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Abstract

Internet of Things (IoT) is a state of the art rapidly emerging communication tech-
nology with many application areas. It connects many physical objects such as domestic
appliances, vehicles, and healthcare devices over its network apart from conventional com-
puting devices such as desktop computers. The connectivity to these physical objects is
made possible by equipping them with the low-end/constrained devices called IoT devices.
The success of this new [oT technology depends on how securely the data is communicated
over the network. However, security in [oT is a major concern and it must be addressed

using various cryptography algorithms.

Cryptography deals with the study of encryption/decryption algorithms to trans-
form messages into a hidden form to make them secure and immune to attacks. The
security challenges posed by the emerging applications such as IoT prompt this conven-
tional cryptography into a new direction, namely, lightweight cryptography. Lightweight
cryptography is suitable for resource-constrained devices to make them secure in the net-
work. Elliptic curve cryptography (ECC) is one such system requiring a shorter key
length for the same level of security compared to other available cryptosystems. This

cryptography heavily uses finite field GF(2™) arithmetic in its underlying operations.

Finite field GF(2™) is an algebraic structure with 2™ elements where arithmetic
operations such as addition, multiplication, and inversion are defined. GF(2™) multipli-
cation is complex and also a performance-critical operation, hence, it requires efficient
hardware implementations. GF(2™) multipliers designed using polynomial basis gives
more efficient, simple, and regular structures compared to other available bases. Various
classes of irreducible polynomials can also be used for efficient implementation of GF(2™)
multipliers. Many efficient GF(2™) multipliers for various classes of irreducible polyno-
mials using polynomial basis are proposed in the literature to achieve reduction in area

and time complexities.



Abstract

In this thesis, we focus on the design of area and time efficient hardware architectures
for GF(2™) multiplication targeting the implementation of security in IoT devices. Ac-
cordingly, some GF(2™) multiplication algorithms or formulations are proposed based on
the available algorithms in the literature and subsequently efficient multiplier architectures
are realized for these proposed algorithms. Firstly, two bit-serial sequential multiplier ar-
chitectures over GF(2™) for general irreducible polynomials are proposed. One of these
multipliers is based on the Interleaved modular reduction multiplication algorithm and the
other is based on the Montgomery multiplication algorithm. Secondly, three bit-parallel
systolic multiplier architectures are proposed based on the formulations developed for two
specific classes of trinomials. These multipliers are realized by representing the developed
formulations using signal flow graphs (SFGs) and applying suitable cutset pipelining tech-
niques. Lastly, two digit-serial sequential multiplier architectures over a specific class of
trinomials are proposed. The area and time complexities of all the proposed architectures
are computed analytically for m = 409 using Silvaco’s FreePDK NanGate 45nm standard
gate estimations and the efficiency of these hardware architectures are verified by compar-
ing them with the related available architectures in the literature. The HDL (Hardware
description language) models of these proposed architectures are also implemented using
Synopsys Design Compiler tool employing FreePDK NanGate 45nm technology libraries.
It is observed from the comparison of the results that the proposed architectures outper-
form the existing architectures in terms of area and delay complexities. These proposed
area and time efficient GF(2™) multipliers may be used in the implementation of security

in IoT devices.




Contents

Declaration iii
Acknowledgements v
Abstract vi
List of Figures xii
List of Tables XV
List of Abbreviations xvii
1 Introduction 1
1.1 Motivation . . . . . . . . ., 5
1.2 Research Objectives. . . . . . . . . . . . .. . 6
1.3 Thesis Contributions . . . . . . . . . . . ., 7
1.4 Thesis Organization . . . . . . . . . . .. .. 10
1.5 Conclusions . . . . . . . . ., 11

2 Finite Field GF(2™) Multiplication 12
2.1 Finite Fields . . . . . . . . . 12
211 Groups . . . ..o 12

viii



Contents X

2.1.2 Rings . . .. 14

213 Fields . . ... . 14

214 FiniteFields. . . . . .. ... . oo oL o 15

2.1.5 Binary Finite Fields, GF(2™) . . ... ... ... .. ... .... 15

2.2 Finite Field GF(2™) Arithmetic . . . . . ... ... ... . ... 19
2.3 Finite Field GF(2™) Multiplication . . . . .. .. ... ... ... .. ... 19
24 Conclusions . . . . . ... 22

3 Polynomial Basis GF(2™) Multiplier Architectures 23

3.1 Review of Bit-Serial Sequential Multipliers for General Irreducible Polyno-

mials . . .. 23
3.2 Review of Bit-Parallel Systolic Multipliers for Trinomials . . . . . . . . .. 27
3.3 Review of Digit-Serial Sequential Multipliers for Trinomials . . . . . . . . . 31
3.4 Conclusions . . . . . . . .. 33

4 Area-Efficient Bit-Serial Sequential Multipliers for General Irreducible

Polynomials 34
4.1 Introduction . . . . . . . ... 34
4.2 Area-Efficient Bit-Serial Sequential GF(2™) Multiplier . . . . . . . .. . .. 36
4.2.1 Design . . . . ... 36
4.2.2 Analytical Results . . . . . . .. ... o 43
4.2.3 Implementation Results . . . . . .. ... ... ... ... 45
4.3 Low-Complexity Bit-Serial Sequential Montgomery GF(2™) Multipliers . . 46
4.3.1 Design . . . . . 46
4.3.2 Analytical Results . . . . . ... ... oo 57




Contents X

4.4 Conclusions . . . . . . . ., 61

5 Low-Latency and High-Throughput Bit-Parallel Systolic Multipliers for

Specific Classes of Trinomials 63
5.1 Imtroduction . . . . . . . .. 63
5.2 Area-Efficient Low-Latency Bit-Parallel Systolic Multiplier . . . . . . . .. 65
5.2.1 Design . . . ..o 65
5.2.2 Analytical Results . . . . ... ... .. ... ... 72
5.2.3 Implementation Results . . . . . ... ... ... ... ....... 76
5.3 High-Throughput Area-Delay-Efficient Bit-Parallel Systolic Multiplier . . . 76
59.3.1 Design . . . . .o 7
5.3.2 Analytical Results . . . . . ... . ... ... 80
5.3.3 Implementation Results . . . . . ... ... ... ... ....... 84
5.4 Low-Latency Area-Efficient Bit-Parallel Systolic Multiplier . . . . . . . .. 84
0.4.1 Design . . . . L 84
5.4.2 Analytical Results . . . ... .. ... ... ... 94
5.4.3 Implementation Results . . . . ... ... ... ... .. ...... 98
5.5 Conclusions . . . . . . . .. 98

6 High-Throughput and Low-hardware Digit-Serial Sequential Multipliers

for a Specific Class of Trinomials 100
6.1 Introduction . . . . . . . .. .. 101
6.2 High-Throughput Fully Digit-Serial Sequential Multiplier . . . . . . . . .. 102
6.2.1 Design . . . . . . . 102
6.2.2 Analytical Results . . . . . .. .. ... ... . 105




Contents xi
6.3 Low-Hardware Digit-Serial Sequential Multiplier . . . . . . . . . .. .. .. 108
6.3.1 Design . . . . . .. 108

6.3.2 Analytical Results . . . .. ... ... ... ... . 114

6.3.3 Implementation Results . . . . . .. ... ... ... ... ..... 115

6.4 Conclusions . . . . . . . . . . e 116

7 Conclusions and Future Scope 117
7.1 Conclusions . . . . . . . . ... 117
7.2 Future Scope . . . . . .. 120
Publications 121
Bibliography 123




List of Figures

1.1

1.2

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

Generic [oT edge computing architecture with end and edge computing

devices. . . . . . 2
ECC arithmetic hierarchy. . . . . . .. .. ... ... ... 4
Top-level block diagram of the proposed bit-serial sequential multiplier. . . 41
Gate level schematic of H block. . . . . . ... ... ... ... ....... 42

Top-level block diagram of the proposed MSB-first bit-serial sequential mul-

tiplier. . . . . o1
Gate level architecture of G block. . . . . . . . . . . .. ... 52
Gate level architecture of H block. . . . . . . . . . . . . . ... ... ... 53

Top-level block diagram of the proposed LSB-first bit-serial sequential mul-
tiplier. . . . . 56

The signal flow graph (SFG) of the proposed finite field GF(2™) multipli-

cation. . . . . . . s 68

a) Functional description of the i’* reduction of degree by one node R;.
b) Functional description of the i*® multiplication node M;. ¢) Functional
description of the i** addition node X;. d) Functional description of the re-
duction of degree by m/2 node R. e) Functional description of the addition
node X. . . .. 69

The pipelined SFG of the proposed finite field GF(2™) multiplier. . . . . . 70

xil



List of Figures xiii

5.4

2.5

2.6

2.7

2.8

2.9

5.10

0.11

5.12

5.13

5.14

0.15

5.16

5.17

5.18

5.19

Formation of the processing elements (PEs). . . .. ... ... ... ... 71
Proposed systolic structure of the GF(2") multiplier. . . . . . .. ... .. 71
a) Functional description of the PE[0] node. b) Functional description of

the regular PE (PE[1] to PE[m/2 — 2]). ¢) Functional description of the
PE[m/2 — 1]. d) Functional description of PE[a™/?] node. e) Functional

description of the PE[Out] node. . . . . . .. .. ... ... ... 72
Detailed architecture of the regular PE. . . . . . .. .. .. ... ... ... 73
Further pipelined SFG using horizontal cutset. . . . . . . . ... ... .. 7
Formation of the processing elements (PEs). . . .. ... ... ... ... 78
Proposed systolic structure of the GF(2™) multiplier. . . . . . .. ... .. 78

a) Functional description of the PE[0] node. b) Functional description of
the regular PE (PE[1] to PE[m/2 — 2]). ¢) Functional description of the
PE[m/2—1]. d) Functional description of the PE[z™/2] node. e) Functional
description of the PE[Out] node. . . . . . . ... ... ... L. 79

Detailed architecture of the regular PE. . . . . . .. .. .. ... ... ... 80

Signal flow graph (SFG) representation of the proposed GF(2™) multipli-

CatiON. . . . 89

Functional description of a) i'" reduction node R; b) i*" multiplication node

M; c) i*" addition node X; d) final reduction node R e) final addition node

X’ f) final addition node X’o. . . . . . ..o 90
Pipelined SFG using vertical cutsets. . . . . . . .. .. .. ... ... ... 91
Formation of the processing elements (PEs). . . . .. ... ... ... ... 91
Proposed systolic structure for GF(2™) multiplication. . . . . . ... . .. 92

Functional description of a) PE[0] b) Regular PE ¢) PE[m/3-1] d) PE[z™/3&x?™/3]
¢) PE[X'\] £) PEXa] + o o oo 92

Detailed gate level architecture of the regular PE. . . . . . . . .. ... .. 93




List of Figures Xiv

6.1 Proposed fully digit-serial polynomial basis GF(2™) multiplier architecture. 104

6.2 The proposed structure of the digit-serial multiplier. . . . . . . . . . .. .. 113




List of Tables

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

0.1

Area and time complexities of the available bit-serial sequential multipliers. 24
Area and time complexities of the available bit-parallel systolic multipliers. 28

Area and time complexities of the available digit-serial sequential multipli-

CTS. v v e e e s 31

Area and time complexities comparison for GF(2™). . . . . .. ... ... 43

Comparison of area, delay, and area-delay-product estimations for GF(21%). 45

Comparison of ASIC implementation results for GF(21%). . . . .. .. .. 45
Area and time complexities comparison for GF(2™) (MSB multipliers). . . 58
Comparison of area, delay, and area-delay-product for GF(21) (MSB mul-

tipliers). . . . ... 59

Area and time complexities comparison for the field GF(2™) (LSB multi-

Comparison of area, delay, and area-delay-product for GF(24%) (LSB mul-
tipliers). . . ... 60

Comparison of the ASIC implementation results for GF(2?) (MSB mul-
tipliers). . . . .. L 61

Comparison of the ASIC implementation results for GF(21%) (LSB multi-

XV



List of Tables xvi

5.2

2.3

5.4

2.9

5.6

2.7

2.8

2.9

5.10

5.11

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Area and time complexities comparison for GF(2™). . .. ... ... .. 74
Area and time complexities comparison for GF(2199). . . . ... ... .. 75
Comparison of ASIC implementation results for GF(21%). . . . . . .. .. 76
Area and time complexities comparison for GF(2™). . . . ... ... ... 81
Area and time complexities comparison for GF(24%9). . . . .. ... 82
Comparison of ASIC implementation results for GF(2%%). . . . .. .. .. 83
Coordinate representation of Az* mod T'(x). . . . . .. ... .. .. .... 88
Comparison of area and time complexities for GF(2™). . . ... .. .. .. 95
Comparison of area and time complexities for GF(21%). . . . . . . . .. .. 97
Comparison of ASIC implementation results for GF(24%). . . . . ... .. 98
Area complexities comparison for GF(2™). . . . ... ... ... 106
Time complexities comparison for GF(2™). . . . . . ... .. ... ... .. 106
Area and time complexities comparison for GF(2499). . . . .. ... 107
Comparison of ASIC implementation results for GF(24%). . . . .. .. .. 108
Comparison of area complexities for GF(2™). . . . . . ... ... ... ... 114
Comparison of time complexities for GF(2™). . . .. ... ... ... ... 114
Area and time complexities comparison for GF(21%) over 2% 4 257 + 1

with w = 8. . . . 115

Comparison of ASIC implementation results for GF(21%). . . . . . .. .. 116




List of Abbreviations

IoT
DES
AES
RSA
ECDH
ECDSA
ECC
NIST
MSB
LSB
MSD
LSD
MUX
ADP
GE
SFG
PE
VLSI
ASIC
VHDL
RTL
nm

ns

wm

LFSR

Internet of Things

Data Encryption Standard

Advanced Encryption Standard
Rivest-Shamir-Adleman algorithm

Elliptic Curve Diffie-Hellman key exchange algorithm
Elliptic Curve Digital Signature Algorithm
Elliptic Curve Cryptographgy

National Institute of Standards and Technology
Most Significant Bit

Least Significant Bit

Most Significant Digit

Least Significant Digit

Multiplexer

Area-Delay-Product

Gate Equivalent

Signal Flow Graph

Processing Element

Very Large Scale Integration

Application Specific Integrated Circuit

Very High Speed Integrated Circuit Hardware Description Language
Register Transfer Level

nanometer

nanosecond

Square Micrometer

Linear Feedback Shift Register

Xvii



Chapter 1

Introduction

Internet of Things (IoT) is a state of the art rapidly emerging communication tech-
nology with many application areas. It can be considered as an extension to the Internet
to include connectivity to constrained devices as well. IoT can connect many physical
things such as domestic appliances, vehicles, smart wearables, health devices, and smart
grids over the network apart from conventional resourceful computing devices such as
desktop computers [1]. On this basis, many of the physical things/objects around us will
be on the network. These physical objects are equipped with small computing devices
that have connectivity capabilities which help to enable the objects to participate in com-
munication over the network. These small computing devices are called IoT End devices.
Many IoT end devices that are used under a specific application can be connected to
relatively high-computing IoT devices called IoT Edge devices/IoT Gateways. This pos-
sibility of connecting end devices to an edge device facilitates a new computing paradigm
called Edge computing [2]. The generic architecture for IoT edge computing which in-
cludes IoT end devices and IoT edge devices is shown in Fig. 1.1. This architecture
demonstrates that a group of end devices, which are attached to the physical objects such
as a projector or refrigerator, are connected to an edge device. Typically, end devices are
battery-powered, low-cost, and have low computational resources while edge devices need
to have high performance in terms of speed or throughput to accommodate connectivity
to all its end devices [3]. The success of this new emerging IoT technology is majorly
challenged by its security i.e. how securely Information or Data is communicated over the

[oT network. Hence, it is indispensable to implement security features in IoT devices for
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Figure 1.1 Generic IoT edge computing architecture with end and edge computing devices.

achieving secure communication and also to avoid many network-based attacks [4]. ToT
devices are typically characterized by low hardware, hence, they have low computational
power and small data bus width typically 8/16/32 bits. Moreover, these IoT devices must
be cost-effective and also suitable for today’s high data speeds [3]. Hence, implementation
of security into these low-hardware and low-cost IoT devices is a major challenge to be
addressed to make IoT widespread. Nevertheless, on the other hand, we have Cryptog-
raphy which can be used to achieve some of the major security services including data

confidentiality, authentication, non-repudiation, and data integrity in IoT devices.

Cryptography deals with the design and analysis of various data encryption and
decryption algorithms. It can be broadly categorized into Private key cryptography and
Public key cryptography. Private key cryptography uses the same key for both encryp-
tion and decryption. Examples for this cryptography include the algorithms such as Data
encryption standard (DES), Advanced encryption standard (AES), and Twofish. On the
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other hand, public key cryptography employs a pair of related keys where one key is used
for encryption and the other key is used for decryption. Examples for this cryptography in-
clude the algorithms such as RSA (Rivest-Shamir-Adleman), Elliptic curve Diffie-Hellman
(ECDH) key exchange, and Elliptic curve digital signature algorithm (ECDSA) [5].

Conventional cryptography which is targeted for resourceful devices is not suitable
for resource-constrained devices such as IoT devices. Moreover, the need for billions of
[oT devices has prompted this cryptography in a new direction called Lightweight cryp-
tography [6]. Many private-key lightweight cryptographic algorithms such as CLEFTA
and PRESENT are evolved, while, elliptic curve cryptography, apart from being a con-
ventional public key algorithm, remains the best candidate for public key lightweight
cryptography because of its more security per key bit [7]. Hence, ECC (Elliptic curve
cryptography)-based public key schemes such as ECDH and ECDSA are adopted widely

to implement security in IoT devices.

Elliptic curve cryptography uses the elliptic curves that are defined over GF(p) or
GF(2™) finite fields. ECC over prime fields GF(p) is typically used for software imple-
mentations where applications may have general processors, however, resource-constrained
devices such as IoT devices require hardware implementations. Moreover, hardware im-
plementation of ECC is more practical for [oT applications as it provides efficient solutions
in terms of area, delay, and power compared to software implementations. Furthermore,
hardware implementation of ECC over binary fields GF(2™) exhibit substantially lower
hardware apart from low power and less delay compared to its prime field GF(p) counter-
parts [8,9]. Hence, hardware implementation of ECC using GF(2™) fields is preferable for
IoT applications [10-12]. ECC over GF(2™) heavily uses GF(2™) arithmetic in its low-
level operations to realize the other high-level operations such as point addition, point
doubling, and scalar multiplication. The hierarchy of the arithmetic operations involved
in ECC-based schemes is shown in Fig. 1.2. The performance of these schemes depends on
the implementation of the low-level arithmetic operations, especially GF(2™) multiplica-
tion [13]. Thus, the performance of applications that use ECC for implementing security

can be improved by employing an efficient suitable GF(2™) finite field multiplier.

A GF(2™) finite field is an algebraic structure where arithmetic operations such as

addition, multiplication, and inversion can be performed without leaving the structure.
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Figure 1.2 ECC arithmetic hierarchy.

The finite field GF(2™) has 2™ elements, where the field elements can be represented us-
ing various bases such as dual basis, normal basis, polynomial basis, and redundant basis.
Polynomial basis is one of the bases recommended by many standard institutes including
National Institute of Standards and Technology (NIST'), and multipliers based on this ba-
sis are simpler, regular, and modular. In polynomial basis representation, the complexity
of multiplication depends on field generating m!" degree polynomial called an irreducible
polynomial [14]. There are various types of irreducible polynomials such as general irre-
ducible polynomials, all one polynomials, pentanomials, and trinomials. The fields defined
over general irreducible polynomials are suitable for general applications such as domestic
[oT devices. Besides, standard institutes recommend sparse polynomials such as trinomi-
als and pentanomials as they result in low hardware and time complexities. Hence, fields
defined over trinomials are more suitable for high-performance applications such as Indus-
trial IoT devices. In finite field GF(2™) arithmetic, multiplication is the important and
most frequent operation and is repeatedly used in other operations such as exponentia-

tion and inversion. The GF(2™) polynomial basis multiplication is defined as follows: Let

A(z) and B(x) be the two field elements to be multiplied and T'(z) be the field irreducible

3 m—l)

polynomial. Then the polynomial basis is constituted by (1,z, 2% z3, ..., x , where x

is the root of the irreducible polynomial 7'(z). Let C'(z) be the finite field product of the
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two elements A(x) and B(z). Then GF(2™) finite field multiplication of A(x) and B(z) is
given by C(z) = A(x)B(x) mod T(x), i.e. usual multiplication of A(z) and B(z) followed

by modulo reduction using 7T'(z).

Many efficient GF(2™) multiplication algorithms and architectures have been pro-
posed in the literature to achieve reduction in area and time complexities. The GF(2™)
multiplication can be realized using various algorithms such as the Interleaved multipli-
cation algorithm [15,16], Karatsuba algorithm [17, 18], Montgomery algorithm [19, 20],
and Mastrovito multiplication [21,22], and can be implemented employing various ar-
chitectural styles. Depending on the style of implementation, various architectures for
finite field GF(2™) multipliers can be developed. Based on the style of input/output, the
architectures can be bit-serial, bit-parallel, and digit-serial. In bit-serial architectures,
at least one input/output enters/generates serially while others can be parallel [23]. In
bit-parallel architectures, all inputs and outputs appear in parallel [24]. Depending on
the structure of the architecture various implementations such as sequential [16,25], par-
allel [26], and systolic [27] can be developed. Sequential structures take less hardware
at the expense of more computational delay. The output of a sequential structure is
available only after more than one clock cycle, typically in m clock cycles for a GF(2™)
multiplication. Parallel structures generate output in a single clock cycle at the expense
of excessive hardware. Systolic structures offer advantages such as regularity, modularity,
concurrency, local interconnections, and are more suitable for VLSI (Very Large Scale In-
tegration) implementation. These systolic structures can accommodate high throughput
rates while their area and latency are usually very large. Digit-level [18] architectures
process a group of bits, called a digit, at a time and these architectures can facilitate
the area-delay trade-off. Bit-serial sequential implementations are of interest for IoT
end devices, bit-parallel systolic implementations are desirable for IoT edge devices, and

digit-level architectures are suitable for both IoT end/edge devices.

1.1 Motivation

Advances in computing and communication technologies have prompted the evolu-

tion of Internet of things (IoT). Internet of Things is a new computing environment where
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many constrained devices called IoT end and edge devices are connected to the Internet.
It is estimated that more than 40 billion devices will be connected to the IoT network by
2022. Hence, there is a great demand for secure and low-cost [oT devices to transmit data
securely and to avoid many network-based attacks. Elliptic curve cryptography (ECC)
is an efficient public key cryptosystem that is used to achieve some of the security fea-
tures in IoT devices. The constrained nature of loT devices demands low-hardware and
low-cost implementations of ECC and its underlying GF(2™) finite field operations while
maintaining adequate performance in terms of speed. Finite field GF(2™) multiplication
is the most performance-critical operation in ECC, hence, it requires efficient realiza-
tions and hardware implementations. Low-hardware and low-cost implementations can
be achieved by designing area-efficient multipliers and high-performance implementations
can be achieved by designing high-throughput multipliers. Further, scalable multipliers
are also required to achieve area-delay trade-off which is required for a wide variety of
[oT applications that require moderate performance. Also, the design of GF(2™) finite
field multipliers using polynomial basis gives more efficient architectures compared to the
other available bases. Hence, it is necessary to design high-throughput and area-efficient

polynomial basis GF(2™) multipliers targeting IoT devices.

1.2 Research Objectives

The objective of this research is to design and implement efficient polynomial basis

finite field GF(2™) multipliers to improve the performance of IoT security algorithms.

e Due to the wide range of application areas, IoT end devices must be cost-effective
and are desirable to be available as generic off-the-shelf components. Hence, it
is required to design area-efficient bit-serial sequential GF(2™) multipliers using
general irreducible polynomials. It is also required to verify the performance of
these multipliers using analytical and ASIC (Application Specific Integrated Circuit)

implementation comparisons.

e Many IoT end devices working under a specific application can be connected to an

[oT edge device for Edge computing. The performance of IoT edge devices must
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1.3

be high in terms of speed or throughput while having moderate area complexi-
ties. Hence, it is required to design high-throughput, low-latency, and area-efficient
systolic GF(2™) multipliers. It is also required to verify the performance of these

multipliers using analytical and ASIC implementation comparisons.

In addition to low-end (cost-effective) and high-end (high-performance) IoT devices,
many applications need middle-end IoT devices that have performance and cost
requirements in between to low-end and high-end devices. Scalable architectures
such as digit-serial architectures are suitable for implementing these middle-end IoT
devices. Hence, it is required to design efficient (high-throughput or low-hardware)
digit serial multipliers and also to verify the performance of these multipliers through

analytical and ASIC implementation comparisons.

Thesis Contributions

The contributions of the thesis are summarized as follows:

Area-Efficient Bit-Serial Sequential Finite Field GF(2™) Multipliers for
General Irreducible Polynomials Two bit-serial sequential multiplier architec-
tures using polynomial basis that perform multiplication of any two finite field el-
ements for any irreducible polynomial are proposed. The performance of these
proposed architectures is evaluated through theoretical analysis and ASIC imple-

mentations. The contributions of this work are briefly described as:

— Proposed Area-Efficient Bit-Serial Sequential Polynomial Basis GF(2™)
Multiplier In this work, a modified interleaved modular reduction multiplica-
tion algorithm over general irreducible polynomials and its realization using a
bit-serial sequential architecture are presented. The modification in the algo-
rithm involves employing more efficient logical relations to achieve reduction in
hardware complexities. The proposed architecture achieves a minimum reduc-
tion of about 31% in area and 5% in ADP (Area-Delay-Product) compared to
the previous works for the field of order m = 409. The ASIC implementation

of the proposed architecture indicates a minimum reduction of about 28% in
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area and 3% in ADP compared to the existing works.

— Proposed Low-Complexity Bit-Serial Sequential Polynomial Basis
Montgomery GF(2™) Multipliers In this work, we propose modified MSB
(most significant bit)-first and LSB (Least significant bit)-first algorithms for
Montgomery multiplication. These proposed modified algorithms are realized
using bit-serial sequential architectures. The proposed MSB architecture in-
volves less area and time complexities and achieves a minimum reduction of
about 16% in ADP compared to the previous works for the field of order
m = 409. Further, the ASIC implementation of this proposed architecture
indicate a minimum reduction of about 12% in ADP compared to the existing
works. Similarly, the proposed LSB architecture involves less area and time
complexities and achieves a minimum reduction of about 13% in ADP com-
pared to the previous works for the field of order m = 409. Further, the ASIC
implementation of this proposed architecture indicate a minimum reduction of

about 11% in ADP compared to the existing works.

e Low-Latency and High-Throughput Bit-Parallel Systolic Finite Field GF(2™)
Multipliers for Specific Classes of Trinomials Three polynomial basis systolic
multiplier architectures that perform multiplication of any two finite field elements
defined over specific classes of trinomials are proposed. The performance of these
proposed architectures is evaluated through theoretical analysis and ASIC imple-

mentations. The contributions of this work are briefly described as:

— Proposed Area-Efficient Low-Latency Bit-Parallel Systolic Polyno-
mial Basis GF(2™) Multiplier In this work, we develop formulations for
GF(2™) multiplication applicable for a class of trinomials for which k& < (m —
1)/2 (if m is odd) or k < m/2 (if m is even), where k is the degree of the
middle term of trinomial and m is the order of the field GF(2™). Based on
the developed formulations we present a systolic architecture for the finite field
GF(2™) multiplication. The proposed multiplier achieves a minimum reduc-
tion of about 11% in area complexity and 14% in latency compared to previous
works for the field of order m = 409. Also, the ASIC implementation of the

proposed multiplier indicate a minimum reduction of about 9% in area and
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12% in latency compared to the existing works.

— Proposed High-Throughput Area-Delay-Efficient Bit-Parallel Sys-
tolic Polynomial Basis GF(2™) Multiplier This work presents a high-
throughput systolic multiplier architecture based on the formulations proposed
for the above area-efficient low-latency multiplier. Thus, this proposed multi-
plier is also applicable for the class of trinomials for which k < (m—1)/2 (if m
is odd) or k < m/2 (if m is even). The proposed multiplication method is re-
alized using a systolic architecture where efficient cutset pipelining techniques
are applied to the derived signal flow graph (SFG) to reduce time complexi-
ties. The proposed multiplier achieves a minimum increase of about 42% in
throughput rate and a minimum reduction of about 6% in ADP compared to
previous works for the field of order m = 409. Also, the ASIC implementa-
tion of the proposed multiplier indicate a minimum increase of about 35% in
throughput and a minimum reduction of about 5% in ADP compared to the

existing works.

— Proposed Low-Latency Area-Efficient Bit-Parallel Systolic Polyno-
mial Basis GF(2™) Multiplier In this work, we propose a new area-efficient
and low-latency GF(2™) systolic multiplier applicable for a narrow class of tri-
nomials for which £ < m—2[m/3] which includes both the NIST recommended
trinomials for m = 233 and 409 fields. The proposed multiplier achieves a min-
imum reduction of about 6% in area complexity and a 32% in latency compared
to previous works for the field of order m = 409. Also, the ASIC implementa-
tion of the proposed multiplier indicate a minimum reduction of about 4% in

area and 25% in latency compared to the existing works.

e High-Throughput and Low-hardware Digit-Serial Multipliers for a Spe-
cific Class of Trinomials Two digit-serial polynomial basis multiplier architec-
tures that perform multiplication of any two finite field elements defined over a
specific class of trinomials are proposed. The performance of these proposed archi-
tectures is evaluated through theoretical analysis and ASIC implementations. The

contributions of this work are briefly described as:

— Proposed High-Throughput Digit-Serial Sequential Polynomial Basis




Introduction 10

GF(2™) Multiplier In this work, a digit-serial GF(2™) multiplication algo-
rithm is proposed and the corresponding architecture is also presented. The
proposed algorithm is based on a redundant basis digit-serial multiplication
algorithm available in the literature. This available redundant basis multipli-
cation algorithm is modified to work for polynomial basis multiplication. The
proposed modified algorithm is suitable for polynomial basis GF(2™) multi-
plication over a class of trinomials for which & < (m — 1)/2 (if m is odd) or
k< m/2 (if m is even), where k is the degree of the middle term of trinomial
and m is the order of the field GF(2™). The proposed digit-serial multiplier
takes both the operands simultaneously digit-wise to perform computation.
The proposed multiplier achieves reduction in critical path delay and ADP for
the field of order m = 409. Also, the ASIC implementation of the proposed
multiplier indicates a minimum increase of about 26% in throughput compared

to the existing works.

— Proposed Low-Hardware Digit-Serial Sequential Polynomial Basis
GF(2™) Multiplier In this work, a new formulation for the digit-serial finite
field multiplication over the class of trinomials for which k < (m—1)/2 (if m is
odd) or k < m/2 (if m is even) and its hardware structure are presented. Based
on a available Mastrovito multiplier, an optimized parallel multiplier for the
considered class of trinomials is designed and employed in the proposed digit-
serial multiplier architecture. The proposed multiplier achieves a marginal
reduction of area and ADP compared to previous works for the field of order
m = 409. Also, the ASIC implementation of the proposed multiplier indicates

a minimum reduction of about 3% in ADP compared to the existing works.

1.4 Thesis Organization

The rest of the thesis is structured as follows:
Chapter 2 presents an overview of the mathematical concepts of GF(2™) finite fields
and finite field multiplication operation. It also presents a few available multiplication

algorithms and examples.
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Chapter 3 presents the review of the architectures proposed in the literature for polyno-
mial basis GF(2™) multiplication. It presents the available bit-serial sequential multiplier
architectures for general irreducible polynomials followed by the available bit-parallel sys-
tolic multiplier architectures for trinomials. The chapter also presents the review of the
available digit-serial sequential multipliers for trinomials. The review also includes de-
tailed discussions on the performance of these architectures in terms of area complexity,
latency, throughput, and critical path delay.

Chapter 4 presents a modified interleaved modular reduction multiplication algorithm
and a bit-serial sequential architecture over GF(2™) for general irreducible polynomials.
This chapter also presents the design of two bit-serial sequential Montgomery multipliers
over GF(2™) for general irreducible polynomials using modified Montgomery algorithms.
Analysis and ASIC implementations followed by a comparison of results with existing
works are presented.

Chapter 5 presents the design of three bit-parallel systolic multipliers over GF(2™) us-
ing two specific classes of trinomials. Analysis and ASIC implementations followed by a
comparison of results with existing works is also presented.

Chapter 6 presents the design of two digit-serial sequential multipliers over GF(2™)
using a specific class of trinomials. Analysis and ASIC implementations followed by a
comparison of results with existing works is also presented.

Chapter 7 draws conclusions from the earlier chapters and concludes the thesis.

1.5 Conclusions

In this chapter, a brief overview of the entire research work along with the motivation
behind this research and its objectives are presented. The next chapter presents an
overview of the mathematical concepts of GF(2™) finite fields and GF(2™) multiplication

operation along with a few available multiplication algorithms.




Chapter 2

Finite Field GF(2") Multiplication

This chapter presents a brief overview of some mathematical concepts about finite
fields. First, we present the definitions and properties of Groups, Rings, and Fields.
Following this, we present the definitions of finite field, binary finite field GF(2™), and
finite field GF(2™) arithmetic operations. Finally, GF(2™) multiplication operation over
polynomial basis is presented along with a few multiplication algorithms to describe the

operation in detail.

2.1 Finite Fields

This section presents the definitions and properties of Groups, Rings, and Fields.
Further, it also presents the definitions of finite field, binary finite field GF(2™), irreducible

polynomial, and various bases.

2.1.1 Groups

Definition 1. A Group denoted by (G, %) is a set of elements G along with a binary
operator *, such that, for any a, b € G, the result of the group operation between a and

b must be in G i.e. a xb € G, and it satisfies the following properties:
(1) Identity - There is an element e in G, such that for every a € G, exa = axe = a.

(2) Inverse - For every a in G there is an element o’ € G such that axa’ = a’xa = e,
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where e is the identity.

(3) Associativity - For every a,b, ¢ € G, the following identity holds: a x (b*c¢) =

(a*b)*c.
FExamples:

(1) The set of integers mod n, Z,, under addition is a group (Z,, +), where the
group operator + describes the addition modulo n operation. This group satisfies the

axioms as explained below,

(a) Closure: For any given two integers mod n, their sum, defined as addition modulo

n, is also an integer mod n.

(b) Identity: 0 mod n is the identity of the group, since for any a € (Z,,+), it

follows that 0+a = (0+a) mod n = a mod n as well as a+0 = (a+0) mod n = a mod n.

(c) Inverse: For any given a mod n, we can find an inverse @’ in the group such that

a+a =e, ie a+a =0modn. The inverse of a (a') in this case is n — a.

(d) Associativity: From the basic rules of addition associativity of the integers hold
true, hence, the integers mod n are also associative. That is, since a+ (b+c¢) = (a+b) +c,

it is also true that a + (b + ¢) = (a + b) + ¢ mod n.

Further, on the other hand, it may be observed that the set Z, does not have
multiplicative inverses for all its elements and hence is not a group under multiplication

modulo n operation.
(2) The set of integers Z under addition is a group with identity element 0.

(3) The set of real numbers R is
i) a group under the addition operation with identity element 0,

ii) a group under the multiplication operation with identity element 1.

A group (G, %) is said to be "abelian” if axb = b« a for every a, b € G. The above

three examples are abelian groups.
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2.1.2 Rings

Definition 2. A Ring (R, +, X) is a set R which is closed under two operations +
and x, and satisfying the following properties:

(1) The group (R, +) must be an abelian group.

(2) The operation x obeys associative law, i.e., a x (b x ¢) = (a x b) X ¢ for every

a,b,c e R.

(3) The operation x obeys distributive law over + operation, i.e., for every a, b, c €

R, the following identities hold: a x (b+c¢) = (axb)+(axc) and (b+c¢) xa = bxa+cxa.
Ezxamples:

(1) The set of integers modulo n, Z,, under the addition and multiplication modulo

n operations is a ring (Z, +, X).

(2) Another example is the set of integers Z along under the usual addition and

multiplication operations can be considered as a ring (Z, +, X).

A ring is said to be a "commutative ring” if the operation x obeys commutative

law i.e., a X b = b x a. The above two examples are commutative rings.

2.1.3 Fields
Definition 3. A field (F, +, x) is a set F which is closed under two operations +
and X, such that
(1) (F, 4) is an abelian group and
(2) F-{0} (the set F without the additive identity 0) is an abelian group under x.
Examples:

(1) Some examples of fields are the set of all real numbers R, set of all complex

numbers C, and the set of all rational numbers Q.
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2.1.4 Finite Fields

Finite fields or Galois fields are the fields that have a finite number of elements. The

number of elements in a field is called the order of the field.
Finite fields are of two types.

1. Prime Fields, GF(p): The order of this field is ’p’, which must be a prime

number.
Ex: GF(2), GF(5), and GF(29).

The GF(2) field is the smallest finite field containing two elements. It can be written
as GF(2) = {0,1}. In this field, 0 is the additive identity and 1 is the multiplicative

identity. Arithmetic operations in this field follow modulo 2 arithmetic:
GF(2) addition: 0+0=0,0+1=1,140=1,14+1=0, and

GF(2) multiplication: 0 x0=0,0x1=0,1x0=0,1x1=1.
It can be observed that GF(2) addition is the same as logical XOR operation, and GF(2)
multiplication is the same as logical AND operation. Hence, these operations can be

implemented using XOR and AND gates.

2. Extension Fields, GF(p™): The order of this field is ’p™’, where 'p’ must be

a prime number and m is any positive integer greater than 1.

Ex: GF(2'%9), GF(57), and GF(29%).

2.1.5 Binary Finite Fields, GF(2™)

Binary finite fields are the fields of the form GF(2™). These fields can be obtained
from the extension fields GF (p™) by selecting p = 2. In other words, these are the extension

fields of the prime field GF(2).
Ex: GF(2%), GF(2'%%), GF(2%?), and GF(21%).

Thus, GF(2™) is a binary extension finite field which is generated using the base
field GF(2), where GF(2) is the finite field with two elements 0 and 1. The elements of
binary finite fields GF(2™) can be represented with the polynomials of degree less than
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m over GF(2) i.e. the coefficients of the polynomials come from the base field GF(2).
Let A(x) be an arbitrary element of the field GF(2™), thus, it can be represented as a

polynomial of degree (m — 1), given by
m—1
Az) = Z ;37 = 1™ A0 A + a1z + ag (2.1)
=0

where all a; € GF(2). This element can also be represented using the coordinate notation
as (m_1, A2y +ee... ,.a1, ag).

Moreover, every GF(2™) is characterized by its field-defining m' degree polynomial
called an irreducible polynomial. An irreducible polynomial of the finite field GF(2™) is
an m'™ degree monic polynomial which cannot be factored into two non-trivial polynomial
elements over the same field. For a GF(2™), the general form of the irreducible polynomial
T(x) is given by a monic polynomial of the form, T'(z) = 2™ + 272—11 t;z? + 1 with at

least one of t;s to be non zero and all t; € GF(2).

Thus, the finite field GF(2™) can be represented as a set of all its 2™ polynomial
elements as,
GF(2™) = {A(2) | A(2) = apm12™ " + Qo™ 2 4+ appsz™ > + ... + a1z + agp;
Va; € GF(2),i=m—1to0}, (2.2)
where, z is a root of the irreducible polynomial 7'(z).

Field irreducible polynomials 7'(z) are categorized into general irreducible polyno-
mials, all one polynomials, equally spaced polynomials, pentonomials, and trinomials.
General irreducible polynomials bears no specific constraints on the structure of the poly-
nomial and are of the form given by

T(x) = 2™ 4ty 18"+t od™ 2+ ™ L +tix + 1
Vit € GF(2),i=m—1tol (2.3)
moreover, since x is the root of T'(x), one can also have
™ =ty 2™ Aty o™ T A g™ T A +tiz+1

All one polynomials (AOP) are the class of irreducible polynomials that have all of its

polynomial coefficients equal to 1, i.e. all ¢; = 1, and are of the form

T(x)=a™+ vl VL o SR +z+1 (2.4)
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further, since z is the root of T'(x), one can also have

Equally spaced polynomials (ESP) are the class of irreducible polynomials that have equal
spacing with respect to degree of the polynomial terms. Clearly, AOPs are are ESPs with
spacing of 1. The general form of ESPs is given by

l
T(x) =) a’* for j=0,1,2,..1 (2.5)

J=0

I U A R |

also, since z is the root of T'(z), one can also have = 2°(=D + .+ 2° + 1.
Pentanomials are the class of irreducible polynomials that have only five terms and are

of the form,
T(x)=a™+ 2™ + 2™ + 2™ + 1,where, 1 <m; <my <mz < (m—1) (2.6)

moreover, since x is the root of T'(z), one can also have 2 = ™3 + ™2 + £ + 1.
Trinomials are the class of irreducible polynomials that have only three terms and are of
the form,

T(z) = 2™+ 2" +1,where, 1 <k < (m — 1) (2.7)

further, since  is the root of T'(z), one can also have 2™ = x* +1. Examples for trinomials
include the trinomials T'(z) = 2?3 + 2™ + 1 and T'(z) = 2% + 287 + 1 (which are also
the NIST (National Institute of Standards and Technology) recommended trinomials for
elliptic curve cryptography).

Finite fields GF(2™) can also be viewed as vector spaces of dimension, 'm’. Hence,
a finite field GF(2™), which consists 2™ elements, can also be represented using a specific
set of any of its m linearly independent elements called basis. Thus, any element of a
field GF(2™) can be represented as a linear combination of the m basis elements. A finite
field can have more than one basis, thus, the elements of a finite field GF(2™) can be
represented using various bases such as polynomial basis, normal basis, redundant basis,

dual basis, and weakly dual basis.

Polynomial Basis: The polynomial basis is defined with the set (1, z,z?% 2?, ...

., 2™ 2 ™ 1) where z is the root of the irreducible polynomial T'(x) of the field GF(2™).
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An element A(xz) € GF(2™) represented using the polynomial basis is of the form,

A(z) = U1 ™V @y 0™ 2 + a1z + ap, a; € GF(2)

Dual Basis: Let (zg, 21, 2, T3, ..., Tr—1) and (Yo, Y1, Y2, Y3, -----, Ym—1) be the bases
of a field GF(2™). Then, the bases are said to be dual to each other if they satisfy the

following condition.
1, ifi=y
Tr(zy;) = (2.8)
0, ifi#y

where Tr(a) (in Eq. 2.8, o = x;y;) is a trace function defined over GF(2™) as

Tr(e) =Y 2% (2.9)

Weakly Dual Basis: Let (g, x1, T2, T3, oo, 1) and (Yo, Y1, Y2, Y3y ---e, Ym—1) be
the bases of a field GF(2™) and v € GF(2™),~ # 0. Then, the bases are said to be weakly
dual to each other if they satisfy the following condition.

1, ifi=y
Tr(yaiy;) = (2.10)
0, ifisj
Clearly, for v = 1, weakly dual basis becomes the dual basis. Thus, the dual basis is a

special case of weakly dual basis.

Normal Basis: The normal basis is defined with the set (z, 22, 2222 e

22"") where z is the root of the irreducible polynomial T'(z) of the field GF(2™). An

element A(z) € GF(2™) represented using the normal basis is of the form,

A(gj) = am71x2m ! —+ am,2x2m e + CL15L’2 + apgx, a; € GF(Z)

Redundant Basis: The splitting field of the polynomial ™ — 1 is known as a
cyclotomic field which is denoted by K ™. Let 3 be the n** roots of unity. The field K

can be generated by § over K, and an element of K (™ is given by
AB) = ag + a1+ agf* + ... + an_1 8", where, all a; € K (2.11)

Thus, the set (1,05, 32,52, ....... , 371) forms the basis for the cyclotomic field K™, This

basis also forms the basis for any subfield of K™ and is called redundant basis.
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2.2 Finite Field GF(2™) Arithmetic

Arithmetic operations such as addition, multiplication, inversion, squaring, division,
and exponentiation are defined in the GF(2™) field. Conventionally, these field operations
can be performed in two steps, usual arithmetic operation followed by modulo reduction
using the irreducible polynomial, 7T'(x). Moreover, both the steps follow modulo 2 arith-

metic for operations among the polynomial coefficients.

However, GF(2™) addition is simple and can also be performed as modulo 2 addition
of polynomials. For example, consider two elements A(z) = 27+ 2° + 2* + 23+ 2 + 1 and

B(x) =27+ 2+ 2* + 23 + 22 + 2 + 1 from the GF(2®) field. Then,

A(z) + B(z) = 2% 4+ 2° + 2°

2.3 Finite Field GF(2™) Multiplication

Among all the arithmetic operations, multiplication requires more attention as it is
frequently used in the realization of other operations. Further, polynomial basis multipli-
cation is simpler and also gives more regular and compact realizations compared to other
bases. Hence, we have selected polynomial basis for realizing GF(2™) multiplication and

the same basis is adopted throughout the thesis.

Let A(z) and B(z) be two elements of the field GF(2™) represented using polynomial

basis as

-1 —2 -3
A(Z) = A1 2™+ Q2™ 4 Qg™ 4 + a1 + ag;

Va; € GF(2),i=m—1t00 (2.12)

B(x) = by 12™ "+ D28 4 by 32™ 70 o+ Du + Do

Vb, € GF(2),i=m—1to0 (2.13)
Then, the GF(2™) multiplication is defined as

C(z) = A(x)B(x) mod T'(x) (2.14)
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The product C'(z) can be obtained by usual multiplication of the polynomials A(x) and
B(z), followed by modulo reduction using 7'(x) (This is called Classical method of com-

puting finite field multiplication).

Ezample: Consider a finite field GF(2®) with the field irreducible polynomial T'(x) =
28+ 2% + 23+ 2+ 1. Also consider two elements of this field as A(z) = 25+ 2 + 22+ 2 +1
and B(x) = 2" + z + 1. Then, multiplication of these two elements C'(z) can be obtained

as follows.

C(z) = A(x) x B(z) mod T'(z)

A@)x B@) =@ +a* + 22 + 2+ 1) x (2" + 2+ 1)

B T T I TR S e |

This result of the usual multiplication (A(x) x B(x)) must be modulo reduced using

the irreducible polynomial T'(z) = z® + 2* + 23 + x + 1 as follows.

x8+$4+x3+$+1> Bt 2 4 a8 +a28 2+t 3+ 1 <x5+x3
3 + 2 + 28 + 2%+ 2°
it +at+ a3 1
. +x7+x6 +x4+x3
" 4 25 +1

Therefore, C(z) = A(z)B(x) mod T'(x) = 2" + 2° + 1.

In the classical approach mentioned in the above example, multiplication of poly-
nomials is performed first, and then, it is followed by the reduction using the irreducible
polynomial T'(z). Further, it is also possible to interleave the modular reduction step
as shown in algorithm 2.1 for computing the required product, C'(x). This method is
based on the observation that A(z)B(z) mod T(z) = ap_1(z™ *B(x) mod T'(x)) + ... +
ai(zB(z) mod T(x)) + B(z) mod T(x). Thus, z°B(z) mod T'(x) can be successively com-
puted for all 0 < i < m — 1, and all the reults are added for which a; = 1. The

successive computation can be started with xB(x) mod T'(x) (for ¢ = 1), and it can
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be computed as follows using the propoerty of the irreducible polynomial T'(x) that
2™ = (1) = by 1™ 0™ by 3™ +tz + 1.

rB(x) mod T(z) = byp_12™ 4 bp_ox™ * + ... + byz> + byxr mod T'(z)
= bm—l (tm_1$m_1 + tm_glfm_? + tm_gﬂ,’m_3 + + tll’ + 1) + bm_gl’m_l

+ ...+ 611’2 + bo.ﬁL’

Therefore, 2B(z) mod T(z) can be computed by a left-shift of the vector representation
of B(z) (which invariably consists m coordinates) and adding ¢(z) to it if b,_; = 1.
Similarly, other terms z’B(z mod T'(z) can be successively obtained using previous terms

and can be used in the computation of C'(x) as described in the algorithm.

Algorithm 2.1: Interleaved modular reduction multiplication algorithm

Input: A = Z;”;OI a;x’, B = 27;01 bjz? both w.r.t. polynomial basis, and T = 2™ +
Sl + 1.

Output: C = (A x B)mod T = Z;”:_Ol ¢;z? also w.r.t. polynomial basis.
1: if gy = 1 then

2: C(x) < B(x)

3: else

4: C(z) <0

5: end if

6: for t=1tom—1do

7: B(z) «+ B(x)x mod T'(x)

8: 1if ¢; =1 then

9: C(x)+ B(z)+ C(x)

10: end if

11: end for

12: return C(x)

Apart from the above mentioned classical (polynomial multiplication followed by
modulo reduction) and Interleaved modulo reduction multiplication methods for com-

puting the finite field GF(2™) multiplication, various other algorithms/methods pro-
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posed in the literature such as Mastrovito multiplication, Montgomery multiplication,
and Karatsuba-Ofman multiplication can also be used for efficient computation of mul-
tiplication. Further, the computational complexity of multiplication can also be reduced

using various classes of irreducible polynomials, particularly, trinomials.

2.4 Conclusions

In this chapter, a brief overview of the fundamental concepts of groups, rings, fields,
finite fields, polynomial basis representation, and the description of polynomial basis mul-
tiplication is presented. The next chapter presents the review of finite field multiplication

architectures over GF(2™) available in the literature.




Chapter 3

Polynomial Basis GF(2") Multiplier Architectures

Hardware implementation of IoT (Internet of Things) devices typically require low-
cost, high-performance, and scalable multipliers as mentioned in Chapter 1. Low-cost im-
plementations can be achieved using bit-serial sequential multipliers while high-throughput
implementations can be achieved using bit-parallel systolic multipliers. Moreover, scalable
multipliers that facilitate area-delay trade-off can be realized using digit-serial sequential
multipliers. This current chapter presents the survey of different related architectures
proposed in the literature for polynomial basis GF(2") multiplication. Firstly, the bit-
serial sequential multipliers proposed in the literature over GF(2™) for general irreducible
polynomials are presented. Secondly, the bit-parallel systolic multipliers proposed in the
literature over GF(2™) for irreducible trinomials are presented. Finally, the digit-serial
sequential multipliers proposed in the literature over GF(2") for irreducible trinomials are
presented. In addition, the performance improvements achieved by these multipliers in

terms of area complexity, latency, throughput, and critical path delay are also presented.

3.1 Review of Bit-Serial Sequential Multipliers for General Ir-

reducible Polynomials

Several bit-serial sequential multipliers proposed in the literature for the finite field
multiplication over GF(2™) for general irreducible polynomials are reviewed and the per-

formance of these multipliers in terms of area and time complexities is presented in Ta-
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ble 3.1. The area and time complexities of the multipliers are expressed using the notations
m, Ta, Tya, Tx, Txn, Tisp, and Ty which represent field order, the propagation delays
of a 2-input AND gate, 2-input NAND gate, 2-input XOR gate, 2-input XNOR gate,
tristate buffer, and 2-to-1 MUX (multiplexer), respectively. Furthermore, these notations

are used to compute areas and delays of all the architectures presented in this thesis.

Table 3.1 Area and time complexities of the available bit-serial sequential multipliers.

Multiplier AND XOR MUX Register Latency Critical path
[28] 2m 2m — 1 0 4m + 2 m+ 1 Ta +Tx
MSB-first [14] 2m 2m — 1 0 3m m Ta +2Tx
LSB-first [14] 2m 2m — 1 m 3m m Ty + Tx
[25] (m? +m)/2 (m? +m)/2 4m 5m — 1 2k¢ +1  Tx[logom]+2Tn+Ta
[29] 4m 2m (m — D) +mc4m? 3m m Ta+Tx + Tisp
[30] 0 6m + 18 14m + 26 6m 4+ 7 m/4 2Ty + ATy
[16] 2m 2m 2m 3m m Ta+Tx
MSB-first [31] 2m — 1 2m — 1 0 2m m Ty + Tx
LSB-first [31] 2m — 1 2m — 1 0 2m m Ta +2Tx
[32] 2m — 1 2m — 1 0 2m m Ta+Tx
[33] 2m —1 2m — 1 0 2m m T +2Tx
[34] m 2m — 1 0 2m m Ta + [logo m]Tx

?the second highest degree of the irreducible polynomial, POR gates, “inverters, %tristate buffers

Various algorithms such as Interleaved multiplication algorithm [14], Montgomery
multiplication algorithm [35], and Karatsuba-Ofman multiplication algorithm [36] have
been proposed in the literature to realize efficient bit-serial multiplier architectures. Based
on these algorithms, many architectures have been proposed in the literature to achieve
reduction in area and time complexities. Beth et al. [37] in 1989 presented a most signif-
icant bit (MSB) first and a least significant bit (LSB) first bit-level serial-in parallel-out
architectures using trinomials. These architectures use a linear feedback shift register with
feedback added into the register in the positions defined by the irreducible polynomial.
In these architectures, one input is loaded in parallel and another one is loaded serially
one bit per clock cycle requiring a total of m clock cycles for a single multiplication. Song
et al. [28] in 1996 presented a new polynomial basis bit-serial multiplier which achieves
smaller critical path delay and lower latency. Further, this multiplier, using sub-structure
sharing technique, can also achieve hardware saving when it is used in large systems.
This multiplier requires 2m AND gates, (2m — 1) XOR gates, and (4m+ 2) registers. The
latency of this multiplier is (m + 1) clock cycles and the critical path delay is given by
(Ty + Tx). In 2001, Johann Grofischadl [38] presented a low power MSB-first bit-serial
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architecture. This multiplier also performs addition operation and operates over a wide
range of finite fields. Major advantages of this multiplier are low power and versatility in

terms of being applicable to a wide range of finite field orders, m.

Deschamps et al. [14] in 2009 presented implementation of bit-serial multipliers
for general irreducible polynomials using the available [37] MSB-first and LSB-first in-
terleaved multiplication algorithms. The MSB-first multiplier requires 2m AND gates,
(2m — 1) XOR gates, and 3m registers. The latency of this multiplier is m clock cycles
and the critical path delay is given by (T4 + 2Tx). The LSB-first multiplier requires 2m
AND gates, (2m — 1) XOR gates, m multiplexers, and 3m registers. The latency of this
multiplier is also m clock cycles and the critical path delay is given by (T4 + T'x). Both
of these multipliers require less number of registers compared to the previously available
multiplier [28], however, the MSB multiplier requires more critical path delay while LSB

multiplier requires the same critical path delay.

In 2010, Imana [25] proposed a new low latency parallel-in/parallel-out sequential
polynomial basis multiplier over GF(2™). It is a partially versatile multiplier as its dat-
apath can also be used for fields GF(2") such that 1 < n < m. This multiplier achieves
low latency when the condition m > 2k, — 1 is met, where k; is the second highest degree
of the field irreducible polynomial. This condition is specifically important as the NIST
(National Institute of Standards and Technology) recommended five binary fields verify
this condition. This multiplier requires (m? 4+ m)/2 AND gates, (m? 4+ m)/2 XOR gates,
4m MUXes and (5m — 1) registers. The latency of this multiplier is (2k; + 1) clock cycles
and the critical path delay is given by (T'x[logam]| + 2T + T4). Though this multiplier
achieves low latency, it requires more hardware and critical path delay compared to the
previously available multipliers [14,28]. Although this multiplier may achieve low latency,

due to the high area complexity it is not useful for low-hardware applications.

A low-power and high-speed bit-serial versatile multiplier [29] was proposed by Za-
kerolhosseini et al. in 2013 which is flexible with field size as well as field irreducible
polynomial. This multiplier uses tri-state buffers to achieve power reduction and it also
achieves lower area and critical path delays. This multiplier requires 4m AND gates,
2m XOR gates, (m — 1) OR gates, m inverters, m tristate buffers, and 3m registers.

The latency of this multiplier is m clock cycles and the critical path delay is given by
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Ty + Tx + Tisp. This multiplier achieves low power while requiring more area and delay

complexities compared to the available multipliers [14,28].

A sequential multiplier was proposed by Ho [30] in 2013 based on the condition
m > k; + 4, where k; is the second highest degree of the irreducible polynomial. This
architecture requires (6m + 18) XOR gates, (14m + 26) MUXes and (6m + 7) registers.
The critical path delay is given by the expression (273, +47x) with a latency of m/4 clock
cycles. This multiplier achieves reduction in latency compared to the sequential multipli-
ers [14,28,29], however, it requires high area complexity and critical path delay compared
to these sequential multipliers. Also, this multiplier requires low latency for certain field
orders including m = 233 for the NIST recommended trinomial, when compared to the
multiplier [25]. Although this multiplier has achieved low latency, due to the high area

complexity it is not useful for low-hardware applications.

Mathe et al. [16] presented an LSB-first sequential polynomial basis multiplier for
generic irreducible polynomials with a latency of m clock cycles. This architecture is
designed to take one operand in parallel and another operand serially during computation.
This multiplier requires 2m AND gates, 2m XOR gates, 2m MUXes, and 3m registers.
The latency of this multiplier is m clock cycles and the critical path delay is given by
(T's + Tx). This multiplier slightly requires more hardware when compared to the LSB-
first multiplier [14], however, this multiplier achieves more regularity as it does not require

shifting for any of its registers.

Two bit-serial Montgomery multipliers [31] namely MSB-first multiplier and LSB-
first multiplier using general irreducible polynomials were presented by Hariri et al. in
2009. In this work, the authors studied the role of Montgomery factor and identified that
the appropriate factor as 2™~ !. The Montgomery multipliers proposed in this work are
faster than the previously available Montgomery multiplier [35]. The MSB-first multiplier
requires (2m — 1) AND gates, (2m — 1) XOR gates, and 2m registers. The latency of
this multiplier is m clock cycles and the critical path delay is given by (T4 + Tx). The
LSB-first multiplier requires (2m — 1) AND gates, (2m — 1) XOR gates, and 2m registers.
The latency of this multiplier is also m clock cycles and the critical path delay is given

In 2011, Morales et al. [32] presented an MSB-first Mongomery multiplier for two
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different Montgomery factors (z™ and ™) using various classes of irreducible polynomi-
als. This multiplier architecture is designed using a new approach where a linear feedback
shift register (LFSR) is used as the main building block. Due to the low area complexity
and high performance of the LFSR, this multiplier achieves low area and time complex-
ities. This multiplier achieves reduction in area and time complexities when irreducible
polynomials are selected as trinomials and all one polynomials, however, for general ir-
reducible polynomials the complexities of this multiplier are matched to the avaialabe
MSB-first multiplier [31]. For the case of general irreducible polynomials, this multiplier
requires (2m — 1) AND gates, (2m — 1) XOR gates, and 2m registers. The latency of this
multiplier is m clock cycles and the critical path delay is given by (T4 + T).

In 2013, Huapeng Wu presented a linear feedback shift register (LFSR) based LSB-
first bit-serial Montgomery multiplier [33]. The architecture of this multiplier is designed
employing the LESR approach, however, the area and time complexities of this multiplier
are similar to the available LSB-first multiplier [31]. This multiplier requires (2m — 1)
AND gates, (2m — 1) XOR gates, and 2m registers. The latency of this multiplier is m
clock cycles and the critical path delay is given by (T4 + 2T ).

An efficient bit-serial Montgomery multiplier [34] was presented by Huapeng Wu
in 2014 using weakly dual basis. The architecture of this multiplier is designed using a
compact and highly regular Fibonacci type LFSR. This multiplier achieves more regularity
and requires less area compared to previously available Montgomery multipliers [31-33],
however, this multiplier may require basis conversion depending on the application. This
multiplier requires m AND gates, (2m — 1) XOR gates, and 2m registers. The latency of
this multiplier is m clock cycles and the critical path delay is given by (T4 + [logy m|Tx).

3.2 Review of Bit-Parallel Systolic Multipliers for Trinomials

Several bit-parallel systolic multipliers proposed in the literature for the finite field
multiplication over GF(2™) for irreducible trinomials are reviewed and the performance

of these multipliers in terms of area and time complexities is presented in Table 3.2.

In 1984, Yeh et al. [47] presented a serial-in serial-out array multiplier with two
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Table 3.2 Area and time complexities of the available bit-parallel systolic multipliers.

Design AND XOR Register Latency Critical Path
47] 2m? 2m? m? 3m Ta+ Ty
48] 2m? 2m? Tm? 3m Ta+Tx
39](i) (m +1)° (m+ 1) 4(m+1)? m+ 1 Ta+Tx
39](ii) (m +1)? (m +1)(m + 2) 5(m+1)° m+1 Tx
[40] m?2 m2+m—1 3m? +2m — 2 2m — 1 Ta+Tx
[41] m? m? + ml 4m? + 2lm m+1+1 Ta+Tx
[42] (3m? —m)/2 m?+m 4m?* +m m+1 Ty+ Tx
43] m? m?+m 3.5m? + 3m m+ 2 Ta+Tx
[27] m? m? —1 2m(m — 1) m Ty+Tx
[44] m?2 m?+m 2m? m Ty+ 2T
[45] m? m? +m 2m? m/2+2 2T
46] m? 1.5m? + 0.5m 1.5m?* +2m — 1 m+ 2 Ta+Tx

l=|(m=2)/(m—k)] +1.

control signals and a parallel-in parallel-out array multiplier with bidirectional data flow.
Wang et al., in 1991, presented a two-dimensional parallel-in parallel-out and a one-
dimensional serial-in serial-out systolic architectures [48]. These multipliers [47,48] are
based on the direct unrolling of iterative algorithms and not exploited the fully inherent
parallelism. In 1998, various finite field arithmetic structures including multipliers [49]
were explored to achieve reduction in latency using semi-systolic structures. For large
values of m these semi-systolic structures are not suitable because of increased and longer
broadcast signals. Further, all these multipliers [47-49] are defined over general irreducible
polynomials and hence require large area and time complexities. Following this, many
multipliers were proposed in the literature using various classes of irreducible polynomials,

particularly trinomials, to achieve reduction in area and time complexities.

Two bit-parallel systolic multipliers [39] were presented by Lee et al. in 2001 over
all one and equally spaced polynomials where one multiplier is area-efficient while the
other is time optimal. Few properties of all one polynomials (AOP) are used in the
formulation of the algorithms of these multipliers. These two systolic multipliers are also

applicable to trinomials that come under equally spaced polynomials (ESP). The area-
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efficient multiplier architecture [39](i) requires (m+ 1)* AND gates, (m +1)? XOR gates,
and 4(m + 1)? registers. The latency of this multiplier is (m + 1) clock cycles and the
critical path delay is given by (T4 +T'x). The time-efficient multiplier architecture [39](ii)
requires (m + 1)2 AND gates, (m + 1)(m + 2) XOR gates, and 5(m + 1)? registers. The
latency of this multiplier is (m + 1) clock cycles and the critical path delay is given by
Tx. The short critical path delay (T ) of this time-efficient multiplier facilitates high
throughput rates and high frequency of operation. Both of these multipliers achieve low
hardware and low latency compared to the available systolic multipliers [47,48], however,

these multipliers are suitable for very limited applications due to the scarcity of AOPs.

A trinomial based low-complexity and low-latency bit-parallel systolic multiplier [40]
was presented in 2003 by Chiou-Yng Lee. This multiplier requires low hardware compared
to the previously available multipliers [39,47,48]. Also, this multiplier achieves low latency
when compared to the multipliers [47, 48], however, it requires more latency compared to
the multipliers [39]. This multiplier requires m?> AND gates, (m? + m — 1) XOR gates,
and (3m? + 2m — 2) registers. The latency of this multiplier is (2m — 1) clock cycles and
the critical path delay is given by (T4 + Tx).

In 2003, Lee et al. presented a low-latency bit-parallel systolic multiplier [41] appli-
cable for the class of trinomials 2™ + x¥ + 1 for which ged(m,n) = 1. This multiplier is
based on a new algorithm that uses permutation polynomials. The algorithm is similar
to conventional interleaved multiplication algorithm where reduction and multiplication
are performed interleavingly. The latency of this multiplier is at least (m + 2). For
2 < k < [m/2], the latency of this multiplier is m + 3, which is lower than the latency of
the available multipliers [40,47,48]. This multiplier requires m? AND gates, (m? + ml)
XOR gates, and (4m? 4 2lm) registers. The latency of this multiplier is (m + [+ 1) clock
cycles and the critical path delay is given by (T4 + Tx).

A low-complexity bit-parallel systolic Montgomery multiplier [42] using a transfor-
mation method is proposed by Lee et al. in 2005. The latency of this multiplier is lower
compared to the multipliers [40,41,47,48]. This multiplier requires (3m? —m)/2 AND
gates, (m? + m) XOR gates, and (4m? + m) registers. The latency of this multiplier is
(m + 1) clock cycles and the critical path delay is given by (T4 + Tx).

An area-efficient bit-parallel systolic Montgomery multiplier [43] for trinomials using
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Toeplitz matrix-vector representation was presented in 2008 by Chiou-Yng Lee. This
multiplier requires m? AND gates, (m? + m) XOR gates, and (3.5m? + 3m) registers.
The critical path delay is given by the expression (T4 + T ) with a latency of (m +
2) clock cycles. This multiplier achieves reduction in area complexity compared to the
systolic multipliers [39,41] while requiring high area complexity compared to the systolic
multiplier [40]. Moreover, it achieves low latency compared to the systolic multipliers [40,

41] while requiring more latency compared to the multipliers [39].

A bit-level pipelined area-efficient systolic multiplier architecture [27] was presented
in 2008 by Pramod Kumar Meher, where the architecture is derived using the signal flow
graph approach [50] and applying appropriate cutset retiming techniques. This multiplier
requires m? AND gates, (m? — 1) XOR gates, and (2m? — 2m) registers. The critical path
delay is given by the expression (74 +Tx) with a latency of m clock cycles. This multiplier
achieves low area complexity and low latency compared to the systolic multipliers [39-43,

47,48,

A polynomial basis systolic multiplier [44] which can be extended to have concur-
rent error detection was presented by Bayat-Sarmadi et al. in 2009. The latency of this
multiplier is similar to the latency of the multiplier [27] while area is marginally higher.
The critical path delay of this multiplier is more than the previously available multipli-
ers [27,39-43]. This multiplier requires m*> AND gates, (m? + m) XOR gates, and 2m?
registers. The critical path delay is given by the expression (T4 + 27Ty ) with a latency of

m clock cycles.

In 2012, Jia-feng et al. presented a low-latency systolic architecture [45], which
is derived using the signal flow graph approach applying appropriate cut-set retiming
techniques. The area required by this multiplier is similar to the multiplier [44] while
critical path delay is lower. The latency of this multiplier is lower compared to the
previously available multipliers [27,39-44]. This multiplier requires m* AND gates, (m?+
m) XOR gates, and 2m? registers. The critical path delay is given by the expression 2T
with a latency of (m/2 + 2) clock cycles.

Bayat-Sarmadi et al. [46] proposed a systolic multiplier for trinomials in 2015 based

on the Montgomery multiplication algorithm. This multiplier achieves low area complex-

ity compared to the available systolic multipliers [27,39-45]. This multiplier requires m?
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AND gates, (1.5m? +0.5m) XOR gates, and (1.5m? +2m — 1) registers. The critical path
delay is given by the expression (T4 + T'x) with a latency of (m + 2) clock cycles.

3.3 Review of Digit-Serial Sequential Multipliers for Trinomials

Several digit-serial sequential multipliers proposed in the literature for the finite field
multiplication over GF(2™) for irreducible trinomials are reviewed and the performance

of these multipliers in terms of area and time complexities is presented in Table 3.3.

Table 3.3 Area and time complexities of the available digit-serial sequential multipliers.

Latency

Design AND XOR Register Critical path delay
(clock cycles)

MSD-first [51] wm wm + 3w 2m + w n+2 Ta + ([log§w+1'\)TX
LSD-first [51] wm wm + 3w — 2 3m+w—1 n+2 Ta + (]—log;”+1'\)TX
[52] wm wm + (w? + w)/2 2m + w n—1 Ta + ([logd’1 +2)Tx

[53] wm wm + (w? + w)/2 2m + w n+1 Ta + ([logy] +2)Tx

[54] mlo98  69/20m1°98 _ 1/aml09% _11/5 2m — 1 n+1 Ta + (14 3logi")Tx

[55] wm wm 4+ w?/2 + 3w/2 — 1 2m ntl Ta + ([log¥] +2)Tx

In 1998, Song et al. [51] presented two digit-level LSD (Least significant digit)-first
and MSD (most significant digit)-first serial-in parallel-out multipliers. The design of
these multipliers is based on a new approach where an array-type algorithm is combined
with a parallel algorithm to realize efficient architectures. The digit-level array-type
algorithm reduces the latency of the multiplier while the parallel structure inside each
digit-cell reduces the critical path delay as well as the switching activities. The MSD-
first multiplier requires wm AND gates, (wm + 3w) XOR gates, and (2m + w) registers.
The latency of this multiplier is (n + 2) clock cycles and the critical path is given by
(T4 + ([logs“*'])Tx). The LSD-first multiplier requires wm AND gates, (wm + 3w — 2)
XOR gates, and (3m+w — 1) registers. The latency of this multiplier is also (n+ 2) clock
cycles and the critical path delay is given by (T4 + ([log¥™])Tx). In these complexities
expressions, m represents field order, n represents number of digits, and w represents
digit size. These LSD-first and MSD-first multipliers achieve a substantial reduction in
computational delay and energy consumption, when compared to the multipliers obtained

by folding the available semi-systolic multipliers [49].

An MSD-first bit-parallel word-serial (BPWS) multiplier for GF(2%3%) [52] is pre-
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sented in 2005 by Tang et al., where, the field order 233 was selected as it provided
enough security and also it is one of the field orders recommended by NIST. In this multi-
plier, an 8 x 233 parallel multiplier is employed to generate the finite field partial products.
The proposed digit-serial multiplier requires wm AND gates, (wm + (w? + w)/2) XOR
gates, and (2m+w) registers. The latency of this multiplier is (n — 1) clock cycles and the
critical path delay is given by (T4 + ([logy'] + 2)T’x). This multiplier achieves reduction
in area and time complexities while consuming less power compared to the MSD-first

multiplier [51].

In 2007, a high-throughput digit-serial multiplier for trinomials is presented in [53]
by Meher. In this multiplier, T-flipflops are used for accumulation instead of D-flipflops
to achieve a reduction in critical path delay as well as in hardware. This design saves m
number of XOR gates and eliminates the feedback loops. Moreover, this multiplier is more
regular and modular. This digit-serial multiplier requires wm AND gates, (wm + (w? +
w)/2) XOR gates, and (2m + w) registers. The latency of this multiplier is (n + 1) clock
cycles and the critical path delay is given by (T4 +([logy']42)Tx). This multiplier achieves

lower area, critical path delay, and area-delay-product compared to the multipliers [51,52].

A digit-serial multiplier [54] based on (b, 2)-way Karatsuba algorithm decomposition
is proposed in 2014 by Lee et al. for achieving sub-quadratic space complexity. This
multiplier is based on Shifted Polynomial Basis (SPB), which is a variant of the polynomial
basis. In this work, authors extended the Karatsuba decomposition to generalize (b,
2)-way KA decomposition, and based on this a low-complexity digit-serial multiplier is
developed. This digit-serial multiplier requires m!°% AND gates, (69/ 20m'osi — 1 / 4mlogi —
11/5) XOR gates, and (2m — 1) registers. The latency of this multiplier is (n 4+ 1) clock
cycles and the critical path delay is given by (T4 + ([logy| + 2)Tx). This multiplier is
more regular, modular, and achieves significantly less area-delay-product compared to the

available SPB multiplier [56].

In 2017, Namin et al. presented a low-power digit-serial multiplier [55], where,
a new factoring technique is employed to minimize the switching power and logic gate
substitution is used to reduce the internal power. Moreover, logic gate substitution also
results in reduction in area complexity. This digit-serial multiplier requires wm AND

gates, (wm+w?/2+3w/2—1) XOR gates, and 2m registers. The latency of this multiplier
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is (n+ 1) clock cycles and the critical path delay is given by (T4 + ([logy’] + 2)Tx). This
multiplier achieves reduction in area, energy, and area-energy product compared to the

multipliers [51-54,57].

In 2017, Namin et al. presented a digit-serial multiplier using redundant basis
representation. Redundant basis is also an appealing representation for field elements as
its arithmetic does not require modulo reduction operation. This multiplier is a fully serial-
in parallel-out multiplier where both the operands enter the architecture simultaneously.
Thus, this multiplier does not require preloading of operands, thereby, it saves the delay
required for preloading. This multiplier achives lower multiplication delay compared to
the related previous multipliers [58,59]. The fully serial-in paralle-out approach employed

for this multiplier can be further explored on polynomial basis also.

3.4 Conclusions

In this chapter, a survey of different architectures of finite field multipliers available
in the literature and the performance analysis of these multipliers in terms area and time
complexities are presented. The next chapter presents the design of the proposed bit-serial

sequential multipliers for general irreducible polynomials.




Chapter 4

Area-Efficient Bit-Serial Sequential Multipliers for

General Irreducible Polynomials

This chapter presents the design of bit-serial sequential multipliers for general ir-
reducible polynomials targeting domestic IoT (Internet of Things) end devices. These
multipliers include an MSB (most significant bit) first multiplier based on the proposed
modified interleaved multiplication algorithm and an MSB as well as an LSB (least signif-
icant bit) first multipliers based on the proposed modified Montgomery algorithms. The
modifications in the proposed algorithms involve employing more efficient logical rela-
tions in place of the existing relations. The analytical complexities in terms of area and
delay are obtained and also computed for m = 409. Furthermore, the proposed multipli-
ers are modeled using VHDL (Very High Speed Integrated Circuit Hardware Description
Language) and implemented using Synopsys Design Compiler employing NanGate 45nm
open cell library files. The obtained analytical and implementation results show that the
proposed multipliers are area-efficient compared to the respective multipliers available in

the literature.

4.1 Introduction

Internet of Things comprises billions of end devices attached to physical objects to
sense and transmit data. These devices should be implemented with less hardware so

as to reduce the cost, particularly, for domestic applications. Hence, implementation of
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security in these end devices also requires hardware efficient architectures. Elliptic curve
cryptography (ECC) is an efficient public key cryptosystem used for security implemen-
tation in IoT and heavily uses GF(2™) multiplications in its underlying operations. This
multiplication is the performance-critical operation in ECC and its implementation tar-
geting IoT end devices requires area-efficient architectures. Achieving area reduction for
GF(2™) multipliers is a continuous effort to meet the challenges raised from the various
evolving applications such as IoT and WSNs (wireless sensor networks). These applica-
tions in domestic environments tend to focus more on cost reduction rather than targeting
high performance, thereby requiring low hardware implementations. Though many archi-
tectural styles are available such as bit-parallel, digit-serial, bit-serial, systolic, sequential,
and parallel for the implementation of GF(2™) multiplication, it is observed that bit-
serial sequential architectures require the lowest area compared to other architectural
styles. Hence, the design of area-efficient bit-serial sequential GF(2") multipliers is desir-
able for the security implementation in the domestic IoT end devices. Furthermore, it is
desirable for the domestic applications to have generic off-the-shelf components available
in the market since the domestic applications may have a wide variety of requirements in
terms of specifications. Hence, the design of GF(2™) multipliers using general irreducible

polynomials is also required.

Many bit-serial sequential architectures are proposed in the literature [14,16,25,28-
34] for polynomial basis GF(2™) multiplication using general irreducible polynomials to
achieve reduction in area and time complexities. In this work, firstly, we have derived a
modified interleaved multiplication algorithm based on the conventional interleaved mul-
tiplication algorithm [38] available in the literature. Subsequently, an efficient MSB-first
sequential polynomial basis multiplier, which supports the multiplication of any two ar-
bitrary finite field elements over GF(2™) for generic irreducible polynomials, is designed
based on the proposed algorithm. The area and delay complexities of this sequential
multiplier are estimated and its performance is compared with the existing sequential
multipliers [14,16,25,28-30]. Secondly, we have also derived modified Montgomery multi-
plication algorithms based on the Montgomery multiplication algorithms [31] available in
the literature. Subsequently, efficient MSB-first and LSB-first sequential polynomial ba-
sis multipliers, which support the multiplication of any two arbitrary finite field elements

over GF(2™) for generic irreducible polynomials, are designed based on the proposed algo-




Bit-Serial Multipliers for General Irreducible Polynomials 36

rithms. The area and delay complexities of these sequential multipliers are estimated and
the performance is compared with the existing Montgomery sequential multipliers [31-34].
It is observed that the proposed Montgomery sequential multipliers achieve reduction in
area and area-delay-product (ADP) over the existing sequential multipliers when verified
using a field of order m = 409. Further, all the proposed multipliers and some existing
multipliers are implemented using ASIC (Application specific integrated circuit) technolo-
gies and the implementation results show that the proposed sequential multipliers achieve

reduction in area and ADP over existing multipliers.

4.2 Area-Efficient Bit-Serial Sequential GF(2™) Multiplier

In this section, the design and performance analysis of the proposed bit-serial se-
quential multiplier are presented. First, we present the mathematical formulations for
the proposed modified interleaved GF(2™) multiplication algorithm and its realization
using the bit-serial architecture. Following this, analytical comparisons of area and time

complexities and implementation results are presented.

4.2.1 Design

Mathematical Formulation

Let A(x) and B(z) be the field GF(2™) elements and T'(z) be the field irreducible
polynomial. Let C(z) be the product of the elements A(x) and B(x) given by

C(z) = (A(z) x B(z)) mod T'(z) (4.1)

Consider the expression for C'(x) presented in Eq. 4.1 for developing the proposed formu-

lations, we have

= (A(x) X (b 12™ 1 4 bpox™ T 4 L + bz + bo)) mod T'(x)

= (A@) X (oo (D17 + byp2)T + by—3) T + byya)w

+ o + b1)z + bp)) mod T'(x)
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= ((o- (b1 A(@) 2 + b2 A(2))2 + b3 A(2))x + bp_s A())z
+ + b1 A(z))x + boA(x)) mod T'(z) (4.2)

Application of mod operation on the overall right side expression in Eq. 4.2 is re-

placed by interleaving it throughout the equation as

C(z) = ( ...... ((((bm_lA(I))x mod T'(z) + by_2A(z))z mod T'(xz)
+ bm_3A({L‘)>l‘ mod T'(x) + bm_4A(x)>x mod 7T'(x)

bk blA(:v)>a: mod T(z) + boA(z) (4.3)

The right side expression of Eq. 4.3 is evaluated in m iterations as follows. Beginning
from the leftmost product term b,,_ 1A, modulo reduction is needed to be performed
a total of (m — 1) times in the entire evaluation. In each iteration, the reduction is
applied on the expression of the form K(~V(z) x z, where KD (z) = k' Vam-1 4+
kv(f@__?xmfz + e + k%l_l)a: + k;(()l_l) is considered to be a partial-product polynomial of
degree (m — 1) which is obtained from the (I — 1) iteration. Furthermore, the partial-
product K™ (x) that is obtained from the m!" iteration is the final product required (i.e.
C(z) = K™ (z)). During the first iteration, the partial-product to be used is K (z) = 0.
This partial-product is accumulated with the leftmost product term b,, 1 A(x). Hence, the
new partial-product term to be used for the second iteration is KV (z) = b,,_; A(x), and
now (KW (z) x z) mod T'(x) is evaluated by first finding product expression (K" (z) x x).
Then, this is to be further modulo reduced using 7'(x). This reduction using 7'(x) requires

consideration of the property of T'(z) that T'(z) = 0, where x is a root of T'(x). i. e.
2™ =t ™ by 4 +tir+1 (4.4)
We have, KO (z) x 2 = k1 am 4 k) gm-14 + kW22 4 kY2, Modulo reduction

of this m*™ degree polynomial is performed using Eq. 4.4 as

(KW (x) x 2) mod R(z) = kit (1™ 4 tpoa™ 2 + ..

ot 1)+ B + k2?4 ke

= (k0 by + K0 )™ (k) s

m—1 m—1

+ kil y)a™ T 4 (Rt + k)T R (45)
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Thus, Eq. 4.5 denotes an (m— 1) degree polynomial obtained from the modulo reduction
step performed in the second iteration. The right side expression in Eq. 4.5 is added to
the corresponding product term b,,_5A. The result of this addition is represented by
K@ (z) to be used in next iteration. Hence, in general, for each of the subsequent (m — 2)

iterations, the partial products can be obtained as
KO(z) = K(2) + by 1A(2) (4.6)

where [ < m is the iteration count. Applying the similar simplification steps as in Eqs. 4.4,
4.5, and 4.6 in the remaining (m — 2) iterations, the interleaved modular reduction mul-
tiplication suggested in Eq. 4.3 is evaluated as C(z) = K. The multiplication and
addition operations between coefficients of the polynomials in Eqs. 4.6, 4.5 and 4.3 can
be mapped to boolean algebra AND and boolean algebra XOR operations, respectively,
and can be written as

K(l)(x) = K(lfl)(x) D (bm,lA(x)) (4.7)

(KD (z) x ) mod T(x) = (K4 Atm1) ® ES)a™ 4 (K] Aty o)

m—1

o kM) 4+ (GE A ) @ k) e+ kY, (4.8)

C(z) = (((((bm_lA(a:))x mod T'(z) ® by,—2A(z))
x mod T'(x) ® bm_gA({L‘)>l‘ mod T'(x) ® bm_4A(x)>m mod T'(x) @ .....
..... & blA(x)>.r mod T(z) & boA(z) (4.9)
where A and @ represent logical AND and XOR operations, respectively, and b,, ;A
represents that each bit of operand A is AND operated with the bit b,,_;. This logical
operations mapping is possible from the definitions of arithmetic operations of the base
field GF(2). These logical operations mapped equations are further evaluated in view of

performance gain in hardware implementation as explained below. Consider the boolean

equation presented in Eq. 4.7, which can be rewritten as
K(”(x) - K(l—l)(x) D (bm_zA(x))
) vV (KEDA (b))

) V(KT A (bi4))
= K" o (b, A) (4.10)

(K(ll (mlA

)
(K(ll (mlA>
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where V and ® represent logical OR and XNOR operations, respectively, and b,,_;A
(logical NOT of (by,—;A)) represents that each bit of operand A is NAND operated with
the bit b,,_;. Similarly, Egs. 4.8 and 4.9 can be equivalently rewritten using logical NAND
and XNOR operators as

(KW (z) x ) mod T(z) = (k& Atm_1) @ kL )™ + (k) Aty o)

m—1 m—1

O kD a2 4+ (R A @ kM) e+ kD (4.11)

C(z) = (....(((bm,lAa: mod T'(z) ® bpy_oA)x mod T'(x)

® bp_3A)zmod T(z) © by_sA)z mod T'(z) ® ....... ©) bl_A>

xmod T(x) ® bpA (4.12)

where A represents logical NAND operation.

Proposed Modified Interleaved Modular Reduction Multiplication Algorithm

The proposed algorithm to compute polynomial basis multiplication is presented in
algorithm 4.1. This algorithm is developed to reduce the hardware required for the imple-
mentation of polynomial basis multiplication. In the algorithm formulation, Eq. 4.10 is
used along with Eqgs. 4.11 and 4.12 to compute the desired final product in m iterations,
where m is the order of field GF(2™) in which multiplication is being computed. The
three Eqs. 4.10, 4.11, and 4.12 involve logical NAND and logical XNOR operations which
prompts efficient hardware realization than that of conventional equations based on logi-
cal AND and logical XOR operations. Furthermore, the algorithm is formulated such that
step 2 and step 3 involve a similar type of computations thereby their implementation
needs similar hardware. The computations in the algorithm can be described as follows.
Let A and B be two arbitrary field GF(2™) elements while 7" be an arbitrary field irre-
ducible polynomial all represented as m-bit vectors. Assume C' is an m-bit variable that
holds the multiplication result at the end of the m* loop iteration. Step 1 of the algorithm
indicates a total of m iterations in the computation of AB mod T. The operations to be

performed in each iteration are modulo reduction followed by accumulation.

In [*" iteration, modulo reduction is applied to the K¢~ resulted from (I — 1)

iteration. However, for the first iteration K = 0 is considered which is suggested by
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the initialization step in the algorithm. The modular reduction is interleaved through-
out the computation as in step 2 of the algorithm. The accumulation that adds all the
partial-products, from each iteration, to finally give the desired multiplication result is
described by step 3. In each iteration, one bit of B is considered serially starting from

most-significant-bit.

Algorithm 4.1: Modified interleaved modular reduction multiplication algorithm

Input: A=(am—1,am-2,...,a1,a0), B=(bm_1,bm_2,...,b1,b) both w.r.t. polynomial ba-
sis, and T =(tp—1,tm—2,-..,t1,1)

Output: C = (A x B) mod T = (¢—1,Cm—2,---,¢1,¢o) also w.r.t. polynomial basis
Initialization : K© «+ 0;

1: for [ =1 to m do

2: K(l_l) < (kﬁrl;ll)T ) ® IK(l_l); > K =1): Left shifting K(—1)
3: KU « KU1 @ (bm—1A); b KD =w® kB kP kD)
4: end for

5: return K™

The term (W ) in step 2 represents the NAND operation of the bit kr(f;ll) with
each bit of T. Similarly, step 3 involves the NAND operation of the bit b,, ; of B with
each bit of A. The term xK =Y indicates the usual multiplication of K~V (z) with =.
Since K=Y is an m-bit variable, /K¢~ is realized by performing a left shift operation
on K1 by one bit. Thus, the proposed algorithm performs the modulo reduction step

and accumulation step in each iteration and finally computes the desired multiplication

result at the end of the m!” iteration.

Proposed Multiplier Architecture

In this section, the hardware realization of the proposed modified interleaved mod-
ular reduction multiplication algorithm is presented. The proposed serial-in parallel-out

sequential multiplier architecture is shown in Fig. 4.1. The architecture comprises two
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Clk:

Figure 4.1 Top-level block diagram of the proposed bit-serial sequential multiplier.

H blocks, two registers (Regl, Reg2), and a shift left (SL) block. The architecture takes
a single-bit input (b,, _;) for every clock cycle and generates an m-bit product (C) in
parallel after m clock cycles. In addition, the architecture also takes an m-bit input (7')
to accommodate selected irreducible polynomial. Assume that the field polynomials to
be multiplied are A and B, and field irreducible polynomial is 7. All these three poly-
nomials A, B, and T, using their vector representations, are treated as m-bit operands
for the multiplier architecture. Operand A is preloaded into the m-bit register, Regl,
and it is kept constant throughout the multiplication operation. The operand B enters
the architecture serially (b, —;) with one bit per cycle starting from the most significant
bit. The m-bit operand T' should be available throughout the multiplication operation.
Since the field multiplication involves modulo reduction and accumulation steps, these
operations are realized using H blocks in the proposed architecture. Step 2 of the algo-
rithm is realized in hardware using upper H block which performs the modulo reduction

of (K=Y (z) x z) with the irreducible polynomial T'(z). Step 3 of the algorithm refers
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L

Iz IS

Figure 4.2 Gate level schematic of H block.

accumulation of partial products and it is realized by lower H block.

Figure 4.2 shows the gate level schematic of the H block. The H block contains
two levels of logic gates. The first level of logic gates is constructed with an array of m
NAND gates to implement the NAND operations suggested in step 2 and step 3 of the
algorithm. The second level of logic gates is constructed with an array of m XNOR gates
to implement the XNOR operations suggested in step 2 and step 3 of the algorithm. The

m-bit partial product, K, generated during "

clock cycle is given as input for the m-bit
register Reg2 which is initialized to zero. The term 2KV in Step 2 of the algorithm,
which is a simple left shift of K=Y is realized in SL block using hardware-free routing.
The proposed multiplier takes m clock cycles to complete one multiplication operation.
In each clock cycle, this multiplier performs modulo reduction of the previous partial-
product followed by accumulation. The partial product generated during the m* clock
cycle is the desired result of the field multiplication and is available at Reg2 after the m®™

clock cycle. In addition, it is also noted that the two H blocks, being identical, improve

the regularity of the multiplier architecture.
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4.2.2 Analytical Results

In this section, the area and time complexities of the proposed sequential multiplier
are compared with that of similar multipliers available in the literature. In Table 4.1,
the analytical expressions for area and time complexities of the proposed multiplier to-
gether with that of available multipliers [14, 16,25, 28-30] are presented. The analytical
expressions presented in Table. 4.1 are evaluated for m = 409 using the area and time
complexity estimations of logic gates from NanGate 45nm technology library files and

presented in Table 4.2.

Table 4.1 presents the analytical comparison of area complexity, latency, and critical
path delay of the proposed multiplier with the multipliers considered for comparison. The
area required for the proposed multiplier is computed in terms of the number of AND
gates, NAND gates, XOR/XNOR gates, multiplexers, and registers. We also present the
area complexity for the other multipliers in a similar way to compare with that of the
proposed multiplier. The expressions for area complexities of the proposed multiplier are
derived using Figs. 4.1 and 4.2. Figure 4.1 contains two identical H blocks along with
two m-bit registers. FEach H block (See Fig. 4.2) contains an array of m-NAND gates
and an array of m-XNOR gates. Hence, the proposed multiplier architecture requires 2m
NAND gates, 2m XNOR gates, and 2m registers. Note that m represents the order of
the GF(2™). The time complexities of the proposed architecture and other multipliers
considered for comparison are computed by assuming T4, T'x, Tna, Txn, Trr, Ty and
Tis denotes the delays of 2-input AND gate, 2-input XOR gate, 2-input NAND gate,
2-input XNOR gate, D flip-flop, 2:1 1-bit multiplexer, and tristate buffer, respectively.

Table 4.1 Area and time complexities comparison for GF(2™).

Design AND NAND XOR/XNOR* MUX Register Latency Critical path
[28] 2m 0 2m — 1 0 am + 2 m+1 Ty +Tx
[14] 2m 0 2m — 1 m 3m m Ty +Tx
[25] (m24+m)/2 0 (m? +m)/2 am 5m — 1 2k$ + 1 Tx [logam] 42T +Tp
[29] am 0 2m mP+mc4m? 3m m Ta + Tx + Tiap
[30] 0 0 6m + 18 14m + 26 6m + 7 m/4 2T + ATy
[16] 2m 0 2m 2m 3m m Ta +Tx
Proposed 0 2m 2m 0 2m m Tna+2TxN

*XOR and XNOR have the same area and time complexities, “the second highest degree of the

irreducible polynomial, ® OR gates, ®inverters, %tristate buffers
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The critical path and latency of the proposed multiplier computed from the proposed
architecture are Ty a+27T'x ny and m clock cycles, respectively. It is observed from Table. 4.1
that the multipliers [14, 16, 28,29] require less critical path delay at the expense of more
number of registers compared to the proposed multiplier. It may also be observed that
the multipliers [25,30] require less latency compared to the proposed multiplier, however,
they require more hardware and critical path delay. In addition, it is also noted that the
proposed multiplier requires the lowest number of registers, which also results in less area

requirement.

The analytical comparisons presented in Table 4.1 can be better understood by
evaluating them for a specific value of field order along with a specific technology-based
area and time complexity estimations of gates. The field order, m, can be selected as
409 which is one of the field sizes recommended by National Institute of Standards and
Technology (NIST) for Elliptic curve cryptographic applications. For the estimation of
area and time complexities of the gates, NanGate 45nm technology-based open cell library
statistics [46,60] is adopted as follows: The area complexities in terms of the NAND gate
equivalents (GE) for a NOT gate, a 2-input AND gate, a 2-input XOR gate, a 2-input
XNOR gate, a 2-1 MUX (Multiplexer), and a D flip-flop with set/reset capabilities are
taken as 0.5, 1.4, 2, 2, 1.4, and 5.7, respectively. The delays of a 2-input NAND gate, a
2-input AND gate, and a 2-input XOR gate, a 2-input XNOR gate, a 2-1 MUX, a tristate
buffer, and a D flip-flop with set /reset are 0.015, 0.025, 0.035, 0.035, 0.025, 0.020and 0.060
nanoseconds, respectively. It is observed that the area required for a 2-input NAND gate
based on Synopsys design compiler synthesis using 45nm NanGate open cell libraries is

0.8um?>.

Table 4.2 presents the comparison of estimated area (um?), delay, and area-delay-
product (ADP) of the proposed multiplier with that of the same multipliers considered
for comparison in Table 4.1. It is observed that the proposed multiplier requires the
lowest area. It is clear from Table. 4.2 (% reduction in area column) that the proposed
multiplier achieves area efficiency of 41%, 31%, 97%, 39%, 73%, and 34% when compared
with multipliers [28], [14], [25], [29], [30], [16], respectively. It may be noted that multi-
pliers [28], [14], [29], [16] have lower critical path, and multipliers [28], [14], [29], [30], [16]
take less delay compared to the proposed multiplier. However, area-delay-product (ADP)
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Table 4.2 Comparison of area, delay, and area-delay-product estimations for GF(2409).

Critical Latency Delay % reduction % reduction
Design Area (um?) ADP (x10%)
path (ns) (clock cycles) (ns) in Area in ADP
[28] 0.060 410 24.60 9692 0.23 41 17
[14] 0.060 409 24.54 8276 0.20 31 5
[25] 0.390 175 68.25 239210 16.3 97 99
[29] 0.080 409 32.7 9390 0.30 39 36
[30] 0.190 103 19.57 21619 0.42 73 54
[16] 0.060 409 24.54 8736 0.21 34 9
Proposed 0.085 409 34.8 5693 0.19 - -

parameter is the balanced parameter for overall performance comparison of various ar-
chitectures rather than area and delay individually. The proposed multiplier achieves the
best area-delay-product compared to the multipliers considered for comparison. It is evi-
dent from Table 4.2 (% reduction in ADP column) that the proposed multiplier achieves
area-delay efficiency of 17%, 5%, 99%, 36%, 54%, and 9% when compared with multi-
pliers [28], [14], [25], [29], [30], [16], respectively. Hence, it is clear from the estimation
values presented in Table. 4.2 that the proposed multiplier is area and area-delay-product

efficient.

4.2.3 Implementation Results

It is observed from Table. 4.2 that the multipliers [14,16] require less area compared
to the other multipliers considered for comparison. Hence, the proposed multiplier and the
two multipliers [14,16] are modeled using VHDL for GF(21%). The RTL (Register Transfer
Level) designs are simulated using Vivado Simulator to verify the functionality. The
netlists of these models are synthesized using Synopsys Design Compiler tool employing

NanGate 45nm open cell libraries [60] to obtain the area and time complexities. The area

Table 4.3 Comparison of ASIC implementation results for GF(2409).

Desi Multiplier Critical path  Multiplication Area x Delay % reduction % reduction in
esign
area (um?2) delay (ns) delay (ns) (pm? x ns) in Area ADP
[14] 9687 0.20 82 794334 28 3
[16] 10213 0.20 82 837466 31 8

Proposed 6971 0.27 110 766810 - -
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and time complexities obtained for all the three multipliers are tabulated in Table 4.3.

It is observed from the ASIC implementation results that the proposed multiplier
achieves 28% hardware efficiency and 3% area-delay-product improvement compared to
the best available multiplier [14]. It may also be observed from implementation results
that the proposed multiplier implementation achieves 31% reduction in area complexity
and 8% reduction in area-delay-product compared to the sequential multiplier [16]. Hence,
the ASIC implementation results confirm that the proposed multiplier achieves better area

as well as area-delay-product complexities.

4.3 Low-Complexity Bit-Serial Sequential Montgomery GF(2™)

Multipliers

In this section, the design and performance analysis of the proposed Montgomery
bit-serial sequential multipliers are presented. First, we present the mathematical formu-
lations for the proposed MSB-first and LSB-first modified GF(2™) Montgomery multipli-
cation algorithms and the realization of these algorithms using the bit-serial architectures.
Following this, analytical comparisons of area and time complexities and implementation

results are also presented.

4.3.1 Design

Let f(x) and ~(x) are two GF(2™) elements to be multiplied, and let ¢(x) =
B(x)y(z) mod T'(z) be the product. However, multiplication using Montgomery tech-
nique requires the elements converted to be Montgomery residues. Let A(z) and B(z) be
Montgomery residues of the elements 3(z) and ~y(x), respectively, given by

m—1

A(x) = B(z)r(x) mod T(x) = Z ;" (4.13)
and -
B(z) = y(x)r(x) mod T'(z) = Z b’ (4.14)
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where, r(z) is a fixed field element called Montgomery factor that satisfies the relation

ged(T'(x),r(x)) = 1. The Montgomery multiplication can be defined as

C(z) = A(z)B(z)r*(z) mod T(x) (4.15)

Algorithm 4.2: Montgomery multiplication in GF(2™)

Input: A, B,r,T(x),T'(x)
Output: C = ABr~! mod T'(z)
1: ¢ .= AB
2: u:=q¢T"(x) mod r
3: C:=(¢+ul'(x))/r

where, r~1(z) is the inverse of r(z) in GF(2™) and C(z) is the Montgomery residue of
¢(z). The conventional Montgomery algorithm that computes the Montgomery product
C given in Eq. 4.15 is presented in algorithm 4.2 [35]. In this algorithm, r~!(z) and
T'(x) are two polynomials such that r(z)r~!(z) + T(z)T"(z) = 1. This work [35] employs

m

2™ as the Montgomery factor and also presented an LSB-first bit-serial multiplication

algorithm. However, the work [31] analyzed the role of Montgomery factor and found out
that ™! gives time-efficient bit-serial architectures for GF(2™) over general irreducible
polynomials. Hence, we consider ™! as the selected Montgomery factor as it results in

more efficient architectures than other factors.

Consider the relation T'(x) = 0, where x is the root of irreducible polynomial T'(z),

which gives that
T(x) = 2™ 4ty 2™ty o™ 2 4 +tiz+1=0
It can be rewritten as
"ty ™ bt 0™ P L+ tiz+1=0 (4.16)
Equation 4.16 can be equivalently rewritten as
™ Aty by 0™ 4 +tir=1 (4.17)
Multipliying both sides of Eq. 4.17 with a~! gives the relation,

' mod T(z) = 2™ 4ty 1™ 2 + g™ 3 L +t (4.18)
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MSB-first Montgomery Multiplication

Formulations

We have the Montgomery multiplication over GF(2™) given in Eq. 4.15 as
C = ABr~" mod T(z)
Using Eq. 4.14 and the selected Montgomery factor, r = 2!, it can be written as,

m—1
C=A Z biz'z~ ™Y mod T'(z)
i=0

m—1

=A Z bz == mod T'(z)

i=0

— (Abm,l + Abyy oz 4 Abyy sz 2 + o 4 Abjz (M2 4 Ang’(m’l)) mod T'(x)

= (bm,lA + b0 Ar Vb 3 AT 4 o+ D A2 4 bko_(m_l)) mod T'(x)
(4.19)

The computation of Eq. 4.19 can be performed by defining a recursive relation, A® =
A2  mod T(z), where A®) is a reduced form of Az~% and also A®) = A. The ex-

pression for A®~1) can be written as
A (g) = afff_ll)xm_l + ffm a2 +alT e+ a[(f b (4.20)
Now, the next recursive form A® can be obtained using A1 as follows,
AW = (a% et ol e 2 a4 el D)x’l mod T'(x)
= (a D=2 =3 T e ") mod T'(z) (4.21)

m—

Using Eq. 4.18, Eq. 4.21 can be rewritten as

A® = <a£i_11)xm_2 +al a3 +ali7Y

Following Eq. 4.22, the computation of A® can be performed using the relations as follows,
5;)_1 _ a(ifl)

a,(;) _ a](;rll) n a/(()i_l)tk;-i,-l, where, 0 < k < m — 2 (4.23)

a
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Now, the computation of Montgomery product, C, can be performed using Eq. 4.19 and

Eq. 4.23, and using the following recursive relation as
Cc® ==Y 4p, ACY where, 1 <i<m, and C» =0 (4.24)

The computation of C' using the recursive relation in Eq. 4.24 can be performed in m
iterations as follows. During the " iteration, the computation of the partial product,
C¥, is performed by accumulating the previous partial product, C*—, which is gener-
ated during the (i — 1) iteration, to the present product term b,,_;A®Y. The prod-
uct term b,,_; A%V denotes that each bit of A“Y is multiplied with the bit b,,_; i.e.,
b—i AT = (by,_ Zaﬁ,i 11),bm Za% 12),....,bm_iagi_l),bm_iaéi_l)). The partial product C(™
generated during the m!? iteration is the required Montgomery product, C. The hard-
ware realization of computation in Eq. 4.24 requires transformation of usual arithmetic
operations into logical operations using the definitions of finite field GF(2™) arithmetic.
In the base field GF(2) of GF(2™), addition is realized using the XOR operation and
multiplication is realized using the AND operation. Based on this fact, the computation

in Eq. 4.24 can be rewritten as,
CO =D @ (b A AT (4.25)

where, @ represents the logical XOR operator, and b,,_; A A=Y denotes that each bit

of At~ ig performed logical AND operation with the bit b,,_; i.e., by_; A AGC"1D =

(b A a7V b s AT b A a(z Y s A a[(f 2 ), where, A represents logical

m—1> m—2

AND operator. Further modification of Eq. 4.25, with the view that it results in more

efficient hardware realization, can be performed as follows.

OO =t g (b, A AT

(i=1) A W)) V; (C(i—l) A (b /\A(i—l)))

(c
( (i—1) A (by— Z,/\A(i—l))) vV (O(i—l) A (by—i /\A(i—l)))
CUD © (by_; A AGD) (4.26)

where, ® and V represent the logical XNOR and logical OR operators, respectively. The
term b,,_; A A(=1) denotes that each bit of A®~Y is performed logical NAND operation
with the bit by,_; i.e., by A AGD = (b, Aa"Y b AalY b iAal ™Y b AalTY),

m—1>
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where, A represents logical NAND operator. Similarly, Eq. 4.23 can be rewritten employ-

ing these efficient logical relations as,

(@) (i—=1)

Am—1 = Qo
(@) _ (-1 (i=1)% _
a,’ =a,, " ©(ag Alpg1), where, 0 <k <m —2 (4.27)

Algorithm

The computation of the Montgomery product C' using the Eq. 4.26 and Eq. 4.27 is
described in algorithm 4.3.

Algorithm 4.3: Modified MSB-first Montgomery multiplication in GF(2™)

Input: A=(am—1,am-2,...,a1,a0), B=(bm_1,bm—2,...,b1,b) both w.r.t. polynomial ba-
sis, and T =(1, 1, ti—2, - - -, t1)-

Output: ¢ = ABz ™ Y mod T(z) = (¢m-1,Cm_2,-..,C1,C) also w.r.t. polynomial
basis
Initialization : A© «+— A, CO) « 0;

1: for i =1 to m do

22 CO «— CUD @ (by_; A AED);

3. AD — AVl o @iV AT, > AG=D2=1: Right shifting AG—D by 1-bit

4: end for

5: return C(™

Let A and B be the two Montgomery residues to be multiplied, and 77 be an m-bit
element defined to be 7" = (1,¢,,—1, tm—2, - - . , t1) using the irreducible polynomial 7" Let
the partial product C® and the reduced term A® be initialized for i = 0 as C©) =
and A©®) = A, respectively. The computation of the Montgomery product C' is performed
in m iterations, which is described in Step 1. In each of the i*" iteration, one bit of
the operand B, b,,_;, is involved in computation. In Step 2, the partial product, C®, is
computed during the i* iteration using the previous partial product, C¢~1 and reduced

term A(~Y generated during the (i — 1) iteration. This step of the algorithm is based
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Figure 4.3 Top-level block diagram of the proposed MSB-first bit-serial sequential multiplier.

on Eq. 4.26. In Step 3 of the algorithm, the reduced term A® is computed during the i*
iteration using the previous reduced term A®~Y generated during the (i — 1)* iteration.
This step of the algorithm is based on Eq. 4.27. During the m! iteration, the partial
product C™ is computed which is the required Montgomery product, C.

Architecture

The hardware realization of the proposed MSB-first algorithm (algorithm 4.3) is
presented in this section. The proposed architecture, shown in Fig. 4.3, comprises of
two lower blocks G and H whose detailed architectures are presented in Fig. 4.4 and
Fig. 4.5, respectively. In addition to these two lower blocks, the architecture also includes
two m-bit registers and an SR block. The architecture requires an m-bit input, 77, a
single bit input, b,,_;, one of the operands, A, to be preloaded into Regl, and then m
clock cycles in order to generate the required m-bit multiplication product, C. As Step
1 of the algorithm indicates that it requires m iterations to compute the product C, the
proposed bit-serial architecture realizes this step requiring m clock cycles where in each
clock cycle the iterative computations presented in Step 2 and Step 3 are processed. The

computation suggested by Step 3 of the algorithm is realized using the G block, SR block,
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Figure 4.4 Gate level architecture of G block.

and the register Regl. The G block has a feedback path through the register Regl.
During the i*" clock cycle, the G block generates the reduced term, A® using its inputs
A= =1 a(()i_l), and T”. The term AC~Dz~"! is obtained from A®~ using the SR block.
The SR block, which shifts the input right by a 1-bit position, simply routes the input
without requiring any hardware. The computations suggested by Step 2 of the algorithm
is realized using the H block and the register Reg2. The H block has a feedback path
through the register Reg2. During the i** clock cycle, the H block generates the partial
product, C®, using its inputs C Y b,,_;, and A~V Furthermore, during the m* clock
cycle the H block generates the partial product C™ which is available at the output after
this clock cycle.

The detailed architectures of the two lower blocks G and H are presented in Fig. 4.4
and Fig. 4.5, respectively. The G block realizes the computation of the expression
ANz o (a((f*l) AT") using two levels of logic gates (A Vz~! is realized using SR
block). The first level is realized using an array of (m — 1) NAND gates while the second
level requires an array of (m —1) XNOR gates. The input i is applied to all NAND gates,
and also it is routed directly to the output, I3. The H block realizes the computation

of the expression C~Y ® (b,,_; A AG=D) using two levels of logic gates. The first level
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Figure 4.5 Gate level architecture of H block.

requires an array of m NAND gates while the second level requires an array of m XNOR

gates.

LSB-first Montgomery Multiplication

Formulations

The formulations for the least significant bit (LSB) first multiplication approach can

be developed by considering Eq. 4.19, and then rewriting it using Horner’s rule as

C= (bm_lA + b0 Az by s Ar 2+ 4+ b Az 4 boAx_(m_l)) mod T'(x)

= ((ors((bo Az~ + b1 )z + boA)z™" + oo+ b2 A) 2™ + b1 A) mod T'(x)
(4.28)

The computation of Eq. 4.28 can be performed using a recursive relation defined as
CO = Vgt mod T(x) + b1 A (4.29)

where, 1 <4 < m, and C(® =0 and C™ = C. Computation of C® in Eq. 4.29 requires

the computation of the expression C~Y2~! mod T'(x). Evaluating this expression results
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in an (m — 1) degree polynomial which can be denoted with C’C(j,_ll). It follows that

rewriting Fq. 4.29 as,
CO = 4y 44 (4.30)

where C’S__ll) can be obtained as follows.

c=Y = ¢V mod T(x)

x—1

= (C'(ij)xm’l + Cr(,i:é)xm’Q + .+ Cfiil):c + Céiil))x’l mod T'(x)

m

— OV o et Y 4 08V mod T(x)

m

(4.31)

Using Eq. 4.18, substitute the expression for 7! mod T'(x) in Eq. 4.31,

clD = V=2 L D=3 oY oY (!
+ tm,1$m72 + tmfgl'mig + ... -+ tl)
= O Va4 (CUT) 4+ O V)™ 2 4 (O

m—2

+ OV e 4 (VY £ 0TI (4.32)

Based on the fact that addition and multiplication operations in GF(2) can be realized
using logical XOR and logical AND operations, respectively, Eq. 4.30 and Eq. 4.32 can
be rewritten as

CD =" @ by A A) (4.33)

Cg(ci_*ll) _ Céifl)fnfl + (C(ifl) ® (C(gi*l) A tm,l))xm72 + (C«(i*?

m—1 m—

& (CE ™V Aoz + 4+ (C V@ (G Aty)) (4.34)

The term (b;_1 A A) represents that each bit of A is AND operated with the bit b;_;.
Further modification of Eq. 4.33, with the view that it results in more efficient hardware
realization, can be performed as follows.

CO =D @ (b4 A A)

xT

= (CUV A (bioy A A)) V(CD A (5 A A))
— A (i A AV (CUSY A (b A A))

r—1

iy
="V @ (b A A) (4.35)
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Similarly, Eq. 4.34 can also be rewritten as

Cg(::ll) _ Céi*1)$m—1 + (C(ifl) o (Céifl) A tmfl))xm_2 + (C(FE)

m—1

O(CE ™ Atya))z™ 3 4 o+ (CV o (G Aty)) (4.36)

Algorithm

The computation of the Montgomery product C using Eq. 4.35 and Eq. 4.36 is de-
scribed in algorithm 4.4.

Algorithm 4.4: Modified LSB-first Montgomery multiplication in GF(2™)

Input: A=(a,_1,am_2,...,a1,a0), B=(bym_1,bm_2,...,b1,b) both w.r.t. polynomial ba-
sis, and T =(1, -1, tim—2y - - -, 1)-

Output: C = ABz~™ Y mod T'(x) = (¢m_1,Cm-2,...,C1,C) also w.r.t. polynomial
basis
Initialization : C© « 0;

1: for =1 to m do

2. O 0Nt o (O AT > U141, Right shifting €1 by L-bit

3: CO «— Cfff) ® (bi_g A A);

4: end for

5: return C(™

Let the partial product C® be initialized for i = 0 as C®) = 0. The computation of
the Montgomery product C'is performed in m iterations which is described in Step 1. In
each of the ¥ iteration, one bit of the operand B, b;_, is involved in the computation.
In Step 2 of the algorithm, the term C’iifll) is computed during the i*" iteration using the
previous partial product term C¢~1 generated during the (i — 1) iteration. This step
of the algorithm is based on Eq. 4.36. In Step 3 of the algorithm the partial product
C% is computed during the i*" iteration using the term C’fci__ll) computed during this *
iteration. This step of the algorithm is based on Eq. 4.35. During the m!" iteration, the
partial product C™ is computed which is the required Montgomery product, C.
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Figure 4.6 Top-level block diagram of the proposed LSB-first bit-serial sequential multiplier.

Architecture

The hardware realization of the proposed LSB-first algorithm (algorithm 4.4) is
presented in this section. The proposed architecture, shown in Fig. 4.6, consists of two
lower blocks G and H, whose detailed architectures are presented in Fig. 4.4 and Fig. 4.5,
respectively. In addition to these two lower blocks, the architecture also includes two
m-bit registers and an SR block. The architecture requires an m-bit input, 7", a single
bit input, b;_1, one of the operands, A, to be preloaded into Regl, and then m clock
cycles in order to generate the required m-bit multiplication product, C. As Step 1 of the
algorithm indicates that it requires m iterations to compute the product C, the proposed
bit-serial architecture realizes this step requiring m clock cycles where in each clock cycle
the iterative computations presented in Step 2 and Step 3 are processed. The computation
suggested by Step 2 of the algorithm is realized using the G block and the SR block. The
G block has a feedback path through the H block and the register Reg2. During the i
clock cycle, the G block generates the term, Cg(f:ll), using its inputs CC¢~YDg~1, Céiil) and
T'. The term C¢ Yz~ is obtained from O~ using the SR block. The SR block, which

shifts the input right by 1-bit position, simply routes the input without requiring any
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hardware. The computations suggested by Step 3 of the algorithm is realized using the H
block and the register Regl. The H block also has the same feedback path as the G block
through the G block and register Reg2. During the i’ clock cycle, the H block generates
the partial product, C®, using its inputs A, b,_;, and Cg(f,_ll). Furthermore, during the
m" clock cycle the H block generates the partial product C™ which is available at the
output after this clock cycle.

The detailed architecture of the two lower blocks G and H are the same as Fig. 4.4
and Fig. 4.5, respectively. The G block along with the SR block realizes the computation
of the expression C-Vz~1 ® (Céi_l) A T') using two levels of logic gates. (CCG~Nz~! is
realized using the SR block). The first level comprises an array of (m — 1) NAND gates
while the second level comprises an array of (m — 1) XNOR gates. The input i is applied
to all NAND gates and also it is routed directly to the output, I3. The H block realizes
the computation of the expression Ca(ffll) ® (bi_1 A A) using two levels of logic gates. The
first level requires an array of m NAND gates while the second level requires an array of

m XNOR gates.

4.3.2 Analytical Results

This section presents the estimation and comparison of area and time complexities
of the proposed Montgomery multipliers. Table 4.4 presents the comparison of analytical
expressions for area and time complexities of the proposed MSB multiplier with the similar
available MSB Montgomery multipliers. These expressions are evaluated for a specific field
order m = 409 using the estimations of the logic gates from NanGate 45nm libraries, and
presented in Table 4.5. Similarly, analytical expressions and evaluations are also presented

for the proposed LSB multiplier in Table 4.6 and Table 4.7, respectively.

The analytical expressions for the proposed MSB multiplier in terms of area, latency,
and critical path delay are presented in Table 4.4 along with other comparable multipliers
[31,32,34]. The area complexity for the proposed multiplier and the other multipliers in
Table 4.4 are expressed in terms of 2-input AND, 2-input NAND, 2-input XOR/XNOR,
and registers. The gate counts for the proposed multiplier are obtained using Figs. 4.3, 4.4,

and 4.5. The top level block diagram as shown in Fig. 4.3 contains two sub blocks G and
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Table 4.4 Area and time complexities comparison for GF(2™) (MSB multipliers).

Architecture . Critical
Design Basis AND NAND XOR/XNOR Register Latency
Style Path Delay
(31] PB Non-LFSR 2m —1 0 2m — 1 2m m Ta+Tx
[32] PB LFSR (Galois) 2m —1 0 2m — 1 2m m Ta +Tx
LFSR Ta +
(34] WDB m 0 2m — 1 2m m
(Fibonacci) [logy m]Tx
Proposed PB Non-LFSR 0 2m —1 2m — 1 2m m Tna+Txn

*XOR and XNOR have the same area and time complexities, PB: Polynomial basis, WDB: Weakly dual
basis, LFSR: Linear feedback shift register

H along with two m-bit registers, Regl and Reg2. The G block as shown in Fig. 4.4
contains an array of (m — 1) 2-input NAND gates and an array of (m — 1) 2-input XNOR
gates. The H block shown in Fig. 4.5 contains an array of m 2-input NAND gates and
an array of m 2-input XNOR gates. Hence, the proposed MSB Montgomery multiplier
architecture requires (2m—1) 2-input NAND gates, (2m—1) 2-input XNOR gates, and 2m
registers. Note that m represents the order of the GF(2™) field. The computation of time
complexities in terms of critical path delay and latency for the proposed MSB multiplier
and other multipliers considered for comparison is performed by assuming 74, Ty, T,
and T'xy represents the delays of 2-input AND gate, 2-input NAND gate, 2-input XOR
gate, and 2-input XNOR gate, respectively. The critical path delay and latency of the
proposed MSB multiplier computed from the proposed architecture are T4 + Txny and

m clock cycles, respectively.

The analytical comparisons presented in Table 4.4 can be better understood by
evaluating them for a specific value of field order m using a specific technology based gate
area and time estimations. The field order m is selected to be 409 as it is one of the fields
suggested by National Institute of Standards and Technology (NIST) for elliptic curve
digital signature algorithm implementation. Furthermore, NanGate 45nm technology-
based open cell library statistics [46,60] are adopted for the gates estimated area and
time complexities. Based on these library files the area complexities for the basic gates
are given as follows: The area complexities in terms of the NAND gate equivalents (GE)
for a 2-input AND gate, a 2-input XOR gate, a 2-input XNOR gate, and a D flip-flop with
set/reset capabilities are taken as 1.4, 2, 2, and 5.7, respectively. The delays of a 2-input
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Table 4.5 Comparison of area, delay, and area-delay-product for GF(24%%) (MSB multipliers).

Critical %
Latency Delay Area ADP
Design path delay reduction
(clock cycles)  (ns) (um?) (x10°)
(ns) in ADP
[31] 0.06 409 24.54 7440 0.18 16.66
[32] 0.06 409 24.54 7440 0.18 16.66
[34] 0.34 409 139.06 6869 0.95 84.21
Proposed 0.05 409 20.45 7113 0.15 —

NAND gate, a 2-input AND gate, and a 2-input XOR gate, a 2-input XNOR gate, and a D
flip-flop with set/reset are 0.015, 0.025, 0.035, 0.035, and 0.060 nanoseconds, respectively.
It is observed that the area required for a 2-input NAND gate based on Synopsys design

compiler synthesis using 45nm NanGate open cell libraries is 0.8m?.

Table 4.5 presents the estimated area and time complexities in terms of number of
Area (um?), critical path delay (ns), latency (clock cycles), and computational delay (ns)
for the field GF(2™) using FreePDK NanGate 45nm technology based gates estimations.
It may be observed that the proposed MSB multiplier requires less area when compared to
the multipliers [31] [32]. Though the multiplier [34] requires less area than the proposed
MSB multiplier, it requires substantially more delay. It may be noted that the proposed
multiplier requires the lowest critical path delay and the lowest delay. Furthermore,
the overall performance of these multipliers can be better compared using the balanced
parameter area-delay-product (ADP). It may be observed from the table that the proposed
MSB multiplier achieves the lowest area-delay-product compared to other multipliers
considered for comparison. It is evident from the table (% reduction in ADP column) the
proposed MSB multiplier achieves reduction in ADP of around 16%, 16%, and 84%,when
compared with multipliers [31], [32], and [34], respectively. Hence, it is clear from the
estimated complexities presented in the table that the proposed MSB multiplier is time

(critical path delay and computation delay) and area-delay-product efficient.

Similarly, the area and time expressions for LSB multiplier (using Figs. 4.6, 4.4,

and 4.5) are derived. This LSB multiplier architecture requires (2m — 1) NAND gates,
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Table 4.6 Area and time complexities comparison for the field GF(2™) (LSB multipliers).

X Architecture . Critical
Design Basis AND NAND XOR/XNOR Register Latency
Style path
(31] PB Non-LFSR  2m —1 0 om — 1 2m m Ty +2Tx
LFSR
[33] PB 2m — 1 0 2m — 1 2m m Ta +2Tx
(Galois)
Tna+
Proposed PB Non-LFSR 0 2m —1 2m — 1 2m m
2Tx N

Table 4.7 Comparison of area, delay, and area-delay-product for GF(24%?) (LSB multipliers).

Critical %
Latency Delay Area ADP
Design path delay reduction
(clock cycles)  (ns) (um?) (x10)
(ns) in ADP
[31] 0.095 409 38.86 7440 0.29 13.79
[33] 0.095 409 38.86 7440 0.29 13.79
Proposed 0.085 409 34.77 7113 0.25 -

(2m — 1) XNOR gates, and 2m registers. These analytical complexities of the proposed
LSB multiplier along with the available similar multipliers [31] [33] are presented in
Table 4.6. Similar to the proposed MSB multiplier, the analytical expressions of this
LSB multiplier along with compared multipliers are evaluated for a specific field order,
m = 409, and using the NanGate 45nm technology-based standard cell library estimations
from Silvaco company [46,60], and presented in Table 4.7. It is observed from Table 4.7
that the proposed LSB multiplier achieves lower area and lower delay complexities when

compared with the multipliers [31] [33].

4.3.3 Implementation Results

The proposed MSB and LSB multipliers, and the best of the multipliers considered
for comparison [32] and [33], respectively, are considered for Application Specific Inte-
grated Circuit (ASIC) implementation. These multipliers are modeled using VHDL for

the field order of m = 409, and verified the functionalities through simulations using the
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Table 4.8 Comparison of the ASIC implementation results for GF(2%%%) (MSB multipliers).

Multiplier ~ Critical path Multiplication ADP x (10%) % reduction

Design
area (um?) delay (ns) delay (ns) (um? x ns) in ADP
32] 8593 0.20 81.80 0.70 12.85
Proposed 8322 0.18 73.62 0.61 -

Table 4.9 Comparison of the ASIC implementation results for GF(24%?) (LSB multipliers).

Multiplier ~ Critical path Multiplication ADP x (10%) % reduction

Design
area (um?) delay (ns) delay (ns) (um? x ns) in ADP
[33] 8593 0.32 130.88 1.12 11.60
Proposed 8322 0.29 118.61 0.99 -

Xilinx Vivado simulator. Further, gate level netlists are generated for the VHDL mod-
els and synthesized these netlists using the Synopsys Design Compiler tool employing
FreePDK NanGate 45nm library files to obtain area and time complexities. Table 4.8
and Table 4.9 present the obtained area and time complexities of all these implemented

multipliers.

It is observed from the ASIC implementation results presented in Table 4.8 that the
proposed MSB multiplier achieves high-speed (due to less critical path delay), less area,
less delay, and area-delay-product improvement of around 12% when compared with the
multiplier [32]. Similarly, it is observed from the ASIC implementation results presented
in Table 4.9 that the proposed LSB multiplier achieves area-delay-product improvement
of around 11% when compared with the multiplier [33]. Hence, the ASIC implemen-
tation results confirm that the proposed multipliers achieve better area as well as time

complexities compared to the available multipliers in the literature.

4.4 Conclusions

In this chapter, the design of area-efficient bit-serial GF(2™) multipliers is presented.

The design of the proposed multipliers involves the modification of the conventional al-
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gorithms using the NAND-XNOR logical relations rather than the AND-XOR relations.
It includes the design of the bit-serial sequential multiplier based on the proposed mod-
ified interleaved modular reduction algorithm. Further, the performance analysis of this
multiplier using analytical and ASIC implementation results is presented. The analy-
sis shows that the proposed multiplier is area and area-delay efficient compared to the
available multipliers in the literature. The proposed multipliers also include the design of
the MSB-first and the LSB-first multipliers based on the proposed modified Montgomery
algorithms. The performance analysis of these multipliers using analytical and ASIC im-
plementation results is presented which shows that the proposed multipliers are area and
time efficient compared to the available multipliers in the literature. These proposed area-
efficient bit-serial sequential multipliers are highly suitable for domestic IoT end devices,
and obiviously not appropriate for high-performance IoT edge devices. Hence, it is also
desirable to design high-throughput multiplier architectures such as systolic multipliers to
improve the performance of the IoT applications. Consequently, the next chapter focuses

on the design of efficient systolic multipliers that are suitable for [oT edge devices.




Chapter 5

Low-Latency and High-Throughput Bit-Parallel

Systolic Multipliers for Specific Classes of Trinomials

This chapter presents the design of a few time-efficient systolic multipliers that are
suitable for high-performance IoT devices such as [oT edge devices. First, we present
the design and analysis of a low-latency area-efficient systolic multiplier using a specific
class of trinomials. Further, this multiplier is modified with respect to its architecture
to realize another multiplier that achieves high-throughput. This chapter also presents
the design and analysis of another low-latency and area-efficient systolic multiplier us-
ing a narrow class of trinomials. Analysis of all these proposed multipliers is performed
using the comparison of analytical and implementation results with the available multi-
pliers. The analytical comparisons are based on the complexities computed for m = 409
using FreePDK NanGate 45nm gate estimations and the implementation comparisons
are based on the results obtained from Synopsis Design Compiler employing NanGate
45nm libraries. The comparisons show that proposed multipliers are more time-efficient

compared to the available multipliers.

5.1 Introduction

Edge devices which are used in IoT edge computing need to have high-performance
implementations since these devices are required to process large volumes of data collected

from a large number of end nodes. Hence, the hardware blocks including the finite field
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GF(2™) multipliers that are employed in the implementation of edge devices must have
high throughput rates. Design of finite field GF(2™) multipliers using systolic structures
can give high-throughput rates and also offer advantages such as regularity, modularity,
and concurrency. The performance of these multipliers can further be improved by se-
lecting low-weight irreducible polynomials such as trinomials or subclasses of trinomials.
These irreducible polynomials reduce the computations compared to other types of poly-
nomials and allow high-speed implementations. Hence, it is desirable for IoT edge devices

to design efficient systolic multipliers using trinomials or subclasses of trinomials.

Many bit-parallel systolic multipliers are proposed in the literature [27,39-46] for
polynomial basis GF(2™) multiplication using trinomials/subclasses of trinomials to achieve
reduction in area and time complexities. In this work, we consider two classes of trino-
mials that result in more efficient implementation of GF(2™) multipliers. The first of
these two classes is the class of irreducible trinomials of the form 2™ + 2% + 1 for which
k< (m—1)/2 (if m is odd) or k& < m/2 (if m is even), and the second class is of the
trinomials of the form ™ +x"+1 for which k < m—2[m/3]. There exists a large number
of these classes of trinomials (for which £ < (m —1)/2 (if m is odd) or k < m/2 (if m is
even)/k < m — 2[m/3]) for different values of field order m [24]. Moreover, for elliptic
curve cryptography, it is recommended that if an irreducible trinomial 2™ + x* 4 1 exists,
then k should be chosen as small as possible i.e. lowest possible degree for the middle term
z¥ [61]. Also, for the finite fields GF(2233) and GF(2%%), National Institute of Standards
and Technology (NIST) has recommended the trinomials 2% + 2™ + 1 and 2% + 287+ 1,
respectively, where the values of k are less than half the value of m [61]. In addition, for

the trinomial 2%%° + 287 + 1 the value of k is also less than the value of m —2[m/3] = 135.

In this chapter, first, we present a low-latency area-efficient bit-parallel systolic fi-
nite field multiplier for the class of trinomials for which & < (m — 1)/2 (if m is odd) or
k < m/2 (if m is even). It includes the formulations developed for this multiplier and
its architecture realized using a systolic structure employing efficient cutset pipelining
techniques. Analysis of this multiplier using analytical and implementation results is also
presented. Next, this multiplier is further modified with respect to its architecture using
additional horizontal cutset pipelining to achieve a high throughput multiplier. The per-

formance of this multiplier is also verified using analytical and implementation results.
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Finally, we present another low-latency area-efficient bit-parallel systolic multiplier using
a narrow class of trinomials of the form 2™ +z* + 1 for which k < m —2[m/3]. Its formu-
lations and the architecture along with the performance comparisons are also presented.
The analytical results for all the proposed multipliers are computed for m = 409 using
NanGate 45nm gate complexities and compared with the available multipliers [27,39-46].
The implementation results for the proposed multipliers are obtained using Synopsis De-
sign Compiler tool employing NanGate 45nm technology libraries. The comparisons show
that the proposed systolic multipliers are more time-efficient compared to the available

multipliers.

5.2 Area-Efficient Low-Latency Bit-Parallel Systolic Multiplier

In this section, design and performance analysis of the proposed bit-parallel systolic
multiplier for a class of trinomials for which & < (m—1)/2 (if m is odd) or & < m/2 (if m
is even) are presented. First, we present the mathematical formulations for the proposed
GF(2™) multiplication and its realization using the bit-parallel systolic architecture. Fol-
lowing this, area and time complexities comparisons of analytical and implementation

results are presented.

5.2.1 Design

Mathematical Formulation

Consider A and B are two arbitrary elements of the finite field GF(2™), and C is

the product of the elements A and B. Then, the product C' can be written as

C(z) = (A(z) x B(x)) mod T'(x) (5.1)
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= (b1 (Az™) + bypo(A2™7?) + L + bi(Az) + by(A)) mod T'(z) (5.2)

Equation 5.2 can be rewritten, where the lower part of polynomial whose powers of
x from 0 to (m/2— 1) and the upper part of polynomial whose powers from m/2 to m —1

are shown explicitly, as

= (b (A7) + b o (AT ) et
bm/2+1(A$m/2H) + bm/g(A:cm/2))
+ (bm/2—1(14$m/2_1) + bm/z—z(Axm/2_2) + o, +

mmm+%mﬁ)mMT@)@@

m/2

Now, by taking out ™% as a common term from the upper part, we have

Clz) = <(bm71(14$m/271) + b a(Az™*) 4 +
b j21(A) + by () ) 22
+ (bm/z—l(AfEm/Q_l) + bm/z—Q(AIm/2_2) + o +

hM@+%MD>mMT@)@@

Now, consider the following recursive notations, A® = A, AM = Az AR = AWy

AB) = A@g , Am=1) = A(m=2)2 " From these recursive relations, it can be defined
that
AY) = AU"Y g mod T(x) (5.5)
where,
m—1
AUD = Z al(j_l)a:i,v agj_l) € GF(2) (5.6)
i=0

Furthermore, from the fact that irreducible polynomial 7'(z) = 0, it is implied that
™" = tmfll'mil + tm,2$m72 + o + t2$2 + t1$ + to (57)
The expression for the left side of Eq. 5.5 can be written as

AD = g gm=t g0 gm=2 4 a2 4 oW 4 ) (5.8)
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The coefficients of AY) can be obtained in terms of the coefficients of AU—Y as

aéj) _ a%:}) (5.9)
az(j) _ agﬂ;_ll) + ag:i)ti,where 1=1,2,...... ,m—1 (5.10)

With these implications, the expression for C'(z) in Eq. 5.4 can be rewritten as

C(x) = ((by (AT2D) L b o (AT272) 4+
(D211 (AD) 4 b,y o (AQ)) 2™/
+ (b1 (AU27DY by o o (A2 L +

(b AN + bo(AD))) mod T(z) (5.11)

The formulation for the product C'(x) expression in Eq. 5.11 contains two parts, partl as

((by (ATY2DY b (A2 +

(D211 (AD) 4 b2 (A?)) mod T(z) (5.12)

and part2 as

(D21 (A™2DY 4 by g o(A272) L +

(b ADY + bo(AD))) mod T'(z) (5.13)

It may be observed that Eq. 5.12 and Eq. 5.13 are similar in computation, and these
can be combined to compute the C(z) (See Eq. 5.11). It is noted that the computational
complexity of Eq. 5.11 depends on the reduction polynomial T'(z). The complexity can
be reduced by selecting trinomials as reduction polynomials. It is also observed that for
certain class of trinomials, 2™ + 2% + 1, where k < (m —1)/2 (if m is odd) or k < m/2 (if
m is even), the computational complexity further decreases. It is possible from the fact
that for the class of trinomials specified, the product of any field element A and 2%, where
k< (m—1)/2 (if m is odd) or k& < m/2 (if m is even), can be computed using either
simple one level of binary addition or permutation of the field element coordinates. To
explain this point clearly, an example is presented in Table 5.1 for GF(2'?) over a trinomial
219+ 23 + 1. It is evident from this table that the computation of the coordinates of Az,
until m/2 (= 5) powers of x, involves either simple permutation or one level of binary

addition of the field element A coordinates ([ao, as, ar, ag, as, aq, a3, a2, a1, ag)).
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Table 5.1 Coordinate representation of Az’ mod T'(x).

~.

Ax® mod T'(z)

1 las, ar, ag, as, as, as, as B ag, ai, ag, ag|
2 laz, ag, as, aq, ag, as & ag, ay & as, ag, ag, ag]
3 lag, as, as, as, az ® ag, a1 B as, ag P ar, ag, as, a7
4 las, aq, ag, as B ag, ay & as, ap S ar B ag, ag, as, a7, Ag)
5 laq, ag, as & ag, a1 & as, ag B a7 B ag, ag P as, ag, ar, ag, as)
A=A0 A A2 Alm/2=1)
BT e e Y e Ty S
bm/2 v bm/2+1 v bm/2+2 v bm-1 v
M, M, w0 Mo
b(] bl bz bm/2 1
RAR AN - Yy C’
L X | o X, | > — e[ JR[JX —

Figure 5.1 The signal flow graph (SFG) of the proposed finite field GF(2"") multiplication.

Maximum number of computations are involved for the considered class of trinomial
fields GF(2™) when the reduction polynomial is of the form z™ + 2™/2 + 1 (see last row
of Table 5.1). For all other trinomials of interest, z™ + " + 1 with k < m/2, the number
of computations are lesser than the maximum number of computations (see the cases for

i=1,2,3,4 in Table 5.1).

Proposed Systolic Multiplier for a Class of Trinomials

The proposed systolic multiplier over GF(2™) for a class of trinomials for which the
power of second highest degree term of the irreducible polynomial is less than or equal to

half the field order m, is presented in this section.

In the proposed multiplier design, we consider m to be even for keeping m/2 to be
an integer for simplicity. The equation specified by Eq. 5.11 can be represented with a
signal flow graph (SFG) as shown in Fig. 5.1. The SFG consists of (m/2 — 1) reduction
of degree by one nodes R; (i = 1,2,...m/2 — 1), m/2 number of multiplication nodes M;
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- Al
A(’zfl) A(;) bm/2+i Zi = bm/2+v,A )
Yi =AY
bi
AW = A=Dg mod T'(x) Cin=0Ci&® bm/QJriA“)
Y, Z; y
Diy1 = D; & b;AY
a
(a) (b) (©)

C; P P
R — = x}—
D, Q Q S
P = Cz™”? mod T(x) ‘
Q = Dz

(d) ()

Figure 5.2 a) Functional description of the it" reduction of degree by one node R;. b) Functional
description of the i** multiplication node M;. ¢) Functional description of the i** addition node
X;. d) Functional description of the reduction of degree by m/2 node R. e) Functional description

of the addition node X.

(1=0,1,2,..m/2—1), and (m/2—1) addition nodes X; (i = 1,2,...m/2—1). In addition,
the SFG also contains a reduction of degree by m/2 node R and an addition node X. The

functional description of the nodes is presented in Fig. 5.2.

The reduction of degree by one node R; shown in Fig. 5.2(a) performs modulo reduc-
tion operation. It takes AG~1 the reduced form of A, as input and performs modulo 7'(x)
multiplication by x on it. The multiplication node M; realizes the formulations presented
in Fig. 5.2(b). It performs the two sets of multiplications, where for each multiplication
input A® is multiplied by a specific bit of input B(b; or b, /2+4). Figure 5.2(c) presents
the functional description of addition node X; which performs two sets of m bit additions,
where in each case one input from left and one respective input from the top are added as
suggested by the formulations presented. The reduction node R in Fig. 5.2(d) performs
modulo 7'(z) multiplication by 2”/2 on the upper input, while the lower input to this
node remains unchanged. The functional description of the addition node X is given in

Figure 5.2(e), which computes the addition of its two m-bit inputs.

It may be noted that Eq. 5.11 has two parts (Eq. 5.12 and Eq. 5.13) where each
part is a summation of m/2 product terms. The SFG (See Fig. 5.1) successively generates

these product terms and aggregates their sum. In this SFG, A® generated by node R;




Systolic Multipliers for Specific Classes of Trinomials 70

A0) F40 )
LI e

bm/2 v l):f.;l/2+1 v b_f;/?+2 v ::.: Z?f:r.;zflv
by ioh iob H bin/2—1

vy * YV

o . or . A
B X1

vy

Figure 5.3 The pipelined SFG of the proposed finite field GF(2™) multiplier.

is used by the multiplication M; and addition X; nodes. The combined effect of these
three respective nodes R;, M;, and X; is equivalent to the generation of i product term
and aggregating it to the previous (i — l)th aggregation. Once two parts of Eq. 5.11 are
generated, they are combined according to this equation using the nodes R and X. The
multiplication of Eq. 5.12 by 2™/? as suggested by Eq. 5.13 is realized by node R while
the summation of the reduced form of Eq. 5.12 with Eq. 5.13 is performed by the node
X.

The input A applied to the SFG (Fig. 5.1) is processed at a stretch through the
nodes to give the output C. Hence, the long critical path of the SFG can be reduced by
applying suitable cutset pipelining on it. Figure 5.3 shows the pipelined SFG obtained by
applying feed-forward cutset, which involves inserting storage elements at cutset points.
The cutset performed here eliminates the dependency, in terms of sequential processing,
between reduction node R; and its corresponding multiplication M; and addition X; nodes
to generate the i product term. The processing section between any two adjacent cutset
lines can be called a processing element (PE). The formation of all the PEs obtained by
the cutset pipelining is shown in Fig. 5.4. Each pair of adjacent PEs are to be separated

by the storage elements as inferred by the cutset lines.

The proposed systolic structure derived from the SFG in Fig. 5.4 for GF(2") mul-
tiplier is shown in Fig. 5.5. There are a total of (m/2 + 2) PEs in the structure. The
structure contains five types of PEs. The regular PEs from PE[1] to PE[m/2 — 2| are of
the same type. The first PE, PE[0], and the last three PEs, PE[m/2 — 1], PE[a™/?], and
PE[Out] are all individually distinct PE types. The functionality of each type of PEs is

described in Fig. 5.6. The first processing element PE[0] presented in Fig. 5.6(a) performs
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Figure 5.5 Proposed systolic structure of the GF(2") multiplier.

the modular reduction of degree by one operation. It also performs one more type of op-
eration where a one-bit input (Y 1in or Y2in) is logically ANDed with every bit of m-bit
input (Xin). The functionality of this PE (PE[0]) is represented by the corresponding
mathematical equations in the same figure. The functionality of regular PE, applicable
to PE[1] to PE[m/2-2], is presented in Fig. 5.6(b). This PE, in addition to operations
described for PE[0], also performs two m-bit additions as described by the corresponding
equations presented in the figure. As shown in Fig. 5.6(c), the function of PE[m/2-1] same
as regular PE except for the absence of the modulo reduction operation. The processing
element PE[2™/2] as shown in Fig. 5.6(d) performs modulo reduction of degree by m /2
on its upper input while lower input remains unchanged. The last processing element

PE[Out] shown in Fig. 5.6(e) performs the addition of its two m-bit inputs.

The detailed architecture of the regular PE is presented in Fig. 5.7. The reduction
unit RU comprises a single XOR gate for the reduction of degree by one operation. In the
implementation of RU, the placement of the XOR, gate is suggested by k value (See the
first row of Table 5.1, where k = 3). The left AND cell comprises an array of m two-input
AND gates where " AND gate takes one input as Y 1in while another input is it bit
of X1in for ¢ = 1,2,....,m. Similarly, the right AND cell also designed to perform the
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Xout + X1lin + X2in
X1lout = X1in.a™/? mod T(a)

X2out = X2in

(d) (e)

Figure 5.6 a) Functional description of the PE[0] node. b) Functional description of the
regular PE (PE[1] to PE[m/2 —2]). ¢) Functional description of the PE[m/2 —1]. d) Functional
description of PE[a"/?] node. e) Functional description of the PE[Out] node.

same function on Y2in. The XOR cell comprises an array of m-two input XOR gates.
Each XOR cell is responsible for the addition of one of the product terms generated by
the AND gate to the X2in/X3in input of the processing element. In addition, since the
functions of processing elements PE[0] and PE[m/2 — 1] are sub-functions for regular PE
(See Fig. 5.6), the architectures for PE[0] and PE[m/2 — 1] can be derived by modifying
the architecture of regular PE. The PE[2™/?] comprises an array of m/2 XOR gates (See
the last row of Table 5.1, where m = 10). The architecture of the PE[out] comprises an
array of m/2 XOR gates to realize an m-bit addition. The proposed multiplier generates

one output for every clock cycle with an initial latency of (m/2 + 2) clock cycles.

5.2.2 Analytical Results

In this section, the area and time complexities of the proposed bit-parallel systolic
multiplier are estimated and compared with that of similar multipliers available in the
literature. Table 5.2 presents the analytical expressions for area and time complexities of
the proposed multiplier and similar multipliers considered for comparison. Furthermore,

these analytical expressions are computed for m = 409 using the area and time complexity
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Figure 5.7 Detailed architecture of the regular PE.

estimations of logic gates from FreePDK45 NanGate open cell library statistics [46, 60|
and presented in Table 5.3.

Table 5.2 presents the analytical comparison of area complexity, latency, and critical
path delay of the proposed systolic multiplier with the available systolic multipliers con-
sidered for comparison [27,39-46]. All these multipliers including the proposed multiplier
are applicable for either general trinomials or a class of trinomials. The area required
for the proposed multiplier is computed in terms of the number of AND gates, XOR
gates, and registers. We also present the area complexity for the other multipliers in a
similar way to compare with that of the proposed multiplier. The time complexities of
the proposed multiplier and other multipliers considered for comparison are computed by
assuming that T4, Tx, and T4 denote the delays of 2-input AND gate, 2-input XOR
gate, and 2-input NAND gate, respectively.

The area and time complexities of the proposed multiplier can be computed from the
detailed gate level circuitry of all PEs of the structure shown in Fig. 5.5. The structure in
this figure contains (m/2 + 2) PEs. The first processing element PE[0] requires one XOR
gate and 2m AND gates. Each one of the regular PEs from PE[1] to PE[m/2 — 2] requires
2m + 1 XOR gates and 2m AND gates. The PE[m/2 — 1] needs 2m XOR gates and 2m
AND gates. The last two PEs, PE[z"™/?] and PE[Out], require m/2 XOR gates and m
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Table 5.2 Area and time complexities comparison for GF(2™).

Design AND XOR Register Latency Critical Path
[39] (m+1)* (m+1)* 4(m + 1) m+1 Ta+Tx
[40] m? m?+m—1 3m? 4+ 2m — 2 2m — 1 Ta+Tx
[41] m? m? + ml 4m? + 2lm m+1—1 Ta+Tx
42] (3m?* —m)/2 m?+m 4m? +m m+1 Ta+Tx
[43] m? m?+m 3.5m? + 3m m+ 2 Ta+Tx
27] m? m? —1 2m(m — 1) m Ta+ Ty
44] m? m?+mt® —m 2m? m Ty +2Tx
[45] m? m? +mt* —m 2m? m/2+ 2 2T
[46] m** 1.5m? 4+ 0.5m  1.5m?+2m —1 m+ 2 Tna+Tx
Proposed m? m? —1 1.5m%2 +m m/2 + 2 Ta+Tx

l=|(m=2)/(m—k)]+1.
* m? NAND gates along with (1.5m? — 2.5m + 3) number of inverters.

@ t=1 for the class of polynomials considered in this work.

XOR gates, respectively. Hence, the proposed systolic structure requires m? AND gates,
(m? —1) XOR gates and (1.5m? +m) number of registers. Latency and Critical path (See
Fig. 5.7) of the proposed multiplier structure are (m/2 + 2) and (T + T’x), respectively.
It may be observed from Table 5.2 that all the multipliers in the table require nearly
the same critical path delay. However, the proposed systolic multiplier has the lowest
latency. The multiplier [45] has nearly same time complexities as the proposed multiplier
(See Latency and Critical path columns of Table 5.2), but it requires more amount of
hardware. In addition, it may be noted that the proposed multiplier requires the least

number of registers suggesting less area requirement.

The analytical comparisons presented in Table 5.2 can be better understood by
evaluating them for a specific value of the field order along with a specific technology-
based area and time complexity estimations of gates. The field order, m, can be selected as
409, which is one of the field sizes recommended by NIST for Elliptic curve cryptographic
applications [61]. For the estimation of area and time complexities of the gates, NanGate
45nm technology-based open cell library statistics [46,60] is adopted as follows: The
area complexities in terms of the NAND gate equivalents (GE) for a NOT gate, a 2-input




Systolic Multipliers for Specific Classes of Trinomials 75

Table 5.3 Area and time complexities comparison for GF(24%).
Design Critical Latency Latency  Area (x10°) % reduction in % reduction
Path (ns) (clock cycles) (ns) (1m?) Latency (ns) in Area

[39] 0.06 410 24.60 3.5 50 54
[40] 0.06 817 49.02 2.7 75 41
[41] 0.06 412 24.72 3.8 50 56
[42] 0.06 410 24.60 4.5 49 64
[43] 0.06 411 24.66 3.1 50 48
27] 0.06 409 24.54 2 49 20
[44] 0.09 409 36.81 2 72 20
[45] 0.07 207 14.49 2 14 20
[46] 0.05 411 20.55 1.8 40 11

Proposed 0.06 207 12.42 1.6 - -

AND gate, a 2-input XOR gate, and a D flip-flop with set/reset capabilities are taken as
0.5, 1.4, 2, and 5.7, respectively. The delays of a 2-input NAND gate, a 2-input AND
gate, and a 2-input XOR gate are 0.015, 0.025, and 0.035 nanoseconds, respectively. It
is observed that the area required for a 2-input NAND gate based on Synopsys design

compiler synthesis using 45nm NanGate open cell libraries is 0.8um?.

Table 5.3 presents the comparison of estimated critical path delay, latency, and area
complexity of the proposed multiplier with that of the same multipliers considered for
comparison in Table 5.2. It is observed that the proposed multiplier requires the lowest
area. It is clear from Table 5.3 (% reduction in Area column) that the proposed multiplier
achieves area efficiency of 54%, 41%, 56%, 64%, 48%, 20%, 20%, 20%, and 11% when
compared with multipliers [39], [40], [41], [42], [43], [27], [44], [45], [46], respectively. It is
observed that the multipliers [27,39-43] have similar critical path delays when compared
with the proposed multiplier. However, the proposed multiplier achieves low latency (ns)
compared to all these multipliers. The critical path of the multiplier [46] is less than that
of the proposed multiplier, but its latency (ns) is higher than the proposed multiplier.
Though the multiplier [45] requires a similar number of clock cycles to generate the first
output as the proposed multiplier, its latency (ns) is higher. From Table 5.3, it is observed
that the proposed multiplier achieves the lowest latency (ns). Hence, it is clear from
the estimated values presented in Table 5.3 that the proposed multiplier achieves both

low-latency and low-area when compared with the similar multipliers available in the
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Table 5.4 Comparison of ASIC implementation results for GF(2409).
Critical Latency Multiplier % reduction in % reduction
Design
Path (ns) (ns) Area (um?) Latency (ns) in Area

[45] 0.24 49.68 3052297 12 17

[46] 0.17 78.09 2783963 37 9
Proposed 0.21 43.47 2533407 - -
literature.

5.2.3 Implementation Results

It is observed from Table 5.3 that the multipliers [45,46] require less latency and
less area, respectively, compared to the other available multipliers considered for compar-
ison. Hence, the proposed multiplier and the two multipliers [45,46] are modeled using
VHDL for GF(21%). The RTL models are simulated using Vivado Simulator to verify
the functionality. Also, these RTL models are synthesized using the Synopsys Design
Compiler tool employing NanGate 45nm open cell library [60] to obtain the area and
time complexities. The area and time complexities obtained for all the three multipliers
are tabulated in Table 5.4. The experimental results obtained confirm that the proposed

multiplier requires less area and less latency (ns) than the other previous multipliers.

5.3 High-Throughput Area-Delay-Efficient Bit-Parallel Systolic

Multiplier

This section presents a high-throughput multiplier whose architecture is realized
using the formulations of the area-efficient low-latency multiplier presented in the previous
section. The formulations for this multiplier are the same as the previous multiplier and
the architecture realization involves further cutset pipelining compared to the previous
multiplier. This section also presents the performance analysis of this proposed high-
throughput multiplier through analytical and implementation results comparisons with

the available related multipliers.
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5.3.1 Design

Mathematical Formulation

The formulations for this multiplier are the same as the formulations presented for
the multiplier in the previous section (Section 5.2.1). Similar to the previous multiplier
case, this multiplier is also applicable for the same class of trinomials ™ + z* + 1 for

which k£ < (m —1)/2 (if m is odd) or k < m/2 (if m is even).

Proposed Systolic Architecture

This section presents the proposed GF(2™) multiplier systolic structure, which is
applicable for the specified class of trinomials for which the degree of the middle term is

less than half of the order of the field.

Consider the pipelined signal flow graph (SFG) presented in Fig. 5.3. The critical
path delay for this pipelined SFG shown in Fig. 5.3 is max(Tr,n, Tv,n + T%,n5 TrRN, TXN)-
However, it is clear from the hardware implementation point of view that Ty,n + Tx,n
constitutes the critical path delay. This delay can be further reduced by applying a hori-
zontal cutset as shown in Fig. 5.8. The critical path delay for this pipelined SFG shown
in Fig. 5.8 is max(Tgr;~, TN, I%,~5, TrN, Txn). It may be noted that wherever the cutset
lines intersect the SFG, hardware registers are to be placed in the hardware implementa-
tion. Based on the vertical cutsets, the processing elements (PEs) can be formed for the

pipelined SFG (Fig. 5.8) as shown in Fig. 5.9.

© ':: ® 5: ) :': 'im/Qfl)
A . A F R”’/H,;é_}
bm/2 v b:i.;L/2+1 v b_.?:T.l/2+2 ' ::_-' l.)_;;;L_lv
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Figure 5.8 Further pipelined SFG using horizontal cutset.
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Figure 5.10 Proposed systolic structure of the GF(2") multiplier.

The proposed systolic structure for the GF(2™) multiplier derived from the SFG
(Fig. 5.9) is shown in Fig. 5.10. This structure has five types of processing elements
(PEs). The processing elements PE[1] through PE[m /2-2] are similar in architecture and
can be referred to as regular PEs. The remaining processing elements PE[0], PE[m/2-1],
PE[z™/?], and PE[Out] are different from regular PEs, and also individually distinct from
one another. The functional descriptions of all the PEs are presented in Fig. 5.11. It
may be noted that processing elements PE[0] through PE[m/2-1] are required to include
two m-bit registers in the architecture to realize the horizontal cutset which is described
in Fig. 5.8. In Fig. 5.11, the subscript, (¢), used for the input and output variables
represents the current clock cycle and the subscript (¢ — 1) indicates the previous clock
cycle when implemented the structure in hardware. For the PE[0] shown in Fig. 5.11(a),
Xing, Yling), and Y2in are the inputs. The output X 1lout ) is obtained by performing
reduction of degree by one operation on the input Xin). The output X2out is obtained
by multiplying the previous m-bit input Xin_), with the previous 1-bit input Y 1ling_1).
Here, the previous inputs means that the inputs available to PE[0] during the previous
clock cycle. Similarly, the output X3out is obtained by multiplying the previous m-
bit input Xin_1), with the previous 1-bit input Y2in;_yy. Figure 5.11(b) presents the

functional description of a regular PE. When compared with PE[0], it has two more inputs
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Figure 5.11 a) Functional description of the PE[0] node. b) Functional description of the
regular PE (PE[1] to PE[m/2 —2]). ¢) Functional description of the PE[m/2 —1]. d) Functional
description of the PE[z™/2] node. e) Functional description of the PE[Out] node.

X2ing) and X 3ing). The output X2out ;) which realizes the accumulation is obtained by
multiplying the previous m-bit input X1in_), with the previous 1-bit input Y ling_y),
followed by adding the previous m-bit input X2in;_;y. Similarly, the output X3out
can be obtained. The operations performed by PE[m/2-1] are similar to the regular PE,
however, it does not perform reduction of degree by one operation. For the PE[z"/2],

2 operation on the input

Xlout is obtained by performing reduction of degree by ™/
X1ling). The other input of this PE simply routs to output without any modification. The
processing element PE[Out] adds its two m-bit inputs X1iny) and X2iny) to generate
the output Xout). The processing elements PE[z™/?] and PE[Out] do not require any

storage elements in the architectures.

The detailed architecture for the regular PE is shown in Fig. 5.12. The reduction
unit RU, which performs the reduction of degree by one operation, comprises a single XOR
gate. The placement of this single XOR gate in the RU block is determined by the k value
(See the first row of Table 5.1, where & = 3). The left AND cell consists of an array of m
two-input AND gates where i AND gate takes one input as Y 1in while another input is
i" bit of X1in for i = 1,2, ....,m. Similarly, the right AND cell also designed to perform

the same function on Y2in. The XOR cell consists of an array of m two-input XOR gates.
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Figure 5.12 Detailed architecture of the regular PE.

The XOR cells are responsible for the addition of the product terms generated by the AND
cells (in the previous clock cycle) to the respective inputs (X2in«) and X3in()) of the
processing element. Two registers Regl and Reg2 are placed in the architecture to realize
the horizontal cutsets that appeared in the processing elements PE[0] through PE[m/2-1]
(See Fig. 5.8). It may be noted that since the functions of processing elements PE[0] and
PE[m/2—1] are sub-functions for regular PE (See Fig. 5.7), the architectures for PE[0] and
PE[m/2 — 1] can easily be obtained by modifying the architecture of the regular PE. The
processing element PE[2™/2] can be realized using an array of m /2 two-input XOR gates
(See the last row of Table 5.1, where m = 10). The architecture of PE[out] requires an
array of m two-input XOR gates to implement the m-bit addition. The proposed systolic
multiplier generates one output per clock cycle with an initial latency of (m/2 + 3) clock

cycles.

5.3.2 Analytical Results

In this section, the area and time complexities of the proposed systolic multiplier
are estimated and compared with the available multipliers in the literature. Table 5.5
presents the comparison of the analytical complexities of the proposed multiplier with

the available multipliers. Furthermore, these analytical complexities are evaluated for a
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specific field order, m = 409, using FreePDK45 NanGate cell library statistics [46, 60],
and presented in Table 5.6.

Table 5.5 Area and time complexities comparison for GF(2™).

Design AND XOR Register Latency Critical Path
[40] m? m?+m—1 3m? +2m — 2 2m — 1 Ta+Tx
[41] m? m? +ml 4m? + 2lm m+1—1 Ta+Tx
42] (3m?* —m)/2 m?+m 4m? +m m+1 Ta+Tx
43] m? m?+m 3.5m? 4+ 3m m+ 2 Ta+Tx
27] m? m? —1 2m(m — 1) m Ta+ Ty
44] m? m? +mt® —m 2m? m Ta+ 2T
[45] m? m? + mt* —m 2m? m/2+2 2T
[46] m** 1.5m? 4+ 0.5m  1.5m?+2m —1 m+ 2 Tna+Tx
[62] m? m?—1 L.5m? +m m/2+ 2 Ty+ Ty
Proposed m? m? —1 2.5m? +m m/2+3 Tx

I=1(m—=2)/(m—k)|+1.
* m? NAND gates along with (1.5m? — 2.5m + 3) number of inverters.

@ t=1 for the class of polynomials considered in this work.

Table 5.5 presents the analytical comparison of area complexity, latency, and crit-
ical path delay of the proposed systolic multiplier with the available systolic multipliers
considered for comparison [27,40-46,62]. All these multipliers including the proposed
multiplier are applicable for either general trinomials or a class of trinomials. The area
required for the proposed multiplier is computed in terms of the number of AND gates,
XOR gates, and registers. We also present the area complexity for the other multipliers
in a similar way to compare with that of the proposed multiplier. The time complexities
of the proposed multiplier and other multipliers considered for comparison are computed
by assuming that T4, T'x, and T4 denote the delays of 2-input AND gate, 2-input XOR

gate, and 2-input NAND gate, respectively.

The area and time complexities of the proposed multiplier can be computed from
the detailed gate level circuitry of all PEs of the structure shown in Fig. 5.10 where the
structure contains (m/2 + 2) PEs. The first processing element PE[0] requires one XOR
gate, 2m AND gates, and two m-bit registers. Each one of the regular PEs from PE[1]
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Table 5.6 Area and time complexities comparison for GF(24%).

Design Critical Area (x10°) Throughput ADP % increase in % reduction

Path (ns) (m?) (x10%) (x107%)  Throughput in ADP
[40] 0.06 2.7 16.66 162 71.48 48.15
[41] 0.06 3.8 16.66 228 71.48 63.15
[42] 0.06 4.5 16.66 270 71.48 68.88
[43] 0.06 3.1 16.66 186 71.48 04.83
[27] 0.06 2 16.66 120 71.48 30
[44] 0.095 2 10.53 190 171.32 55.79
[45] 0.07 2 14.29 140 99 93 40
[46] 0.05 1.8 20 90 42.85 6.66
[62] 0.06 1.6 16.66 96 71.48 12.50
Proposed  0.035 2.4 28.57 84 — —

to PE[m/2 — 2] requires 2m + 1 XOR gates, 2m AND gates, and two m-bit registers.
The PE[m/2 — 1] needs 2m XOR gates, 2m AND gates, two m-bit registers. The last
two PEs, PE[2"/?] and PE[Out], require m/2 XOR gates and m XOR gates, respectively.
Hence, the proposed systolic structure requires m? AND gates, (m? — 1) XOR gates
and (2.5m? + m) number of registers. Latency and Critical path delay (See Fig. 5.12)
of the proposed multiplier structure are (m/2 + 3) and Ty, respectively. It may be
noted that all the multipliers in Table 5.5 have nearly the same AND and XOR gate
complexities while the proposed multiplier requires more registers when compared with
the multipliers [27,44-46,62]. However, when compared with all the other multipliers in
Table 5.5, the proposed multiplier requires the lowest critical path delay T’x, thereby, able
to give high throughput rates (Number of GF(2™) multiplications/sec).

The analytical comparisons presented in Table 5.5 can be better understood by
evaluating them for a specific value of the field order along with a specific technology-
based area and time complexity estimations of gates. The field order, m, can be selected as
409, which is one of the field sizes recommended by NIST for Elliptic curve cryptographic
applications [61]. For the estimation of area and time complexities of the gates, NanGate
45nm technology-based open cell library statistics [46,60] is adopted as follows: The area
complexities in terms of the NAND gate equivalents (GE) for a NOT gate, a 2-input AND
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gate, a 2-input XOR gate, and a D flip-flop with set/reset capabilities are taken as 0.5,
1.4, 2, and 5.7, respectively. The delays of a 2-input NAND gate, a 2-input AND gate,
and a 2-input XOR gate are 0.015, 0.025, and 0.035 ns, respectively. It is observed that
the area required for a 2-input NAND gate based on Synopsys design compiler synthesis

using 45nm NanGate open cell libraries is 0.8m?.

Table 5.6 presents the estimated critical path delay and area complexity for the
proposed multiplier along with same multipliers considered for analytical comparison.
Area complexities are estimated in the units of ym? and it may be noted that the proposed
multiplier requires more number of area when compared with the multipliers [27,44-46,62].
However, the proposed multiplier requires the lowest critical path delay which indicates
that it achieves high throughput rates when compared with other multipliers. Though the
proposed multiplier is not area-efficient, it achieves reduction in critical path delay and
improvement in throughput rates. It is observed that the proposed multiplier achieves
around 42% more throughput rates when compared with the best multiplier [46] (See %
increase in Throughput column). The overall efficiency of the proposed multiplier can
be compared with other multipliers in terms of area-delay-product (ADP). It is observed
that the proposed multiplier achieves around 6% less area-delay-product when compared
with the best multiplier [46] (See % reduction in ADP column). Hence, it is clear from the
estimated values presented in Table 5.6 that the proposed multiplier has high throughput
rates and also achieves a marginal reduction in area-delay-product when compared with

the similar multipliers available in the literature.

Table 5.7 Comparison of ASIC implementation results for GF(2499).
Critical Throughput  Multiplier % increase in % reduction
Design ADP
Path (ns) (x10%) Area (um?) Throughput in ADP
[46] 0.19 5.26 2783963 528953 35.74 9.7
[62] 0.21 4.76 2533407 532015 50 6.3

Proposed 0.14 7.14 3559604 498345 - -
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5.3.3 Implementation Results

It is observed from Table 5.6 that the multipliers [46,62] have the nearest complexi-
ties to that of the proposed multiplier with respect to throughput and area-delay-product
compared to the other multipliers considered for comparison. Hence, these two multi-
pliers [46,62] and the proposed multiplier are modeled using VHDL for GF(2%). The
RTL models are simulated using Vivado Simulator to verify the functionality. Also, these
RTL models are synthesized using Synopsys Design Compiler tool employing NanGate
45nm open cell library [60] to obtain the area and time complexities. The area and time
complexities obtained for all the three multipliers are tabulated in Table 5.7. It may be
concluded from the synthesized results obtained that the proposed multiplier achieves

more throughput and less area-delay-product than that of the other previous multipliers.

5.4 Low-Latency Area-Efficient Bit-Parallel Systolic Multiplier

In this section, the design and performance analysis of the proposed bit-parallel
systolic multiplier for a narrow of trinomials for which & < m — 2[m/3] is presented.
First, we present the mathematical formulations for the proposed GF(2") multiplication
and its realization using the bit-parallel systolic architecture. Following this, analytical

comparisons of area and time complexities and implementation results are presented.

5.4.1 Design

This section presents the formulations and the multiplier architecture for the pro-
posed GF(2™) multiplication. First, we develop the formulations for the proposed GF(2™)
multiplication method. Following this, the proposed multiplier architecture realized using

these formulations is presented.
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Mathematical Formulation

Consider Eq. 5.1, where C(z) is the product of the two field elements A(z) and

B(z), given by

i=0
= (bm_lAaUm_1 + by Ax™E 4 + Az + b()A) mod T'(x)
= (bpo1(Az™) + byo(A2™ %) + L + bi(Az) + bo(A)) mod T'(z) (5.14)

This Eq. 5.14 is the same as Eq. 5.2, however, it is renumbered here for convenience.
Equation 5.14 can be explicitly rewritten as a summation of three sub-expressions as
shown in Eq. 5.15 where each sub-expression consists m /3 terms. The lower sub-expression
contains the terms which have the powers of = from 0 to (m/3 — 1). The middle sub-
expression contains the terms which include the powers of x from m/3 to (2m/3 — 1).
The upper sub-expression contains the remaining terms that have the powers from 2m/3

to (m—1).

O(z) = ((bm,l(A:cm’l) + bna(AT™2) oo+ byyzin (A3 b2m/3(Ax2m/3))
n (bgm/g_lmxm/H) + by 3o (Az?™372) 4 .
..... + by a1 (A2 41, /3(Axm/3))
+ <bm st (Ax™3) by s o (Ax™32) 4

by(Az) + bO(A)>> mod T(z) (5.15)
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m/3 2m/3

Now, by bringing out £™/® as a common term from the middle sub-expression and x

as a common term from the upper sub-expression, we can have

O(z) = ((bm_l(Axm/?’_l) + ba(AT™372) £t bys (Az) + me/g(A))me/i”
¥ (me/g,l(Axm/?’-l) + Doz (A2™32) +
..... + by3i1(AT) + by /3(A)>xm/3
+ (bm/g_l(Axm/?’*l) + byjsa(A2™32) 4+
bi(Az) + bO(A)>) mod T(z) (5.16)
Now, we can define the following recursive notations, A© = A, AN = Az A2 =

AWz AB) = AQg , Am/3=1 — A(m/3=2)1  These recursive relations can also be

represented using the following recursive equation as,

AY) = AU=Yg mod T'(z), where j = (m/3 — 1),...,2,1 (5.17)
where,
m—1
AUD = Z a¥ Vi v el € GF(2) (5.18)
=0

Furthermore, from the fact that z is a root of the irreducible polynomial 7'(z), hence,

using Eq. 5.7 we have
" = tm_ll’m_l + tm_QCL’m_Z + o + t2I2 + t1$ + t(]
The expression for the element AY) (Eq. 5.17) can be written as

AW — ag) a4 o) A R + aéj)f + a(lj)x + aéj) (5.19)

— m—

The coefficients of the element AY) can be obtained in terms of the coefficients of AU—1
as

af) =ali”} (5.20)

a?’ = a7 4+ aU Ve where i = 1,2, .....om — 1 (5.21)
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From these implications, the expression for C'(z) in Eq. 5.16 can be rewritten as

Clz) = ((bm_l(A““/ D) by (AR L + bom 341 (AD) + boy /3(A© )> L2m/3
+ <b2m/3—1(A(m/ D) + bynya—a(AM3D) 4
..... + byzin (AV) + bm/g(A(O))>gjm/3
™ (bm/3—1(A(m/ Y 4 bys—a (AP +
bi(AD) + by(A0)) ) mod T(x) (5.22)

It can be noted that the expression for C(x) in Eq. 5.22 contains three similar sub-

expressions, namely, sub-expression-1

(bm_l(A(m/?"l)) 4 bpa(AMAY + Do (AD) + bgm/g(A@))) mod T(z)
(5.23)

and sub-expression-2 as

(b2m/3_1(,4<m/3—1>) + boj3_a(A™/3D) 4

..... + byzi1 (AD) + bm/g(A(O))) mod T(z) (5.24)

and sub-expression-3 as

(bm/g_l(A(m/?’_l)) F bysa (AR 4y

by (AD) + bO(A<0>)>) mod T(z) (5.25)

It can be observed that the above three sub-expressions (Egs. 5.23, 5.24, and 5.25)
are similar in computation and each one requires the elements A©, AM . , Am/3=2)
A/3=1) for its computation. Further, these m/3 elements can be computed recursively
from the element A using Eq. 5.17 where each recursion requires modulo reduction using
the irreducible polynomial T'(x). The computational complexity of the elements AW, j =
1,2,.....,(m/3 — 1), can be reduced by selecting the low-weight irreducible polynomials
such as trinomials. Moreover, it is observed that the complexity can be further reduced
for a specific class of trinomials 2™ +2*+1 for which & < m—2[m/3]. This narrow class of
trinomials that results in low-hardware complexities are highly desirable for constrained

and cost-effective applications such as IoT applications. The complexity reduction using
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these trinomilas can be achieved as the multiplication of any field element, A, with 2,
where i = 1,2, ...,2m/3, can be realized using one level of i number of XOR gates. To
make it more clear, we have considered the field GF(2'?) over the irreducible trinomial
T(x) = x'? + 2® + 1 where this trinomial obeys the condition that is mentioned for the
specified narrow class of trinomials, i.e. & < m — 2[m/3]. This field is considered to
show that Az’ mod T'(x), for i = 1,2,...,8, requires one level of i XOR gates, and same
is described in Table 5.8. The co-ordinate representation of the element A € GF(2'?) can

be given as (a1, ajo, ag, as, ar, ag, as, Ay, a3, Az, a1, ag). It can be observed from Table 5.8

Table 5.8 Coordinate representation of Az’ mod T'(z).

~.

Ax" mod T (z)

layo, ag, as, ar, ag, as, as, as, az ® ayy, ay, ag, a1}
[ag, as, az, ag, as, G4, as, as B a11, ay S ayg, o, 11, G10)
las, ar, ag, a5, G, az, as ® a1, a1 S a1, ag S ag, 11, a1, Ao
laz, ag, as, a4, as, az ® a1, a1 ® a19, a9 O ag, a1 S as, ayo, Gy, g
lag, as, as, as, az ® a1y, ay © a19, ag © ay, a1y © as, a9 © ar, ay, as, az)
las, as, as, as ® ar1, a1 ® aro, ag S ag, a1 ® as, aro D az, ag ® ag, as, az, ag)

lag, ag, az @ ajy, a1 ® ayg, ap O ag, a1 O as, arg O ar, ag O ag, ag D as, az, ag, as)

o I O Ot = W =

las, as @ a1, a1 B ayg, ap B ag, a1 B as, a10 B az, ag S ag, as B as, ar B a4, ag, A5, A4

that realization of an *"

row requires ¢ number of XOR gates. It can also be noted from
the table that the realization of Az’ mod T'(z) for i = 8 (2m/3) requires the maximum
number of one level of XOR gates i.e., 8 gates, while for all other considered values of 7,

it requires less than this maximum value (2m/3).

Proposed Systolic Multiplier Architecture

This section presents the proposed systolic architecture based on the formulations
developed for GF(2™) multiplication. This multiplier architecture is suitable for mul-
tiplication in GF(2™) fields that are generated using trinomials ™ + z¥ + 1 for which
k< m — 2[m/3]. A signal flow graph (SFG) is developed based on the formulations
(Eq. 5.22), and then a set of suitable cutset pipelining techniques are applied on it to
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realize the gate level structure for the proposed systolic multiplier.

A= A(()) — A(l) ) i
‘! A |_|R [ Runsf
me/3
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5 ) A
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T e A [ e Y

Figure 5.13 Signal flow graph (SFG) representation of the proposed GF(2") multiplication.

The expression for the multiplication of elements A and B, C(z), given by Eq. 5.22
can be represented using the signal flow graph (SFG) shown in Fig. 5.13. The structure of
this SFG is developed based on the observations that Eq. 5.22 comprises the three similar
sub-expressions (See Eqgs. 5.23, 5.24, and 5.25) whose computation can be performed in
parallel and the terms A®, which are used in the computation of the three sub-expressions,
can be obtained from the recursive computations (See Eq. 5.17). The SFG contains five
types of nodes namely reduction nodes (R;), multiplication nodes (M;), addition nodes
(X;), final reduction node (R), and final addition nodes (X’;). Specifically, the SFG
contains (m/3 — 1) reduction nodes (R;, for i=1, 2, 3, ..., m/3 — 1), m/3 multiplication
nodes (M;, for i=0, 1, 2, ..., m/3 — 1), (m/3 — 1) addition nodes (X;, for i=1, 2, 3, ...,
m/3 — 1), one final reduction node (R), and two final addition nodes (X’;, for i=1, 2).
The input operands, A and B, are applied in parallel to the SFG and the output, C, is

also available in parallel.

The functional description of the nodes of the SFG is depicted in Fig. 5.14. The
reduction node R; presented in Fig. 5.14(a) performs reduction by degree one on its
input, A®Y after multiplying it with z. The equation that describes the function of
this node is also presented in this figure where A® is considered as the reduced form of
A1 The multiplication node M; presented in Fig. 5.14(b) performs three simultaneous
multiplications, where, in the each multiplication the single bit input (b;/by,/3+i/b2m/3+:)
is multiplied with the m-bit input A®. The formulations that represent the function of
this node are also presented in the figure. The addition node X; shown in Fig. 5.14(c)
performs three simultaneous additions where the m-bit inputs C;, D;, and F; are added
to the inputs boy, /31 A7, b3 AW, and b; AW, respectively. The final reduction node R
shown in Fig. 5.14(d) performs reduction by degree 2m/3 on the input C; and reduction
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ALY AW Xi = by z4iAl
Z; = b AW
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Figure 5.14 Functional description of a) it reduction node R; b) i multiplication node M; c)
i" addition node X; d) final reduction node R e) final addition node X’; f) final addition node
Xs.

by degree m/3 on the input D;. The other input FE; is unchanged and is simply routed
to the output W. The formulations representing the functionality of this node are also
presented in the figure. The final addition node X’y presented in Fig. 5.14(e) performs
the addition of the upper two m-bit inputs (U and V). The other input (W) remains
unchanged and is made available at the output (Y'). The equations that describe the
functionality of this node are also presented. The final addition node X’; presented in
Fig. 5.14(f) performs the addition of the two m-bit inputs (U and V). The equation that

describes the functionality of this node is also presented.

It may be noted that Eq. 5.22 representing the SFG (Fig. 5.13) consists of the three
sub-expressions as specified using Eqs. 5.23, 5.24, and 5.25. The computations involved
in the evaluation of these three sub-expressions are similar and requires the reduced
forms of A from A© to A/3=D. Moreover, these three expressions can be evaluated
simultaneously as shown in the SFG. The reduced forms of input A are obtained using
reduction nodes R; and used by multiplication nodes M; to generate the product terms
of the form b;A® /b, /3+Z-A(") /bam /3+iA(i). These product terms are accumulated using X;
nodes to obtain the evaluation of the sub-expressions (Eqs. 5.23, 5.24, and 5.25). Once

these three expressions are computed, the evaluation of Eq. 5.22 to obtain the required
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product C' can be performed by modulo multiplying Eq. 5.23 with 22™/3 and Eq. 5.24 with
2™/3 using the R node followed by the addition of both of these equations to Eq. 5.25

using the X’y and X’; nodes.

A= A0 A

PAO A(m/dfﬂ
I [R5 (Ref—F> -
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bo D ™

e = e P e e

Figure 5.15 Pipelined SFG using vertical cutsets.

It can be observed from the SFG (Fig. 5.13) that input A is processed through all
the nodes at a stretch to obtain the output C. This kind of processing at a stretch incurs
a long critical path delay when this SFG is realized in hardware. Hence, it is required
to apply suitable cutset pipelining to this SFG to reduce the critical path delay. It is
identified that the vertical cutsets as shown in Fig. 5.15 are best suitable for the efficient
realization of the SFG. These cutsets are feed-forward cutsets and indicate the placing of
registers in hardware realization at the points where the cutset lines intersect the SFG.
The vertical cutsets are applied such that the sequential dependency between the R; node
and the M; & X; nodes is eliminated i.e. during any clock cycle the M; & X; nodes need
not wait until the output at the R; node available. Instead, the M; & X; nodes process
the data generated by R; node during the previous clock cycle. The sections of the SFG
that are separated by cutset lines can be considered as processing elements (PEs) and the
SFG (Fig. 5.15) contains (m/3 + 3) such sections. The formation of PEs obtained from
the pipelined SFG is presented in Fig. 5.16, and there are (m/3 + 3) PEs. The hardware

realization of this SFG requires to insert registers (incurred by cutset lines) between PEs.

A= Am’ sAW A% ;
bz‘.ﬁ/ 3 Do H 55
i H H 0 :
by i I
| I |

Figure 5.16 Formation of the processing elements (PEs).
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The proposed systolic structure for obtaining the required finite field GF(2™) prod-
uct, C'(x) given by Eq. 5.22, is presented in Fig. 5.17. This structure is developed using
the SFG shown in Fig. 5.16. This systolic structure consists of a total of (m/3 + 3) PEs
and these PEs can be categorized into six types based on the functionality. The PEs from
PE[1] to PE[m/2-2] are of the same type and this type is denoted as regular PE (PE).
The other PEs, PE[0], PE[m/3-1], PE[x™/3&x?*™/3], PE[X",], and PE[X’;] are of distinct
PEs and are also different from the regular PEs.

AL PE[0] [ | PE[] PE[2]

—s

AR R R A A

by Dmys bamys D1 o e b2 ¥ el B R W

PE[m/3-2] [ | PE[m/31] PE[e"/3 o PE[X")] PE[X"] —m/—’C

Figure 5.17 Proposed systolic structure for GF(2™) multiplication.
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Figure 5.18 Functional description of a) PE[0] b) Regular PE c¢) PE[m/3-1] d)
PE[z™/3&x2™/3] ¢) PE[X"] f) PE[X’s].

The functional description of all the PEs is presented in Fig. 5.18. The functional
description of the first PE of the systolic structure, PE[0], is presented in Fig. 5.18(a).
This PE performs a reduction by degree one operation and three multiplication opera-
tions. The multiplication operations involve the multiplication of an m-bit operand with

a 1-bit operand. The functional description of the regular PEs is presented in Fig. 5.18(b).
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These PEs perform a reduction by degree one operation and three multiply-add opera-
tions. The multiply-add operations involve the multiplication of an m-bit operand with
a 1-bit operand followed by the addition of an m-bit operand. Figure 5.18(c) presents
the functional description of the PE[m/3-1] where this PE performs three multiply-add
operations. Figure 5.18(d) presents the functional description of the PE[x™/3&x?*™/3]
where the functionalities of this PE include a reduction by degree 2m/3 operation and a
reduction by degree m /3 operation. The functional description of the PE[X’;] is presented
in Fig. 5.18(e). This PE performs the addition of the two upper inputs while simply rout-
ing the other input to the output. The functional description of the PE[X’s] is presented
in Fig. 5.18(f) where this PE performs the addition of its two inputs. Formulations that

represent the functionalities are also included for all the PEs presented in Fig. 5.18.
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Figure 5.19 Detailed gate level architecture of the regular PE.

The detailed gate-level architecture of the regular PE is presented in Fig. 5.19. The
inputs Xin, X1in, X2in, and X3in are of m-bits and the inputs Y 1in, Y2in, and Y 3in,
are of 1-bit. Also, there are four outputs and all are of m-bit width. The architecture
contains a reduction unit (RU), three AND cells, and three XOR cells. The reduction
unit RU performs the reduction by degree one operation on the input Xin. It realizes the
reduction node R; of a regular PE. It comprises a single XOR gate to realize the reduction

operation. The exact placement of this XOR gate in the RU depends on the degree of the
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middle term of the trinomial selected. For instance, the first row of Table 5.8 represents
the reduction by degree one of the element A using the trinomial 22 + 23 + 1. For this
case, it requires an XOR gate at the fourth place from the least-significant-bit position to
realize the reduction operation. The three AND cells perform the multiplication of the
three 1-bit inputs Y1lin, Y2in, and Y3in with the Xin. These three AND cells jointly
denote the realization of the multiplication node M; of a regular PE. Each AND cell
contains an array of m AND gates where an i'" gate takes the i'* bit of Xin as one input
and another input is Y1lin (for the left cell)/ Y2in (for the middle cell)/Y 3in (for the
right cell). The three XOR cells perform the addition of the three m-bit inputs X lin,
X2in, and X 3in with the respective output of the three AND cells as shown in the figure.
These three XOR cells jointly denote the realization of the addition node X; of a regular
PE. The left XOR cell contains an array of m XOR gates where an i gate takes the *
bit of X1in as one input and another input is the i** bit of the output of the left AND

cell. Similarly, the same is the case with middle and right XOR cells.

The gate level architectures for the PE[0] and PE[m/3-1] can be easily obtained from
the architecture of the regular PE as the functionalities of these PEs are sub-functions
of the regular PE. The processing element PE[x™/3&2?™/3] can be realized using m
XOR gates. The reduction by 2m/3 operation of this PE requires 2m/3 XOR gates and
the reduction by m/3 operation requires m/3 XOR gates. The placement of these gates
depends on the trinomial selected for the design of GF(2™) multiplier (For example, see
the eighth and fourth rows of Table 5.8 for the trinomial x'? 4+ 23 4+ 1). The gate level
architectures for the PE[X"| and PE[X’s] require m XOR gates each. The proposed
systolic multiplier has a latency of (m/3 4 3) clock cycles and generates a new output for

each clock cycle.

5.4.2 Analytical Results

This section presents the area and time comparisons of the proposed systolic mul-
tiplier with the related systolic multipliers available in the literature. Table 5.9 presents
the analytical comparisons of the area and time complexities and Table 5.10 presents the
comparison of the estimated area and time complexities computed for m = 409 using the

FreePDK 45nm NanGate open cell library statistics.
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Table 5.9 presents the analytical comparison of the proposed multiplier with the
available multipliers [27,39-46,62] in terms of gate complexities, critical path delay, and
latency. All of these multipliers listed in Table 5.9 are applicable for either trinomials
or a specific class of trinomials. The area complexities for the proposed multiplier are
computed in terms of the number of 2-input XOR gates, 2-input AND gates, and registers.
The area complexities of the multipliers considered for comparison are also presented
using similar gates. The time complexities for the proposed multiplier and the available
multipliers are presented in terms of 2-input AND gate delay (7)) and 2-input XOR gate
delay (Tx).

Table 5.9 Comparison of area and time complexities for GF(2™).

Design AND XOR Register Latency Critical Path
[39] (m+1)? (m+1)° 4(m +1)° m+ 1 Ta+ Tx
[40] m? m?+m —1 3m? +2m — 2 2m — 1 Ta+Tx
[41] m? m? + ml 4m? + 2lm m+1—1 Ta+Tx
[42] (3m? —m)/2 m?+m 4m? +m m+1 Ta+Tx
43] m? m?+m 3.5m? + 3m m+ 2 Ta+Tx
[27] m? m? —1 2m(m — 1) m Ty+Tx
44] m? m? +mt® —m 2m? m Ta+ 2T
[45] m? m? +mt® —m 2m? m/2+ 2 2T
46] m2* 1.5m? + 0.5m 1.5m? +2m —1 m+ 2 Thna+Tx
62] m? m?—1 L.5m*+m m/2+2 Ta+Tx
Proposed m? 10m?/9 —m/3 4m? /3 + 5m m/3+3 Ty +Tx

l=|(m-=2)/(m—k)]+1.
* m? NAND gates along with (1.5m? — 2.5m + 3) number of inverters.

@ t=1 for the class of polynomials considered in this work.

The area and time complexities for the proposed systolic multiplier can be obtained
from the gate level architectures of the PEs of the systolic structure presented in Fig. 5.17.
The area complexities for the regular PEs (PE[1] to PE[m/2-2]) can be computed from
the detailed gate-level architecture presented in Fig. 5.19. This architecture comprises a
reduction unit RU and three sets of AND and XOR cells. The reduction unit requires one
XOR gate, a AND cell requires m AND gates, and an XOR cell requires m XOR gates.
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Hence, the regular PE requires a total of 3m AND gates and 3m + 1 XOR gates. The
architecture of the processing element PE[0] is similar to regular PE except that it does
not require XOR cells. Hence, this PE requires 3m AND gates and a single XOR gate.
The architecture of the processing element PE[m/3-1] is also similar to regular PE except
that it does not require the reduction unit RU. Hence, this PE requires 3m AND gates and
3m XOR gates. The processing element PE[x™/3&x?™/3] requires m XOR gates which
include 2m/3 XOR gates for reduction by degree 2m/3 operation and m/3 XOR gates
for reduction by degree m/3 operation. The final addition nodes PE[X’;] and PE[X’]
require m XOR gates each. Furthermore, to realize the cutset lines (See Fig. 5.15) it is
required to place the registers between any two adjacent PEs i.e. each horizontal line in
the proposed systolic structure (See Fig. 5.17) requires m registers. Hence, the proposed
multiplier requires a total of m? AND gates, 10m? — m/3 XOR gates, and 4m?/3 + 5m
registers. Critical path delay and latency of the proposed multiplier are T4y + Tx and
(m/3 + 3) clock cycles (See Fig. 5.19), respectively. These area and time complexities
are presented in Table 5.9 along with the complexities of the available multipliers. It
can be observed from this table that the proposed multiplier requires the lowest latency
compared to all other multipliers. Also, the critical path delay of the proposed multiplier

is nearly the same as the available multipliers.

The comparisons presented in Table 5.9 can be better assessed using a specific field
order m and a specific implementation technology. The field order is selected as m = 409
since it is the field order recommended by NIST for implementation of the Elliptic curve
digital signature algorithm (ECDSA) [61,63]. We have considered Nangate 45nm open
cell library [46,60] statistics to obtain the estimated standard gate complexities. Based
on this technology, the estimations for area and time complexities are adopted as follows.
The area complexities for all the required gates are represented in terms of the 2-input
NAND gate equivalents (GE), where a NOT gate, a 2-input XOR gate, a 2-input AND
gate, and a D flip-flop with set/reset capabilities are equivalent to 0.5, 2, 1.4 and 5.7
GEs, respectively. It is observed that the area required for a 2-input NAND gate when
synthesized using Synopsys design compiler employing 45 nm NanGate open cell libraries
is 0.8 um?. The delays of a 2-input NAND gate, a 2-input XOR gate, and a 2-input AND
gate are 0.015, 0.035, and 0.025 ns, respectively.
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Table 5.10 Comparison of area and time complexities for GF(2409).

Design Critical Latency Latency Area (x10°) % reduction in % reduction
Path (ns)  (clock cycles) (ns) (um?) Latency (ns) in Area

[39] 0.06 410 24.60 3.5 66 07.14
[40] 0.06 817 49.02 2.7 83 44.44
[41] 0.06 410 24.60 3.7 67 59.45
[42] 0.06 410 24.60 45 66 66.66
[43] 0.06 411 24.66 3.1 67 51.61
[27] 0.06 409 24.54 2 66 25
[44] 0.09 409 36.81 2 78 25
[45] 0.07 207 14.49 2 42 25
[46] 0.05 411 20.55 1.8 59 16.67
[62] 0.06 207 12.42 1.6 32 6.67

Proposed 0.06 139 8.34 1.5 - —

Table 5.10 presents the estimated area and time complexities computed using m =
409 and the NanGate 45nm open cell library statistics for the proposed multiplier and
the multipliers considered for comparison. The table presents the comparison of critical
path delay (ns), latency (clock cycles), latency (ns), and area complexity (NAND gate
equivalents, GE). It is observed that the proposed multiplier requires the same critical
path delay (0.06ns) when compared to the multipliers [39], [40], [41], [42], [43], [27], [62]
and more delay when compared to the multiplier [45]. However, the proposed multiplier
requires the lowest latency both in terms of clock cycles and delay (ns) compared to all
other multipliers (See third and fourth columns). The proposed multiplier achieves 66%,
83%, 67%, 66%, 67%, 66%, 78%, 42%,59%, and 32% reduction in latency (ns) compared
to the multipliers [39], [40], [41], [42], [43], [27], [44], [45], [46], [62], respectively. It is also
observed from the table that the proposed multiplier requires the lowest area (See the fifth
column) when compared to all other multipliers considered for comparison. The proposed
multiplier achieves 57%, 44%, 59%, 66%, 51%, 25%, 25%, 25%, 16% and 6% reduction
in area compared to the multipliers [39], [40], [41], [42], [43], [27], [44], [45], [46], [62],
respectively. Hence, it is clear from this table that the proposed multiplier achieves low
latency and low area complexities compared to the similar multipliers available in the

literature.
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Table 5.11 Comparison of ASIC implementation results for GF(24%9).

Critical Latency Multiplier % reduction % reduction
Design
Path (ns) (ns) Area (um?) in Latency in Area
[46] 0.19 78.09 2783963 58.67 13.08
[62] 0.21 43.47 2533407 25.76 4.49
Proposed 0.21 32.27 2419701 — —

5.4.3 Implementation Results

It may be observed from Table 5.10 that the two multipliers [46,62] have the nearest
complexities to the proposed multiplier compared to the other multipliers. These two
nearest multipliers and the proposed multiplier are modeled for the field GF(21%) using
VHDL and simulated using the Vivado simulator to verify the functionality. Also, these
models are synthesized using Synopsys design compiler tool employing the NanGate 45nm
open cell libraries [60] to obtain the critical path delay (ns) and area (um?). Table 5.11
presents the comparison of ASIC implementation results obtained using the Synopsys
design compiler tool. It is observed that the proposed multiplier requires the lowest area
compared to the other two multipliers. The proposed multiplier requires 13% and 4% less
area when compared to the multipliers [46,62], respectively. It is also observed that the
proposed multiplier requires the lowest latency compared to the other two multipliers.
The proposed multiplier achieves a 58% and 25% reduction in latency when compared to
the multipliers [46,62], respectively. Hence, the implementation results also confirm that

the proposed multiplier achieves low latency and low area.

5.5 Conclusions

In this chapter, three high-performance multipliers employing systolic architectures
using two specific classes of trinomials targeting IoT edge devices are presented. The
design of the proposed multipliers involves developing the formulations followed by signal
graph representation and applying efficient cutset pipelining techniques. It includes the

design of a bit-parallel systolic multiplier using the class of trinomials ™ + ¥ + 1 for
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which k£ < (m —1)/2 (if m is odd) or k < m/2 (if m is even). Analysis of this multiplier
is performed using analytical and implementation results which show that the proposed
multiplier achieves low-latency and low-area compared to the available multipliers. This
low-latency and low-area multiplier is further modified by employing a few more cutsets
to reduce the critical path delay. The analysis of this modified multiplier shows that it
achieves improved throughput compared to the available related multipliers. Design of the
proposed multipliers also includes another systolic multiplier using the class of trinomials
™ + 2% + 1 for which k < m — 2[m/3]. Analysis of this multiplier is performed using
analytical and implementation results which show that the proposed multiplier achieves
low-latency and low-area compared to available related multipliers including our first
proposed low-latency multiplier (for which & < (m — 1)/2 (if m is odd) or k < m/2 (if
m is even)). For all the proposed multipliers, analytical comparisons are performed by
computing the expressions for m = 409 using NanGate 45nm FreePDK open cell library
statistics and implementaion comparisons are performed for m = 409 using Synopsis
Design Compiler employing NanGate 45nm FreePDK open cell library files. The proposed
systolic multipliers generate a new product for every clock cycle and are suitable for high-

performance [oT devices such as edge devices.

The bit-serial sequential multipliers presented in the previous chapter (Chapter 4)
are suitable for low-cost IoT devices where performance is not an important criterion (Do-
mestic [oT), and the bit-parallel systolic multipliers presented in this chapter are suitable
for high-performance IoT devices where the cost is not a primary objective (Industrial
I0T). However, there is also a need for scalable (digit-serial) multipliers, which are in be-
tween the bit-serial and the bit-parallel multipliers with respect to performance as well as
cost, required for the IoT devices that are employed in a wide variety of applications such
as agriculture and healthcare. Hence, the design of scalable multipliers such as digit-serial
multipliers is desirable to address the wide variety of performance requirements arising
from various application domains. Consequently, the next chapter presents the design of

efficient digit-serial multipliers that are suitable for a wide range of IoT applications.




Chapter 6

High-Throughput and Low-hardware Digit-Serial
Sequential Multipliers for a Specific Class of

Trinomials

Digit-serial multipliers facilitate scaling of area/delay or trade-off between area and
delay. Depending on the application, the digit-size of these multipliers can be selected
anywhere between a single-bit to m-bits. In this chapter, we present the design of two
digit-serial sequential multipliers using a specific class of trinomials (This class of trino-
mials is the same as the class that is used for the design of the area-efficient low-latency
systolic multiplier presented in the previous chapter, Section 5.2). First, we present a
fully digit-serial sequential multiplier using the class of trinomials ™ + 2* + 1 for which
k< (m—1)/2 (if m is odd) or k < m/2 (if m is even). The algorithm of this multiplier
is based on a redundant basis multiplication algorithm available in the literature. Next,
we present another digit-serial sequential multiplier using the same class of trinomials
™+ 2% +1 for which k < (m—1)/2 (if m is odd) or k < m/2 (if m is even). The area and
time complexities of these multipliers are obtained analytically and compared with the re-
lated available multipliers. Also, these analytical complexities are computed for m = 409
using the gate estimations from the FreePDK NanGate 45nm technology standard cell
libraries. Further, the proposed multipliers are modeled using VHDL (Very High Speed
Integrated Circuit Hardware Description Language) and synthesized using Synopsys De-
sign Compiler employing FreePDK NanGate 45nm technology libraries, and compared
with the best available multipliers. The comparisons show that the proposed fully digit-
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serial multiplier is time-efficient and the other digit-serial multiplier is hardware-efficient.

6.1 Introduction

Bit-serial and bit-parallel multipliers are two extremes with respect to hardware re-
quirement and speed performance. Though bit-serial multipliers are highly area-efficient,
they can not be used for applications that require high/moderate data speeds. On the
other hand, bit-parallel multipliers provide high throughput rates, however, they fail to
meet the area requirements of resource-constrained applications. Neverthless, digit-serial
multipliers allow the scaling of area or throughput rates, hence, facilitate the flexible im-
plementation. Hence, the design of digit-serial multipliers is required targeting a wide
range of [oT (Internet of Things) applications that require moderate performance such as

smart agriculture and smart healthcare.

Many digit-level finite field multipliers [51-55] are proposed in the literature to
achieve better area and time complexities. In this chapter, first, we present a modified
digit-serial polynomial basis multiplication algorithm and its fully digit-serial architec-
ture. The proposed algorithm is based on an algorithm presented for the redundant basis
multiplier [64]. Multipliers based on redundant basis do not involve modulo reduction
step, however, they take a large amount of excessive hardware due to the embedding of
the finite field GF(2™) in a larger cyclotomic field. Hence, redundant basis multipliers
are not suitable for most of the fields including fields recommended by National Institute
of Standards and Technology (NIST) for implementing the elliptic curve digital signa-
ture algorithm (ECDSA). Since polynomial basis multiplier is more efficient compared
to other bases multipliers, we propose a fully digit-serial architecture for hardware real-
ization of polynomial basis multiplier for trinomials based on the methodology presented
in [64]. The proposed multiplier is applicable for the class of trinomials 2™ + z* + 1 where
k< (m—1)/2 (if m is odd) or k < m/2 (if m is even) which includes two of the NIST
recommended fields (GF(2%?%) and GF(21%%)), and is highly suitable for cost-effective IoT
edge devices employed for high data rate applications. The allowable digit-size (w) for this
multiplier is assumed to be w < (m —1)/4 (if m is odd) or w < m/4 (if m is even). Next,

we present another polynomial basis digit-level multiplier whose structure comprises of a
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parallel multiplier followed by an accumulation unit. The parallel multiplier is based on
the approach proposed for an available parallel multiplier for all trinomials [65], and this
approach when applied for the class of trinomials, x™ +2*+1 where k < (m—1)/2 (if m is
odd) or k < m/2 (if m is even), gives low hardware implementations [66]. This proposed

low-hardware digit-serial multiplier is suitable for end devices used in IoT applications.

6.2 High-Throughput Fully Digit-Serial Sequential Multiplier

In this section, the design of the proposed digit-serial multiplier and its performance
analysis using analytical and implementation comparisons with the related multipliers are

presented.

6.2.1 Design

In this section, mathematical formulations for the proposed fully digit-serial multi-
plication scheme are developed. The formulations are based on recursive definitions of the
input elements. Based on the formulations developed for polynomial basis multiplication,
a digit-level finite field GF(2™) multiplier architecture is proposed. One digit from each
element starting from MSD (most significant digit) enters the architecture in each clock

cycle. The architecture takes (n+ 1) clock cycles to perform one multiplication operation.

Mathematical Formulations

Let GF(2™) be a binary finite field defined over an irreducible polynomial T'(z),
where T'(z) be a trinomial of the form 2™ + z* + 1 for which k < (m —1)/2 (if m is odd)
or k <m/2 (if m is even). Let A and B be two arbitrary m-bit field elements represented

using polynomial basis.

Assume A is divided into n digits where each digit contains w bits. Further, this
digit-size (w) allowed is assumed to be such that w < (m —1)/4 (if m is odd) or w < m/4

(if m is even). Then, we have n = [2], and
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The MSD is appended with (nw —m) zeros to make it a digit of w bits. The element

A can be reconstructed recursively using its n digits as
AD = A, 4 (@A) 1=1,2,..n (6.1)

Where, A(O) = 0, An—l = Z;U:_Ol a(n_l)w+ia:i, and A(n) =A.

Let C be the product of A and B. Then, we have C' = AB mod T'(z). Using the

recursive definitions of elements A and B, then C' can be expressed as

C = A(Z)B(l)‘ mod 7T'(x)

l=n

= AW BM mod T(z)

= (Ao + (a:“’A("_l))) (Bo + (x“’B("_l))) mod T'(x) (6.2)
It follows,

C = (A(By + g"BM YY) 4 By ATYY 4 A("_I)B(”_l)x%) mod T'(z) (6.3)

= (Ao(By + 2 B™ V) 4 By(z A" V)) mod T(z) + A® D BOD=™ mod T(z) (6.4)

Equation 6.4 can be evaluated by defining two intermediate vectors Vi(l), and C® as

Vi = (tuo-riBY + buuoai(@” A1) 2! mod T(x) (6.5)

and o
C0 =3 V¥ + (O mod T(x)) (6.6)

=0

After developing the above formulations, the proposed polynomial basis multiplica-

tion operation is computed as given in algorithm 6.1.

Algorithm 6.1: Proposed fully digit-serial multiplication algorithm

Input: A, ;,B,_;,l =1,.....,n, w.r.t. polynomial basis
Output: ¢ = C" = ABmod T(z) = (¢m-1,Cm-2,--.,C1,Cy) also w.r.t. polynomial
basis

Initialisation: n = {%W, CO =,
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1: for [ =1 to n, compute in serial do

2: for i=0 to w— 1, compute in parallel do

3: if i =0 then

4: Vo(l) = (awn-1BY 4 byn_p (zAD)) + (C-Dz? mod T(z))
5 else

6: Vi(l) = ((awn-1+:BY + bymn_p+i(zA=D))2") mod T'(z)

7 end if

8: end for

o O =y v

10: end for

Proposed Architecture

In this section, the hardware realization of the proposed algorithm for digit-level
polynomial basis finite field GF(2™) multiplication is presented. The proposed architec-

ture is shown in Fig. 6.1. The operands A and B concurrently enter the architecture
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Figure 6.1 Proposed fully digit-serial polynomial basis GF(2™) multiplier architecture.

digit-wise starting from the MSD. The architecture takes (n + 1) clock cycles to perform

one multiplication operation. The input digits of each operand are loaded into m-bit
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I clock cycle, the corresponding

input registers with one digit per clock cycle. During
w partial products, Vi(l),i =0,1,..,(w — 1) are generated in parallel. The first partial
product before its generation does not involve any multiplication with the powers of z
(unlike the other partial products). Instead, it involves the adding of feedback m-bit data
(CU=Yz2v mod T(x)) to itself. The m-bit feedback data is obtained from the output reg-
ister after it is multiplied with 2%*. Once these w partial products are generated, these are
added by the GF(2™) adder chain block. The mapping of the algorithm (algorithm 6.1)
onto its hardware realization is as follows: Step 2 of the algorithm is performed by w
subblocks. Step 4 is performed by subblock 0 which generates Vo(l), while step 6 is real-
ized with the other (w — 1) lower subblocks. Step 9 in the algorithm is implemented with

GF(2™) adder chain.

6.2.2 Analytical Results

The hardware and time complexities of the proposed multiplier can be obtained
from Fig. 6.1. The multiplier requires two m-bit input registers and one m-bit output
register. Each subblock (Subblock i, for i = 0,...,4,..,w — 1) contains (2m — w) AND
gates (to realize the terms aw(n_l)+i(B(l)) and bw(n_l)+i(:ch(l_1))), and (m — w) number
of XOR gates (to realize the addition of the terms a,(m—i)+i(BY) and by -1y (z ATD)).
The concatenation block requires simple wire routing and does not need any logic gates.
In addition, each of the z* multiplication blocks contains ¢ number of XOR gates while
the GF(2™) adder of subblock 0 contains m XOR gates. Hence, all the w subblocks in the
architecture require (2m — w)w AND gates and (m — w)w +m + w(w — 1)/2 XOR gates.
The GF(2™) adder chain requires (w — 1)m number of XOR gates to add the w number
of m—bit data (Vi(l),i =0,1,..,w — 1). The 2?* mod T(x) block in the feedback path
requires 2w number of XOR gates. Hence, the proposed multiplier architecture requires
3m registers, ((2m — w)w) AND gates, and (2mw — (w?/2) + (3w/2)) XOR gates. The
area complexities in terms of 2-input AND gates, 2-input XOR gates, and registers are
presented in Table 6.1 for the proposed multiplier along with similar multipliers [51-55]

considered for comparison.

The time complexity of the architecture is given in terms of delays of logic gates.

Assume T4 and T'x denote the delays of 2-input AND and 2-input XOR logic gates. The
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Table 6.1 Area complexities comparison for GF(2™).

Design AND XOR Register
[51] wm wm + 3w 2m +w
[52] wm wm + (w? +w)/2 2m + w
[53] wm wm + (w? + w)/2 2m +w
[54] mlodi 69/20m'% — 1/4ml*%i —11/5  2m — 1
[55] wm wm +w?/2 +3w/2 — 1 2m

Proposed (2m — w)w 2mw — w?/2 + 3w /2 3m

Table 6.2 Time complexities comparison for GF(2™).

Design Latency (clock cycles) Critical path delay

[51] n+2 Ta + ([logs* 1) Tx
[52] n—1 Ta+ ([logy] +2)Tx
[53] n+1 Ta+ ([logy] +2)Tx
[54] n+1 Ty + (1 + 3log) T
[55] n+1 Ta+ ([logy] +2)Tx
Proposed n+1 Ta+ ([logy] +2)Tx

critical path of the architecture comprises of the delays through a subblock and delays
through GF(2™) adder chain. Hence, the delay of critical path is T4 + ([logy] + 2)Tx.
The time complexities for the proposed multiplier along with multipliers considered for
comparison are presented in Table 6.2. It is noted that the multipliers proposed in the
literature [51-55] require extra clock cycles for the preloading of one operand before the
start of multiplication operation, resulting in increase in the latency. In these multipliers,
after the loading of one operand, the entire data bus available is dedicated to loading
another operand digit-wise. In the case of the proposed multiplier, both operands enter
the architecture digit-wise requiring the available data bus to be shared between two
operands. Hence, for a given data bus width, the proposed multiplier digit size is half of

the digit size compared to other multipliers [51-55] that are considered for comparison.

Table 6.3 presents the estimation of complexities for the field order GF(21%) as-
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Table 6.3 Area and time complexities comparison for GF(24%).

Latency (including Critical Area-Delay-
Design Area (um?) preloading) Path Delay Delay (ns) Product
(clock cycles) (ns) (pm? x ns)
[51] 11024 106 0.2 21.2 233709
[52] 11043 103 0.2 20.6 227485
(53] 11043 105 0.2 21 231903
(54] 18639 105 0.585 61.43 1144993
[55] 11030 105 0.2 21 231630
Proposed 12169 104 0.165 17.16 208820

suming a data bus width of 8. It implies w = 8 for all the architectures considered for
comparison [51-55], and w = 4 for the proposed architecture. NanGate 45nm standard
library statistics [46,60] are used to estimate the area and time complexities. With this
technology, the NAND gate equivalents for AND gate, XOR gate, and register are con-
sidered to be 1.4, 2, and 5.7. The delays for AND gate and XOR gate are considered
to be 0.025 and 0.035. It is observed that the area required for a 2-input NAND gate
based on Synopsys design compiler synthesis using 45nm NanGate open cell libraries is
0.8um?. It is noted that the latency of all the multipliers used for comparison includes
preloading of the first operand which requires 52 clock cycles for the considered case of
m = 409 and w = 8. It is observed from Table 6.3 that the proposed architecture requires
the lowest delay. Hence, the proposed multiplier achieves higher throughput than the
other compared multipliers. In addition, it is observed that the proposed multiplier also

achieves a reduction in critical path delay and area-delay-product.

6.2.3 Implementation Results

It is observed from Table. 6.3 that the multiplier [55] requires less area compared to
the other multipliers considered for comparison. Hence, the proposed multiplier and the
multiplier [55] are modeled using VHDL for GF(2%?). The RTL (Register Transfer Level)
designs are simulated using Vivado Simulator to verify the functionality. The netlists of
these models are synthesized using Synopsys Design Compiler tool employing NanGate
45nm open cell libraries [60] to obtain the area and time complexities. The area and time

complexities obtained for these multipliers are tabulated in Table 6.4. It is observed from
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Table 6.4 Comparison of ASIC implementation results for GF(2%09).

Multiplier Critical path  Multiplication Area x Delay Throughput % increase in

Design
area (um?) delay (ns) delay (ns) (um? x ns) (x108) Throughput
[55] 13072 0.65 68.25 892164 14.6 26.71
Proposed 14116 0.52 54.08 763394 18.5 -

the ASIC (Application specific integrated circuit) implementation results that the pro-
posed multiplier achieves 26% improvement in throughput compared to the multiplier [55].
The ASIC implementation results confirm that the proposed multiplier achieves better
throughput rates compared to the available multipliers. Hence, the proposed multiplier

is suitable for constrained devices in high-speed applications.

6.3 Low-Hardware Digit-Serial Sequential Multiplier

In this section, the formulations for the proposed low-hardware digit-serial multiplier
and its architecture are presented. Analysis of this multiplier using analytical and imple-

mentation results and the comparisons with the related multipliers are also presented.

6.3.1 Design

Mathematical Formulations

Let T(x) = 2™ + 2% + 1, where k < (m — 1)/2 (if m is odd) or k < m/2 (if m
is even), be an irreducible trinomial polynomial over which the field GF(2™) is defined.
Let A(z) = Z;.":_Ol a;z’ and B'(z) = Z?J:_Ol bz’ be two elements, where w < m. Let
D(x) denote the product of polynomials A and B as D(x) = Z;n:owﬂ d;a? = AB'. This

product expression D(z) = AB’ can be expressed using a (m +w — 1) x w matrix M as

shown below.

The product polynomial D(x) includes the terms whose degree is more than m — 1
and these terms can be modulo reduced using the identity 2™ = 2* 4 1. From this identity
we can have ™" = (2% + 1)2® = 2" 4 2%, where the range of i is assumed to be in the

range 0 < i < (w — 2). Also, assume w < (m — 1)/4 (if m is odd) or w < m/4 (if m is
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even), then we have k +i <k+w—2<m/2+ (m/Q] — 2 < m. Thus each term in the
product polynomial D(x) whose degree is (m + i) can be reduced to a polynomial of at
most degree (m —w) with two terms, z°% + z*. By this modulo reduction, each (m + )™

row of matrix M for 0 < i < (w — 2) is added to the i*" and (k + i)™ rows of it.

do Qo 0 0 e 0 0
dl aq Qo 0 e 0 0
-
bO
dwfl Ay—1 Q-2 Q-3 ay Qg ’
bl
d; AQw Q1 CQw—2 - - . . Qs ay ,
b2
= X
dm—l Um—1 Gm—2 Ap-3 - - . . Om;m_wtl A —w ’
_bw—l
dm 0 Up—1 AQm-2 - - . .« OGm_wt2 Om—w+l
dprwa| | O 0 0 ... 0 T

Let @ be a m x w matrix which is obtained from the matrix M, after the modulo
reduction process applied. Let matrix () be decomposed into the sum of three m x w
matrices X, Y, and Z, such that Q = X +Y + Z. These three matrices X,Y, and Z can

be defined as follows.
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Qo

ai

Qm—1

0 0
0 0
0 0
0 0

Qo 0

Ampm—2 Qm-—3

0 Am—1 Am—2

Qm—1

Qo

a1

Am—w+1

Qm—w+2

Qm—w+3

Qg

Qm—w+1

G —w+2

amfw
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0 0 o . . .. 0 0 0 row
0 0 0 0 0
0 Gmo1 Um_z - - . . U;ews2 Gm—wil Ethrow
7 0 0 Am—-1 + « « « Am—w+3 Am—w+2
0 0 o . . .. 0 am-1 | (k+w—2)"row
0 0 0 0 0

Matrix Z is equivalent to a matrix that can be obtained by shifting matrix Y down by
k rows and filling the first & rows with zeros. By employing similar method presented
in [65], any i’ row of matrix @ can be obtained with simple rewiring of the &' row, Qy,

of the matrx (). The row (), can be computed as

0 (arag_1..-000m—10m—9-. - —wikr1) + (0Qm_1-Qmwr1), ik <w
k pu—

(akak,l.....ak,wﬂ) + (Oam,l...am,wﬂ), if k>w
To compute @, it requires (w — 1) two-input XOR gates, and a delay of T'x, where
Ty is a dealy of a two-input XOR gate. Since @ is an m x w matrix, Q.B’ needs wm AND

gates, (w—1)m XOR gates, and Ty + [log%ﬂ Tx delays, where B" = (by, by, ..., bi_1 ). After

formulating this method of computing the multiplication for D(z) of an m-bit element
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with a w-bit element where w < (m — 1)/4 (if m is odd) or w < m/4 (if m is even), the

multiplication of any two arbitrary field elements is considered now as follows.

Let A(z) = Y aie’ and B(z) = 7" b’ be two arbitrary field elements.
Let C(z) = 3.7, cie' = AB mod T(x) be the product of the elements A and B. The

computation of C'(x) can be performed as follows.

Let the element B(z) is partitioned into s digits where each digit of size w bits.

Then, we have n = (%w It follows,

w—1 2w—1 nw—1

B(x) = bjz? + Z bjz! + ... + Z b;x’
j=0 j=l j=(n—-1w
w—1

w—1 w—1 w—1
= biad + 2% burr? + 27 by e+ 2N b pyugga?, (6.7)

j=0 =0 =0 =0

where all b;s for j > m are zero. Now, the product C(z) can be computed as

w—1
C(z) = A(z)B(z) mod T(z) = A(z) Y _bja’ mod T(z)+
=0
w—1 w—1
¥ A(x) Z buwrjz! mod T(z) + z** A(x) Z bows ;o) mod T(z) + ...
j=0 Jj=0
w—1
..... + x(”’l)wA(x) b(n,l)wﬂ-xj mod T'(x)
=0

= Pymod T'(z) + 2* P, mod T(x) + 2** P, mod T(z) + ....... + 2™ VP, mod T'(x)

= (e ((Pyo12” mod T'(z) + Py—9)2z®” mod T'(z) + P,_3)x" mod T'(x) + ....

..... + Py)z" mod T'(x) + By, (6.8)

where
w—1

P = A(z) Y b’ mod T(x). (6.9)

=0

The computation of P; can be performed using the procedure shown to compute
D(z). In the computation of D(x), note that the value of digit-size, w, is taken at most
half the value of field order, m. It is acceptable for the constrained devices since the

data bus width of these devices is typically 8/16/32 bits only. As per today’s security




Digit-Serial Multipliers for a Specific Class of Trinomials 113

requirements, a field order of at least 233 is required. Hence, the selected w range is quite
applicable to today’s security requirements for Wireless Sensor Network (WSN) nodes

and ToT end-nodes/edge devices.

Proposed Structure of the Multiplier

Based on the proposed formulations, a conceptual block diagram of the digit-serial
multiplier is shown in Fig. 6.2. The structure shown in Fig. 6.2 realizes the expression
given in Eq. 6.8. Node M1 is a partial parallel m x w multiplier that multiplies an m-bit
element with an w-bit element. It realizes the computation of P; as given in Eq. 6.9.
Node A; performs the additions that are involved in the computation of the expression

in Eq. 6.8. Similarly, Node My performs the interleaved multiplications of partial output

B;
w
Ay
A m/, _ m/ / _ ( N
M P; m
1
m Reg
M 9 m
@‘ TIL/ > C ((B)
w'w

Figure 6.2 The proposed structure of the digit-serial multiplier.

product with % that are involved in the computation of the expression in Eq. 6.8. The
multiplicand A is made available throughout the computation, while multiplier B enters
the structure digit-wise starting from the most significant digit (MSD). The structure

produces the required multiplication result after a delay of n clock cycles.
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6.3.2 Analytical Results

In this section, the area and time complexities of the proposed multiplier are ob-
tained and compared with the existing similar multipliers. The node M; which computes
P, performs a similar computation presented for computing Q.B'. Hence, it requires wm

AND gates and (w—1)(m+1) XOR gates. The node A; requires m XOR gates while the

Table 6.5 Comparison of area complexities for GF(2™).

Design XOR AND Register
[51] wm + 3w wm  2m 4w
[52] wm + (w? + w)/2 wm  2m+w
[53] wm + (w? + w)/2 wm  2m 4w
[54] 69/20m!o% — 1/4mlesi —11/5 mlo%s  2m —1
[55] wm + w?/2 + 3w/2 — 1 wm 2m

Proposed wm ~+ (2w — 1) wm 2m

node M, requires w XOR gates. The structure also requires two m-bit registers, one at
the input to register multiplicand A while another as output register, Reg. The delays of
the nodes My, A; and My are Ty + (Hog%ﬂ + 1)Tx, Tx, and Tx respectively. The critical
path of the structure is Ty + (’—logé"-‘ +2)Tx. The area and time complexities for the pro-
posed multiplier and the other similar multipliers [51], [52], [53], [54], [55] are presented
in Table 6.5 and Table 6.6, respectively.

Table 6.6 Comparison of time complexities for GF(2™).

Design Critical path Latency (clock cycles)
[51] T+ ([logs“ )T n+2
[52] Ta+ ([logy] +2)Tx n—1
[53] Ta+ ([logy] +2)Tx n+1
[54] Ta+ (14 3log)Tx n+1
[55] Ta+ ([logy| +2)Tx n+1
Proposed T4 + ([logy| +2)T'x n
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The analytical comparisons presented in Table 6.5 and Table 6.6 can be better
understood by considering a specific field order m and a specific digit size w. By selecting
the field to be GF(2%) over an irreducible polynomial 2% + 287 + 1 with a digit-size
w = 8, the complexities presented in Table 6.5 and Table 6.6 are computed and presented

in Table 6.7.

Table 6.7 Area and time complexities comparison for GF(24%?) over 2% 4+ 287 + 1 with w = 8.

Critical Area-Delay-
. Latency
Design Area (um?) Path Delay Delay (ns) Product
(clock cycles)

(ns) (pm? x ns)
[51] 11024 54 0.2 10.80 119059
[52] 11043 51 0.2 10.20 112638
(53] 11043 53 0.2 10.60 117056
[54] 18639 53 0.585 31 577809
[55] 11030 53 0.2 10.60 116918
Proposed 10986 52 0.2 10.40 114254

We have NanGate 45nm standard library statistics [46, 60] to estimate the time
and area requirements. With this technology, the NAND gate equivalents for XOR gate,
AND gate, and register are assumed to be 2, 1.4, and 5.7. The delays for XOR gate and
AND gate are assumed to be 0.035 and 0.025. It is observed that the area required for
a 2-input NAND gate based on Synopsys design compiler synthesis using 45nm NanGate
open cell libraries is 0.8um?. It is observed from Table 6.7, the proposed multiplier requires
marginally less hardware when compared with other similar multipliers. It is also observed

that the proposed multiplier achieves low area-delay-product as well.

6.3.3 Implementation Results

The proposed multiplier and the multiplier [55] are modeled using VHDL for GF(24%9).
The RTL designs are simulated using Vivado Simulator to verify the functionality. The
netlists of these models are synthesized using Synopsys Design Compiler tool employing
NanGate 45nm open cell libraries [60] to obtain the area and time complexities. The
area and time complexities obtained for these multipliers are tabulated in Table 6.8. It
is observed from the ASIC implementation results that the proposed multiplier achieves

a marginal reduction in area and in ADP (Area-delay-product) (3%) compared to the
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Table 6.8 Comparison of ASIC implementation results for GF(2409).

Multiplier Critical path  Multiplication Area X Delay % reduction

Design
area (um?) delay (ns) delay (ns) (pm? x ns) in ADP
[55] 13072 0.65 34.45 450330 3.08
Proposed 12912 0.65 33.80 436425 -

multiplier [55]. Hence, the proposed digit-serial sequential multiplier is suitable for IoT

end devices which typically have a bus width of 8/16/32 bits.

6.4 Conclusions

In this chapter, the design of the two digit-serial multipliers and the performance
analysis of these multipliers using analytical and implementation results are presented.
First, a fully digit-serial multiplier, where both the operands enter the multiplier architec-
ture simultaneously, is presented. Design of this multiplier is based on a redundant basis
multiplier available in the literature. Comparisons of this multiplier with the available
multipliers show that it achieved improved throughput rates. Next, another digit-serial
multiplier is presented whose parallel multiplier is based on the Mastrovito multiplier.
The available Mastrovito multiplier is tailored for the considered class of trinomials to
achieve hardware efficiency. The comparisons show that the proposed digit-serial multi-
plier achieves a marginal reduction in area compared to the available multipliers. These
proposed scalable multipliers are suitable for a wide range of IoT applications where the

data bus width of the processor can be 8/16/32/64 bits.




Chapter 7

Conclusions and Future Scope

This chapter concludes the thesis by underlining the main contributions. It also

presents the possible directions of future work.

7.1 Conclusions

Internet of Things (IoT) is the state-of-the-art widely used communication technol-
ogy having numerous application areas. This technology includes the constrained devices
namely IoT end devices and edge devices. End devices are required to be low-cost while
edge devices are required to have high-performance. Further, security is a major concern
in these devices to be addressed, and elliptic curve cryptography (ECC) provides some of
the security features required in these devices. GF(2™) multiplication is a performance-
critical operation in this cryptography, which requires efficient hardware implementations.
Bit-serial sequential multipliers using general irreducible polynomials are suitable for end
devices, since they offer low hardware complexities that result in low-cost implementa-
tions. Bit-parallel systolic multipliers using trinomials are suitable for edge devices, since
they offer high-throughput rates that result into high-performance impementations. Fur-
ther, digit-serial multipliers which are scalable are also required for IoT devices, since
these multipliers can provide area-delay trade-off as required by the application at hand.
This thesis aims at offering some area and time efficient multiplier architectures that are
targeted for security implementation in IoT devices. The contributions of the work are

concluded as follows:
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e In Chapter 4, we have presented the design of bit-serial sequential multipliers over
general irreducible polynomials, since these multipliers are suitable for security im-
plementation in low-cost IoT devices. In this regard, we have presented an area-
efficient bit-serial sequential multiplier using the proposed modified interleaved mul-
tiplication algorithm. Through the comparisons of analytical and ASIC (Apllication
specific integrated circuit) implementation results obtained for m = 409, we have
shown that the proposed multiplier is indeed area-efficient and achieves a minimum
of 28% reduction in area and a minimum of 3% reduction in ADP (Area-delay-
product) compared to existing multipliers. We have also presented two area and time
efficient bit-serial sequential multipliers using the proposed modified Montgomery
MSB (most significant bit)-first and LSB-first bit-serial algorithms. Through an-
alytical and ASIC implementation comparisons, we have shown that the proposed
multipliers are indeed area and time efficient compared to existing multipliers. The
proposed MSB-multiplier and LSB (least significant bit)-multiplier achieve a mini-
mum of 12% and 11% reduction in ADP, respectively. These proposed multipliers
are suitable for generic IoT devices as they are defined over general irreducible

polynomials.

e Chapter 5 has presented the design of bit-parallel systolic multipliers over a few
specific classes of trinomials, since these multipliers are suitable for security imple-
mentation in high-performance IoT devices. Though many multipliers presented in
the literature have been defined over trinomials, we have observed that multipliers
defined over a few specific classes also include NIST (National Institute of Stan-
dards and Technology) recommended trinomials and result in further less area and
time complexities as well. Hence, multipliers defined over these classes are particu-
larly suitable for IoT devices as they require low hardware and time complexities.
Consequently, we have proposed a low-latency area-efficient multiplier and a high-
throughput multiplier over the class of trinomials ™ +x*+1 for which k¥ < (m—1)/2
(if m is odd) or k < m/2 (if m is even). In addition to that we have also proposed
another low-latency area-efficient multiplier for a further narrow class of trinomi-
als for which k& < m — 2[m/3]. Through the comparisons of analytical and ASIC
implementation results obtained for m = 409, we have shown that the proposed

low-latency multipliers are indeed area and time efficient and the proposed high-




Conclusions & Future Scope 119

throughput multiplier is indeed time efficient compared to existing multipliers. The
low-latency systolic multiplier defined over the trinomials for which £ < (m —1)/2
(if m is odd) or & < m/2 (if m is even) achieves a minimum of 9% reduction in area
and a minimum of 12% reduction in latency and the other low-latency multiplier
defined over the trinomials for which & < m — 2[m/3] achieves a minimum 4%
reduction in area and a minimum 25% reduction in latency. Also, the proposed
high-throughput multiplier achives a minimum of 35% increase in throughput and

a minimum of 5% reduction in ADP compared to the existing works.

e In Chapter 6, we have presented the design of digit-serial sequential multipliers over
a specific class of trinomials, since these multipliers due to their scalability are suit-
able for security implementation in IoT end/edge devices that can be used in a wide
variety of applications. The class of trinomials considered in this chapter is the
same class of trinomials considered in Chapter 5 for the high-throughput systolic
multiplier, i.e., the trinomials 2™ + z* 4+ 1 for which k¥ < (m — 1)/2 (if m is odd)
or k < m/2 (if m is even). Consequently, we have presented a high-throughput
digit-serial sequential multiplier using the proposed fully digit-serial multiplication
algorithm. This algorithm is based on a redundant basis multiplication algorithm
and is obtained by adapting it to polynomial basis. This is the first time in polyno-
mial basis literature to design a fully digit-serial multiplier where both the operands
enter the architecture simultaneously. Through the comparisons of analytical and
ASIC implementation results obtained for m = 409, we have shown that the pro-
posed multiplier is indeed high-throughput and achieves a minimum of 26% increase
in throughput compared to existing multipliers. We have also presented another
low-hardware digit-serial sequential multiplier where the area reduction is achieved
using a modified parallel multiplier. We have obtained this parallel multiplier by
tailoring the available Mastrovito multiplier for the class of trinomials considered.
Through analytical and ASIC implementation comparisons, we have shown that
the proposed multiplier is indeed area-efficient and achieves a marginal reduction in
area compared to the best existing multiplier. This proposed multiplier achieves a

minimum of 3% reduction in ADP compared to existing multipliers.




Conclusions & Future Scope 120

7.2 Future Scope

The work proposed in this thesis can be extended for future research. Some of the

possible directions in which the problems can be further pursued are:

e The architectures proposed in this thesis achieve reduction in area and time com-
plexities. Further, apart from these area and time complexities reduction, power
reduction is also an important requirement for loT devices as in many cases these
devices are battery-powered. Hence, an important extension would be to implement

low-power techniques into these designs to achieve reduction in power.

e In finite field arithmetic, inversion and exponentiation are computationally intensive
operations and repeatedly use multiplication. Hence, using the multipliers proposed
in this thesis, efficient field inversion and exponentiation operations can be realized

to improve the efficiency of the overall finite field arithmetic.

e Fault tolerance in field multipliers is a method that ensures reliability, and also
prevents many fault-based attacks on cryptosystems that use field arithmetic. Mul-
tipliers with concurrent error detection and correction capabilities support testing
and correcting cryptosystems while they are in operation. Our future research in-
cludes the development of some new fault-tolerant techniques and applying these

techniques to multipliers to further strengthen the security of the IoT applications.
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