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ABSTRACT

Cloud storage is an important service that provides reliable and resilient storage infras-

tructure for users to store data remotely with the service provider based on pay-as-you-go

pricing model. Today’s most popular cloud-based storage services are Amazon S3, Google

Drive, Microsoft Azure, Apple iCloud, Dropbox, etc. Cloud storage service brings signif-

icant benefits to data owners, say, (1) reducing capital and management costs (2) reducing

cloud users’ burden of storage management and equipment maintenance, (3) avoiding in-

vesting a large amount of hardware, (4) accessing data over an Internet connection from

any location from any devices such as desktop computers, laptops, tablets, and smartphones

which offers increased flexibility and accessibility. Because cloud storage offers scalable,

pay-as-you-go, and location-independent storage services for cloud users, a growing num-

ber of organizations and individuals have been outsourcing their data to the cloud storage.

Despite these appealing benefits, cloud storage does trigger security challenges such as

confidentiality, integrity, and availability. One of the significant concern is the integrity of

outsourced data due to the following factors: i) Once the data is moved to the cloud, data

owner loses physical control over the data. ii) Sometimes, for monetary benefits, cloud

service providers (CSP) may delete rarely accessed data or hide the data loss incidents to

have a good reputation. iii) Data stored in the cloud may be lost due to irresistible byzantine

failures or human errors or intentional malicious activity, which can be a burden for the user

and an embarrassment for the CSP. iv) CSP may maintain fewer replicas than what is paid

for to save the storage space. Therefore, it is highly desirable for the data owner to check

the integrity of the outsourced data in the cloud from time to time.

To check the integrity of the outsourced data, several schemes have been proposed in

the literature without the local copy of data and without downloading complete data. How-

ever, most of these schemes only focus on checking the integrity of personal data, which

are not valid under the situation of data shared in a group. In a shared data scenario, one

of the users in a group uploads data to the cloud, and the rest of the group not only access

but also modify the data. When data is shared among multiple users, some new challenges

will arise that must be addressed such as user revocation, privacy preserving, identity pri-

iv



vacy, data dynamics. To address these problems, many shared data auditing schemes have

been proposed. However, some of the issues such as user revocation, privacy preserving,

identity privacy, availability, data dynamics are not well solved in the existing schemes.

Furthermore, most of the schemes suffering from complex certificate management and key

escrow problem.

To address aforementioned issues, in this thesis we proposed five contributions, namely,

i) An identity-based public auditing for shared data in cloud computing using identity-based

signatures to achieve user revocation. This scheme also simplifies the certificate manage-

ment. ii) An attribute-based public auditing for shared data in cloud storage to simplify

complex key management in PKI and ID based schemes and to support user revocation.

It also achieves user privacy. iii) Certificateless privacy preserving public auditing for dy-

namic shared data in cloud storage to achieve data privacy against verifier through random

masking technique to blind the data proof during the process of auditing. Double linked list

information table is used to support shared data dynamics such as insertion, modification

and deletion. iv) Certificateless multi-replica public integrity auditing scheme for dynamic

shared data in cloud storage to achieve the availability of data along with the integrity. v)

Efficient pairing-free certificateless public auditing for shared big data in the cloud based

on ECC to reduce the computation and communication cost substantially during auditing.

Through the security analysis, we prove that all schemes are provably secure against vari-

ous adversaries under the hardness assumption of the standard DL and CDH problems in

the random oracle model (ROM). The performance and experimental evaluation show that

our schemes are efficient and practical.
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Chapter 1

Introduction

In this chapter, we introduce the concept of cloud storage, benefits and challenges of the

cloud storage. Thereafter, the motivation behind our research is discussed, followed by

our research objectives and contributions. We give the thesis organization at the end of the

chapter.

1.1 Cloud Storage

Cloud storage [1, 2] is an important service of cloud computing, which provides reliable

and resilient storage infrastructure for users to store data remotely with the service provider

based on pay-as-you-go pricing model. As an essential cloud computing service, cloud

storage offers scalable, low-cost and location-independent platform for managing cloud

users’ data. Because of the unprecedented advantages, an increasing number of individuals

and organizations are inclined to use the cloud storage service to save local storage space

and enable them to manage resources on demand [3]. For example, a survey shows that

79% of organizations choose cloud storage outsourcing services due to low cost, and or-

ganizations can focus on their core business [4, 5, 6, 7]. Cloud storage also allows to form

the groups and to share the data with other group users. All these features are not available

with on-premises storage. The most popular cloud-based storage services available today

are Amazon S3, Google Drive, Microsoft Azure, Apple iCloud, Google App Engine, Drop-

box etc.
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1.2 Cloud Storage-Benefits

A lot of research (for example NIST 2012; Armbrust et al. [3], 2010); focuses on various

benefits of using cloud storage in general. The following are the benefits:

• Low or reduced cost. Nowadays, many data owners in academic and business en-

vironment are choosing cloud for storing their data in the cloud to save costs. The

reason is because of its cost effectiveness, which is particularly true for small and

medium-sized organizations. By outsourcing their data, data owners can avoid the

capital expenditure, infrastructure setup, large equipment, and regular maintenance

cost. [4, 5, 8].

• Accessibility. Cloud storage allows users to access their outsourced data at anytime,

anywhere through any device such as desktop computers, laptops, tablets and smart-

phones.

• Sharing. With cloud storage, customers can create a group and easily share data in

the group anywhere and anytime through the Internet. For example, employees in

the same department of a company store and access data (reports, common file) as

needed.

• Scalability. Traditional infrastructure cannot be scaled up on-demand basis because

of its limitations, whereas a cloud infrastructure supports on-demand scalability (i.e.,

quickly scaling up and down virtual computing resources) with minimal manage-

ment effort and service interruption or without impacting on the performance of the

system. [3, 4, 9].

1.3 Motivation

While cloud storage benefits are clear, it also faces several security challenging issues such

as confidentiality, integrity and availability. The primary issue is the integrity of outsourced

data due to the following reasons : i) once the data is moved to the cloud, Data Owner (DO)
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Fig. 1.1. Cloud storage service model

lose the physical control over the data. ii) some times, cloud providers may delete rarely

accessed data or hide the data loss incidents to have a good reputation. iii) data stored in

the cloud may be lost due to irresistible byzantine failures or human errors or intentional

malicious activity, which can be a burden for the user and an embarrassment for the cloud

service provider (CSP). iv) CSP may maintain less number of replicas than what is paid

for to save the storage space. Therefore, it is highly desirable for the user to ensure the

integrity of the data in the cloud at regular intervals.

Traditional methods to verify the integrity of the data, such as hash values or digital

signatures for entire data, requires to retrieve the entire data from the cloud. Certainly, this

simple approach can successfully verify the correctness of data. However, downloading

the entire cloud data is not economical because it incurs unacceptable communication cost

and may waste users’ resources, particularly when data have been destroyed/corrupted in

the cloud, which is not practical in a cloud scenario. In the cloud computing scenario, the

user wants to check the integrity of data without downloading complete data.
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1.3.1 Problem Statement

To check the integrity of the outsourced data, recently, lots of schemes have been proposed

in the literature. In 2007, Ateniese et al.[1] introduced a concept of “Provable Data Pos-

session (PDP) ”to ensure the data integrity without downloading the complete data by uti-

lizing RSA-based homomorphic verifiable tags and random sampling of blocks. The idea

of PDP is that the DO pre-processes the file, constructs the metadata for the file blocks,

stores the metadata locally, then uploads the data file along with the tags to CSP and re-

moves the original file at local site. Later, the integrity of the data is validated through

the “challenge-response”protocol. However it does not support data dynamics. To support

dynamic operations such as insertion, modification or deletion [10] described a dynamic

PDP scheme using skip lists. Later, some authors proposed dynamic PDP schemes by uti-

lizing Merkle Hash Tree (MHT) [11, 12, 13, 14, 15] and using Indexed Hash Table (IHT)

[15, 16, 17, 18, 19]. However, all these schemes does not support privacy of data against

verifiers. To preserve the privacy, Wang et al. [20] proposed a privacy preserving au-

diting scheme by employing random masking technique. Later, some authors proposed

privacy preserving PDP schemes [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. However, all of

the schemes mentioned above deal only with the integrity verification of non shared data

(personal data).

In shared data scenario, one of the user in a group uploads data to the cloud, and the rest

of the group users not only access but also modify the data. Several schemes [1, 2, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,

37, 38, 39, 40, 41, 42, 43, 44] have been proposed in the literature. However, most of these

schemes [1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32] only focus on verifying the integrity for personal data, which are not suitable

for shared data auditing. When data is shared among multiple group users, some new

challenges such as user revocation will arise that must be addressed. Thus, addressing user

revocations becomes a key research challenge for achieving practical cloud data auditing.

Public integrity auditing of shared data with these existing schemes [33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 43] will inevitably reveal confidential information—data privacy, identity
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privacy—to TPA which affects the security of the system. To address these problems, lots

of fruitful shared data auditing schemes [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43] have been

proposed. However, none of the these schemes [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]

fully addressed the following challenges in the RDIC schemes for shared data.

• User Revocation: In shared data, different blocks may be signed by different users

due to data modifications performed by different users, even if the block is the same.

It brings complexity for checking the integrity of the data. Furthermore, the size of

the group is dynamic i.e., any group member may leave or join the group at any time,

so the user revocation is also an important problem that must be addressed. More

specifically, once a user in the group is revoked, he should not be allowed to access

or modify the data and all his pair of public and private keys are to be made invalid

and all the signatures made by revoked user should be resigned by other existing valid

user to ensure the integrity. To achieve user revocation, the traditional method is to

download the blocks signed by revoked user from the CSP, calculate the new tags

and upload the new tags to the cloud again. It will increase heavy computation and

communication cost for the normal user. Therefore, this task should be performed

by the CSP rather than by the normal user. How to design an efficient and secure

method to outsource the task is a challenge issue[33, 38].

• Identity Privacy Preserving: During auditing, the TPA, who is usually considered

to be trusted but curious, might collect the identity information of data generators

to obtain significant privacy information to perform malicious activity. Thus, it is

important to protect the identity privacy of user in the shared-data auditing[41].

• Data Privacy Preserving: Data privacy protection is an important issue for public

auditing, which means that the TPA is not allowed to know any information about

the data content while conducting credible auditing. In the public auditing, the core

of this problem is how to preserve users’ data privacy while introducing a TPA. Al-

though exploiting data encryption prior to outsourcing is an approach to mitigate the

privacy concern in cloud storage, it cannot prevent data leakage during the verifica-

tion process[32]. Thus, it is important for the cloud auditing to include a privacy
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preserving mechanism independent to data encryption.

• Data Dynamics: As it is well known that a cloud storage system is not just static in

nature, the users often need to update the data dynamically for various application

purposes. Therefore, it is significant for cloud storage auditing to support every

group user to perform dynamic operations like insertion, deletion, and modification

on outsourced data remotely without downloading the whole data [38].

• Data availability: Availability issues appear when the customer is unable to access

his data. In cloud, customer’s data may be lost due to natural disasters, adversaries’

malicious activity or some CSPs may not provide back up. Data should always be

available and retrievable in the cloud.

• Complex certificate management: Most of the aforementioned protocols are based

on traditional public key infrastructure (PKI), which consists of a set of roles, poli-

cies and procedures that needed to issue, manage, distribute, store and revoke dig-

ital certificates. The most commonly adopted digital certificate in our daily life is

X.509 certificates. However, there are three weaknesses when involving PKI based

protocols. Firstly, the generation, management and revocation of digital certificates

requires a highly complicated structure. Secondly, a PKI system is a tree structure

and the authentication to the current CA relies on its parent CA. Thus, the root CA

is a trusted center and self-signed, which is vulnerable since compromising root CA

means all the related certificates should be reissued. Thirdly, the certificates issued

by a CA may not secure enough to ensure the security of one’s secret key[45].

• Key Escrow: The central problem with ID-based RDPC schemes is the inherent key

escrow problem of a user’s private key, that is to say, the private key generator (PKG)

equipped with the knowledge of master secret key and generates all the private keys

for the users. Consequently, a malicious PKG can forge a signature on any message

on behalf of any user in the system without being detected. This is a serious security

gap (issue) in existing ID-based [42, 43, 44] schemes.
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1.4 Objectives

The core objective of this dissertation is to design public integrity auditing schemes for the

shared data to to realize the following security and performance requirements.

• Public auditing: Anyone with public parameters should be able to verify the in-

tegrity of shared data in cloud storage.

• Blockless verification: The verifier can verify the integrity of shared cloud data

without knowing the actual content and without retrieving all data blocks.

• Auditing correctness: The verifier should be able to verify the integrity of shared

cloud data correctly.

• Auditing soundness. The malicious cloud server should not pass the TPA’s verifica-

tion if the data is replaced or modified.

• Privacy preserving: During auditing process, the TPA should obtain neither any

content of shared data nor any identity details of group users.

• User revocation: User revocation should be achieved in a secure and efficient man-

ner.

• Data dynamics: Dynamic data operations such as insertion, modification and dele-

tion should be supported without downloading data back while the efficient public

auditing is achieved.

• Batch auditing: The TPA should be able to perform several auditing tasks received

from various group users in a fast and cost-effective manner.

• Data availability: In cloud, customer’s data may be lost due to natural disasters,

adversaries’ malicious activity or some CSPs may not provide back up. Data should

always be available and retrievable in the cloud.
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1.5 Contributions

To meet the above objectives, in this thesis we proposed the following contributions for

public integrity auditing techniques for shared data with user revocation in cloud storage.

• Proposed an Identity-Based (ID) Public Auditing for Shared Data in Cloud Com-

puting using identity-based signatures. Whenever the user is revoked, our scheme

enables the proxy server to resign the blocks to save existing group user’s compu-

tation and communication costs. Meanwhile, a TPA always audits the integrity of

shared data in the cloud through the challenge-response protocol. This scheme also

simplifies the certificate management.

• Proposed an Attribute-Based public auditing for shared data in cloud storage to sim-

plify complex key management in PKI and ID based schemes and to support user

revocation. In this scheme, users sign the data blocks over attributes, and a unique

public key used for integrity auditing, not individual public keys for each user in the

group. Thus it simplifies the key management. It also achieves user privacy, i.e.,

signatures don’t disclose identity information except that user attributes satisfy the

defined access policy. Furthermore it also supports user revocation like the previous

scheme.

• Proposed Certificateless Multi-Replica Public Integrity Auditing Scheme for Dy-

namic Shared Data in Cloud Storage to achieve the availability of data along with

the integrity. It simplifies the problems of certificate management in PKI and elimi-

nates the key escrow problem in IBC. We use a novel replica version table (RVT) to

support shared data dynamic operations such as modification, insertion, and deletion.

This scheme also supports secure user revocation.

• Proposed Certificateless Privacy Preserving Public Auditing for Dynamic Shared

Data in Cloud Storage to achieve data privacy against verifier through random mask-

ing technique during the process of auditing. We use double linked list information

table (DLIT) to support shared data dynamics such as insertion, modification and

deletion. we also use the idea of proxy resignatures to support group user revocation.
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i.e., whenever a user misbehaves or quits the group, the cloud server is able to carry

out resigning process on behalf of group user.

• Proposed Efficient Pairing Free Certificateless Public Auditing for Shared Big Data

in the Cloud based on ECC to reduce the computation and communication cost sub-

stantially during auditing. It eliminates certificate management and key escrow prob-

lems exist in the PKI-based and ID-based PDP schemes, respectively. It is further

extended to support the batch auditing, where the TPA can handle multiple tasks con-

currently. Since the cloud aggregates the multiple proofs and EPF-CLPA is pairing-

free, the auditing performance is greatly improved. Additionally, our scheme also

supports user revocation. During User revocation, the GM will not generate the time

key for the revoked user. Without an updated time key, any user cannot generate valid

signatures for data blocks.

1.6 Thesis Organization

The rest of the chapters of this thesis are organized as follows and given in Fig. 1.2.

• Chapter 2 describes the preliminaries such as digital signatures, identity based signa-

tures, attribute based signatures, certificatelsess signatures, and some mathematical

background including bilinear pairings, security assumptions, elliptic curve cryptog-

raphy, threshold secret sharing etc.

• Chapter 3 reviews the remote data auditing protocols and describe about personal

data auditing schemes and shared data auditing schemes.

• Chapter 4 describes Identity-based public integrity auditing mechanism for shared

data using ID-Based Cryptography (IBC).

• Chapter 5 presents the Attribute-Based public auditing mechanism for shared data

using Attribute based Cryptography (ABC).

• Chapter 6 details Multi-Replica Public Integrity Auditing Scheme for Dynamic Shared

Data in Cloud Storage that relies on the use of Certificateless(CL) Cryptography.
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Fig. 1.2. Thesis organization

• Chapter 7 presents public auditing scheme for shared data to achieve the data privacy

and support the data dynamics of shared data in Cloud Storage using Certificateless

cryptography.

• Chapter 8 presents public auditing scheme for Shared Big Data in cloud storage

designed based on ECC and without employing the bilinear pairings.

• The conclusions of the thesis and future directions are outlined in Chapter 9.
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Chapter 2

Preliminaries

2.1 Introduction

This chapter discusses the background technologies used in our thesis.

2.2 Digital Signature

A digital signature scheme consists of the following three algorithms:

• KeyGen: It takes a security parameter 1n as input and outputs outputs a private and

public key pair (pk, sk).

• SignGen: It takes private key sk and a message m as inputs and outputs a signature

σ.

• Verify: It takes public key pk, a message m, and a signature σ as inputs and returns

1 for accept or 0 for reject.

A digital signature provides the security services including message authentication,

message integrity, and nonrepudiation. for message confidentiality we still need encryp-

tion/decryption.

In this this thesis, we use the following three types of signatures. 1. Identity-Based

signatures, 2. Attribute Based signatures and 3. Certificateless signatures.
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2.2.1 Identity-Based signatures(IBS)

An identity-based signature (IBS) [46] scheme includes the four algorithms namely Setup,

KeyExtract, Sign and Verify.

• Setup: It generates key pair consists of master public key and secret key

• KeyExtract: It generates the secret key for the group user with identity id .

• Sign: It generates a signature for data.

• Verify: It verifies the signature for correctness.

2.2.2 Attribute-Based Signature (ABS)

An ABS [47] allows a user to sign the data over a given attribute set. It has four algorithms:

• Setup: It generates the master secret key (msk) and public key pair based on security

parameter.

• Keygen: On input of msk and the attribute set, it generates a private key.

• Sign: It generates a signature for the given message using a private key.

• Verify: It takes the public key, data, access policy, and signature as input and returns

0 or 1.

2.2.3 Certificateless Signatures (CLS)

A CLS [48] allows a user to sign the given data. It has seven algorithms.

1. Setup: It generates system parameters params and master secret key msk using a

security parameter.

2. Partial-Private-Key-Extract: It takes params, master secret key, and user’s ID as

inputs and returns a partial private key skID for the user.

3. Set-Secret-Value: It takes params and user’s ID as inputs and outputs the user’s

secret value yID.
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4. Set-Private-Key: It takes params, user’s ID, skID, and secret value yID as inputs

and outputs private key SID.

5. Set-Public-Key: It takes params and secret value yID as inputs and outputs public

key PKID.

6. Sign: It takes as inputs params, a message M to be signed and a private key SID. It

outputs a signature σ.

7. Verify: It takes as inputs params, a message M , the ID and public key PKID of

user, and σ as the signature to be verified. It returns 0 or 1.

2.3 Mathematical Background

2.3.1 Bilinear Pairing

“Assume G1 and GT are the two cyclic groups of the same prime order q. A map e :

G1 ×G1 → GT is said to be a bilinear pairing if the following three conditions hold [49]:

Bilinear: e(ua, vb) = e(u, v)ab, ∀u, v ∈ G1 and ∀ a, b ∈ Z∗
p .

Computational: e(u, v) can be efficiently computable ∀ u, v ∈ G1.

Non-degenerate: e(g, g) ̸= 1. ”

2.3.2 Security assumptions

A. Computational Diffie-Hellman (CDH) Assumption [50]. “For any probabilistic polyno-

mial time adversaryACDH , the advantage of adversaryACDH on solving the CDH problem

in G1 is negligible, which is defined as

Pr[ACDH(g, g
a, gb) = (gab) : a, b

R← Z∗
p ] ⩽ ϵ

where ϵ denotes a negligible value ”.

B. Discrete Logarithm (DL) Assumption [51]. “For any probabilistic polynomial time

adversary ADL, the advantage of adversary ADL on solving the DL problem in G1 is neg-
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ligible, which is defined as

Pr[ADL(g, g
a) = a : a

R← Z∗
p ] ⩽ ϵ.

”.

2.3.3 Elliptic Curve Cryptography

Let E be any curve symmetric around x-axis that satisfies polynomial equation y2 = x3 +

ax+b over a finite field Fp of prime integers such that p ≥ 3 and p is any set of large primes

[52]. Where a, b are any constants with ∆ = 4a3 + 27b2 ̸= 0 along with infinite point O

for all set of point P = (x, y). On performing point addition R = P + Q (according

chord-and-tangent rule) forms a cyclic group G over the elliptic curve E. Therefore, we

define the scalar multiplication as t · P = P + P + ...+ P (t times).

2.3.4 Threshold Secret Sharing Scheme

“Threshold secret sharing scheme [51] enables to divide a secret s into n shares and dis-

tributes to n players, say, P1, P2...Pn. With k or more shares, one can reconstruct the

secret; It utilizes a unique k − 1 degree polynomial f(x) where f(x) ∈ Zp and f(0) = s.

When reconstructing the secret s, a set S of k shares are chosen to recover f(0) as follows

f(0) =
∑

Pi∈S ∆xi,s(x)si where ∆xi,s(x) =
∏

Pi∈S,j ̸=i
x−xj
xi−xj denotes the Lagrange coeffi-

cient.”

2.3.5 Replica Version Table (RVT)

To support dynamic data operations at block level, many existing scheme [53, 54] used

authenticated data structures such as IHT [53], MHT [53, 54] or skip lists [55]. However, it

would create heavy computational costs and high communication cost during the updating

and verification processes and does not support shared multi-replica data dynamics. In this

paper, we propose RVT to support shared multi-replica data dynamics which is designed

based on IHT [53] to store the different versions of the recently updated multi replica file
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Table 2.1: RVT (for instance n = 8 and j = 1(1 ≤ j ≤ c))

SN BRN(1≤i≤n,1≤j≤c) BVN UID
1 b11 1 1
2 b21 1 1
3 b31 1 1
4 b41 1 1
5 b51 1 1
6 b61 1 1
7 b71 1 1
8 b81 1 1

blocks and stored at the verifier side. RVT is a table like authenticated data structure,

which can be accessed or modified by the users of the group and maintained by the TPA.

The structure of the RVT is shown in Table 2.1. It consists of four columns: Serial Number

(SN ), Block Replica Number (BRN ), Block Version Number (BV N ), and User Identity

(UID). The SN is used as a counter, which can be treated as the physical location of the

block, and the Block BRN is used to identify the specified block of a particular replica.

The relation between SN andBRN can be viewed as a mapping between physical position

and logical number of the replica file blocks. The UID is used to identify the signer of the

block. When a file of blocks is initially created the BV N of all blocks is set to 1. If any

of the block is updated, then its version number is incremented by 1. TPA keeps only one

table irrespective of the number of replicated files that CSP stores.
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Chapter 3

Review of Remote Data Integrity

Auditing in Cloud

3.1 Introduction

In this chapter, an extensive review of remote data integrity auditing techniques in the cloud

computing and a brief survey of the literature related to the contributions made in this thesis

is given. Remote data integrity auditing (RDIA) is a technique to verify the integrity of

outsourced data without retrieving and without having knowledge of the complete data. The

remote data auditing involves the entities such as (1) DO, who has huge data to be stored

in the cloud, can be an individual or an enterprise. (2) CSP, who provides the storage space

for the user to store data and manage the cloud with large amount of resources and (3) TPA,

who has expertise and capabilities that the user does not have, and audits on behalf of DO,

as depicted in Fig 3.1. [1] In the process of remote data auditing, first, the DO pre-processes

the data file before it is uploaded to the cloud. After uploading the file to cloud, the local

copy of the file is deleted. Later, verifier (DO or verifier) sends a challenge specifying the

blocks for which the CSP need to provide proof. Upon receiving the particular challenge,

the CSP generates proof for the challenge and sends a proof as a response by executing

the challenge-response protocol. Then, the verifier checks whether the data is intact or not

in the cloud by comparing the local metadata with proof sent by the server. If both are

matched, it indicates the integrity is maintained in cloud storage, otherwise, there is a data
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corruption or data alteration.

Based on PDP, in recent years, several RDIA schemes [1, 2, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 47, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66] have been proposed for

catering to different needs of the integrity verification of cloud users’ data, under different

security and system models in the literature. We have broadly classified these schemes into

two types based on their approach and nature of the data, such as personal data auditing

schemes and shared data auditing schemes. Further, each of them are categorized into

static and dynamic.
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3.2 Personal data auditing schemes

To check the integrity of personal data in cloud storage, in 2007, Ateniese et al. [1] first pro-

posed a PDP scheme. They utilized RSA-based homomorphic verifiable tags and sampling

method to verify the integrity of data stored in the cloud. In this scheme, the DO divides

the file F into several blocks F = {f1, f2, . . . .fn} and constructs metadata for every block

before it is outsourced to untrusted CSP. After uploading the file F and corresponding tags,

the DO deletes the original file at their local store. Later, the integrity of the data is verified

through challenge-response protocol. This technique gives a high probabilistic guarantee

of data possession, where the auditor verifies a set of file blocks randomly with every chal-

lenge, as shown in the Fig.3.2 and Fig.3.3.

3.2.1 Static personal data auditing schemes

Based on PDP, many schemes [58, 59, 31] received research attention in the early days

of cloud computing era. They focus on static data auditing, in which DO cannot modify

the data online. These schemes mainly focus on checking the integrity of large reposito-

ries which does not change over time like libraries, archives, medical, and scientific data.
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Curtmola et al. [58] proposed a multiple-replica PDP (MR-PDP) scheme to increase the re-

liability of data stored on remotely located servers, where the data owner can check whether

a storage service provider stores single or multiple copies of a file. The additional benefit

of MR-PDP is that it can generate additional copies on demand, when few of the current

copies fail, at small expense. However, it suffers from huge tags, computation overhead

on both the verifier and server side. Similarly, Wang et al. [59] presented a proxy PDP

(PPDP) method by using the bilinear maps in which a remote data auditing performed by

the proxy on behalf of the client according to a warrant. However, it does not support data

dynamics; Similarly, Chen [31] used algebraic signatures to check data integrity to reduce

computation overhead than using homomorphic cryptosystems. The main disadvantage is

that it does not support dynamic data operations. All static PDP schemes [58, 59, 31] can

be used well for verifying the integrity of the data with a high probabilistic guarantee, but

they do not provide any support for remote data updates.

3.2.2 Dynamic personal data auditing schemes

DOs are subject to update their data at regular intervals for various application purposes. To

support dynamic operations such as insertion, modification or deletion, Ateniese et al. [56]

designed a scalable PDP (S-PDP) scheme, which is based on symmetric key cryptography.

It improves the PDP [1] in terms of storage, computation and communication cost. S-PDP

uses an authenticated data structure to support dynamic data operations, such as fragment

changing, remove and append. However, this scheme fails to handle unlimited number of

queries and insertion of blocks. Later, Erway et al. [10] described a dynamic PDP scheme,

which extends the scheme [1] by introducing skip lists. This scheme can support full dy-

namic operations on outsourced data. This scheme is first in line to discover constructions

for dynamic provable data possession. However, the performance of the scheme remains

uncertain.

Wang et al. [32] combine Boneh–Lynn–Shacham (BLS) based block authentication

signature [67] and the Merkle Hash Tree (MHT) to provide both public verifiability and
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data dynamic operations along with integrity. In this method, they divide the given file

F into n number of blocks and then constructed tags by applying hash function on each

block. These hash values are stored at the leaf nodes of the MHT and in turn generates

the root. However, it does not support privacy preserving of data against TPA. Similarly,

Zhu et al. [16] proposed a dynamic auditing service for checking the integrity of remotely

stored data in CSP servers. They utilized the fragment structure to reduce the storage of

signatures, utilized index hash tables (IHT) to support dynamic operation. It supports batch

auditing of many blocks from the same file but fails to provide privacy preserving against

TPA. In [25], Zhu et al. proposed a cooperative PDP protocol in multi-cloud environments.

Li et al. [68, 69] proposed a scheme in which a user can delegate TPA to execute high

computing process to solve the user’s bottleneck before the client outsources the data to

CS. Li et al. [69] extended [68] to improve the tag generation. Liu et al. [12] thought

that previous studies are not efficient with respect to data updates because it is a fixed-

size block update. Therefore, they designed a scheme to support variable-size blocks to

improve efficiency. Liu et al. [54] designed a scheme for data availability in the cloud.

Consequently, the CS will store multiple replicas to enhance data availability. However,

when the stored data is frequently updated, each dynamic update will affect every replica.

Therefore, they proposed Later, some authors proposed dynamic PDP schemes by utilizing

MHT [12, 13, 14, 15] and using Indexed Hash Table (IHT) [15, 16, 17, 18, 19]. With more

data, it brings new challenges in data integrity.

However, all these schemes does not support privacy of data against verifiers. To pre-

serve the privacy, Hao et al. [21] proposed a protocol for privacy-preserving based on RSA

cryptosystem by making use of Seb´e et al. [60] protocol, to support public auditing of the

data. However, it is infeasible if the size of the file is large and not achieved the anticipated

goal of keeping data hidden from the third party. Similarly, [20] proposed a privacy preserv-

ing auditing scheme by employing random masking technique. They developed a method

using HLA and random masking technology in such a way that TPA gets zero knowl-

edge about the data stored in server during every auditing even though TPA may perform

multiple auditing tasks simultaneously. However, it incurs heavy computation and commu-

nication overhead. Syam and Subramanian [19] described an integrity checking protocol
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based on RSA, supports public auditing and data dynamics using Sobol Sequence. It gives

the probabilistic guarantee of integrity. Its performance is better than the schemes using

pseudorandom sequence [70]. Similarly, Barsoum and Hasan [71], presented a scheme to

outsource the critical data to CSP and introduced indirect mutual trust between DO and

CSP, i.e., trust for data storage in the cloud. Their solution not only provides secrecy, con-

sistency, and authorisation for data but also maintains various versions of data for better

security and integrity. Subsequently, they presented a map-based [53] provable multi-copy

dynamic data possession (MB-PMDDP) to prevent CSP from cheating the client. However,

it fails in finding the corrupted copy of the file. [17] proposed a protocol for storage au-

diting to protect data privacy against TPA using cryptosystems, bilinear pairing, and HVT.

It supports dynamic data operations with less communication overhead between the server

and the auditor and lowers the computing cost of the auditor. This protocol is further ex-

tended to support batch auditing for both multiple data owner’s settings and multiple cloud

settings with a proxy to significantly improve the verification performance, especially in

distributed cloud storage systems. However, it incurs more storage space overhead on the

server because of a large number of tags and the auditor because of increased size as well

as increased count of files.

Liu et al. [12] introduced a technique for fine-grained updates and ensured fewer com-

munication overheads for big data applications such as social media and business transac-

tions. It works better for a single user and does not support shared data among users. Later

in 2015, Liu et al. [54] presented a new external auditing method named MuR-DPA with

a new data structure based on the MHT. It allows verification of several replica updates at

the same time. However, it supports only small updates and works fine only with the single

client.

Cloud storage service not only allows user to store data but also allows share informa-

tion with other users in a group. However, all of the aforementioned schemes [1, 2, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 56, 57] deal

only with the integrity verification of non shared data (personal data which is possessed by

only a single user) which are not suitable for shared data auditing. That is these schemes

do not consider the advantage of cloud storage where a user can share data with other users
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Table 3.1: Summary of some personal data auditing schemes

Schemes Type of Guarantee Integrity Availability PA DD PP BA
Ateniese et al. [1] Prob ✓ ✗ ✗ ✗ ✗ ✗

Erway et al. [10] Prob ✓ ✗ ✗ ✓ ✗ ✗

Wang et al. [11] Prob ✓ ✗ ✓ ✓ ✓ ✓

Liu et al. [12] Prob ✓ ✗ ✓ ✓ ✗ ✗

Barsoum et al. [15] Prob ✓ ✓ ✓ ✓ ✗ ✗

Zhu et al. [16] Prob ✓ ✗ ✓ ✓ ✓ ✗

Yang et al. [17] Prob ✓ ✗ ✓ ✓ ✓ ✓

Syam et al. [19] Prob ✓ ✗ ✓ ✓ ✗ ✗

Hao et al. [21] Prob ✓ ✗ ✓ ✓ ✓ ✗

Chen et al. [31] Prob/Det. ✓ ✗ ✗ ✗ ✗ ✗

Wang et al. [35] Prob ✓ ✗ ✓ ✓ ✓ ✗

Jiang et al. [38] Prob ✓ ✗ ✓ ✓ ✓ ✗

Ateniese et al. [56] Prob ✓ ✗ ✗ partial ✗ ✗

Curtmola et al. [58] Prob ✓ ✓ ✗ ✗ ✗ ✗

Wang et al. [72] Prob ✓ ✗ ✓ ✗ ✗ ✗

Note:PA: Public Auditing; DD:Data Dynamics; PP: Privacy preserving; BA:Batch
Auditing; Prob: Probabilistic; Det: Deterministic;

on cloud.

3.3 Shared data auditing schemes

With the increasing demands of collaborative works in cloud, shared data auditing has

become an important topic [35, 36, 38]. In shared data scenario, one of the users in a group

creates and uploads data to the cloud, and the rest of the group members not only access

but also modify the data. Shared data auditing schemes can be further classified into static

and dynamic schemes.

3.3.1 Static shared data auditing schemes

To ensure outsourced shared data integrity, firstly, Wang et al. [34], proposed a scheme

named Oruta with the help of ring signatures. This scheme increases complexity if the size

of the group increases; Therefore, it is not suitable for big groups. To address this issue, in

their subsequent work, they proposed Knox [33] using a group signature to support group

dynamics. However, this scheme costs a huge amount of computational resources. Later,
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they designed a scheme named Panda [35] for shared data supporting user revocation by

using a proxy re-signatures technique. However, it has a security flaw since the resign-

ing keys of users are stored with proxy in advance, which causes collusion attacks from

revoked users or CSP. To address this problem, Yuan and Yu [36] has proposed a scheme

by employing polynomial tags. However, it suffers from replay and replace attacks. To

address these attacks, Luo et al. [37] designed a scheme for shared data to support user re-

vocation by employing the concept of secret sharing. However, both [36, 37] schemes does

not study privacy, which is an important property for public integrity auditing. Later, Jiang

et al. [38] adopted the vector commitment and employed the group signatures to support

user revocation. However, the scheme inefficient because of costly auditing operations. Fu

et al. [39] proposed a scheme by combining a homomorphic verifiable group signature

with a secure sharing technique to address identity privacy. Moving forward, Wu et al. [40]

proposed a scheme by employing group signatures. It provides user identity privacy and

data privacy by employing the random masking technique.

3.3.2 Dynamic shared data auditing schemes

To support dynamic operations along with integrity and user revocation, Wang et al. [35]

designed a scheme named Panda [35] by utilizing a proxy re-signatures [73] technique

which is a good choice a cut down the computation overhead for user during resigning.

PS fetches the signatures from the cloud and transforms Meanwhile, the PS cannot learn

any private keys of the two users, which means it cannot sign any block on behalf of either

revoked or non-revoked user.

When a user is revoked, the CS will transform revoked user’s signature on a message m

into a non-revoked user’s signature signature on m whenever a signed user revoked from

the group with a re-signing key. However, it has a security flaw since the resigning keys

of users are stored with proxy in advance in order to generate resignation keys of new

signatures, which causes collusion attacks from revoked users or CSP. Recently, Tian et

al. [41] proposed a scheme to achieve data privacy and extended the DHT to support data

dynamics.

23



Although several public auditing schemes for shared data have been proposed, none

of them could realize all the security and performance requirements such as user revoca-

tion, privacy preserving, identity privacy, data dynamics. Moreover, most of these schemes

[33, 34, 35, 36, 37, 38, 39, 40, 41] suffer from the complex certificate management because

they rely on traditional PKI. PKI is widely used in several fields. However, the PKI-based

scheme must deal with various complex certificate management activities including certifi-

cate generation, storage, delivery, renewing, and revocation. Furthermore, the security of

PKI cannot be guaranteed completely, particularly, when the CA is intruded or controlled

by a malicious hacker The most commonly adopted digital certificate in our daily life is

X.509 certificates, an ITU-T standard for a PKI and privilege management infrastructure.

To simplify certificate management, identity based (ID-based) schemes for shared data

[42, 43, 44] auditing have been presented using identity based cryptography [74]. In these

schemes, signatures are generated based on the identity of the user. These protocols sim-

plify certificate management by binding the user’s identity with the secret key. Yang et al.

[42] described a scheme using blind signatures to achieve identity traceability. Zhang et

al. [43] presented remote auditing of big data with user revocation by employing ID-based

signatures. In this scheme, they update the private keys of existing authorized users instead

of updating the signatures of revoked users during revocation. However, the limitation of

its application is that all users in the group have the same private key and the same public

key. Similarly, [44] proposed a mechanism with sensitive information hiding by employing

ID-based signatures. In this scheme, a special file called a disinfectant file is created to hide

signature information of sensitive blocks of the file.

However, all these schemes [42, 43, 44] inevitably suffers from “key escrow problem

”because the full private key of the user is generated by a third entity called the private key

generator (PKG). As PKG knows each user’s private keys, it can easily masquerade any

client to sign the message by itself. This is a serious security gap (issue) existing in these

ID-based [42, 43, 44] schemes.

To simplify the certificate management and mitigate key escrow problems existing in

various shared data schemes [34, 35, 38, 39, 40, 41, 42, 43, 44, 75, 76] simultaneously,

CL-PKC schemes [62, 63] have been proposed based on CL-PKC. Li et al. [62] initially,
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designed a CLPDP scheme for shared data, which can support user revocation. But it does

not consider the data privacy against verifier and data dynamics. That means, the user’s

data may be leaked to verifier during auditing. This weakness will affect the security of

the data in cloud environment. To support privacy preserving, Yang et al. [63] designed a

privacy-preserving CLPDP scheme by employing the technique of zero-knowledge proof

and randomization method. However, these schemes [62, 63] are based on expensive bi-

linear pairings, which incur heavy computation overhead and are not applicable for shared

big data auditing.

Table 3.2: Summary of shared data data auditing schemes

Schemes Integrity PA DD PP BA Availability UR CF KE
Wang et al.[34] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Wang et al. [33] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Wang et al. [35] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Luo et al.[37] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Jiang et al. [38] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Fu et al. [39] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Wu et al. [40] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Tian et al. [41] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Yang et al. [42] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Shen et al. [44] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Li et al. [62] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

Yang et al. [63] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗

Yuan & Yu. [76] ✓ ✓ ✗ ✗ partial ✗ ✗ ✗ ✗

Zhang et al. [77] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗

Note:PA: Public Auditing; DD:Data Dynamics; PP: Privacy preserving; BA:Batch
Auditing;KE:Key Escrow Problem; CF:Certificate Freeness;UR:User Revocation;

3.4 Summary

In this chapter, we reviewed RDIA schemes in cloud storage and we classified RDIA

schemes into personal data auditing schemes and shared data auditing schemes according

to their approach and nature. From our review, we observed that the most of the existing

schemes focused on auditing the integrity of personal data which are not suitable for shared

data auditing. When data is shared among multiple group users in group, some new chal-
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lenges will arise like secure and efficient user revocation, efficient data dynamics, privacy

preserving, availability of shared data. To address these issues, efficient and secure RDIA

schemes are designed in the subsequent chapters.
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Chapter 4

Identity-based Public Integrity Auditing

for Shared Data(IDPIA)

4.1 Introduction

In this chapter, we present the first contribution of the thesis: Identity-based (ID-based)

public integrity auditing scheme to ensure the integrity of shared data with user revocation

which is a significant issue in cloud storage. To ensure secure and efficient user revocation

while avoiding complex certificate management in existing schemes [33, 34, 35, 36, 37, 38,

39, 40, 41], we propose an ID-based public integrity scheme for shared data with secure

user revocation in cloud. The main contributions of this chapter are as follows:

• In this contribution, ID-based signatures are employed to generate signatures of file

blocks that can simplify certificate management problem.

• Proxy re-signatures are used to support group user revocation. That means, whenever

a user quits the group or misbehaves, proxy can carry out the resigning process.

• The security analysis proves the correctness, soundness of IDPIA based on DL as-

sumptions in ROM.

• The performance analysis evaluates performance of IDPIA theoretically and experi-

mentally in terms of computation overheads.
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4.2 Problem Statement

Here, we the present problem statement, its description followed by the architecture, ad-

versary model, design goals, and the security model of the scheme

To guarantee the outsourced data integrity in the cloud, a number of protocols have been

proposed based on various methods [9-21]. In [9-17] schemes, data owner (DO) uploads

the data file along with the signatures of file to the cloud and enables third-party verifier

to validate the integrity of shared data through the execution of the challenge-response

protocol. However, these schemes [9-17] merely focused on personal data auditing. The

schemes [18-21] proposed to validate the integrity of the shared data. However, these

schemes [18-21] increase the key management problems such as key storage, key exchange

for resigning process and also cause collusion attacks in the system. Therefore, it is an open

challenge to design a state of the art technique for shared data auditing to address above

mentioned problems.

To ensure secure and efficient user revocation while avoiding complex certificate man-

agement in existing schemes [33, 34, 35, 36, 37, 38, 39, 40, 41], we propose an ID-based

public integrity scheme for shared data with secure user revocation in cloud. In the pro-

posed scheme, ID-based signatures are employed to generate signatures of file blocks that

can simplify certificate management problem. Proxy re-signatures are used to support

group user revocation. That means, whenever a user quits the group or misbehaves, proxy

can carry out the resigning process.

4.2.1 Architecture

An Identity-based cloud storage architecture considered in this chapter consists of five

entities as illustrated in Fig. 4.1.

1. PKG, who generates key pair for users. PKG calculates the private key by using

user’s identity, and forwards it to the user through a secure channel.

2. Users who store, share, trust and cooperate with each other in the group, which can

be an enterprise or an individual.
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Fig. 4.1. System architecture of IDPIA scheme

3. Cloud server provides the storage space and manages the data in the cloud.

4. A proxy server is a semi-trusted cloud server, which performs resigning on revoked

user blocks by utilizing proxy re-signatures resigning over the blocks which were

signed by revoked user on behalf of the group.

5. The TPA audits the data upon receiving the auditing request from the user.

4.2.2 Overview of IDPIA

In IDPIA, initially a user submits a request to the GM to join the group. According

to the request of user, GM generates a group key and securely sends to the user.

Then the user request for the private key from PKG. The PKG authenticates the

user, generates private key and secretly sends to the user. Upon receiving the private

key, the user generate signatures for file data blocks using private key. After signing

data blocks, uploads data blocks along with corresponding signatures to the cloud

and deletes them from the local site to save the space. Later, to audit the shared

data, TPA challenges the cloud by selecting blocks randomly. After receiving this

challenge, the cloud returns the proof of shared data as a response to the TPA. After
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receiving proof from the cloud, TPA verifies the correctness of data. Whenever a

user in the group misbehaves or quits the group, GM updates the existing RL and

forwards to the Proxy. Upon receiving the updated RL the proxy performs resigning

on revoked user blocks by utilizing proxy re-signatures.

4.2.3 Adversary Model

In adversarial model, we consider the two types of adversaries: Internal adversaries, exter-

nal adversaries.

Internal adversaries: Malicious insiders, who are cloud servers or users. They intention-

ally delete or modify the user’s data in the cloud. Sometimes, they may try to translate

signatures of one user into another user to cut down the operation costs or hide data loss to

build their reputation.

External Adversaries: Who may try to avert the users from accessing the shared data by

destroying/altering the data in the cloud.

4.2.4 Design Goals

We design our scheme to achieve following goals:

1. Correctness: The cloud passes the integrity check if every challenged block and its

corresponding signatures are appropriately maintained in the cloud.

2. Soundness: A malicious cloud server server cannot generate a valid response if the

data is replaced or modified.

3. Public Auditing: Anyone with public parameters can verify the integrity of group

shared data having no knowledge of the data.

4. Efficient User Revocation: Proxy server re-signs the blocks efficiently during the

revocation.
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4.2.5 Security Model

We designed IDPIA scheme to withstand the the adversary, namely A1(represents mali-

cious cloud). A1 tries to generate the forged integrity proof. We prove the security of

IDPIA by considering the adversary A1 and we define the following Game 1 against A1.

Game 1 (played by A1 and a challenger B):

• Setup: B runs the Setup algorithm to generate the system parameters PP and the

master secret key MK. B sends PP to A1 and keeps the MK secret.

• SignGen Query: A1 chooses the tuple (ID,m) and forwards it to B for querying the

signature. B generates and returns the signature of m to A1 by running the SignGen

algorithm.

• Challenge: B generates a challenge message Chal and sends it to A1 to get the cor-

responding proof P.

• Forge: Finally, for the Chal,A1 outputs a data integrity proof P and sends it to B. A1

wins the game if P can pass the integrity check and the blocks in P is incorrect.

4.3 Algorithmic Framework

In this section, we give the syntax of the proposed identity-based RDIC scheme includes

nine algorithms as follows:

• Setup (1λ ) → (PP , MK) : It takes security parameter λ as input and outputs the

public parameters PP and the master secret key MK.

• KeyExtract (MK, ID)→ SKID: It takes MK and a group user’s identity ID ∈

{0, 1}∗ as input and outputs the secret key SKID that corresponds to the identity ID.

• Sign (m, SKID)→ σi : It takes the data mi ∈ {0, 1}∗, and secret key SKID as inputs

and return signature σi as output which will be stored in the cloud along with the file

F = {m1,m2, ...mn}.
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• Challenge (PP, Fn, ID)→ chal : It takes the public parameters PP , a unique file

name Fn and user’s identity ID as input, outputs a challenge message chal.

• Proof (chal, σ,m)→ P : It takes chal, signatures, and data as input and to generate

a data proof P as output.

• Verify (ID, chal, P )→ 0, 1: It takes the pp, ID, chal, P as input and outputs 0 or 1.

• Revoke (RL, id1, id2. . . idk)→ RL′ : It takes RL, {id1, id2. . . idk} as input and

outputs RL′ .

• Rekey (SKID,MK)→ SKrk: It takes SKID,MK as input and generates a ReKey

SKrk as output.

• ReSign (σ, SKrk)→ σ′: It takes signatures, and re-key as input and produce re-

signatures as output.

4.4 Detailed Construction

Now, we give the construction of proposed algorithms, which are defined in section 4.3 as

follows:

• Setup In this algorithm, PKG generates master system secret key MK and public

parameters PP as follows: Let G1 and G2 be two multiplicative cyclic groups of

prime order p and g be a generators G2. PKG randomly picks an integer α R←− z∗p

as the master secret key and generates a public key Pk = ga. Let PKG choose two

cryptographic collision resistant hash functions as H1, H2 : {0, 1}∗ → G. System

public parameters PP: {G1, G2, GT , e, g, P,H1, H2} published to all the users in the

system. Here MK = α, Pk = gα . Additionally, KGC also generates an initial

revocation list RL = ϕ .

• KeyExtract It takes MK and ID of a user as input, and generates the private key
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ski as output.

ski = (Qi)
α

where Qi = H1(IDi)

• Sign: Given file F =( m1,m2, ....mn) named fid, the DO picks a random group ele-

ment u R←− G1. Then computes the signature σi for every block mi (i = 1, 2, 3....n)

as

σi = ( ski.H2( fid∥i)umi) α (4.1)

• Challenge: To check the integrity of the file, TPA sends the challenge message

chal = {i, vi}s1≤i≤sc to the cloud.

• Proof: After receiving the challenge chal = {i, vi}s1≤i≤sc from the TPA, the server

computes µ =
sc∑
i=s1

vimi; σ =
sc∏
i=s1

σvii ∈ G1 where both signature blocks and data

blocks are aggregated into a single block. Then the server sends proof P = {µ, σ}

as a response.

• Verify: Once the proof P is received from the server, the TPA verify

e(σ, g)
?
= e(

Sc∏
i=S1

sk
vi
i , H2(fid||i)) · uµ, Pk) (4.2)

If this equation holds, data is intact otherwise corrupted

• Revoke: If a user Ui in the group set to be revoked, KGC updates the revocation list

and sends a copy to the proxy for resigning process. RL′ ← (RL ∪ {idi}).

• Rekey: KGC generates a resigning key SKrk as follows. KGC picks a random

number rk1
R←− Zp and sends it to nonrevoked user Ui.User Ui calculates rk1/sk1

and sends back to the KGC. Then KGC takes the rekey as SKrk = rk1/ski and

forwards the rekey to the proxy.
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• ReSign: Upon receiving the RL′ and rekey, proxy downloads the previous signature

of the all the blocks from the cloud server and recomputes new signatures using rekey

for all the data blocks as

σi = ( ( rki/ski ·H2( fid∥i) · umi) α (4.3)

on behalf of the existing user. Then proxy server uploads the new signatures back to

the cloud.

4.5 Security Analysis

In this section, the security of IDPIA is analyzed in terms of correctness and soundness.

4.5.1 Correctness

Theorem 1. In the proposed IDPIA, the cloud passes the auditing if all the selected data

blocks of shared data and their corresponding signatures are intact in the cloud.

Proof: To prove the correctness of our scheme is equivalent of proving Eq. 4.2 is correct.

The proof lies in the following equations. The correctness of the protocol can be elaborated
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as follows.

e(σ, g)
?
= e(

Sc∏
i=S1

sk
vi
i , H2(fid||i)) · uµ, Pk)

e(σ, g)=e(
Sc∏
i=S1

σvii , g)

= e(
Sc∏
i=S1

(ski ·H2(fid||i) · umi)α)vi , g)

= e(
Sc∏
i=S1

(ski ·H2(fid||i) · umi)αVi), g)

= e(
Sc∏
i=S1

(ski ·H2(fid||i) · umi)Vi), gα)

= e(
Sc∏
i=S1

ski ·H2(fid||i) · uΣmivi), gα)

= e(
Sc∏
i=S1

ski ·H2(fid||i) · uµ, Pk)

In other words, if any selected block in the challenge message is damaged, the cloud cannot

to generate a proof that can pass the verification. Hence, it is easy to detect the misbehavior

of the server using our scheme.

4.5.2 Soundness

The soundness of the IDPIA scheme can be given based on the following theorem:

Theorem 2 (Auditing soundness): It is computationally infeasible for an adversary or an

untrusted cloud to generate a forgery of a proof that can pass the verification process if the

DL problem in group G1 is hard.

Proof. This theorem is proved based on the security Game 1[34, 78] defined in section

4.2.5

First, TPA forwards a challenge message (i, vi)i∈C to A1, and correct proof should be

(µ, σ) which can pass the verification with Eq.4.3. Now, based on the corrupted data M′,

the adversary A1 computes proof (µ′, σ∗), where M′ ̸= M, and at least one element of
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{∆mi = mi
′ − mi} for i ∈ C is nonzero. The adversary A1 wins the Game 1 if proof

(computed over incorrect data) still passes the verification performed by verifier. Other-

wise, it fails. Suppose A1 wins the Game 1, then we get the following equation from

verification Eq.4.3.

e(σ, g)
?
= e(

Sc∏
i=S1

sk
vi
i , H2(fid||i)) · uµ′, Pk)

Because (µ, σ) is correct data proof, we can get

e(σ, g) = e(
Sc∏
i=S1

sk
vi
i , H2(fid||i)) · uµ, Pk)

From above two results, based on the property of bilinear map, we deduce that

c∏
i=1

uµ =
c∏
i=1

uµ
′
and

c∏
i=1

u∆µ = 1

Let two random generators f, h ∈ G1, and h = fx for some element x ∈ Zp. For the

given f, h ∈ G1, a random value u ∈ G1 can be written as u = f ϵ · hξ ∈ G1, where ϵ and

ξ ∈ Zp. Then, we have

c∏
i=1

u∆µ =
c∏
i=1

(f ϵ · hξ)∆µ = f
∑c

i=1 ϵ·∆µ · h
∑c

i=1 ξ·∆µ = 1

Since f = hx , we can solve the DL problem by calculating f = hx = h
−

∑c
i=1 ϵ·∆µ∑c
i=1

ξ·∆µ , x =

−
∑c

i=1 ϵ·∆µ∑c
i=1 ξ·∆µ

only when the denominator becomes zero. However, according to the definition

of Game 1, at least one element of ∆µ is nonzero, and the denominator is zero with a

probability of 1/p. Therefore, we can find a solution to the DL problem with a probability

of 1− 1/p, which is a non-negligible value since p is very large prime. It contradicts to the

assumption defined in section 2.3.
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4.6 Performance Analysis

Now, we give a theoretical analysis of IDPIA regarding computation and communication

costs. A brief comparison of the proposed scheme IDPIA and previous works is presented

in Table 4.1 and 4.2 respectively. Finally, we present experimental results.

4.6.1 Computation cost

Here, we present the computation cost of the TPA during the auditing process and proxy

server during the revocation process. For simplicity, we denote by EXG1, EXG2 the expo-

nentiations in G1 and G2, MulG1, MulG2 the multiplication in G1 and G2, Hs is the hash

function, Pa and R the pairing operation and the number of blocks signed by revoked user

respectively. The computation cost of the verifier involves in generating sampling blocks

of challenge and verifying the validity of a corresponding proof. The cost of the verifier

while checking the proof is CEXG1+CMulG1 +CPa+CHs. The computation cost for

resigning a block in the cloud is 2EXG1 + 3MulG1 +HsG1 as shown in Table 4.1.

4.6.2 Communication Cost

We consider communication cost of IDPIA during the verification process, which consists

of challenge and proof as a response. The challenge chal = {i, vi}s1≤i≤sc , its size is

| c | ·(| n |+ | q |) bits where C, | n |, | q | represents sampled blocks, the sizes of a block

and an element of Zq respectively. The size of proof P ,V is the size of an element of G1

or Zp, | id | is the size of a block identifier. Hence, the complete communication cost of

verification is 2D · | p |+ | c | ·(| id |) bits, where D represents nonrevoked users in the

shared group, | p | is the element size in G1. A comparison of selected previous schemes

and our scheme in terms of communication cost is given in Table 4.2.

4.6.3 Experimental Results

We utilized Pairing Based Crypto Library [79] to implement cryptographic operations. All

experiments conducted with an Intel i5-7200U CPU @ 2.50GHz and 8 GB Memory. In
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Table 4.1: Comparison of computation costs

Schemes Proxy server Auditor
Wang et al. [35] R · EXG1 (| c | +D)EXG1 +

(D + 1)Pa + (| c |) +
2D)MulG1+D·MulG2

IDPIA 2EXG1 + 3MulG1 +HsG1 CEXG1 + CMulG1 +
CPa+ CHs

Table 4.2: Comparison of communication costs

Schemes Challenge Proof Type
Wang et al. [35] | c | ·(| n |+ | q |) 2D · | p |+ | c | ·(| id |) PKI
IDPIA | C | ·(| n | + | q |) 2D· | p | + | C |

·(| id |)
IBC

the following experiments, the security parameter λ is fixed to 160 bits and the shared data

is set to 1 GB. All the experiment results are mean of 20 trials. In experimental results,

we measured the computation cost of Sign generation, Proof generation, Proof verification

and Resign operations. In Fig 4.2a. We present computation cost of signature generation

and we can observe that computation time is increasing linearly as the size of the data is

increasing. In Fig 4.2b. We present computation cost of Proof generation and verification

and we can observe that Proof generation and verification time is increasing linearly as the

size of data is increasing. In Fig 4.2c. We present computation cost of resigning task and

we can observe that resigning time is increasing linearly as the number of blocks to be

signed is increasing.

4.7 Summary

In this chapter, we presented a public integrity auditing scheme for shared data with effi-

cient and secure user revocation based on identity-based signatures. With our scheme each

user doesn’t have to keep traditional public key as like in the PKI and verification informa-

tion do not have include any certificate of public key. Meanwhile, the TPA can audit the

integrity of shared data through challenge-response protocol execution even if some part of

shared data has been re-signed by the proxy. The collusion attack is practically infeasible
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Fig. 4.2. Computation cost: (a) Signing time of different number of data blocks (b) Proof
generation and verification time. (c) Time consumption of resigning

39



for the revoked user during the resigning process. The security analysis and performance

analysis demonstrated that IDPIA is secure and efficient. The overhead of IDPIA is rela-

tively small when compared to existing schemes. However, how to achieve user privacy is

a significant challenge in shared data auditing. We address this issues in the next chapter.
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Chapter 5

Attribute-based Public Integrity

Auditing for Shared Data in Cloud

Storage (ABPIA)

5.1 Introduction

In this chapter, we propose an attribute-based public integrity auditing for shared data to

achieve identity privacy along with user revocation. In the scheme, the user private key

is generated from the user attributes and user specify a designated auditor to check the

integrity of the outsourced data. The main contributions are as follows:

• In ABPIA, users sign the data blocks over attributes, and a unique public key for the

entire group is used for integrity auditing instead of using individual public keys for

each user in the group. Thus it simplifies the key management.

• ABPIA achieves user privacy, i.e., signatures do not disclose identity information

except that user attributes satisfy the defined access policy.

• ABPIA also supports user revocation through proxy re-signatures. That is, whenever

a user quits the group, proxy can carry out the resigning process. That is proxy acts

as a translator of signatures between two users, for example, Alice and Bob. More
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specifically, the proxy is able to convert a signature of Alice into a signature of Bob

on the same block. Meanwhile, the proxy is not able to learn any private keys of the

two users, which means it cannot sign any block on behalf of either Alice or Bob.

• The comprehensive security analysis proves the correctness, unforgeability, and user

privacy of ABPIA security in the random oracle model under the assumption that DL

problem is hard in the bilinear group.

• The performance of ABPIA is evaluated through theoretical analysis and experimen-

tal results. The results demonstrate that ABPIA outperforms the previous schemes in

terms of computational overhead.

5.2 Problem Statement

Here, we present the problem statement, its description followed by the architecture, design

goals, Adversary model and the security model of the ABPIA scheme.

Although the existing PKI & ID-based [34, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]

auditing schemes guarantee the integrity, lacks in providing the flexibility key manage-

ment that means it suffer from the problems of key storage, key exchange, distribution,

and verification.To address these issues, [45] proposed an attribute-based cloud data in-

tegrity auditing by employing threshold attribute-based signatures, which is different from

Attribute Based Encryption (ABE) [80, 81]. In [45], the user private key generated from

the attributes and data owner decides the verifier, who verifies data. However, this scheme

deals only with the integrity of personal data and it is not suitable for shared data auditing

because in shared data, users join or leave the group anytime dynamically. Therefore, it is

required to design a public integrity auditing scheme for shared data with user revocation

and flexible key management

In the proposed scheme ABPIA, users sign the data blocks over attributes, and a unique

public key for the entire group is used for integrity auditing instead of using individual

public keys for each user in the group. Thus it simplifies the key management. Also

ABPIA achieves user privacy, i.e., signatures do not disclose identity information except

42



that user attributes satisfy the defined access policy.Moreover, ABPIA also supports user

revocation through proxy re-signatures. That is, whenever a user quits the group, proxy

can carry out the resigning process. That is proxy acts as a translator of signatures between

two users, for example, Alice and Bob. More specifically, the proxy is able to convert a

signature of Alice into a signature of Bob on the same block. Meanwhile, the proxy is not

able to learn any private keys of the two users, which means it cannot sign any block on

behalf of either Alice or Bob.

5.2.1 Architecture

An attribute-based cloud storage architecture considered in this paper consists of six entities

as illustrated in Fig. 5.1.

GM

8  RL

9  Rekey

11 Resignatures

10 Signatures

4  Auditing Request

7  Auditing Report

Revoked users

TA

PS

2  Private Key

1  Attributes

6  Response

5  Challenge

TPA

Group users

3 Data Flow

CS

TPA

 

 

Fig. 5.1. Architecture of an attribute-based auditing scheme

1. Trusted Authority (TA) generates the master secret key and the public parameter. Af-

ter receiving attributes, the TA authenticates the attributes of the user, and generates

a private key for the valid group user.
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TA

Setup

Private key

Challenge

ProofGen

Proof
ProofVerify

M_info

Auditing Result

Signatures, file

Attributes, Group key

GM USER CS TPA

Public parameters

Master partial key

Join request

Group key

0/1

Fig. 5.2. Sequence diagram of the proposed ABPIA scheme

2. Group Manager (GM) is a trusted entity, plays the role of an administrator. It is re-

sponsible for successful user revocation and resists revoked user to perform collusion

attack with cooperation of existing users.

3. The users store data and share among their group members through the cloud. New

members can join and quit the group anytime. When a user wants to join the group,

first, he/she sends a request to GM. After receiving the group joining key, the user

submits his/her attributes along with joining the key to the TA for the private key

generation. With the private key, the user generates signatures for data blocks in a file

by satisfying the access policy and uploads data blocks and corresponding signatures

to the cloud.

4. TPA is a trusted entity with sufficient resources and professional expertise to perform

complete data auditing to ensure data accuracy. Upon receiving the auditing request

from the user or according to service level agreement (SLA), TPA challenges the
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Rekey

Signatures
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Fig. 5.3. Sequence diagram of the proposed ABPIA scheme for user revocation

cloud for randomly selected blocks to check the integrity. Upon receiving proof

from the cloud, TPA verifies the correctness of data.

5. Proxy server (PS) is a semi-trusted entity, which means it is honest but curious. PS

performs the given task correctly, but it is also curious to obtain the signer’s identity

on each block in shared data based on verification information (i.e., signatures). PS

fetches the signatures from the cloud and transforms revoked user’s signature on a

messagem into a non-revoked user’s signature onm whenever a signed user revoked

from the group. Meanwhile, the PS cannot learn any private keys of the two users,

which means it cannot sign any block on behalf of either revoked or non-revoked

user.

6. Cloud server (CS) is an untrusted entity that provides enormous storage to store and

share the data. CS generates the proof and sends it as a response to TPA.

5.2.2 Overview of ABPIA

In ABPIA, initially a user submits a request to the GM to join the group. According to

the request of user, GM generates a group key and securely sends to the user. Then the
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user request for the private key from TA. The TA authenticates the user, generates private

key based on the attributes of the user and secretly sends to the user. On receiving the

private key from the TA, the user generate signatures for file data blocks using private key.

After signing data blocks, uploads data blocks along with corresponding signatures to the

cloud and deletes them from the local site. Later, to check the integrity of shared data,

TPA challenges the cloud by selecting blocks randomly. After receiving this challenge, the

cloud returns the proof of shared data as a response to the TPA. Upon receiving proof from

the cloud, TPA verifies the correctness of data. Whenever a user in the group misbehaves

or quits the group, GM updates the existing RL and forwards to the TA. Upon receiving

the updated rekey the CS performs resigning on revoked user blocks by utilizing proxy

re-signatures. Our scheme also allows users to update the data dynamically that is user can

modify the data in cloud without downloading the data. The detailed work flow of proposed

ABPIA scheme and process of revocation are shown in Fig. 5.2 and Fig. 5.3 respectively.

5.2.3 Adversary Model

Here we consider the following attacks.

• Internal adversaries: Malicious insiders, who are cloud servers or users. They in-

tentionally delete or modify the user’s data in the cloud. Sometimes, they may try to

translate signatures of one user into another user to cut down the operation costs or

hide data loss to build their reputation.

• External Adversaries: Who may try to avert the users from accessing the shared

data by destroying/altering the data in the cloud.

5.2.4 Design Goals

We design ABPIA scheme to meet the following goals:
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1 Integrity. The designated verifier can check the integrity of shared data correctly by a

validating the proof generated by the CSP by Verification algorithm with overwhelm-

ing probability.

2 Public verifiability. Anyone who knows the public key not just the client (data owner)

and with sufficient resources can verify the correctness of data while keeping no

private information.

3 Flexible key management. Each user in the group does not require a key pair (one

private key for signing and one public key for verification.

4 User privacy. During integrity verification, the attributes of group members anony-

mous to the TPA. Thus TPA cannot learn anything about the attributes of the signer

from the signatures.

5 Efficient user revocation. Revoked user blocks can be re-signed by existing group

users efficiently with a re-signing key, while an existing user does not have to down-

load those blocks, recompute signatures on those blocks and upload new signatures

to the cloud. The resigning preformed by the proxy server improves the efficiency

of user revocation and saves communication and computation resources for existing

users.

5.2.5 Security Model

The security proof for ABPIA is performed by defining the two security games which in-

volves two entities: an adversary A who plays the role of the cloud server and a challenger

B) who acts as a user. We designed ABPIA scheme to withstand the two types of adver-

saries, namelyA1 (represents malicious cloud),A2 (represents malicious TPA).A1 tries to

generate the forged integrity proof, and A2 tries to gain the identity of the signed user in

the group. We prove the security of ABPIA by considering the adversary A1 and A2, and

we define two interactive security games, Game 1, Game 2 against A1, A2 respectively.

The details of the games are as follows:

Game 1 (played by A1 and a challenger B):
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• Setup : B generates the Pparams, msk by running the Setup() algorithm. B for-

wards Pparams to A1 while keeps the msk secret.

• pvt Keygen Query : A1 can query this oracle on the attribute set Ω satisfying ac-

cess policy. For any such set Ω chosen by A1, challenger B runs the algorithm

pvt Keygen(Pparams,msk,Ω) to produce a secret key skΩ corresponding to the

attribute set Ω, and then returns skΩ to A1 as an answer for the query.

• SignGen Query: A1 chooses the file block mi and sends it to B for querying the

signature. B generates and returns the signature σi of mi toA1 by running SignGen

algorithm.

• Challenge: In order to check the integrity of the data file F, B generates challenge

chal and sends it to A1 and requests A1 to provide the corresponding proof P. After

receiving the chal, the adversary A1 outputs a proof as response.

• Forge: For the chal, A1 generates P and sends to B. A1 wins the game, if P can pass

the integrity check and the data blocks in F are broken.

Game 2 (played by A2 and a challenger B): We say our ABPIA scheme achieves user

privacy if for any polynomial time adversary A2 the advantage of A2 in the following

game is negligible.

• Setup: The challenger B generates the Pparams, msk by running the Setup() algo-

rithm. B forwards both Pparams and msk to A2.

and forwards param and mpk to the adversary, while keeps msk confidential.

• pvt Keygen Query: A2 can query this oracle on the sets of attributes. The adver-

sary outputs attribute set {Ωi} satisfying τ for each i ∈ {0, 1} to the challenger

B. The challenger B picks a random bit b from {0,1}; then runs the algorithm

pvt Keygen(Pparams,msk,Ωb) to produce a secret key skΩb
corresponding to the

set Ωb of attributes, and then sends skΩb
as an answer for the query.
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• SignGen Query: The adversary ask the challenger to generate a signature on message

m∗ with respect to Ω∗ either from Ω1 or Ω2. B generates and returns the signature σ∗

of m∗ to A2 by the algorithm SignGen.

• Guess: The adversary wins the game if its output bit b′ = b.

5.3 Algorithmic Framework

In this section, we define the proposed scheme algorithms.

• Setup(1λ) → (Pparams,msk). It is a probabilistic algorithm run by the PKG. It

takes a security parameter λ as input and outputs public parameter Pparams and

msk.

• Join(ID) → ρ. It is a probabilistic algorithm run by the PKG.It takes the identity

(ID) of the user as input and outputs group key ρ as output.

• pvt Keygen(Pparams,msk,Ω) → SKΩ. It is a probabilistic algorithm run by the

PKG. It takes the msk, Pparams, user attributes Ω as input and outputs a private

key SKΩ.

• pub Keygen(Pparams,msk, τ) → gpkτ . It is a randomized algorithm run by the

PKG with identity ID for the user. It takes τ , msk , Pparams as input and outputs a

global public key gpkτ .

• SignGen(Pparams, SKΩ,M, τ)→ σi. It is a randomized algorithm run by the data

owner with identity ID. It takes τ , Pparams, SKΩ, data blocks {mi}1≤i≤n ∈ M as

input and outputs a set of block signatures {σi}1≤i≤n.

• Challenge(Minfo) → C. It is a randomized algorithm run by the TPA. It takes the

abstract information of data as input and outputs the challenge C.

• ProofGen(mi, {σi}1≤i≤n, C)→ P . It is a deterministic algorithm run by the cloud

server. It takes the file blocks mi, the block signatures {σi}1≤i≤n and C as input and

outputs a proof P .
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• V erifyProof(Pparams, gpkτ , C, P )→ 1/0. It is a deterministic algorithm run by

the TPA. It takes the Pparams, gpkτ of specific access policy τ , C and the proof P

as input and returns 1 or 0.

• Revoke(RL, {id1, id2, ...idk}) → RL′. It takes revocation list(RL) and user ID’s as

input and outputs the revised RL. RL′ ← (RL ∪ {id1, id2, ...idk}).

• Rekey(msk,Ωnew) → SKΩnew . It takes msk and attribute set of the non revoked

user from priority list as input and outputs a resigning key SKΩnew for resigning

process.

• Resign(σi, SKΩnew)→ σ′
i. It takes signature set of the revoked user(s) and rekey as

input and outputs new signature set.

5.4 Detailed Construction

In this section, we present the concrete construction of ABPIA.

5.4.1 Construction of ABPIA

Setup

TA generates msk and public parameter Pparams as follows. Choose a random generator

g ∈ G1 and pick an integer element α ∈ Z∗
p , and set g1 = gα. Next, select a random value

g2 ∈ G1 and compute

Y = ℘(g1, g2) (5.1)

Also TA picks the master partial key γ0 ∈ Z∗
p randomly, which is sent to the GM for

generating group joining key. Finally, two map-to-point cryptographic functions are chosen

H1, H2 : {0, 1}∗ → G1, can map an arbitrary string {0, 1}∗ into an element of G1. The

public parameter is published as Pparams = (q,G1, GT , e, g1, Y,H1, H2) and msk is kept

secret as α.

Join

To join a group, user sends a request to the GM. After receiving the request GM generates
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a group key as ρ = gγ0 ·H1(ID)γ0 and sends ρ to the user in a secure way.

pvt Keygen

Upon receiving the group key from GM, user sends attributes and group key to TA for

private key generation. Then TA verifies

℘(g, ρ) = ℘(gγ0 ·H1(ID), gγ0) (5.2)

to know the validity of the user. If the result is false then outputs ⊥. Else, TA generates

the private key as follows. First, chooses z ∈ Zp randomly and calculates d = gz+α2 . Then

chooses ∀k ∈ Ω, zk ∈ Zp and computes dk0 = g
z/α
2 ·H1(k)

zk , dk1 = gzk . Next, TA outputs

SKΩ = (d, {dk0, dk1}k∈Ω) (5.3)

Finally, TA divides the private key into two parts and forwards part 1:{dk0} to GM and part

2:{d, dk1} to the user respectively through a secure channel.

pub Keygen

In this step, TA computes a global public key gpkτ for verifier to check the integrity of

data as follows. Select a polynomial tx of degree dx = fx − 1, ∀ x, where fx is the

threshold value. This is done in a recursive manner from top to bottom. We start with the

root tγ(0) = α and dγ other points will be chosen randomly. The remaining nodes, we

set as tx(0) = tparent(x)(index(x)) and choose dx other points randomly. After setting the

polynomials, the gpkτ for τ is {Dx = gtx(0), hk = H1(k)
tx(0)}, where k = att(x) and x is

a leaf node.

SignGen

A user with attribute set Ω can sign the file F = (mi)1≤i≤n if the access policy (i.e.,τ(Ω) =

1) is satisfied. Signing is done in three phases.

• Phase 1. User chooses r′k ∈ Zp, randomly ∀k ∈ Ω∗, and forwards {ID,Ω∗, {r′k}∀k∈Ω∗}

to the GM to generate partial signature. Let Ω∗ denote all the attributes associated

with leaves in the access tree.

• Phase 2. Upon receiving the request, the GM checks the validity of the user with
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RL. If user is invalid, then returns ⊥ and does not perform any further computations.

Otherwise, the GM computes partial signature as follows:

{σk0 = dk0 ·H1(k)
r′k}(k∈Ω∩Ω∗)

{σk0 = H1(k)
r′k}(k∈Ω∗/Ω∩Ω∗)

and sends {σk0}k∈Ω∗ to the user.

• Phase 3. Upon receiving partial signature {σk0}k∈Ω∗ from the GM, user generates

final signature as follows: chooses a random value sk from Zp for each k ∈ Ω and

u ∈ Zp and compute

σ
(k)
1i =

(
(H2(mi).u

mi)sk · d
)
k∈Ω (5.4)

σ
(k)
2i = {gsk}k∈Ω

∀k ∈ Ω∗ compute

{σk1 = dk1 · gr
′
k}(k∈Ω∩Ω∗)

{σk1 = gr
′
k}(k∈Ω∗/Ω∩Ω∗)

finally the user outputs the signature

σ = (σ
(k)
1i , σ

(k)
2i , {σk0, σk1}k∈Ω∗) (5.5)

Then the user uploads the data and signature σ and deletes them from local storage.

Challenge

After storing data in cloud, the user request the TPA to perform integrity verification. Then

TPA selects a c-element subset J of set [1, n], and selects vi ∈ Zp for each i ∈ J randomly.

Let C = {(i, vi)}i∈J be a challenge sends to the cloud.

ProofGen

After receiving the challenge C = {(i, vi)}i∈J , the server computes a proof, which consists

of data proof and signature proof. To compute the data proof the cloud generates the linear
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combination of sample blocks for the specified blocks in challenge.

µ =
∑
i∈C

vimi (5.6)

Next, the server also computes signature proof as

σ
(k)
1 = {

∏
i∈C

σ
(k)
1i

vi}k∈Ω (5.7)

σ
(k)
2 = {σ(k)

2i }i∈C,k∈Ω (5.8)

Then the server returns (µ, σ(k)
1 , σ

(k)
2 , {σk0, σk1}k∈Ω∗) to the TPA as proof.

VerifyProof

TPA verifies the integrity of outsourced data blocks after receiving proof from the server as

follows. We define a recursive algorithm vfynode(σ, gpk, x) to return a point of GT or ⊥.

Let k = attr(x). If x is a leaf node, then

vfynode(σ, gpk, x) =


℘(σk0,Dx)
℘(σk1,hk)

if ℘(σk0,Dx)
℘(σk1,hk)

̸= 1

⊥, otherwise.

if k ∈ Ω ∩ Ω∗,

℘(σk0, Dx)/℘(σk1, hk)

= ℘(dk0 ·H1(k)
r′k , gpx(0))/℘(dk1g

r′k , H1(k)
px(0))

= ℘(g
z/α
2 ·H1(k)

zk+r
′
k , gpx(0))/℘(gzk+r

′
k , H1(k)

px(0))

= ℘(g
z/α
2 ·H1(k)

zk+r
′
k , gpx(0))/℘(gpx(0), H1(k)

zk+r
′
k)

= ℘(g, g2)
z/α·px(0)

if k ∈ Ω∗/Ω ∩ Ω∗,

℘(σk0, Dx)/℘(σk1, hk)

= ℘(H1(k)
r′k , gpx(0))/℘(gr

′
k , H1(k)

px(0))

= 1
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If x is a non-leaf node, vfynode(σ, gpk, x) proceeds as follows: ∀z that are children of x,

vfynode(σ, gpk, x) is called and returns Fz. Let Sx be the set of child nodes z such that

Fz ̸=⊥. If no such set exists, then the function returns ⊥. Otherwise, let

i = index(z), S ′
x = index(z) : z ∈ Sx

and compute

Fx =
∏
z∈Sx

F
∆i,S′

x
(0)

z

=
∏
z∈Sx

(℘(g, g2)
z/αpz(0))∆i,S′

x
(0)

=
∏
z∈Sx

(℘(g, g2)
z/αpparent(z)(index(z)))∆i,S′

x
(0)

=
∏
z∈Sx

(℘(g, g2)
z/αpx(i)∆i,S′

x
(0)

= ℘(g, g2)
z/px(0)

Now, calculate Fγ and verify if

℘(g, σ
(k)
1 )

Fγ.℘

( ∏
(i,vi)i∈C

H2(mi)u
µ, σ

(k)
2

) ?
= Y (5.9)

If the equation holds, the blocks stored in the cloud are correctly maintained. Otherwise,

the data is not intact. i.e., data is modified or corrupted.

Revoke

Whenever a user leaves or misbehaves, the GM revokes the user by updating the RL list

and informs to TA. RL′ ← (RL ∪ {id1, id2, ...idk}).

Rekey

To resign the blocks of revoked user, TA generates rekey as follows. It takes msk and

attribute set of the non revoked user from priority list and generates resigning key SKΩnew .

First, choose a random zn ∈ Zp and compute d = gzn+α2 . Then for each k ∈ Ω, choose

zk ∈ Zp and compute dk0 = g
zn/α
2 · H1(k)

zk , dk1 = gzk . Finally, output the resigning key
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SKΩnew = (d, {dk0, dk1}k∈Ωnew) and forwards to the PS.

Resign

PS re-signs the revoked user(s) blocks on behalf of existing user. Choose a random value

sr from Zp for each k ∈ Ωnew and u ∈ Zp and compute

σ
(k)
1i = ((H2(mi).u

mi)srd)k∈Ωnew

σ
(k)
2i = {gsr}k∈Ωnew

∀k ∈ Ω∗
new, choose rk ∈ Zp randomly and compute

{σk0 = dk0H1(k)
rk , σk1 = dk1g

rk}(k∈Ωnew∩Ω∗)

{σk0 = H1(k)
rk , σk1 = grk}(k∈Ω∗/Ωnew∩Ω∗)

finally the PS sends a re-signature for cloud update.

σ′ = (σ
(k)
1i , σ

(k)
2i , {σk0, σk1}k∈Ω∗)

5.5 Security Analysis

In this section, we prove that the ABPIA is secure under the security model described in

section 5.2.5 in terms of correctness, unforgeability, and user privacy. The security proof is

based on the intractability of the well-known DL problem in group.

5.5.1 Correctness

Theorem 1. In ABPIA, the verifier successfully audits data integrity if all the randomly

selected file blocks and their corresponding signatures kept as it is in the cloud.

Proof. ABPIA correctness can be proved by verifying the Eq. 5.9, based on properties of

bilinear maps and access structure.

℘(g, σ
(k)
1 )

Fγ · ℘
( ∏

(i,vi)i∈C

H2(mi)u
µ, σ

(k)
2

) ?
= Y
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The LHS of Eq. 5.9 can be deduced as follows:

LHS =
℘(g, σ

(k)
1 )

Fγ · ℘
( ∏

(i,vi)i∈C

H2(mi)u
µ, σ

(k)
2

)

=

℘

(
g,
( ∏

(i,vi)i∈C

(
H2(mi)u

mi
)skd)vi)

k∈Ω

Fγ · ℘
( ∏

(i,vi)i∈C

H2(mi)u
µ, (gsk)

)
k∈Ω

=

℘

(
g,
( ∏

(i,vi)i∈C

(
H2(mi)u

mi
)skgz+α2

)vi)
k∈Ω

Fγ · ℘
( ∏

(i,vi)i∈C

H2(mi)u
µ, (gsk)

)
k∈Ω

=

℘(g, gz+α2 )℘

(
g,
∏
(i,vi)

(
H2(mi)u

misk
)vi)

k∈Ω

Fγ · ℘
( ∏

(i,vi)i∈C

H2(mi)u
µ, (gsk)

)
k∈Ω

=

℘(g, gz+α2 )℘(g,
∏
(i,vi)

((
H2(mi)u

vimi
)sk)

k∈Ω

Fγ.℘
(∏
(i,vi)

H2(mi)u
µ, gsk

)
k∈Ω

=

℘(g, gz+α2 )℘
(
gsk ,

∏
(i,vi)

(
H2(mi).u

µ
))

k∈Ω

Fγ · ℘
( ∏

(i,vi)

H2(mi)u
µ, gsk

)
k∈Ω

=
℘(g, g2)

z+α

℘(g, g2)z

= ℘(g, g2)
α

= ℘(gα, g2)

= ℘(g1, g2)

= Y (RHS)

From the above proof, we say that the data blocks indeed stored as it is and maintained

properly.
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5.5.2 Unforgeability

The unforgeability of the ABPIA scheme can be given based on the following theorem:

Theorem 2 (Auditing soundness): It is computationally infeasible for untrusted cloud or

an adversary to generate a forgery of a proof that can pass the verification process if the

DL problem in group G1 is hard.

Proof. We prove this theorem based on the security Game 1 defined in section 5.2.5

First, TPA sends a challenge message (i, vi)i∈C to A1, and correct proof should be

(µ, σ
(k)
1 , σ

(k)
2 , {σk0, σk1}k∈Ω∗) which can pass the verification with equation (9). Now, based

on the corrupted data M′, the adversary A1 computes proof (µ′, σ
(k)
1 , σ

(k)
2 , {σk0, σk1}k∈Ω∗),

where M′ ̸= M, and at least one element of {∆mi = mi
′ − mi} for i ∈ C is nonzero.

The adversary A1 wins the Game 1 if proof (computed over incorrect data) still passes the

verification performed by verifier. Otherwise, it fails. Suppose A1 wins the Game 1, then

we get the following equation from verification Eq. 5.9,

℘(g, σ
(k)
1 )

Fγ · ℘
( ∏

(i,vi)i∈C

H2(mi) · uµ
′
, σ

(k)
2

) = Y

Because (µ, σ
(k)
1 , σ

(k)
2 , {σk0, σk1}k∈Ω∗) is correct data proof, we can get

℘(g, σ
(k)
1 )

Fγ · ℘
( ∏

(i,vi)i∈C

H2(mi)u
µ, σ

(k)
2

) = Y

From above two results, based on the property of bilinear map, we deduce that

c∏
i=1

uµ =
c∏
i=1

uµ
′
and

c∏
i=1

u∆µ = 1

Let two random generators f, h ∈ G1, and h = fx for some element x ∈ Zp. For the

given f, h ∈ G1, a random value u ∈ G1 can be written as u = f ϵ · hξ ∈ G1, where ϵ and

ξ ∈ Zp. Then, we have
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c∏
i=1

u∆µ =
c∏
i=1

(f ϵ · hξ)∆µ = f
∑c

i=1 ϵ·∆µ · h
∑c

i=1 ξ·∆µ = 1

Since f = hx , we can solve the DL problem by calculating f = hx = h
−

∑c
i=1 ϵ·∆µ∑c
i=1

ξ·∆µ , x =

−
∑c

i=1 ϵ·∆µ∑c
i=1 ξ·∆µ

only when the denominator is zero. However, according to the definition of

Game 1, at least one element of ∆µ is nonzero, and the denominator is zero with probability

of 1/p. Therefore, we can find a solution to the DL problem with a probability of 1− 1/p,

which is non-negligible since p is very large. It contradicts to the assumption defined in

section 2.3.

5.5.3 User Privacy

Theorem 3. Given shared data M and its corresponding signature σ, it is computationally

hard for TPA to learn the identity of the valid signer.

Proof. We prove this theorem based on the security Game 2 defined in section 5.2.5

In our proposed ABPIA scheme, it is easy to see that A2 cannot learn anything about at-

tribute information from signatures generated by two different sets of attributes for one file

block as long as the two attribute sets satisfy the access policy. First, the challenger runs

Setup to get the public parameters Pparams and the msk. It sends both to the adver-

sary A2. After this interaction, A2 outputs two attribute sets Ω1 and Ω2 to the challenger

B. Next, B generates private keys as skΩ1 = (d1, d1i0, d
1
i1) and skΩ2 = (d2, d2i0, d

2
i1) for

Ω1 and Ω2, respectively by running pvt Keygen algorithm. The adversary A2 queries

the challenger to generate a signature on message m∗ with respect to Ω∗ from either

Ω1 or Ω2. Next, the challenger chooses a random bit b ∈ {0, 1} and outputs a signa-

ture σ = (σ
(k)
1i , σ

(k)
2i , {σk0, σk1}k∈Ω∗) by running SignGen with the private key skΩb

=

(db, dbi0, d
b
i1)i∈Ωb

). Finally, A2 outputs a guess bit b′ ∈ {0, 1} and wins the game if b′ = b.

On the basis of Lagrange interpolation for the tree τ , it is clear that the signature could

be generated from either skΩ1 or skΩ2 . We also have proved it. From the above proof, we

say that the probability of advantage for an adversaryA2 to win the game is not better than
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1/2, since the signature σ is simply independent of everything except the message and the

access policy. Hence, user privacy is achieved.

5.6 Performance Analysis

Here, we analyze the computation and communication overhead of ABPIA. Furthermore,

we also analyze the performance of the Wang et al.[35] and Zhang et al.[43], and give a

comparison for these two schemes in terms of computation overhead and communication

overhead. The different notations used in performance analysis are listed in Table 5.1.

Table 5.1: Notations

Notation Description

EXG1, EXGT Exponentiations in G1, GT

Hs Collision Resistant Hash function

AddZp Addition in Zp

Pa The pairing operation

l The size of Ω∗

Ns The set of least interior nodes satisfying τ .

MulG1,MulGT The multiplication in G1 and GT

| p | The size of an element in G1

| q | Size of an element of Zp

d Nonrevoked users

| ĩd | The size of a block identifier

Table 5.2: Computation cost comparison

Computation Cost
Scheme SignGen VerifyProof Resign
Wang et al. [35] 2EXG1 +MulG1 +Hs (C+d)EXG1+(C+2d)MulG1+(d+1)Pa+

dMulG1 + CHs
2EXG1 + MulG1 +
2Pa+Hs

Zhang et al. [43] n(2EXG1 + MulG1 +
Hs)

CHs+2Hs+(C+3)MulG1+(C+3)EXG1+
2Pa

AddZp

ABPIA 2(l + 1)EXG1 + (2l +
1)MulG1 + (l + 1)Hs

(2l + 3)Pa+NsEXG1 2(l + 1)EXG1 + (2l +
1)MulG1 + (l + 1)Hs
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Table 5.3: Communication cost comparison

Communication Cost
Scheme Challenge Proof
Wang et al. [35] n(| p | +|q|) 2d· | p | +C · ˜|id|
Ahang et al. [43] n(| p | +|q|) (C + 1)· | q | |+ | p | +C· | ĩd |
ABPIA n(| p | +|q|) 2d | p | +C · (| ĩd | + | n | + | q |)

5.6.1 Computation cost

Here, we give the computation cost of the signer during signing, verifier during verification

and PS during the resigning. The computation cost of the signer is 2(l + 1)EXG1 + (2l +

1)MulG1 + (l + 1)Hs. The computation cost of the verifier includes challenge generation

and verification of proof i.e., (2l + 3)Pa + NsEXG1. The computation cost of PS for

resigning is 2(l+1)EXG1+(2l+1)MulG1+(l+1)Hs. Table 5.2 gives computation cost

comparison with other auditing schemes like [35] and [43].

5.6.2 Communication Cost

Here, we consider only communication cost of challenge generation and proof generation

because these are the primary parts of the auditing process. The size of challenge is C · (|

p | + | q |) bits, the size of proof (µ, σ(k)
1 , σ

(k)
2 , {σk0, σk1}k∈Ω∗ , C) is 2d | p | +C · (| ĩd |)

bits. Hence, the verifiers total communication cost is 2d | p | +C · (| ĩd | + | n | + | q |)

bits. Table 5.3 gives communication cost comparison with other auditing schemes like [35]

and [43].

5.6.3 Experimental analysis

We implemented ABPIA on a system with Intel i5-7200U CPU @ 2.50 GHz and 8 GB

RAM and compared ABPIA with existing schemes [35] based on PKI settings and [43]

based on ID-based cryptography in terms of computational and communication overheads.

All experiments are carried out in python language using crypto-0.42 library [79]. The

implementation uses a symmetric super singular curve where the base field size is 512-bit

and the security parameter fixed to 160-bits. All results are a mean of 15 trials. The experi-

mental results for private key generation, signature generation, verification, and revocation
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are obtained and plotted as graphs from Fig. 5.4a to Fig. 5.4e.

Fig. 5.4a shows the time consumption of pvt Keygen algorithm. From Fig.5.4a, we can

notice that the time needed for the pvt Keygen algorithm increases linearly as the number

of attributes increases in the user attributes. It is reasonable because a user’s private key

computed from every attribute of the user. So the computation time of pvt Keygen algo-

rithms is dependent on the number of attributes an identity includes.

Fig. 5.4b shows the computation overhead for a user to generate signatures for the

different number of data blocks with the same size. From Fig. 5.4b, we can notice that our

proposed ABPIA scheme takes less time than existing [35], [43] because of utilization of

expressive attribute-based signatures.

Fig. 5.4c and Fig. 5.4d shows the computation time of the TPA for proof verification

with respect to the number of blocks and number of users, respectively. From Fig. 5.4c and

Fig. 5.4d, we can learn that the proof verification time in [35], [43] is linear with the number

of blocks in challenge message. In ABPIA scheme, it is relatively low since a unique public

key is used during verification, whereas in [35], [43] different public keys used for different

users. Fig. 5.4e shows the computation cost for resigning the different number of revoked

user blocks. Here, we compare the ABPIA scheme with [35] and ignored [43] because

[43] does not perform resigning on blocks whenever user revocation happens; instead, they

update the private key of all users. From Fig. 5.4e, we can observe that the computation

time for resigning in both schemes is linear with the number of revoked user blocks, but

the ABPIA scheme performs better than [35].

5.7 Summary

In this chapter, we presented an attribute-based public auditing scheme for integrity check-

ing in cloud storage. In ABPIA scheme, we used individual private keys of each user

for signing and only one public key for integrity verification, which simplifies key man-

agement. In ABPIA scheme, the signature does not reveal any user identity; thus, signer

privacy achieved. When a user revocation happens, ABPIA allows the proxy to re-sign

blocks that were signed by the revoked user. The security analysis of ABPIA proved the
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correctness, unforgeability against the untrusted server, and user privacy against TPA. The

performance analysis and detailed experimental results show the practicality of our system.

In ABPIA, we observe that the TA generates and holds the private key. That is if TA is

untrusted, the scheme is not secure either, which may results in impersonation attacks that

leads to the forgery of the user’s signatures to pass the verification successfully. This prob-

lem is known as key escrow problem. To address the key escrow problem while supporting

data privacy and data dynamics along with the group user revocation, in the next chapter, a

new remote data auditing scheme is proposed by utilizing the certificateless cryptography.

63



Chapter 6

Certificateless Privacy Preserving Public

Auditing for Dynamic Shared Data in

Cloud Storage(CLPPPA)

6.1 Introduction

In this chapter, we present certificateless public auditing scheme for shared data to achieve

privacy preserving and data dynamics along with user revocation while reducing the com-

plexity of certificate management in PKI schemes [33, 34, 35, 36, 37, 38, 39, 40, 41] and

eliminating the inherent key escrow problem in ID-based schemes [42, 43, 44]. The main

contributions are summarized as follows:

• In this scheme, we leverage certificateless signatures to generate signatures of file

blocks, that can simplify certificate management and eliminates key escrow problem.

• CLPPPA achieves data privacy against verifier through random masking technique to

blind the data proof during the process of auditing.

• We extend double linked list information table (DLIT) to support shared data dynam-

ics such as insertion, modification and deletion.
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• In CLPPPA, we also use the idea of proxy re-signatures to support group user revo-

cation. i.e., whenever a user misbehaves or quits the group, the cloud server is able

to carry out resigning process on behalf of group user.

• The security analysis proves the correctness, unforgeability and privacy of CLPPPA

based on DL and CDH assumptions in ROM. We also provide the security compari-

son with some of the existing schemes.

• The performance analysis evaluates performance of CLPPPA theoretically and ex-

perimentally in terms of computation overheads.

6.2 Problem Statement

Here, we the present the problem statement, its description followed by the architecture,

design goals, adversary model and the security model of the CLPPPA scheme.

To get rid of key escrow issue in ID-based schemes mentioned above, unlike [42, 43, 44],

the key generation center (KGC) in the proposed scheme, chooses a random valueX ← Z∗
p

as its private key and generates Y = gX ∈ G1 as its public key. Upon receiving iden-

tity (ID) from the user, the KGC generates the partial private key D = H1(ID)X and

sends it to the user through a secure channel. After receiving the partial private key (D),

user computes the full private key (D, x), where x (x ∈ Z∗
p ) is a secret value chosen by

herself/himself. This approach solves the key escrow problem by restricting the KGC to

generate only the partial private key rather than the full private key. Therefore, the KGC

cannot forge the user signature by any means. Based on this notion, Wang et al. [82] first

proposed a certificateless provable data possession (CLPDP) scheme and a security model.

However, He et al. [64], who pointed out that Wang et al.’s [82] scheme was not secure

against the type I adversary and suggested a CLPDP scheme for cloud-assisted wireless

body area networks to enhance security. Unfortunately, both the schemes [82, 64] cannot

preserve privacy and focused on personal data auditing. Hence, not suitable for shared data

auditing. Later, Li et al. [62] introduced a certificateless public auditing scheme for shared

data to achieve the shared data integrity along with user revocation in the cloud. However,
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this scheme does not support shared data dynamics and does not support security property

such as privacy preserving, which are necessary demands for shared data auditing.

In CLPPPA, initially, a user submits a request to the GM to join the group. According

to the user’s request, GM generates a group key and securely sends it to the user. Then the

user requests the partial private key from KGC. The KGC authenticates the user, generates

a partial private key, and secretly sends it to the user. On receiving the partial private key

from the KGC, the user generates his/her own private key and computes signatures for file

data blocks using a private key. After signing data blocks, uploads data blocks along with

corresponding signatures to the cloud and deletes them from the local site. Later, to check

the integrity of shared data, TPA challenges the cloud by selecting blocks randomly. After

receiving this challenge, the cloud returns the proof of shared data as a response to the TPA.

Upon receiving proof from the cloud, TPA verifies the correctness of data. Whenever a user

in the group misbehaves or quits the group, GM updates the existing RL and forwards it

to the CS. Upon receiving the updated RL, the CS performs resigning on revoked user

blocks by utilizing proxy re-signatures. Our scheme also allows users to update the data

dynamically. That is, the user can modify the data in the cloud without downloading the

data.

6.2.1 Architecture

We consider certificateless cloud storage architecture with five entities as illustrated in Fig.

6.1.
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Fig. 6.1. Architecture of certificateless public auditing scheme

1. KGC is a trusted entity, which creates the parameters and the master private key. It

also generates a partial private key for the user using master secret key (msk) and

user unique identity.

2. Group manager (GM) is a trusted entity, plays the role of an administrator. It is

responsible for creating the group. It also revoke users when a user in the group

leaves or misbehaves.

3. Users store data in cloud, share with each other in the group and they can join and

leave the group. Furthermore, users can update the data dynamically.

4. TPA is also called public verifier that has expertise and capabilities to perform au-

diting task on behalf of user regularly or upon request. Also convinces both cloud
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server and users by providing unbiased auditing results.

5. Cloud server (CS) is a semi-trusted entity, which means it is honest, but curious. It

provides the enormous storage space on its infrastructure to manage the file in the

cloud. During user revocation, it also acts as proxy, which performs delegated re-

sign task by utilizing proxy re-signatures on behalf of the group.

6.2.2 Overview of CLPPPA

In CLPPPA, initially a user submits a request to the GM to join the group. According

to the request of user, GM generates a group key and securely sends to the user.

Then the user request for the partial private key from KGC. The KGC authenticates

the user, generates partial private key and secretly sends to the user. On receiving

the partial private key from the KGC, the user generates his/her own private key

and generate signatures for file data blocks using private key. After signing data

blocks, uploads data blocks along with corresponding signatures to the cloud and

deletes them from the local site. Later, TPA verifies the correctness of the data by

selecting blocks randomly. After receiving this challenge, the cloud returns the proof

of shared data as a response to the TPA. Upon receiving proof from the cloud, TPA

verifies the correctness of data. Whenever a user in the group misbehaves or quits

the group, GM updates the existing RL and forwards to the CS. Upon receiving the

updated RL the CS performs resigning on revoked user blocks by utilizing proxy

re-signatures. Our scheme also allows users to update the data dynamically that is

user can modify the data in cloud without downloading the data. The detailed work

flow of proposed CLPPPA scheme and process of revocation are shown in Fig. 6.2

and Fig 6.3 respectively.

6.2.3 Adversary model

We designed CLPPPA scheme to withstand the four types of adversaries namely A1,

A2, A3 and A4.
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Fig. 6.2. Sequence diagram of the proposed CLPPPA scheme

• Type-I Adversary (A1): A1 (malicious outsider) tries to replace the user’s public

key with a false key even though he could not have access to KGC’s master

secret key (msk).

• Type-II Adversary (A2): A2 (malicious KGC) tries to mount an impersonation

attack having access to the msk of the KGC and it cannot replace the public

key of the user. Even though the KGC is trusted entity, in a practical scenario,

the KGC might engage in other adversarial activities such as eavesdropping on

signatures and making signing queries, which is also known as Type II Adver-

sary.

• Type-III Adversary (A3): A3 (malicious CSP) tries to compute a forged audit-

ing proof that can pass the verification.
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Fig. 6.3. The process of user revocation

• Type-IV Adversary (A4): A4 (malicious TPA) tries to gain access to private

information of data during audit process.

6.2.4 Design goals

We design certificateless public integrity auditing scheme to achieve the following

goals:

• Public verifiability. Any one-who knows public key can verify the integrity of

data on behalf of user.

• Correctness. The public verifier is able to verify the integrity of shared data by

challenging CS with randomness.

• Soundness. The cloud server cannot pass auditing process if the data is not

intact.

• Privacy preserving. During integrity verification the TPA should not learn

anything about data of the user.

• Data dynamics. Every group user is allowed to update the outsourced data

remotely without downloading.
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• Group user revocation. Cloud server transforms revoked user(s) blocks to

designated existing group user blocks during the revocation. Revoked users

should no longer update or sign the data in the cloud.

6.2.5 Security model

We designed CLPPPA scheme to withstand the four types of adversaries namely A1,

A2, A3 and A4 whose power has been defined in section 6.2.3. Among the four

adversaries, both A1 and A2 try to forge the signature of blocks. A3 tries to generate

the forged integrity proof and A4 tries to gain private data access during integrity

auditing. The basic difference between A1 and A2 is that A1 cannot access the

master key of the KGC, but can replace the public keys of any entity of his choice. A2

represents a malicious KGC who has the master key of the KGC, but cannot replace

the public keys of users. Further these Type I and Type II can also be divided into

into normal, strong, and super adversaries based on their attack power. Obviously,

the super adversary has the better attack power than the other adversaries. Hence,

we prove the security of CLPPPA, by considering the type I and type II adversaries

and we define three interactive games Game 1, Game 2, Game 3 for A1, A2, A3

respctively.

Game 1 (played between A1 and a challenger B):

Setup: Initially, B executes Setup to obtain the msk and Pparams. For super type

I adversary A1, B just returns the public parameters Pparams; B keeps the msk

secret. A1 could access the following oracles controlled by challenger B.

• Create user Oracle: On receiving a query with a different user’s identity ID,

B executes PartialPvtKeyGen, SetSecretValue, SetPublicKey to obtain partial

private key, secret value and public key respectively. Finally, B then returns

public key to A1.

• Partial Private Key Oracle: On input of a query on the identity ID, B returns

the partial private key to A1.
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• Secret Value oracle: B returns the secret value to A1.

• Public Key Replacement oracle: B replaces the user ID’s original public key

with a value of his choice.

• SignGen oracle: A1 chooses the tuple (ID,m) and submits it B. B executes

SignGen algorithm to produce a signature σ and sends it to A1

• Forge : Finally, adversary A1 outputs {σ∗,m∗ ID∗} as its forgery with identity

ID∗. A1 is regarded to win this game if the following requirements are satisfied:

• 1← ProofV erify(m,σ, Pparam, ID∗, PK∗
ID)

• For ID∗ , the query Partial Pvt Key oracle does not occur in the game

before;

• A1 has not submitted before the pair (ID∗,m∗) to the SignGen oracle

with the public key PK∗
ID.

Game 2 (played between A2 and a challenger B):

Setup: Initially, B executes Setup to obtain the msk and Pparams. For super type

II adversary A2, B returns both msk and Pparams. A2 could access the following

oracles controlled by challenger B.

• Create user Oracle: On receiving from a different user’s identity (ID) query ,

B executes SetSecretValue, SetPublicKey to obtain secret value and public key

respectively. Finally, B returns public key to A2.

• Secret Value oracle: On input of a query on the identity ID, B returns the secret

value to A2.

• Public Key oracle: A2 submits the query to B. B executes the algorithm of

SetPubKey to compute the public key of the ID and returns it to A2.

• SignGen oracle: A2 adaptively chooses the tuple (ID, m) and submits it B. B

executes SignGen algorithm to produce a signature σ for m and sends it to A2.

• Forge: Finally, adversaryA2 outputs {σ∗,m∗ ID∗} as its forgery with the iden-

tity ID∗. If the following conditions are satisfied, A2 wins the game
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• 1← ProofV erify(m,σ, Pparam, ID∗, PK∗
ID)

• For ID∗, the query Secret Value oracle does not occur in the game;

• A2 has never been submitted the pair (ID∗,m∗) to the SignGen oracle.

Game 3 (played by A3 and a challenger B):

• Setup: B generates the Pparams, msk. B keeps the msk secret, but sends

Pparams to A3.

• SignGen Query: A3 selects the tuple (ID,m) and sends it to B for querying

the signature. B generates and returns the signature of m toA3 by the algorithm

SignGen.

• Challenge: B generates Chal, sends it toA3 for gettingA3 the appropriate proof

P.

• Forge: For the Chal,A3 generates P and sends to B. A3 wins the game, if P can

pass the integrity check and the blocks in P is incorrect.

6.2.6 Algorithmic Framework

Here, we define proposed scheme algorithms.

• Setup(1λ) → (Pparams,msk). It takes a security parameter λ as input and

outputs msk and system public parameters Pparams.

• Join(ID) → ρ. It takes the unique identity (ID) of user as input and outputs

group joining key ρ as output.

• PartialPvtKeyGen(Pparams,msk, IDi) → Di. It takes the Pparams,

msk, user identity IDi as input and outputs a partial private key Di.

• SetSecretV alue(Pparams, IDi) → xi. It takes the Pparams, msk, user

identity IDi as input and outputs a secret value xi.

• PvtKeyGen(Di, xi) → Si. It takes Di and xi as input and outputs a private

key Si.
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• SetPubKey((Pparams, xi) → PKi. It takes Pparams, xi as input and out-

puts a public key PKi.

• SignGen(Pparams, Si,M) → σi. It takes Pparams, Si, and data blocks

{mi}1≤i≤n as input and outputs a set of block signatures {σi}1≤i≤n .

• Challenge(Minfo) → C. It takes the abstract information about the data as

input and outputs the challenge C.

• ProofGen(mi, {σi}1≤i≤n, C) → P . It takes the file blocks mi, the block sig-

natures {σi}1≤i≤n and C as input and outputs a proof P .

• ProofV erify(Pparams, PKi, C, P ) → 0/1. It takes the Pparams, PKi, C

and the proof P as input and returns 0 or 1.

• Revoke(RL, {id1, id2, ...idk})→ RL′. It takes current revocation list (RL) and

user ID’s as input and outputs the revised RL.

• ReKey(Si, Sj) → Si→j . It takes private key parts of revoked and non-revoked

users and generates rekey Si→j for resigning.

• ReSignGen(σi, Si→j) → σ′
i. It takes signature σi and rekey Si→j as input and

ouptputs the resignature σ′
i.

• UpdateRequest(F ′
i , i, UO) → UpdateReqInfo. It takes new file block F ′

i ,

the block position i and the update operation type UO as inputs, and outputs the

update request information UpdateReqInfo. The UO may be insert, modify

and delete.

• ExecUpdate(UpdateReqInfo)→ {1, 0} . It returns 1 if the update operation

is finished successfully, otherwise returns 0.

6.3 Detailed Construction

In this section, we present the detailed construction of CLPPPA scheme including

data dynamics and revocation as follows:
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6.3.1 Construction of CLPPPA

The detailed construction of CLPPPA is presented based on framework 6.2.6

Setup Given security parameter λ, g is a generator of G1. The KGC picks a random

element α ∈ Z∗
p , chooses a random and sets g0 = gα. Also KGC picks γ0 ∈ Z∗

p

randomly and sent to the GM for generating group joining key. Finally, two map-

to-point cryptographic functions are chosen H1, H2 : {0, 1}∗ → G1, can map an

arbitrary string {0, 1}∗ into an element ofG1. Another hash function h(.) : G1 → Z∗
p

also chosen to map an element of G1 to Z∗
p . The public parameter Pparams =

(p,G1, GT , ℘, g, g0, H1, H2, h) is published i.e., made public to everyone and α is

kept secret as master secret key .

Join Whenever a user wants to join a group, sends a request to the GM. Upon receiv-

ing the request, GM generates a group key as ρ = gγ0 ·H1(ID)γ0 and sends back ρ

to the authorized user in a secure way.

PartialPvtKeyGen Upon receiving the group key from GM, user Ui sends his/her

unique identity IDi and group key to KGC for partial private key generation. Then,

KGC verifies the validity of the user by equation (1).

℘(g, ρ) = ℘(g.H1(ID), gγ0) (6.1)

If the result is false then outputs ⊥. Otherwise, KGC computes the partial private

key (Di) for the group user as follows:

(a) Compute Qi = H1(IDi) ∈ G1

(b) Compute Di = Qα
i and return to the user.

SetSecretValue After receiving Di, user Ui chooses xi ∈ Z∗
p , u ∈ G1 randomly and

keeps xi as private secret value and makes β ← uxi public.

PvtKeyGen After setting the secret value, the user Ui combines Di, and xi to gener-

ate actual private key Si = {xi, Di}

SetPublicKey After generating Si, the user Ui computes public key as PKi = gxi

with Pparam and secret value xi ∈ Z∗
p .
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SignGen After generating key pair (Si, PKi), group user Ui(1 ≤ i ≤ d) computes a

signature for a block mj ∈ Z∗
p(1 ≤ j ≤ n) using private key Si as follows.

σj = H2(Wj)
xi · (Di · u)mj (6.2)

where Wj = Fid||n||j and Fid represents the file identity. Later, group user uploads

blocks and corresponding signatures to the CSP.

Challenge After storing data into the cloud, the user request the TPA for data in-

tegrity verification. Upon receiving the request from user, TPA selects a subset

L = {s1, ..., sc} of c-elements from set [1, n], and selects vi ∈ Z∗
p randomly for

each i ∈ L. Let C = {(i, vi)}i∈L be a challenge message generated for the cloud.

ProofGen Upon receiving the random challenge C = {(i, vi)}i∈L, the server com-

putes a proof, which consists of data proof and signature proof as concretely.

(a) According to signature of each block, the CSP divides the challenged blocks

in the set to d disjoint subsets L1,L2...Ld, where Li is the subset of challenged

blocks signed by group user Ui. Let ci is the count of elements in Li. So,

the number of ci represents the no. of elements in subset Li. So, we have

c =
∑d

i=1 Li, L = L1 ∪ L2 ∪ L3... ∪ Ld and Li ∩ Lj = ϕ for i ̸= j signed by

different users with different private keys.

(b) For each subset Li, CSP computes (σ̄i, µ̄i) by

µ̄i = µ′ + r · h(R) ∈ Z∗
q (6.3)

where

µ′ =
∑

(i,vi)i∈C

vimi (6.4)

andR = (β)r ∈ G1 where r ∈ Z∗
p is a random mask used to blind the data proof

to preserve the data privacy against TPA. Meanwhile, the server also calculates
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an aggregated signature for user Ui,

σ̄i =
∏

(i,vi)i∈C

σvii ∈ G1 (6.5)

(c) Then the server returns final proof P = (µ, σ,R) to the TPA as proof, where

µ = (µ̄1, µ̄2...µ̄d), σ = (σ̄1, ...σ̄d).

ProofVerify The TPA verifies the integrity of outsourced data blocks after receiving

proof for the challenge from the server by verifying the following equation.

d∏
i=1

℘
(
σ̄i ·Rh(R), g

) ?
=

d∏
i=1

℘

( ∏
(i,vi)∈C

H2(Wi)
vi , PKi

)
℘

(
d∏
i=1

H1(IDi)
µ̄i , g0

)
(6.6)

If the equation holds, the blocks stored in cloud are properly maintained. Otherwise,

the data is not intact.i.e., data is modified or deleted.

6.3.2 Support shared data dynamics

We describe dynamic operations such as block insertion (Bins), block deletion (Bdel)

and block modification (Bmod) based on EDLIT for data dynamics.

Block Insertion : Assume the group user wants to insert block mx after the ith

block mi. At start, based on mx the group user computes the corresponding signa-

ture σx. Then, he generates an update request and sends new block and signature

Bins2C = (ins, i, x,mx, σx, Vx, Si) to the server. After receiving Bins2C the inser-

tion request, the server runs ExecUpdate and inserts a corresponding file block

mx after mi in the cloud; then the user sends the insertion instruction to the TPA

Bins2T = (ins, i, x, Vx, Si). Upon receiving the request, TPA updates the entries in

EDLIT. The changes in the EDLIT can be found in Fig. 6.4.

Block Modification: Block modification refers to the replacement of specified block
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F1 V1 Bi Si ^F2

Block Insertion

F1 V1 Bi SiV1 Bi Si V1 Bi Si ^V1 Bi SiF1

Fid

F1F3 V1 Bi Si ^V1 Bi Si

V1 Bi Si ^V1 Bi SiV1 Bi SiF1 V1 Bi SiFn
^

Fig. 6.4. Extended double linked list information table after block insertion

with a new one. To modify the ith block mi to mi
′, first, user generates new version

numberV ∗
i (V

∗
i = Vi + 1) and signature σi′ for the new block mi

′. Then, user con-

structs an update request message Bmod2C = (mod, i,mi
′, σi

′, Si) and sends to the

server. After receivingBmod2C request, the server replaces the block mi with mi
′ and

replaces the σi with σi′. Then, the user sends Bmod2T = (mod, i, V ∗
i , Si) to the TPA.

TPA updates the EDLIT accordingly. For example, in Fig. 6.5, block 2 of file 1 is

taken to show a block modification operation. It is clear that the version number of

the data block is updated.

Block Deletion: Block deletion is just the opposite operation of block insertion. Sup-

pose the server receives the update request Bdel2C = (del, i, Si) for deleting block

mi , it will execute the deletion instruction as shown in Fig. 6.6. Then user sends

Bdel2T = (del, i, Si) to the TPA. Upon receipt, the TPA would find mi and delete its

information in the EDLIT. During deletion no new parameters are generated.

6.3.3 Secure group user revocation

In a group, it is common that users join and leave the group any time. Whenever a ex-

isting user is revoked from the group, the revoked users’ pair of keys should be made
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Block Modification

F1 Bi SiV2V1 Bi Si V1 Bi Si ^V1 Bi SiF1

Fid

V1 Bi Si ^V1 Bi SiV1 Bi SiF1 V1 Bi SiFn
^

F1 V1 Bi Si ^F2

F1F3 V1 Bi Si ^V1 Bi Si

Fig. 6.5. Extended double linked list information table after block modification

V1Bi SiF1 V1 Bi SiFn
^

V1 Bi Si ^V1 Bi Si

F1 Bi Si-1V1 Bi Si V1 Bi Si ^V1 Bi SiF1

Fid Block Deletion

F1 V1 Bi Si ^F2

F1F3 V1 Bi Si ^V1 Bi Si

Fig. 6.6. Extended double linked list information table after block deletion

invalid to disable the access rights and signatures must be resigned by the existing

user [83, 84]. The cloud server runs the algorithms ReKey, ReSignGen to generate

a rekey and update the revoked users’ signatures during revocation upon receiving the

the revisedRL′ from GM. GM obtainsRL′ by runningRevoke(RL, {id1, id2, ...idk})→

RL′. The description of ReKey, ReSignGen are given below, in which we treat ui
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and uk(1 ≤ k ≤ d, k ̸= i) be the revoked user and a valid non-revoked user respec-

tively in the group.

• ReKey: This algorithm involves some interactions among ui, uk and cloud

server. Besides, it is required that ui, uk and cloud server are online simulta-

neously during the revocation process.

(a) cloud server chooses η ∈ Z∗
p randomly and sends η to uk in a secure way.

(b) uk computes and sends (ω1 = (Dk)
1
xk , ω2 = η · xk) to ui.

(c) ui computes and sends (R1 =
ω1

xi

Di

, R2 =
ω2

xi
) to cloud server.

(d) Upon receiving (R1, R2), cloud server calculates R3 =
R2

η
=
xk
xi

as rekey.

• ReSignGen: The cloud server transforms all signature-block pairs [σi′ ,mi′ ](1 ≤

i′ ≤ n) generated by ui. That is the signature σi′ for the block mi′ transformed

as

σi′
′ = (R1

mi′ · σi′)R3

The proof of correctness of above algorithm is as follows:

σi′
′ =
(
R1

mi′ · σi′
)R3

=

((
Dk

xi/xk

Di

)mi′

H2(Wi′)
xi(Di · u)mi′

)xk
xi

=

(
Dk

xi·mi′
xk H2(Wi′)

xiumi′

)xk
xi

= H2(Wi′)
xk(Dk · u)mi′

where σi′ ′ is the valid signature of mi′ for the generating user uk.
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6.4 Security Analysis

The security of CLPPPA is proved in terms of completeness, soundness and comprehensive

privacy preserving as described in section 6.2.5.

6.4.1 Correctness

Theorem 1. In CLPPPA, the verifier successfully audit the integrity of data iff all the

challenged file blocks and its corresponding signatures are intact in the cloud.

Proof. The correctness of CLPPPA can be proved by verifying the Eq. 6.6, with the help

of bilinear maps. The verification Eq. 6.6 can be elaborated as follows:∏d
i=1 ℘

(
σ̄i ·Rh(R), g

)
=

d∏
i=1

℘

( ∏
(i,vi)∈C

σvii · (β)r·h(R), g

)

=
d∏
i=1

℘

( ∏
(i,vi)∈C

(
H2(Wi)

xi · (Diu)
mi

)vi
· (uxi)r·h(R), g

)

=
d∏
i=1

℘

( ∏
(i,vi)∈C

(
H2(Wi)

xi ·
(
H1(IDi)

αu
)mi

)vi
· (u)r·h(R), g

)

=
d∏
i=1

(
℘

( sc∏
i=1

H2(Wi)
vi , gxi

)
℘

( sc∏
i=1

H1(IDi)u
miviurh(R), gα

))

=
d∏
i=1

(
℘

( sc∏
i=1

H2(Wi)
vi , gxi

)
℘

(
H1(IDi)u

∑sc
i=1 vimiurh(R), gα

))

=
d∏
i=1

(
℘

( sc∏
i=1

H2(Wi)
vi , PKi

)
℘

(
H1(IDi)u

∑sc
i=1 vimi+rh(R), g0

))

=
d∏
i=1

℘

(
sc∏
i=1

H2(Wi)
vi , PKi

)
℘

(
d∏
i=1

H1(IDi)u
µ̄i , g0

)

From the above proof, we say cloud generates the valid proof for challenged blocks as the

selected blocks were not corrupted. Thus cloud will not fail the auditing process launched

by TPA.
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6.4.2 Soundness

Here, we prove CLPPPA is unforgeable against A1, A2, A3 as defined in Section 6.2.5

Theorem 2: CLPPPA is secure against A1 if the CDH problem is hard in G1.

Proof: IfA1 wins the Game 1 with a nonnegligible probability ϵ ; then, we could construct

an algorithm that simulates a challenger B to solve the CDH problem with a nonnegligible

probability. Initially, B contains two hash lists LH1 and LH2 and a public key list LPK

which are empty initially. A1 and B interacts as follows.

• H1-Query: If A1 makes an H1-query with identity ID. B checks whether LH1 con-

tains (ID, PKID). If it holds, B returns H1; otherwise , B returns a random H1 to

A1 and then adds (ID,XID, PKID, H1) into LH1 .

• H2-Query: If A1 makes an H2-query with identity ID. B checks whether LH2 con-

tains (ID, g0, PKID). If it holds, B returns H2; otherwise , B returns a random H2

to A1 and then adds (ID, g0, PKID, H2) into LH2

• Setup: B produces the public parameters set including KGCs master public key to

A1.

• PartialPvtKeyGen: Upon receiving a query with identity ID, B does the following.

1.If ID ̸= ID∗, B computes H1(ID, g0) = v and then, store (ID, g0, PKID, v) into

LH1 .

2) Return DID .

• SecretValue: B looks up LH1 and returns xID.

• PublicKeyGen: B returns user’s public key PKID = (gxID) to A1.

• ReplacePublicKey: On receiving this query on (ID, PK ′
ID), B returns PK ′

ID if it

is already exists in LPK ; Otherwise, B replaces user’s public key PKID with PK ′
ID

and then adds (ID, PK ′
ID) into LPK .

• SignGen : Upon receiving a query on (ID,m), B finds H1 and H2 from LH1 and

LH2 and computes the signature σ for ID on m if ID ?
= ID∗ and returns the result to

A1. Otherwise , B aborts the game.
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• Forge: Finally, A1 outputs a signature σ′ on a corresponding message m′. We then

show the probability that A1 successfully wins the game as follows.

1. E1: B does not abort Game 1 in query Partialpvtkeygen.

2. E2:A1 outputs forgery of a signature σ on m for ID.

3. E3: After event E2 happens, the signature σ satisfies ID = ID*.

From the above simulation, we have

Pr[E1] ≥ (1− pH1

p
)pH1

Pr[E2|E1] ≥ ϵ

Pr[E3|E1 ∧ E2] ≥
ps
p

From these equations, the probability that B could solve the given CDH problem is

Pr[E1 ∧ E2 ∧ E3]

= Pr[E1]Pr[E2|E1]Pr[E3|E1 ∧ E2]

≥ ps
p
(1− pH1

p
)pH1ϵ

From above equation, we conclude that B cannot break the CDH problem since ϵ is non-

negligible. Therefore, CLPPPA is secure against A1 in the random oracle model.

Theorem 3: In the ROM, if A2 wins the Game 2 with a nonnegligible probability, then

an algorithm B can find a solution to the CDH problem.

Proof: If A2 wins the Game 2 with a nonnegligible probability ϵ ; then, we could constuct

an algorithm that simulates a challenger B to solve the CDH problem with a nonnegligible

probability. B generates a random number α ∈ Z∗
p as the master secret key, computes pub-

lic key g0 = gα, and returns public parameters Pparams = {p,G1, GT , ℘, g0, g,H1, H2, h}

and the master secret key α to A2. B picks an identity ID as a challenge identity and an-

swers the H1, H2 and SignGen queries as it does in the proof of the previous theorem. B

interact with A2 as follows.
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• PartialPvtKeyGen: B computes H1(ID, g0) = v and then store (ID, g0, v) into LH1

and then return DID to A2.

• SecretValue: B looks up LH1 and returns xID if ID = ID∗. Otherwise, B aborts the

game.

• PublicKeyGen: Upon receiving this query, B returns the user’s public key PKID =

(gxID) to A2.

• Forge: Eventually, A2 generates (σ′, m′). We then show the probability that A2

successfully wins the Game 2 as follows.

1. E1: B does not abort Game 2 in SecretValue query.

2. E2: A2 outputs forgery of a signature σ on m for ID.

3. E3: After event E2 happens, the signature σ satisfies ID = ID*.

From above process, we have

Pr[E1] ≥ (1− pH1

p
)pH1

Pr[E2|E1] ≥ ϵ

Pr[E3|E1 ∧ E2] ≥
ps
p

From above equations, the probability that B could solve the given CDH problem is

Pr[E1 ∧ E2 ∧ E3]

= Pr[E1]Pr[E2|E1]Pr[E3|E1 ∧ E2]

≥ ps
q
(1− pH1

q
)pH1ϵ

we conclude that B cannot break the CDH problem since ϵ is nonnegligible. Thus A2

cannot win the Game 2. Therefore, CLPPPA is secure against A2 in the random oracle

model.

Theorem 4: Given shared dataM and its signatures σ, it is hard for the cloud to forge the

proof that can pass the verification under DL assumption.
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Proof: We prove this theorem 4 according to the security game defined in 6.2.5 as follows:

Game 3: First, challenger B sends a challenge message (i, vi)i∈C to A3, and the correct

proof should be P = (µ, σ,R) return to B as proof, where µ = (µ̄1, µ̄2...µ̄d), σ = (σ̄1, ...σ̄d)

which can pass the verification successfully with Eq. 6.6. Now, A3 computes an invalid

auditing proof of (µ′, σ, R) based on the incorrect dataM′, whereM′ ̸=M , and at least

one element of ∆mi = mi
′ − mi for i ∈ C is nonzero. If A3 wins the Game 3, then,

according to Eq. 6.6, we have

d∏
i=1

℘
(
σ̄i ·Rh(R), g

) ?
=

d∏
i=1

℘

( ∏
(i,vi)∈C

H2(Wi), PKi

)
℘

(
d∏
i=1

H1(IDi)u
µ̄i

′
, g0

)

Because (µ, σ,R) is a correct proof, we have

d∏
i=1

℘
(
σ̄i ·Rh(R), g

) ?
=

d∏
i=1

℘

( ∏
(i,vi)i∈C

H2(Wi), PKi

)
℘

(
d∏
i=1

H1(IDi)u
µ̄i , g0

)

Based on bilinear maps

c∏
i=1

uµ̄i =
c∏
i=1

uµ̄i
′
and

c∏
i=1

u∆µ̄ = 1

For any two random values g, h ∈ G1, there exists x ∈ Z∗
p such that h = gx because G1 is

a cyclic group. For the given g, h ∈ G1, each u can be randomly and correctly generated

by computing u = gϵ · hξ ∈ G1, where gϵ and hξ ∈ Z∗
p . Then, we have

1 =
c∏
i=1

u∆µ =
c∏
i=1

(gϵ · hξ)∆µ = g
∑c

i=1 g
ϵ·∆µ · h

∑c
i=1 g

ξ·∆µ

Clearly, the solution for DL problem can be found. That is, if A3 wins Game 3, we can
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find a solution to the DL problem with a probability of 1− 1/p, which is non-negligible. It

contradicts the assumption in Section 2.3. Therefore, it is computationally infeasible, for

A3 (malicious cloud) to output a forged auditing proof that can pass the verification.

6.4.3 Privacy preserving

It can be proven that A4 (TPA) could not learn user’s data content during auditing process.

Theorem 5: From the given cloud’s auditing proof (µ, σ,R) , it is computationally infea-

sible for A4 to gain access to private information (µ′) of shared data.

Proof: Theorem 5 is proved in two steps. First, we show that no private data on (µ′) can be

derived from shared data µ it is masked by r as µ̄i = µ′ + r · h(R) where µ = (µ̄1, µ̄2...µ̄d)

and R = (β)r, where r ∈ Z∗
p is randomly chosen by server and is hidden from auditor.

Thus, privacy of µ′ is protected from A4 even µ is given to A4 . Second, we prove that no

private information on µ′ can be obtained from σ, where σ = (σ̄1, ...σ̄d)

σ̄i =
∏

(i,vi)∈C

σvii ∈ G1

=
∏

(i,vi)∈C

(
H2(Wi)

xi · (Di u)
mi

)vi
=

∏
(i,vi)∈C

(
H2(Wi)

vi · (Di u)
mi·vi

)xi
=

∏
(i,vi)∈C

(
H2(Wi)

vi · (Di)
mi·vi( u)mi·vi

)xi
=

∏
(i,vi)∈C

(
H2(Wi)

vi · (Di)
mi·vi · u

∑sc
i=1 vimi

)xi
=

∏
(i,vi)∈C

(
H2(Wi)

vi · (Di)
mi·vi

)xi
· (uµ)xi

Analysis: (uµ)xi is masked by
∏

(i,vi)i∈C

(
H2(Wi)

vi(Di)
mivi

)xi
.

However, to compute
∏

(i,vi)i∈C

(H2(Wi)
vi(Di)

mi·vi)
xi

from
∏

(i,vi)i∈C

(H2(Wi)
vi(Di)

mi·vi)

and gxi , which is the only information TPA can utilize, is a CDH problem. According to
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CDH problem, it is infeasible for A4 (TPA) to derive private information.

6.4.4 Comparative summary

Here, we compare the security of CLPPPA with some of the existing PKI/ID-based CL-

PKC based [82, 64, 62] schemes against A1, A2, A3, A4 whose power has been defined in

Section 6.2.5 and is presented in Table 6.1. As shown in Table 6.1, schemes [82, 64, 62]

does not provide privacy protection. In addition, Wang et al.’s [82] scheme is vulnerable to

Type I adversary attacks and He et al.’s [64] scheme does not provide formal proof against

A3. Our CLPPPA, however, satisfies the requirements of public auditing scheme including

privacy preserving and it is proven to be secure against all adversaries A1, A2 , A3, A4.

Table 6.1: Security comparison

Schemes A1 A2 A3 A4

Wang et al. [82] No Yes Yes No

He et al. [64] Yes Yes No No

Li et al. [62] Yes Yes Yes No

Proposed scheme Yes Yes Yes Yes
A1: super Type I Adversary, A2: super Type II Adversary , A3: Type III Adversary, A4: Type IV

Adversary

6.5 Performance Analysis

We evaluate the computation cost of CLPPPA theoretically, experimentally and compare it

with the some of the state-of-the-art schemes [35, 43, 62].

6.5.1 Theoretical Analysis

First, we define some notations used in computation cost analysis:

1. Tp: one bilinear pairing operation

2. TG1 ex: one exponentiation operation on group G1

3. TG1 mul: one multiplication operation on group G1
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Fig. 6.7. Computation cost: (a) Computation Time of SignGen algorithm for different
number of blocks (b) Time consumption of ProofGen algorithm (c) Time consumption of
ProofVerify algorithm (d) Time consumption of verification for various number of users
(e) Computation cost of ReSignGen algorithm for different number of revoked blocks (f)
Computation cost of revocation process for different number of users

4. TG2 mul: one multiplication operation on group G2.

5. c: the number of blocks in challenge.

6. d: user subsets for the challenge.

7. Hs: one hash operation in group G1
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8. MulZ∗
p : one multiplication operation in Z∗

p .

9. AddZ∗
p : one addition operation in Z∗

p .

Table 6.2: Computation cost comparison of SignGen, ProofGen, ProofVerify and ReSign-
Gen

Schemes SignGen ProofGen ProofVerify ResignGen Type

Wang et al. [35] 2TG1 ex +
TG1 mul +Hs

c · TG1 ex + c ·
TG1 mul + d(c −
1)AddZ∗

p

(c + d)TG1 ex + (c +
2d)TG1 mul + (d +
1)Tp+dTG1 mul+ cHs

2TG1 ex +
TG1 mul + 2Tp +
Hs

PKI

Zhang et al. [43] 2TG1 ex +
TG1 mul +Hs

(c − 1)TG1 mul +
cTG1 ex + (c −
1)AddZ∗

p
+

cMulZ∗
p

cHs+(2c+2)TG1 mul+
(2c+3)TG1 ex+2Tp+
(c − 1)AddZ∗

p
+

cMulZ∗
p
+

... IBC

Li et al. [62] 2(TG1 ex +
TG1 mul)

c · TG1 ex + c ·
TG1 mul

(d + 2)Tp + (c +
d)TG1 ex + (c +
2d)TG1 mul + dTG2 mul

R · (2TG1 ex +
TG1 mul)

CL

Our scheme 2(TG1 ex +
TG1 mul)

c·TG1 ex+(c−1)·
TG1 mul

(d + 2)Tp + dTG1 ex +
(c + 2d)TG1 mul +
dTG2 mul

R · (TG1 ex +
TG1 mul)

CL

We consider computation overhead mainly comes from bilinear pairings, exponentiation

and multiplication on the group G1 since our protocol CLPPPA is built from the bilinear

pairings. To generate the signature for a block in CLPPPA, the user in the group needs to

run SignGen algorithm and whose computation cost is 2(TG1 ex + TG1 mul). To generate

the challenge message for the CSP, the verifier needs to run challenge algorithm, which

incur the negligible cost. Therefore, we ignore the the computation cost of challenge. The

computation cost of CLPPPA is mainly generated by the proof generation phase and the

proof verification phase and revocation phase. To generate the integrity proof P, server

needs to execute the algorithm ProofGen, which requires c · TG1 ex + (c − 1) · TG1 mul

computation cost. To check the data integrity, the TPA runs the algorithm ProofV erify

which requires (d + 2)Tp + dTG1 ex + (c + 2d)TG1 mul + dTG2 mul computation cost. The

revocation cost is R · (TG1 ex + TG1 mul) and it depends on the number blocks signed by

the revoked user in the file, where R denotes the total count of signatures that needs to be

updated. Moreover, we compare CLPPPA with the some of the existing schemes such as

PKI-based [35], IBC-based [43] and CLPKC-based [62] and list the results in the Table
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6.2. From Table 6.2, we can see that our proof generation, proof verification and resigning

is efficient than [35, 43, 62] .

6.5.2 Experimental results

We implemented CLPPPA on a laptop with Intel i5-7200U CPU @ 2.50 GHz and 16 GB

RAM. All experiments are carried out in python 2.7 language (PyCharm IDE) using crypto-

0.42 library [79]. The implementation uses a symmetric super singular elliptic curve where

the finite field size is 512-bit and security parameter fixed to 160-bits, that means, the length

of the prime order p in the experiments is 160 bits. The experimental results for signature

generation (SignGen), proof generation (ProofGen), proof verification (ProofV erify)

and revocation (ResignGen) are obtained and plotted as graphs from Fig. 6.7a to Fig. 6.7f.

6.5.2.1 Computational costs for generating signatures

Fig. 6.7a shows the consumption cost of SignGen algorithm. We set the group size to be

50 and the number of blocks ranges from 10,000 to 1,00,000. From Fig. 6.7a, in all four

schemes, we observe that the time needed for SignGen algorithm increases linearly as the

number of blocks increases in the file. Both our scheme and [62] takes almost same time to

generate signatures whereas [35, 43] requires slightly less time than [62] and our proposed

scheme, since it has one less multiplication operation whose computation cost is much less

than exponentiation operation’s cost. Furthermore, sign generation is done once for the

entire life-time of the scheme and brings little influence on the performance of integrity

checking.

6.5.2.2 Computational costs for proof generation

Fig. 6.7b shows computation cost of the ProofGen algorithm against the number of chal-

lenged blocks in Challenge message during verification. We increase the counter of chal-

lenged blocks from 100 to 1000 with an increment of 100 in each experiment. From Fig.

6.7b, we can learn that in all the four schemes, the time for proof generation is proportional

to the block number; and for the same number of data blocks, CLPPPA spends relatively
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less time than [35, 43, 62].

6.5.2.3 Computational costs for proof verification

Fig. 6.7c and 8. 6.7d shows computation cost of the ProofV erify algorithm against the

number of challenged blocks and number of users in the group respectively. From Fig.

6.7c, in all four schemes, we observe that the time needed for ProofV erify algorithm

increases linearly as the number of blocks increases in the file. From Fig. 6.7c we can

see that when the number of challenged blocks is 100, the time of proof verification takes

about 1.1456s in all schemes.Likewise, if the count of number of challenged blocks is

1000 it needs nearly 10.3768901s, 8.2822234s, 7.832451s in [35], [43], [62] respectively,

whereas in our scheme it takes only 6.402s. From this observation, we can say that our

scheme takes relatively less time than [35, 43, 62]. Thus, our scheme is feasible for real-

life applications. From Fig. 6.7d in all four schemes, we can learn that the verification

time is proportional to the size of the group. Moreover, for the same number of users in the

group, the verification time of our scheme is less than the half of that of [35] and relatively

less than that of [43, 62].

6.5.2.4 Computational costs for revocation

Fig. 6.7e depicts the computation cost of ReSignGen algorithm for different number of

blocks to be resigned by one of the existing valid user in the group. Here, we compare

CLPPPA scheme with [35, 62] and ignored Zhang et al. [43] because they simply update

the private key of all non-revoked users in the group, instead of resigning the blocks. From

Fig. 6.7e, we can see that the cost of ReSignGen in all schemes is linear with the number

of revoked user blocks and CLPPPA scheme performs better than [35, 62]. Fig. 6.7f also

depicts the computation overhead of revocation process with respect to different number of

users. From Fig. 6.7f, we can see that the revocation cost is linear to the number of revoked

users for different number of blocks. For example, for a group with 50 users consumes

130ms for resigning 300 blocks, and consumes 143ms for 500 blocks.
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6.6 Summary

In this chapter, we presented a privacy preserving public auditing system for dynamic

shared data storage in cloud computing by utilizing certificateless signatures. CLPPPA

achieves privacy preserving against TPA by masking the data proof during auditing pro-

cess while refrain from both certificate management and key escrow. Besides, CLPPPA

also supports data dynamics through EDLIT and efficient user revocation. We formally

proved the security of CLPPPA against super Type I, super Type II, Type III and Type

IV adversaries under DL and CDH assumptions in ROM and it is proven that CLPPPA is

more secure than existing schemes. The performance is evaluated by theoretical analysis

and experimental results. The results shows that the CLPPPA is efficient and can be used

in practice. Although CLPPPA achieves the privacy preserving and data dynamics along

with integrity, it does not consider the data availability which is also an important issue to

be considered in cloud storage. In the subsequent chapter, we propose a public integrity

auditing scheme to ensure data availability.
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Chapter 7

Certificateless Multi-Replica Public

Integrity Auditing Scheme for Dynamic

Shared Data in Cloud Storage

(CLMRPIA)

7.1 Introduction

In this chapter, certificateless multi-replica public integrity auditing scheme is presented

for dynamic shared data to achieve the data privacy, user revocation along with availability.

The contributions are:

• In this scheme, we leverage certificateless signatures to generate signatures of multi-

replica of shared data using the user’s complete private key. This process simplifies

the certificate management by allowing the verifier to check data integrity without

managing certificates.

• To solve the key escrow problem, the user generates and uses the complete private

key. The complete private key contains two components in which the first compo-

nent (partial private key) is generated by KGC and the second one (secret value) is

generated by the user itself. KGC only knows partial private key and does not know
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secret value of the user. Therefore, the curious KGC cannot forge the user signature

by any means.

• We propose a novel replica version table (RVT) to support shared data dynamic op-

erations such as modification, insertion, and deletion.

• Our scheme also supports secure user revocation. i.e., whenever a user in the group

misbehaves or leaves the group, the cloud can accomplish the resigning process.

• The security analysis proves the correctness, unforgeability of CLMRPIA against

type I/II/III adversaries based on DL and CDH assumptions in ROM by simulating a

game involving two players: a challenger and an adversary.

• The performance analysis evaluates the efficiency of CLMRPIA theoretically and

experimentally in terms of computation and communication overheads.

7.2 Problem Statement

Here, we present problem statement, its description followed by the architecture, design

goals, adversary model and the security model of the CLMRPIA scheme.

In this scheme, we focus on a multi-replica public integrity auditing scheme for shared

data by leveraging CL-PKC [48] to eliminate the problems, namely, certificate manage-

ment and key escrow. Consider a scenario in which a department manager who creates the

data, user group and allows the other group users to share, access data on a given cloud

server through the Internet. Later, every user can create multiple copies of the data. In a

shared data pattern, users not only access but also modify the data for various purposes.

Another essential characteristic to be considered in shared data is user revocation. That

means, once a user in the group is revoked, all the signatures generated by a revoked user

should be resigned by one of the existing non revoked users to ensure the correctness of

data. Unfortunately, this problem has remained unexplored in previous researches. Hence,

designing a multi-replica public integrity auditing scheme for shared data to support effi-

cient data dynamics and user revocation while free from key escrow problem and complex
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certificate management is a significant challenge.

In this scheme, first, the KGC generates the public parameters and msk using security

parameter (λ). Then publish the public parameters while keeps the msk secret. Every user

in the group submits his/her identity to the KGC to get the partial private key from KGC.

According to the request of user, the KGC generates partial private key using master secret

key and secretly sends it to the user. On receiving the partial private key from the KGC,

the user generates his/her own complete private key by using combination of partial private

key from KGC and randomly chosen secret key by himself/herself. Afterwards, GM cre-

ates a large raw data file, divides the file into n raw data blocks, generates replica blocks for

each original file data block. Next, computes signatures for all replica blocks using private

key. After signing replica data blocks, GM uploads replica data blocks along with corre-

sponding signatures to the cloud and deletes them from the local storage. Later, to check

the integrity of multiple-replica shared data, TPA challenges the cloud server by selecting

blocks randomly. After receiving the challenge, the cloud returns the proof of shared data

as a response to the TPA. On receiving proof from the server, TPA verifies the correctness

of data. Any group user may update outsourced data block without downloading the data at

any time by forwarding an update request to a cloud. The CSP performs the operation and

responds with an update proof to the user. Finally, whenever a user in the group misbehaves

or quits the group, GM updates the existing RL and forwards to the CSP. Upon receiving

the updated RL the CSP performs resigning on revoked user blocks.

7.2.1 Architecture

We consider certificateless cloud storage architecture with four entities, as illustrated in

Fig.7.1.

• KGC is a third party entity which generates themsk and the public parameters. After

receiving ID of the group user, it generates the corresponding partial private key of

the user using the master secret key (msk). KGC is assumed to be a semi-trusted,

which means it is honest but curious. KGC honestly follows protocol, but it may try

to replace the public key of the user.
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Fig. 7.1. The system model of certificateless multi-replica public auditing scheme

• TPA is assumed to be faithful by user and CSP. It is also called public verifier who has

sufficient resources and professional capabilities to perform complete data auditing

on behalf of the group users regularly or upon request. Upon receiving the auditing

request from the user, TPA challenges the CSP for randomly selected blocks to check

the integrity. After receiving proof from the CSP, TPA verifies the correctness of data.

• User Group. The user group includes group members and group manager (GM).

GM is a trusted entity. The GM will divide the file into fixed sized data blocks and

generate multiple replicas for the data blocks. We consider GM as the owner of the

data. New members can join and quit the group anytime. There are multiple users in

a group. We assume the legal group users are honest.

• CSP is an untrusted entity that has significant storage and computational resources,

and it is responsible for maintaining user group data. CSP generates the proof and

sends it to TPA as a response for integrity verification.
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7.2.2 Adversary model

We designed CLPPPA scheme to withstand the four types of adversaries namely A1, A2,

A3 and A4.

• Type-I Adversary (A1): A1 (malicious outsider) tries to replace the user’s public key

with a false key even though he could not have access to KGC’s master secret key

(msk).

• Type-II Adversary (A2): A2 (malicious KGC) tries to mount an impersonation attack

having access to the msk of the KGC and it cannot replace the public key of the

user. Even though the KGC is trusted entity, in a practical scenario, the KGC might

engage in other adversarial activities such as eavesdropping on signatures and making

signing queries, which is also known as Type II Adversary.

• Type-III Adversary (A3): A3 (malicious CSP) tries to compute a forged auditing

proof that can pass the verification.

• Type-IV Adversary (A4): A4 (malicious TPA) tries to gain access to private infor-

mation of data during audit process.

7.2.3 Design Goals

We propose CLMRPIA to achieve the following goals:

• Correctness. The public verifier can verify correctly the integrity of data by chal-

lenging CSP with randomness.

• Data availability. Data should always be available and retrievable in the cloud.

• Public verifiability. Any one-who knows public key and with sufficient resources

can verify the integrity of data on behalf of user.

• Soundness. The cloud server never pass the auditor’s auditing process if it does not

possess the data intact.

• Data dynamics. Every group user is allowed to update the outsourced data remotely

without downloading.
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• User revocation. Whenever a user is revoked from the group, all signatures of the

revoked user can be translated to the non revoked user signatures securely.

7.2.4 Security Model

We design CLMRPIA scheme to withstand the three types of adversaries namelyA1 (repre-

sents malicious outsider), A2 (represents malicious KGC), A3 (represents malicious CSP).

Both A1 and A2 try to forge the signature of blocks. A3 tries to generate the forged in-

tegrity proof. The basic difference between A1 and A2 is that A1 cannot access the master

key of the KGC, but can replace the public keys of any entity of his choice. A2 represents a

malicious KGC who has the master key of the KGC, but cannot modify the public keys of

users. A3 tries to forge replicas and integrity proofs to cheat the verifier. We define games

Game 1, Game 2, Game 3 formally between a challenger B and adversariesA1,A2 andA3

respectively.

Game 1 (for type I adversary A1 ):

Setup: Initially, B executes Setup to obtain the msk and params. For type I adversary

A1, B just returns the public parameters params including the master public key; B keeps

the msk secret.

Attack: A1 could access the following oracles controlled by challenger B. The adversary

A1 can perform the following type of queries in an adaptive manner.

• Create user Oracle: This oracle takes ID as an input. Nothing will be returned by this

oracle if identity ID has been created before. Otherwise, B executes PartialPvtKey-

Gen, SetSecretValue, SetPublicKey to obtain partial private key Di, secret value xi

and public key PKi for ID respectively. Finally, it adds < ID,Di, xi, PKi > to the

LPK list and B returns public key PKi to A1.

• Partial Private Key Oracle: On input of a query on the identity ID by adversary A1,

B returns the partial private key Di to A1.

• Secret Value oracle: On input of a query on the identity ID by adversary A1, B

returns the secret value xi to A1.

• Public Key Replacement oracle: On receiving this query from A1, B replaces the
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user ID’s original public key PKi with a value of his choice PK ′
i.

• ReplicaGen oracle. A1 can query a selected file F to query B for the replica gener-

ation. B runs the ReplicaGen to produce a set of replicas. Subsequently sends it to

A1.

• SignGen oracle: A1 chooses the tuple (ID, bi,j) and submits it to B. B executes

SignGen algorithm to produce a signature σi,j and sends it to A1.

Forgery: Finally, adversary A1 outputs {σ∗
i,j, b

∗
i,j} as its forgery with identity ID∗. A1 is

regarded to win this game if the following requirements are satisfied:

• 1← V erify(σi,j, bi,j, param, ID
∗, PK∗

ID)

• For ID∗, the query Partial Pvt Key oracle does not occur in the game before;

• A1 has not submitted never before the pair (ID∗, b∗i,j) to the SignGen oracle with

the public key PK∗
ID.

Game 2 (for type II adversary):

Setup: Initially, B executes the Setup to obtain themsk and params, and then returns both

to type II adversary A2.

Attack: In this phase, A2 could access the following polynomially bounded number of

oracles in an adaptive manner controlled by challenger B.

• Create user Oracle: On receiving a query with a different user’s ID, B executes Set-

SecretValue, SetPublicKey to obtain secret value and public key respectively. Finally,

B returns public key to A2.

• Secret Value oracle: On input of a query on the identity ID, B returns the secret value

to A2.

• Public Key Replacement oracle: Upon receiving this query from A2, B replaces the

user IDi’s original public key PKi with a value of his choice PK ′
i.

• ReplicaGen oracle. A2 can query a selected file F to query B for the replicas. B runs

the ReplicaGen algorithm to generate a set of replicas F̄ . Subsequently forwards it

to A2.

• SignGen oracle: A2 chooses the tuple (ID, bi,j) and submits it to B. B executes

SignGen algorithm to produce a signature σi,j and sends it to A2.
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Forgery: Finally, adversary A2 outputs {σ∗
i,j, b

∗
i,j} as its forgery with the identity ID∗. A2

wins the game if this pair satisfies the following requirements:

• 1← V erify(σi,j, bi,j, param, ID
∗, PK∗

ID)

• For ID∗, the query Secret Value oracle does not occur in the game;

• A2 has never been submitted the pair (ID∗, b∗i,j) to the SignGen oracle.

• A2 has not requested the Public Key Replacement query on ID∗.

Game 3 (for type III adversary):

• Setup: B executes the Setup algorithm to generate the parameters params and the

master secret key msk. B sends params to A3 and keeps the msk secret.

• SignGen Query: A3 selects the tuple (ID,m) and sends it to B for querying the

signature. B generates and returns the signature of m to A3 by running the SignGen

algorithm.

• Challenge: B generates a challenging message Chal and sends it to A3 to get the

corresponding proof P.

• Forge: Finally, for the Chal,A3 outputs a data integrity proof P and sends it to B. A3

wins the game if P can pass the integrity check and the blocks in P is incorrect.

7.3 Algorithmic Framework

Here, we define proposed scheme algorithms.

• Setup(1λ) → (params,msk). It takes λ as input and outputs msk and system

public parameters params.

• PartialPvtKeyGen(params,msk, IDi) → Di. It takes the params, msk, user

identity IDi as input and outputs Di (partial private key).

• SetSecretV alue(params, IDi) → xi. It takes the params, user identity IDi as

input and outputs a secret value xi.

• PvtKeyGen(Di, xi)→ Si. It takes Di and xi as input and outputs a private key Si.

• SetPubKey(params, xi)→ PKi. It takes params, xi as input and outputs a public

key PKi.
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• ReplicaGen(F, Si)→ Fj(1≤j≤c). It takes original file F and copy number c as input,

and generates c number of replicas. Fj = (F1, F2, ..., Fc).

• SignGen(params, Si, Fj) → σi,j . It takes params, Si, and data blocks Fj =

{bi,j}1≤i≤n,1≤j≤c as input and outputs a set of block signatures {σi,j}1≤i≤n .

• Challenge(Minfo) → C. It takes the abstract information as input and outputs the

challenge C.

• ProofGen(bi,j, {σi,j}1≤i≤n,1≤j≤c, C) → P . It takes the file blocks bi,j , the block

signatures {σi,j} and C as input and outputs a proof P .

• ProofV erify(params, PKi, C, P ) → 0/1. It takes the params, PKi, C and the

proof P as input and returns 0 or 1.

• UpdateRequest(F ′
i , i, UO) → UpdateReqInfo. It takes new file block F ′

i , the

block position i and the update operation type UO as inputs, and outputs the update

request information UpdateReqInfo. The UO may be insert, modify and delete.

• ExecUpdate(UpdateReqInfo) → {1, 0}. It returns 1 if the update operation is

completed successfully, otherwise returns 0.

• Revoke(RL, {ID1, ID2, ..., IDm})→ RL′. It takes the current revocation list (RL)

and revoked user identities {ID1, ID2, ..., IDm} as input and returns updated RL

(RL′). It is forwarded to CSP and TPA whenever a user is revoked from the group.

7.4 Detailed Construction

The details of the proposed CLMRPIA algorithms are as follows. The detailed process

flow is illustrated in Fig.7.2.

Setup

Given security parameter λ. KGC randomly selects a big prime q and two cyclic multi-

plicative groups G1 and GT with order q. Let g is a generator of G1. e is bilinear map of

G1 × G1 → GT . KGC gets a random element α ∈ Z∗
p and sets g0 = gα. Finally, three

map-to-point cryptographic functions are chosen H1, H2, h(.) : {0, 1}∗ → G1, can map an

arbitrary string {0, 1}∗ into an element of G1. The security analysis views H1, H2 as the

random oracle [86]. The public parameter params = (p, q,G1, GT , e, g0, g,H1, H2, h) is
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published i.e., made public to everyone and α is kept secret as master secret key.

PartialPvtKeyGen

Authorized user Ui sends its unique identity IDi to KGC for generating a partial private

key (Di). KGC computes (Di) for the user as follows:

1. Compute Q = H1(IDi) ∈ G1

2. Compute Di = Qα. After computing (Di), KGC forwards the Di to the user through

a secure channel.

SetSecretValue

After receivingDi, user Ui selects xi ∈ Z∗
p , u ∈ G1 randomly and keeps xi as private secret

value and makes β ← uxi public. S = Z∗
p is the valid secret key value space.

PvtKeyGen

The user Ui sets the combination of Di and xi as private key Si = (Di, xi).

SetPublicKey

The user Ui computes public key as PKi = gxi with param and secret value xi ∈ Z∗
p .

PK = G1 is the valid public key space.

ReplicaGen

The user divides the original data file F into n blocks, i.e., F = (b1, b2, ..., bn), bi{1≤i≤n} ∈

Z∗
p . To ensure data availability, the user generates c distinguishable replicas for the file F

as Fj = (F1, F2, ..., Fc) with each Fj = (b1,j, b2,j, ...bn,j). The replica block is generated

as bi,j = bi + ψk(i||j). Note that ψ is a PRF with a key chosen randomly k ∈ Z∗
p to

differentiate replica of the files. Note that for any Fj = (b1,j, b2,j, ...bn,j), the user can

recover the original data file F = (b1, b2, ..bn) easily by computing bi = bi,j − ψk(i||j).

This allows the users seamlessly access the copy from the CSP. Finally, the user sends k to

the verifier and k must be kept secret from the cloud.

SignGen

After generating replicas, user Ui computes homomorphic certificateless signature σi,j for

each block bi,j ∈ Z∗
p(1 ≤ i ≤ n) using private key (combination of partial private key and
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secret value) as follows.

σi,j = H2(ωi)
xi · (Di · u)bi,j (7.1)

where ωi = (Fid||n||i) and Fid denotes the file identity chosen from Zp by the user. It

is to be noted that the Fid is embedded into the block signature to prevent the CSP from

cheating. Later, user uploads multi-replica file blocks bi,j and corresponding signatures

σi,j to the CSP. Finally, deletes F from local storage. Also, user forwards revocation list

(RL = {∅}: Initially empty) to both the CSP and TPA to allow the user to update the

replica blocks and to let the TPA to verify the updated replica blocks.

Challenge

After outsourcing data in cloud, the user request the TPA to check the integrity of the data.

Upon receiving the request from user, TPA picks a nonempty subset I ⊆ [1, n], and selects

vi ∈R Z∗
p randomly, ∀i ∈ I . Suppose that the TPA wants to check n̄ ⊆ n blocks with all

n̄c replicas. The verifier chooses three temporary keys τ1, τ2, τ3 ∈ Z∗
p , sets the challenge

token C = (Fid, n̄, τ1, τ2, τ3). Then the verifier forwards C to the cloud.

ProofGen

After receiving the challenge token C = (Fid, n̄, τ1, τ2, τ3), server first computes I =

{πτ1(i)|i = 1, ..., n̄}, {vi} = {ψτ2(i)|i ∈ I}, {wj} = {ψτ3(j)|j = 1, ..., c}, then it com-

putes a proof which includes data proof and signature proof as follows:

1. CSP computes µ where

µ =
c∑
j=1

∑
i∈I

wjvibi,j (7.2)

Meanwhile, the server also calculates an aggregated signature for user U for c repli-

cas,

σ =
(∏
i∈I

σvii,j

)∑c
j=1 wj

∈ G1 (7.3)

for every replica. Then the server returns final proof P = (µ, σ) to the TPA as a
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response.

ProofVerify

After receiving the proof from the server, TPA verifies the integrity of outsourced data by

verifying the following equation.

e (σ, g)
?
= e

(∏
i∈I

c∏
j=1

wjH2(ωi)
vi , PKi

)
e

(
H1(IDi)u

µ, g0

)
(7.4)

If the Eq.7.4 holds, the blocks stored in cloud are kept intact. Otherwise, the data is

damaged or lost.

7.4.1 Dynamic Data Operations

In this phase, we perform dynamic operations such as modification, insertion and deletion

using RVT, which is created by the user and maintained at the TPA side. To perform these

operations user prepares and sends a request UpdateRequest to the CSP in the general

form (Fid, Op, i, {b∗j}1≤j≤c, σ∗
j , UID) where Fid is the file identifier, Op denotes dynamic

operation; that is 0 for update, 1 for insert, 2 for deletion, i denotes the index of the block

to be operated on, {b∗j}1≤j≤c is the new block value for all replicas and σ∗
j is new signature

for the new block, UID is the signing user identity. Upon receiving the UpdateRequest,

CSP verifies if the user is revoked or not with the help of RL′. If the user is revoked it

returns ⊥. Otherwise, CSP executes ExecUpdate algorithm for data update operations as

follows. Examples of different dynamic operations on multi replica shared data with our

RVT are described in Table 7.1, 7.2 and 7.3.

7.4.1.1 Modification

To update the file block bi with b∗i in a file F = {b1, b2, ...., bn}, user specifies the index of

the block for all the copies. The user prepares the update request by following the steps

below:

1. Update the block version number value of BV Ni = BV Ni + 1 in RVT.
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Table 7.1: Modifying block at position 3

SN BRN(1≤i≤n,1≤j≤c) BVN UID

1 b11 1 1

2 b21 1 1

3 b31 2 3

4 b41 1 1

5 b51 1 1

6 b61 1 1

7 b71 1 1

8 b81 1 1

Table 7.2: Insert block after position 5

SN BRN(1≤i≤n,1≤j≤c) BVN UID

1 b11 1 1

2 b21 1 1

3 b31 2 3

4 b41 1 1

5 b51 1 1

6 b91 1 3

7 b61 1 1

8 b71 1 1

9 b81 1 1
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Fig. 7.2. Process flow of the proposed CLMRPIA scheme

2. Creates a new c distinct file blocks b′i,j , where b′i,j = bi + ψk(i||j)

3. Calculates a new signature σ∗
i,j for the each new block b′i,j as σ′

i,j = H2(ωi)
xi ·

(Diu)
b′i,j .

4. Sends a modify request (Fid, 0, i, b′i,j{1≤j≤c}, σ
′
i) to the CSP.

After receiving the update request from the user, CSP executes ExecUpdate to modify the

data as follows:

1. It put back the block bi,j with b′i,j∀j in the cloud storage.
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Table 7.3: After deleting at position two

SN BRN(1≤i≤n,1≤j≤c) BVN UID

1 b11 1 1

2 b31 2 3

3 b41 1 1

4 b51 1 1

5 b91 1 3

6 b61 1 1

7 b71 1 1

8 b81 1 1

2. Replaces the σi with σ′
i in the signatures set σ, and updates the set.

7.4.1.2 Insertion

Suppose the group user wants to insert a new block b′i after position i in the file. Then sig-

nature for the new block can be constructed without recomputing the signatures for all the

blocks because the serial number SN of block is not included in the signature generation

and the remaining blocks can be shifted to one position down. The procedure for inserting

a new block after particular block is same as modification operation except that it will insert

a new block after a particular block.

To insert of a new block b′i after position i+1 in all replicas of the file, the user prepares

the update request, which does the following:

1. Creates new entry (SN,BN,BV N) = (i+1, (Max{BNi}1≤i≤n)+1, 1) and inserts

this entry in the RVT after position i.

2. Creates c number of new distinct blocks {b′i,j}1≤j≤c where b′i,j = bi,j + ψk(i||j)

3. Calculates a new signature σ∗
i for the each new block b′i as σ′

i,j = H2(ωi)
xi · (Diu)

b′i,j .

4. Sends a insert request (Fid, 1, i, b′i,j{1 ≤ j ≤ c}, σ′
i,j) to the CSP.

After receiving the insert request from the user, CSP inserts the data as follows:
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1. Inserts b′i,j after ith position in all replicas.

2. Then add σ′
i,j signature set σ after ith position, and updates the signature set.

7.4.1.3 Deletion

For deleting a file block, the group user sends a delete request to the CSP. To delete the

requested file block, all subsequent blocks are moved one step forward. Suppose a group

user wants to delete a block at position i, it sends a delete request (Fid, 2, i, NULL,NULL)

to CSP. Upon receiving a request, the CSP deletes corresponding block as follows:

1. Deletes the file block {bi,j}1≤j≤c, and updates the replica files in cloud.

2. Similarly, deletes σi,j from σ and updates the signature list.

Table 7.1, 7.2 and 7.3 shows the dynamic operations such as insertion,modification, and

deletion through the RVT. For example, if user 3 updates the third block, then its block

version number BV N is incremented by 1 which is shown in the Table 7.1. In the same

way as shown in the Table 7.2, to insert a block after fifth position in F , a new record is

inserted in the from < 6, b91, 1, 3 > where the serial number is 6, its block number is 91

and it is updated by user 3. All the subsequent entries after position 5 are shifted to one

position down. The block number BRN of newly inserted block is computed by adding 1

to the maximum block replica number value in the table. To delete a block entry at position

2, the serial numbers (SN ) of all the subsequent blocks after block 2 are decremented by 1

and all the entries are moved to one position up. SN indicates the actual storage positions

of data blocks of file F which is shown in Table 7.3.

7.4.2 User revocation

In shared data scenario, whenever a user is revoked from the group, the revoked user signa-

tures must be resigned by one of existing authorized user to ensure the intactness of data.

Let uk (1 ≤ k ≤ d, k ̸= l) be the revoked user and ul valid non-revoked user respectively

in the group. This procedure involves some interactions among uk, ul and CSP. Besides, it

is required that uk, ul and CSP are online simultaneously during the revocation procedure.

108



Table 7.4: RVT after revocation

SN BRN(1≤i≤n,1≤j≤c) BVN UID

1 b11 1 2

2 b31 2 3

3 b41 1 2

4 b51 1 2

5 b91 1 3

6 b61 1 2

7 b71 1 2

8 b81 1 2

1. CSP randomly chooses η ∈ Z∗
p and sends η to ul by a secure channel.

2. ul computes and sends (ξ1 = (Dl)
1
xl , ξ2 = η · xl) to uk.

3. uk computes and sends (Γ1 =
ξ1
xk

Dk

,Γ2 =
ξ2
xk

) to CSP.

4. Upon receiving (Γ1,Γ2), CSP calculates Γ3 =
Γ2

η
=

xl
xk

. Then the CSP transforms

the tag σk′ for the block mk′ (where [σk′ ,mk′ ](1 ≤ k′ ≤ n) generated by uk) as,

σk′
′ = (Γ1

mk′ · σk′)Γ3 (7.5)

5. After resigning the blocks, CSP updates RL to RL′.

6. TPA updates the existing RL to RL′ and updates the RVT as shown in the Table 7.4.

Table 7.4 shows status of the table after revocation of the user 1 from the group.

7.5 Security Analysis

We perform the formal security analysis of CLMRPIA by considering type I/II/III adver-

saries. The security analysis of CLMRPIA depends on the hardness of DL and CDH prob-

lems in the ROM.
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7.5.1 Correctness

As the data is not under the direct control of the user, every user wants to be assured that

their are correctly maintained. The proposed scheme CLMRPIA provides integrity proof

which identifies the data corruption at the CSP if some part of the data is modified or

deleted by CSP.

Theorem 1 In the proposed scheme, if every entity performs honestly and correctly, the

CSP passes the verification if all the challenged blocks are correctly stored at the server.

Proof: We prove this by verifying the Eq. 7.4.

e (σ, g)
?
= e

(∏
i∈I

c∏
j=1

wjH2(ωi)
vi , PKi

)
e

(
H1(IDi)u

µ, g0

)

LHS = e (σ, g)

= e

((∏
i∈I

σvii,j

)∑c
j=1 wj

, g

)

= e

(((∏
i∈I

H2(ωi)
xi · (Diu)

bi,j
)vi)∑c

j=1 wj

, g

)

= e

(((∏
i∈I

H2(ωi)
xi.vi · (Diu)

bi,j ·vi
))∑c

j=1 wj

, g

)

= e

(((∏
i∈I

H2(ωi)
xi.vi · (Diu)

bi,j ·vi
))∑c

j=1 wj

, g

)

= e

(∏
i∈I

H2(ωi)
xi.vi

∑c
j=1 wj , g

)
e

(∏
i∈I

H1(IDi)u
αbi,j ·vi

∑c
j=1 wj , g

)

= e

(∏
i∈I

c∏
j=1

wjH2(ωi)
vi , gxi

)
e

(
H1(IDi)u

∑l
i=1 bi,j ·vi

∑c
j=1 wj , gα

)

= e

(∏
i∈I

c∏
j=1

wjH2(ωi)
vi , PKi

)
e

(
H1(IDi)u

∑l
i=1

∑c
j=1 bi,jviwj , gα

)

= e

(∏
i∈I

c∏
j=1

wjH2(ωi)
vi , PKi

)
e

(
H1(IDi)u

µ, g0
)

= RHS

110



Hence, data is stored correctly and maintaining with consistency.

7.5.2 User revocation correctness

The proof of correctness of Eq. 7.5 is as follows:

σ′
k′ =

((
Dl

xk/xl

Dk

)mk′

H2(ωk)
xk(Dk · u)mk′

) xl
xk

=
(
Dl

xk·mk′
xl H2(ωk′)

xkumk′
) xl

xk

= H2(ωk′)
xl(Dl · u)mk′

where σ′
k′ is the valid signature of mk′ by the non revoked user ul.

7.5.3 Soundness

Here, we prove CLMRPIA is existentially unforgeable against A1, A2, A3 as defined in

Section 7.2.4

Theorem 2: Our proposed scheme CLMRPIA achieves existentially unforgeability against

adaptive chosen-message attack if for all probabilistic polynomial- time type I adversaries

A1, the advantage of A1 winning the experiment is negligible in the ROM assuming CDH

problem is hard in G1.

Proof: If A1 wins the Game 1 with a nonnegligible probability ϵ ; then, we could sim-

ulate a challenger B to solve the CDH problem with a non-negligible probability. Initially,

B contains two hash lists LH1 and LH2 and a public key list LPK which are initially empty.

A1 and B interacts as follows.

• H1-Query: A1 can query an H1 with identity ID. B verifies whether LH1 contains

(ID, PKID). If it holds, B returns H1; otherwise , B returns a random H1 to A1 and

then adds (ID,XID, PKID, H1) into LH1 .

• H2-Query: A1 can query an H2 with identity ID. B verifies whether LH2 contains

(ID, g0, PKID). If it holds, B returns H2; otherwise , B returns a random H2 to A1

and then adds (ID, g0, PKID, H2) into LH2 .
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• Setup: In this algorithm, B takes a secure parameter λ and B produces the public

parameters set including KGCs master public key and then sends it to A1.

• PartialPvtKeyGen: Upon receiving a PartialPvtKeyGen query from A1 with identity

IDi, B does the following.

1. B returns ⊥, if IDi has not been created.

2.Else, if IDi has been created and ID ̸= ID∗, B returns Di from LPK . Otherwise,

B returns failure and terminates.

• SecretValue: A1 can submit IDi to this oracle. B looks up LPK and returns xi if IDi

has been created. Else B returns ⊥.

• PublicKeyGen: On receiving such a query fromA1 with identity ID, B returns user’s

public key PKID = (gxID) to A1.

• ReplacePublicKey: A1 can submit (IDi, PK
′
i) to replace the public key with IDi to

this oracle. If IDi has been created, B replaces user’s original public key PKi with

PK ′
i and then adds (ID, PK ′

i) to LPK . Otherwise, it outputs ⊥.

• ReplicaGen : A1 selects a file F to query B for the replicas with the identity IDi. B

runs the ReplicaGen algorithm to compute a set of replicas F̄ = { ¯bi,j} and returns

it to A1.

• SignGen : A1 invokes a SignGen query for bi,j . B ouputs ⊥ if IDi has not been

created. Otherwise, B uses the lists LH1 , LH2 and LPK to compute the signature σi,j

for IDi on bi,j .

• Forge: After all above queries, finally, A1 outputs a signature σ∗
i,j on a block b∗i,j . We

then show the probability that A1 successfully wins the game as follows.

1. E1: B does not abort Game 1 in query Partialpvtkeygen.

2. E2: A1 outputs forgery of a signature σ∗
i,j on b∗i,j for IDi.

3. E3: After event E2 happens, the signature σ∗
i,j satisfies IDi = IDi∗.
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From the simulation, we have

Pr[E1] ≥ (1− pH1

p
)pH1

Pr[E2|E1] ≥ ϵ

Pr[E3|E1 ∧ E2] ≥
ps
p

From these equations, the probability that B could solve the given CDH problem is

Pr[E1 ∧ E2 ∧ E3]

= Pr[E1]Pr[E2|E1]Pr[E3|E1 ∧ E2]

≥ ps
p
(1− pH1

p
)pH1ϵ

From above equations, we conclude that B cannot break the CDH problem since ϵ is non-

negligible. Hence, CLMRPIA is secure against adversary A1 in the ROM.

Theorem 3: In the ROM, if type II adversary A2 wins the Game 2 in polynomial-time

with a non-negligible probability, then there exists another algorithm B can resolve the

CDH problem instance with a non-negligible probability.

Proof: If A2 wins the Game 2 with a nonnegligible probability ϵ; then, we could constuct

an algorithm that simulates a challenger B to solve the CDH problem. A2 and B interacts

as follows.

• Setup: Initially, B chooses a random value α ∈ Z∗
p as the msk, computes public key

g0 = gα, and returns public parameters params = {p,G1, GT , e, g0, g,H1, H2, h}

and α to A2. B picks an identity ID as a challenge identity and answers the H1, H2

andReplicagen, SignGen oracles as it does in the proof of the theorem 2. B interact

with A2 as follows.

• SecretValue: A2 can submit IDi to this oracle. B looks up LPK and returns xi if IDi

has been created. Else B returns ⊥.

• ReplacePublicKey: A2 can submit (IDi, PK
′
i) to replace the public key with IDi to

this oracle. If IDi has been created, B replaces user’s original public key PKi with
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PK ′
i and then adds (ID, PK ′

i) to LPK . Otherwise, it outputs ⊥.

• Forge: Finally, A2 generates σ∗
i,j for b∗i,j . We then show the probability that A2

successfully wins the Game 2 as follows.

1. E1: B does not abort Game 2 in SecretValue query.

2. E2: A2 outputs forgery of a signature σ∗
i,j on b∗i,j) for ID.

3. E3: After event E2 happens, the signature σ∗
i,j satisfies ID = ID*.

From above process, we have

Pr[E1] ≥ (1− pH1

p
)pH1

Pr[E2|E1] ≥ ϵ

Pr[E3|E1 ∧ E2] ≥
ps
p

From above equations, the probability that B could solve the given CDH problem is

Pr[E1 ∧ E2 ∧ E3]

= Pr[E1]Pr[E2|E1]Pr[E3|E1 ∧ E2]

≥ ps
q
(1− pH1

q
)pH1ϵ

we conclude that B cannot break the CDH problem since ϵ is nonnegligible. Thus, A2

cannot win the Game 2. Therefore, proposed CLMRPIA is secure against A2 in the ROM.

Theorem 4: In the CLMRPIA, it is computationally infeasible for malicious cloud or

an adversary to forge a proof or signature for the given shared dataM and its signatures σ,

that can succeed in the verification process, if the CDH and DL problem is hard in bilinear

group G1.

Proof: We prove this by knowledge proof method with the help of several games similar

to the literature [78, 44]. If the CSP can pass the TPA’s verification, then, it is possible to

extract challenged data blocks by conducting repeated interactions. We can attain our proof

by a series of games.

Game a. It simply represents the game defined for A3 in Section 7.2.4
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Game b. It is similar to the Game a except one difference. Challenger B keeps a series of

file tags he produces. IfA3 submits one valid tag generated by SignGen() rather than by B;

B will abort the game.

Analysis: If A3 makes B termnate in Game b, it is easy to employ A3 to design an

attacker to break the SignGen() algorithm. Therefore, we can conclude that all Fid,m and

r that interact with A3 are generated by B.

Game c. It is similar to Game b, with one distinction. Challenger B maintains a list of

responses to the queries of adversary A3. If A3 wins the game, but with the aggregate sig-

nature σ is not equal to σ =
(∏

i∈I σ
vi
i,j

)∑c
j=1 wj

∈ G1 generated by the challenger based

on correct file, then challenger A3 will discontinue.

Analysis. Assume that (σ, µ) is a correct proof provided by the honest prover (honest

cloud). From the correctness of the CLMRPIA, we know that following verification equa-

tion holds.

e (σ, g) = e

(∏
i∈I

c∏
j=1

wj ·H2(ωi)
vi , PKi

)
e

(
H1(IDi)u

µ, g0

)
(7.6)

Assume that the adversary A3 provides a forged response (σ′, µ′). Because the forgery is

successful, the following verification equation holds.

e (σ′, g) = e

(∏
i∈I

c∏
j=1

wjH2(ωi)
vi , PKi

)
e

(
H1(IDi)u

µ′ , g0

)
(7.7)

Obviously, µ′ ̸= µ, otherwise σ′ = σ, which contradicts our above assumption. Here, we

define ∆µ = µ′ − µ(∆µ ̸= 0). We will build a simulator that finds a solution to the CDH

problem if the adversary makes the challnger B abort with a non-negligible probability.

Now, dividing Eq.7.6 by Eq.7.7, we obtain e(σ
′

σ
, g) = e(u∆µ, g0) = e(gahb)∆µ, g0) =

e(ga∆µ.hb∆µ, g0) Thus, we can know that,

e(σ′.σ−1.(gα)−b∆µ, g) = e(h, gα)a∆µ (7.8)

From the Eq.7.8, we know that hα = (σ′.σ−1(gα)−b∆µ)1/a∆µ. The probability of a∆µ =
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0mod p is 1/p which is negligible since p is a very large prime. Therefore, we can solve

the CDH problem with a probability of 1− 1/p, which contradicts the assumption that the

CDH problem in G1 is computationally infeasible.

Game d. It is the same as Game c, with one dissimilarity. As before, challenger A3 still

keeps and observes CLMRPIA protocol instances. For one of these instances, If A3 wins

the game and aggregate message µ′ in the forged proof differs from the expected µ in the

correct proof P, then the challenger B will discontinue.

Analysis. Assume that adversary A3 wins the Game d with non-negligible probability.

We will construct a simulator that can use the adversary to solve the DL problem. The

simulator is given g, h ∈ G1, its goal is to find a value α satisfying h = gα. Furthermore,

given g, h ∈ G1, we can obtain u = gahb ∈ G1, where a, b ∈ Zp. The simulator acts like B

in Game c, but with the following differences:

Assume that (σ, µ) is a correct proof P provided by the honest server. From the correctness

property of CLMRPIA, we know that the following equation holds.

e (σ, g) = e

(∏
i∈I

c∏
j=1

wjH2(ωi)
vi , PKi

)
e

(
H1(IDi)u

µ, g0

)
(7.9)

Assume thatA3 provides a forged proof (σ′, µ′), which is different from the honest one.

Because the forgery is successful, the following equation holds.

e (σ′, g) = e

(∏
i∈I

c∏
j=1

wjH2(ωi)
vi , PKi

)
e

(
H1(IDi)u

µ′ , g0

)
(7.10)

Based on the above two verification Eq. 7.9 and 7.10, we have uµ = uµ
′ , and can further

imply that 1 = u∆µ = (gahb)∆µ = ga∆µ · hb∆µ. Therefore, we can find the solution to the

DL problem. More specifically, given g, hx ∈ G1, we can compute h = gx = g−
a∆µ
b∆µ =

g−
a
b . However, b is zero only with the probability 1/p, which is negligible because p

is a large prime. Then, we can get a solution to the DL problem with a probability of

1 − 1/p which contradicts the assumption that the DL problem in G1 is computationally

infeasible. Based on the above discussed games, we can conclude that the CLMRPIA

achieves unforgeability under CDH and DL assumptions.
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Finally, we construct a knowledge extractor to extract all challenged sets of n data

blocks bi,j (i ∈ I, |i| = n) using n different sets of random coefficients vi (i ∈ I, |i| = n)

and executing n times different challenges on the same data blocks bi,j (i ∈ I, |i| = n).

The knowledge extractor can accumulate n different linear equations µ1, ..., µn. By solving

these equations, the knowledge extractor can extract bi,j (i ∈ I, |i| = n). It means that if

the CSP can pass the TPA’s verification successfully, it must correctly maintain the user’s

data intact.

7.5.4 Comparative summary

We compare the security of CLMRPIA with some of the existing ID-based [65, 66, 87]

schemes against A1, A2, A3 whose power has been defined in Section 3.5 and is presented

in Table 7.5. As shown in Table 7.5, schemes [65, 66, 87] does not free from key escrow

problem. Our proposed scheme, however, satisfies the requirements of public auditing

including key escrow and is proven to be secure against all adversaries A1, A2 , A3.

Table 7.5: Security comparison

Schemes A1 A2 A3 Type

Peng et al. [65] No No Yes IBC

Peng et al. [66] No No Yes IBC

Yu et al. [87] No No Yes IBC

Proposed scheme Yes Yes Yes CL-PKC

A1: Type I Adversary, A2: Type II Adversary , A3: Type III Adversary

7.6 Performance Analysis

In this section, we provide the performance evaluation and experiment results of proposed

scheme.

7.6.1 Performance Evaluation

In this section, we evaluate the computation cost and communication cost of the proposed

scheme theoretically as follows. For simplicity, we define some notations used for perfor-
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mance assessment in Table 7.6.

Table 7.6: Notations

Notation Description

n Number of blocks

c Number of replicas

Cψ Time cost of Pseudo Random Function

Cexp Time cost of single exponentiation on G1 or GT

Cmul Time cost of single multiplication on G1 or GT

Ce Time cost of single bilinear pairing

n̄ Number of challenged blocks

Cenc Time cost of encryption on raw data block

CH Time cost of hash operation the on data blocks

1Hash Denotes the size of hash value in bits

1Sig Denotes the size of one digital signature in bits

s Denotes the sector number

| G1 | Denotes the size of an element in G1

| GT | Denotes the size of an element in GT

| p | Denotes the size of an element in Z∗
p

7.6.1.1 Computation cost

We give the computation cost of the four algorithms, namely, ReplicaGen, SignGen,

ProofGen, ProofV erify which play the significant role in our proposed CLMRPIA

scheme.

Assume that the data user in the group stores c replicas on CSP. Each replica has n

blocks. To generate c replicas, the algorithm ReplicaGen needs to run and its computation

cost is ncCψ. To generate the signatures for all replicas, the algorithm SignGen costs

2ncCexp + 2ncCmul. The CSP runs the ProofGen to generate the integrity proof and

its computation cost is n̄Cexp + n̄cCmul. To check the integrity, TPA runs the algorithm

ProofV erify with a cost of 3Ce + 2n̄(Cexp + cCmul). We summarize the computation
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Table 7.7: Comparison of computation costs ( n data blocks with c replicas and n̄ chal-
lenged blocks)

Schemes ReplicaGenSignGen ProofGen ProofVerify

Barsoum et
al. [53]

cCenc ncCexp + n(c −
1)Cmul+ncCH

n̄Cexp + c(n̄ −
1)Cmul

2Ce + (n̄c +
1)Cexp + n̄cCmul

Liu et al.
[54]

ncCψ 2ncCexp +
2ncCmul+ncCH

n̄Cexp + c(n̄ −
1)Cmul

2cCe + (n̄c +
c)Cexp + n̄cCmul

Peng et al.
[65]

ncCψ (2n + 1)Cexp +
nCmul

1Ce + (n̄ +
2)Cexp + n̄cCmul

1Ce + (n̄ +
1)Cexp + n̄cCmul

Yu et al.
[87]

cCenc (2nc + 1)Cexp +
ncCmul

n̄Cexp + c(n̄ +
1)Cmul

cCe + (n̄ +
1)Cexp + (n̄ −
1)cCmul

Our
scheme

ncCψ 2ncCexp +
2ncCmul

n̄Cexp + n̄cCmul 3Ce+ 2n̄(Cexp +
cCmul)

overhead of our proposed scheme by comparing it with some of existing state of the art PKI

based [53, 54] and ID-based [65, 87] multi-replica cloud auditing schemes from different

aspects and the results are shown in the Table 7.7.

From Table 7.7, in our scheme, we can observe thatReplicaGen algorithm is faster than

[53, 87] and almost as fast as that of [54, 65] because pseudo-random functions are faster

than symmetric encryptions. SignGen and ProofGen algorithms are faster than those of

[53, 54, 65, 87]. Similarly, ProofV erify algorithm is faster than those of [53, 54, 87] but

slightly slower than [65] since it requires one more pairing operation, but our scheme does

not suffer from key escrow problem.

7.6.1.2 Communication Cost

Table 7.8 shows the communication cost of the proposed scheme. The communication

cost refers to the costs used for transmitting a random challenge from TPA to CSP and

the corresponding proof from CSP to TPA. It mainly comes from the integrity auditing

phase includes three algorithms Challenge, ProofGen, ProofV erify according to the

description of Section 7.4. In the phase of integrity auditing, the TPA sends a challenge

C = (Fid, n, τ1, τ2, τ3) to the cloud. The size of an auditing challenge is (log2 p + 3 | p |
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Table 7.8: Comparison of communication costs ( n data blocks with c replicas and n̄ chal-
lenged blocks)

Schemes Challenge Proof Type

Barsoum et
al. [53]

2log2p+ | p | 1 | G1 | +s c log2 p PKI

Liu et al.
[54]

n̄clog2 p+ | G1 | | p |+| G1 | +n̄clog2p+
1Sig

PKI

Peng et al.
[65]

1 | G1 | +1 | GT |
+3log2p+ | Fname |

1 | GT | +1Hash +
1Sig

IBC

Yu et al.
[87]

n̄log2p+ 3 | p | | p | +1Sig IBC

Our
scheme

log2p+ 3 | p | + | Fid | | p | +1 | G1 | CLPKC

+ | Fid |) bits. On receiving the random challenge C from the TPA, the CSP generates

a corresponding proof P = (µ, σ) to reply the TPA. The size of the proof P = (µ, σ) is

| p | + | q | bits. Therefore, for one auditing task, the entire communication overhead

is (log2 p + 4 | p | + | Fid | + | q |) bits. We compare the communication overhead

of our proposed scheme with some of existing PKI based [53, 54] and ID based [65, 87]

multi-replica cloud auditing schemes. We summarize the result in Table 7.8.

From the Table 7.8, we can see that the communication cost for integrity proof in our

scheme is smaller than all existing schemes [53, 54, 65, 87] because it returns only one

element in G1 and one element in Z∗
p . Similarly, the communication cost of the challenge

message is lower than those of [54, 65, 87] and slightly higher than [53], but the overall

communication cost of our scheme is smaller than all existing schemes [53, 54, 65, 87].

7.6.2 Experimental Results

We implemented CLMRPIA on a system with Intel i5-7200U CPU @ 2.50 GHz and 8 GB

RAM. All experiments are carried out in python language using crypto-0.42 library [88].

The implementation uses a symmetric super singular curve where the base field size is 512-

bit and security parameter (λ) fixed to 160-bits, which has the equivalent security level of
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Fig. 7.3. Computation cost: (a) Computation Time of ReplicaGen algorithm (b) Time
consumption of SignGen algorithm (c) Computation cost of ProofGen algorithm (d) Com-
putation cost of ProofVerify algorithm (e) Computation cost of revocation process for dif-
ferent number of users (f) Computation cost of dynamic operations

121



1024-bit RSA. All results are mean of 20 trials. The experimental results for ReplicaGen,

SignGen, ProofGen (Server-cost), ProofVerify (TPA-cost), revocation and data dynamics

are obtained and plotted as graphs from Fig. 7.3a to Fig. 7.3f.

Fig. 7.3a shows the comparison of time consumption of ReplicaGen algorithm. From

Fig. 7.3a, We observe that the time needed for ReplicaGen algorithm in all schemes in-

creases linearly as the number of replicas increases in the system. The ReplicaGen phase

is almost as fast as that PKI-based schemes like MuR-DPA [54] and ID-based scheme such

as [65], because computation of pseudo-random functions are faster than encryptions on

the data file. Fig. 7.3b shows the comparison of time consumption of SignGen algorithm.

From Fig. 7.3b, We notice that CLMRPIA is efficient than other existing schemes [54, 65]

because of utilization of certificateless signatures. This is carried out only once during

the life time of the system. Fig. 7.3c illustrates the comparison of computation costs for

ProofGen. From Fig. 7.3c , it is obvious that our CLMRPIA has the better efficiency than

existing PKI-based [54] and ID-based schemes [65]. Fig. 7.3d illustrates the comparison

of computation costs of ProofVerify. From Fig. 7.3d, we can observe that verification

time of CLMRPIA is lesser than PKI based scheme [54], since the CLMRPIA has less

exponential and multiplication operations in group but consumes slightly more time than

ID-based schemes [65]. Fig. 7.3e depicts the computation overhead of revocation process

for different number of users against different number of blocks to be resigned. From Fig.

7.3e, we can see that the cost of revocation is linear to the number of users in the group.

Fig. 7.3f. shows the computation cost of dynamic operations such as modification, inser-

tion and deletion. From Fig. 7.3f, we can learn that the time of modification and insertion

operations increases with the number of blocks and almost identical, while deletion takes

negligible constant time because it requires no computations.

7.7 Summary

In this chapter, we have studied the problem of creating multiple copies of shared dynamic

data file and verifying the integrity of the data on untrusted cloud servers.

In order to address the complex certificate management in existing PKI-based and key
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escrow problems in ID-based data integrity auditing schemes, we proposed a novel cer-

tificateless multi-replica public integrity auditing scheme for dynamic shared data, where

the user is capable of accessing and updating copies of blocks stored on the remote cloud

servers. To the best of our knowledge, the proposed scheme is the first to simplify cer-

tificate management in PKI based schemes and eliminates key escrow problem in ID-

based schemes simultaneously. A novel authenticated data structure, RVT was proposed

to achieve efficient dynamic operations such as insertion, modification and deletion over

data blocks in all replicas at once. It also supports secure user revocation when a user is

revoked from the group. We proved the security of CLMRPIA against type I, type II and

type III adversaries under the assumption that the DL and CDH problem are hard in ROM.

The performance is evaluated by theoretical analysis, experimental results, and compared

the results with the existing state of the art schemes. Extensive security and performance

analysis proved that CLMRPIA is highly secure and efficient.

In future, the CLMRPIA can be further extended to support the feature of “error local-

ization” and to support big data auditing.
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Chapter 8

Efficient Pairing Free Certificateless

Public Integrity Auditing for Shared Big

Data in the Cloud (EPF-CLPA)

8.1 Introduction

In this chapter, we propose certificateless public integrity auditing for shared big data.

The big data refers to the massive amount of data generated by digital devices (e.g., IoT,

mobile devices), communication technologies (e.g., Internet, social networks), business

applications, and many more [89]. To verify the integrity of shared big data, we propose

a certificateless public auditing scheme for shared big data (EPF-CLPA) by leveraging

elliptic curve cryptography (ECC) which does not require pairings. The contributions are:

• EPF-CLPA is designed based on ECC, which does not employ bilinear pairings.

Hence, the computation and communication cost is substantially reduced.

• EPF-CLPA simplifies the certificate management and eliminates the key escrow prob-

lems exist in the PKI-based and ID-based PDP schemes, respectively.

• EPF-CLPA is further extended to support the batch auditing, where the TPA can

handle multiple tasks concurrently. Since the cloud aggregates the multiple proofs

and EPF-CLPA is pairing-free, the auditing performance is greatly improved.
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• Additionally, our scheme also supports user revocation. Whenever a user is revoked,

the GM will not generate the time key for the revoked user. Without an updated time

key, any user cannot generate valid signatures for data blocks.

• We also performed security analysis that proves EPF-CLPA is secure against type

I/II/III/IV adversaries based on the intractability of elliptic curve discrete logarithm

problem (ECDLP).

• The theoretical analysis and related experimental results show that EPF-CLPA scheme

is efficient than existing certificateless auditing schemes, and more suitable for shared

big data auditing.

8.2 Problem Statement

Here, we present problem statement, its description followed by the architecture, design

goals, adversary model and the security model of the EPF-CLPA scheme.

To avoid the costly certificates in PKI based schemes [34, 85, 76, 38, 75, 39, 40, 41]

and to mitigate the key escrow problem in IBC [42, 43, 44] simultaneously, certificateless

shared data auditing schemes [62, 63] have been proposed based on certificateless public

key cryptography (CL-PKC)[48]. CL-PKC is a model for the use of public key infras-

tructure, which avoids the inherent escrow of identity-based cryptography and yet which

does not require certificates to guarantee the authenticity of public keys. In such CLPKC

schemes, the complete private key of the user consists of two parts, the first one is gen-

erated by the key generation center (KGC), and the user itself generates the second one

(secret value). However, the schemes [62, 63] require pairing operations, causing a huge

computation overhead because the pairing operation is computation intensive. In addition,

they are very inefficient for the verifier to handle batch auditing. Hence, [62, 63] are not

suitable for shared big data auditing as they incur a huge burden of computation. More-

over, in these schemes [62, 63] the revocation process involves resigning of all revoked

data blocks, which further increases the computation overhead when applying for big data.

Therefore, designing an efficient certificateless auditing scheme for shared big data without

employing pairings is necessary.
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In this scheme, initially, the KGC generates the public parameters param, master secret

key (msk), and master time key using a system security parameter (λ). Then publish

param and keeps the msk secret. To join the group, a user submits a request to the GM.

Accordingly, the GM generates a group key and securely forwards it to the user. Then the

user sends his/her identity and group key to the KGC in a secure way to get the partial

private key Di from KGC. According to the request of the user, the KGC generates Di

using msk, and Di will be sent to the corresponding user using a secure channel. On

receiving Di, the user generates his/her own complete private key by the combination of

Di from KGC, time key from GM, and randomly chosen secret key by himself/herself.

After creating the raw data file, the user divides and computes signatures using a private

key for all blocks. Then user uploads data blocks along with corresponding signatures to

the cloud and deletes them from the local hardware. Later, to check the integrity, TPA

challenges the cloud by selecting blocks randomly. Upon receiving the random challenge,

the cloud generates a corresponding proof. After receiving the proof, the TPA can check

the correctness of data. Finally, when a user is revoked, GM updates the time-key of every

non-revoked user and forwards existing RL to the CSP.

8.2.1 Architecture

As shown Fig. 8.1, the system architecture of EPF-CLPA consists of four different entities.

1. User Group: A user group includes group members and a group manager (GM). GM

is responsible for creating the group. We assume the GM and group users are honest.

Each user can access outsourced shared data. The GM detects and refuses to send

new time key for the revoked user to realize revocation.

2. CSP: It is an untrusted entity, which provides storage service and necessary compu-

tation resources.

3. TPA: It is assumed to be faithful by user and CSP. It has more expertise and capability

than users to check the correctness of the data. Also convinces both cloud server and

users by providing unbiased auditing results.
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Fig. 8.1. System model of EPF-CLPA

4. KGC: An entity which generates the partial private key for the group user according

to the unique identity of the user. Also generates master time key for the GM.

8.2.2 Design Goals

• Public verifiability. Anyone in the system who knows public key can verify the

integrity of data in cloud.

• Correctness. The TPA can correctly verify the integrity of data by generating the

challenge message for the CSP with randomness in the cloud.

• Soundness. The cloud server cannot pass auditing process if the data is altered.

• User revocation. Once a user is revoked from the group, all non revoked user’s

private key should be updated by sending the new time-key.

• Batch auditing.The verifier should be able to carry out several auditing tasks simul-

taneously from several users from the group.

• Efficiency. EPF-CLPA should reduce the computation overhead of auditing by em-
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ploying the ECC.

8.2.3 Adversary Model

• Type-I Adversary (A1): A1 tries to replace the user’s public key with a false key even

though he could not have access to KGC’s (msk) nor the user partial private key.

• Type-II Adversary (A2): A2 (malicious-but-passive KGC) tries to mount an imper-

sonation attack having access to the msk of the KGC.

• Type-III Adversary (A3): A3 (malicious revoked user) tries to generate a valid sig-

nature after time period Γi, but A3 cannot get the user time key after Γi.

• Type-IV Adversary (A4): A4 (malicious CSP) tries to generate a forged proof to pass

the verification.

8.2.4 Security Model

Among the four adversaries, A1 and A2 and A3 try to forge the signature of blocks and

A4 tries to forge the proof to pass the auditing. We define four games Game 1, 2, 3 and 4,

whereA1,A2,A3 andA4 interact with their corresponding challengers C1, C2, C3 and C4,

respectively.

Game 1 (for a type I adversary A1 )

Setup: Initially, challenger C1 runs Setup to get the msk and params. Then, C1 gives

params to A1) And then, master time key ts is forwarded to the GM by a secure channel

and keeps the msk to itself secretly.

Queries: A1 could access the following oracles adaptively controlled by challenger C1.

• Create user Oracle: It takes IDi ∈ {0, 1}∗ as an input. It returns nothing if ID has

been created before. Otherwise, C1 executes PartialPvtKeyGen, SetSecretValue, Set-

PublicKey to obtain Di, xi and PKi for IDi. Finally, it adds < IDi, dDi, xi, PKi >

to the Llist list and C1 returns PKA to A1.

• Partial Private Key Oracle: On receiving this query on IDi by adversaryA1, C1
look up the listLlist for the appropriate entry to the IDi. If the tuple< IDi, dDi, xi, PKi >
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is not found, ⊥ is returned. Otherwise, the partial private key dDi is returned.

• Secret V alue oracle: On input of a query on the identity ID by adversary A1, C

returns the secret value xi to A1.

• Time Key Update oracle: A1 runs this oracle with IDi and Γi as inputs, C1 runs

the TimeKeyUpdate algorithm and returns a time key dIDΓi
to A1.

• Public Key Replacement oracle: A1 can replace the user IDi’s original PKi with

a new value of his choice PK∗
i . C1 keeps record of this replacement.

• SignGen oracle: After receiving this request on mi, a time period Γi, C1 executes

SignGen algorithm to produce σi for mi under identity IDi and returns it to A1.

Forgery: At last, A1 outputs {σ∗
i ,m

∗
i ,Γ

∗
i } as its forgery with identity ID∗

i . A1 is regarded

to win this game if the following conditions are satisfied:

• 1← V erify(σi,mi, param,Γ
∗
i ID

∗, PK∗
i )

• For ID∗, the query Partial Pvt Key oracle has not been submitted;

• A1 has not submitted never before the tuple (m∗
i , ID

∗
i ,Γ

∗
i ) to the SignGen oracle

with the public key PK∗
ID.

Game 2 (for type II adversary A2):

Setup: Initially, challenger C obtain msk and params by running the Setup, and then,

returns both to A2.

Queries: A2 could access the all oracles ( similar to A1) except Partial Pvt Key Oracle as

defined earlier in Game 1 because A2 knows msk.

Forgery: Eventually, adversary A2 outputs tuple {σ∗
i ,m

∗
i ,Γ

∗
i } as its forgery with the iden-

tity ID∗
i . A2 is said to win the game if this tuple satisfies the following conditions:

• 1← V erify(σi,mi, param,Γ
∗
i , ID

∗, PK∗
ID)

• For ID∗, the query Secret V alue oracle does not occur in the game;

• The tuple (m∗
i , ID

∗,Γ∗
i ) has never been sent to the SignGen oracle.

• A2 has never requested the Public Key Replacement query on ID∗.

Game 3 (for A3):

Setup: It is similar to Game 1.

Queries: In this phase, A3 could access all the oracles ( similar to that ofA1) as defined in

Game 1.
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Forgery: Finally, adversary A3 outputs tuple {σ∗
i ,m

∗
i ,Γ

∗
i } as its forgery with the identity

ID∗
i and wins the the game if the following requirements are satified:

• 1← V erify(σi,mi, param,Γ
∗
i , ID

∗, PK∗
ID)

• The tuple (m∗
i , ID

∗,Γ∗
i ) has not been sent to the oracle SignGen.

• (ID∗
i ,Γ

∗
i ) has never been queried to the Time Key Update oracle.

Game 4 (for A4) :

• Setup: C generates the params, msk. msk is kept secret by C, but params are

forwarded to the A4.

• SignGen Query: A3 selects the tuple (ID,mi) and forwards it to C for the signature.

C generates and returns the signature of mi toA3 by running the algorithm SignGen.

• Challenge: C generates a challenge message randomly Chal and sends it to A4 and

requests A4 to reply with the corresponding proof information P.

• Forge: A4 generates P and sends it to C4, for the received challenge message Chal.

A4 is said to win the game, if P passes the validation check and the blocks in P are

incorrect.

8.3 Algorithmic Framework

The algorithms of our proposed scheme are defined as follows.

• Setup(1λ)→ (param,msk). It takes λ as input and outputs msk and param.

• Join(ID)→ s0. It takes the identity (ID) of the user as input and outputs group key

s0 as output.

• PartialPvtKeyGen(param,msk, IDi)→ Di. It takes the param,msk, user iden-

tity IDi as input and outputs a partial private key Di.

• SetSecretV alue(param, IDi) → xi. It takes the param, msk, IDi as input and

outputs a secret value xi.

• SetPubKey(param, xi) → PKi. It takes param, xi as input and outputs a public

key PKi.

• TimeKeyUpdate(param, ts, ID, Ti). It takes the param, time key ts, ID, time

period Γi as inputs and returns a new time key dIDTi for the user.
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• SignGen(param, Si,M) → σi. It takes param, Si, and data blocks {mi}1≤i≤n as

input and outputs a signature set {σi}1≤i≤n .

• Challenge(Minfo) → C. It takes the abstract information Minfo about the file as

input and outputs a random challenge C. Minfo include file name, number of data

blocks, etc.

• ProofGen(mi, {σi}1≤i≤n, C) → P . It takes mi, {σi}1≤i≤n and C as input and

outputs a proof P .

• ProofV erify(param, PKi, C, P ) → 0/1. It takes the param, PKi, C and P as

input and returns auditing result as 1 for success or 0 for failure.

• Revoke(RL, {id1, id2, ...idk}) → RL′. It takes current revocation list (RL) and

different user ID’s as input and outputs the new RL′.

8.4 Detailed Construction

Setup

KGC generates params, msk and master partial secret key with the given security param-

eter λ by conducting following steps:

1. KGC produces a group G with prime order q from elliptic curve E defined over Fp,

where P is a random generator of G.

2. Choose s, v ∈ Z∗
q randomly and computes yT = vP , and keeps s secretly, the msk.

KGC sends v to a GM for generating time key as the time master key by a secret

channel.

The KGC picks four secure cryptographic hash functions; H1 : {0, 1}∗ → Z∗
q , H2 :

{0, 1}∗ ×G→ Z∗
q , H3 : {0, 1}∗ → Z∗

q .H4 : {0, 1}∗ → Z∗
q .

3. KGC computes the master public key Ppub = sP and publishes

params = {G, p, q, P,H1, H2, H3, H4, Ppub, yT}.

4. Further, KGC picks γ0 ∈ Z∗
p as master partial key randomly and forwards it to the

GM to generate joining key for the group.

Join

To be a member of the group, initially, user sends a request to the GM. Then, GM generates
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a group joining key s0 as follows.

R0 = γ0 · P (8.1)

h0 = H1(R0, Ppub) (8.2)

s0 = (γ0 + h0 · s) mod q. (8.3)

and sends s0 to the user in a secure way.

PartialPvtKeyGen

After receiving the group key s0 from GM, a user sends both his/her identity ID and s0

to KGC for generating partial private key. On receiving s0, the KGC verifies s0 · P =

R0 + h0Ppub to know the validity of the user. If the user is invalid it outputs ⊥. Else, KGC

generates the partial private key for the user as follows. KGC chooses a random value

r ∈ Z∗
q and computes wID = rP, h1 = H1( ID,wID, P, Ppub, yT ) , dID = r + xh1mod q

and returns DID = (wID, dID) as the user ID’s partial private key.

SetSecretValue

A group user with an identity ID selects a random number xID ∈ Z∗
q and it is kept as secret

value.

SetPublicKey

A Group user with an identity ID computes public key PKID = xIDP using params and

xID.

TimeKeyUpdate

When GM receives a request from a group user with identity ID and a time period Γi

for time key, the GM checks whether the user ID is present in RL or not. If not, the GM

picks a random value rT ∈ Z∗
q and computes wIDT = rTP, h2 = H2(ID,Γi, wIDT ),

dIDT = rT + vh2modq.

After that, the GM returns the time key DIDT = (wIDT , dIDT ) to the user by a secure

channel. After the expiry of the period Γi, DIDTi is invalid. By this step we can ensure the

user revocation.

SignGen

F is a shared file to be outsourced to cloud and is split into n blocks, i.e., F = mi(1≤i≤n).
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User computes a signature for each block mi ∈ Zq(1 ≤ i ≤ n) using a private key as

follows.

1. For i ∈ {1, 2, ..., n}, the user, randomly choose ti ←− Z∗
q and computes Ui = tiP ;

2. h3 = H3(ID, PKID, wID, wIDT ,Γi,mi, Ui, Ppub, yT ),

li = H4( ID, PKID, wID, wIDT ,Γi,mi, Ui, h3)

3. Compute si = miti+ h3xID + li(dID + dIDT ) mod q. Finally, the signature on data

block mi is σi = (Ui, si, wIDi
, wIDΓi

) .

Following this, the user outsources F = {mi} and signatures, σi(1≤i≤n) to the CSP. Later,

the user removes the raw data files and signatures from local records to save space.

Challenge

After storing data in a cloud, an auditing challenge C is generated by TPA to assess the

integrity of file, which is demonstrated as follows:

• Pick a proper subset I of crandomly (c ≤ n) elements from the set [1, n], | I |= c,

and TPA selects a random value vj ∈ Z∗
q ,∀j ∈ I .

• Send the challenge C = {(j, vj)}j∈I to the CSP.

ProofGen

On receiving C = {(j, vj)}j∈I , the server computes data integrity proof P which includes

the data proof and signature proof.

1. Cloud computes Ψ as the linear combinations of sampled blocks

Ψ =
∑
j∈I

vjsj · P (8.4)

2. Meanwhile, the CS computes the aggregated signature.

ψ =
∑
j∈I

vjmj · Uj (8.5)

Then the server returns final proof P = (Ψ, ψ) to the TPA as a response.
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ProofVerify

TPA checks the integrity of the challenged data blocks after receiving the corresponding

proof P = (Ψ, ψ) for the challenge from the server by verifying the following equation.

Ψ
?
=
∑
j∈I

vj

(
Uj + h3PKID + lj(wID + h1Ppub + wIDT + h2yT )

)
(8.6)

If the verification Eq.8.6 holds, the TPA concludes that the data blocks stored in cloud are

properly maintained. Otherwise, TPA arrives at a conclusion that the outsourced file F has

been lost or corrupted.

8.4.1 User revocation

When a group user is revoked, all non-revoked group users will update their time by re-

questing the GM.

• If the user is non-revoked, the GM generates a new time key for the user by checking

the RL, and forwards it through a secure channel.

• If the user is revoked, the GM rejects the users request. Therefore, revoked users

cannot generate valid signatures, as they don’t have the valid time key.

8.4.2 Batch Auditing

In cloud systems, it is tedious, and inefficient for the auditor to check the integrity of shared

big data file by file in terms of both communication and computational overheads. Partic-

ularly, given a set of N different files Ft = {mt,1, ...,mt,nt}, 1 ≤ t ≤ N, 1 ≤ l ≤ nt, it is

desirable to reduces the cost by aggregating integrity checking operations of multiple files

into one challenge. To achieve this, the TPA to carry out integrity verification of N files at

a time. In the batch auditing process, all algorithms are similar to as those of section 8.4

except Challenge, ProofGen and ProofV erify algorithms.

Batch Challenge. The challenge message C = {(j, vj),Msg} forwarded to CSP for au-

diting data file of N users, where Msg includes the information about the users and the

files to be verified.
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Batch ProofGen. Upon receiving challenge information C, the CSP computes

Ψ =
N∑
t=1

∑
j∈I

vj · st,j · P (8.7)

Meanwhile, the server computes the aggregated signature.

ψ =
N∑
t=1

∑
j∈I

vj ·mt,j ·Rt,j (8.8)

Then the server returns final proof as a response P = (Ψ, ψ) to the TPA.

Batch ProofVerify. TPA checks the integrity of outsourced data after receiving P = (Ψ, ψ)

for the challenge from the server by verifying the following equation.

ψ =
N∑
t=1

∑
j∈I

vj

(
Ut,j + h3PKt + lt,j(wID + h1Ppub + wIDT + h2yT )

)
(8.9)

If the verification Eq. 8.9 holds, the TPA concludes that the data blocks stored in cloud are

properly maintained. Else, TPA arrives at a conclusion that the outsourced files F has been

lost or corrupted.

8.5 Security Analysis

We perform a formal security analysis of EPF-CLPA in terms of correctness and unforge-

ability by considering type I/II/III/IV adversaries.

8.5.1 Correctness

Theorem 1. In the proposed EPF-CLPA, the TPA can successfully verify the integrity of

data if all the selected file blocks in the challenge C = {(j, vj)}j∈I and their corresponding

signatures are kept intact in the cloud.

Proof. We prove the correctness of EPF-CLPA by verifying the Eq. 8.6 based on proper-
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ties.

Ψ =
∑
j∈I

vjsj · P

=
∑
j∈I

vj

(
mjtj + h3xID + lj(dID + dIDT )

)
· P

=
∑
j∈I

vj

(
mjUj + h3 · PKID + lj(dID + dIDT )P

)
=
∑
j∈I

vjmjUj +
∑
j∈I

vj

(
h3PKID + lj(r + xh1 + rT + vh2)P

)
= ψ +

∑
j∈I

vj

(
h3PKID + lj(wID + h1Ppub + wIDT + h2yT )

)

The correctness of the verification Eq. 8.9 is elaborated in the following.

Ψ =
N∑
t=1

∑
j∈I

vjst,j · P

=

N∑
t=1

∑
j∈I

vj

(
tt,j + h3xID + lt,j(dID + dIDT )

)
· P

=

N∑
t=1

∑
j∈I

vj

(
Ut,j + h3PKt + lt,j(dID + dIDT )P

)

=
N∑
t=1

∑
j∈I

vj

(
Ut,j + h3PKt + lt,j(dID + dIDT )P

)

=
N∑
t=1

∑
j∈I

vj

(
Ut,j + h3PKt + lt,j(r + xh1 + rT + vh2)P

)

=
N∑
t=1

∑
j∈I

vj

(
Ut,j + h3PKt + lt,j(wID + h1Ppub + wIDT + h2yT )

)

8.5.2 Unforgeability

Here, we prove EPF-CLPA is existentially unforgeable against A1, A2, A3 and A4 as de-

fined in Section 8.2.4.

Theorem 2: EPF-CLPA existentially unforgeable against A1, if the advantage of A1 win-

ning the experiment is negligible in the ROM assuming ECDLP is hard in G.

Proof: If A1 can succeed in the Game 1 described in section 8.2.4 with a non-negligible
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probability ϵ; then, we could simulate a challenger C1 that uses A1 as a block box to find

solution for the ECDLP with a probability

ϵ′ ≥ ϵ
(
(q1 − 1)/q1

)qe
/q1

.

Let (P, xP ) ∈ G be a random instance of the ECDLP. C1’s objective is to find the solution

x through the interactions with A1. Initially, C1 maintains four lists Llist, LlistTK
, H list

3 , H list
4

which are initially empty. Lists Llist and LlistTK
are used to record CreateUser queries and

TimeKeyUpdate queries, respectively. Lists H list
3 , H list

4 are used to record H3 and H4

queries, respectively. A1 and C1 interacts as follows.

q1 denotes number of queries to the random oracle H1 and qe denotes number of queries to

the PartialPvtKeyGen oracle.

• H1-Query: When A1 makes an H1-query with identity IDi. C1 checks whether Llist

contains (IDi, wIDi, dIDi, h1i, xIDi, PKIDi). If it holds, C1 returns h1i; otherwise, C1
picks a random h1i ∈ Z∗

q and returns h1i toA1 then adds (IDi, wIDi, dIDi, h1i, xIDi, PKIDi)

into Llist.

• H2-Query: If A1 makes an H2-query with identity IDi. C1 checks whether LlistTK

contains (IDi,Γi, wIDiT , dIDiT , h2i). If it holds, C1 returns h2i; Otherwise, C1 picks

h2i ∈ Z∗
q and returns to A1 and then adds (IDi,Γi, wIDiT , dIDiT , h2i) into LlistTK

• H3-Query: IfA1 makes anH3-query with identity IDi. C1 checks whetherH list
3 con-

tains (IDi, PKIDi, wIDi, wIDiT ,Γi,mi, Ui, Ppub, yT , h3i). If it holds, C1 returns h3i;

Else, C1 picks h3i ∈ Z∗
q , returns toA1 then inserts (IDi, PKIDi, wIDi, wIDiT ,Γi,mi, Ui, Ppub, yT , h3i)

into H list
3 .

• H4-Query: If A1 makes an H4-query with identity IDi. C1 checks whether H list
4

contains (IDi, PKIDi, wIDi, wIDiT ,Γi,mi, Ui, h3i, li). It returns li if it exists; oth-

erwise, C1 chooses li ∈ Z∗
q randomly then returns to A1. Next, inserts the record

(IDi, PKIDi, wIDi, wIDiT ,Γi,mi, Ui, h3i, li) into H list
4 .

• Setup: C1 chooses x, v ∈ Z∗
q randomly, computes y = xP, yT = vP , and generates

137



params : {k, q,G, P, y, yT , H1, H2, H3, H4}. params forwarded to A1.

• Create-User (ID): C1 maintains a listLlist of the form (IDi, wIDi, dIDi, h1i, xIDi, PKIDi).

when A1 makes a Create − User query with an identity IDi. If IDi has already

been in the list Llist, it simply returns PKIDi. Otherwise, C1 computes partial private

key dIDi, secret key xIDi and public key PKIDi as follows:

– C1 chooses a value xIDi ∈ Z∗
q randomly. and computes PKIDi = xIDiP .

– C1 ri, h1i ∈ Z∗
q randomly, computeswIDi = riP , setsH1(IDi, wIDi, P, Ppub, yT ) =

h1i and computes dIDi = ri + xh1i.

The tuple (wIDi, dIDi) is the user IDi’s partial private key and xIDi is secret value.

Finally, C1 returns PKIDi toA1, and adds the tuple (IDi, wIDi, dIDi, h1i, xIDi, PKIDi)

into the list Llist .

• PartialPvtKeyGen: After receiving a query with identity IDi, C1 does the following.

– If IDi ̸= ID∗, C1 lookup the listLlist for the tuple (IDi, wIDi, dIDi, h1i, xIDi, PKIDi)

and return (wIDi, dIDi) to A1.

– Otherwise C stops the computation and output ⊥.

• TimeKeyUpdate: When receiving a TimeKeyUpdate query on IDi with a time

period Γi, A1 ti ∈ Z∗
q and calculates wIDiT = tiP . Then picks h2i ∈ Z∗

q randomly,

sets H2(IDi,Γi, wIDiT ) = h2i, and calculates dIDiT = ti + vh2i. C1 returns the time

key DIDiT = (wIDiT , dIDiT ) to A1, and adds this record (IDi,Γi, wIDiT , dIDiT , h2i)

to the list LlistTK .

• SecretValue: C1 looks up Llist and returns xIDi.

• ReplacePublicKey: On receiving this query on (IDi, PK
′
IDi), C1 replaces original

public key PKIDi with PK ′
IDi and then update the record (IDi, PK ′

IDi) into Llist.

• SignGen: After receiving a query on inputs mi, Γi and IDi with the public key

PKIDi, A1 does the following:

– If IDi ̸= ID∗, and the public key PKIDi has not been replaced, A1 executes

SignGen to produce a signature σi and returns it to A1.

– If IDi = ID∗, C1 aborts the game.
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• Forge: Finally, A1 produces a signature σ∗
i on m∗

i for an identity IDi with PK∗
IDi,

Γi. If IDi ̸= ID∗, A1 aborts the game and outputs fail. Else, based on forking

lemma [90], C1 outputs another value to H4. Then, A1 outputs a new forgery σ′
i on

the same message mi by replaying the same procedure but with a different choice of

H4. Then C1 has the following two equations.

si = ti + h3xID + li(dID + dIDT ) mod q (8.10)

s′i = ti + h3xID + l′i(dID + dIDT ) mod q (8.11)

Here li ̸= l′i. From above two Eq.8.10,8.11’s, C1 can calculate a = (si − s′i)/(li −

l′i)−xh1i− dIDiT . Hence, C1 can determine solution a. C1’s success probability can

be analyzed as follows. A1 can win this game if event E3 occur and E1 and E2 do

not occur. We, then show the probability that A1 wins the game as follows.

1. E1: C1 does not abort Game 1 in the PartialPvtKeyGen query.

2. E2: A1 computes forgery of a signature σi on mi for IDi ̸= ID∗ in the the

forgery phase.

3. E3: The signature σi is valid on (m∗
i , IDi).

Therefore, the success probability of solving ECDLP can be defined as

ϵ′ = Pr[¬E1 ∧ ¬E2 ∧ E3]

= Pr[¬E1]Pr[¬E2|¬E1]Pr[E3|¬E1 ∧ ¬E2]

From the simulation, we have

Pr[¬E1] ≥
(
1− 1

q1

)qe
Pr[¬E2|¬E1] ≥

1

q1

Pr[E3|¬E1 ∧ ¬E2] = ϵ

From these equations, the probability that C1 could solve the given ECDL problem is
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ϵ′ ≥ ϵ
(
(q1 − 1)/q1

)qe
/q1.

Theorem 3: If an adversary A2 can break our EPF-CLPA with a non negligible proba-

bility ϵ, then we can construct an algorithm C2 by employing A2 to solve ECDLP with a

probability.

ϵ′ ≥ ϵ
(
(q1 − 1)/q1

)qs
/q1

Proof: Consider (P, aP ) ∈ G as an instance of the ECDLP. C2 determines the value of

a by interacting with A2.

• H1, H2, H3, H4 queries: Queries and answers of H1, H2, H3, H4 oracles are the same

as those in Theorem 1.

• Setup: C2 picks x, v ∈ Z∗
q , computes y = xP, yT = vP , and generates params :

{k, q,G, P, y, yT , H1, H2, H3, H4}

• Create-User (ID): C2 maintains a listLlist of the form (IDi, wIDi, dIDi, h1i, xIDi, PKIDi).

whenA2 makes this query on IDi. If IDi has already been created, it simply returns

PKIDi. Otherwise, C1 computes partial private key dIDi, secret key xIDi and public

key PKIDi as follows:

– C2 chooses xIDi ∈ Z∗
q randomly and computes PKIDi = xIDiP .

– C2 randomly chooses random values ri, h1i ∈ Z∗
q , computes wIDi = riP , sets

H1(IDi, wIDi, P, Ppub, yT ) = h1i and calculates dIDi = ri + xh1i.

Finally, C2 returns PKIDi toA2, and adds the tuple (IDi, wIDi, dIDi, h1i, xIDi, PKIDi)

into the list Llist .

• TimeKeyUpdate: When receiving a TimeKeyUpdate query on IDi and Γi, C2 picks

ti ∈ Z∗
q randomly and calculates wIDiT = tiP , and picks h2i ∈ Z∗

q randomly, sets

H2(IDi,Γi, wIDiT ) = h2i, and calculates dIDiT = ti + vh2i. C2 returns the time key

DIDiT = (wIDiT , dIDiT ) to A2, and adds this record (IDi,Γi, wIDiT , dIDiT , h2i) to

the list LlistTK .

• SecretValue: C2 looks up Llist and returns xIDi.

• SignGen: Upon receiving a query on inputs mi, Γi and IDi with PKIDi, C2 acts as

below:
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– If IDi ̸= ID∗, and the public key PKIDi, C2 normally executes the SignGen

algorithm to compute a signature σi and returns it to A2.

– If IDi = ID∗, C2 aborts the game.

• Forge: Finally, A2 produces a signature σ∗
i on m∗

i for IDi with PK∗
IDi, Γi. If IDi ̸=

ID∗, C2 aborts the game. Else, based on forking lemma [90], C2 outputs another

value to the H4. Then,A2 returns a new forged signature σ′
i on the same message mi

by replaying the same procedure but with a different choice of H4. Then C2 has the

following two Eqs.

si = ti + h3xID + li(dID + dIDT ) mod q (8.12)

s′i = ti + h3xID + l′i(dID + dIDT ) mod q (8.13)

Here li ̸= l′i. From above two Eq.8.12,8.13’s, C2 can calculate a = (si − s′i)/(li −

l′i)− xh1i − dIDiT . Hence, C2 can determine the solution a of the given ECDLP.

By following the same success probability analysis of Theorem 1 for C1, we can conclude

that C2 can solve the ECDLP with a probability ϵ′ ≥ ϵ
(
(q1 − 1)/q1

)qs
/q1.

Theorem 4: EPF-CLPA achieves existentially unforgeability againstA3, if the advantage

of A3 winning the experiment is negligible in the ROM assuming ECDLP is hard in G1.

Proof: If A3 wins the Game 3 with a non-negligible probability ϵ; then, we could simulate

a challenger C3 that uses A3 as a block box to find solution for the ECDL instance with a

probability

ϵ′ ≥ ϵ/q1

Let (P, aP ) ∈ G be an instance of the ECDLP. C3 finds the value a by interacting with A3.

• Setup: The Setup is similar to Theorem 1.

• Create-User (ID): C3 maintains a listLlist of the form (IDi, wIDi, dIDi, h1i, xIDi, PKIDi).

when A3 makes this query with an identity IDi. If IDi has already been created, it

simply returns PKIDi. Otherwise, C3 computes partial private key dIDi, secret key

xIDi and public key PKIDi as follows:
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– C3 chooses a xIDi ∈ Z∗
q randonmly and computes PKIDi = xIDiP .

– C3 chooses ri, h1i ∈ Z∗
q randomly, computeswIDi = riP , setsH1(IDi, wIDi, P, Ppub, yT ) =

h1i and calculates dIDi = ri + xh1i.

The tuple (wIDi, dIDi) is the user IDi’s partial private key and xIDi the secret value.

Finally, C3 returns PKIDi toA3, and adds the tuple (IDi, wIDi, dIDi, h1i, xIDi, PKIDi)

into the list Llist .

• PartialPvtKeyGen: After receiving a query with identity IDi, C3 does the following.

– If IDi ̸= ID∗, C1 lookup the listLlist for the tuple (IDi, wIDi, dIDi, h1i, xIDi, PKIDi)

and return (wIDi, dIDi) to A3.

– Otherwise C3 stops the computation and output ⊥.

• TimeKeyUpdate: When receiving a TimeKeyUpdate query on IDi and Γi, C3 picks

ti ∈ Z∗
q randomly and calculates wIDiT = tiP , and picks h2i ∈ Z∗

q randomly, sets

H2(IDi,Γi, wIDiT ) = h2i, and calculates dIDiT = ti + vh2i. C3 returns the time key

DIDiT = (wIDiT , dIDiT ) to A2, and adds this record (IDi,Γi, wIDiT , dIDiT , h2i) to

the list LlistTK .

• SecretValue: C3 looks up Llist and returns xIDi.

• ReplacePublicKey: On receivingReplacePublicKey query on (IDi, PK
′
IDi), C1 re-

places original public key PKIDi with PK ′
IDi and then update the record (IDi, PK ′

IDi)

into Llist.

• H1, H2, H3, H4 queries: Queries and answers of H1, H2, H3, H4 oracles are the sim-

ilar to those in Theorem 1.

• SignGen: Upon receiving a query on inputs mi, Γi and IDi with PKIDi, C3 acts as

below:

– If IDi ̸= ID∗, and the public key PKIDi C3 executes SignGen to produce a

signature σi and it is returned A3.

– If IDi = ID∗, C3 aborts the game.

• Forge: Finally,A3 produces a signature σ∗
i onm∗

i for IDi with the public key PK∗
IDi

and Γi. If IDi ̸= ID∗, C3 aborts the game and outputs fail. Else, based on forking
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lemma [90], C3 outputs another value to H4. Then,A3 returns a new forged signature

σ′
i on the same message mi by replaying the same procedure but a different choice of

H4. Then C3 will have the following two equations.

si = ti + h3xID + li(dID + dIDT ) mod q (8.14)

s′i = ti + h3xID + l′i(dID + dIDT ) mod q (8.15)

Here li ̸= l′i. From above Eq.8.14,8.15’s, C3 can calculate a = (si − s′i)/(li − l′i) −

xh1i − dIDiT .

It is observed that the probability to solve the given ECDLP by C3 is ϵ′ ≥ ϵ/q1.

Theorem 5. Assuming the hardness of the ECDLP in G, it is hard for A4 to generate a

forged proof to succeed in the verification process.

Proof: We prove the theorem 5 by following the security game defined in section III for

A4 as follows:

We assume M as the shared cloud data, and the challenger C4 (TPA) forwards a ran-

dom challenge (j, vj)j∈I to A4 (Cloud). The valid proof should be (Ψ, ψ), where Ψ =∑
j∈I vjsj · P , ψ =

∑
j∈I vjmj · Uj return to C4 as a response that can pass the verifi-

cation, while the cloud generates an invalid proof (Ψ, ψ′) based on the corrupt data M′,

whereM′ ̸=M, and at least one element of ∆mj = mj
′ −mj , and ∆mj ̸= 0 for j ∈ I is

nonzero. If the forged proof succeeds in the verification, then we say theA4 wins the Game

4 and we can find a solution to the ECDLP. Otherwise, A4 fails. If A4 wins, according to

Eq. 8.6, we can have

Ψ = ψ∗ +
∑
j∈I

vj

(
h3PKID + lj(wID + h1Ppub + wIDT + h2yT )

)

According to the correct data, (Ψ, ψ) is a correct proof, we can get

Ψ = ψ +
∑
j∈I

vj

(
h3PKID + lj(wID + h1Ppub + wIDT + h2yT )

)

By observing the above two equations, we can say that ψ∗ = ψ.
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Hence,

∑
j∈I

vj ·m∗
j · Uj =

∑
j∈I

vj ·mj · Uj (8.16)

Define ∆d =
∑

j∈I vj · (m∗
j −mj) · tj

i.e.,

ψ∗ − ψ =
∑
j∈I

vj ·m∗
j · Uj −

∑
j∈I

vj ·mj · Uj

=
∑
j∈I

vj · (m∗
j −mj) · Uj

=
∑
j∈I

vj · (m∗
j −mj) · tj · P

= ∆d · P

= 0

Assume (Z, xZ) be an instance of the ECDLP.Then we can find the value of x ∈ Z∗
q . Let

P = r1xZ + r2Z, in which r1, r2 ∈R Z∗
q . We can get the following equation.

∆d · P = 0

∆d(r1xZ + r2Z) = 0

r1∆dxZ + r2∆dZ = 0

xZ = −r2
r1
Z

Specifically, we can compute x = −(r2/r1) when the r1 is nonzero. The probability that r1

become zero is 1/q, where q is a large prime. That means, it is computationally intractable

for A4 to output a forged proof.
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Table 8.1: Notations

Notation Description

Tp Bilinear pairing

TG1 ex Exponentiation on group G1

TG1 mul Multiplication on group G1

TG2 mul Multiplication on group G2.

c Number of blocks in challenge.

d User subsets for the challenge.

Th Hash operation in group G1

MulZ∗
p Multiplication in Z∗

p .

AddZ∗
p Addition in Z∗

p .

Te.a Scalar addition in ECC

Te.m Scalar multiplication in ECC

8.6 Performance Analysis

In this section, we provide the performance evaluation and experimental results of EPF-

CLPA. We define some notations used for performance assessment in Table 8.1.

8.6.1 Performance Evaluation

We evaluate the computation cost and communication cost of the proposed EPF-CLPA

scheme theoretically as follows.
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Table 8.2: Comparison of computation cost

Schemes SignGen ProofGen ProofVerify revocation

Li et al.
[62]

2nTG1 ex +
nTG1 mul

cTG1 ex + (c −
d)TG1 mul

(d + 2)Tp + (c +
d)TG1 ex + (c +
2d)TG1 mul + dTG2 mul

n(TG1 mul +
2TG1 ex)

Yang et
al.[63]

2nTG1 ex +
nTG1 mul

TG1 mul +
cTG2 mul +
cTG2 ex +
cTG1 ex + Tp

TG1 mul + cTG2 mul +
cTG2 exp + cTG1 ex + P

n(TG1 mul +
2TG1 ex)

EPF-CLPA nTe.m +
2nTh

(c − 1)Ta +
2cTm + (c −
1)Te.a + (c +
1)Te.m

cTe.a + 5cTe.m Te.m+ AddZq

Table 8.3: Comparison of communication costs in auditing phase( n data blocks with c
challenged blocks)

Schemes TPA to CSP (Challenge) CSP to TPA
(Proof)

Type

Li et al. [62] log2c+ 2 | q | d | G1 | +d | q | Pairing-based

Yang et al. [63] 2clog2λ+ (c+ 1)log2q d | G1 | +d | q | Pairing-based

EPF-CLPA c(| n | + | Z∗
q |) c | p | + | q | Pairing-free

8.6.1.1 Computation cost

We calculate the computation cost of EPF-CLPA and compare with the some of the existing

state of the art schemes [62, 63] and results are listed in Table 8.2.

We provide the computation cost of the four algorithms, namely SignGen, ProofGen,

ProofV erify, TimeKeyUpdate (for user revocation) which play the significant role in

our proposed EPF-CLA scheme.

To generate the signatures for all blocks of the shared file, the algorithm SignGen

runs with a cost of nTe.m + 2nTh. The CSP runs the ProofGen with the running time
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(c − 1)Ta + 2cTm + (c − 1)Te.a + (c + 1)Te.m. To check the integrity, TPA runs the al-

gorithm ProofV erify with a cost of cTe.a + 5cTe.m. In EPF-CLPA, users are revoked

by executing the TimeKeyUpdate algorithm. Therefore, the computation overhead of

TimeKeyUpdate is the computation cost of revocation which is Te.m+ AddZq.

From Table 8.2, we can see that EPF-CLPA Sign generation, proof generation, proof

verification and revocation is efficient than [62],[63] in all important aspects of cloud au-

diting scheme.

8.6.1.2 Communication Cost

Table 8.3 summarizes the communication overhead of our proposed scheme by comparing

it with some of existing [62, 63] cloud auditing schemes. The communication cost refers to

the costs used for transmitting a randomly generated challenge from TPA to CSP and the

corresponding proof from CSP to TPA. It mainly comes from the integrity auditing phase

which includes three algorithms namely,Challenge, ProofGen, ProofV erify according

to the description of Section 8.3. The TPA sends a challenge C = {(j, vj)}j∈I to the CSP,

where j ∈ n and vj ∈ Z∗
q . The size of challenge is c ·(| n | + | q |) bits. The CSP generates

a corresponding proof P = (µ, σ) to send it to the TPA. The size of the proof is | p | + | q |

bits.

8.6.2 Experimental Results

We implemented EPF-CLPA on a system with Intel i5-7200U processor @ 2.50 GHz and 8

GB RAM running Windows 7 operating system. All experiments are conducted in python

2.7 language (Py-Charm IDE) using well known free crypto-0.42 library [79]. The imple-

mentation uses a non-singular elliptic curve E(Fqk) : y2 = x3 + ax + b mod p, where

a = −3 and p, q, b (random) are 160-bit prime numbers and a, b ∈ Z∗
p . The experimental

results for SignGen, ProofGen, ProofV erify and Revocation are obtained and com-

pared with the existing schemes and illustrated in Fig. 8.2a to Fig. 8.2e. Fig. 8.2a shows

the comparison of computation time of SignGen algorithm. From Fig. 8.2a, we notice
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that EPF-CLPA is efficient than other existing schemes [62, 63] because of utilization of

ECC. This is carried out only once during the life time of the system. Fig. 8.2b provides

the comparison of computation costs for ProofGen. From Fig. 8.2b, it is obvious that our

EPF-CLPA has the better efficiency than existing pairing-based [62, 63] the EPF-CLPA

has less exponential and multiplication operations in group and. Fig. 8.2c illustrates the

comparison of computation costs of ProofV erify. From Fig. 8.2c, we can observe that

verification time of EPF-CLPA is lesser than all pairing based schemes [62, 63] since no

involvement of bilinear pairing operations. Fig. 8.2d shows comparison cost of the batch

auditing between our EPF-CLPA and the schemes in [85, 41]. From Fig. 8.2d we can

observe that all the three schemes can handle different verification’s from different users

simultaneously, the average auditing time per task in EPF-CLPA is more efficient than that

in [85, 41] because our EPF-CLPA is free from pairings, whereas [85, 41] uses pairings.

Fig. 8.2e shows the computation cost of user revocation. From Fig. 8.2e we can see that

our scheme is efficient than [62, 63] because in [62, 63], the cloud server performs resign-

ing of revoked block with resigning key, which increases the computation overhead for big

data, whereas in our scheme GM simply generates new time key for the non-revoked users,

which only needs one scalar multiplication and one addition operation.

8.7 Summary

In this chapter, we presented an efficient PF-CLPA scheme for auditing shared big data in

cloud by relying on the ECC which does not require pairings and reduces computation and

communication cost drastically. Further, we leverage certificateless cryptography signature

scheme to generate signatures for the blocks of a shared file, which simplifies certificate

management and eliminates key escrow problem simultaneously. EPF-CLPA is extended

to support batch auditing by handling multiple tasks simultaneously that improves the au-

diting performance and can applicable to shared big data storage systems. EPF-CLPA also

supports secure user revocation by updating the time key of non-revoked users. The secu-

rity analysis proved that proposed EPF-CLPA is secure against type I/II/III/IV adversaries

in the ROM under a standard assumption. The performance analysis and experimental re-
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sults demonstrate that the EPF-CLPA is efficient in terms of computation cost than existing

schemes and more suitable for shared big data auditing in cloud.
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Chapter 9

Conclusion and Future Directions

In this concluding chapter, we conclude the thesis, while we put forth certain open chal-

lenges in remote data integrity auditing scheme for future work.

9.1 Conclusion

In this thesis, we studied the importance of remote data integrity auditing in cloud storage,

particularly public integrity auditing for shared data in cloud storage and proposed five

RDIA schemes namely, i) An ID-Based public auditing for shared data in cloud computing

using identity-based signatures to achieve user revocation. With this scheme we also sim-

plified the certificate management. ii) In ABPIA scheme, we used individual private keys of

each user for generating signatures and unique public key for integrity checking, which sim-

plifies key management. In ABPIA scheme, the signature does not reveal any user identity;

hence, user privacy achieved. iii) Certificateless privacy preserving public auditing system

for dynamic shared data storage in cloud computing by utilizing certificate-less signatures.

CLPPPA achieves privacy preserving against TPA by masking the data proof during au-

diting process while refraining from both complex certificate management and key escrow

problem. Besides, CLPPPA also supports data dynamics such as insertion, modification

and deletion through EDLIT and efficient user revocation utilizing proxy signatures. iv)

Certificateless multi-replica public integrity auditing scheme for dynamic shared data in

cloud storage to achieve the availability of data along with the integrity. v) Efficient Pair-
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ing Free Certificateless Public Auditing for Shared Big Data in the Cloud based on ECC

to reduce the computation and communication cost substantially during auditing. Through

the security analysis, we prove that all schemes are provably secure against various adver-

saries under the hardness assumption of the standard DL and CDH problems in ROM. The

performance and experimental evaluation show that our schemes are efficient and practical.

All these schemes achieve necessary functional and security features of shared data

auditing such as correctness, soundness, public auditing, data dynamics, identity privacy,

data privacy, user revocation, availability, and batch auditing. Furthermore, these schemes

simplifies the certificate management and eliminating key escrow problem simultaneously

with minimal computation and communication overhead during auditing process.

As the proposed shared data auditing schemes are secure, it would be more appropriate

and suitable for real-time applications like financial, healthcare, scientific, and educational

applications.

9.2 Future Directions

In all proposed schemes, we rely on trusted TPAs to execute auditing tasks, which reduces

the burden on users. However, various risks associated with involving a TPA include poten-

tial privacy leaks, collusion, cheating, framing, and procrastination. Therefore, we cannot

fully trust TPA in real-world scenarios. To avoid the trust problem of TPAs or to eliminate

the need for TPA, the presented shared data schemes could be extended to use block-chain

technologies to ensure integrity of the shared data.
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[60] Francesc Sebé, Josep Domingo-Ferrer, Antoni Martinez-Balleste, Yves Deswarte,
and Jean-Jacques Quisquater. Efficient remote data possession checking in critical
information infrastructures. IEEE Transactions on Knowledge and Data Engineer-
ing, 20(8):1034–1038, 2008.

[61] Huaqun Wang, Debiao He, and Shaohua Tang. Identity-based proxy-oriented data
uploading and remote data integrity checking in public cloud. IEEE Transactions on
Information Forensics and Security, DOI, 10.

[62] Jiguo Li, Hao Yan, and Yichen Zhang. Certificateless public integrity checking of
group shared data on cloud storage. IEEE Transactions on Services Computing, 2018.

[63] Hongbin Yang, Shuxiong Jiang, Wenfeng Shen, and Zhou Lei. Certificateless prov-
able group shared data possession with comprehensive privacy preservation for cloud
storage. Future Internet, 10(6):49, 2018.

[64] Debiao He, Sherali Zeadally, and Libing Wu. Certificateless public auditing scheme
for cloud-assisted wireless body area networks. IEEE Systems Journal, 12(1):64–73,
2015.

[65] Su Peng, Fucai Zhou, Qiang Wang, Zifeng Xu, and Jian Xu. Identity-based public
multi-replica provable data possession. IEEE Access, 5:26990–27001, 2017.

[66] Su Peng, Fucai Zhou, Jin Li, Qiang Wang, and Zifeng Xu. Efficient, dynamic and
identity-based remote data integrity checking for multiple replicas. Journal of Net-
work and Computer Applications, 134:72–88, 2019.

[67] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing.
Journal of cryptology, 17(4):297–319, 2004.

[68] Jin Li, Xiao Tan, Xiaofeng Chen, and Duncan S Wong. An efficient proof of retriev-
ability with public auditing in cloud computing. In 2013 5th International Conference
on Intelligent Networking and Collaborative Systems, pages 93–98. IEEE, 2013.

[69] Jin Li, Xiao Tan, Xiaofeng Chen, Duncan S Wong, and Fatos Xhafa. Opor: Enabling
proof of retrievability in cloud computing with resource-constrained devices. IEEE
Transactions on cloud computing, 3(2):195–205, 2014.

[70] Cong Wang, Sherman S-M Chow, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-
preserving public auditing for secure cloud storage. IEEE TRANSACTIONS ON
CLOUD COMPUTING, 2013.

[71] Ayad F Barsoum and M Anwar Hasan. Provable multicopy dynamic data possession
in cloud computing systems. IEEE Transactions on Information Forensics and Secu-
rity, 10(3):485–497, 2014.

[72] Yujue Wang, Qianhong Wu, Bo Qin, Wenchang Shi, Robert H Deng, and Jiankun
Hu. Identity-based data outsourcing with comprehensive auditing in clouds. IEEE
transactions on information forensics and security, 12(4):940–952, 2016.

159



[73] YANG Xiaodong, LI Yutong, WANG Jinli, MA Tingchun, and WANG Caifen. Re-
vocable identity-based proxy re-signature scheme in the standard model. Journal on
Communications, 40(5):153.

[74] Adi Shamir. Identity-based cryptosystems and signature schemes. In Workshop on
the theory and application of cryptographic techniques, pages 47–53. Springer, 1984.

[75] Yuchuan Luo, Ming Xu, Kai Huang, Dongsheng Wang, and Shaojing Fu. Efficient
auditing for shared data in the cloud with secure user revocation and computations
outsourcing. Computers & Security, 73:492–506, 2018.

[76] Jiawei Yuan and Shucheng Yu. Public integrity auditing for dynamic data sharing with
multiuser modification. IEEE Transactions on Information Forensics and Security,
10(8):1717–1726, 2015.

[77] Jianhong Zhang and Qiaocui Dong. Efficient id-based public auditing for the out-
sourced data in cloud storage. Information Sciences, 343:1–14, 2016.

[78] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 90–107. Springer, 2008.

[79] Joseph A Akinyele, Christina Garman, Ian Miers, Matthew W Pagano, Michael
Rushanan, Matthew Green, and Aviel D Rubin. Charm: a framework for rapidly
prototyping cryptosystems. Journal of Cryptographic Engineering, 3(2):111–128,
2013.

[80] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
pages 457–473. Springer, 2005.

[81] Praveen Kumar Premkamal, Syam Kumar Pasupuleti, and PJA Alphonse. A new veri-
fiable outsourced ciphertext-policy attribute based encryption for big data privacy and
access control in cloud. Journal of Ambient Intelligence and Humanized Computing,
10(7):2693–2707, 2019.

[82] Boyang Wang, Baochun Li, Hui Li, and Fenghua Li. Certificateless public auditing
for data integrity in the cloud. In 2013 IEEE conference on communications and
network security (CNS), pages 136–144. IEEE, 2013.

[83] Qi Li, Jianfeng Ma, Rui Li, Ximeng Liu, Jinbo Xiong, and Danwei Chen. Secure,
efficient and revocable multi-authority access control system in cloud storage. Com-
puters & Security, 59:45–59, 2016.

[84] Jiangang Shu, Kan Yang, Xiaohua Jia, Ximeng Liu, Cong Wang, and Robert Deng.
Proxy-free privacy-preserving task matching with efficient revocation in crowdsourc-
ing. IEEE Transactions on Dependable and Secure Computing, 2018.

160



[85] Boyang Wang, Baochun Li, and Hui Li. Panda: Public auditing for shared data with
efficient user revocation in the cloud. IEEE Transactions on services computing,
8(1):92–106, 2013.

[86] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures-how to
sign with rsa and rabin. In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 399–416. Springer, 1996.

[87] Haiyang Yu, Yongquan Cai, Richard O Sinnott, and Zhen Yang. Id-based dynamic
replicated data auditing for the cloud. Concurrency and Computation: Practice and
Experience, 31(11):e5051, 2019.

[88] Joseph A Akinyele, Christina Garman, Ian Miers, Matthew W Pagano, Michael
Rushanan, Matthew Green, and Aviel D Rubin. Charm: a framework for rapidly
prototyping cryptosystems. Journal of Cryptographic Engineering, 3(2):111–128,
2013.

[89] John Gantz and David Reinsel. The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east. pages 1–16, 2012.

[90] David Pointcheval and Jacques Stern. Security arguments for digital signatures and
blind signatures. Journal of cryptology, 13(3):361–396, 2000.

161


	ACKNOWLEDGMENTS
	ABSTRACT
	List of Figures
	List of Tables
	List of Notations
	Glossary
	1 Introduction
	1.1 Cloud Storage
	1.2 Cloud Storage-Benefits
	1.3 Motivation
	1.3.1 Problem Statement

	1.4 Objectives
	1.5 Contributions
	1.6 Thesis Organization

	2 Preliminaries
	2.1 Introduction
	2.2 Digital Signature
	2.2.1 Identity-Based signatures(IBS)
	2.2.2 Attribute-Based Signature (ABS)
	2.2.3 Certificateless Signatures (CLS)

	2.3 Mathematical Background
	2.3.1 Bilinear Pairing
	2.3.2 Security assumptions
	2.3.3 Elliptic Curve Cryptography
	2.3.4 Threshold Secret Sharing Scheme
	2.3.5 Replica Version Table (RVT)


	3 Review of Remote Data Integrity Auditing in Cloud
	3.1 Introduction
	3.2 Personal data auditing schemes
	3.2.1 Static personal data auditing schemes
	3.2.2 Dynamic personal data auditing schemes

	3.3 Shared data auditing schemes
	3.3.1 Static shared data auditing schemes
	3.3.2 Dynamic shared data auditing schemes

	3.4 Summary

	4 Identity-based Public Integrity Auditing for Shared Data(IDPIA)
	4.1 Introduction
	4.2 Problem Statement
	4.2.1 Architecture
	4.2.2 Overview of IDPIA
	4.2.3 Adversary Model
	4.2.4 Design Goals
	4.2.5 Security Model

	4.3 Algorithmic Framework
	4.4 Detailed Construction
	4.5 Security Analysis
	4.5.1 Correctness
	4.5.2 Soundness

	4.6 Performance Analysis
	4.6.1 Computation cost
	4.6.2 Communication Cost
	4.6.3 Experimental Results

	4.7 Summary

	5 Attribute-based Public Integrity Auditing for Shared Data in Cloud Storage (ABPIA)
	5.1 Introduction
	5.2 Problem Statement
	5.2.1 Architecture
	5.2.2 Overview of ABPIA
	5.2.3 Adversary Model
	5.2.4 Design Goals
	5.2.5 Security Model

	5.3 Algorithmic Framework
	5.4 Detailed Construction
	5.4.1  Construction of ABPIA

	5.5 Security Analysis
	5.5.1 Correctness
	5.5.2 Unforgeability
	5.5.3 User Privacy

	5.6 Performance Analysis
	5.6.1 Computation cost
	5.6.2 Communication Cost
	5.6.3 Experimental analysis

	5.7 Summary

	6 Certificateless Privacy Preserving Public Auditing for Dynamic Shared Data in Cloud Storage(CLPPPA)
	6.1 Introduction
	6.2 Problem Statement
	6.2.1 Architecture
	6.2.2 Overview of CLPPPA
	6.2.3 Adversary model
	6.2.4 Design goals
	6.2.5 Security model
	6.2.6 Algorithmic Framework

	6.3 Detailed Construction
	6.3.1 Construction of CLPPPA
	6.3.2 Support shared data dynamics
	6.3.3 Secure group user revocation 

	6.4 Security Analysis
	6.4.1 Correctness
	6.4.2 Soundness
	6.4.3 Privacy preserving
	6.4.4 Comparative summary

	6.5 Performance Analysis
	6.5.1 Theoretical Analysis
	6.5.2 Experimental results
	6.5.2.1 Computational costs for generating signatures 
	6.5.2.2 Computational costs for proof generation
	6.5.2.3 Computational costs for proof verification
	6.5.2.4 Computational costs for revocation


	6.6 Summary

	7 Certificateless Multi-Replica Public Integrity Auditing Scheme for Dynamic Shared Data in Cloud Storage (CLMRPIA)
	7.1 Introduction
	7.2 Problem Statement
	7.2.1 Architecture
	7.2.2 Adversary model
	7.2.3 Design Goals
	7.2.4 Security Model

	7.3 Algorithmic Framework
	7.4 Detailed Construction
	7.4.1 Dynamic Data Operations
	7.4.1.1 Modification
	7.4.1.2 Insertion
	7.4.1.3 Deletion

	7.4.2  User revocation 

	7.5 Security Analysis
	7.5.1 Correctness
	7.5.2 User revocation correctness
	7.5.3 Soundness
	7.5.4 Comparative summary

	7.6 Performance Analysis
	7.6.1 Performance Evaluation
	7.6.1.1 Computation cost
	7.6.1.2 Communication Cost

	7.6.2 Experimental Results

	7.7 Summary

	8  Efficient Pairing Free Certificateless Public Integrity Auditing for Shared Big Data in the Cloud (EPF-CLPA)
	8.1 Introduction
	8.2 Problem Statement
	8.2.1 Architecture
	8.2.2 Design Goals
	8.2.3 Adversary Model
	8.2.4 Security Model

	8.3 Algorithmic Framework
	8.4 Detailed Construction
	8.4.1  User revocation 
	8.4.2 Batch Auditing

	8.5 Security Analysis
	8.5.1 Correctness
	8.5.2 Unforgeability

	8.6 Performance Analysis
	8.6.1 Performance Evaluation
	8.6.1.1 Computation cost
	8.6.1.2 Communication Cost

	8.6.2 Experimental Results

	8.7 Summary

	9 Conclusion and Future Directions
	9.1 Conclusion
	9.2 Future Directions

	Author's Publications
	Bibliography

