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ABSTRACT 

Pedestrian detection is one of the most challenging research areas in computer vision, as it 

involves classifying the image as well as localizing the pedestrian. Owing to its applications 

especially in automated surveillance and robotics, it is exceedingly sought-after. The problem of 

pedestrian detection, although approached by many computer vision researchers is far from 

solved. The scale, pose, occlusion, illumination, and many such factors affect the performance of 

the methods. Traditional methods use hand-crafted features to characterize pedestrians. The 

hand-crafted features can be used to extract shape, color and texture features; which is then 

classified by using Support Vector Machine (SVM). As in recent years, deep learning models 

such as Convolutional Neural Networks (CNNs) have become an eminent state-of-the-art in 

detection challenges, which unlike the manually designed feature extraction mechanism, results 

in more accuracy. This work gradually moves from proposing new hand-crafted feature 

algorithms to designing sophisticated complex CNN structures.  

Most of the algorithms for pedestrian detection use the Histogram of Oriented Gradients 

(HOG) as the basic shape feature and combine other features with the HOG to form the feature 

set, which is usually applied with a classifier such as Support Vector Machine (SVM). Hence, 

the HOG feature is the most efficient and fundamental feature for pedestrian detection. However, 

the HOG feature produces feature vectors of different lengths for different image resolutions; 

thus, the feature vectors are incomparable for the SVM. To handle this a Scale-Invariant 

Histogram of Oriented Gradients (SI-HOG) for pedestrian detection is proposed. The proposed 

method forms a scale-space pyramid wherein the histogram bin is calculated. Thus, the gradient 

information from all the scales is encapsulated in a single fixed-length feature vector. The 

proposed method is also combined with color and texture features.  

To continue the progress made in this field, a deep learning based approach is proposed. 

A modification of the pre-trained ResNet18 named Multi-layer Feature Fused-ResNet (MF2-

ResNet) is proposed. MF2-ResNet is used for 1) feature extraction; which is then classified by 

using SVM; 2) End-to-End feature extraction and classification by the CNN network. To work 

on the region proposal aspect of the pedestrian detection, the next deep learning model 

considered in this thesis is the two-stage detection network Faster R-CNN. Modifications of the 

most commonly used deep CNN model ResNet18 is proposed. The modified CNN structure 

named Dilate-Condense Resnet (DCResNet) and MF2-ResNet forms the base of the Faster R-
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CNN model utilized to predict the locations of pedestrians in the image. The proposed method 

has been improved in terms of the feature map extraction of the image. As the two-stage 

detection network requires more computation and train-test time, lastly, the single-stage You 

Only Look Once (YOLO) detection network is worked with. The single-stage detection networks 

YOLOv2 and YOLOv3 has attained a satisfactory performance in object detection without 

compromising the computation speed and is among the state-of-the-art CNN based method. 

YOLO framework can be leveraged to use in pedestrian detection as well. In this work, 

improved YOLOv2 networks, called DSM-IDM-YOLO, InceptionDepth-wiseYOLOv2 and 

FireYOLOv2 is proposed. The proposed models use a modified DarkNet19 and DarkNet53, 

engineered for a robust feature formation. A LightWeight FireYOLOv2 is also contributed to this 

work to obtain a trade-off between detection accuracy and computation speed. A modified 

YOLOv3 is proposed, which is named MultiScale-MultiLevel-SqueezeNetYOLOv3 (MS-ML-

SNYOLOv3). An improved SqueezeNet base network forms the basis of the proposed YOLOv3.  

The hand-crafted and CNN proposed methods are tested on three established benchmark 

pedestrian datasets: INRIA, NICTA, and Daimler. The Faster R-CNN and YOLO proposed 

methods are evaluated on INRIA Pedestrian, PASCAL VOC 2012 and Caltech Pedestrian 

datasets. For evaluation, various hand-crafted shape, texture and color features as well as 

comparison with state-of-the-art detection methods i.e., Faster-RCNN, YOLOv2, YOLOv3 and 

Single Shot Multibox Detector (SSD) is performed. For comparison, Detection Error Trade-off 

Curve, Precision Recall Curve, Log Average Miss Rate (LAMR) and Average Precision (AP) 

performance metrics are used. Friedman Test and F-distribution Test is used for statistical 

analysis of the proposed methods. 
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Chapter 1 

Introduction 

Pedestrian detection is a well-established challenging problem in the computer vision field. 

The task is to detect the presence of different pedestrians in the image along with their location 

in a bounding box format. It plays an essential role in computer vision applications. Even 

though extensive research has been performed on pedestrian detection, significant 

improvements were made in recent works, which suggests that the research has not reached a 

saturation point.  

1.1 Object Detection  

The aim of object detection is to identify the presence of various individual objects in a given 

image. It has various applications among pedestrian detection, vehicle detection, 

manufacturing industry, security, and face detection. It can be divided into two sub categories: 

Objectness detection and Category based object detection. 

1.1.1 Objectness Detection 

In objectness detection, all the objects in the image are detected. No class label is specified in 

this case. An example is shown in Figure 1.1(a). In this figure, every object such as tree, 

building structure are detected.      

1.1.2 Category based Object Detection 

In category based object detection, the objects are detected in the image as per the specified 

class label. An example is shown in Figure 1.1(b). In this figure, the class specified is vehicle 

and hence the moto bike and car objects are detected.    

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 1.1 a) Objectness detection b) Category based object detection  
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1.2 Pedestrian Detection 

Pedestrian detection (PD) comes under category based object detection and is one of the 

recognized area of object detection. Various applications, such as human–computer interaction 

for video games, robotics, video surveillance, and smart vehicles, have motivated research on 

human and pedestrian detection. Nonetheless, pedestrian detection is a challenging problem 

owing to the large intra-class variability arising from clothing, color, appearance, and pose. In 

addition, external factors such as illumination, background clutter, and partial occlusions 

further complicate the problem [1, 2]. 

Most pedestrian detection algorithms involve similar stages of computation. First, the pixel-

level content of the image undergoes complex transformations to represent higher-level 

features, which are computed via feature-extraction methods. Second, region extraction is 

carried out based on the similarities of the features in a region. Third, from these region 

proposals, the features are fed to a classifier, which determines whether the region represents 

a pedestrian.  

In Figure 1.2, the overview of this process is shown. The pedestrian detection can be solved 

either by per-window or per-image evaluation. In per-window evaluation, the regions are pre-

processed and later the feature extraction and classification are performed. In per-image 

evaluation, the features extraction is followed by region proposals to predict the locations and 

confidence scores of the pedestrians. 

Image

Image 

Region/ Windows

Image 

+

Annotation

Feature 

Extraction

Predicted 

Label
Classifier Model

Feature Extraction + 

Region Proposal 

Model

Score + 

Location

Label: 

Person

 
Figure 1.2 Overview of Pedestrian Detection 
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1.3 Different Methods for PD   

The pedestrian detection can be approached broadly by five methods as described below.  

1.3.1 Hand-crafted Features + Classifier  

In this method, hand-crafted features such as shape, texture, and color are extracted from the 

image. Then, the feature extracted are feed into the classifier to predict the label i.e., pedestrian 

or non-pedestrian. The process is shown in Figure 1.3. 

Image 

Dataset

Shape 

Feature

Color

Feature

Classifier

Texture 

Feature

Person 1

Person 1

 

Figure 1.3 Block diagram for Hand-crafted features with Classifier 

1.3.2 Convolutional Neural Network Features + Classifier  

In this method, the features are extracted from a trained Convolutional Neural Network (CNN) 

[3] model. A pre-trained CNN is used and trained via transfer learning [4]. The features are 

extracted from a higher layer of the trained CNN. These features are then classified i.e., 

pedestrian or non-pedestrian label. The process is shown in Figure 1.4. 

Train Features 

Test Features

Classifier
Classifier

Model

Test Labels 

Person 1

Person 1

Trained 

CNN

Model

Train Images

Pre-Processing

Test Images

Feature 
Extraction 

Layer

 

Figure 1.4 Block diagram for CNN features with Classifier 

1.3.3 End-to-End Convolutional Neural Network  

In this method, the features extraction as well as classification is performed by the End-to-End 

CNN. A pre-trained CNN is used and trained via transfer learning. The predicted classification 

labels are either pedestrian or non-pedestrian label. The process is shown in Figure 1.5. 

Test Images & 

Labels

Trained 

CNN

Model

Pre-Processing Person 1

Person 1   

Figure 1.5 Block Diagram for End-to-End CNN 
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1.3.4 Two-stage Network with base CNN   

In this method, along with the classification label, the bounding box of the pedestrian is also 

predicted. This process takes place in two stages i.e., region proposals and classification. A 

base CNN serves as a backbone used for feature extraction. The feature map is processed for 

proposing regions as well as for classification. The process is shown in Figure 1.6. 

 

Figure 1.6 Block Diagram for two-stage network with base CNN 

1.3.5 Single-stage Network with base CNN 

In this method also the classification label along with the location is yielded. This network 

performs the region proposal and classification in one pipeline. The network uses the base CNN 

to extract features. This is further processed to generate the final detection result by utilizing 

the classification scores and the bounding box. The process is shown in Figure 1.7.  

 

Figure 1.7 Block Diagram for single-stage network with base CNN 

1.4 Different Hand-crafted Features for PD  

Feature extraction methods are used to represent the image content. The use of traditional 

image processing methods is known as hand-crafted methods and the features extracted by 

these methods yield hand-crafted features. A particular hand-crafted feature algorithm can only 

describe a single feature of the image, which can be shape, texture or color. The algorithms for 

shape, texture and color feature extraction are given in detail in Chapter-2.  
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1.5 Different CNN Features for PD 

Feature extraction methods which are performed by deep learning methods produce a better 

representation of the image feature when compared to that of hand-crafted mechanism. 

Specifically, the CNNs are used for this purpose. With the backpropagation error correction 

process the CNN models provide substantially improved features. The CNN features can be 

extracted from any layer of the network, but the higher-level layers are preferred for this as 

they contain detailed features of the image. Various pre-trained CNN models are available 

which are given in detail in Chapter-2.     

1.6 Different Region Proposals for PD  

An image can contain one or more than one object of interest. Here, the region proposal method 

comes into play. Region proposal algorithms are used to segment the regions or areas from the 

image yielding regions of the object of interest. The region proposal methods are based on both 

traditional image processing and deep learning methods. In the traditional approach, regions 

are grouped under neighboring area feature whereas the deep learning approach uses the CNN 

feature maps for generating region proposals. These methods are given in detail in Chapter-2.  

1.7 Introduction to State-of-the-art Technology for PD  

To identify or localize the objects or pedestrian in the images, recent state-of-the-art 

technologies are getting developed and used successfully. The state-of-the-art technology in 

detection domain constitutes only deep learning methods. The deep learning methods involve 

CNN as the base with additional modules to complete the detection task. The pre-trained CNN 

models serve the base for feature extraction and the region proposal step also uses either the 

base CNN feature map or probability map from the CNN. These methods are discussed in detail 

in Chapter-2. The state-of-the-art technologies in detection takes less computation overhead 

and are successfully applied in real time scenarios.    

1.8 Motivation, Aim and Problem Statement of the Thesis  

Motivation 

The following three issues motivated for this research work. 

• Extraction of comprehensive feature representation of image for pedestrian detection 

purpose using traditional hand-crafted features. 

• Role of CNN features for pedestrian detection which outperforms the traditional hand-

crafted methods. 
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• Deep learning region proposal methods to improve localization and detection of 

pedestrians in the images.  

Aim 

This thesis aims to provide a better feature extraction mechanism for pedestrian detection. Both 

the hand-crafted and deep CNN methods are explored to perfect the feature content of the 

image. 

Problem statement  

Pedestrian detection is a challenging and vital problem in computer vision applications. The 

variation in factors such as pose, illumination, background, truncation and occlusion make the 

recognition and localization of pedestrians in an image a gruelling task. A detailed and elegant 

feature extraction mechanism can tackle the problem to a great extent. In this pursuit, hand-

crafted and deep learning based feature extraction methods are proposed in this work.  

1.9 Objectives of this Work 

To address the pedestrian detection problem, improved feature extraction techniques from both 

the hand-crafted and the deep learning methods are presented in this work. The following 

objectives are set in this thesis. 

• To propose a new robust hand-crafted feature extraction mechanism.  

• To improve the convolutional neural network based feature extraction methods. 

• To propose Faster RCNN architectures with a modified base convolutional neural 

network. 

• To employ and improve You Only Look Once (YOLOv2 and v3) paradigm. 

To achieve the given objectives the contributions of the thesis are listed below and it’s 

represented in a structure diagram in Figure 1.8. 

• A Scale Invariant Histogram of Oriented Gradients Feature Extraction for Pedestrian 

Detection in Multiresolution Image Dataset. 

• A Multi-layer Feature Fused-Resnet Model for Pedestrian Detection. 

• Faster RCNN based on Dilate-Condense ResNet and Multi-layer Feature Fused-Resnet 

Model for Pedestrian Detection. 

• YOLOv2 based on DarkNet: Depth-wise Seperable, Inception Depth-wise & Fire 

modules for Pedestrian Detection.  

• MultiScale-MultiLevel-SqueezeNet based YOLOv3 for Pedestrian Detection. 
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Figure 1.8 Structure Diagram of Pedestrian Detection Methods and Datasets in this Work 
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1.10 Different Benchmark Image Datasets in this Work 

In this work, five pedestrian benchmark datasets: INRIA Pedestrian, NICTA Pedestrian, 

Daimler Pedestrian, PASCAL VOC 2012 and Caltech Pedestrian are used and are described in 

this section.  

❖ INRIA Pedestrian Dataset  

In the INRIA Pedestrian dataset [1], people are standing at different orientations.  

(a) Training set: It consists of 614 positive images that contain 1,239 pedestrians. A total 

of 2,478 pedestrians are obtained when both the left and right reflection of an individual 

pedestrian is considered. There are 1,218 negative (pedestrian-free) images. 10 patches 

are sampled from each pedestrian-free image randomly. This gives 12,180 negative 

images. 

(b) Test set: It consists of 288 positive images that contain 566 pedestrians. A total of 1,132 

pedestrians are obtained when both the left and right reflection of an individual 

pedestrian is considered. There are 453 negative (pedestrian-free) images. 10 patches 

are sampled from each pedestrian-free image randomly. This gives 4,530 negative 

images.  

(c) Image Regions: The positive images are cropped to 128×64 windows. The same size is 

maintained while extracting negative windows. The window size is selected based on 

the aspect ratio of a pedestrian.  

Figure 1.9 and Figure 1.10 shows the region images and full images from INRIA Pedestrian 

dataset. 

❖ NICTA Pedestrian Dataset 

The NICTA Pedestrian dataset [5] contains pedestrian positive and negative pedestrian set 

consisting of 6 resolutions i.e., 8×20, 16×20, 16×40, 32×40, 32×80 and 64×80. The different 

characteristics of this image database are: 

a) Pedestrian positives: This set contains pedestrians in the form of a cropped window 

from existing marked-up input images. The source images for the positive data are 

scaled into the 6 resolutions as mentioned above. 

b) Pedestrian negatives: A large negative set is extracted from a set of 5,207 high-

resolution pedestrian free images in diverse environments. The negative sets are also 

grouped into 6 resolutions which are alike in themselves.  

c) Image regions: Images are taken from 64×80 group. 6,000 and 3,000 positive images 

along with their mirror-image form positive train and test set respectively. In addition 



9 
 

to those 18000 and 9000 negative images forms the negative train and test set 

respectively. This gives us 30000 images for training and 15000 images for testing. 

 Some sample images from the dataset are shown in Figure 1.11. 

 

Figure 1.9 INRIA Region Images: First and second row Positive Pedestrian samples 

third and fourth row Negative Pedestrian-free Samples 

 

 

 

 

Figure 1.10 INRIA Full Images: First row shows positive train images. Second row 

shows positive test image 

 

 

Figure 1.11 NICTA Region Images: First row Positive Pedestrian samples second row 

Negative Pedestrian-free Samples 
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❖ Daimler Pedestrian Dataset 

The Pedestrian images in this Daimler dataset [6] were yielded by manual labeling and 

extraction of pedestrians in the video frames. The videos were recorded at various day settings 

with no constraint on clothing or pose. The pedestrians are un-occluded and upright. The 

pedestrian-free images were obtained from videos that did not contain pedestrians. This dataset 

is a grayscale image set.  

(a) Base dataset: The Daimler Pedestrian dataset contains images with a size of 18 × 36 

extracted from videos. The base train data set consists of three sets of 4000 positive or 

pedestrians and 5000 negative or pedestrian-free images. It also consists two test sets 

of 4800 positive or pedestrians and 5000 negative or pedestrian-free images.  

(b) Image regions: 4800 and 2400 positive images along with their mirror-image form 

positive train and test set respectively. In addition to those 24000 and 12000 negative 

images forms the negative train and test set respectively. This gives us 28800 images 

for training and 14400 images for testing. 

 Some sample images are shown in Figure 1.12. 

 

Figure 1.12 Daimler Region Images: First row Positive Pedestrian samples second 

row Negative Pedestrian-free Samples 

❖ Multiresolution Dataset 

• The INRIA Pedestrian dataset images were available in normalized windows of size 64 

× 128. The same size was maintained while extracting negative windows. Bicubic 

interpolation was used to form the multiresolution dataset.  

• The NICTA Pedestrian dataset contained both positive and negative pedestrian images 

having six resolutions: 8 × 20, 16 × 20, 16 × 40, 32 × 40, 32 × 80, and 64 × 80. Thus, we 

did not need to create multiresolution images, as they were already provided.  

• The Daimler Pedestrian dataset contained images with a size of 18 × 36. Similar to the 

case of INRIA, we obtained multiresolution images via resizing.  

The characteristics of the multiresolution dataset is shown in Table 1.1. 
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Table 1.1 Characteristics of the INRIA, NICTA, and Daimler Pedestrian Datasets 

Dataset Resolution
Image 

Dimension

# Positive 

Train 

images

# Negative 

Train 

images

# Positive 

Train 

images

# Negative 

Train 

images

Single 64×128 2416 1218*10 1132 453*10

128×256 805 406*10 377 151*10

64×128 805 406*10 377 151*10

32×64 806 406*10 378 151*10

Single 64×80 12000 18000 6000 9000

64×80 2000 3000 1000 1500

32×80 2000 3000 1000 1500

32×40 2000 3000 1000 1500

16×40 2000 3000 1000 1500

16×20 2000 3000 1000 1500

8×16 2000 3000 1000 1500

Single 18×36 4800 24000 2400 12000

72×144 1600 8000 800 4000

36×72 1600 8000 800 4000

18×36 1600 8000 800 4000

Multi

NICTA 

(Color)

Daimler 

(Gray)

Multi

Multi

INRIA 

(Color)

 

 

❖ PASCAL VOC 2012 Dataset 

a) The PASCAL VOC 2012 dataset [7] presents standardized images and has 20 classes. 

Out of which one is the ‘Person’ class. This dataset has been widely used as a 

benchmark for object detection tasks.  

b) The train set is taken from the trainval set containing 4087 images. The images are 

inclusive of occluded and truncated person images.  

c) The test set contains 5138 images. The images are of various sizes.  

d) The annotation files are in XML format. The annotation file includes the label and 

bounding box co-ordinates.  

 Some sample images are shown in Figure 1.13. 

 

 

Figure 1.13 Sample images from PASCAL VOC 2012 Dataset  
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❖ Caltech Pedestrian Dataset 

a) The Caltech Pedestrian dataset [8] comprises of nearly 10 hours 30Hz video in 640×480 

resolution. The video is captured from a vehicle driving in an urban environment 

through regular traffic.  

b) The train data set consists of six training sets (set00-set05), each with 6-13 one-minute-

long seq files, included with all the annotation information.  

c) The test data set consists of five sets (set06-set10). The training images and the test 

images are extracted by taking every 30th frame in the seq files.  

d) Thus, there are 4250 training images and 4024 test images. These images are inclusive 

of various levels of occlusion and height.  

e) The ‘Reasonable’ set is considered in this work which includes images of pedestrians 

with height > 50 pixels and the occluded area between 1% to 35%.  

     Some sample images are shown in Figure 1.14. 

  

Figure 1.14 Sample images from Caltech Pedestrian Dataset  

1.11 Different Performance Measure for Comparing PD Methods 

In this work, different detection metrics are used to evaluate the performance of the proposed 

methods. The detection metrics are categorized into per-window and per-image evaluation 

scheme. 

The detection metrics in per-window evaluation are: 

a) Confusion Matrix   

For a two-class classification that is pedestrian/non-pedestrian in this case, a predicted 

label Positive/Pedestrian or Negative/Non-pedestrian is generated. Considering the actual 

label of the test dataset, a 2×2 confusion matrix [9] is obtained. From this confusion matrix, 

four values are derived as shown in Figure 1.15.  

• True Positive (TP): correct classification of a pedestrian, 

• False Positive (FP): misclassification of a non-pedestrian,  
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• False Negative (FN): misclassification of a pedestrian and  

• True Negative (TN): correct classification of a pedestrian. 

b) Receiver Operator Characteristics Curve (ROC) 

The ROC curve [10] is formed by plotting false positive per window (FPPW) against the 

detection rate (true positive rate). An example ROC Curve is shown in Figure 1.16. 

c) Detection Error Trade-Off Curve (DET)  

The DET curve [11] is formed by plotting false positive per window against miss rate. It 

plots error rates on a log-log scale. An example DET Curve is shown in Figure 1.17. 

d) Miss Rate 

The miss rate [1] is taken from the DET curve at a corresponding FPPW value.  

 

 

The detection metrics in per-image evaluation are: 

a) Detection Error Trade-off Curve 

The DET curve is formed by plotting false positive per-image (FPPI) against miss rate. It 

plots error rates on a log-log scale.  

b) Log Average Miss Rate (LAMR)  

The LAMR [12] value is calculated by averaging miss rate at nine FPPI rates evenly spaced 

in log-space in the range 10−2 to10-0. 

c) Precision-Recall Curve 

A point on the precision-recall curve [13] is determined by considering all objects above a 

given model score threshold as a positive prediction, then calculating the resulting precision 

and recall for that threshold. An example P-R Curve is shown in Figure 1.18. 
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Figure 1.18 P-R Curve Example 

d) Average Precision (AP) 

It is defined as the mean precision at the set of 11 equally spaced recall values, Recalli = 

[0, 0.1, 0.2, …, 1.0] as given in Equation 1.1.  

                                             ( )=
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11
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The Statistical Analysis conducted are: (Per-window & Per-image) 

a) Friedman Test [14] 

• This test with a significance level of 95% and α = 0.05 is conducted to the miss rates 

yielded by each detection method. 

• The independent variables, i.e., the methods are denoted by k. The Friedman test 

examines the rank of each of these variables. The null hypothesis states that all the 

algorithms are equivalent.  

• The mean rank produced by the Friedman test for each of the pedestrian detection 

methods is evaluated. The chi-square is calculated as per Equation 1.2.  

• The critical value of chi-square at a degree of freedom (=k-1) is found. If, the calculated 

value of chi-square is greater than the critical value of chi-square, the Null Hypothesis 

is rejected. 
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Where, k = no. of algorithms, N = no. of datasets and 
j

ir is the rank of the jth of algorithms on 

the ith of N datasets. 

b) F-distribution Analysis [15] 

• The F-distribution has k-1 and (k-1)(N-1) degrees of freedom; where k and N are the 

numbers of algorithm and datasets, respectively.  

• On application of F-distribution, the calculated F-distribution is found out as per 

Equation 1.3.  

(1.1) 

     (1.2) 



15 
 

• The critical value of F-distribution with the degree of freedom (k-1,(k-1)(N-1)) and α = 

0.05 is calculated. If the calculated F-distribution is greater than the critical F-

distribution, the Null Hypothesis is rejected. 

2

2

)1(

)1(

F

F
F

kN

N
F

−−

−
=  

Where, k = no. of algorithms, N = no. of datasets and 2

F is the chi-square value. 

1.12 Organization of the Thesis 

The rest of the chapters of this thesis are organized as follows: Chapter-2 describes the hand-

crafted feature extraction algorithms, the CNN architecture along with pre-trained nets and the 

region proposal mechanisms involved in the pedestrian detection process. This chapter also 

discusses the traditional and deep learning literatures in pedestrian detection. 

Chapter-3 proposes a scale-invariant shape feature extraction mechanism to explore the 

gradient information from all the scales of a scale-space pyramid structure of the image. It 

yields fixed length feature vector which serves as an advantage when processed by a classifier. 

Chapter-4 advances the detection task by utilizing the proposed CNN models to improve the 

image’s feature formation mechanism. The CNN form a more accurate feature map owing to 

the backpropagation error correction involved. 

Chapter-5 resolved the region proposal part of the detection pipeline. It uses two-stage 

detection network Faster R-CNN with the proposed CNN acting as the base to predict the 

bounding box co-ordinates of the pedestrians. However, due to computation overhead in 

Chapter-6, the single-stage detection network YOLO is used wherein the base CNN is 

improved. The conclusion and future scope are discussed in Chapter-7.      

 

 

 

 

 

 

 

 

 

 

(1.3) 
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Chapter 2 

Related Work 

In this chapter, some of the significant pedestrian detection methods are discussed. Existing 

hand-crafted features and deep learning features are given in detail. In the hand-crafted 

features, shape, texture and color feature extraction algorithms are explained. In the deep 

learning features, the CNN architectures and its usage is explained. For region proposal, 

existing deep learning models are given. Lastly, some of the important pedestrian detection 

literatures are discussed.  

2.1 Feature Extraction 

2.1.1 Shape Features for PD 

Visual characteristics of a region or object's shape include particulars about its boundary. Shape 

feature descriptors encompass edge magnitude and direction, giving it a quantitative value. 

Histogram of Oriented Gradients (HOG) is widely used to extract shape features [1]. An 

introduction to HOG and its variants, HOG-18 [2] and Extended-HOG (Ex-HOG) [2] is 

specified in the proceeding section.        

Histogram of Oriented Gradients  

HOG [1] is a dense feature-extraction method. It gives information for shape and is most 

popularly used for pedestrian detection [16, 17]. The process of obtaining the HOG features is 

described in Algorithm 2.1. 

Algorithm 2.1 Histogram of Oriented Gradients Feature extraction process with 9-bins 

1. Take an image as input. 

2. Consider a cell size from this image, as shown in Figure 2.1.  

3. Compute the vertical (gy) and horizontal (gx) gradients over this cell by using [–1,0,1] and 

[–1,0,1]T filters, respectively.  

4. Obtain the magnitude (M) and direction (θ) for each pixel by using Equations (2.1) and 

(2.2). 

5. Choose a block size with four cells from the original image, as shown in Figure 2.1.  

6. Obtain the 1×9 histogram bin (H) for each cell of the block by considering M and θ using 

Equations (2.3) and (2.4). 

7. Concatenate the four 1×9 histogram bins of the whole block to form a 1×36 histogram bin. 

8. Normalize the histogram bin obtained in step 7. 
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9. With a stride of 1, perform steps 3 to 8 for all the blocks in the image. 

10. Concatenate all these histogram bins to obtain the feature vector for the whole image.  
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Here, f1 = (θ(i,j)mod20)/20, and f2 = 1 - f1. 

The process of calculating the 9-bin histogram for a cell is explained here. As the first step, the 

cell size is considered as 8×8, as shown in Figure 2.2. The results for the magnitude (M) and 

direction (θ) of each pixel are shown in Figure 2.3 and Figure 2.4, respectively. We compare 

the respective magnitude (M) and direction (θ) to obtain a 1×9 vector (H). The vector H is 

indexed as 0°, 20°, 40°, ..., 160°. While selecting an index from the vector, the value of the 

direction cell is considered. After selection of an index, its value is selected from the 

corresponding magnitude cell. Consider the value in the blue circle of the direction cell: as the 

value 21.01 lies between 20 and 40 in H, the bin 20 and 40 in H are filled with 153.59 and 8.17, 

respectively; i.e., the corresponding magnitude value 161.76 is split between the two. Now, let 

us take the value in the red circle of the direction cell, which is 109.09. As it lies between 

indices 100 and 120, the corresponding magnitude value 55.03 is split as 30.02 in bin 100 and 

25.01 in bin 120, as shown in Figure 2.5. Similarly, the whole vector H can be filled, and we 

obtain the final result, as shown in Figure 2.6. 

 

Figure 2.1 Representation of cells and block for HOG feature calculation 
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Figure 2.5 Process of updating the 9-bin histogram for the cell 

 

Figure 2.2 8×8 cell of an image 
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Figure 2.6 Final 9-bin histogram for the cell 

Histogram of Oriented Gradients (18 bins) 

The difference between HOG using a 9-bin histogram (described in previous section) and that 

using an 18-bin histogram is that for a cell, we obtain an 18-bin histogram (0°, 20°, 40°, ..., 

340°) as the direction is calculated in four-quadrant inverse tangent format. The detailed 

process is given in Algorithm 2.2.  

Algorithm 2.2 Histogram of Oriented Gradients Feature extraction process with 18-bins 

1. Take an image as input. 

2. Consider a cell size from this image, as shown in Figure 2.1. 

Figure 2.3 Magnitude of 8×8 cell Figure 2.4 Direction of 8×8 cell 
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3. Compute the vertical (gy) and horizontal (gx) gradients over this cell by using [–1,0,1] 

and [–1, 0, 1]T filters, respectively.  

4. Obtain the magnitude (M) and direction (θ) for each pixel by using Equations (2.1) and 

(2.5). 

5. Obtain the histogram bin (H) by considering M and θ for all the cells using Equations 

(2.6) and (2.7). 

6. Calculate the clipped L2-norm of the 2×2 cell with a stride of 1 and a clipping value of 

0.08 to obtain a clipped histogram bin (Hc).  

7. Apply the L2-norm to Hc to renormalize it and form Hcn.  

8. Obtain the histogram bin for each cell (Hsum,N) by using Eq. (8). 

9. Concatenate all the Hsum,N values to form the final feature vector. 
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Here, f1 = (θ(i,j)mod20)/20, and f2 = 1 - f1. 
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Here, ( )1 / 2i numberofHbins  , and N represents the number of cells in a block. 

Extended Histogram of Oriented Gradients 

As Hsum,n (Equation (2.8)) is calculated, Hdiff,N is similarly calculated using equation 

(2.9). The ExHOG is formed simply by concatenating Hsum,N and Hdiff,N using Equation (2.10). 

This is explained in Figure 2.7, where the number of cells in a block is taken to be four. 
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                                     (2.9) 

Here, ( )1 / 2i numberofHbins  , and N represents the number of cells in a block. 

                               
NdiffNsumN HHExHOG ,, ||=                                                      

(2.10) 

Here, N represents the number of cells in a block. 
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                                    Figure 2.7 Formation of ExHOG feature vector 

2.1.2 Color Features for PD 

Color features are the basic characteristic of the content of images. Color features are 

represented in the form of color models. The color model gives measurable value to colors, in 

the form of a tuple, having three or four values; showing the ratio in which color components 

are used. In the proceeding section, color feature extraction algorithms are presented using HSI 

(Hue, Saturation, Intensity) color model. 

Color correlogram 

This feature was proposed by J. Huang et al. [18]. Using this feature, we characterized not only 

color distribution of pixel values but also the spatial correlation of pixel pairs, depending on 

the distance k. The D8 distance is used for distance measurement. The D8 distance between two 

pixels I1(x1,y1) and I2(x2,y2) is given by Equation (2.11).  

                                               ( ) ( )  1 1 1 2 2 2 1 2 1 2, , ,
RD

I x y I x y MAX x x y y− = − −                       (2.11) 

The color correlogram is represented by a square matrix Sk of dimensions N×N. The value of 

each cell of matrix SK(i,j) carries information about the probability of cooccurrence between a 

pixel having the value i and another pixel having the value j at a fixed D8 distance k. The color 

correlogram of an image I is given by Equation (2.12). 
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Here, Ni represents the color histogram [19] of i, which is given by Equation (2.13).  
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Color Autocorrelogram 

As all the possible color pair combinations are considered in calculating the color correlogram, 

a very long feature vector is obtained. To reduce the feature-vector length, we often use a color 

autocorrelogram [18, 20]. The color autocorrelogram considers the spatial correlation between 

only identical colors. The color autocorrelogram αk creates a one-dimensional matrix of size 

1×N, where the value of each cell αk(l) carries information about the probability of finding two 

pixels both having color l and having a D8 distance of k, which can be represented using 

diagonal elements of the color correlogram matrix Sk. The color autocorrelogram of an image 

I is given by Equation (2.14).  

                        ljiandLljijiSlk === },...,2,1,0{,,);,()( max                              (2.14) 

2.1.3 Texture Features for PD 

The texture of a region or image characterizes the presence of repetitive patterns. Th e three 

approaches to describe the texture of a region is statistical, structural and spectral. The texture 

algorithms discussed here comes under the statistical approach. Different local patterns, such 

as LBP [21] are used to extract texture information from an image. Figure 2.8 shows the 8-

neighborhood of the central pixel Ic. Figure 2.9 shows the steps to calculate the value for central 

pixel. The calculation of the LBP feature vector is done by the Equation (2.15).  
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Figure 2.8 8-Neighborhood of pixel around Ic. 

 
Figure 2.9 LBP calculation (a) Original Image (b) Resultant binary numbers for (a). (c) 

Decimal weights for the corresponding locations 
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2.1.4 CNN based Features for PD 

CNN is one of the sub-categories of deep learning. It is used in computer vision fields like 

classification and detection. CNN uses convolution layers to extract hierarchical feature 

representation [22]. The output of each layer is known as a feature map, obtained by convolving 

weight matrix over receptive fields. The weight matrix or the filter is vital in identifying 

features. Apart from the convolution layers, a pooling layer is used, conventionally after every 

convolutional layer. It downsamples the feature map by applying techniques such as max-pool, 

min-pool and L2-norm to yield more robust feature maps [23, 24]. Another layer is added to 

introduce non-linearity in the system [23, 24]. This can be done by the ReLu layer which simply 

changes all negative activations to zero. This gives substantial speedup as opposed to tanh and 

sigmoid non-linear functions. In the end, fully connected layers are placed which maps the 

input from the preceding layer to an N-dimensional vector. N denotes the number of classes in 

the dataset. This vector contains the probability of the classes present.  

Transfer Learning  

CNN's have a huge number of weights, which are learned in the process of training. In the 

absence of an enormous amount of data, we cannot have an effective CNN model. This is where 

transfer learning comes into the picture. Transfer learning involves taking the weights learned 

by other pre-trained CNN and molding them into a network that is suitable for a target dataset 

[4]. This process is called fine-tuning the pre-trained model. There are various CNNs which 

are trained on millions of images from the ImageNet dataset [25]. ImageNet contains a huge 

number of images that covers over a thousand classes. The initial layers of these pre-trained 

CNNs detect low-level features like edges and blobs. These basic features are common to most 

of the naturally occurring datasets. Therefore, these low-level features are freezed and only the 

fully connected layers are trained according to the dataset requirement. The proceeding section 

briefly introduces the pre-trained CNNs which are used in this work. 

Pre-trained CNN: AlexNet, ResNet, Inceptionv3, Xception, SqueezeNet, MobileNetv2 

and Darknet 

AlexNet [26]: AlexNet secured the first position in ILSVRC (ImageNet Large Scale Visual 

Recognition Competition) 2012. It is mainly used for image classification problems. ImageNet 

dataset was used to train AlexNet.  The total number of parameters and neurons of AlexNet is 

60 million and 650,000 respectively. Five to six days were required to train AlexNet on the 

ImageNet dataset using two GTX 580 3GB GPUs.   

ResNet [27]: Residual Network being a 152-layered network architecture gives a remarkable 

performance in classification, localization and detection problems. ResNet won ILSVRC 2015 
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with 3.6% error rate. An 8 GB GPU machine was used for 14 to 21 days to train ResNet. The 

degradation problem is resolved with the help of a deep residual learning framework. There 

are different variations of ResNet available having the number of layers 18, 34, 50, 101 and 

152.  

Inceptionv3 [28]: This is a 42-layer deep network trained on the ImageNet dataset. Several 

techniques are employed in this architecture to improve the performance. Some of them are 

factorized convolutions, smaller receptive field, grid size reduction and asymmetric 

convolutions.  For training, a distributed system was employed using a NVIDIA Kepler GPU 

for 100 epochs with batch size of 32. 

Xception [29]: This is a 71-layer deep network also trained on the ImageNet dataset. It can 

classify up to 1000 object categories. Like ResNet, this also follows a directed acyclic graph 

structure. The feature extraction module is formed by 36 convolution layers. It was trained on 

60 NVIDIA K80 GPUs. Xception was trained on ImageNet dataset.  

SqueezeNet [30]: SqueezeNet is an 18-layer deep network which has reduced the model size 

considerably without affecting the accuracy. SqueezeNet uses fire modules which are squeeze 

and expand networks. The model also comes with simple bypass and complex bypass variation. 

Due to the smaller size of the CNN, it was able to be trained on FPGAs. 

MobileNetv2 [31]: It is a light weight model with 53 layers. It was depthwise convolution and 

pointwise convolution. It showed good performance in classification, detection and 

segmentation task. It was trained on 16 GPU asynchronous workers. 

Darknet [32, 33]: This network is 19 layers deep. Darknet-19 is a series network. This network 

is pre-trained on the 1000 categories of the ImageNet dataset. Darknet-19 was introduced as a 

base network for YOLOv2 [32]. DarkNet19 has 19 convolutional layers. It uses 1×1 

convolution layers to reduce the parameters in the model. It strikes a good balance between the 

accuracy and complexity of the model. The DarkNet19 model can be divided into six blocks 

considering the scale of the feature maps. Later DarkNet53 model was introduced in YOLOv3 

[33]. It has 53 convolution layers of 1×1, 3×3, and 1×1 blocks. Using a Pascal Titan X system, 

it showed a speed of 30 frames per second.  

 

2.2 Classifier 

The SVM [34] is one of the most widely used mechanisms for solving pattern-classification 

problems. It is a supervised learning method that maximizes the margin of a linear decision 

boundary (hyperplane), thus achieving maximum separation between the two object classes. 
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For pedestrian classification, linear and nonlinear SVM classifiers have been used in 

combination with various feature sets [6, 35, 36]. Nonlinear SVM classification, e.g., using rbf 

or polynomial kernels for underlying mapping of the samples into a higher-dimensional space, 

results in further performance gain. However, its memory requirements and computational 

costs are substantially higher than those of linear SVM classification. Usually, linear SVM 

classifiers are preferred over nonlinear SVM classifiers to gain speed and minimize the 

overfitting problem [2]. 

2.3 Region Proposal Networks 

The region proposal networks are divided into two-stage and single-stage networks. The two-

stage networks are R-CNN, Fast R-CNN and Faster R-CNN. The single-stage networks are 

YOLOv2 and YOLOv3. Their usage in detection mechanism is discussed in this section. 

• R-CNN  

R-CNN was the first two-stage region proposal network [37]. The selective search algorithm 

is used in this framework to extract region proposals [38]. The selective search algorithm 

generates around 2000 region proposals for an image. Firstly, a feature map gets generated 

after running a region proposal in the object detector system. Then, two fully connected 

networks are used on the feature map to obtain a linear vector. This linear vector is further 

applied with two SVM network individually for classification and regression. For every image, 

the region proposal runs through the base convolutional neural network. This increases the 

processing time. It lacked in optimal time and space use, but provided a good starting point.   

• Fast R-CNN  

Fast R-CNN addressed the drawbacks of R-CNN [39]. Fast R-CNN reduced the computation 

as it processed the test image just one time. It shared the computation between the region 

proposal system and the detector system. It also adds a Region of Interest pooling layer which 

yields a fixed-length feature vector for the regions. It also performed regression and 

classification simultaneously. This improved the time and memory requirements when 

compared to R-CNN. However, there was still an obstacle, which is the selective search for 

region proposal.  

• Faster R-CNN 

Faster R-CNN was published in 2015 and it is the most widely used region proposal method 

[40]. The detection paradigm is made up of 1) a region proposal algorithm, employed to output 

the probable regions of the desired objects followed by 2) feature extraction by the pre-trained 

CNNs, 3) classification layer to predict the object’s class and 4) regression stage to fine-tune 
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the bounding boxes generated by the region proposal method. The previous R-CNN versions 

used the selective search algorithm. But Faster R-CNN speeds up this process by including a 

convolutional network for region proposal termed as the Region Proposal Network (RPN). 

Faster R-CNN uses a pre-trained CNN as a backbone network which enables it to share weights 

with the CNN used in the detection process.  

• YOLOv2 

It is proposed as an improvement on YOLOv1 [32,41]. Some of the several advances in 

YOLOv2 are batch normalization, anchor boxes with k-means clustering, and a base CNN 

network DarkNet19 to extract features. The feature extraction layers for YOLOv2 with base 

DarkNet19 is shown in Table 2.1.  

Table 2.1 YOLOv2 with base DarkNet19 Feature Extraction Layers 

Layer   

Name

Filter 

Size/Stride

Channels Input              

Layer

Output   

Size

Input 256×256×3

Conv1 3×3/1 32 Input 256×256×32

Maxpool_1 2×2/2 Conv1 128×128×32

Conv2 3×3/1 64 Maxpool_1 128×128×64

Maxpool_2 2×2/2 Conv2 64×64×64

Conv3 1×1/1 128 Maxpool_2 64×64×128

Conv4 3×3/1 64 Conv3 64×64×64

Conv5 1×1/1 128 Conv4 64×64×128

Maxpool_3 2×2/2 Conv5 32×32×128

Conv6 1×1/1 256 Maxpool_3 32×32×256

Conv7 3×3/1 128 Conv6 32×32×128

Conv8 1×1/1 256 Conv7 32×32×256

Maxpool_4 2×2/2 Conv8 16×16×256

Conv6 1×1/1 512 Maxpool_4 16×16×512

Conv7 3×3/1 256 Conv6 16×16×256

Conv8 1×1/1 512 Conv7 16×16×512

Conv9 3×3/1 256 Conv8 16×16×256

Conv10 1×1/1 512 Conv9 16×16×512

Maxpool_5 2×2/2 Conv10 8×8×512

Conv11 1×1/1 1024 Maxpool_5 8×8×1024

Conv12 3×3/1 512 Conv11 8×8×512

Conv13 1×1/1 1024 Conv12 8×8×1024

Conv14 1×1/1 512 Conv13 8×8×512

Conv15 3×3/1 1024 Conv14 8×8×1024  

• YOLOv3 

YOLOv3 shows further improvement on YOLOv2. It uses regression to compute the score for 

each prediction. YOLOv3 uses an improved CNN as the base network, DarkNet53. This 

network has 53 layers which are made up of 1×1, 3×3, and 1×1 blocks added with bypass [33]. 

YOLOv3 generates prediction from different scales of the network. In this work, two scales 

are considered and each scale has 3 anchor boxes. So, the output tensor of YOLOv3 is 

N×N×[3*(4+1+1)] considering 4 bounding box location offset, 1 predicted object, and 1 class 
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prediction. The DarkNet53 model can be divided into five blocks considering the scale of the 

feature maps. The feature extraction layers for YOLOv3 with base DarkNet53 is shown in 

Table 2.2.  

Table 2.2 YOLOv3 with base DarkNet53 Feature Extraction Layers 

Layer Name Filter 

Size/Stride

Channels Input Layer Output Size

Input 256×256×3

conv1 3×3/1 32 Input 256×256×32

conv2 3×3/2 64 conv1 128×128×64

conv3 1×1/1 32 conv2 128×128×32

conv4 3×3/1 64 128×128×64

Residual_1 128×128×64

conv5 3×3/2 128 Residual_1 64×64×128

conv6 1×1/1 64 conv5 64×64×64

conv7 3×3/1 128 64×64×128

Residual_2 64×64×128

conv10 3×3/2 256 Residual_2 32×32×256

conv11 1×1/1 128 conv10 32×32×128

conv12 3×3/1 256 32×32×256

Residual_3 32×32×256

conv27 3×3/2 512 Residual_3 16×16×512

conv28 1×1/1 256 conv27 16×16×256

conv29 3×3/1 512 16×16×512

Residual_4 16×16×512

conv44 3×3/2 1024 Residual_4 8×8×1024

conv45 1×1/1 512 conv44 8×8×512

conv46 3×3/1 1024 8×8×1024

Residual_5 8×8×1024

1×

2×

8×

8×

4×

 

2.4 Literature on PD 

In computer vision applications such as object detection, medical imaging and robotics there 

is a major role of deep learning. Substantial amount of advancement has been made in the field 

of computer vision. M.M. Badza et al. [42] developed a new CNN architecture for classifying 

brain tumor types into three classes. The k-fold cross-validation approach was used to train the 

model. J. Ker et al. [43] reviewed the usage of deep learning in medical image processing which 

was focussed on CNNs. The review describes the advantages of machine learning algorithms 

compared to the hand-crafted features. Applications such as classification, localization, 

detection and segmentation are covered in this review. S.S. Yadav et al. [44] explores machine 

learning and deep learning methods for classification of pneumonia from chest X-rays. It also 

studies the effects of data augmentation, transfer learning and network complexity as per the 

application requirement. Y. Liu et al. [45] have proposed a deep ensemble network comprising 

of a CNN and an Attention-Guided Network to detect Glaucoma using stereo images. S.P. 

Singh et al. [46] have used CT scans to train a 3D CNN model into detecting four subclasses 
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of brain hemorrhage.  The network proposed in the paper can be used to detect abnormalities 

in different organs. J. Ker et al. [47] have propose another 3D CNN model for two-class and 

four-class classification of brain hemorrhage using CT scans with additional image 

thresholding to improve the accuracy of the network. S.P. Singh et al. [48] discusses the 

application of 3D CNNs in medical imaging. Areas such as segmentation, detection, 

localization and classification are discussed along with the challenges associated with 3D CNN 

in medical imaging. J. Ker et al. [49] used pre-trained CNN to detect brain tumor by 

successfully applying transfer learning. The authors have also collected brain histology images 

dataset. A. Dhillon et al. [50] has reviewed CNN architectures in object detection domain 

including human detection. Various pre-trained CNNs are described along with a summary of 

datasets, applications and the accuracy obtained. R. Li et al. [51] has proposed a situation aware 

framework using Electroencephalography (EEG) and machine learning.   

In this thesis, a particular application i.e., pedestrian detection is focussed upon. Pedestrian 

detection is the task of identifying and marking the location of the presence of a pedestrian in 

an image [52].  It has several applications like smart surveillance [53], robotics [54], automatic 

driving [55] and human behavior analysis [56]. To improve pedestrian detection performance, 

researchers have endeavored into a varying amount of work [57,58]. Even so, a huge variation 

persists in poses, occlusions, viewpoints and illumination. This increases the difficulty in 

devising a perfect method. Thus, in recent years, this area has attracted quite a lot of attention 

[58, 59]. Pedestrian Detection involves a pipeline of feature extraction and classification. 

Features should have a well-formed and robust representation of the objects i.e., pedestrians in 

this case. Even though extensive research has been performed on pedestrian detection, 

significant improvements were made in recent works, which suggests that the research has not 

reached a saturation point. There is considerable literature related to pedestrian detection 

methods. Several methods for feature extraction have been proposed, including Edge 

Templates [60], the Haar Wavelet [61], Histogram of Oriented Gradients (HOG) [1], the 

covariance descriptor [62], Shape Models [63] and SIFT descriptors [64]. In a major 

breakthrough, N. Dalal et al. [1] proposed the HOG for extracting shape features. It is a dense 

representation of gradient information for a region. It is invariant to slight changes in translation 

and rotation. Local normalization helps in illumination changes. They also introduced a new 

annotated pedestrian dataset called INRIA with a varying background and pose. A. Satpathy et 

al. [2] modified the HOG using an 18-bin histogram, yielding the extended histogram of 

oriented gradients (ExHOG). ExHOG solves an issue of HOG wherein gradients of opposite 

directions in the same cell are assigned to the same histogram bin. Both linear and nonlinear 
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kernel support vector machines (SVM) were used, and ExHOG with the nonlinear kernel 

performed better for the INRIA and Daimler datasets. S. Nigam et al. [65] proposed a 

multiresolution approach for detecting pedestrians using LBPs. This approach has two 

limitations: 1) it can be applied to only grayscale images and 2) images must be resized to a 

fixed size scale. Consequently, the multiresolution property of the dataset is lost. G. Overett et 

al. [5] introduced a multiresolution dataset (NICTA) of >25551 pedestrians, which gives a total 

of 50000 pedestrians, including left and right reflection. The negative set was sampled from 

5207 high-resolution people-free images. However, the authors focused on single-resolution 

image sets. J. Yan et al. [66] proposed a multiresolution approach for traffic scenes. It employs 

a deformable part model [67] to map low-resolution and high-resolution pedestrians onto a 

common space. The detector then learns from these mapped features of different resolutions. 

However, correctly identifying true or false positives requires vehicle–pedestrian localization, 

assuming that in traffic scenes, pedestrians are around vehicles. Thus, more complexity is 

introduced to the system. P. Dollar et al. [12] evaluated the state-of-the-art pedestrian detection 

methods. Detection was performed at three scales: far, medium, and near. The images were 

captured using a camera mounted on a vehicle. There was visible degradation for the far and 

near scales. P. Hurney et al. [68] combined HOG with a texture feature, i.e., the local binary 

pattern (LBP), for grayscale pedestrian images. Feature vectors of LBP variations with 16 & 8 

neighborhoods and radii of 2 & 1, respectively, were obtained. The feature vectors were given 

to a radial basis function (rbf)-kernel SVM. The results indicated that the HOG with an LBP 

having neighborhood 8 and radius 1 outperformed others. M. Bilal et al. [69] used integer-only 

features from color information and orientation histograms. Classification is done by 

implementing a soft cascade for fast evaluation of kernel classifier. The authors could identify 

true negatives at the early stages from the kernel function’s energies. R. Lahmyed et al. [70] 

proposed to use both visible and thermal image of a scene in pedestrian detection system. They 

have used a modification of OTSU method to segment the thermal images in order to get the 

locations of probable pedestrians. The locations get mapped to visible images, thereafter 

features are calculated. B.T. Bastian et al. [71] proposed to merge data specific dictionary 

learned histogram of sparse codes and aggregate channel features for pedestrian detection. K. 

Kumar et al. [72] proposed to combine Histogram of Significant Gradients, a variation of HOG 

with Non-Redundant Uniform Local Binary Pattern to yield a feature descriptor. The authors 

then used a linear SVM classifier for feature training. X. Zhanga et al. [73] proposed a 

pedestrian detection method which combines HOG features with the color image’s edge 

features on depth images. They have used shearlet transform to yield edge features from the 
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color images. The combined feature is used to train the SVM classifier. However, the existing 

hand-crafted feature methods are unable to bridge the gap between the current performance 

and the preferred performance.  

A significant improvement occurred when Convolutional Neural Network (CNN) was 

introduced [3,74,75]. CNN is a deep learning architecture and it can learn complex feature 

representations. Also, the backpropagation training algorithm allows for a better feature 

formation mechanism then manually designed features [3]. Since the advent of AlexNet, a 

pretrained CNN model on the ImageNet dataset [26], many CNN models have been proposed 

for detection purposes [27,76,77]. The researchers have improved the feature formation process 

in the CNNs, such as skip connection in ResNet50 and inception module in GoogleNet [78]. 

In recent years, there is a tremendous amount of research in pedestrian detection using deep 

learning. D. Tome et al. have used a deep convolutional neural network to improve accuracy 

for pedestrian detection. They have used pre-trained AlexNet and GoogleNet with optimization 

[79]. W. Ouyang et al. has proposed the use of the deformable parts model and deep learning 

to handle occlusion. For the visibility relationship between the parts, a deep model is proposed 

[80]. Q. Hu et al. have used the features produced by the deep learning CNN models and used 

them to train decision models. They have also added a manually designed optic flow feature to 

the Deep CNN features [81]. L. Chunze et al. used deep features to detect visible parts of an 

occluded pedestrian as well as small sized ones. A multi-scale network is used where the feature 

maps are selected based on the target pedestrian's size and the corresponding receptive field of 

the feature map [82]. L. Jianan et al. have used a Fast R-CNN network for detecting pedestrians 

using subnetworks to extract features at various scales [83]. L. Chunze et al. proposed a deep 

learning structure to detect pedestrians at various scales. They have used an attention map with 

the feature maps to detect pedestrians at respective scales [84]. A method based on 

convolutional sparse coding is used by P. Sermanet et al. [77] to pre-train the CNN for 

pedestrian detection. The combination of CNN and hand-crafted features are used to build a 

complexity-aware cascaded detector by J. Hosang [85]. Pedestrian detection and other semantic 

tasks are optimized jointly by Y. Tian et al. [86]. 

A deep learning object detection can be divided into two-stage and single-stage methods. In a 

two-stage process, the first stage develops region proposals, and the second stage classifies 

them. The two-stage network R-CNN [37] worked by applying CNN features on the generated 

object proposals. Faster R-CNN [40] added a region proposal network which increased the 

accuracy. In a one-stage method, the extraction of region proposal is eliminated, and the 

detection results are created from the images directly. Single Shot Multibox Detector (SSD) 
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[87], a single-stage detection method, has a significantly high speed. The YOLO model [41] is 

the first single-stage deep learning method. It models the detection task as an end-to-end 

regression problem, thus gaining more speed. The basic YOLO was improved with the addition 

of anchor boxes to predict the bounding boxes. The improved version named YOLOv2 [32] 

also introduced a new pre-trained CNN model, DarkNet-19. Z. Yi et al. proposed a modified 

tiny-yolov3 [33] is proposed to improve the feature formation process by adding three 

convolutional layers to improve the detection accuracy [88]. W. Lan et al. adds a passthrough 

layer in YOLOv2 to link the high- and low-resolution feature maps [89]. Z. Liu et al. has also 

added passthrough layers and fusion layers to YOLOv2, combining the feature across all levels 

[90]. W.Y. Hsu et al. proposes a ratio-aware YOLO model which uses multiresolution fusion 

to lower the miss rate in small and varying aspect ratio pedestrians [91]. X. Tang et al. has 

given a scale-aware YOLOv3 modification using two sub-networks to improve small-scale 

pedestrian detection in real-time [92]. 
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Chapter 3 

A Scale Invariant Histogram of Oriented Gradients 

Feature Extraction for Pedestrian Detection in 

Multiresolution Image Dataset 

 
In this chapter, a hand-crafted feature extraction mechanism is proposed for pedestrian 

detection. The proposed method adapts feature extraction methods for a scale independent 

system. This method achieves the following two objectives. It can process multiresolution or 

single resolution images. It extracts shape features by introducing a scale-space in HOG. 

Weighted gradient information of the scale-space ensures that the HOG feature vector is 

independent of resolution. 2) Previously, there has been no fusion of shape features, texture 

features and color features with the SVM classifier. Therefore, we combine the proposed 

method, i.e., Scale-Invariant Histogram of Oriented Gradients (SI-HOG), which gives the 

scale-independent shape feature, with texture and color features. As shape features are the basis 

for pedestrian detection, they are concatenated with texture and color features. 

3.1 Introduction 

3.1.1 Histogram of Oriented Gradients Feature Pyramid  

To perform pedestrian detection, first, feature extraction is performed. Because we are focusing 

on pedestrians, the most important feature is shape. For extracting shape information, the best-

performing feature is HOG. A dataset containing images of different resolutions (dimensions) 

produces HOG feature vectors of different lengths, this is because HOG features are dependent 

on the size of the image. This becomes an obstacle for the classifier. If we wish to apply HOG, 

all the images in the dataset must be resized to the same dimension. Hence, the multiresolution 

property is lost. We address this problem by utilizing a scale-space pyramid to extract shape 

features, which are not dependent on the dimension of the image.  

3.2 Methodology 

In the proposed method, a scale-space pyramid is utilized to extract the shape features, which 

are not dependent on the scale of the image. The SI-HOG method is described in Subsection 

3.2.1 and the mathematical derivation of the SI-HOG feature vector is given in Subsection 

3.2.2. 
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3.2.1 Scale Invariant Histogram of Oriented Gradients  

The proposed SI-HOG method for pedestrian detection is described in two parts i.e., Feature 

Extraction and Classification.  

Part I (Feature Extraction) 

1. Consider three scales to construct a pyramid structure by placing the image at the 

bottom (Scale1) and then subsampling it with a factor of two to create another image 

(Scale2). The process is repeated on Scale 2 to obtain the third image (Scale3). For Scale 

1, take the largest dimension Rn, the maximal resolution from the set, having a 

resolution, let's say, p×q. The resolution for Scale 2 is p/2×q/2, and that for Scale 3 is 

p/4×q/4. 

2. For each image, a scale-space (Sj, 1 ≤ j ≤ 3) pyramid is constructed with the three 

resolutions, as described in Step 2.  

3. For Scale 1, consider the cell size as m×m. For Scale 2, the cell size is m/2×m/2, and 

for Scale 3, it is m/4×m/4. Thus, the same number of cells is maintained for all the 

scales. 

4. Obtain a 9-bin histogram (H) using Equations (3.1) and (3.2) for every cell in a scale 

Sj, with 1 ≤ j ≤ 3. 

5. Concatenate the histogram bins obtained in Step 4 for each scale Sj to form Hscale,j, 

where 1 ≤ j ≤ 3. 

6. Take the average of Hscale,1, Hscale,2, and Hscale,3 according to Equation (3.3). 

7. Considering 2×2 overlapping cells with a stride of 1, apply block normalization on Havg 

to obtain the final feature vector for the image. 

Part II (Classification) 

1. The feature vectors of both positive and negative images (with labels 1 and –1, 

respectively) are used to train the SVM. 

2. The Test Set feature vector including the positive and negative images is given to the 

trained SVM Model to obtain a label (either 1 or –1). 

3. The actual and predicted labels of the test set are compared to obtain a confusion matrix 

The proposed method is represented in Figure 3.1. 

          )),((209mod
20

),(
209mod

20

),(
1fjiM

ji
H

ji
H +

















=
















 
 

 

(3.1) 



33 
 

          )),((209mod
20

),(
209mod

20

),(
2fjiM

ji
H

ji
H +

















=
















 
 

                                                  
=

=
3

1

, 3
j

jscaleavg HH  

Where, the size of 
mm

qp
H jscale




= 9,  

3.2.2 Derivation of SI-HOG Feature Vector 

1. The concatenated Histogram (Hscale, j) of all the scales (Sj) is formed as: 

• Scale 1: Resolution of image is p×q and the cell size is m×m. So, we get (p*q)/(m*m) 

number of cells. For each cell, a 9-bin histogram is formed. So, for scale 1, 

9×((p*q)/(m*m)) (=Hscale,1) is yielded by concatenating each 9-bin histogram vertically.  

Feature Extraction

. . .

Training 

Images

Image Dataset

Positive 

Image

Negative 

Image

Scale 2

Scale 3

Scale 1

                 Resolution

                  Cell Size

p/4 × q/4

m/4 × m/4

m/2 × m/2

p/2 × q/2

p × q

m × m

mm

qp




9

mm

qp




9

mm

qp




9

mm

qp




9

Scale-

Independent 

Shape Feature

3
1

3
1

Note:

 *  - Multiplication 

 ×  - Resolution

L2- 

norm

Testing 

Images

Positive 

Image

Negative 

Image

SVM

Trained

 Model

T
es

t 
F

ea
tu

re

Positive Train 
Image Feature
Label  1 

Performance 

Metrics

Predicted Label 

1 or -1

Confusion 

Matrix

.

.

.

Negative Train 
Image Feature 
Label  -1 

Texture

Feature

3
1

Color 

Feature

Final Feature 

Vector

Concate

-nation

 

Figure 3.1 Block Diagram of the Proposed SI-HOG 

• Scale 2: Resolution of image is p/2×q/2 and the cell size is m/2×m/2. So, we get 

(p/2*q/2)/(m/2*m/2) number of cells which results into (p*q)/(m*m) cells. Similarly, 

for each cell, a 9-bin histogram is formed. Finally, for scale 2 also, 9×((p*q)/(m*m)) 

(=Hscale,2) is yielded by concatenating each 9-bin histogram vertically. 

• Scale 3: Resolution of image is p/4×q/4 and the cell size is m/4×m/4. So, we get 

(p/4*q/4)/(m/4*m/4) number of cells which results into (p*q)/(m*m) cells. Similarly, 

for each cell, a 9-bin histogram is formed and 9×((p*q)/(m*m)) (=Hscale,3) is yielded by 

concatenating each 9-bin histogram vertically. 

2. As all the Histogram of the scales are given equal weightage, Hscale,1, Hscale,2 and Hscale,3 

each are multiplied by a factor of ⅓ and then summed to get Havg. Size of Havg will be 

equal to that of Hscale,1, Hscale,2 and Hscale,3 i.e., 9×((p*q)/(m*m)). 

(3.3) 

(3.2) 
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3. As per the construction of a block comprising of four cells, Havg is block normalized 

following L2-norm to yield the final feature vector. The length of the final feature 

vector is given in Equation (3.4). 

 chBlockLengthOfEaocksNumberOfBlVectorHOGFeatureLengthOfSI =−        (3.4) 

Where, number of blocks = ((p/m) - 1)*((q/m) - 1) and  

 length of each block = number of cells per block*number of bins = 4*9 = 36 

4. The feature vector yielded from Positive Training Set is assigned label ‘1’ and that of 

Negative Training Set is assigned label ‘-1’.  

5. The feature vector along with the label vector from the training set is used to train SVM, 

which yields a model.  

6. The Positive Testing Set and the Negative Testing Set along with their actual labels are 

given as input to SVM model.  

7. The output is a set of predicted labels which is further used to construct confusion 

matrix and the performance metrics. 

3.3 Experimental Results and Discussion 

The proposed method is compared with twelve existing algorithms on three standard pedestrian 

datasets: INRIA, NICTA and Daimler. The details of these pedestrian datasets are given in 

Chapter-1. Both the single and multiresolution version of the datasets are considered in this 

work. For the three datasets, per-window evaluation was employed. The value of m, which 

determines the cell size for the scale-space, was 16, 8 and 12 for INRIA, NICTA and Daimler, 

respectively. These values were experimentally determined to perform well for the datasets. 

For INRIA, a linear SVM classifier with a regularization parameter (C) of 0.01 was used, 

whereas for NICTA and Daimler, a nonlinear SVM classifier with a rbf kernel was used. The 

classification was performed using the LIBSVM machine-learning library. Subsection 3.3.1, 

3.3.2 and 3.3.3 discusses the performance for the INRIA, NICTA and Daimler pedestrian 

datasets respectively. Subsection 3.3.4 shows the fusion strategies result. Subsection 3.3.5 

shows the statistical analysis of the results. 

3.3.1 INRIA Pedestrian Dataset 

The proposed method is applied on the INRIA Pedestrian dataset and the confusion matrix is 

obtained from the classification result. Thus, the ROC Curve and DET Curve are derived from 

the confusion matrix result. The ROC Curve for single and multiresolution INRIA is shown in 

Figure 3.2 and Figure 3.3 respectively. The DET Curve for the single and multiresolution 

INRIA is shown in Figure 3.4 and Figure 3.5 respectively. The miss rate is obtained at 10-3 

FPPW and given in Table 3.1. In the single resolution case, the proposed method achieved the 
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lowest miss rate of 7.47%. The second lowest miss rate was achieved by HOG-9. Thus, the 

proposed method was the best-performing method when compared with other shape features 

as well as texture and color features. In the multiresolution case, the proposed method was the 

only shape feature-extraction method. With the addition of texture and color information, miss 

rates of 6.98% and 40.24% were achieved for INRIA. For INRIA, combining texture and color 

features with the proposed method further improved the miss rate. With the addition of texture 

and color information, miss rates of 3.28% and 6.98% is yielded for single and multi -resolution 

respectively.
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Figure 3.2 The ROC Curve for Single Resolution INRIA Pedestrian Dataset 

 

Weighted SI-HOG+LBP+Interchannel          

False Positive Per Window
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9

0.92

0.94

0.96

0.98

1

D
et

ec
ti
on

 R
at

e

LBP
AutoCor
Interchannel
SI-HOG
SI-HOG+LBP+AutoCor
SI-HOG+LBP+Interchannel
Weighted SI-HOG+LBP+AutoCor

k-fold SI-HOG+LBP+AutoCor
k-fold SI-HOG+LBP+Interchannel

 

Figure 3.3 The ROC Curve for Multiresolution INRIA Pedestrian Dataset 
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Figure 3.4 The DET Curve for Single Resolution INRIA Pedestrian Dataset 
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Figure 3.5 The DET Curve for Multiresolution INRIA Pedestrian Dataset 

 

Table 3.1 Miss Rate values for Single and Multiresolution INRIA Pedestrian Dataset 

Single 

Resolution

Multi-

resolution

LBP 99.25 88.87

AutoCor 92.51 98.05

Interchannel 92.24 77.09

HOG-9 11.98 NA

HOG-18 57.24 NA

Ex-HOG 34.53 NA

SI-HOG 7.47 9.88

HOG-9+LBP 8.19 NA

HOG-9+AutoCor 6.51 NA

HOG-9+Interchannel 8.39 NA

HOG-9+LBP+AutoCor 4.35 NA

HOG-9+LBP+Interchannel 7.53 NA

SI-HOG+LBP+AutoCor 3.49 7.83

SI-HOG+LBP+Interchannel 3.28 6.98

Weighted SI-HOG+LBP+AutoCor 3.26 5.24

Weighted SI-HOG+LBP+Interchannel 3.81 5.74

k-fold SI-HOG+LBP+AutoCor 1.55 14.2

k-fold SI-HOG+LBP+Interchannel 1.23 21.18

INRIA

Miss Rate (%)

Method

 

3.3.2 NICTA Pedestrian Dataset 

The proposed method is applied on the NICTA Pedestrian dataset to obtain the confusion 

matrix from the classification result. This yielded the ROC Curve and DET Curve from the 

confusion matrix result. The DET Curve for single and multiresolution NICTA is shown in 

Figure 3.6 and Figure 3.7 respectively. The miss rate is obtained at 10-3 FPPW and given in 

Table 3.2. In the single resolution case, the proposed method achieved the lowest miss rate of 

20.56% for NICTA. The proposed method was the best-performing method when compared 

with other shape features as well as texture and color features. In the multiresolution case, the 

proposed method was the only shape feature-extraction method. With the addition of texture 

and color information, miss rates of 40.24% were achieved for NICTA. For NICTA, combining 
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texture and color features with the proposed method further improved the miss rate. With the 

addition of texture and color information, miss rates of 14.65% and 40.24% is yielded for single 

and multiresolution respectively. 
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Figure 3.6 The DET Curve for Single Resolution NICTA Pedestrian Dataset 
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Figure 3.7 The DET Curve for Multiresolution NICTA Pedestrian Dataset 

Table 3.2 Miss Rate values for Single and Multiresolution NICTA Pedestrian Dataset 

Single 

Resolution

Multi-

resolution

LBP 91.97 94.39

AutoCor 75.85 83.08

Interchannel 71.46 70.57

HOG-9 26.56 NA

HOG-18 63.55 NA

Ex-HOG 49.31 NA

SI-HOG 20.56 54.03

HOG-9+LBP 25.25 NA

HOG-9+AutoCor 18.32 NA

HOG-9+Interchannel 26.56 NA

HOG-9+LBP+AutoCor 17.56 NA

HOG-9+LBP+Interchannel  26.33 NA 

SI-HOG+LBP+AutoCor 14.65 40.24

SI-HOG+LBP+Interchannel 19.31 48.93

Weighted SI-HOG+LBP+AutoCor 14.7 49.14

Weighted SI-HOG+LBP+Interchannel 20.41 50.14

k-fold SI-HOG+LBP+AutoCor 17.5 27.25

k-fold SI-HOG+LBP+Interchannel 17.6 34.08

NICTA

Miss Rate (%)

Method
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3.3.3 Daimler Pedestrian Dataset 

The proposed method is applied on the Daimler Pedestrian dataset and from the classification 

result and confusion matrix, the ROC Curve and DET Curve are obtained. The DET Curve for 

single and multiresolution Daimler is shown in Figure 3.8 and Figure 3.9 respectively. The 

miss rate is obtained at 10-2 FPPW and given in Table 3.3. As it is a grayscale dataset, the color 

feature is not considered here. In the single-resolution case, the proposed method achieved the 

lowest miss rate of 33.20%. The second lowest miss rate was achieved by HOG-9. Thus, the 

proposed method was the best-performing method when compared with other shape features 

as well as texture feature. In the multiresolution case, the proposed method was the only shape 

feature-extraction method. With the addition of texture information, a miss rate of 33.21% is 

yielded. For Daimler, combining texture feature with the proposed method further improved 

the miss rate. With the addition of texture information, miss rates of 32.67% and 33.31% is 

yielded for single and multiresolution respectively. 
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Figure 3.8 The DET Curve for Single Resolution Daimler Pedestrian Dataset 

 

False Positive Per Window

69.38% LBP
32.93% SI-HOG
33.31% SI-HOG+LBP
34.06% Weighted SI-HOG+LBP
12.87% k-fold SI-HOG+LBP

M
is

s
 R

at
e

M
is

s
 R

at
e

10-310

10-410-4

10-210

10-110

10
0

10-4 10-3 10-2 10-1 100-4 10-3 10-2 10-1 100

 

Figure 3.9 The DET Curve for Multiresolution Daimler Pedestrian Dataset 
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Table 3.3 Miss Rate values for Single and Multiresolution Pedestrian Dataset 

Single 

Resolution

Multi-

resolution

LBP 48.74 69.38

HOG-9 37.89 NA

HOG-18 53.12 NA

Ex-HOG 49.39 NA

SI-HOG 33.20 32.93

HOG-9+LBP 36.60 NA

SI-HOG+LBP 32.67 33.31

Weighted SI-HOG+LBP 33.17 34.06

k-fold SI-HOG+LBP 13.98 12.87

Miss Rate (%)

Daimler
Methods

 

3.3.4 Result of Fusion Strategies  

Two fusion strategies namely weighted and k-fold SI-HOG+LBP+AutoCor and SI-

HOG+LBP+Interchannel are evaluated for INRIA, NICTA and Daimler single and 

multiresolution datasets. In the case of weighted methods, the weight was taken with respect 

to the ratio of (TP+TN) to (TP+FN+FP+TN) of each method. The weight was multiplied by 

their respective train and test feature vectors to form weighted feature vectors. In the case of k-

fold, the total of the train-test set was divided into k parts where k=5. Then the performance 

was evaluated on the train:test set in the ratio of 4:1 part. In the case of weighted fusion, there 

is an improvement in miss rate in the single and multiresolution INRIA dataset and in the single 

resolution NICTA dataset. In the case of k-fold fusion there is a significant improvement of 

miss rate in the single resolution INRIA and the multiresolution NICTA datasets and also in 

both the single and multiresolution Daimler datasets. The fusion strategies results are shown in 

their respective ROC, DET Curves and miss rate tables. 

3.3.5 Statistical Analysis 

In this work, there are 14 and 6 independent variables (k) in single and multiresolution dataset 

(N) respectively. The rank table for Friedman test is given in Table 3.4. The proposed 

concatenation i.e., SI-HOG+LBP+AutoCor and SI-HOG+LBP+Interchannel has the first and 

second rank respectively in the case of single resolution. The calculated chi-square is 25.557. 

The critical value of chi-square at a degree of freedom (k-1) 13 is 21.026. As the calculated 

value of chi-square is greater than the critical value of chi-square, the Null Hypothesis is 

rejected. In the case of multiresolution both have the first rank. The calculated chi-square is 

9.428. The critical value of chi-square at degree of freedom 5 is 11.070. As the calculated chi-

square is less than the critical chi-square, the Null Hypothesis is failed to be rejected. The 
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calculated F-distribution is 16.482. The critical value of F-distribution with degree of freedom 

(5,5) and α = 0.05 is 5.05. As the calculated F-distribution is greater than the critical F-

distribution, the Null Hypothesis is rejected. 

Table 3.4 Rank Table of Friedman Test for the Proposed Methods in Single and 

Multiresolution Dataset 

Mean Rank  Rank Mean Rank  Rank

LBP 14 12 5.5 4

AutoCor 13 11 5.5 4

Interchannel 12 10 4 3

HOG-9 8.75 7 NA NA

HOG-18 11 9 NA NA

Ex-HOG 10 8 NA NA

SI-HOG 5 4 3 2

HOG-9+LBP 6.5 5 NA NA

HOG-9+AutoCor 3.5 3.5 3 NA NA

HOG-9+Interchannel 8.25 6 NA NA

HOG-9+LBP+AutoCor 2.5 2 NA NA

HOG-9+LBP+Interchannel 6.5 5 NA NA

SI-HOG+LBP+AutoCor 1.5 1 1.5 1

SI-HOG+LBP+Interchannel 2.5 2 1.5 1

MultiresolutionSingle Resolution 
Methods

 

Friedman Test Analysis including the fusion strategies: 

The Friedman test is conducted on the two fusion strategies namely weighted and k-fold SI-

HOG+LBP+AutoCor and SI-HOG+LBP+Interchannel. In the case of single resolution  INRIA 

and NICTA datasets, there are 18 algorithms whose Mean Rank yielded is [18, 17, 16, 12.75, 

15, 14, 9, 10.5, 7, 12.25, 5.5, 10.5, 3, 5.5, 2.5, 7, 2.5, 3] as per the sequence in Table 3.1. It can 

be observed that except for the weighted SI-HOG+LBP+Interchannel all the 5 proposed 

methods are with high mean rank. The calculated chi-square is 32.88. The critical value of chi-

square at a degree of freedom (k-1) 17 is 27.59; where k is the number of algorithms. As the 

calculated value of chi-square is greater than the critical value of chi-square, the Null 

Hypothesis is rejected. In the case of multiresolution INRIA and NICTA datasets, there are 10 

algorithms whose Mean Rank yielded is [9.5, 9.5, 8, 6, 3.5, 3.5, 3, 4, 3.5, 4.5] as per the 

sequence in Table 3.1. In this case, the 6 proposed methods are with top ranks as well. The 

calculated chi-square is 13.09. The critical value of chi-square at a degree of freedom 9 is 

16.919. As the calculated chi-square is less than the critical chi-square, the Null Hypothesis is 

failed to be rejected. On application of F-distribution on the multiresolution datasets, the 

calculated F-distribution is 2.665. The critical value of F-distribution with degree of freedom 
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(9,9) and α = 0.05 is 3.17. There is rejection of Null Hypothesis here as well. It may be 

concluded that this is due to, among the 10 methods considered, the 6 fusions of SI-HOG are 

yielding similar mean rank. 

3.4 Observations 

By considering the proposed scale-space pyramid-based shape feature-extraction method i.e., 

SI-HOG on the three datasets the following improvements are observed. The performance is 

evaluated using three datasets, i.e., INRIA, NICTA, and Daimler, considering both single-

resolution and multiresolution images.  

• The SI-HOG overcomes the shortcoming of HOG, i.e., that it is not applicable to 

multiresolution images, by considering gradient information from different scales of an 

image, making it resolution-independent.  

• Furthermore, the addition of texture and color information to SI-HOG for extracting a 

more detailed form of features is proposed.  

• SI-HOG outperformed the existing LBP, AutoCor, Interchannel, HOG-9 bins, HOG-

18 bins and ExHOG methods in both the single-resolution and multiresolution cases for 

all three datasets. When texture and color features were added, for INRIA and NICTA, 

SI-HOG+LBP+Interchannel and SI-HOG+LBP+AutoCor exhibited the best 

performance in both the single-resolution and multiresolution cases.  

• For Daimler, the results did not vary significantly with the addition of texture features 

(SI-HOG+LBP).  

Hence, SI-HOG is the best-performing shape feature among all the individual feature-

extraction methods tested. The proposed method was also tested with two fusion methods: 

weighted and k-fold and the results are compared. 
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Chapter 4 

A Multi-layer Feature Fused-Resnet Model for Pedestrian 

Detection 
The hand-crafted features given in Chapter-3 lacked in the detection accuracy. To bridge the 

performance gap deep learning methods are used. The deep learning methods, especially 

CNNs, through the backpropagation error correction produces a better feature representation. 

Thus, improving the accuracy of the overall detection system. In this chapter, modification to 

a pre-trained CNN: ResNet18 is proposed to improve the feature extraction process of the 

network. The proposed network is named Multi-layer Feature Fused-ResNet (MF2-ResNet). 

Two ways to approach the pedestrian detection problem by using the MF2-ResNet is shown 

i.e., MF2-ResNet feature extraction with classifier and End-to-end MF2-ResNet.  

4.1 Introduction 

4.1.1 Base Convolutional Neural Network Features  

The process of pedestrian detection is the same as any object detection i.e., feature extraction 

and then classification. The framework is given in Figure 4.1. Processing an image, feature 

extraction is done by hand-crafted features or by CNNs. The features produced in the previous 

step can be classified as either a pedestrian (positive) or a non-pedestrian (negative). 

Classification is achieved in two ways i.e., SVM and Fully Connected Neural Network. 

However, a significance performance gap exists among the hand-crafted and CNN features, 

which is addressed in the next contribution by using deep CNN methods. A Modification to a 

pre-trained CNN i.e., ResNet18 named Multi-layer Feature Fused-ResNet (MF2-ResNet) is 

proposed. The proposed MF2-ResNet is trained via transfer learning on the pedestrian dataset. 

The trained MF2-ResNet Features are used in two ways: 1) with SVM classifier 2) End-to-End 

network.  

Image
Feature 

Extraction
Classification Prediction

Convolutional 

Neural Network

Support Vector 

Machine

Fully Connected 

Neural Network  
Figure 4.1 The framework of Pedestrian Detection using 1) CNN features with SVM 

Classifier and 2) End-to-End CNN   
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4.2 Methodology 

The methodology is described by explaining the architecture of the proposed CNN MF2-

ResNet in the Subsection 4.2.1. The training algorithm for the same is given in Subsection 

4.2.2. The MF2-ResNet is used in two manners: Subsection 4.2.3 shows it with SVM and 

Subsection 4.2.4 shows it End-to-End.  

4.2.1 Proposed Multi-layer Feature Fused-ResNet 

The proposed MF2-ResNet is explained in this section by breaking the network configuration 

into three parts i.e., MF2-ResNet-1, MF2-ResNet-2 and MF2-ResNet-3.   

MF2-ResNet-1 

The ResNet18 architecture can be divided into four blocks considering the output feature maps. 

ResNet18 has three reduce shortcuts in blocks 2, 3 and 4. The reduce shortcut layer of block 2 

takes input from the output feature map of block 1. The reduce shortcut layer of block 3 takes 

input from the output feature map of block 2 and so on. The proposed modification adds the 

reduce shortcut of (n-1)th block to the output feature map of the (n-1)th block and inputs it to 

the nth block reduce shortcut layer. This enables the successive reduce shortcut layers to apply 

convolution operations on previous block features as well. 

MF2-ResNet-2 

The input layer size of ResNet18 is 224×224×3. The output feature map's dimension of these 

four blocks is 56×56×64, 28×28×128, 14×14×256 and 7×7×512. The fully connected network 

in ResNet18 inputs only the last feature map i.e., 7×7×512. However, the output feature maps 

of other blocks can be used here to obtain the features from all the segments of the network to 

capture the features at varying levels. Here, a depth concatenation is used to concatenate the 

feature maps from blocks 2, 3 and 4. Max-pool operation is applied on block 2's feature map, 

to match its size to that of the feature map of block 3. A transpose convolution is applied to 

block 4's feature map to match its size to that of the feature map of block 3. The said operations 

were applied to block 2 and block 4 to avoid the loss of feature information that can be caused 

by a greater degree of upsampling or downsampling. The resultant feature map is of dimension 

14×14×(128+256+512) i.e., 14×14×896.  

MF2-ResNet-3 

An inception module is added to the end or the highest-level feature map of the ResNet18 

architecture. The higher-level feature maps are built on the features of lower-level feature 

maps. Therefore, the last feature map is a comprehensive feature representation of the image. 

With the further application of an inception module, a feature map is generated that is extracted 
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by applying different receptive fields to the highest feature map. As the features which can be 

captured by a smaller receptive field can be missed by a filter of a larger receptive field and 

vice-versa. The inception module considered here applies filters of various receptive field sizes 

i.e., 1×1, 3×3 and 5×5 on the feature map of block 4, which enables the extraction of richer 

feature representation.  

In the MF2-ResNet architecture, the inception module is applied on the output of Depth 

Concatenation I of MF2-ResNet-2. This makes the output feature map of MF2-ResNet to be 

14×14×448. The representation of the MF2-ResNet architecture is shown in Figure 4.2.  
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Figure 4.2 Block Diagram for Multi-layer Feature Fused-ResNet (MF2-ResNet) 

4.2.2. MF2-ResNet Trained Model Algorithm  

The training for MF2-ResNet can be performed in two steps: Pre-processing and Transfer 

Learning as described in this section. 

Pre-processing  

The images present in the dataset are of varying sizes. It is strongly required that all images 

should be of the same size. As each pre-trained CNN has a different size for its' input layer, the 

images in the dataset will be resized to MF2-ResNet's input layer size i.e., 224×224×3. 

Transfer Learning 

In a pre-trained CNNs, the network is trained on an enormous amount of data. The initial layers 

capture simple and basic features that can be useful for any desired task at hand. Even though, 
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it should be re-trained according to the current dataset requirement. The advantage here is, 

training need not be started from scratch. In transfer learning, a few epochs of training on the 

target dataset with a small learning step are usually performed to adapt the convolutional 

network to the new dataset.  

4.2.3 Multi-layer Feature Fused-Resnet Features + SVM 

This method of classifying MF2-ResNet Features with SVM is performed in three steps: Pre-

processing, Feature Extraction and Classification as explained in this section. The overall 

process for Multi-layer Feature Fused-ResNet Feature + SVM is shown in Figure 4.3. 

Pre-processing  

The images in the train and test set of the dataset are resized to that of the input layer’s size of 

the proposed MF2-ResNet.  

Feature Extraction  

The pedestrian dataset has two class labels, i.e., pedestrian and non-pedestrian. The base 

ResNet18 used in the proposed MF2-ResNet used here was pre-trained on the ImageNet dataset 

thus had 1000 classes. After training the model, the trained MF2-ResNet's classification layer's 

label is two (pedestrian/non-pedestrian). The image given to the input layer is processed by 

each of the layers and feature descriptions known as feature maps are generated at each step. 

Feature maps extracted at a lower layer gives fundamental characteristics whereas, the higher-

level layer builds on the feature maps of several lower layer which yields a superior feature 

representation. Therefore, we have extracted features from a higher-level layer i.e., the global 

average pooling layer. The feature vector size of MF2-ResNet is 1×448.  

Classification 

The features extracted from a dataset are separated based on train and test sets. The train and 

test sets are further separated into pedestrian and non-pedestrian. These features are given 

labels accordingly. SVM is used as a classifier because it is robust in the presence of bias in 

the training sample. The kernel function is selected based on datasets. The trained SVM model 

is used on the test features to obtain labels (pedestrian/non-pedestrian). 

Train Features 

Test Features

SVM
SVM

Model

Test Labels 

Person 1

Person 1

Trained 

MF2-ResNet

CNN

Model

Train Images

Pre-Processing

Test Images

Feature 
Extraction 

Layer

 
Figure 4.3 Block Diagram for Multi-layer Feature Fused-Resnet Features with SVM 
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4.2.4 End-to-End Multi-layer Feature Fused-Resnet 

This method of End-to-End MF2-ResNet is performed in two steps: Pre-processing and 

Convolution and Fully connected Pipeline Network as explained in this section. The overall 

process for End-to-End Multi-layer Feature Fused-Resnet is shown in Figure 4.4. 

Pre-processing  

Different pre-trained CNNs have different input layer dimensions. As in the previous method, 

the input images are resized to MF2-ResNet’s input layer size before putting it through the 

CNN pipeline. 

Convolution and Fully connected Pipeline Network  

Consequently, the fully connected layer has two classes after transfer learning, i.e., pedestrian 

(positive) and non-pedestrian (negative). The images in this method, are passed through 

convolutional layers and pooling layers. The feature map derived from the first stage of the 

trained model is moved to classification, the second stage of the trained model. The fully 

connected (FC) layers take the output of the preceding layer and match the features to 

comprehend as to which class it belongs. FC layer outputs the probability of the image 

belonging to each class. The image is assigned to the class label; having the highest FC layer 

probability. 

Test Images & 

Labels

Trained 

MF2-ResNet

CNN

Model

Pre-Processing Person 1

Person 1
 

Figure 4.4 Block Diagram for End-to-End Multi-layer Feature Fused-Resnet Network 

 

4.3 Experimental Results and Discussion 

The proposed MF2-ResNet is evaluated individually in parts and also in a group of two on the 

INRIA, NICTA and Daimler Pedestrian datasets against four existing methods. The details of 

the datasets are given in Chapter-1. The methods are compared with existing pre-trained CNNs, 

i.e., AlexNet, ResNet18, Xception, and DarkNet. The training parameters such as batch size 

are set as 10, the learning rate is 10-4 and the number of epochs is set to 6. The optimizer used 

is sgdm for training. Subsection 4.3.1, 4.3.2 and 4.3.3 discusses the performance for the INRIA, 

NICTA and Daimler pedestrian datasets respectively. Subsection 4.3.4 shows the statistical 

analysis of the results. 
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4.3.1 INRIA Pedestrian Dataset 

Results by using Multi-layer Feature Fused-Resnet Features + SVM 

The proposed method is applied on the INRIA Pedestrian dataset to get the predicted labels 

from the SVM classifier. Upon comparing the predicted and groundtruth labels, the DET Curve 

is obtained. The DET Curve for Multi-layer Feature Fused-Resnet Features + SVM is shown 

in Figure 4.5. The corresponding miss rate values are given in Table 4.1. The proposed MF2-

ResNet-2 and MF2-ResNet-3 individually are giving zero miss rate which signifies there is 

negligible or no misclassification. The proposed method MF2-ResNet and the proposed 

method group MF2-ResNet-1+2 is showing zero miss rate as well. It should be noted here that 

the proposed method MF2-ResNet achieved a hundred percent classification. The proposed 

method group MF2-ResNet-2+3 is also giving less miss rate from the existing pre-trained 

CNNs. In this dataset, as there is a fewer number of misclassifications, in some methods there 

isn't any value in the DET curve. As the DET curve plots error rates on both axes, the values 

are approximately zero; which resulted in a zero miss rate. 

Results by using End-to-End Multi-layer Feature Fused-Resnet Network 

The proposed method is applied on the INRIA Pedestrian dataset to get the predicted labels 

from the MF2-ResNet softmax layer. The predicted and groundtruth labels are compared to 

yield the DET Curve. The DET Curve for End-to-End Multi-layer Feature Fused-Resnet 

Network is shown in Figure 4.6 and the corresponding miss rate is given in Table 4.1. The zero 

miss rate is shown by individual proposed method MF2-ResNet-2 and MF2-ResNet-3, the 

proposed method MF2-ResNet and the group proposed method MF2-ResNet-1+2. It should be 

noted here that the group proposed method MF2-ResNet-1+2 achieved a hundred percent 

classification.     

4.3.2 NICTA Pedestrian Dataset 

Results by using Multi-layer Feature Fused-Resnet Features + SVM 

The proposed method is applied on the NICTA Pedestrian dataset to predict the test dataset 

labels from the SVM classifier. Then the resultant predicted labels are compared to the 

groundtruth labels and the DET Curve is obtained. The DET Curve for Multi-layer Feature 

Fused-Resnet Features + SVM is shown in Figure 4.7 and the corresponding miss rate is given 

in Table 4.2. Except for individual proposed MF2-ResNet-1 and MF2-ResNet-3 & group 

proposed method MF2-ResNet-1+3, all others are performing better than the existing pre-

trained CNNs. The proposed method group MF2-ResNet-2+3 is giving the least miss rate 

among all. 
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Figure 4.5 DET Curve for INRIA Pedestrian Dataset in Multi-layer Feature Fused-Resnet 

Features + SVM 
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Figure 4.6 DET Curve for INRIA Pedestrian Dataset in End-to-End Multi-layer Feature 

Fused-Resnet Network 

 

 



49 
 

Table 4.1 Miss Rate for INRIA Pedestrian Dataset for the Proposed Methods 

CNN Features+SVM End-to-End CNN

AlexNet 0.00199 0.00281

ResNet-18 0.00088 0.00071

Xception 0.00283 0.00490

Darknet-19 0.00177 0.00133

MF2-ResNet-1 0.00252 0.00250

MF2-ResNet-2 0.00000 0.00000

MF2-ResNet-3 0.00000 0.00000

MF2-ResNet-1+2 0.00000 0.00000

MF2-ResNet-1+3 0.00088 0.00088

MF2-ResNet-2+3 0.00071 0.00088

MF2-ResNet-1+2+3 0.00000 0.00000

Methods
Miss Rate (%)

 

Results by using End-to-End Multi-layer Feature Fused-Resnet Network 

The proposed method is applied on the NICTA Pedestrian dataset to predict the test dataset 

labels from the MF2-ResNet softmax layer. Upon comparing the resultant predicted labels and 

the groundtruth labels, the DET Curve is obtained. The DET Curve for End-to-End Multi-layer 

Feature Fused-Resnet Network is shown in Figure 4.8 and the corresponding miss rate is given 

in Table 4.2. Except for the individual proposed method MF2-ResNet-1 and MF2-ResNet-3 

and group proposed method MF2-ResNet-1+3, all others are performing better than the 

existing pre-trained CNNs. The best performance i.e., least miss rate is achieved by the 

proposed method MF2-ResNet. 
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Figure 4.7 DET Curve for NICTA Pedestrian Dataset in Multi-layer Feature Fused-Resnet 

Features + SVM 
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Figure 4.8 DET Curve for NICTA Pedestrian Dataset in End-to-End Multi-layer Feature 

Fused-Resnet Network 

Table 4.2 Miss Rate for NICTA Pedestrian Dataset for the Proposed Methods 

CNN Features+SVM End-to-End CNN

AlexNet 0.00300 0.00283

ResNet-18 0.00233 0.00133

Xception 0.00192 0.00183

Darknet-19 0.00083 0.00083

MF2-ResNet-1 0.00117 0.00125

MF2-ResNet-2 0.00067 0.00083

MF2-ResNet-3 0.00300 0.00233

MF2-ResNet-1+2 0.00075 0.00083

MF2-ResNet-1+3 0.00317 0.00233

MF2-ResNet-2+3 0.00050 0.00042

MF2-ResNet-1+2+3 0.00067 0.00033

Methods
Miss Rate (%)

 
 

4.3.3 Daimler Pedestrian Dataset 

Results by using Multi-layer Feature Fused-Resnet Features + SVM 

The proposed method is applied on the Daimler Pedestrian dataset and the test dataset labels 

are predicted from the SVM classifier. The resultant predicted labels are compared to the 

groundtruth labels and the DET Curve is obtained. The DET Curve for Multi-layer Feature 

Fused-Resnet Features + SVM is shown in Figure 4.9 and the corresponding miss rate is given 

in Table 4.3. The least miss rate is given by the proposed method group MF2-ResNet-2+3. 
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Except for individual proposed MF2-ResNet-1 and MF2-ResNet-2 & the group proposed 

method MF2-ResNet-1+3, all others are performing better than the existing pre-trained CNNs.    

Results by using End-to-End Multi-layer Feature Fused-Resnet Network 

The proposed method is applied on the Daimler Pedestrian dataset and the test dataset labels 

are predicted from the MF2-ResNet softmax layer. The resultant predicted labels are compared 

to the groundtruth labels and the DET Curve is yielded. The DET Curve for End-to-End Multi-

layer Feature Fused-Resnet Network is shown in Figure 4.10 and the corresponding miss rate 

is given in Table 4.3. The best performance is obtained by the group proposed method MF2-

ResNet-2+3.  
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Figure 4.9 DET Curve for Daimler Pedestrian Dataset in Multi-layer Feature Fused-Resnet 

Features + SVM 
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Figure 4.10 DET Curve for Daimler Pedestrian Dataset in End-to-End Multi-layer Feature 

Fused-Resnet Network 
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Table 4.3 Miss Rate for Daimler Pedestrian Dataset for the Proposed Methods 

CNN Features+SVM End-to-End CNN

AlexNet 0.03917 0.03458

ResNet-18 0.03583 0.03625

Xception 0.02750 0.02583

Darknet-19 0.04000 0.03354

MF2-ResNet-1 0.02958 0.03750

MF2-ResNet-2 0.03000 0.03833

MF2-ResNet-3 0.02000 0.02542

MF2-ResNet-1+2 0.01583 0.03292

MF2-ResNet-1+3 0.03583 0.04042

MF2-ResNet-2+3 0.00958 0.01375

MF2-ResNet-1+2+3 0.02625 0.02833

Methods
Miss Rate (%)

 

4.3.4 Statistical Analysis 

In this work, there are 11 independent variables (k) and 3 datasets (N). The proposed method 

and its groups have the highest rank when compared among the other CNN methods. In case 

of MF2-ResNet Features + SVM, the calculated chi-square is 24.151. The critical value of chi-

square at a degree of freedom (k-1) 10 is 18.310. As the calculated value of chi-square is greater 

than the critical value of chi-square, the Null Hypothesis is rejected. The rank table for 

Friedman Test is given in Table 4.4. For, the F-distribution test, the calculated value is 8.258. 

The critical value of F-distribution with degree of freedom (10,20) [k-1, (k-1)(N-1)] and α = 

0.05 is 2.347. As the calculated F-distribution is greater than the critical F-distribution, the Null 

Hypothesis is rejected. In case of End-to-End MF2-ResNet, the calculated chi-square is 14.545. 

And for, the F-distribution test, the calculated value is 1.882. As the calculated value of both 

chi-square and F-distribution is lesser than the respective critical value, the Null Hypothesis is 

failed to rejected. The rank table for Friedman Test is given in Table 4.5. 

 

Table 4.4 Rank Table of Friedman Test for the Proposed Methods in Multi-layer Feature 

Fused-Resnet Features + SVM

CNN Features+SVM r INRIA r NICTA r Daimler Mean Rank Rank

AlexNet 9 9 10 9.333 11

ResNet-18 6.5 8 9 7.833 7

Xception 11 7 8.5 8.833 9

Darknet-19 8 5 11 8.000 8

MF2-ResNet-1 10 6 6 7.333 6

MF2-ResNet-2 2.5 2.5 7 4.000 4

MF2-ResNet-3 2.5 10 3 5.167 5

MF2-ResNet-1+2 2.5 4 2 2.833 2

MF2-ResNet-1+3 6.5 11 8.5 8.667 10

MF2-ResNet-2+3 5 1 1 2.333 1

MF2-ResNet-1+2+3 2.5 2.5 4 3.000 3  
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Table 4.5 Rank Table of Friedman Test for the Proposed Methods in End-to-End Multi-layer 

Feature Fused-Resnet Network 

End-to-End CNN r INRIA r NICTA r Daimler Mean Rank Rank

AlexNet 10 11 7 9.333 11

ResNet-18 5 7 8 6.667 7

Xception 11 8 3 7.333 9

Darknet-19 8 4 6 6.000 6

MF2-ResNet-1 9 6 9 8.000 10

MF2-ResNet-2 2.5 4 10 5.500 5

MF2-ResNet-3 2.5 9.5 2 4.667 4

MF2-ResNet-1+2 2.5 4 5 3.833 3

MF2-ResNet-1+3 6.5 9.5 11 9.000 8

MF2-ResNet-2+3 6.5 2 1 3.167 2

MF2-ResNet-1+2+3 2.5 1 4 2.500 1  

4.4 Observations 

In this chapter, by applying the proposed CNN feature extraction method i.e., MF2-ResNet for 

pedestrian detection the following improvements are observed. The proposed methods are 

compared using three benchmark pedestrian datasets INRIA, NICTA and Daimler. The basic 

principle involved here is feature extraction and then classification. Two methods are given 

here: MF2-ResNet features with SVM and End-to-End MF2-ResNet network. 

• In case of MF2-ResNet features with SVM, the miss rate observed is least when 

compared with the existing methods in all the three datasets.  

• In case of End-to-End MF2-ResNet Network, in all the three datasets least miss rate is 

resulted.   

• In the case of the INRIA Pedestrian dataset, a hundred percent classification was also 

obtained.   

• It should be noted that even though the classification method is changed, the proposed 

method is always resulting in less misclassification for all the three datasets. 
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Chapter 5  

Faster R-CNN based on Dilate-Condense ResNet and 

Multi-layer Feature Fused-Resnet Model for Pedestrian 

Detection 

 
The pedestrian detection requires to localize the pedestrians in a given image. The CNNs used 

in previous contribution didn’t generate location information. Therefore, a detection network 

is employed here to get the region proposals which assists in yielding bounding box 

information from an image. In this chapter, the two-stage detection network Faster R-CNN is 

considered because of its accuracy. Focusing on the feature extraction part of the network, 

modifications of the pre-trained CNN ResNet is proposed as the base network for the new and 

improved Faster R-CNN. The modifications are done by taking the pre-trained ResNet18. The 

proposed Faster R-CNN modifications named Faster R-CNN(Dilate-CondenseResNet) and 

Faster R-CNN(Multi-layer Feature Fused-Resnet) yields a detailed representation of the image 

as varying levels of the network are analyzed for feature extraction in the proposed methods.  

 

5.1 Introduction 

5.1.1 ResNet Feature Extraction Layer with Faster R-CNN 

Till now, the pedestrian detection is being done in per-window evaluation system. To further 

address the pedestrian detection problem, the state-of-the-art detection method is employed in 

the next contribution. The Faster R-CNN detection paradigm is made up of first, a region 

proposal algorithm, employed to output the probable regions of the desired objects. Second, 

feature extraction by the pre-trained CNNs. Third, classification layer to predict the object’s 

class. Lastly, regression stage to fine-tune the bounding boxes generated by the region proposal 

method. 

Faster R-CNN speeds up the region proposal step by including a convolutional network for 

region proposal termed as the Region Proposal Network (RPN). It uses a pre-trained CNN as 

a backbone network which enables it to share weights with the CNN used in the detection 

process. In this work, ResNet18 is used as the base network. It has 18 conv layers of 3×3 

receptive field. The layers for Faster R-CNN with base ResNet18 are shown in Table 5.1. 
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Table 5.1 Faster R-CNN base ResNet18 layers 

Layer 

Name

Filter 

Size/Strid

e

Channels Input Layer Output   

Size

Input 224×224×3

Conv1 7×7/2 64 Input 112×112×64

Maxpool 3×3/2 Conv1 56×56×64

Conv2_1 3×3/1 64 Maxpool 56×56×64

Conv2_2 3×3/1 64 Conv2_1 56×56×64

Add_1 Conv2_2

Maxpool / 

{Add_1} 56×56×64

Conv3_1 3×3/2/{1} 128 Add_1 28×28×128

Conv3_2 3×3/1 128 Conv3_1 28×28×128

Add_2 Conv3_2

Add_1 / 

{Add_2} 28×28×128

Conv4_1 3×3/2/{1} 256 Add_2 14×14×256

Conv4_2 3×3/1 256 Conv4_2 14×14×256

Add_3 Conv4_2

Add_2 / 

{Add_3} 14×14×256

RegPropNet Add_3 RegProps

ROIPooling Add_3

RegProps 14×14×256

Conv5_1 3×3/2/{1} 512 ROIPooling 14×14×256

Conv5_2 3×3/1 256 Conv5_1 14×14×256

Add_4 Conv5_2

ROIPooling 14×14×256

×2

×2

×2

×2

 

5.2 Methodology 

In this section, the proposed network’s architecture is discussed. The Subsection 5.2.1 explains 

the Dilate-Condense ResNet based Faster R-CNN [Faster R-CNN(DCResNet)] architecture 

details and the Subsection 5.2.2 explains the Multi-layer Feature Fused-Resnet based Faster R-

CNN [Faster R-CNN(MF2-ResNet)] architecture details. 

5.2.1 Dilate-Condense ResNet based Faster R-CNN 

The proposed Faster R-CNN(DCResNet) is described in three components: Selection of 

Feature Map Blocks, Dilate and Condense 3×3 Network and Fusion of the Output Feature Map 

Blocks, in this section. 

• Selection of Feature Map Blocks: The pre-trained CNN ResNet18 can be divided into 

four subparts depending on the distinct feature map size. These blocks are of size 
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56×56×64, 28×28×128, 14×14×256, and 7×7×512. The first three feature maps are 

processed in the next step. The division of feature maps is shown in Figure 5.2.  

• Dilate and Condense 3×3 Network: Three dilate and condense 3×3 networks are 

attached in the network at feature map block I, II, and III. The characteristic of these 

blocks is to expand the input by a 1×1 conv. The expanded result is convolved with a 

receptive field of 3×3. This enables to further extract detailed features from the input. 

Lastly, it is reduced with another 1×1 conv. Hence, the output of these networks is 

feature maps which not only carry additional information but also have reduced 

dimension to enable faster computation. The three output feature map block derived in 

this step are of size 56×56×43, 28×28×85, and 14×14×128. The Dilate and Condense 

3×3 Network I, II, and III blocks are shown in Figure 5.3, Figure 5.4, and Figure 5.5 

respectively. 

• Fusion of the Output Feature Map Blocks: The output generated by the dilate and 

condense 3×3 network in the previous step is fused to form one final feature map. First, 

as the three inputs to this step are of uneven size, they are made into the same size by 

applying a downsample and upsample operation on output feature map block I and III 

respectively. An average pool operation is performed on output feature map block I and 

a resize operation is performed on the output feature map block III. The fusion is 

accomplished by a depth concatenation, which concatenates the feature maps channel-

wise. Therefore, the input to the depth concatenation becomes feature maps of size 

28×28×43, 28×28×85, and 28×28×128. The fused feature map is of size 28×28×256. 

The architecture of the proposed Faster R-CNN(DCResNet) is represented by a block diagram 

in Figure 5.1. The network layers’ characteristics are shown in Table 5.2.   

 

5.2.2 Multi-layer Feature Fused-Resnet based Faster R-CNN 

The proposed Faster R-CNN(MF2-ResNet) is described in four components: Reduce-shortcut 

layer, Feature Map Fusion, Inception Module and Region Proposal Network in this section. 

• Reduce-shortcut layer: The RPN network uses ResNet18 as the backbone. As in this 

case, it uses res4b_relu i.e., the output feature map of block 3, as a feature extraction 

layer when MF2-ResNet is used as the backbone CNN. Therefore, this allowed having 

only one reduced shortcut layer from block 2 to block 3 in the MF2-ResNet. 
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Figure 5.1 The Block Diagram of the Proposed Faster R-CNN with the modified DCResNet 

as the base 
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Figure 5.2 The structure of Dilute ad Condense 3×3 Network for I, input for the Feature Map 

Block I 
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Figure 5.3 The structure of Dilute ad Condense 3×3 Network for II, input for the Feature 

Map Block II 

Dilate and Condense 3×3 Network III

14×14×384 14×14×384 14×14×128

3×3 

Conv 

1×1 

Conv 
1×1 

Conv 

Feature Map

 Block III

14×14×256

Output Feature 

Map Block III

14×14×128

 

Figure 5.4 The structure of Dilute ad Condense 3×3 Network for III, input for the Feature 

Map Block III 
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Table 5.2 The Proposed FASTER R-CNN(DCRESNET) network’s layer and characteristics 

Layer Name Filter 

Size/Stride

Channels Input Layer Output   

Size

Input 224×224×3

Conv1 7×7/2 64 Input 112×112×64

Maxpool 3×3/2 Conv1 56×56×64

Conv2_1 3×3/1 64 Maxpool 56×56×64

Conv2_2 3×3/1 64 Conv2_1 56×56×64

Add_1 Conv2_2

Maxpool / 

{Add_1} 56×56×64

Conv3_1 3×3/2/{1} 128 Add_1 28×28×128

Conv3_2 3×3/1 128 Conv3_1 28×28×128

Add_2 Conv3_2

Add_1 / 

{Add_2} 28×28×128

Conv4_1 3×3/2/{1} 256 Add_2 14×14×256

Conv4_2 3×3/1 256 Conv4_2 14×14×256

Add_3 Conv4_2

Add_2 / 

{Add_3} 14×14×256

ConvDC1_1 1×1/1 96 Add_1 56×56×96

ConvDC1_2 3×3/1 96 ConvDC1_1 56×56×96

ConvDC1_3 1×1/1 43 ConvDC1_2 56×56×43

AveragePool 3×3/2 ConvDC1_3 28×28×43

ConvDC2_1 1×1/1 96 Add_2 28×28×192

ConvDC2_2 3×3/1 96 ConvDC2_1 28×28×192

ConvDC2_3 1×1/1 43 ConvDC2_2 28×28×85

ConvDC3_1 1×1/1 384 Add_3 14×14×384

ConvDC3_2 3×3/1 384 ConvDC3_1 14×14×384

ConvDC3_3 1×1/1 128 ConvDC3_2 14×14×128

Resize 2 ConvDC3_3 28×28×128

DepthConcat ConvDC1_3

ConvDC2_3

ConvDC3_3 28×28×256

RegPropNet DepthConcat RegProps

ROIPooling DepthConcat

RegProps 14×14×256

Conv5_1 3×3/2/{1} 512 ROIPooling 14×14×256

Conv5_2 3×3/1 256 Conv5_1 14×14×256

Add_4 Conv5_2

ROIPooling 

/{Add_4} 14×14×256

×2

×2

×2

×2

×2

×2

×2
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• Feature Map Fusion: The Depth Concatenation I use features from block 1, 2 and 3 for 

MF2-ResNet. Max-pool operation is applied on block 1's feature map, to match its size 

to that of the feature map of block 2. A transpose convolution is applied to block 3's 

feature map to match its size to that of the feature map of block 2. 

• Inception Module: The inception module applies filters of various receptive field sizes 

i.e., 1×1, 3×3 and 5×5 to the input feature map from block 3 for MF2-ResNet.  

• Region Proposal Network: The feature map from the Depth Concatenation II layer is 

given as input to generate a region where a pedestrian might be present, which is the 

location in the input image. This is done by using two sibling convolution layers. The 

task of one layer is to classify and the other’s task is to improve the co-ordinates of 

anchor boxes. Anchors of various sizes are placed on the input image corresponding to 

a point in the feature map received as input. The network checks whether the anchor 

boxes at any point corresponds to a pedestrian.   

The working of the proposed Faster R-CNN(MF2ResNet) is represented by a block 

diagram in Figure 5.5. The network layers’ characteristics are shown in Table 5.3.   
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Figure 5.5 The Block Diagram of the Proposed Faster R-CNN with the modified MF2ResNet 

as the base 
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Table 5.3 The proposed FASTER R-CNN(MF2RESNET) network’s layer and characteristics 

Layer Name Filter 

Size/Stride

Channels Input Layer Output   

Size

Input 224×224×3

Conv1 7×7/2 64 Input 112×112×64

Maxpool 3×3/2 Conv1 56×56×64

Conv2_1 3×3/1 64 Maxpool 56×56×64

Conv2_2 3×3/1 64 Conv2_1 56×56×64

Add_1 Conv2_2

Maxpool / 

{Add_1} 56×56×64

Conv3_1 3×3/2/{1} 128 Add_1 28×28×128

Conv3_2 3×3/1 128 Conv3_1 28×28×128

Add_2 Conv3_2

Add_1 / {Add_2}

28×28×128

Add_P Conv3_1

Add_2 28×28×128

Conv4_1 3×3/2/{1} 256 Add_P 14×14×256

Conv4_2 3×3/1 256 Conv4_2 14×14×256

Add_3 Conv4_2

Add_P / {Add_3}

14×14×256

MaxPool 3×3/2 Add_1 28×28×64

Transpose Conv. 3×3/2 Add_3 28×28×256

DepthConcat_I MaxPool

Add_2

Transpose Conv. 28×28×448

Reducer1×1 1×1/1 64 DepthConcat_I 28×28×64

Reducer3×3 1×1/1 96 DepthConcat_I 28×28×96

Reducer5×5 1×1/1 16 DepthConcat_I 28×28×16

Conv3×3 3×3/1 160 Reducer3×3 28×28×160

Conv5×5 5×5/1 32 Reducer5×5 28×28×32

DepthConcat_II Reducer1×1

Conv3×3

Conv5×5 28×28×256

RegPropNet DepthConcat_II RegProps

ROIPooling DepthConcat_II

RegProps 14×14×256

Conv5_1 3×3/2/{1} 512 ROIPooling 14×14×256

Conv5_2 3×3/1 256 Conv5_1 14×14×256

Add_4 Conv5_2

ROIPooling 

/{Add_4} 14×14×256

×2

×2

×2

×2
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5.3 Experimental Results and Discussion 

The proposed Faster R-CNN modifications are compared with four state-of-the-art detection 

methods Faster R-CNN, YOLOv2, YOLOv3, and SSD on two pedestrian datasets: INRIA 

Pedestrian and PASCAL VOC 2012. Four pre-trained CNN AlexNet, ResNet18, SqueezeNet, 

and MobileNetv2 are used as base for Faster R-CNN and YOLOv2. Training parameters such 

as batch size are set to 2, the learning rate is 10-3 and the number of epochs is 10 with sgdm 

optimizer. Subsection 5.3.1 and 5.3.2 discusses the performance for the INRIA pedestrian and 

PASCAL VOC 2012 respectively. Subsection 5.3.3 shows the result’s statistical analysis. 

5.3.1 INRIA Pedestrian Dataset 

The proposed FasterRCNN methods generate bounding box with confidence score for the test 

images of the INRIA Pedestrian dataset. Comparing the generated prediction and the 

groundtruth bounding box, DET Curve and P-R Curve are obtained. The DET and P-R Curve 

are shown in Figure 5.6 and Figure 5.7 respectively. The LAMR and AP values are given in 

Table 5.4. The proposed Faster R-CNN(DCResNet) method has achieved a minimum LAMR 

and AP improvement of 8.18% and 5.81% respectively when compared to the Faster R-CNN 

methods. And it has achieved a minimum LAMR and AP improvement of 2.48% and 2.97% 

respectively when compared to the YOLOv2 and YOLOv3 methods. The proposed Faster R-

CNN(MF2ResNet) method has achieved a minimum LAMR and AP improvement of 16.58% 

and 11.41% respectively when compared to the Faster R-CNN methods. And it has achieved a 

minimum LAMR and AP improvement of 10.88% and 8.57% respectively when compared to 

the YOLOv2 and YOLOv3 methods. Some sample output images for Faster R-

CNN(DCResNet) and Faster RCNN(MF2ResNet) are shown in Figure 5.8 and Figure 5.9 

respectively. 
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Figure 5.6 DET Curve for INRIA Pedestrian Dataset 
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Figure 5.7 P-R Curve for INRIA Pedestrian Dataset 

Table 5.4 LAMR and AP values for INRIA Pedestrian Dataset 

LAMR AP

FasterRCNN(AlexNet) 60.63 48.74

FasterRCNN(ResNet18) 43.33 69.99

FasterRCNN(SqueezeNet) 84.60 22.48

FasterRCNN(MobileNetv2) 55.83 57.21

YOLOv2(AlexNet) 77.83 33.27

YOLOv2(ResNet18) 51.14 60.44

YOLOv2(SqueezeNet) 37.63 72.83

YOLOv2(MobileNetv2) 72.11 40.35

YOLOv3 46.06 61.14

SSD 62.19 59.86

FasterRCNN(DCResNet) 35.15 75.80

FasterRCNN(MF2ResNet) 26.75 81.40

Methods INRIA 

 

 

Figure 5.8 Sample INRIA Pedestrian output images with score and bounding boxes for the 

Proposed Faster R-CNN(DCResNet) 
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Figure 5.9 Sample INRIA Pedestrian output images with score and bounding boxes 

for the Proposed Faster R-CNN(MF2ResNet) 

 

5.3.2 PASCAL VOC 2012 Dataset 

The proposed FasterRCNN methods predicts the bounding box with confidence score for the 

PASCAL VOC 2012 test images. The generated prediction and the groundtruth bounding box 

are compared to yield the DET Curve and P-R Curve. The DET and P-R Curve are shown in 

Figure 5.10 and Figure 5.11 respectively. The LAMR and AP values are given in Table 5.5. 

The proposed Faster R-CNN(DCResNet) has achieved a minimum LAMR and AP 

improvement of 2.89% and 5.22% respectively when compared to the Faster RCNN methods. 

And it has achieved a minimum LAMR and AP improvement of 1.63% and 1.71% respectively 

when compared to the YOLOv2 and YOLOv3 methods. The proposed Faster R-

CNN(MF2ResNet) has achieved a minimum LAMR and AP improvement of 1.57% and 3.29% 

respectively when compared to the Faster RCNN methods. And it has achieved a minimum 

LAMR and AP improvement of 0.31% and 0.38% respectively when compared to the YOLOv2 

and YOLOv3 methods. Some sample output images for Faster R-CNN(DCResNet) and Faster 

R-CNN(MF2ResNet) are shown in Figure 5.12 and Figure 5.13 respectively. 

 

5.3.3 Statistical Analysis 

In this work, 11(k) independent variables or the detection methods and 2(N) datasets are 

involved. The rank table for Faster R-CNN(DCResNet) and Faster R-CNN(MF2ResNet) are 

given in Table 5.6 and Table 5.7 respectively. 



65 
 

10
-4

10
-3

10
-2

10
-1

10
0

10
1

False Positive Per Image

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

is
s

 R
a

te
72.89% FasterRCNN(AlexNet)

64.68% FasterRCNN(ResNet18)

93.37% FasterRCNN(SqueezeNet)

63.57% FasterRCNN(MobileNetv2)

76.61% YOLOv2(AlexNet)

62.31% YOLOv2(ResNet18)

65.61% YOLOv2(SqueezeNet)

63.24% YOLOv2(MobileNetv2)

67.61% YOLOv3

90.54% SSD

60.68% FasterRCNN(DCResNet)

62.00% FasterRCNN(MF2ResNet)

 

Figure 5.10 DET Curve for PASCAL VOC 2012 Dataset 
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Figure 5.11 P-R Curve for PASCAL VOC 2012 Dataset 

Table 5.5 LAMR and AP values for PASCAL VOC 2012 Dataset 

LAMR AP

FasterRCNN(AlexNet) 72.89 36.30

FasterRCNN(ResNet18) 64.68 48.54

FasterRCNN(SqueezeNet) 93.37 5.52

FasterRCNN(MobileNetv2) 63.57 50.67

YOLOv2(AlexNet) 76.61 31.97

YOLOv2(ResNet18) 62.31 53.58

YOLOv2(SqueezeNet) 65.61 51.64

YOLOv2(MobileNetv2) 63.24 51.24

YOLOv3 67.61 43.71

SSD 90.54 13.54

FasterRCNN(DCResNet) 60.68 55.29

FasterRCNN(MF2ResNet) 62.00 53.96

Methods PASCAL VOC 2012
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Figure 5.12 Sample PASCAL VOC 2012 output images with score and bounding 

boxes for the Proposed Faster R-CNN(DCResNet) 

 

 

Figure 5.13 Sample PASCAL VOC 2012 output images with score and bounding 

boxes for the Proposed Faster R-CNN(MF2ResNet) 

 

The proposed methods Faster R-CNN(DCResNet) and Faster R-CNN(MF2ResNet) takes the 

highest rank in the test. For conducting the test, first, the chi-square value is calculated which 

is 16.18. Then the F-distribution is calculated to be 4.235. At the degree of freedom (10,10), 

the critical value of F-distribution with α = 0.05 is 2.978. As the calculated F-distribution is 

greater than the critical F-distribution, the Null Hypothesis is rejected.   
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Table 5.6 Faster R-CNN(DCResNet) F-DISTRIBUTION Test Analysis

Methods r INRIA r PASCAVOC2012 Mean Rank Rank

FasterRCNN(AlexNet) 7 8 7.50 7

FasterRCNN(ResNet18) 3 5 4.00 3

FasterRCNN(SqueezeNet) 11 11 11.00 10

FasterRCNN(MobileNetv2) 6 4 5.00 4

YOLOv2(AlexNet) 10 9 9.50 9

YOLOv2(ResNet18) 5 2 3.50 2

YOLOv2(SqueezeNet) 2 6 4.00 3

YOLOv2(MobileNetv2) 9 3 6.00 6

YOLOv3 4 7 5.50 5

SSD 8 10 9.00 8

FasterRCNN(DCResNet) 1 1 1.00 1  

Table 5.7 Faster R-CNN(MF2ResNet) F-DISTRIBUTION Test Analysis 

Methods r INRIA r PASCAVOC2012 Mean Rank Rank

FasterRCNN(AlexNet) 7 8 7.50 7

FasterRCNN(ResNet18) 3 5 4.00 3

FasterRCNN(SqueezeNet) 11 11 11.00 10

FasterRCNN(MobileNetv2) 6 4 5.00 4

YOLOv2(AlexNet) 10 9 9.50 9

YOLOv2(ResNet18) 5 2 3.50 2

YOLOv2(SqueezeNet) 2 6 4.00 3

YOLOv2(MobileNetv2) 9 3 6.00 6

YOLOv3 4 7 5.50 5

SSD 8 10 9.00 8

FasterRCNN(MF2ResNet) 1 1 1.00 1  

5.4 Observations 

In this chapter, with the two proposed modifications of CNN: ResNet18, which serves as a base 

for Faster R-CNN, the particular observations are given here after applying on two datasets. 

• As the feature map is formed by the concatenation of the processed output feature map 

of the proposed networks, it enabled a thorough feature extraction process to give a 

detailed hierarchical representation of the image.  

• The proposed methods have shown substantial improvement on both benchmark 

datasets INRIA Pedestrian and PASCAL VOC 2012.  

• The proposed methods have yielded the least LAMR and greatest AP when compared 

to Faster R-CNN, YOLOv2, YOLOv3, and SSD detection methods for both the 

datasets. 
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Chapter 6 

YOLO based on DarkNet: Depth-wise Separable, Inception 

Depth-wise & Fire and SqueezeNet: Multiscale-Multilevel 

for Pedestrian Detection 
An important aspect in the task of pedestrian detection is generation of region proposals from 

the input image. In previous contribution, the two-stage detection network: Faster RCNN was 

employed. The Faster R-CNN involved more computation overhead as it performed bounding 

box generation and classification in separate pipeline. To address this shortcoming, in this 

work, the single-stage network is used which performs the bounding box and classification in 

a single pipeline. This reduces the computation overhead and also saves the execution time. In 

this chapter, three base networks: YOLOv2(DarkNet19), YOLOv2(DarkNet53) and 

YOLOv3(SqueezeNet) are used. To increase the detection rate of the network, we have focused 

on enhancing the feature extraction network. As the feature map of only one (topmost) level is 

used; it can be further enhanced by also considering features from different levels of the base 

network. Techniques such as fire modules, inception modules and depth-wise separable 

convolution modules are incorporated within the base networks to assist in yielding a more 

detailed feature. The proposed YOLOv2 methods are named Depth-wiseSeparableModule-

InceptionDepthwiseModule-YOLO (DSM-IDM-YOLO), InceptionDepth-wiseYOLOv2 and 

FireYOLOv2. The proposed YOLOv3 is method is named Multiscale-Multilevel-

SqueezeNetYOLOv3 (MS-ML-SNYOLOv3).  

6.1 Introduction 

6.1.1 Depth-wise Separable Convolution Module  

A depth-wise separable convolution consists of a) depth-wise convolution, followed by b) 

convolution of size 1×1. In the depth-wise convolution, each filter, of size h×h, will have one 

channel, i.e., h×h×1. Here, unlike the convolution of h×h×D, where D is the number of channels 

or depth, the D kernels are applied separately. Each D kernel convolves with one channel of 

the input feature map (of size H×W×D). To get the output feature map, the (H-h+1)×(W-

h+1)×1 map are stacked together to form a depth of D. The second step of applying a 1×1 

convolution is to increase the depth of the feature map which is obtained. Lastly, N number of 

1×1×D convolutions are applied to get the final feature map of (H-h+1)×(W-h+1)×N. The 

overall process of depthwise separable convolution is shown in Figure 6.1. 



69 
 

× N

N

H

W
D

W-h+1

H-h+1H-h+1

W-h+1 D

h

h

 

Figure 6.1 The overall feature map formation in Depth-wise Separable Convolution 

 

6.1.2 Inception Module 
A traditional inception module captures the features by using receptive fields of various sizes. 

The varying receptive fields are helpful in not missing out on any of the features of the object. 

The structure is shown in Figure 6.2. 
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MaxPool

Feature Map Filter 

Concatenation

 

Figure 6.2 General Idea behind a traditional Inception Module 

6.1.3 Squeeze and Expand Module 
A Fire module comprises a squeeze convolution layer (which has only 1×1 filters), feeding into 

an expand layer that has a mix of 1×1 and 3×3 convolution filters. Its architecture is given in 

Figure 6.3. It serves two purposes:  

• Purpose 1: Replace 3×3 filters with 1×1 filters. This reduces the number of training 

parameters. 

• Purpose 2: Decrease the number of input channels to 3×3 filters. This reduces the 

number of channels which in turn implies less computation. 

The squeeze layer decreases the number of input channels to 3×3 filters. The number of filters 

per fire module is gradually increased from the start to the end of the network. 



70 
 

Squeeze 

Layer 

1×1 Filters

Expand 

Layer

3×3 Filters

Expand 

Layer

1×1 Filters

ReLU

ReLU

Concatenate

 

Figure 6.3 Fire Module 

6.2 Methodology 

In this section, the proposed YOLOv2 and YOLOv3 architecture is described in detail. The 

proposed YOLOv2 methods, i.e., DSM-IDM-YOLO, InceptionDepth-wiseYOLOv2 and 

FireYOLOv2 components are explained in Subsection 6.2.1, 6.2.2 and 6.2.3 respectively. The 

proposed YOLOv3 method, i.e., MS-ML-SNYOLOv3 architecture is explained in Subsection 

6.2.4.  

6.2.1 Depth-wiseSeparableModule-InceptionDepthwiseModule-YOLO  

The proposed Depth-wiseSeparableModule-InceptionDepthwiseModule-YOLO is described 

in five components: Feature Blocks, Fusion, Depth-wise Separable Module I, Depth-wise 

Separable Module II and Inception Depth-wise Module, in this section. 

• Feature Blocks: The DarkNet19 is divided into 6 blocks according to the output feature 

map which is of sizes 256×256×32, 128×128×64, 64×64×128, 32×32×256, 16×16×512 

and 8×8×1024. The last three blocks are taken for the next component processing.  The 

purpose here is to process the feature maps at different scales to capture more 

information about the presence of an object in the image. The representation of these 

blocks is shown in Figure 6.4. 

• Fusion: The output from the three feature blocks is to be concatenated depthwise to 

form a feature map. However, as the feature maps differ in size, feature block four is 

applied with a MaxPool layer to yield a 16×16×256 feature map. Next, the output of 

feature block six is applied with a Rescale layer to generate a 16×16×1024 feature map. 

Then, the depth concatenation layer fuses the three feature maps, i.e., 16×16×256, 
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16×16×512, and 16×16×1024. The output size of this layer is 16×16×1792. The 

resultant feature is a detailed feature map from different scales. This process is shown 

under the ‘Fusion’ part of Figure 6.4. 

• Depth-wise Separable Module I: This module takes the fused feature map of size 

16×16×1792. The feature is applied with a group of 3×3×1 depth-wise convolution 

followed by a 1×1 convolution which projects or reduces the feature map. This step is 

done to reduce the dimension before going for further processing. The feature map is 

then processed again by a group of 3×3×1 depth-wise convolution. This action is 

preceded by a 1×1 convolution which expands the feature map and followed by a 1×1 

convolution which projects the feature map. This expansion of feature map before a 

3×3 convolution operation facilitates a detailed feature calculation. A skip connection 

is made in the network by adding the two projected convolution feature map. The output 

of this module is a feature map of size 16×16×896. This process is represented in Figure 

6.5. 

• Depth-wise Separable Module II: This module follows the depth-wise separable 

module I. The input here is a 16×16×896 feature map. The feature map is expanded and 

is followed by a group of 3×3×1 depth-wise convolution, which yields a detailed feature 

map. The resultant feature map is projected to reduce the dimension of the feature map. 

Here, a skip connection is made by adding the input and the projected feature map. The 

output of this module is a feature map of size 16×16×896. This process is shown in 

Figure 6.6.  

• Inception Depth-wise Module: This module follows the depth-wise separable module 

II. In this module, three different depth-wise convolutions are applied. As some features 

can be missed by a receptive field and captured by another receptive field, three 

receptive fields are considered in the depth-wise convolution. They are a group of 

1×1×1, 3×3×1, and 5×5×1 depth-wise convolution. These are preceded by 1×1 

reducers. The inception depth-wise module yields a comprehensive feature map 

wherein various receptive fields are considered. The output of this module is a feature 

map of size 16×16×1280. This process is shown in Figure 6.7. 

The DSM-IDM-YOLO provides rich hierarchical feature information owing to the depth-wise 

separable convolution and inception depth-wise convolution modules applied to fused feature 

maps from different levels of the network. In addition, a dropout layer (50%) is added at the 

end to avoid overfitting as the resultant feature map is quite dense. The detailed architecture is 
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shown in Figure 6.4. Table 6.1 shows the DSM-IDM-YOLO feature formation layers 

characteristics. There are 32 layers in this network. 
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Figure 6.4 Block Diagram of the Proposed DSM-IDM-YOLO 
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Figure 6.5 Block Diagram of Depth-wise Separable Module I of DSM-IDM-YOLO 
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Figure 6.6 Block Diagram of Depth-wise Separable Module II of DSM-IDM-YOLO 
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Figure 6.7 Block Diagram of Inception Depth-wise Module of DSM-IDM-YOLO 

6.2.2 InceptionDepth-wiseYOLOv2 

In this work, an inception module involving depth-wise convolution is proposed: 

a) The input feature map goes through dimension reduction. The dimension 

reduction is applied in different ratios for the 1×1, 3×3, and 5×5 receptive fields. 

b) The feature map is applied with the depth-wise convolutions.  

c) A batch normalization and ReLu Layer are added after both the reducer convolution 

layer and dept-wise convolution layer. 

d) The feature maps are concatenated channel-wise to get the output. 

The overall process is shown in Figure 6.8. The proposed InceptionDepth-wiseYOLOv2 is 

based on this idea.  
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Figure 6.8 Idea behind the Proposed Inception Depth-wise Convolution Module 
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Table 6.1 DSM-IDM-YOLO Feature Layers architecture and       

characteristics

Layer Name Filter 

Size/Stride

Channels Input Layer Output   

Size

Input 256×256×3

Conv1 3×3/1 32 Input 256×256×32

Maxpool_1 2×2/2 Conv1 128×128×32

Conv2 3×3/1 64 Maxpool_1 128×128×64

Maxpool_2 2×2/2 Conv2 64×64×64

Conv3 1×1/1 128 Maxpool_2 64×64×128

Conv4 3×3/1 64 Conv3 64×64×64

Conv5 1×1/1 128 Conv4 64×64×128

Maxpool_3 2×2/2 Conv5 32×32×128

Conv6 1×1/1 256 Maxpool_3 32×32×256

Conv7 3×3/1 128 Conv6 32×32×128

Conv8 1×1/1 256 Conv7 32×32×256

Maxpool_4 2×2/2 Conv8 16×16×256

Conv6 1×1/1 512 Maxpool_4 16×16×512

Conv7 3×3/1 256 Conv6 16×16×256

Conv8 1×1/1 512 Conv7 16×16×512

Conv9 3×3/1 256 Conv8 16×16×256

Conv10 1×1/1 512 Conv9 16×16×512

Maxpool_5 2×2/2 Conv10 8×8×512

Conv11 1×1/1 1024 Maxpool_5 8×8×1024

Conv12 3×3/1 512 Conv11 8×8×512

Conv13 1×1/1 1024 Conv12 8×8×1024

Conv14 1×1/1 512 Conv13 8×8×512

Conv15 3×3/1 1024 Conv14 8×8×1024

AveragePool 3×3/2 Conv8 16×16×256

Rescale Conv15 16×16×1024

AveragePool

Conv10

Rescale

Depth-wiseConv1 3×3/1 1 DepthConcatenationI 16×16×1792

ProjectConv1 1×1/1 896 Depth-wiseConv1 16×16×896

ExpandConv1 1×1/1 1024 ProjectConv1 16×16×1024

Depth-wiseConv2 3×3/1 1 ExpandConv1 16×16×1024

ProjectConv2 1×1/1 896 Depth-wiseConv2 16×16×896

Add_1 ProjectConv1

ProjectConv2

ExpandConv2 1×1/1 1024 Add_2 16×16×1024

Depth-wiseConv3 3×3/1 1 ExpandConv2 16×16×1024

ProjectConv3 1×1/1 896 Depth-wiseConv3 16×16×896

Add_2 Add_1

ProjectConv3

ReducerConv1 1×1/1 512 Add_2 16×16×512

Depth-wiseConv4 3×3/1 1 ReducerConv1 16×16×512

ReducerConv2 1×1/1 512 Add_2 16×16×512

Depth-wiseConv5 1×1/1 1 ReducerConv2 16×16×512

ReducerConv3 1×1/1 256 Add_2 16×16×256

Depth-wiseConv6 5×5/1 1 ReducerConv3 16×16×256

DepthConcatenationII Depth-wiseConv4

Depth-wiseConv5

Depth-wiseConv6

16×16×896

Fusion

Depth-

wise 

Separable 

Module I

Depth-

wise 

Separable 

Module II

16×16×1280

Inception 

Depth-

wise 

Module

16×16×1792

DepthConcatenationI

16×16×896
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The Proposed InceptionDepth-wiseYOLOv2 

The InceptionDepth-wiseYOLOv2 architecture flow can be explained with the following three 

components: Feature Map Blocks, Inception Depth-wise Convolution Module and Feature 

Fusion, in this section. 

• Feature Map Blocks: The DarkNet53 is divided into five blocks according to the output 

feature map, which is of sizes 256×256×3, 128×128×64, 64×64×128, 32×32×256, 

16×16×512, and 8×8×1024. The last three blocks are taken for the subsequent 

component processing.  The purpose here is to process the feature maps at different 

scales to capture more information about the presence of an object in the image. The 

representation of these blocks is shown in Figure 6.9. 

• Inception Depth-wise Convolution Module: In this module, three depth-wise 

convolutions with different receptive fields are applied. Some features can be missed 

by a receptive field and captured by another receptive field; three receptive fields are 

considered in the depth-wise convolution. They are a group of 1×1×1, 3×3×1, and 

5×5×1 depth-wise convolution. Convolution of 1×1 dimension reducers precedes these. 

The inception depth-wise module yields a comprehensive feature map wherein various 

receptive fields are considered. The dimension reducers for the receptive fields 1×1, 

3×3, and 5×5 are in the ratio of 2:2:1. The output feature map of modules I, II, and III 

are 32×32×256, 16×16×512, and 8×8×1024, as shown in Figure 6.9.       

• Feature Fusion: The output from the three inception depth-wise convolution modules 

is concatenated channel-wise to form a feature map. However, as the feature maps differ 

in size, the output of inception depth-wise convolution module I is applied with a 

MaxPool layer to yield a 16×16×256 feature map. The inception depth-wise 

convolution module III output is applied with a Rescale layer to yield a 16×16×1024 

feature map. The depth concatenation layer fuses the three feature maps, i.e., 

16×16×256, 16×16×512, and 16×16×1024. The output size of this layer is 

16×16×1792. The resultant feature is a detailed feature map from different scales. This 

process is shown under the ‘Feature Fusion’ part of Figure 6.9. 

The InceptionDepth-wiseYOLOv2 provides rich hierarchical feature information owing to 

the inception depth-wise convolution modules applied at different levels of the network. In 

addition, a dropout layer (50%) is added at the end to avoid overfitting as the resultant feature 

map is quite dense. The resultant feature map is then processed by YOLOv2 Detection Layers. 
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The detailed architecture is shown in Figure 6.9. Table 6.2 shows the InceptionDepth-

wiseYOLOv2 feature formation layers characteristics.  
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Figure 6.9 Block Diagram of InceptionDepth-wiseYOLOv2 

 

6.2.3 FireYOLOv2 

The FireYOLOv2 architecture flow can be explained with three components: Feature Blocks, 

Fire Modules and Fusion, in this section. A lightweight version of the proposed network is also 

given. 

• Feature Blocks: The DarkNet53 is divided into 5 blocks according to the output feature 

map which is of sizes 256×256×3, 128×128×64, 64×64×128, 32×32×256, 16×16×512 and 

8×8×1024. The last three blocks are taken for the next component processing.  The purpose 

here is to process the feature maps at different scales to capture more information about 

the presence of an object in the image.  
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Table 6.2 InceptionDepth-wiseYOLOv2 Feature Layers architecture and characteristics 

 

Proposed

Modification

Layer Name Filter 

Size/Stride

Channels Input                         

Layer

Output        

Size

Input 256×256×3

conv1 3×3/1 32 Input 256×256×32

conv2 3×3/2 64 conv1 128×128×64

conv3 1×1/1 32 conv2 128×128×32

conv4 3×3/1 64 128×128×64

Residual_1 128×128×64

conv5 3×3/2 128 Residual_1 64×64×128

conv6 1×1/1 64 conv5 64×64×64

conv7 3×3/1 128 64×64×128

Residual_2 64×64×128

conv10 3×3/2 256 Residual_2 32×32×256

conv11 1×1/1 128 conv10 32×32×128

conv12 3×3/1 256 32×32×256

Residual_3 32×32×256

conv27 3×3/2 512 Residual_3 16×16×512

conv28 1×1/1 256 conv27 16×16×256

conv29 3×3/1 512 16×16×512

Residual_4 16×16×512

conv44 3×3/2 1024 Residual_4 8×8×1024

conv45 1×1/1 512 conv44 8×8×512

conv46 3×3/1 1024 8×8×1024

Residual_5 8×8×1024

ReducerConv1_3×3 1×1/1 102 Residual_3 32×32×102

Depth-wiseConv1_3 3×3/1 1 ReducerConv1_3×3 32×32×102

ReducerConv1_5×5 1×1/1 52 Residual_3 32×32×52

Depth-wiseConv1_5 5×5/1 1 ReducerConv1_5×5 32×32×52

ReducerConv1_1×1 1×1/1 102 Residual_3 32×32×102

Depth-wiseConv1_1 1×1/1 1 ReducerConv1_1×1 32×32×102

DepthConcatenationI Depth-wiseConv1_3

Depth-wiseConv1_5

Depth-wiseConv1_1

ReducerConv2_3×3 1×1/1 205 Residual_4 16×16×205

Depth-wiseConv2_3 3×3/1 1 ReducerConv2_3×3 16×16×205

ReducerConv2_5×5 1×1/1 102 Residual_4 16×16×102

Depth-wiseConv2_5 5×5/1 1 ReducerConv2_5×5 16×16×102

ReducerConv2_1×1 1×1/1 205 Residual_4 16×16×205

Depth-wiseConv2_1 1×1/1 1 ReducerConv2_1×1 16×16×205

DepthConcatenationII Depth-wiseConv2_3

Depth-wiseConv2_5

Depth-wiseConv2_1

ReducerConv3_3×3 1×1/1 410 Residual_5 8×8×410

Depth-wiseConv3_3 3×3/1 1 ReducerConv3_3×3 8×8×410

ReducerConv3_5×5 1×1/1 204 Residual_5 8×8×204

Depth-wiseConv3_5 5×5/1 1 ReducerConv3_5×5 8×8×204
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• Fire Modules: Three fire modules are attached to the output of the last three blocks. The 

squeeze convolution filters and the expand convolution filters are in the ratio of 0.125. In 

the expand section, 50% of filters are of size 3×3. The expand section’s 1×1 and 3×3 conv 

filters are depth concatenated to get the output. The size of the output feature map of 

FireModule1, FireModule2 and FireModule3 is 32×32×256, 16×16×512 and 8×8×1024 

respectively.  The purpose of these fire modules is to apply more conv filters on the input 

feature maps to get a more fine-tuned output. The squeeze layer helps in reducing the 

dimension and the expand layer’s role is to process the filters with more conv filters with 

receptive fields 1×1 and 3×3. 

• Fusion: The output from the three fire modules is to be concatenated depthwise to form a 

feature map. However, as the feature maps differ in size; the output of fire module 1 is 

applied with a MaxPool layer to yield a 16×16×256 feature map. The output of fire module 

3 is applied with a Transposed Conv layer to yield a 16×16×1024 feature map. The depth 

concatenation layer fuses the three feature maps i.e., 16×16×256, 16×16×512 and 

16×16×1024. The output size of this layer is 16×16×1792. The resultant feature is a 

detailed feature map from different scales.  

The FireYOLOv2 provides rich hierarchical feature information owing to the fire modules 

applied at different levels of the network. A dropout layer (50%) is added at the end to avoid 

overfitting as the resultant feature map is quite dense. The detailed architecture is shown in 

Figure 6.10. Table 6.3 shows the FireYOLOv2 feature formation layers characteristics.   

 

LightWeight FireYOLOv2  

A LightWeight version of FireYOLOv2 is proposed in this work. In this version, the number 

of convolution filters in both the squeeze and expand layers of the fire modules are reduced by 

a factor of 2. Consequently, the output feature map size of FireModule1, FireModule2 and 

FireModule3 are 32×32×128, 16×16×256 and 8×8×512 respectively. Following the same 

procedure for Fusion as in FireYOLOv2, the output feature map is of size 16×16×896.  

6.2.4 Multiscale-Multilevel-SqueezeNetYOLOv3 

The Multiscale-Multilevel-SqueezeNetYOLOv3 architecture flow can be explained with four 

components: The Feature Maps, Squeeze and Expand Blocks, Fusion and YOLOv3 Detection, 

in this section. The hyperparameters associated with this network is also discussed. 

• The Feature Maps: The SqueezeNet base has five feature map divisions. The feature maps 

have dimensions 113×113×64, 56×56×64, 28×28×128, 14×14×256, and 14×14×512 

respectively. There are two, three and four Squeeze and Expand blocks after feature map 2, 
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3, and 4 respectively. The feature map block 2 and 3 i.e., 56×56×64 and 28×28×128 are 

selected for further processing to incorporate it in the detection pipeline. This is done to 

achieve feature details at each level of the network. These details are reflected in the 

‘SqueezeNet’ section of Figure 6.11. 
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Figure 6.10 Block Diagram of FireYOLOv2 

• Squeeze & Expand Blocks: The proposed two Squeeze & Expand blocks process input from 

feature maps 2 and 3. The input goes to a squeeze conv which is of receptive field 1×1. In 

the Expand section, there are 3 conv of receptive field 1×1, 3×3, and 5×5. 50% of the filters 

are allotted to the 1×1 filter in the expand section. The remaining 50% is divided between 

3×3 and 5×5 filters in the ratio of 3:1. The various receptive fields capture the image features 

at different scales. The representation can be seen in the ‘Proposed Modification’ part of 

Figure 6.11.  

• Fusion: The feature map generated from proposed Squeeze & Expand Block 1 and 2 is of 

size 56×56×N1 and 28×28×N2. To fuse these two, they are made into the same size. To 

achieve this task an average pool is applied with stride 2 and size 3×3 upon the feature map 

generated from Block 1. The resultant is a feature map of size 28×28×N1. The next step is to 

apply a depth concatenation on Block 1 and Block 2 feature map, which yields a 28×28×(N1+ 

N2) size feature map. This gives us a combined feature representation of the different levels 
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as well as of the different scale of the network. The representation can be seen in the ‘Fusion’ 

part of Figure 6.11.    

Table 6.3 FireYOLOv2 Feature Layers architecture and characteristics 

Layer Name Filter 

Size/Stride

Channels Input Layer Output Size

Input 256×256×3

conv1 3×3/1 32 Input 256×256×32

conv2 3×3/2 64 conv1 128×128×64

conv3 1×1/1 32 conv2 128×128×32

conv4 3×3/1 64 128×128×64

Residual_1 128×128×64

conv5 3×3/2 128 Residual_1 64×64×128

conv6 1×1/1 64 conv5 64×64×64

conv7 3×3/1 128 64×64×128

Residual_2 64×64×128

conv10 3×3/2 256 Residual_2 32×32×256

conv11 1×1/1 128 conv10 32×32×128

conv12 3×3/1 256 32×32×256

Residual_3 32×32×256

conv_S_1 1×1/1 32 Residual_3 32×32×32

conv_Ex_1_1 1×1/1 128 conv_S_1 32×32×128

conv_Ex_1_2 1×1/1 128 conv_S_1 32×32×128

depthconcat_1 conv_Ex_1_1, 

conv_Ex_1_2 
32×32×256

maxpool 3×3/2 depthconcat_1 16×16×256

conv27 3×3/2 512 Residual_3 16×16×512

conv28 1×1/1 256 conv27 16×16×256

conv29 3×3/1 512 16×16×512

Residual_4 16×16×512

conv_S_2 1×1/1 64 Residual_4 16×16×64

conv_Ex_2_1 1×1/1 256 conv_S_2 16×16×256

conv_Ex_2_2 1×1/1 256 conv_S_2 16×16×256

depthconcat_2 conv_Ex_2_1, 

conv_Ex_2_2 
16×16×512

conv44 3×3/2 1024 Residual_4 8×8×1024

conv45 1×1/1 512 conv44 8×8×512

conv46 3×3/1 1024 8×8×1024

Residual_5 8×8×1024

conv_S_3 1×1/1 128 Residual_4 8×8×128

conv_Ex_3_1 1×1/1 512 conv_S_3 8×8×512

conv_Ex_3_2 1×1/1 512 conv_S_3 8×8×512

depthconcat_3 conv_Ex_3_1, 

conv_Ex_3_2 
8×8×512

transposedConv 3×3/2 depthconcat_3 16×16×512

depthconcat_4 depthconcat_1, 

depthconcat_2, 

depthconcat_3

16×16×1792

droupout depthconcat_4 16×16×1792

Fire Module-3

1×

2×

8×

8×

4×

Fire Module-1

Fire Module-2

 
 



81 
 

• YOLOv3 Detection:  The YOLOv3 detection uses two feature maps. First, the Feature Map 

Block 5 of size 14×14×512. This is converted to 14×14×256 by detection conv 1 and then to 

the output tensor 14×14×18. The second feature map is taken by concatenating the Fused 

result with detection conv 1. To complete this step, the detection conv 1 is upsampled to 

28×28×256 and then depth concatenated with the Fused result of 28×28×(N1+ N2). The 

resultant is a feature map of 28×28×(N1+ N2+256). This is converted to 28×28×128 by 

detection conv 2 and lastly, the output tensor 28×28×18 is yielded. The representation can 

be seen in the ‘YOLOv3 Detection’ part of Figure 6.11. 

 
Figure 6.11 Block Diagram of the Proposed MS-ML-SNYOLOv3. The modification made are 

shown in the ‘Proposed Modification’ section 

Hyperparameters 

• It is to be noted that the filter distribution in Expand section is made in the ratio of 0.5, 0.375 

and 0.125 for 1×1, 3×3, and 5×5 respectively. The number of filters in Squeeze section of 

P1 and P2 blocks are represented by M1 and M2 respectively. And for the expand section 

they are represented by N1 and N2 respectively.   

• The ratio of the filters between Expand and Squeeze section i.e., between N1 and M1 & N2 

and M2 can be varied according to the requirement. In simple small datasets, the ratio can be 

less while in complex and large datasets, the ratio can be more to avoid overfitting and 

underfitting respectively. 
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Table 6.4 Layers and Feature Map characteristics of proposed MS-ML-SNYOLOv3 

Layer Name Filter 

Size/Stride

Channels Input Layer Output        

Size

Input 227×227×3

Conv1 3×3/2 64 Input 113×113×64

MaxPool1 3×3/2 Conv1 56×56×64

SqueezeConv1 1×1/1 16 MaxPool1 56×56×16

ExpandConv1_1×1 1×1/1 64 SqueezeConv1 56×56×64

ExpandConv1_3×3 3×3/1 64 SqueezeConv1 56×56×64

DepthConcat1 ExpandConv1_1×1

ExpandConv1_3×3

SqueezeConv2 1×1/1 16 DepthConcat1 56×56×16

ExpandConv2_1×1 1×1/1 64 SqueezeConv2 56×56×64

ExpandConv2_3×3 3×3/1 64 SqueezeConv2 56×56×64

DepthConcat2 ExpandConv2_1×1

ExpandConv2_3×3

MaxPool2 3×3/2 DepthConcat2 28×28×128

SqueezeConv3 1×1/1 32 MaxPool2 28×28×32

ExpandConv3_1×1 1×1/1 128 SqueezeConv3 28×28×128

ExpandConv3_3×3 3×3/1 128 SqueezeConv3 28×28×128

DepthConcat3 ExpandConv3_1×1

ExpandConv3_3×3

SqueezeConv4 1×1/1 32 DepthConcat3 28×28×32

ExpandConv4_1×1 1×1/1 128 SqueezeConv4 28×28×128

ExpandConv4_3×3 3×3/1 128 SqueezeConv4 28×28×128

DepthConcat4 ExpandConv4_1×1

ExpandConv4_3×3

MaxPool3 3×3/2 DepthConcat4 14×14×128

SqueezeConv5 1×1/1 48 MaxPool3 14×14×48

ExpandConv5_1×1 1×1/1 192 SqueezeConv5 14×14×192

ExpandConv5_3×3 3×3/1 192 SqueezeConv5 14×14×192

DepthConcat5 ExpandConv5_1×1

ExpandConv5_3×3

SqueezeConv6 1×1/1 48 DepthConcat5 14×14×48

ExpandConv6_1×1 1×1/1 192 SqueezeConv6 14×14×192

ExpandConv6_3×3 3×3/1 192 SqueezeConv6 14×14×192

DepthConcat6 ExpandConv6_1×1

ExpandConv6_3×3

SqueezeConv7 1×1/1 64 DepthConcat6 14×14×64

ExpandConv7_1×1 1×1/1 256 SqueezeConv7 14×14×256

ExpandConv7_3×3 3×3/1 256 SqueezeConv7 14×14×256

DepthConcat7 ExpandConv7_1×1

ExpandConv7_3×3

SqueezeConv8 1×1/1 64 DepthConcat7 14×14×64

ExpandConv8_1×1 1×1/1 256 SqueezeConv8 14×14×256

ExpandConv8_3×3 3×3/1 256 SqueezeConv8 14×14×256

DepthConcat8 ExpandConv8_1×1

ExpandConv8_3×3

SqueezeConvP1 1×1/1 32 DepthConcat2 56×56×32

ExpandConvP1_1×1 1×1/1 192 SqueezeConvP1 56×56×192

ExpandConvP1_3×3 3×3/1 144 SqueezeConvP1 56×56×144

ExpandConvP1_5×5 5×5/1 48 SqueezeConvP1 56×56×48

DepthConcatP1 ExpandConvP1_1×1

ExpandConvP1_3×3

ExpandConvP1_5×5

AveragePool 3×3/2 DepthConcatP1 28×28×384

SqueezeConvP2 1×1/1 48 DepthConcat4 28×28×48

ExpandConvP2_1×1 1×1/1 288 SqueezeConvP1 28×28×288

ExpandConvP2_3×3 3×3/1 216 SqueezeConvP1 28×28×216

ExpandConvP2_5×5 5×5/1 72 SqueezeConvP1 28×28×72

DepthConcatP2 ExpandConvP1_1×1

ExpandConvP1_3×3

ExpandConvP1_5×5

Conv1Detection1 3×3/1 256 DepthConcat8 14×14×256

OutputTensor1 1×1/1 18 Conv1Detection1 14×14×18

Upsample 2 Conv1Detection1 28×28×256

DepthConcatDetection DepthConcatP1

DepthConcatP2

Upsample

Conv1Detection2 3×3/1 128 DepthConcatDetection 28×28×128

OutputTensor2 1×1/1 18 Conv1Detection1 28×28×18

28×28×1216

Squeeze 
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6.3 Experimental Results and Discussion 

The proposed YOLOv2 methods i.e., DSM-IDM-YOLO, InceptionDepth-wiseYOLOv2 and 

FireYOLOv2 are evaluated using three standard pedestrian datasets, INRIA Pedestrian dataset, 

PASCAL VOC 2012 dataset and Caltech Pedestrian dataset. The proposed methods are 

compared against four state-of-the-art detection methods, i.e., FasterRCNN, YOLOv2, 

YOLOv3, and SSD. Nine different base networks are considered for YOLOv2 for comparison 

of results. They are AlexNet, ResNet18, ResNet50, Inceptionv3, Xception, SquuezeNet, 

MobileNetv2, DarkNet19 and DarkNet53. For the three datasets, per-image evaluation is 

employed. For INRIA, training parameters such as batch size is set to 8, the learning rate 10-4, 

the number of epochs to 30 and the number of anchors is 4. Whereas for PASCAL VOC 2012, 

training parameters such as batch size is set to 16, the learning rate 10-4, the number of epochs 

to 30 and the number of anchors is 4. Caltech pedestrian dataset is trained with batch size 8 and 

learning rate 10-4 for 50 epochs with 6 anchors. The optimizer used is adam for training in all 

the datasets.  

The proposed YOLOv3 method i.e., MS-ML-SNYOLOv3 is evaluated using two standard 

pedestrian datasets, the INRIA Pedestrian dataset and the Caltech Pedestrian dataset. The 

proposed method is compared against state-of-the-art methods i.e., FasterRCNN, YOLOv2, 

and YOLOv3 with various base networks and SSD. In YOLOv2, base networks AlexNet, 

ResNet18, ResNet50, Inceptionv3, Xception, SqueezeNet, MobileNetV2, DarkNet19, and 

DarkNet53 are considered. For YOLOv3, two base networks, ResNet18 and SqueezeNet are 

considered. For the INRIA Pedestrian dataset, the training hyperparameters such as batch size, 

the learning rate, the number of epochs, and the number of anchors is set to 16, 10-3, 70, and 6 

respectively. For the Caltech Pedestrian dataset, the training hyperparameters batch size, the 

learning rate, the number of epochs, and the number of anchors is set to 16, 10-3, 100, and 6 

respectively. The ratio of the filters between expand and squeeze section is 8 and 12 

respectively for INRIA and Caltech Pedestrian dataset. SGDM optimizer was used to train the 

datasets. 

The model is trained using NVIDIA Geforce RTX 2070 16GB GPU on MATLAB R2021a. 

The prediction of models is yielded in a bounding box format. Subsection 6.3.1, 6.3.2 and 6.3.3 

show the comparison for the proposed methods with INRIA Pedestrian dataset, PASCAL VOC 

2012 dataset and Caltech Pedestrian dataset respectively. Section 6.3.4 shows the statistical test 

analysis for the proposed methods.   
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6.3.1 INRIA Pedestrian Dataset 

Proposed YOLOv2 Methods  

The proposed YOLOv2 methods generate bounding box and confidence score. This is 

compared with the groundtruth values to yield the DET Curve and P-R Curve. The DET Curve 

and P-R Curve for the YOLOv2 methods are shown in Figure 6.12 and Figure 6.13 

respectively. The corresponding LAMR and AP values are shown in Table 6.5. The proposed 

DSM-IDM-YOLO has achieved the least miss rate and highest precision with 27.68% and 

79.84%, respectively. A minimum improvement of 2.97% and 5.74% is attained by DSM-

IDM-YOLO w.r.t. LAMR and AP, respectively. Some sample groundtruth and output images 

for comparison is shown in Figure 6.14. The proposed InceptionDepth-wiseYOLOv2 has 

achieved the least miss rate and highest precision with 21.92% and 82.95%, respectively. A 

minimum improvement of 8.73% and 7.51% is attained by InceptionDepth-wiseYOLOv2 

w.r.t. LAMR and AP, respectively. Some sample groundtruth and output images for 

comparison is shown in Figure 6.15. The proposed FireYOLOv2 has achieved the least miss 

rate and highest precision with 19.60% and 85.27% respectively. LightWeight FireYOLOv2 

has the second least miss rate of 26.30% and second highest precision of 82.45%. An 

improvement of 11.05% and 9.83% is attained by FireYOLOv2 w.r.t. LAMR and AP 

respectively whereas for LightWeight FireYOLOv2 an improvement of 4.35% and 7.01% 

respectively is gained. Some sample groundtruth and output images for comparison is shown 

in Figure 6.16. 

 

Scale Analysis 

The INRIA Pedestrian dataset is dominated by pedestrians of ‘Large’ scale i.e., height > 80. 

On evaluation of the height of the predicted pedestrians the following observation are noted. 

The Scale Analysis is represented in Figure 6.17. 

• The DSM-IDM-YOLO detects the third greatest number of ‘Large’ scale pedestrians 

which is 485. 

• The InceptionDepth-wiseYOLOv2 detects the second greatest number of ‘Large’ scale 

pedestrians, which is 496.  

• The FireYOLOv2 detects the greatest number of ‘Large’ scale pedestrians which is 512. 
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Figure 6.12 DET Curve of INRIA Pedestrian Dataset for YOLOv2 Methods 
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Figure 6.13 P-R Curve of INRIA Pedestrian Dataset for YOLOv2 Methods 

Table 6.5 LAMR and AP values of INRIA Pedestrian Dataset for YOLOv2 Methods 

LAMR AP

FasterRCNN 34.78 74.19

YOLOv2(AlexNet) 77.83 33.27

YOLOv2(ResNet18) 51.14 60.44

YOLOv2(ResNet50) 72.69 39.86

YOLOv2(Inceptionv3) 66.82 48.04

YOLOv2(Xception) 45.25 68.25

YOLOv2(SqueezeNet) 37.63 72.83

YOLOv2(MobileNetv2) 72.11 40.35

YOLOv2(DarkNet19) 44.86 66.47

YOLOv2(DarkNet53) 34.89 72.67

YOLOv3 30.65 75.44

SSD 62.19 59.86

Proposed DSM-IDM-YOLO 27.68 79.84

Proposed InceptionDepth-wiseYOLOv2 21.92 82.95

Proposed FireYOLOv2 19.60 85.27

LightWeight FireYOLOv2 26.30 82.45

Methods INRIA
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Figure 6.14 INRIA Pedestrian Dataset. Bounding box (L-R) Groundtruth and predicted by 

YOLOv2(DarkNet19) and Proposed DSM-IDM-YOLO 

 

 
Figure 6.15 INRIA Pedestrian Dataset. Bounding box (L-R) Groundtruth and predicted by 

YOLOv2(DarkNet19), YOLOv2(DarkNet53) and Proposed InceptionDepth-wiseYOLOv2 

 

 
Figure 6.16 INRIA Pedestrian Dataset. Bounding box (L-R) Groundtruth and predicted by 

YOLOv2(DarkNet19), YOLOv2(DarkNet53) and Proposed FireYOLOv2 
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Figure 6.17 Scale Analysis of INRIA Pedestrian Dataset for YOLOv2 Methods 

Proposed YOLOv3 Method 

The proposed YOLOv3 method generates bounding box along with respective confidence 

score. When these are compared with the groundtruth values the DET Curve and P-R Curve 

are yielded. The DET Curve and P-R Curve for the YOLOv3 methods are shown in Figure 

6.18 and Figure 6.19 respectively. The corresponding LAMR and AP values are shown in Table 

6.6. The proposed MS-ML-SNYOLOv3 obtains a LAMR of 28.36% and AP of 76.89%. It has 

achieved a minimum performance gain of 2.29% and 1.45% in miss rate and precision 

respectively.    
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Figure 6.18 DET Curve of INRIA Pedestrian Dataset for YOLOv3 Method 
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Figure 6.19 P-R Curve of INRIA Pedestrian Dataset for YOLOv3 Method 

Table 6.6 LAMR and AP values of INRIA Pedestrian Dataset for YOLOv3 Method 

 

6.3.2 PASCAL VOC 2012 Dataset 

Proposed YOLOv2 Methods  

The proposed YOLOv2 methods predicts the bounding boxes along with respective confidence 

scores. On comparison with the groundtruth values the DET Curve and P-R Curve are obtained. 

The DET Curve and P-R Curve for the YOLOv2 methods are shown in Figure 6.20 and Figure 

6.21 respectively. The corresponding LAMR and AP values are shown in Table 6.7. The 

proposed DSM-IDM-YOLO has achieved the least miss rate and highest precision with 53.13% 

and 66.12%, respectively. A minimum improvement of 0.82% and 1.18% is attained by DSM-

IDM-YOLO w.r.t. LAMR and AP, respectively. Some sample groundtruth and output images 

for comparison is shown in Figure 6.22. The proposed InceptionDepth-wiseYOLOv2 has 

achieved the least miss rate and highest precision with 52.21% and 67.04%, respectively. A 

LAMR AP

FasterRCNN 34.78 74.19

YOLOv2(AlexNet) 77.83 33.27

YOLOv2(ResNet18) 51.14 60.44

YOLOv2(ResNet50) 72.69 39.86

YOLOv2(Inceptionv3) 66.82 48.04

YOLOv2(Xception) 45.25 68.25

YOLOv2(SqueezeNet) 37.63 72.83

YOLOv2(MobileNetv2) 72.11 40.35

YOLOv2(DarkNet19) 44.86 66.47

YOLOv2(DarkNet53) 34.89 72.67

YOLOv3(ResNet18) 41.26 67.55

YOLOv3(SqueezeNet) 30.65 75.44

SSD 62.19 59.86

MS-ML-SNYOLOv3 28.36 76.89

Methods INRIA
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minimum improvement of 1.74% and 2.1% is attained by InceptionDepth-wiseYOLOv2 w.r.t. 

LAMR and AP, respectively. Some sample groundtruth and output images for comparison is 

shown in Figure 6.23. The proposed FireYOLOv2 has achieved the least miss rate and highest 

precision with 50.70% and 68.64% respectively. LightWeight FireYOLOv2 has the second 

least miss rate of 53.23% and second highest precision of 65.88%. An improvement of 3.25% 

and 3.7% is attained by FireYOLOv2 w.r.t. LAMR and AP respectively whereas for 

LightWeight FireYOLOv2 there is a slight improvement of 0.72% and 0.94% respectively. 

Some sample groundtruth and output images for comparison is shown in Figure 6.24. 

 

Scale Analysis: 

The PASCAL VOC 2012 ‘person’ dataset is also dominated by pedestrians of ‘Large’ scale, 

i.e., height > 80. However, pedestrians with ‘Medium’ scale, i.e., 30 < height < 80, and ‘Small’ 

scale, i.e., height < 30 are also present. The scale of the predicted pedestrians is analyzed and 

the following result is observed. The Scale Analysis is represented in Figure 6.25. 

• The DSM-IDM-YOLO detects the greatest number of pedestrians on all scales, 6086 

‘Large’, 230 ‘Medium’ and 2 ‘Small’.  

• The InceptionDepth-wiseYOLOv2 detects the greatest number of pedestrians in all the 

scales, 6179 ‘Large’ and 286 ‘Medium’ and 4 ‘Small’.  

• The FireYOLOv2 detects the greatest number of pedestrians in all the scales which is 

6173 ‘Large’, 293 ‘Medium’ and 3 ‘Small’. 
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Figure 6.20 DET Curve of PASCAL VOC 2012 Dataset for YOLOv2 Methods 

 



90 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

re
c
is

io
n

60.72% FasterRCNN

31.97% YOLOv2(AlexNet)

59.06% YOLOv2(ResNet18)

53.58% YOLOv2(ResNet50)

45.20% YOLOv2(Inceptionv3)

49.59% YOLOv2(Xception)

51.64% YOLOv2(SqueezeNet)

51.24% YOLOv2(MobileNetv2)

60.21% YOLOv2(DarkNet19)

64.94% YOLOv2(DarkNet53)

43.71% YOLOv3

13.54% SSD

66.12% Proposed DSM-IDM-YOLO

67.04% Proposed InceptionDepth-wiseYOLOv2

68.64% Proposed FireYOLOv2

65.88% LightWeight FireYOLOv2

 

Figure 6.21 P-R Curve of PASCAL VOC 2012 Dataset for YOLOv2 Methods 

Table 6.7 LAMR and AP values of PASCAL VOC 2012 Dataset for YOLOv2 Methods 

LAMR AP

FasterRCNN 55.58 60.72

YOLOv2(AlexNet) 76.61 31.97

YOLOv2(ResNet18) 57.26 59.06

YOLOv2(ResNet50) 62.31 53.58

YOLOv2(Inceptionv3) 67.82 45.20

YOLOv2(Xception) 66.04 49.59

YOLOv2(SqueezeNet) 65.61 51.64

YOLOv2(MobileNetv2) 63.24 51.24

YOLOv2(DarkNet19) 56.16 60.21

YOLOv2(DarkNet53) 53.95 64.94

YOLOv3 67.61 43.71

SSD 90.54 13.54

Proposed DSM-IDM-YOLO 53.13 66.12

Proposed InceptionDepth-wiseYOLOv2 52.21 67.04

Proposed FireYOLOv2 50.70 68.64

LightWeight FireYOLOv2 53.23 65.88

Methods PASCAL VOC 2012

 

 

 

Figure 6.22 PASCAL VOC 2012 Dataset. Bounding box (L-R) Groundtruth and predicted by 

YOLOv2(DarkNet19) and Proposed DSM-IDM-YOLO 
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Figure 6.23 PASCAL VOC 2012 Dataset. Bounding box (L-R) Groundtruth and predicted by 

YOLOv2(DarkNet19), YOLOv2(DarkNet53) and Proposed InceptionDepth-wiseYOLOv2 

 

 
Figure 6.24 PASCAL VOC 2012 Dataset. Bounding box (L-R) Groundtruth and predicted by 

YOLOv2(DarkNet19), YOLOv2(DarkNet53) and Proposed FireYOLOv2 

 

6.3.3 Caltech Pedestrian Dataset 

Proposed YOLOv2 Methods  

The proposed YOLOv2 methods predicts the bounding boxes along with respective confidence 

scores. When compared with the groundtruth values the DET Curve and P-R Curve are 

obtained. The DET Curve and P-R Curve for the YOLOv2 methods are shown in Figure 6.26 

and Figure 6.27 respectively. The corresponding LAMR and AP values are shown in Table 6.8. 

The proposed DSM-IDM-YOLO has achieved the least miss rate and highest precision with 

72.36% and 37.20%, respectively. A minimum improvement of 6.3% and 11.13% is attained 
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by DSM-IDM-YOLO w.r.t. LAMR and AP, respectively. Some sample groundtruth and output 

images for comparison is shown in Figure 6.28. The proposed InceptionDepth-wiseYOLOv2 

has achieved the least miss rate and highest precision with 67.32% and 43.84%, respectively. 

A minimum improvement of 11.34% and 17.77% is attained by InceptionDepth-wiseYOLOv2 

w.r.t. LAMR and AP, respectively. Some sample groundtruth and output images for 

comparison is shown in Figure 6.29. The proposed FireYOLOv2 has achieved the least miss 

rate and highest precision with 66.89% and 42.54% respectively. LightWeight FireYOLOv2 

has the second least miss rate of 71.16% and second highest precision of 40.29%. An 

improvement of 11.77% and 16.47% is attained by FireYOLOv2 w.r.t. LAMR and AP 

respectively whereas for LightWeight FireYOLOv2 there is an improvement of 7.5% and 

14.22% respectively. Some sample groundtruth and output images for comparison is shown in 

Figure 6.30.  

 
          Figure 6.25 Scale Analysis of PASCAL VOC 2012 Dataset for YOLOv2 Methods 

Scale Analysis: 

The Caltech Pedestrian dataset’s Reasonable set is made up of pedestrians of ‘Large’ scale i.e., 

height > 80 and ‘Medium’ scale i.e., 30 < height < 80. Upon examining the scale of the 

predicted pedestrians, the following points are noted. The Scale Analysis is represented in 

Figure 6.31. 

• The DSM-IDM-YOLO detects the greatest number of pedestrians on all scales, 274 

‘Large’ and 275 ‘Medium’.  

• The InceptionDepth-wiseYOLOv2 detects the greatest number of pedestrians in all 

the scales, 304 ‘Large’ and 340 ‘Medium’. 
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• The FireYOLOv2 detects the greatest number of pedestrians in all the scales which is 

268 ‘Large’ and 335 ‘Medium’. 

10
-3

10
-2

10
-1

10
0

10
1

False Positive Per Image

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
is

s
 R

a
te

90.96% FasterRCNN

97.73% YOLOv2(AlexNet)

85.35% YOLOv2(ResNet18)

86.39% YOLOv2(ResNet50)

94.00% YOLOv2(Inceptionv3)

92.43% YOLOv2(Xception)

83.83% YOLOv2(SqueezeNet)

96.27% YOLOv2(MobileNetv2)

85.82% YOLOv2(DarkNet19)

78.66% YOLOv2(DarkNet53)

83.91% YOLOv3

99.07% SSD

72.36% Proposed DSM-IDM-YOLO

67.32% Proposed InceptionDepth-wiseYOLOv2

66.89% Proposed FireYOLOv2

71.16% LightWeight FireYOLOv2

 
Figure 6.26 DET Curve of Caltech Pedestrian Dataset for YOLOv2 Methods 
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Figure 6.27 P-R Curve of Caltech Pedestrian Dataset for YOLOv2 Methods 

 

Table 6.8 LAMR and AP values of Caltech Pedestrian Dataset for YOLOv2 Methods 

LAMR AP

FasterRCNN 90.96 8.70

YOLOv2(AlexNet) 97.73 1.75

YOLOv2(ResNet18) 85.35 17.26

YOLOv2(ResNet50) 86.39 15.79

YOLOv2(Inceptionv3) 94.00 5.08

YOLOv2(Xception) 92.43 7.62

YOLOv2(SqueezeNet) 83.83 20.04

YOLOv2(MobileNetv2) 96.27 2.59

YOLOv2(DarkNet19) 85.82 17.41

YOLOv2(DarkNet53) 78.66 26.07

YOLOv3 83.91 18.87

SSD 99.07 1.23

Proposed DSM-IDM-YOLO 72.36 37.20

Proposed InceptionDepth-wiseYOLOv2 67.32 43.84

Proposed FireYOLOv2 66.89 42.54

LightWeight FireYOLOv2 71.16 40.29

Caltech Methods
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Figure 6.28 Caltech Pedestrian Dataset. Bounding box (L-R) Groundtruth and predicted by 

YOLOv2(DarkNet19) and Proposed DSM-IDM-YOLO 

 

Figure 6.29 Caltech Pedestrian Dataset. Bounding box (L-R) Groundtruth and predicted by 

YOLOv2(DarkNet19), YOLOv2(DarkNet53) and Proposed InceptionDepth-wiseYOLOv2 

 

Figure 6.30 Caltech Pedestrian Dataset. Bounding box (L-R) Groundtruth and predicted by 

YOLOv2(DarkNet19), YOLOv2(DarkNet53) and Proposed FireYOLOv2 
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Figure 6.31 Scale Analysis of Caltech Pedestrian Dataset for YOLOv2 Methods 

Proposed YOLOv3 Method  

The proposed YOLOv3 method predicts the bounding box information and their respective 

confidence scores. On comparison with the groundtruth values the DET Curve and P-R Curve 

are obtained. The DET Curve and P-R Curve for the YOLOv3 methods are shown in Figure 

6.32 and Figure 6.33 respectively. The corresponding LAMR and AP values are shown in Table 

6.9. The proposed MS-ML-SNYOLOv3 obtains a LAMR of 76.26% and AP of 28.45%. It has 

achieved a minimum performance gain of 1.89% and 2.01% in miss rate and precision 

respectively.     
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Figure 6.32 DET Curve of Caltech Pedestrian Dataset for YOLOv3 Method 
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Figure 6.33 P-R Curve of Caltech Pedestrian Dataset for YOLOv3 Method 

Table 6.9 LAMR and AP values of Caltech Pedestrian Dataset for YOLOv3 Method 

LAMR AP

FasterRCNN 90.96 8.70

YOLOv2(AlexNet) 97.73 1.75

YOLOv2(ResNet18) 85.35 17.26

YOLOv2(ResNet50) 86.39 15.79

YOLOv2(Inceptionv3) 94.00 5.08

YOLOv2(Xception) 92.43 7.62

YOLOv2(SqueezeNet) 83.83 20.04

YOLOv2(MobileNetv2) 96.27 2.59

YOLOv2(DarkNet19) 85.82 17.41

YOLOv2(DarkNet53) 78.66 26.07

YOLOv3(ResNet18) 84.44 18.01

YOLOv3(SqueezeNet) 78.15 26.44

SSD 99.07 1.23

MS-ML-SNYOLOv3 76.26 28.45

Methods Caltech 

 

 

6.3.4 Statistical Analysis 

Proposed YOLOv2 Methods 

In the first two proposed YOLOv2 modification, there are 13 independent variables, i.e., the 

methods (k) and 3 datasets (N). In the third proposed YOLOv2 modification, there are 14 

independent variables, i.e., the methods (k) and 3 datasets (N). The proposed YOLOv2 methods 

DSM-IDM-YOLO and InceptionDepth-wiseYOLOv2 has the first highest rank when 

compared individually with two-stage FasterRCNN and single-stage YOLOv2(AlexNet), 

YOLOv2(ResNet18), YOLOv2(ResNet50), YOLOv2(Inceptionv3), YOLOv2(Xception), 

YOLOv2(SqueezeNet), YOLOv2(MobileNetv2), YOLOv2(DarkNet19), 

YOLOv2(DarkNet53), YOLOv3 and SSD. The rank tables for DSM-IDM-YOLO and 
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InceptionDepth-wiseYOLOv2 are shown in Table 6.10 and Table 6.11 respectively. The 

proposed YOLOv2 methods FireYOLOv2 and LightWeightFireYOLOv2 has the first and 

second rank when compared with two-stage FasterRCNN and single-stage YOLOv2(AlexNet), 

YOLOv2(ResNet18), YOLOv2(ResNet50), YOLOv2(Inceptionv3), YOLOv2(Xception), 

YOLOv2(SqueezeNet), YOLOv2(MobileNetv2), YOLOv2(DarkNet19), 

YOLOv2(DarkNet53), YOLOv3 and SSD. The rank table for FireYOLOv2 and 

LightWeightFireYOLOv2 is shown in Table 6.12. 

The DSM-IDM-YOLO method: 

As per the statistical analysis procedure discussed in Chapter-1, first, the chi-square is 

calculated to be 27.851. The critical value of chi-square at a degree of freedom (=k-1) 12 is 

21.026. As the calculated value of chi-square is greater than the critical value of chi-square, the 

Null Hypothesis is rejected. The calculated F-distribution is 6.835. The critical value of F-

distribution with the degree of freedom k-1 and (k-1)(N-1) (12, 24) and α = 0.05 is 2.183. As 

the calculated F-distribution is greater than the critical F-distribution, the Null Hypothesis is 

rejected. 

Table 6.10 Rank Table of Friedman Test for the Proposed DSM-IDM-YOLO 

Miss Rate r Miss Rate r Miss Rate r

FasterRCNN 34.78 3 55.58 3 90.96 8 4.66 3

YOLOv2(AlexNet) 77.83 13 76.61 12 97.73 12 12.33 10

YOLOv2(ResNet18) 51.14 8 57.26 5 85.35 5 6.00 5

YOLOv2(ResNet50) 72.69 12 62.31 6 86.39 7 8.33 6

YOLOv2(Inceptionv3) 66.82 10 67.82 11 94.00 10 10.33 8

YOLOv2(Xception) 45.25 7 66.04 9 92.43 9 8.33 6

YOLOv2(SqueezeNet) 37.63 5 65.61 8 83.83 3 5.33 4

YOLOv2(MobileNetv2) 72.11 11 63.24 7 96.27 11 9.66 7

YOLOv2(DarkNet19) 44.86 6 56.16 4 85.82 6 5.33 4

YOLOv2(DarkNet53) 34.89 4 53.95 2 78.66 2 2.66 2

YOLOv3 30.65 2 67.61 10 83.91 4 5.33 4

SSD 62.19 9 90.54 13 99.07 13 11.66 9

Proposed DSM-IDM-YOLO 27.68 1 53.13 1 72.36 1 1.00 1

Methods INRIA PASCAL VOC 2012 Caltech Mean Rank Rank

 

 

The InceptionDepth-wiseYOLOv2 method: 

Following the procedure of statistical analysis discussed in Chapter-1, the chi-square value is 

calculated to be 27.851. The critical value of chi-square at a degree of freedom (=k-1) 12 is 

21.026. As the calculated value of chi-square is greater than the critical value of chi-square, the 

Null Hypothesis is rejected. The calculated F-distribution is 6.835. The critical value of F-

distribution with the degree of freedom k-1 and (k-1)(N-1) (12, 24) and α = 0.05 is 2.183. As 

the calculated F-distribution is greater than the critical F-distribution, the Null Hypothesis is 

rejected. 
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Table 6.11 Rank Table of Friedman Test for the Proposed InceptionDepth-wiseYOLOv2 

Miss Rate r Miss Rate r Miss Rate r

FasterRCNN 34.78 3 55.58 3 90.96 8 4.66 3

YOLOv2(AlexNet) 77.83 13 76.61 12 97.73 12 12.33 10

YOLOv2(ResNet18) 51.14 8 57.26 5 85.35 5 6.00 5

YOLOv2(ResNet50) 72.69 12 62.31 6 86.39 7 8.33 6

YOLOv2(Inceptionv3) 66.82 10 67.82 11 94.00 10 10.33 8

YOLOv2(Xception) 45.25 7 66.04 9 92.43 9 8.33 6

YOLOv2(SqueezeNet) 37.63 5 65.61 8 83.83 3 5.33 4

YOLOv2(MobileNetv2) 72.11 11 63.24 7 96.27 11 9.66 7

YOLOv2(DarkNet19) 44.86 6 56.16 4 85.82 6 5.33 4

YOLOv2(DarkNet53) 34.89 4 53.95 2 78.66 2 2.66 2

YOLOv3 30.65 2 67.61 10 83.91 4 5.33 4

SSD 62.19 9 90.54 13 99.07 13 11.66 9

Proposed InceptionDepth-wiseYOLOv2 21.92 1 52.21 1 67.32 1 1.00 1

RankMethods INRIA PASCAL VOC 2012 Caltech Mean Rank

 
 

The FireYOLOv2 and LightWeightFireYOLOv2 method: 

The steps of statistical analysis, as described in Chapter-1, specifies to calculate the chi-square 

value, which is resulting to 31.920. The critical value of chi-square at a degree of freedom (=k-

1) 13 is 22.362. As the calculated value of chi-square is greater than the critical value of chi-

square, the Null Hypothesis is rejected. The calculated F-distribution is 9.017. The critical 

value of F-distribution with the degree of freedom k-1 and (k-1)(N-1) (13, 26) and α = 0.05 is 

1.99. As the calculated F-distribution is greater than the critical F-distribution, the Null 

Hypothesis is rejected. 

Table 6.12 Rank Table of Friedman Test for the Proposed FireYOLOv2 and 

LightWeightFireYOLOv2 

Miss Rate r Miss Rate r Miss Rate r

FasterRCNN 34.78 4 55.58 4 90.96 9 5.66 3

YOLOv2(AlexNet) 77.83 14 76.61 13 97.73 13 13.33 10

YOLOv2(ResNet18) 51.14 9 57.26 6 85.35 6 7.00 5

YOLOv2(ResNet50) 72.69 13 62.31 7 86.39 8 9.33 6

YOLOv2(Inceptionv3) 66.82 11 67.82 12 94.00 11 11.33 8

YOLOv2(Xception) 45.25 8 66.04 10 92.43 10 9.33 6

YOLOv2(SqueezeNet) 37.63 6 65.61 9 83.83 4 6.33 4

YOLOv2(MobileNetv2) 72.11 12 63.24 8 96.27 12 10.66 7

YOLOv2(DarkNet19) 44.86 7 56.16 5 85.82 7 6.33 4

YOLOv2(DarkNet53) 34.89 5 53.95 3 78.66 3 3.66 2

YOLOv3 30.65 3 67.61 11 83.91 5 6.33 4

SSD 62.19 10 90.54 14 99.07 14 12.66 9

Proposed FireYOLOv2 19.60 1 50.70 1 66.89 1 1.00 1

LightWeight FireYOLOv2 26.30 2 53.23 2 71.16 2 2.00 2

RankMethods INRIA PASCAL VOC 2012 Caltech Mean Rank

 
Proposed YOLOv3 Method  

In this work, there are 14 (k) independent variables, which are the detection methods and there 

are 2 (N) datasets. The proposed method MS-ML-SNYOLOv3 has the first rank when 

compared with FasterRCNN, YOLOv2(AlexNet), YOLOv2(ResNet18), YOLOv2(ResNet50), 

YOLOv2(Inceptionv3), YOLOv2(Xception), YOLOv2(SqueezeNet), 

YOLOv2(MobileNetv2), YOLOv2(DarkNet19), YOLOv2(DarkNet53), YOLOv3(ResNet18), 

YOLOv3(SqueezeNet) and SSD. The rank table for MS-ML-SNYOLOv3 is shown in Table 
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6.13. Following the steps involved in statistical analysis as discussed in Chapter-1, the chi-

square is calculated to be 23.314. The critical value of chi-square at a degree of freedom 13 is 

22.362. The degree of freedom, here is the number of detection methods(k) subtracted by 1. As 

the calculated value of chi-square is greater than the critical value of chi-square, the Null 

Hypothesis is rejected.  

Table 6.13 Rank Table of Friedman Test for the Proposed MS-ML-SNYOLOv3 

Miss Rate r Miss Rate r

FasterRCNN 34.78 3 90.96 9 6 6

YOLOv2(AlexNet) 77.83 14 97.73 13 13.5 13

YOLOv2(ResNet18) 51.14 9 85.35 6 7.5 8

YOLOv2(ResNet50) 72.69 13 86.39 8 10.5 10

YOLOv2(Inceptionv3) 66.82 11 94.00 11 11 11

YOLOv2(Xception) 45.25 8 92.43 10 9 9

YOLOv2(SqueezeNet) 37.63 5 83.83 4 4.5 4

YOLOv2(MobileNetv2) 72.11 12 96.27 12 12 12

YOLOv2(DarkNet19) 44.86 7 85.82 7 7 7

YOLOv2(DarkNet53) 34.89 4 78.66 3 3.5 3

YOLOv3 (ResNet18) 41.26 6 84.44 5 5.5 5

YOLOv3 (SqueezeNet) 30.65 2 78.15 2 2 2

SSD 62.19 10 99.07 14 12 12

MS-ML-SNYOLOv3 28.36 1 76.26 1 1 1

INRIA CaltechMethods Mean 

Rank

Rank

 

6.4 Observations 
In this contribution, as per the proposed YOLOv2 method: DSM-IDM-YOLO with base 

DarkNet19, InceptionDepth-wiseYOLOv2 with base DarkNet53 & FireYOLOv2 with base 

DarkNet53 and the proposed YOLOv3 method: MS-ML-SNYOLOv3 with base SqueezeNet, 

the following points are observed. Three benchmark pedestrian datasets are used to evaluate 

YOLOv2 proposed methods INRIA, PASCAL VOC 2012, and Caltech Pedestrian datasets. 

Two benchmark pedestrian datasets are used to evaluate YOLOv3 proposed method INRIA 

and Caltech Pedestrian datasets. 

• The fused features from the proposed modules at different levels of the network 

amassed rich hierarchical feature information of the objects, i.e., pedestrians in the 

images. 

• The proposed YOLOv2 methods have achieved the best performance i.e., least miss 

rate and highest precision in all the three datasets.  

• The proposed YOLOv2 methods are performing better than the advanced YOLOv3 

network also.  

• The proposed YOLOv3 method have achieved the best performance i.e., least miss rate 

and highest precision in all the two datasets.  
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Chapter 7 

Conclusion and Future Scope 

The conclusion and future scope of the thesis is discussed in this chapter. 

Conclusion   

The pedestrian detection problem is addressed in this work by focusing on the feature 

development part of the process. To extract a detailed and dense feature representation, four 

detection methods are explored. 

For Contribution-1, the hand-crafted features are employed. A scale-space pyramid-based 

shape feature-extraction method: SI-HOG is proposed. SI-HOG overcomes the shortcoming of 

HOG, i.e., that it is not applicable to multiresolution images, by considering gradient 

information from different scales of an image, making it resolution-independent. The addition 

of texture and color information to SI-HOG enables a more enhanced form of features. The 

performance of the proposed method is evaluated using three datasets, i.e., INRIA, NICTA, 

and Daimler, considering both single-resolution and multiresolution images wherein it has 

shown the least miss rate.  

The features extracted by hand-crafted feature concentrate only one on particular aspect or 

feature of the image. This causes a significance performance gap. Whereas the features formed 

by deep CNN methods provides a comprehensive representation of the image. 

For Contribution-2, the CNN features are used. A modified architecture for ResNet18 is 

proposed. The proposed method processes features from varying levels of the network. It is 

named MF2ResNet and is used in two ways: CNN features with SVM and End-to-End CNN 

network. The proposed methods are compared using three benchmark pedestrian datasets 

INRIA, NICTA and Daimler wherein it surpasses the handcrafted features performance.  

In the first two contribution, the pedestrian detection is being done in per-window evaluation 

system. To further address the pedestrian detection problem, the state-of-the-art detection 

method is employed in the next contributions. The detection methods follow the per-image 

paradigm and generates the bounding box as well as the confidence score of the pedestrians.   

For Contribution-3, the two stage Faster RCNN is used. Two modifications of CNN network 

ResNet18, which serves as a base for Faster RCNN is proposed. The proposed methods are 

named Faster RCNN (DCResNet) and Faster RCNN (MF2ResNet). The feature map is formed 

by the concatenation of the processed output feature map of the proposed networks. This 

enables a thorough feature extraction process as the resultant feature map gives a detailed 
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hierarchical representation of the image. The proposed method is evaluated on two benchmark 

datasets INRIA and PASCAL VOC 2012 and has shown substantial improvement.  

This work provided a reasonably better solution for pedestrian detection with best miss rate 

and precision. But the Faster RCNN methods, being the two-stage method lack speed. The next 

contribution addressed this with YOLOv2 and YOLOv3 detection methods, which proved to 

be faster and more accurate.  

For Contribution-4, the single stage YOLO network is used. Three YOLOv2 modifications are 

proposed: DSM-IDM-YOLO with base DarkNet19, InceptionDepth-wiseYOLOv2 with base 

DarkNet53, and FireYOLOv2 with base DarkNet53. The proposed methods are evaluated on 

INRIA, PASCAL VOC 2012, and Caltech Pedestrian datasets, wherein it gives improved miss 

rate and precision.  

For Contribution-5, a YOLOv3 modification is proposed with base SqueezeNet named as MS-

ML-SNYOLOv3. It also achieves improved miss rate and precision when evaluated with 

INRIA and PASCAL VOC 2012 pedestrian dataset.  

To summarize the work, the pedestrian detection problem is tackled with incremental 

improvement starting from hand-crafted features to deep learning CNN features. The two-stage 

and single-stage detection methods of Faster RCNN and YOLO respectively, provides 

sophisticated and advanced model to further improve the accuracy of the system. It can be 

established that the proposed method in single stage network YOLO has given the best 

performance in the work in terms of miss rate and precision and with lesser computational 

overhead. 

Future Scope 

• The pedestrian detection is limited to images in this work. It will be extended to videos so that 

it can be utilized in real world applications. 

• The improvement in this work is done upon the feature extraction part. But to further improve 

the localization of the pedestrians, the region proposal part will be enhanced.  

• Latest state-of-the-art detection methods will be employed wherein the base CNN architecture 

can be improved. 

• As the detection method involves computational overhead, it will be shifted to a distributed 

environment to speed up the process. 

• On the other hand, light weight detection methods will be proposed, to enable real time 

application without the requirement of a GPU.  

• To aid in the detection of various scales of pedestrians in the image, methods such as super-

resolution will be analyzed.   
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