Secure Public Auditing Schemes
for Shared Data with User Revocation in Cloud Storage

Submitted in partial fulfillment of the requirements
for the award of the degree of
DOCTOR OF PHILOSOPHY
Submitted by
Gudeme Jaya Rao
(Roll No. 716178)

Under the guidance of

Dr. P Syam Kumar

and

Dr. K Ramesh

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA
August 2021



DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA

THESIS APPROVAL FOR Ph.D.

This is to certify that the thesis entitled, Secure Public Auditing Schemes for Shared
Data with User Revocation in Cloud Storage, submitted by Mr. Gudeme Jaya Rao
[Roll No. 716178] is approved for the degree of DOCTOR OF PHILOSOPHY at
National Institute of Technology Warangal.

Examiner
Research Supervisor Research Supervisor
Dr. P Syam Kumar Dr. K Ramesh
Center for Cloud Computing Dept. of Computer Science and Engg.
Institute for Development & NIT Warangal
Research in Banking Technology India
India \ Y

Chairgian

Prof. P. Radha Krishna
Head, Dept. of Computer Science and Engg.
NIT Warangal

India



DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA

CERTIFICATE

This is to certify that the thesis entitled, Secure Public Auditing for Shared Data with
User Revocation in Cloud Storage, submitted in partial fulfillment of requirement for
the award of degree of DOCTOR OF PHILOSOPHY to National Institute of Technol-
ogy Warangal, is a bonafide research work done by Mr. Gudeme Jaya Rao [Roll No.

716178] under our supervision. The contents of the thesis have not been submitted

elsewhere for the award of any degree. %
- @ﬁ“‘"f i
ResearcE Supei;isor Research Supervisor
Dr. P Syam Kumar Dr. K Ramesh
Center for Cloud Computing Dept. of Computer Science and Engg.
Institute for Development & NIT Warangal
Research in Banking Technology India
India
Hyderabad Warangal

Date: 02-08-2021 Date: 02-08-2021



DECLARATION

This is to certify that the work presented in the thesis entitled “Se-
cure Public Auditing Schemes for Shared Data with User Revocation
in Cloud Storage’ 1s a bonafide work done by me under the supervision
of Dr. P Syam Kumar and Dr. K Ramesh. The work was not submitted

elsewhere for the award of any degree.

I declare that this written submission represents my ideas in my
own words and where others ideas or words have been included, I
have adequately cited and referenced the original sources. I also de-
clare that I have adhered to all principles of academic honesty and
integrity and have not misrepresented or fabricated or falsified any
idea/date/fact/source in my submission. I understand that any violation
of the above will be cause for disciplinary action by the institute and
can also evoke penal action from the sources which have thus not been
properly cited or from whom proper permission has not been taken

when needed.

Gudeme Jaya Rao
(Roll No. 716178)
Date: 02-08-2021



ACKNOWLEDGMENTS

Every day during my Ph.D. has been a great opportunity for learning. This thesis work
is the result whereby I have been supported by many people. It is a pleasant aspect that I
have now the opportunity to express my gratitude for all of them.

First and foremost, I would like to thank the Lord almighty for glorifying me with
all the strength and health to carry out my research work. It is with great pleasure that
I acknowledge my sincere thanks and deep sense of gratitude to my supervisors Dr. P
Syam Kumar, Assistant Professor, Institute for Development and Research in Banking
Technology (IDRBT), Hyderabad and Dr. K Ramesh, Associate Professor, Department
of Computer Science and Engineering, National Institute of Technology (NIT) - Warangal
for their valuable guidance throughout the course. Their technical perception, profound
knowledge, sincere effort in guiding a student and devotion to work have greatly charmed
and constantly motivated me to work towards the goal. They always gave me ample time
for discussions, reviewing my work and suggesting requisite corrections.

I extend my gratitude to the Doctoral Scrutiny Committee (DSC) members comprising
of Prof. S. G. Sanjeevi, Dr. S. Ravi Chandra, Prof. L. Anjaneyulu for their insightful
comments and suggestions during oral presentations. I am also thankful to Prof. B. B. Am-
berker for his presence with valuable suggestions during the presentation of this research
work. I am lucky to attend lectures by Prof. B. B. Amberker and Dr. Rashmi Ranjan
Rout during my tenure. I am immensely thankful to Dr. Ch. Sudhakar, Prof. R. B. V.
Subramanyam and Prof. P. Radha Krishna Heads of Dept. of CSE and chairmans of DSC,
during my tenure for providing adequate facilities in the department to carry out the oral
presentations.

I wish to express my sincere thanks to Prof. N.V. Ramana Rao, Director, NIT Warangal
and Prof. D. Janakiram, Director, IDRBT, Hyderabad for providing the infrastructure and
facilities to carry out the research. I am also very much grateful to the faculty members
of Computer Science and Engineering Department, and IDRBT for their moral support
throughout my research work.

On the personal level, I would also like to thank my scholar friends in IDRBT and NIT-

Warangal for their valuable suggestions and for extending selfless cooperation. Lastly, my



gratitude to my family for their unconditional love, support and prayers for my success in

achieving the goal.

UN &

1

Gudeme Jaya Rao

i



Dedicated to My Beloved

Family, Teachers and Friends



ABSTRACT

Cloud storage is an important service that provides reliable and resilient storage infras-
tructure for users to store data remotely with the service provider based on pay-as-you-go
pricing model. Today’s most popular cloud-based storage services are Amazon S3, Google
Drive, Microsoft Azure, Apple iCloud, Dropbox, etc. Cloud storage service brings signif-
icant benefits to data owners, say, (1) reducing capital and management costs (2) reducing
cloud users’ burden of storage management and equipment maintenance, (3) avoiding in-
vesting a large amount of hardware, (4) accessing data over an Internet connection from
any location from any devices such as desktop computers, laptops, tablets, and smartphones
which offers increased flexibility and accessibility. Because cloud storage offers scalable,
pay-as-you-go, and location-independent storage services for cloud users, a growing num-
ber of organizations and individuals have been outsourcing their data to the cloud storage.

Despite these appealing benefits, cloud storage does trigger security challenges such as
confidentiality, integrity, and availability. One of the significant concern is the integrity of
outsourced data due to the following factors: i) Once the data is moved to the cloud, data
owner loses physical control over the data. ii) Sometimes, for monetary benefits, cloud
service providers (CSP) may delete rarely accessed data or hide the data loss incidents to
have a good reputation. iii) Data stored in the cloud may be lost due to irresistible byzantine
failures or human errors or intentional malicious activity, which can be a burden for the user
and an embarrassment for the CSP. iv) CSP may maintain fewer replicas than what is paid
for to save the storage space. Therefore, it is highly desirable for the data owner to check
the integrity of the outsourced data in the cloud from time to time.

To check the integrity of the outsourced data, several schemes have been proposed in
the literature without the local copy of data and without downloading complete data. How-
ever, most of these schemes only focus on checking the integrity of personal data, which
are not valid under the situation of data shared in a group. In a shared data scenario, one
of the users in a group uploads data to the cloud, and the rest of the group not only access
but also modify the data. When data is shared among multiple users, some new challenges

will arise that must be addressed such as user revocation, privacy preserving, identity pri-

v



vacy, data dynamics. To address these problems, many shared data auditing schemes have
been proposed. However, some of the issues such as user revocation, privacy preserving,
identity privacy, availability, data dynamics are not well solved in the existing schemes.
Furthermore, most of the schemes suffering from complex certificate management and key
escrow problem.

To address aforementioned issues, in this thesis we proposed five contributions, namely,
1) An identity-based public auditing for shared data in cloud computing using identity-based
signatures to achieve user revocation. This scheme also simplifies the certificate manage-
ment. ii) An attribute-based public auditing for shared data in cloud storage to simplify
complex key management in PKI and ID based schemes and to support user revocation.
It also achieves user privacy. iii) Certificateless privacy preserving public auditing for dy-
namic shared data in cloud storage to achieve data privacy against verifier through random
masking technique to blind the data proof during the process of auditing. Double linked list
information table is used to support shared data dynamics such as insertion, modification
and deletion. iv) Certificateless multi-replica public integrity auditing scheme for dynamic
shared data in cloud storage to achieve the availability of data along with the integrity. v)
Efficient pairing-free certificateless public auditing for shared big data in the cloud based
on ECC to reduce the computation and communication cost substantially during auditing.
Through the security analysis, we prove that all schemes are provably secure against vari-
ous adversaries under the hardness assumption of the standard DL and CDH problems in
the random oracle model (ROM). The performance and experimental evaluation show that

our schemes are efficient and practical.
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Chapter 1

Introduction

In this chapter, we introduce the concept of cloud storage, benefits and challenges of the
cloud storage. Thereafter, the motivation behind our research is discussed, followed by
our research objectives and contributions. We give the thesis organization at the end of the

chapter.

1.1 Cloud Storage

Cloud storage [1, 2] is an important service of cloud computing, which provides reliable
and resilient storage infrastructure for users to store data remotely with the service provider
based on pay-as-you-go pricing model. As an essential cloud computing service, cloud
storage offers scalable, low-cost and location-independent platform for managing cloud
users’ data. Because of the unprecedented advantages, an increasing number of individuals
and organizations are inclined to use the cloud storage service to save local storage space
and enable them to manage resources on demand [3]. For example, a survey shows that
79% of organizations choose cloud storage outsourcing services due to low cost, and or-
ganizations can focus on their core business [4, 5, 6, 7]. Cloud storage also allows to form
the groups and to share the data with other group users. All these features are not available
with on-premises storage. The most popular cloud-based storage services available today
are Amazon S3, Google Drive, Microsoft Azure, Apple iCloud, Google App Engine, Drop-

box etc.



1.2 Cloud Storage-Benefits

A lot of research (for example NIST 2012; Armbrust et al. [3], 2010); focuses on various

benefits of using cloud storage in general. The following are the benefits:

* Low or reduced cost. Nowadays, many data owners in academic and business en-
vironment are choosing cloud for storing their data in the cloud to save costs. The
reason is because of its cost effectiveness, which is particularly true for small and
medium-sized organizations. By outsourcing their data, data owners can avoid the
capital expenditure, infrastructure setup, large equipment, and regular maintenance

cost. [4, 5, 8].

» Accessibility. Cloud storage allows users to access their outsourced data at anytime,
anywhere through any device such as desktop computers, laptops, tablets and smart-

phones.

» Sharing. With cloud storage, customers can create a group and easily share data in
the group anywhere and anytime through the Internet. For example, employees in
the same department of a company store and access data (reports, common file) as

needed.

* Scalability. Traditional infrastructure cannot be scaled up on-demand basis because
of its limitations, whereas a cloud infrastructure supports on-demand scalability (i.e.,
quickly scaling up and down virtual computing resources) with minimal manage-
ment effort and service interruption or without impacting on the performance of the

system. [3, 4, 9].

1.3 Motivation

While cloud storage benefits are clear, it also faces several security challenging issues such
as confidentiality, integrity and availability. The primary issue is the integrity of outsourced

data due to the following reasons : i) once the data is moved to the cloud, Data Owner (DO)
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lose the physical control over the data. ii) some times, cloud providers may delete rarely

Fig. 1.1. Cloud storage service model

accessed data or hide the data loss incidents to have a good reputation. iii) data stored in
the cloud may be lost due to irresistible byzantine failures or human errors or intentional
malicious activity, which can be a burden for the user and an embarrassment for the cloud
service provider (CSP). iv) CSP may maintain less number of replicas than what is paid
for to save the storage space. Therefore, it is highly desirable for the user to ensure the
integrity of the data in the cloud at regular intervals.

Traditional methods to verify the integrity of the data, such as hash values or digital
signatures for entire data, requires to retrieve the entire data from the cloud. Certainly, this
simple approach can successfully verify the correctness of data. However, downloading
the entire cloud data is not economical because it incurs unacceptable communication cost
and may waste users’ resources, particularly when data have been destroyed/corrupted in
the cloud, which is not practical in a cloud scenario. In the cloud computing scenario, the

user wants to check the integrity of data without downloading complete data.



1.3.1 Problem Statement

To check the integrity of the outsourced data, recently, lots of schemes have been proposed
in the literature. In 2007, Ateniese et al.[1] introduced a concept of ‘“Provable Data Pos-
session (PDP) "to ensure the data integrity without downloading the complete data by uti-
lizing RSA-based homomorphic verifiable tags and random sampling of blocks. The idea
of PDP is that the DO pre-processes the file, constructs the metadata for the file blocks,
stores the metadata locally, then uploads the data file along with the tags to CSP and re-
moves the original file at local site. Later, the integrity of the data is validated through
the “challenge-response”protocol. However it does not support data dynamics. To support
dynamic operations such as insertion, modification or deletion [10] described a dynamic
PDP scheme using skip lists. Later, some authors proposed dynamic PDP schemes by uti-
lizing Merkle Hash Tree (MHT) [11, 12, 13, 14, 15] and using Indexed Hash Table (IHT)
[15, 16, 17, 18, 19]. However, all these schemes does not support privacy of data against
verifiers. To preserve the privacy, Wang et al. [20] proposed a privacy preserving au-
diting scheme by employing random masking technique. Later, some authors proposed
privacy preserving PDP schemes [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. However, all of
the schemes mentioned above deal only with the integrity verification of non shared data
(personal data).

In shared data scenario, one of the user in a group uploads data to the cloud, and the rest
of the group users not only access but also modify the data. Several schemes [1, 2, 10, 11,
12,13, 14, 15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44] have been proposed in the literature. However, most of these
schemes [1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32] only focus on verifying the integrity for personal data, which are not suitable
for shared data auditing. When data is shared among multiple group users, some new
challenges such as user revocation will arise that must be addressed. Thus, addressing user
revocations becomes a key research challenge for achieving practical cloud data auditing.
Public integrity auditing of shared data with these existing schemes [33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 43] will inevitably reveal confidential information—data privacy, identity



privacy—to TPA which affects the security of the system. To address these problems, lots
of fruitful shared data auditing schemes [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43] have been
proposed. However, none of the these schemes [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]
fully addressed the following challenges in the RDIC schemes for shared data.

» User Revocation: In shared data, different blocks may be signed by different users
due to data modifications performed by different users, even if the block is the same.
It brings complexity for checking the integrity of the data. Furthermore, the size of
the group is dynamic i.e., any group member may leave or join the group at any time,
so the user revocation is also an important problem that must be addressed. More
specifically, once a user in the group is revoked, he should not be allowed to access
or modify the data and all his pair of public and private keys are to be made invalid
and all the signatures made by revoked user should be resigned by other existing valid
user to ensure the integrity. To achieve user revocation, the traditional method is to
download the blocks signed by revoked user from the CSP, calculate the new tags
and upload the new tags to the cloud again. It will increase heavy computation and
communication cost for the normal user. Therefore, this task should be performed
by the CSP rather than by the normal user. How to design an efficient and secure

method to outsource the task is a challenge issue[33, 38].

* Identity Privacy Preserving: During auditing, the TPA, who is usually considered
to be trusted but curious, might collect the identity information of data generators
to obtain significant privacy information to perform malicious activity. Thus, it is

important to protect the identity privacy of user in the shared-data auditing[41].

» Data Privacy Preserving: Data privacy protection is an important issue for public
auditing, which means that the TPA is not allowed to know any information about
the data content while conducting credible auditing. In the public auditing, the core
of this problem is how to preserve users’ data privacy while introducing a TPA. Al-
though exploiting data encryption prior to outsourcing is an approach to mitigate the
privacy concern in cloud storage, it cannot prevent data leakage during the verifica-

tion process[32]. Thus, it is important for the cloud auditing to include a privacy
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preserving mechanism independent to data encryption.

Data Dynamics: As it is well known that a cloud storage system is not just static in
nature, the users often need to update the data dynamically for various application
purposes. Therefore, it is significant for cloud storage auditing to support every
group user to perform dynamic operations like insertion, deletion, and modification

on outsourced data remotely without downloading the whole data [38].

Data availability: Availability issues appear when the customer is unable to access
his data. In cloud, customer’s data may be lost due to natural disasters, adversaries’
malicious activity or some CSPs may not provide back up. Data should always be

available and retrievable in the cloud.

Complex certificate management: Most of the aforementioned protocols are based
on traditional public key infrastructure (PKI), which consists of a set of roles, poli-
cies and procedures that needed to issue, manage, distribute, store and revoke dig-
ital certificates. The most commonly adopted digital certificate in our daily life is
X.509 certificates. However, there are three weaknesses when involving PKI based
protocols. Firstly, the generation, management and revocation of digital certificates
requires a highly complicated structure. Secondly, a PKI system is a tree structure
and the authentication to the current CA relies on its parent CA. Thus, the root CA
is a trusted center and self-signed, which is vulnerable since compromising root CA
means all the related certificates should be reissued. Thirdly, the certificates issued

by a CA may not secure enough to ensure the security of one’s secret key[45].

Key Escrow: The central problem with ID-based RDPC schemes is the inherent key
escrow problem of a user’s private key, that is to say, the private key generator (PKG)
equipped with the knowledge of master secret key and generates all the private keys
for the users. Consequently, a malicious PKG can forge a signature on any message
on behalf of any user in the system without being detected. This is a serious security

gap (issue) in existing ID-based [42, 43, 44] schemes.



1.4

Objectives

The core objective of this dissertation is to design public integrity auditing schemes for the

shared data to to realize the following security and performance requirements.

Public auditing: Anyone with public parameters should be able to verify the in-

tegrity of shared data in cloud storage.

Blockless verification: The verifier can verify the integrity of shared cloud data

without knowing the actual content and without retrieving all data blocks.

Auditing correctness: The verifier should be able to verify the integrity of shared

cloud data correctly.

Auditing soundness. The malicious cloud server should not pass the TPA’s verifica-

tion if the data is replaced or modified.

Privacy preserving: During auditing process, the TPA should obtain neither any

content of shared data nor any identity details of group users.

User revocation: User revocation should be achieved in a secure and efficient man-

ner.

Data dynamics: Dynamic data operations such as insertion, modification and dele-
tion should be supported without downloading data back while the efficient public

auditing is achieved.

Batch auditing: The TPA should be able to perform several auditing tasks received

from various group users in a fast and cost-effective manner.

Data availability: In cloud, customer’s data may be lost due to natural disasters,
adversaries’ malicious activity or some CSPs may not provide back up. Data should

always be available and retrievable in the cloud.



1.5 Contributions

To meet the above objectives, in this thesis we proposed the following contributions for

public integrity auditing techniques for shared data with user revocation in cloud storage.

* Proposed an Identity-Based (ID) Public Auditing for Shared Data in Cloud Com-
puting using identity-based signatures. Whenever the user is revoked, our scheme
enables the proxy server to resign the blocks to save existing group user’s compu-
tation and communication costs. Meanwhile, a TPA always audits the integrity of
shared data in the cloud through the challenge-response protocol. This scheme also

simplifies the certificate management.

* Proposed an Attribute-Based public auditing for shared data in cloud storage to sim-
plify complex key management in PKI and ID based schemes and to support user
revocation. In this scheme, users sign the data blocks over attributes, and a unique
public key used for integrity auditing, not individual public keys for each user in the
group. Thus it simplifies the key management. It also achieves user privacy, i.e.,
signatures don’t disclose identity information except that user attributes satisfy the
defined access policy. Furthermore it also supports user revocation like the previous

scheme.

* Proposed Certificateless Multi-Replica Public Integrity Auditing Scheme for Dy-
namic Shared Data in Cloud Storage to achieve the availability of data along with
the integrity. It simplifies the problems of certificate management in PKI and elimi-
nates the key escrow problem in IBC. We use a novel replica version table (RVT) to
support shared data dynamic operations such as modification, insertion, and deletion.

This scheme also supports secure user revocation.

* Proposed Certificateless Privacy Preserving Public Auditing for Dynamic Shared
Data in Cloud Storage to achieve data privacy against verifier through random mask-
ing technique during the process of auditing. We use double linked list information
table (DLIT) to support shared data dynamics such as insertion, modification and

deletion. we also use the idea of proxy resignatures to support group user revocation.
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1.e., whenever a user misbehaves or quits the group, the cloud server is able to carry

out resigning process on behalf of group user.

» Proposed Efficient Pairing Free Certificateless Public Auditing for Shared Big Data
in the Cloud based on ECC to reduce the computation and communication cost sub-
stantially during auditing. It eliminates certificate management and key escrow prob-
lems exist in the PKI-based and ID-based PDP schemes, respectively. It is further
extended to support the batch auditing, where the TPA can handle multiple tasks con-
currently. Since the cloud aggregates the multiple proofs and EPF-CLPA is pairing-
free, the auditing performance is greatly improved. Additionally, our scheme also
supports user revocation. During User revocation, the GM will not generate the time
key for the revoked user. Without an updated time key, any user cannot generate valid

signatures for data blocks.

1.6 Thesis Organization

The rest of the chapters of this thesis are organized as follows and given in Fig. 1.2.

* Chapter 2 describes the preliminaries such as digital signatures, identity based signa-
tures, attribute based signatures, certificatelsess signatures, and some mathematical
background including bilinear pairings, security assumptions, elliptic curve cryptog-

raphy, threshold secret sharing etc.

» Chapter 3 reviews the remote data auditing protocols and describe about personal

data auditing schemes and shared data auditing schemes.

* Chapter 4 describes Identity-based public integrity auditing mechanism for shared

data using ID-Based Cryptography (IBC).

* Chapter 5 presents the Attribute-Based public auditing mechanism for shared data
using Attribute based Cryptography (ABC).

* Chapter 6 details Multi-Replica Public Integrity Auditing Scheme for Dynamic Shared
Data in Cloud Storage that relies on the use of Certificateless(CL) Cryptography.
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Fig. 1.2. Thesis organization

» Chapter 7 presents public auditing scheme for shared data to achieve the data privacy

and support the data dynamics of shared data in Cloud Storage using Certificateless

cryptography.

* Chapter 8 presents public auditing scheme for Shared Big Data in cloud storage

designed based on ECC and without employing the bilinear pairings.

* The conclusions of the thesis and future directions are outlined in Chapter 9.
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Chapter 2

Preliminaries

2.1 Introduction

This chapter discusses the background technologies used in our thesis.

2.2 Digital Signature

A digital signature scheme consists of the following three algorithms:

» KeyGen: It takes a security parameter 1" as input and outputs outputs a private and

public key pair (pk, sk).

» SignGen: It takes private key sk and a message m as inputs and outputs a signature

0.

» Verify: It takes public key pk, a message m, and a signature ¢ as inputs and returns

1 for accept or 0 for reject.

A digital signature provides the security services including message authentication,
message integrity, and nonrepudiation. for message confidentiality we still need encryp-
tion/decryption.

In this this thesis, we use the following three types of signatures. 1. Identity-Based

signatures, 2. Attribute Based signatures and 3. Certificateless signatures.
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2.2.1 Identity-Based signatures(IBS)

An identity-based signature (IBS) [46] scheme includes the four algorithms namely Setup,

KeyExtract, Sign and Verify.

Setup: It generates key pair consists of master public key and secret key

KeyExtract: It generates the secret key for the group user with identity id .

Sign: It generates a signature for data.

Verify: It verifies the signature for correctness.

2.2.2 Attribute-Based Signature (ABS)

An ABS [47] allows a user to sign the data over a given attribute set. It has four algorithms:

Setup: It generates the master secret key (msk) and public key pair based on security

parameter.

* Keygen: On input of msk and the attribute set, it generates a private key.

Sign: It generates a signature for the given message using a private key.

Verity: It takes the public key, data, access policy, and signature as input and returns

Oorl.

2.2.3 Certificateless Signatures (CLS)

A CLS [48] allows a user to sign the given data. It has seven algorithms.

1. Setup: It generates system parameters params and master secret key msk using a
security parameter.

2. Partial-Private-Key-Extract: It takes params, master secret key, and user’s ID as
inputs and returns a partial private key sk;p for the user.

3. Set-Secret-Value: It takes params and user’s ID as inputs and outputs the user’s

secret value y;p.
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4. Set-Private-Key: It takes params, user’s ID, sk;p, and secret value y;p as inputs
and outputs private key Syp.

5. Set-Public-Key: It takes params and secret value y;p as inputs and outputs public
key PKp.

6. Sign: It takes as inputs params, a message M to be signed and a private key S;p. It
outputs a signature o.

7. Verify: It takes as inputs params, a message M, the ID and public key PK;p of

user, and o as the signature to be verified. It returns O or 1.

2.3 Mathematical Background

2.3.1 Bilinear Pairing

“Assume (; and G are the two cyclic groups of the same prime order q. A map e :
G, x Gy — G is said to be a bilinear pairing if the following three conditions hold [49]:
Bilinear: e(u®, v") = e(u,v)®, Vu,v € Gy and V a,b € Z.

Computational: e(u, v) can be efficiently computable ¥V u, v € G;.

Non-degenerate: ¢(g,g) # 1.7

2.3.2 Security assumptions

A. Computational Diffie-Hellman (CDH) Assumption [50]. “For any probabilistic polyno-
mial time adversary Acppy, the advantage of adversary Acpy on solving the CDH problem

in (&1 is negligible, which is defined as
PrlAcou(9.g*,¢") = (4") - a,b & Z;] <

where € denotes a negligible value .
B. Discrete Logarithm (DL) Assumption [51]. “For any probabilistic polynomial time

adversary Apy, the advantage of adversary Ap;, on solving the DL problem in (5, is neg-
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ligible, which is defined as

2.3.3 Elliptic Curve Cryptography

Let E be any curve symmetric around x-axis that satisfies polynomial equation y? = 23 +
ax+b over a finite field F), of prime integers such that p > 3 and p is any set of large primes
[52]. Where a, b are any constants with A = 4a® + 27b? # 0 along with infinite point O
for all set of point P = (z,y). On performing point addition R = P + () (according
chord-and-tangent rule) forms a cyclic group G over the elliptic curve E. Therefore, we

define the scalar multiplicationast- P = P+ P + ... + P (t times).

2.3.4 Threshold Secret Sharing Scheme

“Threshold secret sharing scheme [51] enables to divide a secret s into n shares and dis-
tributes to n players, say, P, P,...P,. With k£ or more shares, one can reconstruct the
secret; It utilizes a unique k& — 1 degree polynomial f(x) where f(z) € Z, and f(0) = s.
When reconstructing the secret s, a set S of k shares are chosen to recover f(0) as follows
f(0) = Xopes Dais(x)si where Ag, (1) = [1pes jui 7= denotes the Lagrange coeffi-

cient.”

2.3.5 Replica Version Table (RVT)

To support dynamic data operations at block level, many existing scheme [53, 54] used
authenticated data structures such as IHT [53], MHT [53, 54] or skip lists [55]. However, it
would create heavy computational costs and high communication cost during the updating
and verification processes and does not support shared multi-replica data dynamics. In this
paper, we propose RVT to support shared multi-replica data dynamics which is designed

based on IHT [53] to store the different versions of the recently updated multi replica file
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Table 2.1: RVT (for instance n = 8 and j = 1(1 < j < ¢))
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blocks and stored at the verifier side. RVT is a table like authenticated data structure,
which can be accessed or modified by the users of the group and maintained by the TPA.
The structure of the RVT is shown in Table 2.1. It consists of four columns: Serial Number
(SN), Block Replica Number (BRN), Block Version Number (BV N), and User Identity
(Urp). The SN is used as a counter, which can be treated as the physical location of the
block, and the Block BRN is used to identify the specified block of a particular replica.
The relation between SN and BRN can be viewed as a mapping between physical position
and logical number of the replica file blocks. The U;p is used to identify the signer of the
block. When a file of blocks is initially created the BV N of all blocks is set to 1. If any
of the block is updated, then its version number is incremented by 1. TPA keeps only one

table irrespective of the number of replicated files that CSP stores.
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Chapter 3

Review of Remote Data Integrity

Auditing in Cloud

3.1 Introduction

In this chapter, an extensive review of remote data integrity auditing techniques in the cloud
computing and a brief survey of the literature related to the contributions made in this thesis
is given. Remote data integrity auditing (RDIA) is a technique to verify the integrity of
outsourced data without retrieving and without having knowledge of the complete data. The
remote data auditing involves the entities such as (1) DO, who has huge data to be stored
in the cloud, can be an individual or an enterprise. (2) CSP, who provides the storage space
for the user to store data and manage the cloud with large amount of resources and (3) TPA,
who has expertise and capabilities that the user does not have, and audits on behalf of DO,
as depicted in Fig 3.1. [1] In the process of remote data auditing, first, the DO pre-processes
the data file before it is uploaded to the cloud. After uploading the file to cloud, the local
copy of the file is deleted. Later, verifier (DO or verifier) sends a challenge specifying the
blocks for which the CSP need to provide proof. Upon receiving the particular challenge,
the CSP generates proof for the challenge and sends a proof as a response by executing
the challenge-response protocol. Then, the verifier checks whether the data is intact or not
in the cloud by comparing the local metadata with proof sent by the server. If both are

matched, it indicates the integrity is maintained in cloud storage, otherwise, there is a data
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Challenge-Response-Protocol
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Fig. 3.1. Architecture of RDIA
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F > Data Owner > Cloud Server
1.F ={mi,ma,...m,}
2.7 = {t1,t2,...tn}
1.DO divides the file F into n blocks -
2.DO genetates tags for the blocks
3.DO sends File and tags to the cloud
Server
Store

Fig. 3.2. PDP: setup phase

corruption or data alteration.

Based on PDP, in recent years, several RDIA schemes [1, 2, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41,42,43,44,47, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66] have been proposed for
catering to different needs of the integrity verification of cloud users’ data, under different
security and system models in the literature. We have broadly classified these schemes into
two types based on their approach and nature of the data, such as personal data auditing
schemes and shared data auditing schemes. Further, each of them are categorized into

static and dynamic.
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Fig. 3.3. PDP: verification phase

3.2 Personal data auditing schemes

To check the integrity of personal data in cloud storage, in 2007, Ateniese et al. [1] first pro-
posed a PDP scheme. They utilized RSA-based homomorphic verifiable tags and sampling
method to verify the integrity of data stored in the cloud. In this scheme, the DO divides
the file /" into several blocks I’ = { f1, f2,....f,} and constructs metadata for every block
before it is outsourced to untrusted CSP. After uploading the file F' and corresponding tags,
the DO deletes the original file at their local store. Later, the integrity of the data is verified
through challenge-response protocol. This technique gives a high probabilistic guarantee
of data possession, where the auditor verifies a set of file blocks randomly with every chal-

lenge, as shown in the Fig.3.2 and Fig.3.3.

3.2.1 Static personal data auditing schemes

Based on PDP, many schemes [58, 59, 31] received research attention in the early days
of cloud computing era. They focus on static data auditing, in which DO cannot modify
the data online. These schemes mainly focus on checking the integrity of large reposito-

ries which does not change over time like libraries, archives, medical, and scientific data.
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Curtmola et al. [58] proposed a multiple-replica PDP (MR-PDP) scheme to increase the re-
liability of data stored on remotely located servers, where the data owner can check whether
a storage service provider stores single or multiple copies of a file. The additional benefit
of MR-PDP is that it can generate additional copies on demand, when few of the current
copies fail, at small expense. However, it suffers from huge tags, computation overhead
on both the verifier and server side. Similarly, Wang et al. [59] presented a proxy PDP
(PPDP) method by using the bilinear maps in which a remote data auditing performed by
the proxy on behalf of the client according to a warrant. However, it does not support data
dynamics; Similarly, Chen [31] used algebraic signatures to check data integrity to reduce
computation overhead than using homomorphic cryptosystems. The main disadvantage is
that it does not support dynamic data operations. All static PDP schemes [58, 59, 31] can
be used well for verifying the integrity of the data with a high probabilistic guarantee, but

they do not provide any support for remote data updates.

3.2.2 Dynamic personal data auditing schemes

DOs are subject to update their data at regular intervals for various application purposes. To
support dynamic operations such as insertion, modification or deletion, Ateniese et al. [56]
designed a scalable PDP (S-PDP) scheme, which is based on symmetric key cryptography.
It improves the PDP [1] in terms of storage, computation and communication cost. S-PDP
uses an authenticated data structure to support dynamic data operations, such as fragment
changing, remove and append. However, this scheme fails to handle unlimited number of
queries and insertion of blocks. Later, Erway et al. [10] described a dynamic PDP scheme,
which extends the scheme [1] by introducing skip lists. This scheme can support full dy-
namic operations on outsourced data. This scheme is first in line to discover constructions
for dynamic provable data possession. However, the performance of the scheme remains

uncertain.

Wang et al. [32] combine Boneh—Lynn—Shacham (BLS) based block authentication
signature [67] and the Merkle Hash Tree (MHT) to provide both public verifiability and
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data dynamic operations along with integrity. In this method, they divide the given file
F" into n number of blocks and then constructed tags by applying hash function on each
block. These hash values are stored at the leaf nodes of the MHT and in turn generates
the root. However, it does not support privacy preserving of data against TPA. Similarly,
Zhu et al. [16] proposed a dynamic auditing service for checking the integrity of remotely
stored data in CSP servers. They utilized the fragment structure to reduce the storage of
signatures, utilized index hash tables (IHT) to support dynamic operation. It supports batch
auditing of many blocks from the same file but fails to provide privacy preserving against
TPA. In [25], Zhu et al. proposed a cooperative PDP protocol in multi-cloud environments.
Li et al. [68, 69] proposed a scheme in which a user can delegate TPA to execute high
computing process to solve the user’s bottleneck before the client outsources the data to
CS. Li et al. [69] extended [68] to improve the tag generation. Liu et al. [12] thought
that previous studies are not efficient with respect to data updates because it is a fixed-
size block update. Therefore, they designed a scheme to support variable-size blocks to
improve efficiency. Liu et al. [54] designed a scheme for data availability in the cloud.
Consequently, the CS will store multiple replicas to enhance data availability. However,
when the stored data is frequently updated, each dynamic update will affect every replica.
Therefore, they proposed Later, some authors proposed dynamic PDP schemes by utilizing
MHT [12, 13, 14, 15] and using Indexed Hash Table (IHT) [15, 16, 17, 18, 19]. With more
data, it brings new challenges in data integrity.

However, all these schemes does not support privacy of data against verifiers. To pre-
serve the privacy, Hao et al. [21] proposed a protocol for privacy-preserving based on RSA
cryptosystem by making use of Seb “e et al. [60] protocol, to support public auditing of the
data. However, it is infeasible if the size of the file is large and not achieved the anticipated
goal of keeping data hidden from the third party. Similarly, [20] proposed a privacy preserv-
ing auditing scheme by employing random masking technique. They developed a method
using HLA and random masking technology in such a way that TPA gets zero knowl-
edge about the data stored in server during every auditing even though TPA may perform
multiple auditing tasks simultaneously. However, it incurs heavy computation and commu-

nication overhead. Syam and Subramanian [19] described an integrity checking protocol
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based on RSA, supports public auditing and data dynamics using Sobol Sequence. It gives
the probabilistic guarantee of integrity. Its performance is better than the schemes using
pseudorandom sequence [70]. Similarly, Barsoum and Hasan [71], presented a scheme to
outsource the critical data to CSP and introduced indirect mutual trust between DO and
CSP, i.e., trust for data storage in the cloud. Their solution not only provides secrecy, con-
sistency, and authorisation for data but also maintains various versions of data for better
security and integrity. Subsequently, they presented a map-based [53] provable multi-copy
dynamic data possession (MB-PMDDP) to prevent CSP from cheating the client. However,
it fails in finding the corrupted copy of the file. [17] proposed a protocol for storage au-
diting to protect data privacy against TPA using cryptosystems, bilinear pairing, and HVT.
It supports dynamic data operations with less communication overhead between the server
and the auditor and lowers the computing cost of the auditor. This protocol is further ex-
tended to support batch auditing for both multiple data owner’s settings and multiple cloud
settings with a proxy to significantly improve the verification performance, especially in
distributed cloud storage systems. However, it incurs more storage space overhead on the
server because of a large number of tags and the auditor because of increased size as well
as increased count of files.

Liu et al. [12] introduced a technique for fine-grained updates and ensured fewer com-
munication overheads for big data applications such as social media and business transac-
tions. It works better for a single user and does not support shared data among users. Later
in 2015, Liu et al. [54] presented a new external auditing method named MuR-DPA with
a new data structure based on the MHT. It allows verification of several replica updates at
the same time. However, it supports only small updates and works fine only with the single
client.

Cloud storage service not only allows user to store data but also allows share informa-
tion with other users in a group. However, all of the aforementioned schemes [1, 2, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 56, 57] deal
only with the integrity verification of non shared data (personal data which is possessed by
only a single user) which are not suitable for shared data auditing. That is these schemes

do not consider the advantage of cloud storage where a user can share data with other users
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Table 3.1: Summary of some personal data auditing schemes

Schemes Type of Guarantee | Integrity | Availability | PA | DD | PP | BA
Ateniese et al. [1] Prob v X X X X | X
Erway et al. [10] Prob 4 X X 4 X | X
Wang et al. [11] Prob v X v v v |/

Liu et al. [12] Prob v X v v X | X
Barsoum et al. [15] Prob v v v v X | X
Zhu et al. [16] Prob v X v v | X
Yang et al. [17] Prob v X v v |/
Syam et al. [19] Prob v X e v X | X
Hao et al. [21] Prob v X v v v | X
Chen et al. [31] Prob/Det. v X X X X | X
Wang et al. [35] Prob v X v v v | X
Jiang et al. [38] Prob v X v v v | X
Ateniese et al. [56] Prob v X X | partial | X | X
Curtmola et al. [58] Prob v v X X X | X
Wang et al. [72] Prob v X v X X | X

Note:PA: Public Auditing; DD:Data Dynamics; PP: Privacy preserving; BA:Batch
Auditing; Prob: Probabilistic; Det: Deterministic;

on cloud.

3.3 Shared data auditing schemes

With the increasing demands of collaborative works in cloud, shared data auditing has
become an important topic [35, 36, 38]. In shared data scenario, one of the users in a group
creates and uploads data to the cloud, and the rest of the group members not only access
but also modify the data. Shared data auditing schemes can be further classified into static

and dynamic schemes.

3.3.1 Static shared data auditing schemes

To ensure outsourced shared data integrity, firstly, Wang et al. [34], proposed a scheme
named Oruta with the help of ring signatures. This scheme increases complexity if the size
of the group increases; Therefore, it is not suitable for big groups. To address this issue, in
their subsequent work, they proposed Knox [33] using a group signature to support group

dynamics. However, this scheme costs a huge amount of computational resources. Later,
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they designed a scheme named Panda [35] for shared data supporting user revocation by
using a proxy re-signatures technique. However, it has a security flaw since the resign-
ing keys of users are stored with proxy in advance, which causes collusion attacks from
revoked users or CSP. To address this problem, Yuan and Yu [36] has proposed a scheme
by employing polynomial tags. However, it suffers from replay and replace attacks. To
address these attacks, Luo et al. [37] designed a scheme for shared data to support user re-
vocation by employing the concept of secret sharing. However, both [36, 37] schemes does
not study privacy, which is an important property for public integrity auditing. Later, Jiang
et al. [38] adopted the vector commitment and employed the group signatures to support
user revocation. However, the scheme inefficient because of costly auditing operations. Fu
et al. [39] proposed a scheme by combining a homomorphic verifiable group signature
with a secure sharing technique to address identity privacy. Moving forward, Wu et al. [40]
proposed a scheme by employing group signatures. It provides user identity privacy and

data privacy by employing the random masking technique.

3.3.2 Dynamic shared data auditing schemes

To support dynamic operations along with integrity and user revocation, Wang et al. [35]
designed a scheme named Panda [35] by utilizing a proxy re-signatures [73] technique
which is a good choice a cut down the computation overhead for user during resigning.

PS fetches the signatures from the cloud and transforms Meanwhile, the PS cannot learn
any private keys of the two users, which means it cannot sign any block on behalf of either
revoked or non-revoked user.

When a user is revoked, the CS will transform revoked user’s signature on a message m
into a non-revoked user’s signature signature on m whenever a signed user revoked from
the group with a re-signing key. However, it has a security flaw since the resigning keys
of users are stored with proxy in advance in order to generate resignation keys of new
signatures, which causes collusion attacks from revoked users or CSP. Recently, Tian et
al. [41] proposed a scheme to achieve data privacy and extended the DHT to support data

dynamics.
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Although several public auditing schemes for shared data have been proposed, none
of them could realize all the security and performance requirements such as user revoca-
tion, privacy preserving, identity privacy, data dynamics. Moreover, most of these schemes
[33, 34, 35, 36, 37, 38, 39, 40, 41] suffer from the complex certificate management because
they rely on traditional PKI. PKI is widely used in several fields. However, the PKI-based
scheme must deal with various complex certificate management activities including certifi-
cate generation, storage, delivery, renewing, and revocation. Furthermore, the security of
PKI cannot be guaranteed completely, particularly, when the CA is intruded or controlled
by a malicious hacker The most commonly adopted digital certificate in our daily life is
X.5009 certificates, an ITU-T standard for a PKI and privilege management infrastructure.

To simplify certificate management, identity based (ID-based) schemes for shared data
[42, 43, 44] auditing have been presented using identity based cryptography [74]. In these
schemes, signatures are generated based on the identity of the user. These protocols sim-
plify certificate management by binding the user’s identity with the secret key. Yang et al.
[42] described a scheme using blind signatures to achieve identity traceability. Zhang et
al. [43] presented remote auditing of big data with user revocation by employing ID-based
signatures. In this scheme, they update the private keys of existing authorized users instead
of updating the signatures of revoked users during revocation. However, the limitation of
its application is that all users in the group have the same private key and the same public
key. Similarly, [44] proposed a mechanism with sensitive information hiding by employing
ID-based signatures. In this scheme, a special file called a disinfectant file is created to hide
signature information of sensitive blocks of the file.

However, all these schemes [42, 43, 44] inevitably suffers from “key escrow problem
“because the full private key of the user is generated by a third entity called the private key
generator (PKG). As PKG knows each user’s private keys, it can easily masquerade any
client to sign the message by itself. This is a serious security gap (issue) existing in these
ID-based [42, 43, 44] schemes.

To simplify the certificate management and mitigate key escrow problems existing in
various shared data schemes [34, 35, 38, 39, 40, 41, 42, 43, 44, 75, 76] simultaneously,
CL-PKC schemes [62, 63] have been proposed based on CL-PKC. Li et al. [62] initially,
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designed a CLPDP scheme for shared data, which can support user revocation. But it does
not consider the data privacy against verifier and data dynamics. That means, the user’s
data may be leaked to verifier during auditing. This weakness will affect the security of
the data in cloud environment. To support privacy preserving, Yang et al. [63] designed a
privacy-preserving CLPDP scheme by employing the technique of zero-knowledge proof
and randomization method. However, these schemes [62, 63] are based on expensive bi-
linear pairings, which incur heavy computation overhead and are not applicable for shared

big data auditing.

Table 3.2: Summary of shared data data auditing schemes

Schemes Integrity | PA | DD | PP | BA | Availability | UR | CF | KE
Wang et al.[34] v | X | X X X X | X | X
Wang et al. [33] v L X | X X X X | X | X
Wang et al. [35] v | X |/ v v X | X | X

Luo et al.[37] v | X | X v X X | X | X
Jiang et al. [38] v | X |/ v v X | X | X
Fu et al. [39] v v | X |/ v v X | X | X
Wau et al. [40] v | X |/ v X X | X | X
Tian et al. [41] v v | /| v X X | X | X
Yang et al. [42] v | X |/ v v X | X | X
Shen et al. [44] v v | X |/ v v X | X | X
Liet al. [62] v | X |/ v v X | vV |V
Yang et al. [63] v v | X |/ v v X |V | X
Yuan & Yu. [76] v v | X | X | partial X X | X | X
Zhang et al. [77] v | X |/ v v X |V | X

Note:PA: Public Auditing; DD:Data Dynamics; PP: Privacy preserving; BA:Batch
Auditing;KE:Key Escrow Problem; CF:Certificate Freeness;UR:User Revocation;

3.4 Summary

In this chapter, we reviewed RDIA schemes in cloud storage and we classified RDIA
schemes into personal data auditing schemes and shared data auditing schemes according
to their approach and nature. From our review, we observed that the most of the existing
schemes focused on auditing the integrity of personal data which are not suitable for shared

data auditing. When data is shared among multiple group users in group, some new chal-
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lenges will arise like secure and efficient user revocation, efficient data dynamics, privacy
preserving, availability of shared data. To address these issues, efficient and secure RDIA

schemes are designed in the subsequent chapters.
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Chapter 4

Identity-based Public Integrity Auditing
for Shared Data(IDPIA)

4.1 Introduction

In this chapter, we present the first contribution of the thesis: Identity-based (ID-based)
public integrity auditing scheme to ensure the integrity of shared data with user revocation
which is a significant issue in cloud storage. To ensure secure and efficient user revocation
while avoiding complex certificate management in existing schemes [33, 34, 35, 36, 37, 38,
39, 40, 41], we propose an ID-based public integrity scheme for shared data with secure

user revocation in cloud. The main contributions of this chapter are as follows:

* In this contribution, ID-based signatures are employed to generate signatures of file

blocks that can simplify certificate management problem.

* Proxy re-signatures are used to support group user revocation. That means, whenever

a user quits the group or misbehaves, proxy can carry out the resigning process.

* The security analysis proves the correctness, soundness of IDPIA based on DL as-

sumptions in ROM.

* The performance analysis evaluates performance of IDPIA theoretically and experi-

mentally in terms of computation overheads.
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4.2 Problem Statement

Here, we the present problem statement, its description followed by the architecture, ad-
versary model, design goals, and the security model of the scheme

To guarantee the outsourced data integrity in the cloud, a number of protocols have been
proposed based on various methods [9-21]. In [9-17] schemes, data owner (DO) uploads
the data file along with the signatures of file to the cloud and enables third-party verifier
to validate the integrity of shared data through the execution of the challenge-response
protocol. However, these schemes [9-17] merely focused on personal data auditing. The
schemes [18-21] proposed to validate the integrity of the shared data. However, these
schemes [18-21] increase the key management problems such as key storage, key exchange
for resigning process and also cause collusion attacks in the system. Therefore, it is an open
challenge to design a state of the art technique for shared data auditing to address above
mentioned problems.

To ensure secure and efficient user revocation while avoiding complex certificate man-
agement in existing schemes [33, 34, 35, 36, 37, 38, 39, 40, 41], we propose an ID-based
public integrity scheme for shared data with secure user revocation in cloud. In the pro-
posed scheme, ID-based signatures are employed to generate signatures of file blocks that
can simplify certificate management problem. Proxy re-signatures are used to support
group user revocation. That means, whenever a user quits the group or misbehaves, proxy

can carry out the resigning process.

4.2.1 Architecture

An Identity-based cloud storage architecture considered in this chapter consists of five

entities as illustrated in Fig. 4.1.

1. PKG, who generates key pair for users. PKG calculates the private key by using

user’s identity, and forwards it to the user through a secure channel.

2. Users who store, share, trust and cooperate with each other in the group, which can

be an enterprise or an individual.
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Fig. 4.1. System architecture of IDPIA scheme

3. Cloud server provides the storage space and manages the data in the cloud.

4. A proxy server is a semi-trusted cloud server, which performs resigning on revoked
user blocks by utilizing proxy re-signatures resigning over the blocks which were

signed by revoked user on behalf of the group.

5. The TPA audits the data upon receiving the auditing request from the user.

4.2.2 Overview of IDPIA

In IDPIA, initially a user submits a request to the GM to join the group. According
to the request of user, GM generates a group key and securely sends to the user.
Then the user request for the private key from PKG. The PKG authenticates the
user, generates private key and secretly sends to the user. Upon receiving the private
key, the user generate signatures for file data blocks using private key. After signing
data blocks, uploads data blocks along with corresponding signatures to the cloud
and deletes them from the local site to save the space. Later, to audit the shared
data, TPA challenges the cloud by selecting blocks randomly. After receiving this

challenge, the cloud returns the proof of shared data as a response to the TPA. After
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receiving proof from the cloud, TPA verifies the correctness of data. Whenever a
user in the group misbehaves or quits the group, GM updates the existing RL and
forwards to the Proxy. Upon receiving the updated R L the proxy performs resigning

on revoked user blocks by utilizing proxy re-signatures.

4.2.3 Adversary Model

In adversarial model, we consider the two types of adversaries: Internal adversaries, exter-
nal adversaries.

Internal adversaries: Malicious insiders, who are cloud servers or users. They intention-
ally delete or modify the user’s data in the cloud. Sometimes, they may try to translate
signatures of one user into another user to cut down the operation costs or hide data loss to
build their reputation.

External Adversaries: Who may try to avert the users from accessing the shared data by

destroying/altering the data in the cloud.

4.2.4 Design Goals

We design our scheme to achieve following goals:

1. Correctness: The cloud passes the integrity check if every challenged block and its

corresponding signatures are appropriately maintained in the cloud.

2. Soundness: A malicious cloud server server cannot generate a valid response if the

data is replaced or modified.

3. Public Auditing: Anyone with public parameters can verify the integrity of group

shared data having no knowledge of the data.

4. Efficient User Revocation: Proxy server re-signs the blocks efficiently during the

revocation.
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4.2.5 Security Model

We designed IDPIA scheme to withstand the the adversary, namely A, (represents mali-
cious cloud). A; tries to generate the forged integrity proof. We prove the security of
IDPIA by considering the adversary A; and we define the following Game 1 against A;.
Game 1 (played by A, and a challenger B):

* Setup: B runs the Setup algorithm to generate the system parameters PP and the

master secret key M K. B sends PP to .A; and keeps the M K secret.

* SignGen_Query: A, chooses the tuple (I D, m) and forwards it to BB for querying the
signature. B generates and returns the signature of m to .4; by running the SignGen

algorithm.

» Challenge: B generates a challenge message Chal and sends it to A; to get the cor-

responding proof P.

* Forge: Finally, for the Chal, .4, outputs a data integrity proof P and sends it to B. A,

wins the game if P can pass the integrity check and the blocks in P is incorrect.

4.3 Algorithmic Framework

In this section, we give the syntax of the proposed identity-based RDIC scheme includes

nine algorithms as follows:

s Setup (1* ) — (PP, MK) : It takes security parameter \ as input and outputs the

public parameters PP and the master secret key MK.

* KeyExtract (M K, ID)— SK;p: It takes MK and a group user’s identity /D &€

{0, 1}* as input and outputs the secret key S K;p that corresponds to the identity I D.

* Sign (m, SK p)— o; : It takes the data m; € {0, 1}*, and secret key SKp as inputs
and return signature o; as output which will be stored in the cloud along with the file

F ={my,ma,..my}.
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* Challenge (PP, F,,,ID)— chal : It takes the public parameters PP, a unique file

name F}, and user’s identity /D as input, outputs a challenge message chal.

* Proof (chal,oc,m) — P: It takes chal, signatures, and data as input and to generate

a data proof P as output.
* Verify (I D, chal, P) — 0, 1: It takes the pp, ID, chal, P as input and outputs O or 1.

* Revoke (RL,idl,id2...idk)— RL': Tt takes RL, {idl,id2...idk} as input and
outputs RL' .

* Rekey (SK;p, MK)— SK,: It takes SK;p, M K as input and generates a ReKey

S K, as output.

* ReSign (0, SK,;)— o’: It takes signatures, and re-key as input and produce re-

signatures as output.

4.4 Detailed Construction

Now, we give the construction of proposed algorithms, which are defined in section 4.3 as

follows:

* Setup In this algorithm, PKG generates master system secret key MK and public
parameters PP as follows: Let G; and G5 be two multiplicative cyclic groups of
prime order p and g be a generators Go. PKG randomly picks an integer « £ Zp
as the master secret key and generates a public key P, = ¢°. Let PKG choose two
cryptographic collision resistant hash functions as Hy, Hy : {0,1}* — G. System
public parameters PP: {G1, G, Gr, ¢, g, P, H, Hy} published to all the users in the
system. Here MK = «a, Pk = ¢ . Additionally, KGC also generates an initial

revocation list RL = ¢ .

* KeyExtract It takes M K and I D of a user as input, and generates the private key
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sk; as output.

where Q' = H,(ID;)

Sign: Given file F' =( my, my, ....m,,) named fid, the DO picks a random group ele-
ment u +— (1. Then computes the signature o; for every block m; (: = 1,2,3....n)

as

g; = (8]€ZH2(deHZ) Umi)a (41)

Challenge: To check the integrity of the file, TPA sends the challenge message

chal = {Z, vi}slgigsc to the cloud.

Proof: After receiving the challenge chal = {i,v;}s,<;<s. from the TPA, the server
computes (1 = Z viMm;; 0 = H o;" € G where both signature blocks and data
1=81 =51

blocks are aggregated into a single block. Then the server sends proof P = {u, o}

as a response.

Verify: Once the proof P is received from the server, the TPA verify
? S
e(o,g9) = e( ] sv®, Ha(fid||i)) - u”, Py) (4.2)
=51
If this equation holds, data is intact otherwise corrupted

Revoke: If a user U; in the group set to be revoked, KGC updates the revocation list

and sends a copy to the proxy for resigning process. RL' < (RL U {id;}).

Rekey: KGC generates a resigning key SK .k as follows. KGC picks a random
number rk; £ Z, and sends it to nonrevoked user U;.User U; calculates rk; /sk;
and sends back to the KGC. Then KGC takes the rekey as SK,, = rk;/sk; and

forwards the rekey to the proxy.
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* ReSign: Upon receiving the RL’ and rekey, proxy downloads the previous signature
of the all the blocks from the cloud server and recomputes new signatures using rekey

for all the data blocks as
g; = ((7’]{7@/81{71 HQ(deHZ) 'Umi)a (43)

on behalf of the existing user. Then proxy server uploads the new signatures back to

the cloud.

4.5 Security Analysis

In this section, the security of IDPIA is analyzed in terms of correctness and soundness.

4.5.1 Correctness

Theorem 1. In the proposed IDPIA, the cloud passes the auditing if all the selected data
blocks of shared data and their corresponding signatures are intact in the cloud.
Proof: To prove the correctness of our scheme is equivalent of proving Eq. 4.2 is correct.

The proof lies in the following equations. The correctness of the protocol can be elaborated
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as follows.

SC
e(0,9) = e( [ st Halfid|]i)) - u*, Fr)
=51

Se
e(o,g)=e([] o', 9)
=51
Se

= e( T (swi - Ha(fid]li) - ™))™, g)

=51

= e([] (i ma(fid]li) - ™)), g)

Se

= o [T (sus - Halfidl}i) - um)*), ")

=51

Se

= e( [ swe- Hafidlji) - u™), ")
=51
Se

= e([ ] swi - Ha(fid|li) - u, Py)
i=S1
In other words, if any selected block in the challenge message is damaged, the cloud cannot
to generate a proof that can pass the verification. Hence, it is easy to detect the misbehavior

of the server using our scheme.

4.5.2 Soundness

The soundness of the IDPIA scheme can be given based on the following theorem:
Theorem 2 (Auditing soundness): It is computationally infeasible for an adversary or an
untrusted cloud to generate a forgery of a proof that can pass the verification process if the
DL problem in group G is hard.

Proof. This theorem is proved based on the security Game 1[34, 78] defined in section
4.2.5

First, TPA forwards a challenge message (i, v;);cc to A;, and correct proof should be
(i, o) which can pass the verification with Eq.4.3. Now, based on the corrupted data 9V,

the adversary A; computes proof (u/,c*), where 9" # 901, and at least one element of
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{Am; = m; — m;} for i € C is nonzero. The adversary .A; wins the Game 1 if proof
(computed over incorrect data) still passes the verification performed by verifier. Other-
wise, it fails. Suppose A; wins the Game 1, then we get the following equation from

verification Eq.4.3.

Sc
e(0,9) = e([] su, Ha(fidlli)) - u', Pr)
=51

Because (u, o) is correct data proof, we can get

Se
e(o,9) = e( [ s, Ha(fid||i)) - u*, Pr)
=51

From above two results, based on the property of bilinear map, we deduce that

C C C
!
[ =[] ana ][ v -
i=1 =1 =1

Let two random generators f,h € Gy, and h = f* for some element x € Z,. For the
given f, h € G, arandom value u € GG can be written as v = f¢- h® € G, where ¢ and

¢ € Z,. Then, we have

C

HUAM — H(fﬁ . hE)Au — fZLl eAp pio &An
i=1

i=1

_Z‘i::l eAp
Since f = h* , we can solve the DL problem by calculating f = h* = h Z=15%" ¢ =

—% only when the denominator becomes zero. However, according to the definition
of Game 1, at least one element of Ay is nonzero, and the denominator is zero with a
probability of 1/p. Therefore, we can find a solution to the DL problem with a probability
of 1 — 1/p, which is a non-negligible value since p is very large prime. It contradicts to the

assumption defined in section 2.3.
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4.6 Performance Analysis

Now, we give a theoretical analysis of IDPIA regarding computation and communication
costs. A brief comparison of the proposed scheme IDPIA and previous works is presented

in Table 4.1 and 4.2 respectively. Finally, we present experimental results.

4.6.1 Computation cost

Here, we present the computation cost of the TPA during the auditing process and proxy
server during the revocation process. For simplicity, we denote by £ X1, £/ X 49 the expo-
nentiations in GG; and G, Mulgi, Mulgo the multiplication in Gy and Go, H's is the hash
function, F, and R the pairing operation and the number of blocks signed by revoked user
respectively. The computation cost of the verifier involves in generating sampling blocks
of challenge and verifying the validity of a corresponding proof. The cost of the verifier
while checking the proof is CEXG1 + CMulg + C' P, + C'H,. The computation cost for
resigning a block in the cloud is 2E' X1 + 3Mulg, + Hsgi as shown in Table 4.1.

4.6.2 Communication Cost

We consider communication cost of IDPIA during the verification process, which consists
of challenge and proof as a response. The challenge chal = {i,v;}s,<i<s., its size is
| ¢|-(| n|+ | q|) bits where C, | n |, | ¢ | represents sampled blocks, the sizes of a block
and an element of Z, respectively. The size of proof P,V is the size of an element of Gy
or Z,,| id | is the size of a block identifier. Hence, the complete communication cost of

verification is 2D - | p |4+ | ¢ | -(] id |) bits, where D represents nonrevoked users in the

shared group, | p | is the element size in GG;. A comparison of selected previous schemes

and our scheme in terms of communication cost is given in Table 4.2.

4.6.3 Experimental Results

We utilized Pairing Based Crypto Library [79] to implement cryptographic operations. All
experiments conducted with an Intel 15-7200U CPU @ 2.50GHz and 8 GB Memory. In
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Table 4.1: Comparison of computation costs

Schemes Proxy server Auditor

Wangetal. [35] R-EXg (| ¢ | +D)EXa +
(D+1)Pa+ (| c])+
2D)MulG1 +DMUZG’2

IDPIA 2E X1 + 3Mulgy + Hse CEXa + CMulg, +
CPa+ CHs

Table 4.2: Comparison of communication costs

Schemes Challenge Proof Type
Wang etal. [35]  |c|-(|n|+]q]) 2D | pl+|c|-(]id]) PKI
IDPIA |Cl-(In|+q]) 2D- | p | + | C | IBC

([ d |)

the following experiments, the security parameter A is fixed to 160 bits and the shared data
is set to 1 GB. All the experiment results are mean of 20 trials. In experimental results,
we measured the computation cost of Sign generation, Proof generation, Proof verification
and Resign operations. In Fig 4.2a. We present computation cost of signature generation
and we can observe that computation time is increasing linearly as the size of the data is
increasing. In Fig 4.2b. We present computation cost of Proof generation and verification
and we can observe that Proof generation and verification time is increasing linearly as the
size of data is increasing. In Fig 4.2c. We present computation cost of resigning task and
we can observe that resigning time is increasing linearly as the number of blocks to be

signed is increasing.

4.7 Summary

In this chapter, we presented a public integrity auditing scheme for shared data with effi-
cient and secure user revocation based on identity-based signatures. With our scheme each
user doesn’t have to keep traditional public key as like in the PKI and verification informa-
tion do not have include any certificate of public key. Meanwhile, the TPA can audit the
integrity of shared data through challenge-response protocol execution even if some part of

shared data has been re-signed by the proxy. The collusion attack is practically infeasible
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for the revoked user during the resigning process. The security analysis and performance
analysis demonstrated that IDPIA is secure and efficient. The overhead of IDPIA is rela-
tively small when compared to existing schemes. However, how to achieve user privacy is

a significant challenge in shared data auditing. We address this issues in the next chapter.
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Chapter 5

Attribute-based Public Integrity
Auditing for Shared Data in Cloud
Storage (ABPIA)

5.1 Introduction

In this chapter, we propose an attribute-based public integrity auditing for shared data to
achieve identity privacy along with user revocation. In the scheme, the user private key
is generated from the user attributes and user specify a designated auditor to check the

integrity of the outsourced data. The main contributions are as follows:

* In ABPIA, users sign the data blocks over attributes, and a unique public key for the
entire group is used for integrity auditing instead of using individual public keys for

each user in the group. Thus it simplifies the key management.

* ABPIA achieves user privacy, i.e., signatures do not disclose identity information

except that user attributes satisfy the defined access policy.

* ABPIA also supports user revocation through proxy re-signatures. That is, whenever
a user quits the group, proxy can carry out the resigning process. That is proxy acts

as a translator of signatures between two users, for example, Alice and Bob. More
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specifically, the proxy is able to convert a signature of Alice into a signature of Bob
on the same block. Meanwhile, the proxy is not able to learn any private keys of the

two users, which means it cannot sign any block on behalf of either Alice or Bob.

* The comprehensive security analysis proves the correctness, unforgeability, and user
privacy of ABPIA security in the random oracle model under the assumption that DL

problem is hard in the bilinear group.

* The performance of ABPIA is evaluated through theoretical analysis and experimen-
tal results. The results demonstrate that ABPIA outperforms the previous schemes in

terms of computational overhead.

5.2 Problem Statement

Here, we present the problem statement, its description followed by the architecture, design
goals, Adversary model and the security model of the ABPIA scheme.

Although the existing PKI & ID-based [34, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]
auditing schemes guarantee the integrity, lacks in providing the flexibility key manage-
ment that means it suffer from the problems of key storage, key exchange, distribution,
and verification.To address these issues, [45] proposed an attribute-based cloud data in-
tegrity auditing by employing threshold attribute-based signatures, which is different from
Attribute Based Encryption (ABE) [80, 81]. In [45], the user private key generated from
the attributes and data owner decides the verifier, who verifies data. However, this scheme
deals only with the integrity of personal data and it is not suitable for shared data auditing
because in shared data, users join or leave the group anytime dynamically. Therefore, it is
required to design a public integrity auditing scheme for shared data with user revocation
and flexible key management

In the proposed scheme ABPIA, users sign the data blocks over attributes, and a unique
public key for the entire group is used for integrity auditing instead of using individual
public keys for each user in the group. Thus it simplifies the key management. Also

ABPIA achieves user privacy, i.e., signatures do not disclose identity information except
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that user attributes satisfy the defined access policy.Moreover, ABPIA also supports user
revocation through proxy re-signatures. That is, whenever a user quits the group, proxy
can carry out the resigning process. That is proxy acts as a translator of signatures between
two users, for example, Alice and Bob. More specifically, the proxy is able to convert a
signature of Alice into a signature of Bob on the same block. Meanwhile, the proxy is not
able to learn any private keys of the two users, which means it cannot sign any block on

behalf of either Alice or Bob.

5.2.1 Architecture

An attribute-based cloud storage architecture considered in this paper consists of six entities

as illustrated in Fig. 5.1.

CS

11 Resignatures

2 Private Key ) 6 Response

8 RL /
/ 1 AV Data Flow 5 Challenge
|

4 Auditing Request

>

8 8 7 Auditing Report

Revoked users

Group users

Fig. 5.1. Architecture of an attribute-based auditing scheme

1. Trusted Authority (TA) generates the master secret key and the public parameter. Af-
ter receiving attributes, the TA authenticates the attributes of the user, and generates

a private key for the valid group user.
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Fig. 5.2. Sequence diagram of the proposed ABPIA scheme

2. Group Manager (GM) is a trusted entity, plays the role of an administrator. It is re-
sponsible for successful user revocation and resists revoked user to perform collusion

attack with cooperation of existing users.

3. The users store data and share among their group members through the cloud. New
members can join and quit the group anytime. When a user wants to join the group,
first, he/she sends a request to GM. After receiving the group joining key, the user
submits his/her attributes along with joining the key to the TA for the private key
generation. With the private key, the user generates signatures for data blocks in a file
by satisfying the access policy and uploads data blocks and corresponding signatures

to the cloud.

4. TPA is a trusted entity with sufficient resources and professional expertise to perform
complete data auditing to ensure data accuracy. Upon receiving the auditing request

from the user or according to service level agreement (SLA), TPA challenges the
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Fig. 5.3. Sequence diagram of the proposed ABPIA scheme for user revocation

cloud for randomly selected blocks to check the integrity. Upon receiving proof

from the cloud, TPA verifies the correctness of data.

5. Proxy server (PS) is a semi-trusted entity, which means it is honest but curious. PS
performs the given task correctly, but it is also curious to obtain the signer’s identity
on each block in shared data based on verification information (i.e., signatures). PS
fetches the signatures from the cloud and transforms revoked user’s signature on a
message m into a non-revoked user’s signature on m whenever a signed user revoked
from the group. Meanwhile, the PS cannot learn any private keys of the two users,
which means it cannot sign any block on behalf of either revoked or non-revoked

user.

6. Cloud server (CS) is an untrusted entity that provides enormous storage to store and

share the data. CS generates the proof and sends it as a response to TPA.

5.2.2 Overview of ABPIA

In ABPIA, initially a user submits a request to the GM to join the group. According to

the request of user, GM generates a group key and securely sends to the user. Then the
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user request for the private key from TA. The TA authenticates the user, generates private
key based on the attributes of the user and secretly sends to the user. On receiving the
private key from the TA, the user generate signatures for file data blocks using private key.
After signing data blocks, uploads data blocks along with corresponding signatures to the
cloud and deletes them from the local site. Later, to check the integrity of shared data,
TPA challenges the cloud by selecting blocks randomly. After receiving this challenge, the
cloud returns the proof of shared data as a response to the TPA. Upon receiving proof from
the cloud, TPA verifies the correctness of data. Whenever a user in the group misbehaves
or quits the group, GM updates the existing RL and forwards to the TA. Upon receiving
the updated rekey the CS performs resigning on revoked user blocks by utilizing proxy
re-signatures. Our scheme also allows users to update the data dynamically that is user can
modify the data in cloud without downloading the data. The detailed work flow of proposed

ABPIA scheme and process of revocation are shown in Fig. 5.2 and Fig. 5.3 respectively.

5.2.3 Adversary Model

Here we consider the following attacks.

* Internal adversaries: Malicious insiders, who are cloud servers or users. They in-
tentionally delete or modify the user’s data in the cloud. Sometimes, they may try to
translate signatures of one user into another user to cut down the operation costs or

hide data loss to build their reputation.

* External Adversaries: Who may try to avert the users from accessing the shared

data by destroying/altering the data in the cloud.

5.2.4 Design Goals

We design ABPIA scheme to meet the following goals:
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Integrity. The designated verifier can check the integrity of shared data correctly by a
validating the proof generated by the CSP by Verification algorithm with overwhelm-

ing probability.

Public verifiability. Anyone who knows the public key not just the client (data owner)
and with sufficient resources can verify the correctness of data while keeping no

private information.

Flexible key management. Each user in the group does not require a key pair (one

private key for signing and one public key for verification.

User privacy. During integrity verification, the attributes of group members anony-
mous to the TPA. Thus TPA cannot learn anything about the attributes of the signer

from the signatures.

Efficient user revocation. Revoked user blocks can be re-signed by existing group
users efficiently with a re-signing key, while an existing user does not have to down-
load those blocks, recompute signatures on those blocks and upload new signatures
to the cloud. The resigning preformed by the proxy server improves the efficiency
of user revocation and saves communication and computation resources for existing

users.

5.2.5 Security Model

The security proof for ABPIA is performed by defining the two security games which in-

volves two entities: an adversary .4 who plays the role of the cloud server and a challenger

B) who acts as a user. We designed ABPIA scheme to withstand the two types of adver-

saries, namely A; (represents malicious cloud), A, (represents malicious TPA). A; tries to

generate the forged integrity proof, and A, tries to gain the identity of the signed user in

the group. We prove the security of ABPIA by considering the adversary .A; and .45, and

we define two interactive security games, Game 1, Game 2 against .A;, A5 respectively.

The details of the games are as follows:

Game 1 (played by A, and a challenger B):
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» Setup : B generates the Pparams, msk by running the Setup() algorithm. B for-

wards Pparams to A; while keeps the msk secret.

» put_Keygen_Query : A; can query this oracle on the attribute set €2 satisfying ac-
cess policy. For any such set €2 chosen by 4;, challenger B runs the algorithm
put_Keygen(Pparams, msk, ) to produce a secret key skq corresponding to the

attribute set €2, and then returns sk to A; as an answer for the query.

* SignGen_Query: A; chooses the file block m; and sends it to B for querying the
signature. B3 generates and returns the signature o; of m; to .A; by running SignGen

algorithm.

* Challenge: In order to check the integrity of the data file F, B generates challenge
chal and sends it to A; and requests A, to provide the corresponding proof P. After

receiving the chal, the adversary .A; outputs a proof as response.

* Forge: For the chal, A; generates P and sends to 3. .A; wins the game, if P can pass

the integrity check and the data blocks in F are broken.

Game 2 (played by Ay and a challenger B): We say our ABPIA scheme achieves user
privacy if for any polynomial time adversary A, the advantage of A, in the following

game is negligible.

 Setup: The challenger B generates the Pparams, msk by running the Setup() algo-

rithm. B forwards both Pparams and msk to A,.

and forwards param and mpk to the adversary, while keeps msk confidential.

* pvt_Keygen Query: A, can query this oracle on the sets of attributes. The adver-
sary outputs attribute set {{2;} satisfying 7 for each i € {0,1} to the challenger
B. The challenger 5 picks a random bit b from {0,1}; then runs the algorithm
put_Keygen(Pparams, msk, €),) to produce a secret key skq, corresponding to the

set (), of attributes, and then sends skg, as an answer for the query.
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» SignGen_Query: The adversary ask the challenger to generate a signature on message
m™* with respect to 2* either from €2; or {25. B generates and returns the signature o*

of m* to A, by the algorithm SignGen.

* Guess: The adversary wins the game if its output bit b’ = b.

5.3 Algorithmic Framework

In this section, we define the proposed scheme algorithms.

e Setup(1)) — (Pparams, msk). It is a probabilistic algorithm run by the PKG. It
takes a security parameter A as input and outputs public parameter Pparams and

msk.

e Join(ID) — p. It is a probabilistic algorithm run by the PKG.It takes the identity

(ID) of the user as input and outputs group key p as output.

* put_Keygen(Pparams, msk, ) — SKq. It is a probabilistic algorithm run by the
PKG. It takes the msk, Pparams, user attributes () as input and outputs a private

key SKq.

* pub_Keygen(Pparams, msk,T) — gpk,. It is a randomized algorithm run by the
PKG with identity ID for the user. It takes 7, msk , Pparams as input and outputs a

global public key gpk..

» SignGen(Pparams, SKq, M, T) — o;. Itis arandomized algorithm run by the data
owner with identity ID. It takes 7, Pparams, S Kq, data blocks {m; }1<i<, € M as

input and outputs a set of block signatures {0; }1<;<y.

* Challenge(M;pnf,) — C. It is a randomized algorithm run by the TPA. It takes the

abstract information of data as input and outputs the challenge C'.

* ProofGen(m;,{oi},;c,, C) — P. Itis a deterministic algorithm run by the cloud
server. It takes the file blocks m;, the block signatures {o; }1<;<, and C' as input and

outputs a proof P.
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» VerifyProof(Pparams, gpk,,C, P) — 1/0. It is a deterministic algorithm run by
the TPA. It takes the Pparams, gpk, of specific access policy 7, C' and the proof P

as input and returns 1 or 0.

* Revoke(RL,{idy,idy,...idy}) — RL'. It takes revocation list(RL) and user ID’s as
input and outputs the revised RL. RL’ +— (RL U {idy, ids, ...idy }).

* Rekey(msk, Qnew) — SKq It takes msk and attribute set of the non revoked

new *

user from priority list as input and outputs a resigning key SKg . for resigning

process.

* Resign(o;, SKq,,,) — o}. It takes signature set of the revoked user(s) and rekey as

input and outputs new signature set.

5.4 Detailed Construction

In this section, we present the concrete construction of ABPIA.

5.4.1 Construction of ABPIA

Setup
TA generates msk and public parameter Pparams as follows. Choose a random generator
g € GG7 and pick an integer element & € Z*, and set g; = g“. Next, select a random value

g2 € 1 and compute
Y = @(91792) (5.1)

Also TA picks the master partial key 7o € Z,; randomly, which is sent to the GM for
generating group joining key. Finally, two map-to-point cryptographic functions are chosen
H,,Hy : {0,1}* — G4, can map an arbitrary string {0, 1}* into an element of G;. The
public parameter is published as Pparams = (q, G1, Gr, e, q1,Y, Hi, Hy) and msk is kept
secret as .

Join

To join a group, user sends a request to the GM. After receiving the request GM generates
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a group key as p = ¢?° - Hy(I D) and sends p to the user in a secure way.
pvt_Keygen
Upon receiving the group key from GM, user sends attributes and group key to TA for

private key generation. Then TA verifies

©(g,p) = p(g™ - HI(ID),g") (5.2)

to know the validity of the user. If the result is false then outputs L. Else, TA generates
the private key as follows. First, chooses z € Z,, randomly and calculates d = g57*. Then

chooses Vk € Q, z; € Z, and computes dyy = gg/“ - Hy(k)*, dy; = g*. Next, TA outputs

SKQ = (d> {dk07 dkl}keﬂ) (53)

Finally, TA divides the private key into two parts and forwards part 1:{dxo} to GM and part
2:{d, dj} to the user respectively through a secure channel.

pub_Keygen

In this step, TA computes a global public key gpk, for verifier to check the integrity of
data as follows. Select a polynomial ¢, of degree d, = f, — 1, V x, where f, is the
threshold value. This is done in a recursive manner from top to bottom. We start with the
root t,(0) = « and d, other points will be chosen randomly. The remaining nodes, we
set as t;(0) = tparent(x) (index(x)) and choose d, other points randomly. After setting the
polynomials, the gpk, for 7 is {D, = ¢, b, = H,(k)=©}, where k = att(x) and x is
a leaf node.

SignGen

A user with attribute set €2 can sign the file ' = (m;)1<;<,, if the access policy (i.e.,7(§2) =

1) is satisfied. Signing is done in three phases.

* Phase 1. User chooses r}, € Z,,, randomly Vi € Q*, and forwards {1 D, Q*, {r} }vkea- }
to the GM to generate partial signature. Let (2* denote all the attributes associated

with leaves in the access tree.
* Phase 2. Upon receiving the request, the GM checks the validity of the user with
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RL. If user is invalid, then returns | and does not perform any further computations.

Otherwise, the GM computes partial signature as follows:
{ok0 = dyo - Hi(k)"* }reanar)
{oko = H1(k)" }(rear jonam)

and sends {0k }req- to the user.

* Phase 3. Upon receiving partial signature {oyg}rcq+ from the GM, user generates
final signature as follows: chooses a random value s, from Z, for each k € €2 and

u € Z, and compute

on = ((Ha(m)w™)™ - d) ., (5.4)
k s
Uéi) = {9™ }iea
Vk € (2* compute
{or1 = di1 - 9" }reanar)
{om = gré}(keﬂ*/QmQ*)
finally the user outputs the signature
o= (01, 0% {ok0, 041 brearr) (5.5)

Then the user uploads the data and signature o and deletes them from local storage.

Challenge

After storing data in cloud, the user request the TPA to perform integrity verification. Then
TPA selects a c-element subset J of set [1, n], and selects v; € Z,, for each ¢ € J randomly.
Let C' = {(i,v;) }ics be a challenge sends to the cloud.

ProofGen

After receiving the challenge C' = {(i, v;) }ic s, the server computes a proof, which consists

of data proof and signature proof. To compute the data proof the cloud generates the linear
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combination of sample blocks for the specified blocks in challenge.

= E v;my

ieC
Next, the server also computes signature proof as
k) Vi
={J[ ot Jren
ieC

U2k) = {Ugf)}iec,keg

Then the server returns (1, agk), Ty, {Uko, 011 treqr ) to the TPA as proof.

VerifyProof

(5.6)

(5.7)

(5.8)

TPA verifies the integrity of outsourced data blocks after receiving proof from the server as

follows. We define a recursive algorithm v fynode(o, gpk, x) to return a point of G or L.

Let k = attr(x). If x is a leaf node, then

@(UkOaDw) p(ako D, ) # 1
vfynode(a, gpk:, x) = ©(ox1,hK) p(ok1,hi)
1, otherwise.

if ke QnNQr,
p(UkO;Dm>/p(0'klahk)

dio - Hl(k’)r;% gpz(o))/@(dklgréa Hl(k')pz(o))
g3 - Hy(k)™*7k, gP= ) Jo(g# 47, Hy(k)P=©)

(
(
(6" - Hi(ly* 75, g7 @) [o(gP ), Hy (k) *7)
(

itheQ /0N,
p(o-k;o’ Dm)/@(o-k‘h hk‘)

= p(Hy (k)" g @)/ o(g", Hy (k)P )
_
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If = is a non-leaf node, v fynode(o, gpk, x) proceeds as follows: Vz that are children of z,

vfynode(o, gpk, x) is called and returns F,. Let S, be the set of child nodes z such that

Fz #1. If no such set exists, then the function returns L. Otherwise, let

i = index(z), S, = index(z): 2 € S,

and compute

o= I P

ZESCE

- H (@(g,gz)z/apz(‘J))Ai,sg(O)

ZGSIIJ

== H (p(g7 QQ)Z/apparent(z) (z’ndex(z)))Ai’Ss,c (0)
2ESy

ZESw

= p(g, g2) /7=

Now, calculate F, and verify if

k
o(g,0™)

Fv@( H Hy(m)u", Uék)>

(3,vi)icc

?

Y

(5.9)

If the equation holds, the blocks stored in the cloud are correctly maintained. Otherwise,

the data is not intact. i.e., data is modified or corrupted.

Revoke

Whenever a user leaves or misbehaves, the GM revokes the user by updating the RL list

and informs to TA. RL' <= (RL U {idy, idy, ...id}}).
Rekey

To resign the blocks of revoked user, TA generates rekey as follows. It takes msk and

attribute set of the non revoked user from priority list and generates resigning key SKq, _, -

First, choose a random z, € Z, and compute d = g§"+°‘. Then for each £ € €2, choose

2k € Z, and compute dyy = g/ . Hy(k)*,dy, = g*. Finally, output the resigning key
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SKa,., = (d,{dko, d1 }req,.., ) and forwards to the PS.
Resign
PS re-signs the revoked user(s) blocks on behalf of existing user. Choose a random value

s, from Z, for each £ € Q,,.,, and v € Z, and compute

o = ((Ha(mi).u™)* d)peo, ..

k Sy
Uéi) = {9 }kEanw

vk e QF

new?

choose r;, € Z, randomly and compute

{ok0 = dioH1(E)™, 011 = di19™ } (kenewn)

{oro = Hi(k)™, 011 = 9™ } (ke /newn®)

finally the PS sends a re-signature for cloud update.

o' = (UY;)JS?, {Uko,Um}keQ*)

5.5 Security Analysis

In this section, we prove that the ABPIA is secure under the security model described in
section 5.2.5 in terms of correctness, unforgeability, and user privacy. The security proof is

based on the intractability of the well-known DL problem in group.

5.5.1 Correctness

Theorem 1. In ABPIA, the verifier successfully audits data integrity if all the randomly
selected file blocks and their corresponding signatures kept as it is in the cloud.
Proof. ABPIA correctness can be proved by verifying the Eq. 5.9, based on properties of

bilinear maps and access structure.

k
(g, o)

Fw'p( H H2(mi>uu»aék))

(1,vi)icc

Ly
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The LHS of Eq. 5.9 can be deduced as follows:

(k)
LHS — @(g’ 0-1 )
E,- p( 11 H2<mi>u“,a§’“>>
(3,vi)icc
Ty
(Z Uz eC ke
( H Hy(mi)u, ( Sk)) Q
k
(4,v:)icc €
(T )
(i,vi)iec ke

o( T Hamyu'.s™),
(4,vi)icc
(9, 95““)@(9, 1T <H2(mi>umisk> )
(4,v:) keQ
( H Hy(m;)ut, ( 5’“))

(i,vi)iec

09,95 )olg. TT ((Halmu)™)

(4,v3)

’Y p(H H2 mz 7gSk>ng

(2,v3)

keQ

keQ

(9, 95*‘“)@(95’“, II (H2(mi)'uu)>
(i,vi)
£y p( (H) ot 95k>keﬂ
p(ga 92)z+a
0(9,92)*

©(9, 92)”

keQ

0(9%, 92)

= (91, 92)
= Y(RHS)

From the above proof, we say that the data blocks indeed stored as it is and maintained

properly.
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5.5.2 Unforgeability

The unforgeability of the ABPIA scheme can be given based on the following theorem:
Theorem 2 (Auditing soundness): It is computationally infeasible for untrusted cloud or
an adversary to generate a forgery of a proof that can pass the verification process if the

DL problem in group G is hard.
Proof. We prove this theorem based on the security Game 1 defined in section 5.2.5

First, TPA sends a challenge message (i, v;);ec to A;, and correct proof should be

(4, O‘YC), aék), {0ko, 01} 4eq+) Which can pass the verification with equation (9). Now, based

on the corrupted data 9V, the adversary .4; computes proof (1, a%k), aék), {ok0, Ok1 } e )
where 9 # 9, and at least one element of {Am; = m;/ — m;} for i € C is nonzero.
The adversary A; wins the Game 1 if proof (computed over incorrect data) still passes the

verification performed by verifier. Otherwise, it fails. Suppose .A; wins the Game 1, then

we get the following equation from verification Eq. 5.9,

k
plg,01") _y
I @( H Hy(m;) 'U“,aaék))
(iﬂ)i)’LGC

Because (1, agk), Oék), {0ko, 0k1 }req+) 1s correct data proof, we can get

k
o(g,0™)

Eoof TI H2<mi>u“,a§’“)

(i,vi)iec

=Y

From above two results, based on the property of bilinear map, we deduce that

C C C
!
Hu“ = Hu“ andHuA“ =1
i=1 i=1

i=1
Let two random generators f,h € Gy, and h = f* for some element z € Z,. For the
given f,h € G4, arandom value u € G can be written as v = f¢ - h¢ € G, where € and

& € Zp. Then, we have
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C

HUA,U _ H(fe . hé)Au _ fozl eDu pio EBn —
i=1

=1

Si—g e Bn
C

Since f = h* , we can solve the DL problem by calculating f = h® = h =184 g =

—% only when the denominator is zero. However, according to the definition of
=1

Game 1, at least one element of Ay is nonzero, and the denominator is zero with probability

of 1/p. Therefore, we can find a solution to the DL problem with a probability of 1 — 1/p,
which is non-negligible since p is very large. It contradicts to the assumption defined in

section 2.3.

5.5.3 User Privacy

Theorem 3. Given shared data )t and its corresponding signature o, it is computationally
hard for TPA to learn the identity of the valid signer.

Proof. We prove this theorem based on the security Game 2 defined in section 5.2.5

In our proposed ABPIA scheme, it is easy to see that A, cannot learn anything about at-
tribute information from signatures generated by two different sets of attributes for one file
block as long as the two attribute sets satisfy the access policy. First, the challenger runs
Setup to get the public parameters Pparams and the msk. It sends both to the adver-
sary Aj,. After this interaction, A, outputs two attribute sets €2; and €25 to the challenger
B. Next, B generates private keys as skq, = (d*,d}y,d};) and sk, = (d?,d%),d%) for
2, and €, respectively by running pvt_Keygen algorithm. The adversary A, queries
the challenger to generate a signature on message m* with respect to 2* from either
) or . Next, the challenger chooses a random bit b € {0,1} and outputs a signa-
ture 0 = (0\7, 0l {040, 041 req+) by running SignGen with the private key skq, =

(d°, d%, dY )icq, ) Finally, Ay outputs a guess bit b € {0, 1} and wins the game if ' = b.

On the basis of Lagrange interpolation for the tree 7, it is clear that the signature could
be generated from either skq, or skq,. We also have proved it. From the above proof, we

say that the probability of advantage for an adversary A, to win the game is not better than
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1/2, since the signature o is simply independent of everything except the message and the

access policy. Hence, user privacy is achieved.

5.6 Performance Analysis

Here, we analyze the computation and communication overhead of ABPIA. Furthermore,

we also analyze the performance of the Wang et al.[35] and Zhang et al.[43], and give a

comparison for these two schemes in terms of computation overhead and communication

overhead. The different notations used in performance analysis are listed in Table 5.1.

Table 5.1: Notations

Notation Description

EXqgi, EXgr  Exponentiations in Gy, Gr

Hs Collision Resistant Hash function

AddZ, Addition in Z,

Pa The pairing operation

l The size of (2*

Ny The set of least interior nodes satisfying 7.

MUZGl, MUZGT

The multiplication in G; and G

| p| The size of an element in G4
| q | Size of an element of Zp
d Nonrevoked users
| id | The size of a block identifier
Table 5.2: Computation cost comparison
Computation Cost
Scheme SignGen VerifyProof Resign

Wang et al. [35]
Zhang et al. [43]

ABPIA

2EXc1 + Mulgy + Hs

’I’L(QEX(;I + Afulcl +
Hs)

204+ 1)EXe + (21 +
DMulgy + (I 4+ 1)Hy

(C+d)EXg + (C+2d)Mulg, + (d+1)Pa+
dMulgy + CHs
CHs+2Hs+(C+3)Mulgi+(C+3)EXg +
2Pa

(21 + 3)Pa + N,EX¢

2EXG1 =+ ]\/[Ul(;l —+
2Pa+ Hs
Addy,

20+ 1)EXe + (20 +
D) Mulgy + (14 1)Hy
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Table 5.3: Communication cost comparison

Communication Cost

Scheme Challenge Proof

Wang et al. [35] | n(|p| +lg]) | 2d- | p| +C - |id| )
Ahang etal. [43] | n(| p [ +lg) | (C+1)-[q[ |+ [p|+C-|id]
ABPIA n(lpl+lg) [ 2d|p|+C-(Jid|+[n|+]q])

5.6.1 Computation cost

Here, we give the computation cost of the signer during signing, verifier during verification
and PS during the resigning. The computation cost of the signer is 2(I + 1) EXg1 + (21 +
1)Mulgy + (I + 1) Hs. The computation cost of the verifier includes challenge generation
and verification of proof i.e., (2 + 3)P, + NsEX;. The computation cost of PS for
resigning is 2(l + 1) EX g1 + (20 + 1) Mulgy + (I 4+ 1) H,. Table 5.2 gives computation cost

comparison with other auditing schemes like [35] and [43].

5.6.2 Communication Cost

Here, we consider only communication cost of challenge generation and proof generation
because these are the primary parts of the auditing process. The size of challenge is C' - (|
p| + | q|) bits, the size of proof (g, o\, (¥ {oro, o1 teeas, C) is 2d | p | +C - (| id |)
bits. Hence, the verifiers total communication cost is 2d | p | +C - (| id | + | n |+ | ¢ |)
bits. Table 5.3 gives communication cost comparison with other auditing schemes like [35]

and [43].

5.6.3 Experimental analysis

We implemented ABPIA on a system with Intel 15-7200U CPU @ 2.50 GHz and 8 GB
RAM and compared ABPIA with existing schemes [35] based on PKI settings and [43]
based on ID-based cryptography in terms of computational and communication overheads.
All experiments are carried out in python language using crypto-0.42 library [79]. The
implementation uses a symmetric super singular curve where the base field size is 512-bit
and the security parameter fixed to 160-bits. All results are a mean of 15 trials. The experi-

mental results for private key generation, signature generation, verification, and revocation
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are obtained and plotted as graphs from Fig. 5.4a to Fig. 5.4e.

Fig. 5.4a shows the time consumption of pvt_Keygen algorithm. From Fig.5.4a, we can
notice that the time needed for the pvt_Keygen algorithm increases linearly as the number
of attributes increases in the user attributes. It is reasonable because a user’s private key
computed from every attribute of the user. So the computation time of pvt_Keygen algo-
rithms is dependent on the number of attributes an identity includes.

Fig. 5.4b shows the computation overhead for a user to generate signatures for the
different number of data blocks with the same size. From Fig. 5.4b, we can notice that our
proposed ABPIA scheme takes less time than existing [35], [43] because of utilization of
expressive attribute-based signatures.

Fig. 5.4c and Fig. 5.4d shows the computation time of the TPA for proof verification
with respect to the number of blocks and number of users, respectively. From Fig. 5.4c and
Fig. 5.4d, we can learn that the proof verification time in [35], [43] is linear with the number
of blocks in challenge message. In ABPIA scheme, it is relatively low since a unique public
key is used during verification, whereas in [35], [43] different public keys used for different
users. Fig. 5.4e shows the computation cost for resigning the different number of revoked
user blocks. Here, we compare the ABPIA scheme with [35] and ignored [43] because
[43] does not perform resigning on blocks whenever user revocation happens; instead, they
update the private key of all users. From Fig. 5.4e, we can observe that the computation
time for resigning in both schemes is linear with the number of revoked user blocks, but

the ABPIA scheme performs better than [35].

5.7 Summary

In this chapter, we presented an attribute-based public auditing scheme for integrity check-
ing in cloud storage. In ABPIA scheme, we used individual private keys of each user
for signing and only one public key for integrity verification, which simplifies key man-
agement. In ABPIA scheme, the signature does not reveal any user identity; thus, signer
privacy achieved. When a user revocation happens, ABPIA allows the proxy to re-sign

blocks that were signed by the revoked user. The security analysis of ABPIA proved the
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correctness, unforgeability against the untrusted server, and user privacy against TPA. The
performance analysis and detailed experimental results show the practicality of our system.

In ABPIA, we observe that the TA generates and holds the private key. That is if TA is
untrusted, the scheme is not secure either, which may results in impersonation attacks that
leads to the forgery of the user’s signatures to pass the verification successfully. This prob-
lem is known as key escrow problem. To address the key escrow problem while supporting
data privacy and data dynamics along with the group user revocation, in the next chapter, a

new remote data auditing scheme is proposed by utilizing the certificateless cryptography.
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Chapter 6

Certificateless Privacy Preserving Public
Auditing for Dynamic Shared Data in
Cloud Storage(CLPPPA)

6.1 Introduction

In this chapter, we present certificateless public auditing scheme for shared data to achieve
privacy preserving and data dynamics along with user revocation while reducing the com-
plexity of certificate management in PKI schemes [33, 34, 35, 36, 37, 38, 39, 40, 41] and
eliminating the inherent key escrow problem in ID-based schemes [42, 43, 44]. The main

contributions are summarized as follows:

* In this scheme, we leverage certificateless signatures to generate signatures of file

blocks, that can simplify certificate management and eliminates key escrow problem.

* CLPPPA achieves data privacy against verifier through random masking technique to

blind the data proof during the process of auditing.

* We extend double linked list information table (DLIT) to support shared data dynam-

ics such as insertion, modification and deletion.
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* In CLPPPA, we also use the idea of proxy re-signatures to support group user revo-
cation. i.e., whenever a user misbehaves or quits the group, the cloud server is able

to carry out resigning process on behalf of group user.

* The security analysis proves the correctness, unforgeability and privacy of CLPPPA
based on DL and CDH assumptions in ROM. We also provide the security compari-

son with some of the existing schemes.

* The performance analysis evaluates performance of CLPPPA theoretically and ex-

perimentally in terms of computation overheads.

6.2 Problem Statement

Here, we the present the problem statement, its description followed by the architecture,
design goals, adversary model and the security model of the CLPPPA scheme.

To get rid of key escrow issue in ID-based schemes mentioned above, unlike [42, 43, 44],
the key generation center (KGC) in the proposed scheme, chooses a random value X < Z;
as its private key and generates Y = ¢g* € G as its public key. Upon receiving iden-
tity (ID) from the user, the KGC generates the partial private key D = H,(ID)* and
sends it to the user through a secure channel. After receiving the partial private key (D),
user computes the full private key (D, ), where x (¥ € Z) is a secret value chosen by
herself/himself. This approach solves the key escrow problem by restricting the KGC to
generate only the partial private key rather than the full private key. Therefore, the KGC
cannot forge the user signature by any means. Based on this notion, Wang et al. [82] first
proposed a certificateless provable data possession (CLPDP) scheme and a security model.
However, He et al. [64], who pointed out that Wang et al.’s [82] scheme was not secure
against the type I adversary and suggested a CLPDP scheme for cloud-assisted wireless
body area networks to enhance security. Unfortunately, both the schemes [82, 64] cannot
preserve privacy and focused on personal data auditing. Hence, not suitable for shared data
auditing. Later, Li et al. [62] introduced a certificateless public auditing scheme for shared

data to achieve the shared data integrity along with user revocation in the cloud. However,
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this scheme does not support shared data dynamics and does not support security property
such as privacy preserving, which are necessary demands for shared data auditing.

In CLPPPA, initially, a user submits a request to the GM to join the group. According
to the user’s request, GM generates a group key and securely sends it to the user. Then the
user requests the partial private key from KGC. The KGC authenticates the user, generates
a partial private key, and secretly sends it to the user. On receiving the partial private key
from the KGC, the user generates his/her own private key and computes signatures for file
data blocks using a private key. After signing data blocks, uploads data blocks along with
corresponding signatures to the cloud and deletes them from the local site. Later, to check
the integrity of shared data, TPA challenges the cloud by selecting blocks randomly. After
receiving this challenge, the cloud returns the proof of shared data as a response to the TPA.
Upon receiving proof from the cloud, TPA verifies the correctness of data. Whenever a user
in the group misbehaves or quits the group, GM updates the existing RL and forwards it
to the CS. Upon receiving the updated RL, the CS performs resigning on revoked user
blocks by utilizing proxy re-signatures. Our scheme also allows users to update the data
dynamically. That is, the user can modify the data in the cloud without downloading the

data.

6.2.1 Architecture

We consider certificateless cloud storage architecture with five entities as illustrated in Fig.

6.1.
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Fig. 6.1. Architecture of certificateless public auditing scheme

. KGC is a trusted entity, which creates the parameters and the master private key. It

also generates a partial private key for the user using master secret key (msk) and

user unique identity.

. Group manager (GM) is a trusted entity, plays the role of an administrator. It is

responsible for creating the group. It also revoke users when a user in the group

leaves or misbehaves.

. Users store data in cloud, share with each other in the group and they can join and

leave the group. Furthermore, users can update the data dynamically.

TPA 1is also called public verifier that has expertise and capabilities to perform au-

diting task on behalf of user regularly or upon request. Also convinces both cloud
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server and users by providing unbiased auditing results.

. Cloud server (CS) is a semi-trusted entity, which means it is honest, but curious. It
provides the enormous storage space on its infrastructure to manage the file in the
cloud. During user revocation, it also acts as proxy, which performs delegated re-

sign task by utilizing proxy re-signatures on behalf of the group.

6.2.2 Overview of CLPPPA

In CLPPPA, initially a user submits a request to the GM to join the group. According
to the request of user, GM generates a group key and securely sends to the user.
Then the user request for the partial private key from KGC. The KGC authenticates
the user, generates partial private key and secretly sends to the user. On receiving
the partial private key from the KGC, the user generates his/her own private key
and generate signatures for file data blocks using private key. After signing data
blocks, uploads data blocks along with corresponding signatures to the cloud and
deletes them from the local site. Later, TPA verifies the correctness of the data by
selecting blocks randomly. After receiving this challenge, the cloud returns the proof
of shared data as a response to the TPA. Upon receiving proof from the cloud, TPA
verifies the correctness of data. Whenever a user in the group misbehaves or quits
the group, GM updates the existing RL and forwards to the CS. Upon receiving the
updated RL the CS performs resigning on revoked user blocks by utilizing proxy
re-signatures. Our scheme also allows users to update the data dynamically that is
user can modify the data in cloud without downloading the data. The detailed work
flow of proposed CLPPPA scheme and process of revocation are shown in Fig. 6.2

and Fig 6.3 respectively.

6.2.3 Adversary model

We designed CLPPPA scheme to withstand the four types of adversaries namely A,
.AQ, ./43 and A4.
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Fig. 6.2. Sequence diagram of the proposed CLPPPA scheme

» Type-I Adversary (A;): A; (malicious outsider) tries to replace the user’s public
key with a false key even though he could not have access to KGC’s master

secret key (msk).

» Type-II Adversary (A): A (malicious KGC) tries to mount an impersonation
attack having access to the msk of the KGC and it cannot replace the public
key of the user. Even though the KGC is trusted entity, in a practical scenario,
the KGC might engage in other adversarial activities such as eavesdropping on
signatures and making signing queries, which is also known as Type II Adver-

sary.

» Type-III Adversary (A3): A3 (malicious CSP) tries to compute a forged audit-

ing proof that can pass the verification.
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* Type-IV Adversary (A,): A, (malicious TPA) tries to gain access to private

information of data during audit process.

6.2.4 Design goals

We design certificateless public integrity auditing scheme to achieve the following

goals:
* Public verifiability. Any one-who knows public key can verify the integrity of
data on behalf of user.

* Correctness. The public verifier is able to verify the integrity of shared data by

challenging CS with randomness.

* Soundness. The cloud server cannot pass auditing process if the data is not

intact.

* Privacy preserving. During integrity verification the TPA should not learn

anything about data of the user.

* Data dynamics. Every group user is allowed to update the outsourced data

remotely without downloading.
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* Group user revocation. Cloud server transforms revoked user(s) blocks to
designated existing group user blocks during the revocation. Revoked users

should no longer update or sign the data in the cloud.

6.2.5 Security model

We designed CLPPPA scheme to withstand the four types of adversaries namely A,
As, A3 and A, whose power has been defined in section 6.2.3. Among the four
adversaries, both .4; and A, try to forge the signature of blocks. A3 tries to generate
the forged integrity proof and A, tries to gain private data access during integrity
auditing. The basic difference between 4; and A, is that .4; cannot access the
master key of the KGC, but can replace the public keys of any entity of his choice. A;
represents a malicious KGC who has the master key of the KGC, but cannot replace
the public keys of users. Further these Type I and Type 1I can also be divided into
into normal, strong, and super adversaries based on their attack power. Obviously,
the super adversary has the better attack power than the other adversaries. Hence,
we prove the security of CLPPPA, by considering the type I and type II adversaries
and we define three interactive games Game 1, Game 2, Game 3 for A, A,, Aj3
respctively.

Game 1 (played between Ay and a challenger B):

Setup: Initially, B executes Setup to obtain the msk and Pparams. For super type
I adversary A;, B just returns the public parameters Pparams; B keeps the msk

secret. A; could access the following oracles controlled by challenger B.

* Create_user_Oracle: On receiving a query with a different user’s identity 7D,
B executes PartialPvtKeyGen, SetSecretValue, SetPublicKey to obtain partial
private key, secret value and public key respectively. Finally, 53 then returns

public key to A;.

e Partial Private Key Oracle: On input of a query on the identity ID, B returns

the partial private key to A;.
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» Secret_Value_oracle: B returns the secret value to A;.

Public_Key_Replacement oracle: B replaces the user ID’s original public key

with a value of his choice.

 SignGen_oracle: A; chooses the tuple (ID,m) and submits it B. B executes

SignGen algorithm to produce a signature o and sends it to .4
* Forge : Finally, adversary A, outputs {o*, m* [ D*} as its forgery with identity
ID*. A, isregarded to win this game if the following requirements are satisfied:
* 1 < ProofVerify(m,o, Pparam,ID*, PKj})
* For ID* , the query Partial Pvt_Key_oracle does not occur in the game
before;

* A, has not submitted before the pair (I D*, m*) to the SignGen_oracle
with the public key PK7 .

Game 2 (played between As and a challenger B):
Setup: Initially, B executes Setup to obtain the msk and Pparams. For super type
IT adversary A,, B returns both msk and Pparams. A, could access the following

oracles controlled by challenger .

* Create_user_Oracle: On receiving from a different user’s identity (/D) query ,
B executes SetSecretValue, SetPublicKey to obtain secret value and public key

respectively. Finally, B returns public key to A,.

* Secret_Value_oracle: On input of a query on the identity ID, B returns the secret

value to As.

* Public_Key oracle: A, submits the query to B. B executes the algorithm of

SetPubKey to compute the public key of the ID and returns it to A,.

* SignGen _oracle: A, adaptively chooses the tuple (ID, m) and submits it B. B

executes SignGen algorithm to produce a signature o for m and sends it to As,.

* Forge: Finally, adversary A, outputs {o*, m* I D*} as its forgery with the iden-

tity I D*. If the following conditions are satisfied, A, wins the game

72



* 1 < ProofVerify(m,o, Pparam,ID*, PKj)
» For I D*, the query Secret_Value _oracle does not occur in the game;

» A, has never been submitted the pair (I D*, m*) to the SignGen_oracle.

Game 3 (played by As and a challenger B):
e Setup: B generates the Pparams, msk. B keeps the msk secret, but sends
Pparams to As.

* SignGen_Query: Aj selects the tuple (ID,m) and sends it to B for querying
the signature. B generates and returns the signature of m to A3 by the algorithm

SignGen.

* Challenge: B generates Chal, sends it to .43 for getting .43 the appropriate proof
P.

* Forge: For the Chal, A3 generates P and sends to 3. .43 wins the game, if P can

pass the integrity check and the blocks in P is incorrect.

6.2.6 Algorithmic Framework

Here, we define proposed scheme algorithms.
o Setup(1*) — (Pparams, msk). It takes a security parameter \ as input and
outputs msk and system public parameters Pparams.

» Join(ID) — p. It takes the unique identity (ID) of user as input and outputs
group joining key p as output.
* Partial PvtKeyGen(Pparams, msk,ID;) — D;. It takes the Pparams,

msk, user identity / D; as input and outputs a partial private key D;.

o SetSecretValue(Pparams,ID;) — x;. It takes the Pparams, msk, user

identity I D; as input and outputs a secret value x;.

* PutKeyGen(D;, x;) — S;. It takes D; and z; as input and outputs a private
key S;.
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» SetPubKey((Pparams,z;) — PK;. It takes Pparams, x; as input and out-
puts a public key PK;.
» SignGen(Pparams, S;, M) — o,;. It takes Pparams, S;, and data blocks

{m;}1<i<n as input and outputs a set of block signatures {o; }1<i<, -

» Challenge(M;nf,) — C. It takes the abstract information about the data as

input and outputs the challenge C'.

* ProofGen(m;, {0}, ;c,,C) — P. It takes the file blocks m;, the block sig-

natures {o; }1<;<, and C' as input and outputs a proof P.

* ProofVerify(Pparams, PK;,C, P) — 0/1. It takes the Pparams, PK;, C

and the proof P as input and returns O or 1.

* Revoke(RL,{idy,ids, ...idx}) — RL'. It takes current revocation list (RL) and

user ID’s as input and outputs the revised RL.

* ReKey(S;,S;) — Si_,;. It takes private key parts of revoked and non-revoked

users and generates rekey S;_,; for resigning.

* ReSignGen(o;, S;;) — o}. It takes signature o; and rekey S;_,; as input and

ouptputs the resignature o

» UpdateRequest(F!,i,UO) — UpdateReqInfo. It takes new file block F,
the block position i1 and the update operation type UO as inputs, and outputs the
update request information Update ReqIn fo. The UO may be insert, modify

and delete.

* FExecUpdate(Update ReqInfo) — {1,0} . It returns 1 if the update operation

is finished successfully, otherwise returns 0.

6.3 Detailed Construction

In this section, we present the detailed construction of CLPPPA scheme including

data dynamics and revocation as follows:
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6.3.1 Construction of CLPPPA

The detailed construction of CLPPPA is presented based on framework 6.2.6

Setup Given security parameter )\, g is a generator of G;. The KGC picks a random
element @ € Z7, chooses a random and sets go = g*. Also KGC picks 7o € Z,
randomly and sent to the GM for generating group joining key. Finally, two map-
to-point cryptographic functions are chosen H;, Hy : {0,1}* — G, can map an
arbitrary string {0, 1}* into an element of ;. Another hash function h(.) : Gy — Z
also chosen to map an element of Gy to Z;. The public parameter Pparams =
(p, G1,Gr, 9,9, 90, H1, Ha, h) is published i.e., made public to everyone and « is
kept secret as master secret key .

Join Whenever a user wants to join a group, sends a request to the GM. Upon receiv-
ing the request, GM generates a group key as p = ¢ - Hy(ID)" and sends back p
to the authorized user in a secure way.

PartialPvtKeyGen Upon receiving the group key from GM, user U; sends his/her
unique identity 7 D; and group key to KGC for partial private key generation. Then,

KGC verifies the validity of the user by equation (1).

©(g,p) = p(9-Hi(ID), g™) (6.1)

If the result is false then outputs L. Otherwise, KGC computes the partial private

key (D;) for the group user as follows:

(a) Compute Q; = H{(ID;) € G4

(b) Compute D; = % and return to the user.

SetSecretValue After receiving D;, user U; chooses z; € Z;, u € (1 randomly and
keeps x; as private secret value and makes 3 <— u® public.

PvtKeyGen After setting the secret value, the user U; combines D, and x; to gener-
ate actual private key S; = {x;, D;}

SetPublicKey After generating S;, the user U; computes public key as PK; = g“

with Pparam and secret value z; € Z7 .
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SignGen After generating key pair (5;, PK;), group user U;(1 < i < d) computes a

signature for a block m; € Z3(1 < j < n) using private key S; as follows.
0y = Hy(W))™ - (D, - u)™ 6.2)

where W; = Fj4||n||j and F}, represents the file identity. Later, group user uploads
blocks and corresponding signatures to the CSP.

Challenge After storing data into the cloud, the user request the TPA for data in-
tegrity verification. Upon receiving the request from user, TPA selects a subset
L = {s1,...,5.} of c-elements from set [1,n], and selects v; € Z; randomly for
eachi € L. Let C' = {(i, v;) }icr be a challenge message generated for the cloud.
ProofGen Upon receiving the random challenge C' = {(4, v;) }cr, the server com-

putes a proof, which consists of data proof and signature proof as concretely.

(a) According to signature of each block, the CSP divides the challenged blocks
in the set to d disjoint subsets £1,L,...L;, where L; is the subset of challenged
blocks signed by group user U;. Let ¢; is the count of elements in £;. So,
the number of ¢; represents the no. of elements in subset £;. So, we have
c= Zle L, L=L1ULUL3..ULgand £; N L; = ¢ for i # j signed by

different users with different private keys.

(b) For each subset L;, CSP computes (7;, i;) by

i = +r-h(R) € Z (6.3)
where
W= ), uim (6.4)
(ivi);ec

and R = ()" € G, wherer € Z, is arandom mask used to blind the data proof

to preserve the data privacy against TPA. Meanwhile, the server also calculates
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an aggregated signature for user U,

g= [] oec (6.5)

(ivvi)z’EC

(c) Then the server returns final proof P = (u, 0, R) to the TPA as proof, where

= ({11, f12...f3q), 0 = (071, ...04).

ProofVerify The TPA verifies the integrity of outsourced data blocks after receiving

proof for the challenge from the server by verifying the following equation.

d
II¢ < I H)", PKZ) o ( [T Hi(1Diy, go> (6.6)
1=1 (i,v)eC =1

If the equation holds, the blocks stored in cloud are properly maintained. Otherwise,

the data is not intact.i.e., data is modified or deleted.

6.3.2 Support shared data dynamics

We describe dynamic operations such as block insertion (B5;,5), block deletion (B ;)
and block modification (B,,,q) based on EDLIT for data dynamics.

Block Insertion : Assume the group user wants to insert block m, after the '
block m;. At start, based on m, the group user computes the corresponding signa-
ture o,. Then, he generates an update request and sends new block and signature
Binsoc = (ins,i,x,my, 0., Vy, S;) to the server. After receiving B;,sc the inser-
tion request, the server runs ExecUpdate and inserts a corresponding file block
m, after m,; in the cloud; then the user sends the insertion instruction to the TPA
Binsor = (ins,i,x,V,,S;). Upon receiving the request, TPA updates the entries in
EDLIT. The changes in the EDLIT can be found in Fig. 6.4.

Block Modification: Block modification refers to the replacement of specified block
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Fig. 6.4. Extended double linked list information table after block insertion

with a new one. To modify the i** block m, to m;’, first, user generates new version
numberV*(V;* = V; + 1) and signature o;" for the new block m;’. Then, user con-
structs an update request message B,,.q2c = (mod,i,m;,o;,S;) and sends to the
server. After receiving B,,,q2c request, the server replaces the block m; with m,;” and
replaces the o; with ¢;/. Then, the user sends B,,,qor = (mod, i, V;*, S;) to the TPA.
TPA updates the EDLIT accordingly. For example, in Fig. 6.5, block 2 of file 1 is
taken to show a block modification operation. It is clear that the version number of
the data block is updated.

Block Deletion: Block deletion is just the opposite operation of block insertion. Sup-
pose the server receives the update request Byeoc = (del, i, S;) for deleting block
m; , it will execute the deletion instruction as shown in Fig. 6.6. Then user sends
Bieior = (del, i, S;) to the TPA. Upon receipt, the TPA would find m; and delete its

information in the EDLIT. During deletion no new parameters are generated.

6.3.3 Secure group user revocation

In a group, it is common that users join and leave the group any time. Whenever a ex-

isting user is revoked from the group, the revoked users’ pair of keys should be made
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Fig. 6.6. Extended double linked list information table after block deletion

A

A

A

A

invalid to disable the access rights and signatures must be resigned by the existing

user [83, 84]. The cloud server runs the algorithms Re Key, ReSignGen to generate

a rekey and update the revoked users’ signatures during revocation upon receiving the

the revised RL' from GM. GM obtains RL' by running Revoke(RL, {idy,idy, ...id;}) —

RL'. The description of ReK ey, ReSignGen are given below, in which we treat u;
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and u,(1 < k < d, k # i) be the revoked user and a valid non-revoked user respec-

tively in the group.

* ReKey: This algorithm involves some interactions among wu;, u; and cloud
server. Besides, it is required that u;, u; and cloud server are online simulta-

neously during the revocation process.

(a) cloud server chooses ) € Z; randomly and sends 7 to uy in a secure way.

(b) uy computes and sends (w; = (Dk)i,wg =1n-xy) to u;.

(c) u; computes and sends (R = w;) Ry = %) to cloud server.
i Z;
R
(d) Upon receiving (R;, Rs), cloud server calculates R3 = 2 Tk as rekey.
n Z;

* ReSignGen: The cloud server transforms all signature-block pairs [o;/, my|(1 <
i’ < n) generated by w;. That is the signature o, for the block m, transformed

as
O-i’, _ (lei/ . O'i/)R3

The proof of correctness of above algorithm is as follows:

where o/’ is the valid signature of m, for the generating user wuy.
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6.4 Security Analysis

The security of CLPPPA is proved in terms of completeness, soundness and comprehensive

privacy preserving as described in section 6.2.5.

6.4.1 Correctness

Theorem 1. In CLPPPA, the verifier successfully audit the integrity of data iff all the
challenged file blocks and its corresponding signatures are intact in the cloud.
Proof. The correctness of CLPPPA can be proved by verifying the Eq. 6.6, with the help

of bilinear maps. The verification Eq. 6.6 can be elaborated as follows:
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From the above proof, we say cloud generates the valid proof for challenged blocks as the
selected blocks were not corrupted. Thus cloud will not fail the auditing process launched

by TPA.
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6.4.2 Soundness

Here, we prove CLPPPA is unforgeable against A;, A, A3 as defined in Section 6.2.5
Theorem 2: CLPPPA is secure against A if the CDH problem is hard in G;.

Proof: If A; wins the Game 1 with a nonnegligible probability € ; then, we could construct
an algorithm that simulates a challenger B to solve the CDH problem with a nonnegligible
probability. Initially, B contains two hash lists Ly, and Ly, and a public key list Lpg

which are empty initially. .A; and B interacts as follows.

* H,-Query: If A; makes an H;-query with identity ID. B checks whether Ly, con-
tains (ID, PK;p). If it holds, B returns H;; otherwise , B returns a random H; to
Al and then adds ([D, X[D, PK]D, Hl) into LHl'

* H5-Query: If A; makes an H,-query with identity ID. B checks whether Ly, con-
tains (I D, go, PKp). If it holds, B returns Hy; otherwise , BB returns a random Ho
to A; and then adds (ID, gy, PKp, H3) into Ly,

* Setup: B produces the public parameters set including KGCs master public key to
A

* PartialPvtKeyGen: Upon receiving a query with identity I D, B does the following.
1LIf ID # ID*, B computes H,(ID, go) = v and then, store (1D, go, PKp,v) into
Ly, .

2) Return D;p .

* SecretValue: B looks up Ly, and returns x;p.
* PublicKeyGen: B returns user’s public key PK;p = (¢”2) to A;.

* ReplacePublicKey: On receiving this query on (/D, PK}), B returns PK7p, if it
is already exists in Lpg; Otherwise, B replaces user’s public key PK;p with PK

and then adds (I D, PK ) into Lp.

* SignGen : Upon receiving a query on (I D, m), B finds H; and Hs from Ly, and
Ly, and computes the signature o for ID on m if /D ~ ID* and returns the result to

A;. Otherwise , B aborts the game.
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* Forge: Finally, A; outputs a signature ¢’ on a corresponding message m/. We then

show the probability that A, successfully wins the game as follows.

1. &: B does not abort Game 1 in query Partialpvtkeygen.
2. &5: A outputs forgery of a signature o on m for ID.

3. &;: After event & happens, the signature o satisfies ID = ID*.

From the above simulation, we have

From these equations, the probability that I3 could solve the given CDH problem is

PT[gl A 52 VAN 53]

= Pr[& ] Pr[&|& | Pri&s|Er A &)
> &(1 — p_}h)pme
p p

From above equation, we conclude that B cannot break the CDH problem since ¢ is non-
negligible. Therefore, CLPPPA is secure against .4; in the random oracle model.

Theorem 3: In the ROM, if A wins the Game 2 with a nonnegligible probability, then
an algorithm B can find a solution to the CDH problem.
Proof: If A, wins the Game 2 with a nonnegligible probability ¢ ; then, we could constuct
an algorithm that simulates a challenger B to solve the CDH problem with a nonnegligible
probability. B generates a random number o € Z as the master secret key, computes pub-
lic key go = ¢, and returns public parameters Pparams = {p, G1, Gr, 9, g0, 9, H1, Ha, h}
and the master secret key a to Ay. B picks an identity ID as a challenge identity and an-
swers the Hy, Hy and SignGen queries as it does in the proof of the previous theorem. B

interact with A, as follows.

83



* PartialPvtKeyGen: B computes H;(ID, go) = v and then store (1D, gy, v) into Ly,

and then return D;p to As.

* SecretValue: B looks up Ly, and returns x;p if /D = [ D*. Otherwise, B aborts the

game.

* PublicKeyGen: Upon receiving this query, B returns the user’s public key PK;p =
( grip ) to As.

» Forge: Eventually, A, generates (¢’, m’). We then show the probability that A

successfully wins the Game 2 as follows.

1. &: B does not abort Game 2 in SecretValue query.
2. & A, outputs forgery of a signature ¢ on m for ID.

3. &s: After event & happens, the signature o satisfies ID = ID*.

From above process, we have

Prig] > (1 - P
p

P?”[52|(C;1] Z €
Pr[&\gl /\52} 2 %

From above equations, the probability that B could solve the given CDH problem is

P?"[Sl VAN (92 AN 53]

= P’I"[gl]PT[52|€1]PT[83|(€1 A 52]

s H
Zﬂ(l_u

le6
q q )

we conclude that B cannot break the CDH problem since € is nonnegligible. Thus A,
cannot win the Game 2. Therefore, CLPPPA is secure against .4, in the random oracle
model.

Theorem 4: Given shared data M and its signatures o, it is hard for the cloud to forge the

proof that can pass the verification under DL assumption.
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Proof: We prove this theorem 4 according to the security game defined in 6.2.5 as follows:
Game 3: First, challenger B sends a challenge message (i, v;);ec to As, and the correct
proof should be P = (i, o, R) return to 3 as proof, where p = (i1, fi2-..f1q), 0 = (71, ...04)
which can pass the verification successfully with Eq. 6.6. Now, .43 computes an invalid
auditing proof of (¢, o, R) based on the incorrect data M’, where M’ # M, and at least
one element of Am; = m;’ — m; for i € C is nonzero. If A; wins the Game 3, then,

according to Eq. 6.6, we have

d

[Lo (o R.g) £

i=1

Hp( 1T HQ(MQ),PKi>p(HHl(IDi)uW,gO>
i=1 ( i=1

i,vi)GC

Because (u, o, R) is a correct proof, we have

Hp( 11 HQ(I/VZ-),PKZ)p(HHl(IDZ-)u’“,gO>
' (

=1
Based on bilinear maps

C c

Hu‘zi = Hu‘z"/andﬁuAﬂ =1

i=1 i=1 i=1
For any two random values g, h € G, there exists v € Z; such that h = g” because G is
a cyclic group. For the given g, h € (1, each u can be randomly and correctly generated

by computing u = ¢ - h* € Gy, where ¢ and h* € Z7. Then, we have

1= [Tu® = TJlo - b6y = g=imo e pricastan
i=1

i=1

Clearly, the solution for DL problem can be found. That is, if .43 wins Game 3, we can

85



find a solution to the DL problem with a probability of 1 — 1/p, which is non-negligible. It
contradicts the assumption in Section 2.3. Therefore, it is computationally infeasible, for

Ajz (malicious cloud) to output a forged auditing proof that can pass the verification.

6.4.3 Privacy preserving

It can be proven that A, (TPA) could not learn user’s data content during auditing process.
Theorem 5: From the given cloud’s auditing proof (u, o0, R) , it is computationally infea-
sible for A4 to gain access to private information (') of shared data.

Proof: Theorem 5 is proved in two steps. First, we show that no private data on (') can be
derived from shared data i it is masked by r as fi; = ' + r - h(R) where p = (g1, fia...f1q)
and R = ()", where r € Z is randomly chosen by server and is hidden from auditor.
Thus, privacy of y is protected from A4 even p is given to A4 . Second, we prove that no

private information on g’ can be obtained from o, where o = (a7, ...04)

O_'i: H O'Z-)iEGl

(i,v)eC

= H HQ(Wi)x‘ (DZ u)”%) i
(%Uz‘)EC’

= H (I’IQ(VVi)UZ . (l)z u)mi'vi)
(i,?)j)EC

=TI (mamye -y e
(i,v:)eC

- H (Hz(Wi)m‘(Di)mi'v" uzfilwmi>x’
(%Uz)EC

= (HQ(WZ')U7 . (Dz)m”“) ’ (uh)®
(la'Ui)EC

Analysis: (u*)* is masked by H (HZ(I/[/i)”i(Di)mi”i) .

(ivvi)iec’
However, to compute H (HQ(WZ)“(DZ)’"”)% from H (Hy(W;)%(Dy)™)

(ivi)iec (10i)sec
and ¢, which is the only information TPA can utilize, is a CDH problem. According to
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CDH problem, it is infeasible for .4, (TPA) to derive private information.

6.4.4 Comparative summary

Here, we compare the security of CLPPPA with some of the existing PKI/ID-based CL-

PKC based [82, 64, 62] schemes against A1, A,, A3, A4 whose power has been defined in

Section 6.2.5 and is presented in Table 6.1. As shown in Table 6.1, schemes [82, 64, 62]

does not provide privacy protection. In addition, Wang et al.’s [82] scheme is vulnerable to

Type I adversary attacks and He et al.’s [64] scheme does not provide formal proof against

Ajs. Our CLPPPA, however, satisfies the requirements of public auditing scheme including

privacy preserving and it is proven to be secure against all adversaries A;, A, , A3, Aj.

Table 6.1: Security comparison

Schemes Ay Ay Az Ay
Wang et al. [82] No Yes | Yes | No
He et al. [64] Yes | Yes | No No
Lietal. [62] Yes | Yes | Yes | No
Proposed scheme | Yes | Yes | Yes | Yes

Az1: super Type I Adversary, As: super Type Il Adversary , As

Adversary

6.5 Performance Analysis

: Type Il Adversary, Ay: Type IV

We evaluate the computation cost of CLPPPA theoretically, experimentally and compare it

with the some of the state-of-the-art schemes [35, 43, 62].

6.5.1 Theoretical Analysis

First, we define some notations used in computation cost analysis:

1. T),: one bilinear pairing operation

2. T ex: ONe exponentiation operation on group Gy

3. T1.mw: one multiplication operation on group G
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4. Teomy: one multiplication operation on group Ga.

5. c: the number of blocks in challenge.

6. d: user subsets for the challenge.

7. H,: one hash operation in group G,
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8. MulZ;: one multiplication operation in Z.

9. AddZ;: one addition operation in Z;.

Table 6.2: Computation cost comparison of SignGen, ProofGen, ProofVerify and ReSign-
Gen

Schemes SignGen ProofGen ProofVerify ResignGen Type
Wang et al. [35] 2T e + | ¢ Tgres + C - (¢ + A)TG1ex + (¢ + | 2TG1ex + | PKI
TGl,mul + Hs TG’L’mul + d((/ - Q(X)T(}Lmul + (d + TGl,mul + QTP +
1)AddZ}; DTp+dTgimu+cHs | Hs
Zhang et al. [43] 2T ex + (C — l)TGl,mul + CH.S‘+(2(3+2)TG1J,W1+ IBC
TGLmul + Hs CTGLex + (C - (QC + B)TGLez’ + QTP +
1) Addy, + | (e — DAddg +
cM ulZ; cM ulZ;+
Liet al. [62] 2(Te1ex + ¢ - Tgrlew +¢c- | (d+ 2T, + (¢ + | R - (2Tg1ea + | CL
TGLmul ) TGLmul d) TGLex + (C + TGLmul)
2d)TG1,mul + dTGQ,mu,l
Our scheme 2(Te1ex + | ¢Tereat(c—=1)- | (d+2)T,+dTc1es+ | R - (Tciew + | CL
TGLmul) TGL’mul (C + 2d>TGLmul + TGLmul)
dTGZ,mul

We consider computation overhead mainly comes from bilinear pairings, exponentiation
and multiplication on the group G since our protocol CLPPPA is built from the bilinear
pairings. To generate the signature for a block in CLPPPA, the user in the group needs to
run SignGen algorithm and whose computation cost is 2(7¢1 ez + TG1mu)- TO generate
the challenge message for the CSP, the verifier needs to run challenge algorithm, which
incur the negligible cost. Therefore, we ignore the the computation cost of challenge. The
computation cost of CLPPPA is mainly generated by the proof generation phase and the
proof verification phase and revocation phase. To generate the integrity proof P, server
needs to execute the algorithm ProofGen, which requires ¢ - Tg1 e + (¢ — 1) - Tt mu
computation cost. To check the data integrity, the TPA runs the algorithm ProofVerify
which requires (d + 2)7}, + d1¢1 ex + (¢ + 2d)T¢1mu + dTG2.mw computation cost. The
revocation cost is R - (Tg1.ex + T1.mw) and it depends on the number blocks signed by
the revoked user in the file, where R denotes the total count of signatures that needs to be
updated. Moreover, we compare CLPPPA with the some of the existing schemes such as

PKI-based [35], IBC-based [43] and CLPKC-based [62] and list the results in the Table

89



6.2. From Table 6.2, we can see that our proof generation, proof verification and resigning

is efficient than [35, 43, 62] .

6.5.2 Experimental results

We implemented CLPPPA on a laptop with Intel 15-7200U CPU @ 2.50 GHz and 16 GB
RAM. All experiments are carried out in python 2.7 language (PyCharm IDE) using crypto-
0.42 library [79]. The implementation uses a symmetric super singular elliptic curve where
the finite field size is 512-bit and security parameter fixed to 160-bits, that means, the length
of the prime order p in the experiments is 160 bits. The experimental results for signature
generation (Sign(Gen), proof generation (ProofGen), proof verification (ProofVerify)

and revocation (ResignGen) are obtained and plotted as graphs from Fig. 6.7a to Fig. 6.7f.

6.5.2.1 Computational costs for generating signatures

Fig. 6.7a shows the consumption cost of SignGen algorithm. We set the group size to be
50 and the number of blocks ranges from 10,000 to 1,00,000. From Fig. 6.7a, in all four
schemes, we observe that the time needed for Sign(Gen algorithm increases linearly as the
number of blocks increases in the file. Both our scheme and [62] takes almost same time to
generate signatures whereas [35, 43] requires slightly less time than [62] and our proposed
scheme, since it has one less multiplication operation whose computation cost is much less
than exponentiation operation’s cost. Furthermore, sign generation is done once for the
entire life-time of the scheme and brings little influence on the performance of integrity

checking.

6.5.2.2 Computational costs for proof generation

Fig. 6.7b shows computation cost of the Proo fGen algorithm against the number of chal-
lenged blocks in C'hallenge message during verification. We increase the counter of chal-
lenged blocks from 100 to 1000 with an increment of 100 in each experiment. From Fig.
6.7b, we can learn that in all the four schemes, the time for proof generation is proportional

to the block number; and for the same number of data blocks, CLPPPA spends relatively
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less time than [35, 43, 62].

6.5.2.3 Computational costs for proof verification

Fig. 6.7c and 8. 6.7d shows computation cost of the ProofVerify algorithm against the
number of challenged blocks and number of users in the group respectively. From Fig.
6.7c, in all four schemes, we observe that the time needed for ProofVerify algorithm
increases linearly as the number of blocks increases in the file. From Fig. 6.7c¢ we can
see that when the number of challenged blocks is 100, the time of proof verification takes
about 1.1456s in all schemes.Likewise, if the count of number of challenged blocks is
1000 it needs nearly 10.3768901s, 8.2822234s, 7.832451s in [35], [43], [62] respectively,
whereas in our scheme it takes only 6.402s. From this observation, we can say that our
scheme takes relatively less time than [35, 43, 62]. Thus, our scheme is feasible for real-
life applications. From Fig. 6.7d in all four schemes, we can learn that the verification
time is proportional to the size of the group. Moreover, for the same number of users in the
group, the verification time of our scheme is less than the half of that of [35] and relatively

less than that of [43, 62].

6.5.2.4 Computational costs for revocation

Fig. 6.7¢ depicts the computation cost of ReSignGen algorithm for different number of
blocks to be resigned by one of the existing valid user in the group. Here, we compare
CLPPPA scheme with [35, 62] and ignored Zhang et al. [43] because they simply update
the private key of all non-revoked users in the group, instead of resigning the blocks. From
Fig. 6.7e, we can see that the cost of ReSignGen in all schemes is linear with the number
of revoked user blocks and CLPPPA scheme performs better than [35, 62]. Fig. 6.7f also
depicts the computation overhead of revocation process with respect to different number of
users. From Fig. 6.7f, we can see that the revocation cost is linear to the number of revoked
users for different number of blocks. For example, for a group with 50 users consumes

130ms for resigning 300 blocks, and consumes 143ms for 500 blocks.
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6.6 Summary

In this chapter, we presented a privacy preserving public auditing system for dynamic
shared data storage in cloud computing by utilizing certificateless signatures. CLPPPA
achieves privacy preserving against TPA by masking the data proof during auditing pro-
cess while refrain from both certificate management and key escrow. Besides, CLPPPA
also supports data dynamics through EDLIT and efficient user revocation. We formally
proved the security of CLPPPA against super Type I, super Type II, Type III and Type
IV adversaries under DL and CDH assumptions in ROM and it is proven that CLPPPA is
more secure than existing schemes. The performance is evaluated by theoretical analysis
and experimental results. The results shows that the CLPPPA is efficient and can be used
in practice. Although CLPPPA achieves the privacy preserving and data dynamics along
with integrity, it does not consider the data availability which is also an important issue to
be considered in cloud storage. In the subsequent chapter, we propose a public integrity

auditing scheme to ensure data availability.
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Chapter 7

Certificateless Multi-Replica Public
Integrity Auditing Scheme for Dynamic
Shared Data in Cloud Storage
(CLMRPIA)

7.1 Introduction

In this chapter, certificateless multi-replica public integrity auditing scheme is presented
for dynamic shared data to achieve the data privacy, user revocation along with availability.

The contributions are:

* In this scheme, we leverage certificateless signatures to generate signatures of multi-
replica of shared data using the user’s complete private key. This process simplifies
the certificate management by allowing the verifier to check data integrity without

managing certificates.

* To solve the key escrow problem, the user generates and uses the complete private
key. The complete private key contains two components in which the first compo-
nent (partial private key) is generated by KGC and the second one (secret value) is

generated by the user itself. KGC only knows partial private key and does not know
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secret value of the user. Therefore, the curious KGC cannot forge the user signature

by any means.

* We propose a novel replica version table (RVT) to support shared data dynamic op-

erations such as modification, insertion, and deletion.

* Our scheme also supports secure user revocation. i.e., whenever a user in the group

misbehaves or leaves the group, the cloud can accomplish the resigning process.

* The security analysis proves the correctness, unforgeability of CLMRPIA against
type I/II/IIT adversaries based on DL and CDH assumptions in ROM by simulating a

game involving two players: a challenger and an adversary.

* The performance analysis evaluates the efficiency of CLMRPIA theoretically and

experimentally in terms of computation and communication overheads.

7.2 Problem Statement

Here, we present problem statement, its description followed by the architecture, design
goals, adversary model and the security model of the CLMRPIA scheme.

In this scheme, we focus on a multi-replica public integrity auditing scheme for shared
data by leveraging CL-PKC [48] to eliminate the problems, namely, certificate manage-
ment and key escrow. Consider a scenario in which a department manager who creates the
data, user group and allows the other group users to share, access data on a given cloud
server through the Internet. Later, every user can create multiple copies of the data. In a
shared data pattern, users not only access but also modify the data for various purposes.
Another essential characteristic to be considered in shared data is user revocation. That
means, once a user in the group is revoked, all the signatures generated by a revoked user
should be resigned by one of the existing non revoked users to ensure the correctness of
data. Unfortunately, this problem has remained unexplored in previous researches. Hence,
designing a multi-replica public integrity auditing scheme for shared data to support effi-

cient data dynamics and user revocation while free from key escrow problem and complex
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certificate management is a significant challenge.

In this scheme, first, the KGC generates the public parameters and msk using security
parameter (A\). Then publish the public parameters while keeps the msk secret. Every user
in the group submits his/her identity to the KGC to get the partial private key from KGC.
According to the request of user, the KGC generates partial private key using master secret
key and secretly sends it to the user. On receiving the partial private key from the KGC,
the user generates his/her own complete private key by using combination of partial private
key from KGC and randomly chosen secret key by himself/herself. Afterwards, GM cre-
ates a large raw data file, divides the file into n raw data blocks, generates replica blocks for
each original file data block. Next, computes signatures for all replica blocks using private
key. After signing replica data blocks, GM uploads replica data blocks along with corre-
sponding signatures to the cloud and deletes them from the local storage. Later, to check
the integrity of multiple-replica shared data, TPA challenges the cloud server by selecting
blocks randomly. After receiving the challenge, the cloud returns the proof of shared data
as a response to the TPA. On receiving proof from the server, TPA verifies the correctness
of data. Any group user may update outsourced data block without downloading the data at
any time by forwarding an update request to a cloud. The CSP performs the operation and
responds with an update proof to the user. Finally, whenever a user in the group misbehaves
or quits the group, GM updates the existing RL and forwards to the CSP. Upon receiving

the updated RL the CSP performs resigning on revoked user blocks.

7.2.1 Architecture

We consider certificateless cloud storage architecture with four entities, as illustrated in

Fig.7.1.

* KGC is a third party entity which generates the msk and the public parameters. After
receiving ID of the group user, it generates the corresponding partial private key of
the user using the master secret key (msk). KGC is assumed to be a semi-trusted,
which means it is honest but curious. KGC honestly follows protocol, but it may try

to replace the public key of the user.
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Fig. 7.1. The system model of certificateless multi-replica public auditing scheme

* TPA is assumed to be faithful by user and CSP. It is also called public verifier who has
sufficient resources and professional capabilities to perform complete data auditing
on behalf of the group users regularly or upon request. Upon receiving the auditing
request from the user, TPA challenges the CSP for randomly selected blocks to check
the integrity. After receiving proof from the CSP, TPA verifies the correctness of data.

* User Group. The user group includes group members and group manager (GM).
GM is a trusted entity. The GM will divide the file into fixed sized data blocks and
generate multiple replicas for the data blocks. We consider GM as the owner of the
data. New members can join and quit the group anytime. There are multiple users in
a group. We assume the legal group users are honest.

* CSP is an untrusted entity that has significant storage and computational resources,
and it is responsible for maintaining user group data. CSP generates the proof and

sends it to TPA as a response for integrity verification.
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7.2.2 Adversary model

We designed CLPPPA scheme to withstand the four types of adversaries namely .A4;, Ao,
.A3 and .A4.

* Type-I Adversary (A;): A; (malicious outsider) tries to replace the user’s public key
with a false key even though he could not have access to KGC’s master secret key

(msk).

* Type-II Adversary (As): A (malicious KGC) tries to mount an impersonation attack
having access to the msk of the KGC and it cannot replace the public key of the
user. Even though the KGC is trusted entity, in a practical scenario, the KGC might
engage in other adversarial activities such as eavesdropping on signatures and making

signing queries, which is also known as Type II Adversary.

» Type-III Adversary (As3): A3 (malicious CSP) tries to compute a forged auditing

proof that can pass the verification.

» Type-IV Adversary (A,): A, (malicious TPA) tries to gain access to private infor-

mation of data during audit process.

7.2.3 Design Goals

We propose CLMRPIA to achieve the following goals:

* Correctness. The public verifier can verify correctly the integrity of data by chal-
lenging CSP with randomness.

» Data availability. Data should always be available and retrievable in the cloud.

* Public verifiability. Any one-who knows public key and with sufficient resources
can verify the integrity of data on behalf of user.

* Soundness. The cloud server never pass the auditor’s auditing process if it does not
possess the data intact.

* Data dynamics. Every group user is allowed to update the outsourced data remotely

without downloading.
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» User revocation. Whenever a user is revoked from the group, all signatures of the

revoked user can be translated to the non revoked user signatures securely.

7.2.4 Security Model

We design CLMRPIA scheme to withstand the three types of adversaries namely .4, (repre-
sents malicious outsider), A, (represents malicious KGC), A3 (represents malicious CSP).
Both A; and A, try to forge the signature of blocks. A3 tries to generate the forged in-
tegrity proof. The basic difference between .A; and A, is that .4; cannot access the master
key of the KGC, but can replace the public keys of any entity of his choice. A5 represents a
malicious KGC who has the master key of the KGC, but cannot modify the public keys of
users. Aj tries to forge replicas and integrity proofs to cheat the verifier. We define games
Game 1, Game 2, Game 3 formally between a challenger B and adversaries A;, A, and A3
respectively.

Game 1 (for type I adversary A; ):

Setup: Initially, B executes Setup to obtain the msk and params. For type I adversary
A1, B just returns the public parameters params including the master public key; B keeps
the msk secret.

Attack: A; could access the following oracles controlled by challenger 3. The adversary

A; can perform the following type of queries in an adaptive manner.

* Create_user_Oracle: This oracle takes ID as an input. Nothing will be returned by this
oracle if identity ID has been created before. Otherwise, B executes PartialPvtKey-
Gen, SetSecretValue, SetPublicKey to obtain partial private key D;, secret value z;
and public key P K for ID respectively. Finally, it adds < ID, D;, x;, PK; > to the
Lpg list and B returns public key PK; to A;.

* Partial Private_Key_Oracle: On input of a query on the identity ID by adversary A,
B returns the partial private key D; to A;.

* Secret_Value_oracle: On input of a query on the identity ID by adversary A, BB
returns the secret value z; to A;.

* Public_Key _Replacement_oracle: On receiving this query from A;, B replaces the
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user ID’s original public key P K; with a value of his choice PK].

» ReplicaGen_oracle. A; can query a selected file F to query B for the replica gener-
ation. B runs the ReplicaGen to produce a set of replicas. Subsequently sends it to
A

* SignGen_oracle: .A; chooses the tuple (ID,b; ;) and submits it to B. B executes

SignGen algorithm to produce a signature o; ; and sends it to A;.

Forgery: Finally, adversary A, outputs {07, b; ;} as its forgery with identity I D*. A, is

i,J
regarded to win this game if the following requirements are satisfied:

* 1 < Verify(o;j, b, j, param, I D*, PK} )

* For I D*, the query Partial Pvt_Key _oracle does not occur in the game before;

* A; has not submitted never before the pair (ID*,b; ;) to the SignGen_oracle with
the public key PK7,.

Game 2 (for type Il adversary):

Setup: Initially, B executes the Setup to obtain the msk and params, and then returns both
to type II adversary As.

Attack: In this phase, A, could access the following polynomially bounded number of

oracles in an adaptive manner controlled by challenger B.

* Create_user_Oracle: On receiving a query with a different user’s 1 D, I3 executes Set-
SecretValue, SetPublicKey to obtain secret value and public key respectively. Finally,
B returns public key to As.

* Secret_Value_oracle: On input of a query on the identity ID, B returns the secret value
to As.

 Public_Key_Replacement_oracle: Upon receiving this query from As,, B replaces the
user / D;’s original public key P K; with a value of his choice PK.

* ReplicaGen oracle. .4, can query a selected file F to query I3 for the replicas. B runs
the ReplicaGen algorithm to generate a set of replicas F. Subsequently forwards it
to As,.

* SignGen_oracle: Ay chooses the tuple (/D,b; ;) and submits it to B. B executes

SignGen algorithm to produce a signature o; ; and sends it to As.
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Forgery: Finally, adversary A, outputs {07 ., b: .} as its forgery with the identity /1 D*. A,

Z)j ) 7/"]

wins the game if this pair satisfies the following requirements:

1 « Verify(o,;, b ;, param,ID*, PK} )
For I D*, the query Secret_Value_oracle does not occur in the game;
As has never been submitted the pair (/ D*, b; ;) to the SignGen_oracle.

Aj has not requested the Public_Key_Replacement query on I D*.

Game 3 (for type Il adversary):

7.3

Here,

Setup: B executes the Setup algorithm to generate the parameters params and the
master secret key msk. B sends params to Az and keeps the msk secret.
SignGen_Query: Aj selects the tuple (ID,m) and sends it to B for querying the
signature. BB generates and returns the signature of m to A3 by running the SignGen
algorithm.

Challenge: B generates a challenging message Chal and sends it to A3 to get the
corresponding proof P.

Forge: Finally, for the Chal, A3 outputs a data integrity proof P and sends it to 3. A;

wins the game if P can pass the integrity check and the blocks in P is incorrect.

Algorithmic Framework

we define proposed scheme algorithms.

Setup(1*) — (params,msk). It takes X\ as input and outputs msk and system
public parameters params.

Partial PvtKeyGen(params, msk,1D;) — D;. It takes the params, msk, user
identity 7 D; as input and outputs D; (partial private key).
SetSecretValue(params, ID;) — x;. It takes the params, user identity ID; as
input and outputs a secret value x;.

PutKeyGen(D;, x;) — S;. It takes D; and z; as input and outputs a private key S;.
Set PubK ey(params, x;) — PK;. It takes params, x; as input and outputs a public
key PK;.

100



ReplicaGen(F, S;) — Fj(1 <j<e It takes original file F and copy number c as input,
and generates ¢ number of replicas. F; = (Fi, Fy, ..., F,).

SignGen(params, S;, F;) — o, ;. It takes params, S;, and data blocks F; =
Challenge(M,,f,) — C. It takes the abstract information as input and outputs the
challenge C'.

ProofGen(bij,{0ij}1<jcpi<j<er C) — P. It takes the file blocks b; 5, the block
signatures {o; ;} and C as input and outputs a proof P.

ProofVerify(params, PK;,C, P) — 0/1. It takes the params, PK;, C' and the
proof P as input and returns O or 1.

Update Request(F!,i,UO) — UpdateReqInfo. It takes new file block F!, the
block position ¢ and the update operation type UO as inputs, and outputs the update
request information Update ReqIn fo. The UO may be insert, modify and delete.
ExecUpdate(UpdateReqInfo) — {1,0}. It returns 1 if the update operation is
completed successfully, otherwise returns 0.

Revoke(RL,{IDy,1Ds,...,I1D,,}) — RL'. It takes the current revocation list (RL)
and revoked user identities {/ D1, I Dy, ...,ID,,} as input and returns updated RL

(RL"). It is forwarded to CSP and TPA whenever a user is revoked from the group.

7.4 Detailed Construction

The details of the proposed CLMRPIA algorithms are as follows. The detailed process

flow is illustrated in Fig.7.2.

Given security parameter A\. KGC randomly selects a big prime ¢ and two cyclic multi-

plicative groups GGy and G with order g. Let g is a generator of (G;. e is bilinear map of

G1 x G1 — Gr. KGC gets a random element o € Z; and sets go = ¢g°. Finally, three

map-to-point cryptographic functions are chosen Hy, Ho, h(.) : {0,1}* — G, can map an

arbitrary string {0, 1}* into an element of GG;. The security analysis views H;, H, as the

random oracle [86]. The public parameter params = (p,q, G1, Gr, e, go, g, H1, Hy, h) is
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published i.e., made public to everyone and « is kept secret as master secret key.
PartialPvtKeyGen
Authorized user U; sends its unique identity /D; to KGC for generating a partial private

key (D;). KGC computes (D;) for the user as follows:
1. Compute Q = H,(ID;) € Gy

2. Compute D; = Q. After computing (D;), KGC forwards the D; to the user through

a secure channel.

SetSecretValue

After receiving D;, user U, selects x; € Z;, u € (G randomly and keeps x; as private secret
value and makes [ < u™ public. S = Z7 is the valid secret key value space.

PvtKeyGen

The user U; sets the combination of D; and z; as private key S; = (D;, x;).

SetPublicKey

The user U; computes public key as PK; = g* with param and secret value x; € Zj.
PK = (G is the valid public key space.

ReplicaGen

The user divides the original data file F" into n blocks, i.e., F' = (b1, ba, ..., by), bifi<i<n} €
Z,. To ensure data availability, the user generates c distinguishable replicas for the file
as [, = (F1, Fy, ..., F.) with each F; = (b1, b, ...b, ;). The replica block is generated
as bi; = b; + ¢y (i[|7). Note that ¢ is a PRF with a key chosen randomly k € Z to
differentiate replica of the files. Note that for any F; = (b1, 0bs,...b,;), the user can
recover the original data file ' = (by, by, ..b,) easily by computing b; = b; ; — ¢, (i][7).
This allows the users seamlessly access the copy from the CSP. Finally, the user sends & to
the verifier and k& must be kept secret from the cloud.

SignGen

After generating replicas, user U; computes homomorphic certificateless signature o; ; for

each block b; ; € Z;(1 < i < n) using private key (combination of partial private key and
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secret value) as follows.
Ui,j = Hg(wi)””" . (Dz . U)bi’j (71)

where w; = (Fjq||n||?) and F}; denotes the file identity chosen from Z, by the user. It
is to be noted that the F;; is embedded into the block signature to prevent the CSP from
cheating. Later, user uploads multi-replica file blocks b; ; and corresponding signatures
0;,; to the CSP. Finally, deletes I from local storage. Also, user forwards revocation list
(RL = {0}: Initially empty) to both the CSP and TPA to allow the user to update the
replica blocks and to let the TPA to verify the updated replica blocks.

Challenge

After outsourcing data in cloud, the user request the TPA to check the integrity of the data.
Upon receiving the request from user, TPA picks a nonempty subset / C [1, n], and selects
v; €r Z, randomly, Vi € I. Suppose that the TPA wants to check n C n blocks with all
nc replicas. The verifier chooses three temporary keys 71, 79, 73 € Z7, sets the challenge
token C' = (Fjq,n, 71, T2, 73). Then the verifier forwards C' to the cloud.

ProofGen

After receiving the challenge token C' = (Fiq,n, 7y, 72, 73), server first computes | =
(T (@i = Losm}. {0} = {0 (0)li € I}, {w;} = {00, (j)]j = L,...,c}. then it com-

putes a proof which includes data proof and signature proof as follows:

1. CSP computes p where
on = Z Z wjvibi,j (72)
j=1 el

Meanwhile, the server also calculates an aggregated signature for user U for c repli-

cas,

o= (IIe) e, (7.3)

el

for every replica. Then the server returns final proof P = (u, o) to the TPA as a
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response.

ProofVerify
After receiving the proof from the server, TPA verifies the integrity of outsourced data by

verifying the following equation.

e(o,qg) Le ( H H w; Ho(w;)", PKi> e <H1(]Di)u“, go> (7.4)

el j=1

If the Eq.7.4 holds, the blocks stored in cloud are kept intact. Otherwise, the data is

damaged or lost.

7.4.1 Dynamic Data Operations

In this phase, we perform dynamic operations such as modification, insertion and deletion
using RVT, which is created by the user and maintained at the TPA side. To perform these
operations user prepares and sends a request Update Request to the CSP in the general
form (Fig, Op,i,{} }1<j<c, 05, Urp) where Fiq is the file identifier, Op denotes dynamic
operation; that is O for update, 1 for insert, 2 for deletion, ¢ denotes the index of the block
to be operated on, {b;}lg j<c 18 the new block value for all replicas and o7 is new signature
for the new block, U;p is the signing user identity. Upon receiving the Update Request,
CSP verifies if the user is revoked or not with the help of RL'. If the user is revoked it
returns L. Otherwise, CSP executes FzecUpdate algorithm for data update operations as
follows. Examples of different dynamic operations on multi replica shared data with our

RVT are described in Table 7.1, 7.2 and 7.3.

7.4.1.1 Modification

To update the file block b; with b} in a file F' = {b;, bo, ...., b, }, user specifies the index of
the block for all the copies. The user prepares the update request by following the steps

below:

1. Update the block version number value of BV N; = BV N; + 1in RVT.
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Table 7.1: Modifying block at position 3

SN | BRN(<icni<j<ey | BVN | Urp
1 bii 1 1
2 Doy 1 1
3 bs1 2 3
4 bas 1 1
5 bs1 1 1
6 be1 1 1
7 br 1 1
8 Ds1 1 1

Table 7.2: Insert block after position 5

SN | BRNj<i<ni<i<ey | BVN | Upp
1 bii 1 1
2 Do 1 1
3 bs1 2 3
4 bai 1 1
5 bs1 1 1
6 bo1 1 3
7 be1 1 1
8 br 1 1
9 bs1 1 1
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Fig. 7.2. Process flow of the proposed CLMRPIA scheme

2. Creates a new c distinct file blocks b} ;, where b} ; = b; + 9. (i]|7)

1,5
3. Calculates a new signature o}, for the each new block b ; as o;; = Ha(w;)™ -
(Dyu)".
4. Sends a modify request (Fjq, 0, 7, bg,j{lgjgc}, o!) to the CSP.

After receiving the update request from the user, CSP executes ExecUpdate to modify the

data as follows:

1. It put back the block b; ; with b; ;Vj in the cloud storage.
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Table 7.3: After deleting at position two

SN | BRN(<i<ni<j<ey | BVN | Upp
1 bii 1 1
2 by 2 3
3 bay 1 1
4 bs1 1 1
5 Doy 1 3
6 be1 1 1
7 bry 1 1
8 bey 1 1

2. Replaces the o; with ¢/ in the signatures set o, and updates the set.

7.4.1.2 Insertion

Suppose the group user wants to insert a new block b, after position i in the file. Then sig-
nature for the new block can be constructed without recomputing the signatures for all the
blocks because the serial number SN of block is not included in the signature generation
and the remaining blocks can be shifted to one position down. The procedure for inserting
anew block after particular block is same as modification operation except that it will insert
a new block after a particular block.

To insert of a new block b} after position ¢ + 1 in all replicas of the file, the user prepares

the update request, which does the following:

1. Creates new entry (SN, BN, BVN) = (i+ 1, (Maxz{BN,}1<i<n)+1, 1) and inserts
this entry in the RVT after position :.

2. Creates ¢ number of new distinct blocks {0 ; }1<j<. where b, ; = b; j + ¥ (i[|7)

3. Calculates a new signature o; for the each new block b; as o} ; = Ha(w;)" - (D)%%

4. Sends a insert request (Fig, 1,4, b; ;

{1 <j < ¢}, 07;) to the CSP.

After receiving the insert request from the user, CSP inserts the data as follows:
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1. Inserts b} ; after i" position in all replicas.

2. Then add o} ; signature set o after i" position, and updates the signature set.

7.4.1.3 Deletion

For deleting a file block, the group user sends a delete request to the CSP. To delete the
requested file block, all subsequent blocks are moved one step forward. Suppose a group
user wants to delete a block at position 4, it sends a delete request (F4, 2,7, NULL, NULL)

to CSP. Upon receiving a request, the CSP deletes corresponding block as follows:

1. Deletes the file block {b; ; }1<;<c, and updates the replica files in cloud.

2. Similarly, deletes o; ; from o and updates the signature list.

Table 7.1, 7.2 and 7.3 shows the dynamic operations such as insertion,modification, and
deletion through the RVT. For example, if user 3 updates the third block, then its block
version number BV N is incremented by 1 which is shown in the Table 7.1. In the same
way as shown in the Table 7.2, to insert a block after fifth position in F', a new record is
inserted in the from < 6, b9y, 1,3 > where the serial number is 6, its block number is 91
and it is updated by user 3. All the subsequent entries after position 5 are shifted to one
position down. The block number BRN of newly inserted block is computed by adding 1
to the maximum block replica number value in the table. To delete a block entry at position
2, the serial numbers (SN) of all the subsequent blocks after block 2 are decremented by 1
and all the entries are moved to one position up. SV indicates the actual storage positions

of data blocks of file F which is shown in Table 7.3.

7.4.2 User revocation

In shared data scenario, whenever a user is revoked from the group, the revoked user signa-
tures must be resigned by one of existing authorized user to ensure the intactness of data.
Let uy, (1 < k < d, k # 1) be the revoked user and v; valid non-revoked user respectively
in the group. This procedure involves some interactions among uy, u; and CSP. Besides, it

is required that uy, v; and CSP are online simultaneously during the revocation procedure.
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Table 7.4: RVT after revocation

SN | BRN(<i<ni<j<ey | BVN | Upp
1 biy 1 2
2 b3y 2 3
3 bay 1 2
4 b1 1 2
5 Doy 1 3
6 be1 1 2
7 bry 1 2
8 bey 1 2

. CSP randomly chooses ) € Z and sends 7 to w; by a secure channel.
. u; computes and sends (§; = (Dl)%l, £y =1 - 1) tO Uy

Tk
. ug computes and sends (I'; = & Ty = é) to CSP.

Dy, Tk

r

. Upon receiving (I'y,T'y), CSP calculates '3 = —2 _ ﬂ. Then the CSP transforms
n Tk

the tag oy for the block my (where [0y, my/|(1 < k' < n) generated by uy) as,

o' = (D™ - gp)" (7.5)

. After resigning the blocks, CSP updates RL to RL'.
. TPA updates the existing RL to RL’ and updates the RVT as shown in the Table 7.4.

Table 7.4 shows status of the table after revocation of the user 1 from the group.

7.5 Security Analysis

We perform the formal security analysis of CLMRPIA by considering type I/II/III adver-

saries. The security analysis of CLMRPIA depends on the hardness of DL and CDH prob-

lems in the ROM.
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7.5.1 Correctness

As the data is not under the direct control of the user, every user wants to be assured that
their are correctly maintained. The proposed scheme CLMRPIA provides integrity proof
which identifies the data corruption at the CSP if some part of the data is modified or

deleted by CSP.

Theorem 1 In the proposed scheme, if every entity performs honestly and correctly, the

CSP passes the verification if all the challenged blocks are correctly stored at the server.

Proof: We prove this by verifying the Eq. 7.4.

e(o,9) Ze ( H H w; Hoy(w;)", PKi> e (Hl(IDi)u”, g0>

iel j=1

LHS =e(0,9)

. Z§:1 wj
e (o)™ s
i€l

— e ((H Hy(wr)™ - (Diu)”i’jyi)Z?_le,g)

el
25:1 wj
i€l
Z?zﬂ”j
(Tt - @ar))
i€l
=e ( H Hg(wi)xi.vi 21w ’ g) e ( H H, (]Di)uabivf'”"z§:1 wj ’ g)
el i€l
- ;T l T
—e ( H H ijQ(wi)%7 g 1) e <H1(]Di)uzz_1 bijvid 51 Wy g )
el j=1
- ¢ ( H H w;j Ha(w;)", PKi) e (HI(IDi)UEé—l 25— bijuiwg 7 ga)
icl j=1
=€ ( H H wj Ha(w;)", PKi) e (Hl(IDZ-)u“, g0>
el j=1
= RHS
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Hence, data is stored correctly and maintaining with consistency.

7.5.2 User revocation correctness

The proof of correctness of Eq. 7.5 is as follows:

Tl

ka/xl k! @y
e << D, ) H2<wk>”<Dk~U>mk/>

Tgmpr

@y
_ <D171l H’Q(wk/)wkumk/)xk

= HQ((,dk/)ml(Dl . U)mk/

where o}, is the valid signature of m;, by the non revoked user v;.

7.5.3 Soundness

Here, we prove CLMRPIA is existentially unforgeable against A;, A,, A3 as defined in
Section 7.2.4
Theorem 2: Our proposed scheme CLMRPIA achieves existentially unforgeability against
adaptive chosen-message attack if for all probabilistic polynomial- time type I adversaries
Ay, the advantage of A, winning the experiment is negligible in the ROM assuming CDH
problem is hard in G .

Proof: If A; wins the Game 1 with a nonnegligible probability ¢ ; then, we could sim-
ulate a challenger B to solve the CDH problem with a non-negligible probability. Initially,
B contains two hash lists Ly, and Ly, and a public key list L px which are initially empty.

A and B interacts as follows.

* H,-Query: A; can query an H; with identity ID. B verifies whether Ly, contains
(ID, PK;p). If it holds, BB returns H;; otherwise , BB returns a random H; to .4; and
then adds (I D, X;p, PKp, Hy) into Ly, .

* Hy-Query: Ay can query an H, with identity ID. B verifies whether Ly, contains
(ID, go, PK;p). If it holds, B returns Hy; otherwise , BB returns a random H, to A,
and then adds (I D, gy, PK|p, Hs) into Ly,.
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Setup: In this algorithm, B takes a secure parameter A and B produces the public
parameters set including KGCs master public key and then sends it to A;.
PartialPvtKeyGen: Upon receiving a PartialPvtKeyGen query from A; with identity
ID;, B does the following.

1. B returns L, if I D; has not been created.

2.Else, if I D, has been created and I D # [ D*, B returns D; from Lpg. Otherwise,
B returns failure and terminates.

SecretValue: A; can submit / D; to this oracle. I3 looks up Lpg and returns x; if I D;
has been created. Else B returns L.

PublicKeyGen: On receiving such a query from .4; with identity I D, B returns user’s
public key PK;p = (¢”'2) to A;.

ReplacePublicKey: .4, can submit (I D;, PK?) to replace the public key with I D; to
this oracle. If 7D, has been created, B3 replaces user’s original public key PK; with
PK/ and then adds (I D, PK) to Lpy. Otherwise, it outputs L.

ReplicaGen : A; selects a file F to query B for the replicas with the identity I D;. B
runs the ReplicaGen algorithm to compute a set of replicas F' = {b; ;} and returns
itto A;.

SignGen : A; invokes a SignGen query for b; ;. B ouputs L if /D; has not been
created. Otherwise, B uses the lists Ly, Ly, and Lpg to compute the signature o
for I D; on b; ;.

Forge: After all above queries, finally, .A; outputs a signature o; ; on a block b; ;. We

then show the probability that A; successfully wins the game as follows.
1. E;: B does not abort Game 1 in query Partialpvtkeygen.
2. E,: A, outputs forgery of a signature o7 ; on b; ; for I.D;.

3. Es: After event E, happens, the signature o} ; satisfies [ D; = I.D;x.
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From the simulation, we have

H
Pr(By] > (1 - 2ty
p

PT[EQ‘El] Z €
Pr(Es|E; AEy) > %

From these equations, the probability that B could solve the given CDH problem is

PriE; A Eg A Eg)
= Pr|E,|Pr[Es|E,| Pr[Es|E; A Es]
> &(1 — p_Hl)le6
p p
From above equations, we conclude that 3 cannot break the CDH problem since € is non-
negligible. Hence, CLMRPIA is secure against adversary .4, in the ROM.

Theorem 3: In the ROM, if type Il adversary Ay wins the Game 2 in polynomial-time
with a non-negligible probability, then there exists another algorithm B can resolve the
CDH problem instance with a non-negligible probability.

Proof: If A, wins the Game 2 with a nonnegligible probability ¢; then, we could constuct
an algorithm that simulates a challenger B to solve the CDH problem. A, and B interacts

as follows.

* Setup: Initially, B chooses a random value o € Z7 as the msk, computes public key
go = g%, and returns public parameters params = {p, G1,Gr,e€, go, g, H1, Hy, h}
and « to A,. B picks an identity ID as a challenge identity and answers the Hy, H,
and Replicagen, SignGen oracles as it does in the proof of the theorem 2. B interact
with A, as follows.

* SecretValue: A5 can submit / D; to this oracle. B looks up Lpx and returns x; if I D;
has been created. Else B returns L.

* ReplacePublicKey: A, can submit (1 D;, PK]) to replace the public key with I D; to

this oracle. If 1D, has been created, B3 replaces user’s original public key PK; with
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PK] and then adds (I D, PK) to Lpg. Otherwise, it outputs L.
* Forge: Finally, A, generates o;; for b7 ;. We then show the probability that Aj

successfully wins the Game 2 as follows.
1. Eq: B does not abort Game 2 in SecretValue query.
2. E,: A, outputs forgery of a signature o;; on b} j) for ID.

3. Es: After event E; happens, the signature o7 ; satisfies ID = ID*.
From above process, we have

e
p
PT[E2|E1]

PrlE,] > (1 i

> €
Pr(Es|E; ARy > 22
P

From above equations, the probability that B could solve the given CDH problem is

PT[El N EQ A ]Eg]
= PT[El]PT[E2|E1]PT[E3|E1 A ]EQ]

> Doy = Py

q q

we conclude that B cannot break the CDH problem since ¢ is nonnegligible. Thus, A,
cannot win the Game 2. Therefore, proposed CLMRPIA is secure against A, in the ROM.
Theorem 4: In the CLMRPIA, it is computationally infeasible for malicious cloud or
an adversary to forge a proof or signature for the given shared data M and its signatures o,
that can succeed in the verification process, if the CDH and DL problem is hard in bilinear
group G1.
Proof: We prove this by knowledge proof method with the help of several games similar
to the literature [78, 44]. If the CSP can pass the TPA’s verification, then, it is possible to
extract challenged data blocks by conducting repeated interactions. We can attain our proof
by a series of games.

Game a. It simply represents the game defined for A3 in Section 7.2.4
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Game b. It is similar to the Game a except one difference. Challenger B keeps a series of
file tags he produces. If A3 submits one valid tag generated by SignGen() rather than by B;
B will abort the game.

Analysis: If A3 makes B termnate in Game b, it is easy to employ .43 to design an
attacker to break the SignGen() algorithm. Therefore, we can conclude that all F};, m and
r that interact with A3 are generated by B.

Game c. It is similar to Game b, with one distinction. Challenger 3 maintains a list of
responses to the queries of adversary As. If A3 wins the game, but with the aggregate sig-
nature o is not equal to 0 = (HZE 10 ]> et s € (G, generated by the challenger based
on correct file, then challenger .43 will discontinue.

Analysis. Assume that (o, u) is a correct proof provided by the honest prover (honest

cloud). From the correctness of the CLMRPIA, we know that following verification equa-

tion holds.

e(o,g)=e ( H ij - Ho(w;)", PKi> e <H1(1Di)u“, go> (7.6)

iel j=1

Assume that the adversary A3 provides a forged response (¢, ii/). Because the forgery is

successful, the following verification equation holds.
e(o’,g)=e < H H wjHy(w;)", PKZ) e (Hl(IDi)u“/, go> (7.7)
iel j=1

Obviously, i/ # u, otherwise ¢/ = o, which contradicts our above assumption. Here, we
define Ap = 1/ — pu(Ap # 0). We will build a simulator that finds a solution to the CDH
problem if the adversary makes the challnger B abort with a non-negligible probability.

Now, dividing Eq.7.6 by Eq.7.7, we obtain e(Z,g) = e(u®",¢°) = e(g?h*)**, ¢°) =

e(ge2r.hbA1 g%) Thus, we can know that,
e(o’.07 . (g*) "%, g) = e(h, g*)aAp (7.8)

From the Eq.7.8, we know that h® = (o’.0~!(g%)~bA#)Y/a21_ The probability of aAy =
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0modp is 1/p which is negligible since p is a very large prime. Therefore, we can solve
the CDH problem with a probability of 1 — 1/p, which contradicts the assumption that the
CDH problem in GG; is computationally infeasible.

Game d. It is the same as Game c, with one dissimilarity. As before, challenger .43 still
keeps and observes CLMRPIA protocol instances. For one of these instances, If .45 wins
the game and aggregate message (' in the forged proof differs from the expected y in the
correct proof P, then the challenger B will discontinue.

Analysis. Assume that adversary .43 wins the Game d with non-negligible probability.
We will construct a simulator that can use the adversary to solve the DL problem. The
simulator is given g, h € (1, its goal is to find a value « satisfying h = g“. Furthermore,
given g, h € G, we can obtain u = g*h® € G, where a, b € Z,. The simulator acts like B
in Game c, but with the following differences:

Assume that (o, (1) is a correct proof P provided by the honest server. From the correctness

property of CLMRPIA, we know that the following equation holds.

e(o,g)=e ( H H w;j Hy(w;)", PKi> e (Hl(IDi)u“, g0> (7.9)
iel j=1
Assume that A3 provides a forged proof (o’, 1), which is different from the honest one.

Because the forgery is successful, the following equation holds.

e(o,g)=e ( TTT] wiHa(w)™, PK,-) e (Hl(IDi)u“/, g°> (7.10)

i€l j=1

Based on the above two verification Eq. 7.9 and 7.10, we have u* = u*, and can further

imply that 1 = u®* = (g@h%)?# = ga&# . h2#, Therefore, we can find the solution to the

alAp

DL problem. More specifically, given g, h* € G, we can compute h = ¢g* = g 5w =

g~. However, b is zero only with the probability 1/p, which is negligible because p
is a large prime. Then, we can get a solution to the DL problem with a probability of
1 — 1/p which contradicts the assumption that the DL problem in (; is computationally
infeasible. Based on the above discussed games, we can conclude that the CLMRPIA

achieves unforgeability under CDH and DL assumptions.
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Finally, we construct a knowledge extractor to extract all challenged sets of 7 data
blocks b; ; (i € 1,|i| = n) using 7 different sets of random coefficients v; (i € I, |i| = )
and executing 7 times different challenges on the same data blocks b; ; (i € I,]i| = n).
The knowledge extractor can accumulate 72 different linear equations (i1, ..., (7. By solving
these equations, the knowledge extractor can extract b; ; (¢ € I, |i| = m). It means that if
the CSP can pass the TPA’s verification successfully, it must correctly maintain the user’s

data intact.

7.5.4 Comparative summary

We compare the security of CLMRPIA with some of the existing ID-based [65, 66, 87]
schemes against Ay, A,, A3 whose power has been defined in Section 3.5 and is presented
in Table 7.5. As shown in Table 7.5, schemes [65, 66, 87] does not free from key escrow
problem. Our proposed scheme, however, satisfies the requirements of public auditing

including key escrow and is proven to be secure against all adversaries A;, A, , As.

Table 7.5: Security comparison

Schemes Ay As Az Type
Peng et al. [65] No No Yes IBC
Peng et al. [66] No No Yes IBC
Yu et al. [87] No No Yes IBC

Proposed scheme  Yes Yes Yes CL-PKC
A1: Type I Adversary, Ay: Type Il Adversary , As: Type III Adversary

7.6 Performance Analysis

In this section, we provide the performance evaluation and experiment results of proposed

scheme.

7.6.1 Performance Evaluation

In this section, we evaluate the computation cost and communication cost of the proposed

scheme theoretically as follows. For simplicity, we define some notations used for perfor-

117



mance assessment in Table 7.6.

Table 7.6: Notations

Notation  Description

n Number of blocks

c Number of replicas

Cy Time cost of Pseudo Random Function

Coezp Time cost of single exponentiation on GG or G
Conul Time cost of single multiplication on G or G
Ce Time cost of single bilinear pairing

n Number of challenged blocks

Cone Time cost of encryption on raw data block

Cy Time cost of hash operation the on data blocks
1Hash Denotes the size of hash value in bits

1Sig Denotes the size of one digital signature in bits
S Denotes the sector number

| Gy | Denotes the size of an element in Gy

| G | Denotes the size of an element in G

| p| Denotes the size of an element in Z

7.6.1.1 Computation cost

We give the computation cost of the four algorithms, namely, ReplicaGen, SignGen,

ProofGen, ProofVerify which play the significant role in our proposed CLMRPIA

scheme.

Assume that the data user in the group stores c replicas on CSP. Each replica has n
blocks. To generate c replicas, the algorithm ReplicaGen needs to run and its computation
cost is ncCy. To generate the signatures for all replicas, the algorithm SignGen costs
2ncCeyp + 2ncChpyy. The CSP runs the ProofGen to generate the integrity proof and
its computation cost is NCeyy, + NcChyy. To check the integrity, TPA runs the algorithm

ProofVerify with a cost of 3Ce + 21(Ceyp + cCiri). We summarize the computation
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Table 7.7: Comparison of computation costs ( n data blocks with ¢ replicas and 7 chal-
lenged blocks)

Schemes ReplicaG&ignGen ProofGen ProofVerity
Barsoum et  ¢C.,. ncCeyp + n(c — 0Ceqyp + c(n —  2Ce + (e +
al. [53] 1)Cmul+ncC'H 1)Omul 1)Oexp + ﬁCCmul
Liu et al. ncCy  2ncCeyyp +  Cep + (i — 2cCe + (fc +
[54] 2ncCu+ncCy 1)Cru ¢)Clerp + 1CCru
Peng et al. ncCy, (2n + 1)Cep + 1C. + (. + 1Ce + (7 +
[65] nCmul Q)Oexp + ﬁ'CCmul 1)Cexp + ﬁ'ccmul
Yu et al.  cCee (2nc+ 1)Cepp + 1Ceqp + c¢(n + cCe + (7 +
187] 1Chrm DCo )Chwy + (@ —
1)chul
Our ncCy  2ncCeyp +  1Cep + ncCryu 3Ce +2n(Ceyp +
scheme 2ncCrul cConul)

overhead of our proposed scheme by comparing it with some of existing state of the art PKI
based [53, 54] and ID-based [65, 87] multi-replica cloud auditing schemes from different
aspects and the results are shown in the Table 7.7.

From Table 7.7, in our scheme, we can observe that ReplicaGen algorithm is faster than
[53, 87] and almost as fast as that of [54, 65] because pseudo-random functions are faster
than symmetric encryptions. SignGen and ProofGen algorithms are faster than those of
[53, 54, 65, 87]. Similarly, ProofVerify algorithm is faster than those of [53, 54, 87] but
slightly slower than [65] since it requires one more pairing operation, but our scheme does

not suffer from key escrow problem.

7.6.1.2 Communication Cost

Table 7.8 shows the communication cost of the proposed scheme. The communication
cost refers to the costs used for transmitting a random challenge from TPA to CSP and
the corresponding proof from CSP to TPA. It mainly comes from the integrity auditing
phase includes three algorithms C'hallenge, ProofGen, ProofVerify according to the
description of Section 7.4. In the phase of integrity auditing, the TPA sends a challenge

C = (Fi4, 7, 1,72, 73) to the cloud. The size of an auditing challenge is (logap + 3 | p |
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Table 7.8: Comparison of communication costs ( n data blocks with ¢ replicas and 7 chal-
lenged blocks)

Schemes Challenge Proof Type
Barsoum et  2logsp+ | p | 1] Gy | +sclogap PKI
al. [53]

Liu et al. nclog:p+ | Gy | | p |[+| Gy | +nclogap+  PKI
[54] 1Sig

Pengetal 1 | G, | +1 | Gpr | 1| Gr | +1Hash + IBC
[65] +3logap+ | Frame | 1Sig

Yu et al. nlogp+3|p| | p | +1Sig IBC
[87]

Our logop +3 | p |+ | Fia | [p|+1] G| CLPKC
scheme

+ | Fi4 |) bits. On receiving the random challenge C' from the TPA, the CSP generates
a corresponding proof P = (u, o) to reply the TPA. The size of the proof P = (u,0) is
| p | + | q | bits. Therefore, for one auditing task, the entire communication overhead
is (logap+4 | p|+ | Faq |+ | q]) bits. We compare the communication overhead
of our proposed scheme with some of existing PKI based [53, 54] and ID based [65, 87]
multi-replica cloud auditing schemes. We summarize the result in Table 7.8.

From the Table 7.8, we can see that the communication cost for integrity proof in our
scheme is smaller than all existing schemes [53, 54, 65, 87] because it returns only one
element in GG; and one element in ZJ. Similarly, the communication cost of the challenge
message is lower than those of [54, 65, 87] and slightly higher than [53], but the overall

communication cost of our scheme is smaller than all existing schemes [53, 54, 65, 87].

7.6.2 Experimental Results

We implemented CLMRPIA on a system with Intel i5-7200U CPU @ 2.50 GHz and 8 GB
RAM. All experiments are carried out in python language using crypto-0.42 library [88].
The implementation uses a symmetric super singular curve where the base field size is 512-

bit and security parameter () fixed to 160-bits, which has the equivalent security level of
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Fig. 7.3. Computation cost: (a) Computation Time of ReplicaGen algorithm (b) Time
consumption of SignGen algorithm (¢) Computation cost of ProofGen algorithm (d) Com-
putation cost of ProofVerify algorithm (e) Computation cost of revocation process for dif-
ferent number of users (f) Computation cost of dynamic operations
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1024-bit RSA. All results are mean of 20 trials. The experimental results for ReplicaGen,
SignGen, ProofGen (Server-cost), ProofVerify (TPA-cost), revocation and data dynamics
are obtained and plotted as graphs from Fig. 7.3a to Fig. 7.3f.

Fig. 7.3a shows the comparison of time consumption of ReplicaGen algorithm. From
Fig. 7.3a, We observe that the time needed for ReplicaGen algorithm in all schemes in-
creases linearly as the number of replicas increases in the system. The ReplicaGen phase
is almost as fast as that PKI-based schemes like MuR-DPA [54] and ID-based scheme such
as [65], because computation of pseudo-random functions are faster than encryptions on
the data file. Fig. 7.3b shows the comparison of time consumption of SignGen algorithm.
From Fig. 7.3b, We notice that CLMRPIA is efficient than other existing schemes [54, 65]
because of utilization of certificateless signatures. This is carried out only once during
the life time of the system. Fig. 7.3c illustrates the comparison of computation costs for
ProofGen. From Fig. 7.3c, it is obvious that our CLMRPIA has the better efficiency than
existing PKI-based [54] and ID-based schemes [65]. Fig. 7.3d illustrates the comparison
of computation costs of ProofVerify. From Fig. 7.3d, we can observe that verification
time of CLMRPIA is lesser than PKI based scheme [54], since the CLMRPIA has less
exponential and multiplication operations in group but consumes slightly more time than
ID-based schemes [65]. Fig. 7.3e depicts the computation overhead of revocation process
for different number of users against different number of blocks to be resigned. From Fig.
7.3e, we can see that the cost of revocation is linear to the number of users in the group.
Fig. 7.3f. shows the computation cost of dynamic operations such as modification, inser-
tion and deletion. From Fig. 7.3f, we can learn that the time of modification and insertion
operations increases with the number of blocks and almost identical, while deletion takes

negligible constant time because it requires no computations.

7.7 Summary

In this chapter, we have studied the problem of creating multiple copies of shared dynamic
data file and verifying the integrity of the data on untrusted cloud servers.

In order to address the complex certificate management in existing PKI-based and key
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escrow problems in ID-based data integrity auditing schemes, we proposed a novel cer-
tificateless multi-replica public integrity auditing scheme for dynamic shared data, where
the user is capable of accessing and updating copies of blocks stored on the remote cloud
servers. To the best of our knowledge, the proposed scheme is the first to simplify cer-
tificate management in PKI based schemes and eliminates key escrow problem in ID-
based schemes simultaneously. A novel authenticated data structure, RVT was proposed
to achieve efficient dynamic operations such as insertion, modification and deletion over
data blocks in all replicas at once. It also supports secure user revocation when a user is
revoked from the group. We proved the security of CLMRPIA against type I, type II and
type III adversaries under the assumption that the DL and CDH problem are hard in ROM.
The performance is evaluated by theoretical analysis, experimental results, and compared
the results with the existing state of the art schemes. Extensive security and performance
analysis proved that CLMRPIA is highly secure and efficient.

In future, the CLMRPIA can be further extended to support the feature of “error local-

ization” and to support big data auditing.
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Chapter 8

Efficient Pairing Free Certificateless
Public Integrity Auditing for Shared Big
Data in the Cloud (EPF-CLPA)

8.1 Introduction

In this chapter, we propose certificateless public integrity auditing for shared big data.
The big data refers to the massive amount of data generated by digital devices (e.g., [oT,
mobile devices), communication technologies (e.g., Internet, social networks), business
applications, and many more [89]. To verify the integrity of shared big data, we propose
a certificateless public auditing scheme for shared big data (EPF-CLPA) by leveraging
elliptic curve cryptography (ECC) which does not require pairings. The contributions are:
* EPF-CLPA is designed based on ECC, which does not employ bilinear pairings.
Hence, the computation and communication cost is substantially reduced.
» EPF-CLPA simplifies the certificate management and eliminates the key escrow prob-
lems exist in the PKI-based and ID-based PDP schemes, respectively.
* EPF-CLPA is further extended to support the batch auditing, where the TPA can
handle multiple tasks concurrently. Since the cloud aggregates the multiple proofs

and EPF-CLPA is pairing-free, the auditing performance is greatly improved.
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* Additionally, our scheme also supports user revocation. Whenever a user is revoked,
the GM will not generate the time key for the revoked user. Without an updated time
key, any user cannot generate valid signatures for data blocks.

* We also performed security analysis that proves EPF-CLPA is secure against type
I/II/TI/IV adversaries based on the intractability of elliptic curve discrete logarithm
problem (ECDLP).

* The theoretical analysis and related experimental results show that EPF-CLPA scheme
is efficient than existing certificateless auditing schemes, and more suitable for shared

big data auditing.

8.2 Problem Statement

Here, we present problem statement, its description followed by the architecture, design
goals, adversary model and the security model of the EPF-CLPA scheme.

To avoid the costly certificates in PKI based schemes [34, 85, 76, 38, 75, 39, 40, 41]
and to mitigate the key escrow problem in IBC [42, 43, 44] simultaneously, certificateless
shared data auditing schemes [62, 63] have been proposed based on certificateless public
key cryptography (CL-PKC)[48]. CL-PKC is a model for the use of public key infras-
tructure, which avoids the inherent escrow of identity-based cryptography and yet which
does not require certificates to guarantee the authenticity of public keys. In such CLPKC
schemes, the complete private key of the user consists of two parts, the first one is gen-
erated by the key generation center (KGC), and the user itself generates the second one
(secret value). However, the schemes [62, 63] require pairing operations, causing a huge
computation overhead because the pairing operation is computation intensive. In addition,
they are very inefficient for the verifier to handle batch auditing. Hence, [62, 63] are not
suitable for shared big data auditing as they incur a huge burden of computation. More-
over, in these schemes [62, 63] the revocation process involves resigning of all revoked
data blocks, which further increases the computation overhead when applying for big data.
Therefore, designing an efficient certificateless auditing scheme for shared big data without

employing pairings is necessary.
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In this scheme, initially, the KGC generates the public parameters param, master secret
key (msk), and master time key using a system security parameter (\). Then publish
param and keeps the msk secret. To join the group, a user submits a request to the GM.
Accordingly, the GM generates a group key and securely forwards it to the user. Then the
user sends his/her identity and group key to the KGC in a secure way to get the partial
private key D; from KGC. According to the request of the user, the KGC generates D;
using msk, and D; will be sent to the corresponding user using a secure channel. On
receiving D;, the user generates his/her own complete private key by the combination of
D; from KGC, time key from GM, and randomly chosen secret key by himself/herself.
After creating the raw data file, the user divides and computes signatures using a private
key for all blocks. Then user uploads data blocks along with corresponding signatures to
the cloud and deletes them from the local hardware. Later, to check the integrity, TPA
challenges the cloud by selecting blocks randomly. Upon receiving the random challenge,
the cloud generates a corresponding proof. After receiving the proof, the TPA can check
the correctness of data. Finally, when a user is revoked, GM updates the time-key of every

non-revoked user and forwards existing RL to the CSP.

8.2.1 Architecture

As shown Fig. 8.1, the system architecture of EPF-CLPA consists of four different entities.

1. User Group: A user group includes group members and a group manager (GM). GM
is responsible for creating the group. We assume the GM and group users are honest.
Each user can access outsourced shared data. The GM detects and refuses to send
new time key for the revoked user to realize revocation.

2. CSP: It is an untrusted entity, which provides storage service and necessary compu-
tation resources.

3. TPA: Itis assumed to be faithful by user and CSP. It has more expertise and capability
than users to check the correctness of the data. Also convinces both cloud server and

users by providing unbiased auditing results.
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Fig. 8.1. System model of EPF-CLPA

4. KGC: An entity which generates the partial private key for the group user according

to the unique identity of the user. Also generates master time key for the GM.

8.2.2 Design Goals

* Public verifiability. Anyone in the system who knows public key can verify the
integrity of data in cloud.

* Correctness. The TPA can correctly verify the integrity of data by generating the
challenge message for the CSP with randomness in the cloud.

* Soundness. The cloud server cannot pass auditing process if the data is altered.

» User revocation. Once a user is revoked from the group, all non revoked user’s
private key should be updated by sending the new time-key.

» Batch auditing.The verifier should be able to carry out several auditing tasks simul-
taneously from several users from the group.

* Efficiency. EPF-CLPA should reduce the computation overhead of auditing by em-
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ploying the ECC.

8.2.3 Adversary Model

* Type-I Adversary (A;): A tries to replace the user’s public key with a false key even
though he could not have access to KGC’s (msk) nor the user partial private key.

* Type-II Adversary (A5): A, (malicious-but-passive KGC) tries to mount an imper-
sonation attack having access to the msk of the KGC.

» Type-III Adversary (Aj3): A3 (malicious revoked user) tries to generate a valid sig-
nature after time period I';, but A3 cannot get the user time key after I';.

» Type-IV Adversary (A,): A4 (malicious CSP) tries to generate a forged proof to pass

the verification.

8.2.4 Security Model

Among the four adversaries, .4; and 4> and Aj try to forge the signature of blocks and
A, tries to forge the proof to pass the auditing. We define four games Game 1, 2, 3 and 4,
where A, A, As and A, interact with their corresponding challengers C', Cy, C5 and Cy,

respectively.

Game 1 (for a type I adversary A, )

Setup: Initially, challenger C; runs Setup to get the msk and params. Then, C; gives
params to A;) And then, master time key ts is forwarded to the GM by a secure channel
and keeps the msk to itself secretly.

Queries: A; could access the following oracles adaptively controlled by challenger C;.

» Create_user_Oracle: It takes I D; € {0,1}* as an input. It returns nothing if ID has
been created before. Otherwise, C; executes PartialPvtKeyGen, SetSecretValue, Set-
PublicKey to obtain D;, z; and PK; for I D;. Finally, itadds < ID;,dD;, x;, PK; >
to the L' list and C; returns PK 4 to A;.

» Partial_Private_Key_Oracle: On receiving this query on I D; by adversary A, C;
look up the list L't for the appropriate entry to the I D;. If the tuple < I D;, dD;, x;, PK; >
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is not found, L is returned. Otherwise, the partial private key d D, is returned.
o Secret_Value_oracle: On input of a query on the identity ID by adversary A;, C
returns the secret value z; to A;.
» Time_Key Update_oracle: A; runs this oracle with I D; and I'; as inputs, C; runs
the TimeKeyUpdate algorithm and returns a time key d;pr, to A;.
* Public_Key_Replacement_oracle: A; can replace the user I D;’s original P K; with
a new value of his choice PK. C; keeps record of this replacement.
» SignGen_oracle: After receiving this request on m;, a time period I';, C; executes
SignGen algorithm to produce o; for m; under identity / D; and returns it to A;.
Forgery: At last, A; outputs {0, m}, I} as its forgery with identity /D}. A, is regarded
to win this game if the following conditions are satisfied:
* 1 < Verify(o;,m;, param, 7 ID*, PK})
* For I D*, the query Partial Pvt_Key_oracle has not been submitted;
* A, has not submitted never before the tuple (m}, ID;,I'}) to the SignGen_oracle
with the public key PK7,.
Game 2 (for type Il adversary As):
Setup: Initially, challenger C obtain msk and params by running the Setup, and then,
returns both to A,.
Queries: A, could access the all oracles ( similar to .A;) except Partial Pvt_Key_Oracle as
defined earlier in Game 1 because A, knows msk.
Forgery: Eventually, adversary As outputs tuple {o;, m?, I} as its forgery with the iden-
tity I D?. A, is said to win the game if this tuple satisfies the following conditions:
o 1 < Verify(o;,m;, param, 't ID* PK;p)
» For I D*, the query Secret_Value_oracle does not occur in the game;
* The tuple (m}, I D*,I'}) has never been sent to the SignGen_oracle.
» A, has never requested the Public_Key_Replacement query on I D*.
Game 3 (for A3):
Setup: It is similar to Game 1.

Queries: In this phase, .43 could access all the oracles ( similar to that of .A;) as defined in

Game 1.

129



Forgery: Finally, adversary A3 outputs tuple {o}, m;, T

*
(2

} as its forgery with the identity

ID7 and wins the the game if the following requirements are satified:

1« Verify(o;, m;, param, U, ID* PK;p)
The tuple (m;, I D*,I'}) has not been sent to the oracle SignGen.

(IDj,I'7) has never been queried to the Time_Key_Update oracle.

Game 4 (for Ay) :

8.3

Setup: C generates the params, msk. msk is kept secret by C, but params are
forwarded to the A,.

SignGen _Query: Aj selects the tuple (D, m;) and forwards it to C for the signature.
C generates and returns the signature of m; to A3 by running the algorithm SignGen.
Challenge: C generates a challenge message randomly C'hal and sends it to A4 and
requests A, to reply with the corresponding proof information P.

Forge: A4 generates PP and sends it to Cy, for the received challenge message C'hal.
A, is said to win the game, if P passes the validation check and the blocks in P are

incorrect.

Algorithmic Framework

The algorithms of our proposed scheme are defined as follows.

Setup(1*) — (param,msk). It takes \ as input and outputs msk and param.
Join(ID) — sq. It takes the identity (ID) of the user as input and outputs group key
o as output.

Partial PvtKeyGen(param, msk, I D;) — D;. It takes the param, msk, user iden-
tity / D; as input and outputs a partial private key D;.

SetSecretValue(param, ID;) — x;. It takes the param, msk, ID; as input and
outputs a secret value x;.

Set PubK ey(param, z;) — PK;. It takes param, x; as input and outputs a public
key PK;.

TimeKeyUpdate(param,ts, D, T;). It takes the param, time key ts, ID, time

period I'; as inputs and returns a new time key d/ DT’ for the user.
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8.4

SignGen(param, S;, M) — o;. It takes param, S;, and data blocks {m; }1<i<, as
input and outputs a signature set {o; }1<i<y, -

Challenge(M,,r,) — C. It takes the abstract information M, f, about the file as
input and outputs a random challenge C. M;,, include file name, number of data
blocks, etc.

ProofGen(mi,{0i} i<, C) — P. It takes m;, {0;}1<i<n, and C as input and
outputs a proof P.

ProofVerify(param, PK;,C, P) — 0/1. It takes the param, PK;,C and P as
input and returns auditing result as 1 for success or O for failure.

Revoke(RL, {idy,1ds, ...id,}) — RL'. Tt takes current revocation list (RL) and

different user ID’s as input and outputs the new RL'.

Detailed Construction

Setup

KGC generates params, msk and master partial secret key with the given security param-

eter A by conducting following steps:

1.

Join

KGC produces a group G with prime order ¢ from elliptic curve E defined over F),,
where P is a random generator of G.

Choose s,v € Z; randomly and computes yr = v, and keeps s secretly, the msk.
KGC sends v to a GM for generating time key as the time master key by a secret
channel.

The KGC picks four secure cryptographic hash functions; H; : {0, 1} — Z5, H; :
{0,1}* x G — Z, Hy : {0, 1} — Zx.Hy : {0, 1} — Z7.

. KGC computes the master public key P, = sP and publishes

params = {G7p7 q, P7 Hla H27 H37 H47 Ppub; yT}
Further, KGC picks 79 € Z as master partial key randomly and forwards it to the

GM to generate joining key for the group.

To be a member of the group, initially, user sends a request to the GM. Then, GM generates
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a group joining key s, as follows.

Ro=m%-P (8.1)
hO - H1<RO7 Ppub) (82)
so= (Y + ho-s) mod gq. (8.3)

and sends sy to the user in a secure way.

PartialPvtKeyGen

After receiving the group key sy from GM, a user sends both his/her identity /D and s
to KGC for generating partial private key. On receiving sy, the KGC verifies sy - P =
Ry + ho Py to know the validity of the user. If the user is invalid it outputs L. Else, KGC
generates the partial private key for the user as follows. KGC chooses a random value
r € Z; and computes wyp = rP,hy = Hi(ID,wrp, P, Pyus,yr) » dip = r + xhy mod q
and returns D;p = (wrp, d;p) as the user ID’s partial private key.

SetSecretValue

A group user with an identity /D selects a random number x;p € Z, and it is kept as secret
value.

SetPublicKey

A Group user with an identity /D computes public key PK;p = z;p P using params and
TIp-

TimeKeyUpdate

When GM receives a request from a group user with identity /D and a time period I';
for time key, the GM checks whether the user ID is present in RL or not. If not, the GM
picks a random value rp € Z; and computes wipr = 0P hy = Hy(ID,T;,wrpr),
drpr = r7 + vhy modg.

After that, the GM returns the time key D;pr = (w;pr,d;pr) to the user by a secure
channel. After the expiry of the period I';, D;pr; is invalid. By this step we can ensure the
user revocation.

SignGen

F is a shared file to be outsourced to cloud and is split into n blocks, i.e., F' = m;<j<p)-
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User computes a signature for each block m; € Z,(1 < ¢ < n) using a private key as
follows.
1. Fori € {1,2,...,n}, the user, randomly choose t; +— Z7 and computes U; = t; P;
2. hs = Hs(ID, PKp,wip,wipr, L', m;, U;, Pyub, yr),
li = Hy(ID, PKip,wip,wrpr, s, mi, Ui, h3)
3. Compute s; = m;t; + hsxrp + l;(drp + d;pr) mod q. Finally, the signature on data
block m; is o; = (U, si, wip,, Wipr, ) -
Following this, the user outsources F' = {m;} and signatures, Ti(1<i<n) O the CSP. Later,
the user removes the raw data files and signatures from local records to save space.
Challenge
After storing data in a cloud, an auditing challenge C' is generated by TPA to assess the
integrity of file, which is demonstrated as follows:
* Pick a proper subset I of crandomly (¢ < n) elements from the set [1,7n], | I |= ¢,
and TPA selects a random value v; € ZZI‘ Viel.
* Send the challenge C' = {(j,v;)};es to the CSP.
ProofGen
On receiving C' = {(j,v;) } er, the server computes data integrity proof P which includes

the data proof and signature proof.

1. Cloud computes V¥ as the linear combinations of sampled blocks

U=> us;- P (8.4)

jel

2. Meanwhile, the CS computes the aggregated signature.

w = Zvjmj . Uj (85)

Jjel

Then the server returns final proof P = (W, ¢)) to the TPA as a response.
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ProofVerify
TPA checks the integrity of the challenged data blocks after receiving the corresponding
proof P = (W, ¢)) for the challenge from the server by verifying the following equation.

U S Z’Uj (Uj + hsPKip + lj(w]D + hiPpup +wrpr + hzyT)> (8.6)

jeI
If the verification Eq.8.6 holds, the TPA concludes that the data blocks stored in cloud are
properly maintained. Otherwise, TPA arrives at a conclusion that the outsourced file F' has

been lost or corrupted.

8.4.1 User revocation

When a group user is revoked, all non-revoked group users will update their time by re-
questing the GM.
* If the user is non-revoked, the GM generates a new time key for the user by checking
the RL, and forwards it through a secure channel.
* If the user is revoked, the GM rejects the users request. Therefore, revoked users

cannot generate valid signatures, as they don’t have the valid time key.

8.4.2 Batch Auditing

In cloud systems, it is tedious, and inefficient for the auditor to check the integrity of shared
big data file by file in terms of both communication and computational overheads. Partic-
ularly, given a set of N different files F; = {m¢1,...,m4pn,}, 1 <t < N, 1 <1 < nyitis
desirable to reduces the cost by aggregating integrity checking operations of multiple files
into one challenge. To achieve this, the TPA to carry out integrity verification of N files at
a time. In the batch auditing process, all algorithms are similar to as those of section 8.4
except C'hallenge, ProofGen and ProofVerify algorithms.

Batch_Challenge. The challenge message C' = {(j,v;), M sg} forwarded to CSP for au-
diting data file of IV users, where M sg includes the information about the users and the

files to be verified.
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Batch_ProofGen. Upon receiving challenge information C', the CSP computes

N
W:ZZUj'StJ"P (87)

t=1 jeI

Meanwhile, the server computes the aggregated signature.

N
=Y v my - Ry (8.8)

t=1 jeI

Then the server returns final proof as a response P = (W, ¢)) to the TPA.
Batch_ProofVerify. TPA checks the integrity of outsourced data after receiving P = (¥, )

for the challenge from the server by verifying the following equation.

N

>3 03 (Ung + hs P+ Uj(wip + b Py + winr + hayr) ) (89)
t=1 jeI

(4

If the verification Eq. 8.9 holds, the TPA concludes that the data blocks stored in cloud are
properly maintained. Else, TPA arrives at a conclusion that the outsourced files /' has been

lost or corrupted.

8.5 Security Analysis

We perform a formal security analysis of EPF-CLPA in terms of correctness and unforge-

ability by considering type I/II/III/IV adversaries.

8.5.1 Correctness

Theorem 1. In the proposed EPF-CLPA, the TPA can successfully verify the integrity of
data if all the selected file blocks in the challenge C = {(j, v;)} e and their corresponding
signatures are kept intact in the cloud.

Proof. We prove the correctness of EPF-CLPA by verifying the Eq. 8.6 based on proper-
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ties.

\I/:ZUij'P

jel
=> v (m]’t]’ + hswrp +1(dip + dIDT)) P
jel
= Zvj (ijj +hs - PKp +1j(dip + dIDT)P)
jel
= Zvjijj + Z Vj <h3PK}D + lj(?“ +xhy +rr + Uhg)P)
jerI jeI
=+ Z vj <h3PK1D +1j(wrp + h1 Py + wipr + h2yT)>
jel

The correctness of the verification Eq. 8.9 is elaborated in the following.

vt + hszrp + b (dip + dIDT)) P

vj(Upj + hsPKy + 1y j(dip + dIDT)P>

(
(
-3 3, (Um + haPKy + 1y j(drp + dIDT)P)
0; (Uss + hsPKy + lu(r + by + vy + vhy) P)
(

N
= Z vj(Usj + h3PK; + 1 j(wip + h1 Py + wrpr + h2yT)>

8.5.2 Unforgeability

Here, we prove EPF-CLPA is existentially unforgeable against A;, A, A3 and A, as de-
fined in Section 8.2.4.

Theorem 2: EPF-CLPA existentially unforgeable against A, if the advantage of A, win-
ning the experiment is negligible in the ROM assuming ECDLP is hard in G.

Proof: If A; can succeed in the Game 1 described in section 8.2.4 with a non-negligible
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probability €; then, we could simulate a challenger C; that uses .4; as a block box to find

solution for the ECDLP with a probability

¢ = el - /a)" fa

Let (P, xP) € G be a random instance of the ECDLP. C,’s objective is to find the solution
x through the interactions with A;. Initially, C; maintains four lists L', LZT’ff Hlst| Flist
which are initially empty. Lists L'* and L{,ﬁfj are used to record CreateUser queries and
TimeKeyUpdate queries, respectively. Lists HYs!, H.* are used to record Hs and H,
queries, respectively. 4, and C; interacts as follows.

¢1 denotes number of queries to the random oracle /; and g. denotes number of queries to
the Partial Pvt KeyGen oracle.

* H,-Query: When A; makes an H,-query with identity I D;. C; checks whether L
contains (I D;, wyp;, drpi, hii, rpi, PK1p;). If it holds, C; returns hy;; otherwise, C;
picks arandom hy; € Z; and returns hy; to A, then adds (1 D;, wrpi, dipi, his Trpis PKipi)
into L',

* Hy-Query: If A; makes an Hs-query with identity I D;. C; checks whether Llﬁf
contains (I D;,I';, wrpir, dipir, hei). If it holds, C; returns ho;; Otherwise, C; picks
hoi € Z} and returns to Ay and then adds (I.D;, s, wipir, dipir, ha;) into LY

 H3-Query: If A; makes an Hj-query with identity I D;. C; checks whether H.*! con-
tains (ID;, PKpi, wipi, Wipir, Ui, mi, Uiy, Poup, Yr, hai). If it holds, C; returns hs;;

Else, C; picks hs; € Z,, returns to Aj then inserts (ID;, PK;p;, Wrpi, Wrpir, I's, mi, Ui, Pyus, Y1, hi3i)
into Hst.

* H,-Query: If A; makes an Hy-query with identity ID;. C; checks whether H ff“
contains (ID;, PKp;, wrpi, Wrpir, L's, mi, Uy, hgi, 1;). Tt returns [; if it exists; oth-
erwise, C; chooses [; € Z;‘ randomly then returns to .4;. Next, inserts the record

(ID;, PKpi, wrpi, wrpir, Ui, mi, Uy, hag, 1) into HY
* Setup: C chooses z,v € Z; randomly, computes y = x P, yr = vP, and generates

137



params : {k,q,G, P,y,yr, Hi, Hy, Hs, Hy}. params forwarded to A;.

Create-User (ID): C; maintains a list L'*** of the form (I D;, wyps, dpi, h1s, Trpi, PK1pi).
when A; makes a Create — User query with an identity /D;. If ID; has already
been in the list L', it simply returns PK;p;. Otherwise, C; computes partial private

key d;p;, secret key x;p; and public key PKp; as follows:
— C; chooses a value x;p; € Z, randomly. and computes PKp; = xp;P.

— Cy 14, hy; € Z; randomly, computes wyp; = 7; P, sets H\(ID;, wrpi, P, Py, yr) =

hi; and computes d;p; = r; + xhy;.

The tuple (w;p;, d;p;) is the user ID;’s partial private key and x;p; is secret value.
Finally, C; returns PKp; to Ay, and adds the tuple (I D;, w;p;, dipi, hii, 1pi, PK1pi)
into the list Lt .

PartialPvtKeyGen: After receiving a query with identity 7 D;, C; does the following.

— If ID; # ID*, C, lookup the list L** for the tuple (I D;, w;pi, drps, i, Trpi, PK1pi)

and return (w;rp;, drp;) to Al.
— Otherwise C stops the computation and output L.

TimeKeyUpdate: When receiving a TimeKeyUpdate query on ID; with a time
period I';, A, t; € Z; and calculates wrp;r = t;PP. Then picks hy; € Z; randomly,
sets Hy(ID;,T';, wipir) = hay, and calculates dyp;r = t; + vhe;. C; returns the time
key Dipir = (wipir, dipir) to Ay, and adds this record (I D;, I';, wrpir, dipir, hai)
to the list L4st.

SecretValue: C; looks up L'** and returns z;p;.

ReplacePublicKey: On receiving this query on (I D;, PKp,;), C; replaces original
public key PK;p; with PK,; and then update the record (I Di, PK} ;) into L',
SignGen: After receiving a query on inputs m,;, ['; and ID; with the public key
PK;p;, A; does the following:

— If ID; # ID*, and the public key PK;p; has not been replaced, .4, executes

SignGen to produce a signature o; and returns it to A;.

- If ID; = ID*, C, aborts the game.
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* Forge: Finally, A; produces a signature o on m; for an identity I D; with PK7,,
. If ID; # 1D*, A; aborts the game and outputs fail. Else, based on forking
lemma [90], C outputs another value to H,. Then, A; outputs a new forgery o. on
the same message m; by replaying the same procedure but with a different choice of

H,. Then (] has the following two equations.

S; :ti+h3x1D+li(d1D+d[DT) modq (810)

sy =t; + haxip + lj(d;p + drpr) mod ¢ (8.11)

Here I; # [;. From above two Eq.8.10,8.11’s, C can calculate a = (s; — s})/(l; —
I}) — xhy; — drpir. Hence, C can determine solution a. C'’s success probability can
be analyzed as follows. .4; can win this game if event F3 occur and E; and F5 do

not occur. We, then show the probability that .4; wins the game as follows.
1. Ey: C; does not abort Game 1 in the Partial PvtKeyGen query.

2. Ey: A; computes forgery of a signature o; on m; for ID; # ID* in the the

forgery phase.

3. Ej: The signature o; is valid on (m}, I D;).

Therefore, the success probability of solving ECDLP can be defined as

6/ = Pr[_'El N _\EQ AN Eg]

= P.[-FE1| P, [~ Ey| - EL|P.[Es|-Ey A —Ey]
From the simulation, we have

1 e
Pr[~Ey] > (1 - —)
qQ
1

P.[-Es|-E]) > —
q1

PT[E3|_\E1 VAN _|E2] =€

From these equations, the probability that C; could solve the given ECDL problem is
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¢ c((@-V/a) /o

Theorem 3: If an adversary As can break our EPF-CLPA with a non negligible proba-
bility €, then we can construct an algorithm Cy by employing A, to solve ECDLP with a
probability.

¢>e((@-D/a) /n

Proof: Consider (P, aP) € G as an instance of the ECDLP. C, determines the value of
a by interacting with As.

* Hy, Hy, H3, H, queries: Queries and answers of Hy, Hy, H3, H, oracles are the same
as those in Theorem 1.

e Setup: () picks x,v € Z}, computes y = P, yr = vP, and generates params :
{k,q,G, P,y,yr, Hi, Ha, H3, Hy}

e Create-User (ID): C, maintains a list L'*** of the form (I D;, wyp;, d1pi, his, Trpi, PK1pi).
when A, makes this query on I D;. If I D; has already been created, it simply returns
PKp,. Otherwise, C; computes partial private key d;p;, secret key x;p; and public

key PKp; as follows:
— Cy chooses z;p; € Z, randomly and computes PK;p; = xp;P.

— (C, randomly chooses random values 7;, hy; € Z;, computes wrp; = r; P, sets

Hi(ID;, wrpi, P, Pyup, yr) = hy; and calculates d;p; = r; + xhy;.

Finally, Cy returns P K p; to As, and adds the tuple (I D;, w;p;, d;pi, h1i, 1pi, PKipi)
into the list L/t

» TimeKeyUpdate: When receiving a TimeKeyUpdate query on I D; and I';, C, picks
t; € Z; randomly and calculates w;p;r = t; P, and picks hy; € Z;]" randomly, sets
Hy(ID;, Ty, wipir) = hey, and calculates d;p;r = t; + vha;. Co returns the time key
Dipir = (wipir, drpir) to As, and adds this record (I D;, I';, wipir, dipir, ha;) to
the list L4t

 SecretValue: C, looks up L¥st and returns z;p;.

* SignGen: Upon receiving a query on inputs m;, I'; and I D; with PKp;, Cs acts as

below:
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- If ID; # ID*, and the public key PKp;, Co normally executes the SignGen

algorithm to compute a signature o; and returns it to A,.
- If ID; = I D*, C, aborts the game.

* Forge: Finally, A, produces a signature o on m! for I D; with PK;,,, I';. If ID; #
1D*, Cy aborts the game. Else, based on forking lemma [90], Cs outputs another
value to the H,. Then, A, returns a new forged signature o, on the same message m;
by replaying the same procedure but with a different choice of H,. Then C, has the

following two Eqgs.

s; = t; + hsxrp + 1;(dip + dipr) mod ¢ (8.12)

S; :ti—thl’]D—Fl;(d[D—Fd]DT) modq (813)

Here [; # [,. From above two Eq.8.12,8.13’s, C, can calculate a = (s; — s})/(l; —
Iy — xhy; — d;pir. Hence, Cy can determine the solution a of the given ECDLP.
By following the same success probability analysis of Theorem 1 for C;, we can conclude
that C, can solve the ECDLP with a probability ¢ > ¢ ((q1 -1)/ q1> * /q1.
Theorem 4: EPF-CLPA achieves existentially unforgeability against As, if the advantage
of Az winning the experiment is negligible in the ROM assuming ECDLP is hard in G.
Proof: If A3 wins the Game 3 with a non-negligible probability ¢; then, we could simulate
a challenger C; that uses A3 as a block box to find solution for the ECDL instance with a
probability

€ >e€/q

Let (P,aP) € G be an instance of the ECDLP. C; finds the value a by interacting with Aj.
» Setup: The Setup is similar to Theorem 1.
* Create-User (ID): C; maintains a list L*** of the form (ID;,wrpi, drpi, h1i, 1pi, PKrpi).
when A3 makes this query with an identity /D;. If I D; has already been created, it
simply returns PK;p,;. Otherwise, C3 computes partial private key d;p;, secret key

xrp; and public key PK;p; as follows:
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— C3 chooses a xrp; € Z; randonmly and computes PK;p;, = xp; P.

— C3 chooses 1, hy; € Z randomly, computes w;p; = r; P, sets Hy (I D;, wrpi, P, Ppup, yr) =

h1; and calculates d;p; = r; + xThy;.

The tuple (w;p;, drp;) is the user 1.D,’s partial private key and zp, the secret value.
Finally, C5 returns P K p; to Ajg, and adds the tuple (I D;, w;p;, d;pi, h1i, ©1pi, PKipi)
into the list Lt .

PartialPvtKeyGen: After receiving a query with identity /D;, C3 does the following.

- If ID; # I1D*, C, lookup the list L'** for the tuple (I.D;, w;pi, drps, his, Trpi, PKrpi)

and return (w;p;, drp;) to As.
— Otherwise Cj3 stops the computation and output L.

TimeKeyUpdate: When receiving a TimeKeyUpdate query on I D; and I';, C3 picks
t; € Z; randomly and calculates w;p;7 = t; P, and picks hy; € Z; randomly, sets
Hy(ID;, T, wipir) = hoy, and calculates d;p; = t; + vha;. Cs returns the time key
Dipir = (wipir, dipir) to As, and adds this record (I D;, I, wipir, dipir, ho;) to
the list L4t

SecretValue: Cs looks up L' and returns z;p;.

ReplacePublicKey: On receiving Replace PublicK ey query on (ID;, PK} ), C, re-
places original public key P Kp; with PK,; and then update the record (I Di, PK/ ;)
into L',

H,, Hy, H3, H, queries: Queries and answers of Hy, Hy, H3, H, oracles are the sim-
ilar to those in Theorem 1.

SignGen: Upon receiving a query on inputs m;, I'; and ID; with PKp;, C3 acts as

below:

— If ID; # ID*, and the public key PK;p; C3 executes SignGen to produce a

signature o; and it is returned As.
- If ID; = I D*, C5 aborts the game.

Forge: Finally, A3 produces a signature o; on m; for I D; with the public key PK7,
and I';. If ID; # 1D*, C3 aborts the game and outputs fail. Else, based on forking
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lemma [90], C3 outputs another value to H,. Then, A3 returns a new forged signature
o} on the same message m; by replaying the same procedure but a different choice of

H,. Then C3 will have the following two equations.

S; :ti—i-hgl'[D—i-li(d[D—i-d[DT) modq (814)

Sy =t; + hsxip + l;(d;p + drpr) mod ¢ (8.15)

Here [; # [;. From above Eq.8.14,8.15’s, C3 can calculate a = (s; — s})/(l; — I) —
zhy; — drpir-
It is observed that the probability to solve the given ECDLP by Cs is € > €/¢;.
Theorem 5. Assuming the hardness of the ECDLP in G, it is hard for A4 to generate a
forged proof to succeed in the verification process.
Proof: We prove the theorem 5 by following the security game defined in section III for
Ay, as follows:
We assume M as the shared cloud data, and the challenger C, (TPA) forwards a ran-
dom challenge (j,v;)jer to Ay (Cloud). The valid proof should be (W, 1)), where ¥ =
Zjel vjsj - P = ZJEI v;m; - U; return to C4 as a response that can pass the verifi-
cation, while the cloud generates an invalid proof (¥, 1)) based on the corrupt data M’,
where M’ # M, and at least one element of Am; = m;" —m;, and Am; # 0 for j € [ is
nonzero. If the forged proof succeeds in the verification, then we say the .4, wins the Game
4 and we can find a solution to the ECDLP. Otherwise, .4, fails. If .4, wins, according to

Eq. 8.6, we can have

U = T/J* + Z’Uj (thK]D + lj(w[[) + hIPpub +wrpr + hgyT)>
jel

According to the correct data, (W, 1) is a correct proof, we can get

U =1+ Z v} (hSPKID + 1i(wrp + h1 Ppupy + wrpr + h22/T)>
jel

By observing the above two equations, we can say that )* = .
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Hence,

Zvj-m;f-Uj:ZUj-mj-Uj (816)
J€el jel
Define Ad = Zje] vy - (’fTL;< — mj) : tj
1.e.,

w*—w=Zvj-m;-Uj—Zvj-mj-Uj

jel Jjel

= - (m—my) - Uj

jel

:ZUJ(m;‘—m])t]P

Jjel
—Ad-P

=0

Assume (Z, zZ) be an instance of the ECDLP.Then we can find the value of z € Z;. Let

P =rixZ 4+ roZ, in which r,ry €g Z;‘. We can get the following equation.

Ad-P=0
AV(rixZ +137Z) =0

TlAa.IZ + TQADZ =0

oz =27
1
Specifically, we can compute © = —(r3/r1) when the 7 is nonzero. The probability that 7

become zero is 1/q, where ¢ is a large prime. That means, it is computationally intractable

for A4 to output a forged proof.
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Table 8.1: Notations

Notation  Description

T, Bilinear pairing
T61ex Exponentiation on group GGy

Tt mul Multiplication on group G

TGo mul Multiplication on group Gs.

c Number of blocks in challenge.
d User subsets for the challenge.
Ty Hash operation in group GGy

MulZ}; Multiplication in Z.
AddZ, Addition in Z.
T.. Scalar addition in ECC

T, Scalar multiplication in ECC

8.6 Performance Analysis

In this section, we provide the performance evaluation and experimental results of EPF-

CLPA. We define some notations used for performance assessment in Table 8.1.

8.6.1 Performance Evaluation

We evaluate the computation cost and communication cost of the proposed EPF-CLPA

scheme theoretically as follows.
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Table 8.2: Comparison of computation cost

Schemes SignGen ProofGen ProofVerify revocation
Li et al. 2nTg1ee + dgrea + (¢ — (d + 2)T, + (¢ + n(Teimu
[62] nTGLmul d)TGLmul d)TGLex + (C + 2TGL€$)
2d)TG1,mul + dTGQ,mul
Yang et 2nTG1,ex + TGLmul + TGl,mul + CTGQ,mul + n(TGLmul
al.[63] nTGLmul CTGQ,mul + CTGQ,exp + CTGLem +P 2TGL6$)
CTGQ,ex +
CTGLex + Tp
EPF-CLPA nd,m + (¢ = DT, + cToog+5Temn Te.m + AddZ,
2nTh 2, + (¢ —
N, + (c +
DT,

Table 8.3: Comparison of communication costs in auditing phase( n data blocks with ¢

challenged blocks)
Schemes TPA to CSP (Challenge) CSP to TPA Type
(Proof)
Liet al. [62] logac+2 | q | d|Gi|+d|q] Pairing-based
Yang et al. [63] 2cloga A + (¢ + 1)logaq d|Gy|+d]|q] Pairing-based
EPF-CLPA c(lnl+12;]) clpl+1ql Pairing-free

8.6.1.1 Computation cost

We calculate the computation cost of EPF-CLPA and compare with the some of the existing

state of the art schemes [62, 63] and results are listed in Table 8.2.

We provide the computation cost of the four algorithms, namely SignGen, ProofGen,

ProofVerify, TimeKeyUpdate (for user revocation) which play the significant role in

our proposed EPF-CLA scheme.

To generate the signatures for all blocks of the shared file, the algorithm SignGen

runs with a cost of n7,,, + 2nTh. The CSP runs the ProofGen with the running time
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(c — )T, +2cT,,, + (¢ — V)T.y + (¢ + 1)Te.,. To check the integrity, TPA runs the al-
gorithm ProofVerify with a cost of ¢1,, + 5¢T.,,. In EPF-CLPA, users are revoked
by executing the TimeKeyUpdate algorithm. Therefore, the computation overhead of

TimeKeyUpdate is the computation cost of revocation which is T'e.m + AddZ,.

From Table 8.2, we can see that EPF-CLPA Sign generation, proof generation, proof
verification and revocation is efficient than [62],[63] in all important aspects of cloud au-

diting scheme.

8.6.1.2 Communication Cost

Table 8.3 summarizes the communication overhead of our proposed scheme by comparing
it with some of existing [62, 63] cloud auditing schemes. The communication cost refers to
the costs used for transmitting a randomly generated challenge from TPA to CSP and the
corresponding proof from CSP to TPA. It mainly comes from the integrity auditing phase
which includes three algorithms namely, C'hallenge, ProofGen, ProofV eri fy according
to the description of Section 8.3. The TPA sends a challenge C' = {(j, v;)} ;e to the CSP,
where j € nand v; € Z;. The size of challenge is c- (| n | + | ¢ |) bits. The CSP generates
a corresponding proof P = (1, o) to send it to the TPA. The size of the proofis | p | + | ¢ |

bits.

8.6.2 Experimental Results

We implemented EPF-CLPA on a system with Intel 15-7200U processor @ 2.50 GHz and 8
GB RAM running Windows 7 operating system. All experiments are conducted in python
2.7 language (Py-Charm IDE) using well known free crypto-0.42 library [79]. The imple-
mentation uses a non-singular elliptic curve E(Ft) : y* = 2° + ax + b mod p, where
a = —3 and p, ¢, b (random) are 160-bit prime numbers and a,b € Z7. The experimental
results for SignGen, ProofGen, ProofVerify and Revocation are obtained and com-

pared with the existing schemes and illustrated in Fig. 8.2a to Fig. 8.2e. Fig. 8.2a shows

the comparison of computation time of SignGen algorithm. From Fig. 8.2a, we notice
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that EPF-CLPA is efficient than other existing schemes [62, 63] because of utilization of
ECC. This is carried out only once during the life time of the system. Fig. 8.2b provides
the comparison of computation costs for ProofGen. From Fig. 8.2b, it is obvious that our
EPF-CLPA has the better efficiency than existing pairing-based [62, 63] the EPF-CLPA
has less exponential and multiplication operations in group and. Fig. 8.2c illustrates the
comparison of computation costs of ProofVerify. From Fig. 8.2c, we can observe that
verification time of EPF-CLPA is lesser than all pairing based schemes [62, 63] since no
involvement of bilinear pairing operations. Fig. 8.2d shows comparison cost of the batch
auditing between our EPF-CLPA and the schemes in [85, 41]. From Fig. 8.2d we can
observe that all the three schemes can handle different verification’s from different users
simultaneously, the average auditing time per task in EPF-CLPA is more efficient than that
in [85, 41] because our EPF-CLPA is free from pairings, whereas [85, 41] uses pairings.
Fig. 8.2e shows the computation cost of user revocation. From Fig. 8.2e we can see that
our scheme is efficient than [62, 63] because in [62, 63], the cloud server performs resign-
ing of revoked block with resigning key, which increases the computation overhead for big
data, whereas in our scheme GM simply generates new time key for the non-revoked users,

which only needs one scalar multiplication and one addition operation.

8.7 Summary

In this chapter, we presented an efficient PF-CLPA scheme for auditing shared big data in
cloud by relying on the ECC which does not require pairings and reduces computation and
communication cost drastically. Further, we leverage certificateless cryptography signature
scheme to generate signatures for the blocks of a shared file, which simplifies certificate
management and eliminates key escrow problem simultaneously. EPF-CLPA is extended
to support batch auditing by handling multiple tasks simultaneously that improves the au-
diting performance and can applicable to shared big data storage systems. EPF-CLPA also
supports secure user revocation by updating the time key of non-revoked users. The secu-
rity analysis proved that proposed EPF-CLPA is secure against type I/II/III/IV adversaries

in the ROM under a standard assumption. The performance analysis and experimental re-
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sults demonstrate that the EPF-CLPA 1is efficient in terms of computation cost than existing

schemes and more suitable for shared big data auditing in cloud.
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Chapter 9

Conclusion and Future Directions

In this concluding chapter, we conclude the thesis, while we put forth certain open chal-

lenges in remote data integrity auditing scheme for future work.

9.1 Conclusion

In this thesis, we studied the importance of remote data integrity auditing in cloud storage,
particularly public integrity auditing for shared data in cloud storage and proposed five
RDIA schemes namely, i) An ID-Based public auditing for shared data in cloud computing
using identity-based signatures to achieve user revocation. With this scheme we also sim-
plified the certificate management. ii) In ABPIA scheme, we used individual private keys of
each user for generating signatures and unique public key for integrity checking, which sim-
plifies key management. In ABPIA scheme, the signature does not reveal any user identity;
hence, user privacy achieved. iii) Certificateless privacy preserving public auditing system
for dynamic shared data storage in cloud computing by utilizing certificate-less signatures.
CLPPPA achieves privacy preserving against TPA by masking the data proof during au-
diting process while refraining from both complex certificate management and key escrow
problem. Besides, CLPPPA also supports data dynamics such as insertion, modification
and deletion through EDLIT and efficient user revocation utilizing proxy signatures. iv)
Certificateless multi-replica public integrity auditing scheme for dynamic shared data in

cloud storage to achieve the availability of data along with the integrity. v) Efficient Pair-
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ing Free Certificateless Public Auditing for Shared Big Data in the Cloud based on ECC
to reduce the computation and communication cost substantially during auditing. Through
the security analysis, we prove that all schemes are provably secure against various adver-
saries under the hardness assumption of the standard DL and CDH problems in ROM. The
performance and experimental evaluation show that our schemes are efficient and practical.

All these schemes achieve necessary functional and security features of shared data
auditing such as correctness, soundness, public auditing, data dynamics, identity privacy,
data privacy, user revocation, availability, and batch auditing. Furthermore, these schemes
simplifies the certificate management and eliminating key escrow problem simultaneously
with minimal computation and communication overhead during auditing process.

As the proposed shared data auditing schemes are secure, it would be more appropriate
and suitable for real-time applications like financial, healthcare, scientific, and educational

applications.

9.2 Future Directions

In all proposed schemes, we rely on trusted TPAs to execute auditing tasks, which reduces
the burden on users. However, various risks associated with involving a TPA include poten-
tial privacy leaks, collusion, cheating, framing, and procrastination. Therefore, we cannot
fully trust TPA in real-world scenarios. To avoid the trust problem of TPAs or to eliminate
the need for TPA, the presented shared data schemes could be extended to use block-chain

technologies to ensure integrity of the shared data.
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