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Abstract

Internet of Things (IoT) is a state of the art rapidly emerging communication tech-

nology with many application areas. It connects many physical objects such as domestic

appliances, vehicles, and healthcare devices over its network apart from conventional com-

puting devices such as desktop computers. The connectivity to these physical objects is

made possible by equipping them with the low-end/constrained devices called IoT devices.

The success of this new IoT technology depends on how securely the data is communicated

over the network. However, security in IoT is a major concern and it must be addressed

using various cryptography algorithms.

Cryptography deals with the study of encryption/decryption algorithms to trans-

form messages into a hidden form to make them secure and immune to attacks. The

security challenges posed by the emerging applications such as IoT prompt this conven-

tional cryptography into a new direction, namely, lightweight cryptography. Lightweight

cryptography is suitable for resource-constrained devices to make them secure in the net-

work. Elliptic curve cryptography (ECC) is one such system requiring a shorter key

length for the same level of security compared to other available cryptosystems. This

cryptography heavily uses finite field GF(2m) arithmetic in its underlying operations.

Finite field GF(2m) is an algebraic structure with 2m elements where arithmetic

operations such as addition, multiplication, and inversion are defined. GF(2m) multipli-

cation is complex and also a performance-critical operation, hence, it requires efficient

hardware implementations. GF(2m) multipliers designed using polynomial basis gives

more efficient, simple, and regular structures compared to other available bases. Various

classes of irreducible polynomials can also be used for efficient implementation of GF(2m)

multipliers. Many efficient GF(2m) multipliers for various classes of irreducible polyno-

mials using polynomial basis are proposed in the literature to achieve reduction in area

and time complexities.



Abstract

In this thesis, we focus on the design of area and time efficient hardware architectures

for GF(2m) multiplication targeting the implementation of security in IoT devices. Ac-

cordingly, some GF(2m) multiplication algorithms or formulations are proposed based on

the available algorithms in the literature and subsequently efficient multiplier architectures

are realized for these proposed algorithms. Firstly, two bit-serial sequential multiplier ar-

chitectures over GF(2m) for general irreducible polynomials are proposed. One of these

multipliers is based on the Interleaved modular reduction multiplication algorithm and the

other is based on the Montgomery multiplication algorithm. Secondly, three bit-parallel

systolic multiplier architectures are proposed based on the formulations developed for two

specific classes of trinomials. These multipliers are realized by representing the developed

formulations using signal flow graphs (SFGs) and applying suitable cutset pipelining tech-

niques. Lastly, two digit-serial sequential multiplier architectures over a specific class of

trinomials are proposed. The area and time complexities of all the proposed architectures

are computed analytically for m = 409 using Silvaco’s FreePDK NanGate 45nm standard

gate estimations and the efficiency of these hardware architectures are verified by compar-

ing them with the related available architectures in the literature. The HDL (Hardware

description language) models of these proposed architectures are also implemented using

Synopsys Design Compiler tool employing FreePDK NanGate 45nm technology libraries.

It is observed from the comparison of the results that the proposed architectures outper-

form the existing architectures in terms of area and delay complexities. These proposed

area and time efficient GF(2m) multipliers may be used in the implementation of security

in IoT devices.



Contents

Declaration iii

Acknowledgements v

Abstract vi

List of Figures xii

List of Tables xv

List of Abbreviations xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Finite Field GF(2m) Multiplication 12

2.1 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

viii



Contents ix

2.1.2 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.5 Binary Finite Fields, GF(2m) . . . . . . . . . . . . . . . . . . . . . 15

2.2 Finite Field GF(2m) Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Finite Field GF(2m) Multiplication . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Polynomial Basis GF(2m) Multiplier Architectures 23

3.1 Review of Bit-Serial Sequential Multipliers for General Irreducible Polyno-

mials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Review of Bit-Parallel Systolic Multipliers for Trinomials . . . . . . . . . . 27

3.3 Review of Digit-Serial Sequential Multipliers for Trinomials . . . . . . . . . 31

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Area-Efficient Bit-Serial Sequential Multipliers for General Irreducible

Polynomials 34

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Area-Efficient Bit-Serial Sequential GF(2m) Multiplier . . . . . . . . . . . . 36

4.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Low-Complexity Bit-Serial Sequential Montgomery GF(2m) Multipliers . . 46

4.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.3 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . 60



Contents x

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Low-Latency and High-Throughput Bit-Parallel Systolic Multipliers for

Specific Classes of Trinomials 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Area-Efficient Low-Latency Bit-Parallel Systolic Multiplier . . . . . . . . . 65

5.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.2 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 High-Throughput Area-Delay-Efficient Bit-Parallel Systolic Multiplier . . . 76

5.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.3 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Low-Latency Area-Efficient Bit-Parallel Systolic Multiplier . . . . . . . . . 84

5.4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.2 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.3 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 High-Throughput and Low-hardware Digit-Serial Sequential Multipliers

for a Specific Class of Trinomials 100

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 High-Throughput Fully Digit-Serial Sequential Multiplier . . . . . . . . . . 102

6.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.2 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.3 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . 107



Contents xi

6.3 Low-Hardware Digit-Serial Sequential Multiplier . . . . . . . . . . . . . . . 108

6.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.2 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.3 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Conclusions and Future Scope 117

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Publications 121

Bibliography 123



List of Figures

1.1 Generic IoT edge computing architecture with end and edge computing

devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 ECC arithmetic hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.1 Top-level block diagram of the proposed bit-serial sequential multiplier. . . 41

4.2 Gate level schematic of H block. . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Top-level block diagram of the proposed MSB-first bit-serial sequential mul-

tiplier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Gate level architecture of G block. . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Gate level architecture of H block. . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Top-level block diagram of the proposed LSB-first bit-serial sequential mul-

tiplier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 The signal flow graph (SFG) of the proposed finite field GF(2m) multipli-

cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 a) Functional description of the ith reduction of degree by one node Ri.

b) Functional description of the ith multiplication node Mi. c) Functional

description of the ith addition node Xi. d) Functional description of the re-

duction of degree by m/2 node R. e) Functional description of the addition

node X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 The pipelined SFG of the proposed finite field GF(2m) multiplier. . . . . . 70

xii



List of Figures xiii

5.4 Formation of the processing elements (PEs). . . . . . . . . . . . . . . . . 71

5.5 Proposed systolic structure of the GF(2m) multiplier. . . . . . . . . . . . . 71

5.6 a) Functional description of the PE[0] node. b) Functional description of

the regular PE (PE[1] to PE[m/2 − 2]). c) Functional description of the

PE[m/2 − 1]. d) Functional description of PE[αm/2] node. e) Functional

description of the PE[Out] node. . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Detailed architecture of the regular PE. . . . . . . . . . . . . . . . . . . . . 73

5.8 Further pipelined SFG using horizontal cutset. . . . . . . . . . . . . . . . 77

5.9 Formation of the processing elements (PEs). . . . . . . . . . . . . . . . . 78

5.10 Proposed systolic structure of the GF(2m) multiplier. . . . . . . . . . . . . 78

5.11 a) Functional description of the PE[0] node. b) Functional description of

the regular PE (PE[1] to PE[m/2 − 2]). c) Functional description of the

PE[m/2−1]. d) Functional description of the PE[xm/2] node. e) Functional

description of the PE[Out] node. . . . . . . . . . . . . . . . . . . . . . . . . 79

5.12 Detailed architecture of the regular PE. . . . . . . . . . . . . . . . . . . . . 80

5.13 Signal flow graph (SFG) representation of the proposed GF(2m) multipli-

cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.14 Functional description of a) ith reduction node Ri b) ith multiplication node

Mi c) ith addition node Xi d) final reduction node R e) final addition node

X’1 f) final addition node X’2. . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.15 Pipelined SFG using vertical cutsets. . . . . . . . . . . . . . . . . . . . . . 91

5.16 Formation of the processing elements (PEs). . . . . . . . . . . . . . . . . . 91

5.17 Proposed systolic structure for GF(2m) multiplication. . . . . . . . . . . . 92

5.18 Functional description of a) PE[0] b) Regular PE c) PE[m/3-1] d) PE[xm/3&x2m/3]

e) PE[X’1] f) PE[X’2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.19 Detailed gate level architecture of the regular PE. . . . . . . . . . . . . . . 93



List of Figures xiv

6.1 Proposed fully digit-serial polynomial basis GF(2m) multiplier architecture. 104

6.2 The proposed structure of the digit-serial multiplier. . . . . . . . . . . . . . 113



List of Tables

3.1 Area and time complexities of the available bit-serial sequential multipliers. 24

3.2 Area and time complexities of the available bit-parallel systolic multipliers. 28

3.3 Area and time complexities of the available digit-serial sequential multipli-

ers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Area and time complexities comparison for GF(2m). . . . . . . . . . . . . . 43

4.2 Comparison of area, delay, and area-delay-product estimations for GF(2409). 45

4.3 Comparison of ASIC implementation results for GF(2409). . . . . . . . . . 45

4.4 Area and time complexities comparison for GF(2m) (MSB multipliers). . . 58

4.5 Comparison of area, delay, and area-delay-product for GF(2409) (MSB mul-

tipliers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Area and time complexities comparison for the field GF(2m) (LSB multi-

pliers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Comparison of area, delay, and area-delay-product for GF(2409) (LSB mul-

tipliers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8 Comparison of the ASIC implementation results for GF(2409) (MSB mul-

tipliers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.9 Comparison of the ASIC implementation results for GF(2409) (LSB multi-

pliers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Coordinate representation of Axi mod T (x). . . . . . . . . . . . . . . . . . 68

xv



List of Tables xvi

5.2 Area and time complexities comparison for GF(2m). . . . . . . . . . . . . 74

5.3 Area and time complexities comparison for GF(2409). . . . . . . . . . . . . 75

5.4 Comparison of ASIC implementation results for GF(2409). . . . . . . . . . 76

5.5 Area and time complexities comparison for GF(2m). . . . . . . . . . . . . 81

5.6 Area and time complexities comparison for GF(2409). . . . . . . . . . . . . 82

5.7 Comparison of ASIC implementation results for GF(2409). . . . . . . . . . 83

5.8 Coordinate representation of Axi mod T (x). . . . . . . . . . . . . . . . . . 88

5.9 Comparison of area and time complexities for GF(2m). . . . . . . . . . . . 95

5.10 Comparison of area and time complexities for GF(2409). . . . . . . . . . . . 97

5.11 Comparison of ASIC implementation results for GF(2409). . . . . . . . . . 98

6.1 Area complexities comparison for GF(2m). . . . . . . . . . . . . . . . . . . 106

6.2 Time complexities comparison for GF(2m). . . . . . . . . . . . . . . . . . . 106

6.3 Area and time complexities comparison for GF(2409). . . . . . . . . . . . . 107

6.4 Comparison of ASIC implementation results for GF(2409). . . . . . . . . . 108

6.5 Comparison of area complexities for GF(2m). . . . . . . . . . . . . . . . . . 114

6.6 Comparison of time complexities for GF(2m). . . . . . . . . . . . . . . . . 114

6.7 Area and time complexities comparison for GF(2409) over x409 + x87 + 1

with w = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.8 Comparison of ASIC implementation results for GF(2409). . . . . . . . . . 116



List of Abbreviations

IoT Internet of Things

DES Data Encryption Standard

AES Advanced Encryption Standard

RSA Rivest-Shamir-Adleman algorithm

ECDH Elliptic Curve Diffie-Hellman key exchange algorithm

ECDSA Elliptic Curve Digital Signature Algorithm

ECC Elliptic Curve Cryptographgy

NIST National Institute of Standards and Technology

MSB Most Significant Bit

LSB Least Significant Bit

MSD Most Significant Digit

LSD Least Significant Digit

MUX Multiplexer

ADP Area-Delay-Product

GE Gate Equivalent

SFG Signal Flow Graph

PE Processing Element

VLSI Very Large Scale Integration

ASIC Application Specific Integrated Circuit

VHDL Very High Speed Integrated Circuit Hardware Description Language

RTL Register Transfer Level

nm nanometer

ns nanosecond

µm2 Square Micrometer

LFSR Linear Feedback Shift Register

xvii



Chapter 1

Introduction

Internet of Things (IoT) is a state of the art rapidly emerging communication tech-

nology with many application areas. It can be considered as an extension to the Internet

to include connectivity to constrained devices as well. IoT can connect many physical

things such as domestic appliances, vehicles, smart wearables, health devices, and smart

grids over the network apart from conventional resourceful computing devices such as

desktop computers [1]. On this basis, many of the physical things/objects around us will

be on the network. These physical objects are equipped with small computing devices

that have connectivity capabilities which help to enable the objects to participate in com-

munication over the network. These small computing devices are called IoT End devices.

Many IoT end devices that are used under a specific application can be connected to

relatively high-computing IoT devices called IoT Edge devices/IoT Gateways. This pos-

sibility of connecting end devices to an edge device facilitates a new computing paradigm

called Edge computing [2]. The generic architecture for IoT edge computing which in-

cludes IoT end devices and IoT edge devices is shown in Fig. 1.1. This architecture

demonstrates that a group of end devices, which are attached to the physical objects such

as a projector or refrigerator, are connected to an edge device. Typically, end devices are

battery-powered, low-cost, and have low computational resources while edge devices need

to have high performance in terms of speed or throughput to accommodate connectivity

to all its end devices [3]. The success of this new emerging IoT technology is majorly

challenged by its security i.e. how securely Information or Data is communicated over the

IoT network. Hence, it is indispensable to implement security features in IoT devices for
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Figure 1.1 Generic IoT edge computing architecture with end and edge computing devices.

achieving secure communication and also to avoid many network-based attacks [4]. IoT

devices are typically characterized by low hardware, hence, they have low computational

power and small data bus width typically 8/16/32 bits. Moreover, these IoT devices must

be cost-effective and also suitable for today’s high data speeds [3]. Hence, implementation

of security into these low-hardware and low-cost IoT devices is a major challenge to be

addressed to make IoT widespread. Nevertheless, on the other hand, we have Cryptog-

raphy which can be used to achieve some of the major security services including data

confidentiality, authentication, non-repudiation, and data integrity in IoT devices.

Cryptography deals with the design and analysis of various data encryption and

decryption algorithms. It can be broadly categorized into Private key cryptography and

Public key cryptography. Private key cryptography uses the same key for both encryp-

tion and decryption. Examples for this cryptography include the algorithms such as Data

encryption standard (DES), Advanced encryption standard (AES), and Twofish. On the
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other hand, public key cryptography employs a pair of related keys where one key is used

for encryption and the other key is used for decryption. Examples for this cryptography in-

clude the algorithms such as RSA (Rivest-Shamir-Adleman), Elliptic curve Diffie-Hellman

(ECDH) key exchange, and Elliptic curve digital signature algorithm (ECDSA) [5].

Conventional cryptography which is targeted for resourceful devices is not suitable

for resource-constrained devices such as IoT devices. Moreover, the need for billions of

IoT devices has prompted this cryptography in a new direction called Lightweight cryp-

tography [6]. Many private-key lightweight cryptographic algorithms such as CLEFIA

and PRESENT are evolved, while, elliptic curve cryptography, apart from being a con-

ventional public key algorithm, remains the best candidate for public key lightweight

cryptography because of its more security per key bit [7]. Hence, ECC (Elliptic curve

cryptography)-based public key schemes such as ECDH and ECDSA are adopted widely

to implement security in IoT devices.

Elliptic curve cryptography uses the elliptic curves that are defined over GF(p) or

GF(2m) finite fields. ECC over prime fields GF(p) is typically used for software imple-

mentations where applications may have general processors, however, resource-constrained

devices such as IoT devices require hardware implementations. Moreover, hardware im-

plementation of ECC is more practical for IoT applications as it provides efficient solutions

in terms of area, delay, and power compared to software implementations. Furthermore,

hardware implementation of ECC over binary fields GF(2m) exhibit substantially lower

hardware apart from low power and less delay compared to its prime field GF(p) counter-

parts [8,9]. Hence, hardware implementation of ECC using GF(2m) fields is preferable for

IoT applications [10–12]. ECC over GF(2m) heavily uses GF(2m) arithmetic in its low-

level operations to realize the other high-level operations such as point addition, point

doubling, and scalar multiplication. The hierarchy of the arithmetic operations involved

in ECC-based schemes is shown in Fig. 1.2. The performance of these schemes depends on

the implementation of the low-level arithmetic operations, especially GF(2m) multiplica-

tion [13]. Thus, the performance of applications that use ECC for implementing security

can be improved by employing an efficient suitable GF(2m) finite field multiplier.

A GF(2m) finite field is an algebraic structure where arithmetic operations such as

addition, multiplication, and inversion can be performed without leaving the structure.



Introduction 4

ECDH, ECDSA

Scalar Multiplication

Point Addition, Point Doubling

Multiplication, Exponentiation,
Addition, Squaring, Inversion

ECC-based
schemes

Elliptic
curve

operations

GF(2m)
arithmetic

1

Figure 1.2 ECC arithmetic hierarchy.

The finite field GF(2m) has 2m elements, where the field elements can be represented us-

ing various bases such as dual basis, normal basis, polynomial basis, and redundant basis.

Polynomial basis is one of the bases recommended by many standard institutes including

National Institute of Standards and Technology (NIST), and multipliers based on this ba-

sis are simpler, regular, and modular. In polynomial basis representation, the complexity

of multiplication depends on field generating mth degree polynomial called an irreducible

polynomial [14]. There are various types of irreducible polynomials such as general irre-

ducible polynomials, all one polynomials, pentanomials, and trinomials. The fields defined

over general irreducible polynomials are suitable for general applications such as domestic

IoT devices. Besides, standard institutes recommend sparse polynomials such as trinomi-

als and pentanomials as they result in low hardware and time complexities. Hence, fields

defined over trinomials are more suitable for high-performance applications such as Indus-

trial IoT devices. In finite field GF(2m) arithmetic, multiplication is the important and

most frequent operation and is repeatedly used in other operations such as exponentia-

tion and inversion. The GF(2m) polynomial basis multiplication is defined as follows: Let

A(x) and B(x) be the two field elements to be multiplied and T (x) be the field irreducible

polynomial. Then the polynomial basis is constituted by (1, x, x2, x3, ....., xm−1), where x

is the root of the irreducible polynomial T (x). Let C(x) be the finite field product of the
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two elements A(x) and B(x). Then GF(2m) finite field multiplication of A(x) and B(x) is

given by C(x) = A(x)B(x) mod T (x), i.e. usual multiplication of A(x) and B(x) followed

by modulo reduction using T (x).

Many efficient GF(2m) multiplication algorithms and architectures have been pro-

posed in the literature to achieve reduction in area and time complexities. The GF(2m)

multiplication can be realized using various algorithms such as the Interleaved multipli-

cation algorithm [15, 16], Karatsuba algorithm [17, 18], Montgomery algorithm [19, 20],

and Mastrovito multiplication [21, 22], and can be implemented employing various ar-

chitectural styles. Depending on the style of implementation, various architectures for

finite field GF(2m) multipliers can be developed. Based on the style of input/output, the

architectures can be bit-serial, bit-parallel, and digit-serial. In bit-serial architectures,

at least one input/output enters/generates serially while others can be parallel [23]. In

bit-parallel architectures, all inputs and outputs appear in parallel [24]. Depending on

the structure of the architecture various implementations such as sequential [16,25], par-

allel [26], and systolic [27] can be developed. Sequential structures take less hardware

at the expense of more computational delay. The output of a sequential structure is

available only after more than one clock cycle, typically in m clock cycles for a GF(2m)

multiplication. Parallel structures generate output in a single clock cycle at the expense

of excessive hardware. Systolic structures offer advantages such as regularity, modularity,

concurrency, local interconnections, and are more suitable for VLSI (Very Large Scale In-

tegration) implementation. These systolic structures can accommodate high throughput

rates while their area and latency are usually very large. Digit-level [18] architectures

process a group of bits, called a digit, at a time and these architectures can facilitate

the area-delay trade-off. Bit-serial sequential implementations are of interest for IoT

end devices, bit-parallel systolic implementations are desirable for IoT edge devices, and

digit-level architectures are suitable for both IoT end/edge devices.

1.1 Motivation

Advances in computing and communication technologies have prompted the evolu-

tion of Internet of things (IoT). Internet of Things is a new computing environment where
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many constrained devices called IoT end and edge devices are connected to the Internet.

It is estimated that more than 40 billion devices will be connected to the IoT network by

2022. Hence, there is a great demand for secure and low-cost IoT devices to transmit data

securely and to avoid many network-based attacks. Elliptic curve cryptography (ECC)

is an efficient public key cryptosystem that is used to achieve some of the security fea-

tures in IoT devices. The constrained nature of IoT devices demands low-hardware and

low-cost implementations of ECC and its underlying GF(2m) finite field operations while

maintaining adequate performance in terms of speed. Finite field GF(2m) multiplication

is the most performance-critical operation in ECC, hence, it requires efficient realiza-

tions and hardware implementations. Low-hardware and low-cost implementations can

be achieved by designing area-efficient multipliers and high-performance implementations

can be achieved by designing high-throughput multipliers. Further, scalable multipliers

are also required to achieve area-delay trade-off which is required for a wide variety of

IoT applications that require moderate performance. Also, the design of GF(2m) finite

field multipliers using polynomial basis gives more efficient architectures compared to the

other available bases. Hence, it is necessary to design high-throughput and area-efficient

polynomial basis GF(2m) multipliers targeting IoT devices.

1.2 Research Objectives

The objective of this research is to design and implement efficient polynomial basis

finite field GF(2m) multipliers to improve the performance of IoT security algorithms.

• Due to the wide range of application areas, IoT end devices must be cost-effective

and are desirable to be available as generic off-the-shelf components. Hence, it

is required to design area-efficient bit-serial sequential GF(2m) multipliers using

general irreducible polynomials. It is also required to verify the performance of

these multipliers using analytical and ASIC (Application Specific Integrated Circuit)

implementation comparisons.

• Many IoT end devices working under a specific application can be connected to an

IoT edge device for Edge computing. The performance of IoT edge devices must
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be high in terms of speed or throughput while having moderate area complexi-

ties. Hence, it is required to design high-throughput, low-latency, and area-efficient

systolic GF(2m) multipliers. It is also required to verify the performance of these

multipliers using analytical and ASIC implementation comparisons.

• In addition to low-end (cost-effective) and high-end (high-performance) IoT devices,

many applications need middle-end IoT devices that have performance and cost

requirements in between to low-end and high-end devices. Scalable architectures

such as digit-serial architectures are suitable for implementing these middle-end IoT

devices. Hence, it is required to design efficient (high-throughput or low-hardware)

digit serial multipliers and also to verify the performance of these multipliers through

analytical and ASIC implementation comparisons.

1.3 Thesis Contributions

The contributions of the thesis are summarized as follows:

• Area-Efficient Bit-Serial Sequential Finite Field GF(2m) Multipliers for

General Irreducible Polynomials Two bit-serial sequential multiplier architec-

tures using polynomial basis that perform multiplication of any two finite field el-

ements for any irreducible polynomial are proposed. The performance of these

proposed architectures is evaluated through theoretical analysis and ASIC imple-

mentations. The contributions of this work are briefly described as:

– Proposed Area-Efficient Bit-Serial Sequential Polynomial Basis GF(2m)

Multiplier In this work, a modified interleaved modular reduction multiplica-

tion algorithm over general irreducible polynomials and its realization using a

bit-serial sequential architecture are presented. The modification in the algo-

rithm involves employing more efficient logical relations to achieve reduction in

hardware complexities. The proposed architecture achieves a minimum reduc-

tion of about 31% in area and 5% in ADP (Area-Delay-Product) compared to

the previous works for the field of order m = 409. The ASIC implementation

of the proposed architecture indicates a minimum reduction of about 28% in
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area and 3% in ADP compared to the existing works.

– Proposed Low-Complexity Bit-Serial Sequential Polynomial Basis

Montgomery GF(2m) Multipliers In this work, we propose modified MSB

(most significant bit)-first and LSB (Least significant bit)-first algorithms for

Montgomery multiplication. These proposed modified algorithms are realized

using bit-serial sequential architectures. The proposed MSB architecture in-

volves less area and time complexities and achieves a minimum reduction of

about 16% in ADP compared to the previous works for the field of order

m = 409. Further, the ASIC implementation of this proposed architecture

indicate a minimum reduction of about 12% in ADP compared to the existing

works. Similarly, the proposed LSB architecture involves less area and time

complexities and achieves a minimum reduction of about 13% in ADP com-

pared to the previous works for the field of order m = 409. Further, the ASIC

implementation of this proposed architecture indicate a minimum reduction of

about 11% in ADP compared to the existing works.

• Low-Latency and High-Throughput Bit-Parallel Systolic Finite Field GF(2m)

Multipliers for Specific Classes of Trinomials Three polynomial basis systolic

multiplier architectures that perform multiplication of any two finite field elements

defined over specific classes of trinomials are proposed. The performance of these

proposed architectures is evaluated through theoretical analysis and ASIC imple-

mentations. The contributions of this work are briefly described as:

– Proposed Area-Efficient Low-Latency Bit-Parallel Systolic Polyno-

mial Basis GF(2m) Multiplier In this work, we develop formulations for

GF(2m) multiplication applicable for a class of trinomials for which k ≤ (m−

1)/2 (if m is odd) or k ≤ m/2 (if m is even), where k is the degree of the

middle term of trinomial and m is the order of the field GF(2m). Based on

the developed formulations we present a systolic architecture for the finite field

GF(2m) multiplication. The proposed multiplier achieves a minimum reduc-

tion of about 11% in area complexity and 14% in latency compared to previous

works for the field of order m = 409. Also, the ASIC implementation of the

proposed multiplier indicate a minimum reduction of about 9% in area and
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12% in latency compared to the existing works.

– Proposed High-Throughput Area-Delay-Efficient Bit-Parallel Sys-

tolic Polynomial Basis GF(2m) Multiplier This work presents a high-

throughput systolic multiplier architecture based on the formulations proposed

for the above area-efficient low-latency multiplier. Thus, this proposed multi-

plier is also applicable for the class of trinomials for which k ≤ (m−1)/2 (if m

is odd) or k ≤ m/2 (if m is even). The proposed multiplication method is re-

alized using a systolic architecture where efficient cutset pipelining techniques

are applied to the derived signal flow graph (SFG) to reduce time complexi-

ties. The proposed multiplier achieves a minimum increase of about 42% in

throughput rate and a minimum reduction of about 6% in ADP compared to

previous works for the field of order m = 409. Also, the ASIC implementa-

tion of the proposed multiplier indicate a minimum increase of about 35% in

throughput and a minimum reduction of about 5% in ADP compared to the

existing works.

– Proposed Low-Latency Area-Efficient Bit-Parallel Systolic Polyno-

mial Basis GF(2m) Multiplier In this work, we propose a new area-efficient

and low-latency GF(2m) systolic multiplier applicable for a narrow class of tri-

nomials for which k ≤ m−2dm/3e which includes both the NIST recommended

trinomials for m = 233 and 409 fields. The proposed multiplier achieves a min-

imum reduction of about 6% in area complexity and a 32% in latency compared

to previous works for the field of order m = 409. Also, the ASIC implementa-

tion of the proposed multiplier indicate a minimum reduction of about 4% in

area and 25% in latency compared to the existing works.

• High-Throughput and Low-hardware Digit-Serial Multipliers for a Spe-

cific Class of Trinomials Two digit-serial polynomial basis multiplier architec-

tures that perform multiplication of any two finite field elements defined over a

specific class of trinomials are proposed. The performance of these proposed archi-

tectures is evaluated through theoretical analysis and ASIC implementations. The

contributions of this work are briefly described as:

– Proposed High-Throughput Digit-Serial Sequential Polynomial Basis
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GF(2m) Multiplier In this work, a digit-serial GF(2m) multiplication algo-

rithm is proposed and the corresponding architecture is also presented. The

proposed algorithm is based on a redundant basis digit-serial multiplication

algorithm available in the literature. This available redundant basis multipli-

cation algorithm is modified to work for polynomial basis multiplication. The

proposed modified algorithm is suitable for polynomial basis GF(2m) multi-

plication over a class of trinomials for which k ≤ (m − 1)/2 (if m is odd) or

k ≤ m/2 (if m is even), where k is the degree of the middle term of trinomial

and m is the order of the field GF(2m). The proposed digit-serial multiplier

takes both the operands simultaneously digit-wise to perform computation.

The proposed multiplier achieves reduction in critical path delay and ADP for

the field of order m = 409. Also, the ASIC implementation of the proposed

multiplier indicates a minimum increase of about 26% in throughput compared

to the existing works.

– Proposed Low-Hardware Digit-Serial Sequential Polynomial Basis

GF(2m) Multiplier In this work, a new formulation for the digit-serial finite

field multiplication over the class of trinomials for which k ≤ (m−1)/2 (if m is

odd) or k ≤ m/2 (if m is even) and its hardware structure are presented. Based

on a available Mastrovito multiplier, an optimized parallel multiplier for the

considered class of trinomials is designed and employed in the proposed digit-

serial multiplier architecture. The proposed multiplier achieves a marginal

reduction of area and ADP compared to previous works for the field of order

m = 409. Also, the ASIC implementation of the proposed multiplier indicates

a minimum reduction of about 3% in ADP compared to the existing works.

1.4 Thesis Organization

The rest of the thesis is structured as follows:

Chapter 2 presents an overview of the mathematical concepts of GF(2m) finite fields

and finite field multiplication operation. It also presents a few available multiplication

algorithms and examples.
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Chapter 3 presents the review of the architectures proposed in the literature for polyno-

mial basis GF(2m) multiplication. It presents the available bit-serial sequential multiplier

architectures for general irreducible polynomials followed by the available bit-parallel sys-

tolic multiplier architectures for trinomials. The chapter also presents the review of the

available digit-serial sequential multipliers for trinomials. The review also includes de-

tailed discussions on the performance of these architectures in terms of area complexity,

latency, throughput, and critical path delay.

Chapter 4 presents a modified interleaved modular reduction multiplication algorithm

and a bit-serial sequential architecture over GF(2m) for general irreducible polynomials.

This chapter also presents the design of two bit-serial sequential Montgomery multipliers

over GF(2m) for general irreducible polynomials using modified Montgomery algorithms.

Analysis and ASIC implementations followed by a comparison of results with existing

works are presented.

Chapter 5 presents the design of three bit-parallel systolic multipliers over GF(2m) us-

ing two specific classes of trinomials. Analysis and ASIC implementations followed by a

comparison of results with existing works is also presented.

Chapter 6 presents the design of two digit-serial sequential multipliers over GF(2m)

using a specific class of trinomials. Analysis and ASIC implementations followed by a

comparison of results with existing works is also presented.

Chapter 7 draws conclusions from the earlier chapters and concludes the thesis.

1.5 Conclusions

In this chapter, a brief overview of the entire research work along with the motivation

behind this research and its objectives are presented. The next chapter presents an

overview of the mathematical concepts of GF(2m) finite fields and GF(2m) multiplication

operation along with a few available multiplication algorithms.



Chapter 2

Finite Field GF(2m) Multiplication

This chapter presents a brief overview of some mathematical concepts about finite

fields. First, we present the definitions and properties of Groups, Rings, and Fields.

Following this, we present the definitions of finite field, binary finite field GF(2m), and

finite field GF(2m) arithmetic operations. Finally, GF(2m) multiplication operation over

polynomial basis is presented along with a few multiplication algorithms to describe the

operation in detail.

2.1 Finite Fields

This section presents the definitions and properties of Groups, Rings, and Fields.

Further, it also presents the definitions of finite field, binary finite field GF(2m), irreducible

polynomial, and various bases.

2.1.1 Groups

Definition 1. A Group denoted by (G, ∗) is a set of elements G along with a binary

operator ∗, such that, for any a, b ∈ G, the result of the group operation between a and

b must be in G i.e. a ∗ b ∈ G, and it satisfies the following properties:

(1) Identity - There is an element e in G, such that for every a ∈ G, e∗a = a∗e = a.

(2) Inverse - For every a in G there is an element a′ ∈ G such that a∗a′ = a′∗a = e,
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where e is the identity.

(3) Associativity - For every a, b, c ∈ G, the following identity holds: a ∗ (b ∗ c) =

(a ∗ b) ∗ c.

Examples:

(1) The set of integers mod n, Zn, under addition is a group (Zn, +), where the

group operator + describes the addition modulo n operation. This group satisfies the

axioms as explained below,

(a) Closure: For any given two integers mod n, their sum, defined as addition modulo

n, is also an integer mod n.

(b) Identity: 0 mod n is the identity of the group, since for any a ∈ (Zn,+), it

follows that 0+a = (0+a) mod n = a mod n as well as a+0 = (a+0) mod n = a mod n.

(c) Inverse: For any given a mod n, we can find an inverse a′ in the group such that

a+ a′ = e , i.e. a+ a′ ≡ 0 mod n. The inverse of a (a′) in this case is n− a.

(d) Associativity: From the basic rules of addition associativity of the integers hold

true, hence, the integers modn are also associative. That is, since a+(b+c) = (a+b)+c,

it is also true that a+ (b+ c) ≡ (a+ b) + c mod n.

Further, on the other hand, it may be observed that the set Zn does not have

multiplicative inverses for all its elements and hence is not a group under multiplication

modulo n operation.

(2) The set of integers Z under addition is a group with identity element 0.

(3) The set of real numbers R is

i) a group under the addition operation with identity element 0,

ii) a group under the multiplication operation with identity element 1.

A group (G, ∗) is said to be ”abelian” if a ∗ b = b ∗ a for every a, b ∈ G. The above

three examples are abelian groups.
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2.1.2 Rings

Definition 2. A Ring (R, +, ×) is a set R which is closed under two operations +

and ×, and satisfying the following properties:

(1) The group (R, +) must be an abelian group.

(2) The operation × obeys associative law, i.e., a× (b× c) = (a× b)× c for every

a, b, c ∈ R.

(3) The operation × obeys distributive law over + operation, i.e., for every a, b, c ∈

R, the following identities hold: a×(b+c) = (a×b)+(a×c) and (b+c)×a = b×a+c×a.

Examples:

(1) The set of integers modulo n, Zn, under the addition and multiplication modulo

n operations is a ring (Zn,+,×).

(2) Another example is the set of integers Z along under the usual addition and

multiplication operations can be considered as a ring (Z,+,×).

A ring is said to be a ”commutative ring” if the operation × obeys commutative

law i.e., a× b = b× a. The above two examples are commutative rings.

2.1.3 Fields

Definition 3. A field (F, +,×) is a set F which is closed under two operations +

and ×, such that

(1) (F, +) is an abelian group and

(2) F-{0} (the set F without the additive identity 0) is an abelian group under ×.

Examples:

(1) Some examples of fields are the set of all real numbers R, set of all complex

numbers C, and the set of all rational numbers Q.
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2.1.4 Finite Fields

Finite fields or Galois fields are the fields that have a finite number of elements. The

number of elements in a field is called the order of the field.

Finite fields are of two types.

1. Prime Fields, GF(p): The order of this field is ’p’, which must be a prime

number.

Ex: GF(2), GF(5), and GF(29).

The GF(2) field is the smallest finite field containing two elements. It can be written

as GF(2) = {0, 1}. In this field, 0 is the additive identity and 1 is the multiplicative

identity. Arithmetic operations in this field follow modulo 2 arithmetic:

GF(2) addition: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0, and

GF(2) multiplication: 0× 0 = 0, 0× 1 = 0, 1× 0 = 0, 1× 1 = 1.

It can be observed that GF(2) addition is the same as logical XOR operation, and GF(2)

multiplication is the same as logical AND operation. Hence, these operations can be

implemented using XOR and AND gates.

2. Extension Fields, GF(pm): The order of this field is ’pm’, where ’p’ must be

a prime number and m is any positive integer greater than 1.

Ex: GF(2409), GF(57), and GF(294).

2.1.5 Binary Finite Fields, GF(2m)

Binary finite fields are the fields of the form GF(2m). These fields can be obtained

from the extension fields GF(pm) by selecting p = 2. In other words, these are the extension

fields of the prime field GF(2).

Ex: GF(28), GF(2169), GF(2233), and GF(2409).

Thus, GF(2m) is a binary extension finite field which is generated using the base

field GF(2), where GF(2) is the finite field with two elements 0 and 1. The elements of

binary finite fields GF(2m) can be represented with the polynomials of degree less than
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m over GF(2) i.e. the coefficients of the polynomials come from the base field GF(2).

Let A(x) be an arbitrary element of the field GF(2m), thus, it can be represented as a

polynomial of degree (m− 1), given by

A(x) =
m−1∑
j=0

ajx
j = am−1x

m−1 + am−2x
m−2 + ........+ a1x+ a0 (2.1)

where all aj ∈ GF(2). This element can also be represented using the coordinate notation

as (am−1, am−2, ......., .a1, a0).

Moreover, every GF(2m) is characterized by its field-defining mth degree polynomial

called an irreducible polynomial. An irreducible polynomial of the finite field GF(2m) is

an mth degree monic polynomial which cannot be factored into two non-trivial polynomial

elements over the same field. For a GF(2m), the general form of the irreducible polynomial

T (x) is given by a monic polynomial of the form, T (x) = xm +
∑m−1

j=1 tjx
j + 1 with at

least one of tjs to be non zero and all tj ∈ GF(2).

Thus, the finite field GF(2m) can be represented as a set of all its 2m polynomial

elements as,

GF(2m) = {A(x) |A(x) = am−1x
m−1 + am−2x

m−2 + am−3x
m−3 + ......+ a1x+ a0;

∀ ai ∈ GF(2), i = m− 1 to 0}, (2.2)

where, x is a root of the irreducible polynomial T (x).

Field irreducible polynomials T (x) are categorized into general irreducible polyno-

mials, all one polynomials, equally spaced polynomials, pentonomials, and trinomials.

General irreducible polynomials bears no specific constraints on the structure of the poly-

nomial and are of the form given by

T (x) = xm + tm−1x
m−1 + tm−2x

m−2 + tm−3x
m−3 + ......+ t1x+ 1;

∀ ti ∈ GF(2), i = m− 1 to 1 (2.3)

moreover, since x is the root of T (x), one can also have

xm = tm−1x
m−1 + tm−2x

m−2 + tm−3x
m−3 + ......+ t1x+ 1

All one polynomials (AOP) are the class of irreducible polynomials that have all of its

polynomial coefficients equal to 1, i.e. all ti = 1, and are of the form

T (x) = xm + xm−1 + xm−2 + xm−3 + ......+ x+ 1 (2.4)
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further, since x is the root of T (x), one can also have

xm = xm−1 + xm−2 + xm−3 + ......+ x+ 1

Equally spaced polynomials (ESP) are the class of irreducible polynomials that have equal

spacing with respect to degree of the polynomial terms. Clearly, AOPs are are ESPs with

spacing of 1. The general form of ESPs is given by

T (x) =
l∑

j=0

xjs, for j = 0, 1, 2, ..., l (2.5)

= xsl + xs(l−1) + ....+ xs + 1

also, since x is the root of T (x), one can also have xsl = xs(l−1) + ....+ xs + 1.

Pentanomials are the class of irreducible polynomials that have only five terms and are

of the form,

T (x) = xm + xm3 + xm2 + xm1 + 1,where, 1 ≤ m1 < m2 < m3 ≤ (m− 1) (2.6)

moreover, since x is the root of T (x), one can also have xm = xm3 + xm2 + xm1 + 1.

Trinomials are the class of irreducible polynomials that have only three terms and are of

the form,

T (x) = xm + xk + 1,where, 1 ≤ k ≤ (m− 1) (2.7)

further, since x is the root of T (x), one can also have xm = xk+1. Examples for trinomials

include the trinomials T (x) = x233 + x74 + 1 and T (x) = x409 + x87 + 1 (which are also

the NIST (National Institute of Standards and Technology) recommended trinomials for

elliptic curve cryptography).

Finite fields GF(2m) can also be viewed as vector spaces of dimension, ’m’. Hence,

a finite field GF(2m), which consists 2m elements, can also be represented using a specific

set of any of its m linearly independent elements called basis. Thus, any element of a

field GF(2m) can be represented as a linear combination of the m basis elements. A finite

field can have more than one basis, thus, the elements of a finite field GF(2m) can be

represented using various bases such as polynomial basis, normal basis, redundant basis,

dual basis, and weakly dual basis.

Polynomial Basis: The polynomial basis is defined with the set (1, x, x2, x3, ...

.., xm−2, xm−1) where x is the root of the irreducible polynomial T (x) of the field GF(2m).
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An element A(x) ∈ GF(2m) represented using the polynomial basis is of the form,

A(x) = am−1x
m−1 + am−2x

m−2 + ........+ a1x+ a0, ai ∈ GF(2)

Dual Basis: Let (x0, x1, x2, x3, ....., xm−1) and (y0, y1, y2, y3, ....., ym−1) be the bases

of a field GF(2m). Then, the bases are said to be dual to each other if they satisfy the

following condition.

Tr(xiyj) =

1, if i = j

0, if i 6= j
(2.8)

where Tr(α) (in Eq. 2.8, α = xiyj) is a trace function defined over GF(2m) as

Tr(α) =
m−1∑
j=0

x2
i

(2.9)

Weakly Dual Basis: Let (x0, x1, x2, x3, ....., xm−1) and (y0, y1, y2, y3, ....., ym−1) be

the bases of a field GF(2m) and γ ∈ GF(2m), γ 6= 0. Then, the bases are said to be weakly

dual to each other if they satisfy the following condition.

Tr(γxiyj) =

1, if i = j

0, if i 6= j
(2.10)

Clearly, for γ = 1, weakly dual basis becomes the dual basis. Thus, the dual basis is a

special case of weakly dual basis.

Normal Basis: The normal basis is defined with the set (x, x2, x2
2
, x2

3
, ....., x2

m−2
,

x2
m−1

) where x is the root of the irreducible polynomial T (x) of the field GF(2m). An

element A(x) ∈ GF(2m) represented using the normal basis is of the form,

A(x) = am−1x
2m−1

+ am−2x
2m−2

+ ........+ a1x
2 + a0x, ai ∈ GF(2)

Redundant Basis: The splitting field of the polynomial xn − 1 is known as a

cyclotomic field which is denoted by K(n). Let β be the nth roots of unity. The field K(n)

can be generated by β over K, and an element of K(n) is given by

A(β) = a0 + a1β + a2β
2 + ......+ an−1β

n−1,where, all ai ∈ K (2.11)

Thus, the set (1, β, β2, β3, ......., βn−1) forms the basis for the cyclotomic field K(n). This

basis also forms the basis for any subfield of K(n) and is called redundant basis.
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2.2 Finite Field GF(2m) Arithmetic

Arithmetic operations such as addition, multiplication, inversion, squaring, division,

and exponentiation are defined in the GF(2m) field. Conventionally, these field operations

can be performed in two steps, usual arithmetic operation followed by modulo reduction

using the irreducible polynomial, T (x). Moreover, both the steps follow modulo 2 arith-

metic for operations among the polynomial coefficients.

However, GF(2m) addition is simple and can also be performed as modulo 2 addition

of polynomials. For example, consider two elements A(x) = x7 + x5 + x4 + x3 + x+ 1 and

B(x) = x7 + x6 + x4 + x3 + x2 + x+ 1 from the GF(28) field. Then,

A(x) +B(x) = x6 + x5 + x2

2.3 Finite Field GF(2m) Multiplication

Among all the arithmetic operations, multiplication requires more attention as it is

frequently used in the realization of other operations. Further, polynomial basis multipli-

cation is simpler and also gives more regular and compact realizations compared to other

bases. Hence, we have selected polynomial basis for realizing GF(2m) multiplication and

the same basis is adopted throughout the thesis.

Let A(x) and B(x) be two elements of the field GF(2m) represented using polynomial

basis as

A(x) = am−1x
m−1 + am−2x

m−2 + am−3x
m−3 + ......+ a1x+ a0;

∀ ai ∈ GF(2), i = m− 1 to 0 (2.12)

B(x) = bm−1x
m−1 + bm−2x

m−2 + bm−3x
m−3 + ......+ b1x+ b0;

∀ bi ∈ GF(2), i = m− 1 to 0 (2.13)

Then, the GF(2m) multiplication is defined as

C(x) = A(x)B(x) mod T (x) (2.14)
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The product C(x) can be obtained by usual multiplication of the polynomials A(x) and

B(x), followed by modulo reduction using T (x) (This is called Classical method of com-

puting finite field multiplication).

Example: Consider a finite field GF(28) with the field irreducible polynomial T (x) =

x8 +x4 +x3 +x+ 1. Also consider two elements of this field as A(x) = x6 +x4 +x2 +x+ 1

and B(x) = x7 + x+ 1. Then, multiplication of these two elements C(x) can be obtained

as follows.

C(x) = A(x)×B(x) mod T (x)

A(x)×B(x) = (x6 + x4 + x2 + x+ 1)× (x7 + x+ 1)

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

This result of the usual multiplication (A(x)×B(x)) must be modulo reduced using

the irreducible polynomial T (x) = x8 + x4 + x3 + x+ 1 as follows.

x8 + x4 + x3 + x+ 1
)
x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

(
x5 + x3

x13 + x9 + x8 + x6 + x5

x11 + x4 + x3 + 1

x11 + x7 + x6 + x4 + x3

x7 + x6 + 1

Therefore, C(x) = A(x)B(x) mod T (x) = x7 + x6 + 1.

In the classical approach mentioned in the above example, multiplication of poly-

nomials is performed first, and then, it is followed by the reduction using the irreducible

polynomial T (x). Further, it is also possible to interleave the modular reduction step

as shown in algorithm 2.1 for computing the required product, C(x). This method is

based on the observation that A(x)B(x) mod T (x) = am−1(x
m−1B(x) mod T (x)) + ... +

a1(xB(x) mod T (x)) +B(x) mod T (x). Thus, xiB(x) mod T (x) can be successively com-

puted for all 0 ≤ i ≤ m − 1, and all the reults are added for which ai = 1. The

successive computation can be started with xB(x) mod T (x) (for i = 1), and it can
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be computed as follows using the propoerty of the irreducible polynomial T (x) that

xm = t(x) = tm−1x
m−1 + tm−2x

m−2 + tm−3x
m−3 + ......+ t1x+ 1.

xB(x) mod T (x) = bm−1x
m + bm−2x

m−1 + ....+ b1x
2 + b0x mod T (x)

= bm−1
(
tm−1x

m−1 + tm−2x
m−2 + tm−3x

m−3 + ......+ t1x+ 1
)

+ bm−2x
m−1

+ ....+ b1x
2 + b0x

Therefore, xB(x) mod T (x) can be computed by a left-shift of the vector representation

of B(x) (which invariably consists m coordinates) and adding t(x) to it if bm−1 = 1.

Similarly, other terms xiB(x mod T (x) can be successively obtained using previous terms

and can be used in the computation of C(x) as described in the algorithm.

Algorithm 2.1: Interleaved modular reduction multiplication algorithm

Input: A =
∑m−1

j=0 ajx
j, B =

∑m−1
j=0 bjx

j both w.r.t. polynomial basis, and T = xm +∑m−1
j=1 tjx

j + 1.

Output: C = (A×B) mod T =
∑m−1

j=0 cjx
j also w.r.t. polynomial basis.

1: if a0 = 1 then

2: C(x)← B(x)

3: else

4: C(x)← 0

5: end if

6: for i = 1 to m− 1 do

7: B(x)← B(x)x mod T (x)

8: if ai = 1 then

9: C(x)← B(x) + C(x)

10: end if

11: end for

12: return C(x)

Apart from the above mentioned classical (polynomial multiplication followed by

modulo reduction) and Interleaved modulo reduction multiplication methods for com-

puting the finite field GF(2m) multiplication, various other algorithms/methods pro-
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posed in the literature such as Mastrovito multiplication, Montgomery multiplication,

and Karatsuba-Ofman multiplication can also be used for efficient computation of mul-

tiplication. Further, the computational complexity of multiplication can also be reduced

using various classes of irreducible polynomials, particularly, trinomials.

2.4 Conclusions

In this chapter, a brief overview of the fundamental concepts of groups, rings, fields,

finite fields, polynomial basis representation, and the description of polynomial basis mul-

tiplication is presented. The next chapter presents the review of finite field multiplication

architectures over GF(2m) available in the literature.



Chapter 3

Polynomial Basis GF(2m) Multiplier Architectures

Hardware implementation of IoT (Internet of Things) devices typically require low-

cost, high-performance, and scalable multipliers as mentioned in Chapter 1. Low-cost im-

plementations can be achieved using bit-serial sequential multipliers while high-throughput

implementations can be achieved using bit-parallel systolic multipliers. Moreover, scalable

multipliers that facilitate area-delay trade-off can be realized using digit-serial sequential

multipliers. This current chapter presents the survey of different related architectures

proposed in the literature for polynomial basis GF(2m) multiplication. Firstly, the bit-

serial sequential multipliers proposed in the literature over GF(2m) for general irreducible

polynomials are presented. Secondly, the bit-parallel systolic multipliers proposed in the

literature over GF(2m) for irreducible trinomials are presented. Finally, the digit-serial

sequential multipliers proposed in the literature over GF(2m) for irreducible trinomials are

presented. In addition, the performance improvements achieved by these multipliers in

terms of area complexity, latency, throughput, and critical path delay are also presented.

3.1 Review of Bit-Serial Sequential Multipliers for General Ir-

reducible Polynomials

Several bit-serial sequential multipliers proposed in the literature for the finite field

multiplication over GF(2m) for general irreducible polynomials are reviewed and the per-

formance of these multipliers in terms of area and time complexities is presented in Ta-
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ble 3.1. The area and time complexities of the multipliers are expressed using the notations

m, TA, TNA, TX , TXN , Ttsb, and TM which represent field order, the propagation delays

of a 2-input AND gate, 2-input NAND gate, 2-input XOR gate, 2-input XNOR gate,

tristate buffer, and 2-to-1 MUX (multiplexer), respectively. Furthermore, these notations

are used to compute areas and delays of all the architectures presented in this thesis.

Table 3.1 Area and time complexities of the available bit-serial sequential multipliers.

Multiplier AND XOR MUX Register Latency Critical path

[28] 2m 2m− 1 0 4m + 2 m + 1 TA + TX

MSB-first [14] 2m 2m− 1 0 3m m TA + 2TX

LSB-first [14] 2m 2m− 1 m 3m m TA + TX

[25] (m2 + m)/2 (m2 + m)/2 4m 5m− 1 2ka
t + 1 TXdlog2me+2TM +TA

[29] 4m 2m (m− 1)b+mc+md 3m m TA + TX + Ttsb

[30] 0 6m + 18 14m + 26 6m + 7 m/4 2TM + 4TX

[16] 2m 2m 2m 3m m TA + TX

MSB-first [31] 2m− 1 2m− 1 0 2m m TA + TX

LSB-first [31] 2m− 1 2m− 1 0 2m m TA + 2TX

[32] 2m− 1 2m− 1 0 2m m TA + TX

[33] 2m− 1 2m− 1 0 2m m TA + 2TX

[34] m 2m− 1 0 2m m TA + dlog2 meTX

-

athe second highest degree of the irreducible polynomial, bOR gates, cinverters, dtristate buffers

Various algorithms such as Interleaved multiplication algorithm [14], Montgomery

multiplication algorithm [35], and Karatsuba-Ofman multiplication algorithm [36] have

been proposed in the literature to realize efficient bit-serial multiplier architectures. Based

on these algorithms, many architectures have been proposed in the literature to achieve

reduction in area and time complexities. Beth et al. [37] in 1989 presented a most signif-

icant bit (MSB) first and a least significant bit (LSB) first bit-level serial-in parallel-out

architectures using trinomials. These architectures use a linear feedback shift register with

feedback added into the register in the positions defined by the irreducible polynomial.

In these architectures, one input is loaded in parallel and another one is loaded serially

one bit per clock cycle requiring a total of m clock cycles for a single multiplication. Song

et al. [28] in 1996 presented a new polynomial basis bit-serial multiplier which achieves

smaller critical path delay and lower latency. Further, this multiplier, using sub-structure

sharing technique, can also achieve hardware saving when it is used in large systems.

This multiplier requires 2m AND gates, (2m−1) XOR gates, and (4m+2) registers. The

latency of this multiplier is (m + 1) clock cycles and the critical path delay is given by

(TA + TX). In 2001, Johann Großschädl [38] presented a low power MSB-first bit-serial
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architecture. This multiplier also performs addition operation and operates over a wide

range of finite fields. Major advantages of this multiplier are low power and versatility in

terms of being applicable to a wide range of finite field orders, m.

Deschamps et al. [14] in 2009 presented implementation of bit-serial multipliers

for general irreducible polynomials using the available [37] MSB-first and LSB-first in-

terleaved multiplication algorithms. The MSB-first multiplier requires 2m AND gates,

(2m − 1) XOR gates, and 3m registers. The latency of this multiplier is m clock cycles

and the critical path delay is given by (TA + 2TX). The LSB-first multiplier requires 2m

AND gates, (2m− 1) XOR gates, m multiplexers, and 3m registers. The latency of this

multiplier is also m clock cycles and the critical path delay is given by (TA + TX). Both

of these multipliers require less number of registers compared to the previously available

multiplier [28], however, the MSB multiplier requires more critical path delay while LSB

multiplier requires the same critical path delay.

In 2010, Imaña [25] proposed a new low latency parallel-in/parallel-out sequential

polynomial basis multiplier over GF(2m). It is a partially versatile multiplier as its dat-

apath can also be used for fields GF(2n) such that 1 ≤ n ≤ m. This multiplier achieves

low latency when the condition m ≥ 2kt− 1 is met, where kt is the second highest degree

of the field irreducible polynomial. This condition is specifically important as the NIST

(National Institute of Standards and Technology) recommended five binary fields verify

this condition. This multiplier requires (m2 +m)/2 AND gates, (m2 +m)/2 XOR gates,

4m MUXes and (5m− 1) registers. The latency of this multiplier is (2kt + 1) clock cycles

and the critical path delay is given by (TXdlog2me + 2TM + TA). Though this multiplier

achieves low latency, it requires more hardware and critical path delay compared to the

previously available multipliers [14,28]. Although this multiplier may achieve low latency,

due to the high area complexity it is not useful for low-hardware applications.

A low-power and high-speed bit-serial versatile multiplier [29] was proposed by Za-

kerolhosseini et al. in 2013 which is flexible with field size as well as field irreducible

polynomial. This multiplier uses tri-state buffers to achieve power reduction and it also

achieves lower area and critical path delays. This multiplier requires 4m AND gates,

2m XOR gates, (m − 1) OR gates, m inverters, m tristate buffers, and 3m registers.

The latency of this multiplier is m clock cycles and the critical path delay is given by
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TA + TX + Ttsb. This multiplier achieves low power while requiring more area and delay

complexities compared to the available multipliers [14,28].

A sequential multiplier was proposed by Ho [30] in 2013 based on the condition

m ≥ kt + 4, where kt is the second highest degree of the irreducible polynomial. This

architecture requires (6m + 18) XOR gates, (14m + 26) MUXes and (6m + 7) registers.

The critical path delay is given by the expression (2TM +4TX) with a latency of m/4 clock

cycles. This multiplier achieves reduction in latency compared to the sequential multipli-

ers [14,28,29], however, it requires high area complexity and critical path delay compared

to these sequential multipliers. Also, this multiplier requires low latency for certain field

orders including m = 233 for the NIST recommended trinomial, when compared to the

multiplier [25]. Although this multiplier has achieved low latency, due to the high area

complexity it is not useful for low-hardware applications.

Mathe et al. [16] presented an LSB-first sequential polynomial basis multiplier for

generic irreducible polynomials with a latency of m clock cycles. This architecture is

designed to take one operand in parallel and another operand serially during computation.

This multiplier requires 2m AND gates, 2m XOR gates, 2m MUXes, and 3m registers.

The latency of this multiplier is m clock cycles and the critical path delay is given by

(TA + TX). This multiplier slightly requires more hardware when compared to the LSB-

first multiplier [14], however, this multiplier achieves more regularity as it does not require

shifting for any of its registers.

Two bit-serial Montgomery multipliers [31] namely MSB-first multiplier and LSB-

first multiplier using general irreducible polynomials were presented by Hariri et al. in

2009. In this work, the authors studied the role of Montgomery factor and identified that

the appropriate factor as xm−1. The Montgomery multipliers proposed in this work are

faster than the previously available Montgomery multiplier [35]. The MSB-first multiplier

requires (2m − 1) AND gates, (2m − 1) XOR gates, and 2m registers. The latency of

this multiplier is m clock cycles and the critical path delay is given by (TA + TX). The

LSB-first multiplier requires (2m−1) AND gates, (2m−1) XOR gates, and 2m registers.

The latency of this multiplier is also m clock cycles and the critical path delay is given

by (TA + 2TX).

In 2011, Morales et al. [32] presented an MSB-first Mongomery multiplier for two
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different Montgomery factors (xm and xm−1) using various classes of irreducible polynomi-

als. This multiplier architecture is designed using a new approach where a linear feedback

shift register (LFSR) is used as the main building block. Due to the low area complexity

and high performance of the LFSR, this multiplier achieves low area and time complex-

ities. This multiplier achieves reduction in area and time complexities when irreducible

polynomials are selected as trinomials and all one polynomials, however, for general ir-

reducible polynomials the complexities of this multiplier are matched to the avaialabe

MSB-first multiplier [31]. For the case of general irreducible polynomials, this multiplier

requires (2m− 1) AND gates, (2m− 1) XOR gates, and 2m registers. The latency of this

multiplier is m clock cycles and the critical path delay is given by (TA + TX).

In 2013, Huapeng Wu presented a linear feedback shift register (LFSR) based LSB-

first bit-serial Montgomery multiplier [33]. The architecture of this multiplier is designed

employing the LFSR approach, however, the area and time complexities of this multiplier

are similar to the available LSB-first multiplier [31]. This multiplier requires (2m − 1)

AND gates, (2m − 1) XOR gates, and 2m registers. The latency of this multiplier is m

clock cycles and the critical path delay is given by (TA + 2TX).

An efficient bit-serial Montgomery multiplier [34] was presented by Huapeng Wu

in 2014 using weakly dual basis. The architecture of this multiplier is designed using a

compact and highly regular Fibonacci type LFSR. This multiplier achieves more regularity

and requires less area compared to previously available Montgomery multipliers [31–33],

however, this multiplier may require basis conversion depending on the application. This

multiplier requires m AND gates, (2m− 1) XOR gates, and 2m registers. The latency of

this multiplier is m clock cycles and the critical path delay is given by (TA+ dlog2meTX).

3.2 Review of Bit-Parallel Systolic Multipliers for Trinomials

Several bit-parallel systolic multipliers proposed in the literature for the finite field

multiplication over GF(2m) for irreducible trinomials are reviewed and the performance

of these multipliers in terms of area and time complexities is presented in Table 3.2.

In 1984, Yeh et al. [47] presented a serial-in serial-out array multiplier with two
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Table 3.2 Area and time complexities of the available bit-parallel systolic multipliers.

Design AND XOR Register Latency Critical Path

[47] 2m2 2m2 7m2 3m TA + TX

[48] 2m2 2m2 7m2 3m TA + TX

[39](i) (m+ 1)2 (m+ 1)2 4(m+ 1)2 m+ 1 TA + TX

[39](ii) (m+ 1)2 (m+ 1)(m+ 2) 5(m+ 1)2 m+ 1 TX

[40] m2 m2 +m− 1 3m2 + 2m− 2 2m− 1 TA + TX

[41] m2 m2 +ml 4m2 + 2lm m+ l + 1 TA + TX

[42] (3m2 −m)/2 m2 +m 4m2 +m m+ 1 TA + TX

[43] m2 m2 +m 3.5m2 + 3m m+ 2 TA + TX

[27] m2 m2 − 1 2m(m− 1) m TA + TX

[44] m2 m2 +m 2m2 m TA + 2TX

[45] m2 m2 +m 2m2 m/2 + 2 2TX

[46] m2 1.5m2 + 0.5m 1.5m2 + 2m− 1 m+ 2 TA + TX

l = b(m− 2)/(m− k)c+ 1.

control signals and a parallel-in parallel-out array multiplier with bidirectional data flow.

Wang et al., in 1991, presented a two-dimensional parallel-in parallel-out and a one-

dimensional serial-in serial-out systolic architectures [48]. These multipliers [47, 48] are

based on the direct unrolling of iterative algorithms and not exploited the fully inherent

parallelism. In 1998, various finite field arithmetic structures including multipliers [49]

were explored to achieve reduction in latency using semi-systolic structures. For large

values of m these semi-systolic structures are not suitable because of increased and longer

broadcast signals. Further, all these multipliers [47–49] are defined over general irreducible

polynomials and hence require large area and time complexities. Following this, many

multipliers were proposed in the literature using various classes of irreducible polynomials,

particularly trinomials, to achieve reduction in area and time complexities.

Two bit-parallel systolic multipliers [39] were presented by Lee et al. in 2001 over

all one and equally spaced polynomials where one multiplier is area-efficient while the

other is time optimal. Few properties of all one polynomials (AOP) are used in the

formulation of the algorithms of these multipliers. These two systolic multipliers are also

applicable to trinomials that come under equally spaced polynomials (ESP). The area-
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efficient multiplier architecture [39](i) requires (m+ 1)2 AND gates, (m+ 1)2 XOR gates,

and 4(m + 1)2 registers. The latency of this multiplier is (m + 1) clock cycles and the

critical path delay is given by (TA+TX). The time-efficient multiplier architecture [39](ii)

requires (m + 1)2 AND gates, (m + 1)(m + 2) XOR gates, and 5(m + 1)2 registers. The

latency of this multiplier is (m + 1) clock cycles and the critical path delay is given by

TX . The short critical path delay (TX) of this time-efficient multiplier facilitates high

throughput rates and high frequency of operation. Both of these multipliers achieve low

hardware and low latency compared to the available systolic multipliers [47,48], however,

these multipliers are suitable for very limited applications due to the scarcity of AOPs.

A trinomial based low-complexity and low-latency bit-parallel systolic multiplier [40]

was presented in 2003 by Chiou-Yng Lee. This multiplier requires low hardware compared

to the previously available multipliers [39,47,48]. Also, this multiplier achieves low latency

when compared to the multipliers [47,48], however, it requires more latency compared to

the multipliers [39]. This multiplier requires m2 AND gates, (m2 + m − 1) XOR gates,

and (3m2 + 2m− 2) registers. The latency of this multiplier is (2m− 1) clock cycles and

the critical path delay is given by (TA + TX).

In 2003, Lee et al. presented a low-latency bit-parallel systolic multiplier [41] appli-

cable for the class of trinomials xm + xk + 1 for which gcd(m,n) = 1. This multiplier is

based on a new algorithm that uses permutation polynomials. The algorithm is similar

to conventional interleaved multiplication algorithm where reduction and multiplication

are performed interleavingly. The latency of this multiplier is at least (m + 2). For

2 ≤ k ≤ dm/2e, the latency of this multiplier is m+ 3, which is lower than the latency of

the available multipliers [40, 47, 48]. This multiplier requires m2 AND gates, (m2 + ml)

XOR gates, and (4m2 + 2lm) registers. The latency of this multiplier is (m+ l+ 1) clock

cycles and the critical path delay is given by (TA + TX).

A low-complexity bit-parallel systolic Montgomery multiplier [42] using a transfor-

mation method is proposed by Lee et al. in 2005. The latency of this multiplier is lower

compared to the multipliers [40, 41, 47, 48]. This multiplier requires (3m2 − m)/2 AND

gates, (m2 + m) XOR gates, and (4m2 + m) registers. The latency of this multiplier is

(m+ 1) clock cycles and the critical path delay is given by (TA + TX).

An area-efficient bit-parallel systolic Montgomery multiplier [43] for trinomials using
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Toeplitz matrix-vector representation was presented in 2008 by Chiou-Yng Lee. This

multiplier requires m2 AND gates, (m2 + m) XOR gates, and (3.5m2 + 3m) registers.

The critical path delay is given by the expression (TA + TX) with a latency of (m +

2) clock cycles. This multiplier achieves reduction in area complexity compared to the

systolic multipliers [39,41] while requiring high area complexity compared to the systolic

multiplier [40]. Moreover, it achieves low latency compared to the systolic multipliers [40,

41] while requiring more latency compared to the multipliers [39].

A bit-level pipelined area-efficient systolic multiplier architecture [27] was presented

in 2008 by Pramod Kumar Meher, where the architecture is derived using the signal flow

graph approach [50] and applying appropriate cutset retiming techniques. This multiplier

requires m2 AND gates, (m2−1) XOR gates, and (2m2−2m) registers. The critical path

delay is given by the expression (TA+TX) with a latency of m clock cycles. This multiplier

achieves low area complexity and low latency compared to the systolic multipliers [39–43,

47,48].

A polynomial basis systolic multiplier [44] which can be extended to have concur-

rent error detection was presented by Bayat-Sarmadi et al. in 2009. The latency of this

multiplier is similar to the latency of the multiplier [27] while area is marginally higher.

The critical path delay of this multiplier is more than the previously available multipli-

ers [27, 39–43]. This multiplier requires m2 AND gates, (m2 + m) XOR gates, and 2m2

registers. The critical path delay is given by the expression (TA + 2TX) with a latency of

m clock cycles.

In 2012, Jia-feng et al. presented a low-latency systolic architecture [45], which

is derived using the signal flow graph approach applying appropriate cut-set retiming

techniques. The area required by this multiplier is similar to the multiplier [44] while

critical path delay is lower. The latency of this multiplier is lower compared to the

previously available multipliers [27,39–44]. This multiplier requires m2 AND gates, (m2 +

m) XOR gates, and 2m2 registers. The critical path delay is given by the expression 2TX

with a latency of (m/2 + 2) clock cycles.

Bayat-Sarmadi et al. [46] proposed a systolic multiplier for trinomials in 2015 based

on the Montgomery multiplication algorithm. This multiplier achieves low area complex-

ity compared to the available systolic multipliers [27, 39–45]. This multiplier requires m2
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AND gates, (1.5m2 + 0.5m) XOR gates, and (1.5m2 + 2m−1) registers. The critical path

delay is given by the expression (TA + TX) with a latency of (m+ 2) clock cycles.

3.3 Review of Digit-Serial Sequential Multipliers for Trinomials

Several digit-serial sequential multipliers proposed in the literature for the finite field

multiplication over GF(2m) for irreducible trinomials are reviewed and the performance

of these multipliers in terms of area and time complexities is presented in Table 3.3.

Table 3.3 Area and time complexities of the available digit-serial sequential multipliers.

Design AND XOR Register
Latency

(clock cycles)
Critical path delay

MSD-first [51] wm wm + 3w 2m + w n + 2 TA + (dlog2w+1
2 e)TX

LSD-first [51] wm wm + 3w − 2 3m + w − 1 n + 2 TA + (dlogw+1
2 e)TX

[52] wm wm + (w2 + w)/2 2m + w n− 1 TA + (dlogw2 e + 2)TX

[53] wm wm + (w2 + w)/2 2m + w n + 1 TA + (dlogw2 e + 2)TX

[54] mlog64 69/20mlog64 − 1/4mlog24 − 11/5 2m− 1 n + 1 TA + (1 + 3logm4 )TX

[55] wm wm + w2/2 + 3w/2− 1 2m n + 1 TA + (dlogw2 e + 2)TX

In 1998, Song et al. [51] presented two digit-level LSD (Least significant digit)-first

and MSD (most significant digit)-first serial-in parallel-out multipliers. The design of

these multipliers is based on a new approach where an array-type algorithm is combined

with a parallel algorithm to realize efficient architectures. The digit-level array-type

algorithm reduces the latency of the multiplier while the parallel structure inside each

digit-cell reduces the critical path delay as well as the switching activities. The MSD-

first multiplier requires wm AND gates, (wm+ 3w) XOR gates, and (2m+ w) registers.

The latency of this multiplier is (n + 2) clock cycles and the critical path is given by

(TA + (dlog2w+1
2 e)TX). The LSD-first multiplier requires wm AND gates, (wm+ 3w − 2)

XOR gates, and (3m+w−1) registers. The latency of this multiplier is also (n+ 2) clock

cycles and the critical path delay is given by (TA + (dlogw+1
2 e)TX). In these complexities

expressions, m represents field order, n represents number of digits, and w represents

digit size. These LSD-first and MSD-first multipliers achieve a substantial reduction in

computational delay and energy consumption, when compared to the multipliers obtained

by folding the available semi-systolic multipliers [49].

An MSD-first bit-parallel word-serial (BPWS) multiplier for GF(2233) [52] is pre-
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sented in 2005 by Tang et al., where, the field order 233 was selected as it provided

enough security and also it is one of the field orders recommended by NIST. In this multi-

plier, an 8×233 parallel multiplier is employed to generate the finite field partial products.

The proposed digit-serial multiplier requires wm AND gates, (wm + (w2 + w)/2) XOR

gates, and (2m+w) registers. The latency of this multiplier is (n−1) clock cycles and the

critical path delay is given by (TA + (dlogw2 e + 2)TX). This multiplier achieves reduction

in area and time complexities while consuming less power compared to the MSD-first

multiplier [51].

In 2007, a high-throughput digit-serial multiplier for trinomials is presented in [53]

by Meher. In this multiplier, T-flipflops are used for accumulation instead of D-flipflops

to achieve a reduction in critical path delay as well as in hardware. This design saves m

number of XOR gates and eliminates the feedback loops. Moreover, this multiplier is more

regular and modular. This digit-serial multiplier requires wm AND gates, (wm + (w2 +

w)/2) XOR gates, and (2m+ w) registers. The latency of this multiplier is (n+ 1) clock

cycles and the critical path delay is given by (TA+(dlogw2 e+2)TX). This multiplier achieves

lower area, critical path delay, and area-delay-product compared to the multipliers [51,52].

A digit-serial multiplier [54] based on (b, 2)-way Karatsuba algorithm decomposition

is proposed in 2014 by Lee et al. for achieving sub-quadratic space complexity. This

multiplier is based on Shifted Polynomial Basis (SPB), which is a variant of the polynomial

basis. In this work, authors extended the Karatsuba decomposition to generalize (b,

2)-way KA decomposition, and based on this a low-complexity digit-serial multiplier is

developed. This digit-serial multiplier requires mlog6
4 AND gates, (69/20mlog6

4−1/4mlog2
4−

11/5) XOR gates, and (2m− 1) registers. The latency of this multiplier is (n + 1) clock

cycles and the critical path delay is given by (TA + (dlogw2 e + 2)TX). This multiplier is

more regular, modular, and achieves significantly less area-delay-product compared to the

available SPB multiplier [56].

In 2017, Namin et al. presented a low-power digit-serial multiplier [55], where,

a new factoring technique is employed to minimize the switching power and logic gate

substitution is used to reduce the internal power. Moreover, logic gate substitution also

results in reduction in area complexity. This digit-serial multiplier requires wm AND

gates, (wm+w2/2+3w/2−1) XOR gates, and 2m registers. The latency of this multiplier
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is (n+ 1) clock cycles and the critical path delay is given by (TA + (dlogw2 e+ 2)TX). This

multiplier achieves reduction in area, energy, and area-energy product compared to the

multipliers [51–54,57].

In 2017, Namin et al. presented a digit-serial multiplier using redundant basis

representation. Redundant basis is also an appealing representation for field elements as

its arithmetic does not require modulo reduction operation. This multiplier is a fully serial-

in parallel-out multiplier where both the operands enter the architecture simultaneously.

Thus, this multiplier does not require preloading of operands, thereby, it saves the delay

required for preloading. This multiplier achives lower multiplication delay compared to

the related previous multipliers [58,59]. The fully serial-in paralle-out approach employed

for this multiplier can be further explored on polynomial basis also.

3.4 Conclusions

In this chapter, a survey of different architectures of finite field multipliers available

in the literature and the performance analysis of these multipliers in terms area and time

complexities are presented. The next chapter presents the design of the proposed bit-serial

sequential multipliers for general irreducible polynomials.



Chapter 4

Area-Efficient Bit-Serial Sequential Multipliers for

General Irreducible Polynomials

This chapter presents the design of bit-serial sequential multipliers for general ir-

reducible polynomials targeting domestic IoT (Internet of Things) end devices. These

multipliers include an MSB (most significant bit) first multiplier based on the proposed

modified interleaved multiplication algorithm and an MSB as well as an LSB (least signif-

icant bit) first multipliers based on the proposed modified Montgomery algorithms. The

modifications in the proposed algorithms involve employing more efficient logical rela-

tions in place of the existing relations. The analytical complexities in terms of area and

delay are obtained and also computed for m = 409. Furthermore, the proposed multipli-

ers are modeled using VHDL (Very High Speed Integrated Circuit Hardware Description

Language) and implemented using Synopsys Design Compiler employing NanGate 45nm

open cell library files. The obtained analytical and implementation results show that the

proposed multipliers are area-efficient compared to the respective multipliers available in

the literature.

4.1 Introduction

Internet of Things comprises billions of end devices attached to physical objects to

sense and transmit data. These devices should be implemented with less hardware so

as to reduce the cost, particularly, for domestic applications. Hence, implementation of
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security in these end devices also requires hardware efficient architectures. Elliptic curve

cryptography (ECC) is an efficient public key cryptosystem used for security implemen-

tation in IoT and heavily uses GF(2m) multiplications in its underlying operations. This

multiplication is the performance-critical operation in ECC and its implementation tar-

geting IoT end devices requires area-efficient architectures. Achieving area reduction for

GF(2m) multipliers is a continuous effort to meet the challenges raised from the various

evolving applications such as IoT and WSNs (wireless sensor networks). These applica-

tions in domestic environments tend to focus more on cost reduction rather than targeting

high performance, thereby requiring low hardware implementations. Though many archi-

tectural styles are available such as bit-parallel, digit-serial, bit-serial, systolic, sequential,

and parallel for the implementation of GF(2m) multiplication, it is observed that bit-

serial sequential architectures require the lowest area compared to other architectural

styles. Hence, the design of area-efficient bit-serial sequential GF(2m) multipliers is desir-

able for the security implementation in the domestic IoT end devices. Furthermore, it is

desirable for the domestic applications to have generic off-the-shelf components available

in the market since the domestic applications may have a wide variety of requirements in

terms of specifications. Hence, the design of GF(2m) multipliers using general irreducible

polynomials is also required.

Many bit-serial sequential architectures are proposed in the literature [14,16,25,28–

34] for polynomial basis GF(2m) multiplication using general irreducible polynomials to

achieve reduction in area and time complexities. In this work, firstly, we have derived a

modified interleaved multiplication algorithm based on the conventional interleaved mul-

tiplication algorithm [38] available in the literature. Subsequently, an efficient MSB-first

sequential polynomial basis multiplier, which supports the multiplication of any two ar-

bitrary finite field elements over GF(2m) for generic irreducible polynomials, is designed

based on the proposed algorithm. The area and delay complexities of this sequential

multiplier are estimated and its performance is compared with the existing sequential

multipliers [14,16,25,28–30]. Secondly, we have also derived modified Montgomery multi-

plication algorithms based on the Montgomery multiplication algorithms [31] available in

the literature. Subsequently, efficient MSB-first and LSB-first sequential polynomial ba-

sis multipliers, which support the multiplication of any two arbitrary finite field elements

over GF(2m) for generic irreducible polynomials, are designed based on the proposed algo-
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rithms. The area and delay complexities of these sequential multipliers are estimated and

the performance is compared with the existing Montgomery sequential multipliers [31–34].

It is observed that the proposed Montgomery sequential multipliers achieve reduction in

area and area-delay-product (ADP) over the existing sequential multipliers when verified

using a field of order m = 409. Further, all the proposed multipliers and some existing

multipliers are implemented using ASIC (Application specific integrated circuit) technolo-

gies and the implementation results show that the proposed sequential multipliers achieve

reduction in area and ADP over existing multipliers.

4.2 Area-Efficient Bit-Serial Sequential GF(2m) Multiplier

In this section, the design and performance analysis of the proposed bit-serial se-

quential multiplier are presented. First, we present the mathematical formulations for

the proposed modified interleaved GF(2m) multiplication algorithm and its realization

using the bit-serial architecture. Following this, analytical comparisons of area and time

complexities and implementation results are presented.

4.2.1 Design

Mathematical Formulation

Let A(x) and B(x) be the field GF(2m) elements and T (x) be the field irreducible

polynomial. Let C(x) be the product of the elements A(x) and B(x) given by

C(x) =
(
A(x)×B(x)

)
mod T (x) (4.1)

Consider the expression for C(x) presented in Eq. 4.1 for developing the proposed formu-

lations, we have

C(x) =
(
A(x)×B(x)

)
mod T (x)

=
(
A(x) × (bm−1x

m−1 + bm−2x
m−2 + ........ + b1x + b0)

)
mod T (x)

=
(
A(x)× ((......(((bm−1x+ bm−2)x+ bm−3)x+ bm−4)x

+ ........+ b1)x+ b0)
)

mod T (x)
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=
(
(.....(((bm−1A(x)x+ bm−2A(x))x+ bm−3A(x))x+ bm−4A(x))x

+ ......+ b1A(x))x+ b0A(x)
)

mod T (x) (4.2)

Application of mod operation on the overall right side expression in Eq. 4.2 is re-

placed by interleaving it throughout the equation as

C(x) =
(
......

(((
(bm−1A(x))x mod T (x) + bm−2A(x)

)
x mod T (x)

+ bm−3A(x)
)
x mod T (x) + bm−4A(x)

)
x mod T (x)

+ ......+ b1A(x)
)
x mod T (x) + b0A(x) (4.3)

The right side expression of Eq. 4.3 is evaluated in m iterations as follows. Beginning

from the leftmost product term bm−1A, modulo reduction is needed to be performed

a total of (m − 1) times in the entire evaluation. In each iteration, the reduction is

applied on the expression of the form K(l−1)(x) × x, where K(l−1)(x) = k
(l−1)
m−1 x

m−1 +

k
(l−1)
m−2 x

m−2 + ........ + k
(l−1)
1 x + k

(l−1)
0 is considered to be a partial-product polynomial of

degree (m − 1) which is obtained from the (l − 1)th iteration. Furthermore, the partial-

product K(m)(x) that is obtained from the mth iteration is the final product required (i.e.

C(x) = K(m)(x)). During the first iteration, the partial-product to be used is K(0)(x) = 0.

This partial-product is accumulated with the leftmost product term bm−1A(x). Hence, the

new partial-product term to be used for the second iteration is K(1)(x) = bm−1A(x), and

now (K(1)(x)×x) mod T (x) is evaluated by first finding product expression (K(1)(x)×x).

Then, this is to be further modulo reduced using T (x). This reduction using T (x) requires

consideration of the property of T (x) that T (x) = 0, where x is a root of T (x). i. e.

xm = tm−1x
m−1 + tm−2x

m−2 + .......+ t1x+ 1 (4.4)

We have, K(1)(x)× x = k
(1)
m−1x

m + k
(1)
m−2x

m−1 + ........ + k
(1)
1 x2 + k

(1)
0 x. Modulo reduction

of this mth degree polynomial is performed using Eq. 4.4 as

(K(1)(x)× x) mod R(x) = k
(1)
m−1(tm−1x

m−1 + tm−2x
m−2 + ....

...+ t1x+ 1) + k
(1)
m−2x

m−1 + ........+ k
(1)
1 x2 + k

(1)
0 x

= (k
(1)
m−1tm−1 + k

(1)
m−2)x

m−1 + (k
(1)
m−1tm−2

+ k
(1)
m−3)x

m−2 + .....+ (k
(1)
m−1t1 + k

(1)
0 )x+ k

(1)
m−1 (4.5)
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Thus, Eq. 4.5 denotes an (m−1)th degree polynomial obtained from the modulo reduction

step performed in the second iteration. The right side expression in Eq. 4.5 is added to

the corresponding product term bm−2A. The result of this addition is represented by

K(2)(x) to be used in next iteration. Hence, in general, for each of the subsequent (m−2)

iterations, the partial products can be obtained as

K(l)(x) = K(l−1)(x) + bm−lA(x) (4.6)

where l ≤ m is the iteration count. Applying the similar simplification steps as in Eqs. 4.4,

4.5, and 4.6 in the remaining (m− 2) iterations, the interleaved modular reduction mul-

tiplication suggested in Eq. 4.3 is evaluated as C(x) = K(m). The multiplication and

addition operations between coefficients of the polynomials in Eqs. 4.6, 4.5 and 4.3 can

be mapped to boolean algebra AND and boolean algebra XOR operations, respectively,

and can be written as

K(l)(x) = K(l−1)(x)⊕
(
bm−lA(x)

)
(4.7)

(K(1)(x)× x) mod T (x) =
(
(k

(1)
m−1 ∧ tm−1)⊕ k

(1)
m−2
)
xm−1 +

(
(k

(1)
m−1 ∧ tm−2)

⊕ k(1)m−3
)
xm−2 + .....+

(
(k

(1)
m−1 ∧ t1)⊕ k

(1)
0

)
x+ k

(1)
m−1 (4.8)

C(x) =
(
....
(((

(bm−1A(x))x mod T (x)⊕ bm−2A(x)
)

x mod T (x)⊕ bm−3A(x)
)
x mod T (x)⊕ bm−4A(x)

)
x mod T (x)⊕ .....

.....⊕ b1A(x)
)
x mod T (x)⊕ b0A(x) (4.9)

where ∧ and ⊕ represent logical AND and XOR operations, respectively, and bm−lA

represents that each bit of operand A is AND operated with the bit bm−l. This logical

operations mapping is possible from the definitions of arithmetic operations of the base

field GF(2). These logical operations mapped equations are further evaluated in view of

performance gain in hardware implementation as explained below. Consider the boolean

equation presented in Eq. 4.7, which can be rewritten as

K(l)(x) = K(l−1)(x) ⊕
(
bm−lA(x)

)
=
(
K(l−1) ∧ (bm−lA)

)
∨
(
K(l−1) ∧ (bm−lA)

)
=
(
K(l−1) ∧ (bm−lA)

)
∨
(
K(l−1) ∧ (bm−lA)

)
= K(l−1) � (bm−lA) (4.10)
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where ∨ and � represent logical OR and XNOR operations, respectively, and bm−lA(
logical NOT of (bm−lA)

)
represents that each bit of operand A is NAND operated with

the bit bm−l. Similarly, Eqs. 4.8 and 4.9 can be equivalently rewritten using logical NAND

and XNOR operators as

(K(1)(x)× x) mod T (x) =
(
(k

(1)
m−1∧tm−1)� k

(1)
m−2
)
xm−1 +

(
(k

(1)
m−1∧tm−2)

� k(1)m−3
)
xm−2 + .....+

(
(k

(1)
m−1∧t1)� k

(1)
0

)
x+ k

(1)
m−1 (4.11)

C(x) =
(
....
((

(bm−1Ax mod T (x) � bm−2A)x mod T (x)

� bm−3A
)
x mod T (x) � bm−4A

)
x mod T (x)� .......� b1A

)
x mod T (x) � b0A (4.12)

where ∧ represents logical NAND operation.

Proposed Modified Interleaved Modular Reduction Multiplication Algorithm

The proposed algorithm to compute polynomial basis multiplication is presented in

algorithm 4.1. This algorithm is developed to reduce the hardware required for the imple-

mentation of polynomial basis multiplication. In the algorithm formulation, Eq. 4.10 is

used along with Eqs. 4.11 and 4.12 to compute the desired final product in m iterations,

where m is the order of field GF(2m) in which multiplication is being computed. The

three Eqs. 4.10, 4.11, and 4.12 involve logical NAND and logical XNOR operations which

prompts efficient hardware realization than that of conventional equations based on logi-

cal AND and logical XOR operations. Furthermore, the algorithm is formulated such that

step 2 and step 3 involve a similar type of computations thereby their implementation

needs similar hardware. The computations in the algorithm can be described as follows.

Let A and B be two arbitrary field GF(2m) elements while T be an arbitrary field irre-

ducible polynomial all represented as m-bit vectors. Assume C is an m-bit variable that

holds the multiplication result at the end of the mth loop iteration. Step 1 of the algorithm

indicates a total of m iterations in the computation of AB mod T. The operations to be

performed in each iteration are modulo reduction followed by accumulation.

In lth iteration, modulo reduction is applied to the K(l−1) resulted from (l − 1)th

iteration. However, for the first iteration K(0) = 0 is considered which is suggested by
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the initialization step in the algorithm. The modular reduction is interleaved through-

out the computation as in step 2 of the algorithm. The accumulation that adds all the

partial-products, from each iteration, to finally give the desired multiplication result is

described by step 3. In each iteration, one bit of B is considered serially starting from

most-significant-bit.

Algorithm 4.1: Modified interleaved modular reduction multiplication algorithm

Input: A=(am−1, am−2, . . . , a1, a0), B=(bm−1, bm−2, . . . , b1, b0) both w.r.t. polynomial ba-

sis, and T =(tm−1, tm−2, . . . , t1, 1)

Output: C = (A × B) mod T = (cm−1, cm−2, . . . , c1, c0) also w.r.t. polynomial basis

Initialization : K(0) ← 0;

1: for l = 1 to m do

2: K(l−1) ← (k
(l−1)
m−1 T ) � xK(l−1); . xK(l−1): Left shifting K(l−1)

3: K(l) ← K(l−1) � (bm−lA); . K(l) = (k
(l)
m−1, k

(l)
m−2, ......, k

(l)
1 , k

(l)
0 )

4: end for

5: return K(m)

The term (k
(l−1)
m−1 T ) in step 2 represents the NAND operation of the bit k

(l−1)
m−1 with

each bit of T . Similarly, step 3 involves the NAND operation of the bit bm−l of B with

each bit of A. The term xK(l−1) indicates the usual multiplication of K(l−1)(x) with x.

Since K(l−1) is an m-bit variable, xK(l−1) is realized by performing a left shift operation

on K(l−1) by one bit. Thus, the proposed algorithm performs the modulo reduction step

and accumulation step in each iteration and finally computes the desired multiplication

result at the end of the mth iteration.

Proposed Multiplier Architecture

In this section, the hardware realization of the proposed modified interleaved mod-

ular reduction multiplication algorithm is presented. The proposed serial-in parallel-out

sequential multiplier architecture is shown in Fig. 4.1. The architecture comprises two
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Figure 4.1 Top-level block diagram of the proposed bit-serial sequential multiplier.

H blocks, two registers (Reg1, Reg2), and a shift left (SL) block. The architecture takes

a single-bit input (bm− l) for every clock cycle and generates an m-bit product (C) in

parallel after m clock cycles. In addition, the architecture also takes an m-bit input (T )

to accommodate selected irreducible polynomial. Assume that the field polynomials to

be multiplied are A and B, and field irreducible polynomial is T . All these three poly-

nomials A, B, and T, using their vector representations, are treated as m-bit operands

for the multiplier architecture. Operand A is preloaded into the m-bit register, Reg1,

and it is kept constant throughout the multiplication operation. The operand B enters

the architecture serially (bm− l) with one bit per cycle starting from the most significant

bit. The m-bit operand T should be available throughout the multiplication operation.

Since the field multiplication involves modulo reduction and accumulation steps, these

operations are realized using H blocks in the proposed architecture. Step 2 of the algo-

rithm is realized in hardware using upper H block which performs the modulo reduction

of (K(l−1)(x) × x) with the irreducible polynomial T (x). Step 3 of the algorithm refers
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Figure 4.2 Gate level schematic of H block.

accumulation of partial products and it is realized by lower H block.

Figure 4.2 shows the gate level schematic of the H block. The H block contains

two levels of logic gates. The first level of logic gates is constructed with an array of m

NAND gates to implement the NAND operations suggested in step 2 and step 3 of the

algorithm. The second level of logic gates is constructed with an array of m XNOR gates

to implement the XNOR operations suggested in step 2 and step 3 of the algorithm. The

m-bit partial product, K(l), generated during lth clock cycle is given as input for the m-bit

register Reg2 which is initialized to zero. The term xK(l−1) in Step 2 of the algorithm,

which is a simple left shift of K(l−1), is realized in SL block using hardware-free routing.

The proposed multiplier takes m clock cycles to complete one multiplication operation.

In each clock cycle, this multiplier performs modulo reduction of the previous partial-

product followed by accumulation. The partial product generated during the mth clock

cycle is the desired result of the field multiplication and is available at Reg2 after the mth

clock cycle. In addition, it is also noted that the two H blocks, being identical, improve

the regularity of the multiplier architecture.
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4.2.2 Analytical Results

In this section, the area and time complexities of the proposed sequential multiplier

are compared with that of similar multipliers available in the literature. In Table 4.1,

the analytical expressions for area and time complexities of the proposed multiplier to-

gether with that of available multipliers [14, 16, 25, 28–30] are presented. The analytical

expressions presented in Table. 4.1 are evaluated for m = 409 using the area and time

complexity estimations of logic gates from NanGate 45nm technology library files and

presented in Table 4.2.

Table 4.1 presents the analytical comparison of area complexity, latency, and critical

path delay of the proposed multiplier with the multipliers considered for comparison. The

area required for the proposed multiplier is computed in terms of the number of AND

gates, NAND gates, XOR/XNOR gates, multiplexers, and registers. We also present the

area complexity for the other multipliers in a similar way to compare with that of the

proposed multiplier. The expressions for area complexities of the proposed multiplier are

derived using Figs. 4.1 and 4.2. Figure 4.1 contains two identical H blocks along with

two m-bit registers. Each H block (See Fig. 4.2) contains an array of m-NAND gates

and an array of m-XNOR gates. Hence, the proposed multiplier architecture requires 2m

NAND gates, 2m XNOR gates, and 2m registers. Note that m represents the order of

the GF(2m). The time complexities of the proposed architecture and other multipliers

considered for comparison are computed by assuming TA, TX , TNA, TXN , TFF , TM and

Ttsb denotes the delays of 2-input AND gate, 2-input XOR gate, 2-input NAND gate,

2-input XNOR gate, D flip-flop, 2:1 1-bit multiplexer, and tristate buffer, respectively.

Table 4.1 Area and time complexities comparison for GF(2m).

Design AND NAND XOR/XNOR* MUX Register Latency Critical path

[28] 2m 0 2m− 1 0 4m + 2 m + 1 TA + TX

[14] 2m 0 2m− 1 m 3m m TA + TX

[25] (m2+m)/2 0 (m2 + m)/2 4m 5m− 1 2ka
t + 1 TXdlog2me+2TM +TA

[29] 4m 0 2m mb+mc+md 3m m TA + TX + Ttsb

[30] 0 0 6m + 18 14m + 26 6m + 7 m/4 2TM + 4TX

[16] 2m 0 2m 2m 3m m TA + TX

Proposed 0 2m 2m 0 2m m TNA + 2TXN

∗XOR and XNOR have the same area and time complexities, athe second highest degree of the

irreducible polynomial, b OR gates, cinverters, dtristate buffers
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The critical path and latency of the proposed multiplier computed from the proposed

architecture are TNA+2TXN andm clock cycles, respectively. It is observed from Table. 4.1

that the multipliers [14, 16, 28, 29] require less critical path delay at the expense of more

number of registers compared to the proposed multiplier. It may also be observed that

the multipliers [25,30] require less latency compared to the proposed multiplier, however,

they require more hardware and critical path delay. In addition, it is also noted that the

proposed multiplier requires the lowest number of registers, which also results in less area

requirement.

The analytical comparisons presented in Table 4.1 can be better understood by

evaluating them for a specific value of field order along with a specific technology-based

area and time complexity estimations of gates. The field order, m, can be selected as

409 which is one of the field sizes recommended by National Institute of Standards and

Technology (NIST) for Elliptic curve cryptographic applications. For the estimation of

area and time complexities of the gates, NanGate 45nm technology-based open cell library

statistics [46,60] is adopted as follows: The area complexities in terms of the NAND gate

equivalents (GE) for a NOT gate, a 2-input AND gate, a 2-input XOR gate, a 2-input

XNOR gate, a 2-1 MUX (Multiplexer), and a D flip-flop with set/reset capabilities are

taken as 0.5, 1.4, 2, 2, 1.4, and 5.7, respectively. The delays of a 2-input NAND gate, a

2-input AND gate, and a 2-input XOR gate, a 2-input XNOR gate, a 2-1 MUX, a tristate

buffer, and a D flip-flop with set/reset are 0.015, 0.025, 0.035, 0.035, 0.025, 0.020and 0.060

nanoseconds, respectively. It is observed that the area required for a 2-input NAND gate

based on Synopsys design compiler synthesis using 45nm NanGate open cell libraries is

0.8µm2.

Table 4.2 presents the comparison of estimated area (µm2), delay, and area-delay-

product (ADP) of the proposed multiplier with that of the same multipliers considered

for comparison in Table 4.1. It is observed that the proposed multiplier requires the

lowest area. It is clear from Table. 4.2 (% reduction in area column) that the proposed

multiplier achieves area efficiency of 41%, 31%, 97%, 39%, 73%, and 34% when compared

with multipliers [28], [14], [25], [29], [30], [16], respectively. It may be noted that multi-

pliers [28], [14], [29], [16] have lower critical path, and multipliers [28], [14], [29], [30], [16]

take less delay compared to the proposed multiplier. However, area-delay-product (ADP)
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Table 4.2 Comparison of area, delay, and area-delay-product estimations for GF(2409).

Design
Critical

path (ns)

Latency

(clock cycles)

Delay

(ns)
Area (µm2) ADP (×106)

% reduction

in Area

% reduction

in ADP

[28] 0.060 410 24.60 9692 0.23 41 17

[14] 0.060 409 24.54 8276 0.20 31 5

[25] 0.390 175 68.25 239210 16.3 97 99

[29] 0.080 409 32.7 9390 0.30 39 36

[30] 0.190 103 19.57 21619 0.42 73 54

[16] 0.060 409 24.54 8736 0.21 34 9

Proposed 0.085 409 34.8 5693 0.19 – –

parameter is the balanced parameter for overall performance comparison of various ar-

chitectures rather than area and delay individually. The proposed multiplier achieves the

best area-delay-product compared to the multipliers considered for comparison. It is evi-

dent from Table 4.2 (% reduction in ADP column) that the proposed multiplier achieves

area-delay efficiency of 17%, 5%, 99%, 36%, 54%, and 9% when compared with multi-

pliers [28], [14], [25], [29], [30], [16], respectively. Hence, it is clear from the estimation

values presented in Table. 4.2 that the proposed multiplier is area and area-delay-product

efficient.

4.2.3 Implementation Results

It is observed from Table. 4.2 that the multipliers [14,16] require less area compared

to the other multipliers considered for comparison. Hence, the proposed multiplier and the

two multipliers [14,16] are modeled using VHDL for GF(2409). The RTL (Register Transfer

Level) designs are simulated using Vivado Simulator to verify the functionality. The

netlists of these models are synthesized using Synopsys Design Compiler tool employing

NanGate 45nm open cell libraries [60] to obtain the area and time complexities. The area

Table 4.3 Comparison of ASIC implementation results for GF(2409).

Design
Multiplier

area (µm2)

Critical path

delay (ns)

Multiplication

delay (ns)

Area × Delay

(µm2 × ns)

% reduction

in Area

% reduction in

ADP

[14] 9687 0.20 82 794334 28 3

[16] 10213 0.20 82 837466 31 8

Proposed 6971 0.27 110 766810 – –
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and time complexities obtained for all the three multipliers are tabulated in Table 4.3.

It is observed from the ASIC implementation results that the proposed multiplier

achieves 28% hardware efficiency and 3% area-delay-product improvement compared to

the best available multiplier [14]. It may also be observed from implementation results

that the proposed multiplier implementation achieves 31% reduction in area complexity

and 8% reduction in area-delay-product compared to the sequential multiplier [16]. Hence,

the ASIC implementation results confirm that the proposed multiplier achieves better area

as well as area-delay-product complexities.

4.3 Low-Complexity Bit-Serial Sequential Montgomery GF(2m)

Multipliers

In this section, the design and performance analysis of the proposed Montgomery

bit-serial sequential multipliers are presented. First, we present the mathematical formu-

lations for the proposed MSB-first and LSB-first modified GF(2m) Montgomery multipli-

cation algorithms and the realization of these algorithms using the bit-serial architectures.

Following this, analytical comparisons of area and time complexities and implementation

results are also presented.

4.3.1 Design

Let β(x) and γ(x) are two GF(2m) elements to be multiplied, and let φ(x) =

β(x)γ(x) mod T (x) be the product. However, multiplication using Montgomery tech-

nique requires the elements converted to be Montgomery residues. Let A(x) and B(x) be

Montgomery residues of the elements β(x) and γ(x), respectively, given by

A(x) = β(x)r(x) mod T (x) =
m−1∑
i=0

aix
i (4.13)

and

B(x) = γ(x)r(x) mod T (x) =
m−1∑
i=0

bix
i (4.14)
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where, r(x) is a fixed field element called Montgomery factor that satisfies the relation

gcd(T (x), r(x)) = 1. The Montgomery multiplication can be defined as

C(x) = A(x)B(x)r−1(x) mod T (x) (4.15)

Algorithm 4.2: Montgomery multiplication in GF(2m)

Input: A,B, r, T (x), T ′(x)

Output: C = ABr−1 mod T (x)

1: q := AB

2: u := qT ′(x) mod r

3: C := (q + uT (x))/r

where, r−1(x) is the inverse of r(x) in GF(2m) and C(x) is the Montgomery residue of

φ(x). The conventional Montgomery algorithm that computes the Montgomery product

C given in Eq. 4.15 is presented in algorithm 4.2 [35]. In this algorithm, r−1(x) and

T ′(x) are two polynomials such that r(x)r−1(x) + T (x)T ′(x) = 1. This work [35] employs

xm as the Montgomery factor and also presented an LSB-first bit-serial multiplication

algorithm. However, the work [31] analyzed the role of Montgomery factor and found out

that xm−1 gives time-efficient bit-serial architectures for GF(2m) over general irreducible

polynomials. Hence, we consider xm−1 as the selected Montgomery factor as it results in

more efficient architectures than other factors.

Consider the relation T (x) = 0, where x is the root of irreducible polynomial T (x),

which gives that

T (x) = xm + tm−1x
m−1 + tm−2x

m−2 + .....+ t1x+ 1 = 0

It can be rewritten as

xm + tm−1x
m−1 + tm−2x

m−2 + .....+ t1x+ 1 = 0 (4.16)

Equation 4.16 can be equivalently rewritten as

xm + tm−1x
m−1 + tm−2x

m−2 + .....+ t1x = 1 (4.17)

Multipliying both sides of Eq. 4.17 with α−1 gives the relation,

x−1 mod T (x) = xm−1 + tm−1x
m−2 + tm−2x

m−3 + .....+ t1 (4.18)
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MSB-first Montgomery Multiplication

Formulations

We have the Montgomery multiplication over GF(2m) given in Eq. 4.15 as

C = ABr−1 mod T (x)

Using Eq. 4.14 and the selected Montgomery factor, r = xm−1, it can be written as,

C = A
m−1∑
i=0

bix
ix−(m−1) mod T (x)

= A
m−1∑
i=0

bix
(i−(m−1)) mod T (x)

=
(
Abm−1 + Abm−2x

−1 + Abm−3x
−2 + ....+ Ab1x

−(m−2) + Ab0x
−(m−1)) mod T (x)

=
(
bm−1A+ bm−2Ax

−1 + bm−3Ax
−2 + ....+ b1Ax

−(m−2) + b0Ax
−(m−1)) mod T (x)

(4.19)

The computation of Eq. 4.19 can be performed by defining a recursive relation, A(i) =

A(i−1)x−1 mod T (x), where A(i) is a reduced form of Ax−i, and also A(0) = A. The ex-

pression for A(i−1) can be written as

A(i−1)(x) = a
(i−1)
m−1 x

m−1 + a
(i−1)
m−2 x

m−2 + .....+ a
(i−1)
1 x+ a

(i−1)
0 (4.20)

Now, the next recursive form A(i) can be obtained using A(i−1) as follows,

A(i) =
(
a
(i−1)
m−1 x

m−1 + a
(i−1)
m−2 x

m−2 + .....+ a
(i−1)
1 x+ a

(i−1)
0

)
x−1 mod T (x)

=
(
a
(i−1)
m−1 x

m−2 + a
(i−1)
m−2 x

m−3 + .....+ a
(i−1)
1 + a

(i−1)
0 x−1

)
mod T (x) (4.21)

Using Eq. 4.18, Eq. 4.21 can be rewritten as

A(i) =

(
a
(i−1)
m−1 x

m−2 + a
(i−1)
m−2 x

m−3 + ...........+ a
(i−1)
1

+ a
(i−1)
0

(
xm−1 + tm−1x

m−2 + tm−2x
m−3 + .....+ t1

))
(4.22)

Following Eq. 4.22, the computation of A(i) can be performed using the relations as follows,

a
(i)
m−1 = a

(i−1)
0

a
(i)
k = a

(i−1)
k+1 + a

(i−1)
0 tk+1, where, 0 ≤ k ≤ m− 2 (4.23)
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Now, the computation of Montgomery product, C, can be performed using Eq. 4.19 and

Eq. 4.23, and using the following recursive relation as

C(i) = C(i−1) + bm−iA
(i−1), where, 1 ≤ i ≤ m, and C(0) = 0 (4.24)

The computation of C using the recursive relation in Eq. 4.24 can be performed in m

iterations as follows. During the ith iteration, the computation of the partial product,

C(i), is performed by accumulating the previous partial product, C(i−1), which is gener-

ated during the (i − 1)th iteration, to the present product term bm−iA
(i−1). The prod-

uct term bm−iA
(i−1) denotes that each bit of A(i−1) is multiplied with the bit bm−i i.e.,

bm−iA
(i−1) = (bm−ia

(i−1)
m−1 , bm−ia

(i−1)
m−2 , ...., bm−ia

(i−1)
1 , bm−ia

(i−1)
0 ). The partial product C(m)

generated during the mth iteration is the required Montgomery product, C. The hard-

ware realization of computation in Eq. 4.24 requires transformation of usual arithmetic

operations into logical operations using the definitions of finite field GF(2m) arithmetic.

In the base field GF(2) of GF(2m), addition is realized using the XOR operation and

multiplication is realized using the AND operation. Based on this fact, the computation

in Eq. 4.24 can be rewritten as,

C(i) = C(i−1) ⊕ (bm−i ∧ A(i−1)) (4.25)

where, ⊕ represents the logical XOR operator, and bm−i ∧ A(i−1) denotes that each bit

of A(i−1) is performed logical AND operation with the bit bm−i i.e., bm−i ∧ A(i−1) =

(bm−i ∧ a(i−1)m−1 , bm−i ∧ a
(i−1)
m−2 , ...., bm−i ∧ a

(i−1)
1 , bm−i ∧ a(i−1)0 ), where, ∧ represents logical

AND operator. Further modification of Eq. 4.25, with the view that it results in more

efficient hardware realization, can be performed as follows.

C(i) = C(i−1) ⊕ (bm−i ∧ A(i−1))

=
(
C(i−1) ∧ (bm−i ∧ A(i−1))

)
∨
(
C(i−1) ∧ (bm−i ∧ A(i−1))

)
=
(
C(i−1) ∧ (bm−i ∧ A(i−1))

)
∨
(
C(i−1) ∧ (bm−i ∧ A(i−1))

)
= C(i−1) � (bm−i ∧ A(i−1)) (4.26)

where, � and ∨ represent the logical XNOR and logical OR operators, respectively. The

term bm−i ∧ A(i−1) denotes that each bit of A(i−1) is performed logical NAND operation

with the bit bm−i i.e., bm−i ∧ A(i−1) = (bm−i∧a(i−1)m−1 , bm−i∧a
(i−1)
m−2 , ......., bm−i∧a

(i−1)
1 , bm−i∧a(i−1)0 ),
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where, ∧ represents logical NAND operator. Similarly, Eq. 4.23 can be rewritten employ-

ing these efficient logical relations as,

a
(i)
m−1 = a

(i−1)
0

a
(i)
k = a

(i−1)
k+1 � (a

(i−1)
0 ∧tk+1), where, 0 ≤ k ≤ m− 2 (4.27)

Algorithm

The computation of the Montgomery product C using the Eq. 4.26 and Eq. 4.27 is

described in algorithm 4.3.

Algorithm 4.3: Modified MSB-first Montgomery multiplication in GF(2m)

Input: A=(am−1, am−2, . . . , a1, a0), B=(bm−1, bm−2, . . . , b1, b0) both w.r.t. polynomial ba-

sis, and T’ =(1, tm−1, tm−2, . . . , t1).

Output: C = ABx−(m−1) mod T (x) = (cm−1, cm−2, . . . , c1, c0) also w.r.t. polynomial

basis

Initialization : A(0) ← A, C(0) ← 0;

1: for i = 1 to m do

2: C(i) ← C(i−1) � (bm−i ∧ A(i−1));

3: A(i) ← A(i−1)x−1 � (a
(i−1)
0 ∧ T ′); . A(i−1)x−1: Right shifting A(i−1) by 1-bit

4: end for

5: return C(m)

Let A and B be the two Montgomery residues to be multiplied, and T ′ be an m-bit

element defined to be T ′ = (1, tm−1, tm−2, . . . , t1) using the irreducible polynomial T. Let

the partial product C(i) and the reduced term A(i) be initialized for i = 0 as C(0) = 0

and A(0) = A, respectively. The computation of the Montgomery product C is performed

in m iterations, which is described in Step 1. In each of the ith iteration, one bit of

the operand B, bm−i, is involved in computation. In Step 2, the partial product, C(i), is

computed during the ith iteration using the previous partial product, C(i−1), and reduced

term A(i−1) generated during the (i − 1)th iteration. This step of the algorithm is based
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Figure 4.3 Top-level block diagram of the proposed MSB-first bit-serial sequential multiplier.

on Eq. 4.26. In Step 3 of the algorithm, the reduced term A(i) is computed during the ith

iteration using the previous reduced term A(i−1) generated during the (i− 1)th iteration.

This step of the algorithm is based on Eq. 4.27. During the mth iteration, the partial

product C(m) is computed which is the required Montgomery product, C.

Architecture

The hardware realization of the proposed MSB-first algorithm (algorithm 4.3) is

presented in this section. The proposed architecture, shown in Fig. 4.3, comprises of

two lower blocks G and H whose detailed architectures are presented in Fig. 4.4 and

Fig. 4.5, respectively. In addition to these two lower blocks, the architecture also includes

two m-bit registers and an SR block. The architecture requires an m-bit input, T ′, a

single bit input, bm−i, one of the operands, A, to be preloaded into Reg1, and then m

clock cycles in order to generate the required m-bit multiplication product, C. As Step

1 of the algorithm indicates that it requires m iterations to compute the product C, the

proposed bit-serial architecture realizes this step requiring m clock cycles where in each

clock cycle the iterative computations presented in Step 2 and Step 3 are processed. The

computation suggested by Step 3 of the algorithm is realized using the G block, SR block,
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Figure 4.4 Gate level architecture of G block.

and the register Reg1. The G block has a feedback path through the register Reg1.

During the ith clock cycle, the G block generates the reduced term, A(i), using its inputs

A(i−1)x−1, a
(i−1)
0 , and T ′. The term A(i−1)x−1 is obtained from A(i−1) using the SR block.

The SR block, which shifts the input right by a 1-bit position, simply routes the input

without requiring any hardware. The computations suggested by Step 2 of the algorithm

is realized using the H block and the register Reg2. The H block has a feedback path

through the register Reg2. During the ith clock cycle, the H block generates the partial

product, C(i), using its inputs C(i−1), bm−i, and A(i−1). Furthermore, during the mth clock

cycle the H block generates the partial product C(m) which is available at the output after

this clock cycle.

The detailed architectures of the two lower blocks G and H are presented in Fig. 4.4

and Fig. 4.5, respectively. The G block realizes the computation of the expression

A(i−1)x−1 � (a
(i−1)
0 ∧ T ′) using two levels of logic gates (A(i−1)x−1 is realized using SR

block). The first level is realized using an array of (m− 1) NAND gates while the second

level requires an array of (m−1) XNOR gates. The input i is applied to all NAND gates,

and also it is routed directly to the output, I3. The H block realizes the computation

of the expression C(i−1) � (bm−i ∧ A(i−1)) using two levels of logic gates. The first level
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Figure 4.5 Gate level architecture of H block.

requires an array of m NAND gates while the second level requires an array of m XNOR

gates.

LSB-first Montgomery Multiplication

Formulations

The formulations for the least significant bit (LSB) first multiplication approach can

be developed by considering Eq. 4.19, and then rewriting it using Horner’s rule as

C =
(
bm−1A+ bm−2Ax

−1 + bm−3Ax
−2 + ....+ b1Ax

−(m−2) + b0Ax
−(m−1)) mod T (x)

=
(
(.....((b0Ax

−1 + b1A)x−1 + b2A)x−1 + .....+ bm−2A)x−1 + bm−1A
)

mod T (x)

(4.28)

The computation of Eq. 4.28 can be performed using a recursive relation defined as

C(i) = C(i−1)x−1 mod T (x) + bi−1A (4.29)

where, 1 ≤ i ≤ m, and C(0) = 0 and C(m) = C. Computation of C(i) in Eq. 4.29 requires

the computation of the expression C(i−1)x−1 mod T (x). Evaluating this expression results
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in an (m − 1)th degree polynomial which can be denoted with C
(i−1)
α−1 . It follows that

rewriting Eq. 4.29 as,

C(i) = C
(i−1)
x−1 + bi−1A (4.30)

where C
(i−1)
x−1 can be obtained as follows.

C
(i−1)
x−1 = C(i−1)x−1 mod T (x)

= (C
(i−1)
m−1 x

m−1 + C
(i−1)
m−2 x

m−2 + .....+ C
(i−1)
1 x+ C

(i−1)
0 )x−1 mod T (x)

= C
(i−1)
m−1 x

m−2 + C
(i−1)
m−2 x

m−3 + .....+ C
(i−1)
1 + C

(i−1)
0 x−1 mod T (x)

(4.31)

Using Eq. 4.18, substitute the expression for x−1 mod T (x) in Eq. 4.31,

C
(i−1)
x−1 = C

(i−1)
m−1 x

m−2 + C
(i−1)
m−2 x

m−3 + .....+ C
(i−1)
1 + C

(i−1)
0 (xm−1

+ tm−1x
m−2 + tm−2x

m−3 + .....+ t1)

= C
(i−1)
0 xm−1 + (C

(i−1)
m−1 + C

(i−1)
0 tm−1)x

m−2 + (C
(i−1)
m−2

+ C
(i−1)
0 tm−2)x

m−3 + .....+ (C
(i−1)
1 + C

(i−1)
0 t1) (4.32)

Based on the fact that addition and multiplication operations in GF(2) can be realized

using logical XOR and logical AND operations, respectively, Eq. 4.30 and Eq. 4.32 can

be rewritten as

C(i) = C
(i−1)
x−1 ⊕ (bi−1 ∧ A) (4.33)

C
(i−1)
x−1 = C

(i−1)
0 xm−1 + (C

(i−1)
m−1 ⊕ (C

(i−1)
0 ∧ tm−1))xm−2 + (C

(i−1)
m−2

⊕ (C
(i−1)
0 ∧ tm−2))xm−3 + .....+ (C

(i−1)
1 ⊕ (C

(i−1)
0 ∧ t1)) (4.34)

The term (bi−1 ∧ A) represents that each bit of A is AND operated with the bit bi−1.

Further modification of Eq. 4.33, with the view that it results in more efficient hardware

realization, can be performed as follows.

C(i) = C
(i−1)
x−1 ⊕ (bi−1 ∧ A)

= (C
(i−1)
x−1 ∧ (bi−1 ∧ A)) ∨ (C

(i−1)
x−1 ∧ (bi−1 ∧ A))

= (C
(i−1)
x−1 ∧ (bi−1 ∧ A)) ∨ (C

(i−1)
x−1 ∧ (bi−1 ∧ A))

= C
(i−1)
x−1 � (bi−1 ∧ A) (4.35)
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Similarly, Eq. 4.34 can also be rewritten as

C
(i−1)
x−1 = C

(i−1)
0 xm−1 + (C

(i−1)
m−1 � (C

(i−1)
0 ∧ tm−1))xm−2 + (C

(i−1)
m−2

� (C
(i−1)
0 ∧ tm−2))xm−3 + .....+ (C

(i−1)
1 � (C

(i−1)
0 ∧ t1)) (4.36)

Algorithm

The computation of the Montgomery product C using Eq. 4.35 and Eq. 4.36 is de-

scribed in algorithm 4.4.

Algorithm 4.4: Modified LSB-first Montgomery multiplication in GF(2m)

Input: A=(am−1, am−2, . . . , a1, a0), B=(bm−1, bm−2, . . . , b1, b0) both w.r.t. polynomial ba-

sis, and T’ =(1, tm−1, tm−2, . . . , t1).

Output: C = ABx−(m−1) mod T (x) = (cm−1, cm−2, . . . , c1, c0) also w.r.t. polynomial

basis

Initialization : C(0) ← 0;

1: for i = 1 to m do

2: C
(i−1)
x−1 ← C(i−1)x−1 � (C

(i−1)
0 ∧ T ′); . C(i−1)x−1: Right shifting C(i−1) by 1-bit

3: C(i) ← C
(i−1)
x−1 � (bi−1 ∧ A);

4: end for

5: return C(m)

Let the partial product C(i) be initialized for i = 0 as C(0) = 0. The computation of

the Montgomery product C is performed in m iterations which is described in Step 1. In

each of the ith iteration, one bit of the operand B, bi−1, is involved in the computation.

In Step 2 of the algorithm, the term C
(i−1)
x−1 is computed during the ith iteration using the

previous partial product term C(i−1) generated during the (i − 1)th iteration. This step

of the algorithm is based on Eq. 4.36. In Step 3 of the algorithm the partial product

C(i) is computed during the ith iteration using the term C
(i−1)
x−1 computed during this ith

iteration. This step of the algorithm is based on Eq. 4.35. During the mth iteration, the

partial product C(m) is computed which is the required Montgomery product, C.
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Figure 4.6 Top-level block diagram of the proposed LSB-first bit-serial sequential multiplier.

Architecture

The hardware realization of the proposed LSB-first algorithm (algorithm 4.4) is

presented in this section. The proposed architecture, shown in Fig. 4.6, consists of two

lower blocks G and H, whose detailed architectures are presented in Fig. 4.4 and Fig. 4.5,

respectively. In addition to these two lower blocks, the architecture also includes two

m-bit registers and an SR block. The architecture requires an m-bit input, T ′, a single

bit input, bi−1, one of the operands, A, to be preloaded into Reg1, and then m clock

cycles in order to generate the required m-bit multiplication product, C. As Step 1 of the

algorithm indicates that it requires m iterations to compute the product C, the proposed

bit-serial architecture realizes this step requiring m clock cycles where in each clock cycle

the iterative computations presented in Step 2 and Step 3 are processed. The computation

suggested by Step 2 of the algorithm is realized using the G block and the SR block. The

G block has a feedback path through the H block and the register Reg2. During the ith

clock cycle, the G block generates the term, C
(i−1)
x−1 , using its inputs C(i−1)x−1, C

(i−1)
0 and

T ′. The term C(i−1)x−1 is obtained from C(i−1) using the SR block. The SR block, which

shifts the input right by 1-bit position, simply routes the input without requiring any
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hardware. The computations suggested by Step 3 of the algorithm is realized using the H

block and the register Reg1. The H block also has the same feedback path as the G block

through the G block and register Reg2. During the ith clock cycle, the H block generates

the partial product, C(i), using its inputs A, bi−1, and C
(i−1)
x−1 . Furthermore, during the

mth clock cycle the H block generates the partial product C(m) which is available at the

output after this clock cycle.

The detailed architecture of the two lower blocks G and H are the same as Fig. 4.4

and Fig. 4.5, respectively. The G block along with the SR block realizes the computation

of the expression C(i−1)x−1 � (C
(i−1)
0 ∧ T ′) using two levels of logic gates. (C(i−1)x−1 is

realized using the SR block). The first level comprises an array of (m− 1) NAND gates

while the second level comprises an array of (m− 1) XNOR gates. The input i is applied

to all NAND gates and also it is routed directly to the output, I3. The H block realizes

the computation of the expression C
(i−1)
x−1 � (bi−1 ∧ A) using two levels of logic gates. The

first level requires an array of m NAND gates while the second level requires an array of

m XNOR gates.

4.3.2 Analytical Results

This section presents the estimation and comparison of area and time complexities

of the proposed Montgomery multipliers. Table 4.4 presents the comparison of analytical

expressions for area and time complexities of the proposed MSB multiplier with the similar

available MSB Montgomery multipliers. These expressions are evaluated for a specific field

order m = 409 using the estimations of the logic gates from NanGate 45nm libraries, and

presented in Table 4.5. Similarly, analytical expressions and evaluations are also presented

for the proposed LSB multiplier in Table 4.6 and Table 4.7, respectively.

The analytical expressions for the proposed MSB multiplier in terms of area, latency,

and critical path delay are presented in Table 4.4 along with other comparable multipliers

[31, 32, 34]. The area complexity for the proposed multiplier and the other multipliers in

Table 4.4 are expressed in terms of 2-input AND, 2-input NAND, 2-input XOR/XNOR,

and registers. The gate counts for the proposed multiplier are obtained using Figs. 4.3, 4.4,

and 4.5. The top level block diagram as shown in Fig. 4.3 contains two sub blocks G and
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Table 4.4 Area and time complexities comparison for GF(2m) (MSB multipliers).

Design Basis
Architecture

Style
AND NAND XOR/XNOR* Register Latency

Critical

Path Delay

[31] PB Non-LFSR 2m− 1 0 2m− 1 2m m TA + TX

[32] PB LFSR (Galois) 2m− 1 0 2m− 1 2m m TA + TX

[34] WDB
LFSR

(Fibonacci)
m 0 2m− 1 2m m

TA +

dlog2meTX
Proposed PB Non-LFSR 0 2m− 1 2m− 1 2m m TNA + TXN

∗XOR and XNOR have the same area and time complexities, PB: Polynomial basis, WDB: Weakly dual

basis, LFSR: Linear feedback shift register

H along with two m-bit registers, Reg1 and Reg2. The G block as shown in Fig. 4.4

contains an array of (m− 1) 2-input NAND gates and an array of (m− 1) 2-input XNOR

gates. The H block shown in Fig. 4.5 contains an array of m 2-input NAND gates and

an array of m 2-input XNOR gates. Hence, the proposed MSB Montgomery multiplier

architecture requires (2m−1) 2-input NAND gates, (2m−1) 2-input XNOR gates, and 2m

registers. Note that m represents the order of the GF(2m) field. The computation of time

complexities in terms of critical path delay and latency for the proposed MSB multiplier

and other multipliers considered for comparison is performed by assuming TA, TNA, TX ,

and TXN represents the delays of 2-input AND gate, 2-input NAND gate, 2-input XOR

gate, and 2-input XNOR gate, respectively. The critical path delay and latency of the

proposed MSB multiplier computed from the proposed architecture are TNA + TXN and

m clock cycles, respectively.

The analytical comparisons presented in Table 4.4 can be better understood by

evaluating them for a specific value of field order m using a specific technology based gate

area and time estimations. The field order m is selected to be 409 as it is one of the fields

suggested by National Institute of Standards and Technology (NIST) for elliptic curve

digital signature algorithm implementation. Furthermore, NanGate 45nm technology-

based open cell library statistics [46, 60] are adopted for the gates estimated area and

time complexities. Based on these library files the area complexities for the basic gates

are given as follows: The area complexities in terms of the NAND gate equivalents (GE)

for a 2-input AND gate, a 2-input XOR gate, a 2-input XNOR gate, and a D flip-flop with

set/reset capabilities are taken as 1.4, 2, 2, and 5.7, respectively. The delays of a 2-input
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Table 4.5 Comparison of area, delay, and area-delay-product for GF(2409) (MSB multipliers).

Design

Critical

path delay

(ns)

Latency

(clock cycles)

Delay

(ns)

Area

(µm2)

ADP

(×106)

%

reduction

in ADP

[31] 0.06 409 24.54 7440 0.18 16.66

[32] 0.06 409 24.54 7440 0.18 16.66

[34] 0.34 409 139.06 6869 0.95 84.21

Proposed 0.05 409 20.45 7113 0.15 –

NAND gate, a 2-input AND gate, and a 2-input XOR gate, a 2-input XNOR gate, and a D

flip-flop with set/reset are 0.015, 0.025, 0.035, 0.035, and 0.060 nanoseconds, respectively.

It is observed that the area required for a 2-input NAND gate based on Synopsys design

compiler synthesis using 45nm NanGate open cell libraries is 0.8µm2.

Table 4.5 presents the estimated area and time complexities in terms of number of

Area (µm2), critical path delay (ns), latency (clock cycles), and computational delay (ns)

for the field GF(2m) using FreePDK NanGate 45nm technology based gates estimations.

It may be observed that the proposed MSB multiplier requires less area when compared to

the multipliers [31] [32]. Though the multiplier [34] requires less area than the proposed

MSB multiplier, it requires substantially more delay. It may be noted that the proposed

multiplier requires the lowest critical path delay and the lowest delay. Furthermore,

the overall performance of these multipliers can be better compared using the balanced

parameter area-delay-product (ADP). It may be observed from the table that the proposed

MSB multiplier achieves the lowest area-delay-product compared to other multipliers

considered for comparison. It is evident from the table (% reduction in ADP column) the

proposed MSB multiplier achieves reduction in ADP of around 16%, 16%, and 84%,when

compared with multipliers [31], [32], and [34], respectively. Hence, it is clear from the

estimated complexities presented in the table that the proposed MSB multiplier is time

(critical path delay and computation delay) and area-delay-product efficient.

Similarly, the area and time expressions for LSB multiplier (using Figs. 4.6, 4.4,

and 4.5) are derived. This LSB multiplier architecture requires (2m − 1) NAND gates,
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Table 4.6 Area and time complexities comparison for the field GF(2m) (LSB multipliers).

Design Basis
Architecture

Style
AND NAND XOR/XNOR Register Latency

Critical

path

[31] PB Non-LFSR 2m− 1 0 2m− 1 2m m TA + 2TX

[33] PB
LFSR

(Galois)
2m− 1 0 2m− 1 2m m TA + 2TX

Proposed PB Non-LFSR 0 2m− 1 2m− 1 2m m
TNA +

2TXN

Table 4.7 Comparison of area, delay, and area-delay-product for GF(2409) (LSB multipliers).

Design

Critical

path delay

(ns)

Latency

(clock cycles)

Delay

(ns)

Area

(µm2)

ADP

(×106)

%

reduction

in ADP

[31] 0.095 409 38.86 7440 0.29 13.79

[33] 0.095 409 38.86 7440 0.29 13.79

Proposed 0.085 409 34.77 7113 0.25 –

(2m − 1) XNOR gates, and 2m registers. These analytical complexities of the proposed

LSB multiplier along with the available similar multipliers [31] [33] are presented in

Table 4.6. Similar to the proposed MSB multiplier, the analytical expressions of this

LSB multiplier along with compared multipliers are evaluated for a specific field order,

m = 409, and using the NanGate 45nm technology-based standard cell library estimations

from Silvaco company [46, 60], and presented in Table 4.7. It is observed from Table 4.7

that the proposed LSB multiplier achieves lower area and lower delay complexities when

compared with the multipliers [31] [33].

4.3.3 Implementation Results

The proposed MSB and LSB multipliers, and the best of the multipliers considered

for comparison [32] and [33], respectively, are considered for Application Specific Inte-

grated Circuit (ASIC) implementation. These multipliers are modeled using VHDL for

the field order of m = 409, and verified the functionalities through simulations using the
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Table 4.8 Comparison of the ASIC implementation results for GF(2409) (MSB multipliers).

Design
Multiplier

area (µm2)

Critical path

delay (ns)

Multiplication

delay (ns)

ADP × (106)

(µm2 × ns)

% reduction

in ADP

[32] 8593 0.20 81.80 0.70 12.85

Proposed 8322 0.18 73.62 0.61 –

Table 4.9 Comparison of the ASIC implementation results for GF(2409) (LSB multipliers).

Design
Multiplier

area (µm2)

Critical path

delay (ns)

Multiplication

delay (ns)

ADP × (106)

(µm2 × ns)

% reduction

in ADP

[33] 8593 0.32 130.88 1.12 11.60

Proposed 8322 0.29 118.61 0.99 –

Xilinx Vivado simulator. Further, gate level netlists are generated for the VHDL mod-

els and synthesized these netlists using the Synopsys Design Compiler tool employing

FreePDK NanGate 45nm library files to obtain area and time complexities. Table 4.8

and Table 4.9 present the obtained area and time complexities of all these implemented

multipliers.

It is observed from the ASIC implementation results presented in Table 4.8 that the

proposed MSB multiplier achieves high-speed (due to less critical path delay), less area,

less delay, and area-delay-product improvement of around 12% when compared with the

multiplier [32]. Similarly, it is observed from the ASIC implementation results presented

in Table 4.9 that the proposed LSB multiplier achieves area-delay-product improvement

of around 11% when compared with the multiplier [33]. Hence, the ASIC implemen-

tation results confirm that the proposed multipliers achieve better area as well as time

complexities compared to the available multipliers in the literature.

4.4 Conclusions

In this chapter, the design of area-efficient bit-serial GF(2m) multipliers is presented.

The design of the proposed multipliers involves the modification of the conventional al-
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gorithms using the NAND-XNOR logical relations rather than the AND-XOR relations.

It includes the design of the bit-serial sequential multiplier based on the proposed mod-

ified interleaved modular reduction algorithm. Further, the performance analysis of this

multiplier using analytical and ASIC implementation results is presented. The analy-

sis shows that the proposed multiplier is area and area-delay efficient compared to the

available multipliers in the literature. The proposed multipliers also include the design of

the MSB-first and the LSB-first multipliers based on the proposed modified Montgomery

algorithms. The performance analysis of these multipliers using analytical and ASIC im-

plementation results is presented which shows that the proposed multipliers are area and

time efficient compared to the available multipliers in the literature. These proposed area-

efficient bit-serial sequential multipliers are highly suitable for domestic IoT end devices,

and obiviously not appropriate for high-performance IoT edge devices. Hence, it is also

desirable to design high-throughput multiplier architectures such as systolic multipliers to

improve the performance of the IoT applications. Consequently, the next chapter focuses

on the design of efficient systolic multipliers that are suitable for IoT edge devices.



Chapter 5

Low-Latency and High-Throughput Bit-Parallel

Systolic Multipliers for Specific Classes of Trinomials

This chapter presents the design of a few time-efficient systolic multipliers that are

suitable for high-performance IoT devices such as IoT edge devices. First, we present

the design and analysis of a low-latency area-efficient systolic multiplier using a specific

class of trinomials. Further, this multiplier is modified with respect to its architecture

to realize another multiplier that achieves high-throughput. This chapter also presents

the design and analysis of another low-latency and area-efficient systolic multiplier us-

ing a narrow class of trinomials. Analysis of all these proposed multipliers is performed

using the comparison of analytical and implementation results with the available multi-

pliers. The analytical comparisons are based on the complexities computed for m = 409

using FreePDK NanGate 45nm gate estimations and the implementation comparisons

are based on the results obtained from Synopsis Design Compiler employing NanGate

45nm libraries. The comparisons show that proposed multipliers are more time-efficient

compared to the available multipliers.

5.1 Introduction

Edge devices which are used in IoT edge computing need to have high-performance

implementations since these devices are required to process large volumes of data collected

from a large number of end nodes. Hence, the hardware blocks including the finite field
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GF(2m) multipliers that are employed in the implementation of edge devices must have

high throughput rates. Design of finite field GF(2m) multipliers using systolic structures

can give high-throughput rates and also offer advantages such as regularity, modularity,

and concurrency. The performance of these multipliers can further be improved by se-

lecting low-weight irreducible polynomials such as trinomials or subclasses of trinomials.

These irreducible polynomials reduce the computations compared to other types of poly-

nomials and allow high-speed implementations. Hence, it is desirable for IoT edge devices

to design efficient systolic multipliers using trinomials or subclasses of trinomials.

Many bit-parallel systolic multipliers are proposed in the literature [27, 39–46] for

polynomial basis GF(2m) multiplication using trinomials/subclasses of trinomials to achieve

reduction in area and time complexities. In this work, we consider two classes of trino-

mials that result in more efficient implementation of GF(2m) multipliers. The first of

these two classes is the class of irreducible trinomials of the form xm + xk + 1 for which

k ≤ (m − 1)/2 (if m is odd) or k ≤ m/2 (if m is even), and the second class is of the

trinomials of the form xm+xk+1 for which k ≤ m−2dm/3e. There exists a large number

of these classes of trinomials (for which k ≤ (m− 1)/2 (if m is odd) or k ≤ m/2 (if m is

even)/k ≤ m − 2dm/3e) for different values of field order m [24]. Moreover, for elliptic

curve cryptography, it is recommended that if an irreducible trinomial xm +xk + 1 exists,

then k should be chosen as small as possible i.e. lowest possible degree for the middle term

xk [61]. Also, for the finite fields GF(2233) and GF(2409), National Institute of Standards

and Technology (NIST) has recommended the trinomials x233 +x73 + 1 and x409 +x87 + 1,

respectively, where the values of k are less than half the value of m [61]. In addition, for

the trinomial x409 +x87 +1 the value of k is also less than the value of m−2dm/3e = 135.

In this chapter, first, we present a low-latency area-efficient bit-parallel systolic fi-

nite field multiplier for the class of trinomials for which k ≤ (m − 1)/2 (if m is odd) or

k ≤ m/2 (if m is even). It includes the formulations developed for this multiplier and

its architecture realized using a systolic structure employing efficient cutset pipelining

techniques. Analysis of this multiplier using analytical and implementation results is also

presented. Next, this multiplier is further modified with respect to its architecture using

additional horizontal cutset pipelining to achieve a high throughput multiplier. The per-

formance of this multiplier is also verified using analytical and implementation results.
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Finally, we present another low-latency area-efficient bit-parallel systolic multiplier using

a narrow class of trinomials of the form xm+xk +1 for which k ≤ m−2dm/3e. Its formu-

lations and the architecture along with the performance comparisons are also presented.

The analytical results for all the proposed multipliers are computed for m = 409 using

NanGate 45nm gate complexities and compared with the available multipliers [27,39–46].

The implementation results for the proposed multipliers are obtained using Synopsis De-

sign Compiler tool employing NanGate 45nm technology libraries. The comparisons show

that the proposed systolic multipliers are more time-efficient compared to the available

multipliers.

5.2 Area-Efficient Low-Latency Bit-Parallel Systolic Multiplier

In this section, design and performance analysis of the proposed bit-parallel systolic

multiplier for a class of trinomials for which k ≤ (m−1)/2 (if m is odd) or k ≤ m/2 (if m

is even) are presented. First, we present the mathematical formulations for the proposed

GF(2m) multiplication and its realization using the bit-parallel systolic architecture. Fol-

lowing this, area and time complexities comparisons of analytical and implementation

results are presented.

5.2.1 Design

Mathematical Formulation

Consider A and B are two arbitrary elements of the finite field GF(2m), and C is

the product of the elements A and B. Then, the product C can be written as

C(x) = (A(x)×B(x)) mod T (x) (5.1)

= A(x)
m−1∑
j=0

bix
i mod T (x)

=
m−1∑
j=0

biA(x)xi mod T (x)

=
(
bm−1Ax

m−1 + bm−2Ax
m−2 + ........ + b1Ax + b0A

)
mod T (x)
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=
(
bm−1(Ax

m−1) + bm−2(Ax
m−2) + ........ + b1(Ax) + b0(A)

)
mod T (x) (5.2)

Equation 5.2 can be rewritten, where the lower part of polynomial whose powers of

x from 0 to (m/2−1) and the upper part of polynomial whose powers from m/2 to m−1

are shown explicitly, as

=
((
bm−1(Ax

m−1) + bm−2(Ax
m−2) + ........+

bm/2+1(Ax
m/2+1) + bm/2(Ax

m/2)
)

+
(
bm/2−1(Ax

m/2−1) + bm/2−2(Ax
m/2−2) + ........+

b1(Ax) + b0(A)
))

mod T (x) (5.3)

Now, by taking out xm/2 as a common term from the upper part, we have

C(x) =
((
bm−1(Ax

m/2−1) + bm−2(Ax
m/2−2) + ........+

bm/2+1(Ax) + bm/2(A)
)
xm/2

+
(
bm/2−1(Ax

m/2−1) + bm/2−2(Ax
m/2−2) + ........+

b1(Ax) + b0(A)
))

mod T (x) (5.4)

Now, consider the following recursive notations, A(0) = A, A(1) = A(0)x, A(2) = A(1)x,

A(3) = A(2)x, ......., A(m−1) = A(m−2)x. From these recursive relations, it can be defined

that

A(j) = A(j−1)x mod T (x) (5.5)

where,

A(j−1) =
m−1∑
i=0

a
(j−1)
i xi,∀ a(j−1)i ∈ GF (2) (5.6)

Furthermore, from the fact that irreducible polynomial T (x) = 0, it is implied that

xm = tm−1x
m−1 + tm−2x

m−2 + .......+ t2x
2 + t1x+ t0 (5.7)

The expression for the left side of Eq. 5.5 can be written as

A(j) = a
(j)
m−1x

m−1 + a
(j)
m−2x

m−2 + .....+ a
(j)
2 x2 + a

(j)
1 x+ a

(j)
0 (5.8)
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The coefficients of A(j) can be obtained in terms of the coefficients of A(j−1) as

a
(j)
0 = a

(j−1)
m−1 (5.9)

a
(j)
i = a

(j−1)
i−1 + a

(j−1)
m−1 ti,where i = 1, 2, ......,m− 1 (5.10)

With these implications, the expression for C(x) in Eq. 5.4 can be rewritten as

C(x) = ((bm−1(A
(m/2−1)) + bm−2(A

(m/2−2)) + ........+

(bm/2+1(A
(1)) + bm/2(A

(0)))xm/2

+ (bm/2−1(A
(m/2−1)) + bm/2−2(A

(m/2−2)) + ........+

(b1A
(1)) + b0(A

(0)))) mod T (x) (5.11)

The formulation for the product C(x) expression in Eq. 5.11 contains two parts, part1 as

((bm−1(A
(m/2−1)) + bm−2(A

(m/2−2)) + ........+

(bm/2+1(A
(1)) + bm/2(A

(0))) mod T (x) (5.12)

and part2 as

(bm/2−1(A
(m/2−1)) + bm/2−2(A

(m/2−2)) + ........+

(b1A
(1)) + b0(A

(0)))) mod T (x) (5.13)

It may be observed that Eq. 5.12 and Eq. 5.13 are similar in computation, and these

can be combined to compute the C(x) (See Eq. 5.11). It is noted that the computational

complexity of Eq. 5.11 depends on the reduction polynomial T (x). The complexity can

be reduced by selecting trinomials as reduction polynomials. It is also observed that for

certain class of trinomials, xm + xk + 1, where k ≤ (m− 1)/2 (if m is odd) or k ≤ m/2 (if

m is even), the computational complexity further decreases. It is possible from the fact

that for the class of trinomials specified, the product of any field element A and xk, where

k ≤ (m − 1)/2 (if m is odd) or k ≤ m/2 (if m is even), can be computed using either

simple one level of binary addition or permutation of the field element coordinates. To

explain this point clearly, an example is presented in Table 5.1 for GF(210) over a trinomial

x10 + x3 + 1. It is evident from this table that the computation of the coordinates of Axi,

until m/2 (= 5) powers of x, involves either simple permutation or one level of binary

addition of the field element A coordinates ([a9, a8, a7, a6, a5, a4, a3, a2, a1, a0]).
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Table 5.1 Coordinate representation of Axi mod T (x).

i Axi mod T (x)

1 [a8, a7, a6, a5, a4, a3, a2 ⊕ a9, a1, a0, a9]

2 [a7, a6, a5, a4, a3, a2 ⊕ a9, a1 ⊕ a8, a0, a9, a8]

3 [a6, a5, a4, a3, a2 ⊕ a9, a1 ⊕ a8, a0 ⊕ a7, a9, a8, a7]

4 [a5, a4, a3, a2 ⊕ a9, a1 ⊕ a8, a0 ⊕ a7 ⊕ a6, a9, a8, a7, a6]

5 [a4, a3, a2 ⊕ a9, a1 ⊕ a8, a0 ⊕ a7 ⊕ a6, a9 ⊕ a5, a8, a7, a6, a5]

A = A(0)
R1

M0

A(1)
R2

M1

X1

A(2)
R3

M2

X2

Rm/2-1
A(m/2−1)

Mm/2-1

Xm/2-1 R X
C

bm/2

b0

bm/2+1

b1

bm/2+2

b2

bm-1

bm/2-1

1

Figure 5.1 The signal flow graph (SFG) of the proposed finite field GF(2m) multiplication.

Maximum number of computations are involved for the considered class of trinomial

fields GF(2m) when the reduction polynomial is of the form xm + xm/2 + 1 (see last row

of Table 5.1). For all other trinomials of interest, xm + xk + 1 with k < m/2, the number

of computations are lesser than the maximum number of computations (see the cases for

i = 1, 2, 3, 4 in Table 5.1).

Proposed Systolic Multiplier for a Class of Trinomials

The proposed systolic multiplier over GF(2m) for a class of trinomials for which the

power of second highest degree term of the irreducible polynomial is less than or equal to

half the field order m, is presented in this section.

In the proposed multiplier design, we consider m to be even for keeping m/2 to be

an integer for simplicity. The equation specified by Eq. 5.11 can be represented with a

signal flow graph (SFG) as shown in Fig. 5.1. The SFG consists of (m/2 − 1) reduction

of degree by one nodes Ri (i = 1, 2, ...m/2− 1), m/2 number of multiplication nodes Mi
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Figure 5.2 a) Functional description of the ith reduction of degree by one node Ri. b) Functional

description of the ith multiplication node Mi. c) Functional description of the ith addition node

Xi. d) Functional description of the reduction of degree by m/2 node R. e) Functional description

of the addition node X.

(i = 0, 1, 2, ...m/2−1), and (m/2−1) addition nodes Xi (i = 1, 2, ...m/2−1). In addition,

the SFG also contains a reduction of degree by m/2 node R and an addition node X. The

functional description of the nodes is presented in Fig. 5.2.

The reduction of degree by one node Ri shown in Fig. 5.2(a) performs modulo reduc-

tion operation. It takes A(i−1), the reduced form of A, as input and performs modulo T (x)

multiplication by x on it. The multiplication node Mi realizes the formulations presented

in Fig. 5.2(b). It performs the two sets of multiplications, where for each multiplication

input A(i) is multiplied by a specific bit of input B(bi or bm/2+i). Figure 5.2(c) presents

the functional description of addition node Xi which performs two sets of m bit additions,

where in each case one input from left and one respective input from the top are added as

suggested by the formulations presented. The reduction node R in Fig. 5.2(d) performs

modulo T (x) multiplication by xm/2 on the upper input, while the lower input to this

node remains unchanged. The functional description of the addition node X is given in

Figure 5.2(e), which computes the addition of its two m-bit inputs.

It may be noted that Eq. 5.11 has two parts (Eq. 5.12 and Eq. 5.13) where each

part is a summation of m/2 product terms. The SFG (See Fig. 5.1) successively generates

these product terms and aggregates their sum. In this SFG, A(i) generated by node Ri
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Figure 5.3 The pipelined SFG of the proposed finite field GF(2m) multiplier.

is used by the multiplication Mi and addition Xi nodes. The combined effect of these

three respective nodes Ri, Mi, and Xi is equivalent to the generation of ith product term

and aggregating it to the previous (i − 1)th aggregation. Once two parts of Eq. 5.11 are

generated, they are combined according to this equation using the nodes R and X. The

multiplication of Eq. 5.12 by xm/2 as suggested by Eq. 5.13 is realized by node R while

the summation of the reduced form of Eq. 5.12 with Eq. 5.13 is performed by the node

X.

The input A applied to the SFG (Fig. 5.1) is processed at a stretch through the

nodes to give the output C. Hence, the long critical path of the SFG can be reduced by

applying suitable cutset pipelining on it. Figure 5.3 shows the pipelined SFG obtained by

applying feed-forward cutset, which involves inserting storage elements at cutset points.

The cutset performed here eliminates the dependency, in terms of sequential processing,

between reduction node Ri and its corresponding multiplication Mi and addition Xi nodes

to generate the ith product term. The processing section between any two adjacent cutset

lines can be called a processing element (PE). The formation of all the PEs obtained by

the cutset pipelining is shown in Fig. 5.4. Each pair of adjacent PEs are to be separated

by the storage elements as inferred by the cutset lines.

The proposed systolic structure derived from the SFG in Fig. 5.4 for GF(2m) mul-

tiplier is shown in Fig. 5.5. There are a total of (m/2 + 2) PEs in the structure. The

structure contains five types of PEs. The regular PEs from PE[1] to PE[m/2− 2] are of

the same type. The first PE, PE[0], and the last three PEs, PE[m/2− 1], PE[αm/2], and

PE[Out] are all individually distinct PE types. The functionality of each type of PEs is

described in Fig. 5.6. The first processing element PE[0] presented in Fig. 5.6(a) performs
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Figure 5.4 Formation of the processing elements (PEs).
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Figure 5.5 Proposed systolic structure of the GF(2m) multiplier.

the modular reduction of degree by one operation. It also performs one more type of op-

eration where a one-bit input (Y 1in or Y 2in) is logically ANDed with every bit of m-bit

input (Xin). The functionality of this PE (PE[0]) is represented by the corresponding

mathematical equations in the same figure. The functionality of regular PE, applicable

to PE[1] to PE[m/2-2], is presented in Fig. 5.6(b). This PE, in addition to operations

described for PE[0], also performs two m-bit additions as described by the corresponding

equations presented in the figure. As shown in Fig. 5.6(c), the function of PE[m/2-1] same

as regular PE except for the absence of the modulo reduction operation. The processing

element PE[xm/2] as shown in Fig. 5.6(d) performs modulo reduction of degree by m/2

on its upper input while lower input remains unchanged. The last processing element

PE[Out] shown in Fig. 5.6(e) performs the addition of its two m-bit inputs.

The detailed architecture of the regular PE is presented in Fig. 5.7. The reduction

unit RU comprises a single XOR gate for the reduction of degree by one operation. In the

implementation of RU, the placement of the XOR gate is suggested by k value (See the

first row of Table 5.1, where k = 3). The left AND cell comprises an array of m two-input

AND gates where ith AND gate takes one input as Y 1in while another input is ith bit

of X1in for i = 1, 2, ....,m. Similarly, the right AND cell also designed to perform the
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Figure 5.6 a) Functional description of the PE[0] node. b) Functional description of the

regular PE (PE[1] to PE[m/2−2]). c) Functional description of the PE[m/2−1]. d) Functional

description of PE[αm/2] node. e) Functional description of the PE[Out] node.

same function on Y 2in. The XOR cell comprises an array of m-two input XOR gates.

Each XOR cell is responsible for the addition of one of the product terms generated by

the AND gate to the X2in/X3in input of the processing element. In addition, since the

functions of processing elements PE[0] and PE[m/2− 1] are sub-functions for regular PE

(See Fig. 5.6), the architectures for PE[0] and PE[m/2− 1] can be derived by modifying

the architecture of regular PE. The PE[xm/2] comprises an array of m/2 XOR gates (See

the last row of Table 5.1, where m = 10). The architecture of the PE[out] comprises an

array of m/2 XOR gates to realize an m-bit addition. The proposed multiplier generates

one output for every clock cycle with an initial latency of (m/2 + 2) clock cycles.

5.2.2 Analytical Results

In this section, the area and time complexities of the proposed bit-parallel systolic

multiplier are estimated and compared with that of similar multipliers available in the

literature. Table 5.2 presents the analytical expressions for area and time complexities of

the proposed multiplier and similar multipliers considered for comparison. Furthermore,

these analytical expressions are computed for m = 409 using the area and time complexity
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Figure 5.7 Detailed architecture of the regular PE.

estimations of logic gates from FreePDK45 NanGate open cell library statistics [46, 60]

and presented in Table 5.3.

Table 5.2 presents the analytical comparison of area complexity, latency, and critical

path delay of the proposed systolic multiplier with the available systolic multipliers con-

sidered for comparison [27,39–46]. All these multipliers including the proposed multiplier

are applicable for either general trinomials or a class of trinomials. The area required

for the proposed multiplier is computed in terms of the number of AND gates, XOR

gates, and registers. We also present the area complexity for the other multipliers in a

similar way to compare with that of the proposed multiplier. The time complexities of

the proposed multiplier and other multipliers considered for comparison are computed by

assuming that TA, TX , and TNA denote the delays of 2-input AND gate, 2-input XOR

gate, and 2-input NAND gate, respectively.

The area and time complexities of the proposed multiplier can be computed from the

detailed gate level circuitry of all PEs of the structure shown in Fig. 5.5. The structure in

this figure contains (m/2 + 2) PEs. The first processing element PE[0] requires one XOR

gate and 2m AND gates. Each one of the regular PEs from PE[1] to PE[m/2−2] requires

2m + 1 XOR gates and 2m AND gates. The PE[m/2− 1] needs 2m XOR gates and 2m

AND gates. The last two PEs, PE[xm/2] and PE[Out], require m/2 XOR gates and m
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Table 5.2 Area and time complexities comparison for GF(2m).

Design AND XOR Register Latency Critical Path

[39] (m+ 1)2 (m+ 1)2 4(m+ 1)2 m+ 1 TA + TX

[40] m2 m2 +m− 1 3m2 + 2m− 2 2m− 1 TA + TX

[41] m2 m2 +ml 4m2 + 2lm m+ l − 1 TA + TX

[42] (3m2 −m)/2 m2 +m 4m2 +m m+ 1 TA + TX

[43] m2 m2 +m 3.5m2 + 3m m+ 2 TA + TX

[27] m2 m2 − 1 2m(m− 1) m TA + TX

[44] m2 m2 +mta −m 2m2 m TA + 2TX

[45] m2 m2 +mta −m 2m2 m/2 + 2 2TX

[46] m2* 1.5m2 + 0.5m 1.5m2 + 2m− 1 m+ 2 TNA + TX

Proposed m2 m2 − 1 1.5m2 +m m/2 + 2 TA + TX

l = b(m− 2)/(m− k)c+ 1.

∗ m2 NAND gates along with (1.5m2 − 2.5m+ 3) number of inverters.

a t=1 for the class of polynomials considered in this work.

XOR gates, respectively. Hence, the proposed systolic structure requires m2 AND gates,

(m2−1) XOR gates and (1.5m2 +m) number of registers. Latency and Critical path (See

Fig. 5.7) of the proposed multiplier structure are (m/2 + 2) and (TA + TX), respectively.

It may be observed from Table 5.2 that all the multipliers in the table require nearly

the same critical path delay. However, the proposed systolic multiplier has the lowest

latency. The multiplier [45] has nearly same time complexities as the proposed multiplier

(See Latency and Critical path columns of Table 5.2), but it requires more amount of

hardware. In addition, it may be noted that the proposed multiplier requires the least

number of registers suggesting less area requirement.

The analytical comparisons presented in Table 5.2 can be better understood by

evaluating them for a specific value of the field order along with a specific technology-

based area and time complexity estimations of gates. The field order, m, can be selected as

409, which is one of the field sizes recommended by NIST for Elliptic curve cryptographic

applications [61]. For the estimation of area and time complexities of the gates, NanGate

45nm technology-based open cell library statistics [46, 60] is adopted as follows: The

area complexities in terms of the NAND gate equivalents (GE) for a NOT gate, a 2-input
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Table 5.3 Area and time complexities comparison for GF(2409).

Design Critical

Path (ns)

Latency

(clock cycles)

Latency

(ns)

Area (×106)

(µm2)

% reduction in

Latency (ns)

% reduction

in Area

[39] 0.06 410 24.60 3.5 50 54

[40] 0.06 817 49.02 2.7 75 41

[41] 0.06 412 24.72 3.8 50 56

[42] 0.06 410 24.60 4.5 49 64

[43] 0.06 411 24.66 3.1 50 48

[27] 0.06 409 24.54 2 49 20

[44] 0.09 409 36.81 2 72 20

[45] 0.07 207 14.49 2 14 20

[46] 0.05 411 20.55 1.8 40 11

Proposed 0.06 207 12.42 1.6 – –

AND gate, a 2-input XOR gate, and a D flip-flop with set/reset capabilities are taken as

0.5, 1.4, 2, and 5.7, respectively. The delays of a 2-input NAND gate, a 2-input AND

gate, and a 2-input XOR gate are 0.015, 0.025, and 0.035 nanoseconds, respectively. It

is observed that the area required for a 2-input NAND gate based on Synopsys design

compiler synthesis using 45nm NanGate open cell libraries is 0.8µm2.

Table 5.3 presents the comparison of estimated critical path delay, latency, and area

complexity of the proposed multiplier with that of the same multipliers considered for

comparison in Table 5.2. It is observed that the proposed multiplier requires the lowest

area. It is clear from Table 5.3 (% reduction in Area column) that the proposed multiplier

achieves area efficiency of 54%, 41%, 56%, 64%, 48%, 20%, 20%, 20%, and 11% when

compared with multipliers [39], [40], [41], [42], [43], [27], [44], [45], [46], respectively. It is

observed that the multipliers [27,39–43] have similar critical path delays when compared

with the proposed multiplier. However, the proposed multiplier achieves low latency (ns)

compared to all these multipliers. The critical path of the multiplier [46] is less than that

of the proposed multiplier, but its latency (ns) is higher than the proposed multiplier.

Though the multiplier [45] requires a similar number of clock cycles to generate the first

output as the proposed multiplier, its latency (ns) is higher. From Table 5.3, it is observed

that the proposed multiplier achieves the lowest latency (ns). Hence, it is clear from

the estimated values presented in Table 5.3 that the proposed multiplier achieves both

low-latency and low-area when compared with the similar multipliers available in the
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Table 5.4 Comparison of ASIC implementation results for GF(2409).

Design
Critical

Path (ns)

Latency

(ns)

Multiplier

Area (µm2)

% reduction in

Latency (ns)

% reduction

in Area

[45] 0.24 49.68 3052297 12 17

[46] 0.17 78.09 2783963 37 9

Proposed 0.21 43.47 2533407 – –

literature.

5.2.3 Implementation Results

It is observed from Table 5.3 that the multipliers [45, 46] require less latency and

less area, respectively, compared to the other available multipliers considered for compar-

ison. Hence, the proposed multiplier and the two multipliers [45, 46] are modeled using

VHDL for GF(2409). The RTL models are simulated using Vivado Simulator to verify

the functionality. Also, these RTL models are synthesized using the Synopsys Design

Compiler tool employing NanGate 45nm open cell library [60] to obtain the area and

time complexities. The area and time complexities obtained for all the three multipliers

are tabulated in Table 5.4. The experimental results obtained confirm that the proposed

multiplier requires less area and less latency (ns) than the other previous multipliers.

5.3 High-Throughput Area-Delay-Efficient Bit-Parallel Systolic

Multiplier

This section presents a high-throughput multiplier whose architecture is realized

using the formulations of the area-efficient low-latency multiplier presented in the previous

section. The formulations for this multiplier are the same as the previous multiplier and

the architecture realization involves further cutset pipelining compared to the previous

multiplier. This section also presents the performance analysis of this proposed high-

throughput multiplier through analytical and implementation results comparisons with

the available related multipliers.
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5.3.1 Design

Mathematical Formulation

The formulations for this multiplier are the same as the formulations presented for

the multiplier in the previous section (Section 5.2.1). Similar to the previous multiplier

case, this multiplier is also applicable for the same class of trinomials xm + xk + 1 for

which k ≤ (m− 1)/2 (if m is odd) or k ≤ m/2 (if m is even).

Proposed Systolic Architecture

This section presents the proposed GF(2m) multiplier systolic structure, which is

applicable for the specified class of trinomials for which the degree of the middle term is

less than half of the order of the field.

Consider the pipelined signal flow graph (SFG) presented in Fig. 5.3. The critical

path delay for this pipelined SFG shown in Fig. 5.3 is max(TRiN , TMiN + TXiN, TRN, TXN).

However, it is clear from the hardware implementation point of view that TMiN + TXiN

constitutes the critical path delay. This delay can be further reduced by applying a hori-

zontal cutset as shown in Fig. 5.8. The critical path delay for this pipelined SFG shown

in Fig. 5.8 is max(TRiN, TMiN, TXiN, TRN, TXN). It may be noted that wherever the cutset

lines intersect the SFG, hardware registers are to be placed in the hardware implementa-

tion. Based on the vertical cutsets, the processing elements (PEs) can be formed for the

pipelined SFG (Fig. 5.8) as shown in Fig. 5.9.
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Figure 5.8 Further pipelined SFG using horizontal cutset.
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Figure 5.9 Formation of the processing elements (PEs).
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Figure 5.10 Proposed systolic structure of the GF(2m) multiplier.

The proposed systolic structure for the GF(2m) multiplier derived from the SFG

(Fig. 5.9) is shown in Fig. 5.10. This structure has five types of processing elements

(PEs). The processing elements PE[1] through PE[m/2-2] are similar in architecture and

can be referred to as regular PEs. The remaining processing elements PE[0], PE[m/2-1],

PE[xm/2], and PE[Out] are different from regular PEs, and also individually distinct from

one another. The functional descriptions of all the PEs are presented in Fig. 5.11. It

may be noted that processing elements PE[0] through PE[m/2-1] are required to include

two m-bit registers in the architecture to realize the horizontal cutset which is described

in Fig. 5.8. In Fig. 5.11, the subscript, (t), used for the input and output variables

represents the current clock cycle and the subscript (t − 1) indicates the previous clock

cycle when implemented the structure in hardware. For the PE[0] shown in Fig. 5.11(a),

Xin(t), Y 1in(t), and Y 2in(t) are the inputs. The output X1out(t) is obtained by performing

reduction of degree by one operation on the input Xin(t). The output X2out(t) is obtained

by multiplying the previous m-bit input Xin(t−1), with the previous 1-bit input Y 1in(t−1).

Here, the previous inputs means that the inputs available to PE[0] during the previous

clock cycle. Similarly, the output X3out(t) is obtained by multiplying the previous m-

bit input Xin(t−1), with the previous 1-bit input Y 2in(t−1). Figure 5.11(b) presents the

functional description of a regular PE. When compared with PE[0], it has two more inputs
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Figure 5.11 a) Functional description of the PE[0] node. b) Functional description of the

regular PE (PE[1] to PE[m/2−2]). c) Functional description of the PE[m/2−1]. d) Functional

description of the PE[xm/2] node. e) Functional description of the PE[Out] node.

X2in(t) and X3in(t). The output X2out(t) which realizes the accumulation is obtained by

multiplying the previous m-bit input X1in(t−1), with the previous 1-bit input Y 1in(t−1),

followed by adding the previous m-bit input X2in(t−1). Similarly, the output X3out(t)

can be obtained. The operations performed by PE[m/2-1] are similar to the regular PE,

however, it does not perform reduction of degree by one operation. For the PE[xm/2],

X1out(t) is obtained by performing reduction of degree by xm/2 operation on the input

X1in(t). The other input of this PE simply routs to output without any modification. The

processing element PE[Out] adds its two m-bit inputs X1in(t) and X2in(t) to generate

the output Xout(t). The processing elements PE[xm/2] and PE[Out] do not require any

storage elements in the architectures.

The detailed architecture for the regular PE is shown in Fig. 5.12. The reduction

unit RU, which performs the reduction of degree by one operation, comprises a single XOR

gate. The placement of this single XOR gate in the RU block is determined by the k value

(See the first row of Table 5.1, where k = 3). The left AND cell consists of an array of m

two-input AND gates where ith AND gate takes one input as Y 1in while another input is

ith bit of X1in for i = 1, 2, ....,m. Similarly, the right AND cell also designed to perform

the same function on Y 2in. The XOR cell consists of an array of m two-input XOR gates.
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Figure 5.12 Detailed architecture of the regular PE.

The XOR cells are responsible for the addition of the product terms generated by the AND

cells (in the previous clock cycle) to the respective inputs (X2in(t) and X3in(t)) of the

processing element. Two registers Reg1 and Reg2 are placed in the architecture to realize

the horizontal cutsets that appeared in the processing elements PE[0] through PE[m/2-1]

(See Fig. 5.8). It may be noted that since the functions of processing elements PE[0] and

PE[m/2−1] are sub-functions for regular PE (See Fig. 5.7), the architectures for PE[0] and

PE[m/2− 1] can easily be obtained by modifying the architecture of the regular PE. The

processing element PE[xm/2] can be realized using an array of m/2 two-input XOR gates

(See the last row of Table 5.1, where m = 10). The architecture of PE[out] requires an

array of m two-input XOR gates to implement the m-bit addition. The proposed systolic

multiplier generates one output per clock cycle with an initial latency of (m/2 + 3) clock

cycles.

5.3.2 Analytical Results

In this section, the area and time complexities of the proposed systolic multiplier

are estimated and compared with the available multipliers in the literature. Table 5.5

presents the comparison of the analytical complexities of the proposed multiplier with

the available multipliers. Furthermore, these analytical complexities are evaluated for a
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specific field order, m = 409, using FreePDK45 NanGate cell library statistics [46, 60],

and presented in Table 5.6.

Table 5.5 Area and time complexities comparison for GF(2m).

Design AND XOR Register Latency Critical Path

[40] m2 m2 +m− 1 3m2 + 2m− 2 2m− 1 TA + TX

[41] m2 m2 +ml 4m2 + 2lm m+ l − 1 TA + TX

[42] (3m2 −m)/2 m2 +m 4m2 +m m+ 1 TA + TX

[43] m2 m2 +m 3.5m2 + 3m m+ 2 TA + TX

[27] m2 m2 − 1 2m(m− 1) m TA + TX

[44] m2 m2 +mta −m 2m2 m TA + 2TX

[45] m2 m2 +mta −m 2m2 m/2 + 2 2TX

[46] m2* 1.5m2 + 0.5m 1.5m2 + 2m− 1 m+ 2 TNA + TX

[62] m2 m2 − 1 1.5m2 +m m/2 + 2 TA + TX

Proposed m2 m2 − 1 2.5m2 +m m/2 + 3 TX

l = b(m− 2)/(m− k)c+ 1.

∗ m2 NAND gates along with (1.5m2 − 2.5m+ 3) number of inverters.

a t=1 for the class of polynomials considered in this work.

Table 5.5 presents the analytical comparison of area complexity, latency, and crit-

ical path delay of the proposed systolic multiplier with the available systolic multipliers

considered for comparison [27, 40–46, 62]. All these multipliers including the proposed

multiplier are applicable for either general trinomials or a class of trinomials. The area

required for the proposed multiplier is computed in terms of the number of AND gates,

XOR gates, and registers. We also present the area complexity for the other multipliers

in a similar way to compare with that of the proposed multiplier. The time complexities

of the proposed multiplier and other multipliers considered for comparison are computed

by assuming that TA, TX , and TNA denote the delays of 2-input AND gate, 2-input XOR

gate, and 2-input NAND gate, respectively.

The area and time complexities of the proposed multiplier can be computed from

the detailed gate level circuitry of all PEs of the structure shown in Fig. 5.10 where the

structure contains (m/2 + 2) PEs. The first processing element PE[0] requires one XOR

gate, 2m AND gates, and two m-bit registers. Each one of the regular PEs from PE[1]
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Table 5.6 Area and time complexities comparison for GF(2409).

Design Critical

Path (ns)

Area (×106)

(µm2)

Throughput

(×109)

ADP

(×10−3)

% increase in

Throughput

% reduction

in ADP

[40] 0.06 2.7 16.66 162 71.48 48.15

[41] 0.06 3.8 16.66 228 71.48 63.15

[42] 0.06 4.5 16.66 270 71.48 68.88

[43] 0.06 3.1 16.66 186 71.48 54.83

[27] 0.06 2 16.66 120 71.48 30

[44] 0.095 2 10.53 190 171.32 55.79

[45] 0.07 2 14.29 140 99 93 40

[46] 0.05 1.8 20 90 42.85 6.66

[62] 0.06 1.6 16.66 96 71.48 12.50

Proposed 0.035 2.4 28.57 84 – –

to PE[m/2 − 2] requires 2m + 1 XOR gates, 2m AND gates, and two m-bit registers.

The PE[m/2 − 1] needs 2m XOR gates, 2m AND gates, two m-bit registers. The last

two PEs, PE[xm/2] and PE[Out], require m/2 XOR gates and m XOR gates, respectively.

Hence, the proposed systolic structure requires m2 AND gates, (m2 − 1) XOR gates

and (2.5m2 + m) number of registers. Latency and Critical path delay (See Fig. 5.12)

of the proposed multiplier structure are (m/2 + 3) and TX , respectively. It may be

noted that all the multipliers in Table 5.5 have nearly the same AND and XOR gate

complexities while the proposed multiplier requires more registers when compared with

the multipliers [27, 44–46, 62]. However, when compared with all the other multipliers in

Table 5.5, the proposed multiplier requires the lowest critical path delay TX , thereby, able

to give high throughput rates (Number of GF(2m) multiplications/sec).

The analytical comparisons presented in Table 5.5 can be better understood by

evaluating them for a specific value of the field order along with a specific technology-

based area and time complexity estimations of gates. The field order, m, can be selected as

409, which is one of the field sizes recommended by NIST for Elliptic curve cryptographic

applications [61]. For the estimation of area and time complexities of the gates, NanGate

45nm technology-based open cell library statistics [46,60] is adopted as follows: The area

complexities in terms of the NAND gate equivalents (GE) for a NOT gate, a 2-input AND
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gate, a 2-input XOR gate, and a D flip-flop with set/reset capabilities are taken as 0.5,

1.4, 2, and 5.7, respectively. The delays of a 2-input NAND gate, a 2-input AND gate,

and a 2-input XOR gate are 0.015, 0.025, and 0.035 ns, respectively. It is observed that

the area required for a 2-input NAND gate based on Synopsys design compiler synthesis

using 45nm NanGate open cell libraries is 0.8µm2.

Table 5.6 presents the estimated critical path delay and area complexity for the

proposed multiplier along with same multipliers considered for analytical comparison.

Area complexities are estimated in the units of µm2 and it may be noted that the proposed

multiplier requires more number of area when compared with the multipliers [27,44–46,62].

However, the proposed multiplier requires the lowest critical path delay which indicates

that it achieves high throughput rates when compared with other multipliers. Though the

proposed multiplier is not area-efficient, it achieves reduction in critical path delay and

improvement in throughput rates. It is observed that the proposed multiplier achieves

around 42% more throughput rates when compared with the best multiplier [46] (See %

increase in Throughput column). The overall efficiency of the proposed multiplier can

be compared with other multipliers in terms of area-delay-product (ADP). It is observed

that the proposed multiplier achieves around 6% less area-delay-product when compared

with the best multiplier [46] (See % reduction in ADP column). Hence, it is clear from the

estimated values presented in Table 5.6 that the proposed multiplier has high throughput

rates and also achieves a marginal reduction in area-delay-product when compared with

the similar multipliers available in the literature.

Table 5.7 Comparison of ASIC implementation results for GF(2409).

Design
Critical

Path (ns)

Throughput

(×109)

Multiplier

Area (µm2)
ADP

% increase in

Throughput

% reduction

in ADP

[46] 0.19 5.26 2783963 528953 35.74 5.7

[62] 0.21 4.76 2533407 532015 50 6.3

Proposed 0.14 7.14 3559604 498345 – –
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5.3.3 Implementation Results

It is observed from Table 5.6 that the multipliers [46,62] have the nearest complexi-

ties to that of the proposed multiplier with respect to throughput and area-delay-product

compared to the other multipliers considered for comparison. Hence, these two multi-

pliers [46, 62] and the proposed multiplier are modeled using VHDL for GF(2409). The

RTL models are simulated using Vivado Simulator to verify the functionality. Also, these

RTL models are synthesized using Synopsys Design Compiler tool employing NanGate

45nm open cell library [60] to obtain the area and time complexities. The area and time

complexities obtained for all the three multipliers are tabulated in Table 5.7. It may be

concluded from the synthesized results obtained that the proposed multiplier achieves

more throughput and less area-delay-product than that of the other previous multipliers.

5.4 Low-Latency Area-Efficient Bit-Parallel Systolic Multiplier

In this section, the design and performance analysis of the proposed bit-parallel

systolic multiplier for a narrow of trinomials for which k ≤ m − 2dm/3e is presented.

First, we present the mathematical formulations for the proposed GF(2m) multiplication

and its realization using the bit-parallel systolic architecture. Following this, analytical

comparisons of area and time complexities and implementation results are presented.

5.4.1 Design

This section presents the formulations and the multiplier architecture for the pro-

posed GF(2m) multiplication. First, we develop the formulations for the proposed GF(2m)

multiplication method. Following this, the proposed multiplier architecture realized using

these formulations is presented.
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Mathematical Formulation

Consider Eq. 5.1, where C(x) is the product of the two field elements A(x) and

B(x), given by

C(x) = (A(x)×B(x)) mod T (x)

= A(x)
m−1∑
i=0

bix
i mod T (x)

=
m−1∑
i=0

biA(x)xi mod T (x)

=
(
bm−1Ax

m−1 + bm−2Ax
m−2 + ........ + b1Ax + b0A

)
mod T (x)

=
(
bm−1(Ax

m−1) + bm−2(Ax
m−2) + ........ + b1(Ax) + b0(A)

)
mod T (x) (5.14)

This Eq. 5.14 is the same as Eq. 5.2, however, it is renumbered here for convenience.

Equation 5.14 can be explicitly rewritten as a summation of three sub-expressions as

shown in Eq. 5.15 where each sub-expression consistsm/3 terms. The lower sub-expression

contains the terms which have the powers of x from 0 to (m/3 − 1). The middle sub-

expression contains the terms which include the powers of x from m/3 to (2m/3 − 1).

The upper sub-expression contains the remaining terms that have the powers from 2m/3

to (m− 1).

C(x) =
((
bm−1(Ax

m−1) + bm−2(Ax
m−2) + ........+ b2m/3+1(Ax

2m/3+1) + b2m/3(Ax
2m/3)

)
+
(
b2m/3−1(Ax

2m/3−1) + b2m/3−2(Ax
2m/3−2) + ...

.....+ bm/3+1(Ax
m/3+1) + bm/3(Ax

m/3)
)

+
(
bm/3−1(Ax

m/3−1) + bm/3−2(Ax
m/3−2) + ........+

b1(Ax) + b0(A)
))

mod T (x) (5.15)



Systolic Multipliers for Specific Classes of Trinomials 86

Now, by bringing out xm/3 as a common term from the middle sub-expression and x2m/3

as a common term from the upper sub-expression, we can have

C(x) =
((
bm−1(Ax

m/3−1) + bm−2(Ax
m/3−2) + ........+ b2m/3+1(Ax) + b2m/3(A)

)
x2m/3

+
(
b2m/3−1(Ax

m/3−1) + b2m/3−2(Ax
m/3−2) + ...

.....+ bm/3+1(Ax) + bm/3(A)
)
xm/3

+
(
bm/3−1(Ax

m/3−1) + bm/3−2(Ax
m/3−2) + ........+

b1(Ax) + b0(A)
))

mod T (x) (5.16)

Now, we can define the following recursive notations, A(0) = A, A(1) = A(0)x, A(2) =

A(1)x, A(3) = A(2)x, ......., A(m/3−1) = A(m/3−2)x. These recursive relations can also be

represented using the following recursive equation as,

A(j) = A(j−1)x mod T (x),where j = (m/3− 1), ..., 2, 1 (5.17)

where,

A(j−1) =
m−1∑
i=0

a
(j−1)
i xi,∀ a(j−1)i ∈ GF(2) (5.18)

Furthermore, from the fact that x is a root of the irreducible polynomial T (x), hence,

using Eq. 5.7 we have

xm = tm−1x
m−1 + tm−2x

m−2 + .......+ t2x
2 + t1x+ t0

The expression for the element A(j) (Eq. 5.17) can be written as

A(j) = a
(j)
m−1x

m−1 + a
(j)
m−2x

m−2 + .....+ a
(j)
2 x2 + a

(j)
1 x+ a

(j)
0 (5.19)

The coefficients of the element A(j) can be obtained in terms of the coefficients of A(j−1)

as

a
(j)
0 = a

(j−1)
m−1 (5.20)

a
(j)
i = a

(j−1)
i−1 + a

(j−1)
m−1 ti,where i = 1, 2, ......,m− 1 (5.21)
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From these implications, the expression for C(x) in Eq. 5.16 can be rewritten as

C(x) =
((
bm−1(A

(m/3−1)) + bm−2(A
(m/3−2)) + ........+ b2m/3+1(A

(1)) + b2m/3(A
(0))
)
x2m/3

+
(
b2m/3−1(A

(m/3−1)) + b2m/3−2(A
(m/3−2)) + ...

.....+ bm/3+1(A
(1)) + bm/3(A

(0))
)
xm/3

+
(
bm/3−1(A

(m/3−1)) + bm/3−2(A
(m/3−2)) + ........+

b1(A
(1)) + b0(A

(0))
))

mod T (x) (5.22)

It can be noted that the expression for C(x) in Eq. 5.22 contains three similar sub-

expressions, namely, sub-expression-1

(
bm−1(A

(m/3−1)) + bm−2(A
(m/3−2)) + ........ + b2m/3+1(A

(1)) + b2m/3(A
(0))
)

mod T (x)

(5.23)

and sub-expression-2 as

(
b2m/3−1(A

(m/3−1)) + b2m/3−2(A
(m/3−2)) + ...

.....+ bm/3+1(A
(1)) + bm/3(A

(0))
)

mod T (x) (5.24)

and sub-expression-3 as

(
bm/3−1(A

(m/3−1)) + bm/3−2(A
(m/3−2)) + ........+

b1(A
(1)) + b0(A

(0))
))

mod T (x) (5.25)

It can be observed that the above three sub-expressions (Eqs. 5.23, 5.24, and 5.25)

are similar in computation and each one requires the elements A(0), A(1), ......, A(m/3−2),

A(m/3−1) for its computation. Further, these m/3 elements can be computed recursively

from the element A using Eq. 5.17 where each recursion requires modulo reduction using

the irreducible polynomial T (x). The computational complexity of the elements A(j), j =

1, 2, ....., (m/3 − 1), can be reduced by selecting the low-weight irreducible polynomials

such as trinomials. Moreover, it is observed that the complexity can be further reduced

for a specific class of trinomials xm+xk+1 for which k ≤ m−2dm/3e. This narrow class of

trinomials that results in low-hardware complexities are highly desirable for constrained

and cost-effective applications such as IoT applications. The complexity reduction using
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these trinomilas can be achieved as the multiplication of any field element, A, with xi,

where i = 1, 2, ..., 2m/3, can be realized using one level of i number of XOR gates. To

make it more clear, we have considered the field GF(212) over the irreducible trinomial

T (x) = x12 + x3 + 1 where this trinomial obeys the condition that is mentioned for the

specified narrow class of trinomials, i.e. k ≤ m − 2dm/3e. This field is considered to

show that Axi mod T (x), for i = 1, 2, ..., 8, requires one level of i XOR gates, and same

is described in Table 5.8. The co-ordinate representation of the element A ∈ GF(212) can

be given as (a11, a10, a9, a8, a7, a6, a5, a4, a3, a2, a1, a0). It can be observed from Table 5.8

Table 5.8 Coordinate representation of Axi mod T (x).

i Axi mod T (x)

1 [a10, a9, a8, a7, a6, a5, a4, a3, a2 ⊕ a11, a1, a0, a11]

2 [a9, a8, a7, a6, a5, a4, a3, a2 ⊕ a11, a1 ⊕ a10, a0, a11, a10]

3 [a8, a7, a6, a5, a4, a3, a2 ⊕ a11, a1 ⊕ a10, a0 ⊕ a9, a11, a10, a9]

4 [a7, a6, a5, a4, a3, a2 ⊕ a11, a1 ⊕ a10, a0 ⊕ a9, a11 ⊕ a8, a10, a9, a8]

5 [a6, a5, a4, a3, a2 ⊕ a11, a1 ⊕ a10, a0 ⊕ a9, a11 ⊕ a8, a10 ⊕ a7, a9, a8, a7]

6 [a5, a4, a3, a2 ⊕ a11, a1 ⊕ a10, a0 ⊕ a9, a11 ⊕ a8, a10 ⊕ a7, a9 ⊕ a6, a8, a7, a6]

7 [a4, a3, a2 ⊕ a11, a1 ⊕ a10, a0 ⊕ a9, a11 ⊕ a8, a10 ⊕ a7, a9 ⊕ a6, a8 ⊕ a5, a7, a6, a5]

8 [a3, a2 ⊕ a11, a1 ⊕ a10, a0 ⊕ a9, a11 ⊕ a8, a10 ⊕ a7, a9 ⊕ a6, a8 ⊕ a5, a7 ⊕ a4, a6, a5, a4]

that realization of an ith row requires i number of XOR gates. It can also be noted from

the table that the realization of Axi mod T (x) for i = 8 (2m/3) requires the maximum

number of one level of XOR gates i.e., 8 gates, while for all other considered values of i,

it requires less than this maximum value (2m/3).

Proposed Systolic Multiplier Architecture

This section presents the proposed systolic architecture based on the formulations

developed for GF(2m) multiplication. This multiplier architecture is suitable for mul-

tiplication in GF(2m) fields that are generated using trinomials xm + xk + 1 for which

k ≤ m − 2dm/3e. A signal flow graph (SFG) is developed based on the formulations

(Eq. 5.22), and then a set of suitable cutset pipelining techniques are applied on it to
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realize the gate level structure for the proposed systolic multiplier.
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Figure 5.13 Signal flow graph (SFG) representation of the proposed GF(2m) multiplication.

The expression for the multiplication of elements A and B, C(x), given by Eq. 5.22

can be represented using the signal flow graph (SFG) shown in Fig. 5.13. The structure of

this SFG is developed based on the observations that Eq. 5.22 comprises the three similar

sub-expressions (See Eqs. 5.23, 5.24, and 5.25) whose computation can be performed in

parallel and the terms A(i), which are used in the computation of the three sub-expressions,

can be obtained from the recursive computations (See Eq. 5.17). The SFG contains five

types of nodes namely reduction nodes (Ri), multiplication nodes (Mi), addition nodes

(Xi), final reduction node (R), and final addition nodes (X’i). Specifically, the SFG

contains (m/3 − 1) reduction nodes (Ri, for i=1, 2, 3, ..., m/3 − 1), m/3 multiplication

nodes (Mi, for i=0, 1, 2, ..., m/3 − 1), (m/3 − 1) addition nodes (Xi, for i=1, 2, 3, ...,

m/3 − 1), one final reduction node (R), and two final addition nodes (X’i, for i=1, 2).

The input operands, A and B, are applied in parallel to the SFG and the output, C, is

also available in parallel.

The functional description of the nodes of the SFG is depicted in Fig. 5.14. The

reduction node Ri presented in Fig. 5.14(a) performs reduction by degree one on its

input, A(i−1), after multiplying it with x. The equation that describes the function of

this node is also presented in this figure where A(i) is considered as the reduced form of

A(i−1). The multiplication node Mi presented in Fig. 5.14(b) performs three simultaneous

multiplications, where, in the each multiplication the single bit input (bi/bm/3+i/b2m/3+i)

is multiplied with the m-bit input A(i). The formulations that represent the function of

this node are also presented in the figure. The addition node Xi shown in Fig. 5.14(c)

performs three simultaneous additions where the m-bit inputs Ci, Di, and Ei are added

to the inputs b2m/3+iA
(i), bm/3+iA

(i), and biA
(i), respectively. The final reduction node R

shown in Fig. 5.14(d) performs reduction by degree 2m/3 on the input Ci and reduction
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Figure 5.14 Functional description of a) ith reduction node Ri b) ith multiplication node Mi c)

ith addition node Xi d) final reduction node R e) final addition node X’1 f) final addition node

X’2.

by degree m/3 on the input Di. The other input Ei is unchanged and is simply routed

to the output W. The formulations representing the functionality of this node are also

presented in the figure. The final addition node X’1 presented in Fig. 5.14(e) performs

the addition of the upper two m-bit inputs (U and V ). The other input (W ) remains

unchanged and is made available at the output (Y ). The equations that describe the

functionality of this node are also presented. The final addition node X’2 presented in

Fig. 5.14(f) performs the addition of the two m-bit inputs (U and V ). The equation that

describes the functionality of this node is also presented.

It may be noted that Eq. 5.22 representing the SFG (Fig. 5.13) consists of the three

sub-expressions as specified using Eqs. 5.23, 5.24, and 5.25. The computations involved

in the evaluation of these three sub-expressions are similar and requires the reduced

forms of A from A(0) to A(m/3−1). Moreover, these three expressions can be evaluated

simultaneously as shown in the SFG. The reduced forms of input A are obtained using

reduction nodes Ri and used by multiplication nodes Mi to generate the product terms

of the form biA
(i)/bm/3+iA

(i)/b2m/3+iA
(i). These product terms are accumulated using Xi

nodes to obtain the evaluation of the sub-expressions (Eqs. 5.23, 5.24, and 5.25). Once

these three expressions are computed, the evaluation of Eq. 5.22 to obtain the required
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product C can be performed by modulo multiplying Eq. 5.23 with x2m/3 and Eq. 5.24 with

xm/3 using the R node followed by the addition of both of these equations to Eq. 5.25

using the X’1 and X’2 nodes.
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Figure 5.15 Pipelined SFG using vertical cutsets.

It can be observed from the SFG (Fig. 5.13) that input A is processed through all

the nodes at a stretch to obtain the output C. This kind of processing at a stretch incurs

a long critical path delay when this SFG is realized in hardware. Hence, it is required

to apply suitable cutset pipelining to this SFG to reduce the critical path delay. It is

identified that the vertical cutsets as shown in Fig. 5.15 are best suitable for the efficient

realization of the SFG. These cutsets are feed-forward cutsets and indicate the placing of

registers in hardware realization at the points where the cutset lines intersect the SFG.

The vertical cutsets are applied such that the sequential dependency between the Ri node

and the Mi & Xi nodes is eliminated i.e. during any clock cycle the Mi & Xi nodes need

not wait until the output at the Ri node available. Instead, the Mi & Xi nodes process

the data generated by Ri node during the previous clock cycle. The sections of the SFG

that are separated by cutset lines can be considered as processing elements (PEs) and the

SFG (Fig. 5.15) contains (m/3 + 3) such sections. The formation of PEs obtained from

the pipelined SFG is presented in Fig. 5.16, and there are (m/3 + 3) PEs. The hardware

realization of this SFG requires to insert registers (incurred by cutset lines) between PEs.
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Figure 5.16 Formation of the processing elements (PEs).
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The proposed systolic structure for obtaining the required finite field GF(2m) prod-

uct, C(x) given by Eq. 5.22, is presented in Fig. 5.17. This structure is developed using

the SFG shown in Fig. 5.16. This systolic structure consists of a total of (m/3 + 3) PEs

and these PEs can be categorized into six types based on the functionality. The PEs from

PE[1] to PE[m/2-2] are of the same type and this type is denoted as regular PE (PE).

The other PEs, PE[0], PE[m/3-1], PE[xm/3&x2m/3], PE[X’1], and PE[X’2] are of distinct

PEs and are also different from the regular PEs.
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1Figure 5.17 Proposed systolic structure for GF(2m) multiplication.
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Figure 5.18 Functional description of a) PE[0] b) Regular PE c) PE[m/3-1] d)

PE[xm/3&x2m/3] e) PE[X’1] f) PE[X’2].

The functional description of all the PEs is presented in Fig. 5.18. The functional

description of the first PE of the systolic structure, PE[0], is presented in Fig. 5.18(a).

This PE performs a reduction by degree one operation and three multiplication opera-

tions. The multiplication operations involve the multiplication of an m-bit operand with

a 1-bit operand. The functional description of the regular PEs is presented in Fig. 5.18(b).
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These PEs perform a reduction by degree one operation and three multiply-add opera-

tions. The multiply-add operations involve the multiplication of an m-bit operand with

a 1-bit operand followed by the addition of an m-bit operand. Figure 5.18(c) presents

the functional description of the PE[m/3-1] where this PE performs three multiply-add

operations. Figure 5.18(d) presents the functional description of the PE[xm/3&x2m/3]

where the functionalities of this PE include a reduction by degree 2m/3 operation and a

reduction by degree m/3 operation. The functional description of the PE[X’1] is presented

in Fig. 5.18(e). This PE performs the addition of the two upper inputs while simply rout-

ing the other input to the output. The functional description of the PE[X’2] is presented

in Fig. 5.18(f) where this PE performs the addition of its two inputs. Formulations that

represent the functionalities are also included for all the PEs presented in Fig. 5.18.
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Figure 5.19 Detailed gate level architecture of the regular PE.

The detailed gate-level architecture of the regular PE is presented in Fig. 5.19. The

inputs Xin, X1in, X2in, and X3in are of m-bits and the inputs Y 1in, Y 2in, and Y 3in,

are of 1-bit. Also, there are four outputs and all are of m-bit width. The architecture

contains a reduction unit (RU), three AND cells, and three XOR cells. The reduction

unit RU performs the reduction by degree one operation on the input Xin. It realizes the

reduction node Ri of a regular PE. It comprises a single XOR gate to realize the reduction

operation. The exact placement of this XOR gate in the RU depends on the degree of the
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middle term of the trinomial selected. For instance, the first row of Table 5.8 represents

the reduction by degree one of the element A using the trinomial x12 + x3 + 1. For this

case, it requires an XOR gate at the fourth place from the least-significant-bit position to

realize the reduction operation. The three AND cells perform the multiplication of the

three 1-bit inputs Y 1in, Y 2in, and Y 3in with the Xin. These three AND cells jointly

denote the realization of the multiplication node Mi of a regular PE. Each AND cell

contains an array of m AND gates where an ith gate takes the ith bit of Xin as one input

and another input is Y 1in (for the left cell)/ Y 2in (for the middle cell)/Y 3in (for the

right cell). The three XOR cells perform the addition of the three m-bit inputs X1in,

X2in, and X3in with the respective output of the three AND cells as shown in the figure.

These three XOR cells jointly denote the realization of the addition node Xi of a regular

PE. The left XOR cell contains an array of m XOR gates where an ith gate takes the ith

bit of X1in as one input and another input is the ith bit of the output of the left AND

cell. Similarly, the same is the case with middle and right XOR cells.

The gate level architectures for the PE[0] and PE[m/3-1] can be easily obtained from

the architecture of the regular PE as the functionalities of these PEs are sub-functions

of the regular PE. The processing element PE[xm/3&x2m/3] can be realized using m

XOR gates. The reduction by 2m/3 operation of this PE requires 2m/3 XOR gates and

the reduction by m/3 operation requires m/3 XOR gates. The placement of these gates

depends on the trinomial selected for the design of GF(2m) multiplier (For example, see

the eighth and fourth rows of Table 5.8 for the trinomial x12 + x3 + 1). The gate level

architectures for the PE[X’1] and PE[X’2] require m XOR gates each. The proposed

systolic multiplier has a latency of (m/3 + 3) clock cycles and generates a new output for

each clock cycle.

5.4.2 Analytical Results

This section presents the area and time comparisons of the proposed systolic mul-

tiplier with the related systolic multipliers available in the literature. Table 5.9 presents

the analytical comparisons of the area and time complexities and Table 5.10 presents the

comparison of the estimated area and time complexities computed for m = 409 using the

FreePDK 45nm NanGate open cell library statistics.
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Table 5.9 presents the analytical comparison of the proposed multiplier with the

available multipliers [27, 39–46, 62] in terms of gate complexities, critical path delay, and

latency. All of these multipliers listed in Table 5.9 are applicable for either trinomials

or a specific class of trinomials. The area complexities for the proposed multiplier are

computed in terms of the number of 2-input XOR gates, 2-input AND gates, and registers.

The area complexities of the multipliers considered for comparison are also presented

using similar gates. The time complexities for the proposed multiplier and the available

multipliers are presented in terms of 2-input AND gate delay (TA) and 2-input XOR gate

delay (TX).

Table 5.9 Comparison of area and time complexities for GF(2m).

Design AND XOR Register Latency Critical Path

[39] (m+ 1)2 (m+ 1)2 4(m+ 1)2 m+ 1 TA + TX

[40] m2 m2 +m− 1 3m2 + 2m− 2 2m− 1 TA + TX

[41] m2 m2 +ml 4m2 + 2lm m+ l − 1 TA + TX

[42] (3m2 −m)/2 m2 +m 4m2 +m m+ 1 TA + TX

[43] m2 m2 +m 3.5m2 + 3m m+ 2 TA + TX

[27] m2 m2 − 1 2m(m− 1) m TA + TX

[44] m2 m2 +mta −m 2m2 m TA + 2TX

[45] m2 m2 +mta −m 2m2 m/2 + 2 2TX

[46] m2* 1.5m2 + 0.5m 1.5m2 + 2m− 1 m+ 2 TNA + TX

[62] m2 m2 − 1 1.5m2 +m m/2 + 2 TA + TX

Proposed m2 10m2/9−m/3 4m2/3 + 5m m/3 + 3 TA + TX

l = b(m− 2)/(m− k)c+ 1.

∗ m2 NAND gates along with (1.5m2 − 2.5m+ 3) number of inverters.

a t=1 for the class of polynomials considered in this work.

The area and time complexities for the proposed systolic multiplier can be obtained

from the gate level architectures of the PEs of the systolic structure presented in Fig. 5.17.

The area complexities for the regular PEs (PE[1] to PE[m/2-2]) can be computed from

the detailed gate-level architecture presented in Fig. 5.19. This architecture comprises a

reduction unit RU and three sets of AND and XOR cells. The reduction unit requires one

XOR gate, a AND cell requires m AND gates, and an XOR cell requires m XOR gates.
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Hence, the regular PE requires a total of 3m AND gates and 3m + 1 XOR gates. The

architecture of the processing element PE[0] is similar to regular PE except that it does

not require XOR cells. Hence, this PE requires 3m AND gates and a single XOR gate.

The architecture of the processing element PE[m/3-1] is also similar to regular PE except

that it does not require the reduction unit RU. Hence, this PE requires 3m AND gates and

3m XOR gates. The processing element PE[xm/3&x2m/3] requires m XOR gates which

include 2m/3 XOR gates for reduction by degree 2m/3 operation and m/3 XOR gates

for reduction by degree m/3 operation. The final addition nodes PE[X’1] and PE[X’2]

require m XOR gates each. Furthermore, to realize the cutset lines (See Fig. 5.15) it is

required to place the registers between any two adjacent PEs i.e. each horizontal line in

the proposed systolic structure (See Fig. 5.17) requires m registers. Hence, the proposed

multiplier requires a total of m2 AND gates, 10m2 −m/3 XOR gates, and 4m2/3 + 5m

registers. Critical path delay and latency of the proposed multiplier are TA + TX and

(m/3 + 3) clock cycles (See Fig. 5.19), respectively. These area and time complexities

are presented in Table 5.9 along with the complexities of the available multipliers. It

can be observed from this table that the proposed multiplier requires the lowest latency

compared to all other multipliers. Also, the critical path delay of the proposed multiplier

is nearly the same as the available multipliers.

The comparisons presented in Table 5.9 can be better assessed using a specific field

order m and a specific implementation technology. The field order is selected as m = 409

since it is the field order recommended by NIST for implementation of the Elliptic curve

digital signature algorithm (ECDSA) [61, 63]. We have considered Nangate 45nm open

cell library [46, 60] statistics to obtain the estimated standard gate complexities. Based

on this technology, the estimations for area and time complexities are adopted as follows.

The area complexities for all the required gates are represented in terms of the 2-input

NAND gate equivalents (GE), where a NOT gate, a 2-input XOR gate, a 2-input AND

gate, and a D flip-flop with set/reset capabilities are equivalent to 0.5, 2, 1.4 and 5.7

GEs, respectively. It is observed that the area required for a 2-input NAND gate when

synthesized using Synopsys design compiler employing 45 nm NanGate open cell libraries

is 0.8 µm2. The delays of a 2-input NAND gate, a 2-input XOR gate, and a 2-input AND

gate are 0.015, 0.035, and 0.025 ns, respectively.
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Table 5.10 Comparison of area and time complexities for GF(2409).

Design Critical

Path (ns)

Latency

(clock cycles)

Latency

(ns)

Area (×106)

(µm2)

% reduction in

Latency (ns)

% reduction

in Area

[39] 0.06 410 24.60 3.5 66 57.14

[40] 0.06 817 49.02 2.7 83 44.44

[41] 0.06 410 24.60 3.7 67 59.45

[42] 0.06 410 24.60 4.5 66 66.66

[43] 0.06 411 24.66 3.1 67 51.61

[27] 0.06 409 24.54 2 66 25

[44] 0.09 409 36.81 2 78 25

[45] 0.07 207 14.49 2 42 25

[46] 0.05 411 20.55 1.8 59 16.67

[62] 0.06 207 12.42 1.6 32 6.67

Proposed 0.06 139 8.34 1.5 – –

Table 5.10 presents the estimated area and time complexities computed using m =

409 and the NanGate 45nm open cell library statistics for the proposed multiplier and

the multipliers considered for comparison. The table presents the comparison of critical

path delay (ns), latency (clock cycles), latency (ns), and area complexity (NAND gate

equivalents, GE). It is observed that the proposed multiplier requires the same critical

path delay (0.06ns) when compared to the multipliers [39], [40], [41], [42], [43], [27], [62]

and more delay when compared to the multiplier [45]. However, the proposed multiplier

requires the lowest latency both in terms of clock cycles and delay (ns) compared to all

other multipliers (See third and fourth columns). The proposed multiplier achieves 66%,

83%, 67%, 66%, 67%, 66%, 78%, 42%,59%, and 32% reduction in latency (ns) compared

to the multipliers [39], [40], [41], [42], [43], [27], [44], [45], [46], [62], respectively. It is also

observed from the table that the proposed multiplier requires the lowest area (See the fifth

column) when compared to all other multipliers considered for comparison. The proposed

multiplier achieves 57%, 44%, 59%, 66%, 51%, 25%, 25%, 25%, 16% and 6% reduction

in area compared to the multipliers [39], [40], [41], [42], [43], [27], [44], [45], [46], [62],

respectively. Hence, it is clear from this table that the proposed multiplier achieves low

latency and low area complexities compared to the similar multipliers available in the

literature.
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Table 5.11 Comparison of ASIC implementation results for GF(2409).

Design
Critical

Path (ns)

Latency

(ns)

Multiplier

Area (µm2)

% reduction

in Latency

% reduction

in Area

[46] 0.19 78.09 2783963 58.67 13.08

[62] 0.21 43.47 2533407 25.76 4.49

Proposed 0.21 32.27 2419701 – –

5.4.3 Implementation Results

It may be observed from Table 5.10 that the two multipliers [46,62] have the nearest

complexities to the proposed multiplier compared to the other multipliers. These two

nearest multipliers and the proposed multiplier are modeled for the field GF(2409) using

VHDL and simulated using the Vivado simulator to verify the functionality. Also, these

models are synthesized using Synopsys design compiler tool employing the NanGate 45nm

open cell libraries [60] to obtain the critical path delay (ns) and area (µm2). Table 5.11

presents the comparison of ASIC implementation results obtained using the Synopsys

design compiler tool. It is observed that the proposed multiplier requires the lowest area

compared to the other two multipliers. The proposed multiplier requires 13% and 4% less

area when compared to the multipliers [46, 62], respectively. It is also observed that the

proposed multiplier requires the lowest latency compared to the other two multipliers.

The proposed multiplier achieves a 58% and 25% reduction in latency when compared to

the multipliers [46,62], respectively. Hence, the implementation results also confirm that

the proposed multiplier achieves low latency and low area.

5.5 Conclusions

In this chapter, three high-performance multipliers employing systolic architectures

using two specific classes of trinomials targeting IoT edge devices are presented. The

design of the proposed multipliers involves developing the formulations followed by signal

graph representation and applying efficient cutset pipelining techniques. It includes the

design of a bit-parallel systolic multiplier using the class of trinomials xm + xk + 1 for
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which k ≤ (m− 1)/2 (if m is odd) or k ≤ m/2 (if m is even). Analysis of this multiplier

is performed using analytical and implementation results which show that the proposed

multiplier achieves low-latency and low-area compared to the available multipliers. This

low-latency and low-area multiplier is further modified by employing a few more cutsets

to reduce the critical path delay. The analysis of this modified multiplier shows that it

achieves improved throughput compared to the available related multipliers. Design of the

proposed multipliers also includes another systolic multiplier using the class of trinomials

xm + xk + 1 for which k ≤ m − 2dm/3e. Analysis of this multiplier is performed using

analytical and implementation results which show that the proposed multiplier achieves

low-latency and low-area compared to available related multipliers including our first

proposed low-latency multiplier (for which k ≤ (m − 1)/2 (if m is odd) or k ≤ m/2 (if

m is even)). For all the proposed multipliers, analytical comparisons are performed by

computing the expressions for m = 409 using NanGate 45nm FreePDK open cell library

statistics and implementaion comparisons are performed for m = 409 using Synopsis

Design Compiler employing NanGate 45nm FreePDK open cell library files. The proposed

systolic multipliers generate a new product for every clock cycle and are suitable for high-

performance IoT devices such as edge devices.

The bit-serial sequential multipliers presented in the previous chapter (Chapter 4)

are suitable for low-cost IoT devices where performance is not an important criterion (Do-

mestic IoT), and the bit-parallel systolic multipliers presented in this chapter are suitable

for high-performance IoT devices where the cost is not a primary objective (Industrial

IoT). However, there is also a need for scalable (digit-serial) multipliers, which are in be-

tween the bit-serial and the bit-parallel multipliers with respect to performance as well as

cost, required for the IoT devices that are employed in a wide variety of applications such

as agriculture and healthcare. Hence, the design of scalable multipliers such as digit-serial

multipliers is desirable to address the wide variety of performance requirements arising

from various application domains. Consequently, the next chapter presents the design of

efficient digit-serial multipliers that are suitable for a wide range of IoT applications.



Chapter 6

High-Throughput and Low-hardware Digit-Serial

Sequential Multipliers for a Specific Class of

Trinomials

Digit-serial multipliers facilitate scaling of area/delay or trade-off between area and

delay. Depending on the application, the digit-size of these multipliers can be selected

anywhere between a single-bit to m-bits. In this chapter, we present the design of two

digit-serial sequential multipliers using a specific class of trinomials (This class of trino-

mials is the same as the class that is used for the design of the area-efficient low-latency

systolic multiplier presented in the previous chapter, Section 5.2). First, we present a

fully digit-serial sequential multiplier using the class of trinomials xm + xk + 1 for which

k ≤ (m− 1)/2 (if m is odd) or k ≤ m/2 (if m is even). The algorithm of this multiplier

is based on a redundant basis multiplication algorithm available in the literature. Next,

we present another digit-serial sequential multiplier using the same class of trinomials

xm+xk+1 for which k ≤ (m−1)/2 (if m is odd) or k ≤ m/2 (if m is even). The area and

time complexities of these multipliers are obtained analytically and compared with the re-

lated available multipliers. Also, these analytical complexities are computed for m = 409

using the gate estimations from the FreePDK NanGate 45nm technology standard cell

libraries. Further, the proposed multipliers are modeled using VHDL (Very High Speed

Integrated Circuit Hardware Description Language) and synthesized using Synopsys De-

sign Compiler employing FreePDK NanGate 45nm technology libraries, and compared

with the best available multipliers. The comparisons show that the proposed fully digit-
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serial multiplier is time-efficient and the other digit-serial multiplier is hardware-efficient.

6.1 Introduction

Bit-serial and bit-parallel multipliers are two extremes with respect to hardware re-

quirement and speed performance. Though bit-serial multipliers are highly area-efficient,

they can not be used for applications that require high/moderate data speeds. On the

other hand, bit-parallel multipliers provide high throughput rates, however, they fail to

meet the area requirements of resource-constrained applications. Neverthless, digit-serial

multipliers allow the scaling of area or throughput rates, hence, facilitate the flexible im-

plementation. Hence, the design of digit-serial multipliers is required targeting a wide

range of IoT (Internet of Things) applications that require moderate performance such as

smart agriculture and smart healthcare.

Many digit-level finite field multipliers [51–55] are proposed in the literature to

achieve better area and time complexities. In this chapter, first, we present a modified

digit-serial polynomial basis multiplication algorithm and its fully digit-serial architec-

ture. The proposed algorithm is based on an algorithm presented for the redundant basis

multiplier [64]. Multipliers based on redundant basis do not involve modulo reduction

step, however, they take a large amount of excessive hardware due to the embedding of

the finite field GF(2m) in a larger cyclotomic field. Hence, redundant basis multipliers

are not suitable for most of the fields including fields recommended by National Institute

of Standards and Technology (NIST) for implementing the elliptic curve digital signa-

ture algorithm (ECDSA). Since polynomial basis multiplier is more efficient compared

to other bases multipliers, we propose a fully digit-serial architecture for hardware real-

ization of polynomial basis multiplier for trinomials based on the methodology presented

in [64]. The proposed multiplier is applicable for the class of trinomials xm+xk +1 where

k ≤ (m − 1)/2 (if m is odd) or k ≤ m/2 (if m is even) which includes two of the NIST

recommended fields (GF(2233) and GF(2409)), and is highly suitable for cost-effective IoT

edge devices employed for high data rate applications. The allowable digit-size (w) for this

multiplier is assumed to be w ≤ (m− 1)/4 (if m is odd) or w ≤ m/4 (if m is even). Next,

we present another polynomial basis digit-level multiplier whose structure comprises of a
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parallel multiplier followed by an accumulation unit. The parallel multiplier is based on

the approach proposed for an available parallel multiplier for all trinomials [65], and this

approach when applied for the class of trinomials, xm+xk+1 where k ≤ (m−1)/2 (if m is

odd) or k ≤ m/2 (if m is even), gives low hardware implementations [66]. This proposed

low-hardware digit-serial multiplier is suitable for end devices used in IoT applications.

6.2 High-Throughput Fully Digit-Serial Sequential Multiplier

In this section, the design of the proposed digit-serial multiplier and its performance

analysis using analytical and implementation comparisons with the related multipliers are

presented.

6.2.1 Design

In this section, mathematical formulations for the proposed fully digit-serial multi-

plication scheme are developed. The formulations are based on recursive definitions of the

input elements. Based on the formulations developed for polynomial basis multiplication,

a digit-level finite field GF(2m) multiplier architecture is proposed. One digit from each

element starting from MSD (most significant digit) enters the architecture in each clock

cycle. The architecture takes (n+1) clock cycles to perform one multiplication operation.

Mathematical Formulations

Let GF(2m) be a binary finite field defined over an irreducible polynomial T (x),

where T (x) be a trinomial of the form xm + xk + 1 for which k ≤ (m− 1)/2 (if m is odd)

or k ≤ m/2 (if m is even). Let A and B be two arbitrary m-bit field elements represented

using polynomial basis.

Assume A is divided into n digits where each digit contains w bits. Further, this

digit-size (w) allowed is assumed to be such that w ≤ (m−1)/4 (if m is odd) or w ≤ m/4

(if m is even). Then, we have n =
⌈
m
w

⌉
, and

A = a0a1......aw−1︸ ︷︷ ︸
A0

aw......a2w−1︸ ︷︷ ︸
A1

....... a(k−1)w....am−10.....0︸ ︷︷ ︸
An−1
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The MSD is appended with (nw−m) zeros to make it a digit of w bits. The element

A can be reconstructed recursively using its n digits as

A(l) = An−l + (xwA(l−1)), l = 1, 2, ....n (6.1)

where, A(0) = 0, An−l =
∑w−1

i=0 a(n−l)w+ix
i, and A(n) = A.

Let C be the product of A and B. Then, we have C = AB mod T (x). Using the

recursive definitions of elements A and B, then C can be expressed as

C = A(l)B(l)
∣∣∣
l=n

mod T (x)

= A(n)B(n) mod T (x)

=
(
A0 + (xwA(n−1))

)(
B0 + (xwB(n−1))

)
mod T (x) (6.2)

It follows,

C =
(
A0(B0 + xwB(n−1)) + B0(x

wA(n−1)) + A(n−1)B(n−1)x2w
)

mod T (x) (6.3)

=
(
A0(B0 + xwB(n−1)) + B0(x

wA(n−1))
)

mod T (x) + A(n−1)B(n−1)x2w

mod T (x) (6.4)

Equation 6.4 can be evaluated by defining two intermediate vectors V
(l)
i , and C(l) as

V
(l)
i =

(
aw(n−l)+iB

(l) + bw(n−l)+i(x
wA(l−1))

)
xi mod T (x) (6.5)

and

C(l) =
w−1∑
i=0

V
(l)
i + (C(l−1)x2w mod T (x)) (6.6)

After developing the above formulations, the proposed polynomial basis multiplica-

tion operation is computed as given in algorithm 6.1.

Algorithm 6.1: Proposed fully digit-serial multiplication algorithm

Input: An−l, Bn−l, l = 1, ...., n, w.r.t. polynomial basis

Output: C = C(n) = AB mod T (x) = (cm−1, cm−2, . . . , c1, c0) also w.r.t. polynomial

basis

Initialisation: n =
⌈
m
w

⌉
, C(0) = 0;
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1: for l = 1 to n, compute in serial do

2: for i = 0 to w − 1, compute in parallel do

3: if i = 0 then

4: V
(l)
0 =

(
aw(n−l)B

(l) + bw(n−l)(x
wA(l−1))

)
+
(
C(l−1)x2w mod T (x)

)
5: else

6: V
(l)
i =

((
aw(n−l)+iB

(l) + bw(n−l)+i(x
wA(l−1))

)
xi
)

mod T (x)

7: end if

8: end for

9: C(l) =
∑w−1

i=0 V
(l)
i

10: end for

Proposed Architecture

In this section, the hardware realization of the proposed algorithm for digit-level

polynomial basis finite field GF(2m) multiplication is presented. The proposed architec-

ture is shown in Fig. 6.1. The operands A and B concurrently enter the architecture
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Figure 6.1 Proposed fully digit-serial polynomial basis GF(2m) multiplier architecture.

digit-wise starting from the MSD. The architecture takes (n+ 1) clock cycles to perform

one multiplication operation. The input digits of each operand are loaded into m-bit
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input registers with one digit per clock cycle. During lth clock cycle, the corresponding

w partial products, V
(l)
i , i = 0, 1, .., (w − 1) are generated in parallel. The first partial

product before its generation does not involve any multiplication with the powers of x

(unlike the other partial products). Instead, it involves the adding of feedback m-bit data

(C(l−1)x2w mod T (x)) to itself. The m-bit feedback data is obtained from the output reg-

ister after it is multiplied with x2w. Once these w partial products are generated, these are

added by the GF(2m) adder chain block. The mapping of the algorithm (algorithm 6.1)

onto its hardware realization is as follows: Step 2 of the algorithm is performed by w

subblocks. Step 4 is performed by subblock 0 which generates V
(l)
0 , while step 6 is real-

ized with the other (w− 1) lower subblocks. Step 9 in the algorithm is implemented with

GF(2m) adder chain.

6.2.2 Analytical Results

The hardware and time complexities of the proposed multiplier can be obtained

from Fig. 6.1. The multiplier requires two m-bit input registers and one m-bit output

register. Each subblock (Subblock i, for i = 0, ..., i, .., w − 1) contains (2m − w) AND

gates (to realize the terms aw(n−l)+i(B
(l)) and bw(n−l)+i(x

wA(l−1))), and (m − w) number

of XOR gates (to realize the addition of the terms aw(n−l)+i(B
(l)) and bw(n−l)+i(x

wA(l−1))).

The concatenation block requires simple wire routing and does not need any logic gates.

In addition, each of the xi multiplication blocks contains i number of XOR gates while

the GF(2m) adder of subblock 0 contains m XOR gates. Hence, all the w subblocks in the

architecture require (2m−w)w AND gates and (m−w)w+m+w(w− 1)/2 XOR gates.

The GF(2m) adder chain requires (w − 1)m number of XOR gates to add the w number

of m−bit data (V
(l)
i , i = 0, 1, ..., w − 1). The x2w mod T (x) block in the feedback path

requires 2w number of XOR gates. Hence, the proposed multiplier architecture requires

3m registers, ((2m − w)w) AND gates, and (2mw − (w2/2) + (3w/2)) XOR gates. The

area complexities in terms of 2-input AND gates, 2-input XOR gates, and registers are

presented in Table 6.1 for the proposed multiplier along with similar multipliers [51–55]

considered for comparison.

The time complexity of the architecture is given in terms of delays of logic gates.

Assume TA and TX denote the delays of 2-input AND and 2-input XOR logic gates. The
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Table 6.1 Area complexities comparison for GF(2m).

Design AND XOR Register

[51] wm wm+ 3w 2m+ w

[52] wm wm+ (w2 + w)/2 2m+ w

[53] wm wm+ (w2 + w)/2 2m+ w

[54] mlog6
4 69/20mlog6

4 − 1/4mlog2
4 − 11/5 2m− 1

[55] wm wm+ w2/2 + 3w/2− 1 2m

Proposed (2m− w)w 2mw − w2/2 + 3w/2 3m

Table 6.2 Time complexities comparison for GF(2m).

Design Latency (clock cycles) Critical path delay

[51] n+ 2 TA + (dlog2w+1
2 e)TX

[52] n− 1 TA + (dlogw2 e+ 2)TX

[53] n+ 1 TA + (dlogw2 e+ 2)TX

[54] n+ 1 TA + (1 + 3logm4 )TX

[55] n+ 1 TA + (dlogw2 e+ 2)TX

Proposed n+ 1 TA + (dlogw2 e+ 2)TX

critical path of the architecture comprises of the delays through a subblock and delays

through GF(2m) adder chain. Hence, the delay of critical path is TA + (dlogw2 e + 2)TX .

The time complexities for the proposed multiplier along with multipliers considered for

comparison are presented in Table 6.2. It is noted that the multipliers proposed in the

literature [51–55] require extra clock cycles for the preloading of one operand before the

start of multiplication operation, resulting in increase in the latency. In these multipliers,

after the loading of one operand, the entire data bus available is dedicated to loading

another operand digit-wise. In the case of the proposed multiplier, both operands enter

the architecture digit-wise requiring the available data bus to be shared between two

operands. Hence, for a given data bus width, the proposed multiplier digit size is half of

the digit size compared to other multipliers [51–55] that are considered for comparison.

Table 6.3 presents the estimation of complexities for the field order GF(2409) as-
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Table 6.3 Area and time complexities comparison for GF(2409).

Design Area (µm2)

Latency (including

preloading)

(clock cycles)

Critical

Path Delay

(ns)

Delay (ns)

Area-Delay-

Product

(µm2 × ns)

[51] 11024 106 0.2 21.2 233709

[52] 11043 103 0.2 20.6 227485

[53] 11043 105 0.2 21 231903

[54] 18639 105 0.585 61.43 1144993

[55] 11030 105 0.2 21 231630

Proposed 12169 104 0.165 17.16 208820

suming a data bus width of 8. It implies w = 8 for all the architectures considered for

comparison [51–55], and w = 4 for the proposed architecture. NanGate 45nm standard

library statistics [46, 60] are used to estimate the area and time complexities. With this

technology, the NAND gate equivalents for AND gate, XOR gate, and register are con-

sidered to be 1.4, 2, and 5.7. The delays for AND gate and XOR gate are considered

to be 0.025 and 0.035. It is observed that the area required for a 2-input NAND gate

based on Synopsys design compiler synthesis using 45nm NanGate open cell libraries is

0.8µm2. It is noted that the latency of all the multipliers used for comparison includes

preloading of the first operand which requires 52 clock cycles for the considered case of

m = 409 and w = 8. It is observed from Table 6.3 that the proposed architecture requires

the lowest delay. Hence, the proposed multiplier achieves higher throughput than the

other compared multipliers. In addition, it is observed that the proposed multiplier also

achieves a reduction in critical path delay and area-delay-product.

6.2.3 Implementation Results

It is observed from Table. 6.3 that the multiplier [55] requires less area compared to

the other multipliers considered for comparison. Hence, the proposed multiplier and the

multiplier [55] are modeled using VHDL for GF(2409). The RTL (Register Transfer Level)

designs are simulated using Vivado Simulator to verify the functionality. The netlists of

these models are synthesized using Synopsys Design Compiler tool employing NanGate

45nm open cell libraries [60] to obtain the area and time complexities. The area and time

complexities obtained for these multipliers are tabulated in Table 6.4. It is observed from
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Table 6.4 Comparison of ASIC implementation results for GF(2409).

Design
Multiplier

area (µm2)

Critical path

delay (ns)

Multiplication

delay (ns)

Area × Delay

(µm2 × ns)

Throughput

(×106)

% increase in

Throughput

[55] 13072 0.65 68.25 892164 14.6 26.71

Proposed 14116 0.52 54.08 763394 18.5 –

the ASIC (Application specific integrated circuit) implementation results that the pro-

posed multiplier achieves 26% improvement in throughput compared to the multiplier [55].

The ASIC implementation results confirm that the proposed multiplier achieves better

throughput rates compared to the available multipliers. Hence, the proposed multiplier

is suitable for constrained devices in high-speed applications.

6.3 Low-Hardware Digit-Serial Sequential Multiplier

In this section, the formulations for the proposed low-hardware digit-serial multiplier

and its architecture are presented. Analysis of this multiplier using analytical and imple-

mentation results and the comparisons with the related multipliers are also presented.

6.3.1 Design

Mathematical Formulations

Let T (x) = xm + xk + 1, where k ≤ (m − 1)/2 (if m is odd) or k ≤ m/2 (if m

is even), be an irreducible trinomial polynomial over which the field GF(2m) is defined.

Let A(x) =
∑m−1

j=0 ajx
j and B

′
(x) =

∑w−1
j=0 b

′
jx
j be two elements, where w ≤ m. Let

D(x) denote the product of polynomials A and B
′

as D(x) =
∑m+w−2

j=0 djx
j = AB

′
. This

product expression D(x) = AB
′

can be expressed using a (m+ w − 1)× w matrix M as

shown below.

The product polynomial D(x) includes the terms whose degree is more than m− 1

and these terms can be modulo reduced using the identity xm = xk+1. From this identity

we can have xm+i = (xk + 1)xi = xk+i + xi, where the range of i is assumed to be in the

range 0 ≤ i ≤ (w − 2). Also, assume w ≤ (m − 1)/4 (if m is odd) or w ≤ m/4 (if m is
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even), then we have k + i ≤ k + w − 2 ≤ m/2 +
⌈
m/2

⌉
− 2 < m. Thus each term in the

product polynomial D(x) whose degree is (m + i) can be reduced to a polynomial of at

most degree (m−w) with two terms, xk+i + xi. By this modulo reduction, each (m+ i)th

row of matrix M for 0 ≤ i ≤ (w − 2) is added to the ith and (k + i)th rows of it.



d0

d1

.

.

.

dw−1

dl

.

.

.

dm−1

dm

.

.

.

dm+w−2



=



a0 0 0 . . . . 0 0

a1 a0 0 . . . . 0 0

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

aw−1 aw−2 aw−3 . . . . a1 a0

aw aw−1 aw−2 . . . . a2 a1

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

am−1 am−2 am−3 . . . . am−w+1 am−w

0 am−1 am−2 . . . . am−w+2 am−w+1

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

0 0 0 . . . . 0 am−1



×



b
′
0

b
′
1

b
′
2

.

.

.

b
′
w−1



Let Q be a m × w matrix which is obtained from the matrix M, after the modulo

reduction process applied. Let matrix Q be decomposed into the sum of three m × w

matrices X, Y, and Z, such that Q = X + Y + Z. These three matrices X, Y, and Z can

be defined as follows.



Digit-Serial Multipliers for a Specific Class of Trinomials 110

X =



a0 0 0 . . . . 0 0

a1 a0 0 . . . . 0 0

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

aw−2 aw−3 aw−4 . . . . a0 0

aw−1 aw−2 aw−3 . . . . a1 a0

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

am−1 am−2 am−3 . . . . am−w+1 am−w



Y =



0 am−1 am−2 . . . . am−w+2 am−w+1

0 0 am−1 . . . . am−w+3 am−w+2

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

0 0 0 . . . . 0 am−1

0 0 0 . . . . 0 0

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

0 0 0 . . . . 0 0


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Z =



0 0 0 . . . . 0 0

. . . . . . . . .

. . . . . . . . .

0 0 0 . . . . 0 0

0 am−1 am−2 . . . . am−w+2 am−w+1

0 0 am−1 . . . . am−w+3 am−w+2

. . . . . . . . .

. . . . . . . . .

0 0 0 . . . . 0 am−1

. . . . . . . . .

. . . . . . . . .

0 0 0 . . . . 0 0



0throw

kthrow

(k + w − 2)throw

Matrix Z is equivalent to a matrix that can be obtained by shifting matrix Y down by

k rows and filling the first k rows with zeros. By employing similar method presented

in [65], any ith row of matrix Q can be obtained with simple rewiring of the kth row, Qk,

of the matrx Q. The row Qk can be computed as

Qk =

(akak−1...a0am−1am−2....am−w+k+1) + (0am−1...am−w+1), if k ≤ w

(akak−1.....ak−w+1) + (0am−1...am−w+1), if k > w

To compute Qk, it requires (w− 1) two-input XOR gates, and a delay of TX , where

TX is a dealy of a two-input XOR gate. Since Q is an m×w matrix, Q.B
′
needs wm AND

gates, (w−1)m XOR gates, and TA+
⌈
logw2

⌉
TX delays, where B

′
= (b0, b1, ..., bl−1)

t. After

formulating this method of computing the multiplication for D(x) of an m-bit element
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with a w-bit element where w ≤ (m− 1)/4 (if m is odd) or w ≤ m/4 (if m is even), the

multiplication of any two arbitrary field elements is considered now as follows.

Let A(x) =
∑m−1

i=0 aix
i and B(x) =

∑m−1
i=0 bix

i be two arbitrary field elements.

Let C(x) =
∑m−1

i=0 cix
i = AB mod T (x) be the product of the elements A and B. The

computation of C(x) can be performed as follows.

Let the element B(x) is partitioned into s digits where each digit of size w bits.

Then, we have n =
⌈
m
w

⌉
. It follows,

B(x) =
w−1∑
j=0

bjx
j +

2w−1∑
j=l

bjx
j + ......+

nw−1∑
j=(n−1)w

bjx
j

=
w−1∑
j=0

bjx
j + xw

w−1∑
j=0

bw+jx
j + +x2w

w−1∑
j=0

b2w+jx
j......+ x(n−1)w

w−1∑
j=0

b(n−1)w+jx
j, (6.7)

where all bjs for j ≥ m are zero. Now, the product C(x) can be computed as

C(x) = A(x)B(x) mod T (x) = A(x)
w−1∑
j=0

bjx
j mod T (x)+

xwA(x)
w−1∑
j=0

bw+jx
j mod T (x) + x2wA(x)

w−1∑
j=0

b2w+jx
j mod T (x) + ......

.....+ x(n−1)wA(x)
w−1∑
j=0

b(n−1)w+jx
j mod T (x)

= P0 mod T (x) + xwP1 mod T (x) + x2wP2 mod T (x) + .......+ x(n−1)lPn−1 mod T (x)

= (.....((Pn−1x
w mod T (x) + Pn−2)x

w mod T (x) + Pn−3)x
w mod T (x) + ....

.....+ P1)x
w mod T (x) + P0, (6.8)

where

Pi = A(x)
w−1∑
j=0

biw+jx
j mod T (x). (6.9)

The computation of Pi can be performed using the procedure shown to compute

D(x). In the computation of D(x), note that the value of digit-size, w, is taken at most

half the value of field order, m. It is acceptable for the constrained devices since the

data bus width of these devices is typically 8/16/32 bits only. As per today’s security
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requirements, a field order of at least 233 is required. Hence, the selected w range is quite

applicable to today’s security requirements for Wireless Sensor Network (WSN) nodes

and IoT end-nodes/edge devices.

Proposed Structure of the Multiplier

Based on the proposed formulations, a conceptual block diagram of the digit-serial

multiplier is shown in Fig. 6.2. The structure shown in Fig. 6.2 realizes the expression

given in Eq. 6.8. Node M1 is a partial parallel m×w multiplier that multiplies an m-bit

element with an w-bit element. It realizes the computation of Pi as given in Eq. 6.9.

Node A1 performs the additions that are involved in the computation of the expression

in Eq. 6.8. Similarly, Node M2 performs the interleaved multiplications of partial output

⊗m/A

M1

w /

Bi

⊕m/
Pi

A1

m/ C(x)

Reg

m/

m/

⊗
M2

xw

m/

1Figure 6.2 The proposed structure of the digit-serial multiplier.

product with xw that are involved in the computation of the expression in Eq. 6.8. The

multiplicand A is made available throughout the computation, while multiplier B enters

the structure digit-wise starting from the most significant digit (MSD). The structure

produces the required multiplication result after a delay of n clock cycles.
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6.3.2 Analytical Results

In this section, the area and time complexities of the proposed multiplier are ob-

tained and compared with the existing similar multipliers. The node M1 which computes

Pi performs a similar computation presented for computing Q.B
′
. Hence, it requires wm

AND gates and (w−1)(m+ 1) XOR gates. The node A1 requires m XOR gates while the

Table 6.5 Comparison of area complexities for GF(2m).

Design XOR AND Register

[51] wm+ 3w wm 2m+ w

[52] wm+ (w2 + w)/2 wm 2m+ w

[53] wm+ (w2 + w)/2 wm 2m+ w

[54] 69/20mlog6
4 − 1/4mlog2

4 − 11/5 mlog6
4 2m− 1

[55] wm+ w2/2 + 3w/2− 1 wm 2m

Proposed wm+ (2w − 1) wm 2m

node M2 requires w XOR gates. The structure also requires two m-bit registers, one at

the input to register multiplicand A while another as output register, Reg. The delays of

the nodes M1, A1 and M2 are TA + (
⌈
logw2

⌉
+ 1)TX , TX , and TX respectively. The critical

path of the structure is TA + (
⌈
logw2

⌉
+ 2)TX . The area and time complexities for the pro-

posed multiplier and the other similar multipliers [51], [52], [53], [54], [55] are presented

in Table 6.5 and Table 6.6, respectively.

Table 6.6 Comparison of time complexities for GF(2m).

Design Critical path Latency (clock cycles)

[51] TA + (dlog2w+1
2 e)TX n+ 2

[52] TA + (dlogw2 e+ 2)TX n− 1

[53] TA + (dlogw2 e+ 2)TX n+ 1

[54] TA + (1 + 3logm4 )TX n+ 1

[55] TA + (dlogw2 e+ 2)TX n+ 1

Proposed TA + (dlogw2 e+ 2)TX n
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The analytical comparisons presented in Table 6.5 and Table 6.6 can be better

understood by considering a specific field order m and a specific digit size w. By selecting

the field to be GF(2409) over an irreducible polynomial x409 + x87 + 1 with a digit-size

w = 8, the complexities presented in Table 6.5 and Table 6.6 are computed and presented

in Table 6.7.

Table 6.7 Area and time complexities comparison for GF(2409) over x409 +x87 + 1 with w = 8.

Design Area (µm2)
Latency

(clock cycles)

Critical

Path Delay

(ns)

Delay (ns)

Area-Delay-

Product

(µm2 × ns)

[51] 11024 54 0.2 10.80 119059

[52] 11043 51 0.2 10.20 112638

[53] 11043 53 0.2 10.60 117056

[54] 18639 53 0.585 31 577809

[55] 11030 53 0.2 10.60 116918

Proposed 10986 52 0.2 10.40 114254

We have NanGate 45nm standard library statistics [46, 60] to estimate the time

and area requirements. With this technology, the NAND gate equivalents for XOR gate,

AND gate, and register are assumed to be 2, 1.4, and 5.7. The delays for XOR gate and

AND gate are assumed to be 0.035 and 0.025. It is observed that the area required for

a 2-input NAND gate based on Synopsys design compiler synthesis using 45nm NanGate

open cell libraries is 0.8µm2. It is observed from Table 6.7, the proposed multiplier requires

marginally less hardware when compared with other similar multipliers. It is also observed

that the proposed multiplier achieves low area-delay-product as well.

6.3.3 Implementation Results

The proposed multiplier and the multiplier [55] are modeled using VHDL for GF(2409).

The RTL designs are simulated using Vivado Simulator to verify the functionality. The

netlists of these models are synthesized using Synopsys Design Compiler tool employing

NanGate 45nm open cell libraries [60] to obtain the area and time complexities. The

area and time complexities obtained for these multipliers are tabulated in Table 6.8. It

is observed from the ASIC implementation results that the proposed multiplier achieves

a marginal reduction in area and in ADP (Area-delay-product) (3%) compared to the
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Table 6.8 Comparison of ASIC implementation results for GF(2409).

Design
Multiplier

area (µm2)

Critical path

delay (ns)

Multiplication

delay (ns)

Area × Delay

(µm2 × ns)

% reduction

in ADP

[55] 13072 0.65 34.45 450330 3.08

Proposed 12912 0.65 33.80 436425 –

multiplier [55]. Hence, the proposed digit-serial sequential multiplier is suitable for IoT

end devices which typically have a bus width of 8/16/32 bits.

6.4 Conclusions

In this chapter, the design of the two digit-serial multipliers and the performance

analysis of these multipliers using analytical and implementation results are presented.

First, a fully digit-serial multiplier, where both the operands enter the multiplier architec-

ture simultaneously, is presented. Design of this multiplier is based on a redundant basis

multiplier available in the literature. Comparisons of this multiplier with the available

multipliers show that it achieved improved throughput rates. Next, another digit-serial

multiplier is presented whose parallel multiplier is based on the Mastrovito multiplier.

The available Mastrovito multiplier is tailored for the considered class of trinomials to

achieve hardware efficiency. The comparisons show that the proposed digit-serial multi-

plier achieves a marginal reduction in area compared to the available multipliers. These

proposed scalable multipliers are suitable for a wide range of IoT applications where the

data bus width of the processor can be 8/16/32/64 bits.



Chapter 7

Conclusions and Future Scope

This chapter concludes the thesis by underlining the main contributions. It also

presents the possible directions of future work.

7.1 Conclusions

Internet of Things (IoT) is the state-of-the-art widely used communication technol-

ogy having numerous application areas. This technology includes the constrained devices

namely IoT end devices and edge devices. End devices are required to be low-cost while

edge devices are required to have high-performance. Further, security is a major concern

in these devices to be addressed, and elliptic curve cryptography (ECC) provides some of

the security features required in these devices. GF(2m) multiplication is a performance-

critical operation in this cryptography, which requires efficient hardware implementations.

Bit-serial sequential multipliers using general irreducible polynomials are suitable for end

devices, since they offer low hardware complexities that result in low-cost implementa-

tions. Bit-parallel systolic multipliers using trinomials are suitable for edge devices, since

they offer high-throughput rates that result into high-performance impementations. Fur-

ther, digit-serial multipliers which are scalable are also required for IoT devices, since

these multipliers can provide area-delay trade-off as required by the application at hand.

This thesis aims at offering some area and time efficient multiplier architectures that are

targeted for security implementation in IoT devices. The contributions of the work are

concluded as follows:
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• In Chapter 4, we have presented the design of bit-serial sequential multipliers over

general irreducible polynomials, since these multipliers are suitable for security im-

plementation in low-cost IoT devices. In this regard, we have presented an area-

efficient bit-serial sequential multiplier using the proposed modified interleaved mul-

tiplication algorithm. Through the comparisons of analytical and ASIC (Apllication

specific integrated circuit) implementation results obtained for m = 409, we have

shown that the proposed multiplier is indeed area-efficient and achieves a minimum

of 28% reduction in area and a minimum of 3% reduction in ADP (Area-delay-

product) compared to existing multipliers. We have also presented two area and time

efficient bit-serial sequential multipliers using the proposed modified Montgomery

MSB (most significant bit)-first and LSB-first bit-serial algorithms. Through an-

alytical and ASIC implementation comparisons, we have shown that the proposed

multipliers are indeed area and time efficient compared to existing multipliers. The

proposed MSB-multiplier and LSB (least significant bit)-multiplier achieve a mini-

mum of 12% and 11% reduction in ADP, respectively. These proposed multipliers

are suitable for generic IoT devices as they are defined over general irreducible

polynomials.

• Chapter 5 has presented the design of bit-parallel systolic multipliers over a few

specific classes of trinomials, since these multipliers are suitable for security imple-

mentation in high-performance IoT devices. Though many multipliers presented in

the literature have been defined over trinomials, we have observed that multipliers

defined over a few specific classes also include NIST (National Institute of Stan-

dards and Technology) recommended trinomials and result in further less area and

time complexities as well. Hence, multipliers defined over these classes are particu-

larly suitable for IoT devices as they require low hardware and time complexities.

Consequently, we have proposed a low-latency area-efficient multiplier and a high-

throughput multiplier over the class of trinomials xm+xk+1 for which k ≤ (m−1)/2

(if m is odd) or k ≤ m/2 (if m is even). In addition to that we have also proposed

another low-latency area-efficient multiplier for a further narrow class of trinomi-

als for which k ≤ m − 2dm/3e. Through the comparisons of analytical and ASIC

implementation results obtained for m = 409, we have shown that the proposed

low-latency multipliers are indeed area and time efficient and the proposed high-
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throughput multiplier is indeed time efficient compared to existing multipliers. The

low-latency systolic multiplier defined over the trinomials for which k ≤ (m− 1)/2

(if m is odd) or k ≤ m/2 (if m is even) achieves a minimum of 9% reduction in area

and a minimum of 12% reduction in latency and the other low-latency multiplier

defined over the trinomials for which k ≤ m − 2dm/3e achieves a minimum 4%

reduction in area and a minimum 25% reduction in latency. Also, the proposed

high-throughput multiplier achives a minimum of 35% increase in throughput and

a minimum of 5% reduction in ADP compared to the existing works.

• In Chapter 6, we have presented the design of digit-serial sequential multipliers over

a specific class of trinomials, since these multipliers due to their scalability are suit-

able for security implementation in IoT end/edge devices that can be used in a wide

variety of applications. The class of trinomials considered in this chapter is the

same class of trinomials considered in Chapter 5 for the high-throughput systolic

multiplier, i.e., the trinomials xm + xk + 1 for which k ≤ (m − 1)/2 (if m is odd)

or k ≤ m/2 (if m is even). Consequently, we have presented a high-throughput

digit-serial sequential multiplier using the proposed fully digit-serial multiplication

algorithm. This algorithm is based on a redundant basis multiplication algorithm

and is obtained by adapting it to polynomial basis. This is the first time in polyno-

mial basis literature to design a fully digit-serial multiplier where both the operands

enter the architecture simultaneously. Through the comparisons of analytical and

ASIC implementation results obtained for m = 409, we have shown that the pro-

posed multiplier is indeed high-throughput and achieves a minimum of 26% increase

in throughput compared to existing multipliers. We have also presented another

low-hardware digit-serial sequential multiplier where the area reduction is achieved

using a modified parallel multiplier. We have obtained this parallel multiplier by

tailoring the available Mastrovito multiplier for the class of trinomials considered.

Through analytical and ASIC implementation comparisons, we have shown that

the proposed multiplier is indeed area-efficient and achieves a marginal reduction in

area compared to the best existing multiplier. This proposed multiplier achieves a

minimum of 3% reduction in ADP compared to existing multipliers.
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7.2 Future Scope

The work proposed in this thesis can be extended for future research. Some of the

possible directions in which the problems can be further pursued are:

• The architectures proposed in this thesis achieve reduction in area and time com-

plexities. Further, apart from these area and time complexities reduction, power

reduction is also an important requirement for IoT devices as in many cases these

devices are battery-powered. Hence, an important extension would be to implement

low-power techniques into these designs to achieve reduction in power.

• In finite field arithmetic, inversion and exponentiation are computationally intensive

operations and repeatedly use multiplication. Hence, using the multipliers proposed

in this thesis, efficient field inversion and exponentiation operations can be realized

to improve the efficiency of the overall finite field arithmetic.

• Fault tolerance in field multipliers is a method that ensures reliability, and also

prevents many fault-based attacks on cryptosystems that use field arithmetic. Mul-

tipliers with concurrent error detection and correction capabilities support testing

and correcting cryptosystems while they are in operation. Our future research in-

cludes the development of some new fault-tolerant techniques and applying these

techniques to multipliers to further strengthen the security of the IoT applications.
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