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ABSTRACT

Pedestrian detection is one of the most challenging research areas in computer vision, as it
involves classifying the image as well as localizing the pedestrian. Owing to its applications
especially in automated surveillance and robotics, it is exceedingly sought-after. The problem of
pedestrian detection, although approached by many computer vision researchers is far from
solved. The scale, pose, occlusion, illumination, and many such factors affect the performance of
the methods. Traditional methods use hand-crafted features to characterize pedestrians. The
hand-crafted features can be used to extract shape, color and texture features; which is then
classified by using Support Vector Machine (SVM). As in recent years, deep learning models
such as Convolutional Neural Networks (CNNs) have become an eminent state-of-the-art in
detection challenges, which unlike the manually designed feature extraction mechanism, results
in more accuracy. This work gradually moves from proposing new hand-crafted feature
algorithms to designing sophisticated complex CNN structures.

Most of the algorithms for pedestrian detection use the Histogram of Oriented Gradients
(HOG) as the basic shape feature and combine other features with the HOG to form the feature
set, which is usually applied with a classifier such as Support Vector Machine (SVM). Hence,
the HOG feature is the most efficient and fundamental feature for pedestrian detection. However,
the HOG feature produces feature vectors of different lengths for different image resolutions;
thus, the feature vectors are incomparable for the SVM. To handle this a Scale-Invariant
Histogram of Oriented Gradients (SI-HOG) for pedestrian detection is proposed. The proposed
method forms a scale-space pyramid wherein the histogram bin is calculated. Thus, the gradient
information from all the scales is encapsulated in a single fixed-length feature vector. The
proposed method is also combined with color and texture features.

To continue the progress made in this field, a deep learning based approach is proposed.
A modification of the pre-trained ResNetl8 named Multi-layer Feature Fused-ResNet (MF2-
ResNet) is proposed. MF2-ResNet is used for 1) feature extraction; which is then classified by
using SVM; 2) End-to-End feature extraction and classification by the CNN network. To work
on the region proposal aspect of the pedestrian detection, the next deep learning model
considered in this thesis is the two-stage detection network Faster R-CNN. Modifications of the
most commonly used deep CNN model ResNetl18 is proposed. The modified CNN structure
named Dilate-Condense Resnet (DCResNet) and MF2-ResNet forms the base of the Faster R-



CNN model utilized to predict the locations of pedestrians in the image. The proposed method
has been improved in terms of the feature map extraction of the image. As the two-stage
detection network requires more computation and train-test time, lastly, the single-stage You
Only Look Once (YOLO) detection network is worked with. The single-stage detection networks
YOLOvV2 and YOLOvV3 has attained a satisfactory performance in object detection without
compromising the computation speed and is among the state-of-the-art CNN based method.
YOLO framework can be leveraged to use in pedestrian detection as well. In this work,
improved YOLOv2 networks, called DSM-IDM-YOLO, InceptionDepth-wiseYOLOv2 and
FireYOLOV2 is proposed. The proposed models use a modified DarkNetl9 and DarkNet53,
engineered for a robust feature formation. A LightWeight FireYOLOV2 is also contributed to this
work to obtain a trade-off between detection accuracy and computation speed. A modified
YOLOV3 is proposed, which is named MultiScale-MultiLevel-SqueezeNetYOLOv3 (MS-ML-
SNYOLOvV3). An improved SqueezeNet base network forms the basis of the proposed YOLOvV3.

The hand-crafted and CNN proposed methods are tested on three established benchmark
pedestrian datasets: INRIA, NICTA, and Daimler. The Faster R-CNN and YOLO proposed
methods are evaluated on INRIA Pedestrian, PASCAL VOC 2012 and Caltech Pedestrian
datasets. For evaluation, various hand-crafted shape, texture and color features as well as
comparison with state-of-the-art detection methods i.e., Faster-RCNN, YOLOv2, YOLOv3 and
Single Shot Multibox Detector (SSD) is performed. For comparison, Detection Error Trade-off
Curve, Precision Recall Curve, Log Average Miss Rate (LAMR) and Average Precision (AP)
performance metrics are used. Friedman Test and F-distribution Test is used for statistical

analysis of the proposed methods.
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Chapter 1

Introduction

Pedestrian detection is a well-established challenging problem in the computer vision field.
The task is to detect the presence of different pedestrians in the image along with their location
in a bounding box format. It plays an essential role in computer vision applications. Even
though extensive research has been performed on pedestrian detection, significant
improvements were made in recent works, which suggests that the research has not reached a

saturation point.
1.1 Object Detection

The aim of object detection is to identify the presence of various individual objects in a given
image. It has various applications among pedestrian detection, vehicle detection,
manufacturing industry, security, and face detection. It can be divided into two sub categories:
Objectness detection and Category based object detection.

1.1.1 Objectness Detection

In objectness detection, all the objects in the image are detected. No class label is specified in
this case. An example is shown in Figure 1.1(a). In this figure, every object such as tree,
building structure are detected.

1.1.2 Category based Object Detection

In category based object detection, the objects are detected in the image as per the specified
class label. An example is shown in Figure 1.1(b). In this figure, the class specified is vehicle

and hence the moto bike and car objects are detected.

(b)
Figure 1.1 a) Objectness detection b) Category based object detection
1



1.2 Pedestrian Detection

Pedestrian detection (PD) comes under category based object detection and is one of the
recognized area of object detection. Various applications, such as human—computer interaction
for video games, robotics, video surveillance, and smart vehicles, have motivated research on
human and pedestrian detection. Nonetheless, pedestrian detection is a challenging problem
owing to the large intra-class variability arising from clothing, color, appearance, and pose. In
addition, external factors such as illumination, background clutter, and partial occlusions
further complicate the problem [1, 2].

Most pedestrian detection algorithms involve similar stages of computation. First, the pixel-
level content of the image undergoes complex transformations to represent higher-level
features, which are computed via feature-extraction methods. Second, region extraction is
carried out based on the similarities of the features in a region. Third, from these region
proposals, the features are fed to a classifier, which determines whether the region represents
a pedestrian.

In Figure 1.2, the overview of this process is shown. The pedestrian detection can be solved
either by per-window or per-image evaluation. In per-window evaluation, the regions are pre-
processed and later the feature extraction and classification are performed. In per-image
evaluation, the features extraction is followed by region proposals to predict the locations and

confidence scores of the pedestrians.

Image Feature Extraction +
+ = Region Proposal —|
Annotation Model

Score +
Location

Image Feature . Predicted
"|  Region/ Windows Extraction Ol it Label

Label:
Person

Figure 1.2 Overview of Pedestrian Detection



1.3 Different Methods for PD
The pedestrian detection can be approached broadly by five methods as described below.
1.3.1 Hand-crafted Features + Classifier

In this method, hand-crafted features such as shape, texture, and color are extracted from the
image. Then, the feature extracted are feed into the classifier to predict the label i.e., pedestrian

or non-pedestrian. The process is shown in Figure 1.3.

Feature Extraction

Shape

Feature ﬁ
Image —— Classifier
Dataset %/

Texture Color
Feature Feature

Y

Figure 1.3 Block diagram for Hand-crafted features with Classifier

1.3.2 Convolutional Neural Network Features + Classifier

In this method, the features are extracted from a trained Convolutional Neural Network (CNN)
[3] model. A pre-trained CNN is used and trained via transfer learning [4]. The features are
extracted from a higher layer of the trained CNN. These features are then classified i.e.,

pedestrian or non-pedestrian label. The process is shown in Figure 1.4.

T cone |

Test Labels

Train Images

Feature Trained
Extraction, CNN
Model

Pre-Processing

Test Images

Test Features

Figure 1.4 Block diagram for CNN features with Classifier

1.3.3 End-to-End Convolutional Neural Network
In this method, the features extraction as well as classification is performed by the End-to-End
CNN. A pre-trained CNN is used and trained via transfer learning. The predicted classification

labels are either pedestrian or non-pedestrian label. The process is shown in Figure 1.5.

Test Images & VS j @
g — Pre-Processing CNN
Labels
Model
L

Figure 1.5 Block Diagram for End-to-End CNN



1.3.4 Two-stage Network with base CNN

In this method, along with the classification label, the bounding box of the pedestrian is also
predicted. This process takes place in two stages i.e., region proposals and classification. A
base CNN serves as a backbone used for feature extraction. The feature map is processed for

proposing regions as well as for classification. The process is shown in Figure 1.6.

Region Proposal Network

ol
4 S
o
% =}
o
= 3
2 2 NxC
2 g o
3 @ » Classification
. w Scores
Train Images v
Feature
Pre- Data Table | Backbone Map ROI . Fully Connected
Processing o CNN "] Pooling Layers
Test Images
| NxC*Bounding

Box

N — No. of region proposals
C — No. of Classes

Figure 1.6 Block Diagram for two-stage network with base CNN

1.3.5 Single-stage Network with base CNN

In this method also the classification label along with the location is yielded. This network
performs the region proposal and classification in one pipeline. The network uses the base CNN
to extract features. This is further processed to generate the final detection result by utilizing

the classification scores and the bounding box. The process is shown in Figure 1.7.
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- Scores
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Feature Probabilit Final
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Processing Layers

Test Images
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Bounding Box

Figure 1.7 Block Diagram for single-stage network with base CNN

1.4 Different Hand-crafted Features for PD

Feature extraction methods are used to represent the image content. The use of traditional
image processing methods is known as hand-crafted methods and the features extracted by
these methods yield hand-crafted features. A particular hand-crafted feature algorithm can only
describe a single feature of the image, which can be shape, texture or color. The algorithms for

shape, texture and color feature extraction are given in detail in Chapter-2.



1.5 Different CNN Features for PD

Feature extraction methods which are performed by deep learning methods produce a better
representation of the image feature when compared to that of hand-crafted mechanism.
Specifically, the CNNs are used for this purpose. With the backpropagation error correction
process the CNN models provide substantially improved features. The CNN features can be
extracted from any layer of the network, but the higher-level layers are preferred for this as
they contain detailed features of the image. Various pre-trained CNN models are available

which are given in detail in Chapter-2.
1.6 Different Region Proposals for PD

An image can contain one or more than one object of interest. Here, the region proposal method
comes into play. Region proposal algorithms are used to segment the regions or areas from the
image yielding regions of the object of interest. The region proposal methods are based on both
traditional image processing and deep learning methods. In the traditional approach, regions
are grouped under neighboring area feature whereas the deep learning approach uses the CNN

feature maps for generating region proposals. These methods are given in detail in Chapter-2.
1.7 Introduction to State-of-the-art Technology for PD

To identify or localize the objects or pedestrian in the images, recent state-of-the-art
technologies are getting developed and used successfully. The state-of-the-art technology in
detection domain constitutes only deep learning methods. The deep learning methods involve
CNN as the base with additional modules to complete the detection task. The pre-trained CNN
models serve the base for feature extraction and the region proposal step also uses either the
base CNN feature map or probability map from the CNN. These methods are discussed in detail
in Chapter-2. The state-of-the-art technologies in detection takes less computation overhead

and are successfully applied in real time scenarios.
1.8 Motivation, Aim and Problem Statement of the Thesis

Motivation
The following three issues motivated for this research work.
e Extraction of comprehensive feature representation of image for pedestrian detection
purpose using traditional hand-crafted features.
e Role of CNN features for pedestrian detection which outperforms the traditional hand-

crafted methods.



e Deep learning region proposal methods to improve localization and detection of
pedestrians in the images.

Aim
This thesis aims to provide a better feature extraction mechanism for pedestrian detection. Both
the hand-crafted and deep CNN methods are explored to perfect the feature content of the
image.
Problem statement
Pedestrian detection is a challenging and vital problem in computer vision applications. The
variation in factors such as pose, illumination, background, truncation and occlusion make the
recognition and localization of pedestrians in an image a gruelling task. A detailed and elegant
feature extraction mechanism can tackle the problem to a great extent. In this pursuit, hand-

crafted and deep learning based feature extraction methods are proposed in this work.
1.9 Objectives of this Work

To address the pedestrian detection problem, improved feature extraction techniques from both
the hand-crafted and the deep learning methods are presented in this work. The following
objectives are set in this thesis.
e To propose a new robust hand-crafted feature extraction mechanism.
e To improve the convolutional neural network based feature extraction methods.
e To propose Faster RCNN architectures with a modified base convolutional neural
network.
e To employ and improve You Only Look Once (YOLOv2 and v3) paradigm.
To achieve the given objectives the contributions of the thesis are listed below and it’s
represented in a structure diagram in Figure 1.8.
e A Scale Invariant Histogram of Oriented Gradients Feature Extraction for Pedestrian
Detection in Multiresolution Image Dataset.
e A Multi-layer Feature Fused-Resnet Model for Pedestrian Detection.
o Faster RCNN based on Dilate-Condense ResNet and Multi-layer Feature Fused-Resnet
Model for Pedestrian Detection.
e YOLOv2 based on DarkNet: Depth-wise Seperable, Inception Depth-wise & Fire
modules for Pedestrian Detection.

e MultiScale-MultiLevel-SqueezeNet based YOLOv3 for Pedestrian Detection.



Pedestrian
Detection

Per-Window Per-Image
Evaluation Evaluation

Machine Deep Deep
Learning Learning

Faster R-CNN

InceptionDepth-
wiseYOLO
(YOLOvV2

End-to-End

Scale Invariant N
Multi-layer

Histogram of

Feature Fused-
ResNet(MF2-
ResNet)

Oriented
Gradients (SI-
HOG) + SVM

Modification
Base Network —
DarkNet53)

Datasets Datasets Dataset Datasets Dataset

Multiresolution &

Single Resolution INRIA INRIA INRIA INRIA
MR ~_ ~_ N
Multiresolution &
Single Resolution NICTA
9 NICTA ~ PASCAL VOC 2012 PAgEALYEE Caltech
- e ~ . \\u/,» \\\ >
\\_// . T —
Multiresolution &
Single Resolution Daimler
. Daimler \\_J > Caltech ’
e i \\__’//"

Figure 1.8 Structure Diagram of Pedestrian Detection Methods and Datasets in this Work



1.10 Different Benchmark Image Datasets in this Work

In this work, five pedestrian benchmark datasets: INRIA Pedestrian, NICTA Pedestrian,
Daimler Pedestrian, PASCAL VOC 2012 and Caltech Pedestrian are used and are described in
this section.

% INRIA Pedestrian Dataset

In the INRIA Pedestrian dataset [1], people are standing at different orientations.

(a) Training set: It consists of 614 positive images that contain 1,239 pedestrians. A total
of 2,478 pedestrians are obtained when both the left and right reflection of an individual
pedestrian is considered. There are 1,218 negative (pedestrian-free) images. 10 patches
are sampled from each pedestrian-free image randomly. This gives 12,180 negative
images.

(b) Test set: It consists of 288 positive images that contain 566 pedestrians. A total of 1,132
pedestrians are obtained when both the left and right reflection of an individual
pedestrian is considered. There are 453 negative (pedestrian-free) images. 10 patches
are sampled from each pedestrian-free image randomly. This gives 4,530 negative
images.

(c) Image Regions: The positive images are cropped to 128x64 windows. The same size is
maintained while extracting negative windows. The window size is selected based on
the aspect ratio of a pedestrian.

Figure 1.9 and Figure 1.10 shows the region images and full images from INRIA Pedestrian
dataset.

% NICTA Pedestrian Dataset

The NICTA Pedestrian dataset [5] contains pedestrian positive and negative pedestrian set
consisting of 6 resolutions i.e., 8x20, 16x20, 16x40, 32x40, 32x80 and 64x80. The different
characteristics of this image database are:

a) Pedestrian positives: This set contains pedestrians in the form of a cropped window
from existing marked-up input images. The source images for the positive data are
scaled into the 6 resolutions as mentioned above.

b) Pedestrian negatives: A large negative set is extracted from a set of 5,207 high-
resolution pedestrian free images in diverse environments. The negative sets are also
grouped into 6 resolutions which are alike in themselves.

c) Image regions: Images are taken from 64x80 group. 6,000 and 3,000 positive images

along with their mirror-image form positive train and test set respectively. In addition



to those 18000 and 9000 negative images forms the negative train and test set
respectively. This gives us 30000 images for training and 15000 images for testing.

Some sample images from the dataset are shown in Figure 1.11.

-l

B im%
sk, Ndk

Figure 1.9 INRIA Region Images: First and second row Positive Pedestrian samples
third and fourth row Ne atlve Pedestrlan free Samples

Figure 1.10 INRIA Full Images: First row shows positive train images. Second row
shows positive test image

Figure 1.11 NICTA Region Images: First row Positive Pedestrian samples second row
Negative Pedestrian-free Samples



¢ Daimler Pedestrian Dataset
The Pedestrian images in this Daimler dataset [6] were yielded by manual labeling and
extraction of pedestrians in the video frames. The videos were recorded at various day settings
with no constraint on clothing or pose. The pedestrians are un-occluded and upright. The
pedestrian-free images were obtained from videos that did not contain pedestrians. This dataset
is a grayscale image set.

(a) Base dataset: The Daimler Pedestrian dataset contains images with a size of 18 x 36
extracted from videos. The base train data set consists of three sets of 4000 positive or
pedestrians and 5000 negative or pedestrian-free images. It also consists two test sets
of 4800 positive or pedestrians and 5000 negative or pedestrian-free images.

(b) Image regions: 4800 and 2400 positive images along with their mirror-image form
positive train and test set respectively. In addition to those 24000 and 12000 negative
images forms the negative train and test set respectively. This gives us 28800 images
for training and 14400 images for testing.

Some sample images are shown in Figure 1.12.

§

u

i B4

Figure 1.12 Daimler Region Images: First row Positive Pedestrian samples second

row Negative Pedestrian-free Samples
% Multiresolution Dataset

* The INRIA Pedestrian dataset images were available in normalized windows of size 64
x 128. The same size was maintained while extracting negative windows. Bicubic
interpolation was used to form the multiresolution dataset.

» The NICTA Pedestrian dataset contained both positive and negative pedestrian images
having six resolutions: 8 x 20, 16 x 20, 16 x 40, 32 x 40, 32 x 80, and 64 x 80. Thus, we
did not need to create multiresolution images, as they were already provided.

» The Daimler Pedestrian dataset contained images with a size of 18 x 36. Similar to the
case of INRIA, we obtained multiresolution images via resizing.

The characteristics of the multiresolution dataset is shown in Table 1.1.
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Table 1.1 Characteristics of the INRIA, NICTA, and Daimler Pedestrian Datasets

# Positive # Negative # Positive # Negative
Image

Dataset Resolution . . Train Train Train Train
Dimension . . . .
images images images images
Single 64x128 2416 1218*10 1132 453*10
INRIA 128%256 805 406*10 377 151*10
(Color) Multi 64x128 805 406*10 377 151*10
32x64 806 406*10 378 151*10
Single 64x80 12000 18000 6000 9000
64x80 2000 3000 1000 1500
NICTA 32x80 2000 3000 1000 1500
(Color) Multi 32x40 2000 3000 1000 1500
16x40 2000 3000 1000 1500
16x20 2000 3000 1000 1500
8x16 2000 3000 1000 1500
Single 18x36 4800 24000 2400 12000
Daimler 72x144 1600 8000 800 4000
(Gray) Multi 36%72 1600 8000 800 4000
18x36 1600 8000 800 4000

% PASCAL VOC 2012 Dataset

a) The PASCAL VOC 2012 dataset [7] presents standardized images and has 20 classes.
Out of which one is the ‘Person’ class. This dataset has been widely used as a
benchmark for object detection tasks.

b) The train set is taken from the trainval set containing 4087 images. The images are
inclusive of occluded and truncated person images.

c) The test set contains 5138 images. The images are of various sizes.

d) The annotation files are in XML format. The annotation file includes the label and
bounding box co-ordinates.

Some sample images are shown in Figure 1.13.

Figure 1.13 Sample images from PASCAL VOC 2012 Dataset
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% Caltech Pedestrian Dataset

a) The Caltech Pedestrian dataset [8] comprises of nearly 10 hours 30Hz video in 640%480
resolution. The video is captured from a vehicle driving in an urban environment
through regular traffic.

b) The train data set consists of six training sets (set00-set05), each with 6-13 one-minute-
long seq files, included with all the annotation information.

c) The test data set consists of five sets (set06-set10). The training images and the test
images are extracted by taking every 30th frame in the seq files.

d) Thus, there are 4250 training images and 4024 test images. These images are inclusive
of various levels of occlusion and height.

e) The ‘Reasonable’ set is considered in this work which includes images of pedestrians
with height > 50 pixels and the occluded area between 1% to 35%.

Some sample images are shown in Figure 1.14.

Figure 1.14 Sample images from Caltech Pedestrian Dataset

1.11 Different Performance Measure for Comparing PD Methods

In this work, different detection metrics are used to evaluate the performance of the proposed
methods. The detection metrics are categorized into per-window and per-image evaluation
scheme.
The detection metrics in per-window evaluation are:
a) Confusion Matrix
For a two-class classification that is pedestrian/non-pedestrian in this case, a predicted
label Positive/Pedestrian or Negative/Non-pedestrian is generated. Considering the actual
label of the test dataset, a 2x2 confusion matrix [9] is obtained. From this confusion matrix,
four values are derived as shown in Figure 1.15.
* True Positive (TP): correct classification of a pedestrian,

* False Positive (FP): misclassification of a non-pedestrian,

12



* False Negative (FN): misclassification of a pedestrian and
* True Negative (TN): correct classification of a pedestrian.
b) Receiver Operator Characteristics Curve (ROC)
The ROC curve [10] is formed by plotting false positive per window (FPPW) against the
detection rate (true positive rate). An example ROC Curve is shown in Figure 1.16.
c) Detection Error Trade-Off Curve (DET)
The DET curve [11] is formed by plotting false positive per window against miss rate. It
plots error rates on a log-log scale. An example DET Curve is shown in Figure 1.17.
d) Miss Rate
The miss rate [1] is taken from the DET curve at a corresponding FPPW value.

Actual Label 1 10°
Positive Negative
3 Ppositive UG False
@ Positi Positi 1
% Sitive ositive TPR MR 10
g
5
g ) I
% Negawe| (£ | [T ol 1 0
10" 10° 10
0 FPR 1 FPR
Figure 1.15 Confusion Figure 1.16 ROC Curve Figure 1.17 DET Curve
Matrix Example Example

The detection metrics in per-image evaluation are:
a) Detection Error Trade-off Curve
The DET curve is formed by plotting false positive per-image (FPPI) against miss rate. It
plots error rates on a log-log scale.
b) Log Average Miss Rate (LAMR)
The LAMR [12] value is calculated by averaging miss rate at nine FPPI rates evenly spaced
in log-space in the range 102t0107.
¢) Precision-Recall Curve
A point on the precision-recall curve [13] is determined by considering all objects above a
given model score threshold as a positive prediction, then calculating the resulting precision
and recall for that threshold. An example P-R Curve is shown in Figure 1.18.
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Figure 1.18 P-R Curve Example

d) Average Precision (AP)

It is defined as the mean precision at the set of 11 equally spaced recall values, Recall; =

[0,0.1,0.2, ..., 1.0] as given in Equation 1.1.

AP =L > Precision(Recall,) (1.1)

Recall;

The Statistical Analysis conducted are: (Per-window & Per-image)
a) Friedman Test [14]

This test with a significance level of 95% and a = 0.05 is conducted to the miss rates
yielded by each detection method.

The independent variables, i.e., the methods are denoted by k. The Friedman test
examines the rank of each of these variables. The null hypothesis states that all the
algorithms are equivalent.

The mean rank produced by the Friedman test for each of the pedestrian detection
methods is evaluated. The chi-square is calculated as per Equation 1.2.

The critical value of chi-square at a degree of freedom (=k-1) is found. If, the calculated
value of chi-square is greater than the critical value of chi-square, the Null Hypothesis
is rejected.

12x N k(k +1)* 1 -
N =_k(k—+1)[ZR"2 —T}"”d AR
j 1

Where, k = no. of algorithms, N = no. of datasets and r.’is the rank of the j of algorithms on

the i of N datasets.

b)

F-distribution Analysis [15]

The F-distribution has k-1 and (k-1)(N-1) degrees of freedom; where k and N are the
numbers of algorithm and datasets, respectively.

On application of F-distribution, the calculated F-distribution is found out as per

Equation 1.3.
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» The critical value of F-distribution with the degree of freedom (k-1,(k-1)(N-1)) and o =
0.05 is calculated. If the calculated F-distribution is greater than the critical F-
distribution, the Null Hypothesis is rejected.

(N -DN?

FTNK-D-NE (13)

Where, k = no. of algorithms, N = no. of datasets and N? is the chi-square value.

1.12 Organization of the Thesis

The rest of the chapters of this thesis are organized as follows: Chapter-2 describes the hand-
crafted feature extraction algorithms, the CNN architecture along with pre-trained nets and the
region proposal mechanisms involved in the pedestrian detection process. This chapter also
discusses the traditional and deep learning literatures in pedestrian detection.

Chapter-3 proposes a scale-invariant shape feature extraction mechanism to explore the
gradient information from all the scales of a scale-space pyramid structure of the image. It
yields fixed length feature vector which serves as an advantage when processed by a classifier.
Chapter-4 advances the detection task by utilizing the proposed CNN models to improve the
image’s feature formation mechanism. The CNN form a more accurate feature map owing to
the backpropagation error correction involved.

Chapter-5 resolved the region proposal part of the detection pipeline. It uses two-stage
detection network Faster R-CNN with the proposed CNN acting as the base to predict the
bounding box co-ordinates of the pedestrians. However, due to computation overhead in
Chapter-6, the single-stage detection network YOLO is used wherein the base CNN is

improved. The conclusion and future scope are discussed in Chapter-7.
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Chapter 2

Related Work

In this chapter, some of the significant pedestrian detection methods are discussed. Existing
hand-crafted features and deep learning features are given in detail. In the hand-crafted
features, shape, texture and color feature extraction algorithms are explained. In the deep
learning features, the CNN architectures and its usage is explained. For region proposal,
existing deep learning models are given. Lastly, some of the important pedestrian detection

literatures are discussed.

2.1 Feature Extraction
2.1.1 Shape Features for PD

Visual characteristics of a region or object's shape include particulars about its boundary. Shape
feature descriptors encompass edge magnitude and direction, giving it a quantitative value.
Histogram of Oriented Gradients (HOG) is widely used to extract shape features [1]. An
introduction to HOG and its variants, HOG-18 [2] and Extended-HOG (Ex-HOG) [2] is
specified in the proceeding section.

Histogram of Oriented Gradients

HOG [1] is a dense feature-extraction method. It gives information for shape and is most
popularly used for pedestrian detection [16, 17]. The process of obtaining the HOG features is
described in Algorithm 2.1.

Algorithm 2.1 Histogram of Oriented Gradients Feature extraction process with 9-bins

1. Take an image as input.

2. Consider a cell size from this image, as shown in Figure 2.1.

3. Compute the vertical (gy) and horizontal (gx) gradients over this cell by using [-1,0,1] and
[-1,0,1]" filters, respectively.

4. Obtain the magnitude (M) and direction (0) for each pixel by using Equations (2.1) and
(2.2).

5. Choose a block size with four cells from the original image, as shown in Figure 2.1.

6. Obtain the 1x9 histogram bin (H) for each cell of the block by considering M and 6 using
Equations (2.3) and (2.4).

7. Concatenate the four 1x9 histogram bins of the whole block to form a 1x36 histogram bin.

8. Normalize the histogram bin obtained in step 7.
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9. With a stride of 1, perform steps 3 to 8 for all the blocks in the image.

10. Concatenate all these histogram bins to obtain the feature vector for the whole image.

M (i,J) = 9,% + 9y° (2.1)

(i, j):tan‘l[g—ij 2.2)
H U%&)j)]mocjgxm] ~H U‘g(ziéjwmodgxzo}(m (i,i)x f) (2.3)
H [{%&)J—)Jmodgxzo]: H [{%&)J—)JmonXZOJ+(M (i,j)x f,) (2.4)

Here, f1 = (6(i,j)mod20)/20, and f> = 1 - f1.

The process of calculating the 9-bin histogram for a cell is explained here. As the first step, the
cell size is considered as 8x8, as shown in Figure 2.2. The results for the magnitude (M) and
direction (0) of each pixel are shown in Figure 2.3 and Figure 2.4, respectively. We compare
the respective magnitude (M) and direction (0) to obtain a 1x9 vector (H). The vector H is
indexed as 0°, 20°, 40°, ..., 160°. While selecting an index from the vector, the value of the
direction cell is considered. After selection of an index, its value is selected from the
corresponding magnitude cell. Consider the value in the blue circle of the direction cell: as the
value 21.01 lies between 20 and 40 in H, the bin 20 and 40 in H are filled with 153.59 and 8.17,
respectively; i.e., the corresponding magnitude value 161.76 is split between the two. Now, let
us take the value in the red circle of the direction cell, which is 109.09. As it lies between
indices 100 and 120, the corresponding magnitude value 55.03 is split as 30.02 in bin 100 and
25.01 in bin 120, as shown in Figure 2.5. Similarly, the whole vector H can be filled, and we

obtain the final result, as shown in Figure 2.6.

Cell \é:eu
e
@\
Ccell Cell

Image

Figure 2.1 Representation of cells and block for HOG feature calculation
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The difference between HOG using a 9-bin histogram (described in previous section) and that

using an 18-bin histogram is that for a cell, we obtain an 18-bin histogram (0°, 20°, 40°, ...,

340°) as the direction is calculated in four-quadrant inverse tangent format. The detailed

process is given in Algorithm 2.2.

Algorithm 2.2 Histogram of Oriented Gradients Feature extraction process with 18-bins

1. Take an image as input.

2. Consider a cell size from this image, as shown in Figure 2.1.
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3. Compute the vertical (gy) and horizontal (gx) gradients over this cell by using [-1,0,1]
and [-1, 0, 1]" filters, respectively.

4. Obtain the magnitude (M) and direction (0) for each pixel by using Equations (2.1) and
(2.5).

5. Obtain the histogram bin (H) by considering M and 6 for all the cells using Equations
(2.6) and (2.7).

6. Calculate the clipped L2-norm of the 2x2 cell with a stride of 1 and a clipping value of
0.08 to obtain a clipped histogram bin (Hc).

7. Apply the L2-norm to Hc to renormalize it and form Hen.

8. Obtain the histogram bin for each cell (Hsum) by using Eq. (8).

9. Concatenate all the Hsymn values to form the final feature vector.

e(i,j):atanz(ﬂ]

" (2.5)
o(i, | 0(i, j .
H %Wmomsxzo}:H {%wmodlsxzo]ﬁm(u)x f) 26
H _%Jmodmx 20} =H {_%&)J)Jmodlsxzo}r(m (i,)x ) on
Here, f1 = (6(i,j))mo0d20)/20, and f> = 1 - f1.
Heum (1) = Hon (1) Hon [i . numberzobeinsj
(2.8)

Here, 1<i < (numberofHbins/ 2) , and N represents the number of cells in a block.

Extended Histogram of Oriented Gradients

As Hsumn (Equation (2.8)) is calculated, Huaitr,n is similarly calculated using equation
(2.9). The EXHOG is formed simply by concatenating Hsum,n and Haifen Using Equation (2.10).
This is explained in Figure 2.7, where the number of cells in a block is taken to be four.

numberobeinsj

Hdiff,N (i): ch,N (i)_ch,N (i"‘ (2.9)

Here, 1<i < (numberofHbins /2), and N represents the number of cells in a block.
ExXHOG, = Homn 1 H gite
(2.10)

Here, N represents the number of cells in a block.
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Figure 2.7 Formation of EXHOG feature vector
2.1.2 Color Features for PD

Color features are the basic characteristic of the content of images. Color features are
represented in the form of color models. The color model gives measurable value to colors, in
the form of a tuple, having three or four values; showing the ratio in which color components
are used. In the proceeding section, color feature extraction algorithms are presented using HSI
(Hue, Saturation, Intensity) color model.

Color correlogram

This feature was proposed by J. Huang et al. [18]. Using this feature, we characterized not only
color distribution of pixel values but also the spatial correlation of pixel pairs, depending on
the distance k. The Dg distance is used for distance measurement. The Dg distance between two

pixels l1(x1,y1) and l2(x2,y2) is given by Equation (2.11).

12(x0,%1) - '2(X2,Y2)|DR = MAX {[x =X, y1 = Y|} (2.11)

The color correlogram is represented by a square matrix S¥ of dimensions NxN. The value of
each cell of matrix S¥(i,j) carries information about the probability of cooccurrence between a
pixel having the value i and another pixel having the value j at a fixed Dg distance k. The color

correlogram of an image I is given by Equation (2.12).

Sk(i’j):ﬁiik%{“ (m,n)—i|}r%[|l (m+Ax,n+A4y) - J|ﬂ (2.12)

L L,
m=1 n= max max
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Here, Ni represents the color histogram [19] of i, which is given by Equation (2.13).

N, iil P |—‘ (2.13)
m=1 n=1 max

Color Autocorrelogram

As all the possible color pair combinations are considered in calculating the color correlogram,
a very long feature vector is obtained. To reduce the feature-vector length, we often use a color
autocorrelogram [18, 20]. The color autocorrelogram considers the spatial correlation between
only identical colors. The color autocorrelogram o creates a one-dimensional matrix of size
1xN, where the value of each cell o*(l) carries information about the probability of finding two
pixels both having color | and having a Ds distance of k, which can be represented using
diagonal elements of the color correlogram matrix S*. The color autocorrelogram of an image
| is given by Equation (2.14).

a*()=SG, j): Vi, j,1 e{012,...L_} and i=j=I (2.14)

" max

2.1.3 Texture Features for PD

The texture of a region or image characterizes the presence of repetitive patterns. Th e three
approaches to describe the texture of a region is statistical, structural and spectral. The texture
algorithms discussed here comes under the statistical approach. Different local patterns, such
as LBP [21] are used to extract texture information from an image. Figure 2.8 shows the 8-
neighborhood of the central pixel Ic. Figure 2.9 shows the steps to calculate the value for central
pixel. The calculation of the LBP feature vector is done by the Equation (2.15).

)| ep = ZZ PLBPmn Lw [O,Zp—l} (2.15)

m=1n=1
I I I
I I I
I- Is Is

Figure 2.8 8-Neighborhood of pixel around I,
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Figure 2.9 LBP calculation (a) Original Image (b) Resultant binary numbers for (a). (c)
Decimal weights for the corresponding locations
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2.1.4 CNN based Features for PD

CNN is one of the sub-categories of deep learning. It is used in computer vision fields like
classification and detection. CNN uses convolution layers to extract hierarchical feature
representation [22]. The output of each layer is known as a feature map, obtained by convolving
weight matrix over receptive fields. The weight matrix or the filter is vital in identifying
features. Apart from the convolution layers, a pooling layer is used, conventionally after every
convolutional layer. It downsamples the feature map by applying techniques such as max-pool,
min-pool and L2-norm to yield more robust feature maps [23, 24]. Another layer is added to
introduce non-linearity in the system [23, 24]. This can be done by the ReLu layer which simply
changes all negative activations to zero. This gives substantial speedup as opposed to tanh and
sigmoid non-linear functions. In the end, fully connected layers are placed which maps the
input from the preceding layer to an N-dimensional vector. N denotes the number of classes in
the dataset. This vector contains the probability of the classes present.

Transfer Learning
CNN's have a huge number of weights, which are learned in the process of training. In the

absence of an enormous amount of data, we cannot have an effective CNN model. This is where
transfer learning comes into the picture. Transfer learning involves taking the weights learned
by other pre-trained CNN and molding them into a network that is suitable for a target dataset
[4]. This process is called fine-tuning the pre-trained model. There are various CNNs which
are trained on millions of images from the ImageNet dataset [25]. ImageNet contains a huge
number of images that covers over a thousand classes. The initial layers of these pre-trained
CNNs detect low-level features like edges and blobs. These basic features are common to most
of the naturally occurring datasets. Therefore, these low-level features are freezed and only the
fully connected layers are trained according to the dataset requirement. The proceeding section
briefly introduces the pre-trained CNNs which are used in this work.

Pre-trained CNN: AlexNet, ResNet, Inceptionv3, Xception, SqueezeNet, MobileNetv2
and Darknet

AlexNet [26]: AlexNet secured the first position in ILSVRC (ImageNet Large Scale Visual
Recognition Competition) 2012. It is mainly used for image classification problems. ImageNet
dataset was used to train AlexNet. The total number of parameters and neurons of AlexNet is
60 million and 650,000 respectively. Five to six days were required to train AlexNet on the
ImageNet dataset using two GTX 580 3GB GPUs.

ResNet [27]: Residual Network being a 152-layered network architecture gives a remarkable
performance in classification, localization and detection problems. ResNet won ILSVRC 2015
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with 3.6% error rate. An 8 GB GPU machine was used for 14 to 21 days to train ResNet. The
degradation problem is resolved with the help of a deep residual learning framework. There
are different variations of ResNet available having the number of layers 18, 34, 50, 101 and
152.

Inceptionv3 [28]: This is a 42-layer deep network trained on the ImageNet dataset. Several
techniques are employed in this architecture to improve the performance. Some of them are
factorized convolutions, smaller receptive field, grid size reduction and asymmetric
convolutions. For training, a distributed system was employed using a NVIDIA Kepler GPU
for 100 epochs with batch size of 32.

Xception [29]: This is a 71-layer deep network also trained on the ImageNet dataset. It can
classify up to 1000 object categories. Like ResNet, this also follows a directed acyclic graph
structure. The feature extraction module is formed by 36 convolution layers. It was trained on
60 NVIDIA K80 GPUs. Xception was trained on ImageNet dataset.

SqueezeNet [30]: SqueezeNet is an 18-layer deep network which has reduced the model size
considerably without affecting the accuracy. SqueezeNet uses fire modules which are squeeze
and expand networks. The model also comes with simple bypass and complex bypass variation.
Due to the smaller size of the CNN, it was able to be trained on FPGAs.

MobileNetv2 [31]: It is a light weight model with 53 layers. It was depthwise convolution and
pointwise convolution. It showed good performance in classification, detection and
segmentation task. It was trained on 16 GPU asynchronous workers.

Darknet [32, 33]: This network is 19 layers deep. Darknet-19 is a series network. This network
is pre-trained on the 1000 categories of the ImageNet dataset. Darknet-19 was introduced as a
base network for YOLOv2 [32]. DarkNetl9 has 19 convolutional layers. It uses 1x1
convolution layers to reduce the parameters in the model. It strikes a good balance between the
accuracy and complexity of the model. The DarkNet19 model can be divided into six blocks
considering the scale of the feature maps. Later DarkNet53 model was introduced in YOLOv3
[33]. It has 53 convolution layers of 1x1, 3x3, and 1x1 blocks. Using a Pascal Titan X system,
it showed a speed of 30 frames per second.

2.2 Classifier

The SVM [34] is one of the most widely used mechanisms for solving pattern-classification
problems. It is a supervised learning method that maximizes the margin of a linear decision

boundary (hyperplane), thus achieving maximum separation between the two object classes.
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For pedestrian classification, linear and nonlinear SVM classifiers have been used in
combination with various feature sets [6, 35, 36]. Nonlinear SVM classification, e.g., using rbf
or polynomial kernels for underlying mapping of the samples into a higher-dimensional space,
results in further performance gain. However, its memory requirements and computational
costs are substantially higher than those of linear SVM classification. Usually, linear SVM
classifiers are preferred over nonlinear SVM classifiers to gain speed and minimize the

overfitting problem [2].
2.3 Region Proposal Networks

The region proposal networks are divided into two-stage and single-stage networks. The two-
stage networks are R-CNN, Fast R-CNN and Faster R-CNN. The single-stage networks are
YOLOV2 and YOLOv3. Their usage in detection mechanism is discussed in this section.

e R-CNN
R-CNN was the first two-stage region proposal network [37]. The selective search algorithm
is used in this framework to extract region proposals [38]. The selective search algorithm
generates around 2000 region proposals for an image. Firstly, a feature map gets generated
after running a region proposal in the object detector system. Then, two fully connected
networks are used on the feature map to obtain a linear vector. This linear vector is further
applied with two SVM network individually for classification and regression. For every image,
the region proposal runs through the base convolutional neural network. This increases the
processing time. It lacked in optimal time and space use, but provided a good starting point.

e Fast R-CNN
Fast R-CNN addressed the drawbacks of R-CNN [39]. Fast R-CNN reduced the computation
as it processed the test image just one time. It shared the computation between the region
proposal system and the detector system. It also adds a Region of Interest pooling layer which
yields a fixed-length feature vector for the regions. It also performed regression and
classification simultaneously. This improved the time and memory requirements when
compared to R-CNN. However, there was still an obstacle, which is the selective search for
region proposal.

e Faster R-CNN
Faster R-CNN was published in 2015 and it is the most widely used region proposal method
[40]. The detection paradigm is made up of 1) a region proposal algorithm, employed to output
the probable regions of the desired objects followed by 2) feature extraction by the pre-trained

CNNs, 3) classification layer to predict the object’s class and 4) regression stage to fine-tune

24



the bounding boxes generated by the region proposal method. The previous R-CNN versions
used the selective search algorithm. But Faster R-CNN speeds up this process by including a
convolutional network for region proposal termed as the Region Proposal Network (RPN).
Faster R-CNN uses a pre-trained CNN as a backbone network which enables it to share weights
with the CNN used in the detection process.
e YOLOV2

It is proposed as an improvement on YOLOv1 [32,41]. Some of the several advances in
YOLOV2 are batch normalization, anchor boxes with k-means clustering, and a base CNN
network DarkNet19 to extract features. The feature extraction layers for YOLOv2 with base
DarkNet19 is shown in Table 2.1.

Table 2.1 YOLOV2 with base DarkNet19 Feature Extraction Layers

Layer Filter ~ Channels Input Output
Name Size/Stride Layer Size
Input 256x256%3
[Convi 3x3/1 32 Input 256x256x32 |
Maxpool_1 2x2[2 Convl 128x128%32
|Conv2 3x3/1 64 Maxpool_1  128x128x64 |
Maxpool_2 2x2/2 Conv2 64x64x64
Conv3 1x1/1 128  Maxpool_2  64x64x128
Conv4 3x3/1 64 Conv3 64x64%64
Convs 1x1/1 128  Conv4 64x64x128
Maxpool_3 2x2/2 Convs 32x32x128
Convé 1x1/1 256  Maxpool_3  32x32x256
Conv7 3x3/1 128  Conv6 32x32x128
Conv8 1x1/1 256  Conv7 32x32x256
Maxpool_4 2x2/2 Conv8 16x16x256
Conv6 1x1/1 512  Maxpool_4  16x16x512
Conv7 3x3/1 256  Conv6 16x16x256
Conv8 1x1/1 512 Conv7 16x16x512
Conv9 3x3/1 256  Conv8 16x16%256
Conv10 1x1/1 512 Conv9 16x16x512
Maxpool_5 2x2[2 Conv10 8x8x512
Conv1l 1x1/1 1024 Maxpool_5  8x8x1024
Conv12 3x3/1 512  Convll 8x8x512
Conv13 1x1/1 1024  Conv12 8x8x1024
Conv14 1x1/1 512 Conv13 8x8x512
Conv15 3x3/1 1024 Convi4 8x8x1024

e YOLOV3
YOLOv3 shows further improvement on YOLOV2. It uses regression to compute the score for

each prediction. YOLOvV3 uses an improved CNN as the base network, DarkNet53. This
network has 53 layers which are made up of 1x1, 3x3, and 1x1 blocks added with bypass [33].
YOLOV3 generates prediction from different scales of the network. In this work, two scales
are considered and each scale has 3 anchor boxes. So, the output tensor of YOLOV3 is

NxNx[3*(4+1+1)] considering 4 bounding box location offset, 1 predicted object, and 1 class
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prediction. The DarkNet53 model can be divided into five blocks considering the scale of the
feature maps. The feature extraction layers for YOLOv3 with base DarkNet53 is shown in
Table 2.2.

Table 2.2 YOLOv3 with base DarkNet53 Feature Extraction Layers
Layer Name Filter ~ Channels Input Layer Output Size

Size/Stride
Input 256%256%3
convl 3x3/1 32 Input 256%256%32
conv2 3x3/2 64  convl 128x128x64
1x conv3 1x1/1 32 conv2 128x128x32
conv4 3x3/1 64 128x128x64
Residual_1 128x128x64
convb 3x3/2 128  Residual 1  64x64x128
o convé 1x1/1 64  convh 64x64x64
conv7 3x3/1 128 64x64x128
Residual_2 64x64x128
conv10 3x3/2 256  Residual 2 32x32x256
8x convll 1x1/1 128 conv10 32x32x128
convi2 3x3/1 256 32x32x256
Residual_3 32x32x256
conv27 3x3/2 512 Residual_3  16x16x512
8x conv28 1x1/1 256 conv27 16x16x256
conv29 3x3/1 512 16x16x512
Residual_4 16x16x512
conv44 3x3/2 1024  Residual_4  8x8x1024
ax conv4s 1x1/1 512 conv44 8x8x512
conv46 3x3/1 1024 8x8x1024
Residual_5 8x8x1024

2.4 Literature on PD

In computer vision applications such as object detection, medical imaging and robotics there
is a major role of deep learning. Substantial amount of advancement has been made in the field
of computer vision. M.M. Badza et al. [42] developed a new CNN architecture for classifying
brain tumor types into three classes. The k-fold cross-validation approach was used to train the
model. J. Ker et al. [43] reviewed the usage of deep learning in medical image processing which
was focussed on CNNs. The review describes the advantages of machine learning algorithms
compared to the hand-crafted features. Applications such as classification, localization,
detection and segmentation are covered in this review. S.S. Yadav et al. [44] explores machine
learning and deep learning methods for classification of pneumonia from chest X-rays. It also
studies the effects of data augmentation, transfer learning and network complexity as per the
application requirement. Y. Liu et al. [45] have proposed a deep ensemble network comprising
of a CNN and an Attention-Guided Network to detect Glaucoma using stereo images. S.P.

Singh et al. [46] have used CT scans to train a 3D CNN model into detecting four subclasses
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of brain hemorrhage. The network proposed in the paper can be used to detect abnormalities
in different organs. J. Ker et al. [47] have propose another 3D CNN model for two-class and
four-class classification of brain hemorrhage using CT scans with additional image
thresholding to improve the accuracy of the network. S.P. Singh et al. [48] discusses the
application of 3D CNNs in medical imaging. Areas such as segmentation, detection,
localization and classification are discussed along with the challenges associated with 3D CNN
in medical imaging. J. Ker et al. [49] used pre-trained CNN to detect brain tumor by
successfully applying transfer learning. The authors have also collected brain histology images
dataset. A. Dhillon et al. [50] has reviewed CNN architectures in object detection domain
including human detection. Various pre-trained CNNs are described along with a summary of
datasets, applications and the accuracy obtained. R. Li et al. [51] has proposed a situation aware
framework using Electroencephalography (EEG) and machine learning.

In this thesis, a particular application i.e., pedestrian detection is focussed upon. Pedestrian
detection is the task of identifying and marking the location of the presence of a pedestrian in
an image [52]. It has several applications like smart surveillance [53], robotics [54], automatic
driving [55] and human behavior analysis [56]. To improve pedestrian detection performance,
researchers have endeavored into a varying amount of work [57,58]. Even so, a huge variation
persists in poses, occlusions, viewpoints and illumination. This increases the difficulty in
devising a perfect method. Thus, in recent years, this area has attracted quite a lot of attention
[58, 59]. Pedestrian Detection involves a pipeline of feature extraction and classification.
Features should have a well-formed and robust representation of the objects i.e., pedestrians in
this case. Even though extensive research has been performed on pedestrian detection,
significant improvements were made in recent works, which suggests that the research has not
reached a saturation point. There is considerable literature related to pedestrian detection
methods. Several methods for feature extraction have been proposed, including Edge
Templates [60], the Haar Wavelet [61], Histogram of Oriented Gradients (HOG) [1], the
covariance descriptor [62], Shape Models [63] and SIFT descriptors [64]. In a major
breakthrough, N. Dalal et al. [1] proposed the HOG for extracting shape features. It is a dense
representation of gradient information for a region. It is invariant to slight changes in translation
and rotation. Local normalization helps in illumination changes. They also introduced a new
annotated pedestrian dataset called INRIA with a varying background and pose. A. Satpathy et
al. [2] modified the HOG using an 18-bin histogram, yielding the extended histogram of
oriented gradients (ExHOG). EXHOG solves an issue of HOG wherein gradients of opposite

directions in the same cell are assigned to the same histogram bin. Both linear and nonlinear
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kernel support vector machines (SVM) were used, and EXHOG with the nonlinear kernel
performed better for the INRIA and Daimler datasets. S. Nigam et al. [65] proposed a
multiresolution approach for detecting pedestrians using LBPs. This approach has two
limitations: 1) it can be applied to only grayscale images and 2) images must be resized to a
fixed size scale. Consequently, the multiresolution property of the dataset is lost. G. Overett et
al. [5] introduced a multiresolution dataset (NICTA) of >25551 pedestrians, which gives a total
of 50000 pedestrians, including left and right reflection. The negative set was sampled from
5207 high-resolution people-free images. However, the authors focused on single-resolution
image sets. J. Yan et al. [66] proposed a multiresolution approach for traffic scenes. It employs
a deformable part model [67] to map low-resolution and high-resolution pedestrians onto a
common space. The detector then learns from these mapped features of different resolutions.
However, correctly identifying true or false positives requires vehicle—pedestrian localization,
assuming that in traffic scenes, pedestrians are around vehicles. Thus, more complexity is
introduced to the system. P. Dollar et al. [12] evaluated the state-of-the-art pedestrian detection
methods. Detection was performed at three scales: far, medium, and near. The images were
captured using a camera mounted on a vehicle. There was visible degradation for the far and
near scales. P. Hurney et al. [68] combined HOG with a texture feature, i.e., the local binary
pattern (LBP), for grayscale pedestrian images. Feature vectors of LBP variations with 16 & 8
neighborhoods and radii of 2 & 1, respectively, were obtained. The feature vectors were given
to a radial basis function (rbf)-kernel SVM. The results indicated that the HOG with an LBP
having neighborhood 8 and radius 1 outperformed others. M. Bilal et al. [69] used integer-only
features from color information and orientation histograms. Classification is done by
implementing a soft cascade for fast evaluation of kernel classifier. The authors could identify
true negatives at the early stages from the kernel function’s energies. R. Lahmyed et al. [70]
proposed to use both visible and thermal image of a scene in pedestrian detection system. They
have used a modification of OTSU method to segment the thermal images in order to get the
locations of probable pedestrians. The locations get mapped to visible images, thereafter
features are calculated. B.T. Bastian et al. [71] proposed to merge data specific dictionary
learned histogram of sparse codes and aggregate channel features for pedestrian detection. K.
Kumar et al. [72] proposed to combine Histogram of Significant Gradients, a variation of HOG
with Non-Redundant Uniform Local Binary Pattern to yield a feature descriptor. The authors
then used a linear SVM classifier for feature training. X. Zhanga et al. [73] proposed a
pedestrian detection method which combines HOG features with the color image’s edge

features on depth images. They have used shearlet transform to yield edge features from the
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color images. The combined feature is used to train the SVM classifier. However, the existing
hand-crafted feature methods are unable to bridge the gap between the current performance
and the preferred performance.

A significant improvement occurred when Convolutional Neural Network (CNN) was
introduced [3,74,75]. CNN is a deep learning architecture and it can learn complex feature
representations. Also, the backpropagation training algorithm allows for a better feature
formation mechanism then manually designed features [3]. Since the advent of AlexNet, a
pretrained CNN model on the ImageNet dataset [26], many CNN models have been proposed
for detection purposes [27,76,77]. The researchers have improved the feature formation process
in the CNNs, such as skip connection in ResNet50 and inception module in GoogleNet [78].
In recent years, there is a tremendous amount of research in pedestrian detection using deep
learning. D. Tome et al. have used a deep convolutional neural network to improve accuracy
for pedestrian detection. They have used pre-trained AlexNet and GoogleNet with optimization
[79]. W. Ouyang et al. has proposed the use of the deformable parts model and deep learning
to handle occlusion. For the visibility relationship between the parts, a deep model is proposed
[80]. Q. Hu et al. have used the features produced by the deep learning CNN models and used
them to train decision models. They have also added a manually designed optic flow feature to
the Deep CNN features [81]. L. Chunze et al. used deep features to detect visible parts of an
occluded pedestrian as well as small sized ones. A multi-scale network is used where the feature
maps are selected based on the target pedestrian's size and the corresponding receptive field of
the feature map [82]. L. Jianan et al. have used a Fast R-CNN network for detecting pedestrians
using subnetworks to extract features at various scales [83]. L. Chunze et al. proposed a deep
learning structure to detect pedestrians at various scales. They have used an attention map with
the feature maps to detect pedestrians at respective scales [84]. A method based on
convolutional sparse coding is used by P. Sermanet et al. [77] to pre-train the CNN for
pedestrian detection. The combination of CNN and hand-crafted features are used to build a
complexity-aware cascaded detector by J. Hosang [85]. Pedestrian detection and other semantic
tasks are optimized jointly by Y. Tian et al. [86].

A deep learning object detection can be divided into two-stage and single-stage methods. In a
two-stage process, the first stage develops region proposals, and the second stage classifies
them. The two-stage network R-CNN [37] worked by applying CNN features on the generated
object proposals. Faster R-CNN [40] added a region proposal network which increased the
accuracy. In a one-stage method, the extraction of region proposal is eliminated, and the

detection results are created from the images directly. Single Shot Multibox Detector (SSD)
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[87], a single-stage detection method, has a significantly high speed. The YOLO model [41] is
the first single-stage deep learning method. It models the detection task as an end-to-end
regression problem, thus gaining more speed. The basic YOLO was improved with the addition
of anchor boxes to predict the bounding boxes. The improved version named YOLOv2 [32]
also introduced a new pre-trained CNN model, DarkNet-19. Z. Yi et al. proposed a modified
tiny-yolov3 [33] is proposed to improve the feature formation process by adding three
convolutional layers to improve the detection accuracy [88]. W. Lan et al. adds a passthrough
layer in YOLOV2 to link the high- and low-resolution feature maps [89]. Z. Liu et al. has also
added passthrough layers and fusion layers to YOLOVZ2, combining the feature across all levels
[90]. W.Y. Hsu et al. proposes a ratio-aware YOLO model which uses multiresolution fusion
to lower the miss rate in small and varying aspect ratio pedestrians [91]. X. Tang et al. has
given a scale-aware YOLOv3 modification using two sub-networks to improve small-scale

pedestrian detection in real-time [92].
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Chapter 3

A Scale Invariant Histogram of Oriented Gradients
Feature Extraction for Pedestrian Detection in
Multiresolution Image Dataset

In this chapter, a hand-crafted feature extraction mechanism is proposed for pedestrian
detection. The proposed method adapts feature extraction methods for a scale independent
system. This method achieves the following two objectives. It can process multiresolution or
single resolution images. It extracts shape features by introducing a scale-space in HOG.
Weighted gradient information of the scale-space ensures that the HOG feature vector is
independent of resolution. 2) Previously, there has been no fusion of shape features, texture
features and color features with the SVM classifier. Therefore, we combine the proposed
method, i.e., Scale-Invariant Histogram of Oriented Gradients (SI-HOG), which gives the
scale-independent shape feature, with texture and color features. As shape features are the basis

for pedestrian detection, they are concatenated with texture and color features.

3.1 Introduction
3.1.1 Histogram of Oriented Gradients Feature Pyramid

To perform pedestrian detection, first, feature extraction is performed. Because we are focusing
on pedestrians, the most important feature is shape. For extracting shape information, the best-
performing feature is HOG. A dataset containing images of different resolutions (dimensions)
produces HOG feature vectors of different lengths, this is because HOG features are dependent
on the size of the image. This becomes an obstacle for the classifier. If we wish to apply HOG,
all the images in the dataset must be resized to the same dimension. Hence, the multiresolution
property is lost. We address this problem by utilizing a scale-space pyramid to extract shape

features, which are not dependent on the dimension of the image.
3.2 Methodology

In the proposed method, a scale-space pyramid is utilized to extract the shape features, which
are not dependent on the scale of the image. The SI-HOG method is described in Subsection
3.2.1 and the mathematical derivation of the SI-HOG feature vector is given in Subsection
3.2.2.
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3.2.1 Scale Invariant Histogram of Oriented Gradients

The proposed SI-HOG method for pedestrian detection is described in two parts i.e., Feature

Extraction and Classification.

Part | (Feature Extraction)

1.

3.

Consider three scales to construct a pyramid structure by placing the image at the
bottom (Scale1) and then subsampling it with a factor of two to create another image
(Scale2). The process is repeated on Scale 2 to obtain the third image (Scales). For Scale
1, take the largest dimension Ry, the maximal resolution from the set, having a
resolution, let's say, pxqg. The resolution for Scale 2 is p/2xqg/2, and that for Scale 3 is
pl4xql4.

For each image, a scale-space (Sj, 1 <j < 3) pyramid is constructed with the three
resolutions, as described in Step 2.

For Scale 1, consider the cell size as mxm. For Scale 2, the cell size is m/2xm/2, and
for Scale 3, it is m/4xm/4. Thus, the same number of cells is maintained for all the
scales.

Obtain a 9-bin histogram (H) using Equations (3.1) and (3.2) for every cell in a scale
Sj, with 1 <j<3.

Concatenate the histogram bins obtained in Step 4 for each scale Sj to form Hscarej,
where 1 <j<3.

Take the average of Hscale,1, Hscale,2, and Hscale;3 according to Equation (3.3).
Considering 2x2 overlapping cells with a stride of 1, apply block normalization on Hayg
to obtain the final feature vector for the image.

Part 11 (Classification)

The feature vectors of both positive and negative images (with labels 1 and -1,
respectively) are used to train the SVM.

The Test Set feature vector including the positive and negative images is given to the
trained SVM Model to obtain a label (either 1 or —1).

The actual and predicted labels of the test set are compared to obtain a confusion matrix

The proposed method is represented in Figure 3.1.

0('1]) — M X i,j)x
H@TJmod%QOJ—H@ 20 Jmod9 20j+(M(I.J) f) (3.1)
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H {MJmodwzo =H {MJmodwzo +(M(, j)x f,) (3.2)
20 20
3
Havg = Z Hscale,j /3 (33)
j=1
Where, the size of H,,. ; =9x P9
‘ ms#m

3.2.2 Derivation of SI-HOG Feature Vector

1.

The concatenated Histogram (Hscale, j) Of all the scales (S;) is formed as:

Scale 1: Resolution of image is pxq and the cell size is mxm. So, we get (p*q)/(m*m)
number of cells. For each cell, a 9-bin histogram is formed. So, for scale 1,
9%x((p*q)/(m*m)) (=Hscale,1) Is yielded by concatenating each 9-bin histogram vertically.
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Figure 3.1 Block Diagram of the Proposed SI-HOG

Scale 2: Resolution of image is p/2xq/2 and the cell size is m/2xm/2. So, we get
(p/2*q/2)/(m/2*m/2) number of cells which results into (p*q)/(m*m) cells. Similarly,
for each cell, a 9-bin histogram is formed. Finally, for scale 2 also, 9%((p*q)/(m*m))
(=Hscale2) is yielded by concatenating each 9-bin histogram vertically.

Scale 3: Resolution of image is p/4xqg/4 and the cell size is m/4xm/4. So, we get
(p/4*g/4)/(m/4*m/4) number of cells which results into (p*qg)/(m*m) cells. Similarly,
for each cell, a 9-bin histogram is formed and 9x((p*q)/(m*m)) (=Hscale,3) is yielded by
concatenating each 9-bin histogram vertically.

As all the Histogram of the scales are given equal weightage, Hscale,1, Hscate,2 and Hscale,3
each are multiplied by a factor of !5 and then summed to get Havg. Size of Havg Will be

equal to that of Hscale,1, Hscale,2 and Hscale3 1.€., 9%((p*q)/(m*m)).
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3. As per the construction of a block comprising of four cells, Hayg is block normalized
following L2-norm to yield the final feature vector. The length of the final feature
vector is given in Equation (3.4).

LengthOfSI — HOGFeatureVector = NumberOfBlocks * LengthOfEachBlock  (3.4)
Where, number of blocks = ((p/m) - 1)*((gq/m) - 1) and
length of each block = number of cells per block*number of bins = 4*9 = 36

4. The feature vector yielded from Positive Training Set is assigned label ‘1’ and that of
Negative Training Set is assigned label ‘-1°.

5. The feature vector along with the label vector from the training set is used to train SVM,
which yields a model.

6. The Positive Testing Set and the Negative Testing Set along with their actual labels are
given as input to SVM model.

7. The output is a set of predicted labels which is further used to construct confusion

matrix and the performance metrics.
3.3 Experimental Results and Discussion

The proposed method is compared with twelve existing algorithms on three standard pedestrian
datasets: INRIA, NICTA and Daimler. The details of these pedestrian datasets are given in
Chapter-1. Both the single and multiresolution version of the datasets are considered in this
work. For the three datasets, per-window evaluation was employed. The value of m, which
determines the cell size for the scale-space, was 16, 8 and 12 for INRIA, NICTA and Daimler,
respectively. These values were experimentally determined to perform well for the datasets.
For INRIA, a linear SVM classifier with a regularization parameter (C) of 0.01 was used,
whereas for NICTA and Daimler, a nonlinear SVM classifier with a rbf kernel was used. The
classification was performed using the LIBSVM machine-learning library. Subsection 3.3.1,
3.3.2 and 3.3.3 discusses the performance for the INRIA, NICTA and Daimler pedestrian
datasets respectively. Subsection 3.3.4 shows the fusion strategies result. Subsection 3.3.5

shows the statistical analysis of the results.
3.3.1 INRIA Pedestrian Dataset

The proposed method is applied on the INRIA Pedestrian dataset and the confusion matrix is
obtained from the classification result. Thus, the ROC Curve and DET Curve are derived from
the confusion matrix result. The ROC Curve for single and multiresolution INRIA is shown in
Figure 3.2 and Figure 3.3 respectively. The DET Curve for the single and multiresolution
INRIA is shown in Figure 3.4 and Figure 3.5 respectively. The miss rate is obtained at 103
FPPW and given in Table 3.1. In the single resolution case, the proposed method achieved the
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lowest miss rate of 7.47%. The second lowest miss rate was achieved by HOG-9. Thus, the
proposed method was the best-performing method when compared with other shape features
as well as texture and color features. In the multiresolution case, the proposed method was the
only shape feature-extraction method. With the addition of texture and color information, miss
rates of 6.98% and 40.24% were achieved for INRIA. For INRIA, combining texture and color
features with the proposed method further improved the miss rate. With the addition of texture
and color information, miss rates of 3.28% and 6.98% is yielded for single and multi -resolution

respectively.
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Table 3.1 Miss Rate values for Single and Multiresolution INRIA Pedestrian Dataset

Miss Rate (%0)

hod INRIA
Metho Single Multi-
Resolution resolution
LBP 99.25 88.87
AutoCor 92.51 98.05
Interchannel 92.24 77.09
HOG-9 11.98 NA
HOG-18 57.24 NA
Ex-HOG 34.53 NA
SI-HOG 7.47 9.88
HOG-9+LBP 8.19 NA
HOG-9+AutoCor 6.51 NA
HOG-9+Interchannel 8.39 NA
HOG-9+LBP+AutoCor 4.35 NA
HOG-9+LBP+Interchannel 7.53 NA
SI-HOG+LBP+AutoCor 3.49 7.83
SI-HOG+LBP+Interchannel 3.28 6.98
Weighted SI-HOG+LBP+AutoCor 3.26 5.24
Weighted SI-HOG+LBP+Interchannel 3.81 5.74
k-fold SI-HOG+LBP+AutoCor 1.55 14.2
k-fold SI-HOG+LBP+Interchannel 1.23 21.18

3.3.2 NICTA Pedestrian Dataset
The proposed method is applied on the NICTA Pedestrian dataset to obtain the confusion

matrix from the classification result. This yielded the ROC Curve and DET Curve from the

confusion matrix result. The DET Curve for single and multiresolution NICTA is shown in

Figure 3.6 and Figure 3.7 respectively. The miss rate is obtained at 103 FPPW and given in

Table 3.2. In the single resolution case, the proposed method achieved the lowest miss rate of

20.56% for NICTA. The proposed method was the best-performing method when compared

with other shape features as well as texture and color features. In the multiresolution case, the

proposed method was the only shape feature-extraction method. With the addition of texture

and color information, miss rates of 40.24% were achieved for NICTA. For NICTA, combining
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texture and color features with the proposed method further improved the miss rate. With the
addition of texture and color information, miss rates of 14.65% and 40.24% is yielded for single

and multiresolution respectively.
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Table 3.2 Miss Rate values for Single and Multiresolution NICTA Pedestrian Dataset

Miss Rate (%0)
NICTA

Method Single Multi-
Resolution resolution
LBP 91.97 94.39
AutoCor 75.85 83.08
Interchannel 71.46 70.57
HOG-9 26.56 NA
HOG-18 63.55 NA
Ex-HOG 49.31 NA
SI-HOG 20.56 54.03
HOG-9+LBP 25.25 NA
HOG-9+AutoCor 18.32 NA
HOG-9+Interchannel 26.56 NA
HOG-9+LBP+AutoCor 17.56 NA
HOG-9+LBP+Interchannel 26.33 NA
SI-HOG+LBP+AutoCor 14.65 40.24
SI-HOG+LBP+Interchannel 19.31 48.93
Weighted SI-HOG+LBP+AutoCor 14.7 49.14
Weighted SI-HOG+LBP+Interchannel 20.41 50.14
k-fold SI-HOG+LBP+AutoCor 175 27.25
k-fold SI-HOG+LBP+Interchannel 17.6 34.08
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3.3.3 Daimler Pedestrian Dataset

The proposed method is applied on the Daimler Pedestrian dataset and from the classification
result and confusion matrix, the ROC Curve and DET Curve are obtained. The DET Curve for
single and multiresolution Daimler is shown in Figure 3.8 and Figure 3.9 respectively. The
miss rate is obtained at 102 FPPW and given in Table 3.3. As it is a grayscale dataset, the color
feature is not considered here. In the single-resolution case, the proposed method achieved the
lowest miss rate of 33.20%. The second lowest miss rate was achieved by HOG-9. Thus, the
proposed method was the best-performing method when compared with other shape features
as well as texture feature. In the multiresolution case, the proposed method was the only shape
feature-extraction method. With the addition of texture information, a miss rate of 33.21% is
yielded. For Daimler, combining texture feature with the proposed method further improved
the miss rate. With the addition of texture information, miss rates of 32.67% and 33.31% is

yielded for single and multiresolution respectively.
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Figure 3.9 The DET Curve for Multiresolution Daimler Pedestrian Dataset
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Table 3.3 Miss Rate values for Single and Multiresolution Pedestrian Dataset

Miss Rate (%)
Daimler

Methods Single Multi-
Resolution resolution
LBP 48.74 69.38
HOG-9 37.89 NA
HOG-18 53.12 NA
Ex-HOG 49.39 NA
SI-HOG 33.20 32.93
HOG-9+LBP 36.60 NA
SI-HOG+LBP 32.67 33.31
Weighted SI-HOG+LBP 33.17 34.06
k-fold SI-HOG+LBP 13.98 12.87

3.3.4 Result of Fusion Strategies

Two fusion strategies namely weighted and k-fold SI-HOG+LBP+AutoCor and Sl-
HOG+LBP+Interchannel are evaluated for INRIA, NICTA and Daimler single and
multiresolution datasets. In the case of weighted methods, the weight was taken with respect
to the ratio of (TP+TN) to (TP+FN+FP+TN) of each method. The weight was multiplied by
their respective train and test feature vectors to form weighted feature vectors. In the case of k-
fold, the total of the train-test set was divided into k parts where k=5. Then the performance
was evaluated on the train:test set in the ratio of 4:1 part. In the case of weighted fusion, there
is an improvement in miss rate in the single and multiresolution INRIA dataset and in the single
resolution NICTA dataset. In the case of k-fold fusion there is a significant improvement of
miss rate in the single resolution INRIA and the multiresolution NICTA datasets and also in
both the single and multiresolution Daimler datasets. The fusion strategies results are shown in
their respective ROC, DET Curves and miss rate tables.

3.3.5 Statistical Analysis

In this work, there are 14 and 6 independent variables (k) in single and multiresolution dataset
(N) respectively. The rank table for Friedman test is given in Table 3.4. The proposed
concatenation i.e., SI-HOG+LBP+AutoCor and SI-HOG+LBP+Interchannel has the first and
second rank respectively in the case of single resolution. The calculated chi-square is 25.557.
The critical value of chi-square at a degree of freedom (k-1) 13 is 21.026. As the calculated
value of chi-square is greater than the critical value of chi-square, the Null Hypothesis is
rejected. In the case of multiresolution both have the first rank. The calculated chi-square is
9.428. The critical value of chi-square at degree of freedom 5 is 11.070. As the calculated chi-

square is less than the critical chi-square, the Null Hypothesis is failed to be rejected. The
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calculated F-distribution is 16.482. The critical value of F-distribution with degree of freedom
(5,5) and a = 0.05 is 5.05. As the calculated F-distribution is greater than the critical F-
distribution, the Null Hypothesis is rejected.

Table 3.4 Rank Table of Friedman Test for the Proposed Methods in Single and

Multiresolution Dataset

Methods Single Resolution Multiresolution
Mean Rank Rank Mean Rank Rank
LBP 14 12 5.5 4
AutoCor 13 11 5.5 4
Interchannel 12 10 4 3
HOG-9 8.75 7 NA NA
HOG-18 11 9 NA NA
Ex-HOG 10 8 NA NA
SI-HOG 5 4 3 2
HOG-9+LBP 6.5 5 NA NA
HOG-9+AutoCor 3.5 3.5 3 NA NA
HOG-9+Interchannel 8.25 6 NA NA
HOG-9+LBP+AutoCor 2.5 2 NA NA
HOG-9+LBP+Interchannel 6.5 5 NA NA
SI-HOG+LBP+AutoCor 15 1 15 1
SI-HOG+LBP+Interchannel 2.5 2 15 1

Friedman Test Analysis including the fusion strategies:

The Friedman test is conducted on the two fusion strategies namely weighted and k-fold SI-
HOG+LBP+AutoCor and SI-HOG+LBP+Interchannel. In the case of single resolution INRIA
and NICTA datasets, there are 18 algorithms whose Mean Rank yielded is [18, 17, 16, 12.75,
15, 14,9, 10.5,7,12.25,5.5, 10.5, 3, 5.5, 2.5, 7, 2.5, 3] as per the sequence in Table 3.1. It can
be observed that except for the weighted SI-HOG+LBP+Interchannel all the 5 proposed
methods are with high mean rank. The calculated chi-square is 32.88. The critical value of chi-
square at a degree of freedom (k-1) 17 is 27.59; where k is the number of algorithms. As the
calculated value of chi-square is greater than the critical value of chi-square, the Null
Hypothesis is rejected. In the case of multiresolution INRIA and NICTA datasets, there are 10
algorithms whose Mean Rank yielded is [9.5, 9.5, 8, 6, 3.5, 3.5, 3, 4, 3.5, 4.5] as per the
sequence in Table 3.1. In this case, the 6 proposed methods are with top ranks as well. The
calculated chi-square is 13.09. The critical value of chi-square at a degree of freedom 9 is
16.919. As the calculated chi-square is less than the critical chi-square, the Null Hypothesis is
failed to be rejected. On application of F-distribution on the multiresolution datasets, the
calculated F-distribution is 2.665. The critical value of F-distribution with degree of freedom
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(9,9) and o = 0.05 is 3.17. There is rejection of Null Hypothesis here as well. It may be

concluded that this is due to, among the 10 methods considered, the 6 fusions of SI-HOG are

yielding similar mean rank.

3.4 Observations

By considering the proposed scale-space pyramid-based shape feature-extraction method i.e.,

SI-HOG on the three datasets the following improvements are observed. The performance is

evaluated using three datasets, i.e., INRIA, NICTA, and Daimler, considering both single-

resolution and multiresolution images.

The SI-HOG overcomes the shortcoming of HOG, i.e., that it is not applicable to
multiresolution images, by considering gradient information from different scales of an
image, making it resolution-independent.

Furthermore, the addition of texture and color information to SI-HOG for extracting a
more detailed form of features is proposed.

SI-HOG outperformed the existing LBP, AutoCor, Interchannel, HOG-9 bins, HOG-
18 bins and EXHOG methods in both the single-resolution and multiresolution cases for
all three datasets. When texture and color features were added, for INRIA and NICTA,
SI-HOG+LBP+Interchannel and SI-HOG+LBP+AutoCor exhibited the best
performance in both the single-resolution and multiresolution cases.

For Daimler, the results did not vary significantly with the addition of texture features
(SI-HOG+LBP).

Hence, SI-HOG is the best-performing shape feature among all the individual feature-

extraction methods tested. The proposed method was also tested with two fusion methods:

weighted and k-fold and the results are compared.
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Chapter 4

A Multi-layer Feature Fused-Resnet Model for Pedestrian
Detection

The hand-crafted features given in Chapter-3 lacked in the detection accuracy. To bridge the
performance gap deep learning methods are used. The deep learning methods, especially
CNNs, through the backpropagation error correction produces a better feature representation.
Thus, improving the accuracy of the overall detection system. In this chapter, modification to
a pre-trained CNN: ResNet18 is proposed to improve the feature extraction process of the
network. The proposed network is named Multi-layer Feature Fused-ResNet (MF2-ResNet).
Two ways to approach the pedestrian detection problem by using the MF2-ResNet is shown

i.e., MF2-ResNet feature extraction with classifier and End-to-end MF2-ResNet.

4.1 Introduction

4.1.1 Base Convolutional Neural Network Features

The process of pedestrian detection is the same as any object detection i.e., feature extraction
and then classification. The framework is given in Figure 4.1. Processing an image, feature
extraction is done by hand-crafted features or by CNNs. The features produced in the previous
step can be classified as either a pedestrian (positive) or a non-pedestrian (negative).
Classification is achieved in two ways i.e., SVM and Fully Connected Neural Network.
However, a significance performance gap exists among the hand-crafted and CNN features,
which is addressed in the next contribution by using deep CNN methods. A Modification to a
pre-trained CNN i.e., ResNet18 named Multi-layer Feature Fused-ResNet (MF2-ResNet) is
proposed. The proposed MF2-ResNet is trained via transfer learning on the pedestrian dataset.
The trained MF2-ResNet Features are used in two ways: 1) with SVM classifier 2) End-to-End

network.

Feature
Extraction

Image Classification Prediction

Support Vector

Machine

Fully Connected

Neural Network

Figure 4.1 The framework of Pedestrian Detection using 1) CNN features with SVM
Classifier and 2) End-to-End CNN

Convolutional
Neural Network
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4.2 Methodology
The methodology is described by explaining the architecture of the proposed CNN MF2-

ResNet in the Subsection 4.2.1. The training algorithm for the same is given in Subsection
4.2.2. The MF2-ResNet is used in two manners: Subsection 4.2.3 shows it with SVM and
Subsection 4.2.4 shows it End-to-End.

4.2.1 Proposed Multi-layer Feature Fused-ResNet

The proposed MF2-ResNet is explained in this section by breaking the network configuration
into three parts i.e., MF2-ResNet-1, MF2-ResNet-2 and MF2-ResNet-3.

MF2-ResNet-1

The ResNet18 architecture can be divided into four blocks considering the output feature maps.
ResNet18 has three reduce shortcuts in blocks 2, 3 and 4. The reduce shortcut layer of block 2
takes input from the output feature map of block 1. The reduce shortcut layer of block 3 takes
input from the output feature map of block 2 and so on. The proposed modification adds the
reduce shortcut of (n-1)™" block to the output feature map of the (n-1)"" block and inputs it to
the nth block reduce shortcut layer. This enables the successive reduce shortcut layers to apply
convolution operations on previous block features as well.

MF2-ResNet-2

The input layer size of ResNet18 is 224x224x3. The output feature map's dimension of these
four blocks is 56x56x64, 28x28x128, 14x14x256 and 7x7x512. The fully connected network
in ResNet18 inputs only the last feature map i.e., 7x7x512. However, the output feature maps
of other blocks can be used here to obtain the features from all the segments of the network to
capture the features at varying levels. Here, a depth concatenation is used to concatenate the
feature maps from blocks 2, 3 and 4. Max-pool operation is applied on block 2's feature map,
to match its size to that of the feature map of block 3. A transpose convolution is applied to
block 4's feature map to match its size to that of the feature map of block 3. The said operations
were applied to block 2 and block 4 to avoid the loss of feature information that can be caused
by a greater degree of upsampling or downsampling. The resultant feature map is of dimension
14x14%(128+256+512) i.e., 14x14x896.

MF2-ResNet-3

An inception module is added to the end or the highest-level feature map of the ResNet18
architecture. The higher-level feature maps are built on the features of lower-level feature
maps. Therefore, the last feature map is a comprehensive feature representation of the image.

With the further application of an inception module, a feature map is generated that is extracted
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by applying different receptive fields to the highest feature map. As the features which can be
captured by a smaller receptive field can be missed by a filter of a larger receptive field and
vice-versa. The inception module considered here applies filters of various receptive field sizes
i.e., 1x1, 3x3 and 5x5 on the feature map of block 4, which enables the extraction of richer
feature representation.

In the MF2-ResNet architecture, the inception module is applied on the output of Depth
Concatenation | of MF2-ResNet-2. This makes the output feature map of MF2-ResNet to be
14x14x448. The representation of the MF2-ResNet architecture is shown in Figure 4.2.
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Figure 4.2 Block Diagram for Multi-layer Feature Fused-ResNet (MF2-ResNet)
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4.2.2. MF2-ResNet Trained Model Algorithm

The training for MF2-ResNet can be performed in two steps: Pre-processing and Transfer
Learning as described in this section.

Pre-processing

The images present in the dataset are of varying sizes. It is strongly required that all images
should be of the same size. As each pre-trained CNN has a different size for its' input layer, the
images in the dataset will be resized to MF2-ResNet's input layer size i.e., 224x224x3.
Transfer Learning

In a pre-trained CNNs, the network is trained on an enormous amount of data. The initial layers

capture simple and basic features that can be useful for any desired task at hand. Even though,
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it should be re-trained according to the current dataset requirement. The advantage here is,
training need not be started from scratch. In transfer learning, a few epochs of training on the
target dataset with a small learning step are usually performed to adapt the convolutional
network to the new dataset.

4.2.3 Multi-layer Feature Fused-Resnet Features + SVM

This method of classifying MF2-ResNet Features with SVM is performed in three steps: Pre-
processing, Feature Extraction and Classification as explained in this section. The overall
process for Multi-layer Feature Fused-ResNet Feature + SVM is shown in Figure 4.3.
Pre-processing

The images in the train and test set of the dataset are resized to that of the input layer’s size of
the proposed MF2-ResNet.

Feature Extraction

The pedestrian dataset has two class labels, i.e., pedestrian and non-pedestrian. The base
ResNet18 used in the proposed MF2-ResNet used here was pre-trained on the ImageNet dataset
thus had 1000 classes. After training the model, the trained MF2-ResNet's classification layer's
label is two (pedestrian/non-pedestrian). The image given to the input layer is processed by
each of the layers and feature descriptions known as feature maps are generated at each step.
Feature maps extracted at a lower layer gives fundamental characteristics whereas, the higher-
level layer builds on the feature maps of several lower layer which yields a superior feature
representation. Therefore, we have extracted features from a higher-level layer i.e., the global
average pooling layer. The feature vector size of MF2-ResNet is 1x448.

Classification

The features extracted from a dataset are separated based on train and test sets. The train and
test sets are further separated into pedestrian and non-pedestrian. These features are given
labels accordingly. SVM is used as a classifier because it is robust in the presence of bias in
the training sample. The kernel function is selected based on datasets. The trained SVM model
is used on the test features to obtain labels (pedestrian/non-pedestrian).

Traln Features

Feature Trained
Extraction, | MF2-ResNet

CNN
Model

Train Images

Pre-Processing

Test Images Test Labels

Test Features

Figure 4.3 Block Diagram for Multi-layer Feature Fused-Resnet Features with SVM
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4.2.4 End-to-End Multi-layer Feature Fused-Resnet

This method of End-to-End MF2-ResNet is performed in two steps: Pre-processing and
Convolution and Fully connected Pipeline Network as explained in this section. The overall
process for End-to-End Multi-layer Feature Fused-Resnet is shown in Figure 4.4.
Pre-processing

Different pre-trained CNNs have different input layer dimensions. As in the previous method,
the input images are resized to MF2-ResNet’s input layer size before putting it through the
CNN pipeline.

Convolution and Fully connected Pipeline Network

Consequently, the fully connected layer has two classes after transfer learning, i.e., pedestrian
(positive) and non-pedestrian (negative). The images in this method, are passed through
convolutional layers and pooling layers. The feature map derived from the first stage of the
trained model is moved to classification, the second stage of the trained model. The fully
connected (FC) layers take the output of the preceding layer and match the features to
comprehend as to which class it belongs. FC layer outputs the probability of the image
belonging to each class. The image is assigned to the class label; having the highest FC layer

probability.

Trained —%
Test Images & MF2-ResNet

Labels — Pre-Processing ——» CNN
Model L

Figure 4.4 Block Diagram for End-to-End Multi-layer Feature Fused-Resnet Network

4.3 Experimental Results and Discussion

The proposed MF2-ResNet is evaluated individually in parts and also in a group of two on the
INRIA, NICTA and Daimler Pedestrian datasets against four existing methods. The details of
the datasets are given in Chapter-1. The methods are compared with existing pre-trained CNNSs,
i.e., AlexNet, ResNet18, Xception, and DarkNet. The training parameters such as batch size
are set as 10, the learning rate is 10 and the number of epochs is set to 6. The optimizer used
is sgdm for training. Subsection 4.3.1, 4.3.2 and 4.3.3 discusses the performance for the INRIA,
NICTA and Daimler pedestrian datasets respectively. Subsection 4.3.4 shows the statistical
analysis of the results.
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4.3.1 INRIA Pedestrian Dataset

Results by using Multi-layer Feature Fused-Resnet Features + SVM

The proposed method is applied on the INRIA Pedestrian dataset to get the predicted labels
from the SVM classifier. Upon comparing the predicted and groundtruth labels, the DET Curve
is obtained. The DET Curve for Multi-layer Feature Fused-Resnet Features + SVM is shown
in Figure 4.5. The corresponding miss rate values are given in Table 4.1. The proposed MF2-
ResNet-2 and MF2-ResNet-3 individually are giving zero miss rate which signifies there is
negligible or no misclassification. The proposed method MF2-ResNet and the proposed
method group MF2-ResNet-1+2 is showing zero miss rate as well. It should be noted here that
the proposed method MF2-ResNet achieved a hundred percent classification. The proposed
method group MF2-ResNet-2+3 is also giving less miss rate from the existing pre-trained
CNN:Ss. In this dataset, as there is a fewer number of misclassifications, in some methods there
isn't any value in the DET curve. As the DET curve plots error rates on both axes, the values
are approximately zero; which resulted in a zero miss rate.

Results by using End-to-End Multi-layer Feature Fused-Resnet Network

The proposed method is applied on the INRIA Pedestrian dataset to get the predicted labels
from the MF2-ResNet softmax layer. The predicted and groundtruth labels are compared to
yield the DET Curve. The DET Curve for End-to-End Multi-layer Feature Fused-Resnet
Network is shown in Figure 4.6 and the corresponding miss rate is given in Table 4.1. The zero
miss rate is shown by individual proposed method MF2-ResNet-2 and MF2-ResNet-3, the
proposed method MF2-ResNet and the group proposed method MF2-ResNet-1+2. It should be
noted here that the group proposed method MF2-ResNet-1+2 achieved a hundred percent
classification.

4.3.2 NICTA Pedestrian Dataset

Results by using Multi-layer Feature Fused-Resnet Features + SVM

The proposed method is applied on the NICTA Pedestrian dataset to predict the test dataset
labels from the SVM classifier. Then the resultant predicted labels are compared to the
groundtruth labels and the DET Curve is obtained. The DET Curve for Multi-layer Feature
Fused-Resnet Features + SVM is shown in Figure 4.7 and the corresponding miss rate is given
in Table 4.2. Except for individual proposed MF2-ResNet-1 and MF2-ResNet-3 & group
proposed method MF2-ResNet-1+3, all others are performing better than the existing pre-
trained CNNs. The proposed method group MF2-ResNet-2+3 is giving the least miss rate

among all.
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Figure 4.5 DET Curve for INRIA Pedestrian Dataset in Multi-layer Feature Fused-Resnet
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Table 4.1 Miss Rate for INRIA Pedestrian Dataset for the Proposed Methods
Miss Rate (%0)

Methods CNN Features+SVM End-to-End CNN
AlexNet 0.00199 0.00281
ResNet-18 0.00088 0.00071
Xception 0.00283 0.00490
Darknet-19 0.00177 0.00133
MF2-ResNet-1 0.00252 0.00250
MF2-ResNet-2 0.00000 0.00000
MF2-ResNet-3 0.00000 0.00000
MF2-ResNet-1+2 0.00000 0.00000
MF2-ResNet-1+3 0.00088 0.00088
MF2-ResNet-2+3 0.00071 0.00088
MF2-ResNet-1+2+3 0.00000 0.00000

Results by using End-to-End Multi-layer Feature Fused-Resnet Network
The proposed method is applied on the NICTA Pedestrian dataset to predict the test dataset

labels from the MF2-ResNet softmax layer. Upon comparing the resultant predicted labels and
the groundtruth labels, the DET Curve is obtained. The DET Curve for End-to-End Multi-layer
Feature Fused-Resnet Network is shown in Figure 4.8 and the corresponding miss rate is given
in Table 4.2. Except for the individual proposed method MF2-ResNet-1 and MF2-ResNet-3
and group proposed method MF2-ResNet-1+3, all others are performing better than the
existing pre-trained CNNs. The best performance i.e., least miss rate is achieved by the

proposed method MF2-ResNet.
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Figure 4.7 DET Curve for NICTA Pedestrian Dataset in Multi-layer Feature Fused-Resnet
Features + SVM
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Fused-Resnet Network

Table 4.2 Miss Rate for NICTA Pedestrian Dataset for the Proposed Methods
Miss Rate (%6)

Methods CNN Features+SVM End-to-End CNN
AlexNet 0.00300 0.00283
ResNet-18 0.00233 0.00133
Xception 0.00192 0.00183
Darknet-19 0.00083 0.00083
MF2-ResNet-1 0.00117 0.00125
MF2-ResNet-2 0.00067 0.00083
MF2-ResNet-3 0.00300 0.00233
MF2-ResNet-1+2 0.00075 0.00083
MF2-ResNet-1+3 0.00317 0.00233
MF2-ResNet-2+3 0.00050 0.00042
MF2-ResNet-1+2+3 0.00067 0.00033

4.3.3 Daimler Pedestrian Dataset

Results by using Multi-layer Feature Fused-Resnet Features + SVM

The proposed method is applied on the Daimler Pedestrian dataset and the test dataset labels
are predicted from the SVM classifier. The resultant predicted labels are compared to the
groundtruth labels and the DET Curve is obtained. The DET Curve for Multi-layer Feature
Fused-Resnet Features + SVM is shown in Figure 4.9 and the corresponding miss rate is given
in Table 4.3. The least miss rate is given by the proposed method group MF2-ResNet-2+3.
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Except for individual proposed MF2-ResNet-1 and MF2-ResNet-2 & the group proposed
method MF2-ResNet-1+3, all others are performing better than the existing pre-trained CNNs.
Results by using End-to-End Multi-layer Feature Fused-Resnet Network

The proposed method is applied on the Daimler Pedestrian dataset and the test dataset labels
are predicted from the MF2-ResNet softmax layer. The resultant predicted labels are compared
to the groundtruth labels and the DET Curve is yielded. The DET Curve for End-to-End Multi-
layer Feature Fused-Resnet Network is shown in Figure 4.10 and the corresponding miss rate
is given in Table 4.3. The best performance is obtained by the group proposed method MF2-
ResNet-2+3.
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Table 4.3 Miss Rate for Daimler Pedestrian Dataset for the Proposed Methods
Miss Rate (%)

Methods CNN Features+SVM End-to-End CNN
AlexNet 0.03917 0.03458
ResNet-18 0.03583 0.03625
Xception 0.02750 0.02583
Darknet-19 0.04000 0.03354
MF2-ResNet-1 0.02958 0.03750
MF2-ResNet-2 0.03000 0.03833
MF2-ResNet-3 0.02000 0.02542
MF2-ResNet-1+2 0.01583 0.03292
MF2-ResNet-1+3 0.03583 0.04042
MF2-ResNet-2+3 0.00958 0.01375
MF2-ResNet-1+2+3 0.02625 0.02833

4.3.4 Statistical Analysis

In this work, there are 11 independent variables (k) and 3 datasets (N). The proposed method
and its groups have the highest rank when compared among the other CNN methods. In case
of MF2-ResNet Features + SVM, the calculated chi-square is 24.151. The critical value of chi-
square at a degree of freedom (k-1) 10 is 18.310. As the calculated value of chi-square is greater
than the critical value of chi-square, the Null Hypothesis is rejected. The rank table for
Friedman Test is given in Table 4.4. For, the F-distribution test, the calculated value is 8.258.
The critical value of F-distribution with degree of freedom (10,20) [k-1, (k-1)(N-1)] and o =
0.05is 2.347. As the calculated F-distribution is greater than the critical F-distribution, the Null
Hypothesis is rejected. In case of End-to-End MF2-ResNet, the calculated chi-square is 14.545.
And for, the F-distribution test, the calculated value is 1.882. As the calculated value of both
chi-square and F-distribution is lesser than the respective critical value, the Null Hypothesis is

failed to rejected. The rank table for Friedman Test is given in Table 4.5.

Table 4.4 Rank Table of Friedman Test for the Proposed Methods in Multi-layer Feature
Fused-Resnet Features + SVM

CNN Features+SVM I |nria I'nicTA lNbaimer  Mean Rank  Rank
AlexNet 9 9 10 9.333 11
ResNet-18 6.5 8 9 7.833 7
Xception 11 7 8.5 8.833 9
Darknet-19 8 5 11 8.000 8
MF2-ResNet-1 10 6 6 7.333 6
MF2-ResNet-2 25 25 7 4.000 4
MF2-ResNet-3 25 10 3 5.167 5
MF2-ResNet-1+2 25 4 2 2.833 2
MF2-ResNet-1+3 6.5 11 8.5 8.667 10
MF2-ResNet-2+3 5 1 1 2.333 1
MF2-ResNet-1+2+3 2.5 2.5 4 3.000 3




Table 4.5 Rank Table of Friedman Test for the Proposed Methods in End-to-End Multi-layer
Feature Fused-Resnet Network

End-to-End CNN I INRIA I'nicTA Mpaimer  Mean Rank  Rank
AlexNet 10 11 7 9.333 11
ResNet-18 5 7 8 6.667 7
Xception 11 8 3 7.333 9
Darknet-19 8 4 6 6.000 6
MF2-ResNet-1 9 6 9 8.000 10
MF2-ResNet-2 25 4 10 5.500 5
MF2-ResNet-3 2.5 9.5 2 4.667 4
MF2-ResNet-1+2 25 4 5 3.833 3
MF2-ResNet-1+3 6.5 9.5 11 9.000 8
MF2-ResNet-2+3 6.5 2 1 3.167 2
MF2-ResNet-1+2+3 2.5 1 4 2.500 1

4.4 Observations

In this chapter, by applying the proposed CNN feature extraction method i.e., MF2-ResNet for
pedestrian detection the following improvements are observed. The proposed methods are
compared using three benchmark pedestrian datasets INRIA, NICTA and Daimler. The basic
principle involved here is feature extraction and then classification. Two methods are given
here: MF2-ResNet features with SVM and End-to-End MF2-ResNet network.
* In case of MF2-ResNet features with SVM, the miss rate observed is least when
compared with the existing methods in all the three datasets.
» In case of End-to-End MF2-ResNet Network, in all the three datasets least miss rate is
resulted.
* In the case of the INRIA Pedestrian dataset, a hundred percent classification was also
obtained.
» It should be noted that even though the classification method is changed, the proposed

method is always resulting in less misclassification for all the three datasets.
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Chapter 5

Faster R-CNN based on Dilate-Condense ResNet and
Multi-layer Feature Fused-Resnet Model for Pedestrian
Detection

The pedestrian detection requires to localize the pedestrians in a given image. The CNNs used
in previous contribution didn’t generate location information. Therefore, a detection network
is employed here to get the region proposals which assists in yielding bounding box
information from an image. In this chapter, the two-stage detection network Faster R-CNN is
considered because of its accuracy. Focusing on the feature extraction part of the network,
modifications of the pre-trained CNN ResNet is proposed as the base network for the new and
improved Faster R-CNN. The modifications are done by taking the pre-trained ResNet18. The
proposed Faster R-CNN modifications named Faster R-CNN(Dilate-CondenseResNet) and
Faster R-CNN(Multi-layer Feature Fused-Resnet) yields a detailed representation of the image

as varying levels of the network are analyzed for feature extraction in the proposed methods.

5.1 Introduction
5.1.1 ResNet Feature Extraction Layer with Faster R-CNN

Till now, the pedestrian detection is being done in per-window evaluation system. To further
address the pedestrian detection problem, the state-of-the-art detection method is employed in
the next contribution. The Faster R-CNN detection paradigm is made up of first, a region
proposal algorithm, employed to output the probable regions of the desired objects. Second,
feature extraction by the pre-trained CNNs. Third, classification layer to predict the object’s
class. Lastly, regression stage to fine-tune the bounding boxes generated by the region proposal
method.

Faster R-CNN speeds up the region proposal step by including a convolutional network for
region proposal termed as the Region Proposal Network (RPN). It uses a pre-trained CNN as
a backbone network which enables it to share weights with the CNN used in the detection
process. In this work, ResNet18 is used as the base network. It has 18 conv layers of 3x3
receptive field. The layers for Faster R-CNN with base ResNet18 are shown in Table 5.1.
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Table 5.1 Faster R-CNN base ResNet18 layers

Layer Filter Channels Input Layer Output
Name Size/Strid Size
Input 224x224x3
Convl 7x7/2 64 Input 112x112x64
Maxpool 3x3/2 Convl 56x56x64
Conv2_1 3x3/1 64 Maxpool 56x56x64
Conv2_2 3x3/1 64 Conv2_1 56x56x64
Add 1 Conv2 2

Maxpool /

{Add_1} 56x56x64
Conv3 1 3x3/2/1{1} 128 Add_1 28x28x128
Conv3_2 3x3/1 128 Conv3_1 28x%28x128
Add_2 Conv3 2

Add_1/

{Add_2} 28%28x128
Conv4_1 3x3/2/{1} 256 Add_2 14x14x256
Conv4_2 3x3/1 256 Conv4_2 14x14x256
Add_3 Conv4 2

Add_2/

{Add_3} 14x14x256
RegPropNet Add 3 RegProps
ROIPooling Add_3

RegProps 14x14%256
Convs 1  3x3/2{1} 512 ROIPooling  14x14x256
Convb_2 3x3/1 256 Convb 1 14x14x256
Add_4 Convs_2

ROIPooling 14x14x256

5.2 Methodology

In this section, the proposed network’s architecture is discussed. The Subsection 5.2.1 explains
the Dilate-Condense ResNet based Faster R-CNN [Faster R-CNN(DCResNet)] architecture
details and the Subsection 5.2.2 explains the Multi-layer Feature Fused-Resnet based Faster R-
CNN [Faster R-CNN(MF2-ResNet)] architecture details.

5.2.1 Dilate-Condense ResNet based Faster R-CNN

The proposed Faster R-CNN(DCResNet) is described in three components: Selection of
Feature Map Blocks, Dilate and Condense 3x3 Network and Fusion of the Output Feature Map

Blocks, in this section.

» Selection of Feature Map Blocks: The pre-trained CNN ResNet18 can be divided into
four subparts depending on the distinct feature map size. These blocks are of size
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56x56x64, 28x28x128, 14x14x256, and 7x7x512. The first three feature maps are
processed in the next step. The division of feature maps is shown in Figure 5.2.

Dilate and Condense 3x3 Network: Three dilate and condense 3x3 networks are
attached in the network at feature map block I, 1l, and I1l. The characteristic of these
blocks is to expand the input by a 1x1 conv. The expanded result is convolved with a
receptive field of 3x3. This enables to further extract detailed features from the input.
Lastly, it is reduced with another 1x1 conv. Hence, the output of these networks is
feature maps which not only carry additional information but also have reduced
dimension to enable faster computation. The three output feature map block derived in
this step are of size 56x56x43, 28x28%85, and 14x14x128. The Dilate and Condense
3x3 Network I, I, and Il blocks are shown in Figure 5.3, Figure 5.4, and Figure 5.5
respectively.

Fusion of the Output Feature Map Blocks: The output generated by the dilate and
condense 3x3 network in the previous step is fused to form one final feature map. First,
as the three inputs to this step are of uneven size, they are made into the same size by
applying a downsample and upsample operation on output feature map block I and 11
respectively. An average pool operation is performed on output feature map block I and
a resize operation is performed on the output feature map block Ill. The fusion is
accomplished by a depth concatenation, which concatenates the feature maps channel-
wise. Therefore, the input to the depth concatenation becomes feature maps of size
28x28x43, 28x28%85, and 28x28%128. The fused feature map is of size 28x28%256.

The architecture of the proposed Faster R-CNN(DCResNet) is represented by a block diagram

in Figure 5.1. The network layers’ characteristics are shown in Table 5.2.

5.2.2 Multi-layer Feature Fused-Resnet based Faster R-CNN
The proposed Faster R-CNN(MF2-ResNet) is described in four components: Reduce-shortcut

layer, Feature Map Fusion, Inception Module and Region Proposal Network in this section.

Reduce-shortcut layer: The RPN network uses ResNet18 as the backbone. As in this
case, it uses res4b_relu i.e., the output feature map of block 3, as a feature extraction
layer when MF2-ResNet is used as the backbone CNN. Therefore, this allowed having
only one reduced shortcut layer from block 2 to block 3 in the MF2-ResNet.
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Figure 5.1 The Block Diagram of the Proposed Faster R-CNN with the modified DCResNet
as the base
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Table 5.2 The Proposed FASTER R-CNN(DCRESNET) network’s layer and characteristics

x2

x2

x2

x2

Layer Name  Filter  Channels Input Layer Output
Size/Stride Size

Input 224%224%3
Convl 7712 64 Input 112x112x64
Maxpool 3x3/2 Convl 56x56x64
Conv2_1 3x3/1 64 Maxpool 56x56x64
Conv2_2 3x3/1 64 Conv2_1 56x56%64
Add_1 Conv2_2

Maxpool /

{Add_1} 56x56x64
Conv3_1 3x3/2/{1} 128  Add_1 28x28x128
Conv3_2 3x3/1 128  Conv3_1 28x28x128
Add_2 Conv3_2

Add_1/

{Add_2} 28x28x128
Conv4_1 3x3/2/{1} 256  Add_2 14x14x256
Conv4_2 3x3/1 256  Conv4_2 14x14x256
Add_3 Conv4_2

Add_2/

{Add_3} 14x14%256

ConvDC1 1

1x1/1

Add_1

56x56%96

ConvDC1 2 3x3/1 96 ConvDCl1 1 56x56%96
ConvDC1 3 1x1/1 43 ConvDC1 2 56x56x43
AveragePool Sx3/Z ConvDC1 3 ~ £40%x28x43
ConvDC2_1 1x1/1 96 Add_2 28%28%192
ConvDC2_2 3x3/1 96 ConvDC2_1  28x28x192
ConvDC2 3 1x1/1 43  ConvDC2 2  28x28x85
ConvDC3 1  1x1/1 384 Add 3 14x14x384
ConvDC3_2 3x3/1 384 ConvDC3_ 1 14x14x384
ConvDC3 3 1x1/1 128  ConvDC3 2  14x14x128
Resize 2 ConvDC3_3  28x28x128
DepthConcat ConvDC1_3

ConvDC2_3

ConvDC3 3  48x28x256
RegPropNet DepthConcat  RegProps
ROIPooling DepthConcat

RegProps 14x14%256
Conv5s_1 3x3/2/{1} 512  ROIPooling  14x14x256
Convs_2 3x3/1 256  Convb_ 1 14x14x256
Add 4 Convs_2

ROIPooling

I{Add_4} 14x14x256
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* Feature Map Fusion: The Depth Concatenation | use features from block 1, 2 and 3 for
MF2-ResNet. Max-pool operation is applied on block 1's feature map, to match its size
to that of the feature map of block 2. A transpose convolution is applied to block 3's
feature map to match its size to that of the feature map of block 2.

* Inception Module: The inception module applies filters of various receptive field sizes
I.e., 1x1, 3x3 and 5x5 to the input feature map from block 3 for MF2-ResNet.

* Region Proposal Network: The feature map from the Depth Concatenation Il layer is
given as input to generate a region where a pedestrian might be present, which is the
location in the input image. This is done by using two sibling convolution layers. The
task of one layer is to classify and the other’s task is to improve the co-ordinates of
anchor boxes. Anchors of various sizes are placed on the input image corresponding to
a point in the feature map received as input. The network checks whether the anchor
boxes at any point corresponds to a pedestrian.

The working of the proposed Faster R-CNN(MF2ResNet) is represented by a block

diagram in Figure 5.5. The network layers’ characteristics are shown in Table 5.3.
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Figure 5.5 The Block Diagram of the Proposed Faster R-CNN with the modified MF2ResNet

as the base
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Table 5.3 The proposed FASTER R-CNN(MF2RESNET) network’s layer and characteristics

x2

x2

x2

x2

Layer Name Filter  Channels Input Layer Output
Size/Stride Size

Input 224%224%3
Convl %712 64 Input 112x112x64
Maxpool 3%3/2 Convl 56x56x64
Conv2_1 3x3/1 64 Maxpool 56x56x64
Conv2_2 3x3/1 64 Conv2_1 56x56x64
Add 1 Conv2_2

Maxpool /

{Add_1} 56x56x64
Conv3_1 3x3/2/{1} 128  Add_1 28%28x128
Conv3_2 3x3/1 128  Conv3_1 28%28x128
Add_2 Conv3_2

Add_1/{Add_2}

28%28x128

Add_P Conv3_1

Add_2 28x28x128
Conv4_1 3x3/2/1{1} 256  Add_P 14x14x256
Conv4_2 3x3/1 256  Conv4 2 14x14%256
Add_3 Conv4_2

Add_P/{Add_3}

14x14%256

MaxPool 3x3/2 Add_1 28x28x64
Transpose Conv. 3x3/2 Add_3 28x28x256
DepthConcat_|I MaxPool

Add_2

Transpose Conv.  28x28x448
Reducer1x1 1x1/1 64 DepthConcat_|I 28x28x64
Reducer3x3 1x1/1 96 DepthConcat_|I 28x28%96
Reducer5x5 1x1/1 16 DepthConcat_|I 28x28%16
Conv3x3 3x3/1 160  Reducer3x3 28x28%160
Convbsx5 5x5/1 32 Reducer5x5 28x28%32
DepthConcat_lI Reducerlx1

Conv3x3

Conv5x5 28x28%256
RegPropNet DepthConcat_lI RegProps
ROIPooling DepthConcat_lI

RegProps 14x14x256
Convs_1 3x3/2/{1} 512 ROIPooling 14%14%256
Convb_2 3x3/1 256  Conv5_1 14x14x256
Add 4 Convs_2

ROIPooling

/{Add_4} 14x14%256
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5.3 Experimental Results and Discussion

The proposed Faster R-CNN modifications are compared with four state-of-the-art detection
methods Faster R-CNN, YOLOv2, YOLOv3, and SSD on two pedestrian datasets: INRIA
Pedestrian and PASCAL VOC 2012. Four pre-trained CNN AlexNet, ResNet18, SqueezeNet,
and MobileNetv2 are used as base for Faster R-CNN and YOLOV2. Training parameters such
as batch size are set to 2, the learning rate is 10~ and the number of epochs is 10 with sgdm
optimizer. Subsection 5.3.1 and 5.3.2 discusses the performance for the INRIA pedestrian and
PASCAL VOC 2012 respectively. Subsection 5.3.3 shows the result’s statistical analysis.
5.3.1 INRIA Pedestrian Dataset

The proposed FasterRCNN methods generate bounding box with confidence score for the test
images of the INRIA Pedestrian dataset. Comparing the generated prediction and the
groundtruth bounding box, DET Curve and P-R Curve are obtained. The DET and P-R Curve
are shown in Figure 5.6 and Figure 5.7 respectively. The LAMR and AP values are given in
Table 5.4. The proposed Faster R-CNN(DCResNet) method has achieved a minimum LAMR
and AP improvement of 8.18% and 5.81% respectively when compared to the Faster R-CNN
methods. And it has achieved a minimum LAMR and AP improvement of 2.48% and 2.97%
respectively when compared to the YOLOv2 and YOLOv3 methods. The proposed Faster R-
CNN(MF2ResNet) method has achieved a minimum LAMR and AP improvement of 16.58%
and 11.41% respectively when compared to the Faster R-CNN methods. And it has achieved a
minimum LAMR and AP improvement of 10.88% and 8.57% respectively when compared to
the YOLOv2 and YOLOv3 methods. Some sample output images for Faster R-
CNN(DCResNet) and Faster RCNN(MF2ResNet) are shown in Figure 5.8 and Figure 5.9
respectively.
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Figure 5.6 DET Curve for INRIA Pedestrian Dataset
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Figure 5.7 P-R Curve for INRIA Pedestrian Dataset
Table 5.4 LAMR and AP values for INRIA Pedestrian Dataset

Methods INRIA
LAMR AP

FasterRCNN(AlexNet) 60.63 48.74

FasterRCNN(ResNet18) 43.33 69.99

FasterRCNN(SqueezeNet) 84.60 22.48
FasterRCNN(MobileNetv2) 55.83 57.21

YOLOv2(AlexNet) 77.83 33.27
YOLOvV2(ResNet18) 51.14 60.44
YOLOv2(SqueezeNet) 37.63 72.83
YOLOv2(MobileNetv2) 7211 40.35
YOLOv3 46.06 61.14
SSD 62.19 59.86

FasterRCNN(DCResNet) 35.15 75.80
FasterRCNN(MF2ResNet)  26.75 81.40

Figure 5.8 Sample INRIA Pedestrian output images with score and bounding boxes for the
Proposed Faster R-CNN(DCResNet)
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Figure 5.9 Sample INRIA Pedestrian output images with score and bounding boxes
for the Proposed Faster R-CNN(MF2ResNet)

5.3.2 PASCAL VOC 2012 Dataset

The proposed FasterRCNN methods predicts the bounding box with confidence score for the
PASCAL VOC 2012 test images. The generated prediction and the groundtruth bounding box
are compared to yield the DET Curve and P-R Curve. The DET and P-R Curve are shown in
Figure 5.10 and Figure 5.11 respectively. The LAMR and AP values are given in Table 5.5.
The proposed Faster R-CNN(DCResNet) has achieved a minimum LAMR and AP
improvement of 2.89% and 5.22% respectively when compared to the Faster RCNN methods.
And it has achieved a minimum LAMR and AP improvement of 1.63% and 1.71% respectively
when compared to the YOLOv2 and YOLOv3 methods. The proposed Faster R-
CNN(MF2ResNet) has achieved a minimum LAMR and AP improvement of 1.57% and 3.29%
respectively when compared to the Faster RCNN methods. And it has achieved a minimum
LAMR and AP improvement of 0.31% and 0.38% respectively when compared to the YOLOv2
and YOLOv3 methods. Some sample output images for Faster R-CNN(DCResNet) and Faster
R-CNN(MF2ResNet) are shown in Figure 5.12 and Figure 5.13 respectively.

5.3.3 Statistical Analysis

In this work, 11(k) independent variables or the detection methods and 2(N) datasets are
involved. The rank table for Faster R-CNN(DCResNet) and Faster R-CNN(MF2ResNet) are
given in Table 5.6 and Table 5.7 respectively.
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Figure 5.10 DET Curve for PASCAL VOC 2012 Dataset
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Figure 5.11 P-R Curve for PASCAL VOC 2012 Dataset

Table 5.5 LAMR and AP values for PASCAL VOC 2012 Dataset

Methods PASCAL VOC 2012
LAMR AP

FasterRCNN(AlexNet) 72.89 36.30

FasterRCNN(ResNet18) 64.68 48.54

FasterRCNN(SqueezeNet) 93.37 5.52
FasterRCNN(MobileNetv2)  63.57 50.67

YOLOV2(AlexNet) 76.61 31.97
YOLOvV2(ResNet18) 62.31 53.58
YOLOV2(SqueezeNet) 65.61 51.64
YOLOV2(MobileNetv2) 63.24 51.24
YOLOv3 67.61 43.71
SSD 90.54 13.54

FasterRCNN(DCResNet) 60.68 55.29
FasterRCNN(MF2ResNet)  62.00 53.96
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Figure 5.12 Sample PASCAL VOC 2012 output images with score and bounding
boxes for the Proposed Faster R-CNN(DCResNet)

Figure 5.13 Sample PASCAL VOC 2012 output images with score and bounding
boxes for the Proposed Faster R-CNN(MF2ResNet)

The proposed methods Faster R-CNN(DCResNet) and Faster R-CNN(MF2ResNet) takes the
highest rank in the test. For conducting the test, first, the chi-square value is calculated which
is 16.18. Then the F-distribution is calculated to be 4.235. At the degree of freedom (10,10),
the critical value of F-distribution with o = 0.05 is 2.978. As the calculated F-distribution is
greater than the critical F-distribution, the Null Hypothesis is rejected.
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Table 5.6 Faster R-CNN(DCResNet) F-DISTRIBUTION Test Analysis

Methods I INRIA lpascavoczorz  Mean Rank Rank
FasterRCNN(AlexNet) 7 8 7.50 7
FasterRCNN(ResNet18) 3 5 4.00 3
FasterRCNN(SqueezeNet) 11 11 11.00 10
FasterRCNN(MobileNetv2) 6 4 5.00 4
YOLOvV2(AlexNet) 10 9 9.50 9
YOLOV2(ResNet18) 5 2 3.50 2
YOLOv2(SqueezeNet) 2 6 4.00 3
YOLOv2(MobileNetv2) 9 3 6.00 6
YOLOv3 4 7 5.50 5
SSD 8 10 9.00 8
FasterRCNN(DCResNet) 1 1 1.00 1

Table 5.7 Faster R-CNN(MF2ResNet) F-DISTRIBUTION Test Analysis

Methods I INRIA I pascavoczore  Mean Rank Rank
FasterRCNN(AlexNet) 7 8 7.50 7
FasterRCNN(ResNet18) 3 5 4.00 3
FasterRCNN(SqueezeNet) 11 11 11.00 10
FasterRCNN(MobileNetv2) 6 4 5.00 4
YOLOvV2(AlexNet) 10 9 9.50 9
YOLOV2(ResNet18) 5 2 3.50 2
YOLOV2(SqueezeNet) 2 6 4.00 3
YOLOv2(MobileNetv2) 9 3 6.00 6
YOLOV3 4 7 5.50 5
SSD 8 10 9.00 8
FasterRCNN(MF2ResNet) 1 1 1.00 1

5.4 Observations
In this chapter, with the two proposed modifications of CNN: ResNet18, which serves as a base
for Faster R-CNN, the particular observations are given here after applying on two datasets.
e As the feature map is formed by the concatenation of the processed output feature map
of the proposed networks, it enabled a thorough feature extraction process to give a
detailed hierarchical representation of the image.
e The proposed methods have shown substantial improvement on both benchmark
datasets INRIA Pedestrian and PASCAL VOC 2012.

e The proposed methods have yielded the least LAMR and greatest AP when compared
to Faster R-CNN, YOLOv2, YOLOv3, and SSD detection methods for both the

datasets.

67



Chapter 6

YOLO based on DarkNet: Depth-wise Separable, Inception
Depth-wise & Fire and SqueezeNet: Multiscale-Multilevel
for Pedestrian Detection

An important aspect in the task of pedestrian detection is generation of region proposals from
the input image. In previous contribution, the two-stage detection network: Faster RCNN was
employed. The Faster R-CNN involved more computation overhead as it performed bounding
box generation and classification in separate pipeline. To address this shortcoming, in this
work, the single-stage network is used which performs the bounding box and classification in
a single pipeline. This reduces the computation overhead and also saves the execution time. In
this chapter, three base networks: YOLOv2(DarkNetl9), YOLOv2(DarkNet53) and
YOLOv3(SqueezeNet) are used. To increase the detection rate of the network, we have focused
on enhancing the feature extraction network. As the feature map of only one (topmost) level is
used; it can be further enhanced by also considering features from different levels of the base
network. Techniques such as fire modules, inception modules and depth-wise separable
convolution modules are incorporated within the base networks to assist in yielding a more
detailed feature. The proposed YOLOv2 methods are named Depth-wiseSeparableModule-
InceptionDepthwiseModule-YOLO (DSM-IDM-YOLO), InceptionDepth-wiseYOLOv2 and
FireYOLOv2. The proposed YOLOv3 is method is named Multiscale-Multilevel-
SqueezeNetYOLOvV3 (MS-ML-SNYOLOV3).

6.1 Introduction

6.1.1 Depth-wise Separable Convolution Module

A depth-wise separable convolution consists of a) depth-wise convolution, followed by b)
convolution of size 1x1. In the depth-wise convolution, each filter, of size hxh, will have one
channel, i.e., hxhx1. Here, unlike the convolution of hxhxD, where D is the number of channels
or depth, the D kernels are applied separately. Each D kernel convolves with one channel of
the input feature map (of size HxWxD). To get the output feature map, the (H-h+1)x(W-
h+1)x1 map are stacked together to form a depth of D. The second step of applying a 1x1
convolution is to increase the depth of the feature map which is obtained. Lastly, N number of
1x1xD convolutions are applied to get the final feature map of (H-h+1)x(W-h+1)xN. The

overall process of depthwise separable convolution is shown in Figure 6.1.
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Figure 6.1 The overall feature map formation in Depth-wise Separable Convolution

6.1.2 Inception Module
A traditional inception module captures the features by using receptive fields of various sizes.

The varying receptive fields are helpful in not missing out on any of the features of the object.

The structure is shown in Figure 6.2.

Previous Layer

Feature Map
Convolution of Convolution of Convolution of 3x3
Receptive Field Receptive Field Receptive Field MaxPool
1x1 3x3 5x5

T

Feature Map Filter
Concatenation

Figure 6.2 General Idea behind a traditional Inception Module

6.1.3 Squeeze and Expand Module
A Fire module comprises a squeeze convolution layer (which has only 1x1 filters), feeding into

an expand layer that has a mix of 1x1 and 3x3 convolution filters. Its architecture is given in
Figure 6.3. It serves two purposes:
» Purpose 1: Replace 3x3 filters with 1x1 filters. This reduces the number of training
parameters.
» Purpose 2: Decrease the number of input channels to 3x3 filters. This reduces the
number of channels which in turn implies less computation.
The squeeze layer decreases the number of input channels to 3x3 filters. The number of filters

per fire module is gradually increased from the start to the end of the network.
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Figure 6.3 Fire Module

6.2 Methodology

In this section, the proposed YOLOv2 and YOLOV3 architecture is described in detail. The
proposed YOLOvV2 methods, i.e., DSM-IDM-YOLO, InceptionDepth-wiseYOLOvV2 and
FireYOLOv2 components are explained in Subsection 6.2.1, 6.2.2 and 6.2.3 respectively. The
proposed YOLOvV3 method, i.e., MS-ML-SNYOLOV3 architecture is explained in Subsection
6.2.4.

6.2.1 Depth-wiseSeparableModule-InceptionDepthwiseModule-YOLO

The proposed Depth-wiseSeparableModule-InceptionDepthwiseModule-YOLO is described
in five components: Feature Blocks, Fusion, Depth-wise Separable Module I, Depth-wise
Separable Module Il and Inception Depth-wise Module, in this section.

e Feature Blocks: The DarkNet19 is divided into 6 blocks according to the output feature
map which is of sizes 256x256x32, 128x128x64, 64x64x128, 32x32x256, 16x16x512
and 8x8x1024. The last three blocks are taken for the next component processing. The
purpose here is to process the feature maps at different scales to capture more
information about the presence of an object in the image. The representation of these
blocks is shown in Figure 6.4.

e Fusion: The output from the three feature blocks is to be concatenated depthwise to
form a feature map. However, as the feature maps differ in size, feature block four is
applied with a MaxPool layer to yield a 16x16x256 feature map. Next, the output of
feature block six is applied with a Rescale layer to generate a 16x16x1024 feature map.

Then, the depth concatenation layer fuses the three feature maps, i.e., 16x16x256,
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16x16x512, and 16x16x1024. The output size of this layer is 16x16x1792. The
resultant feature is a detailed feature map from different scales. This process is shown
under the ‘Fusion’ part of Figure 6.4.

Depth-wise Separable Module I: This module takes the fused feature map of size
16x16x1792. The feature is applied with a group of 3x3x1 depth-wise convolution
followed by a 1x1 convolution which projects or reduces the feature map. This step is
done to reduce the dimension before going for further processing. The feature map is
then processed again by a group of 3x3x1 depth-wise convolution. This action is
preceded by a 1x1 convolution which expands the feature map and followed by a 1x1
convolution which projects the feature map. This expansion of feature map before a
3x3 convolution operation facilitates a detailed feature calculation. A skip connection
is made in the network by adding the two projected convolution feature map. The output
of this module is a feature map of size 16x16x896. This process is represented in Figure
6.5.

Depth-wise Separable Module I1: This module follows the depth-wise separable
module I. The input here is a 16x16x896 feature map. The feature map is expanded and
is followed by a group of 3x3x1 depth-wise convolution, which yields a detailed feature
map. The resultant feature map is projected to reduce the dimension of the feature map.
Here, a skip connection is made by adding the input and the projected feature map. The
output of this module is a feature map of size 16x16x896. This process is shown in
Figure 6.6.

Inception Depth-wise Module: This module follows the depth-wise separable module
I1. In this module, three different depth-wise convolutions are applied. As some features
can be missed by a receptive field and captured by another receptive field, three
receptive fields are considered in the depth-wise convolution. They are a group of
1x1x1, 3x3x1, and 5x5x1 depth-wise convolution. These are preceded by 1x1
reducers. The inception depth-wise module yields a comprehensive feature map
wherein various receptive fields are considered. The output of this module is a feature

map of size 16x16x1280. This process is shown in Figure 6.7.

The DSM-IDM-YOLO provides rich hierarchical feature information owing to the depth-wise

separable convolution and inception depth-wise convolution modules applied to fused feature

maps from different levels of the network. In addition, a dropout layer (50%) is added at the

end to avoid overfitting as the resultant feature map is quite dense. The detailed architecture is
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shown in Figure 6.4. Table 6.1 shows the DSM-IDM-YOLO feature formation layers

characteristics. There are 32 layers in this network.
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Figure 6.4 Block Diagram of the Proposed DSM-IDM-YOLO
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Inception Depth-wise Module
1x1 3x3x1
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Figure 6.7 Block Diagram of Inception Depth-wise Module of DSM-IDM-YOLO
6.2.2 InceptionDepth-wiseYOLOv2

In this work, an inception module involving depth-wise convolution is proposed:
a) The input feature map goes through dimension reduction. The dimension
reduction is applied in different ratios for the 1x1, 3x3, and 5x5 receptive fields.
b) The feature map is applied with the depth-wise convolutions.
c) A batch normalization and ReLu Layer are added after both the reducer convolution
layer and dept-wise convolution layer.
d) The feature maps are concatenated channel-wise to get the output.
The overall process is shown in Figure 6.8. The proposed InceptionDepth-wiseYOLOV2 is
based on this idea.
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Figure 6.8 Idea behind the Proposed Inception Depth-wise Convolution Module

73



Table

Fusion

Depth-
wise
Separable
Module |

Depth-
wise
Separable
Module I1

Inception
Depth-
wise
Module

6.1 DSM-IDM-YOLO Feature

characteristics

Layers architecture and

Layer Name Filter Channels Input Layer Output
Size/Stride Size

Input 256%256%3
[Convi 3x3/1 32 Input 256x256x32 |
Maxpool 1 2x2/[2 Convl 128x128x32
[Conv2 3x3/1 64  Maxpool 1 128x128x64 |
Maxpool_2 2x2/2 Conv2 64x64x64
Conv3 1x1/1 128  Maxpool_2 64x64x128
Conv4 3x3/1 64 Conv3 64x64%64
Convs 1x1/1 128  Conv4 64x64x128
Maxpool_3 2%x2/[2 Convs 32x32x128
Conv6 1x1/1 256  Maxpool_3 32x32%256
Conv7 3x3/1 128  Conv6 32x32x128
Conv8 1x1/1 256  Conv7 32x32x256
Maxpool 4 2x2/[2 Conv8 16x16x256
Convé 1x1/1 512 Maxpool_4 16x16x512
Conv7 3x3/1 256  Conv6 16x16%256
Conv8 1x1/1 512 Conv7 16x16x512
Conv9 3x3/1 256  Conv8 16x16%256
Conv10 1x1/1 512  Conv9 16x16x512
Maxpool 5 2x2/[2 Conv10 8x8x512
Conv1l 1x1/1 1024  Maxpool_5 8x8x1024
Conv12 3x3/1 512 Convll 8x8x512
Conv13 1x1/1 1024  Convi2 8x8x1024
Conv14 1x1/1 512 Conv13 8x8x512
Conv15 3x3/1 1024  Convl4 8x8x1024
AveragePool 3x3/2 Conv8 16x16x256
Rescale Conv15 16x16x1024
DepthConcatenationl AveragePool

Conv10

Rescale 16x16x1792
Depth-wiseConv1l 3x3/1 1 DepthConcatenationl 16x16x1792
ProjectConvl 1x1/1 896  Depth-wiseConvl 16x16x896
ExpandConvl 1x1/1 1024  ProjectConvl 16x16x1024
Depth-wiseConv2 3x3/1 1 ExpandConv1 16x16x1024
ProjectConv2 1x1/1 896  Depth-wiseConv2 16x16x896
Add_1 ProjectConvl

ProjectConv2 16x16x896
ExpandConv2 1x1/1 1024 Add 2 16x16x1024
Depth-wiseConv3 3x3/1 1 ExpandConv2 16x16x1024
ProjectConv3 1x1/1 896  Depth-wiseConv3 16x16x896
Add_2 Add_1

ProjectConv3 16%16x896
ReducerConvl 1x1/1 512 Add_ 2 16x16x512
Depth-wiseConv4 3x3/1 1 ReducerConvl 16x16x512
ReducerConv2 1x1/1 512 Add_2 16x16x512
Depth-wiseConv5 1x1/1 1 ReducerConv2 16x16x512
ReducerConv3 1x1/1 256  Add_2 16x16%256
Depth-wiseConvé 5x5/1 1 ReducerConv3 16x16%256
DepthConcatenationl| Depth-wiseConv4

Depth-wiseConv5

Depth-wiseConv6é 16x%16x1280
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The Proposed InceptionDepth-wiseYOLOv2

The InceptionDepth-wiseYOLOV2 architecture flow can be explained with the following three

components: Feature Map Blocks, Inception Depth-wise Convolution Module and Feature

Fusion, in this section.

Feature Map Blocks: The DarkNet53 is divided into five blocks according to the output
feature map, which is of sizes 256x256x3, 128x128x64, 64x64x128, 32x32%x256,
16x16x512, and 8x8x1024. The last three blocks are taken for the subsequent
component processing. The purpose here is to process the feature maps at different
scales to capture more information about the presence of an object in the image. The
representation of these blocks is shown in Figure 6.9.

Inception Depth-wise Convolution Module: In this module, three depth-wise
convolutions with different receptive fields are applied. Some features can be missed
by a receptive field and captured by another receptive field; three receptive fields are
considered in the depth-wise convolution. They are a group of 1x1x1, 3x3x1, and
5x5x1 depth-wise convolution. Convolution of 1x1 dimension reducers precedes these.
The inception depth-wise module yields a comprehensive feature map wherein various
receptive fields are considered. The dimension reducers for the receptive fields 1x1,
3x3, and 5x5 are in the ratio of 2:2:1. The output feature map of modules I, 11, and 11l
are 32x32x256, 16x16x512, and 8x8x1024, as shown in Figure 6.9.

Feature Fusion: The output from the three inception depth-wise convolution modules
is concatenated channel-wise to form a feature map. However, as the feature maps differ
in size, the output of inception depth-wise convolution module | is applied with a
MaxPool layer to yield a 16x16x256 feature map. The inception depth-wise
convolution module 111 output is applied with a Rescale layer to yield a 16x16x1024
feature map. The depth concatenation layer fuses the three feature maps, i.e.,
16x16x256, 16x16x512, and 16x16x1024. The output size of this layer is
16x16x1792. The resultant feature is a detailed feature map from different scales. This

process is shown under the ‘Feature Fusion’ part of Figure 6.9.

The InceptionDepth-wiseYOLOV2 provides rich hierarchical feature information owing to

the inception depth-wise convolution modules applied at different levels of the network. In

addition, a dropout layer (50%) is added at the end to avoid overfitting as the resultant feature

map is quite dense. The resultant feature map is then processed by YOLOv2 Detection Layers.
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The detailed architecture is shown in Figure 6.9. Table 6.2 shows the InceptionDepth-
wiseYOLOv2 feature formation layers characteristics.
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Figure 6.9 Block Diagram of InceptionDepth-wiseYOLOv2

6.2.3 FireYOLOV2

The FireYOLOV2 architecture flow can be explained with three components: Feature Blocks,
Fire Modules and Fusion, in this section. A lightweight version of the proposed network is also
given.
o Feature Blocks: The DarkNet53 is divided into 5 blocks according to the output feature
map which is of sizes 256x256x3, 128x128x64, 64x64x128, 32x32x256, 16x16x512 and
8x8x1024. The last three blocks are taken for the next component processing. The purpose

here is to process the feature maps at different scales to capture more information about
the presence of an object in the image.
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Table 6.2 InceptionDepth-wiseYOLOV2 Feature Layers architecture and characteristics

1x

2%

8x

4x

Proposed
Modification

Inception
Depth-wise
Module |

Inception
Depth-wise
Module 11

Inception
Depth-wise
Module 111

Feature
Map Fusion

Layer Name Filter Channels Input Output
Size/Stride Layer Size
Input 256x256x3
convl 3x3/1 32 Input 256%256x%32
conv2 3x3/2 64 convl 128x128x64
conv3 1x1/1 32 conv2 128%128x32
conv4 3x3/1 64 128x128x64
Residual 1 128%128x64
convs 3x3/2 128  Residual 1 64x64x128
convé 1x1/1 64 convs 64x64x64
conv7 3x3/1 128 64x64x128
Residual 2 64x64x128
conv10 3x3/2 256  Residual 2 32x32x256
convll 1x1/1 128  conv10 32x32x128
convl2 3x3/1 256 32x32x256
Residual 3 32x32x256
conv27 3x3/2 512  Residual_3 16x16x512
conv28 1x1/1 256  conv27 16%16%256
conv29 3x3/1 512 16x16x512
Residual 4 16x16x512
conv44 3x3/2 1024  Residual 4 8x8x1024
conv4bs 1x1/1 512 conv44 8x8x512
conv46 3x3/1 1024 8x8x1024
Residual 5 8x8x1024
ReducerConvl_3x3 1x1/1 102  Residual_3 32x32x102
Depth-wiseConvl_3 3x3/1 1 ReducerConvl_3x3 32x32x102
ReducerConvl_5x5 1x1/1 52 Residual_3 32x32x52
Depth-wiseConvl_5 5x5/1 1 ReducerConvl_5x5 32x32x52
ReducerConvl_1x1 1x1/1 102  Residual_3 32x32x102
Depth-wiseConvl 1 1x1/1 1 ReducerConvl_1x1 32x32x102
DepthConcatenationl Depth-wiseConvl 3
Depth-wiseConvl_5
Depth-wiseConvl 1 32x32x256
ReducerConv2_3x3 1x1/1 205  Residual 4 N 16x16x205
Depth-wiseConv2_3 3x3/1 1 ReducerConv2_3x3 16x16x205
ReducerConv2_5x5 1x1/1 102  Residual_4 16x16%102
Depth-wiseConv2_5 5x5/1 1 ReducerConv2_5x5 16x16x%102
ReducerConv2_1x1 1x1/1 205  Residual_4 16x16%205
Depth-wiseConv2_1 1x1/1 1 ReducerConv2_1x1 16x16%205
DepthConcatenationl| Depth-wiseConv2_3
Depth-wiseConv2_5
Depth-wiseConv2_1 16x16x512
ReducerConv3_3x3 1x1/1 410  Residual_5 8x8x410
Depth-wiseConv3_3 3x3/1 1 ReducerConv3_3x3 8x8x410
ReducerConv3_5x5 1x1/1 204  Residual_5 8x8x204
Depth-wiseConv3_5 5x5/1 1 ReducerConv3_5x5 8x8x204
ReducerConv3_1x1 1x1/1 410  Residual 5 8x8x410
Depth-wiseConv3_1 1x1/1 1 ReducerConv3_1x1 8x8x410
DepthConcatenationl|| Depth-wiseConv3_3
Depth-wiseConv3_5
Depth-wiseConv3 1 8x8x1024
AverageP ool 3x3/2 DepthConcatenationl 16x16x256
Rescale DepthConcatenationlll  16x16x1024
DepthConcatenationlV AveragePool
DepthConcatenationl|
Rescale 16%x16%1792

Dropout (50%)
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e Fire Modules: Three fire modules are attached to the output of the last three blocks. The
squeeze convolution filters and the expand convolution filters are in the ratio of 0.125. In
the expand section, 50% of filters are of size 3%3. The expand section’s 1x1 and 3x3 conv
filters are depth concatenated to get the output. The size of the output feature map of
FireModulel, FireModule2 and FireModule3 is 32x32x256, 16x16x512 and 8x8x1024
respectively. The purpose of these fire modules is to apply more conv filters on the input
feature maps to get a more fine-tuned output. The squeeze layer helps in reducing the
dimension and the expand layer’s role is to process the filters with more conv filters with
receptive fields 1x1 and 3x3.

e Fusion: The output from the three fire modules is to be concatenated depthwise to form a
feature map. However, as the feature maps differ in size; the output of fire module 1 is
applied with a MaxPool layer to yield a 16x16x256 feature map. The output of fire module
3 is applied with a Transposed Conv layer to yield a 16x16x1024 feature map. The depth
concatenation layer fuses the three feature maps i.e., 16x16x256, 16x16x512 and
16x16x1024. The output size of this layer is 16x16x1792. The resultant feature is a
detailed feature map from different scales.

The FireYOLOV2 provides rich hierarchical feature information owing to the fire modules
applied at different levels of the network. A dropout layer (50%) is added at the end to avoid
overfitting as the resultant feature map is quite dense. The detailed architecture is shown in

Figure 6.10. Table 6.3 shows the FireYOLOV2 feature formation layers characteristics.

LightWeight FireYOLOv2

A LightWeight version of FireYOLOV2 is proposed in this work. In this version, the number

of convolution filters in both the squeeze and expand layers of the fire modules are reduced by

a factor of 2. Consequently, the output feature map size of FireModulel, FireModule2 and

FireModule3 are 32x32x128, 16x16x256 and 8x8x512 respectively. Following the same

procedure for Fusion as in FireYOLOV2, the output feature map is of size 16x16x896.

6.2.4 Multiscale-Multilevel-SqueezeNetYOLOv3

The Multiscale-Multilevel-SqueezeNetYOLOvV3 architecture flow can be explained with four

components: The Feature Maps, Squeeze and Expand Blocks, Fusion and YOLOv3 Detection,

in this section. The hyperparameters associated with this network is also discussed.

e The Feature Maps: The SqueezeNet base has five feature map divisions. The feature maps
have dimensions 113x113x64, 56x56x64, 28x28x128, 14x14x256, and 14x14x512
respectively. There are two, three and four Squeeze and Expand blocks after feature map 2,
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3, and 4 respectively. The feature map block 2 and 3 i.e., 56x56x64 and 28x28x128 are
selected for further processing to incorporate it in the detection pipeline. This is done to
achieve feature details at each level of the network. These details are reflected in the
‘SqueezeNet’ section of Figure 6.11.

Darknet-53
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Figure 6.10 Block Diagram of FireYOLOv2

Squeeze & Expand Blocks: The proposed two Squeeze & Expand blocks process input from
feature maps 2 and 3. The input goes to a squeeze conv which is of receptive field 1x1. In
the Expand section, there are 3 conv of receptive field 1x1, 3x3, and 5x5. 50% of the filters
are allotted to the 1x1 filter in the expand section. The remaining 50% is divided between
3x3 and 5x5 filters in the ratio of 3:1. The various receptive fields capture the image features
at different scales. The representation can be seen in the ‘Proposed Modification’ part of
Figure 6.11.

Fusion: The feature map generated from proposed Squeeze & Expand Block 1 and 2 is of
size 56x56xN1 and 28x28xN,. To fuse these two, they are made into the same size. To
achieve this task an average pool is applied with stride 2 and size 3x3 upon the feature map
generated from Block 1. The resultant is a feature map of size 28x28xNj. The next step is to
apply a depth concatenation on Block 1 and Block 2 feature map, which yields a 28x28%(N1+

N>) size feature map. This gives us a combined feature representation of the different levels
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as well as of the different scale of the network. The representation can be seen in the ‘Fusion’

part of Figure 6.11.

1x

2x

8x

Fire Module-1

8x

Fire Module-2

4%

Fire Module-3

Table 6.3 FireYOLOv2 Feature Layers architecture and characteristics
Layer Name Filter Channels Input Layer  Output Size
Size/Stride
Input 256x256x%3
convl 3x3/1 32 Input 256x%256%32
conv?2 3x3/2 64 convl 128x128x64
conv3 1x1/1 32 conv?2 128x128%32
conv4 3x3/1 64 128x128x64
Residual 1 128x128x64
convb 3x3/2 128 Residual 1 64x64x128
convé 1x1/1 64 convh 64x64x64
conv? 3x3/1 128 64x64x128
Residual 2 64x64x128
conv10 3x3/2 256 Residual 2 32x32x%256
convll 1x1/1 128 conv10 32x32x128
convl2 3x3/1 256 32x32x256
Residual_3 32x32x256
conv.S 1 1x1/1 32 Residual_3 32x32x32
conv Ex 11 1x1/1 128 conv.S 1 32x32x128
conv Ex 1 2 1x1/1 128 conv. S 1 32x32x128
depthconcat_1 conv_Ex 11, 39x32%256
conv Ex 1 2
maxpool 3%3/2 depthconcat_1 16x%16%256
conv27 3x3/2 512 Residual_3 16x16x512
conv28 1x1/1 256 conv27 16x%16%256
conv29 3x3/1 512 16x16x512
Residual_4 16x16x512
conv_S 2 1x1/1 64 Residual_4 16x16x64
conv_Ex 2 1 1x1/1 256 conv_S 2 16x16x256
conv_Ex 2 2 1x1/1 256 conv_S 2 16x16x256
depthconcat_2 conv_Ex 2 1, 16x16x512
conv Ex 2 2
conv44 3x3/2 1024 Residual_4 8x8x1024
conv45 1x1/1 512 conv44 8x8x512
conv46 3x3/1 1024 8x8x1024
Residual 5 8x8x1024
conv_S 3 1x1/1 128 Residual_4 8x8x128
conv_ Ex 3 1 1x1/1 512 conv_S 3 8x8x512
conv_Ex 3 2 1x1/1 512 conv_S 3 8x8x512
depthconcat_3 conv_Ex 3 1, 8x8X512
conv Ex 3 2
transposedConv 3x3/2 depthconcat_3 16x16x512
depthconcat_4 depthconcat_1,
depthconcat 2, 16x16x1792
depthconcat_3
droupout depthconcat 4  16x16x1792
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e YOLOvV3 Detection: The YOLOv3 detection uses two feature maps. First, the Feature Map

Block 5 of size 14x14x512. This is converted to 14x14x256 by detection conv 1 and then to
the output tensor 14x14x18. The second feature map is taken by concatenating the Fused
result with detection conv 1. To complete this step, the detection conv 1 is upsampled to
28x28x256 and then depth concatenated with the Fused result of 28x28x(N1+ N2). The
resultant is a feature map of 28x28x(N1+ N2+256). This is converted to 28x28x128 by
detection conv 2 and lastly, the output tensor 28x28x18 is yielded. The representation can

be seen in the “YOLOV3 Detection’ part of Figure 6.11.
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Figure 6.11 Block Diagram of the Proposed MS-M L-SNYOLOV3. The modification made are
shown in the ‘Proposed Modification’ section
Hyperparameters

It is to be noted that the filter distribution in Expand section is made in the ratio of 0.5, 0.375
and 0.125 for 1x1, 3x3, and 5x5 respectively. The number of filters in Squeeze section of
P1 and P2 blocks are represented by M1 and M respectively. And for the expand section
they are represented by N1 and N2 respectively.

The ratio of the filters between Expand and Squeeze section i.e., between N1 and M1 & N2
and M can be varied according to the requirement. In simple small datasets, the ratio can be
less while in complex and large datasets, the ratio can be more to avoid overfitting and

underfitting respectively.
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Table 6.4 Layers and Feature Map characteristics of proposed MS-ML-SNYOLOv3

Squeeze
&
Expand
Block I

Squeeze
&
Expand
Block Il

Squeeze
&
Expand
Block 111

Proposed
Squeeze
&
Expand
Block |

Proposed
Squeeze
&
Expand
Block I

Layer Name Filter ~ Channels Input Layer Output
Size/Stride Size

Input 227x227%3
Convl 3x3/2 64 Input 113x113x64
MaxPooll 3x3/2 Convl 56x56x64
SqueezeConvl 1x1/1 16 MaxPooll 56x56x16
ExpandConvl_1x1 1x1/1 64 SqueezeConvl 56x56x64
ExpandConvl_3x3 3x3/1 64 SqueezeConvl 56x56x64
DepthConcatl ExpandConvl_1x1

ExpandConv1_3x3 56x56x128
SqueezeConv2 1x1/1 16 DepthConcatl 56x56x16
ExpandConv2_1x1 1x1/1 64 SqueezeConv2 56x56x64
ExpandConv2_3x3 3x3/1 64 SqueezeConv2 56x56x64
DepthConcat2 ExpandConv2_1x1

ExpandConv2_3x3 56x56x128
MaxPool2 3x3/2 DepthConcat2 28x28x128
SqueezeConv3 1x1/1 32 MaxPool2 28x28x32
ExpandConv3_1x1 1x1/1 128  SqueezeConv3 28x28x128
ExpandConv3_3x3 3x3/1 128  SqueezeConv3 28x28x128
DepthConcat3 ExpandConv3_1x1

ExpandConv3_3x3 28x28x256
SqueezeConv4 1x1/1 32 DepthConcat3 28x28x32
ExpandConv4_1x1 1x1/1 128  SqueezeConv4 28x28%128
ExpandConv4_3x3 3x3/1 128  SqueezeConv4 28x28x128
DepthConcat4 ExpandConv4_1x1

ExpandConv4 3x3 28x28x256
MaxPool3 3x3/2 DepthConcat4 14x14x128
SqueezeConvs 1x1/1 48 MaxPool3 14x14x48
ExpandConv5_1x1 1x1/1 192  SqueezeConvs 14x14x192
ExpandConv5_3x3 3x3/1 192 SqueezeConvs 14x14x192
DepthConcat5 ExpandConv5_1x1

ExpandConv5_3x3 14x14x384
SqueezeConvé 1x1/1 48 DepthConcat5 14x14x48
ExpandConv6_1x1 1x1/1 192  SqueezeConvé 14x14x192
ExpandConv6_3x3 3x3/1 192  SqueezeConvé 14x14x%192
DepthConcat6 ExpandConv6_1x1

ExpandConv6_3x3 14x14x384
SqueezeConv7 1x1/1 64 DepthConcat6 14x14x64
ExpandConv7_1x1 1x1/1 256  SqueezeConv7 14x14x256
ExpandConv7_3x3 3x3/1 256  SqueezeConv7 14x14x%256
DepthConcat7 ExpandConv7_1x1

ExpandConv7_3x3 14x14x512
SqueezeConv8 1x1/1 64 DepthConcat7 14x14x64
ExpandConv8_1x1 1x1/1 256  SqueezeConv8 14x14x256
ExpandConv8_3x3 3x3/1 256  SqueezeConv8 14x14x%256
DepthConcat8 ExpandConv8_1x1

ExpandConv8 3x3 14x14x512
SqueezeConvP1 1x1/1 32 DepthConcat2 56x56%32
ExpandConvP1_1x1 1x1/1 192  SqueezeConvP1 56x56x192
ExpandConvP1_3x3 3x3/1 144 SqueezeConvP1 56x56x144
ExpandConvP1_5x5 5x5/1 48 SqueezeConvP1 56x56x48
DepthConcatP1 ExpandConvP1_1x1

ExpandConvP1_3x3

ExpandConvP1_5x5 56x56x384
AveragePool 3x3/2 DepthConcatP1 28x28x384
SqueezeConvP2 1x1/1 48 DepthConcat4 28x28x48
ExpandConvP2_1x1 1x1/1 288  SqueezeConvP1 28x28x288
ExpandConvP2_3x3 3x3/1 216  SqueezeConvP1 28x28x216
ExpandConvP2_5x5 5x5/1 72 SqueezeConvP1 28%28x72
DepthConcatP2 ExpandConvP1_1x1

ExpandConvP1_3x3

ExpandConvP1 5x5 28x28x576
ConvlDetectionl 3x3/1 256  DepthConcat8 14x14x%256
OutputTensorl 1x1/1 18 ConvlDetectionl 14x14x18
Upsample 2 ConvlDetectionl 28x28x256
DepthConcatDetection DepthConcatP1

DepthConcatP2

Upsample 28x28x1216
Conv1Detection2 3x3/1 128  DepthConcatDetection  28x28x128
OutputTensor2 1x1/1 18 ConvlDetectionl 28x28x18
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6.3 Experimental Results and Discussion
The proposed YOLOvV2 methods i.e., DSM-IDM-YOLO, InceptionDepth-wiseYOLOvV2 and

FireYOLOV2 are evaluated using three standard pedestrian datasets, INRIA Pedestrian dataset,
PASCAL VOC 2012 dataset and Caltech Pedestrian dataset. The proposed methods are
compared against four state-of-the-art detection methods, i.e., FasterRCNN, YOLOv2,
YOLOvV3, and SSD. Nine different base networks are considered for YOLOv2 for comparison
of results. They are AlexNet, ResNetl8, ResNet50, Inceptionv3, Xception, SquuezeNet,
MobileNetv2, DarkNet19 and DarkNet53. For the three datasets, per-image evaluation is
employed. For INRIA, training parameters such as batch size is set to 8, the learning rate 10,
the number of epochs to 30 and the number of anchors is 4. Whereas for PASCAL VOC 2012,
training parameters such as batch size is set to 16, the learning rate 10, the number of epochs
to 30 and the number of anchors is 4. Caltech pedestrian dataset is trained with batch size 8 and
learning rate 10 for 50 epochs with 6 anchors. The optimizer used is adam for training in all
the datasets.

The proposed YOLOv3 method i.e., MS-ML-SNYOLOV3 is evaluated using two standard
pedestrian datasets, the INRIA Pedestrian dataset and the Caltech Pedestrian dataset. The
proposed method is compared against state-of-the-art methods i.e., FasterRCNN, YOLOv2,
and YOLOv3 with various base networks and SSD. In YOLOV2, base networks AlexNet,
ResNet18, ResNet50, Inceptionv3, Xception, SqueezeNet, MobileNetV2, DarkNet19, and
DarkNet53 are considered. For YOLOvV3, two base networks, ResNet18 and SqueezeNet are
considered. For the INRIA Pedestrian dataset, the training hyperparameters such as batch size,
the learning rate, the number of epochs, and the number of anchors is set to 16, 103, 70, and 6
respectively. For the Caltech Pedestrian dataset, the training hyperparameters batch size, the
learning rate, the number of epochs, and the number of anchors is set to 16, 1073, 100, and 6
respectively. The ratio of the filters between expand and squeeze section is 8 and 12
respectively for INRIA and Caltech Pedestrian dataset. SGDM optimizer was used to train the
datasets.

The model is trained using NVIDIA Geforce RTX 2070 16GB GPU on MATLAB R2021a.
The prediction of models is yielded in a bounding box format. Subsection 6.3.1, 6.3.2 and 6.3.3
show the comparison for the proposed methods with INRIA Pedestrian dataset, PASCAL VOC
2012 dataset and Caltech Pedestrian dataset respectively. Section 6.3.4 shows the statistical test

analysis for the proposed methods.
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6.3.1 INRIA Pedestrian Dataset

Proposed YOLOvV2 Methods

The proposed YOLOv2 methods generate bounding box and confidence score. This is
compared with the groundtruth values to yield the DET Curve and P-R Curve. The DET Curve
and P-R Curve for the YOLOvV2 methods are shown in Figure 6.12 and Figure 6.13
respectively. The corresponding LAMR and AP values are shown in Table 6.5. The proposed
DSM-IDM-YOLO has achieved the least miss rate and highest precision with 27.68% and
79.84%, respectively. A minimum improvement of 2.97% and 5.74% is attained by DSM-
IDM-YOLO w.r.t. LAMR and AP, respectively. Some sample groundtruth and output images
for comparison is shown in Figure 6.14. The proposed InceptionDepth-wiseYOLOV2 has
achieved the least miss rate and highest precision with 21.92% and 82.95%, respectively. A
minimum improvement of 8.73% and 7.51% is attained by InceptionDepth-wiseYOLOv2
w.rt. LAMR and AP, respectively. Some sample groundtruth and output images for
comparison is shown in Figure 6.15. The proposed FireYOLOvV2 has achieved the least miss
rate and highest precision with 19.60% and 85.27% respectively. LightWeight FireYOLOv2
has the second least miss rate of 26.30% and second highest precision of 82.45%. An
improvement of 11.05% and 9.83% is attained by FireYOLOv2 w.rt. LAMR and AP
respectively whereas for LightWeight FireYOLOv2 an improvement of 4.35% and 7.01%
respectively is gained. Some sample groundtruth and output images for comparison is shown
in Figure 6.16.

Scale Analysis
The INRIA Pedestrian dataset is dominated by pedestrians of ‘Large’ scale i.e., height > 80.

On evaluation of the height of the predicted pedestrians the following observation are noted.
The Scale Analysis is represented in Figure 6.17.
* The DSM-IDM-YOLO detects the third greatest number of ‘Large’ scale pedestrians
which is 485.
* The InceptionDepth-wiseYOLOV2 detects the second greatest number of ‘Large’ scale
pedestrians, which is 496.

* The FireYOLOV2 detects the greatest number of ‘Large’ scale pedestrians which is 512.
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Figure 6.12 DET Curve of INRIA Pedestrian Dataset for YOLOv2 Methods
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Figure 6.13 P-R Curve of INRIA Pedestrian Dataset for YOLOv2 Methods

Table 6.5 LAMR and AP values of INRIA Pedestrian Dataset for YOLOv2 Methods

Methods INRIA
LAMR AP

FasterRCNN 34.78 74.19
YOLOV2(AlexNet) 77.83 33.27
YOLOV2(ResNet18) 51.14 60.44
YOLOV2(ResNet50) 72.69 39.86
YOLOv2(Inceptionv3) 66.82 48.04
YOLOv2(Xception) 45.25 68.25
YOLOv2(SqueezeNet) 37.63 72.83
YOLOV2(MobileNetv2) 72.11 40.35
YOLOv2(DarkNet19) 44.86 66.47
YOLOv2(DarkNet53) 34.89 72.67
YOLOv3 30.65 75.44
SSD 62.19 59.86
Proposed DSM-IDM-YOLO 27.68 79.84
Proposed InceptionDepth-wiseY OLOv2 21.92 82.95
Proposed FireYOLOV2 19.60 85.27
LightWeight FireYOLOv?2 26.30 82.45
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Figure 6.14 INRIA Pedestrian Dataset. Bounding box (L-R) Groundtruth and predicted by
YOLOvV2(DarkNet19) and Proposed DSM-IDM-YOLO

Figure 6.15 INRIA Pedestrian Dataset. Bounding box (L-R)
YOLOv2(DarkNet19), YOLOv2(DarkNet53) and Proposed InceptionDepth-wiseY OLOv2

Figure 6.16 INRIA Pedestrian Dataset. Bounding box (L-R) Groundtruth and predicted by
YOLOv2(DarkNet19), YOLOv2(DarkNet53) and Proposed FireYOLOv2
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Figure 6.17 Scale Analysis of INRIA Pedestrian Dataset for YOLOv2 Methods

Proposed YOLOv3 Method

The proposed YOLOv3 method generates bounding box along with respective confidence
score. When these are compared with the groundtruth values the DET Curve and P-R Curve
are yielded. The DET Curve and P-R Curve for the YOLOvV3 methods are shown in Figure
6.18 and Figure 6.19 respectively. The corresponding LAMR and AP values are shown in Table
6.6. The proposed MS-ML-SNYOLOvV3 obtains a LAMR of 28.36% and AP of 76.89%. It has

achieved a minimum performance gain of 2.29% and 1.45% in miss rate and precision

respectively.
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Figure 6.18 DET Curve of INRIA Pedestrian Dataset for YOLOv3 Method
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Figure 6.19 P-R Curve of INRIA Pedestrian Dataset for YOLOv3 Method
Table 6.6 LAMR and AP values of INRIA Pedestrian Dataset for YOLOv3 Method

Methods INRIA
LAMR AP

FasterRCNN 34.78 74.19
YOLOV2(AlexNet) 77.83 33.27
YOLOvV2(ResNet18) 51.14 60.44
YOLOvV2(ResNet50) 72.69 39.86
YOLOvV2(Inceptionv3) 66.82 48.04
YOLOvV2(Xception) 45.25 68.25
YOLOV2(SqueezeNet) 37.63 72.83
YOLOv2(MobileNetv2) 72.11 40.35
YOLOv2(DarkNet19) 44.86 66.47
YOLOv2(DarkNet53) 34.89 72.67
YOLOvV3(ResNet18) 41.26 67.55
YOLOvV3(SqueezeNet) 30.65 75.44
SSD 62.19 59.86
MS-ML-SNYOLOv3 28.36 76.89

6.3.2 PASCAL VOC 2012 Dataset

Proposed YOLOv2 Methods

The proposed YOLOvV2 methods predicts the bounding boxes along with respective confidence
scores. On comparison with the groundtruth values the DET Curve and P-R Curve are obtained.
The DET Curve and P-R Curve for the YOLOv2 methods are shown in Figure 6.20 and Figure
6.21 respectively. The corresponding LAMR and AP values are shown in Table 6.7. The
proposed DSM-IDM-YOLO has achieved the least miss rate and highest precision with 53.13%
and 66.12%, respectively. A minimum improvement of 0.82% and 1.18% is attained by DSM-
IDM-YOLO w.r.t. LAMR and AP, respectively. Some sample groundtruth and output images
for comparison is shown in Figure 6.22. The proposed InceptionDepth-wiseYOLOv2 has
achieved the least miss rate and highest precision with 52.21% and 67.04%, respectively. A
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minimum improvement of 1.74% and 2.1% is attained by InceptionDepth-wiseYOLOv2 w.r.t.
LAMR and AP, respectively. Some sample groundtruth and output images for comparison is
shown in Figure 6.23. The proposed FireYOLOV2 has achieved the least miss rate and highest
precision with 50.70% and 68.64% respectively. LightWeight FireYOLOV2 has the second
least miss rate of 53.23% and second highest precision of 65.88%. An improvement of 3.25%
and 3.7% is attained by FireYOLOv2 w.rt. LAMR and AP respectively whereas for
LightWeight FireYOLOV2 there is a slight improvement of 0.72% and 0.94% respectively.
Some sample groundtruth and output images for comparison is shown in Figure 6.24.

Scale Analysis:
The PASCAL VOC 2012 ‘person’ dataset is also dominated by pedestrians of ‘Large’ scale,
i.e., height > 80. However, pedestrians with ‘Medium’ scale, i.e., 30 < height < 80, and ‘Small’
scale, i.e., height < 30 are also present. The scale of the predicted pedestrians is analyzed and
the following result is observed. The Scale Analysis is represented in Figure 6.25.
* The DSM-IDM-YOLO detects the greatest number of pedestrians on all scales, 6086
‘Large’, 230 ‘Medium’ and 2 ‘Small’.
* The InceptionDepth-wiseYOLOV2 detects the greatest number of pedestrians in all the
scales, 6179 ‘Large’ and 286 ‘Medium’ and 4 ‘Small’.
» The FireYOLOV2 detects the greatest number of pedestrians in all the scales which is
6173 ‘Large’, 293 ‘Medium’ and 3 ‘Small’.

[N

"~ 55.58% FasterRCNN

1——76.61% YOLOV2(AlexNet)
]——57.26% YOLOV2(ResNet18)
62.31% YOLOvV2(ResNet50)
67.82% YOLOV2(Inceptionv3)
4—66.04% YOLOV2(Xception)

17 65.61% YOLOvV2(SqueezeNet)

1 63.24% YOLOV2(MobileNetv2)

] 56.16% YOLOv2(DarkNet19)

17 53.95% YOLOv2(DarkNet53)

1 67.61% YOLOvV3

90.54% SSD

il 53.13% Proposed DSM-IDM-YOLO
|—52.21% Proposed InceptionDepth-wiseYOLOv2
—50.70% Proposed FireYOLOv2
1753.23% LightWeight FireY OLOv2

© o o ©
T e 2

Miss Rate
o
T ‘U'\‘ T T TT T T T

0.4

0.3

10° 10 10 10°
False Positive Per Image

Figure 6.20 DET Curve of PASCAL VOC 2012 Dataset for YOLOv2 Methods
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Figure 6.21 P-R Curve of PASCAL VOC 2012 Dataset for YOLOv2 Methods

Table 6.7 LAMR and AP values of PASCAL VOC 2012 Dataset for YOLOv2 Methods

Methods PASCAL VOC 2012
LAMR AP
FasterRCNN 55.58 60.72
YOLOvV2(AlexNet) 76.61 31.97
YOLOV2(ResNet18) 57.26 59.06
YOLOV2(ResNet50) 62.31 53.58
YOLOv2(Inceptionv3) 67.82 45.20
YOLOv2(Xception) 66.04 49.59
YOLOv2(SqueezeNet) 65.61 51.64
YOLOV2(MobileNetv2) 63.24 51.24
YOLOv2(DarkNet19) 56.16 60.21
YOLOv2(DarkNet53) 53.95 64.94
YOLOvV3 67.61 43.71
SSD 90.54 13.54
Proposed DSM-IDM-YOLO 53.13 66.12
Proposed InceptionDepth-wiseY OLOv2 52.21 67.04
Proposed FireYOLOv2 50.70 68.64
LightWeight FireYOLOV?2 53.23 65.88

Figure 6.22 PASCAL VOC 2012 Dataset. Bounding box (L-R) Groundtruth and predicted by
YOLOv2(DarkNet19) and Proposed DSM-IDM-YOLO
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Figure 6.23 PASCAL VOC 2012 Dataset. Bounding box (L-R) Groundtruth and predicted by
YOLOv2(DarkNet19), YOLOv2(DarkNet53) and Proposed InceptionDepth-wiseY OLOv2

Figure 6.24 PASCAL VOC 2012 Dataset. Bounding box (L-R) Groundtruth and predicted by
YOLOvV2(DarkNet19), YOLOv2(DarkNet53) and Proposed FireYOLOv2

6.3.3 Caltech Pedestrian Dataset

Proposed YOLOv2 Methods

The proposed YOLOv2 methods predicts the bounding boxes along with respective confidence
scores. When compared with the groundtruth values the DET Curve and P-R Curve are
obtained. The DET Curve and P-R Curve for the YOLOv2 methods are shown in Figure 6.26
and Figure 6.27 respectively. The corresponding LAMR and AP values are shown in Table 6.8.
The proposed DSM-IDM-YOLO has achieved the least miss rate and highest precision with
72.36% and 37.20%, respectively. A minimum improvement of 6.3% and 11.13% is attained
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by DSM-IDM-YOLO w.r.t. LAMR and AP, respectively. Some sample groundtruth and output
images for comparison is shown in Figure 6.28. The proposed InceptionDepth-wiseYOLOv2
has achieved the least miss rate and highest precision with 67.32% and 43.84%, respectively.
A minimum improvement of 11.34% and 17.77% is attained by InceptionDepth-wiseYOLOv2
w.rt. LAMR and AP, respectively. Some sample groundtruth and output images for
comparison is shown in Figure 6.29. The proposed FireYOLOvV2 has achieved the least miss
rate and highest precision with 66.89% and 42.54% respectively. LightWeight FireYOLOv2
has the second least miss rate of 71.16% and second highest precision of 40.29%. An
improvement of 11.77% and 16.47% is attained by FireYOLOv2 w.r.t. LAMR and AP
respectively whereas for LightWeight FireYOLOV2 there is an improvement of 7.5% and
14.22% respectively. Some sample groundtruth and output images for comparison is shown in
Figure 6.30.
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Figure 6.25 Scale Analysis of PASCAL VOC 2012 Dataset for YOLOv2 Methods

Scale Analysis:
The Caltech Pedestrian dataset’s Reasonable set is made up of pedestrians of ‘Large’ scale i.e.,

height > 80 and ‘Medium’ scale i.e., 30 < height < 80. Upon examining the scale of the
predicted pedestrians, the following points are noted. The Scale Analysis is represented in
Figure 6.31.
* The DSM-IDM-YOLO detects the greatest number of pedestrians on all scales, 274
‘Large’ and 275 ‘Medium’.
* The InceptionDepth-wiseYOLOV2 detects the greatest number of pedestrians in all
the scales, 304 ‘Large’ and 340 ‘Medium’.
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» The FireYOLOv2 detects the greatest number of pedestrians in all the scales which is
268 ‘Large’ and 335 ‘Medium’.
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Figure 6.26 DET Curve of Caltech Pedestrian Dataset for YOLOv2 Methods
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Figure 6.27 P-R Curve of Caltech Pedestrian Dataset for YOLOv2 Methods

Table 6.8 LAMR and AP values of Caltech Pedestrian Dataset for YOLOv2 Methods

Methods Caltech
LAMR AP

FasterRCNN 90.96 8.70
YOLOv2(AlexNet) 97.73 1.75
YOLOv2(ResNet18) 85.35 17.26
YOLOvV2(ResNet50) 86.39 15.79
YOLOvV2(Inceptionv3) 94.00 5.08
YOLOv2(Xception) 92.43 7.62
YOLOv2(SqueezeNet) 83.83 20.04
YOLOv2(MobileNetv2) 96.27 2.59
YOLOv2(DarkNet19) 85.82 17.41
YOLOv2(DarkNet53) 78.66 26.07
YOLOv3 83.91 18.87
SSD 99.07 1.23
Proposed DSM-IDM-YOLO 72.36 37.20
Proposed InceptionDepth-wiseYOLOv2 67.32 43.84
Proposed FireYOLOv2 66.89 42.54
LightWeight FireYOLOv?2 71.16 40.29
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Figure 6.28 Caltech Pedestrian Dataset. Bounding box (L-R) Groundtruth and predicted by
YOLOv2(DarkNet19) and Proposed DSM-IDM-YOLO

Figure 6.29 Caltech Pedestrian Dataset. Bounding box (L-R) Groundtruth and predicted by
YOLOv2(DarkNet19), YOLOv2(DarkNet53) and Proposed InceptionDepth-wiseY OLOv2

Figure 6.30 Caltech Pedestrian Dataset. Bounding box (L-R) Groundtruth and predicted by
YOLOv2(DarkNet19), YOLOv2(DarkNet53) and Proposed FireYOLOv2
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Figure 6.31 Scale Analysis of Caltech Pedestrian Dataset for YOLOv2 Methods

Proposed YOLOv3 Method

The proposed YOLOv3 method predicts the bounding box information and their respective
confidence scores. On comparison with the groundtruth values the DET Curve and P-R Curve
are obtained. The DET Curve and P-R Curve for the YOLOv3 methods are shown in Figure
6.32 and Figure 6.33 respectively. The corresponding LAMR and AP values are shown in Table
6.9. The proposed MS-ML-SNYOLOvV3 obtains a LAMR of 76.26% and AP of 28.45%. It has
achieved a minimum performance gain of 1.89% and 2.01% in miss rate and precision

respectively.
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Figure 6.32 DET Curve of Caltech Pedestrian Dataset for YOLOv3 Method
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Figure 6.33 P-R Curve of Caltech Pedestrian Dataset for YOLOv3 Method
Table 6.9 LAMR and AP values of Caltech Pedestrian Dataset for YOLOv3 Method

Methods Caltech
LAMR AP
FasterRCNN 90.96 8.70
YOLOV2(AlexNet) 97.73 1.75
YOLOvV2(ResNet18) 85.35 17.26
YOLOV2(ResNet50) 86.39 15.79
YOLOv2(Inceptionv3) 94.00 5.08
YOLOvV2(Xception) 92.43 7.62
YOLOv2(SqueezeNet) 83.83 20.04
YOLOvV2(MobileNetv2) 96.27 2.59
YOLOv2(DarkNet19) 85.82 17.41
YOLOv2(DarkNet53) 78.66 26.07
YOLOvV3(ResNet18) 84.44 18.01
YOLOvV3(SqueezeNet) 78.15 26.44
SSD 99.07 1.23
MS-ML-SNYOLOv3 76.26 28.45

6.3.4 Statistical Analysis

Proposed YOLOv2 Methods

In the first two proposed YOLOv2 modification, there are 13 independent variables, i.e., the
methods (k) and 3 datasets (N). In the third proposed YOLOv2 modification, there are 14
independent variables, i.e., the methods (k) and 3 datasets (N). The proposed YOLOv2 methods
DSM-IDM-YOLO and InceptionDepth-wiseYOLOv2 has the first highest rank when
compared individually with two-stage FasterRCNN and single-stage YOLOvV2(AlexNet),
YOLOvV2(ResNet18), YOLOv2(ResNet50), YOLOv2(Inceptionv3), YOLOv2(Xception),
YOLOV2(SqueezeNet), YOLOv2(MobileNetv2), YOLOv2(DarkNet19),
YOLOv2(DarkNet53), YOLOv3 and SSD. The rank tables for DSM-IDM-YOLO and
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InceptionDepth-wiseYOLOvV2 are shown in Table 6.10 and Table 6.11 respectively. The
proposed YOLOv2 methods FireYOLOv2 and LightWeightFireYOLOv2 has the first and
second rank when compared with two-stage FasterRCNN and single-stage YOLOv2(AlexNet),
YOLOvV2(ResNet18), YOLOv2(ResNet50), YOLOv2(Inceptionv3), YOLOv2(Xception),
YOLOvV2(SqueezeNet), YOLOv2(MobileNetv2), YOLOv2(DarkNet19),
YOLOv2(DarkNet53), YOLOv3 and SSD. The rank table for FireYOLOv2 and
LightWeightFireYOLOV2 is shown in Table 6.12.

The DSM-IDM-YOLO method:
As per the statistical analysis procedure discussed in Chapter-1, first, the chi-square is

calculated to be 27.851. The critical value of chi-square at a degree of freedom (=k-1) 12 is
21.026. As the calculated value of chi-square is greater than the critical value of chi-square, the
Null Hypothesis is rejected. The calculated F-distribution is 6.835. The critical value of F-
distribution with the degree of freedom k-1 and (k-1)(N-1) (12, 24) and o = 0.05 is 2.183. As
the calculated F-distribution is greater than the critical F-distribution, the Null Hypothesis is
rejected.

Table 6.10 Rank Table of Friedman Test for the Proposed DSM-IDM-YOLO

Methods INRIA PASCAL VOC 2012 Caltech Mean Rank  Rank
Miss Rate r Miss Rate r MissRate r
FasterRCNN 34.78 3 55.58 3 90.96 8 4.66 3
YOLOV2(AlexNet) 77.83 13 76.61 12 97.73 12 12.33 10
YOLOV2(ResNet18) 51.14 8 57.26 5 85.35 5 6.00 5
YOLOV2(ResNet50) 72.69 12 62.31 6 86.39 7 8.33 6
YOLOvV2(Inceptionv3) 66.82 10 67.82 11 94.00 10 10.33 8
YOLOV2(Xception) 45.25 7 66.04 9 92.43 9 8.33 6
YOLOV2(SqueezeNet) 37.63 5 65.61 8 83.83 3 5.33 4
YOLOv2(MobileNetv2) 7211 11 63.24 7 96.27 11 9.66 7
YOLOv2(DarkNet19) 44.86 6 56.16 4 85.82 6 5.33 4
YOLOv2(DarkNet53) 34.89 4 53.95 2 78.66 2 2.66 2
YOLOv3 30.65 2 67.61 10 83.91 4 5.33 4
SSD 62.19 9 90.54 13 99.07 13 11.66 9
Proposed DSM-IDM-YOLO 27.68 1 53.13 1 72.36 1 1.00 1

The InceptionDepth-wiseYOLOv2 method:
Following the procedure of statistical analysis discussed in Chapter-1, the chi-square value is

calculated to be 27.851. The critical value of chi-square at a degree of freedom (=k-1) 12 is
21.026. As the calculated value of chi-square is greater than the critical value of chi-square, the
Null Hypothesis is rejected. The calculated F-distribution is 6.835. The critical value of F-
distribution with the degree of freedom k-1 and (k-1)(N-1) (12, 24) and a = 0.05 is 2.183. As
the calculated F-distribution is greater than the critical F-distribution, the Null Hypothesis is

rejected.
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Table 6.11 Rank Table of Friedman Test for the Proposed InceptionDepth-wiseY OLOv2

Methods INRIA PASCAL VOC 2012 Caltech Mean Rank  Rank
Miss Rate r Miss Rate r Miss Rate r
FasterRCNN 34.78 3 55.58 3 90.96 8 4.66 3
YOLOV2(AlexNet) 77.83 13 76.61 12 97.73 12 12.33 10
YOLOV2(ResNet18) 51.14 8 57.26 5 85.35 5 6.00 5
YOLOV2(ResNet50) 72.69 12 62.31 6 86.39 7 8.33 6
YOLOV2(Inceptionv3) 66.82 10 67.82 11 94.00 10 10.33 8
YOLOV2(Xception) 45.25 7 66.04 9 92.43 9 8.33 6
YOLOV2(SqueezeNet) 37.63 5 65.61 8 83.83 3 5.33 4
YOLOvV2(MobileNetv2) 7211 11 63.24 7 96.27 11 9.66 7
YOLOv2(DarkNet19) 44.86 6 56.16 4 85.82 6 5.33 4
YOLOv2(DarkNet53) 34.89 4 53.95 2 78.66 2 2.66 2
YOLOv3 30.65 2 67.61 10 83.91 4 5.33 4
SSD 62.19 9 90.54 13 99.07 13 11.66 9
Proposed InceptionDepth-wiseYOLOv2 21.92 1 52.21 1 67.32 1 1.00 1

The FireYOLOV2 and LightWeightFireYOLOv2 method:
The steps of statistical analysis, as described in Chapter-1, specifies to calculate the chi-square

value, which is resulting to 31.920. The critical value of chi-square at a degree of freedom (=k-

1) 13 is 22.362. As the calculated value of chi-square is greater than the critical value of chi-

square, the Null Hypothesis is rejected. The calculated F-distribution is 9.017. The critical
value of F-distribution with the degree of freedom k-1 and (k-1)(N-1) (13, 26) and a = 0.05 is
1.99. As the calculated F-distribution is greater than the critical F-distribution, the Null

Hypothesis is rejected.

Table 6.12 Rank Table of Friedman Test for the Proposed FireYOLOv2 and
LightWeightFireYOLOv?2

Methods INRIA PASCAL VOC 2012 Caltech Mean Rank  Rank
Miss Rate r Miss Rate r Miss Rate r
FasterRCNN 34.78 4 55.58 4 90.96 9 5.66 3
YOLOv2(AlexNet) 77.83 14 76.61 13 97.73 13 13.33 10
YOLOV2(ResNet18) 51.14 9 57.26 6 85.35 6 7.00 5
YOLOv2(ResNet50) 72.69 13 62.31 7 86.39 8 9.33 6
YOLOV2(Inceptionv3) 66.82 11 67.82 12 94.00 11 11.33 8
YOLOv2(Xception) 45.25 8 66.04 10 92.43 10 9.33 6
YOLOvV2(SqueezeNet) 37.63 6 65.61 9 83.83 4 6.33 4
YOLOv2(MobileNetv2) 72.11 12 63.24 8 96.27 12 10.66 7
YOLOv2(DarkNet19) 44.86 7 56.16 5 85.82 7 6.33 4
YOLOv2(DarkNet53) 34.89 5 53.95 3 78.66 3 3.66 2
YOLOv3 30.65 3 67.61 11 83.91 5 6.33 4
SSD 62.19 10 90.54 14 99.07 14 12.66 9
Proposed FireYOLOV2 19.60 1 50.70 1 66.89 1 1.00 1
LightWeight FireYOLOv2 26.30 2 53.23 2 71.16 2 2.00 2

Proposed YOLOv3 Method

In this work, there are 14 (k) independent variables, which are the detection methods and there
are 2 (N) datasets. The proposed method MS-ML-SNYOLOv3 has the first rank when
compared with FasterRCNN, YOLOv2(AlexNet), YOLOv2(ResNet18), YOLOv2(ResNet50),

YOLOvV2(Inceptionv3),

YOLOv2(Xception),

YOLOv2(SqueezeNet),

YOLOvV2(MobileNetv2), YOLOv2(DarkNet19), YOLOv2(DarkNet53), YOLOv3(ResNet18),
YOLOvV3(SqueezeNet) and SSD. The rank table for MS-ML-SNYOLOV3 is shown in Table
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6.13. Following the steps involved in statistical analysis as discussed in Chapter-1, the chi-
square is calculated to be 23.314. The critical value of chi-square at a degree of freedom 13 is
22.362. The degree of freedom, here is the number of detection methods(k) subtracted by 1. As
the calculated value of chi-square is greater than the critical value of chi-square, the Null
Hypothesis is rejected.

Table 6.13 Rank Table of Friedman Test for the Proposed MS-ML-SNYOLOv3

Methods INRIA Caltech Mean Rank
Miss Rate r Miss Rate r Rank
FasterRCNN 34.78 3 90.96 9 6 6
YOLOV2(AlexNet) 77.83 14 97.73 13 135 13
YOLOV2(ResNet18) 51.14 9 85.35 6 7.5 8
YOLOV2(ResNet50) 72.69 13 86.39 8 10.5 10
YOLOV2(Inceptionv3) 66.82 11 94.00 11 11 11
YOLOV2(Xception) 45.25 8 92.43 10 9 9
YOLOv2(SqueezeNet) 37.63 5 83.83 4 45 4
YOLOv2(MobileNetv2) 72.11 12 96.27 12 12 12
YOLOv2(DarkNet19) 44.86 7 85.82 7 7 7
YOLOv2(DarkNet53) 34.89 4 78.66 3 35 3
YOLOvV3 (ResNet18) 41.26 6 84.44 5 55 5
YOLOV3 (SqueezeNet) 30.65 2 78.15 2 2 2
SSD 62.19 10 99.07 14 12 12
MS-ML-SNYOLOv3 28.36 1 76.26 1 1 1

6.4 Observations
In this contribution, as per the proposed YOLOv2 method: DSM-IDM-YOLO with base

DarkNet19, InceptionDepth-wiseYOLOv2 with base DarkNet53 & FireYOLOv2 with base
DarkNet53 and the proposed YOLOvV3 method: MS-ML-SNYOLOv3 with base SqueezeNet,
the following points are observed. Three benchmark pedestrian datasets are used to evaluate
YOLOV2 proposed methods INRIA, PASCAL VOC 2012, and Caltech Pedestrian datasets.
Two benchmark pedestrian datasets are used to evaluate YOLOv3 proposed method INRIA
and Caltech Pedestrian datasets.

» The fused features from the proposed modules at different levels of the network
amassed rich hierarchical feature information of the objects, i.e., pedestrians in the
images.

* The proposed YOLOvV2 methods have achieved the best performance i.e., least miss
rate and highest precision in all the three datasets.

* The proposed YOLOv2 methods are performing better than the advanced YOLOv3
network also.

* The proposed YOLOv3 method have achieved the best performance i.e., least miss rate
and highest precision in all the two datasets.
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Chapter 7

Conclusion and Future Scope

The conclusion and future scope of the thesis is discussed in this chapter.

Conclusion

The pedestrian detection problem is addressed in this work by focusing on the feature
development part of the process. To extract a detailed and dense feature representation, four
detection methods are explored.

For Contribution-1, the hand-crafted features are employed. A scale-space pyramid-based
shape feature-extraction method: SI-HOG is proposed. SI-HOG overcomes the shortcoming of
HOG, i.e., that it is not applicable to multiresolution images, by considering gradient
information from different scales of an image, making it resolution-independent. The addition
of texture and color information to SI-HOG enables a more enhanced form of features. The
performance of the proposed method is evaluated using three datasets, i.e., INRIA, NICTA,
and Daimler, considering both single-resolution and multiresolution images wherein it has
shown the least miss rate.

The features extracted by hand-crafted feature concentrate only one on particular aspect or
feature of the image. This causes a significance performance gap. Whereas the features formed
by deep CNN methods provides a comprehensive representation of the image.

For Contribution-2, the CNN features are used. A modified architecture for ResNet18 is
proposed. The proposed method processes features from varying levels of the network. It is
named MF2ResNet and is used in two ways: CNN features with SVM and End-to-End CNN
network. The proposed methods are compared using three benchmark pedestrian datasets
INRIA, NICTA and Daimler wherein it surpasses the handcrafted features performance.

In the first two contribution, the pedestrian detection is being done in per-window evaluation
system. To further address the pedestrian detection problem, the state-of-the-art detection
method is employed in the next contributions. The detection methods follow the per-image
paradigm and generates the bounding box as well as the confidence score of the pedestrians.
For Contribution-3, the two stage Faster RCNN is used. Two modifications of CNN network
ResNet18, which serves as a base for Faster RCNN is proposed. The proposed methods are
named Faster RCNN (DCResNet) and Faster RCNN (MF2ResNet). The feature map is formed
by the concatenation of the processed output feature map of the proposed networks. This
enables a thorough feature extraction process as the resultant feature map gives a detailed
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hierarchical representation of the image. The proposed method is evaluated on two benchmark
datasets INRIA and PASCAL VOC 2012 and has shown substantial improvement.

This work provided a reasonably better solution for pedestrian detection with best miss rate
and precision. But the Faster RCNN methods, being the two-stage method lack speed. The next
contribution addressed this with YOLOv2 and YOLOv3 detection methods, which proved to
be faster and more accurate.

For Contribution-4, the single stage YOLO network is used. Three YOLOv2 modifications are
proposed: DSM-IDM-YOLO with base DarkNet19, InceptionDepth-wiseYOLOv2 with base
DarkNet53, and FireYOLOv2 with base DarkNet53. The proposed methods are evaluated on
INRIA, PASCAL VOC 2012, and Caltech Pedestrian datasets, wherein it gives improved miss
rate and precision.

For Contribution-5, a YOLOv3 modification is proposed with base SqueezeNet named as MS-
ML-SNYOLOv3. It also achieves improved miss rate and precision when evaluated with
INRIA and PASCAL VOC 2012 pedestrian dataset.

To summarize the work, the pedestrian detection problem is tackled with incremental
improvement starting from hand-crafted features to deep learning CNN features. The two-stage
and single-stage detection methods of Faster RCNN and YOLO respectively, provides
sophisticated and advanced model to further improve the accuracy of the system. It can be
established that the proposed method in single stage network YOLO has given the best
performance in the work in terms of miss rate and precision and with lesser computational

overhead.

Future Scope

» The pedestrian detection is limited to images in this work. It will be extended to videos so that
it can be utilized in real world applications.

» The improvement in this work is done upon the feature extraction part. But to further improve
the localization of the pedestrians, the region proposal part will be enhanced.

» Latest state-of-the-art detection methods will be employed wherein the base CNN architecture
can be improved.

» As the detection method involves computational overhead, it will be shifted to a distributed
environment to speed up the process.

» On the other hand, light weight detection methods will be proposed, to enable real time
application without the requirement of a GPU.

» To aid in the detection of various scales of pedestrians in the image, methods such as super-

resolution will be analyzed.
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