm Proposed

Modulation _ . . . .., Correct
type with movmg' algorithm Yvnth identification
autocorrelation DIQ technique
NMCW -2 5 99
FMCW -1 7 98
NMOP -2 6 99
LFM 0 7 98
NLFM 1 8 98
SFM -2 5 99
BPM 1 8 97

The confusion matrix is extracted from the detection
performance at SNR of -2 dB for the proposed algorithm
with moving autocorrelation as shown in Table 3. The result
shows the detection performance with 99% accuracy at -2 dB
SNR for NMCW, NMOP and SFM signals. The probability of
correct identification is dropped below respective SNR of all
modulations. The different modulations are compared for the
SNR required for set modulation and declared modulation.

Minimum SNR required using moving autocorrelation
technique and DIQ technique is 1 dB and 8 dB respectively
to process all types of modulated signals. Based on this, the
sensitivity achieved is -87 dBm and -80 dBm using proposed
algorithm with moving autocorrelation technique and DIQ
technique, respectively.

Table 3. Confusion matrix of modulation identification at SNR of -2 dB

The detection performance of modulation

Declared MT ->

NMCW FMCW NMOP LFM NLFM SFM BPM

identification is given in Table 2. An extensive _S¢t MT (Below)
simulation is carried out to test the performance. =~ NMCW 99% 1% - - - - -
Total of 400 different signal sequences are  FMCW 5% 95% - - - - R
generated to test each modulation. All types of  \wvoP . _ 999, . _ . 1%
in]())d;lltatcllor} }flazt.eﬁ‘beent Ver(liﬁel:dt.and the. 5651;1; 1(s1 LFM ) ) } 94%  45% 1.5% }
abulated. The different modulations are identifie NLEM ) i i 35%  95%  1.5% i
at various SNR using the proposed algorithm with

: : : SFM - - - 05% 05%  99% -
moving autocorrelation technique and proposed

BPM - - 4% 2.5%  1.5% 1%  91%

technique with DIQ technique.

&3
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The comparison of this work with other similar works is ] |

not reasonable because the frequency domain techniques get 1 LOsta LMa— IO LAy x  mag—7— 1
the inherent processing gain. But they suffer from PW and PRI I_Data :?3l Amglitude
measurement accuracies. The minimum PW measurement is 2 jri—i0 Data O_Mui} QD O_Awg: y ata
restricted to the number of FFT points and its percentage of Q_Data S ! |
overlapping. Whereas, the proposed time-domain technique WRRSUpeS  Cheamuier:  CORDI
measures the minimum PW of the order of 50 ns. The fact . ey 8 ;L
of the matter is that lower PW does not have the modulation h;_“:”' .E
but still, any processing method should meet all basic system reinterpret (—y  stan—(n Out
requirements along with critical requirements. E;Eﬂa'nfet'l.,_:cgm P .an , Mod_Fun
Classification of modulation®”?® presented are based on
the frequency domain processing and they are implemented on =
. . .. . r 1ph ph_out) ph_in dph_out; dph_in Fregl—+—t— 2
DSP processor for ELINT applications. Due to the limitations |
of the number of MACs in the DSP processor these techniques Ph_Unarap Fh_Comp Freq Comp | | Frecuancy
are not suitable for tactical operations. The proposed decision-
tree algorithm is implemented on FPGA hardware which
provides real-time performance. 0 E} e
A TE} - RFF| 12
5. IMPLEMENTATION ON FPGA HARDWARE | — Zg . RFF
The proposed algorithm is implemented with a system Pube_detection
generator using Xilinx Vivado 2016.4 tool as shown in Fig. 7. == PN\ 4
The Xilinx device selected is Virtex-7 XC7VX415T FPGA. g M e WA Ty
The synthesis is carried out for netlist generation, mapping for Freq_Reg [fea ut| 5
exact mapping of components, place and route is carried out. | [ {phase ' Mod_Param
The utilisation summary is compared for various FPGA Med_Recog Leogis

resources with the existing DIQ technique and shown in
Table 4. Mainly, DSP resources are utilised very less in the
proposed algorithm with moving autocorrelation technique  Table 4. FPGA resource utilisation summary (Device: XCTVX415T)

Figure 7. Model generated using system generator.

compared to the proposed algorithm with DIQ technique as no
Proposed technique Proposed

filter implementation is required. FPGA resource . . . .., Savings
The simulation result using the proposed algorithm is utilisation ;:g::::::;; %ion glc(l;ntlgcl;ﬁ]:;lltlt in %
shown in Fig. 8 for the LFMad signal. The same input data is .
used which was used for Matlab simulations. Only two pulses Slice F/ l?s 2334 4353 46.38
data along with pre and post region is shown to facilitate the LUT (4 inputs) 2883 4136 30.29
simulation. The Mod_Type code can be cross verified as 0x5 I 12 42 7143
(i.e. 0101) with Table 1 for the LFMad signal. This code is  Dlock RAM 300 300 -
Total power (mW) 546 782 30.18

generated after 8 clock cycles from the end of the pulse.

Eoh_top_mod_recog e, woifig

-
= o Ty [320]

= Bl P s 1%:0]

Figure 8. Simulation result for modulation identification feature.
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6. CONCLUSIONS

In this work, NMCW, FMCW, NMOP, LFM, NLFM,
SFM and BPM modulations have been identified using the
decision tree algorithm. This decision tree algorithm used with
the moving autocorrelation approach is implemented in FPGA
and identified all mentioned modulated signals at 1 dB SNR.
Hence, a unique time-domain digital technique for modulation
identification has been proposed. The assumptions have been
made that at any given point of time one modulation type is
present in the input signal. The length of the input signal is
assumed constant to generate a particular type of modulated
signal in case of the pulsed signal. The advancement in signal
processing algorithms, tied with high-performance hardware
has enabled to improve the emitter identification and also to
achieve a real-time performance. In the future, modulation
identification work will be extended for additional signals and
a combination of signals.
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ABSTRACT

Space-based electronic intelligence system provides wide coverage and unrestricted access to adversary radar
signals. These systems play a vital role in strategic intelligence gathering for assessing electronic order of battle.
These systems need to be SWaP optimized with highly efficient algorithms to extract accurate radar parameters.
The realization of such a system is a persistent challenge due to the limited availability of space graded components
and associated tools. Towards this, the paper deliberates upon various signal processing algorithms to achieve highly
accurate direction-of-arrival (DOA), high-frequency resolution and precise timing information for pulse width and
pulse repetition frequency extraction. All the proposed algorithms have been implemented, ported and tested on Xilinx
Kintex Ultra Scale FPGA KU060 and being evaluated in the radiation setups to establish the performance. High DOA
accuracy and frequency accuracy of the order of 0.3 degree and 0.64 MHz respectively have been achieved.

Keywords: Interferometry; Electronic intelligence; Direction-of-arrival; Interpolation; Autocorrelation

NOMENCLATURE

0 Incident angle
First-order virtual phase delay
Second-order virtual phase delay
Radio frequency
Antenna separation
Distance between N and L antenna’s
Speed of light
Wavelength
Wavelength of the highest frequency
Virtual antenna separation
Peak frequency bin
Sampling rate
FFT number of points
Interpolated peak location
Magnitude of peak bin
Magnitude of previous peak bin
Magnitude of next peak bin
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1. INTRODUCTION

Surveillance of radar signals is an important operation of
electronic warfare (EW). It is having the significance for tactical
as well as strategic use to form the electronic order of battle
(EOB). In the modern EW scenario, space-based electronic
intelligence (ELINT) systems playing a crucial role in gathering
information of the global radar threat. They are also having the
advantages of very wide coverage and an uninterrupted signal
interception. The prime requirement of spaceborne systems is
a small size, weight and power (SWaP). The digital techniques
meeting the above requirements are preferred in designing
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spaceborne ELINT systems. The performance of these systems
to be comparable with ground-based ELINT systems!'-3.

Basic parameters of radar signals are frequency,
pulsewidth (PW), power, pulse repetition frequency (PRF) and
direction-of-arrival (DOA). To extract the information of radar
signals the system configuration with new signal processing
algorithms has been proposed.

The DOA of a radar signal is an important parameter
because it can’t be camouflaged. This parameter can be
exploited in many ways which include improving situational
awareness, signal sorting or deinterleaving, prompt electronic
attack measures (such as jammers) or electronic protection
measures (such as chaff) and many more. Accurate DOA
measurement is required with available space and resources.
There are many contemporary directions finding methods that
are suitable for implementation in microwave radar intercept
receivers such as rotary direction finding (RDF), amplitude
comparison direction finding (ADF), time difference of arrival
(TDOA), phase difference of arrival (PDOA) and frequency
difference of arrival (FDOA). The PDOA is also known as
interferometry*>.

The baseline interferometry (BLI) approach based on
four antennas is used to get less DOA error®’. But the system
designed using this approach will have more weight because
of the requirement of 4 antennae, 4 channel down-conversion,
analog-to-digital converters (ADC) and processing blocks.
When processing elements are more the power consumption
also will be more. Finally, size also increases based on the
number of antennae and processing elements. Practically,
three different types of antennae are required for coverage
of 0.5 GHz to 18 GHz band which requires 12 antennae for
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azimuth coverage alone. Similarly, 12 more antennas are
required for coverage of elevation. The requirement of
hardware increases as per system design.

A virtual antenna based BLI algorithm using three
antennae and three-channel receiver are proposed for DOA
extraction. The hardware requirement is further optimized with
a common master antenna for azimuth and elevation. Measured
DOA root-mean-square error (RMSE) using virtual 3 antennae
based BLI is more compared to 4 antennae based BLI. This
is compensated by using a noise cancellation technique on
digitized intermediate frequency (IF) data. Smallest virtual
antenna distance also can be increased beyond A /2 due to
less field-of-view (FOV) requirement of space ELINT system
which improves DOA RMSE.

The frequency-domain detection based on FFT itself is
frequently used in digital receivers®. Frequency extraction is
proposed based on the FFT interpolation. Overlapped FFT
is used to get the pulse width and pulse repetition interval
accuracy advantage. But still, it is difficult to get the advantage
equivalent to time-domain processing’. Moving autocorrelation
algorithm is used to extract pulse repetition interval and pulse
width!®. Emitter identification is effective if parameters are
measured accurately!!"2,

2. PROPOSED ALGORITHMS

The space ELINT receiver configuration is shown in
Fig. 1. It uses three-antenna array in virtual BLI formation
followed by three-channel superhet receiver. Three-channel
ADC does the digitization of all three IFs signals which are
down-converted by the superhet receiver. In this, various
algorithms are applied to extract the pulse descriptor word
(PDW) of the signal.

Virtual antenna based BLI algorithm for DOA extraction,
FFT based interpolation algorithm for frequency extraction
and autocorrelation algorithm for amplitude, PW and PRI
extraction are employed. Amplitude is used for pulse detection.
All proposed algorithms are described as follows.

BLI Array a g a
using X
3-Channel | | Virtual BLI | PDW
- - F
3-Antenna Superhet | 3-Channel requepcy Ls| based oA
S . (- ADC Extraction .
Receiver Extraction
Amplitude,
! Pulse
Pi
PW & ARl ] Detection
Extraction

Figure 1. Space ELINT receiver configuration.

2.1 Virtual Antenna based Direction of Arrival

Extraction

One advantage of Interferometry is that very accurate
phase measurements can be obtained with digital hardware at a
moderate sampling rate and so high accuracy DOA estimate can
be obtained with shorter baselines and without the demanding
timing constraints. Modern digital Interferometers achieve
sub-degree accuracies. Interferometry exploits the propagation
phase delay between two spatially alienated antennas to estimate
the DOA of a signal. In recent decades, the advent of high-speed
analog to digital converter (ADC), high-performance field

programmable gate arrays (FPGAs) and digital computing had
led to the development of high fidelity digital receivers. With
modern technologies, the implementation of phase-coherent,
multi-channel digital receivers have become increasingly more
cost-effective. Furthermore, the flexibility of digital computing
has allowed the implementation of higher performance
algorithms compared to traditional analog counterparts. The
interest to use, digital interferometers are increased in recent
years to provide fast and accurate DOA estimate for military
ES and ELINT systems.

The ELINT receivers are intended to provide early
warning to the presence of radars. They are generally positioned
at large distances from the radar. The radar signal arriving at
the ELINT receiver antenna array can, therefore be reasonably
approximated as a uniform plane wave. Here 1, 2, 3 ..., N are
the antennas, O is the intercept angle and d,, are distances
between antennas.

The DOA of'the signal is estimated as below, by estimating
the frequency and phase delay of the signal between the two
antennas outputs.

0 =sin"' (k_\y)
2nd

where wavelength A = ¢/ f . The baseline of the interferometer
is often referred to as antenna separation d. The accuracy of
DOA estimate can be improved by one of the factors such as

*  Increasing the SNR of the signal,

*  Increasing the signal duration (number of samples),

*  Increasing the signal frequency,

*  Operating closer to broadside, and

*  Increasing the antenna separation.

The first three parameters can be changed by the radar
as the parameters of the radar are beyond the control of the
ELINT receiver.

Higher baseline Interferometers are designed to achieve
higher DF Accuracy. The most popular ambiguity resolution
method is based on the Chinese remainder theorem (CRT)
and requires appropriately chosen interferometer baselines'*!4.

For larger aperture, unambiguous DOA estimates can
generally be obtained with fewer intermediate baselines
than the short baseline ambiguity resolution method.
Figure 2(a) describes a simple set of interferometer
baselines comprising 4 antennas whereas Fig. 2(b)
describes an extended set of interferometer baselines
comprising of 4 antennas'. The longest baseline d,,
provides the best DOA estimation.

DOA accuracy is further increased with more number
of baselines i.e. antenna. To process more number of antennas
either parallel processing to be carried out that will increase
the system hardware and system power or more switching to
be done which decreases the probability of intercept (POI)
of the radar signal. The effort has been to achieve higher DF
accuracy using three channels per Antenna system with certain
constraints such as a decrease in FOV and lesser phase margin
than earlier configuration and also use of noise cancellation
before computing the DOA.

The first constraint is possible to resolve by changing
the path of the space vehicle during the predefined mission.

(1
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Figure 2. (a) A simple set of interferometer baselines comprising
of 4 antennas and (b) An extended set of interferometer
baselines comprising of 4 antennas.

Whereas the phase errors are minimized by choosing the good
hardware component which is reliable for a particular phase
margin of the algorithm so that it could not give wrong DOA
estimates.

Based on the above constraint, there is an alternative
interferometric algorithm Virtual Baseline Interferometer
(VBI) which is based on a second-order difference array'®. This
VBI is computationally as fast as a conventional interferometer
and also provides unambiguous DOA estimation using two
long baselines.

Figure 3(a) describes the concept of the Virtual Baseline
Interferometer, where only 3 antennae are required. The
ambiguous first-order phase delays for d, and d,, baselines i.e.
y,, and ., respectively are derived as below using Eqn (1),

2nd,, .

Yy = Tﬂsm 0 (2)
2nd

Vi = %Sin 0 3)

It is assumed that d,>d,, and d, > A ; /2 where A
corresponds to the wavelength of the highest frequency of
interest. The long baselines suggest that the phase delays are
highly ambiguous. The second-order phase delay y;, can be
calculated as the difference between the first-order delays using
Eqns. (2) and (3),

min

2 - 2
Vs =Wap —Yy = n(d”K d“)sinez 7;"[5 sin® @)

where, d;=d,, —d, , this is equivalent to the creation of
antennae virtual pair with a baseline of djas depicted in
Fig. 3(b).

This virtual baseline phase delay can be unambiguous
provided that the baseline is sufficiently short. It means, that
it satisfied the following constraint, 0<dy <A, /2. The
unambiguous estimate of DOA of the signal using the basic
interferometer equation is written as

O=sin" My S
2nd,
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Figure 3. (a) Virtual baseline interferometer comprising of 3
antennas and (b) Physical interpretation of virtual
baseline interferometer.

The RMS error of the virtual baseline interferometer
is expected to be degraded compared to the first-order
interferometer with a physical baseline dy It is attributed to
the fact that three antennae outputs are used to estimate the
phase delay of a virtual two antenna interferometer. The extra
antenna output is expected to introduce more noise to the
phase delay estimation and hence lead to a reduction in DOA
estimation performance. This error can be reduced by using the
longest baseline of the antennas array. The Eqn (5) is limited
to a virtual short baseline of dyand does not take advantage of
the higher accuracy offered by the longer physical first-order
baselines i.e. d,, d,,, or d,. The longest first-order baseline
d,, offers an improvement in the DOA estimation by a factor
as below:

Improvement = /3 *(d,, /d;) (6)

At 6 GHz with d,, = 45 mm, d,, = 52.5 mm and hence
d, = 97.5 mm the DOA RMSE achieved is 13.7981° using
virtual smallest baseline (d;). Whereas, DOA RMSE achieved
is 0.6427° using the longest baseline (d,). The factor of
improvement using the longest baseline is 21.4679. The
theoretical factor of improvement is 22.516 using Eqn. (6).
This shows the factor of improvement is approximately
matching the theoretical value. The range for 6-18 GHz is
0.2102° to 0.6432° using 3 antennas. Hence, this method
provides comparable results with a less number of antennas,
and hence it is an SWaP optimized approach.

2.2 Frequency Extraction

Fast Fourier transform (FFT) is used frequently to
estimate the frequency of the signal. The FFT number of points
is limited due to computational requirements. This restricts
the frequency resolution of the FFT. The number of points is
selected as a trade-off between the collected data for processing
and the frequency resolution or frequency accuracy. The higher
FFT number of points provides fine frequency resolution and
accuracy which is hardware intensive and consumes more
power.

Here Curve Fitting or Interpolation technique has been
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used to achieve better frequency accuracy with less FFT
number of points!’?2. The frequency of each component is
computed from their respective bin number in the spectrum
with a resolution that depends on sample length. If the signal
frequency is not the multiple of frequency resolution i.e.
S . / M , it will not fall on the peak. However, it will distribute
near actual frequency and appear on several bins. In this
case, the magnitudes of close by bins are used to estimate the
actual signal frequency. The curve fitting using interpolation
is used to improve the frequency resolution of the measured
signal frequency component. Figure 4 shows the FFT frequency
response for M points FFT spectrum. The x-axis represents the
frequency bin and magnitude is represented by the y-axis. The
location of the previous peak bin is represented as m —1, peak
bin as m and next peak bin as m+1 of the spectrum. The 4,
A,, A, are the respective magnitudes. The center point at p in
fractional bins gives us an interpolated peak location.

The proposed frequency estimation using the curve fitting
interpolation method calculates the offset p in frequency bin m
using the three maximum amplitude samples for high accuracy
frequency estimation of the signal.

The measured course frequency of the signal using FFT
spectrum analysis is given as

p
— f—

Ag
o~ Fitted Curve

Mag. Ay

“—4& L “r———>
m-1 fm\m—*—l M

Estimated Bin  Peak Bin

Figure 4. FFT frequency response with curve fitting
interpolation.

Course Frequency = m*(S, /M) @)
The frequency bin offset or peak location computed using
interpolation is given in bins by

(A1 - Az)

P -2 v
The estimated frequency bin is measured as
PeakEstimatedBin=m* p )
And estimated frequency is measured as
FrequencyEstimated = (m+ p)*(S, /M) (10)

The sufficient fractional number of bits is to be allocated
for p to get the more advantage of estimation for hardware
implementation. Accordingly, the number of bits allocation for
m is also increased.

2.3 Pulse width and Time of Arrival Extraction

Measurement of time of arrival (TOA) is a critical
parameter of the ELINT system. The accuracy of TOA
determines the accuracy of PW and PRF. In the digital domain
traditionally, FFT based approach is used to measure this
parameter. But the TOA resolution is limited by the FFT
size. The autocorrelation approach is used extensively to
overcome this limitation. This technique requires in-phase
and quadrature-phase data and carries out autocorrelation to
find out TOA. The TOA resolution is improved to the order
of the basic clock. This technique is optimized towards the
least possible resource consumption without compromising
the sensitivity and dynamic range of the ELINT system.
This approach has been proposed for TOA, PW and PRF
measurements'’.

3. SIMULATION RESULT AND DISCUSSIONS

Three antennae based BLI algorithm is implemented
in Matlab. The first ambiguous phase is converted into an
unambiguous phase from the smallest baseline unambiguous
phase. Measured AOA error and RMSE are shown for
+45° FOV between 4 antennae and 3 antennae. These
results are also generated using an experimental set-up
for +25° FOV. The simulation using noise cancellation
technique is given for 3 antennae and comparison is shown
without the noise cancellation technique. These results are
shown below.

3.1 Simulation Result for Direction of Arrival

The performance of the virtual baseline interferometer
algorithm has been simulated for frequency band 6 - 18 GHz.
The spacing between the antennas are d, = 45 mm, d,, = 52.5
mm. Using Eqn. (8) the dy =d;, —d,, =7.5 mm. The distance
d,, and d,, are chosen such that d, < (A . /2). The ambiguous
phase for the d,, baseline and d,, baseline is shown in Fig. 5.
Whereas d;which is derived by virtual baseline interferometer,
estimates the unambiguous phase shown in Fig. 6.

Figure 7 shows the simulation results for error at 6 GHz
between set AOA and measured error and RMSE for 6 GHz to
18 GHz with +45° FOV. It is evident that the simulation result
of 4 antennae is better compared to 3 antennae interferometers.
This is obvious as RMSE measured using the smallest physical
antenna gives an advantage of V3 times RMSE for the smallest
virtual antenna.
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Figure 5. Ambiguous phase for (a) d,, (b) d,, baseline at 1I8GHz
with FOV = +45°,
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Figure 6. Unambiguous Phase for (a) d; (b) d,, (¢) d,, (d) d,,
Baseline at 18 GHz with FOV = £45° using Virtual
Baseline Interferometer.

Figure 8 shows the experimental result generated for
+25° FOV. The phase data is collected in radiation mode.
The transmission set-up was kept at a 20 meter distance at the
same height as the receiver BLI antennae. The experimental
result shows the improvement compared to simulation results
as shown in Fig. 7. This is because, the simulation results
are generated with a maximum allowable phase error. This
performance improvementis attributed to the effects of hardware
perfections for space-qualified components. The experimental
result is generated for £25° FOV which is sufficient for the
ELINT system for space application.

Figure 9, shows the experimental result for 3 antenna
interferometer with £25° FOV. This result is generated without
and with Noise Cancellation technique'®. The system noise
of 200 frames is captured and computed 256 points FFT.
This is carried out when input is connected to BITE port and
BITE is in signal OFF condition. The estimated average of
the noise spectrum is computed for all frames. In system ON
condition when input is connected to antenna port and the
signal spectrum is computed continuously which is noisy. The
estimated noise spectrum is subtracted from the noisy input
signal spectrum and an instantaneous magnitude spectrum is
computed which is called a restored signal. Again restored
time-domain signal is computed by inverse FFT. The SNR
of 4 to 5 dB is improved when the signal is passed through
this. This result shows that 3 antenna interferometer provides
comparable results with 4 antenna interferometer. It shows,
on reducing one antenna alone approximately one-fourth of
hardware is reduced. Usually, to cover a complete 0.5 to 18
GHz band three different types of antennae are required. With
3 antennas approach, a total of 9 antennae covers complete
band instead of 12 antennae. Hence, the further reduction will
be there in processing electronics also.

3.2 Simulation Result for Frequency Extraction

The simulation for frequency estimation is carried out
in MATLAB for 256 points FFT. The sampling frequency
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for bandpass sampling of ADC is chosen as 1.333 GHz. The
performance is validated for various power levels and pulse
widths. The step size of 0.5 MHz is chosen to vary the frequency
of the input signal and frequency measurement RMS error is
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calculated. The input frequency of 1200 MHz and a pulse
width of 200 ns are chosen for MATLAB simulation. The
measured frequency error is 2.3828 MHz using normal FFT
analysis whereas, the measured frequency error is 0.5218
MHz using the frequency estimation algorithm.

Figure 10 shows the MATLAB simulation output of
256 points FFT. The measurement frequency RMS error
is computed in this simulation for the frequency range of
1200 to 1220 MHz. The measured frequency RMS error is
1.4905 MHz and peak frequency error is 2.5313 MHz using
normal FFT analysis. Whereas, the measured frequency
RMS error is 0.6399 MHz and peak frequency error is
0.9179 MHz using the frequency estimation algorithm.

4. FPGA IMPLEMENTATION

Three antennae based baseline interferometry and
frequency estimation approach is implemented in field-
programmable gate array (FPGA) using Xilinx system
generator. The system generator design is given in Fig.
11. FFT of 256 points is computed on all three channels
and phase is computed. The phase difference is computed
using the phase of each channel and DOA is measured. In
one of the channel frequency interpolation is implemented.
The detection is carried out on the instantaneous amplitude
profile which is computed from the same antenna channel.
The PRI and PW are also computed using the instantaneous
amplitude profile.

The design is implemented on the Xilinx Kintex Ultra Scale
FPGA XCKUO060-FFVA1517 which is footprint compatible
with radiation tolerant device XQRKUO060-CNA1509. The
resources are compared with the four antennae based BLI
approach and mentioned in Table 1.

Table 1. Resource comparison (Xilinx FPGA: XCKU060-

FFVA1517)
ll:tl:th 2t;§;0urce baSeﬁl;)t::pnoased ! ?)gtseel:ina S?I:'i‘;)gs
approach approach
Registers 16567 21355 22.4
LUTs 12893 16283 20.81
36 Kb Block RAM 757 1026 26.21
18 Kb Block RAM 1532 2042 25.02
DSP48 Slices 40 50 20.0
Total Power (mW) 16464 21152 22.16

5. CONCLUSIONS

It is evident from proposed approaches that there is an
improvement in resolution and accuracy of measurement
for various parameters direction-of-arrival, frequency etc.
with fewer hardware resources. In case of direction finding,
less number of front ends and antennas combinations can be
realizable in the system that provide RMS DOA error of less
than 0.3 degree with less weight and small size which is the
requirement of space platform. The frequency measurement
accuracies achieved is less than 0.6399 MHz RMS with
this approach against 1.4905 MHz RMS with simple FFT
spectrum analysis using 256 points FFT. The autocorrelation

N 1220 F T . T T T T
% —¥— FFT Based
= 1215 —&— FFT with Est
o
[
F 1210
B 1205
5
% 1200 f
2
1200 1202 1204 1206 1208 1210 1212 1214 1216 1218 1220
Set Frequency (MHz)
(a)
3 T T
~ —¥— FFT Based
= —— FFT with Est
=}
S
L
o'l
= -
[a'd %K/ N o =
0 ' %, ) 1 L . . "
1200 1202 1204 1206 1208 1210 1212 1214 1216 1218 1220

Set Frequency (MHz)

(b)

Figure 10. (a) Set Frequency vs Measured Freq (b) Set Frequency vs
RMS Error for 256 Points FFT.
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with FFT combination approach improves the PW and TOA
measurements that can be measured with high accuracy
with very few resources. It also helps to reduce the power
consumption which is high in today’s system.

Apart from the measurement of the basic parameters, there
is more scope in the future to measure the more complicated
parameters like intra-pulse modulation parameters information
of radar. These measurement techniques will be helpful for
realizing a better ELINT system based on a digital receiver for
space applications.
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ABSTRACT

Radar identification is one of the vital operations in an electronic intelligence system. The conventional methods
based on basic parameters comparison of unique identification of a radar in a cluster of similar radars, is prone to
ambiguities. To meet the current tactical requirements of unique identification of a radar, the methodology needs to
be based on better feature extraction, even in low SNR conditions. The paper explores a novel technique based on
moving autocorrelation for the extraction of intra-pulse and inter-pulse radar parameters. Extensive simulation and
empirical studies have been carried out to establish the approach to extend accurate radar parameters in noisy and
low SNR conditions. The technique is found to be promising even in field data conditions. The paper describes the
methodology, simulation results, FPGA implementation using system generator and resource utilisation summary.

Keywords: ELINT system; Electronic intelligence; Intra-pulse parameters; Autocorrelation

NOMENCLATURE
x(n) Time domain signal
X Restored signal spectrum

m

Noise spectrum
Noisy signal spectrum

m

x(m) Restored time domain signal

mn Index number

k Bin number

0y, Phase of the Frequency Spectrum
F Sampling Frequency

D(n) Phase of the signal

AD(n) Phase difference
F (n) Multilevel Frequency

1. INTRODUCTION

The modern electronic intelligence (ELINT) system
should be capable to identify radar signal emissions uniquely
in a dense environment. The evolving radar technology,
utilising frequency, pulse width (PW) and pulse repetition
interval (PRI) agility requires complex signal processing
techniques to facilitate unique emitter identification. The dense
electromagnetic environment, with complex radar waveforms,
results in pulse on pulse in radar signals being overlapped in
time, frequency and azimuth. It poses serious challenge to
ELINT reconnaissance process.

The efficient emitter identification system is vital which
extracts distinctive and accurate intra-pulse and inter-pulse
parameter to handle the above challenges. The radars of
the same kind exhibit slight differences in their transmitted
pulses'. The identification system needs to classify and identify
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similar radars i.e. radars of the same make and model using
the unintentional intra-pulse parameters in addition to the
intentional parameters. These extracted features constitute the
finger print or signature of the radar. Based on signature of
the radar, the decision making and correct identification of the
radar can be established.

The intra-pulse parameters include frequency, amplitude,
rise time, fall time, type of modulation for each pulse. As part
of intra-pulse analysis, instantaneous variations in frequency,
amplitude, phase and their first and second order statistical
variations are computed®*. Instantaneous frequency is an
important parameter to describe the characteristics which
changes with time. The identification was presented using
various methods™®. Michel & Adams' presented the FPGA
implementation aspects forradar system. Accurate measurement
of parameters ensures the correct radar identification.
Measurements carried out using proposed approach improve
the identification as discussed®”.

The conventional method of handling pulse on pulse
signals is given based on extraction of basic parameters,
viz frequency, PW and direction of arrival (DOA)"-2. This
method is prone to ambiguities and often result in erroneous
identification. To overcome this, the intra-pulse parameters of
the radar also need to be extracted. With the advent of radars
exhibiting agility in frequency, PW and PRI, there is a need to
measure the intra-pulse group parameters. And also with the
rapid deployment of LPI radars''4, it is crucial to handle these
radars and identify them correctly.

A better methodology is based on digital in phase and
quadrature phase (DIQ) for intra-pulse analysis. This technique
performs reasonably well for SNR conditions better than 12
dB as demonstrated'’. Pulse detection approach is discussed
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which needs about 3 dB SNR!®. Digital instantaneous
frequency measurement technique is presented for frequency
measurement'?°. However they measure the frequency with
high accuracy at high SNR. But their performance is not good
at lower SNR.

This paper proposes for unique identification a much
better methodology, in a low SNR condition of order of 0
dB. The signal is preprocessed, prior to the extraction of
parameters. As part of preprocessing, noise cancellation is
employed for signal enhancement to improve the quality of the
signal. Noise cancellation is done by estimating the noise from
electromagnetic environment. The estimated noise magnitude
is subtracted from the magnitude of noisy signal without
affecting the phase to get restored signal?!. Noise cancellation
is applied on both in phase and quadrature phase components
and restored signal is computed for both. Thereafter, moving
autocorrelation with different delays is performed on the
complex signal to further enhance the signal and reduces the
effect of noise. Performing autocorrelation is computationally
intensive. So, an efficient technique for implementation has
been devised. The intra-pulse parameters so extracted are
highly accurate even at low SNR conditions.

The efficacy of the algorithms has been tested with live
radar data. The analysis has been conducted on different radar
modes and different radar signals to verify the robustness of
the features extraction algorithm. In subsequent section, the
instantaneous measurement techniques based on autocorrelation
alongwith noise cancellation and noise estimation, simulation
results and implementation of FPGA hardware is discussed.

2. FINE GRAIN PARAMETER MEASUREMENTS

TECHNIQUES

The accurate intra-pulse information amalgamated with the
inter-pulse information of RF, PRI, PW and scan provides the
comprehensive characterisation of the emitter thereby arriving
at the fine grain parameters of each emitter, which are highly
accurate and grain parameters of each emitter and stable for
identification of the emitter. Intentional parameters are measured
using time domain and frequency domain techniques.

Figure 1 shows the block diagram of Fine Grain Parameter
(FGP) measurement. The algorithms shown are applied on
digitised baseband or IF signal and finally instantaneous
amplitude profile, instantaneous frequency profile and fine grain
parameters are generated using both autocorrelation approach
and DIQ approach. The signal is also pre-processed using noise
cancellation technique before applying these algorithms. Noise
estimation is carried out for finding out the noise riding threshold
which is used for pulse detection and FGP are measured.

2.1 Noise Cancellation
Subtraction of noise from the noisy signal is done to get
a restored signal which reduces the SNR requirement at the

Digitized ln'sAtantl?thDus Detection | Profiles
mplitude
IF Data Noise Noise & & FGP
— . and L —
Cancellation Estimation FGP
Frequency .
Generation
Measurement

Figure 1. Fine grain parameter measurement.

input signal. Noise samples are collected from the system
chain when front end is connected to built-in test equipment
(BITE) port in signal off condition for minimum time of 50 us
for better estimate. Then estimated average of noise spectrum
N, is subtracted from the noisy signal spectrum Y, to get
estimate of the instantaneous magnitude spectrum of restored
signal X .

X,=Y,-N, €]

Restored time-domain signal (X, ) is obtained by
combining an estimate of the instantaneous magnitude
spectrum of restored signal (with phase of the noisy signal),
and transforming via an inverse discrete Fourier transform to
the time domain?®'.

J2mnkm

x(m)=Z(Xkef9Yk Xe ) @

Noise estimate subtraction technique is applied to the
input signal, to produce the output restored signal as shown
in Fig. 2. The 66650 samples are taken for pre-trigger region
which consists mainly noise and 8000 samples are taken
for pulse signal which consists signal as well as noise. The
additive white Gaussian noise (AWGN) is considered. It is
visible in output restored signal that has reduced noise and
thus helps in improving accuracy of further analysis. Restored
signal is applied on both baseband signals of in-phase (I) and
quadrature-phase (Q) components.

2.2 Instantaneous Amplitude and Frequency
Measurement
Autocorrelation is performed on the baseband signal to
reduce the effect of noise'®. Thirty two samples autocorrelation
is performed in a recursive way to reduce the computational
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Figure 2. (a) Input at 1 GHz with 0 dB SNR and (b) Restored
signal.

279



DEF. SCI. J., VOL. 70, NO. 3, MAY 2020

requirement. Thirty two samples autocorrelation is selected
to cater the minimum pulse width requirement of 50 ns when
sampling time is 1.5 ns. Delay m is 1 in case of amplitude
measurement. First element of thirty-two samples auto
correlation is calculated as:

X (1) = mean(x(1:32).x" (1+m:32+m)) 3)

where x" is a conjugate of x . It is implemented in recursively

as below:

X(n+1)=x(n)+| x(n+32).x" (n+32+m) | —| x(n).x (n+m)]|
“4)

where n varies from #n to the size of samples. This equation

is further optimised by replacing first element of thirty-two

samples auto correlation with fixed value:

XMV =a+jb (5)
where a and b are constant values. This does not require the
measurement of initial average of thirty-two samples auto
correlation output. Measurement of frequency parameters
involves calculation of autocorrelation variables with different
delays using baseband signal. Four autocorrelation variables
X1, X2, X4 and X8 with four different delays m =
1, 2, 4 and 8 are calculated from the correlated signal with
different delays. Multilevel phase differences are calculated
from the correlated signals with different delays, which in
turn are used to compute the frequency. Frequency ( F;(n) ) is
measured as:

F(m=F (Mj
271

where F_is sampling frequency and A® (n) is the phase
difference derived from x1. Now F(n) measurement
determines the zone in which phase belongs according to the
following equation.

Z =Celil m
" F

s

(6)

(7

Here unwrapping of phases which is required for complex
signals is not required as different phases are calculated
from auto-correlated variables with different delays and are

2.3 Noise Estimation

Estimation of noise is done for pulse detection which
reduces the computation requirement and storage requirement.
Mean of the modulus of the noise samples are taken and
approximate standard deviation is computed. The absolute of
input signal samples x(n) are taken which makes all negative
samples positive. The shape of probability density function
(PDF) will be same but doubles the peak value.

/N“ (x(n)-x,,,)"
o= - "’
n=0 N

©)
k] N-1
o, =(3]Z£IX('¢)I (10)
k2
62:(?J|x(n)+x(n+l)| (11)

The Eqn. (9) shows standard deviation (o) of signal
x(n) which is obtained by computing mean of noise. Absolute
value of signal x(n) is computed and multiplied with constant
(kl / 2) and result (o,) is derived as Eqn. (10) which is
approximately equivalent to standard deviation of signal x(n)
. Similarly, based on two point averaging also approximate
standard deviation (o,) is calculated using Eqn. (11).
Constants k, and &, are decided based on minimum error. The
random noise is computed and results are tabulated using both
the approaches as shown in Table 1. Error is also computed
with standard deviation. The error ( £1) computed is less than
10% using first approach whereas error ( £2) is less than 20
% using second approach. Usually, two level threshold is used
which will have difference of 6 dB. Hence the first approach is
appropriate as error computed is less and it is efficient also in
hardware implementation.

2.4 DIQ Technique

Equations given below describes the DIQ approach for
calculating instantaneous phase, frequency, and amplitude.
The detection is carried out on this amplitude profile R(n) and
pulse is detected.

mapped to appropriate zones which are obtained with the (D(n):tan_l q(n) (12)
help of frequency F, ,(n)'7'®. Likewise F,(n) serves as a i(n)
guide for @, by determining the zone it should be merged to.
Similarly, F, (”) determines the zone for ®;. The Table 1. Comparison of noise estimation approach
final .frequency parameter Fg(n) is based on the . Standard _ Approach-1 Approach-2
mapping of O, . Iteration deviation Error-1 Error-2
No. " @) E1=aB @) E2-A-C
F,
F,(n)= (2nm)(A(D’” (n)+2nZ,) ®) 1 5.825 5.296 0.529 5.593 0.232
2 5.784 5.343 0.441 5.339 0.445
Us'ing .the improved instgntanequs frequency, 3 4.852 5305 20.453 5756 20.904
the various intra-pulse modulatlons. Bl-pha'se, quad- 4 5567 5981 0286 5838 0271
Phase and poly-phase mgnals are also classified. The 5 4787 5956 -0.460 5508 0811
instantaneous frequency is median filtered to suppress
. . . 6 5.063 5.323 -0.26 6.008 -0.945
impulses caused due to the noise, but to retain the
main trend. The standard deviation of the median 7 3.629 3.324 0.305 3663 -0.034
filtered instantaneous frequency profile is utilised to 8 5.276 5.196 0.08 5.576 -0.3
differentiate conventional bi-phase and quad-phase 9 5.091 5.195 -0.104 6.023 -0.932
signals from poly-phase signals. 10 4.466 4.789 -0.323 5.213 -0.747
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NORESID) 13

R(n) =\i*(n)+q"(n) (14)

There is a requirement of above 8 dB SNR using
DIQ technique for instantaneous amplitude and frequency
measurement of pulse.

A novel technique based on optimised autocorrelation
and noise estimation has been developed to calculate accurate
intra-pulse parameters and to overcome the effect of noise at
low SNR conditions. It can be utilised for feature extraction
and identification of LPI signals also. Using this technique the
instantaneous amplitude and frequency parameters of a pulse
can be measured with 0 dB.

3. SIMULATION RESULTS

The input signal generated at 0 dB and 9 dB SNR is plotted
in Fig. 3. The same signal is used in simulation for generating
autocorrelation and DIQ technique outputs.

The envelope or instantaneous amplitude is computed
using correlated signal x(n) at SNR conditions of 0 dB and
9 dB which is plotted in Fig. 4. First the input signal is improved
using noise cancellation technique. The envelope computed
using DIQ technique is plotted in Fig. 5 at SNR conditions
of 0 dB and 9 dB. It is observed from Figures, that there is
a improvement of 9 dB to 10 dB in the correlated signal as
compared to the DIQ technique.

Figure 6 shows the instantaneous frequency output
calculated from multilevel correlation coefficients and Fig. 7
shows the instantaneous frequency output as computed from
the conventional DIQ technique using the same input pulse

20 T T T T T . T T T

Amplitude (mV)
. - 2

—
]
e

bS]
o

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (ns)

(=]

Amplitude (mV)

40 : : : : : : : : :
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (ns)
(b)

Figure 3. Input signal at (a) 0 dB and (b) 9 dB SNR.

signals at 0 dB SNR and 9 dB SNR. Frequency measurement
accuracy of 500 kHz at 0 dB SNR has been achieved using the
multilevel correlation technique as we see in Fig. 6.
Improvement in frequency measurement accuracy with
reduction in SNR requirement at the input is achieved in
comparison with DIQ technique as observed through Fig. 7.
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Figure 4. Amplitude profile using autocorrelation approach at
0 dB and 9 dB SNR.
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Figure 5. Amplitude Profile using DIQ approach at (a) 0 dB
and (b) 9 dB SNR.
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Figure 7. Frequency profile using DIQ approach at (a) 0 dB
and (b) 9 dB SNR.

Figure 8 depicts the frequency accuracy with respect to
SNR using both the techniques. This shows that autocorrelation
technique is able to process the signal at 0 dB SNR, whereas
DIQ technique fails. The DIQ technique requires the SNR
more than of 9 dB.

The field data is also introduced to check the efficacy
of the proposed algorithms. The same data is used for
DIQ approach and results are provided as shown in Fig.
9. It is clearly evident from instantaneous amplitude and

282

SNR vs Frequency Accuracy

1400

—&— DIQ Approach | |
—#— Autocorrelation

1200

1000
800
600
400

200

Frequency Accuracy (KHz)

SNR (dB)

Figure 8. SNR vs frequency accuracy plot.

instantaneous frequency profiles generated using proposed
approach having better results compared with DIQ approach.

4. IMPLEMENTATION ON FPGA HARDWARE

AND SIMULATION RESULTS

Conventional and Proposed approaches are implemented
using System generator, Matlab and Xilinx Vivado 2016.4 tools.
The system generator models are generated as shown in Fig. 10.
The design is implemented on Xilinx Virtex-7 XC7VX415T
FPGA device. The synthesis for netlist generation, mapping,
place and route is carried out. The comparison of FPGA
resource utilisation summary is shown in Table 2. The overall
requirements of resources are reduced in proposed approach.
Total eight DSP48E1 component are required as proposed
approach is having only two complex multiplications. Whereas
DIQ approach requires more multiplications as it require low
pass filters.
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Figure 9. Field data result using Autocorrelation and DIQ
approach.
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Figure 10. System generator model.

Simulation result using proposed approach is shown in
Fig. 11 at 0 dB SNR. Only pulse on time along with pre and post
region is shown to facilitate the simulation for multiple pulses.
Amp_Out shows the instantaneous amplitude profile which is
clearly visible and Freq Out is the instantaneous frequency
profile.

Table 2. FPGA resource utilisation summary (Device:
XC7VX415T)

FPGA resource utilisation Proposed DIQ
with max operating Freq.

Savings
approach approach in %

Maximum clock frequency 238.1 231.8 2.72
(MHz)

Slice F/Fs 2003 4052 50.52
LUT (4 Inputs) 2546 3799 32.98
DSP48E1 8 38 78.94
Total power (mW) 472 708 33.33

5. CONCLUSIONS

The proposed technique based on moving autocorrelation
and noise estimation has significantly improved the
measurement accuracy of intra-pulse parameters of
instantaneous amplitude and instantaneous frequency at low
SNR conditions. The scheme along with finger printing system
has lead to a very efficient and accurate emitter identification
system. The advancement in signal processing algorithms,

# Waveform 20164 - o 2
e

& Design_200919_rkn.wcfg® X ? 02 X

Figure 11. Simulation result at 1100 MHz.

coupled with high performance FPGA has enabled to improve
the unique emitter identification and also achieves a real
time performance. It is planned for real time modulation
classification based on instantaneous frequency profile
in future.
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Abstract :- In the modern battle field, due to proliferation of
the similar radars growing demand for specific emitter
identification. To identify these radars uniquely in real-time
is a challenge to understand the deployment pattern. Present
ELINT systems are required to decipher the exotic
modulations on a pulse to pulse basis to achieve specific
emitter identification of military radars. In this paper,
instantaneous frequency profile is used to measure the exotic
modulation and their parameter which includes linear
frequency modulation (LFM) with bi-phase modulation
(BPM) and stepped frequency modulation (SFM) with BPM
along with other modulations. These modulation
measurements contribute in de-interleaving of signals. The
proposed algorithm is simulated in Matlab and results are
verified with different signal-to-noise ratios. This algorithm
is also implemented on FPGA to demonstrate real-time
performance.

Keywords - Intra-pulse analysis, de-interleaving, bi-phase
modulation, linear frequency modulation, stepped frequency
modulation.

1. INTRODUCTION

Various fire control and weapon locating radars operate
nearby which makes the electronic environment very
dense, especially in L and S bands. Measuring
conventional parameters are not sufficient to distinguish
them. Intra-pulse measurement with exotic modulation
measurement is the requirement in the present scenario
[1]. Electronic intelligence (ELINT) systems that are
capable to measure this information will have an edge in
the field.

ELINT systems estimated many parameters which
together are called pulse descriptor word (PDW) includes
direction-of-arrival (DOA), radio-frequency (RF), pulse-
width (PW), time-of-arrival (TOA), etc. [2]. These
systems do the intra-pulse analysis including modulation
measurement of radar signals on a pulse-by-pulse basis
using stored data to match the speed of processing
hardware. Measurement of exotic modulation in real-time
is a challenge along with other parameter measurements.

The fast Fourier transform (FFT) technique is extensively
used to detect the radar signals, measures the PDW.
Although, these techniques provide a processing gain
advantage but PW and PRI measurement suffers from

inaccuracies of an order of one FFT frame length. One
frame of accuracy is not sufficient to measure these
parameters. To improve these parameters accuracies
overlap FFT is one of elucidation. Still, the sample-by-
sample accuracy is a difficult task using this technique
due to their high resources requirement in field-
programmable gate array (FPGA) platform [3], [4].
Hence, exotic modulation measurement in real-time is
also not possible. Whereas, time domain techniques have
limited use due to their limited sensitivity compared to
frequency domain techniques [5].

In this paper time-domain based autocorrelation algorithm
is performed. The sensitivity is improved by using noise
cancellation along with this technique [6]. This provides
the enhancement of gain which is comparable to the
frequency domain technique. These techniques are
capable of instantaneous measurements of frequency and
amplitude which are used for measurements. These
instantaneous measurements help to measure exotic
modulations using proposed identification algorithms [7].

The de-interleaving based on the basic parameters (DOA,
RF, PW, and PRI) is not very effective due to the dense
environment where similar radars are operating in
environment [8]-[11]. The exotic modulations and their
parameters will be the supportive parameters for de-
interleaving in this case and similar radars can be
segregated effectively.

The proposed algorithm has been tested with different
signal-to-noise ratio (SNR) conditions. In section-2,
modelling of exotic signals is given. Proposed algorithms
are specified in section-3. In section-4 simulation results,
FPGA results, and discussions are presented

II. MODELLING OF EXOTIC SIGNALS

The signals with Linear Frequency Modulation (LFM),
Stepped Frequency Modulation (SFM), and Bi-Phase
Modulation (BPM) are modeled as below:

(i) Linear Frequency Modulation (LFM): LFM ascending
(LFMa) and LFM descending (LFMd) chirp signals are
considered as LFM signals or Triangular FM.

(a) LFMa signal generation is expressed as below [12]



x(n) = A.exp[j(2rfnts + ¢ + ma n®t?)] (1)

for n = (-N/2), (-N/2)+1, ...., -1. Where ¢ is the initial
phase and o is the LFMa slope.

(b) LFMd signal generation is expressed as below [12]
x(n) = A.exp[j(2rfnt? + ¢ — nfn*t?)] )
forn=0, 1, 2,...., (N/2)-1. Where B is the LFMd slope.

(i) Stepped Frequency Modulation (SFM): SFM is
expressed as below

x(n) = A.exp[j(2nfpnts + ¢)] A3)

forn=1,2,3,...,N.

where, fj, is the frequency of ht step, and h=1, 2, 3,....,
H is the number of steps. Usually, H is in the sequence of
2, 4, 8.... etc. SFM ascending and SFM descending
signals are represented as SFMa and SFMd respectively.

(iii) Bi-Phase Modulation (BPM): BPM signal is modeled
as given by [12],

x(n) = A.exp[j@2nfnt; + ¢ + (n))] 4

where, 0(n) = m(1-n) when the zero bits of the code
sequences are sampled and 0(n) = 8, when one bit of the
code sequence are sampled. The phase shift 6 can be 0° or
180° in the case of bi-phase modulation.

The exotic modulated signals are modeled as below with
the combination of above signals:

(i) LFMa with BPM: LFM ascending with BPM exotic
signal is generated below:

x(n) = A.exp[j(2rfnts + ¢ + man’t? + 6(n))] (5)

(il) LFMd with BPM: LFM descending with BPM exotic
signal is generated below:

x(n) = A.exp[j(2nfnts + ¢ — nf n’t* + 6(n))] (6)

(iii)) SFM with BPM: SFM with BPM exotic signal is
generated below:

Error! Bookmark not defined. & x(n) =
A.explj@ufynts +d +60(m))]  (7)

III.PROPOSED IDENTIFICATION ALGORITHM

The block diagram of the proposed ELINT system is
given as Fig. 1. RF signals are down-converted to an
intermediate frequency (IF) which is sampled by high-
speed analog-to-digital converter (ADC). IF signal is the
matched output to the range of ADC. This will give a
dynamic range advantage. Noise cancellation technique is

employed to improve the SNR of the signal by subtracting
estimating averaged noise from the signal.

RF IF Signal  IF Samples Improved IF PDW Track
. i i Data
Signals Down High Noise Instantaneous Emm. |
| Converter = Speed | Cancellation = Parameter [ Modulation —>
ADC Estimation Identification

Fig. 1. Block Diagram of ELINT System.

This enhanced signal is used to estimate the instantaneous
amplitude and instantaneous frequency. Instantaneous
amplitude profile is generated based on the time-domain
processing algorithm known as moving autocorrelation
technique. This profile is generated on a sample-by-sample
basis which is used for detection of the pulse and
measurement of parameters. These parameters form the
PDW words. Instantaneous frequency profile is also
generated on the sample-by-sample basis using time-
domain processing known as multilevel autocorrelation
technique. Modulation on the pulse is computed using an
instantaneous frequency profile. When the pulse is
detected, the frequency is noted at various points and these
points are used for identification of modulation [7].

The representation of flow diagram of proposed exotic
modulation identification algorithm is given in Fig. 2. The
proposed algorithm identifies the exotic modulation type
(LFM with BPM and SFM with BPM) and their
modulation parameters. Whereas the identification of
other modulations are attempted using decision-tree
algorithm [13].

Exotic Modulation

/\

w Pulsed
NoMod CW  FreqMod CW  Freq Mod No Freq M/w\
LEM Non-linerar sem e Mod Bi-phase
LFM
LFMda
LFMa LFMad LFMd SFMa SFMd

LFMa with BPM LFMd with BPM  SFMa with BPM SFMd with BPM

Fig. 2. Representation of Flow of Proposed Exotic
Modulation Identification.

When a pulsed signal is detected and frequency
modulation exists. If frequency is linear with an ascending
trend and there is an abrupt change in frequency, the
modulation will be declared as LFMa with BPM.
Otherwise it will be declared as LFMa itself. Similarly, if
frequency is linear with a descending trend and there is an
abrupt change in frequency, the modulation will be
declared as LFMd with BPM. Otherwise, it will be
declared as LFMd alone.

If there is stepped frequency in pulsed waveform exists. If
frequency is stepped with an ascending trend and there is



an abrupt change in frequency within each step. It will be
declared as SFMa with BPM. Steps with ascending trend
and without abrupt change in frequency will be declared as
SFMa. If it is found that frequency is stepped with the
descending trend and there is an abrupt change in
frequency within each step. It will be declared as SFMd
with BPM. Steps with the descending trend and without an
abrupt change in the frequency will be declared as SFMd.

Conventionally, de-interleaving is performed based on the
DOA, RF, and PW. On arrival of first PDW, first bucket is
created with PDW parameter (DOA, RF, and PW). If the
next PDW parameter (DOA, RF, and PW) falls within
tolerance limit, they will be stored in the same bucket. If
all three parameter (i.e. DOA, RF and PW) are not falling
within the tolerance limit, another bucket will be created.
Pulse repetition interval (PRI) is the derived parameter
which is computed from time-of-arrival (TOA) of each
successive pulse. This is estimated after all the buckets are
created for a time slice.

Emitter (
location

Distance
DOA

Error

Fig. 3. Plot of Emitter Location Ambiguity versus
Distance.

Considering, the DOA error value of approximately 2
degree in L and S bands. The tolerance of DOA will be + 3
times of RMS value. The total error will be 12 degree.
This total DOA error will translate into 21 Km error in
azimuth from 100 Km distance. It means target available
at 21 Km apart, will be considered for same basket. Fig. 3
shows the plot of emitter location ambiguity in azimuth
versus distance. Similarly, the RF of 500 KHz and PW of
20 ns RMS value will translate into 3 MHz and 120 ns
tolerance window respectively.

The other parameters are the modulation type and
modulation parameter, which is used here for de-
interleaving. This helps to improve the de-interleaving and
reduces the affect of DOA inaccuracies. If signals are
coming from identical DOA within tolerance, having the
modulation parameter for de-interleaving is precious. Fig.
4 shows the representation of de-interleaving process.

PDW PDW for 10 ms
Digitized
IFs Data ADCs and K—=1 Processor Tracks
———y FPGAfor | Shared With
Finc PDW Memory [—| RAM [——
Measurement

Fig. 4. Representation of De-interleaving Process.

IV.SIMULATION RESULTS AND DISCUSSIONS

The instantaneous amplitude profile is generated for LFMa
with BPM signal and shown as Fig. 5. These types of
exotic modulated signals are found in ground based long
range surveillance radars. The modulation information
can’t be measured using amplitude profile which is evident
from Fig. 5.
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Fig. 5. Amplitude Profile of LFMa with 13-bit BPM.

The input signals are generated for various exotic
modulated signals and their frequency profiles are
generated. Frequency profile of LFM ascending with
BPM, LFM descending with BPM, SFM ascending with
BPM and SFM descending with BPM are shown as Fig. 6.

(a) LFMa with BPM (b) LFMd with BPM

Frequency (MHz)
2

0 500 1000 1500 2000 2500 3000 3500 4000 [ 500 1000 1500 2000 2500 3000 3500 4000
ime (ns) Time (ns)

(c) SFMa with BPM (d) SFMd with BPM

. A

1
100 '
900}

2
-

Frequency (MHz)
g

Frequency (MHz)

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
ime (ns) Time (ns)

Fig. 6. Frequency Profiles of Exotic Modulated Signals

The exotic modulations were generated with different
SNR and modulation measurement was carried out. The
Success rate of the modulation recognition algorithm is
shown in Table I. Total different 500 samples of data
generated and results were captured.



TABLE I. Success Rate of Modulation Recognition Algorithm

Modulation Success Rate (%) # SNR (dB)

Recognition 3 2 1 0 1123
LFMa with BPM | 99.2 ?08 ?27 ?45 ?63 .940 20.
LFMd with BPM | 99.4 ?08 ?47 ?45 ?43 ?60 io.
SFMa with BPM | 99.0 ?48 ?07 ?25 ?43 ?89 29.
SFMd with BPM | 99.2 ?68 ?07 ?45 ?63 ?01 19.

The proposed algorithm is implemented on Xilinx RFSoC
evaluation board and modulation and their parameters are
measured. The resource utilization summary is shown in
Table II. The utilization was compared for proposed
algorithms with autocorrelation technique and digital in-
phase and quadrature-phase (DIQ) technique [5], [7].

TABLE II. Resource Utilization Summary (Device ZCU111)

FPGA Proposed Technique Saving
Resource with with in %

Autocorrelation DIQ

Technique

Slice F/Fs 2434 4910 50.43
LUT
(4 Tnputs) 2963 4328 31.54
DSP48E1 22 52 57.69
Block RAM 300 300 -

IV.CONCLUSIONS

The proposed algorithm of modulation identification is
based on time-domain technique which identifies the
exotic modulated signals i.e. LFMa, LFMd, SFMa, and
SFMd with BPM. This technique is also implementable on
FPGA as this technique consumes limited hardware
resources. Such an idea to utilize modulation information
will become a crucial parameter for PDW for better de-
interleaving of specific emitter identification having a
group of similar radars operating in the proximity.
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Abstract - Electronic Intelligence (ELINT) system provides
significant advantages with enhanced range, high coverage,
and portability. It has various challenges and is highly
demanding. These systems should have a highly sensitive
receiver with a capability to intercept, characterize and
distinctly identify ground-based, shipborne, and airborne
radars to meet the platform requirement. This paper
describes an approach with low computations for real-time
radar signal detection and pulse parameter estimation
based on autocorrelation. The detailed feature extraction is
carried out on the detected pulse data, leading to distinct
identification of radar referred to as specific emitter
identification.

Keywords - Detection, parameter estimation, autocorrelation,
sensitivity, pulse repetition interval, signal-to-noise ratio.

1. INTRODUCTION

The ELINT systems do the information gathering of signals
emitted from radars. Modern radar systems transmit complex
waveforms with low power [1]. Signal detection is an essential
requirement of these systems at low signal-to-noise ratio
(SNR).

One of the important operations in electronic warfare (EW) is
radar emitter identification. It is having significance for
strategic use. To distinguish the emitters from the same class or
same type in an increasingly dense environment is a
challenging task for the ELINT receiver. Conventional radar
identification is based on the basic pulse parameters angle-of-
arrival (AOA), radio frequency (RF), pulse repetition interval
(PRI), pulse width (PW) are unable to characterize the nature
of the emitter radar effectively. The extraction of radar signal
fine features becomes an important task for the ELINT
receiver. The extraction of fine features includes intentional
and unintentional, followed by classification and identification
is referred to as specific emitter identification [2]. The concept
of specific emitter identification has evolved over the years and
is an important aspect of ELINT and ES systems. It is a
primary supplier of information to the pre-programmed
libraries meant for countermeasures. The pace of technological
advancement in the field of radars has been rapid. The
challenge is to act against new, unknown, and adaptive radar
threats. A high performance computing platform is needed to
realize ELINT receiver coupled with signal processing
capability.

Many digital receiver configurations are used as part of ELINT
systems. The requirement of hardware resources is varied
based on their architecture and processing technique [3]-[5].

To realize such an ELINT receiver requires a lot of resources,
solid-state memories. The signal processing approach is
applied to the signal detection itself. It has become possible due
to an availability of high speed, high density, signal processing
intensive Field Programmable Gate Array (FPGA). Still due to
the usage of low computational approaches requires fewer
resources and minimizes the power requirement.

This paper describes the various signal processing detection
approaches for radar signal detection. The techniques are
compared in terms of computations, resources, and speed. The
optimum technique is elaborated along with its hardware
implementation using FPGA. The performance benchmarks in
terms of achieved PW, TOA accuracy, and SNR are also
described.

II. VARIOUS TECHNIQUES FOR PARAMETER ESTIMATION

It is very important to detect the radar signals in real-time and
get accurate TOA and PW estimation in the field of electronic
reconnaissance. The accurate TOA and PW estimation are pre-
requisites for measuring amplitude, frequency, phase, and other
parameters using signal processing techniques. The accuracies
of these parameters will directly affect the performance and
efficiency in exploring the EM environment.

Initially, the radar pulse has to be detected correctly to estimate
the pulse parameters. The radar pulse has to be digitized and to
be captured for detection. These are different ways by which
pulse can be detected and parameters are estimated either in
time-domain or the frequency domain.

(a) Internal Trigger

The intermediate frequency (IF) signal is the down-converted
radio frequency (RF) signal. The trigger is called internal as it
is generated based on the IF signal itself. The IF signal is
digitized by high-speed analog to digital (ADC) converter. The
internal trigger is high for the pulse on time. The trigger pulse
is used to detect the pulse and IF samples during the pulse on
time along with TOA are stored for further measurements.



(b) External Trigger

The external trigger is generated based on log video. The log
video is the logarithmic scale detector output of the IF signal. It
indicates the envelope of the IF signal [6]. It covers the
complete dynamic range of the IF signal. The trigger signal of
a fixed level is generated if it crosses the threshold.

In the above techniques, no signal processing is involved and
hence no processing gain is achieved. These techniques do not
require any kind of processing. The techniques below are
based on signal processing and processing gain is achieved.

(c) Digital IQ technique

The following equations are described the standard digital 1Q
techniques for calculating instantaneous amplitude profile
which is synthetic amplitude profile. This amplitude profile
describes the envelope of the IF signal.

R(m) = [x2(n) +x42(n) )

The trigger signal is generated based on the amplitude profile.
But, it requires a signal-to-noise ratio (SNR) of more than 12
dB.

(d) FFT Based

The 256 points FFT is computed continuously on the digitized
IF signal. The FFT output is compared with the threshold and
a trigger signal is generated. The trigger signal represents the
pulse envelope of the IF signal. The output of FFT is
generated with a 3 dB loss if at least half of the frame (i.e. 128
samples) is full. The maximum delay of trigger signal to pulse
IF samples will be two frames and each frame is with 256
samples. So, the total of two frames of pulse IF samples is
stored in FIFO to avoid the loosing of pulse IF data [7]. The
FFT based detection gives the processing advantage compared
to other techniques. But this technique requires more hardware
resources compared to any other techniques.

I11. PROPOSED AUTOCORRELATION BASED PULSE
PARAMETER ESTIMATION

The proposed approach is computationally efficient and
occupies fewer FPGA resources. It also provides a detection
advantage. It is performed on the signal x(n).

The received signal is expressed in complex form as
x(n) = Ael?™Mtsel? + wi(n) )

Where Ae/?™'s is the received signal, A is the signal
amplitude, @ is the initial phase, t is the sampling interval, f
is the carrier frequency. w(n) is the sampled zero-mean,
Gaussian additive white noise.

The autocorrelation result is computed based on the absolute
value of the pulse and according to the features of a digital
wideband pulse. The autocorrelation function is given by [8],

Sp(m) = YHx(n + )| [x*(n + i+ 1)|
_yN| Ao tsg 4
Aejaejzn'f(n+i)ts W*(Tl +i+ 1) +
Ae I8¢ —izn(n+i+1ts wn+1) + wn + l)| 3)

S,(n) can be updated by iterated means and can be easily
implemented on hardware by using,

Ssm+ 1) =S, (mW)+x(n+ N)x*(n+ N+ 1)| —
lx(m)x*(n + 1)| “4)

Digitized Store

IF Data Data
. | Add & . Parameter
Register Correlate Accumulator Comparator Estimation >
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Fig. 1. Block Diagram of Autocorrelation based Parameter Estimation.

Initial autocorrelation will be performed with length N
samples. Then subsequently new autocorrelation output will
be obtained by subtracting the first sample autocorrelation
output and adding new sample autocorrelation to the
correlation value. N samples autocorrelation is performed in a
recursive way to reduce the computational burden. The block
diagram of autocorrelation based parameter estimation is
shown in Fig. 1.

Autocorrelation output will be compared with a threshold to
check for start of the pulse. If the start of a pulse is detected,
then IF data will be stored and the time of arrival will be
stored. N should be selected in such a way that it should detect
minimum pulse width. As N increases noise reduction is
improved. So a selection of N is a trade-off between minimum
pulse width and noise suppression. Value of N, more than 16
is optimum. The following equation is rewritten and simplified
as below,

x(n) = x; (n) + jxg (n) (5)
Sy(m) = IN_o[x:(n) + jxam)][xi(n + 1) + jx,(n + 1)] (6)

Sy +1) =Sy() + [x;(n+ N — 1) + jx,(n+ N — 1)]
[xl-(n + N) +jx,(n+ N)] -
[xl-(n) +jxq(n)][xi(n +1) + jx,(n + 1)] 7

Yy(@) = [xi(n+ N — 1) + jxg(n + N — 1)]

[xl-(n +N) + jx,(n + N)] ()
Yi(n) = [xl- () + jx,q (n)][xi m+ 1)+ jxg(n+ 1)] ©)
Sy(n+ 1) = SHOHNOT) (10)

N
Sy (n) is computed for every new sample. Here only four real

multiplications are required for every new sample.

Sy +1) = k+ 0 5w (11)



Proposed Approach vs FFT for detection

In present days, FFT is frequently used for pulse detection. N
point FFT requires (N)log>(N) complex multiplications. Total
2K complex multiplications are required for 256 points FFT.
Whereas, the proposed approach requires 512 multiplications
for 256 samples are averaged. Minimum Overlapping of 75%
is used to improve TOA accuracy but in that case total a 8K
multiplications are required. The multiplications are
performed in DSP48 slice of FPGA. Therefore, FFT requires a
huge number of DSP48 slice operations whereas the proposed
technique requires only 12 DSP slices operations for 1 sample.
The TOA error in case of 75% overlapping also will be of the
order of 64 samples whereas, 4 samples TOA accuracy is
achieved with the proposed approach.

Implementation Architecture

Autocorrelation is performed on the IF signal. The IF signal is
then converted to in-phase (I) and quadrature-phase (Q)
samples. The complex multiplication is performed to compute
the autocorrelation. After complex multiplication is performed
all real and imaginary values are added separately as shown in
Fig. 2.
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Fig. 2. Complex Multiplication of 8 samples in single block

Complex multiplication is computed based on “(6)”. The final
correlation value is compared with the defined threshold and a
trigger is generated when it crosses the given threshold value.

Resource Utilisation and Performance Comparison

The autocorrelation based pulse detection is implemented on
the Xilinx Virtex-7 XC7VX415T FPGA using Vivado 2018.3
tool. The summary of resource utilization is shown in Table I
and the performance comparison is shown in Table II. Table II
shows the proposed approach is appropriate compared to other
approaches.

TABLE 1. RESOURCE UTILIZATION SUMMARY

Resources FFT 1Q Proposed

Approach | Approach | Approach
Slice F/Fs 4836 3965 1492
LUT (4 Input) 3526 2380 1022
DSP48E1 42 38 12
Total Power (mW) 812 708 528

TABLE II. PERFORMANCE COMPARISON
FFT 1Q Proposed
Resources Approach Approach Approach

Algorithm
Complexity More More Less
Hardware More More Less
Requirement
Processing SNR
Requirement at | 8 dB 12 dB 4 dB
Sensitivity
Dynamic Range | 1, 4p 39dB 47 dB
Achieved
TOA Accuracy | 64 samples 10 samples | 4 samples
PW Accuracy 64 samples 8 samples | 8 samples
Ability to
measure No Yes Yes
Rise/Fall Time
Ability for
Intra -pulse
Modulations No Yes Yes
measurement

IV. SIMULATION RESULTS AND DISCUSSIONS

The simulation is carried out using Xilinx Simulator tool for
various pulse widths. It is varied from very narrow PW of 50
ns to 1ms and trigger pulse is generated i.e. pulse is detected
correctly. Fig. 3 to Fig. 5 depicts the trigger pulse generation
for pulse widths 50 ns, 200 ns and 1 us. Simulation is shown
for two pulses only due to visibility. Three sequential
autocorrelations are performed to meet the input sample data
rate and accordingly, three triggers are generated. Finally,
based on the three triggers single trigger is generated.
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Fig. 5. Trigger generation (Pulse detection) for PW of 1 us
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V. CONCLUSIONS

This paper describes the algorithm for signal detection based
on autocorrelation which is more resistant to noise and
computationally less intensive. The proposed technique has
been implemented on the Xilinx Virtex-7 XC7VX415T FPGA
which has DSP slices to carry out signal processing
functionality. The efficacy of the technique has been tested for
various Pulse Widths, under varying SNR conditions and
modulated pulses. It has also been tested with real radar signals
and results were positive with correct pulse detection and
without false detection and missed detection.
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Abstract - Fast Fourier Transform (FFT) is widely used in
Electronic Intelligence (ELINT) systems for detection as well as
for frequency measurement. Measurement of the frequency with
high accuracy is a challenge within the trade-off of hardware
resources, and without affecting other parameter measurements.
In this paper, interpolation techniques are used at the output of N-
point FFT, and frequency is estimated. These techniques are
implemented in Matlab and results are verified for the band of
input frequencies.

Keywords - Detection, FFT, Estimated frequency, Windowing,
Interpolation, Curve fitting.

1. INTRODUCTION

Electronic Support (ES) and Electronic Intelligence (ELINT)
are part of Electronic Warfare (EW) systems. These systems
are used to detect, acquire, measure, and store the radar signal
information for intention of tactical as well as to form the
electronic order of battle (EOB). ES systems are required to be
wideband to detect signals from the entire frequency band
simultaneously. Whereas, ELINT systems are meant for high
sensitivity to detect signals from a large distance. Electronic
Attack (EA) systems are used to protect our resources by
jamming action. Electronic Protection (EP) is the capability
built into radar itself to protect radar systems against enemy
jamming. EP and EA are also part of EW systems [1].

Various parameters are measured by ES and ELINT systems.
These parameters form pulse descriptor word (PDW) which
includes direction of arrival (DOA), radio frequency (RF),
pulse width (PW) and pulse repetition interval (PRI), type of
PRI, etc [2]. These systems measure the low probability radar
(LPI) signals [3]. The LPI signals contain low power and
modulations within the pulse. It becomes difficult to detect
these signals due to these characteristics.

Time-domain techniques have restricted use due to their less
sensitivity compared to frequency domain techniques. The
sensitivity is further improved if the noise-cancellation
technique is used along with time-domain techniques [4].
These techniques are capable of instantaneous measurements
of frequency and amplitude which are suitable for intra-pulse

measurements [5-8]. But frequency domain techniques are
commonly used to get their inherent processing gain.

Digital receivers are configured based on Fast Fourier
Transform (FFT) which is generally used in ELINT systems.
Intermediate frequency (IF) signal coming from the front-end
of systems is digitized using a high-speed analog-to-digital
converter (ADC). IF signal is the down-converted output of the
RF signal. FFT is used to detect the activity and measure the
parameters. This provides the frequency resolution of f/N
MHz, where f; is the sampling frequency. Interpolation is
required to perform to enhance the frequency accuracy.

Frequency accuracy can be improved by increasing the FFT
number of points. But more FFT number of points requires
more multiplications and results in various processing
complexities. To avoid this, interpolation is the correct choice
to improve the frequency accuracy. This provides the
advantage for detecting the radar pulses also.

Four different interpolation techniques have been tested with
the same input band of signal frequency to check the
performance of each technique. In section-2, the interpolation
techniques are discussed. The Matlab simulation results are
given in section-3.

IL FREQUENCY ESTIMATION USING DIFFERENT
INTERPOLATION TECHNIQUES

IF signal is digitized at the f; of 1333 MS/s which is equivalent
to 4/./3, where f. is the centre frequency of the IF signal [9].
The IF signal is varied from 750 to 1250 MHz with f. of 1 GHz
and bandwidth of 500 MHz. Demuxed 8 samples are latched
into FPGA coming from ADC at the dual-edge clock rate of
f#4 MS/s. The total collection time for 256 samples is
256*0.75 ns = 192 ns. The processing of 256 point FFT
completes before next set of data arrives. Once the data is
processed, it will be sent to the output stage of FFT.
Interpolation is performed on this output data. Two parallel
FFT engines and interpolation blocks are used and the real-
time performance is achieved. Both the FFT engines work in
ping-pong mode. Fig. 1 shows the block diagram of
interpolation technique.



IF Signal | Analogto
Digital
Converter

FFT H Interpolation }—) oW PDV
N
Generation

FFT H Interpolation }%
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The FFT equation is given by
Sp = ZNzd x(n)e J2mnN (1)

where p=0,1,2,....,N-1. The limits of p can also be written as -
N/2 to N/2. The measured frequency is equivalent to p*f/N
where the spectrum is having the highest value for that peak p.
Fig. 2 shows the FFT spectrum

2}\ f <
p-1 fp \p+1 N
Estimated Peak Freq
Freq Bin Bin

Fig. 2. FFT Spectrum

Interpolation technique is used to improve the frequency
accuracy without increasing the FFT number of points.
Different techniques namely Rectangular window based,
Hanning window based, curve fitting based and curve fitting
when FFT is performed with Hanning window are used for this
purpose. The frequency is estimated by all four methods. The
FFT output spreads across the bins due to the presence of non-
coherent signal and white Gaussian noise. Since the input
frequency or set frequency is not always the multiple of FFT
resolution or least significant bit (LSB) of f/N. The spectral
component spreads and reported peak frequency will not be
exactly the same as the set frequency. Amplitude is extracted
from the spectrum at three different bins. The highest peak (So)
at bin p, the second highest peak (S1) at p-1, and third highest
peak (S») at p+1 is extracted from the spectrum. The delta bin
which is away from the peak by +dp is computed. The delta
bin for the rectangular window is given by [10]

Op = (81— 52)/(51+S2) (2)

The delta bin for the Hanning window is given by [10]
6p = (251 = S0)/(So + S1) 3)

These techniques are similar to zero padding. The windowing
methods don’t change the shape of the spectrum. But it
provides a better estimation of the peak frequency. These
techniques provide an accurate result when only a single
frequency is available at the input signal.

When Sy is very close to the main peak above two techniques
are sensitive to noise. Under this situation, S; and S, are very
close to the minima and noise may reverse their amplitudes.
The peak will move in the wrong direction using the above
equations. When the amplitudes of S; and S; are reversed then
there will be more errors [10].

Similarly, the delta bin can be written as using the curve
fitting technique [11-13]

Op = (51— 82)/(51 — 250 + S3) (€]

Finally, the estimated frequency is computed using the delta

bindp as (p + Op )*f/N.

Hanning window is applied on IF data and FFT is performed.
Curve fitting technique is applied on FFT output to get the
delta bin dp from “(4)”. The modified interpolation technique
block diagram is shown in Fig. 3.

Hanning .
IF Signal | Analog to Window FFT Interpolation PDW POW

— Digital |- —

- Generation
Converter Hanning FFT | Interpolation
Window

Fig. 3. Block Diagram of Modified Interpolation Technique.

I1I1. SIMULATION RESULTS AND DISCUSSIONS

The input signal is generated for the band of input frequencies.
The set frequencies are varied from 1100 MHz to 1120 MHz
with the step of 0.5 MHz to check the accuracy of algorithms.

Fig. 4 shows the frequency estimation using the rectangular
window interpolation technique using 256 points FFT. The
FFT frequency and estimated frequency versus set frequency is
shown in Fig. 4(a). Fig. 4(b) shows the root mean square error
(RMSE) versus set frequency for both FFT reported frequency
and estimated frequency. Fig.5, Fig. 6, and Fig.7 show the
result for Hanning window interpolation technique, curve
fitting interpolation technique and curve fitting with Hanning
window interpolation technique respectively.
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Set Frequency and (b) RMSE vs. Set Frequency
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Fig. 7. Frequency Estimation using Curve Fitting with FFT along with Hanning
Window (a) Measured Frequency vs. Set Frequency and (b) RMSE vs. Set
Frequency

Based on the frequency accuracy error computed using
different interpolation techniques the RMSE and peak error
are calculated and tabulated as Table I and Table II
respectively. It is found from the result that RMSE calculated
from measured frequency using 256 points FFT is 1.528 MHz.
In case of the rectangular window interpolation technique,
Hanning window interpolation technique, Curve fitting
interpolation technique, and Curve fitting interpolation
technique with Hanning window the RSME is 1.0954 MHz,
0.7969 MHz, 0.6561 MHz, and 0.0609 MHz respectively. The
RMSE is lowest in the case of the curve fitting interpolation
technique with the Hanning window. The peak error is also
lowest 0.0820 MHz in the case of the curve fitting
interpolation technique with the Hanning window. This
performs equivalent to multiple times the number of points
FFT results without interpolation.

TABLE I. RMSE OF ESTIMATED FREQUENCY FOR INTERPOLATION

TECHNIQUES
Interpolation RMSE (MHz) # N Point FFT
Technique 256 512 1024 2048 4096
FFT Measured 1.5280 | 0.7566 | 0.3702 | 0.1843 | 0.0916
Frequency
Rectangular 1.0954 | 0.5742 | 0.2929 | 0.1503 | 0.0765
Window
Hanning Window | 0.7969 | 0.4584 | 0.2467 | 0.1308 | 0.0681
Curve Fitting 0.6561 0.3169 | 0.1573 0.0787 | 0.0402
Technique (CFT)
CFT with 0.0609 | 0.0297 | 0.0148 | 0.0074 | 0.0038

Hanning window




TABLE II. PEAK ERROR OF ESTIMATED FREQUENCY FOR INTERPOLATION

TECHNIQUES
Interpolation Peak Error (MHz) # N Point FFT
Technique 256 512 1024 2048 | 4096
FFT Measured 2.5977 | 1.2988 | 0.6094 | 0.3076 | 0.1567
Frequency
Rectangular 1.8745 | 0.9872 | 0.4832 | 0.2512 | 0.1309
Window
Hanning Window | 1.2722 | 0.7577 | 0.3982 | 0.2149 | 0.1148
Curve Fitting 0.9051 | 0.4423 | 0.2197 | 0.1093 | 0.0545
Technique (CFT)
CFT with 0.0820 | 0.0418 | 0.0209 | 0.0104 | 0.0052
[Hanning window

Iv. CONCLUSIONS

Simulation results of all four interpolation techniques are taken
and their performance is compared. The curve fitting
interpolation technique gives the lowest RMSE compared to
rectangular window, and Hanning window techniques. The
RMSE is further improved when FFT is computed with the
Hanning window and the curve fitting technique is applied.
This technique is also implementable for real-time applications
and hence it is useful for ELINT systems where better
frequency accuracy is required. The estimated frequency is
further improved if FFT points are increased. But for more
number of FFT points, the data collection time, and processing
time increases. Processing hardware should also support the
resource requirements for implementation.
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