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ABSTRACT

The cooperative vehicular networks enable wide verity of applications including road

safety, real-time traffic management, location-aware advertisement, environment monitor-

ing, remote region connectivity, etc. Vehicles communicate with other vehicles as well as

Road Side Unit (RSU) deployed along road side in order to provide efficient data dissem-

ination services to the vehicles outside the RSU coverage. The RSU exploits passing-by

vehicles as store-carry-forwarders (relays) to serve the vehicles that are disconnected from

RSU. On the other hand, the RSUs deployed in highway locations are energy-limited and

they aim at reducing energy consumption during downlink communication to relay vehi-

cles. Thus, improvement in data delivery is an important issue while reducing energy con-

sumption of RSU, data delivery delay and response time in a highway vehicular network.

Although energy harvesting technologies improve life time of RSU, the continuous arrival

of task data to buffers with limited capacity leads to buffering delays at the RSU. Therefore,

a dynamic power allocation mechanism is necessary to balance energy consumption and

buffering delays under task deadline constraints. In addition, real-time scheduling of fog

vehicles for the energy efficient offloading of tasks in RSU coverage is also challenging in

order to reduce average response time of tasks.

This thesis focuses on energy efficient and cooperative vehicle scheduling algorithms

for improving data dissemination services in the highway vehicular networks. The issues

of energy efficiency and data delivery delay have been addressed while satisfying task

deadline constraints. In this thesis, the proposed vehicle scheduling algorithms have

achieved improvement in data delivery performance by reducing energy consumption of

RSU, data delivery delay, buffering delay at RSU and response time of offloaded tasks.

Unlike traditional wireless networks, the vehicular networks exist with various challenges

including high mobility, rapid changes in network topology, limited RSU radio range

and battery power. Four major problems have been addressed in this thesis, namely:

a) a clustering based multi-relay scheduling algorithm is designed to minimize energy

consumption of RSU by satisfying data delivery constraints. A polynomial time solution

has been presented by modelling it as a minimum cost flow graph to improve energy

iii



efficiency and data delivery. b) an RSU assisted cooperative relay scheduling scheme

is designed for bidirectional highway scenario. An Auction theory based polynomial

time solution has been presented to achieve faster data delivery while minimizing energy

consumption of RSU. c) a Lyapunov based optimization mechanism has been presented

to analyse the trade-off between power consumption and buffering delays at the RSU. A

max-weight greedy relay scheduling algorithm is proposed to improve the data delivery

performance under task deadline constraints. d) a vehicular fog computing framework is

designed to offload tasks to fog vehicles while minimizing energy consumption of RSU

and response time of tasks. A real-time scheduling of fog vehicles has been presented by

using the combination of fuzzy logic system and on-policy leaning model. Weights of fog

vehicles observed from fuzzy logic act as input to learning model for faster convergence

and improving long-term reward. Performance of the proposed scheduling algorithms are

evaluated through simulations. It has been observed that the proposed algorithms have im-

proved the overall performance of the Highway VANET in-terms of energy consumption,

data delivery delay, buffering delay and response time. Furthermore, these problems have

been extensively studied in this thesis, followed by discussion on future research directions.

Keywords: Highway vehicular networks, energy efficiency, minimum cost flow graph,

clustering, end-to-end delay, Auction theory, buffering delay, Lyapunov optimization, task

offloading, response time, Fuzzy logic, on-policy SARSA leaning, vehicular fog comput-

ing.
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Chapter 1

Introduction

Recent developments in wireless communication technologies combined with Vehicular

Ad hoc Network (VANET) enable safe and intelligent transportation systems which can

provide road safety, infotainment and advertisement services[1]. In VANET, vehicles are

equipped with On-Board-Units (OBUs) that are capable of communicating with other vehi-

cles as well as nearby wireless access points called Road Side Units (RSUs). The RSU is a

roadside infrastructure and it provides access to moving vehicles on the road. VANETs de-

ployed in highway environment (i.e., highway vehicular networks [2]) observe that the ve-

hicles maintain constant speed in highway road segment. Moreover, the vehicles remain in

RSU coverage for a relatively short duration due to high mobility of the vehicles. Accord-

ing to Federal Communication Commission (FCC), the spectrum assigned for Dedicated

Short Range Communication (DSRC) in 5.9GHz frequency band has been divided into one

control channel (CCH) and six service channels (SCH). The channels CCH and SCH are

used to transmit control messages and service messages, respectively. Moreover, the com-

munication capabilities of VANET are classified into various modes including Infrastruc-

ture to Vehicle (I2V) and Vehicle to Vehicle (V2V) communications. These communication

modes enable wide variety of applications such as safety (e.g., collision warning, real-time

traffic, etc.) and non-safety (e.g., weather information, location-aware advertisement, etc.)

services for the on-road vehicles. The RSU deployed along the highway provides data

access to vehicles that are in RSU radio coverage via I2V communication. Due to high

mobility, the vehicles may leave RSU without completely downloading the requested data.
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RSU

Vehicle
v at t1

Vehicle
v at t2

d2d1

Figure 1.1: Downlink communication scenario

A vehicle leaves RSU region with unserved data requirement, is referred as target vehicle.

When a target vehicle leaves RSU coverage, the RSU ensures data delivery to that vehicle

with the aid of store-carry-forward vehicles (i.e. relays) and V2V forwarding.

In rural highway locations, providing direct wired electricity to RSU is difficult due

to unavailability of power grid connections in that area. A viable alternative is to operate

RSUs using sustainable energy sources such as wind power, solar power, etc. According to

a deployment analysis presented by the U.S Department of Transportation [3], it has been

estimated that over 40% of rural highway roadside infrastructure would be solar powered

and nearly 63% of RSU costs would have to be spent on solar energy provisioning by 2050.

Most often, the RSUs deployed in rural highways are equipped with rechargeable batter-

ies with a support of energy harvesting technologies [4]. The energy provisioning cost of

RSU significantly depends on its average energy consumption [5]. This is due to the strong

dependency between energy consumption of RSU and RSU-to-vehicle distance[6]. For ex-

ample, the downlink (RSU-to-vehicle) communication to a nearby vehicle consumes less

RSU energy compared to a more distant vehicle in RSU coverage. As shown in Fig.1.1,

vehicle v at time instance t1 is separated by a distance d1 from RSU, and the same vehicle

is separated by a distance d2 from RSU at another time instance t2. Since d1 < d2, the

RSU prefers downlink communication to vehicle v at t1 instead of t2. Although the greedy

selection of nearby vehicles conserve energy, it may adversely impact system performance

in terms of data delivery, end-to-end delay, response time, etc,. Therefore, optimal schedul-

ing of vehicles in RSU coverage is an important issue to balance the trade-off between RSU
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energy consumption and other data dissemination service parameters of the system.

The major contributions in this thesis are as follows:

• A clustering based energy efficient nearest neighbour forward approach for im-

proving data dissemination in highway VANET: This work presents an optimal re-

lay scheduling algorithm to minimize the RSU energy consumption subject to satisfy

residual data requirement of target vehicle. Furthermore, a clustering based Nearest

Neighbor Forward (NNF) approach is proposed to identify the vehicles which are

in the energy favorable locations (i.e., near to RSU) and multi-hop neighbors to the

relay vehicles. Furthermore, combining the relay scheduling with NNF approach

achieves reduction in the energy consumption of RSU and improvement in the data

delivery to target vehicle.

• An auction-based energy efficient cooperative relay scheduling for faster data

retrieval in bidirectional highways: This work presents an RSU assisted multiple

relay scheduling algorithm to achieve faster data retrieval for the target vehicle us-

ing Auction theory principles. This work considers a bidirectional highway scenario

where the relay vehicles are scheduled in both forward and opposite directions to

minimize the RSU energy consumption and end-to-end delay to the target vehicle.

The proposed algorithm utilizes the cooperation of a neighboring RSU for transfer-

ring the residual data of target vehicle.

• A dynamic power allocation algorithm using Lyapunov optimization mecha-

nism for data sharing between neighboring RSUs: This work presents a delay-

aware energy efficient dynamic relay scheduling algorithm to minimize the energy

consumption of source RSU, buffering delay at source RSU, and maximize the aver-

age data delivery to the destination RSU in the network. The proposed Lyapunov

based algorithm first decides the minimum power allocation for transmission of

buffer content by observing the buffer back-log (buffered bits) sizes. This dynamic

power allocation technique reduces energy consumption of RSU and ensures buffer

stability. Further, the proposed algorithm schedules a set of relay vehicles to maxi-

mize the average data delivery to destination RSU.
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• A fuzzy reinforcement learning for energy efficient task offloading from RSU

to mobile fog vehicles: This work considers a Vehicular Fog Computing (VFC)

paradigm where a stationary RSU supplements local computation and responsible

for task allocation to fog vehicles. This work proposes an on-policy reinforcement

learning based algorithm for energy efficient scheduling of fog vehicles to compute

tasks within tolerable response latency. Further, a fuzzy logic based greedy heuristic

is used to accelerate learning process and improve long term reward of the proposed

algorithm for achieving minimization of energy consumption and response time.

The rest of this chapter is organized as follows. Motivation of this work and objectives

are discussed in section 1.1. In section 1.2.1, the importance of clustering based approach

for energy efficient scheduling of relay vehicles is discussed. In section 1.2.2, application

of Auction theory principles for the relay scheduling in bidirectional highways has been

presented. In section 1.2.3, requirements of dynamic power allocation approach for energy

conservation is highlighted. Importance of greedy relay scheduling for maximizing data

delivery is discussed. In section 1.2.4, the requirements of combining fuzzy heuristic and

reinforcement learning for dynamic scheduling of fog vehicles is presented. Section 1.3

provides the details of experimental settings. Section 1.4 illustrates the organization of this

thesis.

1.1 Motivation and objectives

Efficient data dissemination is crucial for achieving more reliable data services (e.g., large

file download, sensor data transfer, etc.) by exploiting the synergetic effects between I2V

and V2V communications [7, 8]. In highway locations, due to high installation cost of

the vehicular infrastructure, the RSUs cannot provide seamless radio coverage and they

leave uncovered area or outage area in between the neighboring RSUs [9]. Specifically,

the RSUs may not complete the vehicles’ requests inside the RSU coverage due to the

limited I2V bandwidth, high mobility and high data demand of the vehicles [10]. Thus,

the vehicles have unserved data requirement while entering into an uncovered area. Such

vehicles are known as target vehicles. Nevertheless, the target vehicles can retrieve the
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unserved (residual) data by leveraging the services of passing by vehicles known as relay

vehicles [11]. These relay vehicles follow store-carry-forward [12] mechanism to serve a

target vehicle using V2V forwarding when they establish V2V links with the target vehicle.

However, proper scheduling of relay vehicles is an important issue for improving data

delivery services along with minimizing energy consumption.

As aforementioned, the deployment of RSUs creates uncovered areas in-between neigh-

bouring RSUs due to their limited radio range and deployment cost. Specifically, some

RSUs are placed in isolated rural highway locations without any connection to direct grid

power or backbone network (which connects to other RSUs in the network). Therefore,

a source RSU in an isolated location is equipped with rechargeable batteries and depends

on energy harvesting technologies[13]. Moreover, the tasks generated by the applications

running in the source RSU region need to be offloaded to a nearby destination RSU (which

is equipped with high-end computation server and connects to direct grid power) via store-

carry-forward vehicles or relays. However, it poses some challenges to design a good relay

vehicle scheduling algorithm in such a dynamic scenario. First, future arrival of vehicles

are completely unknown to source RSU, then the RSU needs to schedule the best possible

relay vehicles available in its coverage region at current time instance. Second, recharge-

able batteries equipped with RSU have limited storage capacity, consequently an efficient

power allocation strategy is required for the effective utilization of stored energy. Third,

the source RSU does not have control over the arrival of task data, and this may lead to con-

tinuous increase of buffer back-log size referred as buffer instability. Therefore, a dynamic

power allocation technique is necessary to balance the trade-off between energy consump-

tion and buffering delay, while improving data delivery to destination RSU.

To reduce the data transit delays between source and destination RSUs, a Vehicular

Fog Computing (VFC) paradigm is realized to offload computation intensive tasks to mo-

bile fog vehicles in RSU region. The efficient task offloading in VFC has challenges that

need to addressed. High mobility, short connection time and heterogeneity of vehicles

make difficult for smart devices to directly offload tasks to fog vehicles. On the other hand,

selection of potential fog vehicles for task offloading is important since the vehicles with

long staying period in RSU communication coverage may be busy in execution of other
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tasks while the vehicles with available resources may ready to leave communication cov-

erage. Therefore, this work realizes that the minimization of energy consumption of RSU

is equally important along with response time since the allocation of tasks to fog vehicles

involves both communication cost of infrastructure and computation delay of fog vehicles.

The above mentioned challenges motivate the present work towards energy efficient

and cooperative vehicle scheduling algorithms for data dissemination in highway vehicular

networks. The major objectives of this dissertation is as follows.

1. Design of energy efficient relay scheduling algorithm using clustering mechanism to

improve data delivery to target vehicle in highway VANET.

2. Design of energy efficient RSU assisted relay scheduling algorithm using auction

theory principles for faster data retrieval to target vehicle in bidirectional highways.

3. Analysis of energy consumption and buffering delay at isolated RSU using Lyapunov

optimization technique for dynamic power allocation under task deadline constraints.

4. Analysis of energy consumption and response time while offloading tasks to mobile

fog vehicles by satisfying task deadlines in vehicular fog computing environment.

1.2 Overview of the contributions in this Thesis

This section presents overview of chapter-wise contributions discussed in this thesis work.

Each sub section provides summary of corresponding chapter.

1.2.1 Clustering based energy efficient nearest neighbour forward ap-

proach

In this work, an energy efficient scheduling of multiple relay vehicles has been proposed to

serve the residual requirement of a target vehicle moving in the uncovered area. The multi-

relay scheduling problem is formulated as an optimization problem, and consequently pre-

sented a polynomial time solution by modeling it as Minimum Cost Flow (MCF) graph

[14]. Furthermore, a clustering[15] based algorithm is proposed to identify the vehicles
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which are in the energy favorable locations (i.e., near to RSU) and multi-hop neighbors

to the relay vehicles. Such vehicles are named as Nearest Neighbor Forwarders (NNFs).

Proper scheduling of downlink (RSU-to-NNF) communication further reduces the energy

consumption of RSU and improves the data delivery to the target vehicle. Downlink chan-

nel time of RSU is divided into time slots of fixed duration. The proposed clustering based

algorithm discovers vehicle clusters that are unaltered for a time slot duration. In a given

time slot, the multi-hop relay vehicles are reachable from a NNF in the cluster. Then, the

data forwarding from the NNF vehicle to its multi-hop relay vehicle follows off-channel

V2V forwarding[16, 17].

The contributions of this work are as follows.

• Analyse the relationship between the energy consumption of RSU and the data de-

livery to the target vehicle and further determine a set of store-carry-forward relay

vehicles which can establish a communication link with the target vehicle.

• Formulate the multi-relay scheduling as an optimization problem, and consequently

present a polynomial time solution by modeling it as Minimum Cost Flow (MCF)

graph.

• Design a clustering based Nearest Neighbor Forward (NNF) approach to identify the

vehicles which are in the energy favorable locations (i.e., near to RSU) and multi-hop

neighbors to the relay vehicles.

1.2.1.1 Minimum Cost Flow Graph (MCF) for relay scheduling

A Minimum Cost Flow (MCF) graph is presented to solve the optimization problem in

polynomial time[14]. The graph G = (N,E) is defined as set of N nodes and set of E arcs

to connect the nodes. Suppose s, r ∈ N , then each arc (s, r) ∈ E has an associated capacity

cs,r and cost ϵs,r, which denotes the maximum flow and the downlink communication cost

per unit flow respectively. The associated capacity and energy of each arc has been labeled

with an ordered pair (cs,r, ϵs,r). The minimum cost flow model ensures that minimum

energy consumption of RSU while respecting the maximum flow from RSU to the target

vehicle.

7



CHAPTER 1. INTRODUCTION Section 1.2

1.2.1.2 Nearest Neighbor Forward Approach

The proposed Nearest Neighbor Forward (NNF) approach selects the vehicles in energy

favorable locations as the data forwarders to relay vehicles. A nearest neighbor forwarder

is a vehicle which is nearest to the RSU and multi-hop neighbor to a relay vehicle. In a time

slot, the NNF approach selects a nearest neighbor forwarder vehicle to each relay vehicle.

The nearest neighbor forwarder of a relay r is defined as NNF(r). Then, it computes the

energy cost of RSU to NNF(r) for all r. The energy consumption costs obtained from NNF

becomes a new input to the scheduler (i.e., MCF). The MCF augmented with the NNF

approach is referred as MCF-NNF. A schedule obtained from the MCF-NNF improves the

energy consumption of RSU and data delivery to the target vehicle in the uncovered area.

Results from extensive simulations show that the proposed NNF approach augmented

with MCF preform better when compared to scheduling algorithms Nearest Fastest Set

(NFS)[6], MCF[18] and two more basic algorithms First Come First Serve (FCFS) and

Fastest First (FF). The results also show the impact of vehicle arrival rate, vehicle trans-

mission range and target vehicle speed on the power consumption of the RSU and data

delivery to the target vehicle. The proposed MCF-NNF has significant improvement in

energy consumption by 23% and 28% when compared to MCF and NFS respectively. The

proposed approach shows clear dominance at higher vehicle arrival rates above 0.5 and its

residual data completeness is 6%, 25% and 16% more when compared to FCFS, NFS and

MCF respectively.

1.2.2 Auction-based RSU-assisted relay scheduling in bidirectional high-

ways

In this work, a bidirectional highway scenario has been considered where the relay vehi-

cles are scheduled in both forward and opposite directions to minimize the RSU energy

consumption and end-to-end delay to the target vehicle. This service paradigm utilizes the

cooperation of a neighboring RSU for transferring the unserved data of the target vehicle.

Based on the received data, the neighboring RSU can schedule the relay vehicles driving

in opposite direction by ensuring the energy consumption and end-to-end delay require-
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ments. Minimizing end-to-end delay is also essential to improve the quality of service

(QoS) requirements of the target vehicle when running infotainment applications such as

online video transfer, online gaming, etc. Besides, the RSUs apply the principles of Auc-

tion Theory[19] to schedule the downlink communication for the suitable relay vehicles.

Here, RSUs and relay vehicles act as sellers and bidders, respectively. The seller auc-

tions the RSU channel time by subdividing into time slots of equal duration. Although the

bidders have incomplete information about other bidders, they use only local information

(e.g., speed, position, cooperative cache size, direction, etc.) and participate in Auction-

ing process. The seller or RSU select the bidders solely based on the bids received from

the bidders or relay vehicles. Then, the RSU optimally assigns the relay vehicles to time

slots. However, due to limited V2V bandwidth and half-duplex nature of OBUs [7], it is

difficult to achieve simultaneous data transmission when multiple relay vehicles establish

V2V links with the target vehicle. Therefore, the target vehicle is designated to perform ad

hoc V2V scheduling in the uncovered area when multiple relay vehicles are present in its

radio range. This will improve the data delivery ratio by making the best utilization of V2V

communication bandwidth. The V2V forwarding cannot affect the power consumption of

RSUs because the vehicles are assumed to have sufficient energy reserves.

Major contributions of this work are as follows.

• Determine the set of relay vehicles in both directions (forward and backward) in a

bidirectional highway segment for faster data delivery to target vehicle. The relay

scheduling problem is formulated as an Integer Linear Programming problem (ILP)

and its NP hardness is proved.

• Propose a forward relay scheduler (FRS) based on Auction Theory to schedule the

relay vehicles in target moving direction. In addition, proposed an Auction based

RSU assisted relay scheduling (RRS) algorithm that uses cooperative sharing be-

tween neighboring RSUs and schedule the relay vehicles in both forward and back-

ward directions for serving the target vehicle.

9
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1.2.2.1 Auction theory for relay vehicle selection

This work presents an optimal assignment of relay vehicles to time slots by applying the

concepts from Auction Theory[20]. This problem is modeled as an asymmetric assignment

problem where the time slots are more than the relays. There exists non empty set of time

slots T , relay vehicles Vr, and these are finite. Before selecting a suitable relay vehicle Vi ∈

Vr at a time slot Tj ∈ T , the RSU estimates utility Uij based on the Time-to-Contact (∆Cij)

and the bit-rate (bij) in the downlink channel. These two parameters have direct impact on

the end-to-end delay and the RSU power consumption, respectively. The mapping of time

slot – relay vehicle pair is determined by the difference between the minimum utility and

the second smallest utility.

The proposed Auction-based RRS algorithm utilizes the neighboring RSU cooperation

and schedule the relay vehicles driving in both directions that can maximize the data de-

livery to the target vehicle. Extensive simulations show that the proposed RRS algorithm

performs better compared to FCFS, GA and FRS in terms of average RSU energy con-

sumption and end-to-end delay to the target vehicle. For the case of vehicle arrival rate

0.5 and target speed 20 m/s, improvement of RRS over FCFS, GA, and FRS is 60.17%,

22.27% and 15.69% in terms of average RSU energy consumption, respectively.

1.2.3 Lyapunov optimization mechanism for energy efficient data shar-

ing between RSUs

This work presents a delay-aware energy efficient dynamic relay scheduling strategy to

minimize the energy consumption of source RSU, buffering delay at source RSU and max-

imize the average data delivery to the destination RSU in the network. In highway lo-

cations, the deployment of RSUs create uncovered areas in-between neighbouring RSUs

due to their limited radio range and deployment cost. Specifically, some RSUs are placed

in isolated rural highway locations without any connection to direct grid power or back-

bone network (which connects to other RSUs in the network). Therefore, a source RSU

in an isolated location is equipped with large batteries and depends on energy harvesting

technologies[13]. Moreover, the tasks generated by the applications running in the source
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RSU region need to be offloaded to a nearby destination RSU (which is equipped with high-

end computation server and connects to direct grid power) via store-carry-forward vehicles

or relays. Before selecting suitable relay vehicles, the proposed strategy first decides the

minimum power allocation for transmission of buffer content by observing the buffer back-

log sizes (buffer occupancy) in each time slot. This dynamic power allocation technique

reduces energy consumption of RSU and ensures buffer stability. Second, depending on

the amount of data to be transmitted to each vehicle via I2V communication, the proposed

strategy schedules a set of relay vehicles to maximize the average data delivery to destina-

tion RSU. The selection criteria of relay vehicles are subjected to task deadlines constraints

as well. The major contributions of this work is as follows.

• Present a dynamic relay scheduling strategy in a bidirectional highway scenario for

data sharing in between the neighbouring RSUs. Specifically, such a system enables

the RSUs to opportunistically exploit the store-carry-forward (relay) vehicles, which

not only enhances the data delivery to destination RSU, but also realizes balancing

the trade-off between buffer stability and energy consumption at the source RSU.

• Formulate two optimization problems namely, dynamic power allocation problem

(P1) and a relay scheduling problem (P2). First, P1 minimizes the energy con-

sumption of source RSU subject to satisfy the buffer stability and energy level in

the rechargeable batteries. Second, P2 maximizes the data delivery to destination

RSU subject to satisfy task deadlines.

• Propose a Lyapunov optimization based Dynamic Power Allocation (LDPA) algo-

rithm (Section 5.2.1), which allocates minimum power required for the transmission

of buffer content by observing the buffer back-log size and channel gain. Further-

more, a Max-weight Relay Vehicle Scheduling (MRVS) (Section 5.2.1) algorithm

has been proposed to select the relay vehicles based on their speed, location and

achievable data rates. In particular, it is observed that the combination of LDPA and

MRVS improves the efficacy of the system in-terms of buffer stability, network life

time and data delivery.
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1.2.3.1 Lyapunov based dynamic power allocation

The proposed dynamic power allocation algorithm for determining the downlink transmis-

sion rate over each time slot τ , is designed by observing the buffer back-log size Bi(τ) and

then deciding the power allocation Pi(τ). Rather than alone minimizing the drift ∆(B(τ)),

the dynamic algorithm minimizes the bound on E{P (τ)|B(τ)} + V∆(B(τ)) (i.e., drift-

plus-penalty), where the constant V ≥ 0 is a parameter to control the trade-off exist be-

tween buffer stability and power allocation. Intuitively, large values of V emphasizes more

on buffer stability but it consumes more power. Small values of V lead to less power con-

sumption but there is possibility that the buffer becomes unstable.

1.2.3.2 Max-weight relay vehicle scheduling

A relay scheduling problem is formulated to select relay vehicles which satisfy task dead-

lines. As a solution, this work realizes the selection of relay vehicles with maximum achiev-

able data rates (derived from dynamic power allocation technique), and transmits the buffer

content from RSU to those scheduled relay vehicles via I2V communication. A simulation

study has been conducted and demonstrated the performance of proposed algorithms in-

terms of buffering and scheduling performance. It is observed that the proposed strategy

provides significant improvement in terms of buffer stability, network life time and average

data delivery in the system.

1.2.4 Fuzzy reinforcement learning for energy efficient task offloading

from RSU to mobile fog vehicles

This work presents a latency-aware energy efficient scheduling of tasks to fog vehicles in

Vehicular Fog Computing (VFC)[21]. The VFC extends fog computing to conventional

vehicular networks, where the vehicles act as mobile fog nodes which support full utiliza-

tion of computation resources. This computation model leverages latency-aware execution

of applications and work load allocation among mobile fog nodes[22]. Most often, the

RSUs deployed in rural highways are endowed with rechargeable batteries and depends

on renewable energy sources[23]. The RSU provides third-party scheduling services for
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efficient allocation of tasks to potential fog vehicles. However, there is a requirement of

energy efficient scheduling of fog vehicles in VFC for conserving stored energy and im-

proving life time of the network.

In VFC, the stationary RSU not only supplements local computation but also respon-

sible for task allocation to fog vehicles. As the number of vehicles in RSU coverage in-

creases, it is difficult to find potential fog vehicles with exhaustive search techniques in

real-time. Therefore, this work proposes a reinforcement learning based algorithm to iden-

tify potential fog vehicles in every time slot. Due to slower convergence of conventional

learning algorithms caused by large action space and high-dimensionality, a fuzzy logic

based greedy heuristic is used to accelerate learning process of the proposed algorithm.

The major contributions of this work is described as follows.

• Present a Vehicular Fog Computing (VFC) framework for efficient offloading of tasks

generated by real-time applications running in smart cities close to rural highways.

• Formulate an optimization problem as Integer Linear Programming Problem (ILP)

which aims to minimise the communication and computation cost of RSU for effi-

cient task allocation among fog vehicles while satisfying constraints on task deadline

and resource availability.

• Propose a Fuzzy Reinforcement Learning (FRL) approach for energy efficient alloca-

tion of tasks to fog vehicles, where a Fuzzy logic based greedy heuristic is combined

with an on-policy reinforcement learning (i.e., SARSA).

The FRL not only accelerate the learning process but also improves the selection of poten-

tial fog vehicles for reducing total energy consumption and average response time. This

work presents a real-time scheduling of fog nodes by combining a greedy heuristic and re-

inforcement learning technique to improve long term reward and speedup learned outcome.

Extensive set of experiments has been conducted and results show the proposed algorithm

has better performance over other algorithms by 46.73% and 15.38% in terms of energy

consumption and response time, respectively.
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1.3 Experimental setup

In this thesis, as part of simulation settings, the neighbouring RSUs are separated by a dis-

tance 4000m and deployed in a bidirectional highway segment, where the communication

range of each RSU is 1000m. The vehicles enter into source RSU region follow Poisson

process with mean rate of arrival λ. The speeds of vehicles are assumed to be distributed

uniformly in a range [12m/s, 28m/s] where the faster vehicles can overtake slower vehicles.

In this simulation, the communication model uses parameters specified in [24] where the

downlink bit rates vary from 3 to 27 Mb/s, maximum transmit power is 1W, bandwidth of

channel is 10MHz and the noise at the relay vehicle is -174dBm/Hz. The number of task

arrivals are considered as Poisson stream with a mean arrival of 1000 tasks in each time

slot, and the length (in bits) of each task is chosen as 1024 bits. The simulation runs on

a desktop system with 3.40GHz Intel core i7 CPU, 3.7 GiB of RAM, 64-bit ubuntu 16.04

LTS operating system and Python 3.6 for simulator development. The works in this thesis

evaluate different scheduling algorithms using Monte Carlo simulations[25] over 100 time

slots for 1000 iterations.

1.4 Organization of the Thesis

The main focus of this thesis is to design and analyze energy efficient and cooperative ve-

hicle scheduling algorithms for data sharing in a dynamic highway vehicular environment.

The proposed algorithms achieve energy efficiency and data delivery improvement by sat-

isfying tolerable response delay requirement. The thesis has been organized into seven

chapters.

Chapter 1: In this chapter, a brief introduction to vehicular ad hoc networks and down-

link communication scenario in highway environment, and objectives of the thesis have

been discussed. Moreover, it presents major contributions as an overview of the thesis.

Chapter 2: In this chapter, efficient scheduling algorithms based on minimum cost

flow, auction theory and reinforcement learning have been surveyed. A survey on effi-

cient data dissemination approaches is discussed. The challenges of energy conservation in
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VANET have been presented.

Chapter 3: In this chapter, an energy efficient relay scheduling problem has been pre-

sented to serve the residual data requirement of a target vehicle. A polynomial time solu-

tion is proposed by modeling it as Minimum Cost Flow graph. A clustering based Nearest

Neighbour Forward approach is proposed to further reduce energy consumption of RSU

and improve data delivery to target vehicle.

Chapter 4: In this chapter, an energy efficient RSU-assisted relay scheduling algorithm

is presented to achieve faster data retrieval for the target vehicle by minimizing end-to-end

delay. Based on Auction theory principles, the proposed algorithm uses cooperative sharing

between neighboring RSUs and schedule the relay vehicles in both forward and backward

directions.

Chapter 5: In this chapter, a real-time scheduling of relay vehicles between neighbor-

ing RSUs with limited buffer capacity is discussed. A dynamic power allocation algorithm

is presented to allocate minimum power required for the transmission of buffer content by

observing the buffer back-log size. Furthermore, a Max-weight Relay Vehicle Scheduling

algorithm has been proposed to schedule the relay vehicles for achieving maximum data

delivery in the system.

Chapter 6: In this chapter, a vehicular fog computing scenario is considered for latency-

aware energy efficient scheduling of tasks to mobile fog vehicles. A fuzzy reinforcement

learning approach has been presented for efficient scheduling of fog vehicles. The proposed

approach combines a Fuzzy logic based greedy heuristic with an on-policy reinforcement

learning in order to accelerate the learning process and improve long term reward.

Chapter 7: This chapter concludes the contributions of this thesis work and discusses

future scopes for extension of the work.
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Chapter 2

Literature Survey

Vehicular Adhoc Network (VANET) is a sub class of Mobile Adhoc Networks (MANET)

with the combination of wireless communication technologies and auto mobile industry[26].

With the emergence of 5G services and increasing number of vehicles equipped with com-

munication devices, data dissemination via inter vehicular communication is more promis-

ing in the field of VANET research and development[27]. Different VANET service archi-

tectures enable wide variety of applications such as driver safety, collision warning, route

scheduling, traffic monitoring, etc. Many VANET applications are categorized into two

types. 1) safety applications 2) non-safety applications. Safety applications include send-

ing of warning messages in order to avoid serious problems being confronted by vehicle

users. Non safety applications include spreading of business advertisements and forward-

ing multi-media content. The content delivery to requested vehicles is challenging due to

intermittent connections in the VANET[28]. However, combining the efforts of inter ve-

hicular communication with infrastructure to vehicle communication can ensure delivery

of requested content for the vehicle users.

VANET characteristics: the VANETs deployed in highway environment have its

unique set of characteristics as discussed below.

• High and predictable mobility: Vehicles are the mobile nodes in VANET. The mo-

bility of these vehicles are constrained by road network. In case of highway road

network, the vehicles move with high mobility, but they tend to maintain constant
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speed over the highway road segment[29]. Therefore, the constrained and constant

mobility leads to accurate prediction of vehicle’s location in highways.

• Power constraints: Vehicles have adequate energy reserves as they are powered by

vehicular engines. Besides, the stationary road side infrastructure deployed along

the rural highways are deprived of direct power sources, and they depend on re-

newable energy sources such as solar power, wind power, etc,[30]. Moreover, large

rechargeable batteries are used to store the energy conserved from energy harvesting

technologies. However, effective utilization of the conserved energy is important to

improve the operational efficiency and network life of the highway vehicular net-

work.

• Computation constraints: Vehicles are equipped with computation resources such as

processors, memory, sensors, wireless technologies and Global Positioning System

(GPS). These resources strengthen the computational capability of vehicles that can

support execution of tasks offloaded from other vehicles or road side infrastructure[31].

Since the road side infrastructure in rural scenarios has limited computation and en-

ergy reserves, it depends on the vehicle’s resources for possible execution of compu-

tation intensive tasks.

• Variable network density: Vehicle density in the network depends on the number of

vehicles, inter vehicular distance, speeds and direction. The vehicle density is high

due to traffic jams in urban areas, and is low in case of highway or suburban locations.

• Rapid changes in network topology: High mobility of vehicles in highway environ-

ment leads to rapid changes in topology of vehicular network[32]. Specifically, life

time of communication link (i.e. link time) between vehicles is affected by vehicle

speeds, communication range and moving direction. Thus, increasing communica-

tion range of vehicles increases link time. Vehicles moving in opposite directions

experience shorter link time when compared to vehicles moving in same direction.

Moreover, high speed vehicles stay relatively shorter time in stationary infrastructure

region when compared to slow vehicles. The rapid changes in network leads to dis-
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connection of multi-hop paths before the path links are utilized.

• Intermittent connections: Due to high deployment cost of the stationary roadside

infrastructure, it is difficult to provide seamless coverage for the entire highway road

segment[33]. Therefore, it leads to uncovered areas or outage regions in-between

equidistantly deployed stationary infrastructures. Vehicles in uncovered areas are

completely disconnected from outside world. Thus, moving vehicles in highway

road segment are intermittently connected to vehicular network.

2.1 Vehicular Adhoc Networks: preliminaries

The communication among vehicles, or between vehicles and road side infrastructure (Road

Side Unit) has been achieved through Wireless Access for Vehicular Environment (WAVE)

protocol stack[34]. Major components of VANET are On Board Unit (OBU), Application

Unit (AU) and Road Side Unit (RSU). Typically, the RSUs host applications and act as

content provider to the vehicles. The applications may be hosted by either RSU or OBU.

The devices which host the applications are providers and the devices which use the appli-

cation services are users.

On Board Unit (OBU):

Vehicles are equipped with On Board Units that are allowed to communicate with other

vehicles or RSU. Recent advances in full duplex enhanced dual-radio OBUs enable the

vehicles to send and receive messages concurrently over the same channel [35]. In dual-

radio transceiver, one of the radio continuously tuned onto a service channel which is used

to broadcast public safety messages, vehicle to vehicle collision avoidance messages, etc.

Second radio switches between control channel and another service channel in regular in-

tervals. The dual-radio transceivers ensure off-channel vehicle to vehicle forwarding in

vehicular communications [36]. The main functions of OBU are adhoc routing, wireless

radio access, message transfer and IP mobility [37].

Road Side Unit (RSU):

Road Side Unit (RSU) is a fixed vehicular infrastructure deployed along the road side that

is equipped with wireless access technologies to provide content access to OBUs. The

18



CHAPTER 2. LITERATURE SURVEY Section 2.2

RSUs connect to Internet and other RSUs through backbone network. The users registered

with vehicle OBUs are allowed to access Internet via RSUs using wireless medium.

DSRC/WAVE protocol:

Dedicated Short Range Communication (DSRC)[34] based on IEEE 802.11p is a com-

monly used wireless communication protocol for vehicle to vehicle and infrastructure to

vehicle communications. DSRC protocol is standardised by IEEE 1069 working group and

is a part of Wireless Access for vehicular Environment (WAVE) protocol stack[34]. Ac-

cording to U.S department of Federal Communication Commission (FCC), the spectrum

assigned for DSRC at 5.9GHz frequency band is a 75MHz licensed spectrum. As shown

in Fig.2.1, the allocated 75MHz spectrum is divided into one control channel (CCH) and

six service channels (SCH), where the capacity of each channel is 10MHz. These channels

are numbered from 172 to 184. Here, channel 178 is a CCH, which is used to send control

messages. The service channels of 172 and 184 are used to send messages related to safety

critical applications such as collision warnings, driver safety messages, etc. Where as other

SCHs are responsible for exchanging of non-safety messages such as video and audio con-

tent delivery. DSRC supports communication to moving vehicles with a maximum speed

of 200Kmph, communication range 300m to 1000m, and data rates 3Mbps to 27 Mbps.
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Figure 2.1: DSRC frequency spectrum

2.2 Cooperative communication in vehicular networks

Vehicular networks have been formed among vehicles, RSUs and pedestrians. The ve-

hicular networks are deployed in urban, rural areas and highway environment. There ex-

ists three communication modes in vehicular networks; Vehicle to Vehicle (V2V), Vehi-

cle to Infrastructure (V2I) and Vehicle to Pedestrian (V2P)[38]. Cooperative communica-
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tion in vehicular networks ensures efficient utilization of spectrum by exploiting the over-

hearing of broadcast signals transmitted from source node to destination node[39]. With

cooperative communication the network can achieve higher spacial diversity[39], higher

throughput[40] and lower delay[41].

Specifically, cooperative vehicular networks (CVN) exploit neighbouring vehicles as

relay nodes or helper nodes to share the information with other vehicles that are in outside

communication range. Vehicles communicate cooperatively using either direct one-hop

links or with the help of RSU assistance. In cooperative communication, the relay nodes

operate in various transmission modes that include compress-forward, decode-forward, and

store-carry-forward. Fig 2.2 shows three different possibilities of cooperative vehicular

networking. In case of direct transmission failure, the neighbouring vehicle is assisted to

relay the transmission to destination as shown in Fig.2.2(a). Similarly, Fig.2.2(b) shows that

a vehicle in RSU region acts as relay node to carry forward packets to destination which is

out of RSU range. Besides, both RSU and vehicles are assisted to forward the transmitted

packets to destination in between neighbouring RSUs as illustrated in Fig. 2.2(c).
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Figure 2.2: Cooperative vehicular networking

Cooperative vehicular networks enhance the spacial diversity at physical layer level by

transmitting messages through two or more communication channels. Conventional Multi-

In-Multi-Out (MIMO) systems ensure spacial diversity with multiple antennas[42]. But,

achieving spacial diversity by employing multiple antennas incurs high installation cost.

However, similar benefits as MIMO can be achieved by leveraging cooperative commu-

nication among vehicle nodes, referred as cooperative diversity[43]. The performance of

coded transmission in MIMO downlink channels for cooperative relaying among vehicles
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is analysed and presented in [44]. In [44], the transmission from source to destination is

divided into two stages: broadcast and relaying. Each stage is again divided in to two lev-

els. In the first level of broadcast stage, pre-coded blocks are transmitted from two separate

channels. In the second level, another set of pre-coded blocks are transmitted over same

channels. In relaying stage, the received signal is transmitted by strengthening it to desti-

nation. Significant cooperative diversity gain has been observed from coded transmission

in MIMO downlink channels. Another work in [45] has presented a energy efficient co-

operative relying schemes in V2V and I2V scenarios. These cooperative relaying schemes

combine the synergistic effects between multi-hop relaying and Cooperative MIMO tech-

niques. Based on the transmission distance, the optimal selection of antenna configuration

has been discussed.

Various cooperative communication strategies for vehicular networks have been dis-

cussed in the literature [46, 47, 48]. In [46], the performance of throughput optimization

is analysed by exploiting the combined efforts of V2V and V2I communications with the

effects of node mobility. The proposed strategy ensures data dissemination to vehicle of

interest (VoI) over V2I communication when VoI is in RSU coverage. When VoI leaves

RSU coverage, the vehicles are assisted to relay data towards VoI in order to maximize

throughput of the system. In [47], a bidirectional scenario has been considered to analyse

symbol error rate and diversity during V2V communication through vehicle assisted and

RSU assisted communications. The cooperative scheme presents an optimal power alloca-

tion strategy to achieve maximize diversity. In [48], data rate and vehicle communication

range are considered as parameters to investigate the performance of the system in terms

of ability to disseminate information. Effect of hidden nodes and channel busy conditions

are used as feedback quantifiers for the measurement of information dissemination.

In this thesis, cooperative communication among vehicles via I2V and V2V has been

considered in Chapters 3 and 5. Cooperation in between neighbouring RSUs via I2I has

been used in Chapter 4. The cooperativeness among vehicles and RSUs has been investi-

gated in these chapters 3, 4 and 5 to provide improvement in data dissemination services of

vehicular network.
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2.3 Applications of cooperative vehicular networks

Various applications of cooperative vehicular networks have been developed as part of

safety and non-safety services of vehicles [49, 50]. Use cases of different V2I, V2V and

V2X communications are discussed in this section.

V2I communication use cases:

A cloud based vehicle navigation service called SAINT (Self Adaptive Interactive Navi-

gation Tool) has been developed to attain optimal navigation paths in road networks [49].

The vehicles report their travel experience to cloud center for the assessment of traffic con-

gestion, real-time trajectories as a guidance to other vehicles. The cloud center maintains

road traffic statistics, vehicle mobility information, congested locations and trajectories of

vehicles. With this information SAINT uses a mathematical model to estimate real-time

congestion in road networks. Moreover, SAINT estimates how much each vehicle con-

tributes to road traffic in future travel of same vehicle. Furthermore, an emergency nav-

igation service called SAINT+ (Self Adaptive Interactive Navigation Tool plus) has been

developed to optimize the delivery delay of emergency services in an efficient navigation

routes nearby accident locations [51]. SAINT+ uses the features of SAINT and it pro-

vides fast emergency vehicle services using virtual path reservation strategy. An accident

area evacuation and protection scheme has been presented based on adjusted congestion

contribution matrix. These real-time trajectories can help platooning of vehicles with fuel

efficiency in road network[52].

An energy efficient speed recommendation system called SignalGuru[50] has been de-

veloped based on vehicular cloud services. The mobile phones are mounted on vehicles

to capture pictures of traffic congestion in signalized intersections. The SignalGuru anal-

yses gathered pictures and informs new moving speeds to vehicles for energy efficiency

when they arrives to signal location (i.e., intersection). In this system, communication

between vehicle and cloud happens through RSU. Autonomous vehicles need to cross the

intersection without waiting for the signal with the help of Mobile Edge Computing (MEC)

Server[53]. An MEC server receives mobility information of vehicles and schedules the ve-

hicles for crossing the intersection. This signal free intersection can improve the throughput
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of the system and energy efficiency of vehicles.

V2V communication use cases:

V2V communication supports vehicle safety services in autonomous driving environment

[54]. The safety services include context-aware navigation, adaptive cruise control and

truck platooning. The V2V communication among vehicles is performed via DSRC. Context-

Awareness Safety Driving (CASD) [54] is a safety driving service for human driving, au-

tonomous driving and hybrid driving (i.e., both human and autonomous driving). In CASD,

the vehicles exchange safety information (with other vehicles) that helps vehicle maneuvers

in dangerous road locations. Vehicles employing CASD system use V2V communication

via DSRC for real time collision avoidance in highway or urban road segment. An adaptive

cruise control [55] extends the cruise control coordinates of vehicles to adjacent vehicles

so that all vehicles in the highway road segment can maintain safe inter-vehicle distance

via V2V communication. In case of any abrupt changes in vehicle speeds, the vehicle

informs other vehicles so that vehicles in-front and behind adjust their speeds according

to emergency situation. The notifications of such messages follow in progressive fashion

and allow the vehicles to adjust their direction and speed accordingly. Platooning [56] is

a series of trucks moving in highway with equal inter-vehicle distance sufficient to avoid

collision. First vehicle acts as a leader and informs the changes in speed, direction other

vehicle in the platoon. This platooning service reduces labour cost of drivers and reduces

fuel consumption cost of vehicles. A cooperative automated driving (CAD) [57] system

allows the vehicles to coordinate each other in order to adjust vehicle maneuvers with the

help of collective participation mechanism and sharing of sensing information.

V2X communication use cases:

The V2X communication includes combination of V2I or I2V, V2V and V2P (vehicle to

pedestrian) communications. A Safety-Aware Navigation Application (SANA)[58] is an

example for pedestrian protection service. Mobile phones or smartphones with pedestrians

shows alert messages received from vehicles on road via DSRC. But, mobile phones do not

support DSRC. So, mobile phone to vehicle interaction happens through RSU via V2I2P

(Vehicle to Infrastructure to Pedestrian). The RSUs are equipped with computation to

support edge computing[59], where the vehicles and mobile phones can interact with RSU
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by scheduling their communication in energy efficient manner.

2.4 Energy efficiency in highway vehicular networks

Studies related to energy efficiency in vehicular infrastructure are gaining more attention in

recent years. Energy consumption aspects of vehicular networks in the presence of cellular

infrastructure are addressed in [60]. The authors in [61] have presented a joint placement

and sleep scheduling of RSUs in order to reduce both the deployment cost and energy

consumption cost of VANET. They have formulated a joint optimization and scheduling

strategy when the RSUs are connected to both grid power and solar power as an alternative.

Zhang et al. [62] presented an offline scheduling of switching on/off RSUs to maintain the

connectivity of the vehicles while minimizing the energy consumption cost of multiple

RSUs.

In offline scheduling, the RSU has prior knowledge of arrival instances of all the vehi-

cles and their velocities[63]. A Nearest Fastest Set (NFS)[6] scheduler has been proposed

for the offline scenario. It is a greedy scheduling algorithm which schedules a faster vehi-

cle among the set of vehicles nearest to RSU. In [64], both offline and online scheduling

algorithms for energy harvesting in RSUs have been described. Moreover, the authors have

presented the scheduling of downlink communication from battery powered RSUs to ve-

hicles in order to maximize the number of serving vehicles. They have focused more on

energy harvesting RSUs in VANET.

In downlink communication, the data transmission can be considered as either constant

or variable[23]. The RSU radio adopts power control technique when downlink transmis-

sion is constant bit-rate at a given time instant. For constant bit-rate case, offline and online

downlink scheduling problems are discussed in [18]. Therein, an offline scheduling of

downlink communication has been presented in order to minimize the total communication

cost while satisfying the vehicle requests in the RSU coverage. Furthermore, three greedy

online algorithms have been proposed for energy efficient scheduling of vehicles inside the

RSU coverage. Azimifar et al. [16] have proposed an energy efficient scheduling for vari-

able bit-rate case. In addition, the authors have used V2V data forwarding while serving
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the vehicle requests in the RSU coverage. In [65], an energy efficient ON-OFF scheduling

of RSUs has been proposed and evaluated NP completeness of the problem by formulating

it as an integer programming. Three low complexity online algorithms are presented to

optimize the energy consumption in multi-RSU sparse vehicular networks. However, these

works have not realized the relay vehicle scheduling in the intermittently deployed RSUs.

Atallah et al. [66] have presented an optimization of RSUs downlink communication

towards vehicles by realizing the artificial intelligence at each RSU in order to exploit opti-

mal scheduling policy. This scheduling approach maximizes the number of vehicle requests

during the battery discharge period. Furthermore, an online scenario is considered and

the problem is formulated as Markov decision process using reinforcement learning (RL)

technique such as Q-Learning[66]. The results obtained from this formulation have been

compared with three heuristic scheduling algorithms. In [9], an energy efficient scheduling

of vehicles with multiple RSUs has been proposed in order to satisfy the maximum number

of vehicle requests and to reduce the total energy cost of RSUs. The authors have presented

an integer linear programming formulation for the problem and polynomial time approxi-

mation algorithms.

A multi-hop V2V forwarding with the aid of density based clustering approach is dis-

cussed in Chapter 3. Minimizing energy consumption of RSUs has been addressed in this

thesis while satisfying constraints on data delivery (in Chapter 3), end-to-end delay (in

Chapter 4), buffering delay (in Chapter 5) and response time (in Chapter 6) in the network.

2.5 Data dissemination approaches in vehicular networks

Many studies have focused on the efficient dissemination of data via store-carry-forward

vehicles in between neighbouring RSUs that are deployed in a highway environment[67,

68, 6]. The authors in [69] have studied the problem of scheduling the store-carry-forward

vehicles in between fixed road-side source and destination stations. The objective of source

station is to transmit the packets to passing-by vehicles and this minimizes the queuing

delay and transit delay in the rural communication network. In [33], the authors have

proposed a mathematical model to analyze the delivery delay of the randomly generated
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road information in between two neighboring RSUs. The model considers vehicle speed,

density and distance between RSUs.

In [70], a probabilistic bundle release scheme has been proposed to deliver the data

from source RSU to an isolated destination RSU. In this scheme, the source opportunis-

tically selects a passing-by vehicle to carry and forward the data bundle to destination.

The main focus of this scheme is to minimize the bundle transit delay in between the

intermittently connected source and destination. In [71], the authors have presented a co-

operative store-carry-forward method to decrease the outage time in the uncovered area.

They have considered a bidirectional highway scenario to deliver the data to a target ve-

hicle located in the uncovered area by selecting store-carry-forward (relay) vehicles. In

[12], the authors have considered the selection of multiple relay vehicles for faster retrieval

of the requested data by a target vehicle. In [7], the authors have assumed a bidirectional

highway environment and proposed a clustering based vehicle-to-vehicle data data sharing

approach by exploiting the vehicles driving in opposite direction. Similarly, the authors in

[10] have discussed the data sharing strategy by exploring the synergy between the central-

ized infrastructure-to-vehicle scheduling in the RSU region and adhoc vehicle-to-vehicle

scheduling in the uncovered area.

In [72], a clustering based multi-hop vehicle to vehicle forwarding scheme has been

proposed to minimize the energy consumption of the RSU. The authors in [16] have ad-

dressed the RSU energy consumption issues by considering off-channel and in-channel

V2V forwarding for data dissemination in the uncovered area. For a bidirectional highway

environment, the authors in [73] have proposed a RSU-assisted cooperative relay schedul-

ing using auction theory principles for energy efficient data delivery in the uncovered area.

Moreover, a recent work [74] has addressed the same problem by considering the full-

duplex communication capabilities for the relay vehicles. In [75], an optimal stoppage

strategy for scheduling the passing-by vehicles in source RSU is investigated. Similarly,

the authors in [76] have addressed the minimization of the transit delay and energy con-

sumption of an RSU while scheduling the passing-by vehicles in between neighbouring

RSUs. Here, the source RSU stops a passing-by vehicle and transmit the accumulated data

to the vehicle if queuing delay is above specific delay bound. Otherwise, the RSU skips the
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vehicle and waits for next vehicle arrival. The authors have assumed that both the trans-

mission bit-rate from RSU to vehicle and the power allocation for the RSU are constant.

In view of variable bit-rate case discussed in [23], the above assumption is not practical in

a highly mobile environment where data rates are subjected to path loss and the vehicle to

RSU distance changes as a function of time.

In this thesis, improvement of data dissemination services to target vehicle in uncovered

area is presented in Chapter 3 and Chapter 4. Maximizing data sharing between neighbour-

ing RSUs is addressed in Chapter 5.

2.6 Clustering in vehicular adhoc networks

According to [77], the clustering schemes in VANET have been categorized into three

major strategies as shown in Fig. 2.3. These schemes are 1) intelligent-based strategies 2)

mobility based strategies 3) multi-hop based strategies.

Clustering schemes

Intelligence-based
strategies

Mobility-based
strategies

Multi-hop based
strategies

Machine
learning

Fuzzy
logic

Hybrid

Mobility
Algorithms

Network
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2 hop
Algorithms
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Figure 2.3: Taxonomy of clustering schemes in VANET

Intelligent-based clustering further categorized into machine learning algorithms, fuzzy

logic algorithms and hybrid algorithms (combination of machine learning and fuzzy logic
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algorithms). In machine learning algorithms, K-means algorithm is one of the popular

algorithm to divide vehicles into K number of clusters[78]. Initial centroid and vehicle

coordinates are given as input. Based on the euclidean distances among the vehicles, a

new centroid is computed and the centroid vehicle is elected it as cluster head. Other vehi-

cles in the cluster act as cluster members which may leave or rejoin the cluster. Changes

in the cluster members need to re-compute cluster for the election of new cluster head.

Besides, nature inspired algorithms[79] are used to divide the vehicles into clusters based

on their speed, direction, location and transmission range. On the other hand, fuzzy logic

system[80] is used to identify clusters based on the inputs, speed and distance. Further-

more, an adaptive learning mechanism has been presented to identify more stable clusters

by predicting future speeds of vehicles[81]. Hybrid algorithms combines the features of

fuzzy logic with reinforcement learning (e.g., Q-learning) to improve stability and reliabil-

ity of clusters[82]. On the other hand, a DBSCAN (Density Based Spacial Clustering of

Applications with Noise) [83] is density based clustering technique which is used to iden-

tify arbitrary number of clusters.

Mobility based algorithms are classified into vehicle mobility and network mobility al-

gorithms. In vehicle mobility algorithms, a Dynamic Clustering Algorithm (DCA) [84]has

been presented to improve cluster stability in dynamic highway environment. This con-

siders the relative speed of vehicles as metric along with average duration of cluster head

and number of changes in the cluster. A mobility prediction-based clustering (MPBC) [85]

method has been presented to predict the relative speeds of vehicles by exchanging Hello

packets using Doppler effect. In network mobility algorithms, clustering strategies are in-

troduced to reduce hand-off delays and packet losses in high speed VANET[86]. Multi-hop

based clustering strategies include 2 hop and 2+ hop algorithms [87]. Multi-hop cluster-

ing is important to reduce the number of clusters and improve accessibility of cluster head

in the cluster. In 2 hop clustering, cluster head is reachable from cluster member in two

hops. In 2+ hop clustering, vehicles disseminate their speed, position and direction in N-

hop neighbourhood.

Chapter 3 uses density based clustering mechanism for identifying nearest neighbour

forwarder vehicles in the RSU coverage. The downlink communication to these nearest
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neighbour forwarders minimizes energy consumption of RSU and improves data delivery

to target vehicle. A modified DBSCAN algorithm (Refer Chapter 3) is presented to cluster

the vehicles in highway road segment.

2.7 Auction theory principles for vehicular networks

Auction theory is a powerful tool that works based on game theory principles where both

sellers and buyers actively participate in auction process to determine price[88]. There are

four basic types of auctions widely used in the literature.

• Ascending-bid auction: the seller successively raises price until only one bidder re-

mains and wins the object for final price.

• Descending-bid auction: it is opposite to ascending-bid auction. The seller succes-

sively decreases price until any one of the bidder accepts the final price.

• First-price sealed bid auction: each buyer submits single bid for an object without

having knowledge of others bids. The object is allotted to a buyer who makes highest

bid.

• Second-price sealed bid auction: Similar to first-price bid auction, but the object is

allotted to a buyer who makes highest bid for second highest bid price.

In [89], a multi-objective auction based caching scheme has been presented to allo-

cate storage resources of content providers (CPs) over multiple overlapping RSUs. Since

storage capacity of RSUs and OBUs are limited, the CPs bid for optimal allocation of

RSU caching storage in order to improve data dissemination in vehicular network. On

the other hand, RSUs can benefit from payments of CPs. A market matching algorithm is

used to solve this multi-objective auction problem for RSU caching storage allocation. In

[90], a reverse auction based computation offloading scheme has been presented for cloud-

enabled vehicular environment. This scheme enables optimal offloading of computation

intensive applications via opportunistic V2V channels. Buyers provide incentives to sellers

for leasing their resources in order to execute offloading applications. This could allow the
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diversity of buyers to choose preferences over different sellers based on their computation

capabilities, contact duration and transmission rates. In [91], an auction based graph al-

location problem is presented to assign components (buyers) to virtual machines (sellers)

while maximizing utility of buyer and satisfying concerns of sellers based on execution

time and commission cost. A structure preserve matching algorithm is adopted to solve

the problem with low computational complexity. An Agent assisted Smart Auction based

Parking system has been discussed in [92] for optimal assignment of parking slots to au-

tonomous vehicles. Vehicles act as bidders and parking facility provider acts as seller. A

fair recurrent Vickrey-Clarke-Groves (VCG) auction mechanism is used to address truthful

bidding for bidders while maximizing the utility value of parking facility providers.

Chapter 4 adopts Auction theory principles for the optimal assignment of relay vehicles

to time slots, where RSU acts as a seller and relay vehicles act as bidders. The relay

vehicles submit bids for time slots without having knowledge of bids submitted by other

relay vehicles. The RSU allocates time slots to relay vehicles based on highest bidding

increment and this has been discussed in Chapter 4.

2.8 Dynamic power allocation in vehicular networks

Dynamic power allocation is important to control the data transmission rates in order to

maximize ergodic capacities of links between source and destination nodes. Lyapunov

drift-plus-penalty optimization mechanism is a powerful technique which can be applied

to dynamic queuing networks and other stochastic systems[93]. In [94], a dynamic power

allocation scheme is presented to maximize the ergodic capacity of downlink transmission

rates to relay vehicles from base station. The relay vehicles are exploited to store-carry-

forward the requested data to a target vehicle in outage area. The proposed scheme[94]

optimizes the power allocation to maximize downlink capacities between base station and

relay vehicles subject to satisfy the up-link capacities when relay vehicles present in target

vehicle range. The Lyapunov drift-plus-penalty theorem [95] has been included to de-

termine the trade-off between amount of power allocation (penalty) and change in queue

lengths (drift). A trade-off parameter V is used to balance the penalty and drift in the queu-
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ing system. This technique minimizes derived bound on the change in queue lengths along

with amount of power allocation. Therefore, this optimization mechanism not only ensure

queue stability but also limits the allocated power.

Minimizing latency is an important issue during transmission of packets from source to

destination. But packets may belong to different priority classes of high and low priority.

Satisfying the latency requirements along with the sufficient spectrum and power allocation

in the system is presented in [96]. This will maximize the ergodic capacities of vehicle

to network links while guaranteeing the latency requirements of transmitted packets. In

[97], a multi-level water filling algorithm has been applied for dynamic power allocation

in the up-link channels from vehicle transmitters to vehicle receivers. Different prices are

assigned by vehicle receivers before vehicle transmitters do power allocation. This optimal

pricing strategy is designed for optimization of amount of allocated power. In [98], a

sub-channel matching scheme and power allocation scheme is presented by introducing

alternating direction method of multipliers in order to enhance the non-orthogonal multiple

access system performance.

To address the trade-off between energy consumption and buffering delays, a Lyapunov

based dynamic power allocation algorithm has been presented in Chapter 5. The proposed

algorithm allocates minimum power required for transmission of buffer content subject to

buffer stability.

2.9 Fuzzy logic for vehicular networks

Fuzzy logic system is used to make decision on inferred values from imprecise and non-

numerical information[99] . The term fuzzy refers to the things which are not clear or

vague. To determine this situation into partially observable values, the fuzzy logic system

is expressed in four stages: 1) Fuzzification 2) Fuzzy membership functions 3) Fuzzy rule

base 4) Defuzzification. A fuzzy logic inference system is illustrated in Fig. 2.4

These four stages are represented as,

• Fuzzification: this stage converts input values (i.e., crisp value) into linguistic vari-

ables. For example, the input values are temperature, distance, height, etc.
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Figure 2.4: Fuzzy logic inference system

• Fuzzy membership functions: the stage is used to represent the degree of membership

of input values with respect to linguistic variables. The membership functions are

part of fuzzy inference engine.

• Fuzzy rule base: the fuzzy rules are set of IF-Then rules used to determine the deci-

sion making on linguistic information expressed in membership functions.

• Defuzzification: this stage is to convert decision on linguistic information into crisp

value. The crisp values obtained from this stage act as output of the fuzzy logic

system.

Finding location of neighbouring vehicles is important for efficient data dissemination

among vehicles. In [99], a fuzzy logic based decision support system has been imple-

mented for routing of emergency vehicle in least congested path. The fuzzy system decides

the congestion on road location by taking inputs from sensor data such as vehicle speeds,

noise on road, temperature and vehicle emissions. In [100], a fuzzy logic based intelligent

vehicle localization algorithm has been presented to calculate vehicle’s weights. The fuzzy

logic system takes inter vehicle distance and moving direction of vehicles as input param-

eters. These vehicle weights act as indicator for efficient communication to neighbouring

vehicles in such a way that the closer vehicles get highest weights and distant vehicles

have lowest weights. In [101], a fuzzy logic intelligence mechanism for broadcasting of

messages among vehicles has been presented. The vehicles transmit beacon messages to

neighbouring vehicles and each vehicle identifies its multi-hop neighbours based on the

input metrics such as mobility, connectivity and coverage factors. Then, the vehicles can

send warning messages to their multi-hop neighbours observed using fuzzy logic system.
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Intelligent data forwarding is crucial for improving the reliability of data services in

VANET. In [102], a fuzzy logic based multi-criteria data forwarding algorithm has been

presented to identify the best next hop node for data forwarding. The selection of next

hop node depends on vehicle speeds, inter vehicular distance and link expiration time. This

algorithm is used for dynamic selection of next node and evaluation of node stability during

transmission. In [103], a fuzzy logic based data dissemination strategy has been presented

by selecting next forwarding node in the vehicle’s transmission range. This strategy has

considered the inputs for fuzzy logic system as distance, vehicle mobility values and signal

strength. The selected primary forwarding node defines secondary forwarding node in

the propagation of forwarding message. In case of lost packet in the primary node, the

secondary node takes it to advance the propagation of packet to next hop node.

In this thesis, a fuzzy logic system has been presented in Chapter 6 for computation of

vehicles’ weights. The weights of the vehicles are derived from set of vehicle parameters

which act as metric to indicate the importance of that vehicle in scheduling process.

2.10 Fog computing for vehicular networks

Vehicular Fog Computing (VFC) extends the fog computing paradigm to a traditional

VANET for efficient offloading of delay-sensitive tasks to computation enriched vehicles

and this aims to improve response latency, energy consumption, throughput, etc [104, 105,

106]. However, high mobility, short connection time and diversity of resources available to

vehicles lead to various challenges in VFC environment. In [104], a vehicular fog comput-

ing architecture is presented and a fog vehicle assisted traffic control system is discussed

as an use case to control traffic lights in the intersection. To deal with an ever increasing

demand of computation intensive applications, the RSUs that are deployed along roadside

provide computation services with the aid of mobile vehicles in the RSU coverage[105]. In

[106], the authors have studied a fog computing architecture for the detection of vehicular

congestion which ensures an optimized communication and local processing of collected

sensory data from vehicular clients. In [107], the authors have proposed task allocation of

multi-user to multiple fog devices in an IoT architecture as a joint optimization problem
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which aims to minimize transmit power of IoT devices under delay constraints.

Various works [108, 109, 110, 111] have addressed the problems in VFC for its ad-

vancement. In [108], the authors have presented three layered vehicular fog computing

architecture where tasks generated by IoT devices are offloaded to vehicular fog nodes.

They have proposed a greedy task scheduling heuristic to lower the total response latency

of time sensitive tasks when assigned to vehicular fog nodes with sufficient computation

resources. The authors in [109] have presented an auction based approach that can assign

vehicles to parking slots and exploit the fog computing services of these parked vehicles

for the execution of delay sensitive tasks. In [110], the authors have presented a two stage

intensive mechanism for allocation of vehicle resources and assignment of tasks to fog ve-

hicles. The resource allocation and task assignment have been modelled as contract theory

and two side matching game, respectively. A vehicular fog computing framework called

vFog has been presented in [111], where the computation intensive tasks generated by user

vehicles are offloaded to fog vehicles via V2V communication without roadside infrastruc-

ture support. The vFog has vehicle assisted mechanism that ensures multi-hop relaying of

tasks between user vehicles and fog vehicles.

In this thesis, the Chapter 6 has presented a fog computing framework in vehicular

network for the energy efficient allocation of tasks to fog vehicles in RSU communication

range.

2.11 Learning algorithms in vehicular networks

The authors of [112] have presented an incentive based mechanism with dynamic pricing

of vehicles to share their idle resources for task offloading in vehicular fog computing en-

vironment. To solve this priority-aware task offloading problem, the authors have proposed

a soft actor-critic based deep reinforcement learning algorithm for the sake of maximising

latency-aware utility and long-term reward. In [113], a resource allocation problem which

aims to minimize service latency has been presented in the context of parked vehicles and

slow moving vehicles for VFC. Challenges posed by high-dimensional search space has

been addressed by integrating recurrent neural networks (RNN) with deep neural network
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(DNN) and then combined with a heuristic algorithm for accelerating slow convergence of

reinforcement learning algorithms.

A Vehicular Fog Computing System architecture has been presented in [114] for effi-

cient offloading of computation intensive tasks to fog servers deployed in mobile public

service vehicles. When a requester vehicle come up with offloading request, the com-

putation scheduler (CS) decides whether allocate to fog vehicles or remote cloud. This

resource allocation problem is modelled as semi Markov decision process and solved using

value iteration algorithm. A ISVM-Q task scheduling algorithm[115] has been presented by

combining the efforts of improved support vector machine(ISVM) and Q-learning, where

ISVM as a value function approximate for the improvement of Q-leaning performance. A

deep reinforcement learning algorithm based on SARSA (i.e., State-Action-Reward-State-

Action) has been discussed in [116] for resource management in edge server and optimal

allocation of tasks to edge servers while minimizing system cost and computation delay.

In this thesis, an on-policy learning algorithm (i.e., SARSA) has been presented (in

Chapter 6) to learn the scheduling pattern of vehicles in vehicular fog computing environ-

ment. The proposed approach achieves faster convergence when compared to Q-learning

and improves long term reward with the help of fuzzy logic system.

2.12 Summary

In this chapter, different types of cooperative communication modes in vehicular networks

are discussed. Various applications of cooperative communications have been presented.

A survey on energy efficient issues of road side infrastructure in highway vehicular net-

works has been presented. A discussion on clustering mechanisms for efficient data dis-

semination approaches used in vehicular networks has been included. Importance of Auc-

tion theory principles for optimal assignment problems is highlighted. Moreover, dynamic

power allocation mechanism using minimization of Lyapunov drift-plus-penalty to deter-

mine trade-off between power allocation and buffer stability is discussed. Use of fuzzy

logic and learning models in the context of vehicular fog computing environment have

been presented. Furthermore, different works discussed in this thesis have been compared
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with other existing works in the literature. In next chapter, a clustering based mechanism

combined with minimum cost flow graph is presented to address the energy efficient relay

scheduling problem while improving data delivery to a target vehicle.
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Chapter 3

Clustering based Energy Efficient

Multi-Relay Scheduling in Highway

Vehicular Infrastructure

In highway scenarios, the vehicles move with constant speed for long durations and they

remain in RSU coverage for relatively short durations. In addition, RSUs may not provide

seamless access to vehicles due to high deployment cost of the infrastructure. This leads

to an uncovered area in between neighboring RSUs. A vehicle with large data requirement

may leave the RSU without completely downloading all the requested data and enters into

the uncovered area. Such a vehicle is referred to as target vehicle[71] and remaining re-

quested data is denoted as residual data. Nevertheless, the RSU can transfer residual data

to the target vehicle by exploiting other vehicles as store-carry-forward relays[12], which

are referred to as relay vehicles. Proper selection of relay vehicles is an important issue in

case the RSUs are energy-limited and powered by alternative energy sources. Therefore,

it is important to schedule the downlink communication in order to reduce the RSU power

consumption. It is worth mention that the energy efficiency of the vehicles is not an issue,

since the vehicles are powered by dedicated vehicular engines.

In this chapter, an energy efficient scheduling of relay vehicles has been presented to

improve data dissemination services to a target vehicle in an uncovered area. The schedul-

ing problem is formulated as an optimization problem and a polynomial time solution is
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presented by modelling it as Minimum Cost Flow (MCF) graph [14]. A scheduling so-

lution obtained from MCF provides optimal assignment of relay vehicles to time slots.

Downlink channel time of RSU is divided into time slots of fixed duration. Furthermore, a

clustering[15] based algorithm is proposed to identify the vehicles which are in the energy

favorable locations (i.e., near to RSU) and multi-hop neighbors to the relay vehicles. Such

vehicles are named as Nearest Neighbor Forwarders (NNFs). Optimal scheduling of down-

link communication from RSU to NNFs (instead of actual relay vehicles) further reduces

the energy consumption of RSU and improves the data delivery to the target vehicle. In

a given cluster, the relay vehicles are reachable from a NNF in a multi-hop distance. The

data forwarding from the NNF vehicle to its multi-hop relay vehicle follows off-channel

V2V forwarding[16, 17]. Here, the full-duplex enhanced dual-radio OBUs[36] equipped

with vehicles ensure off-channel data forwarding from the NNF vehicle to its relay vehicle.

The major contributions of this chapter are as follows.

• Analyse relationship between the energy consumption of RSU and the data delivery

to the target vehicle. And, determine a set of store-carry-forward relay vehicles which

can establish a communication link with the target vehicle.

• Formulate multi-relay scheduling as an optimization problem, and consequently present

a polynomial time solution by modeling it as Minimum Cost Flow (MCF) graph.

• A clustering based Nearest Neighbor Forward (NNF) approach is proposed to iden-

tify the vehicles which are in the energy favorable locations (i.e., near to RSU) and

multi-hop neighbors to the relay vehicles. Combining the relay scheduling with the

NNF approach achieves significant reduction in the power consumption of the RSU

and improvement in the data delivery to the target vehicle.

Results from extensive simulations show that the proposed NNF approach augmented

with MCF preform better when compared to scheduling algorithms Nearest Fastest Set

(NFS)[6], MCF[18] and two more basic algorithms First Come First Serve (FCFS) and

Fastest First (FF). The results also show the impact of vehicle arrival rate, vehicle transmis-

sion range and target vehicle speed on the power consumption of the RSU and data delivery

to the target vehicle.
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The remainder of this chapter is organized as follows. Section 3.1 presents the system

dynamics along with the assumptions and derivation of effective communication time of

vehicles. Section 3.2 formulates an optimization problem for energy efficient multiple

relay scheduling along with a polynomial time solution. Section 3.3 proposes a Nearest

Neighbor Forward approach to further reduce the RSU power consumption. Section 3.4

demonstrates a simulation scenario and analyzes the obtained results. Finally, section 3.5

summarizes the chapter.

3.1 System Model and Dynamics

This section introduces a system model for intermittently connected energy-constrained

RSUs and the dynamics of the energy consumption of RSU versus data delivery to the

target vehicle. Moreover, using trivial relative motion theory[71], a set of store-carry-

forward relay vehicles have been derived along with their effective communication time to

the target vehicle.

3.1.1 System model

In this work, an energy-constrained RSUs are considered to be deployed equidistantly in a

highway road segment of interest, as shown in Fig.3.1. The distance between two neigh-

boring RSUs in a road segment is considered as D and the radio coverage of each RSU

is R. In this highway settings, RSUs can not provide seamless coverage (i.e., D >> 2R)

due to significant deployment overhead. As a result, the system leaves an uncovered area

U = D − 2R between two neighboring RSUs[71]. Moreover, the RSUs are considered

to be sustainable on renewable energy sources such as solar and wind power. The RSU

consists of a single radio transceiver and can communicate with a single vehicle for a given

time period, referred to as a time slot. The RSU uses transmit power control on downlink

communication so that the constant bit rate can be achieved in each time slot, regardless

of the vehicle’s location within the RSU coverage[9]. The RSU obtains the estimate of

downlink transmission energy cost by considering the distance-dependent exponential ra-

dio path loss model [117, 118]. In this model, a standard distance dependent exponential
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Figure 3.1: Energy-constrained Road Side Units in intermittently connected vehicular net-
works

path loss model[119] is used. Assuming constant bit-rate (B bits/slot) in each time slot,

the relationship between distance (RSU-to-vehicle) and transmission power of RSU when

communicating with a vehicle v at a time slot t is given by

B = γ Pv,t (Dv,t)
−α (3.1)

Pv,t =
B

γ
(Dv,t)

α (3.2)

where Pv,t is the transmission power of RSU, α is a path loss exponent, γ is a scaling co-

efficient, and Dv,t is the distance between the RSU and vehicle v at time t[119].

3.1.2 Assumptions

The following are the key assumptions in this model.

• The downlink (RSU-to-vehicle) communication of RSU serves the vehicles moving

in one direction. The direction of vehicle flow assumed from left to right.

• The arrival of vehicles at the reference location O as shown in Fig.3.1, follows Pois-

son process [120] with the intensity λ in units of vehicles per second.

• RSU aware the velocities of all vehicles and their arrival instances at a location O,

so that the RSU can accurately determine the positions of moving vehicles at a given

instance [71].

• The velocities of vehicles are uniformly distributed within [vmin, vmax] and remains

constant in the interested highway road segment[121].
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• All the vehicles are equipped with full-duplex dual-radio OBUs and they have same

transmission range Rv. Downlink channel time of RSU is time-slotted, and all the

time slots have equal duration δs.

3.1.3 Energy cost Vs Data delivery

In the highway scenario as shown in Fig.3.1, the large data requirement of a target vehicle

may not be satisfied during its transit time inside the RSU coverage. However, the residual

requirement of the target vehicle can be forwarded through a passing by vehicle known

as relay vehicle which can establish a communication link with the target vehicle in the

uncovered area.

From Eq.(3.2), it can be observed that the power consumption required by a vehicle

near to RSU is significantly lower when compared to a more distant vehicle within the

RSU coverage [9]. Therefore, the RSU prefers to communicate with a nearby vehicle

where the RSU consumes less power. But, this may not always serve the target vehicle in

the uncovered area. For example, as shown in Fig.3.1, suppose at a given time slot, two

vehicles v1, v2 are moving with the speed of the target vehicle and only v2 is within the

radio range of the target vehicle. Although the RSU to vehicle distance d(v1) < d(v2),

the RSU does not prefer a nearby vehicle v1 as a relay vehicle, because it can not establish

a communication link with the target vehicle. So, it is important to select the vehicles as

relays which can reduce the RSU power consumption and serves the target vehicle.

3.1.4 Effective communication time

In this section, the effective communication time of each vehicle has been estimated. It is

defined as an amount of time a vehicle can act as a store-carry-forward relay to the target

vehicle. Here, another scenario is considered where the vehicles are moving at different

speeds and some of them can establish a communication link with the target vehicle in the

uncovered area.

It depends on two factors:

i) Dwell time (∆Dh): the amount of time a vehicle h spends in the RSU coverage when
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the target leaves RSU coverage.

ii) Link time (∆Lh): the amount of time a vehicle h spends within the transmission range

of the target vehicle in the uncovered area.

The minimum of ∆Dh and ∆Lh (i.e.,min(∆Dh,∆Lh)) is the effective communication

time of a vehicle h ∈ V . The effective communication time is the actual reduced outage

time by a relay vehicle from the total outage time U/v0. Then, the total number of time

slots T is defined as

T =
⌊
(U/v0)/δs

⌋
(3.3)

A set of relay vehicles Vr ⊆ V is defined in Eq.(3.4), where V is a set all vehicles in the

system excluding the target vehicle.

Vr = {h ∈ V |min(∆Dh,∆Lh) ≥ δs} (3.4)

Effective communication time of each relay vehicle r ∈ Vr is divided into number of time

slots
⌊
min(∆Dr,∆Lr)/δs

⌋
, which defines the maximum number of times a relay vehicle

can be selected for downlink communication.

3.2 Energy Efficient Multi-Relay Scheduling

This section goal is to minimize the downlink energy usage of RSU subjected to satisfy

the residual data requirement of the target vehicle by selecting multiple relay vehicles. An

Integer Linear Programming (ILP) is formulated for energy efficient relay selection and

evaluated its NP-hardness. Moreover, this section provides a polynomial time solution of

the problem by modeling it as a Minimum Cost Flow graph.
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3.2.1 ILP formulation for scheduling relay vehicles

The RSU schedules downlink communication when it has a prior knowledge of all the

vehicles. This can be achieved by defining a binary decision variable as follows.

xs,r =


1, if RSU selects a vehicle r at a time slot s

0, otherwise
(3.5)

The inputs and outputs of the scheduler is given as follows.

INPUT: Given an input set of relay vehicles Vr. For each vehicle r ∈ Vr, using basic

relative motion theory, the RSU derives dwell time ∆Dr and link time ∆Lr. The target

vehicle pass through the uncovered area in T time slots, where each time slot s ∈ T .

The downlink energy cost of RSU to a vehicle r at a time slot s has been denoted as ϵs,r.

Therefore, input to the scheduler is given as a set I , as shown in Eq.(3.6). And, also given

the residual data requirement (H) of the target vehicle and time slot duration δs.

I = {(ϵs,r,∆Dr,∆Lr)} ∀r ∈ Vr,∀s ∈ T (3.6)

OUTPUT: Given an input I , the objective of the scheduler is to find a schedule such that

the residual requirement of target vehicle is satisfied in the uncovered area and total RSU

downlink energy cost is minimized.

Therefore, lower bound on RSU total energy consumption can be computed using the
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following ILP.

minimize
xs,r

∑
r∈Vr

∑
s∈T

ϵs,r xs,r (OPT )

subject to
∑
r∈Vr

∑
s∈T

xs,r ≥
H

B
(3.7)

δs
∑
s∈T

xs,r ≤ min(∆Dr,∆Lr) ∀r ∈ Vr (3.8)

∑
r∈Vr

xs,r ≤ 1 ∀s ∈ T (3.9)

xs,r ∈ {0, 1} ∀r ∈ Vr, ∀s ∈ T (3.10)

The objective function of OPT denotes the total downlink energy consumed by the RSU.

Constraint (3.7) ensures the fulfillment of data requirement of the target vehicle in uncov-

ered area. Constraint (3.8) ensures the total RSU to r communication time does not exceed

the effective communication time of r with the target vehicle. Constraint (3.9) and (3.10)

restricts the downlink communication to a single relay vehicle at each time slot.

3.2.2 NP-hardness proof

In this section, the formulated ILP optimization problem (OPT) for scheduling relay vehi-

cles is shown as NP-hard, which is described in the following theorem.

Theorem 3.2.1. The OPT optimization problem is NP-hard.

Proof. This theorem is proved by reducing from well known NP-hard problem Seminar

Assignment Problem (SAP)[122], which is a special case of Generalized Assignment Prob-

lem. Let a SAP instance has a set of students I and a set of seminarsB. Each seminar j ∈ B

has a capacity of allowable number of students at most Cj . For a seminar j, assignment

of a student i ∈ I has a profit (satisfaction) pij . The objective is to assign students to the

subset of seminars such that the number of students in each seminar j does not exceed Cj

and the total profit(satisfaction) is maximized.

The reduction from an instance of SAP to an instance of OPT is described as follows:

(1) The seminars are mapped (one-to-one) to relay vehicles. (2) The students are mapped
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).

to time slots. (3) The capacity of jth seminar is mapped to effective communication time

of rth relay vehicle, which is given as min(∆Dr,∆Lr). (4) The profit of ith student with

respect to jth seminar is negated for mapping to the energy cost of rth relay vehicle at sth

time slot. Consider that it has sufficient number of time slots to carry residual data (H). It

is clear that the transformation can be done in polynomial time. As the instance of SAP is

directly mapped to an instance of OPT, can easily claim the following. The SAP instance

has an assignment if and only if an instance of the problem has an assignment. This can

establish the NP-hardness of the optimization problem.

3.2.3 Minimum Cost Flow Graph

In this section, a Minimum Cost Flow (MCF) graph model has been presented to solve the

optimization problem in polynomial time[14]. As shown in Fig.3.2, where G = (N,E)

is defined as set of N nodes and set of E arcs to connect the nodes. Suppose s, r ∈ N ,

then each arc (s, r) ∈ E has an associated capacity cs,r and cost ϵs,r, which denotes the

maximum flow and the downlink communication cost per unit flow respectively. Each arc

with associated capacity and energy cost has been labeled with an ordered pair (cs,r, ϵs,r).
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The minimum cost flow model ensures that minimum energy consumption of RSU

while respecting the maximum flow from RSU to the target vehicle. As shown in Fig.3.2,

the first column of nodes represent the total set of time slots (T ) available to RSU, starting

from when the target leaves the RSU coverage until it enters into next RSU coverage. The

second column represents the set of relay vehicles (Vr), where each r ∈ Vr satisfies the

constraint min(∆Dr,∆Lr) ≥ δs.

In Fig.3.2, an arc capacity of 1 from RSU to time slot s restrict the RSU to assign

the time slot more than once. The capacity of 1 in the arc from time slot to relay vehicle

represent that a time slot can be assigned to only one relay vehicle. An arc from a time slot

node s to a relay vehicle node r is exists only if the vehicle r is available inside the RSU

coverage during the time slot s. The capacity of arc from relay vehicle to target vehicle is

derived as
⌊
min(∆Dr,∆Lr)/δs

⌋
, which denotes the maximum number of time slots that

can be assigned to a relay vehicle r. The cost of an arc from RSU to time slot is zero

as there is a dummy flow in the arc. Similarly, the cost of the arc from relay vehicle to

target vehicle set to zero. It is already mentioned that the vehicles have unlimited energy

resources and V2V data forwarding does not impact the energy cost of the RSU. A unit

flow cost of the arc from a time slot s to a relay vehicle r is represented as ϵs,r if there

exists an arc from s to r.

The optimization problem is reformulated by modifying the residual data requirement

constraint in Eq.(3.7) as an integral data as shown in Eq.(3.11). And, the effective com-

munication time constraint in Eq.(3.8) to an integral number of time slots for each relay

vehicle is given in Eq.(3.12). This becomes apparent because the minimum cost flow graph

model uses Integrality Property Theorem[14], which ensures the provided capacities and

input flows of MCF are integers. Moreover, the decision variable xs,r = 1, when RSU

assigns time slot s to relay vehicle r; the variable xs,r = 0, when the time slot s leaves

unassigned for all r ∈ Vr. As a result, minimum cost flow is an integer minimum energy
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flow in this flow graph.

∑
r∈Vr

∑
s∈T

xs,r =

⌈
H

B

⌉
(3.11)

∑
s∈T

xs,r =
⌊
min(∆Dr,∆Lr)/δs

⌋
∀r ∈ Vr (3.12)

Finding the minimum cost flow of G provides the minimum energy consumption of RSU in

order to schedule relay vehicles for carrying residual data requirement of the target vehicle.

A standard minimum cost flow algorithm gives a schedule in polynomial time in terms of

T and Vr.

3.3 Nearest Neighbor Forward Approach

This section presents a Nearest Neighbor Forward (NNF) approach, which selects the ve-

hicles in energy favorable locations as the data forwarders to known relay vehicles Vr. A

nearest neighbor forwarder is a vehicle which is nearest to the RSU and multi-hop neigh-

bor to a relay vehicle. In a time slot s ∈ T , the NNF approach selects a nearest neighbor

forwarder vehicle to each relay vehicle r ∈ Vr. The nearest neighbor forwarder of a relay

r is defined as NNF(r). Then, the energy cost of RSU to NNF(r) is computed for all r,

denoted as ps,r. This procedure is repeated for all time slots and formulate an input set

(Inew) as shown in Eq.(3.13), which becomes a new input to the scheduler (i.e., MCF). The

MCF augmented with the NNF approach is referred as MCF-NNF. A schedule obtained

from the MCF-NNF improves the energy consumption of RSU and data delivery to the

target vehicle in the uncovered area. Fig.3.3 shows the flowchart of proposed approach.

Inew = {(ps,r,∆Dr,∆Lr)} ∀r ∈ Vr,∀s ∈ T (3.13)
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Figure 3.3: Flowchart of Nearest Neighbor Forward (NNF) approach
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3.3.1 Two phase approach

The NNF approach has two phases A) clustering phase B) route discovery phase. In cluster-

ing phase, a DBSCAN (Density Based Spacial Clustering of Applications with Noise)[15]

based algorithm discovers the stable clusters. A stable cluster contains a group of vehicles

which are in the transmission range Rv of any other vehicle in the group and remains in

the same group for the duration at least δs. For a given set of all vehicles V and relay

vehicles Vr in 2-D space, the clustering phase identifies a set of clusters K wherein all the

relay vehicles are included. In a cluster C ∈ K, a vehicle vk that is nearest to RSU and in

multi-hop distance to all the relay vehicles in the cluster is selected as the nearest neighbor

forwarder. Then, the vk acts as NNF(r), ∀r ∈ C. Furthermore, in a time slot s, for all

r ∈ Vr, a new energy cost ps,r is evaluated from the Eq.(3.2), which is the energy cost of

RSU to NNF(r).

The route discovery phase computes the shortest route from the vehicle NNF(r) to the

relay vehicle r, where both NNF(r) and r belongs to the same clusterC. Suppose, at a given

time slot, if MCF scheduler selects r as a relay, then RSU communicates to NNF(r) instead

of r. Leveraging the full-duplex capabilities of dual-radio OBUs[35], the off-channel V2V

forwarding accomplishes data delivery in shortest route from NNF(r) to r in the same time

slot.

3.3.2 Energy cost and data delivery

At a given time slot, the set of all vehicles V are assumed to be 2-D co-ordinates in which

the RSU positioned at the origin (0,0). The Fig.3.4 shows the downlink communication

from the RSU to a vehicle only at the right side of the RSU. The proposed approach is

applicable to the left side of the RSU also. In this example, only one relay vehicle for

selection is considered. At a time slot s1, as shown in case(i)(a), the RSU communicates to

the relay r, since the relay vehicle is available inside the RSU coverage. In case (i)(b), using

NNF approach, the RSU communicates to a vehicle vk (i.e., NNF(r)), which is nearest to

RSU and belongs to a cluster C, where also r ∈ C. It clearly shows the reduction in RSU

energy consumption. At time slot s2, in case (ii)(a), since no relay vehicle exists inside
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Figure 3.4: Nearest Neighbor Forward (NNF) approach. At time slot s1, case(i)(a): RSU
communicates to relay r. Case(i)(b): RSU communicates to nearest neighbor forwarder vk,
where r, vk belongs to same cluster C. At time slot s2, case(ii)(a): RSU cannot communi-
cate to relay Case(ii)(b): RSU communicates to vk, this is similar to case(i)(b).

the RSU coverage, RSU does not communicate to any vehicle. In case(ii)(b), using NNF

approach, the RSU communicates to vk, if the vk is available inside the RSU coverage.

This improves the data delivery ratio to the target vehicle.

Suppose more than one relay vehicle exists inside the cluster C, then the vk ∈ C acts as

a nearest neighbor forwarder to all the relay vehicles in the same cluster. The reachability of

a relay vehicle from the nearest neighbor forwarder is given in lemma.3.3.1. In worst case,

if each discovered cluster has only one vehicle which is a relay vehicle, thenNNF (r) = r.

In such case there is no impact of NNF approach on RSU energy consumption and data

delivery to the target vehicle. However, the performance of NNF approach depends on

three factors such as vehicles transmission range (Rv), vehicles arrival rate (λ) and target

vehicle speed (m/s). The details of performance evaluation is described in section 3.4.
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3.3.3 Clustering phase

DBSCAN algorithm is one of the density based clustering algorithms[15, 123]. The density-

based notion of DBSCAN generates arbitrary number of clusters C = {C1, C2, ..., Ck}

in arbitrary shapes, where k ∈ N. Given a set of points X in 2-dimensional space,

the algorithm takes two parameters, Eps is the radius of a point p ∈ X and MinPts

is the minimum number of neighbors in the radius. This algorithm clusters the points

which has at least MinPts number of points in their Eps neighborhood. However, each

cluster Ck has a set of core points and boarder points. A core point p ∈ Ck has at

least MinPts points in its Eps neighborhood. The Eps neighborhood of p is defined

as NEps(p) = {q ∈ X | dist(p, q) ≤ Eps} and the point p becomes a core point, if

|NEps(p)| ≥ MinPts. If a point is in Eps neighborhood of a core point, but it is not a

core point then it is regarded as a boarder point. Moreover, the points which do not belong

to any of the clusters are identified as noise or outliers, noise = {p ∈ X | p /∈ C}. For

better visualization of cluster shapes the DBSCAN uses euclidean distance function in 2-D

space, i.e., dist(p, q) =
√∑d=2

i=1 (pi − qi)2.

Modified DBSCAN

The proposed clustering based algorithm (Algorithm 3.2) generates stable clusters that are

unaltered for the duration δs. The algorithm takes two input parameters, vehicle radio

range Rv and time slot duration δs. The Stable neighborhood of a vehicle v is defined as

NStable(v) = {u ∈ V | dist(v, u) ≤ Rv , CT ime(v, u) ≥ δs}. The CTime(v, u) is the

contact duration of neighbor vehicles v, u in a cluster, and it must be at least δs. The vehicle

v becomes a core vehicle, if |NStable(v)| ≥ 1. In order to increase the connectedness of

a cluster, the algorithm takes minimum number of vehicles in the Stable neighborhood as

one (i.e., including v).

Since RSU has complete knowledge of the vehicles’ positions and their velocities, it

is easy to derive the contact time (i.e., CTime(v, u)) of any pair of neighbor vehicles

v, u ∈ V . In a time slot, assume the vehicles v, u are in transmission range of each other,

i.e., dist(v, u) ≤ Rv. Let the location coordinates of v, u are (vx, vy),(ux, uy) and their ve-

locities are vs, us respectively. If vx > ux, then the vehicle v is ahead of u andCTime(v, u)
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is derived as shown in Eq.(3.14). Similarly, CTime(v, u) can be evaluated even if v is be-

hind u.

CTime(v, u) =1{vs>us}.
Rv − dist(v, u)
|vs − us|

+ 1{vs≤us}.
Rv + dist(v, u)

|vs − us|
(3.14)

Definition 3.3.1. (Stable neighborhood of a vehicle v). The stable neighborhood of a

vehicle v is defined by a following condition:

NStable(v) = {u ∈ V | dist(v, u) ≤ Rv , CT ime(v, u) ≥ δs}

Definition 3.3.2. (directly density reachable). A vehicle v directly density reachable from

a vehicle u if

1. v ∈ NStable(u)

2. |NStable(v)| ≥ 1 (core vehicle condition)

Definition 3.3.3. (density reachable). A vehicle v density reachable from a vehicle u if

there is a chain of vehicles v1, ..., vm, v1 = u, vm = v such that vi+1 density reachable from

vi.

Definition 3.3.4. (density connected). A vehicle v is density connected to a vehicle u if

there is a vehicle w such that, both v,u directly reachable from w.

Definition 3.3.5. (cluster). For given set of vehicles V , a set of relay vehicles Vr ⊆ V . A

cluster C is non-empty subset of V , ∅ ≠ C ⊆ V , satisfying the following conditions:

1. Vr ∩ C ̸= ∅

2. ∀v, u ∈ V : if v ∈ C and u is density-reachable from v then u ∈ C. (maximality)

3. ∀v, u ∈ C : v is density-connected to u. (connectivity)

Definition 3.3.6. (noise). Let C1, ..., Ck be the clusters of V wrt. Rv and δs, then noise is

defined as the set of vehicles in V which do not belong to any cluster Ci, 1 ≤ i ≤ k,i.e.,

noise = {n ∈ V |∀i : n /∈ Ci}
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Lemma 3.3.1. Let Ck be a cluster wrt. Rv and δs, where {Ck ∩ Vr} ≠ ∅. Let v be any

vehicle in Ck with |NStable(v)| ≥ 1. Then Ck equals to the set X = {x | x is density-

reachable from v wrt. Rv and δs }

As shown in Fig.3.4 and the lemma 3.3.1, a relay vehicle r is density-reachable from

a vehicle vk when r, vk ∈ cluster C. Hence, vk can be a multi-hop neighbor to all relay

vehicles that belongs to cluster C.

3.3.4 Route discovery phase

In route discovery phase, the NNF approach finds the shortest route Rs,r from the NNF(r)

to its corresponding relay vehicle r in a cluster. The Rs,r is a multi-hop path denoted as

NNF(r) 7→ r, in a time slot s. From the set of vehicles in a cluster, an adjacency graph

can be formulated[124]. Given the adjacency graph, taking NNF(r) as a source and r as a

destination, a polynomial time algorithm (e.g., Dijkstra’s) finds a shortest route Rs,r. As

the relative velocity of vehicles is low in highway locations, it is reasonable to assume that

the mlti-hop path in a cluster is valid for the time slot duration.

3.3.5 Scheduling and data forwarding

Iterating the two phases (clustering and route discovery) over all the time slots, a schedule is

obtained by MCF and shortest routes from NNF(r) to relay r, ∀r ∈ Vr. From the obtained

schedule, if a relay r is scheduled in a time-slot s, then RSU communicates to NNF(r)

instead of r and then data follows off-channel V2V forwarding in NNF(r) 7→ r.

T1 2

δs

CCH SCH

Figure 3.5: RSU communication channel time
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Figure 3.6: Data forwarding in service channel (SCH) at a given time slot

3.3.5.1 Full-duplex dual-radio OBUs

Leveraging the full-duplex (FD) capabilities of OBUs, the vehicles can simultaneously

transmit/receive over the same channel[35]. The self-interference cancellation techniques[125]

ensure the simultaneous transmission/reception in vehicular networks. A node either a ve-

hicle or RSU, advertises a set of service parameters (e.g., SCH frequency, network infor-

mation) in CCH interval, is referred as provider. Any other node interested in the service

tuned onto advertised SCH, is referred as user[36]. In this scenario, the RSU (provider)

advertises a set of services over a control channel (CCH). Upon overhearing the service

advertisement on CCH, the interested vehicle (user) equipped with FD OBUs tuned onto

advertised SCH frequency and exchange the data with the provider or acts as a relay to

forward the data to another interested user. The full-duplex OBUs allows asymmetric links

between the nodes (V2I or V2V), where one node targets second node, in turn second node

targets another node. According to the WAVE standard [126], the service advertisement

on CCH has been referred as WAVE Service Advertisement (WSA). The service providers

broadcast WSAs to reach more users in the network.

3.3.5.2 Data forwarding

To ensure the data reachability from NNF(r) to r within a given time slot as shown in

Fig.3.5, the RSU (provider) broadcasts WSA message to NNF(r) over the CCH channel.

A WSA message contains multi-hop route NNF(r) 7→ r, SCH2, SCH3, network infor-
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mation, etc. Initially, the vehicle NNF(r) re-broadcasts the WSA message over the same

CCH channel. The FD capabilities of OBUs allows the vehicles to transmit/receive WSA

message during CCH interval, until it reach the relay r. Only vehicles in NNF(r) 7→ r

rebroadcast the WSA message. Finally, the relay r stops broadcasting the WSA message.

Meanwhile, the transceivers of vehicles in the multi-hop route NNF(r) 7→ r tuned to ser-

vice channels SCH2 and SCH3 alternatively as shown in Fig.3.6. To this end, dual-radio

of OBUs accomplishes the off-channel V2V data forwarding from NNF(r) to r in the same

time slot.

Algorithm 3.1 MCF-NNF: Energy efficient RSU scheduling
// V = set of all vehicles
// T = set of all time slots, from Eq.(3.3)
// Vr = set of relay vehicles, Vr ⊆ V , from Eq.(3.4)
// Rv = Radio coverage of v ∈ V
// δs = Time slot duration

1 initialize newCost[s1, ..., sn; v1, ..., vm] = NULL, Route[s1, ..., sn; v1, ..., vm] = NULL,
Schedule[s1, ..., sn; v1, ..., vm] = FALSE
// si ∈ T, vj ∈ Vr; i : 1, .., n; j : 1, ..,m;n = |T |,m = |Vr|

2 for all s ∈ T do
3 V ′ = { Co-ordinates of all v ∈ V wrt. RSU, at the beginning of current time slot s}

(Cost, Path) =Call NNF-DBSCAN(V ′, Vr, Rv, δs)
for all r ∈ Vr do

4 newCost[s][r] = Cost[r], Route[s][r] = Path[r]
5 end for
6 end for
// Call Minimum Cost Flow scheduling from section.3.2.3

7 Schedule[T ][Vr] = Call MinCostFlow(newCost[T ][Vr])
for all s ∈ T do

8 for all r ∈ Vr do
9 if Schedule[s][r] == TRUE then

10 In time slot s, RSU communicates to r through the multi-hop path Route[s][r]
11 end if
12 end for
13 end for

55



CHAPTER 3. CLUSTERING BASED ENERGY EFFICIENT MULTI-RELAY SCHEDULING IN HIGHWAY VEHICULAR INFRASTRUCTURE Section 3.3

Algorithm 3.2 NNF-DBSCAN (V ′, Vr, Rv, δs)

// V ′ is the set of coordinates of all vehicles in 2-D space
wrt. RSU at origin (0,0)

// Vr is the set of all relays
1 initialize Cost[v1 : vm] = NULL, Path[v1 : vm] = NULL // where, vi ∈ Vr; i :

1, ...,m, m = |Vr|
2 assign[∀v ∈ V ′] = UNCLASSIFIED, cluster id =1

for all x ∈ Vr do
3 if assign[x] == UNCLASSIFIED then

/* Clustering Phase */
4 initialize set C = {x}, set Relays = {x} , queue seeds as empty,

seeds.enqueue(Neighborhood(V ′, x, Rv, δs)), assign[x + seeds] = cluster id,
nearD = dist(x,RSU), nearV = x
while seeds ̸= ∅ do

5 y = seeds.dequeue(), C.append(y)
if y ∈ Vr then

6 Relays.append(y)
7 end if
8 d = dist(y,RSU)

if d < nearD then
/* nearV is a NNF vehicle at distance nearD wrt.

RSU */
9 nearD = d, nearV = y

10 end if
11 neighbors = Neighborhood (V ′, y, Rv, δs)

for all w ∈ neighbors do
12 if assign[w] == UNCLASSIFIED then
13 seeds.enqueue(w) assign[w] = cluster id
14 end if
15 end for
16 end while

/* End of Clustering Phase */

/* Route Discovery Phase */
17 G =Call Construct-Adjacency-Graph (C)

for all r ∈ Relays do
// Call Dijkstra′s polynomial time algorithm

18 Path[r] =Find-Shortest-Path (G, nearV, r), Cost[r] = E /* From
Eq.(3.2), E is the communication cost of RSU to
the vehicle nearV at a distance nearD. */

19 end for
/* End of Route Discovery Phase */

20 cluster id = cluster id+ 1

21 end if
/* Remaining vehicles are UNCLASSIFIED or NOISE */

22 end for
23 return (Cost[v1 : vm], Path[v1 : vm]) 56
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Algorithm 3.3 Neighborhood (V ′, v, Rv, δs)

NStable = {u ∈ V ′ | dist(v, u) ≤ Rv, CT ime(v, u) ≥ δs} return NStable

3.3.6 Algorithm for offline energy efficient RSU scheduling

The algorithm 3.1 presents an energy efficient relay selection (MCF-NNF) method, for a

given set of all vehicles V , subset of realy vehicles Vr and number of time slots T . At the

beginning of each time slot s, it finds a set V ′, which contains the 2D coordinates of all

v ∈ V with respect to the RSU positioned at the origin (0,0). It invokes the procedure NNF-

DBSCAN given in the algorithm 3.2. The NNF-DBSCAN uses Nearest Neighbor Forward

approach described in the section 3.3. The algorithm 3.2 identifies the Nearest Neighbor

Forwarders corresponding to all r ∈ Vr. As aforementioned, a nearest neighbor forwarder

of r can be defined as NNF(r). The NNF-DBSCAN computes the energy consumption

cost of RSU to NNF(r) and finds the path from NNF(r) to r, ∀r ∈ Vr. The computed costs

and paths have been updated in the newCost and Route respectively. The algorithm 3.1

repeats the steps 2∼5 for all s ∈ T .

The algorithm 3.2 presents a procedure NNF-DBSCAN as described in the section 3.3,

given V ′, Vr, Rv and δs. The algorithm starts with an arbitrary relay vehicle r ∈ Vr. If

r is UNCLASSIFIED, then the procedure retrieves all the vehicles in the set V ′ that are

density-reachable from r. In clustering phase, If r satisfy the core vehicle condition, then

the procedure yields a cluster C based on Rv and δs. It expands the cluster by finding a

set of seed vehicles (i.e., seeds) from the neighborhood function defined in algorithm 3.3.

If a seed vehicle is UNCLASSIFIED, then assign it to the current cluster. For each seed

vehicle, it further finds the seed vehicles and includes in the set seeds. It repeats until the

seeds becomes empty. By the end of clustering phase, the procedure discovers a cluster

C ⊆ V ′ and a sub set of relay vehicles (i.e., Relays) which are equal to C ∩ Vr. Moreover,

the procedure identifies a NNF vehicle nearV ∈ C, which is nearest to RSU at a distance

nearD.

The route discovery phase, from line 17∼19, finds shortest paths from vehicle nearV to

all relays that belongs toC. First, it constructs an undirected graph G = {N,E}whereN is

a set of nodes (vehicles) in the cluster C and E is a set of undirected edges between nodes.
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The undirected graph G is defined as G = {(v, u) ∈ E | dist(v, u) ≤ Rv,∀v, u ∈ N}.

For each r ∈ Relays, the shortest path from nearV will be determined using a polynomial

time algorithm (e.g., Dijkstra’s), taking hop count as a distance metric. Similarly, at line

36, it computes the energy cost of RSU to nearV . It repeats the steps 3∼22, until all the the

relays classified to clusters. The remaining vehicles which does not belong to any cluster

are denoted as noise. The computed Cost and Path returns to algorithm 3.1.

Finally, in algorithm 3.1, a polynomial time scheduler (e.g., Minimum Cost Flow graph)

computes the schedule using the cost matrix newCost. If the Minimum Cost Flow sched-

ules a relay vehicle r in a time slot s, then the Schedule[s][r] is TRUE. Otherwise, it is

FALSE. From the obtained schedule, at a time slot s the RSU communicates to NNF(r)

instead of r. The data communication from NNF(r) to r follows the multi-hop route

Route[s][r], when RSU communicates to NNF(r).

3.3.7 Complexity analysis

The worst case time complexity of DBSCAN algorithm has been claimed as O(n2) [127],

where n is the number of points in 2D space. The basic DBSCAN [15] starts with an ar-

bitrary point and expands the clusters for every unclassified point in a set of points. The

NNF-DBSCAN algorithm uses the original DBSCAN in clustering phase. In the clustering

phase, for every unclassified arbitrary relay r ∈ Vr, the algorithm discovers a cluster C,

where single Stable neighborhood query takes time O(n). Furthermore, in route discovery

phase, the adjacency graph can be represented in O(n2) time. The binary heap implemen-

tation of Dijkstra’s shortest path algorithm needsO(n log n) time. Finding shortest path for

all relays r ∈ C requires O(n2 log n) time. Overall, the NNF-DBSCAN can be performed

in polynomial time O(n3 log n).

3.4 Performance evaluation

In this section, the performance of proposed Nearest Neighbor Forward (NNF) approach

is investigated. The simulation model is described in the section 3.4.1 and the results are

presented by comparing with existing algorithms First Come First Serve (FCFS), Fastest
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First (FF), Nearest Fastest Set (NFS) and Minimum Cost Flow (MCF) graph. Moreover, it

is demonstrated that the impact of key parameters such as vehicles arrival rate (λ), vehicles

transmission range (Rv) and target vehicle speed (m/s).

3.4.1 Simulation setup

The input vehicular trace given to the schedulers is taken from the highway environ-

ment which has a special characteristic of maintaining constant vehicle speeds for long

durations[121]. Moreover, the energy-limited RSU is assumed to be located close to high-

way segment where the vehicles are passing by one direction. The highway segment may

consist of several lanes wherein the vehicles may overtake each other without changing

their speeds. The RSU serves the target vehicle using direct downlink communication

when it is available inside the RSU coverage. When the target vehicle leaves the coverage

range, the RSU schedule the relay vehicles in order to deliver residual data to the target

vehicle. The simulation time starts when the target vehicle leaves the RSU coverage and

continues until it enters the next RSU coverage. The downlink communication of RSU

follows the pre-computed schedule for all the time slots. Total number of time slots to be

scheduled depends on the length of uncovered area and target vehicle speed.

In this scenario, arrival of vehicles are modeled as Poisson process[120]. Vehicle speeds

follow uniform distribution in the range [vmin, vmax], with vmin = 15m/s, vmax = 25m/s,

the average speed is 20m/s and standard deviation 5. Energy cost estimates of RSU are

readily available in this type of scenario[117, 118]. The associated energy costs are based

on the vehicle location in the RSU coverage. It is assumed that the energy costs are derived

from distance dependent path loss model using path-loss exponent α = 3. Based on the

constant bit-rate assumption, the RSU estimates the total energy consumption cost of the

downlink communication of the offline schedule. The simulation has been conducted using

a discrete event simulator, and obtained results are averaged over 1000 trials. The details

of additional parameters are given in the Table 3.1.
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Table 3.1: Simulation Parameters

Parameter Value
RSU radio coverage (R) 1000m

Uncovered area (U) 10000m
Vehicle speeds [vmin, vmax] 15m/s ∼ 25m/s

Vehicle arrivals (λ) Poisson process
Downlink bit-rate (B) Constant
Time slot duration (δs) 1 sec
Scaling co-efficient (γ) 1
Path loss exponent (α) 3

3.4.2 Results and discussions

Various energy efficient offline schedulers have been proposed in the literature [18][16], in-

cluding Nearest Fastest Set (NFS) scheduler and Minimum Cost Flow (MCF) graph sched-

uler. The NFS scheduler is a greedy algorithm, which selects a fastest vehicle among the set

of vehicles nearest to RSU. The MCF scheduler is presented in [18], is a polynomial time

algorithm, which minimizes the total RSU energy while serving the data requirement of in-

dividual vehicles. A polynomial time solution to the problem is presented in section 3.2.3,

where the MCF scheduler is used to minimize the total RSU energy consumption while

serving the residual data requirement of the target vehicle through store-carry-forward re-

lay selection.

The proposed MCF-NNF approach is compared with the NFS, MCF and two more

basic algorithms FCFS and FF. The FCFS selects a relay vehicle with least arrival time,

where as FF schedules fastest relay vehicle in each time slot. Performance of the MCF-

NNF is demonstrated in terms of RSU Energy consumption per time slot and Residual Data

Completeness. The RSU Energy consumption per time slot is defined as the average energy

consumption of RSU in order to deliver data (B bits) to the target vehicle. The Residual

Data Completeness is defined as the percentage of data delivered to the target vehicle i.e.,

percentage of time slots successfully assigned to relay vehicles by the scheduler.
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Figure 3.7: RSU energy per time slot versus Vehicles arrival rate (λ). Vehicles transmission
range Rv=100m and target vehicle speed = 20m/s
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Figure 3.8: Residual data completeness versus Vehicles arrival rate (λ). Vehicles transmis-
sion range Rv=100m and target vehicle speed = 20m/s

3.4.2.1 Impact of vehicle arrival rate (λ)

Number of vehicles arrival per second into the highway segment is denoted as λ. The

arrival rate of vehicles implies the number of vehicles present in the highway segment.

Therefore, the number of possible relay vehicles for the target vehicle also increases. In
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Fig.3.7, it is observed that as the vehicle arrival rate increases the possibility of selecting

best relay vehicle increases. Therefore, the scheduler has a great chance of assigning the

time slots to the best subset of relay vehicles with less energy consumption. However,

FCFS results total energy consumption in the orders of magnitude much higher than that of

other algorithms shown in graphs. This is because FCFS tends to serve the relay vehicles

near to outer edge of the RSU. It raises energy consumption at higher λ values, because

the serving relay vehicles are more close to the outer edge of the RSU. When compared

to FCFS the other algorithms perform better and saves RSU energy. It is worth mention

that the amount RSU energy consumption is normalized to RSU coverage range[16], as the

downlink energy cost depends on the distance from RSU to vehicle.

The algorithms (NFS, MCF, MCF-NNF) result lower energy costs in case of higher

vehicle arrival rate. Here, the MCF has complete knowledge of contention in all the time

slots and therefore, it can schedule the vehicles with better performance and almost 5% of

energy saving is recorded when compared to the NFS algorithm. In addition, the proposed

MCF-NNF has significant improvement in energy consumption by 23% and 28% when

compared to MCF and NFS respectively. When the number of vehicles are less at λ = 0.1,

the proposed approach behaves similar to MCF, due to the fact that discovered clusters are

formed by the limited number of multi-hop neighbors.

Fig.3.8 shows the number of time slots assigned to relay vehicles increases with the

vehicle arrival rate. This is due to the increasing number of vehicles which can establish a

communication link with the target vehicle in the uncovered area. Here, the performance of

the FCFS is better because it only considers the assignment of time slots to relay vehicles

regardless of their location in the RSU region. It is observed that FCFS outperforms all

algorithms at lower vehicle arrival rates below 0.5, but it completely ignores the RSU en-

ergy efficiency. However, the proposed approach shows clear dominance at higher vehicle

arrival rates above 0.5 and its residual data completeness is 6%, 25% and 16% more when

compared to FCFS, NFS and MCF respectively.

The average energy consumption of FF is constant in all graphs because its performance

is independent of vehicle arrival rate, vehicle transmission range and target vehicle speed.

The residual data completeness of FF is same as NFS and the behavior is almost similar to
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NFS because of its greedy nature.
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Figure 3.9: RSU energy per time slot versus Vehicles transmission range (Rv). Vehicles
arrival rate λ=0.5 and target vehicle speed = 20m/s
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Figure 3.10: Residual data completeness versus Vehicles transmission range (Rv). Vehicles
arrival rate λ=0.5 and target vehicle speed = 20m/s
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Figure 3.11: RSU energy per time slot versus target vehicle speed. Vehicles transmission
range Rv=100m and vehicles arrival rate λ=0.5
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Figure 3.12: Residual data completeness versus target vehicle speed. Vehicles transmission
range Rv=100m and vehicles arrival rate λ=0.5

3.4.2.2 Impact of vehicle transmission range (Rv)

As aforementioned, the RSU energy consumption and residual data completeness greatly

depend on the number of vehicles present in the highway segment. Fig.3.9 shows the

RSU energy per time slot versus vehicle transmission range. The proposed NNF approach
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with MCF has profound impact on reducing RSU energy consumption when compared to

other algorithms. As the transmission range of vehicles increases, the number of vehicles

in each cluster also increases. Therefore, it is feasible to select a vehicle in an energy

favorable location as a nearest neighbor forwarder. Then, RSU can forward the data to a

relay vehicle even if the relay vehicle is outside the RSU coverage and its nearest neighbor

forwarder is inside the RSU coverage. Taking constant values of vehicle arrival rate 0.5

and the target vehicle speed 20m/s, it is observed that the performance of FCFS, NFS and

MCF is not varying with increasing Rv. This due to the number of vehicles in the highway

segment and number of relay vehicles that can reach the target vehicle are constant. When

the vehicle transmission range is low, the NNF approach has no impact on energy saving

and its performance is similar to other algorithms except FCFS and FF. The percentage of

energy savings of MCF-NNF is observed nearly 71% and 57% when compared to NFS and

MCF respectively.

Fig.3.10 clearly indicates the impact of increasing vehicle transmission range on resid-

ual data delivery to the target vehicle. This is due to the increasing cluster size and the

number of multi-hop neighbors in each cluster. Increasing cluster size facilitates the data

delivery to relay vehicles, even if the relays are outside of RSU coverage. It is observed that

the MCF-NNF performance is more dominant from 100m transmission range. Although

FCFS has edge over all algorithms in lower transmission ranges, it has poor performance

in RSU energy saving. Except MCF-NNF, other algorithms results constant data delivery

due to constant vehicle arrival rate and target vehicle speed. However, the MCF-NNF is

exceptionally good at higher transmission ranges and its residual data completeness is 33%,

52% and 42% more when compared to FCFS, NFS and MCF respectively.

3.4.2.3 Impact of target vehicle speed (m/s)

The vehicle speeds are distributed uniformly in the range [15m/s, 25m/s] with mean speed

20m/s, as aforementioned. In the above analysis, the target vehicle speed has been consid-

ered as constant in the highway segment. Here, the performance of the proposed approach

is demonstrated by varying the target vehicle speed. When the target speed is low, the

number of vehicles that can reach the target in the uncovered area would be more. As the
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target speed increases, the number of possible relay vehicles decreases. In Fig.3.11, the

algorithms NNF, MCF and MCF-NNF tends to increase the RSU energy consumption at

higher target speeds. In contrast, FCFS tends to reduce energy consumption with increas-

ing target speeds because the serving relay vehicles are not close to the outer edge of the

RSU. However, the performance of MCF-NNF is better compared to FCFS, FF, NFS and

MCF, this is due to fixed vehicle transmission range.

Fig. 3.12 indicates the decreased data delivery with increased target speed. The rea-

soning is much similar to the above analysis that the number of possible relay vehicles

decreases with the increasing target speed. Therefore, lower residual data completeness is

observed when the target speed is high. However, the overall performance of the proposed

approach is better when compared to the other algorithms.

3.5 Summary

In this chapter, a set of store-carry-forward relay vehicles and their effective communication

times with a target vehicle moving in an uncovered area are determined. An offline energy

efficient scheduling of relay vehicles is formulated as an Integer Linear Programming and

evaluated its NP-hardness by reducing from well-known Seminar Assignment Problem. A

Minimum Cost Flow (MCF) scheduler is presented for assigning time slots to relay vehi-

cles in polynomial time. Moreover, a clustering based Nearest Neighbor Forward (NNF)

approach is introduced to identify vehicles which are in energy favorable locations and acts

as data forwarders to the relay vehicles. This data forwarding follows off-channel V2V

forwarding. Combining off-channel V2V forwarding with relay scheduling further reduces

the energy cost of the RSU and improves the data delivery to the target vehicle. This is

because of V2V forwarding does not incur extra cost on RSU energy usage, since vehicles

have adequate energy reserves. The results from extensive simulations show that the NNF

approach combined with MCF performs better when compared to offline algorithms NFS,

MCF and two more algorithms FCFS and FF. The performance of the proposed scheduling

shows a strong impact under the scenarios such as high vehicle arrival rate, high vehicle

transmission range, low target vehicle speed.
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In next chapter, an energy efficient multi-relay scheduling has been performed using

cooperation between neighbouring RSUs in order achieve faster data delivery to the target

vehicle in the uncovered area.
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Chapter 4

Auction based Energy-Efficient

Cooperative Relay Scheduling in

Bidirectional Highway Scenarios

Efficient data delivery strategies are important for achieving more reliable data services

(e.g., large file download, sensor data transfer, etc.) in highway vehicular networks [7, 8].

Proper scheduling of relay vehicles using cooperation between neighbouring RSUs in a

bidirectional highway scenario is a useful strategy for improving data delivery services to

the target vehicle. By exploiting cooperation among neighbouring RSUs, the data delivery

can be improved for the target vehicle via relay scheduling in both forward and opposite

directions. Although improvement of data delivery services is achievable using efficient

relay scheduling, the amount RSU energy consumption and data delivery delay are also

important performance measures to be considered for providing reliable data dissemination

services in uncovered areas. Therefore, the objective of this chapter is to minimize the

energy consumption of RSU while achieving faster data delivery to the target vehicle in

bidirectional highway scenario.

In this chapter, a bidirectional highway scenario has been considered where the relay

vehicles are scheduled in both forward and opposite directions to minimize the RSU en-

ergy consumption and end-to-end delay to the target vehicle. Cooperation of neighbouring

RSU has been utilized for transmission of unserved data to the target vehicle in opposite
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(backward) direction of target vehicle. The neighboring RSU ( which is next RSU in target

moving direction) schedules the relay vehicles driving in opposite direction by ensuring the

energy consumption and end-to-end delay requirements. Faster data delivery by minimiz-

ing end-to-end delay is also essential to improve the quality of service requirements when

running infotainment applications such as online video transfer, online gaming, etc. In the

proposed approach, the RSUs apply Auction Theory[19] principles to schedule the suitable

relay vehicles in both forward and backward direction. Here, RSUs and relay vehicles act

as sellers and bidders, respectively. The seller (RSU) auctions the time slots and receives

bids from relay vehicles (Bidders). The bidders do not have bidding information of other

bidders and therefore, the bidders only use their local information (e.g., speed, position,

cooperative cache size, direction, etc.) and then submit bids to seller. The seller or RSU se-

lects the bidders solely based on the bids received from the bidders or relay vehicles. Then,

the RSU optimally assigns the relay vehicles to time slots. When target vehicle leaves RSU

region, the target vehicle is designated to perform ad hoc V2V scheduling in the uncov-

ered area when multiple relay vehicles are present in its radio range. This will improve the

data delivery ratio by making the best utilization of V2V communication bandwidth. The

V2V forwarding cannot affect the energy consumption of RSUs because the vehicles are

assumed to have sufficient energy reserves.

Major contributions of this chapter are as follows.

• Determine the set of relay vehicles in both directions (forward and backward) in

a bidirectional highway segment. The relay scheduling problem is formulated as

an Integer Linear Programming problem (ILP) and its NP hardness is proved. To

solve the problem, a greedy algorithm (GA) is presented by carefully scheduling the

forward relay vehicles which causes minimum RSU energy consumption and end-

to-end delay to target vehicle.

• Propose a forward relay scheduler (FRS) based on Auction Theory to schedule the

relay vehicles in target moving direction. In addition, an Auction-based RSU assisted

relay scheduling (RRS) algorithm is proposed to utilize the cooperative sharing be-

tween neighboring RSUs and schedule the relay vehicles in both forward and back-
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ward directions for serving the target vehicle. Besides, the target vehicle performs

Vehicle to Vehicle (V2V) scheduling when multiple relays establish V2V links with

the target vehicle.

Exhaustive set of simulations are performed to compare the proposed algorithm with

other existing algorithms. Simulation results show the proposed Auction-based RSU as-

sisted multiple relay scheduling algorithm outperforms other existing algorithms in terms

of RSU energy consumption, end-to-end delay and residual data delivery for the vehicle

arrival rate, target vehicle speed and cooperative cache size.

The remainder of this chapter is organized as follows. Section 4.1 describes the system

architecture of energy-limited RSUs in bidirectional highway scenario. Further, it presents

the relay selection in forward direction. Section 4.1.5 provides the ILP formulation of relay

scheduling problem. Section 4.2 and 4.3 describes the proposed Auction-based forward

relay scheduling and RSU assisted relay scheduling, respectively. Section 4.4 presents

the performance comparison of the proposed algorithms in terms of average RSU energy

consumption, average end-to-end delay and residual data delivery. Section 4.5 summarizes

the chapter.

4.1 System model and problem formulation

The system considers energy-limited RSUs that are deployed along a bidirectional highway

segment as shown in Fig.4.1. The RSUs are connected via backhaul wired links which can

facilitate Infrastructure to Infrastructure (I2I) communication among the RSUs. Due to

high installation overhead of the roadside infrastructure, the system leaves an uncovered

area in between the neighboring RSUs as shown in Fig.4.1. Here, each RSU is enabled

with an edge server in order to serve the vehicles on road. The vehicles are assumed to

maintain constant speed in the highway segment and they remain in RSU coverage region

for relatively less time. A vehicle in an RSU region can send requests to edge server in

that RSU. The edge server consists a queuing buffer to store the requests received from the

vehicles and it allows each request to wait for processing. After processing the request, the

edge server sends response data to the requester vehicle. Meanwhile, the requester vehicle
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Figure 4.1: Energy-limited Road Side Units (RSUs) in bidirectional highway scenario

may leave the RSU region with residual data requirement and enters into an uncovered

area. This requester vehicle is named as target vehicle. The target vehicle present in the

uncovered area cannot get direct access to the edge servers. In this case, the passing by

vehicles in the RSU region can act as store-carry-forward relays for data forwarding to the

target vehicle. However, the arrival of vehicles follow Poisson process with a rate λ in both

forward and backward directions. The vehicle speeds are assumed to be constant and are

uniformly distributed in the range [vmin, vmax]. Furthermore, each vehicle v maintains a

cooperative cache Bv to store the cached contents that are realized for the target vehicle.

Form Fig.4.1, if a target vehicle leaves RSU A before it receives a response data from

the edge server, then the RSU A schedules Infrastructure to Vehicle (I2V) communication

to relay vehicles (in forward direction) for serving the target vehicle in the uncovered area.

For example, the relay vehicle v2 is in forward direction. After that, if the target vehicle

has any unserved data requirement, then RSU A sends that unserved data to next RSU (i.e.,

RSU B) through I2I communication. Then, the RSU B also schedule I2V communication

to relay vehicles (in backward direction) for serving the target vehicle. For example, the

relay vehicle v3 is in backward direction. That means, the v3 had been in RSU B coverage

when the target vehicle leaves RSU A’s coverage. These relay vehicles (in both directions)

transfer their cached contents to the target vehicle using V2V forwarding, when they enter

into target vehicle’s radio range. The vehicles are assumed to be equipped with dual-

radio OBUs[36] in which one radio tuned to a service channel (SCH) where the basic

service messages (e.g, collision warning, safety messages, etc.,) are received. The second

radio switches over control channel (CCH) and another service channel (SCH) for V2V

data forwarding [128]. When a relay vehicle enters into the target vehicle radio range,
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they both tuned to a particular SCH for V2V forwarding in the uncovered area. Due to

hardware limitations, the target vehicle cannot receive data from multiple relay vehicles

simultaneously. Therefore, the target vehicle is designated to schedule the V2V forwarding

from the in-range relay vehicles to improve the residual data delivery in the uncovered area.

Note that the vehicles are not energy limited and they are assumed to have sufficient energy

reserves.

The important notations used in this system model are summarized in Table 4.1.

4.1.1 Communication model

Variable bit rate transmission is assumed in downlink (I2V) channel to compensate the

changes in channel path-loss, therefore RSU maintains fixed transmit power[23] during

I2V communication. That means, a vehicle nearest to RSU receives more data compared

to farthest vehicle when the RSU spends constant power regardless of the downlink (RSU-

to-vehicle) distance. Besides, the transmission channel time is divided into equal durations,

referred to as time slots. The RSU consists of a single radio transceiver that can commu-

nicate to only one vehicle v in a time slot t. Moreover, the wireless channel between RSU

and the vehicles assumes flat fading [129]. Let sv,t be the small scale fading power gain of

the downlink channel. hv,t is denoted as the channel gain from RSU to a vehicle v at a time

slot t and it can be defined as follows,

hv,t = sv,t . g0 . (
d0
dv,t

)α (4.1)

where g0 is path-loss constant, d0 is reference distance, dv,t is the downlink distance

from the RSU to a vehicle v at a time slot t and α is path-loss exponent. The achieved

bit-rate bv,t during downlink communication from RSU to vehicle v at time slot t is defined

as follows[130],

bv,t = B . log2(1 +
P.hv,t
B.N0

) (4.2)

where P is the fixed transmit power of the RSU,B is the bandwidth allotted to downlink

channel, and N0 is the Additive White Gaussian Noise at the vehicle.
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Table 4.1: Important notations in system model

Notation Description
U Uncovered area or outage area.
V0 Target vehicle in the outage area.
H Residual data required by the target vehicle.
T Set of time slots.
δt Duration of a time slot t, where t ∈ T .
Vr Set of forward relay vehicles.
V ′
r Set of backward relay vehicles.
R Radio range of an RSU.
Rv Radio range of a vehicle v.
Bv Cooperative cache of a vehicle v.
∆Cv,t Time to contact V0 if v is selected at t.
bv,t Downlink bit-rate when v is selected at t.

4.1.2 RSU energy consumption

The RSU energy consumption depends on the downlink distance from the RSU to a vehi-

cle in the RSU coverage[64]. The downlink communication to farthest vehicles consumes

more RSU power when compared to nearby vehicles[18]. For example, from Fig.4.1, us-

ing variable bit-rate case discussed in section 4.1.1, if the RSU A transmits k bits to nearby

vehicle v1 in one time slot t1, then the same RSU can transmit less than k bits to a farthest

vehicle v2 in another time slot t2. To receive k bits, the farthest vehicle need to spend more

than one time slot in downlink communication, consequently it increases communication

time, as well as the RSU power consumption. Similarly, nearby vehicle requires less com-

munication time and it decreases the RSU power consumption.

As shown in Fig.4.1, when a target vehicle leaves the RSU A coverage, a passing by

vehicle v2 is in the radio range of the target vehicle and v1 is not in the target vehicle’s

radio range. Therefore, v1 may take some time to contact (i.e., Time-to-Contact) the target

vehicle. The downlink communication to nearby vehicle v1 decreases RSU energy con-

sumption, but it increases the time to contact the target vehicle, thereby overall end-to-end

delay to the target vehicle increases. The end-to-end delay is defined as the difference be-

tween the start time of sending request to the edge server and end time of the total response

data received at the target vehicle. Note that the end-to-end delay is directly proportional

to Time-to-Contact the target vehicle (refer section 4.1.3). In a similar way, the downlink
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communication to a farthest vehicle v2 increases RSU energy consumption, but it decreases

the time required to contact the target vehicle, thereby overall end-to-end delay decreases.

Therefore, the objective of this chapter is to minimize the total RSU time spent in down-

link communication (proportional to RSU power consumption) and the Time-to-Contact

(proportional to end-to-end delay) while improving data delivery to the target vehicle by

scheduling the suitable relay vehicles.

4.1.3 End-to-end delay

Let a target vehicle V0 with a velocity v0 enters to one end of the RSU A coverage (to the

reference point O shown in Fig.4.1) at time t0. After some time ∆t1, the V0 sends a request

to the edge server placed with the RSU A. The end-to-end delay of the request includes

computation delay (∆t2) in the edge server and waiting time (∆t3) in the queuing buffer.

Here, up-link communication delay is assumed as negligible. If F is the clock frequency of

an edge server and Z is the workload of the request, then the computation delay is defined

as

∆t2 = Z/F (4.3)

In this system, the edge server has been modeled as M/M/1 queuing server. The arrived

requests at the queuing buffer wait for execution. When the requests are generated as a

Poission stream at a rate A and the service rate of an edge server is µ, then the average

waiting time is defined as[131],

∆t3 =
A

µ(µ−A)
(4.4)

The response data is ready to be served using downlink communication from RSU A to

V0, at time tr.

tr = t0 +∆t1 +∆t2 +∆t3 (4.5)

Meanwhile, the V0 may leave the other end of the RSU A coverage at time tk = t0 +
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2R/v0. If tr ≤ tk, then V0 is served inside the RSU A coverage. Otherwise, V0 enters

into the uncovered area and then the data delivery to V0 is delayed. Therefore, the RSU

A initiates selection of suitable relay vehicles which can deliver the response data to the

target vehicle. This work assumes that the response data is ready when the target leaves

RSU region and the response data will be served by multiple relay vehicles to the target V0.

4.1.4 Forward relay selection

In this section, a set of relay vehicles has been derived for store-carry-forward the response

data to the target vehicle in the uncovered area. By applying trivial relative motion theory

[71], the RSU A selects relay vehicles that are moving in the same direction as the target

vehicle. This forward relay selection is based on the following factors.

• Dwell time (∆Sx) : the amount of time a vehicle Vx spent in the RSU A coverage.

• Link time (∆Lx) : the amount of time a vehicle Vx is in the radio range of target

vehicle.

• Time-to-Contact (∆Cx) : the amount of time it takes a vehicle Vx to reach the target

vehicle.

Let a vehicle Vx arrives (to the reference point O in Fig.4.1) with a velocity vx at time

tx. As aforementioned, the target V0 arrives toO at time t0 with velocity v0 and leaves RSU

A region at time tk = t0 + 2R/v0. However, at time t0, the distance between vehicle Vx

and the reference point O is

dx(t0) = (t0 − tx)vx (4.6)

When V0 leaves RSU A at time tk, the distance between Vx and O is

dx(tk) = dx(t0) + (2R/v0)vx (4.7)

Then, the distance between V0 and Vx is,

W = |2R− dx(tk)| (4.8)
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Figure 4.2: Relative positions of a vehicle Vx and target V0

• If dox(tk) > 2R, then Vx is ahead of V0. In this case, Vx can not act as a relay vehicle.

• If dox(tk) ≤ 2R, then Vx is behind V0. Then, Vx may act as relay to the target vehicle.

Two different cases illustrate the relative positions of V0 and Vx as shown in Fig.4.2.

The Sojourn time (∆Sx), Link time (∆Lx) and Time-to-Contact (∆Cx) are defined as

follows,

∆Sx = min
{
2R/vx,W/vx

}
(4.9)

– Case I: Fig.4.2a shows W ≤ Rv, here ∆Cx is zero and then

76



CHAPTER 4. AUCTION BASED ENERGY-EFFICIENT COOPERATIVE RELAY SCHEDULING IN BIDIRECTIONAL HIGHWAY SCENARIOS Section 4.1

∆Lx =


Rv+W
vx−v0

, if vx > v0

Rv−W
v0−vx

, if vx ≤ v0

(4.10)

– Case II: Fig.4.2b shows W > Rv, then

∆Cx =


W−Rv

vx−v0
, if vx > v0

∞, if vx ≤ v0

(4.11)

After ∆Cx time, both Vx and V0 can establish communication link with each

other.

∆Lx =


2Rv

vx−v0
, if vx > v0

0, if vx ≤ v0

(4.12)

However, the maximum amount of time a vehicle Vx is selected for downlink com-

munication as a relay vehicle is referred to as effective communication time(∆Ex). It has

been defined as the minimum of Link time (∆Lx) and Sojourn time (∆Sx), i.e., ∆Ex =

min(∆Lx,∆Sx).

A set of forward relay vehicles Vr and the set of time slots in the system is defined as

follows,

Vr = {Vx ∈ V |min(∆Lx,∆Sx) ≥ δt ∧Bx > 0} (4.13)

T = {1, 2, 3, ..., τ}, τ = U/(v0 δt) (4.14)

where δt is the duration of a time slot, and V denotes the set of all vehicles in the RSU A

region.

Note that, if RSU A selects Vx as relay vehicle at the beginning of a time slot t ∈ T ,

then the Time-to-Contact the target V0 is ∆Cx,t = ∆Cx − (t − 1)δt. But, the effective

communication time of Vx remains unchanged with the time slot at which the relay vehicle

is selected.
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4.1.5 Problem formulation

As aforementioned, proper scheduling of relay vehicles affects RSU energy consumption

and the end-to-end delay to the target vehicle. Therefore, the objective of this chapter is to

minimize the total RSU time spent in downlink communication and the time to contact the

target vehicle that is by scheduling the suitable relay in each time slot. The input function

to this problem contains a set of time slots T , set of forward relay vehicles Vr, residual

data H , cooperative cache size Bv, and effective communication time ∆Ev. Here, a binary

decision variable is used to represent the scheduling decision for the relay vehicle v at the

beginning of a time slot t.

xv,t =


1, If RSU A chooses a vth relay vehicle at tth time slot

0, Otherwise
(4.15)

In addition, the problem is formulated as follows.

minimize
xv,t

∑
v∈Vr

∑
t∈T

xv,t (∆Cv,t/bv,t) (P)

subject to
∑
v∈Vr

∑
t∈T

bv,t xv,t ≥ H (4.16)

∑
t∈T

bv,t xv,t ≤ Bv ∀v ∈ Vr (4.17)

δt
∑
t∈T

xv,t ≤ ∆Ev ∀v ∈ Vr (4.18)

∑
v∈Vr

xv,t ≤ 1 ∀t ∈ T (4.19)

xv,t ∈ {0, 1} ∀v ∈ Vr,∀t ∈ T (4.20)

The objective function of P represents a value that indicates the downlink time spent

by RSU A and the average Time-to-Contact the target vehicle. Note that, the downlink

communication time and Time-to-Contact are directly proportional to the RSU energy con-

sumption and end-to-end delay to the target vehicle. Constraint (4.16) satisfies the residual
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data required by the target vehicle. Constraint (4.17) ensures the total data received from

RSU A to a relay does not exceed cooperative cache size of the relay vehicle. Constraint

(4.18) ensures the total downlink time used for a relay vehicle is to be less than its effective

communication time. Constrains (4.19) and (4.20) allow only one relay vehicle for down-

link communication in a time slot.

Theorem 4.1.1. The proposed problem P is NP-hard.

Proof. The proposed problem is proved as NP-hard by reducing it from Generalized As-

signment Problem (GAP)[122] to the special case of the problem P . Given an instance of

GAP, it has a set of items I and knapsacks K. Each knapsack j ∈ K has a capacity Cj .

Assigning an item i ∈ I to a knapsack j ∈ K corresponds to profit pij and weight wij .

The objective of GAP is to maximize the total profit by assigning each item to exactly one

knapsack such that total weight of items does not exceed the knapsack capacity.

Consider a special case of the problem P that is without constraints (4.16) and (4.18).

The reduction from GAP to the special case of P is as follows: (i) items are mapped to

time slots. (ii) knapsacks are mapped to relay vehicles. (iii) knapsack capacity mapped to

buffer size of relay vehicle. (iv) profit of each item mapped to negative sum of Time-to-

Contact and time slot duration. (v) weight of each item mapped to bit-rate (from RSU to

relay vehicle). It is clear that the special case of the problem can be reduced from GAP in

polynomial time. Therefore, it concludes that the problem P is NP-hard.

4.2 Forward relay scheduling algorithms

In this section, two polynomial time algorithms are presented for scheduling of suitable

relay vehicles and this includes a greedy algorithm and Auction-based relay scheduling

algorithm. These algorithms minimize both energy consumption of RSUs and end-to-end

delay to the target vehicle in the uncovered area.
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4.2.1 Greedy algorithm

This section describes a greedy algorithm (GA) to minimize the total RSU time spent in

downlink communication and time required to contact the target vehicle. The details of the

algorithm GA is as follows.

Step 1 Find a subset of relay vehicles which are near to RSU A and they must satisfy the

constraint (4.18)

Step 2 Choose a relay vehicle v from the subset which has least Time-to-Contact and it

satisfies the constraint (4.17)

Step 3 Schedule the relay vehicle v selected at Step 2.

Step 4 Update effective communication time (∆Ev) and cooperative cache (Bv) of the

relay vehicle v.

Step 5 Repeat Step 1 to Step 4, for all the time slots.

The algorithm 4.1 illustrates the above steps in-detail. Note that the calculation of

effective communication time and Time-to-Contact are discussed in section 4.1.4. From

algorithm 4.1, it runs in polynomial time with respect to set of time slots T and set of

forward relay vehicles Vr.

4.2.2 Auction-based forward relay scheduling

This section presents an optimal assignment of relay vehicles to time slots by applying the

concepts from Auction Theory[20]. Here, the RSU A acts as a seller and it auctions the time

slots for downlink communication. The relay vehicles act as bidders and they participate

in the auction. This problem is modeled as an asymmetric assignment problem where the

time slots are more than the relays. It is observed that there exist non-empty set of time

slots T , relay vehicles Vr, and these are finite. Before selecting a suitable relay vehicle

Vi ∈ Vr at a time slot Tj ∈ T , the RSU estimates utility Uij based on the Time-to-Contact

(∆Cij) and the bit-rate (bij) in the downlink channel. It is already mentioned that these two
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Algorithm 4.1 GA: Greedy algorithm
Input: T , Vr
Output: Schedule X

1: for t = 1 to|T | do
2: for v = 1 to|Vr| do
3: X[v][t] = 0
4: end for
5: end for
6: for t = 1 to|T | do
7: dmin = R
8: for r = 1 to|Vr| do
9: S = ∅

10: dr,t = Distance from RSU A to relay vehicle r
11: if dr,t ≤ dmin and ∆Er ≥ δt then
12: dmin = dr,t
13: S = S ∪ {r}
14: end if
15: end for
16: Cmin = +∞
17: for r in S do
18: ∆Cr,t = Time to contact the target vehicle
19: if ∆Cr,t < Cmin and Br ≥ br,t then
20: Cmin = ∆Cr,t

21: v = r
22: end if
23: end for
24: X[v][t] = 1
25: ∆Ev = ∆Ev − δt
26: Bv = Bv − bv,t
27: end for
28: return X

parameters have direct impact on the end-to-end delay and the RSU power consumption,

respectively. The mapping of time slot – relay vehicle pair is determined by the difference

between the minimum utility and the second smallest utility, known as bidding increment.

Let Q be a set of pairs (Vi, Tj), where a time slot Tj ∈ T can be mapped to a relay

vehicle Vi ∈ Vr. For each relay vehicle Vi, there are set of time slots A(Vi) in which the Vi

is present inside the RSU region and is expressed as

A(Vi) = {Tj|(Vi, Tj) ∈ Q} (4.21)
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Similarly, a time slot Tj can be mapped to a relay vehicle among the subset of relay

vehiclesB(Tj) which are present inside the RSU region during that time slot and is denoted

as

B(Tj) = {Vi|(Vi, Tj) ∈ Q} (4.22)

4.2.2.1 Bidding phase

In this bidding phase, a bidder Vi (i.e. relay vehicle) bids for the subset of time slots

A(Vi). Each bidder estimates the bidding value based on the utility and it returns a bidding

vector Bi
T = {B1, B2, ..., B|A(Vi)|}. Note that the bid value for the remaining time slots

in the set T \ A(Vi) are taken as largest positive value, since the assignment problem has

been modeled as a minimization problem. Here, each relay vehicle finds a time slot, and

a relay vehicle is selected in each time slot which has minimum utility in the downlink

communication.

Tji ∈ arg min
Tj∈T
{Uij} (4.23)

Vij ∈ arg min
Vi∈Vr

{Uij} (4.24)

where Tji denotes a time slot Tj for Vi and it provides minimum utility by selecting that

time slot. On the other hand, Vij denotes a relay vehicle Vi for Tj and it provides minimum

utility by selecting that relay vehicle. Then, the bidding increment is calculated as,

hi = ei − fi,∀Vi ∈ Vr (4.25)

hj = ej − fj, ∀Tj ∈ T (4.26)

where fi and fj are the smallest utilities for the relay vehicle and time slot, respectively.

fi = minTj∈A(Vi){Uij} (4.27)
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fj = minVi∈B(Tj){Uij} (4.28)

and ei and ej are the second smallest utilities for the relay vehicle and time slot, respec-

tively

ei = minTj∈A(Vi),Tj ̸=Tji
{Uij} (4.29)

ej = minVi∈B(Tj),Vi ̸=Vij
{Uij} (4.30)

4.2.2.2 Allocation phase

The RSU A assigns a time slot Tj to a relay vehicle Vi, for which the bidding increment is

maximum. The highest bidding increment is calculated as follows,

Gij = maxVi∈Vr,Tj∈T (hi, hj) (4.31)

Then, the RSU excludes an assigned time slot Tj from the set T . Moreover, it excludes

the relay vehicle Vi from the set Vr, if the vehicle’s remaining buffer size is zero or the

remaining effective communication time is less than the time slot duration (δt). Algorithm

4.2 illustrates the Auctioning process for the energy efficient relay scheduling. Next, the

Auction procedure is explained with the following example.

Table 4.2: Biddings from relay vehicles

T1 T2 T3
Va 7 6 8
Vb 9 4 7
Vc 6 10 2

Table 4.3: Bidding increment in Bidding phase

T1 T2 T3
(h1) (h2) (h3)

Va (ha) (1,1) (1,2) (1,5)
Vb (hb) (3,1) (3,2) (3,5)
Vc (hc) (4,1) (4,2) (4,5)
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Algorithm 4.2 Forward Relay Scheduling (FRS)
Input: T : Set of time slots. Vr : Set of relay vehicles.
Output: X : Set of mapping pairs of time slots and relay vehicles.

1: Auction the time slot Tj , ∀ Tj ∈ T .
2: Receive biddings from the relay vehicles ∀ Vi ∈ Vr.
3: while |T | ≠ 0 ∧ |Vr| ≠ 0 do
4: for ∀Vi ∈ Vr do
5: compute ei from equation (4.29)
6: compute fi from equation (4.27)
7: compute bidding increment hi = ei − fi
8: end for
9: for ∀Tj ∈ T do

10: compute ej from equation (4.30)
11: compute fj from equation (4.28)
12: compute bidding increment hj = ej − fj
13: end for
14: Find a time slot t ∈ T and a relay vehicle v ∈ Vr from equation (4.31)
15: Map the time slot t to a relay vehicle v based on their highest bidding increment

values h(max)
j and h(max)

i , respectively
16: X = X ∪ (v, t)
17: ∆Ev = ∆Ev − δt
18: Bv = Bv − bv,t
19: Remove t from T , T = T \ t
20: if (Bv ≤ 0) ∨ (∆Ev ≤ δt) then
21: Remove v from Vr, Vr = Vr \ v
22: end if
23: end while
24: return X

Example: Lets assume the RSU channel time is divided into three time slots T1, T2, and

T3. Three relay vehicles Va, Vb, and Vc bid for those time slots as shown in table 4.2. In

bidding phase, first it computes hi = ei − fi,∀Vi ∈ Vr and hj = ej − fj,∀Tj ∈ T from

Eq.(4.25) and Eq.(4.26), respectively. Table 4.3 summarizes the computation. Here, for a

relay vehicle Vc, hc will be 4 (i.e., hc = 6− 2 = 4). Similarly, for a time slot T3, h3 will be

5 (i.e., h3 = 7− 2 = 5. After that, in allocation phase, the RSU maps the time slot T3 to a
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relay vehicle Vc by using Eq.(4.31) as follows,

Gij = maxVi∈Vr,Tj∈T ((ha, hb, hc)(h1, h2, h3))

Gij = maxVi∈Vr,Tj∈T ((1, 3, 4)(1, 2, 5))

Gc3 = (hc = 4, h3 = 5)

Then, the RSU A excludes the assigned time slot and the relay vehicle as aforemen-

tioned. After that, the RSU recomputes bidding phase, and it maps the time slots T1, T2 to

relay vehicles Vb and Va, respectively. At the end, mappings from the time slots to relay

vehicles are as follows: (Va, T2), (Vb, T1), and (Vc, T3).

4.3 RSU-assisted relay scheduling

When the RSU A completes relay scheduling in forward direction, it initiates I2I commu-

nication to next RSU B which is present in the moving direction of the target vehicle. Then,

the RSU B obtains a set of parameters {t0, v0, H ′} from RSU A via back-haul wired link.

Here, t0 is the arrival time of V0 at the reference point O, v0 is the velocity of V0 and H ′ is

the residual data after performing forward relay scheduling as represented in eq.4.32.

H ′ = H −
∑
v∈Vr

∑
t∈T

bv,t xv,t (4.32)

After that the RSU B initiates relay selection in backward (opposite to target) direction

and schedule these relays in order to further minimize the energy consumption cost of the

RSUs and end-to-end delay to the target vehicle. The RSU B also follows variable bit-rate

transmission during the downlink communication to the relay vehicles.

4.3.1 Backward relay selection

Set of all vehicles in RSU B coverage region is denoted as V ′, when the target vehicle V0

leaves RSU A at time tk = t0+2R/v0. Suppose a vehicle Vy ∈ V ′ with a velocity vy enters

into RSU B at a time ty. Then, at time t0, the distance between the reference point O and
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Vy can be derived as,

dy(t0) =


U + 4R + (ty − t0)vy, if ty > t0

U + 4R− (t0 − ty)vy, if t0 ≤ ty

(4.33)

When V0 leaves RSU A at time tk = t0 + 2R/v0, the distance between O and Vy is,

dy(tk) = dy(t0)− (2R/v0)vy (4.34)

and the distance between V0 and Vy is,

W ′ = dy(tk)− 2R (4.35)

The time (i.e., Time-to-Contact) it takes a vehicle Vy to establish a communication link

with V0 is,

∆Cy =
W ′ −Rv

v0 + vy
(4.36)

Recall that the set of time slots is T and the remaining time to contact the target when the

relay Vy is selected at time t ∈ T is ∆Cy,t = ∆Cy − (t− 1)δt.

The amount of time (i.e., link time) a vehicle Vy is in the radio range of V0 is,

∆Ly =


2Rv

v0+vy
, if ∆Cy,t > 0

W ′+Rv

v0+vy
, if ∆Cy,t = 0

(4.37)

The remaining time (i.e., sojourn time) a vehicle Vy can travel in the RSU B coverage

region is derived as,

∆Sy =
W ′ − U
vy

(4.38)

Therefore, the set of relay vehicles V ′
r in RSU B (i.e., backward direction) is defined as,

V ′
r = {Vy ∈ V ′|min(∆Ly,∆Sy) ≥ δt ∧By > 0} (4.39)
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4.3.2 Auction-based RSU-assisted relay scheduling

Upon identifying the set of relay vehicles V ′
r , the RSU B finds an energy efficient schedule

for these vehicles in T time slots. By following the principles of Auction Theory[19], the

RSU B assists RSU A to forward the residual data H ′ to the target vehicle while satisfying

the constraints of energy consumption and end-to-end delay. Similar to the auction process

described in section 4.2.2, the RSU B also acts as a seller and it auctions the time slots.

The relay vehicles (in backward direction) act as bidders and participate in the auction pro-

cess. Algorithm 4.3 provides auction based RSU assisted relay scheduling in a bidirectional

highway by utilizing the cooperation between the RSUs. Although these relay vehicles (ei-

ther in forward or backward direction) can only spend limited time in the target’s coverage,

the proper V2V forwarding can maximize data delivery for the target vehicle. However,

due to hardware limitations of OBUs, the V2V forwarding from the relay vehicles cannot

be performed simultaneously. In the case of simultaneous data transmissions in the same

service channel may lead to data collisions at the target vehicle and it diminishes residual

data delivery.

4.3.3 Vehicle to Vehicle (V2V) scheduling

As a solution, the target vehicle schedules V2V forwarding for its in-range relay vehicles

in the uncovered area. As aforementioned, the vehicles are installed with dual-radio OBUs

and one of its radio continuously tuned on to a service channel for receiving the basic ser-

vice messages (BSMs) from their neighbor vehicles. Where as, the second radio switches

between control channel and another service channel. In the uncovered area, all the re-

lay vehicles act as service users and broadcast their BSMs over the service channel (e.g,

SCH1), which contains vehicle identity, location, speed, direction and carrying data size.

The target vehicle acts as a service provider and it broadcasts Wave Service Advertisement

(WSA) message over control channel (CCH), which contains provider identity, a set of

in-range vehicles (neighbors), set of offered services, service channel (e.g, SCH2) where

the services are offered, user identity, etc. Based on the received BSMs in every time slot,

the target vehicle updates neighbor set and computes link time, distance to its neighboring
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relay vehicles. Then, the target vehicle schedules a neighbor relay vehicle which has more

carrying data and less link time. After that, the service provider (target vehicle) broad-

casts the WSA containing the user (selected neighbor) identity and a service channel (e.g.,

SCH2) where the V2V forwarding can be performed. This V2V scheduling of relay vehi-

cles in the uncovered area improves the overall performance of the system and maximizes

data delivered to the target vehicle.

Algorithm 4.3 RSU-assisted Relay Scheduling (RRS)

Input: T : Set of time slots, V ′
r : Set of backward relay vehicles, Vr : Set of forward relay

vehicles
Output: X: Set of mappings of time slots to relay vehicles

1: Perform forward relay scheduling using Algorithm 4.2
2: Compute remaining residual data H ′ from Eq.4.32
3: Send {t0, v0, H ′} to RSU B
4: RSU B auctions the time slots
5: RSU B receive biddings from the relay vehicles in backward direction
6: while |T | ≠ 0 ∧ |V ′

r | ≠ 0 do
7: if H ′ == NULL then
8: return X
9: else

10: Compute the bidding increment for each relay vehicle
11: Compute the bidding increment for each time slot
12: Find a suitable time slot t and relay vehicle v pair based on their highest bidding

increment values
13: Append the mapped pair (v, t) to set X
14: Update effective communication time and cooperative cache size of the relay ve-

hicle v
15: Remove time slot t from set T
16: Remove relay v from set V ′

r either if its cooperative cache is full or effective
communication time is less than the time slot duration

17: Update residual data H ′ = H ′ − bv,t
18: end if
19: end while
20: return X

4.4 Simulation results

In this section, the performance of proposed scheduling algorithms are evaluated by lever-

aging the Monte Carlo simulations [25]. The input data of vehicular traces to the scheduling
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algorithms is considered from a bi-directional highway road segment. In the highway sce-

nario, the vehicles maintain constant speed [9] and the speeds are uniformly distributed in

a range [15m/s,25m/s]. The arrival of vehicles into the highway segment follows Poisson

process with a rate λ vehicles per time slot in both directions (forward and backward).

The road segment may have multiple lanes and the vehicles moving in same direction can

overtake other vehicles without varying their speeds. For communication model, a distance

dependent based path-loss model is used in the simulation with a path-loss exponent α = 3.

This model is obtained from [24] and it assumes the downlink channel bit rates vary based

on the location of vehicle in the RSU region from 3 to 27 Mb/s. These bit rates for the

downlink communication can be derived from the RSU to vehicle distance. In this simula-

tion, the transmit power of RSU is set to 1W, channel bandwidth is 10MHz, Additive White

Gaussian Noise at the vehicle is -174dB/Hz and reference distance d0 = 1m. In addition,

the radio range of vehicles, RSUs and the uncovered area between the RSUs are assumed

100m, 1Km and 5Km, respectively.

For evaluating the proposed algorithms, a naive algorithm called First Come First Serve

(FCFS) has been considered for comparing with the proposed algorithms. In each time slot,

the FCFS schedules a vehicle with least arrival time among the vehicles in the RSU region.

Further, the proposed greedy algorithm (GA) is a variation of the known benchmark called

Nearest Fastest Set (NFS) scheduler [6] and it includes additional parameters cooperative

cache size and effective communication time of the relay vehicles. Besides, this section

evaluates the performance of the proposed algorithms in terms of average RSU energy

consumption, average end-to-end delay and residual data delivery for the vehicle arrival

rate, speed of target vehicle and co-operative cache size.

4.4.1 Impact of vehicle arrival rate (λ)

Fig. 4.3 shows the performance comparison of relay scheduling algorithms RRS, FRS,

GA and FCFS in terms of average energy consumption of RSU for different vehicle ar-

rival rates. The average arrival rate λ indicates the number of vehicles enter into the bi-

directional highway segment per time slot. From Fig. 4.3, the RRS scheduler outperforms
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Figure 4.3: RSU energy consumption and Vehicle arrival rate
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Figure 4.4: End-to-end delay and Vehicle arrival rate

other algorithms FRS, GA and FCFS. The average energy consumption of schedulers RRS,

FRS, GA except FCFS decreases with the increase of vehicle arrival rate. This is because

the RRS, FRS and GA selects suitable relay vehicles that are more close to RSU, as the

number of vehicles in the RSU coverage increases. This leads to higher bit rate trans-

missions and then the RSU energy consumption per Megabit delivery to the target vehicle

decreases. Besides, the FCFS tends to select the relay vehicles that are available more close
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Figure 4.5: Residual data delivery and Vehicle arrival rate

to the end of RSU coverage, as the number of vehicles increases in the RSU coverage. This

leads to lower bit rate transmissions and then the RSU energy consumption per Megabit

increases. For example, for λ = 0.5 with constant target speed 20 m/s and unlimited co-

operative cache size, the average RSU energy consumption by the schedulers RRS, FRS,

GA and FCFS are 1.5× 103 mW ,1.7× 103 mW, 1.8× 103 mW and 2.4× 103 mW, respec-

tively. In other words, the average energy consumption for the algorithms RRS, FRS and

GA decreases by 60.17%, 38.35% and 30.93% when compared to FCFS algorithm.

Fig.4.4 shows the performance comparison of schedulers in terms of average end-to-

end delay to the target vehicle for the vehicle arrival rate. As shown in Fig.4.4, the GA,

FRS, RRS outperform FCFS, especially the RRS outperforms other schedulers. This is

because GA, FRS and RRS schedule the relay vehicles with higher bit rate transmissions

as the vehicle arrival rate increases. Therefore, the average end-to-end delay to the target

vehicle for delivering one Megabit data decreases with arrival rate. However, the FCFS

schedules the relay vehicles close to the outer edge of RSU coverage that leads to lower bit

rate transmissions. Therefore, total amount of residual data delivered to the target vehicle

decreases and then the average end-to-end delay increases with the vehicle arrival rate. In

addition, the residual data delivery by the RRS is nearly 6.8 times the other algorithms as

shown in Fig.4.5. Although the residual data delivery of FRS is less compared to other
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algorithms, the FRS achieves lower average end-to-end delay with the aid of proper auc-

tioning process. The GA and FCFS deliver nearly same amount of residual data due to

their greedy nature, but GA outperforms FCFS. This is because FCFS takes more number

of downlink transmissions compared to GA. From Fig.4.4, it is observed that the average

end-to-end delay by the RRS is low when the uncovered area in between the RSUs is not

more than 5Km. Note that the increased uncovered area degrades the performance of the

RRS algorithm. Therefore, this simulation assumes the uncovered area is constant at 5km.

For λ = 0.5, without varying target vehicle speed and co-operative cache size, the aver-

age end-to-end delay to the target vehicle by the schedulers RRS, FRS, GA and FCFS are

1.63× 104 ms, 1.67× 104 ms, 1.94× 104 ms and 2.81× 104 ms, respectively. The perfor-

mance improvement of RRS, FRS and GA over FCFS are 51.15%, 46.82% and 39.86%,

respectively.

4.4.2 Impact of target vehicle speed (m/s)
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Figure 4.6: RSU energy consumption and target vehicle speed

Fig.4.6 shows the performance comparison among RRS, FRS, GA and FCFS in terms

of average RSU energy consumption for the target vehicle speed. As shown in Fig.4.6,

the RRS, FRS and GA outperform FCFS. Especially, FCFS reduces average energy con-

92



CHAPTER 4. AUCTION BASED ENERGY-EFFICIENT COOPERATIVE RELAY SCHEDULING IN BIDIRECTIONAL HIGHWAY SCENARIOS Section 4.4

17 18 19 20 21 22 23

1.5

2

2.5

3

3.5

4

4.5
·104

Target vehicle speed (m/s)

E
nd

-t
o-

en
d

de
la

y
(m

s)
pe

rM
eg

ab
it FCFS

GA

FRS

RRS

Figure 4.7: End-to-end delay and target vehicle speed
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Figure 4.8: Residual data delivery and target vehicle speed

sumption and FRS, GA increases average energy consumption as the target vehicle speed

increases. This is because, with increased target vehicle speed, the number of relay ve-

hicles available in the RSU region decreases. As a result, the FCFS tends to select the

relay vehicles away from (not close to) the end of RSU coverage, then RSU to relay dis-

tance decreases and it improves average energy consumption. In case of GA and FRS,

these schedulers tend to select relay vehicles away from (not close to) the RSU with the
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decreased number of relay vehicles in the RSU coverage. In this comparison, the vehicle

arrival rate is constant at λ = 0.5 with unlimited cooperative cache size. For example,

when the target vehicle speed is 20 m/s, the average energy consumption per one Megabit

delivery to the target vehicle by the schedulers RRS, FRS, GA and FCFS are 1.5 × 103

mW, 1.7 × 103 mW, 1.8 × 103 mW and 2.4 × 103 mW, respectively. Thus, for this case,

the average energy consumption for the algorithms RRS, FRS and GA when compared to

FCFS decreases by 60.93%, 37.24% and 30.71% , respectively.

Fig. 4.7 shows the performance comparison among the schedulers RRS, FRS, GA and

FCFS in terms of average end-to-end delay for the target vehicle speed. As shown in Fig.

4.7, the RRS and FRS outperform GA and FCFS, especially RRS performs better com-

pared to other schedulers. This is because the time required by relay vehicles (in backward

direction) to reach the target vehicle decreases with the increasing target vehicle speed. In

addition, residual data delivery by the RRS is nearly 6.3 times when compared to other

algorithms as shown in Fig. 4.8. From Fig.4.7, it is observed that the FRS performs better

when the target speed is lower than its average speed. This is due to the target vehicle mov-

ing slowly and then the time required by the relay vehicles (in forward direction) to reach

the target decreases. For example, at target speed 23 m/s, the average end-to-end delay

for the RRS, FRS, GA and FCFS are 1.47 × 104 ms, 1.71 × 104 ms, 1.93 × 104 ms and

2.27×104 ms, respectively. The average end-to-end delay from RRS decreases by 74.46%,

19.85% over FCFS and GA, respectively.

4.4.3 Impact of co-operative cache (Bv)

Fig.4.9 shows the performance comparison among the scheduling algorithms RRS, FRS

GA and FCFS in terms of average RSU energy consumption for different co-operative

cache sizes of the relay vehicles. In this case, the average energy consumption increases

with the increased size of the cooperative cache. This is because the relay vehicles with

larger cache can participate in more number of downlink communications while they move

close to the end of RSU coverage. Therefore, the average amount of data transmission

per time slot decreases, and then it increases the average RSU energy consumption per
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Figure 4.9: RSU energy consumption and Co-operative cache
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Figure 4.10: End-to-end delay and Co-operative cache

one megabit data delivery to the target vehicle. However, the proposed scheduler RRS

outperforms other algorithms FRS, GA and FCFS in terms of average energy consumption.

Here, the algorithms are compared by taking constant arrival rate 0.5 and target’s speed 20

m/s. For example, when the cache size is 100Mb, the average energy consumption by the

schedulers RRS, FRS, GA and FCFS are 1.39× 103 mW, 1.71× 103 mW, 1.83× 103 mW

and 2.42× 103 mW, respectively. Meanwhile, the performance improvement for RRS over
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Figure 4.11: Residual data delivery and Co-operative cache

FRS, GA and FCFS are 72.08%, 30.91% and 22.63%, respectively.

Similarly, Fig.4.10 shows performance comparison of algorithms in terms of average

end-to-end delay for different cache sizes of the relay vehicles. In this case also, the end-to-

end delay per one megabit delivery will be much higher in FCFS when compared to other

proposed algorithms. This is because that the FCFS selects relay vehicles that are more

close to the end of RSU coverage. Therefore, the average amount of data transmission by

FCFS per time slot is less compared to other algorithms, and then it increases the end-to-

end delay per one mega bit data delivery. The performance improvement of RRS, FRS

and GA over FCFS are 36.28%, 68.92% and 73.74%, respectively. In addition, Fig.4.9 and

Fig.4.10 shows the standard deviation for multiple runs of the simulation. It is observed that

the standard deviation for FCFS is more compared to other proposed algorithms, especially

RRS shows more stable performance irrespective of co-operative cache sizes of the relay

vehicles. However, the increased cache size of relay vehicles increases the residual data

delivery to target vehicle as shown in Fig.4.11. When the cache sizes are in the range

[25Mb,150Mb], it is observed that the proposed RRS scheduler delivers residual data nearly

4.5 times on average compared to other schedulers. In conclusion, although increased cache

sizes perform lower in terms of average energy consumption and end-to-end delay, but it

increases the data delivery for the target vehicle.
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4.5 Summary

In this chapter, the energy efficient relay scheduling algorithms have been proposed for

faster data retrieval to the target vehicle in the uncovered area. The proposed model se-

lects the relay vehicles in a bidirectional highway by considering the minimization of RSU

energy consumption and end-to-end delay to the target vehicle. The downlink (RSU to

vehicle) channel uses variable bit-rate data transmission and the vehicle arrivals follow in-

dependent Poisson stream. The relay scheduling problem has been formulated and proved

its NP hardness. By applying the concepts of Auction Theory, the RSU or seller optimally

schedule the relay vehicles or bidders, based on the bids received from bidders. The bid-

ders use local information such as location, speed, cooperative cache size, direction, time

required to reach target vehicle, etc, and participate in Auctioning process. The proposed

Auction-based RRS algorithm utilizes the neighboring RSU cooperation and schedules the

relay vehicles driving in both directions that can maximize the data delivery to the target

vehicle. Extensive simulations show that the proposed RRS algorithm performs better com-

pared to FCFS, GA and FRS in terms of average RSU energy consumption and end-to-end

delay to the target vehicle. For the case of vehicle arrival rate 0.5 and target speed 20 m/s,

improvement of RRS over FCFS, GA, and FRS is 60.17%, 22.27% and 15.69% in terms

of average RSU energy consumption, respectively.

In next chapter, to address the buffering delays at RSU, a trade-off between energy

consumption and buffering delay is investigated while improving the data delivery between

neighboring RSUs.
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Chapter 5

Delay-aware Energy Efficient Dynamic

Relay Scheduling in Isolated Vehicular

Infrastructure

In highway locations, uncovered areas have been created due to deployment cost and lim-

ited radio range of RSUs. It has been observed that some of the RSUs deployed in isolated

rural highway locations connect to neither grid power nor other RSUs. Therefore, such

isolated RSUs (i.e., source RSUs) are equipped with rechargeable batteries and depend on

energy harvesting technologies[13]. Moreover, the source RSU is responsible for gather-

ing the tasks (stored into finite buffers) generated by the applications running in that source

RSU region. The tasks waiting in buffer of source RSU need to be offloaded to a nearby

destination RSU (which connects to high-end computation server and direct grid power) via

store-carry-forward vehicles or relays. A mechanism is necessary to determine the mini-

mum amount of power required to reduce the buffering delays at the RSU.

In this chapter, an energy-limited and isolated source RSU has been considered to store

the task data (in finite buffers) before it forwards to destination RSU through relay vehicles

via I2V communication. On the other hand, the vehicles are assumed to have different

speeds, but each vehicle maintains constant speed in the highway segment[6]. However, it

poses some challenges to design a good relay vehicle scheduling algorithm in such a dy-

namic scenario. First, the source RSU does not have control over the arrival of task data,
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and this may lead to continuous increase of buffer back-log size referred as buffer insta-

bility. Second, RSUs equipped with rechargeable batteries have limited storage capacity,

consequently an efficient power allocation strategy is required for the effective utilization

of stored energy in rechargeable batteries. Third, the future arrival of vehicles are com-

pletely unknown to source RSU, then the RSU needs to schedule the best possible relay

vehicles available in its coverage region at current time slot. Fourth, due to half-duplex

nature of On-Board-Units (OBUs)[132], it is a challenging issue for simultaneous V2V

forwarding and receiving of data. Therefore, this work realizes only one hop RSU-to-relay

(I2V) communication in the source RSU region. Fifth, although this kind of system toler-

ates the delivery delay to destination RSU, the tasks that are buffered in source RSU need

to be computed within their deadlines.

To address the above challenges, a delay-aware energy efficient dynamic relay schedul-

ing strategy is proposed to minimize the energy consumption of source RSU, buffering

delay at source RSU and to maximize the average data delivery to the destination RSU in

the network. Before selecting suitable relay vehicles, the proposed strategy first decides

the minimum power allocation for transmission of buffer content by observing the buffer

back-log sizes in each time slot. This dynamic power allocation technique conserves en-

ergy consumption of RSU and ensures buffer stability. Second, depending on the amount

of data to be transmitted to each vehicle via I2V communication, the proposed strategy

schedules a set of relay vehicles to maximize the average data delivery to destination RSU.

The selection criteria of relay vehicles are subjected to task deadline constraints as well.

The major contributions of this chapter is as follows.

• Present a system architecture in a bidirectional highway scenario for data sharing in

between the neighbouring RSUs. Specifically, such a system enables the RSUs to

opportunistically exploit the store-carry-forward (relay) vehicles, which is not only

enhances the data delivery to destination RSU, but also realizes balancing the trade-

off between buffer stability and energy consumption at the source RSU.

• Formulate two optimization problems namely, dynamic power allocation problem

(P1) and a relay scheduling problem (P2). First, P1 objective is to minimize the
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energy consumption of source RSU subject to satisfy the buffer stability and energy

level in the rechargeable batteries. Second, P2 objective is to maximize the data

delivery to destination RSU subject to satisfy task deadlines. In particular, it aims to

best exploring the data sharing services in source RSU via I2V communication and

in destination RSU via V2I communication, respectively.

• Propose a Lyapunov optimization based Dynamic Power Allocation (LDPA) algo-

rithm (Section 5.2.1), which allocates minimum power required for the transmission

of buffer content by observing the buffer back-log size and channel gain. Further-

more, a Max-weight Relay Vehicle Scheduling (MRVS) algorithm (Section 5.2.1)

has been proposed to select the relay vehicles based on their speed, location and

achievable data rates. In particular, it is observed that the combination of LDPA and

MRVS improves the efficacy of the system in-terms of buffer stability, network life

time and data delivery.

The organization of remaining sections of this chapter is as follows. Section 5.1 presents

system architecture and dynamics of buffering model, energy harvesting and consumption

models. Section 5.2.1 and 5.2.2 describe the problem formulation and proposed algorithms

for dynamic power allocation and relay scheduling problems, respectively. Section 5.3

presents experimental results in comparison to different parameters including vehicle ar-

rival rate, vehicle speed and task arrival rate. Section 5.4 summarises the work in this

chapter.

5.1 System Model and Dynamics

Fig.5.1 shows the deployment of source RSU and destination RSU separated by a distance

D in highway locations. These RSUs are not connected via either direct wired back-haul

links or wireless links. The distance between these neighboring RSUs is more than their

communication region R, i.e., D >> 2R. Generally, very few RSUs in rural highway lo-

cations are connected to wired grid power and such RSUs also equipped with edge servers

with sufficient computation capabilities, referred to as destination RSUs. But, most of the
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Figure 5.1: Intermittently deployed roadside units in bidirectional rural highways

remaining RSUs are isolated and they do not have direct wired power. Such an isolated

RSU depends on renewable energy and acts as a source RSU to gather the task data gen-

erated by user applications running in that source RSU region. The gathered task data is

buffered at source RSU before transmitted to destination RSU via store-carry-forward (re-

lay) vehicles which move in the direction of destination RSU. A set of N = {1, 2, ..., N}

user applications is assumed to run in the source RSU region. The tasks generated by ith

application have specific computation deadline di. The results computed at the destination

RSU are expected to relay back to source RSU within the specified computation deadline.

Sufficient computation capabilities of edge server realizes computing and buffering delays

incurred at the destination RSU as negligible in this model.

The detailed description of notations mentioned in this chapter is given in Table 5.1.

5.1.1 Task data arrival and buffering model

The system time is divided into a discrete set of time slots τ ∈ {0, 1, 2, ...} where each time

slot is of equal length δt. The arrival process of task data Ai(τ) from a user application i

to the source RSU are distributed independently and identically in each time slot τ . The

set of arrived task data is denoted as A(τ) = {A1(τ), A2(τ), ..., Ai(τ), ..., AN(τ)}. The

arrived data Ai(τ) from application i is stored in a corresponding ith buffer which has a

back-log size Bi(τ) at time slot τ . The set of buffer back-log sizes at the source RSU

represents B(τ) = {B1(τ), B2(τ), ..., Bi(τ), ..., BN(τ)}. The dynamics of ith time variant

buffer associated with the source RSU in each time slot τ is represented as follows,
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Table 5.1: Notations and Descriptions

Notation Description
D Distance between source and destination RSUs
R Radio coverage of RSUs
N Number of user applications (or) buffers (or) channels
i Index i refers to ith application or ith buffer or ith channel
j Index refers to vehicle
di Deadline of tasks generated by ith application
τ Time slot of duration δt
Ai(τ) Task data (in bits) arrives to ith buffer in time slot τ
Bi(τ) Back-log size (in bits) of ith buffer in time slot τ
B(τ) Vector of N buffer back-log sizes
Ci(τ) Task data (in bits) transmitted from ith buffer at time slot τ
δt Duration of time slot τ
rij(τ) Data rate over channel i to vehicle j at time τ
Gij(τ) Power gain of channel i when assigned to vehicle j at τ
W Bandwidth of any channel
Dj(τ) Distance between source RSU and vehicle j at time τ
V (τ) Set of all vehicles in the source RSU region at time τ
Pi(τ) Power allocated to transmit task data over channel i at time τ
P (τ) Total power consumption of source RSU at time τ
He(τ) Energy harvested at time slot τ
L(τ) Energy level of battery at time τ
P tx
max Maximum transmit power allocates to each channel

V Control parameter for power allocation and buffer stability
xij(τ) Decision variable refers assignment of channel i to vehicle j

Bi(τ + 1) = max{Bi(τ)− Ci(τ), 0}+ Ai(τ), ∀i, ∀τ (5.1)

where Bi(τ) is the buffer back-log size that counts the task data (in bits) stored in ith

buffer at time slot τ , Ci(τ) is the departure process (observed from Eq. 5.5) that represents

downlink transmission rate (in bits) from ith buffer in source RSU to a selected relay ve-

hicle j at time slot τ , and Ai(τ) is the arrival process that denotes received task data (in

bits) to ith buffer in source RSU at time slot τ . It can be observed that, Bi(0) = 0 denotes

an initial condition of empty buffer at the first time slot τ = 0. In addition, the average

back-log size of the buffers is represented in equation (5.2), and consider that the buffers

are stable when their average back-log size B(τ) at time slot τ is bounded[133], and it is
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given as,

B(τ) = lim
T→∞

1

T

T−1∑
τ=0

N∑
i=1

E{Bi(τ)}, ∀τ (5.2)

5.1.2 Communication and energy consumption model

Task data stored in each buffer are transmitted to a selected vehicle in the source RSU

region. The data transmission follows FIFO (First-In-First-Out) order in the buffers. More-

over, it is assumed that the number of orthogonal channels available for data transmission

is equal to number of buffers. Note that the index i is used to refer both channel i and

its corresponding ith buffer. Data rate (i.e., rij(τ)) over channel i to a vehicle j at a time

slot τ depends on two factors: 1) the channel power gain Gij(τ) because it is a function

of distance Dj(τ) between RSU to vehicle j 2) the transmit power Pi(τ) allocated to the

channel i at time slot τ .

The source RSU calculates the distance to vehicles available in that RSU region. When

a vehicle j arrives into an RSU region, the vehicle informs its arrival time tj and velocity vj

to the RSU. It is assumed the velocity of vehicles is constant in the highway scenarios[12].

Therefore, the distance Dj(τ) from RSU to vehicle j in time slot τ is derived as,

Dj(τ) = R− (δt τ − tj) vj, ∀τ (5.3)

Furthermore, the set of vehicles present in the source RSU region in each time slot τ

can be denoted as

V (τ) = {j | |Dj(τ)| ≤ R and tj ≤ δt τ}, ∀j (5.4)

Moreover, the task data (in bits) transmitted over channel i to vehicle j at time slot τ is

defined as,

rij(τ) = W log2

(
1 +

|Gij(τ)|2 Pi(τ)

N0

)
, ∀i, ∀j,∀τ

Ci(τ)
∆
= rij(τ) δt, ∀i, ∀j,∀τ

 (5.5)

where W is the allocated bandwidth for each channel and N0 is the background noise
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power. However, total power consumption of the source RSU at time slot τ is represented

as τ as P (τ) =
∑N

i=1 Pi(τ).

5.1.3 Battery capacity and energy harvesting model

The source RSU is equipped with energy harvesting devices to capture the energy from

alternative sources e.g., solar, wind, etc. The He(τ) is the harvested energy captured and

stored in the battery during a time slot τ . It is assumed that He(τ) values are i.i.d with a

maximum value of Hmax
e (τ) and is defined as[134],

0 < He(τ) ≤ Hmax
e (τ), ∀τ (5.6)

The energy harvested in all the previous time slots can be used for transmission of data

in current time slot. Energy level of the battery in a time slot τ is denoted as L(τ) and the

bounds on amount of battery discharge in each time slot is represented as,

Lmin(τ) ≤ L(τ) ≤ Lmax(τ), ∀τ (5.7)

where Lmin(τ) and Lmax(τ) are the minimum and maximum energy that can be consumed

respectively by the source RSU in a time slot τ .

As aforementioned, the total energy consumption for data transmission in a time slot τ

is P (τ), but P (τ) is constrained by the energy level of battery as,

0 < P (τ) ≤ L(τ), ∀τ (5.8)

Furthermore, the energy level in the battery in the next time slot can be computed as

follows,

L(τ + 1) = min{L(τ)− P (τ) +He(τ), Lmax(τ)}, ∀τ (5.9)

where Lmax(τ) is the maximum capacity of battery at time slot τ .
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5.2 Problem Formulation and Energy Efficient Dynamic

Scheduling of Relay Vehicles

This section presents a dynamic power allocation scheme for source RSU using Lyapunov

optimization technique (refer section 5.2.1), and the assignment of relay vehicles to down-

link channels while maximizing the task data delivery to destination RSU (refer section

5.2.2).

5.2.1 Decision making on power allocation

The problem P1 is formulated to minimize the running time averages of RSU power con-

sumption while it seeks to stabilize the queuing buffers in each time slot τ . If the buffer is

not stable, then the buffer back-log size can grow continuously when the downlink trans-

mission rate is not more than the data arrival rate of the buffers. From Eq.5.5, the transmis-

sion rate is a function of power consumption of RSU. The higher transmission rate incurs

more power consumption and the buffers are also stable. The lower transmission rate needs

low power consumption that conserves the energy but the buffers are not stable. Therefore,

It is required to optimize the RSU power consumption based on the buffer backlog size.

Here, an indicator variable xij(τ) is considered to be equal to 1 when buffer i is chosen to

transmit to vehicle j over channel i, otherwise xij(τ) is zero.

The formulation of problem P1 is as follows,

P1 : minimize
xij(τ)

lim
T→∞

1

T

T−1∑
τ=0

N∑
i=1

E{Pi(τ)} (5.10)

s.t. (5.6), (5.7) (5.11)

0 ≤ Pi(τ) ≤ P tx
max, ∀i, ∀τ (5.12)

N∑
i=1

Pi(τ) ≤ L(τ), ∀i, ∀τ (5.13)

lim
τ→∞

E{|B(τ)|}
τ

= 0, ∀τ (5.14)

The objective function in (5.10) represents the minimization of running time averages of
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power consumption of source RSU in each time slot τ . The constraint (5.11) denotes the

limitation on the harvested energy and battery discharge capacity in each time slot τ . The

constraints (5.12) represents the upper bound on transmit power (where P tx
max is maximum

transmit power). The constraint (5.13) gives that total power consumption of source RSU

and it is not more than the energy level of battery in each time slot τ . The buffer stability

constraint in (5.14) is considered by setting the buffering rate equals to zero.

A closed-form expression is derived for downlink transmission rate only by investigat-

ing the stability of the buffer. Let B(τ) be a vector of buffer back-logs. Then, a quadratic

Lyapunov function has been defined as a scalar measure of buffer back-logs[93], given as

L(B(τ))
∆
=

1

2
BT (τ)B(τ) =

1

2

N∑
i=1

Bi(τ)
2 (5.15)

where BT (τ) represents the transpose of B(τ). To consistently maintain lower congestion

in the buffers, Eq. 5.1 has been used to compute bound on the difference in Lyapunov

function from current to next time slot,

L(B(τ + 1))− L(B(τ))

=
1

2

N∑
i=1

[Bi(τ + 1)2 −Bi(τ)
2]

=
1

2

N∑
i=1

[(max{Bi(τ)− Ci(τ), 0}+ Ai(τ))
2 −Bi(τ)

2] (5.16)

Since (max{Bi(τ)− Ci(τ), 0} + Ai(τ))
2 ≤ (Bi(τ)− Ci(τ) + Ai(τ))

2 [135], then (5.16)

can be represented as,

L(B(τ + 1))− L(B(τ)) ≤
N∑
i=1

[Ai(τ)
2 + Ci(τ)

2]

2

−
N∑
i=1

Ai(τ) Ci(τ) +
N∑
i=1

Bi(τ)[Ai(τ)− Ci(τ)] (5.17)

Let ∆(B(τ)) be a conditional Lyapunov drift which can keep the buffers stable. The drift
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in the time slot τ is denoted as,

∆(B(τ))
∆
= E{L(B(τ + 1))− L(B(τ))|B(τ)} (5.18)

According to (5.18), the drift in time slot τ can be expressed as,

∆(B(τ)) ≤ E

{
N∑
i=1

{ [Ai(τ)
2 + Ci(τ)

2]

2
− Ai(τ) Ci(τ)

}∣∣∣B(τ)

}

+E

{
N∑
i=1

Bi(τ)[Ai(τ)− Ci(τ)]
∣∣∣B(τ)

}
(5.19)

For all τ , the first term on the right hand side of (5.19) is finite because of the bound on

the maximum value of Ci(τ). Let Z be a finite constant and Z > 0 to express the above

inequality as follows,

∆(B(τ)) ≤ Z+ E

{
N∑
i=1

Bi(τ)[Ai(τ)− Ci(τ)]
∣∣∣B(τ)

}
(5.20)

where

E

{
N∑
i=1

{ [Ai(τ)
2 + Ci(τ)

2]

2
− Ai(τ)Ci(τ)

}∣∣∣B(τ)

}
≤ Z

The proposed dynamic algorithm for determining the downlink transmission rate over each

time slot τ , is designed by observing the buffer back-log size Bi(τ) and then deciding

the power allocation Pi(τ). Rather than minimizing only the drift ∆(B(τ)), the dynamic

algorithm minimizes the bound on E{P (τ)|B(τ)} + V∆(B(τ)) (i.e., drift-plus-penalty),

where the constant V ≥ 0 is a parameter to control the trade-off existing between buffer

stability and power allocation. Intuitively, large values of V emphasizes more on buffer

stability but it consumes more power. Small values of V leads to less power consumption

but there is possibility that the buffer become unstable.

Therefore, the proposed algorithm minimizes the bound on drift-plus-penalty, which

can be expressed as follows,
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E{P (τ)|B(τ)}+ V ∆(B(τ)) ≤ Z + E

{
N∑
i=1

Pi(τ)
∣∣∣B(τ)

}
+

V E

{
N∑
i=1

Bi(τ)[Ai(τ)− Ci(τ)]
∣∣∣B(τ)

}
(5.21)

According to the concept of opportunistic minimization of expectation [93], the expres-

sion (5.21) can be minimized by minimizing the values inside the expectation. Therefore,

the proposed algorithm accomplishes the expression (5.21) by minimizing,

N∑
i=1

Pi(τ) + V
N∑
i=1

Bi(τ)[Ai(τ)− Ci(τ)] (5.22)

From (5.5), the downlink transmission rate Ci(τ) can be substituted in (5.22). More-

over, it is observed that the expression (5.22) is clearly separable for each channel i [136],

and it is a function of power allocation Pi(τ) as follows,

F(Pi(τ))
∆
= Pi(τ) + V Bi(τ)Ai(τ)−

V Bi(τ)W log2

(
1 +
|Gij(τ)|2 Pi(τ)

N0

)
(5.23)

where the product of buffer back-log size Bi(τ) and arrival rate Ai(τ) is constant since the

arrival rate is independent of power allocation.

It is clear that the function F(Pi(τ)) depends on power allocation decision in each

time slot τ . The minimum power required to allocate for each channel i can be obtained by

setting the derivative of the objective function in (5.23) equal to 0 (i.e., ∂
∂Pi(τ)

{F(Pi(τ))} =

0)[137] and constant 1/ ln 2 ≈ 1.44, as

Pi(τ) ≈ 1.44 V Bi(τ)W −N0/|Gij(τ)|2 (5.24)

Re-substitute the derived minimum power allocation Pi(τ) into (5.5). Then, the possible

downlink transmission rate rij(τ) which can be used as an input argument to the Max-
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Weight downlink relay scheduling problem P2.

Algorithm 5.1 LDPA: Lyapunov based dynamic power allocation for wireless channels in
a time slot
Input parameters:

• V : parameter indicates power-delay trade-off

• W : bandwidth of each wireless channel

• N : number of wireless channels

• τ : current time slot

Dynamic power allocation:
1: Initialize i = 1, j = 1
2: Find a set of vehicles V (τ) in source RSU region at time slot t using eq. (5.4)
3: Choose trade-off value V to adjust the power Pi(τ)
4: while i ≤ N do
5: while j ≤ |V (τ)| do
6: Observe Bi(τ),Gij(τ), N0

7: Make a decision on power allocation Pi(τ): Pi(τ) ≈ 1.44 V Bi(τ)W −
N0/|Gij(τ)|2

8: Substitute Pi(τ) in eq. (5.5) and obtain downlink transmission rate rij(τ)
9: j← j+1

10: end while
11: i← i+1
12: end while

Based on the above discussion, this work proposes an energy efficient dynamic power

allocation algorithm (Algorithm 5.1) to make a decision on power allocation for each chan-

nel i when it is assigned to a vehicle j ∈ V (τ). The algorithm can be described as follows:

Given the input parameters V,N andW , for each channel i, the source RSU (i) observes the

corresponding ith buffer back-log size Bi(τ), channel gain Gij(τ) and noise N0 (ii) com-

putes the power allocation Pi(τ) from eq. (5.24) (iii) obtains the downlink transmission

rate rij(τ). The Algorithm 5.1 runs in each time slot τ for allocating minimum transmis-

sion power while satisfying the constraint on buffer stability. Moreover, the computational

complexity for determining the amount of power allocation in the algorithm is as O(1).
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5.2.2 Max-weight scheduling of relay vehicles

The problem P2 aims to maximize the downlink transmission of task data (in bits) to suit-

able relay vehicles which satisfy the constraints on task deadline and distance to RSU at a

time slot τ . The formulation of problem P2 is as follows,

P2 : maximize
xij(τ)

N∑
i=1

V (t)∑
j=1

Mij(τ) xij(τ) (5.25)

s.t.
V (τ)∑
j=1

xij(τ) ≤ 1,∀i (5.26)

N∑
i=1

xij(τ) ≤ 1, ∀j (5.27)

D−R +Dj(τ)

vj
+

D− 2R

vavg
≤ xij(τ) di, ∀i, ∀j (5.28)

Dj(τ) ≤ R, ∀j (5.29)

xij(τ) ≤ 1, ∀i,∀j (5.30)

xij(τ) ∈ {0, 1}, ∀i,∀j (5.31)

where xij(τ) is a decision variable denotes the assignment of downlink channel i to a relay

vehicle j ∈ V (τ) at a time slot τ if xij(τ) is set to 1. Otherwise, xij(τ) is set to 0.

The aim of objective function in (5.25) is to maximize the summation of weights of

edges between the downlink channels and relay vehicles. The weight of each edge is de-

fined as,

Mij(τ)
∆
= Bi(τ) rij(τ) δt, ∀i, ∀j (5.32)

whereBi(τ) denotes ith buffer back-log size and rij(τ) denotes downlink transmission rate

(in bits) when a channel i assigned to a relay vehicle j ∈ V (τ). Moreover, the constraints

(5.26) and (5.27) ensure the one-to-one assignment of channels to relay vehicles. The con-

straint (5.28) ensures that the sum of travel time of relay vehicle j to reach the destination

RSU and time required for the computation reply to reach the source RSU should not ex-

ceed the deadline di of tasks associated to ith buffer. It assumes the average speed of a

vehicle (which carries computation reply) from destination RSU to source RSU as vavg,
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and ignores the computation delay at the destination RSU. The constraint (5.29) restricts

the selection of a vehicle as relay vehicle when it is outside the RSU region. Further, (5.30)

and (5.31) represents the integer constraints.

To find the optimal scheduling decision for the problem P2, the algorithms are required

to run in exponential computation time. For this problem, the scheduling decision of as-

signing the relay vehicles to down link channels can be viewed as a special case of 0/1

multiple knapsack problem[138], which is a well-known NP-hard problem. Therefore, a

greedy heuristic based relay vehicle scheduling algorithm is proposed for obtaining the

sub-optimal solution to the problem P2. The proposed greedy algorithms select the edges

(between relay vehicles and downlink channels) with maximum weights in each time slot

τ is described in Algorithm 5.2.

Algorithm 5.2 MRVS: Max-weight Relay Vehicle Scheduling algorithm

Input: Set of weights is E = {Mij(τ)}, where i ∈ {1, ..., N}, j ∈ {1, ...,
∣∣V (τ)

∣∣}, t ←
current time slot

Output: Schedule matrix X
1: Sort elements of E such that e1 ≥ e2 ≥ ... ≥ e|E|, where ek ∈ E
2: for i = 1 to N do
3: for j = 1 to

∣∣V (τ)
∣∣ do

4: X[i][j] = 0; /* initialization*/
5: end for
6: end for
7: for k = 1 to|E| do
8: i, j ← ek /* store associated indices of element ek */
9: if

(
Sum[rowi(X)] > 0

)
or

(
Sum[columnj(X)] > 0

)
then

10: go to step 7;
11: else if vehicle j satisfy eq.(28) and eq.(29) then
12: X[i][j] = 1; /* Schedule the vehicle j as a relay*/
13: else
14: X[i][j] = 0;
15: end if
16: end for
17: return X

In detail explanation for the Algorithm 5.2 is as follows: given the input set E having

the elements as edge weights computed from the Eq. (5.32), the set E is sorted in the

decreasing order of edge weights. Initially, a scheduling matrix X is considered and its

elements are initialized to zero. From line 7, the algorithm iterates over each element of
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sorted set E and then applies the constraints for the selection of current element. Each

element ek ∈ E has associated indices that represents ith channel and jth relay vehicle.

The condition given in line 9 verifies whether both ith channel and jth vehicle are un-

assigned or not. Here, Sum[rowi(X)] and Sum[columnj(X)] denotes the summation of

elements in ith row and summation of elements in jth column of X , respectively. Further,

line 11-15 represents the assignment of jth vehicle to ith channel if the vehicle j satisfies

the task deadline constraint and distance to RSU constraint shown in line 11. Finally, the

proposed greedy algorithm produces matrix X to denote the near optimal assignment of

channels to relay vehicles. The computational complexity of the proposed algorithm is as

O(N logN).

5.3 Experimental Analysis

This section presents experimental analysis of proposed algorithms in terms of buffering

performance (refer to 5.3.1) and scheduling performance (refer to 5.3.2).

For simulation settings, the neighbouring RSUs are deployed in a bidirectional highway

segment and are separated by a distance 4000m. The communication range of each RSU is

1000m. The vehicles entering into source RSU region follow Poisson process with mean

rate of arrival λ = 1. The speeds of vehicles are suppose to be distributed uniformly in

a range [12m/s, 28m/s] such that the faster vehicles can overtake slower vehicles. In this

simulation, the communication model uses parameters specified in [24] where the downlink

bit rates vary from 3 to 27 Mb/s, maximum transmit power is 1W, bandwidth of channel is

10MHz and the noise at the relay vehicle is -174dBm/Hz. Furthermore, considering simple

simulation criteria, the number of buffers associated with the source RSU is assumed as

ten (i.e., N = 10). The number of task arrivals are considered as Poisson stream with a

mean arrival of 1000 tasks in each time slot, and the length (in bits) of each task is chosen

as 1024 bits. The computation deadlines of tasks are in the range 200 sec ∼ 300 sec. The

simulation runs on a desktop system with 3.40GHz Intel core i7 CPU, 3.7 GiB of RAM,

64-bit ubuntu 16.04 LTS operating system with Python 2.7.12 for simulator development.

Different scheduling algorithms are evaluated using Monte Carlo simulations over 100 time
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slots over 1000 iterations.

The performance of proposed LDPA is evaluated in terms of normalized buffering de-

lay. The combined effect of LDPA and MRVS is analysed in terms of average buffer

back-log size, normalized network life time and average data delivery.

5.3.1 Buffering performance
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Figure 5.2: Buffering delay for control parameter V

To evaluate the buffering performance in the proposed model, the stochastic buffering is

simulated using Lyapunov based dynamic power allocation (LDPA) for different V values

1, 5 and 10 entitled as V 1, V 5 and V 10 respectively. In addition, this LDPA based stochas-

tic buffering is then compared with a Static power allocation method. This Static method

allocates fixed transmit power which is an average of maximum and minimum transmit

powers. Figure 5.2 shows simulation results of dynamic power allocation for different V

113



CHAPTER 5. DELAY-AWARE ENERGY EFFICIENT DYNAMIC RELAY SCHEDULING IN ISOLATED VEHICULAR INFRASTRUCTURE Section 5.3

values compared to static power allocation. In Fig. 5.2, normalized buffering delay (where

maximum delay is set to 2) is shown on x-axis and cumulative distributive function of delay

is given on y-axis. It is observed that the median values of normalized buffering delays for

V 10, V 5, V 1 and Static are 0.156, 0.212, 0.642 and 1.082, respectively. Moreover, dy-

namic power allocation for V = 10 gives minimum buffering delay with maximum buffer

stability. However, the Static power allocation method does not perform well when com-

pared to the dynamic power allocation.

5.3.2 Scheduling performance

This section presents the performance evaluation of the proposed Max-weight Relay Vehi-

cle Scheduling (MRVS) algorithm when augmented with dynamic power allocation (LDPA)

algorithm. The performance of proposed MRVS is evaluated in terms of following param-

eters.

• Average buffer back-log size denotes the amount of task data (in bits) buffered for

transmission per time slot. With this evaluation parameter, it is possible to asses

buffering delay and stability performance of the buffers.

• Normalized network life time denotes the normalized time duration (where maximum

time is set to 48 hours) in which the source RSU available for the operations of

scheduling and data transmission.

• Average data delivery denotes the average amount of task data (in bits) to be trans-

mitted to destination RSU per time slot.

Furthermore, the proposed scheduling algorithm MRVS has been compared with four

scheduling algorithms namely,

• First Come First Serve (FCFS) selects a relay vehicle which has lowest arrival time

and present in the source RSU region at each time slot[139].

• Fastest First (FF) selects a vehicle as relay which has highest speed among the other

vehicles in source RSU[23].
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• Rate Monotonic Scheduling (RMS) selects a vehicle as relay which spends least time

(or period) in the source RSU region[140].

• Nearest Fastest Set (NFS) selects a vehicle as relay which is fastest out of all vehicles

nearest to source RSU[18].

Similar to NFS, the proposed MRVS algorithm also selects relay vehicles (with maxi-

mum downlink bit rates) nearest to RSU. In addition, the MRVS considers the back-log size

of buffers for edge weight calculation (see Eq.5.32). Intuitively, the MRVS gives highest

priority to transmit the content from buffer with maximum back-log size to a nearest re-

lay vehicle. Therefore, the The MRVS ensures better buffer stability and data delivery with

minimum energy consumption compared to NFS. The MRVS observes 1∼2% improvement

over NFS when analysed in terms of buffer back-log size, network life time and data de-

livery for increased number of vehicles, speeds of vehicles and number of arrived tasks.

Furthermore, MRVS is compared with basic well-known algorithms like FCFS, FF and

RMS, in this section.

5.3.2.1 Effect of vehicle arrival rates

0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

1.2

1.4

1.6

·108

Vehicle arrival rate (λ)

B
uf

fe
rb

ac
k-

lo
g

si
ze

(i
n

bi
ts

)

FCFS

RMS

FF

NFS

MRVS

Figure 5.3: Vehicle arrival rate and Buffer back-log size when mean vehicle speed=20 m/s
and task arrival rate=1000 are constant.
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Figure 5.4: Vehicle arrival rate and normalized network life time when mean vehicle
speed=20 m/s and task arrival rate=1000 are constant.
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Figure 5.5: Vehicle arrival rate and data delivery when mean vehicle speed=20 m/s and task
arrival rate=1000 are constant.

Figure 5.3 shows comparison results for the scheduling algorithms MRVS, NFS, RMS,

FF and FCFS in terms of buffer back-log size for different vehicle arrival rates. The results

are obtained by varying the mean vehicle arrival rate λ form 0.1 to 1, and keeping the mean

vehicle speed and mean task arrival rate as constant at 20 m/s and 1000, respectively. Intu-

itively, the vehicle arrival rate in the source RSU region can affect the number of vehicles
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existing in that RSU region for any time instant. When number of vehicles are high, then

the likelihood of availability of a relay vehicle near to RSU increases. Consequently, the

RSU can transmit more task data to nearby relay vehicle, thereby average buffer back-log

size decreases with the increasing vehicle arrival rates. In contrast, RMS selects farthest

vehicles near to end of RSU coverage because such vehicles leave RSU quickly. With in-

creased vehicle rates the selected farthest relay vehicle receives less task data. Therefore, it

is clear that the buffer stability is high at higher vehicle arrival rates for except RMS. How-

ever, the proposed MRVS algorithm outperforms other four algorithms (NFS, RMS, FF and

FCFS). Here, the average buffer back-log size for MRVS decreases by 75.9%, 59.71% and

2.16 times when compared to FF, FCFS and RMS, respectively.

Figure 5.4 shows the performance analysis of the algorithms in terms of normalized

network life time for different vehicle arrival rates. Since, the average buffer back-log

sizes are less at higher vehicle arrival rates, the amount of power allocation (using LDPA

algorithm) of RSU for data transmission also less. Consequently, with the increased ve-

hicle arrival rates the network life time increases for the algorithms NFS, FF and FCFS,

and decreases for RMS. However the MRVS outperforms other four algorithms. This is

because, the amount of average buffered task data for MRVS is less compared to other four

algorithms. Therefore, from Fig 5.4, the network life time of MRVS increases by 37.93%,

58.62% and 68.96% when compared to FCFS, FF and RMS algorithms, respectively. Fur-

thermore, Fig. 5.5 shows the performance analysis of these algorithms in terms of average

data delivery per time slot. It is observed that the proposed algorithm outperforms other

four algorithms. Moreover, it indicates that the average data delivery of MRVS is higher by

5.83%, 7.6% and 22.3% when compared to FCFS, FF and RMS algorithms, respectively.

5.3.2.2 Effect of vehicle speeds

Figure 5.6 shows the performance comparison of MRVS, NFS, RMS, FF and FCFS algo-

rithms in terms of buffer back-log size for different mean vehicle speeds. The results are

obtained by varying the mean speed of vehicles from 12 m/s to 28 m/s, and keeping the

vehicle arrival rate and task arrival rates are constant at λ = 1 and 1000, respectively. In-

creasing the mean speed of vehicles clearly shows decrease in buffer back-log size for NFS,
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Figure 5.6: Vehicle speeds and buffer back-log size (in bits) when vehicle arrival rate λ=1
and task arrival rate=1000 are constant.
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Figure 5.7: Vehicle speeds and normalized network life time when vehicle arrival rate λ=1
and task arrival rate=1000 are constant.

FF and FCFS algorithms, except for RMS. This is because, at higher vehicle speeds, more

number of vehicles can reach the destination RSU by satisfying task deadline di = 300sec.

Consequently, there exists more number of relay vehicles in the nearby source RSU. There-

fore, source RSU transmits with higher data rates to nearby relay vehicles. Thereby the

buffer back-log sizes reduces at higher vehicle speeds. In contrast, RMS selects farthest
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Figure 5.8: Vehicle speeds and data delivery when vehicle arrival rate λ=1 and task arrival
rate=1000 are constant.

relay vehicle at the end of RSU coverage that leaves RSU first. It leads to increase of av-

erage buffer back-log size per time slot. However, the proposed MRVS outperforms other

four algorithms. The average buffer back-log sizes of MRVS decreases by 29.88%, 44.67%

and 1.6 times when compared with FCFS, FF and RMS respectively. Fig. 5.7 shows the

relative comparison of algorithms in terms of normalized network life time for different

mean vehicle speeds. Since the buffer back-log sizes are less at high vehicle speeds, the

amount of energy required by source RSU to transmit task data also reduces tremendously.

As a result, the network life time increases with the increasing vehicle speeds, except for

RMS. The normalized network life time for MRVS raises by 32.14%, 39.28% and 67.85%

when compared to FCFS, FF and RMS, respectively. Furthermore, Fig. 5.8 shows the

comparison of relative performance of algorithms in terms of average data delivery to the

destination RSU for varying speeds of vehicles. It is observed that the data delivery of

MRVS is higher by 5.57%, 7.69% and 22.35% when compared to FCFS, FF and RMS,

respectively.
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Figure 5.9: Task arrival rate and buffer back-log size when vehicle arrival rate λ=1 and
mean vehicle speed=20 m/s are constant.
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Figure 5.10: Task arrival rate and normalized network life time when vehicle arrival rate
λ=1 and mean vehicle speed=20 m/s are constant.

5.3.2.3 Effect of task arrival rate

Figure 5.9 illustrates the performance comparison of MRVS, NFS, RMS, FF and FCFS

algorithms in terms of buffer back-log size by varying task arrival rates. The results are ob-

tained by simulation with mean task arrival rates from 850 to 1150, and keeping the vehicle
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Figure 5.11: Task arrival rate and data delivery when vehicle arrival rate λ =1 and mean
vehicle speed=20 m/s are constant.

arrival rate and mean vehicle speed are constant at λ = 1 and 20 m/s, respectively. From

Fig. 5.9, it is clear that the increasing task arrival rates leads to increasing of average buffer

back-log sizes. This is because, the power allocation algorithm (LDPA) is constrained by

maximum transmit power (P tx
max). Consequently, transmission rates can not grow beyond

certain threshold, as a result, buffer back-log size increases at higher task arrival rates.

However, the proposed MRVS outperforms other four algorithms since it chooses the relay

vehicles with maximum possible transmission rate. The average buffer back-log size for

MRVS reduces by 69.91%, 85.4% and 2.76 times when compared to FCFS, FF and RMS,

respectively. Figure 5.10 illustrates the comparison of these algorithms in terms of network

life time for different arrival rates of tasks. When task arrival rate is low, the accumulation

of task data in the buffers also low. Then, the allocation of transmit power is less, and

source RSU conserves more energy for its future operations. The network life time reduces

with the increasing task arrival rates, because of growing buffer back-log sizes. However,

the proposed MRVS outperforms the other algorithms, and shows nearly 41%, 45% and

74% improvement over FCFS, FF and RMS, respectively. Furthermore, Fig. 5.11 shows

the data delivery performance of algorithms for different task arrival rates. It is observed

that the data delivery increases with the increase of task arrival rates. This is because, as
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the buffer sizes grows with the task arrival rate, the data transmission rates also increase

to keep buffers stable. Therefore, the data delivery is high at increasing task arrival rates.

However, the proposed MRVS outperforms other algorithms, and its data delivery perfor-

mance is higher by nearly 6%, 8% and 15% when compared to other algorithms FCFS, FF

and RMS , respectively.

5.4 Summary

In this chapter, an online relay scheduling algorithm has been presented for energy efficient

sharing of data in between neighbouring RSUs. Specifically, a dynamic power allocation

problem is formulated to determine data rates of a transmission channel when assigned to

a relay vehicle in the RSU region. Edge weights are calculated from data rates and back-

log sizes of buffers. Further, a relay scheduling problem is formulated to select a set of

relay vehicles (with maximum edge weights) which satisfy task deadlines. As a solution,

this work realizes a Lyapunov optimization technique for minimization of RSU energy

consumption subject to buffer stability, and transmission of buffer content from RSU to

a set of scheduled relay vehicles via I2V communication. Finally, a simulation study is

conducted to demonstrate the performance of proposed algorithms in-terms of buffering

and scheduling performance. It is observed that the proposed strategy shows significant

improvement in terms of buffer stability, network life time and average data delivery to

destination RSU.

In next chapter, to reduce the data delivery delay between neighbouring RSUs, a vehic-

ular fog computing framework is presented for the execution of tasks in fog vehicles within

tolerable response times while minimizing the energy consumption of RSU.
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Chapter 6

Fuzzy Reinforcement Learning for

Energy Efficient Task Offloading in

Vehicular Fog Computing

Vehicular Fog Computing (VFC)[21] extends fog computing to conventional vehicular net-

works, where the vehicles act as mobile fog nodes which supports full utilization of com-

putation resources. Fig.6.1 illustrates the VFC environment in rural highways that are close

to smart villages. The efficient task offloading in VFC has few challenges that need to be

addressed. First, high mobility, short connection time and heterogeneity of vehicles make

difficult for smart devices to directly offload tasks to fog vehicles. Although vehicles are

equally functional in VFC, there is a need for centralize infrastructure (e.g., RSU) to per-

form scheduling and task allocation and use vehicles exclusively for task execution. Sec-

ond, selection of potential fog vehicles for offloading is important since the vehicles with

long staying period in communication coverage may be busy in execution of other tasks

while the vehicles with available resources may ready to leave communication coverage.

Third, few works in the literature [141, 142] aims to minimise response time. Optimization

of response time has been considered as an indicator for performance evaluation in VFC.

However, it is realized that the minimization of energy consumption of centralize infras-

tructure is equally important along with response time since the allocation of tasks to fog

vehicles involve both communication cost of infrastructure and computation delay of fog
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Figure 6.1: Vehicular Fog Computing (VFC) in rural highways near smart villages

vehicles. Fourth, computation overhead in determining potential fog vehicles may degrade

quality of experience of smart devices and the overall performance of VFC. To achieve

real-time selection of fog vehicles, it is required to follow some learned patterns caused

by heterogeneity of vehicles in dynamic vehicular fog computing environment. Therefore,

real-time allocation of tasks to fog vehicles improve user experience as well as minimize

energy consumption of RSU within tolerable response latency.

To address the above mentioned issues, a latency-aware energy efficient scheduling

of tasks to fog vehicles in VFC is presented. The major contributions of this chapter is

described as follows.

• Present a Vehicular Fog Computing (VFC) framework for efficient offloading of tasks

generated by real-time applications running in smart cities close to rural highways.

• Formulate an optimization problem as Integer Linear Programming Problem (ILP)

which aims to minimise the communication and computation cost of RSU for effi-

cient task allocation among fog vehicles while satisfying constraints on task deadline

and resource availability.

• Propose a Fuzzy Reinforcement Learning (FRL) approach for energy efficient allo-

cation of tasks to fog vehicles. A Fuzzy logic based greedy heuristic is combined

with an on-policy reinforcement learning (i.e., SARSA[143]) that not only acceler-

ate the learning process but also improves the selection of potential fog vehicles for

decreasing total energy consumption and average response time.
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• Extensive simulations are performed to evaluate the proposed scheduling approach

along with other scheduling heuristics in terms of various performance metrics such

as RSU energy consumption, total task service time, average response time and per-

centage of tasks processed locally at RSU.

The remaining sections of this chapter are organized as follows. Section 6.1 presents a

frame work for vehicular for computing in the context of smart villages in rural highways.

Section 6.2 illustrates system model and formulation of optimization problem. Section 6.3

presents a reinforcement leaning solution combined with a greedy heuristic. Section 6.4

describes experimental evaluation of scheduling algorithms. Section 6.5 summaries this

chapter.

6.1 Vehicular Fog Computing (VFC) Framework

6.1.1 Preliminaries

Smart home devices: The smart home devices are the terminal devices (e.g., IoT devices,

smart phones, smart cameras, PDAs etc.) with limited computation capabilities. Tasks gen-

erated by the smart home devices cannot be handled efficiently due to inherent limitations

of these devices. In this case, it is necessary to offload the tasks to nearby nodes with ade-

quate computation resources. Because of high mobility and short connection time between

smart home devices and vehicles, it is unrealistic to offload tasks directly to computation

enriched vehicles (i.e., fog vehicles). Therefore, the smart home devices tend to offload

their computation-intensive tasks to nearby Road Side Units (RSU) where the RSU is re-

sponsible for the efficient allocation of tasks to fog vehicles at the edge of the network.

Tasks: Broadly speaking, the task refers to a basic unit of service requirement of an

application running in a smart home device. Each task is defined by three parameters such

as task data size, computation demand and tolerable response latency (i.e., deadline). A

task cannot be subdivided into smaller sub tasks. When smart home devices offload com-

putationally intensive tasks to third party (i.e., RSU) for execution, the tasks are buffered

at RSU before allocating efficiently over the vehicular fog nodes.

125



CHAPTER 6. FUZZY REINFORCEMENT LEARNING FOR ENERGY EFFICIENT TASK OFFLOADING IN VEHICULAR FOG COMPUTING Section 6.1

Fog nodes: Two types of fog nodes are assumed in this framework.

• Stationary fog nodes: Road Side Unit is considered as the stationary fog node. The

RSU is equipped with re-chargeable batteries powered by alternative sources such as

wind, solar, etc. Moreover, the RSU is endowed with an edge server which incurs

computation cost while executing tasks with short deadlines. To execute tasks with-

out short dead lines, the RSU depends on computation resources of mobile vehicles,

consequently the RSU incurs communication cost for task assignment to fog vehicles

in the RSU region. Therefore, the RSU acts as an intermediary between the smart

home devices and mobile vehicles for efficient computation of tasks within specific

deadlines.

• Mobile fog nodes: Mobile vehicles are considered as the mobile fog nodes on road.

These mobile vehicles have adequate computation capabilities for task processing,

and possess on-board communication (i.e., Dedicated Short Range Communication

(DSRC)) module in order to ensure communication to nearby RSU. The mobile vehi-

cles have sufficient energy reserves to support computation requirements of the tasks

generated by the smart home devices. For better representation, mobile fog nodes

are termed as fog vehicles or vehicles in the rest of this chapter.

6.1.2 Process of task allocation

The task allocation process consists of following steps.

Identification of fog vehicles: It is assumed that the time is divided into time slots of

equal length. At the beginning each time slot, the RSU broadcasts a probe message over

DSRC to the vehicles in its service region and collects response from the interested vehi-

cles. Based on the received responses, the RSU updates the candidate list of fog vehicles

in each time slot.

Assignment of tasks to fog vehicles: In each time slot, the RSU receives tasks which

are independent and identically distributed (i.i.d) with a fixed mean arrival rate. A schedul-

ing algorithm runs in RSU to decide each task whether it is assigned to edge server or

fog vehicle. This task assignment needs to satisfy the deadline and resource constraints of
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Figure 6.2: VFC architecture for offloading of tasks to fog vehicles

tasks and vehicles, respectively. Based on the arrival sequence of tasks that are awaiting in

each time slot, the RSU assigns the tasks for execution with an objective to minimize the

energy consumption cost of RSU. The incurred energy consumption cost of RSU includes

communication cost when task assigned to fog vehicle, and computation cost when task

assigned to edge server. The task allocation process is repeated in every time slot for the

overall minimization of energy consumption and response time.
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6.2 System model and Problem formulation

This section presents communication and computation model in section 6.2.1, and formu-

lation of the problem as an Integer Linear Programming problem in section 6.2.2.

6.2.1 System model

The system considers an energy limited RSU endowed with an edge server which is de-

ployed near highway road segment as shown in Fig.6.2. The RSU acts as a stationary fog

node for the execution of tasks and the assignment of tasks to fog vehicles. The system time

is divided into fixed length time slots of setK. In each time slot k ∈ K, the RSU observes a

set of buffered tasks I for execution, and identifies a set of fog vehicles J within the RSU’s

communication range R. Each task i ∈ I is described as (Hi, Ci, τi). Hi represents the

amount of ith task data (in bits). Ci represents the task requirement (in CPU cycles) for the

execution of task i. τi denotes deadline (in seconds) of task i. The number of orthogonal

downlink (from RSU to fog vehicle) channels with equal bandwidth is assumed as N .

In each time slot, two kinds of execution scenarios exist in this system model. Firstly,

the RSU assigns the tasks to fog vehicles for execution subject to satisfy deadlines of tasks,

vehicle staying period and availability of computation resources of fog vehicles. Secondly,

if either buffering time of a task is more than its deadline or the computation resources

of vehicles are not sufficient for task execution then that particular task can be processed

locally at the edge server with RSU. Notations used in this chapter are described in Table

6.1.

6.2.1.1 Communication model

The vehicles with available computational resources periodically disseminates beacon mes-

sages. A beacon message of a vehicle j is described as (vj, µj, S
avail
j ) where vj is velocity,

µj is processing rate in number of CPU cycles per second and Savail
j is the available re-

sources of vehicle j. It is assumed that the velocity of vehicles is constant inside RSU

communication range as the vehicles tend to move without changing their speed for shorter

distances in highway scenarios[23]. However, the RSU receives beacon messages of vehi-
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Table 6.1: Abbreviations and Notations

Notation Description
k,K time slot k in set of time slots K
i, I task i in set of tasks I
j,J vehicle j in set of fog vehicles J
Hi ith task data (in bits)
Ci ith task requirement (in cycles)
τi deadline of task i
N number of vehicles in action space
R radio coverage range of RSU
vj velocity of vehicle j
µj processing rate of vehicle j
Savail
j resources available at vehicle j
Dk

j distance from RSU to vehicle j at time k
EComm
ijk communication cost of RSU when task i is assigned to vehicle j at time k
EProc
i processing cost of RSU when task i executed locally
E(k) sum of communication and computation costs
xki indicator variable to denote task i arrived to RSU at time k
xkj indicator variable to denote vehicle j available in RSU region at time k
xkij indicator variable to denote the assignment of tasks to fog vehicles at time k
Mk

j processing rate of vehicle j at time slot k
T k
j dwell time of vehicle j at time slot k

I2V infrastructure to vehicle communication
RSU Road Side Unit

cles and updates candidate list of fog vehicles at the beginning of each time slot. The RSU

observes arrival time of first beacon as arrival time instance Aj of vehicle j, and calculates

the distance Dk
j between RSU to vehicle j at the beginning of each time slot k as follows,

Dk
j = R− (δt k − Aj) vj (6.1)

where δt is length of time slot, Dk
j value is negative when vehicle j is in arrival side of

RSU and positive when vehicle j is in leaving side of RSU.

Furthermore, this system adopts a distance dependent path loss communication model[72]

for the transmission of ith task data from RSU to a vehicle j. For a given bit rate (B) in
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each time slot k, the energy consumption of RSU is represented as,

EComm
ijk =

B

ψ
(Dk

j )
β, ∀j ∀k (6.2)

where ψ represents scaling co-efficient and β denotes path loss constant.

6.2.1.2 Computation model

Let the computation capacity of edge server with RSU in-terms of number of CPU-cycles

per second denoted as Frsu. According to [144], the energy consumption for execution of

one CPU-cycle is considered as κ F 2
rsu, where κ is a coefficient and depends on the switched

capacitance of chip architecture. If RSU fails to offload tasks to fog vehicles either due to

unavailability of fog vehicles or fog resources, then those tasks will be processed locally at

RSU. For local processing, the RSU choose to execute each task i with minimum resource

requirement (Ci) in order to minimize the energy consumption of RSU. Moreover, the

RSU is required to process the task locally before deadline of that task exceeds. This local

execution is possible only if the task satisfies deadline constraint Ci

Frsu
≤ τi, otherwise the

RSU drops the task. However, the computation model and communication model works

independently based on the offloading decision of each task. Suppose, a task i decides local

processing in the RSU’s edge server, then the energy consumption of RSU is,

EProc
i = κ F 2

rsu Ci ∀i (6.3)

In this case, the energy consumption cost of fog vehicles has been ignored in the model,

as the vehicles do not depend on battery power.

6.2.2 Problem formulation

An indicator variable xki is defined to denote whether a task i is received by RSU at time

slot k, and another indicator variable xkj is defined to denote whether a vehicle j is present

in the RSU radio coverage at time slot k.
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xki =


1, If i ∈ I at time k

0, Otherwise
xkj =


1, If j ∈ J at time k

0, Otherwise
(6.4)

Moreover, an indicator variable xkij is defined to denote whether a task i is assigned to

a vehicle j at a time slot k. The assignment is possible only if the vehicle j is present in

RSU region and task i arrives to RSU in the same time slot k. Therefore,

xkij ≤ min(xki , x
k
j ), ∀i, ∀j, ∀k (6.5)

where xkij is bounded by minimum of xki and xkj . That means, xkij is equal to 0 if either task

i or vehicle j, or both are not present with RSU at time slot k. Further, xkij is equal to 1

only if both task i and vehicle j are available at RSU, and the task i is assigned to vehicle

j at time k.

Total energy consumption of RSU in a time slot k is defined as the sum of communica-

tion cost of RSU to vehicles and computation cost of tasks at edge server, and is given as

E(k) =
∑
i∈I

∑
j∈J

xkij EComm
ijk +

∑
i∈I

1{∑j x
k
ij=0} EProc

i (6.6)

where 1{Z} is a binary function which is equals to 1 if function Z is true, otherwise equals

to 0.
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Accordingly, the formulation of the proposed problem is described as follows,

P3 : minimize
xk
ij

∑
k∈K

E(k)

s.t.
∑
j∈J

(Hi

B
+
Ci

µj

)
xkij ≤ τi, ∀i, ∀k (6.7)

∑
j∈J

(R−Dk
j

vj

)
xkij ≥ τi, ∀i, ∀k (6.8)

∑
i′∈I,i′ ̸=i

Ci′ + Ci x
k
ij ≤ Savail

j , ∀j,∀k (6.9)

∑
j∈J

xkij ≤ 1, ∀i, ∀k (6.10)

∑
i∈I

∑
j∈J

xkij ≤ N, ∀k (6.11)

|Dk
j | ≤ R, ∀j,∀k (6.12)

xkij ≤ min(xki , x
k
j ), ∀i, ∀j, ∀k (6.13)

xkij ∈ {0, 1}, ∀i, ∀j,∀k (6.14)

The objective function of problem P3 represents the minimization of total energy con-

sumption (includes communication cost and processing cost) of RSU in all time slots. Con-

straint (6.7) ensures the sum of communication time and computation time of task i into

vehicle j must not be more than the assigned task deadline τi. Constraint (6.8) ensures the

staying period of vehicle j in RSU coverage should not be less than the assigned task dead-

line. Constraint (6.9) ensures total resource requirement of assigned tasks should not be

more than the resources available with vehicle j. Constraint (6.10) denotes the assignment

of each task to at most one vehicle. Constraint (6.11) ensures number of one-to-one assign-

ments of tasks to vehicles is less than or equal to number of wireless channels. Constraint

(6.12) ensures a fog vehicle j is within the RSU coverage R. Further, (6.13) and (6.14) are

the integer constraints.

Suppose there exists a case that the arrived tasks in every time slot are without short

deadlines, the RSU decides to allocate all tasks to fog vehicles. To obtain the optimal allo-

cation, the RSU has to perform a naive assignment of N tasks over a set of J fog vehicles
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by using exhaustive search technique with a time complexity O(|J |N). It is difficult to

attain optimal solution when number of fog vehicles and tasks are large. Therefore, a fuzzy

logic based heuristic is proposed in order to obtain a sub-optimal solution for the problem

P3. Further, the obtained solution is enhanced using reinforcement learning approach as

discussed in section 6.3.

6.3 Fuzzy Reinforcement Learning Approach

In this approach, Reinforcement Learning (RL)[145] agent learns an optimal scheduling

policy for the assignment of tasks to fog vehicles. The RL agent observes set of actions in

every system state. Then, the agent explores all possible actions greedily until it exploits

the best set of actions in order to maximize the log term reward. In this problem, states and

actions are represented as time slots and fog vehicles, respectively. In addition, the reward

is considered as a function of service time and energy consumption of RSU. However, the

RL agent can not identify vehicles directly as fixed set of actions in this dynamic scenario.

Rather, the agent is trained to act on the weights of vehicles as actions. That means, an

action is a set of sub set of vehicles and it is identified by vehicle weights but not the

vehicle identities. Therefore, this section presents a fuzzy logic system for calculation of

vehicle weights based on the parameters such as processing rate of vehicle, staying period

(i.e. Dwell time) in RSU and distance to RSU. Then, the selection of maximum weighted

vehicle set acts as current policy to the RL agent. Consequently, an on-policy version of

reinforcement learning system converges towards the selection of best possible set of fog

vehicles with maximum reward. Since the problem is a minimization problem, the reward

is considered as the inverse function of service time and energy consumption cost of RSU

in order to maximize the log term reward.

6.3.1 Calculation of vehicle weights using fuzzy logic system

As aforementioned, the RSU receives beacon messages disseminated by the vehicles and

maintains candidate list of fog vehicles in each time slot. In addition, the RSU collects the

following information from the vehicles residing in its coverage at the beginning of every
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time slot k.

1. ηk assumes fixed number of candidate fog vehicles in the RSU region. If number of

in-range vehicles are less than ηk, then it is required to add dummy (zero weighted)

vehicles to reach the number of vehicles equal to ηk. On the other hand, when number

of in-range vehicles more than ηk, then system ignores some vehicles which have

least computational capacity. Here, ηk is constant for all k.

2. Mk = {Mk
1 ,M

k
2 , ...,M

k
j , ...,M

k
ηk
} is a vector of processing rates of vehicles, where

Mk
j = µj .

3. T k = {T k
1 , T

k
2 , ..., T

k
j , ..., T

k
ηk
} is a vector containing dwell times of vehicles in RSU

coverage. The dwell time is defined as the staying time or remaining travel time of a

vehicle inside the RSU. Dwell time of vehicle j is defined as T k
j =

R−Dk
j

vj
.

4. Dk = {|Dk
1 |, |Dk

2 |, ..., |Dk
j |, ..., |Dk

ηk
|} is a vector of distances between vehicles to

RSU. Dk
j can be obtained from the Eq.6.1.

Further, the proposed vehicle weight calculation method uses Fuzzy logic system [146]

which takes the input parameters processing rate, dwell time and distance to RSU. It is

required to normalize these input values in the interval (0,1). Let M̂k
j is the normalized

processing rate of a vehicle j in a time slot k, which is defined as,

0 ≤ M̂k
j =

Mk
j −minj M

k

maxj Mk −minj Mk
≤ 1 (6.15)

Also, the normalized dwell time (T̂ k
j ) of a vehicle j and distance (D̂k

j ) to RSU and they are

defined as,

0 ≤ T̂ k
j =

T k
j

maxj T k
≤ 1 (6.16)

0 ≤ D̂k
j =
|Dk

j |
R
≤ 1 (6.17)
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Figure 6.3: Fuzzy logic system for calculation of vehicle weights

The vehicle weight calculation using Fuzzy logic system has been shown in Fig. 6.3,

which is Mamdani fuzzy inference system represented as of four stages: 1) fuzzification

2) membership functions 3) fuzzy rule base 4) defuzzification. In fuzzification, the three

quantifiable input parameters (crisp values) are converted to linguistic variables represented

as {Low,Medium,High}, {Low,Medium,High}, and {Far,Middle,Near}, respec-

tively. The membership functions give the degree of membership for the input values.

Further, the fuzzy rule base i.e., IF/THEN rules (in table 6.2) are defined to calculate the

vehicle weight (linguistic variable). The linguistic variables for the vehicle’s weight are

represented as {V ery Low,Low, Low Medium, High Medium, V ery High}. Finally,

the defuzzification uses centroid method in order to calculate the vehicles’ weights (crisp

value).
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Table 6.2: Fuzzy IF/Then rule base

S.No Input Parameters Output
Process rate Dwell time Distance Vehicle Weight

1 High High Near Very High
2 High High Middle High
3 High High Far Low Medium
4 High Medium Near Very High
5 High Medium Middle High Medium
6 High Medium Far Low Medium
7 High Low Near High
8 High Low Middle Low Medium
9 High Low Far Low

10 Medium High Near High
11 Medium High Middle High Medium
12 Medium High Far Low Medium
13 Medium Medium Near High
14 Medium Medium Middle High Medium
15 Medium Medium Far Low Medium
16 Medium Low Near High
17 Medium Low Middle High Medium
18 Medium Low Far Low
19 Low High Near High Medium
20 Low High Middle Low Medium
21 Low High Far Low
22 Low Medium Near High Medium
23 Low Medium Middle Low Medium
24 Low Medium Far Low
25 Low Low Near Low Medium
26 Low Low Middle Low
27 Low Low Far Very Low

6.3.2 Scheduling of fog vehicles using Reinforcement Learning

The Reinforcement Learning allows an agent to learn an optimal vehicle scheduling policy

while interacting with its environment. The RL system can be modeled as a Markov Deci-

sion Process (MDP). In this problem, the MDP over finite horizon N = |K| is composed of

a set (X ,A, rk, ϕ, γ) defined as follows:

1. State space: X is a system state-space, where a state pk ∈ X and a time step

k = {1, 2, ..,N}.
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2. Action space: A = {a1, a2, ..., az} as a set of actions at time step k. Here, each ac-

tion denotes a set of fog vehicles over which tasks are being offloaded for execution.

The number of fog vehicles in every action equals to number of wireless channels

N . Therefore, combination of N fog vehicles is selected from ηk, and then z =
(
ηk

N

)
.

Since ηk and N are constants, the number of actions are constant in every state. The

actions in set A are identified uniquely over all time steps. More clearly, vehicles

in action az at current time step k may be different from vehicles in same action

az at next time step k + 1, but az can be chosen by RL agent based on the current

policy (i.e, max-weight policy) of the agent as given in algorithm 6.1. Notably, RL

agent choose az if a subset of vehicles with highest weight is selected. These vehicle

weights are derived from the fuzzy logic system which is discussed in section 6.3.1.

3. Reward: rk is a single step immediate reward at time step k, which is obtained from

the learning environment when an action ak is taken in the current state pk, denoted

as rk(pk, ak). In our problem, the reward of an action (a subset of vehicles) is taken

as an inverse function of energy consumption cost of RSU (E(k)) and average service

time (STk) of assigned tasks in current time step k. Therefore, RL agent strives to

conserve RSU energy and quick execution of tasks. Then, it prefers to choose subset

of vehicles (action) close to RSU which have high computation resources. This is

because, vehicles nearby RSU consume less energy when compared to more distant

vehicles in the RSU coverage. Therefore,

rk(pk, ak) =
1

f(E(k), Avg(STk))
,∀k (6.18)

where f(.) is a normalized average of energy consumption and service timeAvg(STk) =

{
∑N

i=1 Ci/µj

N
}j∈ak . The assignment of arrived tasks to fog vehicles in ak is done on the

basis of first in first out.

4. ϕ is the transition probability from current sate pk to next state pk+1 provided that the

action ak is taken in the current state. Here, ϕ is chosen as equal to one, when RL

agent moves to next time step k + 1 from current time step k.
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Algorithm 6.1 Max-weight policy of SARSA’s Learning agent

Input: ηk vehicles and their weights
Output: Action set A = {a1, a2, ..., az} where z =

(
ηk

N

)
1: Let V be a set of vehicles in RSU region, and |V | = ηk

2: Find power set P(V )
3: Find a set A′ = {a| a ∈ P(V ) and |a| = N}
4: Find action az = Max(A′) such that w(a1) ≤ w(a2) ≤ ... ≤ w(an) ≤ ... ≤ w(az),

where w(az) is the total weight of all vehicles in set az calculated from section 6.3.1.
5: return az

5. γ is a discount factor that can take value in a range (0,1).

At time step k, the aim of agent is to take best action ak in current state pk which

maximizes its reward. Furthermore, when the agent follows a policy π by observing an

immediate reward rk(pk, ak) and next state pk+1, then the agent is able to adjust its policy

π towards optimal policy. In MDP, the main goal of agent is to find an optimal policy π∗ :

X → A that will maximize overall reward of the system. A value function V π : X → R

gives the overall reward that is obtained by following agent’s policy π when the agent starts

from a state pk ∈ X . The value function V quantifies an expected value for the policy π

throughout finite horizon N, is the total sum of discounted rewards expressed as follows:

Vπ(pk) = Eπ

[ N∑
k=0

γrk(pk, ak) | p0 = pk
]

(6.19)

= Eπ

[
rk(pk, ak) + γVπ(pk+1) | p0 = pk

]
(6.20)

Let Π be a set of all acceptable policies. Then, the optimal policy is given by

π∗ = argmax
π∈Π

Vπ(pk) (6.21)

Generally, RL has two popular learning techniques: 1) Q-learning 2) SARSA learning.

The Q-learning is an off-policy algorithm where as SARSA learning follows on-policy

approach. A Q-learning agent updates its policy based on the maximum reward (i.e., re-

inforcement signal) received from all possible actions, and that is independent of agent’s
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Algorithm 6.2 SARSA based Fuzzy Reinforcement Learning (FRL) algorithm

1: Initialize Q(pk, ak) values arbitrarily
2: Initialize ϵ, α and γ
3: for every Episode do
4: Initialize pk as starting state
5: Choose ak from pk using agent’s policy derived from Algorithm. 6.1
6: while pk is not a terminal state do
7: Take action ak, observe reward rk and next state pk+1

8: if random(0,1) > ϵ then
9: Choose az from pk+1 using ϵ-greedy policy

10: else
11: Choose az from pk+1 using random policy
12: end if
13: Update Q(pk, ak) value using Eq. 6.23
14: Current state pk ← pk+1

15: Current action ak ← az
16: end while
17: end for

policy. In contrast, SARSA learning updates the agent’s policy directly from the actions

taken, that is based on the applied policy. In this problem, the agent’s policy is Max-weight

policy given in Algorithm 6.1.

In Q-learning, an optimal Q-function Q∗(pk, ak) is denoted as an approximation of

Vπ(pk). Therefore, an optimal policy can be written as π∗ = max
ak
{Q∗(pk, ak)}. Here, the

agent learns an optimal policy π∗ : X → A and it starts by initializing estimates of Q-

values Qk(p
k, ak), where each state pk ∈ X maps to its best action ak ∈ A. In the learning

process, the agent first observes current state pk and then takes an action ak. Thereafter, it

receives a reward rk(pk, ak) and a new state pk+1, consequently it updates Qk(p
k, ak) with

respect to observed outcomes rk(pk, ak)and pk+1. The process is repeated at each time step

until the agent learns optimal policy π∗. In particular, the estimated Q-values at each time

step k are updated using learning rate α as follows,

Qk+1(p
k, ak) = Qk(p

k, ak)+

α
[
rk(p

k, ak) + γ max
a′

Qk(p
k+1, a′)−Qk(p

k, ak)
]

(6.22)
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Furthermore, the SARSA is named as an acronym for State-Action-Reward-State-Action.

SARSA learning is an online Reinforcement Learning algorithm. It has an advantage of

selecting most optimal action in the new state pk+1 which lead to faster learning. The differ-

ence between Q-learning and SARSA learning is that the former can find optimal actions

only after all the Q-values converge. Where as, the latter one can choose an optimal action

in online fashion, without waiting to converge the algorithm. In particular, the estimated

Q-values of SARSA at each time step k are updated using learning rate α as follows,

Qk+1(p
k, ak) = Qk(p

k, ak)+

α
[
rk(p

k, ak) + γ Qk(p
k+1, az)−Qk(p

k, ak)
]

(6.23)

where az is an action from Max-weight policy in Algorithm 6.1. The fuzzy based on-

policy reinforcement learning algorithm is presented in Algorithm 6.2.

6.4 Experimental results and analysis

In this section, a set of simulation results is presented for different scheduling heuristics

when compared to the proposed fuzzy reinforcement learning (FRL) scheduler. These al-

gorithms use different scheduling strategies to select fog vehicles for assigning of tasks in

real time. The performance of the proposed FRL approach is evaluated in terms of col-

lected rewards when compared to Q-learning. Furthermore, performance of other schedul-

ing algorithms along with FRL is evaluated using various parameters such as RSU energy

consumption, total service time of tasks, percentage of tasks processed locally at RSU and

average response time of tasks.

6.4.1 Experimental settings

Input vehicular traces for the highway environment have been considered from [121],

where the vehicles tend to maintain constant speed in RSU coverage. The vehicle mo-

bility model considered in this chapter is from [9, 18]. Due to stochastic arrival nature of

vehicles, it is assumed the number of vehicle arrivals are Poisson independent process with
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Table 6.3: Simulation parameters

Parameter Value
Number of time slots 100
RSU radio range 1000m
Vehicle speeds [15m/s, 25m/s]
Vehicle processing rate [10, 100] cycles/sec
Task data size (Hi) [60Mb, 100Mb]
Task requirement (Ci) [400, 600] cycles/task
Total episodes 800
Learning rate (α) 0.05
Discount factor (γ) 0.95
Epsilon (ϵ) 0.1
Bit rate(B) [3 Mb/s, 27 Mb/s]
Path loss constant (β) 3
Scaling co-efficient (ψ) 1

mean arrival rate λ. The speeds of the arrived vehicles in RSU coverage are distributed

uniformly in a range [vmin, vmax]. In this kind of scenario, the estimates of RSU energy

consumption costs are readily made in [117]. The associated energy costs can be derived

from distance dependent path loss model with path loss constant β = 3. The downlink

transmission energy costs are based on vehicle position. Moreover, due to high deploy-

ment cost, the RSUs are distributed sparsely in a highway segment with non-overlapping

radio regions. The scheduling algorithms run in RSU to take decision on the selection of

fog nodes. Each RSU maintains potential fog candidates present in its region when the

RSU receives broadcast messages ( contains vehicle identity, speed, processing rate and

resources available) from fog vehicles. That means, same vehicle cannot be fog node for

multiple RSUs at a time and the set of fog candidates belongs each RSU is distinct. Fur-

thermore, the arrival of tasks follow Poisson process with a mean arrival rate which is more

than λ. This is because, in a time slot usually the number of tasks to be assigned are more

than the fog vehicles in RSU coverage. A set of parameters involved in this experimental

settings is listed in a Table 6.3.

The simulations have been conducted in a desktop machine with a Central Processing

Unit of 3.40GHz Intel core i7, Random Access Memory of 3.7 GiB and an Operating Sys-

tem of 64-bit Ubuntu 16.04 LTS. Python 3.5.6 programming language is used to develop
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the simulation environment. An intensive set of experiments has been performed for eval-

uating the proposed scheduling approach in comparison with other scheduling strategies

under various parameters. Further, Monte Carlo simulations are performed for evaluation

of each scheduling strategy and the comparison results are averaged over each time slot for

1000 simulation runs.

6.4.2 Scheduling approaches and performance metrics

The proposed a FRL approach uses an on-policy reinforcement learning algorithm called

SARSA. The current policy of FRL agent is derived from maximum weighted action in

each state. Therefore, the convergence of FRL is much faster as compared to commonly

used off-policy Q Learning algorithm as shown in Fig.6.4. From Fig. 6.4, it is observed

that the collected rewards of FRL in the initial episodes are much higher when compared to

Q learning. Overall performance of proposed FRL is nearly 12% higher when compared to

collected rewards of Q learning. The results of proposed FRL approach has been recorded

at 200th episode rather than waiting for its full convergence after 600th episode. However,

various scheduling heuristics have been adopted in this chapter to solve the efficient task

assignment to fog vehicles. To investigate the performance of scheduling algorithms, the

proposed FRL approach is compared with other four scheduling algorithms as follows,

• FCFS: First Come First Serve scheduling [139] is a naive algorithm which assigns

the tasks in each time slot to a set of fog vehicles with least arrival time.

• RMS: Rate Monotonic Scheduling algorithm [140] that can select the set of vehicles

which has least staying time (i.e., Dwell time) in the RSU coverage.

• Fuzzy: Greedy algorithm which is based on the selection of vehicles with maximum

weights that are derived using Fuzzy logic system (Discussed in section 6.3.1).

• DTA DP: Distributed Task Allocation in Distributed Processes [147], is a heuristic

algorithm which can assign the tasks to fog vehicles with minimum completion time

(i.e., service time).
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Figure 6.4: Convergence of FRL and Q Learning

Furthermore, the performance of these scheduling algorithms have been evaluated in-terms

of following performance metrics. First, RSU Energy consumption is an important evalua-

tion metric which shows effective utilization of battery power and improvement of network

life time. Energy consumption estimates of scheduling algorithms are normalized (with

respect to RSU radio coverage) and plotted on the graphs. Second, Service time is the com-

pletion time of task when it is assigned to a fog vehicle. Third, Response time is the round

trip time which includes the communication time and processing time of task when it is

assigned to a fog vehicle. The Service time and Response time are the two important evalu-

ation metrics which affects the Quality of Service (QoS) of the network and the Quality of

Experience (QoE) of IoT devices in smart homes, respectively. Fourth, Local processing

tasks indicate the percentage of tasks that can not be processed by the fog vehicles and then

processed by the RSU locally.
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6.4.3 Results and analysis

In this section, the results obtained from simulations are analysed the proposed approach

(FRL) when compared to DTA DP, Fuzzy, RMS and FCFS. This evaluation has been per-

formed by varying different parameters such as number of vehicles in action space, task

requirement and task deadlines.
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Figure 6.5: Number of vehicles and energy consumption

A set of experiments is performed in order to analyze the energy consumption of RSU

for varying the number of vehicles in RSU coverage as shown in Fig. 6.5. As aforemen-

tioned, vehicle arrivals are assumed as Poisson process and the vehicles are distributed

exponentially in the RSU coverage. The velocities of vehicles are uniformly distributed

in a range [15m/s, 25m/s]. It is observed that the increasing number of vehicles in RSU

coverage gives advantage to the proposed FRL approach, DTA DP and Fuzzy for the se-

lection of vehicles that are near to RSU. This is because, as the number of vehicles in the

action space (N ) increases then there is a possibility of vehicles located nearby RSU also

increases. Therefore, the downlink communication from RSU to nearby fog vehicle re-

duces energy consumption of RSU and the energy costs decrease linearly with increased

action space. However, the energy consumption cost for RMS and FCFS is observed as

constant with varying action space. This is because, the RMS selects the fog vehicles with
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least staying period (dwell time) in RSU region. Such vehicles are located near to leaving

edge of RSU even though the number of vehicles in the action space increases. Similarly,

the FCFS tends to select a vehicle that arrives first which is almost at the leaving edge of

RSU. Since the downlink communication cost from RSU to farthest vehicles is high, the

RMS and FCFS do not perform well in terms of energy consumption. From Fig. 6.5, it

can be observed that the proposed FRL approach reduces average energy cost by 48.27%

and 51.61% when compared to Fuzzy and DTA DP, respectively. Eventually, the FRL ap-

proach shows better performance in-terms of RSU energy consumption when the number

of vehicles in the RSU coverage is high.
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Figure 6.6: Number of vehicles and total service time

Another set of experiments has been conducted for evaluating the total service time

of tasks when assigned to fog vehicles. The comparison of proposed FRL with other two

scheduling algorithms are illustrated in Fig. 6.6, where x-coordinate represents the num-

ber of vehicles in RSU coverage and y-coordinate represents the total service of tasks (in

seconds). As aforementioned, service time is the amount of time it takes to complete the

tasks when assigned to a fog vehicle. In this evaluation, requirement of each task is con-

sidered as 500 cycles and the processing rate of fog vehicles are assumed to be distributed

uniformly in the range of [10, 100] cycles/sec. When tasks are assigned to fog vehicles,

the maximum and minimum service time of each task is 50 sec and 5 sec, respectively. It
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is observed that the total service time of all tasks executed on one fog vehicle (on average)

for 100 time slots is at least 500 sec. From Figure 6.6, it is observed that the total service

time for DTA DP is less compared to the proposed FRL and Fuzzy. Although DTA DP

performs better in terms of service time due to the selection of fog vehicles with minimum

completion time, the DTA DP fails to achieve better results in terms of energy consump-

tion as shown in Fig. 6.5. From Fig. 6.6, it has been shown that the largest gap between

DTA DP and the proposed FRL is less than 1.8%. Moreover, it is observed that the total

service time of tasks is decreasing with the increased number of vehicles in action space.

This is because, the scheduling algorithms have better choice of selection when more num-

ber of fog vehicles present in RSU coverage. However, the primary focus of this work is to

minimize the energy consumption of RSU while assigning the tasks to fog vehicles subject

to satisfy service time and deadline constrains. Since minimization of energy consumption

has highest priority over other factors, the performance of proposed FRL has considerable

gain over DTA DP and Fuzzy.
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Figure 6.7: Task deadlines and local processing tasks

Number of local processing of tasks is another important evaluation metric to determine

the computation load on RSU. Deadline of tasks affect the decision on offloading to fog

vehicles or local execution at RSU. Intuitively, tasks with tight (or short) deadline need to

be processed immediately when compared to the tasks with relaxed deadlines. If the tasks
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deadline constraints do not satisfy, these tasks cannot be offloaded to fog vehicles irrespec-

tive of availability of fog resources. Then, such tasks with immediate processing require-

ment have to be scheduled for local processing at RSU. In this simulation environment, the

percentage of tasks that can be processed locally at RSU are evaluated for different task

deadlines as shown in Fig. 6.7. It is observed that the percentage of tasks for local process-

ing is higher when task deadlines are tight. As the task deadlines are relaxed, the number

of tasks assigned to fog vehicles also increases and percentage of local processing at RSU

reduces. Since the proposed FRL has an advantage of choosing fog vehicles that are near

to RSU and with high processing rate, the number of tasks transmitted and processed at

the fog vehicles are more for FRL when compared to other scheduling algorithms. From

Fig. 6.7, it has been shown that the average number of local processing tasks reduces up

to 8.33% and 19.86% when compared to Fuzzy and DTA DP, respectively. Therefore, it is

clear that the proposed FRL decreases processing load on RSU and the proposed scheduler

outperforms other schedulers even in tight deadline scenarios.
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Figure 6.8: Task requirements and Average response time

To asses the quality of experience of the smart home applications in the RSU region,

the response time is considered as an evaluation metric for comparison of proposed FRL

approach with other scheduling algorithms. As aforementioned, the response time includes

two way communication time and task execution time. As the computation result from fog
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nodes is small, the communication delay for the transmission of computed result is con-

sidered as negligible. However, response time depends on several factors such as distance

to fog node, bit rate and processing rate of fog node. The comparison of proposed FRL

with other scheduling heuristics is shown in Fig. 6.8, where x-coordinate represents the

task requirement (in cycles) and y-coordinate represents the average response time (in sec-

onds). From the Fig 6.8, it is observed that the average response time of tasks increases as

the task requirement increases. For example, if task requirement increases from 400 cycles

to 600 cycles and assume that the processing rate of selected fog node is 100 cycles/sec,

then processing delay (as part of response time) increases from 4 sec to 6 sec. On the other

hand, if the same task has data size 100Mb and achieved bit rate of selected fog node varies

from 25Mb/s (nearby fog node) to 10Mb/s (farthest fog node), then communication delay

can be observed from 4 sec to 10 sec. Consequently, total response time of a task increases

from 8 sec to 16 sec. However, the proposed FRL approach has an advantage to select fog

vehicles with high processing rate and nearby fog nodes. From Fig. 6.8, it is observed that

the proposed FRL reduces average response time up to 4.34% and 8.33% when compared

to DTA DP and Fuzzy. Therefore, the FRL approach outperforms other scheduling algo-

rithms in terms of average response time.

6.5 Summary

The development of autonomous and connected vehicles realize the utilization of vehicle

resources for the computation of IoT applications in smart villages nearby rural highways.

In this chapter, a vehicular fog computing framework is presented for energy efficient al-

location of delay-sensitive tasks to mobile fog vehicles. This computation model supports

execution of tasks near to edge of network by either energy constrained stationary fog node

(RSU) or mobile fog nodes (vehicles). Minimization of RSU energy consumption is con-

sidered as performance metric subject to execution of tasks within tolerable response time.

Further, a real-time scheduling of fog nodes has been performed by combining a greedy

heuristic and on-policy reinforcement learning technique (i.e. SARSA) to improve long

term reward and speedup learning process. Extensive set of experiments has been con-
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ducted and the obtained results show that the proposed algorithm has better performance

over other algorithms up to 46.73% and 15.38% in terms of average energy consumption

and response time, respectively.
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Chapter 7

Conclusion and Future Scope

In this thesis, various challenges related to highway vehicular networks such as high mobil-

ity of vehicles, variable traffic density of vehicles, limited RSU radio range and bandwidth,

limited battery storage and buffer capacity of RSU have been discussed. Specifically, high

deployment cost of RSUs leads to uncovered areas in between neighbouring RSUs and

the vehicles in uncovered areas are completely disconnected from the RSUs. Passing-by

vehicles act as store-carry-forward relays in order to deliver data to the target vehicle in

uncovered area. However, scheduling of downlink communication to relay vehicles is a

challenging issue, which is addressed to minimize RSU energy consumption and improve

data delivery in the system. On the other hand, due to limited buffer capacity at RSU, the

data related to different tasks received at RSU experiences buffering delays. Therefore, a

dynamic power allocation strategy to balance the trade-off between power allocation and

buffering delays has been presented. In addition, optimal selection of relay vehicles is

proposed to maximize the data delivery to neighbouring RSUs. Furthermore, a vehicular

fog computing frame-work is considered for execution of tasks by offloading to mobile

fog vehicles at the edge of the network. A fuzzy reinforcement learning based approach

has been presented to schedule the mobile fog vehicles for energy efficient offloading of

tasks while satisfying task deadlines. Overall contributions of this thesis is to investigate

the RSU energy consumption, end-to-end delay, buffering delay and response time while

achieving efficient data dissemination in highway vehicular network.

This thesis investigates the design and development of co-operative vehicle schedul-
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ing algorithms for data dissemination while minimizing energy consumption of RSUs de-

ployed in rural highway environment. Different vehicle scheduling algorithms have been

presented in this thesis to improve data sharing between neighbouring RSUs, reduce the

end-to-end delay while delivering data to target vehicle and decrease the response time of

tasks when offloaded to mobile fog vehicles. The proposed polynomial time scheduling

algorithms achieve better performance in terms of energy consumption, end-to-end delay

and response time. The proposed vehicle scheduling strategies have been implemented and

evaluated using Mote Carlo Simulations. Extensive set of experiments has been conducted

for multiple runs. Then, comparative analysis of the proposed algorithms has been pre-

sented based on their merits and capabilities.

7.1 Major contributions of this thesis

A clustering based energy efficient relay vehicle scheduling algorithm has been presented

in Chapter 3. Firstly, this work investigates the relationship between energy consumption

of RSU and amount of data delivery to target vehicle in the uncovered area. Secondly, a

set of relay vehicles are derived to formulate a relay scheduling problem as an optimization

problem. As a solution, a polynomial time algorithm has been presented using Minimum

Cost Flow graph in order to schedule the relay vehicles with minimum energy consumption

and maximum data flow. Furthermore, a density based clustering technique is adopted to

identify Nearest Neighbour Forwarder (NNF) vehicles that are near to RSU and multi-hop

distance to relay vehicles. The RSU forwards data to NNF instead of corresponding relay

vehicle. Therefore, RSU can be able to minimize its energy consumption and improve data

delivery performance even if the relay is outside RSU coverage. It is observed that the NNF

approach combined with MCF performs better when compared to offline algorithms NFS,

MCF and two more algorithms FCFS and FF.

To achieve faster data delivery to the target vehicle, an RSU assisted relay scheduling

strategy has been presented in bidirectional highway scenarios. This work is discussed in

Chapter 4. When a target vehicle enters into uncovered area, the amount of time a relay

vehicle takes to establish a communication link with the target vehicle affects the average
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end-to-end delay in the system. The major objective is to minimize energy consumption of

RSU and end-to-end delay to the target vehicle while scheduling the relay vehicles. The

relay scheduling problem has been solved using Auction theory principles, where the RSU

acts as a seller and relay vehicles act as bidders. The assignment of relays to time slots can

be accomplished based on the bids received from relay vehicles. Therefore, Auction theory

principles have been adopted to schedule relay vehicles in both forward and opposite direc-

tions from neighbouring RSUs. It is observed that the proposed RRS algorithm performs

better compared to FCFS, GA and FRS in terms of average RSU energy consumption and

end-to-end delay to the target vehicle.

Isolated deployment of RSUs in rural highway region poses limited battery storage and

buffer storage capabilities. In Chapter 5, a Lyapunov optimization based dynamic power

allocation technique has been presented to investigate the trade-off between energy con-

sumption and buffer back-log sizes. Based on the derivation of achievable data rates from

dynamic power allocation strategy, further a max-weight relay vehicle scheduling algo-

rithm is proposed to maximize data delivery to a neighbouring destination RSU. Therefore,

the proposed relay scheduling algorithm along with dynamic power allocation mechanism

efficiently address the challenges related to the limited resources available at isolated RSU.

In order to reduce transit delays between neighbouring RSUs, a vehicular fog com-

puting framework has been presented to offload computation intensive tasks to mobile fog

vehicles within the RSU coverage. This work is discussed in Chapter 6. Since the RSUs are

energy limited, they prefer to offload tasks to fog vehicles while satisfying task deadline

constraints. The energy efficient task offloading has been formulated as an optimization

problem. As a solution, a fuzzy reinforcement learning approach is proposed to schedule

the fog vehicles for real-time assignment of tasks. It is observed that the proposed schedul-

ing approach outperforms traditional Q-learning approach.

7.2 Future scope

Although the proposed RSU based centralized vehicle scheduling algorithms have shown

better performance when compared to other existing scheduling heuristics in the literature,
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there are other contemporary methods and techniques that need to be investigated. A lim-

itation of this research work is that the velocity of the vehicles in highway segment has

been considered as constant. Maintaining constant velocity may be unrealistic in real time

scenarios where the vehicles do not follow lane discipline and exceed the speed limit. This

can be further investigated as a future research direction and methods can be proposed for

realistic traffic scenarios.

Some of the extensions of this thesis as future research directions are listed here.

1. In this thesis, the vehicles are assumed to have sufficient energy reserves and effective

utilization of stored energy at RSU during I2V communication has been addressed.

In some practical scenarios, both vehicles and RSUs may have energy limitations.

Therefore, there is a need to design and develop distributed vehicle scheduling algo-

rithms that can address the energy consumption of vehicles during V2V communica-

tion in a dynamic highway vehicular environment. This is because electric vehicles

are witnessed as current trend in recent times.

2. Secure communication in vehicular environment is an another important issue that

need be addressed. Considering the nature of vehicular safety applications, without

secure communication may lead to not only originates network vulnerabilities and

attacks but also fatal accidents. Therefore, secure communication mechanisms are

necessary to provide authentication, privacy, integrity and non-repudiation that can

account for proper functioning of vehicular safety applications.

3. Unmanned Aerial Vehicles (UAVs) can be used as mobile RSUs to enhance the con-

nectivity in the uncovered areas as shown in Fig. 7.1. Multi-hop communication

discussed in this thesis has few challenges such as broken paths and throughput re-

duction. Using UAVs, the broken paths can be re-established and throughput can be

improved. Furthermore, UAVs can be used to mitigate the impact of non-cooperative

vehicles that affect the overall connectivity of vehicular network.
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RSU

UAV
ITS Service

Figure 7.1: UAVs as mobile RSUs
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drik Fuchs. Cooperative automated driving use cases for 5g v2x communication. In
2019 IEEE 2nd 5G World Forum (5GWF), pages 120–125, 2019.

[58] Taehwan Hwang, Jaehoon Paul Jeong, and Eunseok Lee. Sana: Safety-aware nav-
igation app for pedestrian protection in vehicular networks. In 2014 International
Conference on Information and Communication Technology Convergence (ICTC),
pages 947–953, 2014.

[59] Gorkem Kar, Shubham Jain, Marco Gruteser, Fan Bai, and Ramesh Govindan.
Real-time traffic estimation at vehicular edge nodes. In Proceedings of the Sec-
ond ACM/IEEE Symposium on Edge Computing, SEC ’17, New York, NY, USA,
2017. Association for Computing Machinery.

[60] M. Patra, R. Thakur, and C. S. R. Murthy. Improving delay and energy efficiency
of vehicular networks using mobile femto access points. IEEE Transactions on
Vehicular Technology, 66(2):1496–1505, Feb 2017.

[61] M. Patra and C. S. R. Murthy. Performance evaluation of joint placement and sleep
scheduling of grid-connected solar powered road side units in vehicular networks.
IEEE Transactions on Green Communications and Networking, 2(4):1197–1209,
Dec 2018.

[62] L. Zhang and Y. Wang. An offline roadside unit on-off scheduling algorithm for
energy efficiency of ad hoc networks. IEEE Access, 6:59742–59751, 2018.

[63] W. S. Atoui, M. A. Salahuddin, W. Ajib, and M. Boukadoum. Scheduling energy
harvesting roadside units in vehicular ad hoc networks. In 2016 IEEE 84th Vehicular
Technology Conference (VTC-Fall), pages 1–5, Sept 2016.

[64] W. S. Atoui, W. Ajib, and M. Boukadoum. Offline and online scheduling algorithms
for energy harvesting rsus in vanets. IEEE Transactions on Vehicular Technology,
67(7):6370–6382, July 2018.

[65] Yu Wang and Lei Zhang. Multiple rsus scheduling for energy efficiency in vehicular
ad hoc networks. Wireless Personal Communications, Apr 2019.

[66] R. F. Atallah, C. M. Assi, and J. Y. Yu. A reinforcement learning technique for op-
timizing downlink scheduling in an energy-limited vehicular network. IEEE Trans-
actions on Vehicular Technology, 66(6):4592–4601, June 2017.

160



[67] E. Baccelli, P. Jacquet, B. Mans, and G. Rodolakis. Highway vehicular delay tol-
erant networks: Information propagation speed properties. IEEE Transactions on
Information Theory, 58(3):1743–1756, 2012.

[68] E. Altman, A. P. Azad, T. Baºar, and F. De Pellegrini. Optimal activation and trans-
mission control in delay tolerant networks. In 2010 Proceedings IEEE INFOCOM,
pages 1–5, 2010.

[69] Venkatesh Ramaiyan, Eitan Altman, and Anurag Kumar. Delay optimal scheduling
in a two-hop vehicular relay network. Mobile Networks and Applications, 15(1):97–
111, Feb 2010.

[70] M. J. Khabbaz, W. F. Fawaz, and C. M. Assi. Modeling and delay analysis of in-
termittently connected roadside communication networks. IEEE Transactions on
Vehicular Technology, 61(6):2698–2706, 2012.

[71] Y. Wang, Y. Liu, J. Zhang, H. Ye, and Z. Tan. Cooperative store carry forward
scheme for intermittently connected vehicular networks. IEEE Transactions on Ve-
hicular Technology, 66(1):777–784, Jan 2017.

[72] Satish Vemireddy and Rashmi Ranjan Rout. Clustering based energy efficient
multi-relay scheduling in green vehicular infrastructure. Vehicular Communications,
25:100251, 2020.

[73] Satish Vemireddy and Rashmi Ranjan Rout. Auction based energy-efficient coopera-
tive relay scheduling in bidirectional highway scenarios for vanet. Wireless Personal
Communications, Mar 2021.

[74] A. A. Siddig, A. S. Ibrahim, and M. H. Ismail. Full-duplex store-carry-forward
scheme for intermittently connected vehicular networks. In 2020 IEEE 91st Vehicu-
lar Technology Conference (VTC2020-Spring), pages 1–6, 2020.

[75] L. Huang, H. Jiang, Z. Zhang, and Z. Yan. Optimal traffic scheduling between
roadside units in vehicular delay-tolerant networks. IEEE Transactions on Vehicular
Technology, 64(3):1079–1094, 2015.

[76] L. Huang, H. Jiang, Z. Zhang, Z. Yan, and H. Guo. Efficient data traffic forwarding
for infrastructure-to-infrastructure communications in vanets. IEEE Transactions on
Intelligent Transportation Systems, 19(3):839–853, 2018.

[77] Mohammad Mukhtaruzzaman and Mohammed Atiquzzaman. Clustering in vehicu-
lar ad hoc network: Algorithms and challenges. Computers & Electrical Engineer-
ing, 88:106851, 2020.

[78] Satendra Kumar Bansal, Anand Singh Bisen, and Rohit Gupta. A secure hash-
ing technique for k-means based cluster approach in vanet. In 2016 International
Conference on Signal Processing, Communication, Power and Embedded System
(SCOPES), pages 2037–2041, 2016.

161



[79] Muhammad Fahad Khan, Farhan Aadil, Muazzam Maqsood, Syed Hashim Raza
Bukhari, Maqbool Hussain, and Yunyoung Nam. Moth flame clustering algorithm
for internet of vehicle (mfca-iov). IEEE Access, 7:11613–11629, 2019.

[80] Khalid Abdel Hafeez, Lian Zhao, Zaiyi Liao, and Bobby Ngok-Wah Ma. A fuzzy-
logic-based cluster head selection algorithm in vanets. In 2012 IEEE International
Conference on Communications (ICC), pages 203–207, 2012.

[81] Khalid Abdel Hafeez, Lian Zhao, Jon W. Mark, Xuemin Shen, and Zhisheng Niu.
Distributed multichannel and mobility-aware cluster-based mac protocol for vehicu-
lar ad hoc networks. IEEE Transactions on Vehicular Technology, 62(8):3886–3902,
2013.

[82] Hamid Reza Arkian, Reza Ebrahimi Atani, Abolfazl Diyanat, and Atefe Pourkhalili.
A cluster-based vehicular cloud architecture with learning-based resource manage-
ment. The Journal of Supercomputing, 71(4):1401–1426, Apr 2015.

[83] Dingsheng Deng. Dbscan clustering algorithm based on density. In 2020 7th Inter-
national Forum on Electrical Engineering and Automation (IFEEA), pages 949–953,
2020.

[84] Wei Fan, Yan Shi, Shanzhi Chen, and Longhao Zou. A mobility metrics based
dynamic clustering algorithm for vanets. In IET International Conference on Com-
munication Technology and Application (ICCTA 2011), pages 752–756, 2011.

[85] Minming Ni, Zhangdui Zhong, and Dongmei Zhao. Mpbc: A mobility prediction-
based clustering scheme for ad hoc networks. IEEE Transactions on Vehicular Tech-
nology, 60(9):4549–4559, 2011.

[86] Azzedine Boukerche, Zhenxia Zhang, and Xin Fei. Reducing handoff latency for
nemo-based vehicular ad hoc networks. In 2011 IEEE Global Telecommunications
Conference - GLOBECOM 2011, pages 1–5, 2011.

[87] Zhenxia Zhang, Azzedine Boukerche, and Richard Pazzi. A novel multi-hop clus-
tering scheme for vehicular ad-hoc networks. MobiWac ’11, page 19–26, New York,
NY, USA, 2011. Association for Computing Machinery.

[88] Paul Klemperer. Auction theory: A guide to the literature. Journal of Economic
Surveys, 13(3):227–286, 1999.

[89] Zhiwen Hu, Zijie Zheng, Tao Wang, Lingyang Song, and Xiaoming Li. Roadside
unit caching: Auction-based storage allocation for multiple content providers. IEEE
Transactions on Wireless Communications, 16(10):6321–6334, 2017.

[90] Minghui Liwang, Shijie Dai, Zhibin Gao, Yuliang Tang, and Huaiyu Dai. A truthful
reverse-auction mechanism for computation offloading in cloud-enabled vehicular
network. IEEE Internet of Things Journal, 6(3):4214–4227, 2019.

162



[91] Zhibin Gao, Minghui Liwang, Seyyedali Hosseinalipour, Huaiyu Dai, and Xianbin
Wang. A truthful auction for graph job allocation in vehicular cloud-assisted net-
works. IEEE Transactions on Mobile Computing, pages 1–1, 2021.

[92] Syed R. Rizvi, Susan Zehra, Ravi Mukkamala, and Stephan Olariu. Asap: An agent-
assisted smart auction-based parking system in internet of things. In Proceedings of
the 9th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks
and Applications, DIVANet ’19, page 1–8, New York, NY, USA, 2019. Association
for Computing Machinery.

[93] M. Neely. Stochastic Network Optimization with Application to Communication and
Queueing Systems. 2010.

[94] Ali A. Siddig, Ahmed S. Ibrahim, and Mahmoud H. Ismail. An optimal power allo-
cation and relay selection full-duplex store-carry-forward scheme for intermittently
connected vehicular networks. IEEE Access, 8:163903–163916, 2020.

[95] Lorenzo Bracciale and Pierpaolo Loreti. Lyapunov drift-plus-penalty optimization
for queues with finite capacity. IEEE Communications Letters, 24(11):2555–2558,
2020.

[96] Xiaoyan He, Chongtao Guo, and Bin Liao. Spectrum and power allocation for ve-
hicular networks with diverse latency requirements. In 2019 IEEE International
Conference on Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm), pages 1–5, 2019.

[97] Huaqing Zhang, Xiao Tang, Reginald Banez, Pinyi Ren, Lingyang Song, and Zhu
Han. An epec analysis for power allocation in lte-v networks. In GLOBECOM 2017
- 2017 IEEE Global Communications Conference, pages 1–6, 2017.

[98] Yupei Liu, Haijun Zhang, Keping Long, Arumugam Nallanathan, and Victor C. M.
Leung. Energy-efficient subchannel matching and power allocation in noma au-
tonomous driving vehicular networks. IEEE Wireless Communications, 26(4):88–
93, 2019.

[99] Rashmi Ranjan Rout, Satish Vemireddy, Sanjib Kumar Raul, and D.V.L.N. Somaya-
julu. Fuzzy logic-based emergency vehicle routing: An iot system development for
smart city applications. Computers & Electrical Engineering, 88:106839, 2020.

[100] Lina Altoaimy and Imad Mahgoub. Fuzzy logic based localization for vehicular ad
hoc networks. In 2014 IEEE Symposium on Computational Intelligence in Vehicles
and Transportation Systems (CIVTS), pages 121–128, 2014.

[101] Elnaz Limouchi, Imad Mahgoub, and Ahmad Alwakeel. Fuzzy logic-based broad-
cast in vehicular ad hoc networks. In 2016 IEEE 84th Vehicular Technology Confer-
ence (VTC-Fall), pages 1–5, 2016.

163



[102] Rajesh Purkait and Sachin Tripathi. Fuzzy logic based multi-criteria intelligent for-
ward routing in vanet. Wireless Personal Communications, 111(3):1871–1897, Apr
2020.

[103] Revati S. Jadhav, Manoj M. Dongre, and Geeta Devurkar. Fuzzy logic based data
dissemination in vehicular ad hoc networks. In 2017 International conference of
Electronics, Communication and Aerospace Technology (ICECA), volume 1, pages
479–483, 2017.

[104] Cheng Huang, Rongxing Lu, and Kim-Kwang Raymond Choo. Vehicular fog com-
puting: Architecture, use case, and security and forensic challenges. IEEE Commu-
nications Magazine, 55(11):105–111, 2017.

[105] Zhaolong Ning, Jun Huang, and Xiaojie Wang. Vehicular fog computing: En-
abling real-time traffic management for smart cities. IEEE Wireless Communica-
tions, 26(1):87–93, 2019.

[106] Arnav Thakur and Reza Malekian. Fog computing for detecting vehicular conges-
tion, an internet of vehicles based approach: A review. IEEE Intelligent Transporta-
tion Systems Magazine, 11(2):8–16, 2019.

[107] Om-Kolsoom Shahryari, Hossein Pedram, Vahid Khajehvand, and Mehdi Dehghan
TakhtFooladi. Energy-efficient and delay-guaranteed computation offloading for
fog-based iot networks. Computer Networks, 182:107511, 2020.

[108] Chaogang Tang, Xianglin Wei, Chunsheng Zhu, Yi Wang, and Weijia Jia. Mobile
vehicles as fog nodes for latency optimization in smart cities. IEEE Transactions on
Vehicular Technology, 69(9):9364–9375, 2020.

[109] Yi Zhang, Chih-Yu Wang, and Hung-Yu Wei. Parking reservation auction for parked
vehicle assistance in vehicular fog computing. IEEE Transactions on Vehicular Tech-
nology, 68(4):3126–3139, 2019.

[110] Zhenyu Zhou, Pengju Liu, Junhao Feng, Yan Zhang, Shahid Mumtaz, and Jonathan
Rodriguez. Computation resource allocation and task assignment optimization in
vehicular fog computing: A contract-matching approach. IEEE Transactions on
Vehicular Technology, 68(4):3113–3125, 2019.

[111] Syed Sarmad Shah, Muhammad Ali, Asad Waqar Malik, Muazzam A. Khan, and
Sri Devi Ravana. vfog: A vehicle-assisted computing framework for delay-sensitive
applications in smart cities. IEEE Access, 7:34900–34909, 2019.

[112] Jinming Shi, Jun Du, Jingjing Wang, Jian Wang, and Jian Yuan. Priority-aware task
offloading in vehicular fog computing based on deep reinforcement learning. IEEE
Transactions on Vehicular Technology, 69(12):16067–16081, 2020.

[113] Seung-Seob Lee and Sukyoung Lee. Resource allocation for vehicular fog com-
puting using reinforcement learning combined with heuristic information. IEEE
Internet of Things Journal, 7(10):10450–10464, 2020.

164



[114] Zhe Wang, Zhangdui Zhong, and Minming Ni. Application-aware offloading policy
using smdp in vehicular fog computing systems. In 2018 IEEE International Con-
ference on Communications Workshops (ICC Workshops), pages 1–6, 2018.

[115] Zhenchun Wei, Fei Liu, Yan Zhang, Juan Xu, Jianjun Ji, and Zengwei Lyu. A q-
learning algorithm for task scheduling based on improved svm in wireless sensor
networks. Computer Networks, 161:138–149, 2019.

[116] Taha Alfakih, Mohammad Mehedi Hassan, Abdu Gumaei, Claudio Savaglio, and
Giancarlo Fortino. Task offloading and resource allocation for mobile edge comput-
ing by deep reinforcement learning based on sarsa. IEEE Access, 8:54074–54084,
2020.

[117] S. Y. Wang. The effects of wireless transmission range on path lifetime in vehicle-
formed mobile ad hoc networks on highways. In IEEE International Conference on
Communications, 2005. ICC 2005. 2005, volume 5, pages 3177–3181 Vol. 5, May
2005.

[118] C. Sommer, D. Eckhoff, R. German, and F. Dressler. A computationally inexpensive
empirical model of ieee 802.11p radio shadowing in urban environments. In 2011
Eighth International Conference on Wireless On-Demand Network Systems and Ser-
vices, pages 84–90, Jan 2011.

[119] Zhigang Rong and Theodore S Rappaport. Wireless communications: Principles
and practice, solutions manual. Prentice Hall, 1st ed. edition, 1996.

[120] K. Bilstrup, E. Uhlemann, E. G. Strom, and U. Bilstrup. Evaluation of the ieee
802.11p mac method for vehicle-to-vehicle communication. In 2008 IEEE 68th
Vehicular Technology Conference, pages 1–5, Sep. 2008.

[121] M. Khabazian and M. K. M. Ali. A performance modeling of connectivity in vehicu-
lar ad hoc networks. IEEE Transactions on Vehicular Technology, 57(4):2440–2450,
July 2008.

[122] Sven O. Krumke and Clemens Thielen. The generalized assignment problem with
minimum quantities. European Journal of Operational Research, 228(1):46 – 55,
2013.

[123] A. Bryant and K. Cios. Rnn-dbscan: A density-based clustering algorithm using
reverse nearest neighbor density estimates. IEEE Transactions on Knowledge and
Data Engineering, 30(6):1109–1121, June 2018.

[124] Sabri M. Hanshi, Tat-Chee Wan, Mohammad M. Kadhum, and Ali Abdulqader Bin-
Salem. Review of geographic forwarding strategies for inter-vehicular communi-
cations from mobility and environment perspectives. Vehicular Communications,
14:64 – 79, 2018.

[125] C. Campolo, A. Molinaro, A. O. Berthet, and A. Vinel. Full-duplex radios for vehic-
ular communications. IEEE Communications Magazine, 55(6):182–189, June 2017.

165



[126] WAVE. Ieee standard for wireless access in vehicular environments (wave) – multi-
channel operation. IEEE Std 1609.4-2016 (Revision of IEEE Std 1609.4-2010),
pages 1–94, March 2016.

[127] Junhao Gan and Yufei Tao. Dbscan revisited: Mis-claim, un-fixability, and approx-
imation. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 519–530, New York, NY, USA, 2015.
ACM.

[128] C. Campolo, A. Molinaro, and A. O. Berthet. Full-duplex communications to im-
prove platooning control in multi-channel vanets. In 2017 IEEE International Con-
ference on Communications Workshops (ICC Workshops), pages 936–941, 2017.

[129] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief. Power-delay tradeoff in multi-user
mobile-edge computing systems. In 2016 IEEE Global Communications Conference
(GLOBECOM), pages 1–6, Dec 2016.

[130] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief. Stochastic joint radio and compu-
tational resource management for multi-user mobile-edge computing systems. IEEE
Transactions on Wireless Communications, 16(9):5994–6009, Sep. 2017.

[131] Donald Gross, John F. Shortle, James M. Thompson, and Carl M. Harris. Funda-
mentals of Queueing Theory. Wiley-Interscience, USA, 4th edition, 2008.

[132] X. Xie, F. Wang, K. Li, P. Zhang, and H. Wang. Improvement of multi-channel
mac protocol for dense vanet with directional antennas. In 2009 IEEE Wireless
Communications and Networking Conference, pages 1–6, 2009.

[133] G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang. Energy-delay tradeoff for dynamic
offloading in mobile-edge computing system with energy harvesting devices. IEEE
Transactions on Industrial Informatics, 14(10):4642–4655, 2018.

[134] Z. Chang, L. Liu, X. Guo, and Q. Sheng. Dynamic resource allocation and com-
putation offloading for iot fog computing system. IEEE Transactions on Industrial
Informatics, 17(5):3348–3357, 2021.

[135] S. Pan and Y. Chen. Energy-optimal scheduling of mobile cloud computing based
on a modified lyapunov optimization method. IEEE Transactions on Green Com-
munications and Networking, 3(1):227–235, 2019.

[136] J. Kim and W. Lee. Stochastic decision making for adaptive crowdsourcing in med-
ical big-data platforms. IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, 45(11):1471–1476, 2015.

[137] J. Kim. Energy-efficient dynamic packet downloading for medical iot platforms.
IEEE Transactions on Industrial Informatics, 11(6):1653–1659, 2015.

[138] Silvano Martello and Paolo Toth. Algorithm 632: A program for the 0–1 multiple
knapsack problem. ACM Trans. Math. Softw., 11(2):135–140, June 1985.

166



[139] W. Zhao and J. A. Stankovic. Performance analysis of fcfs and improved fcfs
scheduling algorithms for dynamic real-time computer systems. In [1989] Proceed-
ings. Real-Time Systems Symposium, pages 156–165, 1989.

[140] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact
characterization and average case behavior. In [1989] Proceedings. Real-Time Sys-
tems Symposium, pages 166–171, 1989.

[141] Chen Xu, Yahui Wang, Zhenyu Zhou, Bo Gu, Valerio Frascolla, and Shahid Mumtaz.
A low-latency and massive-connectivity vehicular fog computing framework for 5g.
In 2018 IEEE Globecom Workshops (GC Wkshps), pages 1–6, 2018.

[142] Qiong Wu, Hanxu Liu, Ruhai Wang, Pingyi Fan, Qiang Fan, and Zhengquan Li.
Delay-sensitive task offloading in the 802.11p-based vehicular fog computing sys-
tems. IEEE Internet of Things Journal, 7(1):773–785, 2020.

[143] Mohd Azmin Samsuden, Norizan Mat Diah, and Nurazzah Abdul Rahman. A re-
view paper on implementing reinforcement learning technique in optimising games
performance. In 2019 IEEE 9th International Conference on System Engineering
and Technology (ICSET), pages 258–263, 2019.

[144] X. Chen. Decentralized computation offloading game for mobile cloud computing.
IEEE Transactions on Parallel and Distributed Systems, 26(4):974–983, 2015.

[145] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[146] J. Park, Y. Sim, G. Lee, and D. Cho. A fuzzy logic based electric vehicle scheduling
in smart charging network. In 2019 16th IEEE Annual Consumer Communications
Networking Conference (CCNC), pages 1–6, Jan 2019.

[147] Yi Zhou, Kai Liu, Xincao Xu, Songtao Guo, Zhou Wu, Victor Lee, and Sang Son.
Distributed scheduling for time-critical tasks in a two-layer vehicular fog computing
architecture. In 2020 IEEE 17th Annual Consumer Communications & Networking
Conference (CCNC), page 1–7. IEEE Press, 2020.

167



List of Publications

Publications from the thesis

Journal papers:

1. Satish Vemireddy, Rashmi Ranjan Rout, Clustering based energy efficient multi-

relay scheduling in green vehicular infrastructure, Vehicular Communications, Else-

vier, Volume 25, 2020.

2. Satish Vemireddy, Rashmi Ranjan Rout, Auction based Energy-Efficient Cooper-

ative Relay Scheduling in Bidirectional Highway Scenarios for VANET, Wireless

Personal Communications, Springer, 1-25, 2021.

3. Satish Vemireddy, Rashmi Ranjan Rout, Delay-aware Energy Efficient Dynamic

Relay Scheduling in Isolated Infrastructure, IEEE Transactions on Intelligent Trans-

port Systems. (Received revision).

4. Satish Vemireddy, Rashmi Ranjan Rout, Fuzzy Reinforcement Learning for Energy

Efficient Task Offloading in Vehicular Fog Computing , Computer Networks, Else-

vier, Volume 199, 2021, 108463, ISSN 1389-1286.

168


	ACKNOWLEDGMENTS
	ABSTRACT
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	1 Introduction
	1.1 Motivation and objectives
	1.2 Overview of the contributions in this Thesis
	1.2.1 Clustering based energy efficient nearest neighbour forward approach
	1.2.1.1 Minimum Cost Flow Graph (MCF) for relay scheduling
	1.2.1.2 Nearest Neighbor Forward Approach

	1.2.2 Auction-based RSU-assisted relay scheduling in bidirectional highways
	1.2.2.1 Auction theory for relay vehicle selection

	1.2.3 Lyapunov optimization mechanism for energy efficient data sharing between RSUs
	1.2.3.1 Lyapunov based dynamic power allocation
	1.2.3.2 Max-weight relay vehicle scheduling

	1.2.4 Fuzzy reinforcement learning for energy efficient task offloading from RSU to mobile fog vehicles

	1.3 Experimental setup
	1.4 Organization of the Thesis

	2 Literature Survey
	2.1 Vehicular Adhoc Networks: preliminaries
	2.2 Cooperative communication in vehicular networks
	2.3 Applications of cooperative vehicular networks
	2.4 Energy efficiency in highway vehicular networks
	2.5 Data dissemination approaches in vehicular networks
	2.6 Clustering in vehicular adhoc networks
	2.7 Auction theory principles for vehicular networks
	2.8 Dynamic power allocation in vehicular networks
	2.9 Fuzzy logic for vehicular networks
	2.10 Fog computing for vehicular networks
	2.11 Learning algorithms in vehicular networks
	2.12 Summary

	3 Clustering based Energy Efficient Multi-Relay Scheduling in Highway Vehicular Infrastructure
	3.1 System Model and Dynamics
	3.1.1 System model
	3.1.2 Assumptions
	3.1.3 Energy cost Vs Data delivery
	3.1.4 Effective communication time

	3.2 Energy Efficient Multi-Relay Scheduling
	3.2.1 ILP formulation for scheduling relay vehicles
	3.2.2 NP-hardness proof
	3.2.3 Minimum Cost Flow Graph

	3.3 Nearest Neighbor Forward Approach
	3.3.1 Two phase approach
	3.3.2 Energy cost and data delivery
	3.3.3 Clustering phase
	3.3.4 Route discovery phase
	3.3.5 Scheduling and data forwarding
	3.3.5.1 Full-duplex dual-radio OBUs
	3.3.5.2 Data forwarding

	3.3.6 Algorithm for offline energy efficient RSU scheduling
	3.3.7 Complexity analysis

	3.4 Performance evaluation
	3.4.1 Simulation setup
	3.4.2 Results and discussions
	3.4.2.1 Impact of vehicle arrival rate ()
	3.4.2.2 Impact of vehicle transmission range (Rv)
	3.4.2.3 Impact of target vehicle speed (m/s)


	3.5 Summary

	4 Auction based Energy-Efficient Cooperative Relay Scheduling in Bidirectional Highway Scenarios
	4.1 System model and problem formulation
	4.1.1 Communication model
	4.1.2 RSU energy consumption
	4.1.3 End-to-end delay
	4.1.4 Forward relay selection
	4.1.5 Problem formulation

	4.2 Forward relay scheduling algorithms
	4.2.1 Greedy algorithm
	4.2.2 Auction-based forward relay scheduling
	4.2.2.1 Bidding phase
	4.2.2.2 Allocation phase


	4.3 RSU-assisted relay scheduling
	4.3.1 Backward relay selection
	4.3.2 Auction-based RSU-assisted relay scheduling
	4.3.3 Vehicle to Vehicle (V2V) scheduling

	4.4 Simulation results
	4.4.1 Impact of vehicle arrival rate ()
	4.4.2 Impact of target vehicle speed (m/s)
	4.4.3 Impact of co-operative cache (Bv)

	4.5 Summary

	5 Delay-aware Energy Efficient Dynamic Relay Scheduling in Isolated Vehicular Infrastructure
	5.1 System Model and Dynamics
	5.1.1 Task data arrival and buffering model
	5.1.2 Communication and energy consumption model
	5.1.3 Battery capacity and energy harvesting model

	5.2 Problem Formulation and Energy Efficient Dynamic Scheduling of Relay Vehicles
	5.2.1 Decision making on power allocation
	5.2.2 Max-weight scheduling of relay vehicles

	5.3 Experimental Analysis
	5.3.1 Buffering performance
	5.3.2 Scheduling performance
	5.3.2.1 Effect of vehicle arrival rates
	5.3.2.2 Effect of vehicle speeds
	5.3.2.3 Effect of task arrival rate


	5.4 Summary

	6 Fuzzy Reinforcement Learning for Energy Efficient Task Offloading in Vehicular Fog Computing
	6.1 Vehicular Fog Computing (VFC) Framework
	6.1.1 Preliminaries
	6.1.2 Process of task allocation

	6.2 System model and Problem formulation
	6.2.1 System model
	6.2.1.1 Communication model
	6.2.1.2 Computation model

	6.2.2 Problem formulation

	6.3 Fuzzy Reinforcement Learning Approach
	6.3.1 Calculation of vehicle weights using fuzzy logic system
	6.3.2 Scheduling of fog vehicles using Reinforcement Learning

	6.4 Experimental results and analysis
	6.4.1 Experimental settings
	6.4.2 Scheduling approaches and performance metrics
	6.4.3 Results and analysis

	6.5 Summary

	7 Conclusion and Future Scope
	7.1 Major contributions of this thesis
	7.2 Future scope

	Bibliography
	List of Publications

