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ABSTRACT

Adaptive beamforming plays a crucial role in Multi-Channel Speech Enhancement
(MCSE), especially for applications like teleconferences, mobile phones, hearing aids, etc.,
where real-time situations create various noisy environments while communicating. Multi-
channel speech enhancement (MCSE) is prominent for noise-free communication in noisy
real-time environments. This thesis considers the significance of adaptive beamforming

approaches for multi-channel speech enhancement.

Generalized Sidelobe Canceller (GSC) beamformer is one of the adaptive
beamforming used for multi-channel speech enhancement. GSC structure comprises a Fixed
Beamformer (FBF), Blocking Matrix (BM), and an adaptive filtering block. Adaptive filtering
plays a vital role in noise cancellation in the GSC structure. Existing GSC beamforming with
existing adaptive algorithms shows substandard noise cancellation in the sidelobe canceling
path under real-time noisy environmental conditions. They are ineffective at low SNR, i.e., at
-10 dB, and high SNR, i.e., at 15 dB. Existing GSC adaptive beamformers also suffer from
directional and diffuse noise. In the case of directional and diffuse noise in low frequencies,
most adaptive beamformers reduce less noise. Existing multi-channel speech enhancement
(MCSE) also suffers from residual noise in the output, which diminishes the quality and

intelligibility of the desired speech.

Novel adaptive beamforming approaches should be developed for multi-channel
speech enhancement to address the existing issues. In this thesis, novel adaptive filters and
postfilter are implemented to the GSC adaptive beamforming. The proposed GSC structure
comprises a fixed beamformer (e.g., delay-and-sum), Modified Blocking Matrix (MBM), and
an adaptive filter. Delay and Sum Beamformer (DSB) is used as a fixed beamformer (FBF). It
calculates the directional of arrival based on the delay from each microphone and which it
sums up to give a reference speech signal. MBM blocks the speech signal and gives noise
reference as input to the adaptive filter. An adaptive filter is updated till the noise gets reduced
at the output of the GSC beamformer. All traditional algorithms are applied like LMS, NLMS,
and RLS algorithms in the adaptive filter block of GSC. The performance and computational
complexity are analyzed where noise reduction for only a few noise types and high

computational complexity is addressed at the output of GSC. To address real-time noise at -10



dB SNR level with high convergence and low computational time. In this thesis novel, Fast
Convergence NLMS (FCNLMS) is proposed to sidelobe canceling path of GSC and
compared with GSC with existing adaptive algorithms. The proposed GSC-FCNLMS
algorithm has achieved robust noise reduction at low SNRs.

This thesis proposes a convex combination of two Fast Convergence Normalized
Least Mean Square (FCNLMS) filters to utilize the benefits of combining two adaptive filters
through a mixing parameter. Further, it also offers a signed algorithm to a convex variety of
FCNLMS. The combination approach provides a robust solution to alleviate the convergence
speed vs. steady-state error tradeoff and efficiently increase the speech enhancement
performance under various noisy environments for all real-time noises. This thesis addresses
the directional and diffuse noise suppression in the adverse environment. It has been
investigated on the performance of the GSC beamformer under directional, diffuse noisy
conditions. The novel Improved Zelinski-TSNR multi-channel postfilter is implemented, i.e.,
GSC beamforming using improved Zelinski-TSNR multi-channel postfilter is proposed to
suppress the directional and diffuse noise. Based on the speech presence probability using
subband adaptive interference canceller, the degraded speech is enhanced with good quality
and intelligibility. The last phase discusses the residual noise which has attained at the GSC
beamformer using Zelinski multi-channel postfilter. The proposed GSC beamformer using
combined postfilter and Sparse NMF algorithm addresses the residual noise suppression and
source separation and achieves high quality and intelligibility for four and eight microphones.
Using Sparse NMF at the output of the postfilter reduces the system-generated noise, i.e.,

residual noise. It also separates the interferences.

This work performs extensive computer simulations on all the proposed algorithms.
The results demonstrate a significant performance in improving the terms of Perceptual
Evaluation of Speech Quality (PESQ), output SNR, Segmental SNR (SSNR), Log Spectral
Distance (LSD), Log-Likelihood Ratio (LLR), Short Time Objective Intelligibility (STOI),
Signal to Distortion Ratio (SDR).
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Chapter 1

Introduction

The speech signal is mostly corrupted with noise in real-world environments limiting
its applicability in a wide range of applications like speech recognition in mobile phones,
teleconferences, hearing aids, etc. In many common applications, it is desirable to suppress
background noise and also to improve speech quality. That process of removing background
noise in a degraded speech signal is referred to as speech enhancement or, more generally, as
noise reduction. Speech enhancement has been a challenging problem for the past several
decades [1-4] due to the complex nature of the speech signal. Speech enhancement
techniques are classified as single-channel and multi-channel. Single-channel speech
enhancement techniques [5] fail in finding the direction of unknown noise, suppressing
multiple interferences, and in diffuse noise fields. So, multi-channel speech enhancement
(MCSE) is the process involved in the removal of noise coming from various directions, and
it separates the multiple inferences without any loss of information.

The scope of the thesis is the development and analysis of new adaptive beamforming
approaches for multi-channel speech enhancement addressing various issues with the
currently used methods. This chapter initially provides a brief introduction to multi-channel
speech enhancement and the basics of beamforming techniques, and their classifications for
noise reduction and interference suppression. The motivation for enhanced adaptive
beamforming approaches for multi-channel speech enhancement is presented, followed by the

problem statement, objectives of the thesis, and finally, the organization of the thesis.



1.1 Introduction to Multi-Channel Speech Enhancement

Speech enhancement refers to the improvement in quality and/or intelligibility of noise
corrupted speech signals by using supervised or unsupervised speech enhancement methods.
Speech enhancement deals with the processing of noisy speech signals, aiming at improving
the perception of the human or decoding ability of machines [6]. It is used as a pre-processing
unit for many speech communication applications. Speech enhancement is classified as
single-channel and multi-channel speech enhancement. The classification is mainly based on
the noisy background environment, multiple interference or speakers, and the number of
microphones. Basically, single-channel speech enhancement can be performed in acoustic,
stationary, and non-stationary noisy conditions, whereas in the case of reverberant, diffuse
noise, and multi-speaker or interference from coming from various directions, single-channel
speech enhancement fails to find the direction of arrival of the unknown signal. So, multi-
channel speech enhancement techniques [7] achieved robustness in suppressing directional
and diffuse noise in real-life environments. A simplified diagram of multi-channel speech
enhancement system is shown Fig.1, where noisy input speech, i.e., a male speaker, radio
sound, and female speaker from the crowd is taken whose direction is unknown are received
at multi-microphone array which is given as input to multi-channel speech enhancement
where background noise is reduced, and multiple speakers are separated, finally desired male

speaker speech is obtained at the output.

In many speech communication systems, the presence of background interference
degrades the quality or intelligibility of speech signals. There is a need to differentiate
between the quality and intelligibility of speech, which in most cases are interchangeably but
are quite different from each other. The quality of speech refers to how a speaker conveys an
utterance and includes the attributes such as naturalness and speaker recognizing [8]. In very
simple terms, quality is a measure of how well the examination resembles the original speech
and how nice the speech sounds. Intelligibility is concerned with what the speaker has said,
i.e., the meaning or information content behind the words [8]. It is a measure of how

understandable the speech is and concentrates on the information-carrying content of speech.
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Figure 1.1: Multi-Channel Speech Enhancement System

The performance of a multi-channel speech enhancement system degrades rapidly in
adverse environments. The presence of background noise causes the quality and intelligibility
of speech to degrade. The performance of speech communication devices such as mobile
phones, teleconferencing, automatic speech recognition, and electronic hearing aid, etc. which
utilize speech processing systems to communicate and store speech signals, degrade
significantly in the presence of background noise resulting in inaccurate information exchange
and listener fatigue between the speaker and the listener. Thus, noisy environments reduce the
speaker and the listeners’ ability to communicate. Voice communication, for instance, over
cellular telephone systems typically suffers from background noise present in the car, street,
station, airport, restaurant, etc., at the transmitting end, which makes it difficult for the listener
at the receiving end to understand the speaker. Thus, there are a wide variety of scenarios in
which it is desired to enhance speech. Improving the quality and/or intelligibility of noisy
speech effectively improves the performance of speech processing applications such as
communication systems, speech recognition, speech coding, hearing aids, etc. The goal of a

multi-channel speech enhancement system varies with respect to the application at hand. It
3



could be to reduce the listener fatigue, to enhance the overall speech quality, to increase the
intelligibility, etc., or a combination of these, depending on the application. In a speech
recognition system of mobile phones, the recognition accuracy will suffer in the presence of
noise, and hence the noisy speech signal can be pre-processed by a multi-channel speech
enhancement algorithm before being fed to the system. In the teleconference system used by
the military, the intelligibility has to be enhanced rather than the quality. For hearing-impaired
listeners using hearing aids, it is always desired to enhance the noisy speech by removing the
directional noise before amplifying the signal. Also, the characteristics of the noise and its
relationship to the clean signal, like additive, convolutive, correlated, uncorrelated, etc., and
the number of microphones available affect the design and development of the multi-channel

speech enhancement system.

The performance of multi-channel speech enhancement systems is limited by the
trade-off between interference cancellation, noise reduction, and multiple source separation
[9]. Hence, the main challenge is to develop multi-channel speech enhancement algorithms,
reducing the background noise from a particular direction, diffuse noise, and residual noise in
an enhanced speech to improve the quality of the speech signal without reducing its
intelligibility. Several multi-channel speech enhancement schemes have attempted to address

the problem using various approaches.

1.2 Applications of Multi-Channel Speech Enhancement

Multi-channel speech enhancement has several practical application areas, which
include telecommunication systems like mobile phones, teleconferences, speech/speaker
recognition, hearing aids, etc. The multi-channel speech enhancement block can be placed as
a front end to reduce the noise energy and improve the quality and intelligibility in
telecommunications. Some of the most important applications are discussed in this section to

show how important a role multi-channel speech enhancement has in our day-to-day lives.

Telephone communication has gone from home or office to a wide range of settings,
including congested streets, vehicles, public transit, restaurants, and so on. Noise pollution

can sometimes significantly reduce the quality and intelligibility of speech. As a result, it is
4



necessary to avoid such deterioration, due to this noise reduction in mobile phones has been
the subject of much study [10]-[11].

Teleconferencing permits a large number of people in a room to engage with one or
more people in a hands-free experience. Due to its hands-free feature, listeners in a
teleconference would be defenseless in case of adverse environment noise and directional

noise. As a result, efforts have been undertaken to reduce the noise [12].

Various automatic speech recognition systems have been implemented into
applications such as hands-free telephones, mobile phones, etc. When a noisy speech signal is
utilised as an input to the system instead of a clean speech signal, the performance of system
gets degrades. As a result, noise reduction in such systems has sparked a lot of study [13]-
[14].

Noise has a greater impact on those with hearing loss than it does on people who are
normally hearing. The people have a harder time distinguishing between noise and speech. As
a result, research has been conducted to add speech enhancement modules into hearing aids to

reduce the effect of noise contamination [15]-[17].

1.3 Beamforming for Speech Enhancement

Beamforming or spatial filtering is one of the multi-channel speech enhancement
algorithms used in teleconferences, mobile phones, hearing aid applications. Beamforming
methods [18] are useful to enhance the degraded speech from noisy real-time environments
coming from unknown directions. Beamforming techniques are used to recover the desired
clean speech signal from reverberation and noisy settings such as directional noise and diffuse
noisy conditions. Spatial filtering [19] is used to reduce interference signals from undesirable
directions. The signals from the microphone array are shaped into a beam pattern known as
beamforming or spatial filtering. This is a time-honored technique for suppressing
interference signals originating from various directions. Spatial filtering is the process of

canceling out interference signals utilizing angles and frequencies from different directions. It
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is utilized to boost the quality of speech signals coming from the direction of view. Fixed and

adaptive beamformers are the two types of beamformers covered below.

1.3.1 Fixed Beamforming

Fixed beamforming is a traditional multi-channel speech enhancement technique.
Fixed beamformers [18] get their name from the fact that their weights co-efficient are fixed
during the process. They are also known as data-independent filters because the filter is not
reliant on the data from the microphone and follows fixed weights. Fixed beamformer
approaches such as delay and sum beamformer improve speech signals by calculating and
collecting the delay. FIR filters are employed in the filter and sum beamformer to improve the
quality before summing up, which is suitable for narrowband speech improvement. A Delay
and Sum Beamformer (DSB) as fixed beamformer is shown in Figure 1.2; here, noisy speech
input is given to a multi-microphone array. Based on the distance and angle of arrival, delay
from each microphone is calculated and added to have enhanced speech at the output. The

delay and sum beamformer, on the other hand, will not work in a reverberant environment.
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Figure 1.2: Fixed Beamformer



1.3.2 Adaptive Beamformer

Adaptive beamforming for speech enhancement necessitates thorough consideration of

issues unique to degraded signal in adverse environment.
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Figure 1.3: Schematic View of Adaptive Beamformer

Due to numerous reflections from the room walls, an acoustic field impulse response.
The length of the filters in a typical workplace might approach thousands of taps.

Furthermore, due to the speaker and objects, the impulse response is frequently time variable.

Adaptive beamformers [20] update themselves during the process. They are also
known as data-dependent beamformers because they rely on the static features of desired,
noisy speech signals entering the microphone. Adaptive beamforming is shown in Figure 1.3,
where the weight is updated using the adaptive filtering algorithms, desired speech is obtained
at the output until the error in the adaptive algorithm is minimized. The multi-channel speech
enhancement general schematic flow is shown in Figure 1.4. When the unwanted signals are
not pointing to sources, or there are too many interfering sources, the performance of some
beamformers is restricted. Furthermore, due to the longer observation time necessary to

determine signal statistics, several beamformers suffer from nonstationary interference.
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Single-channel enhancement techniques can accomplish nonlinear spatial and/or
spectral filtering and respond to changes in interference characteristics considerably more
quickly. In this part, we'll look at how to employ algorithms like postfilter at the beamformer
output. For the past few decades, various beamforming [21]-[22] methods have been
introduced to remove directional noise. Existing adaptive beamforming approaches include
the Minimum Variance Distortion Less Response (MVDR) [23] beamformer, Linear
Constraint Minimum Variance (LCMV) [24] beamformer, and Speech Distortion and
Interference Rejection Constraint beamformer (SDIRC) [25].

But, these existing adaptive beamforming techniques with postfilter fail in real-time
environmental noises, directional, diffuse, and residual noise conditions. So, a novel adaptive
beamforming approach should be developed to address directional, diffuse, and residual noise
in real-time environmental noisy conditions like car, station, babble, street, restaurant, airport,

etc.

1.4 Adaptive Beamforming with Multi-Channel Postfiltering

MCSE algorithms have lately gained popularity. It is generally known that
beamforming techniques increase speech quality significantly [7]. As the diffuse noise is
incoherent, here noise reduction becomes inadequate [26]. To process further post-processing
using postfilter [27] is necessary. Furthermore, because non-stationary noise cannot be
differentiated from speech signals in general, considerable performance deterioration is to be

predicted in a non-stationary noise environment.

Most MCSE techniques include a DSB and GSC [21] followed by a Wiener filtering-
based postfiltering mostly in grouping with SS). On the issue, many articles are stated
including [28]-[36]. In general, postfilter are classified into two types. One is single-channel
postfilter that operates on the beamformer output as a single-microphone speech enhancement
technique. Next, is multi-channel postfilters, use the directional information collected by the

GSC structure directly to improve speech signal separation from transient noise.
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Figure 1.4: Generalized form of Adaptive Beamforming with Postfilter

1.5 Non-Negative Matrix Factorization (NMF)

One of the basic concepts deeply rooted in science and engineering is that there must
be something simple, compact, and elegant playing the fundamental roles under the apparent
chaos and complexity. This is also the case in signal processing, data analysis, data mining,
pattern recognition, and machine learning. With the increasing quantities of available raw data
due to the development in sensor and computer technology, how to obtain such an effective
way of representation by appropriate dimensionality reduction technique has become
important, necessary, and challenging in multivariate data analysis. Generally speaking, two
basic properties are supposed to be satisfied: first, the dimension of the original data should be
reduced; second, the principal components, hidden concepts, prominent features, or latent
variables of the data, depending on the application context, should be identified efficaciously.
Non-negative Matrix Factorization (NMF), which incorporates the non-negativity constraint

and thus obtains the parts-based representation as well as enhancing the interpretability of the
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issue correspondingly, was initiated by Paatero and Tapper [37], together with Lee and Seung
[38], [39].

NMF has become an imperative tool in multivariate data analysis and has been widely
used in the fields of mathematics, optimization, neural computing, pattern recognition and
machine learning [40], data mining [41], signal processing [42], image engineering, and
computer vision [42], spectral data analysis [43], bioinformatics [44], finance and economics
[45]. More specifically, such applications include text data mining [46], digital watermark,
image restoration, image segmentation [47], facial expression recognition [48], audio pattern
separation [49], music genre classification [50], speech recognition, microarray analysis, blind
source separation [51], EEG signal processing [52], email surveillance [53], online discussion
participation prediction, network security, automatic personalized summarization,
identification of compounds in atmosphere analysis [17], earthquake prediction, stock market

pricing [54] and so on.

Non-negative matrix factorization (NMF) and related probabilistic latent variable
models (PLVMs) are data-driven machine learning techniques are used for the purpose of
source separation. At a high level, when NMF/PLVMs is used for source separation, we
decompose the audio spectrogram data, or equivalently the magnitude of the short-time
Fourier transform (STFT) of an audio recording, is decomposed as a linear combination of the
outer product of prototypical spectral components times vectors of amplitude over time. The
spectral components for each sound source and their gains are learned from data, and the
result is used to estimate the contribution of each source within an unknown mixture over

time and eventually perform the separation.

NMF/PLVM methods can also be thought of as basis decomposition or dictionary-
based methods and are closely related to sparse coding [55], principal component analysis
[56], singular value decomposition [57], independent subspace analysis methods [58], and
related matrix factorization methods. In addition to their audio applications, both NMF and
PLVMs are also commonly used for processing images, text, and other data types and
collectively have gained a significant research interest over the past decades.
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1.6 Motivation

The speech processing systems used by people in everyday lives include digital
mobile radio-communication systems, speech recognition systems, hearing aids, etc. These
systems are prone to noise from various environments like background noise (airport noise,
station noise, street noise, etc.), directional noise, diffuse noise residual noise, etc. This
degrades the quality or intelligibility of these systems, which will affect people’s lives as it
makes the usage of these systems difficult. Speech enhancement or noise reduction algorithms

restore or enhance the speech signals.

Single-channel speech enhancement techniques like spectral subtraction (SS),
subspace algorithms, wiener filter, etc., fail to improve the quality of degraded speech signal
coming from a particular direction and cannot find the directional of arrival under various
noisy environments. Multi-channel speech enhancement algorithms provide better solutions to
address these problems. A novel multi-channel speech enhancement algorithm has to be
developed to suppress background, directional, diffuse, residual noises and separate the
interference under various noisy environments. These are essential in applications like mobile
phones, teleconferencing, hearing aids, etc. We need noise-free information for effective

communication.

Multi-channel speech enhancement (MCSE) techniques like adaptive beamforming
enable high-quality, hands-free communication in noisy environments. In the adaptive
beamformer like Generalized Sidelobe Canceller (GSC) beamformer, the noise cancellation
relies on the sidelobe canceling path. To improve speech in a noisy environment, a robust
adaptive filter in the sidelobe canceling path must be constructed. GSC adaptive beamformer
with effective noise cancellation makes the systems more reliable for noisy environments. A

convex combination adaptive filter is used to overcome the challenges in noise reduction.

In multiple source environments, there is a need to suppress the directional noise.

Similarly, in diffuse noise fields, as the noise from all direction looks similar, a novel adaptive
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beamforming technique need to be addressed. To further suppress the residual noise, a novel

multi-channel speech enhancement system should be developed.

1.7 Problem Statement

Multi-Channel Speech Enhancement (MCSE) system has to be capable of suppressing
the noise from the noisy speech signal. Most of the existing MCSE techniques use slow
convergence with high computational complexity adaptive filters. Also, the MCSE gets
affected due to noisy environments, and there is a need to develop an MCSE system that is
robust to various noisy conditions. By using a combination of adaptive filters, the
computational overhead of the MCSE system increases. MCSE systems also suffer from
directional, diffuse, and residual noise. Therefore, there is a need to develop an MCSE system
that gives better quality and intelligibility with directional, diffuse, residual noise suppression,

and also it should separate multiple interferences.

1.8 Objectives

1. Implementation of novel Generalized Sidelobe Canceller (GSC) beamforming using
different adaptive filtering algorithms like LMS, NLMS, RLS, and proposed
FCNLMS for background (airport noise, station noise, street noise, etc.) noise

reduction.

2. To develop adaptive beamforming using novel signed convex combination of adaptive

filtering algorithm for speech enhancement with less computational complexity.

3. To implement adaptive beamforming using novel multi-channel postfilter for

directional and diffuse noise suppression for speech enhancement.

4. To develop adaptive beamforming using combined postfilter and sparse NMF for

residual noise suppression in an enhanced speech and multi-source separation.
12



1.9 Organization of Thesis

Chapter 1 gives the concept of a multi-channel speech enhancement system, and its
applications are introduced. The motivation towards MCSE, objectives, and contributions

towards the thesis are discussed in brief.

Chapter 2 explains the state-of-the-art of problem. History of multi-channel speech
enhancement techniques, adaptive beamformers, adaptive filters, postfilters, and non-negative
matrix factorization techniques, and also about multi-channel speech enhancement simulation

environment and the database used.

Chapter 3 proposes adaptive beamforming using different adaptive filters for speech
enhancement. The chapter discusses different adaptive filtering algorithms like Least Mean
Square (LMS), Normalized LMS (NLMS), and Recursive Least Square (RLS) algorithms to
Generalized Sidelobe Canceller (GSC) beamformer and proposes Fast convergence NLMS

algorithm to GSC beamformer under various noisy environments.

Chapter 4 proposes a novel signed convex combination of fast convergence algorithm
to GSC beamformer. A novel signed convex combination of fast convergence adaptive filters
is proposed in the sidelobe canceling path of the GSC beamformer to provide a tradeoff for
many noisy environments, and it is verified in various noisy situations. The analysis is carried
out using different noises with SNRs ranging from -10 dB to 15 dB for a multi-channel

speech enhancement system.

Chapter 5 GSC beamforming using novel Zelinski-TSNR multi-channel postfilter for
speech enhancement is proposed. The chapter explores directional noise and diffuses noise
suppression. Directional noise is suppressed by the GSC beamformer. A novel Zelinski —
Two-Step Noise Reduction (TSNR) multi-channel postfilter is implemented to the GSC

beamformer to suppress diffuse noise.
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Chapter 6 proposes novel adaptive beamforming using combined postfilter and
Sparse NMF for speech enhancement. The chapter describes the residual noise suppression at
the output of the GSC adaptive beamformer with a combined postfilter and Sparse Non-
negative Matrix Factorization (SNMF) algorithm. The simulation environment and analysis

are explained under various SNR levels with a standard speech enhancement database.

Chapter 7 gives the conclusions of the contributions of the thesis, and the future scope

of this work is discussed in brief.
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CHAPTER 2

Literature Survey

This chapter provides the literature on speech enhancement and adaptive beamforming
approaches for multi-channel speech enhancement. The recent related techniques employed
for post-filtering, directional, diffuse noise estimation and handling of residual noise are also
discussed.

Initially, the applications and classifications of speech enhancement methods are
discussed. Then, a detailed description of adaptive beamforming approaches is provided,
which will form the underlying theory of the algorithms developed in the later chapters. The
noise estimation techniques for speech enhancement are briefly described, and the currently
used methods in adaptive beamforming algorithms to handle the case of directional, diffuse,
and noise in real-time environments are also mentioned. Then the adaptive filters and
combined adaptive filtering algorithms of speech signals for enhancement. Finally, NMF for
speech enhancement and source separation is shown in the last section. The issues with the
existing methods of speech enhancement obtained from the literature survey are provided

from which the framework of the research work is decided.
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2.1 Introduction

Speech enhancement is a challenging task in real-world environments like automatic
speech recognizers and other communication systems. It aims at improving the quality and
intelligibility of speech signals corrupted with a variety of noise conditions like airport, car,
restaurant, train, street, diffuse-field effects, speech signals from other speakers, etc., to name
a few [5]. A robust speech enhancement system should be able to perform well in any of these

noisy situations.

2.2 Classification of Speech Enhancement

Typically, the speech enhancement methods can be broadly divided into single-
channel and multi-channel enhancement techniques [59] depending on the number of
microphones used to collect the acoustic signal and noise. The performance of a speech
enhancement algorithm is limited by the number of noise sources available [6], [60]-[63]. In
most of the widely used applications like hearing aids and mobile phones, where mostly only
a single channel is available, single-channel enhancement is used. Single-channel
enhancement techniques are very easy to build and are less expensive when compared to their

multi-channel counterpart.

2.2.1 Single Channel Speech Enhancement

In single-channel or single-microphone enhancement, it is assumed that only the noisy
signal containing both the clean speech and the additive noise is available from a single
microphone for speech enhancement. There is no second signal which could provide
information regarding the reference noise or speech. In most real-time applications, such as
speaker and speech recognition, mobile communication, and hearing aids, usually, a second
channel is not available. Hence this is one of the most challenging problems in speech
enhancement. This is widely studied because of its simplicity and universal applicability since
in most real-life situations, and only single microphone systems are available such as in

speech communication, speech coding, and speech recognition in noisy environments. These
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systems are easy to build and comparatively less expensive than multiple-input systems.
Single-channel speech enhancement methods have only a single input having the noisy speech
from which enhanced speech has to be extracted [64]-[74]. Single-channel systems constitute
one of the most difficult situations of speech enhancement since no reference signal to the
noise is available, and the speech cannot be pre-processed prior to being affected by the noise.
Usually, they make use of different statistics of speech and noise. Traditional single-channel
speech enhancement methods are Spectral Subtractive (SS) algorithms, wiener filtering,
statistical-model-based algorithms, subspace algorithms are explained as follows.

2.3 Multi-Channel Speech Enhancement

The number of microphones available can influence the performance of speech
enhancement algorithms [75]. Typically, the larger the number of microphones, the easier is
the speech enhancement task. Adaptive cancellation techniques can be used when at least one
microphone is placed near the noise source. The multi-channel system uses the noise
reference obtained in an adaptive noise cancellation (ANC) device. It uses phase alignment to
reject undesired noise components. The system even uses both the noise reference and the
phase alignment [76]. These systems tend to be more complex. The multi-channel speech
enhancement method gives a better performance in non-stationary noise conditions due to the
presence of a reference channel [77] — [85]. Phase alignment can be performed in one of the
channels to reject the undesired noise components. The main drawbacks of multi-channel
speech enhancement techniques are fabrication cost and complexity.

For economic reasons, most systems are single-microphone-based solutions where the
speech enhancement is done on the output of a single microphone, although better speech
enhancement results can be achieved by using a microphone array system with more than one
microphone, but with increased complexity and expenses. The speech enhancement

techniques can also be classified as supervised or unsupervised speech enhancement methods.

Supervised methods achieve noise reduction by considering a model for both the
speech and noise signals, which require a training phase to estimate the parameters. Some of
the supervised techniques include HMM-based methods [86] — [90], Gaussian Mixture
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Models (GMM) [91] - [92], codebook based algorithms [93] — [94]. DNN based approaches
[95] - [97], and Nonnegative Matrix Factorization (NMF) based methods [98]-[101].

A Speech enhancement method that reconstructs clean speech signal from a sinusoidal
model and a set of acoustic speech features like a voicing classification, fundamental
frequency, and spectral envelope, estimated from noisy speech using a single statistical
model, is proposed by Philip Harding and Ben Milner [101]. By constraining the enhanced
signal to be produced by a model of speech production, the output is free from noise. Tian
Gao et al. [102] proposed a unified DNN approach to reduce both background noise and

speech interference in a speaker-dependent scenario.

The DNN system is trained to unify speech enhancement and speech separation. The
signals of speech interference are considered as one noise type. The unified system achieves
good results compared with specific systems where only noise or speech interference is
present and better performance for noise and speech interference mixed conditions. The
results demonstrate the effectiveness of the ensemble method in low SNR environments. The
performance of the supervised approaches depends on the prior information fed to the system,
which limits its performance in non-stationary noise environments. There are a number of
unsupervised speech enhancement methods that are not provided any data. Clean speech is
estimated from noisy observations without any prior information on the noise type or speaker

identity.

These multi-channel interfaces often have higher improvement possibilities than
single-channel interfaces. They enable the creation of multi-channel spatial filters that
selectively amplify or suppress sounds in certain directions (or volumes) by leveraging spatial
variety, such as phase and level discrepancies, or, more broadly, the variations in acoustic
characteristics between channels. Single-channel spectrum filters, on the other hand, need a
considerably more thorough understanding of the target and the noise, and thus often result in
a lesser quality increase. Indeed, it can be demonstrated that the greatest potential quality
improvement attainable with only two microphones is already significantly larger than with a

single microphone and that it continues to increase with more microphones [103].
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Over the previous four decades, hundreds of MCSE methods have been suggested in
the literature along two historical research lines. Microphone array processing arose from the
theory of sensor array processing for telecommunications and focused primarily on the
localization and enhancement of speech in noisy or reverberant environments [8], [60], [104]-
[106], whereas Blind Source Separation (BSS) was later popularized by the machine learning
community and addressed “cocktail party” scenarios involving multiple sound sources mixed

together [107]-[112]

2.3.1 Beamforming

Beamforming is the way of forming a spatial-temporal filter. Broadband arrays are
made up of a series of filters applied to each incoming microphone signal, then summing. The
fundamental purpose of the beamformer is to extract the desired signal having an adverse
effect on the array at a specific location from noisy array data. Interference signals frequently
share the same frequency spectrum as the intended signal. The delay-and-sum beamformer is
the most basic construction, compensating for the relative delay between different microphone
inputs before summarizing the steered signal to produce a single output. If the number of
microphones is reasonably high, this beamformer, which is still commonly employed, can be
highly efficient at reducing non-coherent, i.e., spatially white, noise sources. However, if the
noise source is coherent, noise reduction (NR) is highly dependent on the direction in which
the noise signal arrives. As a result, the DSB performance is ineffective in reverberant
environments. The delay and sum idea was expanded by Jan and Flanagan [123]-[124] and
Rabinkin et al. [125] by adding the FSB. This structure, which is meant for multipath
conditions such as reverberant enclosures, replaces the better delay compensator with a

corresponding filter to achieve better performance.

In general, the beam pattern form microphone array can be tailored to have a certain
reaction. This may be accomplished by correctly adjusting the weights of the MCF. Whereas,
in dynamic acoustical settings, the use of data-independent design approaches is severely

constrained.
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The statistical characteristics of the intended and interference signals are used to build
statistically optimum beamformers. They generally seek to boost the intended signal while
rejecting the interfering signal. Several criteria, such as maximum signal-to-noise ratio
(MSNR), minimal mean-squared error (MMSE), and linearly restricted minimum variance, can
be used in beamformer design (LCMV). [19] - [117] provides an overview of many design

criteria.

Beamforming techniques rely on signal statistics (at least second-order statistics),
which are typically unavailable and must be inferred from data. Furthermore, the acoustical
environment varies over time as a result of talker and object movement, as well as sudden
changes in noise characteristics (e.g., passing cars). As a result, adaptive mechanisms are
necessary. Each of the predefined design criteria can have an adaptable equivalent. Sondhi and
Elko [126], Kaneda and Ohga [127], and Van Compernolle [128] made early contributions to
the topic of adaptive beamformer design. By including echo cancellers into the beamformer
architecture, Kellermann [129] solved the problem of integrated echo cancellation and noise
reduction. In a vehicle scenario, Nordholm et al. [130]-[131] used microphone arrays and
constructed a beamformer that used calibration signals to improve the results. Martin [132]

looked at beamforming techniques for microscopic microphone arrays.

The well-known MCWF [133] is the result of minimizing the MSE in the context of
array processing. Doclo and Moonen [134]-[136] suggested an efficient Wiener filter
implementation based on the microphone data matrix's GSVD. This approach produces an
optimum (in the MMSE sense) estimation of the required signal component of one of the
microphone signals. The authors also developed efficient techniques for RGSVD updates. A
post-filtering stage for adaptive noise cancellation is also offered as an alternative. In such a
method, an optimum noise channel is estimated, moreover to attain desired signal, an optimal
estimation is designed. To improve the speech signal even more, this evaluated noise signal
coefficients are treated as reference noise signal [133]. Spriet [137] introduced a subband
based GSVD [137] technique, but Rombouts [138]-[139] recommended solving the problem
with the efficient QRD.

Acoustic arrays are used in various adaptive beamforming techniques. ATF combines
the speech and the noise estimations. The multi-channel Wiener filter, on the other hand, relies

solely on estimations of the recorded noisy signal's second-order statistics and the noise signal
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and makes no a priori assumptions about the signal model. However, as Chen et al. [140] point
out, even if the Wiener filter is the best in terms of MMSE, but unable to produce desired
speech at output. However, this issues are be addressed by modified MMSE which enables
undistorted signal at output. This modification is used in a strategy described in [141]-[142].

Frost's [20] LCMV beamformer aims to minimize output power under linear limitations
on the array's responsiveness to the intended speech signal. He presented an adaptive LMS
algorithm [133]. To circumvent this restricted adaptation, author in [21] introduced the GSC,
model and later modified by Affes [143] and Gannot [144]. Improved GSC is extended
Transfer-Function Generalized Sidelobe Canceller (TF-GSC) comprises: a FBF, BM and ANC
for NR in sidelobe cancelling path.

Nordholm [145] investigate the upper limits of the GSC's achievable NR in an isotropic
noise field. Bitzer et al. address their issue in [146]-[148]. The authors of [146] construct a
formula for the NR as a function of the noise field and assess the deterioration as a function of
the reverberation duration (T60). [147] discusses the unique two-microphone case. GSC with
wiener and LMS filter are shown in [148]. Marro et al. [149] and Nordholm et al. [150]

introduce a frequency-band GSC structure.

Huarng and Yeh [151] solved the distortion problem by calculating the desired signal
leakage into the GSC structure's reference noise branch. However, the delay-only ATFs
assumption is applied, and the anticipated deterioration due to pointing mistakes alone is
assessed. Nordholm et al. [152] illustrate the performance decrease caused by limiting Wiener
filters to a finite impulse response (FIR) construction. The resultant performance limits of the
GSC structure are significantly dependent on the cross-correlation between the sensors' signals

caused by the noise field, as demonstrated in the references above and by Cox [153].

Beamformers are frequently sensitive to signal mismatch. The GSC, in particular, is
plagued by two fundamental issues. For starters, non-ideal FBF might result in non-coherent
filter-and-sum operations. To increase the resilience of beamformers, Doclo [135] and
Nordholm et al. [158] utilize spatial and frequency-domain restrictions. The second issue
addressed by this survey is the leaking phenomena induced by imperfect BM. If the intended
speech seeps into the noise reference signals U(k,l), the noise canceller filters will remove
speech components from the FBF output, resulting in self-cancellation and hence severe
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distortion. It should be noted that self-cancellation is unavoidable even when the ANC filters
are modified during noise-only times. The purpose of this section is to provide some ideas for
improving the resilience of the GSC structure and lowering its susceptibility to signal
mismatch. Cox et al. [117] conducted an in-depth examination of array sensitivity.

Hoshuyama et al. [159]-[160] suggested many approaches for dealing with the
robustness problem, focusing on the self-cancellation phenomena produced by the leakage of
the intended speech signal to the BM outputs. This effect is accentuated in reverberant settings,
as the BM merely adjusts for the relative delay [as in [142]]. In general, there are two
approaches to address the leaking issue. First, better spatial filtering may be integrated into the
BM design. Claesson and Nordholm [130] recommended that a spatial high-pass filter be used
to cancel out all signals within a given frequency and angular range. Huarng and Yeh [151]
investigated the leaking problem and imposed a derivative restriction to the array response,

resulting in greater tolerance to pointing mistakes.

A second solution to leakage concerns is to put restrictions on the ANC filters.
Hoshuyama et al. [159] suggested a number of configurations that combined changes for both
the BM and ANC blocks. An adaptive BM based on signal cancellers replaces the traditional

delay-compensation BM. Two limiting techniques can be used for the filters in question.

The first method makes use of norm-constraint, whereas the second makes use of the
leaky LMS adaption scheme. Haykin [168] demonstrated that the two techniques are equal.
The leaky LMS algorithm or Cox's norm-constrained adaptation mechanism is used to adjust
the ANC filter (see [30]). As a final note summarising Hoshuyama's techniques, we draw the
reader's attention to the similarity between the suggested modification of the BM filters and the

subspace tracking procedure given by Affes and Grenier shown in [143].

Doclo [161] demonstrate that the output SNR after NR using the aforementioned
speech distortion weighted multi-channel Wiener filter (SDW-MWF) is always greater than or
equal to the input SNR, regardless of filter length or value of the trade-off parameter between
NR and speech distortion. This ANC filter solution is known as the speech distortion
regularised generalized sidelobe canceller (SDR-GSC) structure. Spriet et al. [141] also
recommended incorporating a single-channel postfilter to correct for the structure's distortion
in the event of voice leakage into the reference signals. The scope of this study does not allow
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for further examination of this structure. The authors offer a stochastic gradient-based

implementation of their criterion in [162].

Spriet et al. [16] investigate the resilience of both the multi-channel Wiener filter and
the GSC structures in the context of hearing-aid applications. Improvements in the GSC
structure are an ongoing topic, particularly in the sidelobe canceling path. Interfering signals
can significantly degrade the quality of the desired signal received by a sensor array. This issue
arises in a variety of array processing applications and is exacerbated when the interfering
signals are nonstationary [163]-[166]. Moving interfering sources or sudden changes in the

propagation channel might produce nonstationary interfering signals.

Furthermore, when interfering sources are placed in dense multipath settings, such as
acoustic environments, it causes interference. It is quite difficult to make noise reduction
without degrading the quality of the target signal. In these instances, minimizing interfering
signals sometimes involves the employment of FIR filters with a large number of taps, which
have a high computational cost and a slow convergence rate [167]-[168]. Broadband adaptive
beamforming systems are extensively employed to handle this problem (see, for example,
[167]-[171]) since they are very successful at receiving the desired source signal while

simultaneously decreasing interfering components, especially in dense multipath settings.

One of the most often used adaptive beamforming methods for broadband signals is the
generalized sidelobe canceller (GSC) [21]. It consists of a fixed beamformer (e.g., delay-and-
sum or filter-and-sum [7]) and an adaptive route that reduces noisy components created by
unwanted interfering sources, resulting in decreased noise power at the system output. Many
adaptive beamforming methods for nonstationary noisy settings were based on the GSC in the
literature [144], [160], [172]-[173]. The adaptive filtering algorithm employed in the sidelobe
canceling path is entirely responsible for the success of a GSC system.

In general, gradient-based adaptive algorithms, such as the least mean squares (LMS)
algorithm, can be used to adjust filters in the time domain (see, for example, [174]). Although
this family of methods has a cheap computing cost, when the filter length is fairly high, the
convergence is rather sluggish [174], making the adaption of the filter weights impractical in
real-time applications. Hessian-based adaptive filtering, which is common in algorithms such
as the recursive least squares (RLS) filter, is another time-domain standard method. When
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compared to gradient-based algorithms, the latter method achieves quicker convergence [174].
However, due to the high computing cost of RLS adaptive filtering, adaptation may become
prohibitively expensive. Furthermore, depending on the characteristics of the required source
signals, the RLS method may perform worse than the LMS algorithm in a nonstationary

environment [175].

The affine projection algorithm (APA) family [176], which is widely used in adaptive
beamforming [19]-[20], provides a good compromise between performance and computational
load because it has faster convergence rates and manageable computational complexity when
compared to other time-domain algorithms. Furthermore, when compared to other traditional
time-domain adaptive algorithms, APA is the greatest fit for processing colored signals.
Despite its strong capabilities [176], APA is hampered by unfavorable environmental
conditions, particularly in the presence of many nonstationary sources, which render the

adaptation process unstable and impair performance.

To overcome this issue, we offer resilient array beamforming techniques based on the
adaptive combination of MISO filtering systems, which are simply filtered banks in this case.
The adaptive combination of adaptive filters is a particularly effective and versatile method for
balancing the tradeoffs inherent in adaptive filter settings [177]-[178]. Combined adaptive
schemes are often implemented using filters from the same family and complementing
characteristics, such as distinct step sizes or filter lengths. They are also employed with filters
from various families that utilize different update algorithms or cost functions [179]-[183].
The combined scheme is capable of switching between filters adaptively based on the highest

performing filter, ensuring that the best possible filtering is always provided [177].

In this article, beamforming designs that use an adaptive combination of filters to
enhance system tracking in the face of broadband nonstationary interfering signals. One
approach is to merge two MISO systems that use the same updating method but have different
step size values. In fact, it has been demonstrated that combining a fast filter (with a big step
size value) and a slow filter (with a small step size value) leads to faster convergence, reduced
residual misalignment, and enhanced tracking capabilities when compared to separate filters
[184], [185] , [177]. Another way for improving tracking capabilities in nonstationary
situations is to combine two filters with distinct updating methods, namely one gradient-based

and one Hessian-based [182]-[186]. This filter combination makes use of the Hessian-based
24



filter's rapid convergence and the gradient-based filter's performance capabilities, which may
beat the Hessian-based filter in nonstationary circumstances [182]-[186]. In comparison to the
performance of a combination of filters with different step sizes, which is never better than the
performance of individual filters in terms of excess mean square error (EMSE), the
performance of a combination of filters with different updating approaches may outperform the
performance of individual correspondent filters in terms of EMSE [186]. In terms of adaptive
combinations, we focus on the convex constrained combination with sigmoid nonlinearity on
the output stage in our study since it introduces less gradient noise than unconstrained and

affine constrained combinations [181]-[183].

We present two distinct beamforming architectures based on the integration of adaptive
MISO systems with various update methods. The first approach employs a system-by-system
(SS) combination in which the overall output of the first MISO system is convexly combined
with the overall output of the second MISO system. The second architecture is a filter-by-filter
(FF) combination scheme in which each adaptive filter from the first MISO system is convexly
coupled with the comparable filter from the second MISO system. All adaptive filters in both

systems are updated using an APA.

We utilize various projection orders for each MISO system to differentiate them.
Furthermore, in order to employ the optimum parameter setting for each filter and enhance
tracking performance even further, we suggest a multistage combination method in which the

filtering procedure is performed in two phases.

2.4 Multi-Channel Postfiltering

The use of postfilter approaches in MCSE has recently gained popularity. It is well
known that beamforming approaches increase speech quality significantly [7]. The noise
reduction is insufficient when the noise field is spatially incoherent or diffuse [26], and an
extra postfilter is usually necessary [27]. Furthermore, because nonstationary noise cannot be
differentiated from speech signals in general, a large performance deterioration in a

nonstationary noise or noisy real-time environment is expected.
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A multi-microphone component (either delay and sum beamformer or GSC [21]) is
usually followed by a postfilter based on Wiener filtering (occasionally in conjunction with
spectral subtraction) in most MCSE. Several articles have been published on the subject,
including [28]-[35], to name a few. The postfilters can be classified into two kinds in general.
On the beamformer output, the first is a single-channel postfilter that functions as a single-
microphone speech enhancement method. Multi-channel postfilters, on the other hand, make
explicit use of the spatial information recovered by the GSC structure to distinguish the
speech signal from the transient noise or diffuse noise.

While the theory suggests that using a Wiener post-filter improves performance,
obtaining good estimates of the signal and noise spectral densities required to calculate the
post-filter transfer function can be problematic in practice. The most frequent way for
estimating these spectral densities is to use the multi-channel input signals' auto- and cross-
spectral densities. Marro et al. [149] investigate this type of post-filter estimation in-depth,
and it is largely based on Zelinski's work [28]. While the Zelinski post-filter produces
acceptable results, it is reliant on a number of assumptions. The assumption of zero
correlation between the noise on distinct channels, which corresponds to a fully incoherent
noise field, is made in particular. In actuality, such an incoherent noise field is unusual, and
the noise correlation between channels can be strong, especially at low frequencies. This is

especially true for sensors that are near together, like in speech enhancement applications.

This work shows how the Zelinski post-filter estimator's assumption of incoherent
noise can be replaced with the more generic assumption of a known noise field coherence
function. Theoretical noise fields, such as spherically isotropic (diffuse) or cylindrically
isotropic noise fields, can be used to represent a variety of realistic noise fields, such as those
found in workplaces or cars. The coherence functions for these theoretical noise fields are
already used in a number of well-known beamforming techniques, including super directive
beamformers ([117], [187]-[188]).

The use of theoretical noise coherence models is extended to postfilter estimates
enabling the development of a more appropriate post-filter for various noise conditions. The
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Zelinski post-filter, which corresponds to a unity coherence matrix, is included as a special

instance.

According to Simmer et al. [8] the multi-channel Wiener filter provides the ideal
solution to the problem of multi-channel noise reduction for broadband inputs in the minimum
mean square error (MMSE) sense and may be further decomposed into an MVDR
beamformer followed by a Wiener post-filter. As a result, in order to increase the performance
of microphone arrays in noisy practical settings, a post-filter based on Wiener theory is
usually required [8].

In the literature, a variety of post-filtering strategies have been published [28], [189]-
[199]). Zelinski [28] was the first to introduce a widely used multi-channel post-filter based
on the Wiener filter. This post-filter is based on the premise that noise from separate
microphones is uncorrelated, resulting in a perfectly incoherent noise field. This assumption,
however, is rarely met in real-world situations, particularly in the case of closely spaced

microphones and low frequencies, which are characterized by high-correlated noise.

Fischer et al. proposed combining the generalized sidelobe canceller (GSC) with the
Zelinski post-filter to suppress the spatially correlated and uncorrelated noise to suppress the
high-correlated noise [192]. However, neither the GSC nor the Zelinski post-filter operates
well at low frequencies, according to Bitzer et al. [147]. Meyer et al. provide an alternative
technique that uses spectral subtraction to suppress the high-correlated noise components
[33].

Due to the voice activity detector (VAD) based noise estimate technique, this method
creates fake "musical noise” and fails to deal with non-stationary noise. McCowan and
Bourlard have devised a universal expression for the Zelinski post-filter based on the noise
field's a priori coherence function [189].

Although employing office room recordings, this post-filter was demonstrated to

increase voice quality and speech recognition accuracy when compared to the Zelinski post-
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filter. Its performance is likely to be severely impaired when the "real” and presumed

coherence function differs [189].

The optimally modified log-spectral amplitude (OM-LSA) estimator, a single-channel
noise suppression technique, was recently described for minimizing log-spectral amplitude
distortion in non-stationary noise settings [193]. When multi-channel inputs are available, the
OM-LSA estimator was also extended to a multi-channel post-filtering approach, which was
shown to be effective in reducing highly non-stationary noise components from the desired
source components based on the energy-based speech presence probability estimator ([191],
[194]. A speech presence probability estimator based on these spatial characteristics was
provided to improve the performance of the OM-LSA post-filter [195]-[196] by taking into
account the geographically stable characteristics of noise fields. The inherent sensitive
implementation parameters involved in the variations of the OM-LSA post-filter [191], [193]-

[194], on the other hand, severely decrease their performance in actual contexts.

A diffuse noise field has been proved to be a viable model for a wide range of
practical noise situations, including reverberant rooms and automobile environments [7],
[189], [33]. Traditional post-filters, such as the Zelinski and Mc Cowan post-filters, fail to
minimize diffuse noise despite being based on Wiener theory [3]-[4]. OM-LSA post-filters,
on the other hand, may be able to deal with diffuse noise with appropriate implementation
parameters, but they are not based on Wiener theory, therefore breaching the framework of
the multi-channel Wiener filter [191], [194]. Novel postfilter has to be explored in order to

concentrate on both low and high frequencies of signal to enable speech presence samples.

2.5 Non-negative Matrix Factorization Algorithms

Single-channel sound source separation or enhancement methods are motivated by
many outstanding issues in signal processing and machine learning, such as speech
denoising, speech enhancement, audio-based forensics, music transcription, and music
remixing. One of the most effective approaches for these purposes is based on NMF [39],
[198], and [199] and its probabilistic latent variable model counterparts [200] and [201].

These methods model spectrogram data or equivalently the magnitude of the short-time
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Fourier transform (STFT) of an audio recording as a linear combination of prototypical
spectral components over time. The resulting spectral components and their resulted gains
are then used to separate each source within the mixture. These methods can achieve good
separation or enhancement results using supervised or semi-supervised techniques. In
these techniques, isolated training data is used to learn individual models of distinct sound

sources also separates an unknown mixture of similar-sounding sources [202].

Most of the variants that have been proposed to improve the performance of NMF
consist in adding a regularization term to the log-likelihood function (LLF) of the
observed data. Defining the right penalty (or regularizer) is one of the most important
steps for incorporating the user-annotation constraint into the given latent model [203]. In
[258], the user annotations are used to obtain the posterior regularization (PR) terms.
There are several ways to incorporate these annotations into latent variable models, for
instance, by using the suitable regularization functions and expectation maximization

(EM) algorithms. In this method, annotations control the regularization parameters.

In [204], Chung et al. have proposed a speech enhancement approach in which clean
speech spectral components and spectral noise components were modeled by Gaussian
Mixture Model (GMM). The corresponding Log-Likelihood Function (LLF) was used as
regularization to the cost function of conventional NMF to extract the statistical
characteristics of the signals. Non-negative dynamical system (NDS) was introduced to
model the speech and audio power spectra [205]. The NDS model can be interpreted both
as an adaptation of linear dynamical systems (LDS) to non-negative data and as an
extension of non-negative matrix factorization (NMF) to support Markovian dynamics.
The performance of the proposed NDS algorithm was significantly better than the state-
of-the-art algorithm in terms of SDR in real environmental sounds like babble noise,
helicopter, bees, fire, and shaking chapter. Recently proposed online semi-supervised
NMF algorithms have only been evaluated using noisy mixtures shorter than 30 seconds.
The performance degrades when the speech signal starts to appear after 2 minutes. To
solve this problem, [206] proposed a rotational reset strategy. In the proposed method,
instead of updating of entire speech dictionary continuously, periodically and rotationally

reset speech dictionary elements. The proposed algorithm performs better than existing
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algorithms in non-stationary noisy environments (: birds, casinos, cicadas, computer
keyboard, eating chips, frogs, jungle, machine guns, motorcycles, and ocean) in various
SNR conditions.

In [207], proposed a sparse and low-rank NMF with Kullback-Leibler divergence to
estimate the noise spectrum from the input noisy speech spectrogram without any prior
knowledge of speech and noise. In the proposed method, noise and speech were estimated
by decomposing the input noisy magnitude spectrogram into a sparse speech-like part and

low-rank noise part.

2.6 Issues with the Existing Methods of Multi-Channel Speech

Enhancement

The major issues with the existing multi-channel speech enhancement (MCSE) techniques

identified from the literature survey are the following:

1. Existing adaptive beamforming algorithms show substandard noise cancellation in
sidelobe canceling path under noisy environmental conditions and also ineffective at -10
dB SNR. Existing beamforming algorithms are unable to find the direction of the

unknown signal and fail in suppressing the real-time environmental noise.

2. Combined adaptive filters in existing adaptive beamforming are ineffective to achieve
better noise reduction at -10 dB to 15 dB SNR levels and also gain more computational
burden. Adaptive beamforming with a single adaptive filter is limited to particular real-

time noise reductions.

3. In the case of directional and diffuse noise in low frequencies, most of the multi-
channel speech enhancement methods give a less noise reduction. To remove diffuse noise
from noisy speech, postfiltering of the noise signal is a concern. But existing postfiltering
shows less noise reduction in the low-frequency region, where an exact speech signal
exists.
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4. Residual noise is generated after speech enhancement. Most of the speech enhancement
algorithms assume the noise to be additive and are ineffective while dealing with the case
adverse environment with multiple interferences. The performance of the algorithms

designed for residual noise is also inefficient while handling real-time noise.

2.7 Framework of Research Work

From the issues, it is identified that to solve the problems of the existing methods of multi-
channel speech enhancement; new algorithms have to be developed based on different adaptive
beamforming approaches. A generalized sidelobe canceller (GSC) would be appropriate to
provide a balance between finding the direction of arrival of unknown signal and noise
reduction in a noisy real-time environment. The innovative integrated adaptive algorithms
should be introduced to adaptive beamforming systems to maintain a fair tradeoff between
noise reduction and computational complexity. In order to deal with adverse environments to
reduce diffuse noise and smoothen the output, efficient postfiltering techniques could be
employed to adaptive beamforming. Residual noise could be addressed by employing an NMF
algorithm that could adaptively enhance speech with respect to the varying noise levels. A
novel technique integrating beamforming, postfiltering, and NMF must be devised to address
the case of speech enhancement and interference separation. Waveform and spectrogram plots,
as well as objective measures, are used to evaluate the developed speech enhancement

algorithms.

Objective measures should be able to assess the performance of the developed methods with
respect to the specific issues addressed. The developed algorithms could be used in a variety of
applications like teleconferencing, mobile phones, speech/speaker recognition, hearing aids,

communication systems, etc.

2.8 Summary

In this chapter, the applications, the previous works, and the current advancements in
the area of speech enhancement have been discussed. It provides the issues identified in the
existing speech enhancement techniques and the framework for the research work in the

thesis. The classification of speech enhancement techniques into single and multi-channel
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enhancement based on the availability of a number of microphones/channels is discussed and
various techniques employed are studied. Due to low complexity, better quality, and
intelligibility, multi-channel techniques are more popular than single-channel techniques
though the performance increases with the number of channels. There has always been an
effort to develop speech enhancement algorithms that provide balance between real-time
environment noise, diffuse and residual noise. Existing multi-channel speech enhancement
methods like Adaptive beamforming shows ineffective performance in reducing the
directional noises in noisy real-time environmental conditions. So, a novel Adaptive filtering
algorithm has to be implemented. Conventional algorithms produce more residual noise in an
attempt to reduce the diffuse noise in noisy environmental conditions like offices or cars. It
has been shown in the works done that multi-channel speech enhancement techniques like
adaptive beamforming methods give a better balance between the two than any other existing
adaptive beamforming technique. Improvements in signal distortion have been reported when
postfiltering stages are used after enhancement. Also, diffuse noise reduction could be
achieved by employing signal estimators designed for it. Diffuse noise estimation and
separation is an important stage in any practical speech enhancement algorithm. Employing
the VAD-based noise estimation algorithms would degrade the performance of speech
enhancement techniques since most of them update noise only during the speech absent
frames and assume noise to be stationary during active speech regions. The most efficient
noise estimator would be that of a continuous estimator based on speech presence probability.
Speech enhancement in residual noise scenarios is a challenge, and a new technique has to be
devised to handle it. Different techniques used so far in the beamforming approach to
handling the case of diffuse and residual have been thoroughly studied. Most of the
algorithms are inefficient in handling the case since they assume the nature of the noise to be
additive white. For those designed to address the issue of real-time environmental and diffuse
noise specifically, the sidelobe canceling path in beamformers should be carefully set to be
efficient. NMF has been shown to deal with residual noise better in certain signal processing
applications and could be employed to handle the case of residual for speech enhancement
and separation. The development of speech enhancement algorithms addressing the issues
identified from the literature would add to the performance of a wide range of speech
processing applications like teleconferencing, mobile phones in speech/speaker recognition in

pre-processing, and also in hearing aids communication systems, etc.
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Chapter 3

Adaptive Beamforming Using Different Adaptive Filters

for Speech Enhancement

This chapter proposes the use of various adaptive filtering algorithms like LMS,
NLMS, and RLS to GSC beamformers under noisy real-time environments. And also
proposes FCNLMS adaptive filtering algorithms to the sidelobe canceling path of the GSC

beamformer for speech enhancement under different SNR levels.

3.1 Motivation

In the GSC beamformer, the noise cancellation relies on the sidelobe canceling path.
Existing adaptive beamforming algorithms show substandard noise cancellation in sidelobe
canceling path under noisy environmental conditions and also ineffective at -10 dB SNR. In
order to improve speech in a noisy environment, a robust adaptive filter in the sidelobe
canceling path must be developed. Novel adaptive filtering for multi-channel speech

enhancement is proposed to address different noisy types with reduced computational time.
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3.2 Introduction

In multi-microphone array, environmental noise degrades the desired speech quality and
intelligibility. This is a major issue in speech communication applications like teleconferences,
mobile phones, etc. when the desired speaker is non-stationary [7], i.e., in @ noisy real-time
environment, reducing the noise becomes quite difficult. In these cases, for noise reduction
and interference suppression [106], in the place of conventional Finite Impulse Response
(FIR) filters, which result in high computational complexities, the adaptive filters like Least
Mean Square (LMS), Normalized LMS (NLMS) are widely used. However, in the case of
single-channel speech enhancement, noise from a specific direction cannot be found using
these basic adaptive filters. Single-channel speech enhancement algorithms fail in reverberant
noise and also in finding the direction of the arrival of the input source. So, in multi-channel
speech enhancement, Griffiths and Jim [21] introduced a GSC beamforming structure. It
comprises three major blocks: fixed beamformer, blocking matrix, and an adaptive filtering
block. In the fixed beamformer such as Delay and Sum Beamformer (DSB) [144], the
microphone array receives the desired speech along with the noise. Delay from each
microphone is calculated and then summed together to obtain the partially enhanced output
[9], [214].

The performance of a multi-channel speech enhancement system depends completely on
the blocking matrix and the adaptive filtering [227] block, which eliminates the unwanted
noise and increases the quality of the desired speech. The adaptive filter block in the GSC
beamforming plays a crucial role in noise reduction performance [213]. In the time domain, the
gradient descent adaptive algorithms are used to update the weight of the filter. One such
algorithm is the LMS algorithm which has low computational complexity but is not stable in
noisy real-time conditions when the filter tap gets increased [113], [216]-[217]. Another
popular adaptive algorithm is Recursive Least Squares (RLS) filter, which is based on Hessian
adaptive filtering. It gives faster convergence when compared to LMS, whereas computational
cost is high and is too expensive for noisy real-time environments [218], [172]. In order to
have a better noise reduction in a noisy real-time environment, a GSC beamformer with

different adaptive filters is implemented in this chapter.
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3.3 The Proposed GSC Adaptive Beamforming for Speech

Enhancement

The Generalized Sidelobe Canceller (GSC) beamformer is one of the most popular
adaptive beamforming techniques in the multi-channel speech enhancement domain. A GSC
structure is composed of a fixed beamformer (e.g., delay-and-sum), Modified Blocking Matrix
(MBM), and with different adaptive filters is proposed as shown in Figures 3.1. The input to
the proposed system is considered using a microphone array setup with noisy real-time
conditions in a virtual conference room. The virtual conference room is designed based on the
Image method [225], which takes the Room Impulse Response in the form of a Mex function
using RIR generator [226] in MATLAB. As a fixed beamformer, delay and sum beamformer
(DSB) is used. It calculates the direction of arrival (DOA) based on the delay and distance
from each microphone. An unknown noisy input signal with partial enhancement is found at
the output of DSB.

Noisy Speech
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A 4

X (n) Fixed d(n) K\
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Figure 3.1: The Proposed GSC Beamformer for Speech Enhancement

MBM, on the other hand, blocks the speech signal and feeds a noise reference to the
adaptive filter. To further reduce the noise in the signal, proposed a novel Fast Convergence
NLMS adaptive algorithm in the sidelobe canceling path of the GSC beamformer and also
verified with existing adaptive algorithms. An adaptive filter is updated till the noise gets

reduced at the output of the GSC beamformer. In the adaptive filter block, different adaptive
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filtering algorithms like LMS, NLMS, and RLS algorithms are implemented, and also novel
FCNLM adaptive filter is implemented for the noisy real-time environment in the coming

sections to achieve noise reduction and low complexity in a non-stationary environment.

3.3.1 Fixed Beamformer (FBF)

FBF is used to find the direction of arrivals for unknown signals. To make the
proposed method robust, considered the microphone array setup in the adverse environment
using the room impulse response-based Mex function (in MATLAB). The DSB is one of the
fixed beamforming techniques. It is used as FBF in the proposed method, which calculates the
direction of arrival (DOA) based on the delay between each microphone. The structure of the

DSB beamformer is shown in Figure 3. 2

x+(N)

Figure 3.2: Fixed Beamformer (FBF)

Consider d(n) as the desired signal and 1 (n)as the total noise and interferences
observed at the output of m™microphones. The input noisy speech signal s, (n) at the output

of m"the microphone is given by

Sp(M) =d(n)+1,(n) 3.1)
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In the DSB structure, the microphones are placed linearly by giving d as the spacing
between each microphone and angle & for receiving the input signal from a particular
direction. Here s (n),s,(n),....s, (n) is the combination of desired speech (unknown source),
directional interference, and diffuse noise, which are input signals to the microphone. The
input of each microphone is delayed with an angle & and then summed to have a partially

enhanced speech with the diffuse noise at the output of DSB, which is shown in Figure.3.2.

DSB output is defined as

Mz

x(n) = s,(n—7,) (3.2)

1

1
M m

Where x(n) is the output of DSB, M is the number of microphones, s_(n) is the

incoming source at the m"™microphone and the delay from source to each microphone is 7.

The main lobe position in the directivity pattern is changed by modifying the phase weight

#,(1) e,

@, (f)=27a(m-1d (3.3)
Where
sind

0 is the direction of arrival of an incoming signal and A is used to determine the
wavelength of frequency. The phase shift in the frequency domain relates to a time delay in

the time domain. The time delay 7, can be analyzed as given below

_on(f) (35)
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Likewise, the delays (t,,) from the microphones are calculated and summed at the

output of DSB represented as x(n) in the proposed method.

3.3.2 Modified Blocking Matrix (MBM)

In GSC beamforming, the blocking matrix plays a crucial role. It is used to block the
desired speech signal and provides only the noise reference as input to the adaptive

interference canceller, which is described as follows.

The lower path of the GSC beamforming is the blocking matrix [21], which is used to

block the desired signal d(n). As the desired signal is common to all the microphones from

Equation (3.1), blocking is confirmed if the rows of the blocking matrix sum up to zero.

If b is the m™ row of blocking matrix

bi1=0 forall values of m (3.10)

and b_ is linearly independent so that | _(n) it will have M-1 linearly independent

components, which makes the row dimensions of the blocking matrix to M-1. Griffiths [21]
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considered the number of microphones as four, i.e., M=4, and gave two matrices. The first

blocking matrix is defined as

11-1-1
BM, =|1-1-1-1
1-11 1

Similarly, the second blocking matrix is defined as

1-100
BM,=|01-10
0011

The rows are mutually orthogonal and are the elements of the binary-valued Walsh

function. Here BM,, represents the difference between the adjacent microphone outputs. Each
row BM, represents different amplitude responses, whereas each row BM, has identical

patterns. But by using these matrices, the spatial information is not completely utilized. So,
MBM is designed to subtract the desired speech from the noisy input signal using adjacent
microphones. In the proposed GSC beamforming, MBM is used to utilize the complete spatial
information on adjacent microphones and also on other microphones by using the identical
pattern in the matrix. MBM is designed as

1-10 0
MBM =/10-10
10 0-1

The number of columns in the matrix indicates the number of microphones which is
considered to be four, and the efficiency of MBM is 3. MBM gives the details of the complete
noise present in the target signal and blocks the desired speech, and thus acts as noise

reference for adaptive filter. The number of columns in the matrix indicates the number of
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microphones which is considered to be four, and the efficiency of MBM is 3. Finally, the
DSB output is a speech reference signal, and the MBM output is a noise reference that is
given to the adaptive filter block. To further reduce the noise in the signal, proposed a
different adaptive filter in the sidelobe canceling path of the GSC beamformer. Next, the

adaptive filtering block is explained as follows:

3.3.3 Adaptive filtering Algorithms

An adaptive filter with a robust convergence rate is essential in speech enhancement.
In the lower part of GSC, the second block is an adaptive filter. In this chapter, adaptive filter
plays a prominent role in reducing the error between the desired and noisy reference of a
GSC. This can be achieved by using different adaptive algorithms [113] in the adaptive filter
block. The blocking matrix noisy reference is given as input to the adaptive filter, where the
weights are updated to enhance the corrupted speech at the GSC output. In this chapter GSC
with different adaptive filters is proposed in order to improve the performance of GSC in
terms of speed and complexity. Here, introduced three adaptive filters like LMS, NLMS, RLS
is analyzed. The traditional LMS and NLMS adaptive filters give limited noise reduction, low
convergence, and high computational complexity [215]. So, novel FCNLMS is implemented

in the adaptive filter block of GSC. Different adaptive algorithms are explained below.

3.3.3.1 LMS Algorithm

In adaptive signal processing, the least-mean-squares (LMS) algorithm [215] is
extensively used due to its stable nature and simplicity during implementation. In stationary
conditions, LMS shows the best steady-state performance [216]. The standard LMS algorithm

is explained in step by step manner below.

1. Inthe first step, the filter weight coefficients are initialized

w(n) = [Wl(n)wz(n)wg,(n) WWy(n) = 0] (3.11)
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Where P is the order of the filter
2. The adaptive filter output is calculated as
y(n) = W' (n)zg(n) (312)
3. The error signal e(n) is calculated as
e(n) = dn) —yn) (3.13)
LMS update equation is given by
wn +1) = wW(n) + pe(n)zq(n) (3.14)

Where 4 is the step-size, the convergence rate of the filter weights is purely based on
4 value. Equation (3.14) LMS weights update equation, which is employed in the GSC
structure's adaptive filter block to update degraded speech and decrease error. The

computational complexity of LMS is given by the 2N number of additions/Subtractions and

2N +1Multiplications/ Divisions with N=256.

3.3.3.2 NLMS Algorithm

The normalized LMS (NLMS) algorithm is in addition to the standard LMS algorithm
[216]. In NLMS, the weight vector will be changed minimum times from one iteration to

other. The step size x in the NLMS algorithm is in a time-varying parameter which is used to

calculate convergence of the adaptive filter. Step size 4 is given as

(24

p(n) = (3.15)

c +qu (n)”2
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The convergence rate of NLMS is optimized by adaption constant ¢ , which ranges
from 0<o0<2, ‘¢’ in the Equation (3.15) is a constant term used for normalization of the filter,

which is limited to c< 1.

Finally, the NLMS algorithm updates the filter coefficients by using the following

equation.

wn+1) = wh) +———-em)z;(n) (3.16)

cH|| % "( )12

NLMS algorithms converge faster compared to LMS because of the normalization

factor 2. The error e(n) of NLMS is less compared to the LMS algorithm. Computational

Complexity [217 of NLMS is given by the 2N? +2N number of additions/Subtractions and
2N?+3N Multiplications/ Divisions.

3.3.3.3 RLS Algorithm

Recursive Least Squares (RLS) algorithm is robust adaptive algorithms to fasten the
convergence rate compared to LMS and NLMS [218]. By using the RLS algorithm, the
adaptive filter coefficients are found recursively to minimize the weighted least square of cost
function corresponding with the input. RLS algorithm is strong in spontaneously adjusting the
filter coefficients without knowing the input signal statistical information. At each instant, the
RLS algorithms minimize the sum of squares of the desired speech signal estimated errors
[219]. Noise cancellation capacity is high compared to LMS and NLMS but requires
complicated mathematical operations. Because of this, RLS requires more computational

resources [220]. The RLS algorithm is explained below in a step-by-step manner.

1. In the first step, the RLS algorithm filter coefficients are initialized

w(0)=1[000.....00]" (3.17)
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2. In the second step, the inverse matrix P(0) is initialized with the diagonal

matrix maintaining the main diagonal with ¢ —1 a value

z,(n) =[z,(n)z,(n-1)...z,(n—M +1)]' (3.18)

where the z,(n) is the adaptive filter input vector

3. In the final step, the RLS updated by calculating the following equations at
each segment of the input signal.

w(n) =wmn—1) + R(n)e(n), (3.19)
R(n) = 771 1(m) /(1 + 27z, ()11 () (3.20)
P(n) = A7'P(n — 1) A"'R(n)z," (n)P (n — 1) (3.21)

The error is estimated as follows

e(m) = dk) —w'(n— 1)z,(n) (3.22)

The computational complexity of RLS is given by 3N?+4N a number of

additions/Subtractions and 3N? +6N Multiplications/ Divisions.

3.3.3.4 Proposed Fast Convergence NLMS Algorithm

A fast convergence and low complexity adaptive algorithm named Fast Convergence
NLMS (FCNLMS) [232] is presented in this section, where updating the filter coefficients

depends on adaption gain and likelihood variable of the fast transversal filter. In FCNLMS,
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the forward prediction error e(n) of the fast transversal filter [231] is calculated by applying a
de-correlated technique to the input signal. This is used in analyzing the dual Kalman gain.

The step by step procedure of FCNLMS is as follows:

1. Initialization: Initialize

Initialize Cy (0) adaptation gain vector, hy(0) estimated filter coefficient vector, and

also y,(0) and y, (0) likelihood variables for N samples.

Cy(0) = hy(0) =0 (3.23)

YN(O) =0 ’Y1(0) =0

a(0) = y1(0) = Ey (3.24)

Where E, is an initialization constant with a(0) forward prediction error’s variance.

2. Prediction error: e(n)

The prediction coefficient estimation can be calculated as

a(n) = @ (3.25)

ro(n)+cy

Where r; (n) and r,(n) can be estimated recursively according to

ri(n) =A,r;(n—1) + z;(n)z;(n — 1) (3.26)
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ro(n) = Aro(n — 1) + z,%(n) (3.27)

Where z,(n — 1) is input vector at the time ‘n,” ‘A, is exponential forgetting factor and is.

‘c,” a small positive constant.

To compute the prediction error using a first-order prediction model:

e(n) =x'(n) —a(n)z;(n—1) (3.28)

The forward prediction error variance is defined as

a(n) = Aa(n — 1) + e?(n) (3.29)

Adaption Gain is given by

— _ e(n)
[CN(“) - [ xaN<n—1)+co] (3.30)
cm | Gw-1
Cy(n) dual Kalman gain,
_ _ (n)e(n)
8(n) = c(n)z;(n —N) + (D 7es (3.31)
_ yn(n-1)
yn() = ——— (3.32)

1+yn(n—1)8(n)

Error for an adaptive filter is given as
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ex(n) = d(n) — h(n — DRy () (3.33)

Finally, the FCNLMS updating equation is defined as

hy(n) = hy(n — 1) — pen(n) yn(n)Cy(n) (3.34)

FCNLMS algorithm converges faster compared to RLS, NLMS, and LMS because of
adaption gain. FCNLMS exhibits faster convergence with low complexity compared to LMS
NLMS and RLS. The computational complexity of FCNLMS is 3N. FCNLMS algorithm
converges faster compared to NLMS because of adaption gain. FCNLMS exhibits faster
convergence with low complexity compared to LMS NLMS and RLS. The computational
complexity of FCNLMS is 3N multiplications whereas LMS with 2N+1, NLMS with
2N"2+3N, and RLS with. The computational complexity of FCNLMS is low compared to
LMS NLMS and RLS algorithms. All the four adaptive filtering algorithms LMS, NLMS,
RLS, and the proposed FCNLMS, are applied to the adaptive filter block of GSC, and the
error is minimized under various real-time noisy environments. The existing GSC-LMS and
GSC-NLMS algorithm performance are less under noisy real-time conditions. The proposed
GSC-FCNLMS algorithm gives enhanced speech with a minimal error when compared to
GSC-LMS and NLMS. GSC-FCNLMS achieves faster convergence when compared with
existing GSC-NLMS. The performance evaluation of the proposed algorithms is shown in the

next section.

3.4 Results and Discussion

In this section, the simulation of the proposed GSC-FCNLMS, GSC-RLS, GSC-
NLMS, GSC-LMS methods in noisy real-time conditions is evaluated and explained. The
proposed GSC beamformer with different adaptive algorithms considers the following
simulation parameter as shown in Table 3.1. A Multi-channel room impulse response is
generated using a Mex function with a reverberation time of 300 ms following a Mex setup
using Mex function, i.e., rir-generator.cpp [226] in MATLAB. The Mex function was taken
from International Audio Laboratories Erlangen at Friedrich Alexander University Erlangen-

Nuremberg. (https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator).
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The noisy real-time condition is created by adding desired speech and real-time noises
from unknown directions. The desired speech is taken using the DARPA TIMIT [227]-[228]
database. The database is maintained with a sampling frequency of 8 kHz, which consists of
6300 male and female sentences where each of the 630 speakers speaks 10 sentences each.
The real-time noises (Car, Restaurant, Babble, Airport, Station, Street noises) are taken from
the NOIZEUS database [229]-[231]. These input signals are provided to the Mex setup, which
gives a combination of the desired speech with real-time noise for different SNRs (-10 dB to
15 dB).

The degraded speech is an input to the DSB to evaluate the delay from each
microphone and obtain a reference enhanced signal. After that, the input degraded speech is
given to MBM. Using the MBM matrix, the subtraction of the delays caused on the adjacent
microphones is calculated. Further, at the MBM output, a noise reference is generated.
Finally, the same reference noise is applied to the adaptive filtering block (where different
adaptive algorithms are analyzed) as input, where the weights of the filter are updated for
each algorithm. Due to the proposed FCNLMS adaptive algorithm in sidelobe canceller, the
error is minimized better compared to traditional algorithms like LMS, NLMS, RLS, and
enhanced speech is attained at the output of the GSC beamformer. GSC-FCNLMS gives a
high-quality enhanced speech at the GSC output, as shown in Figure 3.1.

Table 3.1: Simulation Parameters Considered for Proposed GSC Beamforming

Parameters Specifications
Number of microphones(m) m=4
Spacing to each microphone 5cm
Real-time noisy environment Car, Restaurant, Babble, Airport, Station, and Street
Input SNR Levels -10dB, -5dB, 0dB, 5dB, 10 dB
Room dimensions 6 m X 5m X 3 m (Image Method), RIR generator [225]-[226]
Database DARPA TIMIT [227] and Noizeus [229]-[230]
Tools MATLAB and Python
Processor Intel Core 17 Processor, Clock Speed-2.20 GHz, 8 GB RAM
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3.4.1 Performance Analysis of the Proposed Method with Existing
Methods

The performance of the proposed GSC-FCNLMS, and other GSC-LMS, GSC-NLMS,
and GSC-RLS algorithms are analyzed in terms of objective parameters, namely Perceptual
Evaluation of Speech Quality (PESQ) [231], Signal to Noise Ratio (SNR), and Log-
Likelihood Ratio (LLR) [231].

3.4.1.1 Perceptual Evaluation of Speech Quality (PESQ)

PESQ [231] is an objective comprehensible measure. The range of PESQ as per the
Standards International Telecommunication Union Telecommunication (ITU-T) lies between
“0.5 to 4.5”. The more the PESQ, the better is the intelligibility. Intelligibility measure PESQ
at 10 dB for GSC- FCNLMS is 4.080 dB whereas for GSC-LMS GSC-NLMS and GSC-RLS
is 3.407 dB, 3.960 dB and 4.010 under station noise, similarly for same station noise at -10 dB
the PESQ for GSC- FCNLMS is 2.769 dB whereas, for GSC-LMS, GSC-NLMS and GSC-
FCNLMS are 2.494 dB, 2.753 dB, 2.75 dB respectively. These measures show that GSC-
FCNLMS beamformer gives an improved performance with less computation complexity,
i.e., better PESQ compared to GSC-LMS, GSC-NLMS and GSC-RLS.

3.4.1.2 Signal to Noise Ratio (SNR)

The SNR (signal to noise ratio) is the ratio of signal to noise power. The higher the
SNR value, the better the quality of the received output will be.

YR=0 Y2 (k)
Zl2(k) -y (k)]? (3.35)

SNR(dB) = 10log,, N
K

Quality measure output SNR at 10 dB for GSC-FCNLMS is 31.4 dB whereas for
GSC-LMS, GSC-NLMS, and GSC-RLS is 25 dB, 26 dB and 33.8 under station noise,
similarly for same station noise at -10 dB the output SNR for GSC- FCNLMS is 6.9 dB.
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Table 3.2 Performance Comparison of PESQ and SNR for GSC-FCNLMS With

Existing Algorithms

SNR Noise GSC-LMS | GSC-NLMS | GSC-RLS GSC-FCNLMS
in Types

dB P PESQ | SNR | PESQ | SNR | PESQ | SNR | PESQ | SNR

Car 2,198 | 7.0 | 2369 | 7.8 | 2.461 | 10.1 | 2.444 8.4

Restaurant | 2.338 | 9.3 | 2.516 | 11.5 | 2.713 | 14.2 | 2.687 12.7

Babble 2239 | 85 [ 2412 | 93 | 2.671 | 12.1 | 2.574 10.1

10 "Station | 2494 | 63 | 253 | 68 | 275 | 75 | 2769 | 6.9

Airport 2273 | 63 | 2465 | 7.5 | 2.771 | 10.1 | 2.612 8.8

Street 2378 | 10.3 | 2.601 | 11.0 | 2.879 | 12.9 | 2.768 12.0

White 2.037 | 7.8 | 2.135 | 9.0 246 | 12.1 | 2.35 10.8

Car 2474 | 11.0 | 2.651 | 12.3 | 2.741 | 14.0 | 2.698 12.9

Restaurant | 2.58 | 13.3 | 2.82 | 17.3 | 293 | 20.6 | 2.88 18.8

Babble 249 | 123 | 2.705 | 135 3.0 17.3 | 2.961 14.9

Station 27764 | 11.0 | 3.039 | 11.8 | 3.056 | 12.7 | 3.05 12.0

Airport 2576 | 9.8 | 2.818 | 11.8 | 2.942 | 14.3 | 2.894 12.8

Street 262 | 145 | 2886 | 17.0 | 299 | 182 | 291 17.6

0 Car 2.707 | 183 | 2935 | 185 | 299 | 204 | 2.941 18.9

Restaurant | 2.785 | 20.0 | 3.089 | 21.5 | 3.192 | 23.0 | 3.099 22.2

Babble 2729 | 183 | 3.0 | 198 | 316 | 24.2 | 3.100 22.8

Station 3.012 | 17.0 | 3.344 | 179 | 3.472 | 19.3 | 3.410 18.7

Airport 2872 | 140 | 3.132 | 16.5 | 3.539 | 20.5 | 3.436 18.6

Street 2822 | 208 | 3.16 | 215 | 344 | 26.6 | 3.360 232

Car 2972 | 22.5 | 3.255 | 24.0 | 3.428 | 29.9 | 3.350 26.6

Restaurant | 3.039 | 24.0 | 3.451 | 26.8 | 3.66 | 28.0 | 3.578 27.5

Babble 2972 | 22.8 | 3.301 | 24.5 | 3.505 | 25.3 | 3.421 25.0

> Station 3.221 | 21.0 | 3.691 | 21.8 | 3.737 | 23.9 | 3.700 22.4
Airport 3.094 | 21.8 | 3.487 | 22.0 | 3.548 | 25.1 | 3.513 23.7
Street 3.043 | 25.5 | 3.464 | 27.0 | 3.876 | 30.0 | 3.686 28.1
Car 3.158 | 27.5 | 3.50 | 28.8 | 3.641 | 34.0 | 3.740 31.3
Restaurant | 3.26 | 28.8 | 3.711 | 30.8 | 3.77 | 32.5 | 3.353 31.7

10

Babble 3.174 | 27.3 | 3.576 | 29.5 | 3.634 | 30.8 | 3.598 29.9

Station 3.407 | 25.0 | 3.960 | 26.0 | 4.010 | 33.8 | 4.080 314

Airport 3.315 | 26.0 | 3.774 |26.8 3.86 | 28.5 | 3.824 27.0

Street 3.256 | 29.8 | 3.74 [31.0 | 3.805 | 33.5 | 3.785 32.5
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Whereas for GSC-LMS, GSC-NLMS, and GSC-FCNLMS are 6.3 dB, 6.8 dB, 7.5 dB

respectively. These measures show that GSC-FCNLMS beamformer gives improved

performance with less computation complexity, i.e., better SNR compared to GSC-LMS,
GSC-NLMS. Whereas GSC-RLS gives better performance than GSC-FCNLMS, but
computation complexity is high compared to the proposed GSC-FCNLMS.

3.4.1.3 Log-Likelihood Ratio (LLR)

LLR [231] is an objective measure defined based on the LPC co-efficient, where a,,

is the clean speech LPC vector and processed speech LPC vector a,. R, Clean speech auto-

correlation matrix.

CD!CT

apRcapT
dLLR(ap; ac) = log @R 1

Lowering the LLR more will be speech performance quality.

LLR [dB]

Figure: 3.3 Performance Comparison of Log-Likelihood Ratio (LLR)
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LLR measure for the GSC-FCNLMS gives a lower LLR of 0.532 dB at 10 dB and
1.09 dB at -10 dB under station noise, which means the proposed GSC-FCNLMS. The LLR
performance of GSC- FCNLMS, GSC-LMS, and GSC-NLMS is shown in Figure 3.3

3.4.1.4 Waveforms

In Figure 3.4 and Figure 3.5, the time domain plots and spectrograms of the proposed multi-
channel speech enhancement system are illustrated, which shows the proposed GSC-FCNLMS
with existing GSC-RLS GSC-NLMS and GSC-LMS noise reduction performance for 5 dB
street noise. The enhanced speech signal of the proposed GSC-FCNLMS algorithm shown in

Figures 3.4 and 3.5 gives better noise reduction compared to other algorithms.
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Figure 3.4: Time Domain Plot of Proposed GSC-FCNLMS with EXxisting
Algorithms
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Figure 3.5: Spectrogram of Proposed GSC-FCNLMS with Existing Algorithms

3.5 Summary

Adaptive beamforming using FCNLMS adaptive filters for speech enhancement is
proposed in this chapter. GSC-FCNLMS beamformer gives fast convergence and low
complexity when compared with existing GSC-LMS, GSC-NLMS, and GSC-RLS algorithms
under various noisy conditions. The quality of the speech signal for the proposed GSC-
FCNLMS gives superior performance compared to existing algorithms. At -10 dB, the PESQ
for proposed GSC-FCNLMS is 2.769 dB, whereas GSC-LMS, GSC-NLMS and GSC-RLS it
is 2.494 dB, 2.53 dB and 2.75 dB under station noise conditions. Similarly for at -10 dB input
SNR, GSC-FCNLMS output SNR is 6.9 dB, whereas GSC-LMS and GSC-NLMS is 6.3 dB,
and 6.8 dB, respectively. Both quality and intelligibility of speech are improved for GSC with
FCNLMS compared to LMS, NLMS, under various noise types even at lower SNRs. But only
a few noisy types are giving better noise reduction using the proposed GSC-FCNLMS
algorithm in this chapter. In order to address all the real-time environmental noises with the
high objective quality measures under higher SNRs, i.e., above 10 dB, the novel adaptive

filtering algorithm to sidelobe canceling path of GSC is implemented in chapter 4.
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Chapter 4

Signed Convex Combination of Fast Convergence

Algorithm to GSC Beamformer

This chapter proposes a convex combination of two FCNLMS adaptive filtering
algorithms to the sidelobe canceling path of the GSC beamformer for speech enhancement.
And also, proposed the signed algorithm to a convex combination of fast convergence filters
to reduce real-time environmental noise and computational burden in the sidelobe canceling

path.

4.1 Motivation

Combined adaptive filters in existing adaptive beamforming are ineffective to achieve
better noise reduction at higher SNR levels and also gain more computation burden. Compared
to a single adaptive filter, combination adaptive filters provide better noise reduction for all
types of noises. Existing adaptive beamforming algorithms with convex combination adaptive
filter gives noise cancellation for only particular real-time noises. In order to improve speech in
a noisy environment, a robust adaptive filter in the sidelobe canceling path must be developed.
A novel convex combination adaptive filtering method with a signed scheme is proposed for
multi-channel speech enhancement to address various noisy types with less computational

time.
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4.2 Introduction

Fast convergence [224] algorithm has less computational complexity but gives less
performance under various noisy conditions at high SNRs. And also, when the positions of
the source signal change, the weight coefficient information used to update the adaptive filter
will be lost; due to this, poor performance in the non-stationary environment combined
adaptive filter [233]-[235] are designed, which give good convergence transition compared to

the single adaptive filter.

Adaptive beamforming with an Affine Projection Algorithm [236] (APA) is presented
to increase adaption performance, which provides higher noise reduction than existing time-
domain techniques but fails in a noisy real-time environment. In the combined adaptive
beamforming method [236], a combination of LMS-RLS adaptive filters in sidelobe canceller
fails in noisy real-time conditions, and the computational burden is raised due to the mixing
parameter. Another existing algorithm for noise reduction in recent times is, GSC beamformer
with linear prediction filter [237], which is used in multi-channel speech enhancement
systems addresses dereverberation and noise reduction but has high computation complexity.
Barnov., in 2019, introduced GSC beamforming using controlled white Gaussian gain [238],
where non-stationary environments are only limited to a single speaker. A modified change
prediction [239] to GSC beamforming is applied, which holds good for echo cancellation but

fails in interference suppression.

The above-mentioned algorithms give the motivation for the further improvement of
the sidelobe canceller path of the GSC beamformer to achieve both noise reduction and less
computational burden. A robust beamforming method should be designed to overcome these

disadvantages.

In this chapter, a GSC beamformer with SCCFC adaptive filters is proposed to
address the above-mentioned issues. The novelty of the GSC structure lies in the sidelobe
canceling path. In this chapter, novelty is achieved in two steps. The first step is to consider
FCNLMS as an adaptive filter in the convex combination algorithm to give a better noise

reduction and a low computational complexity.
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The second step is to employ a signed algorithm to further reduce the computational
complexity in the mixing parameter design. In this way, using the signed algorithm with a
convex combination of FCNLMS adaptive filters, both noise reduction and low computational
complexity are achieved under various real-time noisy conditions. The proposed GSC
beamforming using the SCCFC algorithm shows better noise reduction and lower

computation complexity when compared to the existing algorithms.

The main contributions of the chapter4 are as follows:

(1)  To improve the sidelobe canceling path of a robust GSC beamformer, a novel convex

combination of fast convergence filters is proposed.

2 To maintain a trade-off between computational complexity and noise reduction, a

signed algorithm is introduced to the proposed filtering method.

3) Tested the proposed multi-channel speech enhancement system under various real-

time noisy conditions.

4) The performance is shown in terms of computational complexity and noise reduction.

4.3 The Proposed GSC Beamforming with SCCFC Adaptive
Filtering Algorithm

This section describes the multi-channel speech enhancement system in a real-time
environment, as shown in Figure 4.1. GSC beamformer comprises of three major blocks: a
fixed beamformer and modified blocking matrix (MBM) and whereas in the sidelobe
canceling path where novel Signed Convex Combination of Fast Convergence (SCCFC)
adaptive algorithm is proposed. The input to the proposed system is considered using a
microphone array setup with noisy real-time conditions in a virtual conference room. The

virtual conference room is designed based on the Image method [225], which takes the Room
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Impulse Response in the form of a Mex function in MATLAB. The fixed beamformer block
and MBM are explained in section 3.3.1 and section 3.3.2, respectively. Whereas in this
chapter, the novel MBM is designed in order to utilize complete spatial information and is
discussed below.

Noisy Speech

x () Q

A 4

( ) Fixed d(n) * e(n)

x_(n

? » Beamformer ;/ A >
O (DSB) N

() Q _ Desired
y(n) Speech
z,(n) /

»  Modified Signed Convex
Blocking Combination of Fast
»  Matrix Convergence
; (MBM) 5 (SCCFC) algorithm
—>

A

Figure 4.1: GSC Beamforming with Proposed SCCFC

1 -1 0 0 O
/ 0 1 -1 0 O \
MBM = | 0 0 0 0 0 |
k 0 0 0 ~1 0 /
0 0 O 0 -1
The number of columns in the matrix indicates the microphone here withq =1, ..., Q where

Q =M - 1, where M is the number of microphones. MBM gives the details of the complete
noise present in the target signal and blocks the desired speech, and thus acts as noise
reference for SCCFC. These constraints are considered to show the effectiveness of the
proposed SCCFC in the GSC structure. The noise reference signals are adapted using the
proposed SCCFC algorithm. The error at the output of the GSC beamformer is the difference
between SCCFC output and speech reference. Then, the GSC-SCCFC beamformer output is

given by e(n) =d(n)—y(n). The error is updated using the proposed SCCFC algorithm until
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it is minimized. The derivation of the SCCFC algorithm is shown in the below section.
Firstly, a convex combination of the FCNLMS adaptive filter is drawn, and then the signed

algorithm is applied using the transfer approach in the next section.

FCNLMS
z1(n v
() @ 79 (n)
Z,(n)
Zg—1(n)

FCNLMS
Figure 4.2: The Proposed SCCFC Adaptive Filter

4.4 Signed Convex Combination of Fast Convergence (SCCFC)
Adaptive Filtering Algorithm

The proposed SCCFC block is a signed convex combination of two same fast convergence

adaptive filters, i.e., FCNLMS, as shown in Figure 2 with updating rule which is given by:

HY € &Y = (R (), h().....h, () (4.1)

Where, H®

n.q

time instant, | =a implies first FCNLMS filter and 1 =b implies second FCNLMS filter. The

is the vector with g™ filter coefficients of 1" system, with | =a,b a n"

g™ noise reference vector is expressed similarly.
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Z,, €R" =(z,(n)z,(n-1)...2, (N~ N +1)) (4.2)

n.q

The combined adaptive filter is obtained by combining the two adaptive filter outputs using

the mixing parameter. y® (n) is the output of the combined adaptive filter, which is defined as
Q
YO =2 y(n) (4.3)

The convex combination of y® (n)and y® (n) is given by

y(n) = A(n)y® (n) +@-2(n)y® (n) (4.4)

Where, A(n) is a mixing parameter, and ranges from [0,1] [234]. When A(n) =0, the

small step size filter (slow filter) works effectively by maintaining low steady-state error.

When A(n) =1, the large step size filter (fast filter) works better with high convergence to
limit the A(n) range between [0,1], the mixing parameter is expressed by a sigmoid function

and an auxiliary parameter 1(n).

1
A(n) = Tie'® (4.5)
The convex combined filter error is minimized by adapting I (n)and is defined as:
L(n+1) = 1(n)+ g e(m)[ ¥ (n) = y® (n) | A(m)[1— A(n)] (4.6)

When A(n) it is equal to 0 or 1, to reduce idleness, the auxiliary parameter is limited to

—1*,1%7, such that the mixing parameter is made to move in [L—A*,1*] . Here, | "and A"
gp
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are small positive constants. The update rule of the weight vector H;’q(n +1) for I"Man

adaptive filter (1 =a,b) is written as where C,, (n)is dual Kalman gain [224], 7, (n)is the

Likelihood variable [224].

Dual Kalman gain is defined as:

HO(n+1) =H, - 1el’(n)y, (n)C, (n) (4.7)
— Z (n
Cn (n) = _% (4.8)
—“—ol+c,
1-2

Where c_ and A is a small positive constant. Likelihood variable is defined as:

1

- 4.9
1->v(n—-k+1)
k=1

yn(n)=

Where v(n) =C{"x(n) is the shifting component, e!’(n) in Equation (4.7). is the error

estimator of FCNLMS filter with g™ error signal, expressed as

el) =d(n)-y{’(n) (4.10)

Where y{’(n) is the FCNLMS filter output of g filter and is expressed as

yP(ny=z, H" (4.11)

n-1,q
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Ith

Where 4 is the step size of 1™ adaptive filter. The overall weight coefficient of the convex

combination of the adaptive filters is expressed as
_ (a) (b)
Hn,q _ﬂ“(n)Hn,q (n)+[1_ﬂ(n)]Hn,q (412)

By updating the filter with the help of the mixing parameter, there is a decent trade-off
between the convergence speed and steady-state error. However, such algorithms require the
fixing of mixing parameters while updating the weights resulting in the loss of information.

Complexity burden increases due to 1(n) the update rule and also fails to work for real-time
noises. A GSC beamformer should be constructed with fewer operations in the 1(n)update

rule for various real-time noise reductions to avoid computation complexity.

To overcome the computational burden on mixing parameters and overall real-time
noise reduction. In this chapter, a signed algorithm is proposed for the convex combination of

fast convergence adaptive filters, which is described in the next section.

4.5 Signed Algorithm to a Convex Combination of Fast

Convergence Adaptive Filter

We propose the SCCFC algorithm in this section. By opting for this signed algorithm,

the mixing parameter update rule is changed to limit the squared estimation error.
1.
J(n)= Ee (n) (4.13)

The gradient V,J(n), is normalized and 1 (n), is updated recursively, and is expressed as:

V,J(n)

I(n+1)=1(n)— g, 1V, 30

(4.14)
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Here y, is a step-size and is a small positive constant, V,J(n), is defined as

V3 (n) =—e(n)(y,(n) -y, (M) A(n)d—-A(n))

The normalized gradient % in Equation (4.14), can be expressed as
|
V,J(n)
= —r=59n(V,J(n))
[V 3| |

wheresgn(.) is a sign function [234] and is defined as

1 if z>0
sgn()=—=Jo0 if z=0.—
21 2o

Therefore, Equation (4.15), can be written as

1(n+1) = 1(n)+ & sgn(e(n)y*® (n) - y*® () A(n)(L— A(n)) )

(4.15)

(4.16)

(4.17)

(4.18)

As A(n) >0& 1-A(n) >0 the parameter I (n) in Equation (4.18), can also be represented as

1(n+1) = 1(n)+ 24 sgn (e(n)(y® (n) = y® (n)))

I(n+1) = 1(n) + z sgn (e(n)(e®™ (n) —e®(n)))
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The proposed SCCFC algorithm can reduce computational complexity and attain robustness
ViJ(n)
[Viam|

by replacing e(n)[y® (n) — y® (n)]A[L— A(n)] it with a normalized gradient

An instant transfer approach [234] can be utilized to improve speech further with less

computation while keeping high convergence.

ifnmod D, =oand 1(n+1)=1" then

(b) @
Hn]q (n+1) = Hn‘q (n+1)

endif

Where D, is the length of the Window. During convergence transition, an instant transfer

algorithm is applied when the first FCNLMS is effective than the second FCNLMS filter. The
computation cost of this algorithm is smaller compared to the traditional combination filters.
Due to the predefined window length, the computation burden is still reduced so that the
proposed SCCFC works effectively for various real-time noises with low complexity in
updating the adaptive filter.

As discussed to the sidelobe canceller path SCCFC algorithm is designed and
computation issue is solved using signed scheme to the convex combination algorithm which

is explained here.

Overall steps involved in the proposed SCCFC algorithm is summarized below
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Algorithm : Summary of Proposed SCCFC Algorithm

Initialize

D,, 14, (1=2a,b), g, 1", C(0) =0 7, (0)=0,1(0) =0, 1(0) =0.4,

Hi%(0)=0,H{(0)=0

nq

Loop N=1—
e (n)=d(n)-y®(n)

y(n) =A(n)y® (n) +@-(n)y*® (n)

(a)
H® —H® 4y Z,q8 (N)
S e A S )

n,g=—n,q
L(n+1) = 1(n)+ z,e(n)] y© () -y (n) JA(M)[L— A(n)]
1
A(n+1) = n

e—l (n+1)

Signed Algorithm
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I(n+1) <—I1"

I(n+1) =—1"*

An+1)=0

endif

A(n+1) =1

if (mod(n—1), D, =0)
HE®(n+1) =H& (n)(n+1)
Endif

Else

H, o =AMH () +[1-A(n)]H)

let n=n+1

end
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Figure 4.3: Workflow of the Proposed GSC-SCCFC

4.6 Computational Complexity
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The workflow of the proposed multi-channel speech enhancement system (GSC-
SCCEFC) is as shown in Figure 4.3.

The computational complexity of the LMS [216], NLMS [217], FCNLMS [224],
CLMS [234], and the proposed SCCFC algorithms are compared in this section. Here the
length of the adaptive algorithm is given by N. For a regular LMS algorithm takes 2N+1




multiplications to update the filter. The basic NLMS and FCNLMS algorithms require a 2N
number of multiplications. The proposed SCCFC algorithm, which is a combination of the
two same filters FCNLMS, requires 4N multiplications to update the filter components.
According to Equation (4.14), updating I(n), the proposed SCCFC requires only three
multiplications, whereas the existing CLMS algorithm requires six multiplications to update
the same I (n) parameter. Due to the usage of the signed algorithm with known window
length, the proposed SCCFC algorithm reduces the computational operations compared to the
conventional algorithms. When it comes to stability, the relative variations in e(n) is
maintained by taking £ as a small positive constant. Also, the mixing parameter 1(n) is
independent on J(n), 1(n) becomes more stable when it v J(n) is small. Finally, the
proposed GSC-SCCFC gives less computation complexity with 4N multiplications, where
N=256 is the length of the filter and requires three primary combinations in the update rule,
which is very less compared to existing algorithms. The computational complexity of the
proposed multi-channel speech enhancement system is compared with the existing algorithms,
as shown in Table 4.1. The proposed algorithm also gives good trade-off stability compared to

the other algorithms.

Table 4.1: Comparison of Computation Complexity

Algorithms | Multiplications Primary Precise Weight Weight
Combinations Calculations Transfer
LMS [216] 2N+1 - - -
NLMS [217] 2N - - -
FCNLMS [224] 2N - - -
CLMS [234] 4N+2 6 2N 2N
SCCFC 4N 3 2N -
(proposed)

4.7 Results and discussions

In this section, the simulation of the proposed GSC-SCCFC in noisy real-time

conditions is evaluated and explained. In order to show the performance of the sidelobe
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canceller of GSC, the same noisy input in a virtual room is considered. The proposed GSC-
SCCFC method considers the simulation parameter as explained in chapter 3, section 3.4, and

description as shown in Table 3.1 as well.

The input signals are same as in chapter 3 provided to the Mex setup, which gives a
combination of the desired speech with real-time noise. Whereas in order to evaluate the
proposed GSC-SCCFC at higher SNRs, in this chapter, 15 dB input SNR is also considered.

The degraded speech is an input to the DSB to evaluate the delay from each
microphone and obtain a reference enhanced signal. After that, the input degraded speech is
given to MBM. Using the MBM matrix, the subtraction of the delays caused on the adjacent
microphones is calculated. Further, at the MBM output, a noise reference is generated as
discussed in chapter 3, section 3.5; here, a novel MBM is implemented to completely utilize
spatial information. Finally, the same reference noise is applied to the SCCFC block as input,
where the weights of the individual filters are updated and combined using a mixing
parameter. Due to the proposed SCCFC algorithm, the error is minimized, and enhanced

speech is attained at the output of the GSC beamformer.

The proposed GSC-SCCFC algorithm is compared with different existing algorithms
like Combined adaptive beamforming [236], GSC with improved linear prediction [237],
GSC with controlled white Gaussian [238], combined beamforming and echo cancellation
[239], which are represented as GSC-CC [236], GSC-LP [237], GSC-CWGN [238], and
GSC-CBE [239] respectively. GSC-CC algorithm uses a combination of adaptive filters
[LMS-RLS] for noise reduction. GSC-LP multi-channel improves linear predictors to improve
the spatial filter. Both GSC-CBE and GSC-CWGN are used for noise reduction under white

noise.

4.7.1 Performance Analysis of Proposed GSC-SCCFC Algorithm

The performance of the proposed GSC-SCCFC algorithm is evaluated using standard
speech processing performance metrics, namely Perceptual Evaluation of Speech Quality
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[231] (PESQ), Segmental SNR (SSNR) [240], Log-Spectral Distance (LSD) [232], and Log-
Likelihood Ratio [231].

4.7.1.1 Comparison of PESQ Score for the Proposed Algorithms

PESQ [231] standards are discussed in the section. 3.4.1.1. Table.4.2 shows the PESQ score
comparison of GSC-SCCFC over existing methods. Under station noise, for -10 dB, the
proposed GSC- SCCFC PESQ score is 3.302, but for GSC-CC, it is 2.411. Similarly, at 15 dB
input SNR for street noise, PESQ for the proposed GSC-SCCFC is 4.393, but for GSC-
CWGN and GSC-CBE, it is 3.401 and 3.567, respectively.

At -10 dB car noise, the proposed GSC-SCCFC method gives a PESQ of 2.632, but
for GSC with CWGN and CBE, it is 2.305 and 2.401, respectively. Similarly, at 15 dB PESQ
for GSC-CWGN, GSC-CBE, and the proposed GSC-SCCFC are 3.232, 3.451, and 4.365,
respectively. Similarly, for the remaining noises too, the perception is improved for the
enhanced speech using the proposed GSC-SCCFC algorithm when compared with
conventional algorithms, as shown in Table 4.2. For the proposed method, an improvement in
PESQ of 4.393 is achieved, which is very much closer to the maximum PESQ that can be
achieved. Due to SCCFC, at the output, the desired speech perception is attained.

4.7.1.2 Segmental SNR (SSNR)

SSNR [240] SSNR is the renowned objective measure for speech enhancement. In
SNR, the complete signal is taken into consideration, whereas, for SSNR, the segments with
256 samples per frame are considered. (k=256, with 50 percent overlap). The higher the
Segmental SNR, the more will be the speech quality.

SSNR is defined as

N-1 M-1 nM
10 ¥ 10log ¥ 22(q+7)
SSNR = =— %= 4=0 (4.21)

M -1 nM nM
NS+ ™) —e(@+ O
=0 2 2
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Table 4.2: Performance Comparison of PESQ and SSNR for Proposed GSC-SCCFC with EXxisting

Algorithms

SNR| Noise GSC-CC GSC-LP GSC-CWGN GSC-CBE GSC-SCCFC
in Type [236] [237] [238] [239] (Proposed)
dB

PESQ SSNR PESQ | SSNR | PESQ | SSNR | PESQ | SSNR | PESQ | SSNR

10 | Car 2401 |29 [2.482 | 3.7 2.305 4.2 2.401 5.6 [2.632 |11.2

10 | Restaurant | 2.325 |4.6 [2.062 | 4.9 2232 |58 2.591 59 3.013 |153

_10 | Babble 2303 |28 [2.123 | 4.2 2200 | 5.2 2.501 6.1 (3.022 | 16.1

_10 | Station 2411 |52 2102 | 3.2 2428 |45 2.656 | 53 [3.302 |[12.1

_10 | Alirport 2510 |3.7 [2.323 | 4.2 2398 | 5.7 2.618 6.3 [2.801 |13.3

10 | Street 2241 |44 2208 | 55 2511 | 6.2 2674 | 7.7 |3.011 |16.7

5 | Car 2.008 |3.6 [2.569 | 4.2 2.507 | 5.1 2604 | 7.2 2.804 |17.2

5 | Restaurant | 2.211 | 4.7 [2.381 | 3.6 2316 | 4.8 2.623 7.8 (3.093 |21.5

5 | Babble 2.007 |51 2312 | 45 2421 |59 2729 | 8.1 [3.201 |18.1

_5 | Station 2118 |35 2421 | 3.8 2.551 | 6.7 2634 | 84 [3.104 |16.8

5 | Airport 2092 |28 2383 | 41 2483 | 6.2 2715 | 94 3302 |15.2

5 | Street 2.183 | 5.7 2572 | 59 2.501 | 7.5 2.749 9.5 [3.259 |203
o | Car 2.010 [ 7.2 |2.454 | 6.9 2.611 |59 2734 | 9.2 [3.405 |214
o | Restaurant | 2.486 | 3.1 |2.687 | 7.3 2.643 | 6.4 2.787 8.5 [3.401 |253
o | Babble 2201 |54 2532 | 7.9 2.571 | 6.3 2.663 10.5 3.569 | 24.2
o | Station 2229 | 7.5 |2.556 | 6.8 2.691 | 6.9 2.719 9.7 3.582 |22.8
o | Airport 2237 |46 2399 | 8.1 2.582 | 7.1 2.697 10.6 |3.691 | 21.5
o | Street 2597 169 2573 | 7.9 2.660 | 8.2 2.793 11.5 3.710 | 25.2
5 | Car 2,602 | 8.8 |2.735 | 9.3 2.812 |95 2.867 10.7 |3.408 | 21.7
5 | Restaurant | 2.676 | 7.2 |2.812 | 8.9 2752 9.8 2.702 11.3 |3.421 | 25.1
5 | Babble 2,698 | 5.8 |2.790 | 9.5 2.862 | 10.2 2.923 11.7 3.543 | 24.2
5 | Station 2.702 | 4.7 2.809 |10.2 |2.951 |10.7 2.921 12.1 |3.521 | 22.6
5 | Airport 2.818 {49 2901 9.9 3.028 | 10.5 3.052 11.9 |3.671 |21.9
5 | Street 2992 |89 |3.095 | 128 |3.191 |11.7 3.179 13.8 3.722 | 25.2
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10 | Car 2901 | 10.6 (3.011 |11.7 |3.221 |12.7 3.328 13.3 [3.992 | 31.9
10 | Restaurant | 2.822 | 12.4 (3.039 |11.6 |3.219 |13.7 3.222 13.5 4.072 | 324
10 | Babble 2.899 | 15.1 3.156 | 119 |3.312 | 132 3.356 14.2 |14.287 | 34.1
10 | Station 2907 | 12.2 (3.121 |12.7 |3.224 | 129 3.401 14.8 |4.356 | 32.8
10 | Alirport 2974 | 13.2 (3.111 | 116 |3.212 |13.2 3.456 14.1 4.456 | 34.1
10 | Street 3.012 | 14.7 |3.223 | 156 |3.431 | 163 3.582 17.7 14311 | 31.6
15 | Car 3.061 | 153 |3.151 |16.2 |3.232 | 163 3.451 19.8 4.365 |32.5
15 | Restaurant | 2.921 | 159 3.164 |16.2 |3.379 | 1.8 3.511 209 4.346 | 34.3
15 | Babble 3.056 | 15.2 |3.178 | 154 |3.245 | 16.9 3.489 20.3 |4.310 |34.1
15 | Station 3.110 | 158 |3.208 | 159 |3.212 | 16.2 3.501 22.6 |4.355 |33.8
15 | Alrport 3.089 | 155 |3.219 | 169 |3.302 |17.8 3.451 21.7 |4.387 | 34.8
15 | Street 3.121 | 16.2 |3.410 | 17.4 |3.401 | 18.4 3.567 22.1 |4.393 | 34.6

From Table 4.2 at -10 dB with car noise, SSNR for GSC-SCCFC algorithm is 11.2,
but for GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE, it is 2.9, 3.7, 4.2, and 5.6,
respectively. Similarly, SSNR for 15 dB GSC-SCCFC is 32.5 dB while that for GSC-CC,
GSC-LP, GSC-CWGN, and GSC-CBE are 15.3 dB, 16.2 dB, 17.6 dB, and 19.8 dB,
respectively. SSNR for the proposed GSC-SCCFC shows improved performance as noise
present in each frame is reduced. Also, for 15 dB station noise, SSNR for GSC-SCCFC is
33.8, but for GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE, it is 15.8 dB, 15.9 dB, 16.2
dB, and 22.6 dB, respectively. Likewise, for 15 dB street noise, GSC-SCCFC, GSC-CC,
GSC-LP, GSC-CWGN, and GSC-CBE results in SSNRs of 34.6 dB, 16.2 dB, 17.4 dB, 18.4
dB, and 22.1 dB, respectively. Likewise, the performance of SSNR is improved gradually for
different real-time noises, which are represented in Table 4.2. SSNR for the proposed GSC-
SCCFC with four microphones gives better noise reduction in the segmental analysis.

4.7.1.3 Log Spectral Distance (LSD)

Log spectral distance (LSD) [232] is an advanced metric; the reduction in the spectral

distance is calculated using LSD. The expression LSD is provided in Eq. (4.22),
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M

10mny 1 &)
LSD ==— log z. (n) —log e(n)]? 4.42
N EO (M+1)n§0[ gz,(n)—loge(n)] (4.42)

LSD for the proposed GSC-SCCFC algorithm is compared with existing algorithms
for various real-time noises, as shown in Figures 4.4 (A) to 4.4 (F). The proposed algorithm
showing lower values of LSD implies better performance. The reduction of the spectral
distance is achieved using MBM by utilizing the complete spatial information. As the distance
between the frames decreases, the distortion gets reduced. At 10 dB for car noise, LSD for
GSC-SCCFC is 0.91 dB, but for GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE, it is 2.04
dB, 2.22 dB, 2.39 dB, 2.21 dB. For 15 dB input SNR under station noise, LSD for GSC-
SCCFC, GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE is 0.51 dB, 1.54 dB, 2.16 dB, 2.03
dB, and 1.73 dB, respectively. The proposed GSC-SCCFC achieves better performance when
compared to the existing algorithms. LSD gradually decreases for the remaining noises, which
are shown in Figure 4.4 (A) to (F).

A smaller spectral distance for the proposed GSC-SCCFC for 15 dB at 0.41 dB is
observed under street noise. Using the proposed SCCFC algorithm in the adaptive filtering
block of GSC beamforming, better quality is achieved for the output speech, which is
represented in terms of LSD as shown in Figures 4.4 (A) to (F). 10 dB for car noise, LSD for
GSC-SCCFC is 0.91 dB, but for GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE, it is 2.04
dB, 2.22 dB, 2.39 dB, 2.21 dB. For 15 dB input SNR under station noise, LSD for GSC-
SCCFC, GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE is 0.51 dB, 1.54 dB, 2.16 dB, 2.03
dB, and 1.73 dB, respectively. The proposed GSC-SCCFC achieves better performance when
compared to the existing algorithms. LSD gradually decreases for the remaining noises, which
are shown in Figure 4. A smaller spectral distance for the proposed GSC-SCCFC for 15 dB at
0.41 is observed under street noise. Using the proposed SCCFC algorithm in the adaptive
filtering block of GSC beamforming, better quality is achieved for the output speech, which is

represented in terms of LSD as shown in Figures 4.4 (A) to (F).
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4.7.1.4 Comparison of LLR Score for the Proposed Algorithm

LLR formulation is explained in section 3.4.1.3. Lowering the LLR will be more
speech performance quality. For car noise at 15 dB input SNR, LLR is 0.36 for the proposed
GSC-SCCFC, but for GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE, it is 0.89, 0.87, 0.83,
and 0.72, respectively. For station noise with 15 dB input SNR, GSC-SCCFC results in an
LLR of 0.07, whereas GSC-CC, GSC-LP, GSC-CWGN, and GSC-CBE, itis 1.52, 1.41, 0.42,
and 0.73, respectively. At 15 dB input SNR, LLR of 0.04 under airport noise is achieved by
the proposed GSC-SCCFC, which is very low when compared to the other conventional
algorithms as shown in Figures 4.5 (A) to 4.5 (F).

4.7.1.5 Computational Time

The computational time is calculated in this section. An input degraded speech signal
from the real-time environment with a duration of 2.814 seconds is considered. The
simulations are executed on an intel i7 core processor with a 2.20 GHz clock speed with 8 GB
RAM. The operating system used is Windows 10. The GSC-SCCFC is compared with the
conventional algorithm in Table 4.4. GSC-SCCFC shows less computation of 0.93 s is shown
in Table 4.4. The conventional algorithm shows low performance in noise reduction and gives
high computation time is shown in Table 4.4. The proposed GSC-SCCFC method gives better

performance with lower computational time.

Table 4.3 Computation Time

Methods Computation time (s)
GSC-CC [236] 2.38
GSC-LP [237] 1.98

GSC-CWGN [238] 2.71
GSC-CBE [239] 2.29
GSC-SCCFC (proposed) 0.93
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4.7.1.6 Waveforms

In Figure 4.6 and Figure 4.7, the time domain plots and spectrograms of the
proposed multi-channel speech enhancement system are illustrated, which shows the proposed
GSC-SCCFC noise reduction performance for 5 dB car noise. The enhanced speech signal of
the proposed GSC-SCCFC algorithm shown in Figure 6 looks similar to the clean speech
signal. The enhanced speech signal is also attained at low SNRs. PESQ of 4.393 is obtained
using the proposed GSC-SCCFC method, which is the highest when compared to GSC-CC
[236], GSC-LP [237], GSC-CWGN [238], and GSC-CBE [239], which have scores of 3.121,
3.410, 3.401, and 3.567 for street noise at 15 dB input SNR, respectively.
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Figure 4.6 Time Domain Plot of Proposed GSC-SCCFC at 5 dB Car Noise

75



Clean speech signal

+ 4000 MR N1t " g T w ﬂ
3 *ooor :
c &£ d1e - L - : ‘ : -
@ P v - . -~
: L EL a_%_i_ LR
. 0s 1 15 2 25 3

Time (sec)
= Noisy speech signal
T 4000
E': 2000 ’
g " N & =
X @ - =% S Ca ke S
= 0s 1 15 2 25 3

Time (sec)
s Enhanced speech signal by proposed GSC-SCCFC algonthm
- 4000”. WOR RS 1 “lu_?u :mq“
- .
: 3 Y |4
e 1 18 2 3

Time (sec)

Figure 4.7 Spectrogram of Proposed GSC-SCCFC at 5 dB Car Noise

The PESQ score of the proposed method almost reaches the maximum achievable
PESQ score of 4.5. In the same way, the proposed method has significantly higher SSNR, and
lower LSD, LLR, and also lower computational complexity values, clearly showing its
superiority in performance and its ability to provide a better trade-off between noise reduction

and computational complexity compared to other methods.

4.8 Summary

A multi-channel speech enhancement system using the GSC-SCCFC algorithm is
proposed in this chapter. Both noise reduction and low computational complexity is achieved
using GSC-SCCFC. GSC beamforming using the proposed SCCFC algorithm is compared
with the existing algorithms under various real-time noisy conditions. In the proposed multi-
channel speech enhancement system, a signed algorithm is adapted into the convex
combination of two same adaptive filters (FCNLMS) with different step sizes, which
effectively reduces the computational burden in updating the weight coefficient and also

reduces the real-time noises present in the input signal. The proposed system gave better
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speech intelligibility scores of 4.393 of PESQ and SSNR of 34.8 dB for 15 dB airport noise,
respectively. Other measures like LSD and LLR gave values of 0.41 for 15 dB street noise
and 0.04 for 15 dB airport noise respectively. For the proposed GSC-SCCFC algorithm, LSD
and LLR are smaller values compared to the conventional algorithms. Lower LLR and LSD
values, showing the lower distance between the frames, which resembles improved speech
quality. The proposed algorithm is essential for smooth communication through speech in
noisy real-time conditions. In the same way, if we consider a diffuse noise environment, the
input signal will not be analyzed only with an adaptive filter in order to evaluate noisy input
speech in an adverse environment. Novel postfilters have to be implemented in the frequency
domain, which verifies the low frequencies and high frequencies of the input noisy signal
frame by frame to eliminate speech absence frames. So, the GSC beamforming in the
frequency domain is designed for an adverse environment in chapter 5 and evaluated for
different SNR levels at the output of the postfilter.
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Chapter 5

Adaptive Beamforming using Zelinski-TSNR Multi-

Channel Postfilter for Speech Enhancement

This chapter proposes the use of a postfilter to GSC beamformer to suppress direction
and diffuse noise. A novel multi-channel postfilter is proposed at the output of the GSC

beamformer for multi-channel speech enhancement.

5.1 Motivation

In the case of directional and diffuse noise in low frequencies, most of the multi-
channel speech enhancement methods give a lacking noise reduction. Adaptive beamforming
with postfilters provide better solutions to address these problems. A robust multi-channel
postfilter should be developed to suppress directional and diffuse noise, under various noisy
environments, which are very much essential in applications like mobile phones,
teleconferencing, and hearing aids, etc. We need noise-free information for effective

communication.

5.2 Introduction

In the case of adverse environments like diffuse noise fields, a particular interference
speakers or noise comes from an unknown direction. Aiming the speech enhancement for

degrade signal becomes quite difficult. In order to estimate the diffuse noise such as car and
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office noise, it is required to approach postfilters for adaptive beamformers. From the past few
decades, various beamforming [7], [20]-[22] methods have been introduced to remove
directional noise. O. L. Frost [20] had introduced a beamformer with an array structure for
adaptive broadband processing. Similarly, L. J. Griffiths [21] proposed an alternative structure
to Frost's [20], named GSC beamformer, that suppresses interferences from different
directions and also provides low computational complexity. In a reverberant environment, the
Widrow [22] adaptive noise canceller may face signal cancellation due to improper
microphones and steering vector errors. Also, the adaptive filter block of the GSC
beamformer [241] produces transient noise due to fixed step size. In the previous chapter, we
had seen GSC beamformers using different adaptive filters to suppress various real-time noisy
environments. Owing to these shortcomings, which are discussed in chapters 3 and 4, there is
a significant need to combine some filtering methods to have better noise reduction in a multi-

source environment.

In the case of diffuse noise, i.e., car noise, office noise, etc., where the noise spectrum
power is uniform in all directions, Zelinski postfilter [28] is applied, which estimates cross
and auto-correlation to obtain an enhanced speech. The generalized expression of the Zelinski
postfilter can be analyzed based on prior knowledge of the noise field. Mc Cowan [189] has
given a generalized expression for Zelinski postfilter for office room recordings, but it fails
while considering highly correlated noise. J. Li [244] introduced Improved Zelinski (1Z)
postfilter to enhance desired speech from the diffuse noise fields by applying Wiener
postfilter for low frequencies. Apart from the Wiener postfilter, a Two-Step Noise Reduction
(TSNR) method was given by C. Plapous [245] to have a better noise reduction in adverse
environments. When a person is in motion, the Decision Directed (DD) approach is applied
for estimating a priori SNR of the current frame. 1. Cohen [232] introduced a multi-channel

speech presence probability-based postfilter for non-stationary environments.

S Gannot [194] introduced transfer function GSC with a multi-channel postfilter and
compared it with a single channel postfilter. This method fails in diffuse noise fields. An
improved GSC with multi-channel postfiltering is presented by K. Li [248], which eliminates
the directional noise but is unable to suppress diffuse noise and has caused more speech

distortion in low frequencies. A GSC beamforming is designed to suppress directional noise
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in an adverse environment to address the above limitations. Whereas to reduce the diffuse
noise in each subband, Zelinski-TSNR multi-channel postfilter is proposed and applied to the

GSC beamforming.

5.3 Proposed GSC Beamforming with Multi-Channel Postfilter

In the proposed multi-microphone or multi-channel speech enhancement method, we
consider an adverse environment with directional and diffuse noise, and then it is applied to
the linear array of four microphones. Whereas adverse environment is created using Mex
function as mentioned in fixed beamformer at section 3.3. 1, in chapter 3. The signal received
at each microphone contains directional noise from a particular direction, a diffuse noise that
propagates uniformly in all directions, and the desired speech simultaneously. The proposed

multi-microphone array speech enhancement is shown in Figure 5.1.
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Figure 5.1: Proposed GSC Beamformer Using Zelinski-TSNR Multi-Channel Postfilter
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In this chapter, a novel GSC beamforming with Zelinski-TSNR multi-channel
postfilter is proposed for speech enhancement. It is a combination of two main blocks, the
GSC beamforming with UFNLMS, which reduces the directional noise, and the second part is
a Zelinski-TSNR for diffuse noise reduction. The workflow of the proposed method is shown
in Figure 5.2. At first, the Fixed Beamforming (FBF) and the Modified Blocking Matrix
(MBM) are analyzed in the frequency domain using Short Time Fourier Transform (STFT). A
CP is a combination of Improved Zelinski (1Z) and Two-Step Noise Reduction (TSNR)
postfilters, where the 1Z evaluates the gain of high frequencies and the TSNR evaluates the
gain of low frequencies to reduce the diffuse noise. The SPP in each subband is derived using
Cohen’s multi-channel postfilter and is explained in directional noise and diffuse noise

suppression in the coming sections clearly.

5.4 Directional Noise Suppression

In this section, the GSC beamforming using the UFNLMS algorithm is proposed for
directional noise (sources coming from known and unknown directions) reduction. As
discussed in section 3.3 in chapter 3, GSC structure, there are three main parts: an FBF, an
MBM, and an adaptive interference canceller as Unconstrained Frequency domain
Normalized Least Mean Square (UFNLMS) algorithm, which is essentially designed to have a
better noise reduction from the interfering speech coming from different directions. FBF and
MBM are analyzed in sections 3.3.1 and 3.3.2 in chapter 3. Unknown signals coming from
various directions are analyzed using a fixed beamformer (DSB). The number of columns in
the matrix indicates the number of microphones which is considered to be four, and the
efficiency of MBM is 3.

Consider FBM and MBM outputs as x(n) and |_(n) respectively. Applying STFT to
segments, the time domain signal is converted into the frequency domain to obtain X (p,q)
and L_(p,q) in Equation (5.1) and Equation (5.2). When the signal is segmented into frames,

tracking the signal becomes easy.

x(n) —— X (p,q) (5.1)
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I(n)—"—L,(p.0) (5.2)

Where p is the temporal frame index, g is the frequency bin,and m=1, 2, - - -M — 1 are the

number of microphones. Auditory grouping is then applied to X(p,q) and L _(p.q); it

regroups all the frequencies into bark frequency components based on the bark scale, which

works on human auditory frequencies, and from this, we separate the total signal into low and
high-frequency components. In b the group, the vector of bins is represented as X°(q) and

L‘r’n (q) . According to Widrow, classical adaptive noise cancellation [22] and unconstrained

minimization is considered and is expressed as
en(9)=E[X"(9) -, (@)L, (a)°] (5.3)

Where €5,(q) is the b" band energy. E[.] and (.)" are the expectation operator and

Hermitian transpose operator, respectively, which can be minimized as follows and x(n)

by b
¢Lm (@) i e, (q) 0

Wy () o = # L@ | @ (5.4)

Where
@ X (q) = E(L, (@)(X"(a))") (5.5)
#i 1 (@) = E(Ly (a)(Ly (@)™) (5.6)

In the GSC beamforming structure, the third part is the adaptive interference canceller: In this
chapter, the UFNLMS algorithm is used with different norm constraints to update the weight

coefficient based on each subband in SPP which is explained below.
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UFNLMS weight update equation is given as

WE (D) = WA (q) + g (q)(;(b (@) (5.8)
P () =P’ (q-1)+A-azh e[ (5.9)

Adaptive interference cancellers, i.e., UFNLMS algorithm weight coefficients, are

updated based on SPP P2, (q) , which uses the power of the noise reference signal. When we
update weight Wf; (q), there is a chance of signal cancellation in the speech presence region.

So we use frequency domain representation of input sensor signal Yn:’(q). Due to this, the

weight update becomes small, which improves the quality during speech presence. As
illustrated in the next section, the speech presence probability is calculated using a postfilter,
and SPP is passed back to the adaptive interference canceller to update the UFNLMS

algorithm.

In general, for any speech signal, a huge amount of speech samples exists in the low-
frequency region. It's critical to use non-uniform filters to make the low-frequency bands
narrower and the high-frequency bands wider in order to improve degraded speech. This
enables the adaptive interference canceller to converge smoothly. In this chapter, high
convergence is achieved because of the effective auditory subband method, which utilizes the

speech presence frames in each subband and leaves speech absence frames.

In a practical scenario, a lot of speech leakage issues are observed. When the speaker
is in motion, speech information is lost in the reference channels in reverberant and echo
environments. Desired speech information may be lost if the frequency response of the
microphone position is not clear. While updating the adaptive interference canceller, some
speech information is canceled, and such errors are minimized by €2,(q) in Equation (5.3).

Speech presence in each subband is considered by omitting speech absence frames while
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updating UFNLMS weights to solve speech leaking difficulties. In subband adaptive
interference canceller, updating rate in Equation (5.8) is slow for speech presence frames. The
steady-state error and convergence are decided by the step size of an adaptive filter. The time-
varying step-size for the UFNLMS algorithm, which is feedback by SSP in each subband 12,

is given below:

Pb(q):(l—Mizi_% P'(q))u (5.10)

b

Where M p is the number of frequency bins within the b™ subband,

0< p°(q) <1
Pb()—iz P'(q) 5.11
q_Mbi:blbz | (G-11)
L°(@)=@A—p°(@)u (5.12)

Where p°(q) is SPP of combined postfilter and the range of SPP is 0< p°(q)<1. P"(q) is

the presence of desired speech in b™a subband of b™ the frame. A large ,ub(q) Equation

(5.13) gives a slow update rate of the UFNLMS, which protects the speech components. In
fast-changing environments, the update rate should be faster to update the UFNLMS

algorithm.

—1--1 s P (5.13)

M, i-bb,

84



5.5 Diffuse Noise Reduction Using Zelinski-TSNR Multi-Channel

Postfilter

Zelinski and Mc Cowan [28], [189] introduced diffuse noise reduction postfilters
where noise is partially reduced considering spectral constraints. Here, a novel postfilter is
implemented, which is a combination of Improved Zelinski- Two-Step Noise Reduction (I1Z—
TSNR) [244]-[245] postfilter and is named as combined postfilter for diffuse noise reduction.
According to human auditory frequencies, speech samples remain more at low frequencies.
Here the CP is implemented in two steps: first, low frequencies are analyzed by TSNR
postfilter [245], and then high frequencies are analyzed by IZ postfilter. 1Z postfilter is
implemented by calculating the cross-spectral density of GSC output which serves as input to
the CP. For high frequencies, to minimize the mean square error between speech and its
estimate, the 1Z postfilter is designed. In the IZ postfilter, transient frequencies are analyzed
by following the microphone array geometry. The auto and cross-spectral densities of desired
and noisy speech for high frequencies are defined as

B (P.0) = K(p,9)+ L, (p,q) (5.14)

P, (P,0) = K(p,q) (5.15)

In 1Z postfilter [245], the gain function can be analyzed as

1

St s, o BBy () (P D}
Q 5 ’

G (p,q)= 1

1- -
mZ{i,j}eﬂm(p) [5¢xixj(p,q) ( P, q) + ¢Xixj (0.0) ( P, q)]

(5.16)

Two-Step Noise Reduction (TSNR) filter is applied for low frequencies to reduce the noise
and improve the intelligibility of the desired speech signal. This filter is implemented in two
steps; in the first step using the DD algorithm, the spectral gain Gy, (p, q) is analyzed. In the

second step, the spectral gain of the next frame is calculated and applied to the current frame.
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Here a priori and a posteriori SNR are evaluated to determine the spectral gain of the DD

approach using equations given below,

— X @,
STpost (P, )= P (5.17)

B(S(p—1),9)?

pno (p' q)_ aTm®».9) + (1 - ﬁ)P(s/n\rpost(pr q) - 1) (5-18)
ST prlo(p q)
Gop (P, q) = Lot (5.19)

1+, (0,.9)

In the TSNR filter, the second step is to calculate the a priori SNR based on the DD
approach of the first step

TSNR

ST prLo (p' Q) = smr. prlo p + 1 q) (5-20)

— B'Gpp 0.k ®.9)I2
T Em®.@)+@-BVP[sTrposte(P+1,0)—1] (5.21)

If B’ = 1, the diffuse noise is degraded by the DD approach, and Equation (5.16) is
modified as

TSNR

'lGppK (p.a)I?
TTSNR (p, q) = ELepoK )T (5.22)

ST T @.0))

The spectral gain for low frequencies is defined as

TSNR

GTSNR (p' q) - h(STl prio (p' ) STl ost (p' q)) (523)
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In low frequencies, the noisy speech is enhanced, based on TSNR gain and reference estimate

S, q) = Grsne (@, DK (. q) (5.24)

Finally, TSNR spectral gain is determined as

—~.TSNR
S prio- (D4)

Grsve(P, @) = Trm TSR ) (5.25)
The output of the combined postfilter can be expressed as
G(p,q) = Grsne(®,q) + G12(p, q) (5.26)

Finally, to estimate the diffuse noise in the multi-microphone array, the CP and

reference signal estimate is analyzed as follows

So = G(p, K. q) (5.27)

Using SPP, the filter coefficients are updated in each subband as mentioned in the above
equations. The time-frequency units of each subband are averaged to estimate constrained

filter updates.

The workflow of proposed GSC-Zelinski-TSNR multi-channel speech enhancement

(MCSE) is shown in, where the directional noise coming from
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5.6 Results and Discussions

In this section, simulation of the proposed GSC beamforming with Zelinski-TSNR
multi-channel postfilter in an adverse environment is evaluated and discussed. The simulation
parameter with specifications considered for the proposed GSC-CP-SNMF method is shown
in Table 5.2. Image method [225] is applied to generate multi-channel room impulse
response. Where, a linear array of four microphones with a distance of 5 cm between each
microphone, and distance of 1 m between the source and microphone array, in a conference
room with 6 m x 3 m x 5 m and reverberation time of 300 ms following a Mex setup using
Mex function, i.e., rir-generator.cpp [226] in MATLAB. The Mex function was taken from
International Audio Laboratories Erlangen at Friedrich Alexander University Erlangen-

Nuremberg. (https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator).

An adverse environment is considered taking the desired speech from an unknown
direction, directional interferences like white noise at —45° and female speech at 90° using
the DARPA TIMIT [227]-[228], i.e., database of 6300 male and female sentences, 10
sentences spoken by every 630 speakers with a sampling frequency of 8 kHz and also a
diffuse noise [190] from NOIZEUS database [229]-[230], i.e., a car noise are given to Mex
setup, finally forms a noisy input signal (i.e., a combination of desired speech, directional
interferences, and diffuse noise) with different SNR levels from -10 dB to 10 dB.

This noisy input signal is applied to FBF, which analyzes the DOA of (known and also
unknown) input signal, and all the delays from the microphones are added based on the DSB
principle. Finally, a partially enhanced signal is obtained at the output of FBF. In the next
stage, from noisy input speech, the delays on the adjacent microphones are subtracted using
MBM so that a noise reference is generated. Both the partially enhanced signal and the noise

reference are parallelly applied to the auditory grouping.

Later, directional noise is suppressed by GSC using UFNLMS, and diffuse noise is
suppressed by Improved Zelinski-TSNR multi-channel postfilter in each subband. Noisy
multi-channel speech is processed with the existing methods to show the performance

comparison of the proposed GSC with Improved Zelinski-TSNR multi-channel postfilter.
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GSC algorithm in the time domain (GSC-TD) [21].

GSC algorithm in the frequency domain (GSC-FD) [241].

GSC-FD with modified blocking matrix (GSC-FD*) [246].

GSC-FD* with Subband-Feedback-Controlled Adaptive Filter (GSC-FD*-SFC) [247].
Cohen’s algorithm [232].

Kai Li Method [248].

Proposed GSC-Zelinski-TSNR

Table 5.1 Simulation Parameters Considered for the Proposed GSC-Zelinski-TSNR

Parameters

Specifications

Conference Room

6 m X 5m X 3m (Using Image Method [225] with Mex setup

Dimensions using Mex function i.e., rir-generator.cpp [226] in MATLAB)
Microphones (m) m=4

Distance between each | 5cm

microphone

Distance from sourceto | 1 m

microphone

Diffuse noise

Car noise from Noizeus [230]

Input SNR Levels

-10dB, -5dB, 0dB, 5dB and 10 dB

Database Darpa Timit [227]-[228] and Noizeus [229]-[230]
Directional white noise at -45 and female speech at 90
Interferences

Desired speech and

diffuse noise

unknown direction

5.6.1 Performance Evaluation of the Proposed Zelinski-TSNR

The performance of the above-mentioned algorithms is shown in terms of three objective

parameters, namely, perceptual evaluation of speech quality [231] (PESQ), second segmental
SNR (SSNR) [240], and log spectral distance (LSD) [232].
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5.6.1.1 Comparison of PESQ for Proposed GSC- Zelinski-TSNR

PESQ [231] is an objective intelligibility measure, the standard range of which lies
between 0.5 to 4.5 dB, as explained in chapter 3, section 3.4.1.1. The higher the PESQ
Score better will be the perception. Table 5.2 compares the PESQ score for the proposed
method with existing algorithms, respectively. In Kai Li Method [248], the PESQ at -10
dB attains 2.38 dB whereas for the proposed GCS-Zelinski-TSNR is 2.45. The proposed
method shows superior performance, as SPP is used for minimizing the noise power
instead of step size in diffuse noise reduction. For the proposed method, a PESQ of 3.42
using four microphones is attained at the Zelinski-TSNR output at 10 dB input SNR using

four microphones.

5.6.1.2 Comparison of SSNR for Proposed GSC- Zelinski-TSNR

Segmental SNR [240] is one of the most popular objective measures for speech
enhancement methods. In normal SNR calculation, the whole signal is considered,
whereas while calculating SSNR, segments are taken with 256 samples per frame (k=256

with 50 percent overlap). Higher the SSNR will be better the quality of speech.

Segmental SNR is calculated as

m
10 Y5Z§10log Y5 X2(m+q2)
L my m,2
%;é[x<m+q2>—so(m+q2]

SSNR = (5.26)

In the Zelinski-TSNR multi-channel postfilter, the low-frequency region, which is below
4kHz, is processed with a TSNR filter, and the high-frequency region, which is in the range
4kHz - 8kHz, is processed with an I1Z filter. The diffuse noise in each subband is eliminated

by considering speech presence segments that result in improved performance of SSNR.
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Table 5.2: PESQ Comparison for Proposed GSC-Zelinski-TSNR

Input SNR(dB) 210 [-5 Jo 5 10
GSC-TD[21] 201 | 206 |210 |218 |221
GSC-FD[241] 203 | 221 |240 |258 |2.62
GSC-FD*[246] 204 | 224 |252 |271 |291
GSC-FD*-SFC[247] 209 | 226 |244 |262 |3.06
Cohen Method[232] 213 | 232 |251 |283 |3.15
Kai Li Method[248] 238 | 262 |283 |3.03 |3.28
GSC-Zelinski-TSNR 245 |2.68 |294 |3.20 |342
(Proposed)

Table 5.3: SSNR Comparison for Proposed GSC-Zelinski-TSNR

Input SNR(dB) -10 -5 0 5 | 10
GSC-TD[21] 21 | 39 |58 72132
GSC-FD[241] 3.2 4.3 6.6 | 85 |14.1
GSC-FD*[246] 41 | 54 | 73]091 166
GSC-FD*-SFC[247] 62 | 84 | 98 1141809
Cohen Method[232] 8.8 126 |16.0|18.7 | 19.1
Kai Li Method[248] 9.2 141 |16.5|19.8 | 224
GSC-Zelinski-TSNR 9.8 15.3 |18.7|20.2 | 26.8
(Proposed)

At 10 dB input SNR under adverse environment, SSNR for the proposed GSC-Zelinski-
TSNR is 26.8 whereas Kai Li method [248] it is 22.4 dB. Similarly at -10 dB input SNR,
SSNR for proposed method is 9.8 dB whereas for existing Kai Li method [248] and Cohen
Method [232] it is 9.2 and 8.8, the proposed method outperforms the existing methods in

suppressing diffuse noise in each segment.
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5.6.1.3 Comparison of LSD for Proposed GSC-Zelinski-TSNR

Log Spectral Distance measure [232] is an objective measure for the calculation of the
spectral distance between the frames. Better intelligibility can be achieved with a reduction in

spectral distance.

LSD is calculated as
10 M L A 2
LSD = — %q_=10) {1 + (; + 1) Z;zo[logX(p, q) — log$S,(p, q)] } (5.27)

In Table 5.4, the LSD measure for the proposed method is compared with the

competing methods.
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Figure 5.3: LSD Comparison of Proposed GSC-Zelinski TSNR with Existing Methods

The proposed method shows the lower LSD, resulting in better noise reduction. The spatial

information is completely utilized by taking MBM into consideration. The spectral distance
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between two frames is reduced, and the proposed GSC-Zelinski-TSNR achieves better
performance compared to the other classical methods. As the distance between the frames
decreases, the distortion gets reduced. LSD for the proposed GSC- Zelinski-TSNR at -10 dB
is 2.6 dB, whereas, for the K. Li [248] method, it is 11.2 dB for four microphones, which
shows that the proposed method GSC- Zelinski-TSNR has the lower LSD compared to an

existing method and so on.

5.6.1.4 Spectrograms

In Figure 5.4, the spectrograms of the proposed GSC-Zelinski TSNR multi-channel
postfilter at 10 dB input SNR, where the noise reduction of noisy input speech using proposed

GSC-Zelinski-TSNR for four microphones is shown.
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Figure 5.4: Spectrogram of Proposed GSC- Zelinski TSNR Multi-Channel Postfilter
94



The proposed GSC Zelinski-TSNR method shows better noise reduction with improved
quality and intelligibility in each subband. SPP eliminates speech absence frames using

adaptive interference canceller.

5.7 Summary

Multi-microphone adaptive beamforming, i.e., GSC beamforming with Zelinski-
TSNR multi-channel postfilter, is proposed to enhance the degraded speech in directional and
diffuse noise conditions. In this chapter, directional interference is eliminated by using GSC
with auditory interference canceller with subband feedback control using speech presence
probability. By using UFCNLMS, the iteration speed gets increases compared to time-domain
methods. Diffuse noise is suppressed using Zelinski-TSNR multi-channel postfilter in which
speech signals at low-frequency regions are enhanced by using TSNR, and high frequencies
are enhanced by improved Zelinski postfilter. At 10 dB input SNR, PESQ and SSNR for the
proposed GSC-Zelinski-TSNR is 3.42 and 26.8 dB, shows that the diffuse noise suppression
in each subband. Degraded speech in the low-frequency region is enhanced completely, which
made the proposed algorithm show better performance compared to the existing algorithms in
terms of PESQ, Segmental SNR, and LSD. After processing of noisy speech using proposed
GSC beamformer using Zelinski- TSNR multi-channel postfilter which is later called as
Combined Postfilter (CP) produces a system-generated noise in the desired speech, which can
be called residual noise. To eliminate residual noise and also to separate interference speakers
from unknown directions in real-time environments, a novel adaptive beamforming with

multi-channel postfilter is implemented and discussed in chapter 6.
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Chapter 6

Adaptive Beamforming Using Combined Postfilter and

Sparse NMF for Speech Enhancement

This chapter proposes the sparse NMF to GSC beamformer with combined postfilter to
suppress residual noise. Sparse NMF is proposed to reduce residual noise generated at the
output of GSC with a combined postfilter for multi-channel speech enhancement.

6.1 Motivation

Residual noise is a major problem in multi-channel speech enhancement. In addition to
the requirement for minimal distortion of the original speech, which was discussed in Chapter
3, it is important that the residual noise, i.e., the noise remaining after the enhancement
process, does not sound annoying. Therefore, there is a great need to reduce residual noise, to
reduce listener fatigue, and improve intelligibility. Existing multi-channel speech enhancement
(MCSE) also suffers from residual noise in the output, and that reduces the quality and
intelligibility of the desired signal. Multi-channel speech enhancement techniques (MCSE)
such as adaptive beamforming with postfiltering enables high-quality, hands-free
communication in noisy conditions. But there exists residual noise in the desired speech. So, a
robust multi-channel speech enhancement algorithm should be developed to suppress residual

noise and also to separate interference speakers coming from an unknown direction.
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6.2 Introduction

Residual noise occurs due to the existence of randomly spaced peaks in the spectrum of
the reconstructed signal because of the overestimates and underestimates of the clean signal in
adjacent spectral groupings. Sometimes resulting from the crude estimation of the noisy signal
power spectrum. These peaks sound similar to tones with frequencies that change randomly at
the analysis frame rate. Residual noise is more prominent in the unvoiced segments of speech
where the noise power is comparable to the speech power and is sometimes more disturbing
than the original distortions caused by the interfering noise, which is challenging for multi-
channel speech enhancement (MSCE).

Interference noise or speaker separation refers to the problem of separating one or
more desired signals from mixtures of multiple signals. This problem can be encountered in
many different applications, such as medical [249] [250], military [251], and multimedia
[252]. This challenge is commonly approached by using numerous sensors, each of which
monitors a different mixture of a source signal to acquire enough information about the
incoming source signals to perform the effective separation. In most cases, the source signals
are assumed to be statistically independent, and no extra prior information about the source

signals is assumed available.

The more complicated problem is that of separating multiple source signals from an
unknown direction. This problem is usually defined as the multi-channel speech enhancement
and interference separation problem. The goal of multi-channel speech enhancement and
interference separation is to recover the original source signals from a multi-microphone
recording of their linear mixture, as shown in Figure 6.1. Since the problem is underspecified,
prior knowledge or training data for the source signals are assumed to be available. In this
thesis, the multi-channel source separation and enhancement problems are considered for the
adverse environment. The adverse environment is considered directional noise, diffuse noise,
real-time noises, and interference speakers from different directions. The multi-channel
speech enhancement and interference separation problem is encountered in many applications
such as: separating instruments in music recordings [253], separating speech signals from

multiple simultaneous speakers recording [200], [254], separating speech signals from
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background music signals [255], speech denoising [97], and improving automatic speech

recognition systems by removing the background signals [256].

Estimate for
Source 1

Source 1 \ j Estimate
Speech for Source
Enhancement or | —>
Source 2 —_— 2 interference

separation using
NMF algorithms

Source 3

Estimate for
Source 3

Figure 6.1 Multi-Channel Speech Enhancement Using NMF.

6.2.1 Multi-Channel Speech Enhancement and Interference

Separation Using NMF Algorithms

There are many proposed approaches to estimate the desired speech from the observed
noisy speech signal from an adverse environment. Most of these approaches rely on training
data about the input signals that are in the mixture. In many approaches, the training and the
mixed signals are usually processed in magnitude or power spectral domain [257]-[258]. In

other approaches, the signals are processed in the log-spectral domain [259].

Another approach for multi-channel speech enhancement or interference separation is
to decompose the mixed-signal spectral frames as a weighted linear combination of the
training data spectral frames. In [260]-[261], the mixed signal is decomposed as a linear
combination of a number of exemplars from a large exemplar dictionary of training data for

each source signal.
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The most used approach for solving the MCSE and interference separation problem is
nonnegative matrix factorization (NMF) [38] to train a set of nonnegative basis vectors
(dictionary) for the training data of each source. In the separation stage, NMF is used to
decompose the mixed signal as a weighted linear combination of the trained basis vectors.
The estimate of each source is found by summing its corresponding trained basis terms from
the NMF decomposition during the separation stage [262]. The NMF is used in this
framework in the magnitude spectral or power spectral domain where the non-negativity
constraint is necessary. The number of the trained basis vectors is usually less than the
dimension of the spectral frames of the training data. Due to the efficient update rule solutions
of NMF [38], and since every source is represented by a few numbers of basis vectors, this
approach is considered to be fast and very simple, which makes it the most used approach in
multi-channel speech enhancement and interference separation. Another advantage of using
NMF in multi-channel speech enhancement and interference separation is that there is no

limitation on the energy level for the training and mixed signals.

Much research has been done to improve the performance of NMF by encouraging the
NMF decomposition matrices to satisfy specific features of the source signals to be evaluated.
In [263], harmonicity and smoothness were enforced in Bayesian NMF and applied to music
transcription. In [264], spatial decorrelation and other priors were incorporated with NMF for
different applications. In [198], regularized NMF with Itakura-Saito (IS-NMF) divergence
was introduced with Markov chain prior models for smoothness within a Bayesian
framework. The conjugate prior distributions on the NMF weights and basis matrices with the
Poisson observation model within the Bayesian framework were introduced in [265]. In [266],
the discriminative constraint was applied to the NMF solution. When NMF algorithms are
used for source separation, a good separation can be expected only when speaker-dependent
basis matrices are learned. In contrast, for noise reduction, even if a general speaker-
independent basis matrix of speech is learned, a good enhancement can be achieved [98].
Since the basic NMF allows a large degree of freedom, the performance of the source
separation algorithms can be improved by imposing extra constraints and regularizations,
motivated by the sparsity of the basis vectors and NMF coefficients or smoothness of the
NMF coefficients. In probabilistic NMFs, these constraints can be applied in the form of prior

distributions. Among different priors, significant attention has been paid to model the
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temporal dependencies in the signals because this important aspect of audio signals is ignored
in a basic NMF approach [205], [267].

Schmidt et al. [269] presented an NMF-based unsupervised batch algorithm for noise
reduction. In this approach, it is assumed that the entire noisy signal is observed, then the
noise basis vectors are learned during the speech pauses. In the intervals of speech activity,
the noise basis matrix is kept fixed, and the rest of the parameters (including speech basis and
speech and noise NMF coefficients) are learned by minimizing the Euclidean distance with an
additional regularization term to impose sparsity on the NMF coefficients. The reported
results show that this method outperforms a spectral subtraction algorithm, especially for
highly non-stationary noises. The schematic view of enhancing degraded speech using NMF

is shown in Figure 6.2.

In [270], a supervised NMF-based denoising scheme is proposed in which a heuristic
regularization term is added to the cost function. By doing so, the factorization is enforced to
follow the pre-obtained statistics. In this method, the basis matrices of speech and noise are
learned from training data offline. Also, as part of the training, the mean and covariance of the
log of the NMF coefficients are computed. The negative probability of a Gaussian distribution
is used to regularize the cost function during the enhancement using these statistics (with the

computed mean and covariance).

Fixed

Figure 6.2: Schematic View of NMF
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To the multi-channel speech enhancement and multiple interference separation
environments, S Gannot [194] introduced the transfer function GSC with a multi-channel
postfilter and compared it with a single channel postfilter. This method fails in diffuse noise
fields. An improved GSC with multi-channel postfiltering is presented by K. Li [248], which
eliminates the directional noise but is unable to suppress diffuse noise and has caused more
speech distortion in low frequencies. Li. Pfeifenberger [271] introduced GSC adaptive
beamforming with directional to diffuse noise postfilter, it separates the directional and
diffuse noise components, but this method fails in case of interferences. X. Wang [272]
proposed a modified SPP-based multi-channel postfilter for reverberant noise; The intended
speech is obtained using this procedure, although it is accompanied by residual noise. J. Park
[273] proposed a GSC beamforming using Wiener postfilter for composite noise suppression.
But, when diffuse noise is considered, it does not give the desired result due to the
employment of a single-channel Wiener postfilter at the output of GSC. In the method
proposed by L. Zhang [274], post-secondary filtering is introduced to a time-domain GSC
beamforming to reduce the diffuse noise, point noise, and speech interferences.

In enhancing or separating the speech signal from interfering noisy source, machine
learning methods like NMF plays a significant role. G. Rithwik [275] introduced a speaker-
independent speech enhancement in which NMF based postfilter is used to reduce the noise.
S. Priyanka [276] presented GSC adaptive beamforming using Zelinski TSNR postfilter, but
when the number of interferences increased, it was unable to separate the desired speech. S
Gannot [19] developed a consolidated perspective on multi-microphone speech enhancement
and source separation methods which are interrelated to each other. And also address that the
performance of the system depends on the number of microphones, which improves speech
communication in noisy and reverberant environments. P.D.O. Grady [277] presents a
convolutive NMF with a sparse constraint to represent speech phones in auditory data. C.
Fevotte [278] introduced NMF with sparse constraints for single-channel audio source
separation. But these algorithms individually help in either separating interference or reducing

the noise.

During the simulation of the GSC-CP algorithm for the adverse environment, residual

noise is generated by the system. In the real-time environment, the number of interferences
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will be more it will lead to the overlapping of the sources. This makes it very critical while
communicating in teleconference applications. An innovative strategy should be implemented
to overcome these hurdles in a challenging environment, such as minimizing residual noise

and separating unknown interferences.

A GSC beamforming approaches to suppress directional and diffuse noise is
implemented both in a time domain and frequency domain under noisy real-time
environments in the previous chapter 3, chapter 4, and chapter 5. In Chapter 5, a combination
postfilter (CP) is proposed and applied to the GSC beamforming to reduce diffuse noise in
each subband. In this chapter, to reduce residual noise generated at the output of GSC-CP and
also to separate unknown interferences, Sparse NMF (SNMF) is proposed. The SNMF is
introduced to the proposed GSC-CP from chapter 5 to suppress residual noise and also to

separate the interference speakers in the real-time environment.

6.3 Proposed GSC Adaptive Beamforming using CP and Sparse

NMF

In the proposed multi-microphone speech enhancement method, we consider an
adverse environment with directional and diffuse noise, and then it is applied to the linear
array of four and eight microphones. As considered in chapter 5, the same generated noisy
input is considered here, where the signal received at each microphone contains directional
noise from a particular direction, a diffuse noise that propagates uniformly in all directions,
and the desired speech simultaneously. The proposed multi-microphone array speech

enhancement is shown in Figure 6.3.

In this chapter, a novel GSC beamforming with CP and SNMF is proposed for speech
enhancement. It is a combination of three main blocks as the GSC beamforming with
UFNLMS reduces the directional noise, the second part is a combined postfilter (CP) for
diffuse noise reduction, which is already implemented in chapter 5, section 5.4, and finally,
the third is SNMF which suppress the residual noise generated at the output of CP which is

explained in the next section
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Figure 6.3: The Proposed GSC Beamforming with CP and SNMF for a Multi-Channel Speech

Enhancement

6.3.1 Sparse NMF for Residual Noise Suppression

The purpose of sparse linear coding [279]-[280] is to identify a decomposition in
which the hidden components are sparse; that is, their probability densities are significantly
peaked at zero, and their tails are long. This essentially indicates that every given input vector
may be properly represented with only a few non-zero hidden coefficients. NMF's ability to
provide a sparse representation of data is one of its most valuable features. This type of
representation encodes a large amount of data with a small number of 'active’ components,

making the encoding simple to understand.

Sparse coding is a representational system in which only a few units (from a huge
population) are employed to adequately represent typical data vectors [281]. In practice, this
means that most units take values near zero, with just a few taking values that are notably

non-zero. The sparsest feasible vector (with just one non-zero component) should have a
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sparseness of one on a normalized scale, whereas a vector with all components equal should
have a sparseness of zero. We employ a sparseness metric based on the connection between

the L1 and L2 norms in this chapter which helps in updating the activation function

For desired speech from a known residual noise and interference separation from a noisy

speech, we employ the following procedure:

1. Get training data for the residual noise S,(t) and S,(t) desired speech, make a magnitude

spectrogram for both, then use SNMF to extract associated frames W, and W, .

2. Create a combined basis set W° =[w; |W.] , which yields a basis twice the size of R.

3. Make a magnitude spectrogram of a mixture made up of two unknown sources. SNMF with

fixed to W, is used to fit the mixture to W;*, and only the related activations h are learned.

4. Split h into noisy residual speech h°and desired speech, h® components that correspond to

their corresponding bases, h=[h°[h*] .

5. Create a magnitude spectrogram for both sources using their respective bases and

T,-1 7,1
activations: S°= Y w°h®and S®= Y w°h®.
t=0 t=0

6. Create an audible reconstruction for both sources using the phase information from the

mixture.

In this procedure, the residual noise is separated from the GSC-CP output. A related
formulation for updating the basis vector and activation function in the SNMF model is as

follows.

In SNMF, the noisy speech signal v is the linear multiplication of the basis vector and
the activation coefficients w and h. SNMF calculates w and h by reducing the sparseness of

activation coefficient h using L, normalization is defined as

W,hznv]vihnD(v||wh)+yhl (6.1)
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The spacing between v, w, h can be determined by Euclidian space. Here iterative

multiplicative update is used to determine w and h then,

h-*(v_vTv+Wh)

%hT +1(1hT.*v_v)-*\7v

(6.3)
1HT +1(Vh . *v_vj W

W ¢— W-*

Y

In the above Equation (6.1) and Equation (6.2), the column-wise L, normalization of w
is w. The Hadamard product - = and division / are used to determine w and h in Equation
(6.1) and Equation (6.2)

Using SNMF at the output of GSC-CP, the major advantages are residual noise
reduction and multiple interference separation based on w and h matrix multiplication by
taking corresponding frequencies of interferences at each time instant. The same procedure is
verified for noisy input with four microphones and eight microphones, respectively.
Therefore, the proposed method removes noise coming from different directions and separates

interferences in an adverse environment which is shown clearly in simulation results.

The workflow of the proposed method is shown in Figure 6.4; at first, the Fixed
Beamforming (FBF) and the Modified Blocking Matrix (MBM) are analyzed in the frequency
domain using Short Time Fourier Transform (STFT). Next, the auditory grouping is
performed based on the bark scale, and the frequencies are converted to bark frequency
components. Using auditory subband adaptive interference canceller (UFNLMS), the noise is
suppressed in each subband based on speech enhancement. Directional noise is reduced using
a GSC beamformer in each subband. The diffuse noise is reduced using a combined postfilter
(CP) based on SPP using UFNLMS algorithms. At last residual noise is suppressed,
introducing SNMF to the GSC-CP method. Finally, desired speech is obtained at the output.
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6.4 Simulation Results

In this section, simulation of the proposed GSC beamforming with CP and SNMF in
an adverse environment is evaluated and discussed. The simulation parameter with
specifications considered for the proposed GSC-CP-SNMF method is shown in Table 6.1
Using image method [225], a multi-channel room impulse response is generated, considering
a linear array of four microphones with a distance of 5 cm between each microphone, and
distance of 1 m between the source and microphone array, in a conference room with 6 m x 3
m x 5 m and reverberation time of 300 ms following a Mex setup using Mex function, i.e., rir-
generator.cpp in MATLAB. The Mex function was taken from International Audio
Laboratories Erlangen at Friedrich Alexander University Erlangen-Nuremberg.

(https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator) same  as

chapter 5, but the number of microphones considered here are four and eight to show the
efficiency of the system.

An adverse environment is considered taking the desired speech from an unknown
direction, directional interferences like white noise at -45°C and female speech at 90°C using
the DARPA TIMIT [227]-[228], i.e., database of 6300 male and female sentences, 10
sentences spoken by every 630 speakers with a sampling frequency of 8 kHz and also a
diffuse noise [229] from NOIZEUS database [230], i.e., a car noise are given to Mex setup,
finally form a noisy input signal (i.e., a combination of desired speech, directional
interferences, and diffuse noise) with different SNR levels from -10 dB to 10 dB.

This noisy input signal is applied to FBF, which analyzes the DOA of (known and also
unknown) input signal, and all the delays from the microphones are added based on the DSB
principle. Finally, a partially enhanced signal is obtained at the output of FBF. In the next
stage, from noisy input speech, the delays on the adjacent microphones are subtracted using
MBM so that a noise reference is generated. Both the partially enhanced signal and the noise

reference are parallelly applied to the auditory grouping.
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Later, directional noise is suppressed by GSC using UFNLMS, and diffuse noise is
suppressed by CP in each subband. However, in these processes, residual noise is generated,
which is removed by proposing an SNMF block to GSC-CP. The same procedure is repeated
for eight microphones to increase the performance of the proposed multi-microphone array
speech enhancement. The simulation result is compared to the existing methods to
demonstrate the performance of the proposed GSC-CP-SNMF approach in terms of
intelligibility and quality.

6.4.1 Performance Analysis of the Proposed GSC-CP-SNMF

The performance of the proposed GSC with CP and SNMF algorithm is analyzed in terms of
five objective parameters, namely Perceptual Evaluation of Speech Quality (PESQ) [231],
Segmental SNR (SSNR) [240], Short Time Object Intelligibility (STOI) [282], Signal to
Distortion Ratio (SDR) [283] and Log-Spectral Distance (LSD) [232].

Table 6.1 Simulation Parameters Considered for the Proposed GSC-CP-SNMF

Parameters Specifications
Conference Room 6 m X 5 m X 3 m (Using Image Method [225] with Mex setup
Dimensions using Mex function i.e., rir-generator.cpp [226] in MATLAB)
Microphones (m) m=4, 8
Distance between each 5 cm
microphone
Distance from source to I m
microphone
Diffuse noise Car noise from Noizeus [230]
Input SNR Levels -10dB, -5dB, 0dB, 5 dB and 10 dB
Database Darpa Timit [227]-[228] and Noizeus [229]-[230]
Directional white noise at -45 and female speech at 90
Interferences
Desired speech and unknown direction
diffuse noise
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6.4.1.1 Comparison of PESQ for Four and Eight Microphones

PESQ [231] is an objective intelligibility measure, the standard range of which lies between
0.5 to 4.5 dB. The higher the PESQ score better will be the perception. Table 6.2 and Table
6.3 compares the PESQ score for the proposed method with four and eight microphones,
respectively. In S. Priyanka [276] method, the PESQ at -10 dB attains 2.45 dB and 2.82 dB

with 4 and 8 microphones, respectively.

Table 6.2: PESQ Comparisons for Four Microphones.

Input SNR (dB) 210 [-5 [o [5 |10

Gannot[9] 202 | 221|249 | 266|281
K. Li [248] 2.38 | 2.62|2.83[3.03]3.38
Pfeifenberger [271] 2.06 | 2.13 | 2.39 | 253 | 2.74
X. Wang [272] 210|222 (228237254
J. Park [273] 2.56 | 2.62 | 2.74 | 3.11 | 3.34
L. Zhang [274] 2.17 | 2.31 | 243258 2.77
G. Rithwik [275] 243|252 | 265|311 | 3.62
S. Priyanka [276] 245|268 2.94[3.20]3.42
GSC-CP-SNMF (Proposed) | 3.32 | 3.68 | 3.83 | 4.11 | 4.29

The proposed GSC-CP-SNMF at -10 dB is 3.32 dB and 3.49 dB with four and eight
microphones, respectively. The proposed method shows superior performance, as SPP is used
for minimizing the noise power instead of step size in diffuse noise reduction. At the output,
the desired speech perception is attained, and interferences are separated due to SNMF. For
the proposed method, PESQ of 4.29 dB and 4.34 dB are obtained at 10 dB with 4 and 8

microphones, respectively.
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Table 6.3: PESQ Comparisons for Eight Microphones.

Input SNR (dB) 210 [-5 [0 [5 |10

Gannot[9] 211|227 | 256 | 2.83 ] 2.95
K. Li [248] 2.77 | 2.84 | 2.89 | 2.98 | 3.46
Pfeifenberger [271] 2.18 | 2.25 | 2.47 | 2.68 | 2.94
X. Wang [272] 2.18 [ 2.32 | 2.48 [ 2.63 ] 2.67
J. Park [273] 2.71|2.83|291|3.27 | 3.62
L. Zhang [274] 2.25 241255269 2.84
G. Rithwik [275] 2.46 | 2.67 | 2.83 | 3.25 | 3.82
S. Priyanka [276] 2.82[3.033.25[3.39] 381
GSC-CP-SNMF (Proposed) | 3.49 | 3.78 | 3.96 | 4.28 | 4.34

6.4.1.2 Comparison of SSNR for Four and Eight Microphone

Segmental SNR [240] is one of the most popular objective measures for speech
enhancement methods. In normal SNR calculation, the whole signal is considered, whereas
while calculating SSNR, segments are taken with 256 samples per frame (k=256, with 50
percent overlap). Higher the SSNR will be better the quality of speech.

Segmental SNR is calculated as

m
sonp = 10 Z4zh10log THEX2(m +47)

"3 [X (m + q%) — Se(m + q%]z
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Table 6.4 SSNR Comparisons for Four Microphones.

Input SNR (dB) 210 [-5 [0 [5 |10

Gannot[9] 52 |78 |93 [12.7|156
K. Li [248] 92 |141|165|198 | 224
Pfeifenberger [271] 64 |78 |92 |143|17.6
X. Wang [272] 72 |85 |98 [15.8]18.3
J. Park [273] 82 |126 (138|143 |16.1
L. Zhang [274] 8.7 [10.2]11.3]16.2]195
G. Rithwik [275] 9.8 |11.6|125|18.2|20.8
S. Priyanka [276] 9.8 [ 153|187 ]20.2]26.8
GSC-CP-SNMF (Proposed) | 11.2 | 16.4 | 19.6 | 22.6 | 28.3

Table 6.5 SSNR Comparisons for Eight Microphones

Input SNR (dB) 210 [-5 [o [5 |10

Gannot[9] 65 (85 |98 |143|16.5
K. Li [248] 9.7 1168 (182|216 |234
Pfeifenberger [271] 7.3 |89 |10.2|15.3]|18.9
X. Wang [272] 84 (99 [127]182]204
J. Park [273] 96 |132]14.8]157186
L. Zhang [274] 94 |123]16.8|19.9|21.7
G. Rithwik [275] 10.2 | 14.3]18.3|21.6 | 22.8
S. Priyanka [276] 11.6 | 17.4 | 20.1 | 229 | 27.7
GSC-CP-SNMF (Proposed) | 13.4 | 185 | 21.3|25.9| 29.9

In the combined postfilter, the low-frequency region, which is below 4kHz, is processed with
a TSNR filter, and the high-frequency region, which is in the range 4kHz to 8kHz, is
processed with an IZ filter. The diffuse noise in each subband is eliminated by considering
speech presence segments that result in improved performance of SSNR. The SSNR for four
microphones is 22.6 dB, and 28.3 dB at 5 dB and 10 dB input SNR, respectively, which is
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better than K. Li [248], and other methods are shown in Table 6.4. Similarly, the SSNR for
eight microphones is 25.9 dB, and 29.9 dB at 5 dB and 10 dB input SNR, respectively, which
is better than S Gannot [9], K. Li [248], G. Rithwik [275], and other methods are shown in
Table 6.5. The proposed GSC-CP-SNMF method shows the highest SSNR values compared

to existing methods.

6.4.1.3 Short Time Object Intelligibility (STOI) Comparison for Four and Eight

Microphones

STOI [282] is based on the processed and reference signal correlation coefficient of each
frame. The standard range of STOI is 0 to 1. The higher the STOI value, the better is the
intelligibility of speech. Table 6.6 and Table 6.7 show the STOI comparison for the proposed
method using four and eight microphones. STOI performance with four and eight
microphones for the proposed GSC-CP-SNMF gives the highest values of 0.802 and 0.892,
respectively, at 10 dB input SNR, which is close to 1. It is because UFNLMS is in a subband
adaptive feedback controller, which reduces the noise in each subband of the frame by
generating a variable step size. The highest STOI is achieved for the proposed GSC-CP-
SNMF method.

Table 6.6 STOI Comparisons for Four Microphones

Input SNR (dB) 0[5 |0 5 10

Gannot[9] 0.219 | 0.252 | 0.306 | 0.347 | 0.405
K. Li [248] 0.432 | 0.498 | 0.520 | 0.597 | 0.612
Pfeifenberger [271] 0.251 | 0.305 | 0.394 | 0.473 | 0.501
X. Wang [272] 0.253 | 0.329 | 0.426 | 0.519 | 0.563
J. Park [273] 0.264 | 0.342 | 0.459 | 0.537 | 0.575
L. Zhang [274] 0.331 | 0.381 | 0.505 | 0.552 | 0.614
G. Rithwik [275] 0.432 | 0.469 | 0.580 | 0.607 | 0.634
S. Priyanka [276] 0.512 | 0.532 | 0.551 | 0.639 | 0.706
GSC-CP-SNMF (Proposed) | 0.522 | 0.567 | 0.628 | 0.716 | 0.802
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Table 6.7 STOI Comparisons for Eight Microphones

Input SNR (dB) 10 [-5 0 5 10

Gannot[9] 0.268 | 0.295 | 0.358 | 0.384 | 0.429
K. Li [248] 0.474 | 0.513 | 0.579 | 0.608 | 0.629
Pfeifenberger [271] 0.272 | 0.332 | 0.453 | 0.489 | 0.532
X. Wang [272] 0.287 | 0.367 | 0.509 | 0.573 | 0.589
J. Park [273] 0.326 | 0.501 | 0.551 | 0.620 | 0.685
L. Zhang [274] 0.376 | 0.398 | 0.552 | 0.591 | 0.628
G. Rithwik [275] 0.491 | 0.526 | 0.598 | 0.611 | 0.689
S. Priyanka [276] 0.526 | 0.541 | 0.611 | 0.699 | 0.756
GSC-CP-SNMF (Proposed) | 0.538 | 0.578 | 0.647 | 0.768 | 0.892

6.4.1.4 Signal to Distortion Ratio (SDR) Comparison for Four and Eight Microphones

SDR [283] is an objective quality measure to calculate the distortion in each subband.

The higher the SDR value, the higher will be the quality of the desired speech signal.

Table 6.8 SDR Comparisons for Four Microphones

Input SNR (dB) 10 [ -5 0 5 10

Gannot[9] 245 1338 (459 |7.21 |1043
K. Li [248] 381 433 [8.28 |10.13|11.65
Pfeifenberger [271] 257 |355 [562 |893 |10.86
X. Wang [272] 3.07 |3.76 [6.13 [959 |11.02
J. Park [273] 492 |6.89 |856 |10.98|11.19
L. Zhang [274] 3.87 |4.07 |7.34 [10.25]11.47
G. Rithwik [275] 422 |4.65 |8.39 |10.87|11.79
S. Priyanka [276] 6.211 | 9.11 |10.98 | 11.69 | 12.61
GSC-CP-SNMF (Proposed) | 7.19 | 10.12 | 11.76 | 12.96 | 13.39
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Table 6.9 SDR Comparisons for Eight Microphones

Input SNR (dB) -10 [ -5 0 5 10

Gannot[9] 2711431 |7.02 |878 |10.91
K. Li [248] 3.96 | 5.79 |9.32 |10.92|12.15
Pfeifenberger [271] 2.89 13.80 |6.29 |9.22 |11.05
X. Wang [272] 3.43(398 [7.67 [10.03|11.32
J. Park [273] 5.07|7.65 |9.58 |11.66|12.57
L. Zhang [274] 405|474 892 [10.45]11.88
G. Rithwik [275] 497|507 |10.11|11.58 |12.14
S. Priyanka [276] 6.8919.92 |11.12|12.79 | 13.42
GSC-CP-SNMF (Proposed) | 7.78 | 10.78 | 12.57 | 13.24 | 13.95

SDR for the GSC-CP-SNMF is higher compared to K. Li [248], X. Wang [272], and other
existing methods. SDR at -10 dB for four microphones is 7.19 dB, and for eight microphones,
it is 7.78 dB. Due to SNMF at the output of CP, the residual noise generated is reduced. SDR
at 10 dB for K. Li [248] method is 12.15 dB, and for the proposed method, it is 13.95 dB for
eight microphones which shows the better noise reduction over existing methods which is

shown in Table 6.8 and Table 6.9.

6.4.1.5 Comparison of LSD for Four and Eight Microphones

Log Spectral Distance measure [232] is an objective measure for the calculation of the

spectral distance between the frames. Better intelligibility can be achieved with a reduction in

spectral distance.

LSD is calculated as

10 — M > N
LSD = — X%t 0, {1 + (; + 1) 2_ollogX(p,q) — logs.(p, 9)1*

M
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In Table 6.10 and Table 6.11 LSD measure for the proposed method is compared with the
competing methods. The proposed method shows the lower LSD, resulting in better noise
reduction. The spatial information is completely utilized by taking MBM into consideration.
The spectral distance between two frames is reduced, and the proposed GSC-CP-SNMF
achieves better performance compared to the other classical methods. As the distance between

the frames decreases, the distortion gets reduced.

Table 6.10 LSD Comparisons for Four Microphones

Input SNR (dB) 2105 [0 [5 [10
Gannot[9] 91(79|74|71/6.8
K. Li [248] 796.6(56(52]50
Pfeifenberger [271] 7.3(6.0(52|4.7|4.0
X. Wang [272] 5248423832
J. Park [273] 49 138(30(29 |24
L. Zhang [274] 471411363430
G. Rithwik [275] 40136323028
S. Priyanka [276] 35(26(20|15|13
GSC-CP-SNMF (Proposed) | 26 | 1.8 1.1|0.8|0.6

Table 6.11 LSD Comparisons for Eight Microphones

Input SNR (dB) -10[-5 [0 [5 [10
Gannot[9] 83|7.0|6.2|57|52
K. Li [248] 7264584942
Pfeifenberger [271] 6.7 158504239
X. Wang [272] 46431383330
J. Park [273] 3631282219
L. Zhang [274] 3836322823
G. Rithwik [275] 35(32[25[23]20
S. Priyanka [276] 28 22[18]12]10
GSC-CP-SNMF (Proposed) |2 |15|11|07|04
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. The LSD for eight microphones is lower when compared to that for four microphones. LSD
for the proposed GSC-CP-SNMF at 10 dB is 0.4 dB, whereas, for the G. Rithwik [275]
method, it is 2.0 dB, for K. Li [248] method, it is 4.2 dB for eight microphones, which shows
that the proposed method GSC-CP-SNMF has the lower LSD compared to existing methods.

6.4.1.6 Spectrogram for Four and Eight Microphones

In Figure 6.5 and Figure 6.6, the spectrograms of the proposed speech enhancement
method using four and eight microphones are illustrated at 10 dB input SNR, which shows the
noise reduction of noisy input speech using the proposed GSC-CP-SNMF for four and eight
microphone cases, respectively. The proposed GSC-CP-SNMF method shows better noise

reduction with improved quality and intelligibility.
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Figure 6.5: Spectrogram for the proposed GSC-CP-SNMF method using four microphones at
10 dB input SNR.
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Figure 6.6 Spectrogram for the Proposed GSC-CP-SNMF Method Using Eight Microphones
at 10 dB Input SNR

6.5 Summary

A multi-microphone speech enhancement method using GSC beamforming with
combined postfilter and SNMF is proposed to enhance the desired speech from directional
interferences, diffuse noise, and residual noise. Directional interferences are eliminated using
GSC beamforming with UFCNLMS, and the diffuse noise is reduced using combined
postfilter and the residual noise by SNMF. Four and eight microphones systems were
considered to evaluate the performance, and as the number of microphones increased, the
performance was also improved. Using SNMF, the GSC-CP becomes more robust to the real-
time environment in the case of multiple speakers. The proposed GSC-CP-SNMF method
outperforms existing methods in terms of PESQ, SSNR, STOI, SDR and LSD which is
quantified from the results. The proposed method outperforms the current approach in better

noise reduction.
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The addition of the SNMF algorithm to GSC-CP proves that in teleconference
applications, the multi-microphone speech enhancement and multi-microphone speech
separation methods can be used in an inter-related manner to have noise-free communication.

Better quality and intelligibility were achieved using the proposed method.
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Chapter 7

Conclusions and Future Scope

This chapter provides the conclusions of the thesis. The future scope is also provided,

which suggests some of the potential research areas in multi-channel speech enhancement.

7.1 Conclusions

This thesis focuses on developing novel adaptive beamforming approaches for Multi-
Channel Speech Enhancement (MCSE) algorithms on real-time noisy conditions and adverse

environment in four contributions which is as follows.

The first contribution generalized sidelobe canceler (GSC) beamformer using different
adaptive filtering algorithms is proposed to address the different real-time noisy types in the
existing multi-channel speech enhancement. For the desired speech from the noisy
environment, GSC adaptive beamformer initially finds the direction of arrival of the noisy
speech signal, based on calculating the delay from each microphone using delay and sum
beamformer (DSB). Later, it cancels the received noise using the adaptive filtering
algorithms. A virtual conference room setup is designed by following the image method with
a Mex rir generator to generate real-time noise input signals in a multi-channel environment
like a teleconference. Then, a noisy input speech using multiple microphones is simulated
and is applied for the estimation. GSC beamforming with traditional adaptive filtering
algorithms like LMS, NLMS reduces to low noise. Whereas, another conventional algorithm

i.e., RLS adaptive algorithm produces high computational complexity in the sidelobe

119



canceling path of the GSC beamformer. So, a novel fast convergence NLMS (FCNLMS)
algorithm is implemented in the sidelobe canceling path of the GSC beamformer to various
real-time noises under different SNR levels. At -10 dB, the PESQ for proposed GSC-
FCNLMS is 2.769 dB, whereas GSC- LMS, GCS-NLMS, and GSC-RLS it is 2.494 dB, 2.53
dB and 2.75 dB under station noise conditions. Similarly, for at -10 dB input SNR, GSC-
FCNLMS output SNR is 6.9 dB, whereas GSC-LMS and GSC-NLMS are 6.3 dB and 6.8 dB,
respectively. The proposed GSC beamforming with the FCNLMS algorithm gives the best
performance in terms of intelligibility and quality is compared to the existing GSC with LMS,
NLMS, and RLS algorithms at low SNRs.

In the second contribution, a novel signed convex combination of two FCNLMS
algorithms is implemented to address all real-time noises further and reduce the computation
burden on the GSC beamforming in the high SNRs, i.e., above 10 dB. The adaptive filter error
is minimized using a mixing parameter to update the filter weights in the convex
combinational technique. Meanwhile, the GSC beamformer computational cost is lowered
compared to GSC-LMS and GSC-NLMS by using the signed algorithm to the convex
combinational approach. The proposed GSC beamformer with signed convex combinational
of fast convergence approach improves the speech quality with temporal characteristics at
high SNRs with PESQ of 4.393 dB at 15 dB input SNR for street noise and 4.355 for station
noise with low computation time is achieved of 0.97 ms is achieved. Better quality and
intelligibility are attained using the proposed GSC-SCCFC for all real-time noises given at
microphone array input and achieved low computational complexity compared to the existing

algorithm.

Most of the diffuse noise fields are addressed by postfilters, but in the adverse
environment, along with diffuse noise, there exist interference speakers coming from
unknown directions are discussed in contribution three. A GSC beamforming with improved
Zelinski-TSNR postfiltering is proposed to address directional and diffuse noise. Directional
noise is suppressed by the GSC beamformer, whereas diffuse noise is suppressed by Zelinski-
TSNR multi-channel postfilter. The Zelinski filter is applied for high frequencies, and the
TSNR filter is applied for low frequencies. The speech absence frame is eliminated using

speech presence probability (SPP) and adaptive interference canceller. Desired speech is
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obtained as GSC beamformer using improved Zelinski-TSNR multi-channel postfilter. In
each subband, the speech absence frames are eliminated. Both directional and diffuse noises
are suppressed using GSC with Zelinski-TSNR postfilter. The proposed GSC with Zelinski-
TSNR postfilter gives a PESQ of 2.45 dB at -10 dB input SNR and 3.42 dB at 10 dB input
SNR in an adverse environment when compared with existing Cohen and Kai Li methods of
2.13 dB and 2.38 dB at -10 dB input SNR, 3.15 dB, and 3.28 dB at 10 dB. The proposed
outperforms the existing techniques in suppressing directional and diffuse noise.

In contribution of four to reduce the production of residual noise, which is generated at
the output GSC with combined postfilter (CP). A novel sparse NMF (SNMF) algorithm is
proposed at the output of GSC-CP. The basis vector and activation functions are updated
using the sparse constraint. The non-negative factorization (NMF) model separates the speech
absence using the basis vector and activation function effectively. The data in the given
spectrogram like speech to one matrix and noise to another matrix, i.e., W and H. The
proposed GSC-CP-SNMF beamformer separates residual noise and produces the desired
speech signal at the output. GSC-CP-SNMF separates noise from a noisy speech and
separates interference speakers, if any, in the environment. To attain better quality and
intelligibility in the adverse environment, eight microphones are also used to simulate GSC-
CP-SNMF and attained. The proposed GSC-CP-SNMF gives a PESQ of 3.49 dB at -10 dB
input SNR and 4.34 dB at 10 dB input SNR for eight microphone array input and 4.29 3.32
for four microphones at 10 dB and -10 dB input SNR. The proposed method outperforms the
existing Kai li and Ritwik methods of 2.38 dB and 2.43 dB at -10 dB input SNR, 3.38 dB, and
3.62 dB at 10 dB input SNR.

The thesis shows the effectiveness and robustness of the developed adaptive
beamforming approaches for multi-channel speech enhancement (MCSE). Various real-world
non-stationary noisy environments with a wide range of SNRs were considered for the
performance evaluation. The performance of the developed algorithms in terms of waveforms
spectrograms and objective parameters is presented, which shows the superiority of the
proposed algorithms when compared to the existing speech enhancement algorithms in

dealing with issues like directional noise, diffuse noise, and handling of residual noise in a
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real-time environment. The proposed GSC-CP-SNMF also supports source separation in an

adverse environment.

7.2 Future Scope

As future work, novel early and late fusion Convolutional Neural Networks (CNNs)
are proposed for multi-channel speech enhancement. Two beamformers, namely Delay-and-
Sum (DS) and Minimum Variance Distortion less Response (MVDR), are used as pre-filters
to suppress the effect of noise in the input microphone array. Enhanced outputs of the two
beamformers are to form two-channel input to the CNN, and it is known as the early fusion
CNN model. On the other hand, outputs of the beamformers are considered as inputs to the
two individual CNN's separately. Further, outputs of CNNs are concatenated to form an input

to the fully connected layers, and it is known as the late fusion CNN model.
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