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ABSTRACT 

Adaptive beamforming plays a crucial role in Multi-Channel Speech Enhancement 

(MCSE), especially for applications like teleconferences, mobile phones, hearing aids, etc., 

where real-time situations create various noisy environments while communicating. Multi-

channel speech enhancement (MCSE) is prominent for noise-free communication in noisy 

real-time environments. This thesis considers the significance of adaptive beamforming 

approaches for multi-channel speech enhancement. 

Generalized Sidelobe Canceller (GSC) beamformer is one of the adaptive 

beamforming used for multi-channel speech enhancement. GSC structure comprises a Fixed 

Beamformer (FBF), Blocking Matrix (BM), and an adaptive filtering block. Adaptive filtering 

plays a vital role in noise cancellation in the GSC structure. Existing GSC beamforming with 

existing adaptive algorithms shows substandard noise cancellation in the sidelobe canceling 

path under real-time noisy environmental conditions. They are ineffective at low SNR, i.e., at 

-10 dB, and high SNR, i.e., at 15 dB. Existing GSC adaptive beamformers also suffer from 

directional and diffuse noise. In the case of directional and diffuse noise in low frequencies, 

most adaptive beamformers reduce less noise. Existing multi-channel speech enhancement 

(MCSE) also suffers from residual noise in the output, which diminishes the quality and 

intelligibility of the desired speech. 

Novel adaptive beamforming approaches should be developed for multi-channel 

speech enhancement to address the existing issues. In this thesis, novel adaptive filters and 

postfilter are implemented to the GSC adaptive beamforming. The proposed GSC structure 

comprises a fixed beamformer (e.g., delay-and-sum), Modified Blocking Matrix (MBM), and 

an adaptive filter. Delay and Sum Beamformer (DSB) is used as a fixed beamformer (FBF). It 

calculates the directional of arrival based on the delay from each microphone and  which it 

sums up to give a reference speech signal. MBM blocks the speech signal and gives noise 

reference as input to the adaptive filter. An adaptive filter is updated till the noise gets reduced 

at the output of the GSC beamformer. All traditional algorithms are applied like LMS, NLMS, 

and RLS algorithms in the adaptive filter block of GSC. The performance and computational 

complexity are analyzed where noise reduction for only a few noise types and high 

computational complexity is addressed at the output of GSC. To address real-time noise at -10 



IV 
 

dB SNR level with high convergence and low computational time. In this thesis novel, Fast 

Convergence NLMS (FCNLMS) is proposed to sidelobe canceling path of GSC and 

compared with GSC with existing adaptive algorithms. The proposed GSC-FCNLMS 

algorithm has achieved robust noise reduction at low SNRs. 

This thesis proposes a convex combination of two Fast Convergence Normalized 

Least Mean Square (FCNLMS) filters to utilize the benefits of combining two adaptive filters 

through a mixing parameter. Further, it also offers a signed algorithm to a convex variety of 

FCNLMS. The combination approach provides a robust solution to alleviate the convergence 

speed vs. steady-state error tradeoff and efficiently increase the speech enhancement 

performance under various noisy environments for all real-time noises. This thesis addresses 

the directional and diffuse noise suppression in the adverse environment. It has been 

investigated on the performance of the GSC beamformer under directional, diffuse noisy 

conditions. The novel Improved Zelinski-TSNR multi-channel postfilter is implemented, i.e., 

GSC beamforming using improved Zelinski-TSNR multi-channel postfilter is proposed to 

suppress the directional and diffuse noise. Based on the speech presence probability using 

subband adaptive interference canceller, the degraded speech is enhanced with good quality 

and intelligibility. The last phase discusses the residual noise which has attained at the GSC 

beamformer using Zelinski multi-channel postfilter. The proposed GSC beamformer using 

combined postfilter and Sparse NMF algorithm addresses the residual noise suppression and 

source separation and achieves high quality and intelligibility for four and eight microphones. 

Using Sparse NMF at the output of the postfilter reduces the system-generated noise, i.e., 

residual noise. It also separates the interferences.  

This work performs extensive computer simulations on all the proposed algorithms. 

The results demonstrate a significant performance in improving the terms of Perceptual 

Evaluation of Speech Quality (PESQ), output SNR, Segmental SNR (SSNR), Log Spectral 

Distance (LSD), Log-Likelihood Ratio (LLR), Short Time Objective Intelligibility (STOI), 

Signal to Distortion Ratio (SDR). 
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Chapter 1 

Introduction 

The speech signal is mostly corrupted with noise in real-world environments limiting 

its applicability in a wide range of applications like speech recognition in mobile phones, 

teleconferences, hearing aids, etc. In many common applications, it is desirable to suppress 

background noise and also to improve speech quality. That process of removing background 

noise in a degraded speech signal is referred to as speech enhancement or, more generally, as 

noise reduction. Speech enhancement has been a challenging problem for the past several 

decades [1–4] due to the complex nature of the speech signal. Speech enhancement 

techniques are classified as single-channel and multi-channel. Single-channel speech 

enhancement techniques [5] fail in finding the direction of unknown noise, suppressing 

multiple interferences, and in diffuse noise fields. So, multi-channel speech enhancement 

(MCSE) is the process involved in the removal of noise coming from various directions, and 

it separates the multiple inferences without any loss of information.  

The scope of the thesis is the development and analysis of new adaptive beamforming 

approaches for multi-channel speech enhancement addressing various issues with the 

currently used methods. This chapter initially provides a brief introduction to multi-channel 

speech enhancement and the basics of beamforming techniques, and their classifications for 

noise reduction and interference suppression. The motivation for enhanced adaptive 

beamforming approaches for multi-channel speech enhancement is presented, followed by the 

problem statement, objectives of the thesis, and finally, the organization of the thesis. 
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1.1 Introduction to Multi-Channel Speech Enhancement 

Speech enhancement refers to the improvement in quality and/or intelligibility of noise 

corrupted speech signals by using supervised or unsupervised speech enhancement methods. 

Speech enhancement deals with the processing of noisy speech signals, aiming at improving 

the perception of the human or decoding ability of machines [6]. It is used as a pre-processing 

unit for many speech communication applications. Speech enhancement is classified as 

single-channel and multi-channel speech enhancement. The classification is mainly based on 

the noisy background environment, multiple interference or speakers, and the number of 

microphones. Basically, single-channel speech enhancement can be performed in acoustic, 

stationary, and non-stationary noisy conditions, whereas in the case of reverberant, diffuse 

noise, and multi-speaker or interference from coming from various directions, single-channel 

speech enhancement fails to find the direction of arrival of the unknown signal. So, multi-

channel speech enhancement techniques [7] achieved robustness in suppressing directional 

and diffuse noise in real-life environments. A simplified diagram of multi-channel speech 

enhancement system is shown Fig.1, where noisy input speech, i.e., a male speaker, radio 

sound, and female speaker from the crowd is taken whose direction is unknown are received 

at multi-microphone array which is given as input to multi-channel speech enhancement 

where background noise is reduced, and multiple speakers are separated, finally desired male 

speaker speech is obtained at the output. 

In many speech communication systems, the presence of background interference 

degrades the quality or intelligibility of speech signals. There is a need to differentiate 

between the quality and intelligibility of speech, which in most cases are interchangeably but 

are quite different from each other. The quality of speech refers to how a speaker conveys an 

utterance and includes the attributes such as naturalness and speaker recognizing [8]. In very 

simple terms, quality is a measure of how well the examination resembles the original speech 

and how nice the speech sounds. Intelligibility is concerned with what the speaker has said, 

i.e., the meaning or information content behind the words [8]. It is a measure of how 

understandable the speech is and concentrates on the information-carrying content of speech. 
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Figure 1.1: Multi-Channel Speech Enhancement System 

The performance of a multi-channel speech enhancement system degrades rapidly in 

adverse environments. The presence of background noise causes the quality and intelligibility 

of speech to degrade. The performance of speech communication devices such as mobile 

phones, teleconferencing, automatic speech recognition, and electronic hearing aid, etc. which 

utilize speech processing systems to communicate and store speech signals, degrade 

significantly in the presence of background noise resulting in inaccurate information exchange 

and listener fatigue between the speaker and the listener. Thus, noisy environments reduce the 

speaker and the listeners’ ability to communicate. Voice communication, for instance, over 

cellular telephone systems typically suffers from background noise present in the car, street, 

station, airport, restaurant, etc., at the transmitting end, which makes it difficult for the listener 

at the receiving end to understand the speaker. Thus, there are a wide variety of scenarios in 

which it is desired to enhance speech. Improving the quality and/or intelligibility of noisy 

speech effectively improves the performance of speech processing applications such as 

communication systems, speech recognition, speech coding, hearing aids, etc. The goal of a 

multi-channel speech enhancement system varies with respect to the application at hand. It 
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could be to reduce the listener fatigue, to enhance the overall speech quality, to increase the 

intelligibility, etc., or a combination of these, depending on the application. In a speech 

recognition system of mobile phones, the recognition accuracy will suffer in the presence of 

noise, and hence the noisy speech signal can be pre-processed by a multi-channel speech 

enhancement algorithm before being fed to the system. In the teleconference system used by 

the military, the intelligibility has to be enhanced rather than the quality. For hearing-impaired 

listeners using hearing aids, it is always desired to enhance the noisy speech by removing the 

directional noise before amplifying the signal. Also, the characteristics of the noise and its 

relationship to the clean signal, like additive, convolutive, correlated, uncorrelated, etc., and 

the number of microphones available affect the design and development of the multi-channel 

speech enhancement system. 

The performance of multi-channel speech enhancement systems is limited by the 

trade-off between interference cancellation, noise reduction, and multiple source separation 

[9]. Hence, the main challenge is to develop multi-channel speech enhancement algorithms, 

reducing the background noise from a particular direction, diffuse noise, and residual noise in 

an enhanced speech to improve the quality of the speech signal without reducing its 

intelligibility. Several multi-channel speech enhancement schemes have attempted to address 

the problem using various approaches.  

1.2 Applications of Multi-Channel Speech Enhancement 

Multi-channel speech enhancement has several practical application areas, which 

include telecommunication systems like mobile phones, teleconferences, speech/speaker 

recognition, hearing aids, etc. The multi-channel speech enhancement block can be placed as 

a front end to reduce the noise energy and improve the quality and intelligibility in 

telecommunications. Some of the most important applications are discussed in this section to 

show how important a role multi-channel speech enhancement has in our day-to-day lives. 

Telephone communication has gone from home or office to a wide range of settings, 

including congested streets, vehicles, public transit, restaurants, and so on. Noise pollution 

can sometimes significantly reduce the quality and intelligibility of speech. As a result, it is 
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necessary to avoid such deterioration, due to this noise reduction in mobile phones has been 

the subject of much study [10]-[11]. 

Teleconferencing permits a large number of people in a room to engage with one or 

more people in a hands-free experience. Due to its hands-free feature, listeners in a 

teleconference would be defenseless in case of adverse environment noise and directional 

noise. As a result, efforts have been undertaken to reduce the noise [12]. 

Various automatic speech recognition systems have been implemented into 

applications such as hands-free telephones, mobile phones, etc. When a noisy speech signal is 

utilised as an input to the system instead of a clean speech signal, the performance of system 

gets degrades. As a result, noise reduction in such systems has sparked a lot of study [13]-

[14]. 

Noise has a greater impact on those with hearing loss than it does on people who are 

normally hearing. The people have a harder time distinguishing between noise and speech. As 

a result, research has been conducted to add speech enhancement modules into hearing aids to 

reduce the effect of noise contamination [15]–[17]. 

1.3 Beamforming for Speech Enhancement 

Beamforming or spatial filtering is one of the multi-channel speech enhancement 

algorithms used in teleconferences, mobile phones, hearing aid applications. Beamforming 

methods [18] are useful to enhance the degraded speech from noisy real-time environments 

coming from unknown directions. Beamforming techniques are used to recover the desired 

clean speech signal from reverberation and noisy settings such as directional noise and diffuse 

noisy conditions. Spatial filtering [19] is used to reduce interference signals from undesirable 

directions. The signals from the microphone array are shaped into a beam pattern known as 

beamforming or spatial filtering. This is a time-honored technique for suppressing 

interference signals originating from various directions. Spatial filtering is the process of 

canceling out interference signals utilizing angles and frequencies from different directions. It 



6 
 

is utilized to boost the quality of speech signals coming from the direction of view. Fixed and 

adaptive beamformers are the two types of beamformers covered below. 

1.3.1 Fixed Beamforming 

Fixed beamforming is a traditional multi-channel speech enhancement technique. 

Fixed beamformers [18] get their name from the fact that their weights co-efficient are fixed 

during the process. They are also known as data-independent filters because the filter is not 

reliant on the data from the microphone and follows fixed weights. Fixed beamformer 

approaches such as delay and sum beamformer improve speech signals by calculating and 

collecting the delay. FIR filters are employed in the filter and sum beamformer to improve the 

quality before summing up, which is suitable for narrowband speech improvement. A Delay 

and Sum Beamformer (DSB) as fixed beamformer is shown in Figure 1.2; here, noisy speech 

input is given to a multi-microphone array. Based on the distance and angle of arrival, delay 

from each microphone is calculated and added to have enhanced speech at the output. The 

delay and sum beamformer, on the other hand, will not work in a reverberant environment. 

 

 

 

 

 

Figure 1.2: Fixed Beamformer 
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1.3.2 Adaptive Beamformer 

Adaptive beamforming for speech enhancement necessitates thorough consideration of 

issues unique to degraded signal in adverse environment.  

 

 

 

 

 

 

Figure 1.3: Schematic View of Adaptive Beamformer 

Due to numerous reflections from the room walls, an acoustic field impulse response. 

The length of the filters in a typical workplace might approach thousands of taps. 

Furthermore, due to the speaker and objects, the impulse response is frequently time variable. 

Adaptive beamformers [20] update themselves during the process. They are also 

known as data-dependent beamformers because they rely on the static features of desired, 

noisy speech signals entering the microphone. Adaptive beamforming is shown in Figure 1.3, 

where the weight is updated using the adaptive filtering algorithms, desired speech is obtained 

at the output until the error in the adaptive algorithm is minimized. The multi-channel speech 

enhancement general schematic flow is shown in Figure 1.4. When the unwanted signals are 

not pointing to sources, or there are too many interfering sources, the performance of some 

beamformers is restricted. Furthermore, due to the longer observation time necessary to 

determine signal statistics, several beamformers suffer from nonstationary interference. 
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Single-channel enhancement techniques can accomplish nonlinear spatial and/or 

spectral filtering and respond to changes in interference characteristics considerably more 

quickly. In this part, we'll look at how to employ algorithms like postfilter at the beamformer 

output. For the past few decades, various beamforming [21]-[22] methods have been 

introduced to remove directional noise. Existing adaptive beamforming approaches include 

the Minimum Variance Distortion Less Response (MVDR) [23] beamformer, Linear 

Constraint Minimum Variance (LCMV) [24] beamformer, and Speech Distortion and 

Interference Rejection Constraint beamformer (SDIRC) [25]. 

 But, these existing adaptive beamforming techniques with postfilter fail in real-time 

environmental noises, directional, diffuse, and residual noise conditions. So, a novel  adaptive 

beamforming approach should be developed to address directional, diffuse, and residual noise 

in real-time environmental noisy conditions like car, station, babble, street, restaurant, airport, 

etc. 

1.4 Adaptive Beamforming with Multi-Channel Postfiltering 

  MCSE algorithms have lately gained popularity. It is generally known that 

beamforming techniques increase speech quality significantly [7]. As the diffuse noise is 

incoherent, here noise reduction becomes inadequate [26]. To process further post-processing 

using postfilter [27] is necessary. Furthermore, because non-stationary noise cannot be 

differentiated from speech signals in general, considerable performance deterioration is to be 

predicted in a non-stationary noise environment. 

 Most MCSE techniques include a DSB and GSC [21] followed by a Wiener filtering-

based postfiltering mostly in grouping with SS). On the issue, many articles are stated 

including [28]–[36]. In general, postfilter are classified into two types. One is single-channel 

postfilter that operates on the beamformer output as a single-microphone speech enhancement 

technique. Next, is multi-channel postfilters, use the directional information collected by the 

GSC structure directly to improve speech signal separation from transient noise. 
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Figure 1.4: Generalized form of Adaptive Beamforming with Postfilter 

1.5 Non-Negative Matrix Factorization (NMF) 

One of the basic concepts deeply rooted in science and engineering is that there must 

be something simple, compact, and elegant playing the fundamental roles under the apparent 

chaos and complexity. This is also the case in signal processing, data analysis, data mining, 

pattern recognition, and machine learning. With the increasing quantities of available raw data 

due to the development in sensor and computer technology, how to obtain such an effective 

way of representation by appropriate dimensionality reduction technique has become 

important, necessary, and challenging in multivariate data analysis. Generally speaking, two 

basic properties are supposed to be satisfied: first, the dimension of the original data should be 

reduced; second, the principal components, hidden concepts, prominent features, or latent 

variables of the data, depending on the application context, should be identified efficaciously. 
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issue correspondingly, was initiated by Paatero and Tapper [37], together with Lee and Seung 

[38], [39]. 

NMF has become an imperative tool in multivariate data analysis and has been widely 

used in the fields of mathematics, optimization, neural computing, pattern recognition and 

machine learning [40], data mining [41], signal processing [42], image engineering, and 

computer vision [42], spectral data analysis [43], bioinformatics [44], finance and economics 

[45]. More specifically, such applications include text data mining [46], digital watermark, 

image restoration, image segmentation [47], facial expression recognition [48], audio pattern 

separation [49], music genre classification [50], speech recognition, microarray analysis, blind 

source separation [51], EEG signal processing [52], email surveillance [53], online discussion 

participation prediction, network security, automatic personalized summarization, 

identification of compounds in atmosphere analysis [17], earthquake prediction, stock market 

pricing [54] and so on. 

Non-negative matrix factorization (NMF) and related probabilistic latent variable 

models (PLVMs) are data-driven machine learning techniques are used for the purpose of 

source separation. At a high level, when NMF/PLVMs is used for source separation, we 

decompose the audio spectrogram data, or equivalently the magnitude of the short-time 

Fourier transform (STFT) of an audio recording, is decomposed as a linear combination of the 

outer product of prototypical spectral components times vectors of amplitude over time. The 

spectral components for each sound source and their gains are learned from data, and the 

result is used to estimate the contribution of each source within an unknown mixture over 

time and eventually perform the separation. 

NMF/PLVM methods can also be thought of as basis decomposition or dictionary-

based methods and are closely related to sparse coding [55], principal component analysis 

[56], singular value decomposition [57], independent subspace analysis methods [58], and 

related matrix factorization methods. In addition to their audio applications, both NMF and 

PLVMs are also commonly used for processing images, text, and other data types and 

collectively have gained a significant research interest over the past decades. 
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1.6 Motivation 

The speech processing systems used by people in everyday lives include digital 

mobile radio-communication systems, speech recognition systems, hearing aids, etc. These 

systems are prone to noise from various environments like background noise (airport noise, 

station noise, street noise, etc.), directional noise, diffuse noise residual noise, etc. This 

degrades the quality or intelligibility of these systems, which will affect people's lives as it 

makes the usage of these systems difficult. Speech enhancement or noise reduction algorithms 

restore or enhance the speech signals.  

Single-channel speech enhancement techniques like spectral subtraction (SS), 

subspace algorithms, wiener filter, etc., fail to improve the quality of degraded speech signal 

coming from a particular direction and cannot find the directional of arrival under various 

noisy environments. Multi-channel speech enhancement algorithms provide better solutions to 

address these problems. A novel multi-channel speech enhancement algorithm has to be 

developed to suppress background, directional, diffuse, residual noises and separate the 

interference under various noisy environments. These are essential in applications like mobile 

phones, teleconferencing, hearing aids, etc. We need noise-free information for effective 

communication.  

Multi-channel speech enhancement (MCSE) techniques like adaptive beamforming 

enable high-quality, hands-free communication in noisy environments. In the adaptive 

beamformer like Generalized Sidelobe Canceller (GSC) beamformer, the noise cancellation 

relies on the sidelobe canceling path.  To improve speech in a noisy environment, a robust 

adaptive filter in the sidelobe canceling path must be constructed. GSC adaptive beamformer 

with effective noise cancellation makes the systems more reliable for noisy environments.  A 

convex combination adaptive filter is used to overcome the challenges in noise reduction.  

In multiple source environments, there is a need to suppress the directional noise. 

Similarly, in diffuse noise fields, as the noise from all direction looks similar, a novel adaptive 
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beamforming technique need to be addressed. To further suppress the residual noise, a novel 

multi-channel speech enhancement system should be developed.  

1.7 Problem Statement 

 Multi-Channel Speech Enhancement (MCSE) system has to be capable of suppressing 

the noise from the noisy speech signal. Most of the existing MCSE techniques use slow 

convergence with high computational complexity adaptive filters. Also, the MCSE gets 

affected due to noisy environments, and there is a need to develop an MCSE system that is 

robust to various noisy conditions. By using a combination of adaptive filters, the 

computational overhead of the MCSE system increases. MCSE systems also suffer from 

directional, diffuse, and residual noise. Therefore, there is a need to develop an MCSE system 

that gives better quality and intelligibility with directional, diffuse, residual noise suppression, 

and also it should separate multiple interferences.  

1.8 Objectives 

1. Implementation of novel Generalized Sidelobe Canceller (GSC) beamforming using 

different adaptive filtering algorithms like LMS, NLMS, RLS, and proposed 

FCNLMS for background (airport noise, station noise, street noise, etc.) noise 

reduction. 

2. To develop adaptive beamforming using novel signed convex combination of adaptive 

filtering algorithm for speech enhancement with less computational complexity.  

3. To implement adaptive beamforming using novel multi-channel postfilter for 

directional and diffuse noise suppression for speech enhancement. 

4. To develop adaptive beamforming using combined postfilter and sparse NMF for 

residual noise suppression in an enhanced speech and multi-source separation. 
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1.9 Organization of Thesis 

Chapter 1 gives the concept of a multi-channel speech enhancement system, and its 

applications are introduced. The motivation towards MCSE, objectives, and contributions 

towards the thesis are discussed in brief.       

Chapter 2 explains the state-of-the-art of problem. History of multi-channel speech 

enhancement techniques, adaptive beamformers, adaptive filters, postfilters, and non-negative 

matrix factorization techniques, and also about multi-channel speech enhancement simulation 

environment and the database used. 

Chapter 3 proposes adaptive beamforming using different adaptive filters for speech 

enhancement. The chapter discusses different adaptive filtering algorithms like Least Mean 

Square (LMS), Normalized LMS (NLMS), and Recursive Least Square (RLS) algorithms to 

Generalized Sidelobe Canceller (GSC) beamformer and proposes Fast convergence NLMS 

algorithm to GSC beamformer under various noisy environments. 

Chapter 4 proposes a novel signed convex combination of fast convergence algorithm 

to GSC beamformer. A novel signed convex combination of fast convergence adaptive filters 

is proposed in the sidelobe canceling path of the GSC beamformer to provide a tradeoff for 

many noisy environments, and it is verified in various noisy situations. The analysis is carried 

out using different noises with SNRs ranging from -10 dB to 15 dB for a multi-channel 

speech enhancement system. 

Chapter 5 GSC beamforming using novel Zelinski-TSNR multi-channel postfilter for 

speech enhancement is proposed. The chapter explores directional noise and diffuses noise 

suppression. Directional noise is suppressed by the GSC beamformer. A novel Zelinski – 

Two-Step Noise Reduction (TSNR) multi-channel postfilter is implemented to the GSC 

beamformer to suppress diffuse noise. 
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Chapter 6 proposes novel adaptive beamforming using combined postfilter and 

Sparse NMF for speech enhancement. The chapter describes the residual noise suppression at 

the output of the GSC adaptive beamformer with a combined postfilter and Sparse Non-

negative Matrix Factorization (SNMF) algorithm. The simulation environment and analysis 

are explained under various SNR levels with a standard speech enhancement database. 

Chapter 7 gives the conclusions of the contributions of the thesis, and the future scope 

of this work is discussed in brief. 
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CHAPTER 2 

Literature Survey 

This chapter provides the literature on speech enhancement and adaptive beamforming 

approaches for multi-channel speech enhancement. The recent related techniques employed 

for post-filtering, directional, diffuse noise estimation and handling of residual noise are also 

discussed. 

Initially, the applications and classifications of speech enhancement methods are 

discussed. Then, a detailed description of adaptive beamforming approaches is provided, 

which will form the underlying theory of the algorithms developed in the later chapters. The 

noise estimation techniques for speech enhancement are briefly described, and the currently 

used methods in adaptive beamforming algorithms to handle the case of directional, diffuse, 

and noise in real-time environments are also mentioned. Then the adaptive filters and 

combined adaptive filtering algorithms of speech signals for enhancement. Finally, NMF for 

speech enhancement and source separation is shown in the last section. The issues with the 

existing methods of speech enhancement obtained from the literature survey are provided 

from which the framework of the research work is decided. 

 



16 
 

2.1 Introduction 

Speech enhancement is a challenging task in real-world environments like automatic 

speech recognizers and other communication systems. It aims at improving the quality and 

intelligibility of speech signals corrupted with a variety of noise conditions like airport, car, 

restaurant, train, street, diffuse-field effects, speech signals from other speakers, etc., to name 

a few [5]. A robust speech enhancement system should be able to perform well in any of these 

noisy situations. 

2.2 Classification of Speech Enhancement  

Typically, the speech enhancement methods can be broadly divided into single-

channel and multi-channel enhancement techniques [59] depending on the number of 

microphones used to collect the acoustic signal and noise. The performance of a speech 

enhancement algorithm is limited by the number of noise sources available [6], [60]–[63]. In 

most of the widely used applications like hearing aids and mobile phones, where mostly only 

a single channel is available, single-channel enhancement is used. Single-channel 

enhancement techniques are very easy to build and are less expensive when compared to their 

multi-channel counterpart. 

2.2.1 Single Channel Speech Enhancement  

 In single-channel or single-microphone enhancement, it is assumed that only the noisy 

signal containing both the clean speech and the additive noise is available from a single 

microphone for speech enhancement. There is no second signal which could provide 

information regarding the reference noise or speech. In most real-time applications, such as 

speaker and speech recognition, mobile communication, and hearing aids, usually, a second 

channel is not available. Hence this is one of the most challenging problems in speech 

enhancement. This is widely studied because of its simplicity and universal applicability since 

in most real-life situations, and only single microphone systems are available such as in 

speech communication, speech coding, and speech recognition in noisy environments. These 
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systems are easy to build and comparatively less expensive than multiple-input systems. 

Single-channel speech enhancement methods have only a single input having the noisy speech 

from which enhanced speech has to be extracted [64]–[74]. Single-channel systems constitute 

one of the most difficult situations of speech enhancement since no reference signal to the 

noise is available, and the speech cannot be pre-processed prior to being affected by the noise. 

Usually, they make use of different statistics of speech and noise. Traditional single-channel 

speech enhancement methods are Spectral Subtractive (SS) algorithms, wiener filtering, 

statistical-model-based algorithms, subspace algorithms are explained as follows.  

2.3 Multi-Channel Speech Enhancement  
 

The number of microphones available can influence the performance of speech 

enhancement algorithms [75]. Typically, the larger the number of microphones, the easier is 

the speech enhancement task. Adaptive cancellation techniques can be used when at least one 

microphone is placed near the noise source. The multi-channel system uses the noise 

reference obtained in an adaptive noise cancellation (ANC) device. It uses phase alignment to 

reject undesired noise components. The system even uses both the noise reference and the 

phase alignment [76]. These systems tend to be more complex. The multi-channel speech 

enhancement method gives a better performance in non-stationary noise conditions due to the 

presence of a reference channel [77] – [85]. Phase alignment can be performed in one of the 

channels to reject the undesired noise components. The main drawbacks of multi-channel 

speech enhancement techniques are fabrication cost and complexity. 

For economic reasons, most systems are single-microphone-based solutions where the 

speech enhancement is done on the output of a single microphone, although better speech 

enhancement results can be achieved by using a microphone array system with more than one 

microphone, but with increased complexity and expenses. The speech enhancement 

techniques can also be classified as supervised or unsupervised speech enhancement methods. 

Supervised methods achieve noise reduction by considering a model for both the 

speech and noise signals, which require a training phase to estimate the parameters. Some of 

the supervised techniques include HMM-based methods [86] – [90], Gaussian Mixture 
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Models (GMM) [91] - [92], codebook based algorithms [93] – [94]. DNN based approaches 

[95] - [97], and Nonnegative Matrix Factorization (NMF) based methods [98]–[101]. 

A Speech enhancement method that reconstructs clean speech signal from a sinusoidal 

model and a set of acoustic speech features like a voicing classification, fundamental 

frequency, and spectral envelope, estimated from noisy speech using a single statistical 

model, is proposed by Philip Harding and Ben Milner [101]. By constraining the enhanced 

signal to be produced by a model of speech production, the output is free from noise. Tian 

Gao et al. [102] proposed a unified DNN approach to reduce both background noise and 

speech interference in a speaker-dependent scenario.  

The DNN system is trained to unify speech enhancement and speech separation. The 

signals of speech interference are considered as one noise type. The unified system achieves 

good results compared with specific systems where only noise or speech interference is 

present and better performance for noise and speech interference mixed conditions. The 

results demonstrate the effectiveness of the ensemble method in low SNR environments. The 

performance of the supervised approaches depends on the prior information fed to the system, 

which limits its performance in non-stationary noise environments. There are a number of 

unsupervised speech enhancement methods that are not provided any data. Clean speech is 

estimated from noisy observations without any prior information on the noise type or speaker 

identity.  

These multi-channel interfaces often have higher improvement possibilities than 

single-channel interfaces. They enable the creation of multi-channel spatial filters that 

selectively amplify or suppress sounds in certain directions (or volumes) by leveraging spatial 

variety, such as phase and level discrepancies, or, more broadly, the variations in acoustic 

characteristics between channels. Single-channel spectrum filters, on the other hand, need a 

considerably more thorough understanding of the target and the noise, and thus often result in 

a lesser quality increase. Indeed, it can be demonstrated that the greatest potential quality 

improvement attainable with only two microphones is already significantly larger than with a 

single microphone and that it continues to increase with more microphones [103].  
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Over the previous four decades, hundreds of MCSE methods have been suggested in 

the literature along two historical research lines. Microphone array processing arose from the 

theory of sensor array processing for telecommunications and focused primarily on the 

localization and enhancement of speech in noisy or reverberant environments [8], [60], [104]-

[106], whereas Blind Source Separation (BSS) was later popularized by the machine learning 

community and addressed “cocktail party” scenarios involving multiple sound sources mixed 

together [107]-[112] 

2.3.1 Beamforming 

 

Beamforming is the way of forming a spatial-temporal filter. Broadband arrays are 

made up of a series of filters applied to each incoming microphone signal, then summing. The 

fundamental purpose of the beamformer is to extract the desired signal having an adverse 

effect on the array at a specific location from noisy array data. Interference signals frequently 

share the same frequency spectrum as the intended signal. The delay-and-sum beamformer is 

the most basic construction, compensating for the relative delay between different microphone 

inputs before summarizing the steered signal to produce a single output. If the number of 

microphones is reasonably high, this beamformer, which is still commonly employed, can be 

highly efficient at reducing non-coherent, i.e., spatially white, noise sources. However, if the 

noise source is coherent, noise reduction (NR) is highly dependent on the direction in which 

the noise signal arrives. As a result, the DSB performance is ineffective in reverberant 

environments. The delay and sum idea was expanded by Jan and Flanagan [123]-[124] and 

Rabinkin et al. [125] by adding the FSB. This structure, which is meant for multipath 

conditions such as reverberant enclosures, replaces the better delay compensator with a 

corresponding filter to achieve better performance. 

In general, the beam pattern form microphone array can be tailored to have a certain 

reaction. This may be accomplished by correctly adjusting the weights of the MCF. Whereas, 

in dynamic acoustical settings, the use of data-independent design approaches is severely 

constrained. 
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The statistical characteristics of the intended and interference signals are used to build 

statistically optimum beamformers. They generally seek to boost the intended signal while 

rejecting the interfering signal. Several criteria, such as maximum signal-to-noise ratio 

(MSNR), minimal mean-squared error (MMSE), and linearly restricted minimum variance, can 

be used in beamformer design (LCMV). [19] - [117] provides an overview of many design 

criteria. 

Beamforming techniques rely on signal statistics (at least second-order statistics), 

which are typically unavailable and must be inferred from data. Furthermore, the acoustical 

environment varies over time as a result of talker and object movement, as well as sudden 

changes in noise characteristics (e.g., passing cars). As a result, adaptive mechanisms are 

necessary. Each of the predefined design criteria can have an adaptable equivalent. Sondhi and 

Elko [126], Kaneda and Ohga [127], and Van Compernolle [128] made early contributions to 

the topic of adaptive beamformer design. By including echo cancellers into the beamformer 

architecture, Kellermann [129] solved the problem of integrated echo cancellation and noise 

reduction. In a vehicle scenario, Nordholm et al. [130]-[131] used microphone arrays and 

constructed a beamformer that used calibration signals to improve the results. Martin [132] 

looked at beamforming techniques for microscopic microphone arrays.  

The well-known MCWF [133] is the result of minimizing the MSE in the context of 

array processing. Doclo and Moonen [134]–[136] suggested an efficient Wiener filter 

implementation based on the microphone data matrix's GSVD. This approach produces an 

optimum (in the MMSE sense) estimation of the required signal component of one of the 

microphone signals. The authors also developed efficient techniques for RGSVD updates. A 

post-filtering stage for adaptive noise cancellation is also offered as an alternative. In such a 

method, an optimum noise channel is estimated, moreover to attain desired signal, an optimal 

estimation is designed. To improve the speech signal even more, this evaluated noise signal 

coefficients are treated as reference noise signal [133].  Spriet [137] introduced a subband 

based GSVD [137] technique, but Rombouts [138]-[139] recommended solving the problem 

with the efficient QRD. 

Acoustic arrays are used in various adaptive beamforming techniques. ATF combines 

the speech and the noise estimations. The multi-channel Wiener filter, on the other hand, relies 

solely on estimations of the recorded noisy signal's second-order statistics and the noise signal 
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and makes no a priori assumptions about the signal model. However, as Chen et al. [140] point 

out, even if the Wiener filter is the best in terms of MMSE, but unable to produce desired 

speech at output. However, this issues are be addressed by modified MMSE which enables 

undistorted signal at output. This modification is used in a strategy described in [141]-[142].  

Frost's [20] LCMV beamformer aims to minimize output power under linear limitations 

on the array's responsiveness to the intended speech signal. He presented an adaptive LMS 

algorithm [133]. To circumvent this restricted adaptation, author in [21] introduced the GSC, 

model and later modified by Affes [143] and Gannot [144]. Improved GSC is extended 

Transfer-Function Generalized Sidelobe Canceller (TF-GSC) comprises: a FBF, BM and ANC 

for NR in sidelobe cancelling path. 

Nordholm [145] investigate the upper limits of the GSC's achievable NR in an isotropic 

noise field. Bitzer et al. address their issue in [146]-[148]. The authors of [146] construct a 

formula for the NR as a function of the noise field and assess the deterioration as a function of 

the reverberation duration (T60). [147] discusses the unique two-microphone case. GSC with 

wiener and LMS filter are shown in [148]. Marro et al. [149] and Nordholm et al. [150] 

introduce a frequency-band GSC structure. 

Huarng and Yeh [151] solved the distortion problem by calculating the desired signal 

leakage into the GSC structure's reference noise branch. However, the delay-only ATFs 

assumption is applied, and the anticipated deterioration due to pointing mistakes alone is 

assessed. Nordholm et al. [152] illustrate the performance decrease caused by limiting Wiener 

filters to a finite impulse response (FIR) construction. The resultant performance limits of the 

GSC structure are significantly dependent on the cross-correlation between the sensors' signals 

caused by the noise field, as demonstrated in the references above and by Cox [153]. 

Beamformers are frequently sensitive to signal mismatch. The GSC, in particular, is 

plagued by two fundamental issues. For starters, non-ideal FBF might result in non-coherent 

filter-and-sum operations. To increase the resilience of beamformers, Doclo [135] and 

Nordholm et al. [158] utilize spatial and frequency-domain restrictions. The second issue 

addressed by this survey is the leaking phenomena induced by imperfect BM. If the intended 

speech seeps into the noise reference signals U(k,l), the noise canceller filters will remove 

speech components from the FBF output, resulting in self-cancellation and hence severe 
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distortion. It should be noted that self-cancellation is unavoidable even when the ANC filters 

are modified during noise-only times. The purpose of this section is to provide some ideas for 

improving the resilience of the GSC structure and lowering its susceptibility to signal 

mismatch. Cox et al. [117] conducted an in-depth examination of array sensitivity. 

Hoshuyama et al. [159]-[160] suggested many approaches for dealing with the 

robustness problem, focusing on the self-cancellation phenomena produced by the leakage of 

the intended speech signal to the BM outputs. This effect is accentuated in reverberant settings, 

as the BM merely adjusts for the relative delay [as in [142]]. In general, there are two 

approaches to address the leaking issue. First, better spatial filtering may be integrated into the 

BM design. Claesson and Nordholm [130] recommended that a spatial high-pass filter be used 

to cancel out all signals within a given frequency and angular range. Huarng and Yeh [151] 

investigated the leaking problem and imposed a derivative restriction to the array response, 

resulting in greater tolerance to pointing mistakes. 

A second solution to leakage concerns is to put restrictions on the ANC filters. 

Hoshuyama et al. [159] suggested a number of configurations that combined changes for both 

the BM and ANC blocks. An adaptive BM based on signal cancellers replaces the traditional 

delay-compensation BM. Two limiting techniques can be used for the filters in question. 

The first method makes use of norm-constraint, whereas the second makes use of the 

leaky LMS adaption scheme. Haykin [168] demonstrated that the two techniques are equal. 

The leaky LMS algorithm or Cox's norm-constrained adaptation mechanism is used to adjust 

the ANC filter (see [30]). As a final note summarising Hoshuyama's techniques, we draw the 

reader's attention to the similarity between the suggested modification of the BM filters and the 

subspace tracking procedure given by Affes and Grenier shown in [143]. 

Doclo [161] demonstrate that the output SNR after NR using the aforementioned 

speech distortion weighted multi-channel Wiener filter (SDW-MWF) is always greater than or 

equal to the input SNR, regardless of filter length or value of the trade-off parameter between 

NR and speech distortion. This ANC filter solution is known as the speech distortion 

regularised generalized sidelobe canceller (SDR-GSC) structure. Spriet et al. [141] also 

recommended incorporating a single-channel postfilter to correct for the structure's distortion 

in the event of voice leakage into the reference signals. The scope of this study does not allow 
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for further examination of this structure. The authors offer a stochastic gradient-based 

implementation of their criterion in [162]. 

Spriet et al. [16] investigate the resilience of both the multi-channel Wiener filter and 

the GSC structures in the context of hearing-aid applications. Improvements in the GSC 

structure are an ongoing topic, particularly in the sidelobe canceling path. Interfering signals 

can significantly degrade the quality of the desired signal received by a sensor array. This issue 

arises in a variety of array processing applications and is exacerbated when the interfering 

signals are nonstationary [163]-[166]. Moving interfering sources or sudden changes in the 

propagation channel might produce nonstationary interfering signals. 

Furthermore, when interfering sources are placed in dense multipath settings, such as 

acoustic environments, it causes interference. It is quite difficult to make noise reduction 

without degrading the quality of the target signal. In these instances, minimizing interfering 

signals sometimes involves the employment of FIR filters with a large number of taps, which 

have a high computational cost and a slow convergence rate [167]-[168]. Broadband adaptive 

beamforming systems are extensively employed to handle this problem (see, for example, 

[167]–[171]) since they are very successful at receiving the desired source signal while 

simultaneously decreasing interfering components, especially in dense multipath settings.  

One of the most often used adaptive beamforming methods for broadband signals is the 

generalized sidelobe canceller (GSC) [21]. It consists of a fixed beamformer (e.g., delay-and-

sum or filter-and-sum [7]) and an adaptive route that reduces noisy components created by 

unwanted interfering sources, resulting in decreased noise power at the system output. Many 

adaptive beamforming methods for nonstationary noisy settings were based on the GSC in the 

literature [144], [160], [172]-[173]. The adaptive filtering algorithm employed in the sidelobe 

canceling path is entirely responsible for the success of a GSC system. 

In general, gradient-based adaptive algorithms, such as the least mean squares (LMS) 

algorithm, can be used to adjust filters in the time domain (see, for example, [174]). Although 

this family of methods has a cheap computing cost, when the filter length is fairly high, the 

convergence is rather sluggish [174], making the adaption of the filter weights impractical in 

real-time applications. Hessian-based adaptive filtering, which is common in algorithms such 

as the recursive least squares (RLS) filter, is another time-domain standard method. When 



24 
 

compared to gradient-based algorithms, the latter method achieves quicker convergence [174]. 

However, due to the high computing cost of RLS adaptive filtering, adaptation may become 

prohibitively expensive. Furthermore, depending on the characteristics of the required source 

signals, the RLS method may perform worse than the LMS algorithm in a nonstationary 

environment [175].  

The affine projection algorithm (APA) family [176], which is widely used in adaptive 

beamforming [19]–[20], provides a good compromise between performance and computational 

load because it has faster convergence rates and manageable computational complexity when 

compared to other time-domain algorithms. Furthermore, when compared to other traditional 

time-domain adaptive algorithms, APA is the greatest fit for processing colored signals. 

Despite its strong capabilities [176], APA is hampered by unfavorable environmental 

conditions, particularly in the presence of many nonstationary sources, which render the 

adaptation process unstable and impair performance. 

To overcome this issue, we offer resilient array beamforming techniques based on the 

adaptive combination of MISO filtering systems, which are simply filtered banks in this case. 

The adaptive combination of adaptive filters is a particularly effective and versatile method for 

balancing the tradeoffs inherent in adaptive filter settings [177]-[178]. Combined adaptive 

schemes are often implemented using filters from the same family and complementing 

characteristics, such as distinct step sizes or filter lengths. They are also employed with filters 

from various families that utilize different update algorithms or cost functions [179]–[183]. 

The combined scheme is capable of switching between filters adaptively based on the highest 

performing filter, ensuring that the best possible filtering is always provided [177]. 

In this article, beamforming designs that use an adaptive combination of filters to 

enhance system tracking in the face of broadband nonstationary interfering signals. One 

approach is to merge two MISO systems that use the same updating method but have different 

step size values. In fact, it has been demonstrated that combining a fast filter (with a big step 

size value) and a slow filter (with a small step size value) leads to faster convergence, reduced 

residual misalignment, and enhanced tracking capabilities when compared to separate filters 

[184], [185] , [177]. Another way for improving tracking capabilities in nonstationary 

situations is to combine two filters with distinct updating methods, namely one gradient-based 

and one Hessian-based [182]-[186]. This filter combination makes use of the Hessian-based 
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filter's rapid convergence and the gradient-based filter's performance capabilities, which may 

beat the Hessian-based filter in nonstationary circumstances [182]-[186]. In comparison to the 

performance of a combination of filters with different step sizes, which is never better than the 

performance of individual filters in terms of excess mean square error (EMSE), the 

performance of a combination of filters with different updating approaches may outperform the 

performance of individual correspondent filters in terms of EMSE [186]. In terms of adaptive 

combinations, we focus on the convex constrained combination with sigmoid nonlinearity on 

the output stage in our study since it introduces less gradient noise than unconstrained and 

affine constrained combinations [181]-[183]. 

We present two distinct beamforming architectures based on the integration of adaptive 

MISO systems with various update methods. The first approach employs a system-by-system 

(SS) combination in which the overall output of the first MISO system is convexly combined 

with the overall output of the second MISO system. The second architecture is a filter-by-filter 

(FF) combination scheme in which each adaptive filter from the first MISO system is convexly 

coupled with the comparable filter from the second MISO system. All adaptive filters in both 

systems are updated using an APA. 

We utilize various projection orders for each MISO system to differentiate them. 

Furthermore, in order to employ the optimum parameter setting for each filter and enhance 

tracking performance even further, we suggest a multistage combination method in which the 

filtering procedure is performed in two phases.  

2.4 Multi-Channel Postfiltering 

 

The use of postfilter approaches in MCSE has recently gained popularity. It is well 

known that beamforming approaches increase speech quality significantly [7]. The noise 

reduction is insufficient when the noise field is spatially incoherent or diffuse [26], and an 

extra postfilter is usually necessary [27]. Furthermore, because nonstationary noise cannot be 

differentiated from speech signals in general, a large performance deterioration in a 

nonstationary noise or noisy real-time environment is expected. 
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A multi-microphone component (either delay and sum beamformer or GSC [21]) is 

usually followed by a postfilter based on Wiener filtering (occasionally in conjunction with 

spectral subtraction) in most MCSE. Several articles have been published on the subject, 

including [28]–[35], to name a few. The postfilters can be classified into two kinds in general. 

On the beamformer output, the first is a single-channel postfilter that functions as a single-

microphone speech enhancement method. Multi-channel postfilters, on the other hand, make 

explicit use of the spatial information recovered by the GSC structure to distinguish the 

speech signal from the transient noise or diffuse noise. 

While the theory suggests that using a Wiener post-filter improves performance, 

obtaining good estimates of the signal and noise spectral densities required to calculate the 

post-filter transfer function can be problematic in practice. The most frequent way for 

estimating these spectral densities is to use the multi-channel input signals' auto- and cross-

spectral densities. Marro et al. [149] investigate this type of post-filter estimation in-depth, 

and it is largely based on Zelinski's work [28]. While the Zelinski post-filter produces 

acceptable results, it is reliant on a number of assumptions. The assumption of zero 

correlation between the noise on distinct channels, which corresponds to a fully incoherent 

noise field, is made in particular. In actuality, such an incoherent noise field is unusual, and 

the noise correlation between channels can be strong, especially at low frequencies. This is 

especially true for sensors that are near together, like in speech enhancement applications. 

This work shows how the Zelinski post-filter estimator's assumption of incoherent 

noise can be replaced with the more generic assumption of a known noise field coherence 

function. Theoretical noise fields, such as spherically isotropic (diffuse) or cylindrically 

isotropic noise fields, can be used to represent a variety of realistic noise fields, such as those 

found in workplaces or cars. The coherence functions for these theoretical noise fields are 

already used in a number of well-known beamforming techniques, including super directive 

beamformers ([117], [187]-[188]). 

The use of theoretical noise coherence models is extended to postfilter estimates 

enabling the development of a more appropriate post-filter for various noise conditions. The 
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Zelinski post-filter, which corresponds to a unity coherence matrix, is included as a special 

instance.  

According to Simmer et al. [8] the multi-channel Wiener filter provides the ideal 

solution to the problem of multi-channel noise reduction for broadband inputs in the minimum 

mean square error (MMSE) sense and may be further decomposed into an MVDR 

beamformer followed by a Wiener post-filter. As a result, in order to increase the performance 

of microphone arrays in noisy practical settings, a post-filter based on Wiener theory is 

usually required [8]. 

In the literature, a variety of post-filtering strategies have been published [28], [189]-

[199]). Zelinski [28] was the first to introduce a widely used multi-channel post-filter based 

on the Wiener filter. This post-filter is based on the premise that noise from separate 

microphones is uncorrelated, resulting in a perfectly incoherent noise field. This assumption, 

however, is rarely met in real-world situations, particularly in the case of closely spaced 

microphones and low frequencies, which are characterized by high-correlated noise. 

Fischer et al. proposed combining the generalized sidelobe canceller (GSC) with the 

Zelinski post-filter to suppress the spatially correlated and uncorrelated noise to suppress the 

high-correlated noise [192]. However, neither the GSC nor the Zelinski post-filter operates 

well at low frequencies, according to Bitzer et al. [147]. Meyer et al. provide an alternative 

technique that uses spectral subtraction to suppress the high-correlated noise components 

[33]. 

Due to the voice activity detector (VAD) based noise estimate technique, this method 

creates fake "musical noise" and fails to deal with non-stationary noise. McCowan and 

Bourlard have devised a universal expression for the Zelinski post-filter based on the noise 

field's a priori coherence function [189]. 

Although employing office room recordings, this post-filter was demonstrated to 

increase voice quality and speech recognition accuracy when compared to the Zelinski post-
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filter. Its performance is likely to be severely impaired when the "real" and presumed 

coherence function differs [189]. 

The optimally modified log-spectral amplitude (OM-LSA) estimator, a single-channel 

noise suppression technique, was recently described for minimizing log-spectral amplitude 

distortion in non-stationary noise settings [193]. When multi-channel inputs are available, the 

OM-LSA estimator was also extended to a multi-channel post-filtering approach, which was 

shown to be effective in reducing highly non-stationary noise components from the desired 

source components based on the energy-based speech presence probability estimator ([191], 

[194]. A speech presence probability estimator based on these spatial characteristics was 

provided to improve the performance of the OM-LSA post-filter [195]-[196] by taking into 

account the geographically stable characteristics of noise fields. The inherent sensitive 

implementation parameters involved in the variations of the OM-LSA post-filter [191], [193]-

[194], on the other hand, severely decrease their performance in actual contexts. 

A diffuse noise field has been proved to be a viable model for a wide range of 

practical noise situations, including reverberant rooms and automobile environments [7], 

[189], [33]. Traditional post-filters, such as the Zelinski and Mc Cowan post-filters, fail to 

minimize diffuse noise despite being based on Wiener theory [3]-[4]. OM-LSA post-filters, 

on the other hand, may be able to deal with diffuse noise with appropriate implementation 

parameters, but they are not based on Wiener theory, therefore breaching the framework of 

the multi-channel Wiener filter [191], [194]. Novel postfilter has to be explored in order to 

concentrate on both low and high frequencies of signal to enable speech presence samples. 

2.5 Non-negative Matrix Factorization Algorithms 

 

 Single-channel sound source separation or enhancement methods are motivated by 

many outstanding issues in signal processing and machine learning, such as speech 

denoising, speech enhancement, audio-based forensics, music transcription, and music 

remixing. One of the most effective approaches for these purposes is based on NMF [39], 

[198], and [199] and its probabilistic latent variable model counterparts [200] and [201]. 

These methods model spectrogram data or equivalently the magnitude of the short-time 
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Fourier transform (STFT) of an audio recording as a linear combination of prototypical 

spectral components over time. The resulting spectral components and their resulted gains 

are then used to separate each source within the mixture. These methods can achieve good 

separation or enhancement results using supervised or semi-supervised techniques. In 

these techniques, isolated training data is used to learn individual models of distinct sound 

sources also separates an unknown mixture of similar-sounding sources [202]. 

 Most of the variants that have been proposed to improve the performance of NMF 

consist in adding a regularization term to the log-likelihood function (LLF) of the 

observed data. Defining the right penalty (or regularizer) is one of the most important 

steps for incorporating the user-annotation constraint into the given latent model [203]. In 

[258], the user annotations are used to obtain the posterior regularization (PR) terms. 

There are several ways to incorporate these annotations into latent variable models, for 

instance, by using the suitable regularization functions and expectation maximization 

(EM) algorithms. In this method, annotations control the regularization parameters. 

 In [204], Chung et al. have proposed a speech enhancement approach in which clean 

speech spectral components and spectral noise components were modeled by Gaussian 

Mixture Model (GMM). The corresponding Log-Likelihood Function (LLF) was used as 

regularization to the cost function of conventional NMF to extract the statistical 

characteristics of the signals. Non-negative dynamical system (NDS) was introduced to 

model the speech and audio power spectra [205]. The NDS model can be interpreted both 

as an adaptation of linear dynamical systems (LDS) to non-negative data and as an 

extension of non-negative matrix factorization (NMF) to support Markovian dynamics. 

The performance of the proposed NDS algorithm was significantly better than the state-

of-the-art algorithm in terms of SDR in real environmental sounds like babble noise, 

helicopter, bees, fire, and shaking chapter. Recently proposed online semi-supervised 

NMF algorithms have only been evaluated using noisy mixtures shorter than 30 seconds. 

The performance degrades when the speech signal starts to appear after 2 minutes. To 

solve this problem, [206] proposed a rotational reset strategy. In the proposed method, 

instead of updating of entire speech dictionary continuously, periodically and rotationally 

reset speech dictionary elements. The proposed algorithm performs better than existing 
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algorithms in non-stationary noisy environments (: birds, casinos, cicadas, computer 

keyboard, eating chips, frogs, jungle, machine guns, motorcycles, and ocean) in various 

SNR conditions.   

 In [207], proposed a sparse and low-rank NMF with Kullback-Leibler divergence to 

estimate the noise spectrum from the input noisy speech spectrogram without any prior 

knowledge of speech and noise. In the proposed method, noise and speech were estimated 

by decomposing the input noisy magnitude spectrogram into a sparse speech-like part and 

low-rank noise part. 

2.6 Issues with the Existing Methods of Multi-Channel Speech 

 Enhancement 

The major issues with the existing multi-channel speech enhancement (MCSE) techniques 

identified from the literature survey are the following: 

1. Existing adaptive beamforming algorithms show substandard noise cancellation in 

sidelobe canceling path under noisy environmental conditions and also ineffective at -10 

dB SNR. Existing beamforming algorithms are unable to find the direction of the 

unknown signal and fail in suppressing the real-time environmental noise. 

2. Combined adaptive filters in existing adaptive beamforming are ineffective to achieve 

better noise reduction at -10 dB to 15 dB SNR levels and also gain more computational 

burden.  Adaptive beamforming with a single adaptive filter is limited to particular real-

time noise reductions.  

3. In the case of directional and diffuse noise in low frequencies, most of the multi-

channel speech enhancement methods give a less noise reduction. To remove diffuse noise 

from noisy speech, postfiltering of the noise signal is a concern. But existing postfiltering 

shows less noise reduction in the low-frequency region, where an exact speech signal 

exists. 
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4. Residual noise is generated after speech enhancement. Most of the speech enhancement 

algorithms assume the noise to be additive and are ineffective while dealing with the case 

adverse environment with multiple interferences. The performance of the algorithms 

designed for residual noise is also inefficient while handling real-time noise. 

2.7 Framework of Research Work 

From the issues, it is identified that to solve the problems of the existing methods of multi-

channel speech enhancement; new algorithms have to be developed based on different adaptive 

beamforming approaches. A generalized sidelobe canceller (GSC) would be appropriate to 

provide a balance between finding the direction of arrival of unknown signal and noise 

reduction in a noisy real-time environment. The innovative integrated adaptive algorithms 

should be introduced to adaptive beamforming systems to maintain a fair tradeoff between 

noise reduction and computational complexity. In order to deal with adverse environments to 

reduce diffuse noise and smoothen the output, efficient postfiltering techniques could be 

employed to adaptive beamforming. Residual noise could be addressed by employing an NMF 

algorithm that could adaptively enhance speech with respect to the varying noise levels. A 

novel technique integrating beamforming, postfiltering, and NMF must be devised to address 

the case of speech enhancement and interference separation. Waveform and spectrogram plots, 

as well as objective measures, are used to evaluate the developed speech enhancement 

algorithms. 

Objective measures should be able to assess the performance of the developed methods with 

respect to the specific issues addressed. The developed algorithms could be used in a variety of 

applications like teleconferencing, mobile phones, speech/speaker recognition, hearing aids, 

communication systems, etc. 

2.8 Summary 

In this chapter, the applications, the previous works, and the current advancements in 

the area of speech enhancement have been discussed. It provides the issues identified in the 

existing speech enhancement techniques and the framework for the research work in the 

thesis. The classification of speech enhancement techniques into single and multi-channel 
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enhancement based on the availability of a number of microphones/channels is discussed and 

various techniques employed are studied. Due to low complexity, better quality, and 

intelligibility, multi-channel techniques are more popular than single-channel techniques 

though the performance increases with the number of channels. There has always been an 

effort to develop speech enhancement algorithms that provide balance between real-time 

environment noise, diffuse and residual noise. Existing multi-channel speech enhancement 

methods like Adaptive beamforming shows ineffective performance in reducing the 

directional noises in noisy real-time environmental conditions. So, a novel Adaptive filtering 

algorithm has to be implemented. Conventional algorithms produce more residual noise in an 

attempt to reduce the diffuse noise in noisy environmental conditions like offices or cars. It 

has been shown in the works done that multi-channel speech enhancement techniques like 

adaptive beamforming methods give a better balance between the two than any other existing 

adaptive beamforming technique. Improvements in signal distortion have been reported when 

postfiltering stages are used after enhancement. Also, diffuse noise reduction could be 

achieved by employing signal estimators designed for it. Diffuse noise estimation and 

separation is an important stage in any practical speech enhancement algorithm. Employing 

the VAD-based noise estimation algorithms would degrade the performance of speech 

enhancement techniques since most of them update noise only during the speech absent 

frames and assume noise to be stationary during active speech regions. The most efficient 

noise estimator would be that of a continuous estimator based on speech presence probability. 

Speech enhancement in residual noise scenarios is a challenge, and a new technique has to be 

devised to handle it. Different techniques used so far in the beamforming approach to 

handling the case of diffuse and residual have been thoroughly studied. Most of the 

algorithms are inefficient in handling the case since they assume the nature of the noise to be 

additive white. For those designed to address the issue of real-time environmental and diffuse 

noise specifically, the sidelobe canceling path in beamformers should be carefully set to be 

efficient. NMF has been shown to deal with residual noise better in certain signal processing 

applications and could be employed to handle the case of residual for speech enhancement 

and separation. The development of speech enhancement algorithms addressing the issues 

identified from the literature would add to the performance of a wide range of speech 

processing applications like teleconferencing, mobile phones in speech/speaker recognition in 

pre-processing, and also in hearing aids communication systems, etc.  



33 
 

Chapter 3 

Adaptive Beamforming Using Different Adaptive Filters 

for Speech Enhancement 

This chapter proposes the use of various adaptive filtering algorithms like LMS, 

NLMS, and RLS to GSC beamformers under noisy real-time environments. And also 

proposes FCNLMS adaptive filtering algorithms to the sidelobe canceling path of the GSC 

beamformer for speech enhancement under different SNR levels. 

3.1 Motivation 

In the GSC beamformer, the noise cancellation relies on the sidelobe canceling path. 

Existing adaptive beamforming algorithms show substandard noise cancellation in sidelobe 

canceling path under noisy environmental conditions and also ineffective at -10 dB SNR. In 

order to improve speech in a noisy environment, a robust adaptive filter in the sidelobe 

canceling path must be developed. Novel adaptive filtering for multi-channel speech 

enhancement is proposed to address different noisy types with reduced computational time. 
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3.2 Introduction 

         In multi-microphone array, environmental noise degrades the desired speech quality and 

intelligibility. This is a major issue in speech communication applications like teleconferences, 

mobile phones, etc. when the desired speaker is non-stationary [7], i.e., in a noisy real-time 

environment, reducing the noise becomes quite difficult. In these cases, for noise reduction 

and interference suppression [106], in the place of conventional Finite Impulse Response 

(FIR) filters, which result in high computational complexities, the adaptive filters like Least 

Mean Square (LMS), Normalized LMS (NLMS) are widely used. However, in the case of 

single-channel speech enhancement, noise from a specific direction cannot be found using 

these basic adaptive filters. Single-channel speech enhancement algorithms fail in reverberant 

noise and also in finding the direction of the arrival of the input source. So, in multi-channel 

speech enhancement, Griffiths and Jim [21] introduced a GSC beamforming structure. It 

comprises three major blocks: fixed beamformer, blocking matrix, and an adaptive filtering 

block. In the fixed beamformer such as Delay and Sum Beamformer (DSB) [144], the 

microphone array receives the desired speech along with the noise. Delay from each 

microphone is calculated and then summed together to obtain the partially enhanced output 

[9], [214].  

 The performance of a multi-channel speech enhancement system depends completely on 

the blocking matrix and the adaptive filtering [227] block, which eliminates the unwanted 

noise and increases the quality of the desired speech. The adaptive filter block in the GSC 

beamforming plays a crucial role in noise reduction performance [213]. In the time domain, the 

gradient descent adaptive algorithms are used to update the weight of the filter. One such 

algorithm is the LMS algorithm which has low computational complexity but is not stable in 

noisy real-time conditions when the filter tap gets increased [113], [216]-[217]. Another 

popular adaptive algorithm is Recursive Least Squares (RLS) filter, which is based on Hessian 

adaptive filtering. It gives faster convergence when compared to LMS, whereas computational 

cost is high and is too expensive for noisy real-time environments [218], [172]. In order to 

have a better noise reduction in a noisy real-time environment, a GSC beamformer with 

different adaptive filters is implemented in this chapter. 
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3.3 The Proposed GSC Adaptive Beamforming for Speech 

 Enhancement 

 The Generalized Sidelobe Canceller (GSC) beamformer is one of the most popular 

adaptive beamforming techniques in the multi-channel speech enhancement domain. A GSC 

structure is composed of a fixed beamformer (e.g., delay-and-sum), Modified Blocking Matrix 

(MBM), and with different adaptive filters is proposed as shown in Figures 3.1. The input to 

the proposed system is considered using a microphone array setup with noisy real-time 

conditions in a virtual conference room. The virtual conference room is designed based on the 

Image method [225], which takes the Room Impulse Response in the form of a Mex function 

using RIR generator [226] in MATLAB. As a fixed beamformer, delay and sum beamformer 

(DSB) is used. It calculates the direction of arrival (DOA) based on the delay and distance 

from each microphone. An unknown noisy input signal with partial enhancement is found at 

the output of DSB. 

 

 

 

 

Figure 3.1: The Proposed GSC Beamformer for Speech Enhancement 

 MBM, on the other hand, blocks the speech signal and feeds a noise reference to the 

adaptive filter. To further reduce the noise in the signal, proposed a novel Fast Convergence 

NLMS adaptive algorithm in the sidelobe canceling path of the GSC beamformer and also 

verified with existing adaptive algorithms. An adaptive filter is updated till the noise gets 

reduced at the output of the GSC beamformer. In the adaptive filter block, different adaptive 
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filtering algorithms like LMS, NLMS, and RLS algorithms are implemented, and also novel 

FCNLM adaptive filter is implemented for the noisy real-time environment in the coming 

sections to achieve noise reduction and low complexity in a non-stationary environment.  

3.3.1 Fixed Beamformer (FBF) 

FBF is used to find the direction of arrivals for unknown signals. To make the 

proposed method robust, considered the microphone array setup in the adverse environment 

using the room impulse response-based Mex function (in MATLAB). The DSB is one of the 

fixed beamforming techniques. It is used as FBF in the proposed method, which calculates the 

direction of arrival (DOA) based on the delay between each microphone. The structure of the 

DSB beamformer is shown in Figure 3. 2 

 

 

 

 

  Figure 3.2: Fixed Beamformer (FBF) 
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In the DSB structure, the microphones are placed linearly by giving d as the spacing 

between each microphone and angle   for receiving the input signal from a particular 

direction. Here 
1 2( ), ( ),.... ( )ms n s n s n  is the combination of desired speech (unknown source), 

directional interference, and diffuse noise, which are input signals to the microphone. The 

input of each microphone is delayed with an angle   and then summed to have a partially 

enhanced speech with the diffuse noise at the output of DSB, which is shown in Figure.3.2. 

DSB output is defined as 

   
1

1
( ) ( )

M

m m
m

x n s n
M



                  (3.2) 

Where x(n) is the output of DSB, M is the number of microphones, ( )ms n is the 

incoming source at the 
thm microphone and the delay from source to each microphone is 

m . 

The main lobe position in the directivity pattern is changed by modifying the phase weight 

( )m f  i.e,     

   ( ) 2 ( 1)m f m d                              (3.3) 

Where             

                                             
sin




                      (3.4) 

  is the direction of arrival of an incoming signal and   is used to determine the 

wavelength of frequency. The phase shift in the frequency domain relates to a time delay in 

the time domain. The time delay 
m  can be analyzed as given below 

    
( )

2

m
m

f

f





                                                      (3.5) 
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2 ( 1)

2
m

m d

f







                                       (3.6) 

   
2 ( 1) sin

2
m

m d

f

 





                                      (3.7) 

   c f                    (3.8) 

   
2 ( 1) sin

m

m d

c

 



                   (3.9) 

Likewise, the delays (τm) from the microphones are calculated and summed at the 

output of DSB represented as x(n) in the proposed method. 

3.3.2 Modified Blocking Matrix (MBM) 

In GSC beamforming, the blocking matrix plays a crucial role. It is used to block the 

desired speech signal and provides only the noise reference as input to the adaptive 

interference canceller, which is described as follows. 

The lower path of the GSC  beamforming is the blocking matrix [21], which is used to 

block the desired signal ( ).d n  As the desired signal is common to all the microphones from 

Equation (3.1), blocking is confirmed if the rows of the blocking matrix sum up to zero. 

If 
T

mb  is the m
th

 row of blocking matrix 

    1 0T

mb      for all values of m              (3.10) 

 and 
mb  is linearly independent so that ( )ml n  it will have M-1 linearly independent 

components, which makes the row dimensions of the blocking matrix to M-1. Griffiths [21] 
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considered the number of microphones as four, i.e., M=4, and gave two matrices. The first 

blocking matrix is defined as  

1

1 1 1 1

1 1 1 1

1 1 1 1

BM

  
 

   
 
  

 

Similarly, the second blocking matrix is defined as 

2

1 1 0 0

0 1 10

0 0 1 1

BM

 
 

 
 
  

 

  The rows are mutually orthogonal and are the elements of the binary-valued Walsh 

function. Here 
2BM  represents the difference between the adjacent microphone outputs. Each 

row 
1BM represents different amplitude responses, whereas each row 

2BM has identical 

patterns. But by using these matrices, the spatial information is not completely utilized. So, 

MBM is designed to subtract the desired speech from the noisy input signal using adjacent 

microphones. In the proposed GSC beamforming, MBM is used to utilize the complete spatial 

information on adjacent microphones and also on other microphones by using the identical 

pattern in the matrix. MBM is designed as 

1 1 0 0

1 0 1 0

1 0 0 1

MBM

 
 

 
 
  

 

The number of columns in the matrix indicates the number of microphones which is 

considered to be four, and the efficiency of MBM is 3. MBM gives the details of the complete 

noise present in the target signal and blocks the desired speech, and thus acts as noise 

reference for adaptive filter. The number of columns in the matrix indicates the number of 



40 
 

microphones which is considered to be four, and the efficiency of MBM is 3. Finally, the 

DSB output is a speech reference signal, and the MBM output is a noise reference that is 

given to the adaptive filter block.  To further reduce the noise in the signal, proposed a 

different adaptive filter in the sidelobe canceling path of the GSC beamformer. Next, the 

adaptive filtering block is explained as follows: 

3.3.3 Adaptive filtering Algorithms 

An adaptive filter with a robust convergence rate is essential in speech enhancement. 

In the lower part of GSC, the second block is an adaptive filter. In this chapter, adaptive filter 

plays a prominent role in reducing the error between the desired and noisy reference of a 

GSC. This can be achieved by using different adaptive algorithms [113] in the adaptive filter 

block. The blocking matrix noisy reference is given as input to the adaptive filter, where the 

weights are updated to enhance the corrupted speech at the GSC output. In this chapter GSC 

with different adaptive filters is proposed in order to improve the performance of GSC in 

terms of speed and complexity. Here, introduced three adaptive filters like LMS, NLMS, RLS 

is analyzed. The traditional LMS and NLMS adaptive filters give limited noise reduction, low 

convergence, and high computational complexity [215]. So, novel FCNLMS is implemented 

in the adaptive filter block of GSC. Different adaptive algorithms are explained below. 

3.3.3.1 LMS Algorithm 

In adaptive signal processing, the least-mean-squares (LMS) algorithm [215] is 

extensively used due to its stable nature and simplicity during implementation. In stationary 

conditions, LMS shows the best steady-state performance [216]. The standard LMS algorithm 

is explained in step by step manner below.    

1. In the first step, the filter weight coefficients are initialized  

  𝑤̅ (𝑛) =  [ 𝑤1(𝑛)𝑤2(𝑛)𝑤3(𝑛)…𝑤𝑝(𝑛) =  0]              (3.11) 
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Where P is the order of the filter 

2. The adaptive filter output is calculated as 

   𝑦(𝑛)  =  𝑤̅𝑇(𝑛)𝑧𝑞(𝑛)                      (3.12) 

3. The error signal e(n) is calculated as 

   𝑒(𝑛)  =  𝑑(𝑛) − 𝑦(𝑛)                       (3.13) 

LMS update equation is given by 

      w̅(n + 1) =  w̅(n) + μe(n)𝑧𝑞(n)                                               (3.14) 

Where is the step-size, the convergence rate of the filter weights is purely based on 

 value. Equation (3.14) LMS weights update equation, which is employed in the GSC 

structure's adaptive filter block to update degraded speech and decrease error. The 

computational complexity of LMS is given by the 2N number of additions/Subtractions and 

2 1N  Multiplications/ Divisions with N=256. 

3.3.3.2 NLMS Algorithm 

The normalized LMS (NLMS) algorithm is in addition to the standard LMS algorithm 

[216]. In NLMS, the weight vector will be changed minimum times from one iteration to 

other. The step size in the NLMS algorithm is in a time-varying parameter which is used to 

calculate convergence of the adaptive filter. Step size  is given as 

   
2

( )
( )q

n
c z n


 


                              (3.15) 
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The convergence rate of NLMS is optimized by adaption constant  , which ranges 

from 0<α<2, ‘c’ in the Equation (3.15) is a constant term used for normalization of the filter, 

which is limited to c< 1. 

Finally, the NLMS algorithm updates the filter coefficients by using the following 

equation. 

          𝑤̅(𝑛 + 1) =  𝑤̅(𝑛) +
 𝛼 

𝑐+||  𝑥̅′(𝑛)||2
𝑒(𝑛)𝑧𝑞(𝑛)               (3.16) 

NLMS algorithms converge faster compared to LMS because of the normalization 

factor  . The error ( )e n of NLMS is less compared to the LMS algorithm. Computational 

Complexity [217 of NLMS is given by the 
22 2N N  number of additions/Subtractions and 

22 3N N  Multiplications/ Divisions. 

3.3.3.3 RLS Algorithm  

Recursive Least Squares (RLS) algorithm is robust adaptive algorithms to fasten the 

convergence rate compared to LMS and NLMS [218]. By using the RLS algorithm, the 

adaptive filter coefficients are found recursively to minimize the weighted least square of cost 

function corresponding with the input. RLS algorithm is strong in spontaneously adjusting the 

filter coefficients without knowing the input signal statistical information. At each instant, the 

RLS algorithms minimize the sum of squares of the desired speech signal estimated errors 

[219]. Noise cancellation capacity is high compared to LMS and NLMS but requires 

complicated mathematical operations. Because of this, RLS requires more computational 

resources [220]. The RLS algorithm is explained below in a step-by-step manner. 

1. In the first step, the RLS algorithm filter coefficients are initialized 

 𝑤̅(0) = [0 0 0…… . 0 0 ]𝑇                (3.17) 
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2. In the second step, the inverse matrix (0)P is initialized with the diagonal 

matrix maintaining the main diagonal with 1   a value 

 ( ) [ ( ) ( 1).... ( 1)]T

q q q qz n z n z n z n M       (3.18)     

where the ( )qz n  is the adaptive filter input vector        

3. In the final step, the RLS updated by calculating the following equations at 

each segment of the input signal. 

 𝑤̅(𝑛)  = 𝑤̅(𝑛 − 1) + 𝑅(𝑛)𝑒(𝑛),        (3.19) 

    𝑅(𝑛) =  𝜆−1𝛱(𝑛) (1 + 𝜆−1𝑧𝑞
𝐻(𝑛)𝛱(𝑛))⁄                (3.20) 

 

                    𝑃(𝑛) =  𝜆−1𝑃(𝑛 −  1) 𝜆−1𝑅(𝑛)𝑧𝑞
𝐻(𝑛)𝑃 (𝑛 − 1)            (3.21) 

The error is estimated as follows 

 𝑒 (𝑛) =  𝑑(𝑘) − 𝑤̅𝐻(𝑛 −  1)𝑧𝑞(𝑛)  (3.22) 

The computational complexity of RLS is given by 
23 4N N a number of 

additions/Subtractions and 
23 6N N  Multiplications/ Divisions. 

3.3.3.4 Proposed Fast Convergence NLMS Algorithm  

A fast convergence and low complexity adaptive algorithm named Fast Convergence 

NLMS (FCNLMS) [232] is presented in this section, where updating the filter coefficients 

depends on adaption gain and likelihood variable of the fast transversal filter. In FCNLMS, 
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the forward prediction error e(n) of the fast transversal filter [231] is calculated by applying a 

de-correlated technique to the input signal. This is used in analyzing the dual Kalman gain. 

The step by step procedure of FCNLMS is as follows: 

1. Initialization: Initialize  

 Initialize 𝐶𝑁(0) adaptation gain vector,  ℎ𝑁(0)  estimated filter coefficient vector, and 

also 𝛾𝑁(0) and 𝛾1(0) likelihood variables for N samples. 

    𝐶𝑁(0) = ℎ𝑁(0) = 0               (3.23) 

      γN(0) = 0 ,γ1(0) = 0 

                                        α(0) = γ1(0) = 𝐸0                               (3.24) 

Where  𝐸0  is an initialization constant with α(0)  forward prediction error’s variance. 

2. Prediction error:  e(n) 

The prediction coefficient estimation can be calculated as 

    a(n) =
r1(n)

r0(n)+ca
                                                         (3.25) 

Where r1(n) and r0(n) can be estimated recursively according to 

     r1(n) = λar1(n − 1) + 𝑧𝑞(n)𝑧𝑞(n − 1)                   (3.26) 
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                r0(n) = λar0(n − 1) + 𝑧𝑞
2(n)               (3.27) 

Where 𝑧𝑞(n − 1) is input vector at the time ‘n,’ ‘λa’ is exponential forgetting factor and is. 

‘ca’ a small positive constant.  

To compute the prediction error using a first-order prediction model: 

   e(n) = x̅′(n) − a(n)𝑧𝑞(n − 1)                                (3.28) 

The forward prediction error variance is defined as 

    α(n) = λα(n − 1) + e2(n)                                                            (3.29)               

Adaption Gain is given by 

      [
CÑ(n)

c(n)
] = [

−
e(n)

λαN(n−1)+c0

CÑ(n − 1)
]                                     (3.30)                  

CÑ(n) dual Kalman gain,  

    δ(n) = c(n)𝑧𝑞(n − N) +
(n)e(n)

λαN(n−1)+c0
                                 (3.31)  

    γN(n) =
γN(n−1)

1+γN(n−1)δ(n)
                                              (3.32) 

Error for an adaptive filter is given as 
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    εN(n) = d(n) − hN
T(n − 1)x̅N

′ (n)            (3.33)                

Finally, the FCNLMS updating equation is defined as         

                              hN(n) = hN(n − 1) − μεN(n) γN(n)CÑ(n)             (3.34)  

 FCNLMS algorithm converges faster compared to RLS, NLMS, and LMS because of 

adaption gain. FCNLMS exhibits faster convergence with low complexity compared to LMS 

NLMS and RLS. The computational complexity of FCNLMS is 3N. FCNLMS algorithm 

converges faster compared to NLMS because of adaption gain. FCNLMS exhibits faster 

convergence with low complexity compared to LMS NLMS and RLS. The computational 

complexity of FCNLMS is 3N multiplications whereas LMS with 2N+1, NLMS with 

2N^2+3N, and RLS with. The computational complexity of FCNLMS is low compared to 

LMS NLMS and RLS algorithms. All the four adaptive filtering algorithms LMS, NLMS, 

RLS, and the proposed FCNLMS, are applied to the adaptive filter block of GSC, and the 

error is minimized under various real-time noisy environments. The existing GSC-LMS and 

GSC-NLMS algorithm performance are less under noisy real-time conditions. The proposed 

GSC-FCNLMS algorithm gives enhanced speech with a minimal error when compared to 

GSC-LMS and NLMS. GSC-FCNLMS achieves faster convergence when compared with 

existing GSC-NLMS. The performance evaluation of the proposed algorithms is shown in the 

next section. 

3.4 Results and Discussion 

 In this section, the simulation of the proposed GSC-FCNLMS, GSC-RLS, GSC-

NLMS, GSC-LMS methods in noisy real-time conditions is evaluated and explained. The 

proposed GSC beamformer with different adaptive algorithms considers the following 

simulation parameter as shown in Table 3.1. A Multi-channel room impulse response is 

generated using a Mex function with a reverberation time of 300 ms following a Mex setup 

using Mex function, i.e., rir-generator.cpp [226] in MATLAB. The Mex function was taken 

from International Audio Laboratories Erlangen at Friedrich Alexander University Erlangen-

Nuremberg. (https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator). 

https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator
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 The noisy real-time condition is created by adding desired speech and real-time noises 

from unknown directions. The desired speech is taken using the DARPA TIMIT [227]-[228] 

database. The database is maintained with a sampling frequency of 8 kHz, which consists of 

6300 male and female sentences where each of the 630 speakers speaks 10 sentences each. 

The real-time noises (Car, Restaurant, Babble, Airport, Station, Street noises) are taken from 

the NOIZEUS database [229]-[231]. These input signals are provided to the Mex setup, which 

gives a combination of the desired speech with real-time noise for different SNRs (-10 dB to 

15 dB). 

 The degraded speech is an input to the DSB to evaluate the delay from each 

microphone and obtain a reference enhanced signal. After that, the input degraded speech is 

given to MBM. Using the MBM matrix, the subtraction of the delays caused on the adjacent 

microphones is calculated. Further, at the MBM output, a noise reference is generated. 

Finally, the same reference noise is applied to the adaptive filtering block (where different 

adaptive algorithms are analyzed) as input, where the weights of the filter are updated for 

each algorithm. Due to the proposed FCNLMS adaptive algorithm in sidelobe canceller, the 

error is minimized better compared to traditional algorithms like LMS, NLMS, RLS, and 

enhanced speech is attained at the output of the GSC beamformer. GSC-FCNLMS gives a 

high-quality enhanced speech at the GSC output, as shown in Figure 3.1. 

 Table 3.1: Simulation Parameters Considered for Proposed GSC Beamforming 

Parameters Specifications 

Number of microphones(m) m=4 

Spacing to each microphone 5cm 

Real-time noisy environment Car, Restaurant, Babble, Airport, Station, and Street 

Input SNR Levels -10 dB, -5 dB, 0 dB, 5 dB, 10 dB 

Room dimensions 6 m X 5 m X 3 m (Image Method), RIR generator  [225]-[226] 

Database DARPA TIMIT [227] and Noizeus [229]-[230] 

Tools MATLAB and Python 

Processor Intel Core I7 Processor, Clock Speed-2.20 GHz, 8 GB RAM 
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3.4.1 Performance Analysis of the Proposed Method with Existing 

 Methods   

 The performance of the proposed GSC-FCNLMS, and other GSC-LMS, GSC-NLMS, 

and GSC-RLS algorithms are analyzed in terms of objective parameters, namely Perceptual 

Evaluation of Speech Quality (PESQ) [231], Signal to Noise Ratio (SNR), and Log-

Likelihood Ratio (LLR) [231]. 

3.4.1.1 Perceptual Evaluation of Speech Quality (PESQ)  

PESQ [231] is an objective comprehensible measure. The range of PESQ as per the 

Standards International Telecommunication Union Telecommunication (ITU-T) lies between 

“0.5 to 4.5”. The more the PESQ, the better is the intelligibility. Intelligibility measure PESQ 

at 10 dB for GSC- FCNLMS is 4.080 dB whereas for GSC-LMS GSC-NLMS and GSC-RLS 

is 3.407 dB, 3.960 dB and 4.010 under station noise, similarly for same station noise at -10 dB 

the PESQ for GSC- FCNLMS is 2.769 dB whereas, for GSC-LMS, GSC-NLMS and GSC-

FCNLMS are 2.494 dB, 2.753 dB, 2.75 dB respectively. These measures show that GSC-

FCNLMS beamformer gives an improved performance with less computation complexity, 

i.e., better PESQ compared to GSC-LMS, GSC-NLMS and GSC-RLS.  

 3.4.1.2  Signal to Noise Ratio (SNR)   

The SNR (signal to noise ratio) is the ratio of signal to noise power. The higher the 

SNR value, the better the quality of the received output will be.  

  𝑆𝑁𝑅(𝑑𝐵) = 10 𝑙𝑜𝑔10
∑ 𝑦2(𝑘)𝑁−1
𝐾=0

∑ [𝑥̂(𝑘)−𝑦(𝑘)]2𝑁−1
𝐾=0

                (3.35) 

 Quality measure output SNR at 10 dB for GSC-FCNLMS is 31.4 dB whereas for 

GSC-LMS, GSC-NLMS, and GSC-RLS is 25 dB, 26 dB and 33.8 under station noise, 

similarly for same station noise at -10 dB the output SNR for GSC- FCNLMS is 6.9 dB.  
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Table 3.2 Performance Comparison of PESQ and SNR for GSC-FCNLMS With 

Existing Algorithms 

SNR 

in 

dB 

Noise 

Types 

GSC-LMS GSC-NLMS GSC-RLS GSC-FCNLMS 

PESQ SNR PESQ SNR PESQ SNR PESQ SNR 

 

 

 

-10 

Car 2.198 7.0 2.369 7.8 2.461 10.1 2.444 8.4 

Restaurant 2.338 9.3 2.516 11.5 2.713 14.2 2.687 12.7 

Babble 2.239 8.5 2.412 9.3 2.671 12.1 2.574 10.1 

Station 2.494 6.3 2.53 6.8 2.75 7.5 2.769 6.9 

Airport 2.273 6.3 2.465 7.5 2.771 10.1 2.612 8.8 

Street 2.378 10.3 2.601 11.0 2.879 12.9 2.768 12.0 

White 2.037 7.8 2.135 9.0 2.46 12.1 2.35 10.8 

 

 

 

-5 

 

Car 2.474 11.0 2.651 12.3 2.741 14.0 2.698 12.9 

Restaurant 2.58 13.3 2.82 17.3 2.93 20.6 2.88 18.8 

Babble 2.49 12.3 2.705 13.5 3.0 17.3 2.961 14.9 

Station 2.764 11.0 3.039 11.8 3.056 12.7 3.05 12.0 

Airport 2.576 9.8 2.818 11.8 2.942 14.3 2.894 12.8 

Street 2.62 14.5 2.886 17.0 2.99 18.2 2.91 17.6 

0 Car 2.707 18.3 2.935 18.5 2.99 20.4 2.941 18.9 

Restaurant 2.785 20.0 3.089 21.5 3.192 23.0 3.099 22.2 

Babble 2.729 18.3 3.0 19.8 3.16 24.2 3.100 22.8 

Station 3.012 17.0 3.344 17.9 3.472 19.3 3.410 18.7 

Airport 2.872 14.0 3.132 16.5 3.539 20.5 3.436 18.6 

Street 2.822 20.8 3.16 21.5 3.44 26.6 3.360 23.2 

 

 

 

5 

Car 2.972 22.5 3.255 24.0 3.428 29.9 3.350 26.6 

Restaurant 3.039 24.0 3.451 26.8 3.66 28.0 3.578 27.5 

Babble 2.972 22.8 3.301 24.5 3.505 25.3 3.421 25.0 

Station 3.221 21.0 3.691 21.8 3.737 23.9 3.700 22.4 

Airport 3.094 21.8 3.487 22.0 3.548 25.1 3.513 23.7 

Street 3.043 25.5 3.464 27.0 3.876 30.0 3.686 28.1 

 

 

10 

Car 3.158 27.5 3.50 28.8 3.641 34.0 3.740 31.3 

Restaurant 3.26 28.8 3.711 30.8 3.77 32.5 3.353 31.7 

Babble 3.174 27.3 3.576 29.5 3.634 30.8 3.598 29.9 

Station 3.407 25.0 3.960 26.0 4.010 33.8 4.080 31.4 

Airport 3.315 26.0 3.774 26.8 3.86 28.5 3.824 27.0 

Street 3.256 29.8 3.74 31.0 3.805 33.5 3.785 32.5 
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Whereas for GSC-LMS, GSC-NLMS, and GSC-FCNLMS are 6.3 dB, 6.8 dB, 7.5 dB 

respectively. These measures show that GSC-FCNLMS beamformer gives improved 

performance with less computation complexity, i.e., better SNR compared to GSC-LMS, 

GSC-NLMS. Whereas GSC-RLS gives better performance than GSC-FCNLMS, but 

computation complexity is high compared to the proposed GSC-FCNLMS.                                                                                                              

3.4.1.3 Log-Likelihood Ratio (LLR)   

 LLR [231] is an objective measure defined based on the LPC co-efficient, where 𝛼𝑝 

is the clean speech LPC vector and processed speech LPC vector 𝛼𝑝. 𝑅𝑐 Clean speech auto-

correlation matrix. 

   𝑑𝐿𝐿𝑅(𝛼𝑝, 𝛼𝑐) = log (
𝛼𝑝𝑅𝑐𝛼𝑝𝑇

𝛼𝑐𝑅𝑐𝛼𝑐𝑇
)                       (3.36) 

Lowering the LLR more will be speech performance quality.  

 

Figure: 3.3 Performance Comparison of Log-Likelihood Ratio (LLR) 
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LLR measure for the GSC-FCNLMS gives a lower LLR of 0.532 dB at 10 dB and 

1.09 dB at -10 dB under station noise, which means the proposed GSC-FCNLMS. The LLR 

performance of GSC- FCNLMS, GSC-LMS, and GSC-NLMS is shown in Figure 3.3 

3.4.1.4 Waveforms 

In Figure 3.4 and Figure 3.5, the time domain plots and spectrograms of the proposed multi-

channel speech enhancement system are illustrated, which shows the proposed GSC-FCNLMS 

with existing GSC-RLS GSC-NLMS and GSC-LMS noise reduction performance for 5 dB 

street noise. The enhanced speech signal of the proposed GSC-FCNLMS algorithm shown in 

Figures 3.4 and 3.5 gives better noise reduction compared to other algorithms. 

 

        Figure 3.4: Time Domain Plot of Proposed GSC-FCNLMS with Existing 

Algorithms 
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Figure 3.5: Spectrogram of Proposed GSC-FCNLMS with Existing Algorithms 

3.5 Summary 

Adaptive beamforming using FCNLMS adaptive filters for speech enhancement is 

proposed in this chapter. GSC-FCNLMS beamformer gives fast convergence and low 

complexity when compared with existing GSC-LMS, GSC-NLMS, and GSC-RLS algorithms 

under various noisy conditions. The quality of the speech signal for the proposed GSC-

FCNLMS gives superior performance compared to existing algorithms. At -10 dB, the PESQ 

for proposed GSC-FCNLMS is 2.769 dB, whereas GSC-LMS, GSC-NLMS and GSC-RLS it 

is 2.494 dB, 2.53 dB and 2.75 dB under station noise conditions. Similarly for at -10 dB input 

SNR, GSC-FCNLMS output SNR is 6.9 dB, whereas GSC-LMS and GSC-NLMS is 6.3 dB, 

and 6.8 dB, respectively. Both quality and intelligibility of speech are improved for GSC with 

FCNLMS compared to LMS, NLMS, under various noise types even at lower SNRs. But only 

a few noisy types are giving better noise reduction using the proposed GSC-FCNLMS 

algorithm in this chapter. In order to address all the real-time environmental noises with the 

high objective quality measures under higher SNRs, i.e., above 10 dB, the novel adaptive 

filtering algorithm to sidelobe canceling path of GSC is implemented in chapter 4. 
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Chapter 4 

Signed Convex Combination of Fast Convergence 

Algorithm to GSC Beamformer  

This chapter proposes a convex combination of two FCNLMS adaptive filtering 

algorithms to the sidelobe canceling path of the GSC beamformer for speech enhancement. 

And also, proposed the signed algorithm to a convex combination of fast convergence filters 

to reduce real-time environmental noise and computational burden in the sidelobe canceling 

path.    

4.1 Motivation 

 Combined adaptive filters in existing adaptive beamforming are ineffective to achieve 

better noise reduction at higher SNR levels and also gain more computation burden. Compared 

to a single adaptive filter, combination adaptive filters provide better noise reduction for all 

types of noises. Existing adaptive beamforming algorithms with convex combination adaptive 

filter gives noise cancellation for only particular real-time noises. In order to improve speech in 

a noisy environment, a robust adaptive filter in the sidelobe canceling path must be developed. 

A novel convex combination adaptive filtering method with a signed scheme is proposed for 

multi-channel speech enhancement to address various noisy types with less computational 

time. 
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4.2 Introduction 

 Fast convergence [224] algorithm has less computational complexity but gives less 

performance under various noisy conditions at high SNRs. And also, when the positions of 

the source signal change, the weight coefficient information used to update the adaptive filter 

will be lost; due to this, poor performance in the non-stationary environment combined 

adaptive filter [233]-[235] are designed, which give good convergence transition compared to 

the single adaptive filter. 

 Adaptive beamforming with an Affine Projection Algorithm [236] (APA) is presented 

to increase adaption performance, which provides higher noise reduction than existing time-

domain techniques but fails in a noisy real-time environment. In the combined adaptive 

beamforming method [236], a combination of LMS-RLS adaptive filters in sidelobe canceller 

fails in noisy real-time conditions, and the computational burden is raised due to the mixing 

parameter. Another existing algorithm for noise reduction in recent times is, GSC beamformer 

with linear prediction filter [237], which is used in multi-channel speech enhancement 

systems addresses dereverberation and noise reduction but has high computation complexity. 

Barnov., in 2019, introduced GSC beamforming using controlled white Gaussian gain [238], 

where non-stationary environments are only limited to a single speaker. A modified change 

prediction [239] to GSC beamforming is applied, which holds good for echo cancellation but 

fails in interference suppression.  

 The above-mentioned algorithms give the motivation for the further improvement of 

the sidelobe canceller path of the GSC beamformer to achieve both noise reduction and less 

computational burden. A robust beamforming method should be designed to overcome these 

disadvantages. 

  In this chapter, a GSC beamformer with SCCFC adaptive filters is proposed to 

address the above-mentioned issues. The novelty of the GSC structure lies in the sidelobe 

canceling path. In this chapter, novelty is achieved in two steps. The first step is to consider 

FCNLMS as an adaptive filter in the convex combination algorithm to give a better noise 

reduction and a low computational complexity. 
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  The second step is to employ a signed algorithm to further reduce the computational 

complexity in the mixing parameter design. In this way, using the signed algorithm with a 

convex combination of FCNLMS adaptive filters, both noise reduction and low computational 

complexity are achieved under various real-time noisy conditions. The proposed GSC 

beamforming using the SCCFC algorithm shows better noise reduction and lower 

computation complexity when compared to the existing algorithms. 

The main contributions of the chapter4 are as follows: 

(1) To improve the sidelobe canceling path of a robust GSC beamformer, a novel convex 

combination of fast convergence filters is proposed. 

(2) To maintain a trade-off between computational complexity and noise reduction, a 

signed algorithm is introduced to the proposed filtering method. 

(3) Tested the proposed multi-channel speech enhancement system under various real-

time noisy conditions. 

(4) The performance is shown in terms of computational complexity and noise reduction. 

4.3 The Proposed GSC Beamforming with SCCFC Adaptive 

 Filtering Algorithm 

 This section describes the multi-channel speech enhancement system in a real-time 

environment, as shown in Figure 4.1. GSC beamformer comprises of three major blocks: a 

fixed beamformer and modified blocking matrix (MBM) and whereas in the sidelobe 

canceling path where novel Signed Convex Combination of Fast Convergence (SCCFC) 

adaptive algorithm is proposed. The input to the proposed system is considered using a 

microphone array setup with noisy real-time conditions in a virtual conference room. The 

virtual conference room is designed based on the Image method [225], which takes the Room 
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Impulse Response in the form of a Mex function in MATLAB. The fixed beamformer block 

and MBM are explained in section 3.3.1 and section 3.3.2, respectively. Whereas in this 

chapter, the novel MBM is designed in order to utilize complete spatial information and is 

discussed below. 

 

 

 

 

 

Figure 4.1: GSC Beamforming with Proposed SCCFC  
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The number of columns in the matrix indicates the microphone here with q = 1, . . . , Q where 

Q = M - 1, where M is the number of microphones. MBM gives the details of the complete 

noise present in the target signal and blocks the desired speech, and thus acts as noise 

reference for SCCFC. These constraints are considered to show the effectiveness of the 

proposed SCCFC in the GSC structure. The noise reference signals are adapted using the 

proposed SCCFC algorithm. The error at the output of the GSC beamformer is the difference 

between SCCFC output and speech reference. Then, the GSC-SCCFC beamformer output is 

given by ( ) ( ) ( ).e n d n y n   The error is updated using the proposed SCCFC algorithm until 
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it is minimized. The derivation of the SCCFC algorithm is shown in the below section. 

Firstly, a convex combination of the FCNLMS adaptive filter is drawn, and then the signed 

algorithm is applied using the transfer approach in the next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: The Proposed SCCFC Adaptive Filter 

 

4.4 Signed Convex Combination of Fast Convergence (SCCFC) 

Adaptive Filtering Algorithm 

The proposed SCCFC block is a signed convex combination of two same fast convergence 

adaptive filters, i.e., FCNLMS, as shown in Figure 2 with updating rule which is given by: 

    ( ) ( ) ( ) ( )
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T

l N l l l

n q q q N qH h n h n h n                  (4.1) 

 Where, 
( )

,

l

n qH  is the vector with thq  filter coefficients of  
thl system, with  ,l a b  a 

thn  

time instant, l a  implies first FCNLMS filter and l b   implies second FCNLMS filter. The 

thq  noise reference vector is expressed similarly. 
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                                   , 1 .... 1
T

N

n q q q qZ R z n z n z n N                         (4.2) 

The combined adaptive filter is obtained by combining the two adaptive filter outputs using 

the mixing parameter. ( ) ( )ly n is the output of the combined adaptive filter, which is defined as 

   
( ) ( )

1

( ) ( )
Q

l l

q
q

y n y n

                                             (4.3) 

The convex combination of ( ) ( )ay n and ( ) ( )by n is given by 

   ( ) ( )( ) ( ) ( ) (1 ( )) ( )a by n n y n n y n                        (4.4) 

 Where, ( )n is a mixing parameter, and ranges from [0,1] [234]. When ( ) 0n  , the 

small step size filter (slow filter) works effectively by maintaining low steady-state error. 

When ( ) 1n  , the large step size filter (fast filter) works better with high convergence to 

limit the ( )n range between [0,1], the mixing parameter is expressed by a sigmoid function 

and an auxiliary parameter ( )I n . 

    
( )

1
( )

1 I n
n

e






                                        (4.5) 

The convex combined filter  error is minimized by adapting ( )I n and is defined as: 

   
( ) ( )( 1) ( ) ( ) ( ) ( ) ( )[1 ( )]a b

II n I n e n y n y n n n                       (4.6) 

When ( )n it is equal to 0 or 1, to reduce idleness, the auxiliary parameter is limited to 

[ , ]I I  , such that the mixing parameter is made to move in [1 , ]    . Here, I 
and  
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are small positive constants. The update rule of the weight vector , ( 1)l

n qH n   for thl an 

adaptive filter ( , )l a b  is written as where ( )NC n is dual Kalman gain [224], ( )N n is the 

Likelihood variable [224]. 

Dual Kalman gain is defined as:  

                   ( ) ( ) ( )

, 1,( 1) ( ) ( ) ( )l l l

n q n q q N NH n H e n n C n                     (4.7) 

                              CÑ
,

2

( )
( )

1

n p

z o

Z n
n

c





 




                                   (4.8)                       

Where 
oc and  is a small positive constant. Likelihood variable is defined as: 

        

1

1
( )

1 ( 1)
N N

k

n
v n k







  

                     (4.9) 

Where 
( 1)( ) ( )Nv n C x n  is the shifting component, 

( ) ( )l

qe n in Equation (4.7). is the error 

estimator of FCNLMS filter with thq error signal, expressed as 

     
( ) ( )( ) ( )l l

q qe d n y n                               (4.10) 

Where 
( ) ( )l

qy n is the FCNLMS filter output of thq filter and is expressed as 

            
( ) ( )

, 1,( )l T l

q n q n qy n Z H                                  (4.11)  
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Where 
l  is the step size of thl adaptive filter. The overall weight coefficient of the convex 

combination of the adaptive filters is expressed as 

                 ( ) ( )

, , ,( ) ( ) [1 ( )]a b

n q n q n qH n H n n H                              (4.12) 

 By updating the filter with the help of the mixing parameter, there is a decent trade-off 

between the convergence speed and steady-state error. However, such algorithms require the 

fixing of mixing parameters while updating the weights resulting in the loss of information. 

Complexity burden increases due to ( )I n  the update rule and also fails to work for real-time 

noises. A GSC beamformer should be constructed with fewer operations in the ( )I n update 

rule for various real-time noise reductions to avoid computation complexity. 

 To overcome the computational burden on mixing parameters and overall real-time 

noise reduction. In this chapter, a signed algorithm is proposed for the convex combination of 

fast convergence adaptive filters, which is described in the next section. 

4.5 Signed Algorithm to a Convex Combination of Fast 

 Convergence Adaptive Filter 

 We propose the SCCFC algorithm in this section. By opting for this signed algorithm, 

the mixing parameter update rule is changed to limit the squared estimation error. 

     21
( ) ( )

2
J n e n                                        (4.13) 

The gradient ( ),I J n  is normalized and ( ),I n  is updated recursively, and is expressed as: 

    
( )

( 1) ( )
( )

I
I

I

J n
I n I n

J n



  


                        (4.14) 
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Here 
I  is a step-size and is a small positive constant, ( ),I J n  is defined as 

   ( ) ( )( ( ) ( )) ( )(1 ( ))I a bJ n e n y n y n n n                   (4.15) 

The normalized gradient 
( )

( )

I

I

J n

J n




 in Equation (4.14),  can be expressed as 

    
( )

sgn( ( ))
( )

I
I

I

J n
J n

J n


 


                                 (4.16) 

where sgn(.)  is a sign function [234] and is defined as 

    

1 0

sgn(.) 0 0

1 0

if z
u

if z
z

if z




  
 

.                  (4.17) 

Therefore, Equation (4.15), can be written as 

    ( ) ( )( 1) ( ) sgn ( ) ( ) ( ) ( )(1 ( ))a b

II n I n e n y n y n n n                 (4.18) 

As ( ) 0n  & 1 ( ) 0n  the parameter ( )I n  in Equation (4.18), can also be represented as 

    ( ) ( )( 1) ( ) sgn ( )( ( ) ( ))a b

II n I n e n y n y n                     (4.19) 

    ( ) ( )( 1) ( ) sgn ( )( ( ) ( ))a b

II n I n e n e n e n                      (4.20) 
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The proposed SCCFC algorithm can reduce computational complexity and attain robustness 

by replacing ( ) ( )( )[ ( ) ( )] [1 ( )]a be n y n y n n    it with a normalized gradient 
( )

( )

I

I

J n

J n




. 

An instant transfer approach [234] can be utilized to improve speech further with less 

computation while keeping high convergence. 

 if nmod 0oD  and ( 1)I n I    then 

          
( ) ( )

, ,( 1) ( 1)b a

n q n qH n H n     

 endif 

Where 
oD is the length of the Window. During convergence transition, an instant transfer 

algorithm is applied when the first FCNLMS is effective than the second FCNLMS filter. The 

computation cost of this algorithm is smaller compared to the traditional combination filters. 

Due to the predefined window length, the computation burden is still reduced so that the 

proposed SCCFC works effectively for various real-time noises with low complexity in 

updating the adaptive filter. 

 As discussed to the sidelobe canceller path SCCFC algorithm is designed and 

computation issue is solved using signed scheme to the convex combination algorithm which 

is explained here. 

Overall steps involved in the proposed SCCFC algorithm is summarized below 
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Algorithm : Summary of Proposed SCCFC Algorithm 

Initialize  

,, , ( , ), ,o l ID l a b I  
CÑ(0) = 0  (0) 0, (0) 0, (0) 0.4,N I      

( ) ( )

, ,(0) 0, (0) 0a b

n q n qH H 
 

Loop 1n    

( ) ( )( ) ( ) ( )a a

q qe n d n y n 
 

( ) ( )( ) ( ) ( ) (1 ( )) ( )a by n n y n n y n     

( )

,( ) ( )

, 1,

, ,

( )a

n q qa a

n q n q T

n q n q

Z e n
H H

Z Z



 


 

( ) ( )( 1) ( ) ( ) ( ) ( ) ( )[1 ( )]a b

II n I n e n y n y n n n          

( 1)

1
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1 I n
n

e


 
 
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Signed Algorithm 

If 



64 
 

( 1)I n I     

( 1)I n I     

( 1) 0n    

endif 

if 

( 1) 1n    

if (mod( 1), 0)on D   

( ) ( )

, ,( 1) ( )( 1)b a

n q n qH n H n n  
 

Endif 

Else 

( ) ( )

, , ,( ) ( ) [1 ( )]a b

n q n q n qH n H n n H   
 

let n=n+1 

end 
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Figure 4.3: Workflow of the Proposed GSC-SCCFC 

 The workflow of the proposed multi-channel speech enhancement system (GSC-

SCCFC) is as shown in Figure 4.3. 

4.6 Computational Complexity 

 The computational complexity of the LMS [216], NLMS [217], FCNLMS [224], 

CLMS [234], and the proposed SCCFC algorithms are compared in this section. Here the 
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multiplications to update the filter. The basic NLMS and FCNLMS algorithms require a 2N 

number of multiplications. The proposed SCCFC algorithm, which is a combination of the 

two same filters FCNLMS, requires 4N multiplications to update the filter components. 

According to Equation (4.14), updating ( ),I n the proposed SCCFC requires only three 

multiplications, whereas the existing CLMS algorithm requires six multiplications to update 

the same ( )I n  parameter. Due to the usage of the signed algorithm with known window 

length, the proposed SCCFC algorithm reduces the computational operations compared to the 

conventional algorithms. When it comes to stability, the relative variations in ( )e n  is 

maintained by taking   as a small positive constant. Also, the mixing parameter ( )I n is 

independent on ( ),J n ( )I n becomes more stable when it ( )I J n is small. Finally, the 

proposed GSC-SCCFC gives less computation complexity with 4N multiplications, where 

N=256 is the length of the filter and requires three primary combinations in the update rule, 

which is very less compared to existing algorithms. The computational complexity of the 

proposed multi-channel speech enhancement system is compared with the existing algorithms, 

as shown in Table 4.1. The proposed algorithm also gives good trade-off stability compared to 

the other algorithms. 

  Table 4.1: Comparison of Computation Complexity 

Algorithms Multiplications Primary 

Combinations 

Precise Weight 

Calculations 

Weight 

Transfer 

LMS [216] 2N+1 - - - 

NLMS [217]  2N - - - 

FCNLMS [224]  2N - - - 

CLMS [234] 4N+2 6 2N 2N 

SCCFC 

(proposed)  

4N 3 2N - 

 

4.7 Results and discussions 

 In this section, the simulation of the proposed GSC-SCCFC in noisy real-time 

conditions is evaluated and explained. In order to show the performance of the sidelobe 
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canceller of GSC, the same noisy input in a virtual room is considered. The proposed GSC-

SCCFC method considers the simulation parameter as explained in chapter 3, section 3.4, and 

description as shown in Table 3.1 as well. 

 The input signals are same as in chapter 3 provided to the Mex setup, which gives a 

combination of the desired speech with real-time noise. Whereas in order to evaluate the 

proposed GSC-SCCFC at higher SNRs,  in this chapter, 15 dB input SNR is also considered. 

 The degraded speech is an input to the DSB to evaluate the delay from each 

microphone and obtain a reference enhanced signal. After that, the input degraded speech is 

given to MBM. Using the MBM matrix, the subtraction of the delays caused on the adjacent 

microphones is calculated. Further, at the MBM output, a noise reference is generated as 

discussed in chapter 3, section 3.5; here, a novel MBM is implemented to completely utilize 

spatial information. Finally, the same reference noise is applied to the SCCFC block as input, 

where the weights of the individual filters are updated and combined using a mixing 

parameter. Due to the proposed SCCFC algorithm, the error is minimized, and enhanced 

speech is attained at the output of the GSC beamformer. 

 The proposed GSC-SCCFC algorithm is compared with different existing algorithms 

like Combined adaptive beamforming [236], GSC with improved linear prediction [237],  

GSC with controlled white Gaussian [238], combined beamforming and echo cancellation 

[239], which are represented as GSC-CC [236], GSC-LP [237], GSC-CWGN [238], and 

GSC-CBE [239] respectively. GSC-CC algorithm uses a combination of adaptive filters 

[LMS-RLS] for noise reduction. GSC-LP multi-channel improves linear predictors to improve 

the spatial filter. Both GSC-CBE and GSC-CWGN are used for noise reduction under white 

noise. 

4.7.1 Performance Analysis of Proposed GSC-SCCFC Algorithm  

 The performance of the proposed GSC-SCCFC algorithm is evaluated using standard 

speech processing performance metrics, namely Perceptual Evaluation of Speech Quality 
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[231] (PESQ), Segmental SNR (SSNR) [240], Log-Spectral Distance (LSD) [232], and Log-

Likelihood Ratio  [231]. 

4.7.1.1 Comparison of PESQ Score for the Proposed Algorithms 

PESQ [231] standards are discussed in the section. 3.4.1.1. Table.4.2 shows the PESQ score 

comparison of GSC-SCCFC over existing methods. Under station noise, for -10 dB, the 

proposed GSC- SCCFC PESQ score is 3.302, but for GSC-CC, it is 2.411. Similarly, at 15 dB 

input SNR for street noise, PESQ for the proposed GSC-SCCFC is 4.393, but for GSC-

CWGN and GSC-CBE, it is 3.401 and 3.567, respectively. 

 At -10 dB car noise, the proposed GSC-SCCFC method gives a PESQ of 2.632, but 

for GSC with CWGN and CBE, it is 2.305 and 2.401, respectively. Similarly, at 15 dB PESQ 

for GSC-CWGN, GSC-CBE, and the proposed GSC-SCCFC are 3.232, 3.451, and 4.365, 

respectively. Similarly, for the remaining noises too, the perception is improved for the 

enhanced speech using the proposed GSC-SCCFC algorithm when compared with 

conventional algorithms, as shown in Table 4.2. For the proposed method, an improvement in 

PESQ of 4.393 is achieved, which is very much closer to the maximum PESQ that can be 

achieved. Due to SCCFC, at the output, the desired speech perception is attained. 

4.7.1.2 Segmental SNR (SSNR) 

 SSNR [240] SSNR is the renowned objective measure for speech enhancement. In 

SNR, the complete signal is taken into consideration, whereas, for SSNR, the segments with 

256 samples per frame are considered. (k=256, with 50 percent overlap). The higher the 

Segmental SNR, the more will be the speech quality. 

SSNR is defined as 

   

1 1
2

0 0

1
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10log ( )
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N M
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Table 4.2: Performance Comparison of PESQ and SSNR for Proposed GSC-SCCFC with Existing 

Algorithms 

SNR 

in 

dB 

 

Noise 

Type 

GSC-CC 

[236] 

GSC-LP 

[237] 

GSC-CWGN 

[238] 

GSC-CBE 

[239] 

GSC-SCCFC 

(Proposed) 

 

PESQ SSNR PESQ SSNR PESQ SSNR PESQ SSNR PESQ SSNR 

-10  Car 2.401 2.9 2.482  3.7 2.305 4.2 2.401 5.6 2.632 11.2 

-10 Restaurant 2.325 4.6 2.062  4.9 2.232 5.8 2.591 5.9 3.013 15.3 

-10 Babble 2.303 2.8 2.123  4.2 2.200 5.2 2.501 6.1 3.022 16.1 

-10 Station 2.411 5.2 2.102  3.2 2.428 4.5 2.656 5.3 3.302 12.1 

-10 Airport 2.510 3.7 2.323  4.2 2.398 5.7 2.618 6.3 2.801 13.3 

-10 Street 2.241 4.4 2.208  5.5 2.511 6.2 2.674 7.7 3.011 16.7 

-5  Car 2.008 3.6 2.569  4.2 2.507 5.1 2.604 7.2 2.804 17.2 

-5 Restaurant 2.211 4.7 2.381  3.6 2.316 4.8 2.623 7.8 3.093 21.5 

-5 Babble 2.007 5.1 2.312  4.5 2.421 5.9 2.729 8.1 3.201 18.1 

-5 Station 2.118 3.5 2.421  3.8 2.551 6.7 2.634 8.4 3.104 16.8 

-5 Airport 2.092 2.8 2.383  4.1 2.483 6.2 2.715 9.4 3.302 15.2 

-5 Street 2.183 5.7 2.572  5.9 2.501 7.5 2.749 9.5 3.259 20.3 

0  Car 2.010 7.2 2.454 6.9 2.611 5.9 2.734 9.2 3.405 21.4 

0 Restaurant 2.486 3.1 2.687 7.3 2.643 6.4 2.787 8.5 3.401 25.3 

0 Babble 2.201 5.4 2.532 7.9 2.571 6.3 2.663 10.5 3.569 24.2 

0 Station 2.229 7.5 2.556 6.8 2.691 6.9 2.719 9.7 3.582 22.8 

0 Airport 2.237 4.6 2.399 8.1 2.582 7.1 2.697 10.6 3.691 21.5 

0 Street 2.597 6.9 2.573 7.9 2.660 8.2 2.793 11.5 3.710 25.2 

5  Car 2.602 8.8 2.735 9.3 2.812 9.5 2.867 10.7 3.408 21.7 

5 Restaurant 2.676 7.2 2.812 8.9 2.752 9.8 2.702 11.3 3.421 25.1 

5 Babble 2.698 5.8 2.790 9.5 2.862 10.2 2.923 11.7 3.543 24.2 

5 Station 2.702 4.7 2.809 10.2 2.951 10.7 2.921 12.1 3.521 22.6 

5 Airport 2.818 4.9 2.901 9.9 3.028 10.5 3.052 11.9 3.671 21.9 

5 Street 2.992 8.9 3.095 12.8 3.191 11.7 3.179 13.8 3.722 25.2 
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 From Table 4.2 at -10 dB with car noise, SSNR for GSC-SCCFC algorithm is 11.2, 

but for GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE, it is 2.9, 3.7, 4.2, and 5.6, 

respectively. Similarly, SSNR for 15 dB GSC-SCCFC is 32.5 dB while that for GSC-CC, 

GSC-LP, GSC-CWGN, and GSC-CBE are 15.3 dB, 16.2 dB, 17.6 dB, and 19.8 dB, 

respectively. SSNR for the proposed GSC-SCCFC shows improved performance as noise 

present in each frame is reduced. Also, for 15 dB station noise, SSNR for GSC-SCCFC is 

33.8, but for GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE, it is 15.8 dB, 15.9 dB, 16.2 

dB, and 22.6 dB, respectively. Likewise, for 15 dB street noise, GSC-SCCFC, GSC-CC, 

GSC-LP, GSC-CWGN, and GSC-CBE results in SSNRs of 34.6 dB, 16.2 dB, 17.4 dB, 18.4 

dB, and 22.1 dB, respectively. Likewise, the performance of SSNR is improved gradually for 

different real-time noises, which are represented in Table 4.2. SSNR for the proposed GSC-

SCCFC with four microphones gives better noise reduction in the segmental analysis. 

 

4.7.1.3 Log Spectral Distance (LSD) 

Log spectral distance (LSD) [232] is an advanced metric; the reduction in the spectral 

distance is calculated using LSD. The expression LSD is provided in Eq. (4.22), 

10 Car 2.901 10.6 3.011 11.7 3.221 12.7 3.328 13.3 3.992 31.9 

10 Restaurant 2.822 12.4 3.039 11.6 3.219 13.7 3.222 13.5 4.072 32.4 

10 Babble 2.899 15.1 3.156 11.9 3.312 13.2 3.356 14.2 4.287 34.1 

10 Station 2.907 12.2 3.121 12.7 3.224 12.9 3.401 14.8 4.356 32.8 

10 Airport 2.974 13.2 3.111   11.6 3.212 13.2 3.456 14.1 4.456 34.1 

10 Street 3.012 14.7 3.223   15.6 3.431 16.3 3.582 17.7 4.311 31.6 

15 Car 3.061 15.3 3.151 16.2 3.232 16.3 3.451 19.8 4.365 32.5 

15 Restaurant 2.921 15.9 3.164 16.2 3.379 1.8 3.511 20.9 4.346 34.3 

15 Babble 3.056 15.2 3.178 15.4 3.245 16.9 3.489 20.3 4.310 34.1 

15 Station 3.110 15.8 3.208 15.9 3.212 16.2 3.501 22.6 4.355 33.8 

15 Airport 3.089 15.5 3.219   16.9 3.302 17.8 3.451 21.7 4.387 34.8 

15 Street 3.121 16.2 3.410   17.4 3.401 18.4 3.567 22.1 4.393 34.6 
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 LSD for the proposed GSC-SCCFC algorithm is compared with existing algorithms 

for various real-time noises, as shown in Figures 4.4 (A) to 4.4 (F). The proposed algorithm 

showing lower values of LSD implies better performance. The reduction of the spectral 

distance is achieved using MBM by utilizing the complete spatial information. As the distance 

between the frames decreases, the distortion gets reduced. At 10 dB for car noise, LSD for 

GSC-SCCFC is 0.91 dB, but for GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE, it is 2.04 

dB, 2.22 dB, 2.39 dB, 2.21 dB. For 15 dB input SNR under station noise, LSD for GSC-

SCCFC, GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE is 0.51 dB, 1.54 dB, 2.16 dB, 2.03 

dB, and 1.73 dB, respectively. The proposed GSC-SCCFC achieves better performance when 

compared to the existing algorithms. LSD gradually decreases for the remaining noises, which 

are shown in Figure 4.4 (A) to (F).    

 A smaller spectral distance for the proposed GSC-SCCFC for 15 dB at 0.41 dB is 

observed under street noise. Using the proposed SCCFC algorithm in the adaptive filtering 

block of GSC beamforming, better quality is achieved for the output speech, which is 

represented in terms of LSD as shown in Figures 4.4 (A) to (F). 10 dB for car noise, LSD for 

GSC-SCCFC is 0.91 dB, but for GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE, it is 2.04 

dB, 2.22 dB, 2.39 dB, 2.21 dB. For 15 dB input SNR under station noise, LSD for GSC-

SCCFC, GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE is 0.51 dB, 1.54 dB, 2.16 dB, 2.03 

dB, and 1.73 dB, respectively. The proposed GSC-SCCFC achieves better performance when 

compared to the existing algorithms. LSD gradually decreases for the remaining noises, which 

are shown in Figure 4.  A smaller spectral distance for the proposed GSC-SCCFC for 15 dB at 

0.41 is observed under street noise. Using the proposed SCCFC algorithm in the adaptive 

filtering block of GSC beamforming, better quality is achieved for the output speech, which is 

represented in terms of LSD as shown in Figures 4.4 (A) to (F). 
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 Figure 4.4: Performance Comparison of LSD Under Different Noises (A) Airport (B) Babble 

(C) Car (D) Restaurant (E) Station (F) Street 
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4.7.1.4 Comparison of  LLR Score for the Proposed Algorithm 

 LLR formulation is explained in section 3.4.1.3.  Lowering the LLR will be more 

speech performance quality. For car noise at 15 dB input SNR, LLR is 0.36 for the proposed 

GSC-SCCFC, but for GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE, it is 0.89, 0.87, 0.83, 

and 0.72, respectively. For station noise with 15 dB input SNR, GSC-SCCFC results in an 

LLR of 0.07, whereas GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE, it is 1.52, 1.41, 0.42, 

and 0.73, respectively. At 15 dB input SNR, LLR of 0.04 under airport noise is achieved by 

the proposed GSC-SCCFC, which is very low when compared to the other conventional 

algorithms as shown in Figures 4.5 (A) to 4.5 (F).  

4.7.1.5 Computational Time 

 The computational time is calculated in this section. An input degraded speech signal 

from the real-time environment with a duration of 2.814 seconds is considered. The 

simulations are executed on an intel i7 core processor with a 2.20 GHz clock speed with 8 GB 

RAM. The operating system used is Windows 10. The GSC-SCCFC is compared with the 

conventional algorithm in Table 4.4.  GSC-SCCFC shows less computation of 0.93 s is shown 

in Table 4.4. The conventional algorithm shows low performance in noise reduction and gives 

high computation time is shown in Table 4.4. The proposed GSC-SCCFC method gives better 

performance with lower computational time. 

 Table 4.3 Computation Time 

Methods Computation time (s) 

GSC-CC [236] 2.38 

GSC-LP [237] 1.98 

GSC-CWGN [238] 2.71 

GSC-CBE [239] 2.29 

GSC-SCCFC (proposed) 0.93 
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Figure 4.5: Performance Comparison of LLR Under Different Noises (A) Airport (B) Babble 

(C) Car (D) Restaurant (E) Station (F) Street 
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4.7.1.6 Waveforms 

 In Figure 4.6 and Figure 4.7, the time domain plots and spectrograms of the 

proposed multi-channel speech enhancement system are illustrated, which shows the proposed 

GSC-SCCFC noise reduction performance for 5 dB car noise. The enhanced speech signal of 

the proposed GSC-SCCFC algorithm shown in Figure 6 looks similar to the clean speech 

signal. The enhanced speech signal is also attained at low SNRs. PESQ of 4.393 is obtained 

using the proposed GSC-SCCFC method, which is the highest when compared to GSC-CC 

[236], GSC-LP [237], GSC-CWGN [238], and GSC-CBE [239], which have scores of 3.121, 

3.410, 3.401, and 3.567 for street noise at 15 dB input SNR, respectively. 

 

Figure 4.6 Time Domain Plot of Proposed GSC-SCCFC at 5 dB Car Noise 
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Figure 4.7 Spectrogram of Proposed GSC-SCCFC at 5 dB Car Noise 

 The PESQ score of the proposed method almost reaches the maximum achievable 

PESQ score of 4.5. In the same way, the proposed method has significantly higher SSNR, and 

lower LSD, LLR, and also lower computational complexity values, clearly showing its 

superiority in performance and its ability to provide a better trade-off between noise reduction 

and computational complexity compared to other methods.   

4.8 Summary 

A multi-channel speech enhancement system using the GSC-SCCFC algorithm is 

proposed in this chapter. Both noise reduction and low computational complexity is achieved 

using GSC-SCCFC.  GSC beamforming using the proposed SCCFC algorithm is compared 

with the existing algorithms under various real-time noisy conditions. In the proposed multi-

channel speech enhancement system, a signed algorithm is adapted into the convex 

combination of two same adaptive filters (FCNLMS) with different step sizes, which 

effectively reduces the computational burden in updating the weight coefficient and also 

reduces the real-time noises present in the input signal. The proposed system gave better 
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speech intelligibility scores of 4.393 of PESQ and SSNR of 34.8 dB for 15 dB airport noise, 

respectively. Other measures like LSD and LLR gave values of 0.41 for 15 dB street noise 

and 0.04 for 15 dB airport noise respectively. For the proposed GSC-SCCFC algorithm, LSD 

and LLR are smaller values compared to the conventional algorithms. Lower LLR and LSD 

values, showing the lower distance between the frames, which resembles improved speech 

quality. The proposed algorithm is essential for smooth communication through speech in 

noisy real-time conditions. In the same way, if we consider a diffuse noise environment, the 

input signal will not be analyzed only with an adaptive filter in order to evaluate noisy input 

speech in an adverse environment. Novel postfilters have to be implemented in the frequency 

domain, which verifies the low frequencies and high frequencies of the input noisy signal 

frame by frame to eliminate speech absence frames. So, the GSC beamforming in the 

frequency domain is designed for an adverse environment in chapter 5 and evaluated for 

different SNR levels at the output of the postfilter.  

 

 

 

 



78 
 

Chapter 5 

Adaptive Beamforming using Zelinski-TSNR Multi-

Channel Postfilter for Speech Enhancement  

 This chapter proposes the use of a postfilter to GSC beamformer to suppress direction 

and diffuse noise. A novel multi-channel postfilter is proposed at the output of the GSC 

beamformer for multi-channel speech enhancement. 

5.1 Motivation 

 In the case of directional and diffuse noise in low frequencies, most of the multi-

channel speech enhancement methods give a lacking noise reduction. Adaptive beamforming 

with postfilters provide better solutions to address these problems. A robust multi-channel 

postfilter should be developed to suppress directional and diffuse noise, under various noisy 

environments, which are very much essential in applications like mobile phones, 

teleconferencing, and hearing aids, etc. We need noise-free information for effective 

communication.  

5.2 Introduction 

 In the case of adverse environments like diffuse noise fields, a particular interference 

speakers or noise comes from an unknown direction. Aiming the speech enhancement for 

degrade signal becomes quite difficult. In order to estimate the diffuse noise such as car and 
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office noise, it is required to approach postfilters for adaptive beamformers. From the past few 

decades, various beamforming [7], [20]-[22] methods have been introduced to remove 

directional noise. O. L. Frost [20] had introduced a beamformer with an array structure for 

adaptive broadband processing. Similarly, L. J. Griffiths [21] proposed an alternative structure 

to Frost's [20], named GSC beamformer, that suppresses interferences from different 

directions and also provides low computational complexity. In a reverberant environment, the 

Widrow [22] adaptive noise canceller may face signal cancellation due to improper 

microphones and steering vector errors. Also, the adaptive filter block of the GSC 

beamformer [241] produces transient noise due to fixed step size. In the previous chapter, we 

had seen GSC beamformers using different adaptive filters to suppress various real-time noisy 

environments. Owing to these shortcomings, which are discussed in chapters 3 and 4, there is 

a significant need to combine some filtering methods to have better noise reduction in a multi-

source environment. 

 In the case of diffuse noise, i.e., car noise, office noise, etc., where the noise spectrum 

power is uniform in all directions, Zelinski postfilter [28] is applied, which estimates cross 

and auto-correlation to obtain an enhanced speech. The generalized expression of the Zelinski 

postfilter can be analyzed based on prior knowledge of the noise field. Mc Cowan [189] has 

given a generalized expression for Zelinski postfilter for office room recordings, but it fails 

while considering highly correlated noise. J. Li [244] introduced Improved Zelinski (IZ) 

postfilter to enhance desired speech from the diffuse noise fields by applying Wiener 

postfilter for low frequencies. Apart from the Wiener postfilter, a Two-Step Noise Reduction 

(TSNR) method was given by C. Plapous [245] to have a better noise reduction in adverse 

environments. When a person is in motion, the Decision Directed (DD) approach is applied 

for estimating a priori SNR of the current frame. I. Cohen [232] introduced a multi-channel 

speech presence probability-based postfilter for non-stationary environments.  

 S Gannot [194] introduced transfer function GSC with a multi-channel postfilter and 

compared it with a single channel postfilter.  This method fails in diffuse noise fields. An 

improved GSC with multi-channel postfiltering is presented by K. Li [248], which eliminates 

the directional noise but is unable to suppress diffuse noise and has caused more speech 

distortion in low frequencies. A GSC beamforming is designed to suppress directional noise 
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in an adverse environment to address the above limitations. Whereas to reduce the diffuse 

noise in each subband, Zelinski-TSNR multi-channel postfilter is proposed and applied to the 

GSC beamforming. 

5.3 Proposed GSC Beamforming with Multi-Channel Postfilter  

 In the proposed multi-microphone or multi-channel speech enhancement method, we 

consider an adverse environment with directional and diffuse noise, and then it is applied to 

the linear array of four microphones. Whereas adverse environment is created using Mex 

function as mentioned in fixed beamformer at section 3.3. 1, in chapter 3. The signal received 

at each microphone contains directional noise from a particular direction, a diffuse noise that 

propagates uniformly in all directions, and the desired speech simultaneously. The proposed 

multi-microphone array speech enhancement is shown in Figure 5.1.  

  

  

 

 

 

 

 

Figure 5.1: Proposed GSC Beamformer Using Zelinski-TSNR Multi-Channel Postfilter 
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 In this chapter, a novel GSC beamforming with Zelinski-TSNR multi-channel 

postfilter is proposed for speech enhancement. It is a combination of two main blocks, the 

GSC beamforming with UFNLMS, which reduces the directional noise, and the second part is 

a Zelinski-TSNR for diffuse noise reduction. The workflow of the proposed method is shown 

in Figure 5.2. At first, the Fixed Beamforming (FBF) and the Modified Blocking Matrix 

(MBM) are analyzed in the frequency domain using Short Time Fourier Transform (STFT). A 

CP is a combination of Improved Zelinski (IZ) and Two-Step Noise Reduction (TSNR) 

postfilters, where the IZ evaluates the gain of high frequencies and the TSNR evaluates the 

gain of low frequencies to reduce the diffuse noise. The SPP in each subband is derived using 

Cohen’s multi-channel postfilter and is explained in directional noise and diffuse noise 

suppression in the coming sections clearly. 

5.4 Directional Noise Suppression 

 In this section, the GSC beamforming using the UFNLMS algorithm is proposed for 

directional noise (sources coming from known and unknown directions) reduction. As 

discussed in section 3.3 in chapter 3, GSC structure, there are three main parts: an FBF, an 

MBM, and an adaptive interference canceller as Unconstrained Frequency domain 

Normalized Least Mean Square (UFNLMS) algorithm, which is essentially designed to have a 

better noise reduction from the interfering speech coming from different directions. FBF and 

MBM are analyzed in sections 3.3.1 and 3.3.2 in chapter 3. Unknown signals coming from 

various directions are analyzed using a fixed beamformer (DSB). The number of columns in 

the matrix indicates the number of microphones which is considered to be four, and the 

efficiency of MBM is 3. 

Consider FBM and MBM outputs as  ( )x n and ( )ml n  respectively. Applying STFT to 

segments, the time domain signal is converted into the frequency domain to obtain ( , )X p q   

and ( , )mL p q  in Equation (5.1) and Equation (5.2). When the signal is segmented into frames, 

tracking the signal becomes easy. 

 ( ) ( , )STFTx n X p q      (5.1) 
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                ( ) ( , )STFT

ml n L p q                            (5.2) 

Where p is the temporal frame index, q is the frequency bin, and m = 1, 2, · · ·M – 1 are the 

number of microphones. Auditory grouping is then applied to ( , )X p q   and ( , )mL p q ; it 

regroups all the frequencies into bark frequency components based on the bark scale, which 

works on human auditory frequencies, and from this, we separate the total signal into low and 

high-frequency components. In thb   the group, the vector of bins is represented as ( )bX q and 

( )b

mL q . According to Widrow, classical adaptive noise cancellation [22] and unconstrained 

minimization is considered and is expressed as 

   𝜖𝑚
𝑏 (𝑞)

2[ ( ) ( ) ( ) ]b b b

m mE X q w q L q                   (5.3) 

  Where 𝜖𝑚
𝑏 (𝑞) is the thb  band energy.  .E  and  .

H
are the expectation operator and 

Hermitian transpose operator, respectively, which can be minimized as follows  and  ( )x n   
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Where 

 
( ) ( ( )( ( )) )

m

b b b H

l mX q E L q X q 
   (5.5) 

 
( ) ( ( )( ( )) )

m

b b b H

l m m ml q E L q L q 
                 (5.6) 

In the GSC beamforming structure, the third part is the adaptive interference canceller: In this 

chapter, the UFNLMS algorithm is used with different norm constraints to update the weight 

coefficient based on each subband in SPP which is explained below. 
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UFNLMS weight update equation is given as 

                   
( )( ( ))

( 1) ( )
b b H

b b m
m m b

est

L q X q
w q w q

P
                  (5.8) 

                            
2

1( ) ( 1) (1b b bM
mest est mP q P q Y        (5.9) 

Adaptive interference cancellers, i.e., UFNLMS algorithm weight coefficients, are 

updated based on SPP ( )b

estP q  , which uses the power of the noise reference signal. When we 

update weight ( )b

mw q , there is a chance of signal cancellation in the speech presence region. 

So we use frequency domain representation of input sensor signal ( )b

mY q . Due to this, the 

weight update becomes small, which improves the quality during speech presence. As 

illustrated in the next section, the speech presence probability is calculated using a postfilter, 

and SPP is passed back to the adaptive interference canceller to update the UFNLMS 

algorithm. 

In general, for any speech signal, a huge amount of speech samples exists in the low-

frequency region. It's critical to use non-uniform filters to make the low-frequency bands 

narrower and the high-frequency bands wider in order to improve degraded speech. This 

enables the adaptive interference canceller to converge smoothly. In this chapter, high 

convergence is achieved because of the effective auditory subband method, which utilizes the 

speech presence frames in each subband and leaves speech absence frames. 

In a practical scenario, a lot of speech leakage issues are observed. When the speaker 

is in motion, speech information is lost in the reference channels in reverberant and echo 

environments. Desired speech information may be lost if the frequency response of the 

microphone position is not clear. While updating the adaptive interference canceller, some 

speech information is canceled, and such errors are minimized by 𝜖𝑚
𝑏 (q) in Equation (5.3). 

Speech presence in each subband is considered by omitting speech absence frames while 
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updating UFNLMS weights to solve speech leaking difficulties. In subband adaptive 

interference canceller, updating rate in Equation (5.8) is slow for speech presence frames. The 

steady-state error and convergence are decided by the step size of an adaptive filter. The time-

varying step-size for the UFNLMS algorithm, which is feedback by SSP in each subband 12, 

is given below:   

 
1 2

1
( ) (1 ( ))b i

i b b

b

P q P q
M

    (5.10) 

Where bM  is the number of frequency bins within the thb subband, 

 0 ( ) 1bp q    

 
1 2

1
( ) ( )b i

i b b
b

P q P q
M 

    (5.11) 

 ( ) (1 ( ))b bq p q     (5.12) 

Where ( )bp q  is SPP of combined postfilter and the range of SPP is 0 ( ) 1bp q  . ( )bp q  is 

the presence of desired speech in thb a subband of thb  the frame. A large ( )b q  Equation 

(5.13) gives a slow update rate of the UFNLMS, which protects the speech components. In 

fast-changing environments, the update rate should be faster to update the UFNLMS 

algorithm. 

 
1 2

1
(1 ( ))i

i b b
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P q
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5.5 Diffuse Noise Reduction Using Zelinski-TSNR Multi-Channel       

      Postfilter  

Zelinski and Mc Cowan [28], [189] introduced diffuse noise reduction postfilters 

where noise is partially reduced considering spectral constraints. Here, a novel postfilter is 

implemented, which is a combination of Improved Zelinski- Two-Step Noise Reduction (IZ–

TSNR) [244]-[245] postfilter and is named as combined postfilter for diffuse noise reduction. 

According to human auditory frequencies, speech samples remain more at low frequencies. 

Here the CP is implemented in two steps: first, low frequencies are analyzed by TSNR 

postfilter [245], and then high frequencies are analyzed by IZ postfilter. IZ postfilter is 

implemented by calculating the cross-spectral density of GSC output which serves as input to 

the CP. For high frequencies, to minimize the mean square error between speech and its 

estimate, the IZ postfilter is designed. In the IZ postfilter, transient frequencies are analyzed 

by following the microphone array geometry. The auto and cross-spectral densities of desired 

and noisy speech for high frequencies are defined as  

 ( , ) ( , ) ( , )
i ix x mp q K p q L p q      (5.14) 

 ( , ) ( , )
i jx x p q K p q   (5.15) 

In IZ postfilter [245], the gain function can be analyzed as  
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   (5.16) 

Two-Step Noise Reduction (TSNR) filter is applied for low frequencies to reduce the noise 

and improve the intelligibility of the desired speech signal. This filter is implemented in two 

steps; in the first step using the DD algorithm, the spectral gain 𝐺𝐷𝐷(𝑝, 𝑞) 𝑖s analyzed. In the 

second step, the spectral gain of the next frame is calculated and applied to the current frame. 
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Here a priori and a posteriori SNR are evaluated to determine the spectral gain of the DD 

approach using equations given below, 

 𝑠𝑛𝑟̂𝑝𝑜𝑠𝑡(𝑝, 𝑞)=
|𝐾(𝑝,𝑞)|2

(𝐿 𝑚(𝑝,𝑞))
   (5.17) 

 𝑠𝑛𝑟̂𝑝𝑟𝑖𝑜
𝐷𝐷 (𝑝, 𝑞)=

𝛽(𝑠̂(𝑝−1),𝑞)2

(𝐿 𝑚(𝑝,𝑞))
+ (1 − 𝛽)𝑃(𝑠𝑛𝑟̂𝑝𝑜𝑠𝑡(𝑝, 𝑞) − 1)            (5.18) 

 𝐺𝐷𝐷(𝑝, 𝑞) =
𝑠𝑛𝑟̂𝑝𝑟𝑖𝑜

𝐷𝐷 (𝑝,𝑞)

1+𝑠𝑛𝑟̂𝑝𝑟𝑖𝑜
𝐷𝐷 (𝑝,𝑞)

             (5.19) 

In the TSNR filter, the second step is to calculate the a priori SNR based on the DD 

approach of the first step 

      𝑠𝑛𝑟̂𝑝𝑟𝑖𝑜
𝑇𝑆𝑁𝑅(𝑝, 𝑞) = 𝑠𝑛𝑟̂𝑝𝑟𝑖𝑜

𝐷𝐷 (𝑝 + 1, 𝑞)          (5.20) 

 =
𝛽′|𝐺𝐷𝐷(𝑝,𝑞)𝑘(𝑝,𝑞)|

2

(𝐿̂𝑚(𝑝,𝑞))+(1−𝛽1)𝑃[𝑠𝑛𝑟̂𝑝𝑜𝑠𝑡(𝑃+1,𝑞)−1]
          (5.21) 

If 𝛽′ = 1, the diffuse noise is degraded by the DD approach, and Equation (5.16) is 

modified as 

 𝑠𝑛𝑟̂𝑝𝑟𝑖𝑜
𝑇𝑆𝑁𝑅(𝑝, 𝑞) =

𝛽′|𝐺𝐷𝐷𝐾(𝑝,𝑞)|
2

(𝐿̂𝑚(𝑝,𝑞))
           (5.22) 

The spectral gain for low frequencies is defined as 

 𝐺𝑇𝑆𝑁𝑅(𝑝, 𝑞) = ℎ(𝑠𝑛𝑟̂𝑝𝑟𝑖𝑜
𝑇𝑆𝑁𝑅(𝑝, 𝑞), 𝑠𝑛𝑟̂𝑝𝑜𝑠𝑡

𝑝𝑟𝑖𝑜(𝑝, 𝑞))          (5.23) 
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In low frequencies, the noisy speech is enhanced, based on TSNR gain and reference estimate 

 𝑆̂(𝑝, 𝑞) = 𝐺𝑇𝑆𝑁𝑅(𝑝, 𝑞)𝐾(𝑝, 𝑞)          (5.24) 

Finally, TSNR spectral gain is determined as 

 𝐺𝑇𝑆𝑁𝑅(𝑝, 𝑞) =
𝑠𝑛𝑟̂𝑝𝑟𝑖𝑜

𝑇𝑆𝑁𝑅(𝑝,𝑞)

1+𝑠𝑛𝑟̂𝑝𝑟𝑖𝑜
𝑇𝑆𝑁𝑅(𝑝,𝑞)

           (5.25) 

The output of the combined postfilter can be expressed as 

 𝐺(𝑝, 𝑞) = 𝐺𝑇𝑆𝑁𝑅(𝑝, 𝑞) + 𝐺𝐼𝑍(𝑝, 𝑞)          (5.26) 

Finally, to estimate the diffuse noise in the multi-microphone array, the CP and 

reference signal estimate is analyzed as follows 

                                         𝑆̂𝑜 = 𝐺(𝑝, 𝑞)𝐾(𝑝, 𝑞)          (5.27) 

Using SPP, the filter coefficients are updated in each subband as mentioned in the above 

equations. The time-frequency units of each subband are averaged to estimate constrained 

filter updates.  

 

 The workflow of proposed GSC-Zelinski-TSNR multi-channel speech enhancement 

(MCSE) is shown in, where the directional noise coming from   
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Figure 5.2: Workflow of Proposed GSC Beamforming with Zelinski-TSNR Multi-channel 
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5.6 Results and Discussions 

 In this section, simulation of the proposed GSC beamforming with Zelinski-TSNR 

multi-channel postfilter in an adverse environment is evaluated and discussed. The simulation 

parameter with specifications considered for the proposed GSC-CP-SNMF method is shown 

in Table 5.2. Image method [225] is applied to generate multi-channel room impulse 

response. Where, a linear array of four microphones with a distance of 5 cm between each 

microphone, and distance of 1 m between the source and microphone array, in a conference 

room with 6 m x 3 m x 5 m and reverberation time of 300 ms following a Mex setup using 

Mex function, i.e., rir-generator.cpp [226] in MATLAB. The Mex function was taken from 

International Audio Laboratories Erlangen at Friedrich Alexander University Erlangen-

Nuremberg. (https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator).  

 An adverse environment is considered taking the desired speech from an unknown 

direction, directional interferences like white noise at 45o  and female speech at  90o  using 

the DARPA TIMIT [227]-[228], i.e., database of 6300 male and female sentences, 10 

sentences spoken by every 630 speakers with a sampling frequency of 8 kHz and also a 

diffuse noise [190] from NOIZEUS database [229]-[230], i.e., a car noise are given to Mex 

setup, finally forms a noisy input signal (i.e., a combination of desired speech, directional 

interferences, and diffuse noise) with different SNR levels from -10 dB to 10 dB. 

This noisy input signal is applied to FBF, which analyzes the DOA of (known and also 

unknown) input signal, and all the delays from the microphones are added based on the DSB 

principle. Finally, a partially enhanced signal is obtained at the output of FBF. In the next 

stage, from noisy input speech, the delays on the adjacent microphones are subtracted using 

MBM so that a noise reference is generated. Both the partially enhanced signal and the noise 

reference are parallelly applied to the auditory grouping.  

Later, directional noise is suppressed by GSC using UFNLMS, and diffuse noise is 

suppressed by Improved Zelinski-TSNR multi-channel postfilter in each subband. Noisy 

multi-channel speech is processed with the existing methods to show the performance 

comparison of the proposed GSC with Improved Zelinski-TSNR multi-channel postfilter.  
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1. GSC algorithm in the time domain (GSC-TD) [21]. 

2. GSC algorithm in the frequency domain (GSC-FD) [241]. 

3. GSC-FD with modified blocking matrix (GSC-FD*) [246]. 

4. GSC-FD* with Subband-Feedback-Controlled Adaptive Filter (GSC-FD*-SFC) [247]. 

5. Cohen’s algorithm [232]. 

6. Kai Li Method [248]. 

7. Proposed GSC-Zelinski-TSNR 

 

5.6.1 Performance Evaluation of the Proposed Zelinski-TSNR 

The performance of the above-mentioned algorithms is shown in terms of three objective 

parameters, namely, perceptual evaluation of speech quality [231] (PESQ), second segmental 

SNR (SSNR) [240], and log spectral distance (LSD) [232]. 

Table 5.1 Simulation Parameters Considered for the Proposed GSC-Zelinski-TSNR 

 

Parameters Specifications 

Conference Room 

Dimensions 

6 m X 5 m X 3 m (Using Image Method [225] with Mex setup 

using Mex function i.e., rir-generator.cpp [226] in MATLAB) 

Microphones (m) m=4 

Distance between each 

microphone 

5 cm 

Distance from source to 

microphone 

1 m 

Diffuse noise Car noise from Noizeus [230] 

Input SNR Levels -10 dB, -5 dB, 0 dB, 5 dB and 10 dB 

Database Darpa Timit [227]-[228] and Noizeus [229]-[230] 

Directional 

Interferences 

white noise at -45 and female speech at 90 

Desired speech and 

diffuse noise 

unknown direction 
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5.6.1.1 Comparison of PESQ for Proposed GSC- Zelinski-TSNR 

 PESQ [231] is an objective intelligibility measure, the standard range of which lies 

between 0.5 to 4.5 dB, as explained in chapter 3, section 3.4.1.1. The higher the PESQ 

Score better will be the perception. Table 5.2 compares the PESQ score for the proposed 

method with existing algorithms, respectively. In Kai Li Method [248], the PESQ at -10 

dB attains 2.38 dB whereas for the proposed GCS-Zelinski-TSNR is 2.45. The proposed 

method shows superior performance, as SPP is used for minimizing the noise power 

instead of step size in diffuse noise reduction. For the proposed method, a PESQ of 3.42 

using four microphones is attained at the Zelinski-TSNR output at 10 dB input SNR using 

four microphones. 

 

5.6.1.2 Comparison of SSNR for Proposed GSC- Zelinski-TSNR 

Segmental SNR [240] is one of the most popular objective measures for speech 

enhancement methods. In normal SNR calculation, the whole signal is considered, 

whereas while calculating SSNR, segments are taken with 256 samples per frame (k=256, 

with 50 percent overlap). Higher the SSNR will be better the quality of speech. 

 

Segmental SNR is calculated as 

  

   𝑆𝑆𝑁𝑅 =
10

𝐿

∑ 10𝑙𝑜𝑔 ∑ 𝑋2(𝑚+𝑞
𝑚
2 )𝑀−1

𝑚=0
𝐿−1
𝑞=0

∑ [𝑋(𝑚+𝑞
𝑚
2 )−𝑆̂𝑜(𝑚+𝑞

𝑚
2 ]
2

𝑀−1
𝑚=𝑜

                        (5.26) 

In the Zelinski-TSNR multi-channel postfilter, the low-frequency region, which is below 

4kHz, is processed with a TSNR filter, and the high-frequency region, which is in the range 

4kHz -  8kHz, is processed with an IZ filter. The diffuse noise in each subband is eliminated 

by considering speech presence segments that result in improved performance of SSNR. 
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At 10 dB input SNR under adverse environment, SSNR for the proposed GSC-Zelinski-

TSNR is 26.8 whereas Kai Li method [248] it is 22.4 dB. Similarly at -10 dB input SNR, 

SSNR for proposed method is 9.8 dB whereas for existing Kai Li method [248] and Cohen 

Method [232] it is 9.2 and 8.8, the proposed method outperforms the existing methods in 

suppressing diffuse noise in each segment. 

Table 5.2: PESQ Comparison for Proposed GSC-Zelinski-TSNR 

      

Input SNR(dB) -10 -5 0 5 10 

GSC-TD[21] 2.01 2.06 2.10 2.18 2.21 

GSC-FD[241] 2.03 2.21 2.40 2.58 2.62 

GSC-FD*[246] 2.04 2.24 2.52 2.71 2.91 

GSC-FD*-SFC[247] 2.09 2.26 2.44 2.62 3.06 

Cohen Method[232] 2.13 2.32 2.51 2.83 3.15 

Kai Li Method[248] 2.38 2.62 2.83 3.03 3.28 

GSC-Zelinski-TSNR  

(Proposed) 

2.45 2.68 2.94 3.20 3.42 

Table 5.3: SSNR Comparison for Proposed GSC-Zelinski-TSNR  

      

Input SNR(dB) -10 -5 0 5 10 

GSC-TD[21] 2.1 3.9 5.8 7.2 13.2 

GSC-FD[241] 3.2 4.3 6.6 8.5 14.1 

GSC-FD*[246] 4.1 5.4 7.3 9.1 16.6 

GSC-FD*-SFC[247] 6.2 8.4 9.8 11.4 18.9 

Cohen Method[232] 8.8 12.6 16.0 18.7 19.1 

Kai Li Method[248] 9.2 14.1 16.5 19.8 22.4 

GSC-Zelinski-TSNR  

(Proposed) 

9.8 15.3 18.7 20.2 26.8 
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5.6.1.3 Comparison of LSD for Proposed GSC-Zelinski-TSNR 

Log Spectral Distance measure [232] is an objective measure for the calculation of the 

spectral distance between the frames. Better intelligibility can be achieved with a reduction in 

spectral distance. 

LSD is calculated as 

𝐿𝑆𝐷 =
10

𝐿
∑ {1 + (

𝑀

2
+ 1)∑ [𝑙𝑜𝑔𝑋(𝑝, 𝑞) − 𝑙𝑜𝑔𝑆̂𝑜(𝑝, 𝑞)]

2
𝑀

2

𝑞=0 }𝐿−1
(𝑞=0)           (5.27) 

 In Table 5.4, the LSD measure for the proposed method is compared with the 

competing methods.  

 

Figure 5.3: LSD Comparison of Proposed GSC-Zelinski TSNR with Existing Methods 

The proposed method shows the lower LSD, resulting in better noise reduction. The spatial 

information is completely utilized by taking MBM into consideration. The spectral distance 
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between two frames is reduced, and the proposed GSC-Zelinski-TSNR achieves better 

performance compared to the other classical methods. As the distance between the frames 

decreases, the distortion gets reduced. LSD for the proposed GSC- Zelinski-TSNR at -10 dB 

is 2.6 dB, whereas, for the K. Li [248] method, it is 11.2 dB for four microphones, which 

shows that the proposed method GSC- Zelinski-TSNR has the lower LSD compared to an 

existing method and so on. 

5.6.1.4 Spectrograms 

 In Figure 5.4, the spectrograms of the proposed GSC-Zelinski TSNR multi-channel 

postfilter at 10 dB input SNR, where the noise reduction of noisy input speech using proposed 

GSC-Zelinski-TSNR for four microphones is shown.  

 

Figure 5.4: Spectrogram of Proposed GSC- Zelinski TSNR Multi-Channel Postfilter 
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The proposed GSC Zelinski-TSNR method shows better noise reduction with improved 

quality and intelligibility in each subband. SPP eliminates speech absence frames using 

adaptive interference canceller. 

5.7 Summary 

 Multi-microphone adaptive beamforming, i.e., GSC beamforming with Zelinski-

TSNR multi-channel postfilter, is proposed to enhance the degraded speech in directional and 

diffuse noise conditions. In this chapter, directional interference is eliminated by using GSC 

with auditory interference canceller with subband feedback control using speech presence 

probability. By using UFCNLMS, the iteration speed gets increases compared to time-domain 

methods. Diffuse noise is suppressed using Zelinski-TSNR multi-channel postfilter in which 

speech signals at low-frequency regions are enhanced by using TSNR, and high frequencies 

are enhanced by improved Zelinski postfilter. At 10 dB input SNR, PESQ and SSNR for the 

proposed GSC-Zelinski-TSNR is 3.42 and 26.8 dB, shows that the diffuse noise suppression 

in each subband. Degraded speech in the low-frequency region is enhanced completely, which 

made the proposed algorithm show better performance compared to the existing algorithms in 

terms of PESQ, Segmental SNR, and LSD. After processing of noisy speech using proposed 

GSC beamformer using Zelinski- TSNR multi-channel postfilter which is later called as 

Combined Postfilter (CP) produces a system-generated noise in the desired speech, which can 

be called residual noise. To eliminate residual noise and also to separate interference speakers 

from unknown directions in real-time environments, a novel adaptive beamforming with 

multi-channel postfilter is implemented and discussed in chapter 6. 
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Chapter 6 

Adaptive Beamforming Using Combined Postfilter and 

Sparse NMF for Speech Enhancement  

This chapter proposes the sparse NMF to GSC beamformer with combined postfilter to 

suppress residual noise. Sparse NMF is proposed to reduce residual noise generated at the 

output of GSC with a combined postfilter for multi-channel speech enhancement.  

6.1 Motivation 

 Residual noise is a major problem in multi-channel speech enhancement. In addition to 

the requirement for minimal distortion of the original speech, which was discussed in Chapter 

3, it is important that the residual noise, i.e., the noise remaining after the enhancement 

process, does not sound annoying. Therefore, there is a great need to reduce residual noise, to 

reduce listener fatigue, and improve intelligibility. Existing multi-channel speech enhancement 

(MCSE) also suffers from residual noise in the output, and that reduces the quality and 

intelligibility of the desired signal. Multi-channel speech enhancement techniques (MCSE) 

such as adaptive beamforming with postfiltering enables high-quality, hands-free 

communication in noisy conditions. But there exists residual noise in the desired speech. So, a 

robust multi-channel speech enhancement algorithm should be developed to suppress residual 

noise and also to separate interference speakers coming from an unknown direction.  
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6.2 Introduction  

 Residual noise occurs due to the existence of randomly spaced peaks in the spectrum of 

the reconstructed signal because of the overestimates and underestimates of the clean signal in 

adjacent spectral groupings. Sometimes resulting from the crude estimation of the noisy signal 

power spectrum. These peaks sound similar to tones with frequencies that change randomly at 

the analysis frame rate. Residual noise is more prominent in the unvoiced segments of speech 

where the noise power is comparable to the speech power and is sometimes more disturbing 

than the original distortions caused by the interfering noise, which is challenging for multi-

channel speech enhancement (MSCE). 

Interference noise or speaker separation refers to the problem of separating one or 

more desired signals from mixtures of multiple signals. This problem can be encountered in 

many different applications, such as medical [249] [250], military [251], and multimedia 

[252]. This challenge is commonly approached by using numerous sensors, each of which 

monitors a different mixture of a source signal to acquire enough information about the 

incoming source signals to perform the effective separation. In most cases, the source signals 

are assumed to be statistically independent, and no extra prior information about the source 

signals is assumed available.  

The more complicated problem is that of separating multiple source signals from an 

unknown direction. This problem is usually defined as the multi-channel speech enhancement 

and interference separation problem. The goal of multi-channel speech enhancement and 

interference separation is to recover the original source signals from a multi-microphone 

recording of their linear mixture, as shown in Figure 6.1. Since the problem is underspecified, 

prior knowledge or training data for the source signals are assumed to be available. In this 

thesis, the multi-channel source separation and enhancement problems are considered for the 

adverse environment. The adverse environment is considered directional noise, diffuse noise, 

real-time noises, and interference speakers from different directions. The multi-channel 

speech enhancement and interference separation problem is encountered in many applications 

such as: separating instruments in music recordings [253], separating speech signals from 

multiple simultaneous speakers recording [200], [254], separating speech signals from 
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background music signals [255], speech denoising [97], and improving automatic speech 

recognition systems by removing the background signals [256]. 

 

 

 

 

 

Figure 6.1 Multi-Channel Speech Enhancement Using NMF. 

 

6.2.1 Multi-Channel Speech Enhancement and Interference 

 Separation Using NMF Algorithms 

There are many proposed approaches to estimate the desired speech from the observed 

noisy speech signal from an adverse environment. Most of these approaches rely on training 

data about the input signals that are in the mixture. In many approaches, the training and the 

mixed signals are usually processed in magnitude or power spectral domain [257]-[258]. In 

other approaches, the signals are processed in the log-spectral domain [259]. 

Another approach for multi-channel speech enhancement or interference separation is 

to decompose the mixed-signal spectral frames as a weighted linear combination of the 

training data spectral frames. In [260]-[261], the mixed signal is decomposed as a linear 

combination of a number of exemplars from a large exemplar dictionary of training data for 

each source signal. 
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The most used approach for solving the MCSE and interference separation problem is 

nonnegative matrix factorization (NMF) [38] to train a set of nonnegative basis vectors 

(dictionary) for the training data of each source. In the separation stage, NMF is used to 

decompose the mixed signal as a weighted linear combination of the trained basis vectors. 

The estimate of each source is found by summing its corresponding trained basis terms from 

the NMF decomposition during the separation stage [262]. The NMF is used in this 

framework in the magnitude spectral or power spectral domain where the non-negativity 

constraint is necessary. The number of the trained basis vectors is usually less than the 

dimension of the spectral frames of the training data. Due to the efficient update rule solutions 

of NMF [38], and since every source is represented by a few numbers of basis vectors, this 

approach is considered to be fast and very simple, which makes it the most used approach in 

multi-channel speech enhancement and interference separation. Another advantage of using 

NMF in multi-channel speech enhancement and interference separation is that there is no 

limitation on the energy level for the training and mixed signals. 

Much research has been done to improve the performance of NMF by encouraging the 

NMF decomposition matrices to satisfy specific features of the source signals to be evaluated. 

In [263], harmonicity and smoothness were enforced in Bayesian NMF and applied to music 

transcription. In [264], spatial decorrelation and other priors were incorporated with NMF for 

different applications. In [198], regularized NMF with Itakura-Saito (IS-NMF) divergence 

was introduced with Markov chain prior models for smoothness within a Bayesian 

framework. The conjugate prior distributions on the NMF weights and basis matrices with the 

Poisson observation model within the Bayesian framework were introduced in [265]. In [266], 

the discriminative constraint was applied to the NMF solution. When NMF algorithms are 

used for source separation, a good separation can be expected only when speaker-dependent 

basis matrices are learned. In contrast, for noise reduction, even if a general speaker-

independent basis matrix of speech is learned, a good enhancement can be achieved [98]. 

Since the basic NMF allows a large degree of freedom, the performance of the source 

separation algorithms can be improved by imposing extra constraints and regularizations, 

motivated by the sparsity of the basis vectors and NMF coefficients or smoothness of the 

NMF coefficients. In probabilistic NMFs, these constraints can be applied in the form of prior 

distributions. Among different priors, significant attention has been paid to model the 
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temporal dependencies in the signals because this important aspect of audio signals is ignored 

in a basic NMF approach [205], [267]. 

Schmidt et al. [269] presented an NMF-based unsupervised batch algorithm for noise 

reduction. In this approach, it is assumed that the entire noisy signal is observed, then the 

noise basis vectors are learned during the speech pauses. In the intervals of speech activity, 

the noise basis matrix is kept fixed, and the rest of the parameters (including speech basis and 

speech and noise NMF coefficients) are learned by minimizing the Euclidean distance with an 

additional regularization term to impose sparsity on the NMF coefficients. The reported 

results show that this method outperforms a spectral subtraction algorithm, especially for 

highly non-stationary noises. The schematic view of enhancing degraded speech using NMF 

is shown in Figure 6.2. 

In [270], a supervised NMF-based denoising scheme is proposed in which a heuristic 

regularization term is added to the cost function. By doing so, the factorization is enforced to 

follow the pre-obtained statistics. In this method, the basis matrices of speech and noise are 

learned from training data offline. Also, as part of the training, the mean and covariance of the 

log of the NMF coefficients are computed. The negative probability of a Gaussian distribution 

is used to regularize the cost function during the enhancement using these statistics (with the 

computed mean and covariance). 

 

                                                 Figure 6.2:  Schematic View of NMF 
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 To the multi-channel speech enhancement and multiple interference separation 

environments, S Gannot [194] introduced the transfer function GSC with a multi-channel 

postfilter and compared it with a single channel postfilter.  This method fails in diffuse noise 

fields. An improved GSC with multi-channel postfiltering is presented by K. Li [248], which 

eliminates the directional noise but is unable to suppress diffuse noise and has caused more 

speech distortion in low frequencies. Li. Pfeifenberger [271] introduced GSC adaptive 

beamforming with directional to diffuse noise postfilter, it separates the directional and 

diffuse noise components, but this method fails in case of interferences. X. Wang [272] 

proposed a modified SPP-based multi-channel postfilter for reverberant noise; The intended 

speech is obtained using this procedure, although it is accompanied by residual noise. J. Park 

[273] proposed a GSC beamforming using Wiener postfilter for composite noise suppression. 

But, when diffuse noise is considered, it does not give the desired result due to the 

employment of a single-channel Wiener postfilter at the output of GSC. In the method 

proposed by L. Zhang [274], post-secondary filtering is introduced to a time-domain GSC 

beamforming to reduce the diffuse noise, point noise, and speech interferences.  

 In enhancing or separating the speech signal from interfering noisy source, machine 

learning methods like NMF plays a significant role. G. Rithwik [275] introduced a speaker-

independent speech enhancement in which NMF based postfilter is used to reduce the noise. 

S. Priyanka [276] presented GSC adaptive beamforming using Zelinski TSNR postfilter, but 

when the number of interferences increased, it was unable to separate the desired speech. S 

Gannot [19] developed a consolidated perspective on multi-microphone speech enhancement 

and source separation methods which are interrelated to each other. And also address that the 

performance of the system depends on the number of microphones, which improves speech 

communication in noisy and reverberant environments. P.D.O. Grady [277] presents a 

convolutive NMF with a sparse constraint to represent speech phones in auditory data. C. 

Fevotte [278] introduced NMF with sparse constraints for single-channel audio source 

separation. But these algorithms individually help in either separating interference or reducing 

the noise.  

 During the simulation of the GSC-CP algorithm for the adverse environment, residual 

noise is generated by the system. In the real-time environment, the number of interferences 
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will be more it will lead to the overlapping of the sources. This makes it very critical while 

communicating in teleconference applications. An innovative strategy should be implemented 

to overcome these hurdles in a challenging environment, such as minimizing residual noise 

and separating unknown interferences. 

 A GSC beamforming approaches to suppress directional and diffuse noise is 

implemented both in a time domain and frequency domain under noisy real-time 

environments in the previous chapter 3, chapter 4, and chapter 5. In Chapter 5, a combination 

postfilter (CP) is proposed and applied to the GSC beamforming to reduce diffuse noise in 

each subband. In this chapter, to reduce residual noise generated at the output of GSC-CP and 

also to separate unknown interferences, Sparse NMF (SNMF) is proposed. The SNMF is 

introduced to the proposed GSC-CP from chapter 5 to suppress residual noise and also to 

separate the interference speakers in the real-time environment. 

6.3 Proposed GSC Adaptive Beamforming using CP and Sparse 

 NMF 

 In the proposed multi-microphone speech enhancement method, we consider an 

adverse environment with directional and diffuse noise, and then it is applied to the linear 

array of four and eight microphones. As considered in chapter 5, the same generated noisy 

input is considered here, where the signal received at each microphone contains directional 

noise from a particular direction, a diffuse noise that propagates uniformly in all directions, 

and the desired speech simultaneously. The proposed multi-microphone array speech 

enhancement is shown in Figure 6.3.  

 In this chapter, a novel GSC beamforming with CP and SNMF is proposed for speech 

enhancement. It is a combination of three main blocks as the GSC beamforming with 

UFNLMS reduces the directional noise, the second part is a combined postfilter (CP) for 

diffuse noise reduction, which is already implemented in chapter 5, section 5.4, and finally, 

the third is SNMF which suppress the residual noise generated at the output of CP which is 

explained in the next section 
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Figure 6.3: The Proposed GSC Beamforming with CP and SNMF for a Multi-Channel Speech 

       Enhancement 

 

6.3.1 Sparse NMF for Residual Noise Suppression 

 The purpose of sparse linear coding [279]-[280] is to identify a decomposition in 

which the hidden components are sparse; that is, their probability densities are significantly 

peaked at zero, and their tails are long. This essentially indicates that every given input vector 

may be properly represented with only a few non-zero hidden coefficients. NMF's ability to 

provide a sparse representation of data is one of its most valuable features. This type of 

representation encodes a large amount of data with a small number of 'active' components, 

making the encoding simple to understand.  

 Sparse coding is a representational system in which only a few units (from a huge 

population) are employed to adequately represent typical data vectors [281]. In practice, this 

means that most units take values near zero, with just a few taking values that are notably 

non-zero. The sparsest feasible vector (with just one non-zero component) should have a 
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sparseness of one on a normalized scale, whereas a vector with all components equal should 

have a sparseness of zero. We employ a sparseness metric based on the connection between 

the L1 and L2 norms in this chapter which helps in updating the activation function 

For desired speech from a known residual noise and interference separation from a noisy 

speech, we employ the following procedure: 

1. Get training data for the residual noise ( )oS t  and ( )eS t desired speech, make a magnitude 

spectrogram for both, then use SNMF to extract associated frames 
o

tw  and 
e

tw . 

2. Create a combined basis set [ | ]oe o e

t t tw w w  , which yields a basis twice the size of R. 

3. Make a magnitude spectrogram of a mixture made up of two unknown sources. SNMF with 

fixed to tw is used to fit the mixture to 
oe

tw , and only the related activations h are learned. 

4. Split h into noisy residual speech oh and desired speech, eh  components that correspond to 

their corresponding bases, |o eh h h     . 

5. Create a magnitude spectrogram for both sources using their respective bases and 

activations: 
1

0

oT
o o o

t

S w h



 and 

1

0

oT
e e e

t

S w h



 .  

6. Create an audible reconstruction for both sources using the phase information from the 

mixture. 

In this procedure, the residual noise is separated from the GSC-CP output. A related 

formulation for updating the basis vector and activation function in the SNMF model is as 

follows. 

In SNMF, the noisy speech signal v is the linear multiplication of the basis vector and 

the activation coefficients w and h. SNMF calculates w and h by reducing the sparseness of 

activation coefficient h using L2 normalization is defined as 

     1
,

, min ||
w h

w h D v wh h                 (6.1) 
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The spacing between v, w, h can be determined by Euclidian space. Here iterative 

multiplicative update is used to determine w and h then, 

                              

 
 

T

T

h w v wh
h

w 

 


                           (6.2)

               
 1 1 .

1 1

T T

T

v
h h w w

whw w
v

h w w
wh

  

 
 

   
 

                         (6.3) 

 In the above Equation (6.1) and Equation (6.2), the column-wise L2 normalization of w 

is w . The Hadamard product   and division / are used to determine w and h in Equation 

(6.1) and Equation (6.2) 

Using SNMF at the output of GSC-CP, the major advantages are residual noise 

reduction and multiple interference separation based on w and h matrix multiplication by 

taking corresponding frequencies of interferences at each time instant. The same procedure is 

verified for noisy input with four microphones and eight microphones, respectively. 

Therefore, the proposed method removes noise coming from different directions and separates 

interferences in an adverse environment which is shown clearly in simulation results. 

 The workflow of the proposed method is shown in Figure 6.4; at first, the Fixed 

Beamforming (FBF) and the Modified Blocking Matrix (MBM) are analyzed in the frequency 

domain using Short Time Fourier Transform (STFT). Next, the auditory grouping is 

performed based on the bark scale, and the frequencies are converted to bark frequency 

components. Using auditory subband adaptive interference canceller (UFNLMS), the noise is 

suppressed in each subband based on speech enhancement. Directional noise is reduced using 

a GSC beamformer in each subband. The diffuse noise is reduced using a combined postfilter 

(CP) based on SPP using UFNLMS algorithms. At last residual noise is suppressed, 

introducing SNMF to the GSC-CP method. Finally, desired speech is obtained at the output. 
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Figure 6.4: Workflow of the Proposed GSC-CP-SNMF 
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6.4 Simulation Results 

 In this section, simulation of the proposed GSC beamforming with CP and SNMF in 

an adverse environment is evaluated and discussed. The simulation parameter with 

specifications considered for the proposed GSC-CP-SNMF method is shown in Table 6.1 

Using image method [225], a multi-channel room impulse response is generated, considering 

a linear array of four microphones with a distance of 5 cm between each microphone, and 

distance of 1 m between the source and microphone array, in a conference room with 6 m x 3 

m x 5 m and reverberation time of 300 ms following a Mex setup using Mex function, i.e., rir-

generator.cpp in MATLAB. The Mex function was taken from International Audio 

Laboratories Erlangen at Friedrich Alexander University Erlangen-Nuremberg. 

(https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator) same as 

chapter 5, but the number of microphones considered here are four and eight to show the 

efficiency of the system.  

 An adverse environment is considered taking the desired speech from an unknown 

direction, directional interferences like white noise at -45
o
C and female speech at 90

o
C using 

the DARPA TIMIT [227]-[228], i.e., database of 6300 male and female sentences, 10 

sentences spoken by every 630 speakers with a sampling frequency of 8 kHz and also a 

diffuse noise [229] from NOIZEUS database [230], i.e., a car noise are given to Mex setup, 

finally form a noisy input signal (i.e., a combination of desired speech, directional 

interferences, and diffuse noise) with different SNR levels from -10 dB to 10 dB. 

 This noisy input signal is applied to FBF, which analyzes the DOA of (known and also 

unknown) input signal, and all the delays from the microphones are added based on the DSB 

principle. Finally, a partially enhanced signal is obtained at the output of FBF. In the next 

stage, from noisy input speech, the delays on the adjacent microphones are subtracted using 

MBM so that a noise reference is generated. Both the partially enhanced signal and the noise 

reference are parallelly applied to the auditory grouping.  

 

https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator
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 Later, directional noise is suppressed by GSC using UFNLMS, and diffuse noise is 

suppressed by CP in each subband. However, in these processes, residual noise is generated, 

which is removed by proposing an SNMF block to GSC-CP. The same procedure is repeated 

for eight microphones to increase the performance of the proposed multi-microphone array 

speech enhancement. The simulation result is compared to the existing methods to 

demonstrate the performance of the proposed GSC-CP-SNMF approach in terms of 

intelligibility and quality. 

6.4.1 Performance Analysis of the Proposed GSC-CP-SNMF 

The performance of the proposed GSC with CP and SNMF algorithm is analyzed in terms of 

five objective parameters, namely Perceptual Evaluation of Speech Quality (PESQ) [231], 

Segmental SNR (SSNR) [240], Short Time Object Intelligibility (STOI) [282], Signal to 

Distortion Ratio (SDR) [283] and Log-Spectral Distance (LSD) [232].  

Table 6.1 Simulation Parameters Considered for the Proposed GSC-CP-SNMF 

 

Parameters Specifications 

Conference Room 

Dimensions 

6 m X 5 m X 3 m (Using Image Method [225] with Mex setup 

using Mex function i.e., rir-generator.cpp [226] in MATLAB) 

Microphones (m) m=4, 8 

Distance between each 

microphone 

5 cm 

Distance from source to 

microphone 

1 m 

Diffuse noise Car noise from Noizeus [230] 

Input SNR Levels -10 dB, -5 dB, 0 dB, 5 dB and 10 dB 

Database Darpa Timit [227]-[228] and Noizeus [229]-[230] 

Directional 

Interferences 

white noise at -45 and female speech at 90 

Desired speech and 

diffuse noise 

unknown direction 
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6.4.1.1 Comparison of PESQ for Four and Eight Microphones 

PESQ [231] is an objective intelligibility measure, the standard range of which lies between 

0.5 to 4.5 dB. The higher the PESQ score better will be the perception. Table 6.2 and Table 

6.3 compares the PESQ score for the proposed method with four and eight microphones, 

respectively. In S. Priyanka [276] method, the PESQ at -10 dB attains 2.45 dB and 2.82 dB 

with 4 and 8 microphones, respectively.  

Table 6.2: PESQ Comparisons for Four Microphones. 

Input SNR (dB) -10 -5 0 5 10 

Gannot[9] 2.02 2.21 2.49 2.66 2.81 

K. Li [248] 2.38 2.62 2.83 3.03 3.38 

Pfeifenberger [271] 2.06 2.13 2.39 2.53 2.74 

X. Wang [272] 2.10 2.22 2.28 2.37 2.54 

J. Park [273] 2.56 2.62 2.74 3.11 3.34 

L. Zhang [274] 2.17 2.31 2.43 2.58 2.77 

G. Rithwik [275] 2.43 2.52 2.65 3.11 3.62 

S. Priyanka [276] 2.45 2.68 2.94 3.20 3.42 

GSC-CP-SNMF (Proposed) 3.32 3.68 3.83 4.11 4.29   

 

 The proposed GSC-CP-SNMF at -10 dB is 3.32 dB and 3.49 dB with four and eight 

microphones, respectively. The proposed method shows superior performance, as SPP is used 

for minimizing the noise power instead of step size in diffuse noise reduction. At the output, 

the desired speech perception is attained, and interferences are separated due to SNMF.  For 

the proposed method, PESQ of 4.29 dB and 4.34 dB are obtained at 10 dB with 4 and 8 

microphones, respectively. 
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Table 6.3: PESQ Comparisons for Eight Microphones. 

Input SNR (dB) -10 -5 0 5 10 

Gannot[9] 2.11 2.27 2.56 2.83 2.95 

K. Li [248] 2.77 2.84 2.89 2.98 3.46 

Pfeifenberger [271] 2.18 2.25 2.47 2.68 2.94 

X. Wang [272] 2.18 2.32 2.48 2.63 2.67 

J. Park [273] 2.71 2.83 2.91 3.27 3.62 

L. Zhang [274] 2.25 2.41 2.55 2.69 2.84 

G. Rithwik [275] 2.46 2.67 2.83 3.25 3.82 

S. Priyanka [276] 2.82 3.03 3.25 3.39 3.81 

GSC-CP-SNMF (Proposed) 3.49 3.78 3.96 4.28 4.34 

 

6.4.1.2 Comparison of SSNR for Four and Eight Microphone 

 Segmental SNR [240] is one of the most popular objective measures for speech 

enhancement methods. In normal SNR calculation, the whole signal is considered, whereas 

while calculating SSNR, segments are taken with 256 samples per frame (k=256, with 50 

percent overlap). Higher the SSNR will be better the quality of speech. 

Segmental SNR is calculated as 

𝑆𝑆𝑁𝑅 =
10

𝐿

∑ 10𝑙𝑜𝑔∑ 𝑋2(𝑚 + 𝑞
𝑚
2 )𝑀−1

𝑚=0
𝐿−1
𝑞=0

∑ [𝑋 (𝑚 + 𝑞
𝑚
2 ) − 𝑠̂𝑒(𝑚 + 𝑞

𝑚
2 ]
2

𝑀−1
𝑚=𝑜
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Table 6.4 SSNR Comparisons for Four Microphones. 

Input SNR (dB) -10 -5 0 5 10 

Gannot[9] 5.2 7.8 9.3 12.7 15.6 

K. Li [248] 9.2 14.1 16.5 19.8 22.4 

Pfeifenberger [271] 6.4 7.8 9.2 14.3 17.6 

X. Wang [272] 7.2 8.5 9.8 15.8 18.3 

J. Park [273] 8.2 12.6 13.8 14.3 16.1 

L. Zhang [274] 8.7 10.2 11.3 16.2 19.5 

G. Rithwik [275] 9.8 11.6 12.5 18.2 20.8 

S. Priyanka [276] 9.8 15.3 18.7 20.2 26.8 

GSC-CP-SNMF (Proposed) 11.2 16.4 19.6 22.6 28.3 

   

Table 6.5 SSNR Comparisons for Eight Microphones 

Input SNR (dB) -10 -5 0 5 10 

Gannot[9] 6.5 8.5 9.8 14.3 16.5 

K. Li [248] 9.7 16.8 18.2 21.6 23.4 

Pfeifenberger [271] 7.3 8.9 10.2 15.3 18.9 

X. Wang [272] 8.4 9.9 12.7 18.2 20.4 

J. Park [273] 9.6 13.2 14.8 15.7 18.6 

L. Zhang [274] 9.4 12.3 16.8 19.9 21.7 

G. Rithwik [275] 10.2 14.3 18.3 21.6 22.8 

S. Priyanka [276] 11.6 17.4 20.1 22.9 27.7 

GSC-CP-SNMF (Proposed) 13.4 18.5 21.3 25.9 29.9 

 

In the combined postfilter, the low-frequency region, which is below 4kHz, is processed with 

a TSNR filter, and the high-frequency region, which is in the range 4kHz to 8kHz, is 

processed with an IZ filter. The diffuse noise in each subband is eliminated by considering 

speech presence segments that result in improved performance of SSNR. The SSNR for four 

microphones is 22.6 dB, and 28.3 dB at 5 dB and 10 dB input SNR, respectively, which is 
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better than K. Li [248], and other methods are shown in Table 6.4. Similarly, the SSNR for 

eight microphones is 25.9 dB, and 29.9 dB at 5 dB and 10 dB input SNR, respectively, which 

is better than S Gannot [9], K. Li [248], G. Rithwik [275], and other methods are shown in 

Table 6.5. The proposed GSC-CP-SNMF method shows the highest SSNR values compared 

to existing methods. 

6.4.1.3 Short Time Object Intelligibility (STOI) Comparison for Four and Eight 

 Microphones  

STOI [282] is based on the processed and reference signal correlation coefficient of each 

frame. The standard range of STOI is 0 to 1. The higher the STOI value, the better is the 

intelligibility of speech. Table 6.6 and Table 6.7 show the STOI comparison for the proposed 

method using four and eight microphones. STOI performance with four and eight 

microphones for the proposed GSC-CP-SNMF gives the highest values of 0.802 and 0.892, 

respectively, at 10 dB input SNR, which is close to 1. It is because UFNLMS is in a subband 

adaptive feedback controller, which reduces the noise in each subband of the frame by 

generating a variable step size. The highest STOI is achieved for the proposed GSC-CP-

SNMF method. 

Table 6.6 STOI Comparisons for Four Microphones 

Input SNR (dB) -10 -5 0 5 10 

Gannot[9] 0.219 0.252 0.306 0.347 0.405 

K. Li [248] 0.432 0.498 0.520 0.597 0.612 

Pfeifenberger [271] 0.251 0.305 0.394 0.473 0.501 

X. Wang [272] 0.253 0.329 0.426 0.519 0.563 

J. Park [273] 0.264 0.342 0.459 0.537 0.575 

L. Zhang [274] 0.331 0.381 0.505 0.552 0.614 

G. Rithwik [275] 0.432 0.469 0.580 0.607 0.634 

S. Priyanka [276] 0.512 0.532 0.551 0.639 0.706 

GSC-CP-SNMF (Proposed) 0.522 0.567 0.628 0.716 0.802 
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Table 6.7 STOI Comparisons for Eight Microphones 

Input SNR (dB) -10 -5 0 5 10 

Gannot[9] 0.268 0.295 0.358 0.384 0.429 

K. Li [248] 0.474 0.513 0.579 0.608 0.629 

Pfeifenberger [271] 0.272 0.332 0.453 0.489 0.532 

X. Wang [272] 0.287 0.367 0.509 0.573 0.589 

J. Park [273] 0.326 0.501 0.551 0.620 0.685 

L. Zhang [274] 0.376 0.398 0.552 0.591 0.628 

G. Rithwik [275] 0.491 0.526 0.598 0.611 0.689 

S. Priyanka [276] 0.526 0.541 0.611 0.699 0.756 

GSC-CP-SNMF (Proposed) 0.538 0.578 0.647 0.768 0.892 

 

6.4.1.4 Signal to Distortion Ratio (SDR) Comparison for Four and Eight Microphones 

 SDR [283] is an objective quality measure to calculate the distortion in each subband. 

The higher the SDR value, the higher will be the quality of the desired speech signal.  

Table 6.8 SDR Comparisons for Four Microphones 

Input SNR (dB) -10 -5 0 5 10 

Gannot[9] 2.45 3.38 4.59 7.21 10.43 

K. Li [248] 3.81 4.33 8.28 10.13 11.65 

Pfeifenberger [271] 2.57 3.55 5.62 8.93 10.86 

X. Wang [272] 3.07 3.76 6.13 9.59 11.02 

J. Park [273] 4.92 6.89 8.56 10.98 11.19 

L. Zhang [274] 3.87 4.07 7.34 10.25 11.47 

G. Rithwik [275] 4.22 4.65 8.39 10.87 11.79 

S. Priyanka [276] 6.211 9.11 10.98 11.69 12.61 

GSC-CP-SNMF (Proposed) 7.19 10.12 11.76 12.96 13.39 
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Table 6.9 SDR Comparisons for Eight Microphones 

Input SNR (dB) -10 -5 0 5 10 

Gannot[9] 2.71 4.31 7.02 8.78 10.91 

K. Li [248] 3.96 5.79 9.32 10.92 12.15 

Pfeifenberger [271] 2.89 3.80 6.29 9.22 11.05 

X. Wang [272] 3.43 3.98 7.67 10.03 11.32 

J. Park [273] 5.07 7.65 9.58 11.66 12.57 

L. Zhang [274] 4.05 4.74 8.92 10.45 11.88 

G. Rithwik [275] 4.97 5.07 10.11 11.58 12.14 

S. Priyanka [276] 6.89 9.92 11.12 12.79 13.42 

GSC-CP-SNMF (Proposed) 7.78 10.78 12.57 13.24 13.95 

 

SDR for the GSC-CP-SNMF is higher compared to K. Li [248], X. Wang [272], and other 

existing methods. SDR at -10 dB for four microphones is 7.19 dB, and for eight microphones, 

it is 7.78 dB. Due to SNMF at the output of CP, the residual noise generated is reduced. SDR 

at 10 dB for K. Li [248] method is 12.15 dB, and for the proposed method, it is 13.95 dB for 

eight microphones which shows the better noise reduction over existing methods which is 

shown in Table 6.8 and Table 6.9. 

6.4.1.5 Comparison of LSD for Four and Eight Microphones 

Log Spectral Distance measure [232] is an objective measure for the calculation of the 

spectral distance between the frames. Better intelligibility can be achieved with a reduction in 

spectral distance. 

LSD is calculated as 

𝐿𝑆𝐷 =
10

𝐿
∑ {1 + (

𝑀

2
+ 1)∑ [𝑙𝑜𝑔𝑋(𝑝, 𝑞) − 𝑙𝑜𝑔𝑠̂𝑒(𝑝, 𝑞)]

2
𝑀

2

𝑞=0 }𝐿−1
(𝑞=0)    
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In Table 6.10 and Table 6.11 LSD measure for the proposed method is compared with the 

competing methods. The proposed method shows the lower LSD, resulting in better noise 

reduction. The spatial information is completely utilized by taking MBM into consideration. 

The spectral distance between two frames is reduced, and the proposed GSC-CP-SNMF 

achieves better performance compared to the other classical methods. As the distance between 

the frames decreases, the distortion gets reduced. 

Table 6.10 LSD Comparisons for Four Microphones 

Input SNR (dB) -10 -5 0 5 10 

Gannot[9] 9.1 7.9 7.4 7.1 6.8 

K. Li [248] 7.9 6.6 5.6 5.2 5.0 

Pfeifenberger [271] 7.3 6.0 5.2 4.7 4.0 

X. Wang [272] 5.2 4.8 4.2 3.8 3.2 

J. Park [273] 4.9 3.8 3.0 2.9 2.4 

L. Zhang [274] 4.7 4.1 3.6 3.4 3.0 

G. Rithwik [275] 4.0 3.6 3.2 3.0 2.8 

S. Priyanka [276] 3.5 2.6 2.0 1.5 1.3 

GSC-CP-SNMF (Proposed) 2.6 1.8 1.1 0.8 0.6 

 

Table 6.11 LSD Comparisons for Eight Microphones 

Input SNR (dB) -10 -5 0 5 10 

Gannot[9] 8.3 7.0 6.2 5.7 5.2 

K. Li [248] 7.2 6.4 5.8 4.9 4.2    

Pfeifenberger [271] 6.7 5.8 5.0 4.2 3.9   

X. Wang [272] 4.6 4.3 3.8 3.3 3.0 

J. Park [273] 3.6 3.1 2.8 2.2 1.9 

L. Zhang [274] 3.8 3.6 3.2 2.8 2.3 

G. Rithwik [275] 3.5 3.2 2.5 2.3 2.0 

S. Priyanka [276] 2.8 2.2 1.8 1.2 1.0 

GSC-CP-SNMF (Proposed) 2 1.5 1.1 0.7 0.4 
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. The LSD for eight microphones is lower when compared to that for four microphones. LSD 

for the proposed GSC-CP-SNMF at 10 dB is 0.4 dB, whereas, for the G. Rithwik [275] 

method, it is 2.0 dB, for K. Li [248] method, it is 4.2 dB for eight microphones, which shows 

that the proposed method GSC-CP-SNMF has the lower LSD compared to existing methods. 

6.4.1.6 Spectrogram for Four and Eight Microphones 

 In Figure 6.5 and Figure 6.6, the spectrograms of the proposed speech enhancement 

method using four and eight microphones are illustrated at 10 dB input SNR, which shows the 

noise reduction of noisy input speech using the proposed GSC-CP-SNMF for four and eight 

microphone cases, respectively. The proposed GSC-CP-SNMF method shows better noise 

reduction with improved quality and intelligibility. 

 

Figure 6.5: Spectrogram for the proposed GSC-CP-SNMF method using four microphones at 

       10 dB input SNR. 
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Figure 6.6 Spectrogram for the Proposed GSC-CP-SNMF Method Using Eight Microphones 

        at 10 dB Input SNR 

6.5 Summary 

A multi-microphone speech enhancement method using GSC beamforming with 

combined postfilter and SNMF is proposed to enhance the desired speech from directional 

interferences, diffuse noise, and residual noise. Directional interferences are eliminated using 

GSC beamforming with UFCNLMS, and the diffuse noise is reduced using combined 

postfilter and the residual noise by SNMF. Four and eight microphones systems were 

considered to evaluate the performance, and as the number of microphones increased, the 

performance was also improved. Using SNMF, the GSC-CP becomes more robust to the real-

time environment in the case of multiple speakers. The proposed GSC-CP-SNMF method 

outperforms existing methods in terms of PESQ, SSNR, STOI, SDR and LSD which is 

quantified from the results. The proposed method outperforms the current approach in better 

noise reduction.  



118 
 

The addition of the SNMF algorithm to GSC-CP proves that in teleconference 

applications, the multi-microphone speech enhancement and multi-microphone speech 

separation methods can be used in an inter-related manner to have noise-free communication. 

Better quality and intelligibility were achieved using the proposed method. 
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Chapter 7 

Conclusions and Future Scope 

This chapter provides the conclusions of the thesis. The future scope is also provided, 

which suggests some of the potential research areas in multi-channel speech enhancement. 

7.1 Conclusions  

This thesis focuses on developing novel adaptive beamforming approaches for Multi-

Channel Speech Enhancement (MCSE) algorithms on real-time noisy conditions and adverse 

environment in four contributions which is as follows. 

The first contribution generalized sidelobe canceler (GSC) beamformer using different 

adaptive filtering algorithms is proposed to address the different real-time noisy types in the 

existing multi-channel speech enhancement. For the desired speech from the noisy 

environment, GSC adaptive beamformer initially finds the direction of arrival of the noisy 

speech signal, based on calculating the delay from each microphone using delay and sum 

beamformer (DSB). Later, it cancels the received noise using the adaptive filtering 

algorithms. A virtual conference room setup is designed by following the image method with 

a Mex rir generator to generate real-time noise input signals in a multi-channel environment 

like a teleconference.  Then, a noisy input speech using multiple microphones is simulated 

and is applied for the estimation. GSC beamforming with traditional adaptive filtering 

algorithms like LMS, NLMS reduces to low noise. Whereas, another conventional algorithm 

i.e., RLS adaptive algorithm produces high computational complexity in the sidelobe 
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canceling path of the GSC beamformer. So, a novel fast convergence NLMS (FCNLMS) 

algorithm is implemented in the sidelobe canceling path of the GSC beamformer to various 

real-time noises under different SNR levels. At -10 dB, the PESQ for proposed GSC-

FCNLMS is 2.769 dB, whereas GSC- LMS, GCS-NLMS, and GSC-RLS it is 2.494 dB, 2.53 

dB and 2.75 dB under station noise conditions. Similarly, for at -10 dB input SNR, GSC-

FCNLMS output SNR is 6.9 dB, whereas GSC-LMS and GSC-NLMS are 6.3 dB and 6.8 dB, 

respectively. The proposed GSC beamforming with the FCNLMS algorithm gives the best 

performance in terms of intelligibility and quality is compared to the existing GSC with LMS, 

NLMS, and RLS algorithms at low SNRs. 

 In the second contribution, a novel signed convex combination of two FCNLMS 

algorithms is implemented to address all real-time noises further and reduce the computation 

burden on the GSC beamforming in the high SNRs, i.e., above 10 dB. The adaptive filter error 

is minimized using a mixing parameter to update the filter weights in the convex 

combinational technique. Meanwhile, the GSC beamformer computational cost is lowered 

compared to GSC-LMS and GSC-NLMS by using the signed algorithm to the convex 

combinational approach. The proposed GSC beamformer with signed convex combinational 

of fast convergence approach improves the speech quality with temporal characteristics at 

high SNRs with PESQ of 4.393 dB at 15 dB input SNR for street noise and 4.355 for station 

noise with low computation time is achieved of 0.97 ms is achieved. Better quality and 

intelligibility are attained using the proposed GSC-SCCFC for all real-time noises given at 

microphone array input and achieved low computational complexity compared to the existing 

algorithm.  

Most of the diffuse noise fields are addressed by postfilters, but in the adverse 

environment, along with diffuse noise, there exist interference speakers coming from 

unknown directions are discussed in contribution three. A GSC beamforming with improved 

Zelinski-TSNR postfiltering is proposed to address directional and diffuse noise. Directional 

noise is suppressed by the GSC beamformer, whereas diffuse noise is suppressed by Zelinski-

TSNR multi-channel postfilter. The Zelinski filter is applied for high frequencies, and the 

TSNR filter is applied for low frequencies. The speech absence frame is eliminated using 

speech presence probability (SPP) and adaptive interference canceller. Desired speech is 
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obtained as GSC beamformer using improved Zelinski-TSNR multi-channel postfilter. In 

each subband, the speech absence frames are eliminated.  Both directional and diffuse noises 

are suppressed using GSC with Zelinski-TSNR postfilter. The proposed GSC with Zelinski-

TSNR postfilter gives a PESQ of 2.45 dB at -10 dB input SNR and 3.42 dB at 10 dB input 

SNR  in an adverse environment when compared with existing Cohen and Kai Li methods of 

2.13 dB and 2.38 dB at -10 dB input SNR, 3.15 dB, and 3.28 dB at 10 dB. The proposed 

outperforms the existing techniques in suppressing directional and diffuse noise. 

In contribution of four to reduce the production of residual noise, which is generated at 

the output GSC with combined postfilter (CP). A novel sparse NMF (SNMF) algorithm is 

proposed at the output of GSC-CP. The basis vector and activation functions are updated 

using the sparse constraint. The non-negative factorization (NMF) model separates the speech 

absence using the basis vector and activation function effectively. The data in the given 

spectrogram like speech to one matrix and noise to another matrix, i.e., W and H. The 

proposed GSC-CP-SNMF beamformer separates residual noise and produces the desired 

speech signal at the output. GSC-CP-SNMF separates noise from a noisy speech and 

separates interference speakers, if any, in the environment. To attain better quality and 

intelligibility in the adverse environment, eight microphones are also used to simulate GSC-

CP-SNMF and attained. The proposed GSC-CP-SNMF gives a PESQ of 3.49 dB at -10 dB 

input SNR and 4.34 dB at 10 dB input SNR for eight microphone array input and 4.29 3.32 

for four microphones at 10 dB and -10 dB input SNR. The proposed method outperforms the 

existing Kai li and Ritwik methods of 2.38 dB and 2.43 dB at -10 dB input SNR, 3.38 dB, and 

3.62 dB at 10 dB input SNR. 

 The thesis shows the effectiveness and robustness of the developed adaptive 

beamforming approaches for multi-channel speech enhancement (MCSE). Various real-world 

non-stationary noisy environments with a wide range of SNRs were considered for the 

performance evaluation. The performance of the developed algorithms in terms of waveforms 

spectrograms and objective parameters is presented, which shows the superiority of the 

proposed algorithms when compared to the existing speech enhancement algorithms in 

dealing with issues like directional noise, diffuse noise, and handling of residual noise in a 
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real-time environment. The proposed GSC-CP-SNMF also supports source separation in an 

adverse environment. 

7.2 Future Scope 

As future work, novel early and late fusion Convolutional Neural Networks (CNNs) 

are proposed for multi-channel speech enhancement. Two beamformers, namely Delay-and-

Sum (DS) and Minimum Variance Distortion less Response (MVDR), are used as pre-filters 

to suppress the effect of noise in the input microphone array. Enhanced outputs of the two 

beamformers are to form two-channel input to the CNN, and it is known as the early fusion 

CNN model. On the other hand, outputs of the beamformers are considered as inputs to the 

two individual CNN's separately. Further, outputs of CNNs are concatenated to form an input 

to the fully connected layers, and it is known as the late fusion CNN model.   
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