Some Studies on Migration of SOA Based Applications
to Microservices Architecture

Submitted in partial fulfillment of the requirements

for the award of the degree of

DOCTOR OF PHILOSOPHY

Submitted by
Vinay Raj
(Roll No. 716173)

Under the guidance of
Dr. S. Ravichandra

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA
September 2021

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA

THESIS APPROVAL FOR Ph.D.

This is to certify that the thesis entitled, Some Studies on Migration of SOA Based
Applications to Microservices Architecture, submitted by Mr. Vinay Raj [Roll No.
716173] is approved for the degree of DOCTOR OF PHILOSOPHY at National In-
stitute of Technology Warangal.

Examiner
Research Supervisor Chairman
Dr. S. Ravichandra Prof. P. Radha Krishna
Dept. of Computer Science and Engg. Head, Dept. of Computer Science and Engg.
NIT Warangal NIT Warangal

India India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA

CERTIFICATE

This is to certify that the thesis entitled, Some Studies on Migration of SOA Based Ap-
plications to Microservices Architecture, submitted in partial fulfillment of require-
ment for the award of degree of DOCTOR OF PHILOSOPHY to National Institute of
Technology Warangal, is a bonafide research work done by Mr. Vinay Raj (Roll No.
716173) under my supervision. The contents of the thesis have not been submitted

elsewhere for the award of any degree.

Research Supervisor

Dr. S. Ravichandra

Associate Professor

Dept. of CSE

Place: NIT Warangal NIT Warangal
Date: 13 September, 2021 India

DECLARATION

This is to certify that the work presented in the thesis entitled “Some Studies on
Migration of SOA Based Applications to Microservices Architecture” is a bonafide
work done by me under the supervision of Dr. S. Ravichandra and was not submitted

elsewhere for the award of any degree.

I declare that this written submission represents my ideas in my own words
and where others ideas or words have been included, I have adequately cited and
referenced the original sources. I also declare that I have adhered to all principles of
academic honesty and integrity and have not misrepresented or fabricated or falsified
any 1dea/date/fact/source in my submission. I understand that any violation of the
above will be cause for disciplinary action by the institute and can also evoke penal
action from the sources which have thus not been properly cited or from whom proper

permission has not been taken when needed.

fﬁﬁ*ﬁt_
Vinay Raj

(Roll No. 716173)

Date: 13-09-2021

ACKNOWLEDGMENTS

It is with great pleasure that I acknowledge my sincere thanks and a deep sense of
gratitude to my supervisor Dr. S. Ravichandra for his invaluable guidance to complete the
work. He always gave me ample time for discussions, reviewing my work and suggesting
requisite corrections, which enabled me to attain my objective in time. He has provided me
all kinds of inputs directly with his words, indirectly with his values not only to be a good
teacher also to be a good human being. His sincerity and commitment to every aspect of
the life has influenced me greatly. He also gave me the freedom of work and supported me
in every aspect of life. I want to inculcate all the great qualities of him for the rest of my
life.

I extend my gratitude to all my Doctoral Scrutiny Committee members Prof. D.V.L.N.
Somayajulu, Prof. R.B.V. Subramaanyam, Prof. D. Srinivasacharya, Dr. Ch. Sudhakar
and Dr. Rashmi Ranjan Rout for their insightful comments and suggestions during oral
presentations.

I 'am also grateful to Dr. K. Ramesh, Dr. U.S.N. Raju, Dr. P.V. Subba Reddy and Dr. M
Sreenivas, who have always been supportive and encouraging all through my tenure. I am
immensely thankful to Dr. Ch. Sudhakar, Prof. R.B.V. Subramaanyam, and Prof. P. Radha
Krishna, Heads of Dept. of CSE during my stay in the department, for providing adequate
facilities to complete my research work. I convey my special thanks to D. Govinda Rao
sir and K.S.S.S Padmasri madam, senior technical assistant in the Department of Computer
Science, for their support during my tenure. I wish to express my thanks to faculty members
of Computer Science and Engineering department. I also express my thanks to Prof. N.V.
Ramana Rao, Director, NIT Warangal for his official support and encouragement.

I have a very special thanks to my friends Vukam Raviteja, Srikar Menneni, Maneesh
Aucharla, Akash Makthabai, Vamshi Krishna Samala, Nekkala Sandeep, Byreddy Vamshi
Krishna Reddy, Abdul Gaffar Sheik, Appani Harish, Bandari Rajeev, Bolli Sumanth and
Bhukya Sharath Chandra Rathod for their unconditional love, support and readiness to

help me at any time. They stood beside me both during the happy and difficult times of

my research work and also in my life. My Ph.D. would have been difficult without these
people and I will be forever grateful to have such friends in my life.

I would like to express my gratitude to my friends Sandeep Patlolla, Kiran Patrudu
Gopalasetty, Vasav Nayak, Vemula Narender Reddy, Yasa Srikanth, Yada Sai Kumar, Veleti
Sujith, Battini Vivek Goud, Baki Ravinder, Rahul Dubey, Kanishk Vohra, Sachin Nalluri
and B.Tech 2008-2012 CSE batchmates for supporting me financially without which it
would have been difficult for me to complete Ph.D and I will always be grateful to them
for trusting me.

I would also like to specially thank K. Sandhya Reddy, Technical Director @ Talen-
tio Solutions India Pvt Ltd for giving me good opportunities to explore and improve my
teaching skills which in turn helped me financially. I would be grateful to her for the en-
couragement and motivation in handling challenges.

I wish to express my profound thanks to Dr. J. Pavan Kumar @ ICFAI University Hy-
derabad, Dr. M. Sai Krishna @ NIT Trichy, Dr. A. Sudharshan Chakravarthy @ BVRIT
Hyderabad and Nalluri Sesha Kumar @ RGUKT Srikakulam for their valuable sugges-
tions, constructive feedback in completing my research work. Their contribution to me has
enriched my life both personally and professionally.

I would also like to thank my co-scholars of Computer Science department, Uma
Sankara Rao, Hemkumar D, Umamaheswara Sharma, Punnam Chander, Preethi, Manoj,
Abhilash, K Suresh Kumar, Satish Babu, Murukessan, Sachin Sood, and Vijay Chekravarthy
for their valuable suggestions and for extending selfless cooperation. Special thanks to my
friend and co-scholar Punnam Chander for his time and moral support.

I would like to express my sincere thanks to P.G students Nikhil Tarte, Nilesh Sinha,
Issa Baddour and Amandeep Singh, B.Tech students Suraj Baradhi, Anirudh Nanduri and
Anirudh Avirewho have completed their project work under my guidance from CSE Dept,
NIT Warangal.

I extend my heartfelt thanks to scholars of other departments, Dr. Purushotham, Dr.
Sasidhar, M Shekar, Katti Bharath, Dr. Sai Mahesh Yadav, Vemoori Raju, Oggu Praveen,
Siliveri Suresh and Gandamalla Ambedkar for their time and cooperation for the comple-

tion of my research work.

i

I would also like to express my love to some of my good friends Katikala Karthikeya,
P Sandeep Reddy, Kothagatla Sai Srikar, Chintala Sanjay Kumar, Dhreeravath Srinivas, K
Siva Koti Reddy, Gadwal Narendra Kumar, Cheruku Hemanth Reddy, Chitikeshi Rohith, B
Praveen Kumar, Arun Kumar Gandhi, D Benny, L Shivateja Reddy, Srinivas Polisetti, and
2006 SSC batchmates of Montessori High School, Yellandu who have always encouraged
me positively during my hard times.

I would like to express my gratitude to my parents for their invaluable sacrifice for
my education and trust they have. My gratitude to my family for their unconditional love,
support and prayers for my success in achieving the goal. I am very much thankful to my
family for all the support during the time I carried out my thesis work. My mother and
father have made so many sacrifices in their life by having a deep trust in me to see where
I am today. My brother Arun Kumar, who always wish for my best, was more like a best
friend in helping me make better decisions and supporting me always in whatever help I
need. I would like to express thanks to my sisters Santhoshi, Matheshwari & Vigneshwari
for the love and care they have for my and my well being. I would also express thanks
to my brother-in-law Mr. Deepak Kumar for this timely support and keeping us happy
always with his presence. Lots of love for my nephew Rushikesh for fighting with me
always and making me happy. Lastly, my deep sense of gratitude to my god, Lord Tirupati

Venkateshwara Swamy for all the things that come into my life.

Vinay Raj

1l

Dedicated to
My Family & Friends

ABSTRACT

Distributed systems have evolved rapidly as the demand for independent design, and
deployment of software applications has increased. It has emerged from the monolithic
style of client-server architecture to service-oriented architecture, and then to the trend-
ing microservices. Monolithic applications are difficult to update, maintain, and deploy
as it makes the application code very complex to understand. To overcome the design
and deployment challenges in monolithic applications, service oriented architecture has
emerged as a style of decomposing the entire application into loosely coupled, scalable,
and interoperable services. Though SOA has become popular in the integration of multiple
applications using the enterprise service bus, there are few challenges related to delivery,
deployment, governance, and interoperability of services. Additionally, the services in
SOA applications are tending towards monolithic in size with the increase in changing user
requirements. To overcome the design and maintenance challenges in SOA, microservices
has emerged as a new architectural style of designing applications with loose coupling,
independent deployment, and scalability as key features. Due to this paradigm shift in soft-
ware development, many existing SOA applications are being migrated to microservices.
However, some architects are in chaos, whether to migrate the application from SOA to
microservices or not as they are unaware of the pros and cons of the migration. Also, there
is no proper mechanism or strategy to migrate existing SOA applications to microservices.

The main objectives of this thesis work include: (i) to find the aspects of an SOA-based
application that makes it suitable for migration to microservices architecture, (ii) to pro-
pose a framework for extraction of microservices and evaluate the QoS values of generated
microservices, (iii) proposing an effort estimation technique and find its effectiveness, and
(iv) present patterns for challenges which occur during the migration process.

In this thesis, to achieve the above mentioned objectives, we conducted some studies
on migration of SOA based applications to microservices architecture. Firstly, we compare
both SOA based services and microservices architectures with two different parameters, (i)
Complexity with architectural metrics and (i1) Performance with load testing. We propose

a formal model called as Service Graph (SG) which plays a significant role in the compar-

ison. It is clear from the results that though the complexity of microservices architecture
is high, the response time for processing the requests is very fast compared to SOA ser-
vices. Secondly, as it is clear that microservices have better QoS values, algorithms for the
construction of service graphs and extraction of microservices from SOA applications are
proposed. In particular, four algorithms are defined: 1) construction of Service Graph (SG),
i) construction of Task Graph (TG) for each service of the SOA application, iii) extraction
of candidate microservices using the service graph of SOA application, and iv) construc-
tion of service graph for microservices application to retain the dependencies between the
generated microservices. Thirdly, a new effort estimation model called Service Points re-
casted from the use case points method is proposed. We also apply multiple regression
analysis on the proposed approach with the Leave-N-Out policy. The proposed model is
compatible with the design principles of microservices and provides a systematic and for-
mal way of estimating the effort. Finally, we aim to provide patterns for the most recurring
problems which occur during the migration process, i.e., the decomposition of SOA ser-
vices, the size of each microservice, and the detection of anomalies in microservices. All
the proposed algorithms and techniques are demonstrated and evaluated using a standard

web-based application.

vi

Contents

ACKNOWLEDGMENTS i
ABSTRACT \4
List of Figures xii
List of Tables xiii
List of Algorithms Xiv
1 Introduction 1
1.1 Motivation L 2
1.2 Research Problems and Objectives 5
1.3 Summary of the contributions 6
1.3.1 Evaluation and comparison of SOA and microservices archi-

tecture based applications. 6

1.3.2 A service graph based extraction of microservices from mono-
lith servicesof SOA 7

1.3.3 Effort estimation approach for migration of SOA applica-

tions to microservice architecture. 9

1.3.4 Patterns for migration of SOA based applications to microser-
vices architecture. 10
1.4 Organizationof thethesis 12
2 Literature Review 14
2.1 Monolithic Applications 14

Vil

2.1.1 Benefits of Monolithic applications
2.1.2 Drawbacks of Monolithic applications

2.2 Service Oriented Architecture

2.2.1 Principlesof SOA
222 Web SEervices o e
2.2.3 Drawbacks of SOA

2.3 Microservices architecture

2.3.1 Definition oo
232 Characteristics of microservices
233 Benefits of using microservices
234 Technical differences between SOA and microservices
2.35 Why use microservices? L

2.4 Characteristics of the SOA system to be suitable for migration

2.5 Study on migration of SOA applications to microservices architecture . .
25.1 Comparison of SOA and Microservices architecture based

applications

25. 1.1 Complexity

2.5.1.2 Performance testing

2.5.2 Extraction of microservices from SOA based applications . .

2.5.2.1 Need for migration to microservices

2.5.2.2 Challenges in migration

2.5.2.3 Existing migration techniques

253 Effort estimation for microservices architecture

254 Patterns for microservices architecture

2.6 Summary e e e e e

3 Comparison of Service Oriented Architecture and Microservices Based Ap-

plications

3.1 Service Graph
3.2 Case Study: Vehicle Management System

viil

33

34

3.5

3.2.1 SOA based application 35

3.2.2 Microservices based application 36
Complexity Analysis 38
3.3.1 SOA based application 39
332 Microservices based application 40
333 Comparison of Complexities 40
Performance Testing 42
34.1 Criteria for performance comparison 42
3.4.2 Performance comparison results 44

3.4.2.1 Business request having the same NoSs 45

3.4.2.2 Business request having different NoSs 45
Summary e 47

4 A service graph based extraction of microservices from monolith services of

SOA
4.1
4.2
4.3
4.4
4.5

4.6

48

Service graph construction L. 49
Task Graph 50
Microservices extraction algorithm 52
Service graph generation for microservices 53
Case Study: Vehicle Management System 54
45.1 Extraction of microservices 55
4.5.2 Service graph construction L. 56
453 Discussion on proposed approach 58
Evaluation of the extracted microservices 59
4.6.1 Evaluationcriteria 59
4.6.2 Extraction of metric values from service graph 60
4.6.3 Evaluation of SOA based application 61
4.6.4 Evaluation of microservices based application 61
4.6.5 Results 62
4.6.5.1 Comparison based on RCS values 62

1X

4.6.6

4.7 Summary

4.6.5.2 Comparisonbasedon SCF
Discussion on comparison

5 A novel effort estimation approach for migration of SOA applications to

microservices

5.1 Types of services involved in migration process

5.2 Proposed approach L

5.2.1
522
523

524

Classification of services
Calculation of weights and points
Technical and Environmental factors
5.2.3.1 Calculation of Technical Complexity Factor(TCF) . .
5.2.3.2 Calculcation of Environmental Factor (EF)

Final service point evaluation

5.3 Empirical evaluation of the proposed approach

5.3.1
5.32
533
534
5.35

Classification of services
Calculcationof USP
Effort estimation using SP Proposed Approach
Effort estimation using SP-Karner’s Approach

Observation e

5.4 Experimental Study L Lo

54.1
54.2
5423

Regression Analysis
Datasets

Evaluation criteria

5.5 Experimental Results

5.5.1
552
553
554

5.6 Summary

Application of SP-Proposed and SP-Karner’s methods
Application of SP-Regressionmodel
Comparison i

Threats tovalidity

6 Patterns for migration of SOA based applications to microservices architecture 89

6.1 Patterns 90
6.1.1 Pattern 1: Decomposition of an SOA service to Microservices 91
6.1.2 Pattern 2: Size of each Microservice 92
6.1.3 Pattern 3: Bug Detection in Complex Microservices Appli-
cation 93
6.2 Evaluation 94
6.2.1 Pattern 1 95
6.2.2 Pattern2 Lo 96
6.2.3 Pattern3 96
6.3 Summary e e 98
7 Conclusion and Future Research 99
7.1 Conclusions L 99
7.2 Future Scope e e 101
Bibliography 102
List of Publications 111

X1

List of Figures

2.1
22

3.1
32
33
34
3.5
3.6
3.7
3.8

4.1
42
43
4.4
45

5.1
5.2
5.3

6.1
6.2

Distributed systems taxonomy evolution

Web Services Architecture

Formal representation of service based application
SG_SOA : Service graph representation of SOA based web application . . .
SG_MSA: Service graph representation of microservices based application .
Comparison of complexities
Response time of business requests for 500 users
Response time of business requests for 1000 users
Average response time for BR2 o000 oo

Average response time for BRSo oo oL,

Service graph containing task graphs oL oL L.
Service graph representation of SOA based application
Service graph representation of microservices based application
Relation between coupling and other SOA principles

Comparison of coupling intensity

Service point calculation stepso
Service graph representation of microservices based application

Comparison of efforts estimated by proposed methods.

SG_SOA: Service graph representation of SOA based application

SG_MSA: Service graph representation of microservices based application .

Xii

List of Tables

3.1
32
33
34
3.5
3.6

4.1
4.2

5.1
5.2
5.3
54
55
5.6
5.7
5.8
59

5.10 Application of regression model to testing data
5.11 Comparison of proposed effort estimation techniques

5.12 Accuracy of the proposed methods using different measures.

6.1
6.2

Details of services of both SOA and Microservices based applications

List of services with CS & RCS values of SOA based application
List of services with CS & RCS values of microservices based application .
Response time values of SOA services
Response time values of microservices

Mapping of business requests with workflows

List of services with CS & RCS values of SOA based application

List of services with CS & RCS values of microservices based application .

Classification of services with weights
Technical factors
Environmental factors

Details of extracted microservices from SOA application

Services along with classification for microservices based application

Comparison of TCE, EFand SPvalues
Characteristics of applications in dataset
Applying service point approach to applications.

Variable values for multiple regression analysis.

Details of services of both SOA and Microservices based applications

Mapping of business requests with workflows

Xiil

36
40
41
43
43
44

62
63

70
71
72
74
76
78
80
83
84
85
86
88

95

List of Algorithms

4.1
42
4.3
4.4

Service_Graph_Construction for SOA 50
Task_Graph_Construction(s;) oo v o 52
Microservices_Extraction Lo 53
Service_Graph _for Microservices 53

X1V

Chapter 1

Introduction

Applications developed to fulfill distributed systems needs have been growing rapidly as
the demand for independent design, and deployment of software applications has increased
[1]. Today’s world demands the timely delivery of business needs and all that needs to be
online. Distributed systems play a key role in the timely delivery of services with contin-
uous integration and continuous development. It has emerged from the monolithic style
of client-server architecture to service-oriented architecture, and then to the trending mi-
croservices.

Monolithic applications are built as a large block of code and deployed as a single
archive file. Monolithic applications are difficult to update, maintain, and deploy as it
makes the application code very complex to understand [2]. To overcome the design and de-
ployment challenges in monolithic applications, service oriented architecture has emerged
as a style of decomposing the entire application into loosely coupled, scalable, and in-
teroperable services. The Service Oriented Architecture (SOA) is an architectural style
of distributed applications with service as the main design component where service is a
reusable software code that performs various business tasks that can be simple or complex
based on the business requirements. Though SOA has become popular in the integration of
multiple applications using the enterprise service bus, there are still few challenges related
to delivery, deployment, governance, and interoperability of services. Additionally, the
services in SOA applications are tending towards monolithic with the increase in changing

user requirements. Monolithic services make the application complex, and it becomes dif-

CHAPTER 1. INTRODUCTION Section 1.1

ficult to maintain. Also, since SOA services are tightly coupled with ESB for the exchange
of messages, and if there is a need to update a particular service, it requires redeploying
the dependent components in the system. Therefore, the deployment process of SOA is
still seen as a monolith. Further, the on-demand services can be scaled horizontally, but the
hardware cost increases as it requires additional infrastructure. To overcome these design,
deployment and maintenance challenges which are stated above in SOA, microservices
have emerged as a new architectural style of designing applications with loose coupling,
independent deployment, and scalability as key features.

Microservices is defined as an architectural style for developing applications as a suite
of small and independent components. Each microservice runs in its own process and com-
municates with other services using lightweight protocols such as Representational State
Transfer (REST) and HTTP [3]. Loose coupling and the freedom of choosing program-
ming languages for the implementation of microservices are some of the major benefits.
Microservices are deployed in docker containers which are lightweight, and they are best
suitable for microservices as they start very quickly [4]. Container images consist of all
required environmental configurations, and developers can easily access them from Dock-
erHub. Microservices can be easily added or removed from the applications, and they can
be easily migrated from one host to another. Independent deployment helps in auto-scaling
of the microservices at a fast pace and can easily handle the load. Microservices enable
continuous integration and continuous delivery and suit well with DevOps style, which
acts as a framework for the complete Software Development Life Cycle (SDLC) of mi-
croservices [5]. Compared to traditional architectures, microservices are designed in short

development time, reduces the inherent complexity, and increases the scalability [6].

1.1 Motivation

Because of the diverse benefits, I'T companies have started designing their applications us-
ing microservices architecture, and few of them have started migrating their applications to
microservices [7]. Due to this paradigm shift in software development, many existing SOA

applications are being migrated to microservices. However, some architects are in chaos

CHAPTER 1. INTRODUCTION Section 1.1

whether to migrate the application from SOA to microservices or not as they are unaware
of the pros and cons of the migration. As architects are unaware of the effort and cost
required for designing the application from scratch, hence migrating is the best approach
[8]. According to a systematic mapping study conducted by Di Francesco et al. [9], the
research for the migration of legacy applications to microservices is at an early stage and
it also highlights the multiple open challenges involved during migration process. More-
over, migrating applications to the cloud have also aroused for migrating to microservices
as it suits better in the cloud environment [10]. Migrating the existing legacy application to
microservices minimized the technical debt and improved the maintenance [11]. Because
of these benefits, the industry is moving towards microservices, leaving SOA as a legacy
system. Since the migration of the SOA based applications to microservices is an open
challenge[12], we consider it as the major research problem in this thesis. However, the
migration of systems towards microservices involves multiple difficulties [13] such as (i)
not knowing the impact of migration, (ii) not having enough material on migration tech-
niques, and (iii) not being aware of the migration effort. These challenges motivated us
to study and propose possible solutions for the migration of SOA based applications to

microservices architecture. The contributions in this thesis are as follows:

* Evaluation and comparison of SOA and microservices architecture based ap-
plications: In this work, the QoS attributes such as coupling, complexity, and per-
formance are considered for comparing both SOA and microservices architectures.
The complexity of the application is measured with architectural metrics, and perfor-
mance is compared with load testing. A graph based model called Service Graph is
designed in which each node is a service, and the edge between the node represents
the dependency among the services. This service graph plays a vital role in the pro-
posed comparison strategy. The results conclude that though the complexity of the
microservices based application is high, it exhibits better QoS values compared to

SOA application.

* A service graph based extraction of microservices from monolith services of

SOA: Since it is observed from the above work that microservices architecture is

CHAPTER 1. INTRODUCTION Section 1.2

better, we migrate the SOA based applications to microservices architecture. This
work presents a 3-step approach to extract the microservices from monolith services
of SOA. The concept of Task Graph is introduced in this work which helps in choos-
ing the monolith SOA services in the application. Four different algorithms, namely,
Service Graph Construction for SOA, Task Graph Construction for each Service of
SOA, Microservices Extraction Algorithm, and Service Graph Construction for Mi-
croservices Architecture are presented. A comparison of extracted microservices

with SOA services with respect to coupling is also presented.

 Effort estimation approach for migration of SOA applications to microservice
architecture: Before the actual migration of the application, estimating the effort
required for migration helps the architects and project managers to better plan and
execute the migration process. Hence, in this work, Service Points approach (based
on the service graph concept) is defined, which is recasted from the use case points
approach of effort estimation. Machine learning concepts such as multiple linear
regression and Leave-N-Out policy are applied to the proposed service points ap-
proach for better prediction of the effort. Measures such as Magnitude of Relative
Error (MRE), Mean of MREs (MMRE), Root Mean Square Error (RMSE), Mean
Absolute Error (MAE) and Standardized Accuracy (SA), etc., are used to evaluate

the accuracy of the proposed model.

* Patterns for migration of SOA based applications to microservices architecture:
The migration of an application from one architecture to another poses many design
challenges. Similarly, the migration of SOA based applications to microservices also
exhibits many recurring challenges. This work presents patterns for commonly oc-
curring problems during the migration of SOA based applications to microservices
architecture. In particular, patterns for decomposition of an SOA service into mi-
croservice, size of the microservice, and bug detection in the complex microservices
application are presented. All these patterns are based on the concept of service graph

and task graph proposed in the above works.

CHAPTER 1. INTRODUCTION Section 1.2

1.2 Research Problems and Objectives

The aim of the research work done in this thesis is to help software architects in understand-
ing the technical differences between SOA and microservices architectures. Also, it helps
in the migration of SOA based applications to microservices architecture. The problems

addressed in this thesis are:

* Is migration to microservices from SOA a good decision? If it’s a good decision,
how can we comment on it? It triggers to compare both the architectures, but how

can we compare both SOA and microservices based applications?

* How to migrate SOA based applications to microservices architecture? How to iden-
tify and extract the microservices from the SOA applications? Do the extracted mi-

croservices exhibit better QoS values than the SOA services?

* How to estimate the effort for this new architectural style of microservices? Can
we use the existing effort estimation models for microservices? How to estimate the

effort required for migration of SOA application to microservices?

* How to split the monolithic services in the SOA based application to microservices?
What should be the size of each microservice? On what basis can we measure the

size of the microservices? How to trace the service which is responsible for the bug?

Based on the above research problems, the following objectives have been defined for

the research work done in the thesis.

* To define graph based models called as Service Graph and Task Graph which

represents any service based application.

* To compare both SOA and microservices architecture based applications in

terms of coupling, complexity and performance.

* To define algorithms for the construction of service graph & task graph and
propose an approach for extraction of microservices from SOA based applica-

tions.

CHAPTER 1. INTRODUCTION Section 1.3

* To develop an effort estimation model for estimating the effort required for mi-

gration of SOA based applications to microservice architecture.

* To define new patterns for the challenges which occur during migration from

SOA to microservices architecture.

1.3 Summary of the contributions

To achieve the desired objectives listed above for migration of SOA based applications to
microservices architecture, solutions for four different yet interrelated problems are de-
signed in this thesis work. In this section, an overview of the chapter wise contributions is

presented.

1.3.1 Evaluation and comparison of SOA and microservices architec-

ture based applications.

As both SOA and microservices architectures have services as the main component, a graph
based model called as Service Graph (SG) is formulated to represent any given service
based application where each node represents a service and the edge between the nodes
represent the dependency between services. Service graphs can be used in software en-
gineering activities like effort and cost estimation, fault detection, and monitoring of the
services.

We present a comparison of a web application that is designed using both SOA and
microservices architectures. The comparison is presented with two different parameters,
(1) Complexity with architectural metrics and (i1) Performance with load testing. We have
adapted the metrics for measuring the complexity of the software architectures and extract
the metric values from service graph representation. To measure the complexity of the
architectures, two metrics, namely Total Complexity and Global Complexity are used. Ad-
ditionally, metrics related to loose coupling such as Number of Services (NoS), Coupling of
Services (CS) and Relative Coupling of Services (RCS) are also presented, which are used

in evaluating the global complexity metric. Performance related features such as response

CHAPTER 1. INTRODUCTION Section 1.3

time are of more interest to determine the acceptability of software design. Load testing is
performed using the JMeter tool with 500 & 1000 users of load on both the applications,
and the average response time is captured for 500 and 1000 users separately for all services.

The values of both total and global complexities for both SOA and microservices based
applications are compared and the results show that the microservices based application
is more complex when compared with SOA based application. It is observed that a 50%
increase in the number of services has lead to an 84% increase in the dependencies in the
microservices application. In order to compare the performance of both the architectural
styles, we define Business Requests (BR) according to the functionality of the case study
application. The sequence of services invoked for processing a particular business func-
tionality is stored as a sequence with the service numbers. By understanding the complete
case study application, we identified seven major business requests. The time taken for each
of these business requests in both SOA and microservices based applications is considered
as criteria for comparison. The average response times of each of the services involved in
the business requests are added to get the response time of the complete business request.
The comparison results show that the average response time for completing the business
requests in SOA based application is high compared to microservices application. For a de-
tailed analysis of the performance, we consider two different scenarios w.r.t to the number

of services involved in getting the response of a business request.

1.3.2 A service graph based extraction of microservices from monolith

services of SOA

In this work, an approach to extract the candidate microservices from SOA based applica-
tions using graph based algorithms is presented. To migrate SOA based web services to
microservices, a three-step approach is defined.

In the first step, the service graph construction algorithm is presented for the given SOA
application, and for each service, task graphs are constructed using another algorithm. To
construct the service graph for SOA application, an API document that contains the com-

plete information about the services, operations in each service, and input/output parame-

CHAPTER 1. INTRODUCTION Section 1.3

ters of each operation are used. If the application is implemented using web services, then
we will have a WSDL file as the API document, and if we implement the application as
normal services, then we have XML format of the complete application. Considering the
API document (WSDL or XML file) of the SOA based application as input, we extract the
serviceNames, and then the inputs and outputs for each of the serviceNames (operations)
are extracted. Each serviceName is marked as a node, and the edges between the nodes
of the service graph are generated by mapping the inputs and outputs of services. After
constructing the service graph, iteratively, we call the task graph construction algorithm for
each of the services to generate the task graph inside each node of service graph using the
API document of individual service. The input of Algorithm 1 is the API of the complete
application, whereas the input for each task graph is the API of the individual service of
the application.

Using the service graph representation (including task graphs in each node of service
graph), a microservices extraction algorithm to generate the candidate microservices is
presented in the second step. In the algorithm, we find out the order of each node of the
service graph to find out the nodes which are monolithic in nature. If the order of the node
is one, then it is directly considered as a microservice. For the services with order more
than one will be treated as monolithic services. Each node of the task graph is iterated, and
all the nodes of the task graph will be considered as microservices.

Finally, the service graph construction algorithm for the microservices application is
proposed, which helps in retaining the dependencies between microservices. The service
graph (along with the task graph in each node of the service graph) is considered as in-
put for the algorithm. Considering the extracted microservices (from step 2) as nodes, the
dependencies between the nodes of task graph of each service as broken and new depen-
dencies are created between the extracted microservices. The newly formed dependencies
are the edges for the service graph for microservices. The nodes in the graph will repre-
sent a microservice, and the edge between the node represents the dependency between the
microservices.

Additionally, the extracted microservices are compared with SOA services in terms of

QoS parameters such as loose coupling. The coupling intensity is calculated using Service

CHAPTER 1. INTRODUCTION Section 1.3

Coupling Factor (SCF) metric, and the results show that microservices have lesser coupling

values compared to SOA services.

1.3.3 Effort estimation approach for migration of SOA applications to

microservice architecture.

In this work, an effort estimation approach called Service Points which is recasted from the
use case points model is proposed. Service graph plays an important role in this approach
as the details of the services and edges are used are input parameters. At first, the types
of services involved during the migration process, such as Available Service, New Service,
Migrated Service and Composed Service are presented. However, only migrated services
will be considered for estimating the effort in our proposed approach. The major steps
involved in the proposed effort estimation approach using service graph as follows: (i)
classification of the services, (ii) calculation of weights and points, (iii) calculation of TCF
and EF, and (iv) final service point evaluation.

The services of the application are classified as simple, average and complex based on
the interactions each service has with other services. A service is classified as simple if it
interacts with less than four services, average if it interacts with less than eight services,
and service is treated as complex if it interacts with more than or equal to eight services.
The terms simple, average and complex are used by considering the impact of change
requirements on other services. As mentioned, service is termed as simple, if it interacts
with less than four services and to make a change in that particular service, it may not
impact more than four services, and hence it is considered as simple. The next step is to
calculate the unadjusted service points based on the weights assigned and it is calculated
by summation of the number of services of each type multiplied by the weight assigned to
the corresponding service type.

The list of 21 technical and environmental factors is updated by considering the char-
acteristics of the microservices architecture. Each factor has a value assigned between 0
and 5 depending on the importance and impact that particular factor has on the system. An

online survey is conducted to collect the inputs from different practitioners, software archi-

CHAPTER 1. INTRODUCTION Section 1.3

tects and developers working with microservices architecture. We have posted the online
questionnaire on multiple social networking platforms including the groups on LinkedIn,
Twitter, and Facebook etc. The rating of each factor between 0 and 5 for each factor is col-
lected through this survey. Based on the data collected, the average of ratings is taken and
assigned to all the factors which are further used to calculate the TCF and EF values. The
final Service Points (SP) is calculated by multiplying the unadjusted service point with both
technical and environmental factor values. The proposed estimation approach is applied to
a case study application to demonstrate the process of estimating the effort.

Further, to validate the proposed approach, machine learning techniques are applied as
it plays a significant role in software effort estimation. In order to validate the efficiency
of the proposed method, N applications of SOA, which are migrated to microservices are
chosen as datasets and regression analysis is performed on the datasets. To evaluate the
accuracy of the estimated approach, several frequently used measures are considered such
as magnitude of relative error (MRE), mean of MRE (MMRE), root mean square error
(RMSE), prediction within 25% of the actual value, Mean Absolute Error (MAE) and Stan-
dardized accuracy (SA).

For ease of understanding and comparison, the proposed service points method is
named as SP-Proposed approach, the approach proposed using Karner’s default rating is
named as SP-Karner’s approach and the effort estimation model generated using the re-
gression analysis is named as SP-Regression approach. The efforts calculated using these
three approaches were compared with actual efforts and the results are presented with the
estimation success parameter. The accuracy of the proposed methods is evaluated using the
measures and the effort estimated using the SP-Regression approach is much closer to the

actual efforts of the applications.

1.3.4 Patterns for migration of SOA based applications to microser-

vices architecture.

In this work, the challenges which occur during the migration process are identified from

the literature and also from our experience in migrating applications to microservices are

10

CHAPTER 1. INTRODUCTION Section 1.4

presented. In particular, we present the patterns for three major challenges which are dis-
cussed below. The solutions are presented in the form of patterns with different sections,
including the criteria, context, problem, solution, and challenges. The service graph along
with task graph representation are considered for providing the solutions for the challenges.

The first pattern presented is the Decomposition of an SOA service into microservices
which helps in identifying the monolithic services in SOA. Using the service graph, the
order of each task graph is calculated and the node which has its order of more than one will
be decomposed by applying the extraction approach proposed in objective 2. Representing
the entire SOA application as a service graph is difficult for large enterprise applications, as
it includes a large number of services. The tools required for generating such large graphs
are also a challenging task.

The second pattern is measuring the Size of the microservice. Every service in the SOA
application consists of many tasks that perform simple or complex business requirements.
Microservices follow single responsibility principle that requires each service to perform
only one business function. We, therefore, use the service graph representation of the SOA
based application and consider each task in the task graph to be microservices. In this case,
the size of the microservice is not a measurable metric. When a specific service performs
only one operation, it may be considered as a microservice and the size of the service is
not considered. The assumption of considering each task in the task graph as microservices
remains a challenge because not all tasks may perform one business requirement.

The third pattern is bug detection in the complex microservices application. When the
number of services increases in microservices based application, it is difficult to detect the
bug and identify the root cause of the bug. To solve this, the workflow of the business
requirements is defined through the use of software artifacts mentioned in the software
requirement specification documents. A mapping is created between the business require-
ment and the services it goes through to process the business requirement. These workflows
help in easy and quick identification of the cause of the bug. We have demonstrated the

proposed patterns using a case study application.

11

CHAPTER 1. INTRODUCTION Section 1.4

1.4 Organization of the thesis

The research work in this thesis mainly focuses on studies related to the migration of SOA
based applications to microservices architecture. The contributions and findings of the re-
search work are organized into chapters as below.

Chapter 1: This chapter provides the necessary background and motivation for the work
reported in this thesis. It also presented the overview of the research contributions of the
thesis with respect to the migration of SOA based applications to microservices architec-
ture.

Chapter 2: In this chapter, a brief introduction to the distributed systems such as mono-
lithic, SOA, and microservices architectures are presented. A detailed literature survey on
the migration of SOA based applications to microservices is presented. Also, the related
work done for each objective is presented.

Chapter 3: In this chapter, a comparison between SOA and microservices based applica-
tions with respect to QoS parameters such as complexity and performance is presented. A
mathematical model called Service Graph is proposed, which helps in the comparison of
both the architectures. Multiple criteria defined for comparison along with the results are
also presented.

Chapter 4: The concept of Task Graph is introduced in this chapter, and a 3-step approach
to partition and extraction of microservices from monolithic services of SOA based ap-
plications is presented. In particular, algorithms for the generation of service graph, task
graph and microservices extraction are presented. Also, an algorithm for the generation of
service graph for microservices application is presented. The comparison of the coupling
intensity of the extracted microservices with SOA services is also presented.

Chapter 5: In this chapter, an effort estimation approach called Service Points for es-
timating the effort required for migration of SOA based applications to microservices is
presented. The demonstration of the proposed service points approach using a case study
application is presented. To measure the accuracy of the proposed approach, machine learn-
ing techniques such as multiple linear regression and Leave-N-Out policy are presented.

The comparison of estimated efforts using three different approaches such as SP-Proposed

12

CHAPTER 1. INTRODUCTION Section 1.4

approach, SP-Karner’s approach and SP-Regression approach are also presented. The ac-
curacy for the proposed approaches is measured with frequently used measures such as
MRE, RMSE, etc., and the results are presented.

Chapter 6: In this chapter, patterns for solving the recurring problems which occur during
the migration process are presented. In particular, patterns for decomposition of SOA based
services, measuring the size of microservices and identification of bugs are presented.
Chapter 7: This chapter summarizes the research outcomes of the work in this thesis. It

also presents future directions and scope for extensions of the works done in this thesis.

13

Chapter 2

Literature Review

Distributed systems have evolved rapidly as the demand for quick design and deployment
of business requirements has increased [1]. Distributed Systems provide many benefits to
applications that include scalability, resiliency, resource sharing, flexibility, and concur-
rency. They also help reduce technical debt by allowing teams to use applications at so
many levels, and these applications can operate continually even if parts of the applications
fail. As today’s world demands the timely delivery of business needs, distributed systems
play a key role in the accelerated delivery of services with continuous integration and con-
tinuous development. The taxonomy of evolution of distributed systems is represented in

Figure 2.1.

2.1 Monolithic Applications

Monolithic applications are built as a single large block of code, and the entire application
is deployed as a single archive [14]. The server component of a client-server architecture
is a monolithic product that handles HTTP requests and communicates with the database.
It contains a single executable code that handles all of the server-side functions for an

application.

14

CHAPTER 2. LITERATURE REVIEW Section 2.1

e N
Distributed Systems

\ J
4 R
Client-Server
(Monolithic)

\ Y,
- N
SOA
N\ Y,
- N

Microservices
N\ Y,

Figure 2.1: Distributed systems taxonomy evolution

2.1.1 Benefits of Monolithic applications

To design any new application, monolithic architecture is the best choice at the start of
the project because development, testing, and deployment are very simple and easy [15].
Monolithic architecture is best suitable for small applications with less business function-
ality. When the load increases, applications can be easily scaled horizontally. Moreover,

there will be no problem related to network latency and security in the applications.

2.1.2 Drawbacks of Monolithic applications

Monolithic applications are very tightly coupled and can evolve into a complex web of
code, making it difficult for developers to maintain over time. Monolithic applications are
difficult to update, maintain, and deploy as it makes the application code very complex
to understand [2]. To make a single update in the system, the entire application needs to
be shut down and redeploy every component [16]. Since monoliths must be developed
and deployed as a single unit, it can be challenging to divide development efforts into in-
dependent teams. Each code change must be carefully planned, which slows down the
development process. It is impossible to achieve operational agility when deploying mono-
lithic application components repeatedly. Monolithic architecture has a limitation in the

size and complexity of the application. To overcome the design and deployment challenges

15

CHAPTER 2. LITERATURE REVIEW Section 2.2

in monolithic applications, service oriented architecture has emerged as a style of decom-

posing the entire application into loosely coupled, scalable, and interoperable services [17].

2.2 Service Oriented Architecture

Service oriented architecture (SOA) is the architectural style of distributed applications
with service as the main design component. A service is a reusable software code that
performs various business tasks that can be simple or complex based on the business re-
quirements. SOA 1is primarily used for the integration of various components with the mid-
dleware feature using Enterprise Service Bus (ESB) [18]. ESB is the backbone of SOA,
which helps in providing the features of the middleware system. ESB acts as a mediator
between the service requestor & provider and provides a high performance and scalability
platform. SOA follows several design principles such as loose coupling, interoperability,

statelessness, etc., which are presented below.

2.2.1 Principles of SOA

There is no standard body that defines the principles of SOA, but many principles have
originated from IT organizations with their experience. Below is the list of principles to be

followed by any system that implements the concepts of SOA [19].

1. Service Contract: Service contract contains documents called service description
documents which have the meta information of the services. Web Services Descrip-
tion Language (WSDL) is the most common document available in service contracts

when services are implemented.

2. Loose Coupling: The relationship or dependency between two services is referred to
as coupling. It states that there should be independence between design and business

logic, and implementation details should be hidden from customers.

3. Service Reusability: This principle states that services should be built such that
they can be reused across business applications. The logic of the services should be

independent of any business requirement and technology.

16

CHAPTER 2. LITERATURE REVIEW Section 2.2

4. Service Abstraction: This principle states that only the required information should
be present in the service contract and hide the underlying details of the services as

much as possible.

5. Service Statelessness: This principle states that state information of the services
should be separated to implement scalable services. By this, services can handle

more requests and help in fast processing.

6. Service Composability: This principle helps in the design of new services by com-
posing already existing services to achieve the business requirements. This also sat-

isfies the concept of reusability by reusing the existing services.

7. Service Discoverability: This principle states that service description of the services
present in the service contract should contain communicative data such that services

are easily discoverable on the web or internet.

8. Service Interoperability: This principle states that services must be designed such
that they can share data with other services. If the services are not interoperable, they

need to be integrated to share data.

2.2.2 Web services

SOA gained more popularity with the evolution of web services, which is the popular im-
plementation of SOA concepts. SOA is the concept, and web services are the implementa-
tion of the concept [18]. Web services are also services that can be designed, accessed, and
discovered over the internet using communication protocols such as XML based SOAP and
WSDL. Web services use HTTP and REST protocols for the transfer of messages through
the internet. Web services use XML (WSDL) to access information and share messages
between different services. The typical web service architecture, as shown in Figure 2.2,
consists of three components, namely a service provider, a service requester, and a service
registry, which maintains all the web services. Service provider and requester are web
services where the latter requests for information and the former responds with the infor-

mation. A single web service can be used by multiple clients simultaneously and can be

17

CHAPTER 2. LITERATURE REVIEW Section 2.2

easily deployed.
UDDI Registry
1. Service Registers 2.Client Request
PUBLISH Service Location
FIND

3. Client Calls

Service
BIND

Figure 2.2: Web Services Architecture

2.2.3 Drawbacks of SOA

Though SOA has become popular in the integration of multiple applications using the en-
terprise service bus, there are still few challenges related to delivery, deployment, gover-
nance, and interoperability of services [20]. Additionally, the services in SOA applications
are tending towards monolithic with the increase in changing user requirements. Also,
since SOA services are tightly coupled with ESB for the exchange of messages and if there
is a need to update a particular service, it requires redeploying the dependent components
in the system. Therefore, the deployment process of SOA is still seen as a monolith [21].
Further, the on-demand services can be scaled horizontally, but the hardware cost increases
as it requires additional infrastructure. Below are the few bottlenecks in the implementation
of SOA.

Interoperability to some extent: An interoperable service is one that can work across plat-
forms, languages, applications, and web services from different vendors. SOA Services do
not implement interoperability to the full extent because it is very difficult to maintain the

complexity of the services [22]. This problem arises because of incompatible data types,

18

CHAPTER 2. LITERATURE REVIEW Section 2.3

other entities like pointers, structures, database connectivity, etc., supported by different
programming languages like C++, Java, and C#. We may face challenges while imple-
menting Quality of Service (QoS) parameters like security, reliability, etc.
Scalability is not achieved: Web services are stateful as they use SOAP protocol for the
transfer of messages among different services. Also, both provider and consumer should
share the same message data in stateful services. This could reduce the overall scalability if
the provider needs to store the message sent to all consumers. It makes switching between
services difficult and binds the services with tight coupling. Hence loose coupling is not
completely achieved in web services [23].
Services are less reusable: The more business-oriented the service is, the less reusable
it is. Services that are anchored to specific applications cannot be reused, and thus the
reusability feature is limited in SOA services [24].
Middleware dependency of Services: Service based architectures are attached to heavy-
weight middleware using ESB as it allows business services to integrate applications with-
out coding. Dependency on middleware makes it difficult to inculcate new business needs
and reduces application flexibility in the future [25]. When failure occurs, it is difficult to
replace the service without impacting other services.
Orchestration vs Choreography: SOA services use orchestration for communication be-
tween services which involves a point-to-point connection between the services. These
connections create many different communication paths and it is difficult to update any
service as a developer should be aware of each connection [26].

To overcome these design, deployment, and maintenance challenges which are stated
above in SOA, microservices have emerged as a new architectural style of designing appli-

cations with loose coupling, independent deployment, and scalability as key features.

2.3 Microservices architecture

Microservices is a new style of designing enterprise applications that is based on SOA prin-
ciples with additional features. It is a way of designing applications where each component

is designed using a lightweight protocol and deployed independently [27]. Microservices

19

CHAPTER 2. LITERATURE REVIEW Section 2.3

uses the REST communication protocol and the JSON data exchange format for the ex-
change of messages between services. It follows the concept of the Single Responsibility
Principle (SRP), where only one business function should be performed by each service.
Continuous Integration (CI) and Continuous Delivery (CD) are the two core principles of
microservice architecture. Applications designed with microservices are loosely coupled,
scalable, and designed independently. Microservices are well suited to the cloud environ-
ment as containers are used for the deployment of the services. The main advantage of
using microservices over other architectural styles is that only the required service is de-
ployed independently without having an impact on the other services of the application
[28]. The use of containers renders the services auto-scalable. Each service has its own
database and configuration environment for the processing of business requests. Moreover,
applications are migrating towards cloud [29], and because of the diverse benefits, compa-
nies have started migrating their existing legacy applications to microservices architecture.
Netflix, Amazon, and Google have started developing their applications with this new style

[30].

2.3.1 Definition

Microservices is best defined by Fowler and Lewis ,

“Microservices is an approach to developing a single application as a suite of small ser-
vices, each running in its own process and communicating with lightweight mechanisms,
often an HTTP resource API. These services are built around business requirements and
independently deployable by fully automated deployment machinery. There is a bare min-
imum of centralized management of these services, which may be written in different pro-

gramming languages and use different data storage technologies [3].

2.3.2 Characteristics of microservices

The main characteristics of microservices are [31]:

* Single purpose: Microservices follow Single Responsibility Principle (SRP), which

states that each service should perform only one business task and it should do it

20

CHAPTER 2. LITERATURE REVIEW Section 2.3

well. Generally, the size of the code increases over time to include additional busi-
ness requirements. Therefore this principle helps in avoiding the complexity of the

application.

* Encapsulation: Each microservice should have its own database, and data should
be accessed only via the defined APIs. The implementation part of the microservice

should be hidden and should be kept private.

* Flexibility: Microservices are flexible enough to support all the features necessary

in the dynamic business environment to remain competitive.

* Modularity: Each service is self-contained and focuses on specific business func-
tions that contribute to overall system behavior rather than the full functionality of a

single service.

* Evolution: Each service can be expanded with new features and is easily maintained.
And if a particular service is down, it does not have an effect on the other services in

the system.

2.3.3 Benefits of using microservices

* Loose coupling is perfectly implemented in microservices as the definition says that
services should be small, lightweight, and should be built for satisfying a single
business requirement [32]. Every microservice has its own database, and there is
no data sharing via the database. This reduces coupling between services. Also,

encapsulation reduces the coupling between services and consumers.

* Microservices are more scalable as we can scale only the required services instead of

scaling the entire application [33]. This will help in minimizing performance issues.

 Services built using microservices architecture can be reusable as the services per-
form unique business requests, and we cannot add more functionality to existing
services. So all the services can be reused for other business requirements using

service composition [5].

21

CHAPTER 2. LITERATURE REVIEW Section 2.3

* Microservices are stateless services as they do not store anything. They handle re-
quests and submit the responses [30]. They use transport protocols like HTTP as it
is stateless when compared to SOAP which is used in web services. Being stateless,
scalability is also increased. If the services are dependent on the state, they should

be moved into separate containers.

* Microservices specify endpoints with associated business logic. With changing busi-
ness needs, services can be updated independently without affecting the existing ap-
plication. As microservices deal with small functionality, it is easy to change or
update the service when a failure occurs. Deployment can be done independently

without affecting the rest of the application [34].

* Microservices support service choreography over service orchestration because mi-
croservices architecture does not require middleware support [35]. Every service has
its own decision logic, and they are not dependent on other services. This indepen-

dent feature helps to achieve loose coupling.

* DevOps is a software engineering practice that combines development with opera-
tions. DevOps focuses on developing applications as small modules, testing indepen-
dently, and frequent deployment. Continuous Integration and Continuous Delivery

are the main features of DevOps, and hence microservices fits well in this structure

[S].

* Microservices aligns well with the agile software development process. The ag-
ile process focuses on the incremental and iterative model of delivery to cope with
change requests quickly. For this reason, applications are divided into smaller mod-
ules in the agile process. As microservices are designed as small and independent

services, it suits well with the agile process [36].

* In microservices, we can use any programming language to design the services. As
each service is deployed in different containers, communication between services
will take place with standard protocols like XML/JSON. Whereas in SOA services,

we cannot use multiple programming languages as the exchange of information is

22

CHAPTER 2. LITERATURE REVIEW Section 2.3

difficult. Different services can be built in different technologies, and it is easier for

developers to choose their own choice of technology for development [37].

* The architectural requirements for Internet of Things (I0T) suitable for microservices
architectural principles. Few tasks in 10T involve just read the data from sensors and
update the status of objects from zero to one or vice versa. Since microservices sup-
port single service single task policy, these are applicable for IoT. Also, microservices
communicate through protocols like HTTP, REST or MQTT; these technologies are

best supported in [oT systems as well [38].

2.3.4 Technical differences between SOA and microservices

The primary difference of microservices style with SOA is the emphasis on scalability,
independence, and semantic cohesiveness of each component in the system [39]. In contrast
with SOA, microservices are required to be self-contained with data, user interface, and
databases.

Technically, there are certain differences between the design and implementation strate-
gies of both SOA and microservices applications. SOA is based on the concept of sharing
as much as possible, whereas microservices architecture is based on the idea of sharing as
little as possible [40]. SOA depends on heavyweight middleware and enterprise service bus
for communication between the services, whereas microservices rely only on lightweight
technologies. SOA is related to protocols and formats such as WSDL, SOAP, etc., and
microservices use REST and HTTP for communication, and JavaScript Object Notation
(JSON) as data exchange format [37]. Microservices follow the concept of smart end-

points, dumb pipes and follow the strategy of choreography over orchestration [19].

2.3.5 Why use microservices?

Loose coupling and the freedom of choosing programming languages for the implemen-
tation of microservices are some of the major benefits. Microservices are deployed in

docker containers which are lightweight, and they are best suitable for microservices as

23

CHAPTER 2. LITERATURE REVIEW Section 2.5

they start very quickly [4]. Container images consist of all required environmental con-
figurations, and developers can easily access them from DockerHub. Microservices can
be easily added or removed from the applications, and they can be easily migrated from
one host to another. Independent deployment helps in auto-scaling of the microservices
at a fast pace and can easily handle the load. Microservices enable continuous integration
and continuous delivery and suit well with DevOps style, which acts as a framework for
the complete Software Development Life Cycle (SDLC) of microservices [5]. Compared to
traditional architectures, microservices are designed in short development time, reduces the
inherent complexity, and increases the scalability [6]. Software architects may believe that
microservice is SOA done right, but microservices architecture is about designing isolated

services with a strong focus on data isolation [10].

2.4 Characteristics of the SOA system to be suitable for
migration

To migrate an application from one architecture to another, it is necessary to study the
characteristics of the existing system which is being migrated. Along with the drawbacks
highlighted in section 2.2.3, migrating to microservices architecture adds many technical
and business benefits. For any system to become suitable for migration, the QoS parameters
play a major role in deciding whether to migrate the application or not. In chapter 3, we
present the QoS values for both SOA and microservices architecture. Additionally, the
applications built using the concepts of SOA as normal services or web services are suitable
to our proposed framework. As we are proposing a new graph based model called service

graph, which is generic to any SOA system, this framework can be used for migration.

24

CHAPTER 2. LITERATURE REVIEW Section 2.5

2.5 Study on migration of SOA applications to microser-

vices architecture

Since the migration of the SOA based applications to microservices is an open challenge[12],
we consider it as the major research problem in this thesis. However, the migration of sys-
tems towards microservices involves multiple difficulties [13] such as (i) not knowing the
impact of migration, (ii) not having enough material on migration techniques, and (iii) not
being aware of the migration effort. These challenges motivated us to study and propose
possible solutions for the migration of SOA based applications to microservices architec-

ture. The motivation and related work behind each objective are discussed below.

2.5.1 Comparison of SOA and Microservices architecture based ap-

plications

One of the goals in the Architecture-Level Modifiability Analysis (ALMA) model pre-
sented by Lassing et al. [41] considers comparing two or more architectures to find the
better one. Here, we consider SOA and microservices architectures for comparison to find
the appropriate one to use in the design of enterprise applications. The number of ser-
vices will be more in microservices and the applications will be more complex compared
to SOA. Moreover, the deployment strategy of microservices is completely different from
that of SOA, and hence it motivates us to select the comparison criteria as complexity anal-

ysis and performance testing of the service-based architectures.

2.5.1.1 Complexity

In the context of software architectures, complexity can be defined as the complexities of
services or components that make up the complete architecture and their dependencies [42].
Continuous upgrades and enhancements of software applications make the services larger
and hence the design, implementation, and deployment of such applications become more
complex [43]. The results of the survey presented in [44] state that despite having low

service coupling in microservices, the complexity of the application increases. Microser-

25

CHAPTER 2. LITERATURE REVIEW Section 2.5

vices system consists of fine-grained services and interactions are very complex including
the configurations of the environments. Multiple service calls occur for a simple business
task to process and give the result [45]. Also, the cost and time for development increases
with the increase in the complexity of the application [3]. Though it has been stated in
the literature that the complexity of the microservices application is high, it is required to
compare the same with SOA and check the behavior of the application with the increase in

complexity.

2.5.1.2 Performance testing

Performance related features such as response time are of more interest to determine the
acceptability of software design [46]. Response time is the time taken for a particular busi-
ness request from initiating to the successful completion of the task. Though the chosen
architectures are service-based, the implementation style and deployment environment are
completely different, and the impact of the cloud can be analyzed with load testing. JMeter
tool is best suitable for performing the load testing, and it has been successfully used to
evaluate the SOA based web services [47]. In a comparative study, [48], container-based
services perform better when compared to Virtual Machine (VM) based services. Hence,
we deploy microservices in cloud containers and verify the response times of both applica-

tions.

2.5.2 Extraction of microservices from SOA based applications

With the increase in user requirements, few services in SOA are tending towards monolithic
in size and makes it difficult to maintain the application. With the dependency on ESB and
the use of heavyweight protocols for the exchange of messages, SOA applications become
less scalable, and the complexity increases with the increase in change requirements. SOA
is still seen as monolithic from a deployment perspective [49]. The ability of indepen-
dent service deployment and elastic scalability in microservices makes SOA applications
as legacy [12]. Also, as mentioned in the introduction, many design challenges exist with

the implementation of SOA using web services. To the best of our knowledge, very few

26

CHAPTER 2. LITERATURE REVIEW Section 2.5

works have been proposed in the literature to migrate SOA based web services to mi-
croservices. One such approach is proposed by Tusjunt M et al. to migrate web services
based on business capabilities, and scenario base analysis [50]. It identifies vocabularies
and their relationships and generates microservices. However, the proposed approach is
domain-specific and cannot be applied to other domains, and identifying a complete set of
vocabulary is difficult. Therefore, we consider the migration of SOA based applications to

microservices architecture in this work.

2.5.2.1 Need for migration to microservices

Because of the diverse benefits, IT companies have started designing their applications us-
ing microservices architecture, and few of them have started migrating their applications to
microservices [11]. There are numerous reasons which trigger migration towards microser-
vices. As architects are unaware of the effort and cost estimation required for designing the
application from scratch, migrating is the best approach [51]. A systematic mapping study
conducted by Di Francesco et al. states that research for the migration to microservices is
at an early stage [52]. Migrating applications to the cloud have also aroused for migrating
to microservices as it suits better in the cloud environment [44]. Technical debt has re-
duced by migrating the existing legacy application to microservices, and maintenance has

improved [53].

2.5.2.2 Challenges in migration

A major challenge in migration is identifying the appropriate partition of the system into
microservices [54]. An overview of the lessons learned and challenges while migration
to microservices is discussed by da Silva Filho HC et al. [55]. Few challenges include
decoupling of services, effort estimation for migration, identification of service boundaries,
and the effort to analyze every part of the system and decide what should be converted to
microservice. Multi-tenancy, statefulness, and data consistency are a few other challenges
of microservices migration [56]. However, a feedback study conducted by Henry A et al.
identified that more than 50% of the responses state that finding the right way to break the

legacy applications is the major difficulty, and 49% of the responses state that the complex

27

CHAPTER 2. LITERATURE REVIEW Section 2.5

task during migration is to overcome tight coupling [10]. Therefore, we strive to propose
a solution for extracting the candidate microservices from existing legacy service-oriented

applications.

2.5.2.3 Existing migration techniques

Considering the major challenge of extracting microservices, some researchers have con-
tributed to the solution in the past few years. Tyszberowicz S et al. in [54] have proposed
an approach to identify microservices using functional decomposition. This approach is
not applicable for extracting from existing applications; rather, it is applicable to extract
microservices from requirement specifications. Similar work for the extraction of can-
didate microservices from application code using a clustering algorithm is proposed by
Kamimura M et al. [57]. The relation between extracted candidates and the whole struc-
ture of the software is also visualized. However, the proposed approach can be used just
to analyze the system before actual migration. An exploratory study conducted by Car-
valho L et al. finds that customization and variability are needed after the extraction of
microservices from legacy systems [9]. As our approach extracts microservices from SOA
based systems, they can be used directly without any customization of the services. Gy-
sel M et al. have proposed a service cutter approach for service decomposition [58]. In
this approach, a tool that supports structured service decomposition through graph cutting
is designed where internal structure is decomposed based on coupling criteria. Also, the
user has to provide the software artifacts as input to extract services. Mazlami G et al.
have proposed a clustering algorithm to extract the microservices from monolithic appli-
cations [59]. This approach considers classes as an atomic unit of computation, and not
all monolithic will be based on classes. Baresi L et al. have proposed a technique for
microservices identification through interface analysis [60]. In this approach, decomposi-
tion is based on reference vocabulary and open API. However, this approach cannot suit
service-based architectures as the decomposition of artifacts is based on vocabulary. A
functionality oriented microservice extraction method is proposed by Jin W et al., which
identifies the dependencies using the execution traces [61]. There are many limitations in

their method as it is not fully automated, and the coverage of test cases may not be accu-

28

CHAPTER 2. LITERATURE REVIEW Section 2.5

rate. A recent study conducted by Ponce F et al. states that 90% of the proposed techniques
use the design element as input and applicable only for object-oriented software [62]. All
the aforementioned approaches directly or indirectly depend on user inputs and are either
manual or semi-automatic approaches. Also, the above approaches discussed focus mostly
on the migration of monolithic applications to microservices architecture.

Few efforts have been contributed to overcome the challenges in SOA based applications.
Martha VS & Lenglart M have proposed an approach for web services engineering named
Web Service Development Life Cycle (WSDLC), where each web service can be devel-
oped independently from other services in the enterprise [63]. It is merely a streamlining
approach for the existing application but not migration to microservices. This approach
reduces the problems related to the performance and availability of web services and has
few limitations. Verb-based and Noun-based decomposition techniques are used to parti-
tion the web services from a large service in the enterprise. It is not always possible to
divide the services uniformly, as mentioned in the approach. As microservices are said to
be SOA done well, migrating existing applications to microservices architecture is the best

solution.

2.5.3 Effort estimation for microservices architecture

With the various benefits of microservices, software architects have started migrating their
existing legacy applications to microservices architecture [3]. Many companies, including
Netflix, Amazon, and Twitter, have started building their new applications with this style
of architecture [4]. However, the effort required for migration and designing the microser-
vices based applications is the major challenge. Effort estimation helps software architects
in the proper execution and management of the project. Effective estimation helps in the
proper scheduling of the software engineering activities. Software effort is given by the
formula effort = people * time [64]. It has to be done during the early stage of the applica-
tion design as it gives insights into the effort and cost required to complete the application.
Software effort estimation techniques are divided into four types, namely, empirical, regres-

sion, theory-based, and machine learning techniques based estimation [65]. The empirical

29

CHAPTER 2. LITERATURE REVIEW Section 2.5

way of estimating is very popular as it gives a clear picture of the effort required numer-
ically, and a few of the models include function point, use case point, and analogy based
techniques. These techniques are not suitable for measuring the effort for service-based
systems as they are designed for procedural object-oriented systems [66].

Use Case Points (UCP) is a commonly used technique because of its simplicity, fast-
ness, and accuracy to a certain extent [67]. UCP approach is based on the use case diagrams
for calculating the effort. Though use case points approach is presented as a flaw for esti-
mating the efforts, there are many successful implementations of use case points for esti-
mating the effort of object oriented systems. Many variations and enhancements have been
published in the literature to improve the accuracy of the approach [68, 69, 70]. Though
the use case point approach is based on the use case diagrams of object-oriented concepts,
attempts have been made for estimating the effort for service-oriented architectures [71].
All the traditional approaches available for effort estimation cannot be used directly for

service-based systems.

2.5.4 Patterns for microservices architecture

Many design and environmental challenges occur during the migration process of one ar-
chitecture to another architecture [72, 73]. Similarly, many challenges occur during the mi-
gration process and post-migration. A few of the challenges which occur during migration
to microservices are: Identification of candidate microservices from legacy source code,
testing of services designed with different programming languages, integration of polyglot
services, debugging and RCA for issues in the migrated services and setting up the con-
figuration environment for newly generated microservices [54]. In software engineering,
patterns are used to solve the commonly occurring problems that occur during the SDLC
phases of the application [74]. In addition, migration patterns can also be used to support
issues that occur during the migration from one architecture to another [75]. The exploita-
tion of design patterns helps in mitigating/solving some pains of microservices [76]. There
are broader advantages of using migration patterns during migration, as it is the new archi-

tectural style. There are very few or no design patterns defined for the problems occurring

30

CHAPTER 2. LITERATURE REVIEW Section 2.6

in the design of microservices in the literature [77].

2.6 Summary

In this chapter, distributed systems such as monolithic, SOA, and microservices architec-
tures are discussed. The benefits and drawbacks of monolithic and SOA applications are
presented. The definition, characteristics, and benefits of using microservices architecture
are also presented. A detailed literature survey of studies conducted in this thesis is pre-
sented. In the next chapter, the comparison of both SOA and microservices architecture

applications using complexity and performance parameter is presented.

31

Chapter 3

Comparison of Service Oriented
Architecture and Microservices Based

Applications

Microservices architecture has gained a lot of attention since its inception in the year 2014
by Martin Flower [3]. With the evolution of microservices as a new style for designing
enterprise applications, it has attracted many researchers to contribute their insights on this
new style. Some proponents of microservices claim it as a new style, whereas the advocates
of SOA claim it as an implementation of SOA [78]. Vural H et al. [79] has presented
the current trends and emerging standards in the research of microservices. One of the
major possible research gaps highlighted was the comparison of SOA with microservices
architecture and migration of legacy monolithic & SOA applications to microservices.
One of the goals in the Architecture-Level Modifiability Analysis (ALMA) model pre-
sented by Lassing et al. [41] considers comparing two or more architectures to find the
better one. In several studies conducted by Rademacher F et al. [80], Pahl C et al. [81],
and Cerny T et al. [21], it is mentioned that there is a need to compare and investigate
both SOA and microservices architecture in terms of performance, development effort, and
maintenance. Cerny T et al. [12] discusses the theoretical differences between both the
styles in terms of different architectural parameters. The differences are presented in both

research and industry perspectives. Similar work of comparing distributed systems such

32

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.1

as client/server, mobile agents, SOA, and microservices is presented by Salah T et al. [1].
However, there has been no empirical work done in comparing these two architectural
styles. Hence, we consider complexity and performance as the parameters for comparison

of both the architectures. The main contributions of this chapter are described below:

* Proposed a formal model called as Service Graph (SG) which resembles any service
based application. It acts as a blueprint of the service based application, which helps

in identifying the metrics required for comparison of both the architectures.

* Presented a comparison of a web based application which is built using both SOA
and microservices architectures. The comparison is presented with two different

parameters:

1. Complexity with architectural metrics.

2. Performance with load testing.

3.1 Service Graph

We define a formal model called service graph, which resembles any service-based applica-
tion. By considering the inputs and outputs from the Application Programming Interfaces
(APIs) of the application, we create a service graph. As both SOA and microservices ar-
chitectures have services as the main component, we use this service graph for comparison
of both the architectural styles.

Service graph (SG) is a standard graph created for the visual analysis of communication
and dependence between the services of the application. It helps in extracting the values
for metrics such as number of services and the complexity of each service. It also helps
in software engineering tasks such as effort estimation, complexity analysis and design
patterns, etc. The generalized form of a service graph is shown in Figure 3.1.

Service Definition
Let a graph G(V,E) be a service graph with n nodes, where the nodes of the graph represent
a set of services in the application, and edges between the nodes represent the interactions

or dependency each service has with other services in the application. Let V={s1,5,53,...}

33

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.2

Figure 3.1: Formal representation of service based application

be the nodes of the service graph where s1,52,53,... are services and E= {(s1,52), (51,53),
(52,54,} be the edges between the nodes which represent the dependency between the
services. A service can be represented as a set of coordinating and interacting processes as

defined in equation (1).
S’L =< PliaPQianﬂi? """ 7PniaA> (31)

where S; is the logical service instance, P’ indicates k' process implementing logical
service functionality f; through the programmatic interface I; and A represents network

communication function between individual processes [82].

3.2 Case Study: Vehicle Management System

We use a standard web-based application, Vehicle Management System (VMS) [83] which
is used to select, customize, and purchase vehicles and its parts using a web interface.
The goal of this application is to help customers to select, customize, compare vehicles,
locate dealers, and request a quote. All the details of the vehicles, their parts, and prices
are configured in the database and help customers with details using the user interface.

Customers can select the vehicle of choice and the dealer for the selected vehicle from the

34

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.2

inventory data. Customers can even select the part and the product type of the vehicle from
the interface. The selected information is generated as a lead and sent to the dealer, who

helps the customer in purchasing the vehicle and its parts.

3.2.1 SOA based application

The chosen case study application has eight services in the SOA implementation. The de-
tails of the SOA services are listed in Table 3.1 and the service graph representation denoted
as SG_SOA is presented as shown in Figure 3.2. We implemented the SOA based applica-
tion using The Information Bus Company (TIBCO) Business Works (BW) and deployed
using TIBCO administrator. TIBCO BW is used to create, orchestrate and integrate ser-
vices with graphical user interface environment. It is widely used for designing SOA based
enterprise, web and mobile applications. For data storage, oracle database is considered
and database palettes of TIBCO BW help in connecting to the database. The communica-
tion between the services is using REST protocol via HTTP. Each service is deployed as an

independent archive in a single server.

Figure 3.2: SG_SOA : Service graph representation of SOA based web application

The service graph of the SOA based application for the case study application is pre-

sented in Figure 3.2. The services of the application are represented as nodes of the graph

35

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.2

and the dependencies and interaction between the services are presented as edges between
the nodes. In the graph, node s; represents the config service given in Table 3.1. Since the
config service is required for all the services to perform the business operations, many ser-
vices have communication with the s; and the edges from s; represents the communication

between the services.

Notation | SOA services Microservices Notation
in in
SG_SOA SG_MSA
51 Config Service Config Service msy
S9 Part Service Part Service mso
S3 Product Service Product Service mss
S4 Compare Service Compare Service msy
s Incentives Service ms
b Incentives & Pricing Service —~—— - 5
Pricing Service msg
Sg Dealer Service msy
Dealer & Inventory Service | Dealer Locator Service mssg
Inventory Service msg
S7) Get-A-Quote Service msio
Lead service .
Lead Processor Service msiy
Sg User Interface Client User Interface Client msio

Table 3.1: Details of services of both SOA and Microservices based applications

3.2.2 Microservices based application

In order to develop microservices based application, we adopt the microservices extraction
approach from SOA based application [84] and generate the service graph, which helps in
identifying the candidate microservices. Considering the set of microservices, the chosen
case study application is implemented using the spring boot framework, and REST/JSON
formats are used for communication among the services in the network. Eureka service
is used as a service registry to store all the services. To store the data, MYSQL database
is considered and spring boot connector retrieves data using the JPA connector. Each mi-

croservice is deployed with containers using docker in the cloud. The docker image of the

36

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.3

application is created, deployed in the docker hub, and containers are created from docker
images. The details of the generated microservices are presented in Table 3.1 and the ser-
vice graph (SG_MSA) is presented in Figure 3.3. The nodes of the service graph represent
the microservices and their dependencies on other services. Since, we have many mi-
croservices, the number of services communicating among themselves is also high, which

is represented as edges in the graph.

Figure 3.3: SG_MSA: Service graph representation of microservices based application

The detailed information of the service graph generated using the APIs is presented in
Chapter 4. The procedure and algorithms for constructing the service graphs of both the
systems are presented in Chapter 4. In this chapter, we have intuitively considered the ser-
vice graph representations for both architectures. The actual migration and the challenges
faced during the migration of the chosen vehicle management system are also presented in

the next chapter.

37

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.3

3.3 Complexity Analysis

As discussed, there is a strong need to compare both SOA and microservices architecture as
software architects are in chaos whether to continue the applications in SOA or to migrate
them to microservices style. We consider the metrics for measuring the complexity of the
software architectures [85] and extract the metric values from service graph representation.
The metric values are considered to compare the complexity of both the architectures. Be-
low, the metric definitions and evaluation of both the architectures are discussed.

Total Complexity of the software architecture: This metric is used to calculate the total
complexity of the application by considering the dependencies between the services. Let
D, be the set of all dependencies in the service graph of the software architecture, the total

complexity of My of the architecture can be measured as
My =| Dy | (3.2)

The dependencies between the services are extracted from the service graph representation.
Global Complexity of the software architecture: Each service may contain multiple
processes and each process also adds to the complexity of the system. By considering
the individual complexities of the services, we consider another metric for calculating the
global complexity. Let My be the total complexity and M;, Ms, - - -, My, be the individual

service complexities, then the global complexity M is calculated as

k
Mg = Mp+> " M;. (3.3)
i=1

To calculate the individual complexities of each service in the application, the coupling
factor of the service is considered.
Service Coupling: The coupling between the services indicates the dependencies it has
on other services, and it should always be low. The more coupling intensity between the
services, the high is the complexity of the system. Hence, we consider the metrics related
to coupling to calculate the complexity of individual services.

Metrics related to coupling: Service graph provides the details of basic metrics that are

38

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.3

used to determine other metric values. Number of Services (NoS) value is given by the

count of nodes in the service graph,

NoS =n (3.4)

Coupling of Services (CS) value is given by the degree of each node as given in equation
3.5.
CS; = deg(s;) (3.5)

Relative Coupling of Services (RCS) denotes the degree of coupling in a particular service

[86]. RCS of service is calculated using the formula in equation 3.6.

CS]s]
NoS

RCS[s] = (3.6)

The complexity of the application can be measured with this metric. The coupling intensity
of a service is directly proportional to the value of the RCS. Using the above metrics, we

evaluate the chosen case study application and compare both the architectural styles.

3.3.1 SOA based application

In order to compare both styles, we extract the metric values from the service graph of both
the styles. From the service graph representation of SOA style as shown in Figure 3.2, we
identify the dependencies and also calculate the CS and RCS values, presented in Table 3.2.
Total Complexity: The total complexity of the application is calculated by the summation
of all dependencies among the services. By considering the CS values from Table 3.2, we
calculate the total complexity.

My =| D, |= 38

Global Complexity: The global complexity metrics require the complexities of indi-
vidual services and hence, we consider the RCS values for measuring the individual service
complexity.

8
Mg =My + Y M. =38+4.73=4273

i=1

39

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.3

Service # | Interacting Services | CS value | RCS value
S1 2,3,4,5,6,8 6 0.75
So 1,4,5,6,8 5 0.62
S3 1,4,5,6,8 5 0.62
S4 1,2,3,8 4 0.5
S5 1,2,3,8 4 0.5
S6 1,2,3,7,8 5 0.62
S7 6,8 2 0.25
S8 1,2,3,4,5,6,7 7 0.87

Table 3.2: List of services with CS & RCS values of SOA based application

3.3.2 Microservices based application

Similarly, we extract the dependencies from the service graph as shown in Figure 3.3 and
calculate the CS and RCS values, presented in Table 3.3. Total Complexity: The total
complexity of the application is calculated by the summation of all dependencies in the
service graph of microservices based application. By considering the CS values from Table
3.3,

My =| D, |=170

Global Complexity: The global complexity metrics require the complexities of individ-
ual services and hence, we consider the RCS values for measuring the individual service
complexity. From the RCS values in Table 3.3,

12

Mg =Mp+Y M. =70+58=758

=1

3.3.3 Comparison of Complexities

The values of both total and global complexities for both SOA and microservices based ap-
plications are plotted as a graph, as shown in Figure 3.4. The results show that the microser-

vices based application is more complex when compared with SOA based application. By

40

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS

Section 3.3

Service # | Interacting Services | CS value | RCS value
ms; 2,3,4,5,6,7,9,10,12 9 0.75
mss 1,4,5,6,10,12 6 0.5
mss 1,4,5,6,10,12 6 0.5
msy 1,2,3,10,12 5 0.41
mss 1,2,3,6,12 5 0.41
mse 1,2,3,5,10,12 6 0.5
msy 1,9,10,11,12 5 0.41
msg 11,12 2 0.16
mSg 1,7,10,12 4 0.33
msig 1,2,3,4,6,7,9,12 8 0.67
msii 7,8,12 3 0.25
msia 1,2,3,4,5,6,7,8,9,10,11 11 091

Table 3.3: List of services with CS & RCS values of microservices based application

the definition of microservices, the number of services will be more in microservices than

in SOA. For the chosen case study application, the number of services in SOA application

is 8 and in the microservices based application, it is 12, whereas the sum of total dependen-

cies is 38 in SOA application and 70 in microservices based application. We observe that a

50% increase in the number of services has lead to an 84% increase in the dependencies in

the microservices application. The more services, the more will be the complexity of the

application. From the service graphs, as shown in Figure 3.2 and Figure 3.3, we can ob-

serve that the dependencies among the services in microservices application are very high

compared to SOA based application.

41

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.4

B1SOA [Microservices
80 | 75.8 1
70 9.
60 |- 8
42.7
40 | 38 |
201 T T -

Total Complexity Global Complexity

Figure 3.4: Comparison of complexities

3.4 Performance Testing

In order to compare the performance of both the architectures, we consider load testing on
both the applications. As JMeter can be used to carry out performance tests for SOAP and
REST based web services, we configured JMeter to perform the load testing by considering
500 and 1000 users of load on both the applications. All the services in both SOA and
microservices based applications are given load using the JMeter tool, and we capture
the average response time for 500 and 1000 users separately for all services. The time
taken from sending the request to getting the first response is treated as response time, and
it is measured in millisecs. The average response time of both SOA based services and

microservices are presented in Table 3.4 and Table 3.5, respectively.
3.4.1 Ciriteria for performance comparison

In order to compare the performance of both the architectural styles, we define Business
Requests (BR) according to the functionality of the case study application. The sequence of
services invoked for processing a particular business functionality is stored as a sequence
with the service numbers. By understanding the complete case study application, we iden-

tified seven major business requests and listed them in Table 3.6 for SOA and microservices

42

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS

Section 3.4

. Response Time (millisecs)

SOA services 500 users 1000 users

$1 3412.76 6850.68

So 4519.34 8080.58

S3 6127.12 10870.84

S4 5923.67 10381.83

S5 7534.18 15127.50

Sg 8316.41 16199.60

S7 5681.75 13887.48

S 6120.67 11812.99

Table 3.4: Response time values of SOA services

microservices Response Time (millisecs)
500 users 1000 users
msy 2691.47 7353.89
mso 4245.85 14590.98
mss 5381.52 6712.26
msy 4818.51 14296.40
mss 3133.11 3481.54
mSe 4914.38 9608.29
msy 4608.70 5398.62
msg 4037.72 5218.80
msg 4403.81 3783.48
msig 2308.32 4839.70
msi1 3671.6 10303.73
msia 4866.44 9376.96

Table 3.5: Response time values of microservices

based applications respectively. The time taken for each of these business requests in both

SOA and microservices based applications is considered as criteria for comparison.

To better understand the business requests, let us consider the business functionality of

comparing two different vehicle models and their parts. The comparing of products and

parts of the vehicles is configured as business request BR2. The user, through the web

interface client, selects the product and parts of the vehicles from inventory and chooses

the compare option in the application. The results of the comparison are displayed on the

screen and the user decides on the vehicle to select. The services which get invoked in this

process are represented as a sequence, shown in Table 3.6.

43

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.4

Business Sequence of SOA services | Sequence of microservices

Requests

BR1 Sg — S1 — S3 — Sg — S5 — Sg | MS19—MS] —MS3—MSy—MSg—MS5—MSg
BR2 Sg — Sg — S3 — S9 — S4 MS12 — MSg — MS3 — MSy — MSy

BR3 Sg — Sg — S3 — Sog — S5 — S4 | MS12—MS9g—MS3—1MSe—MSe— M S5—1MSy
BR4 Sg — Sg MS12 — MSg — MSy

BR5 Sg — Sg — S7 msia — MSg — MS19g — MS11 — MSg — MS7
BR6 Sg — 81 — Sg MmSio — MS1 — MS7 — MSg

BR7 Sg — S1 — S5 msia — MS; — MSs — MSg

Table 3.6: Mapping of business requests with workflows

3.4.2 Performance comparison results

The average response times of each of the services involved in the business requests are

added to get the response time of the complete business request. The time taken for all the

requests under 500 and 1000 users for both SOA and microservices applications are plotted

as a tornado graph, as shown in Figure 3.5 and Figure 3.6. It is clear from the graph that

the average response time for completing the business requests in SOA based application

is high compared to microservices application. For a detailed analysis of the performance

load testing, we consider two different scenarios w.r.t to the number of services involved in

getting the response of a business request.

Business Requests

7 [= SOA
= Microservices
6 | [.
5 T I
4 [s
3 e I
2 e I
1 e I

50000 40000 30000 20000 10000

0 10000 20000 30000 40000 50000

Response Time .10%

Figure 3.5: Response time of business requests for 500 users

44

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.4

— SOA
= Microservices

D
1

ot
1

w
1

Business Requests
i
1

[N}
1

[I
[I
[
[—
[—
[
[—

1 |

100000 80000 60000 40000 20000 0 20000 40000 60000 80000 100000
Response Time .10°

Figure 3.6: Response time of business requests for 1000 users

3.4.2.1 Business request having the same NoSs

From the details of business requests and corresponding sequences in Table 3.6, we can
observe that BR2 has the same number of services and the functionality of the service also
remains the same but designed with different architectural styles. We consider this scenario
to test the response time for BR2, which clearly presents the impact of architecture and its
environmental factors. The business request BR2 is verified using 500 and 1000 users and
the average response times are plotted as a bar graph as shown in Figure 3.7. The results
from the graph for the business request BR2 of our case study show that the microservices
based application has better response time when compared to SOA based application even

though the number of services and the business functionality remains the same.

3.4.2.2 Business request having different NoSs

To identify how both the architectures behave with a different number of services, we
choose the business request BRS as the number of services involved in SOA based appli-
cation is three and in microservices based application is six. The business request BRS is
also tested with 500 and 1000 users for both the applications and results are plotted as a bar
graph as shown in Figure 3.8. The results show that microservices have a high response

time when compared to SOA with 500 users and the response time is better for microser-

45

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.5

104 |
B1SOA I Microservices
61 57,346 i
48,760
4 | |
31,007
23,716
2 | |
500 users 1000 users

Figure 3.7: Average response time for BR2

vices when the number of users is increased to 1000. It shows that though the number of
services is high in microservices, because of its cloud-based deployment environments, the

average response time of microservices-based application is low.

-10* |
5 [|lBSOA I Microservices |
41,900
n 38,921
3 |
23,897
20,119
2 |
1 |
500 users 1000 users

Figure 3.8: Average response time for BRS

46

CHAPTER 3. COMPARISON OF SERVICE ORIENTED ARCHITECTURE AND MICROSERVICES BASED APPLICATIONS Section 3.5

3.5 Summary

In this chapter, empirical evaluation and comparison of both SOA and microservice archi-
tectures are presented. A service graph model for representing any given service based
application is proposed. This chapter helps in understanding the differences in terms of
complexity and performance of both styles. Based on the analysis done for the complexity
of the applications, it is clear that microservices application has more number of services
and application is more complex than SOA based application. The coupling between the
services is also less in microservices architecture. However, the performance testing shows
better results for microservices with quick response times for 500 and 1000 users. Further-
more, the chosen case study application exhibits better results when chosen the business
requests with the same number of services in both styles. After this experimental study, we
conclude that microservices architecture exhibits better performance results with the use of
cloud-based environments and can be used in the design of enterprise applications.

In the direction to perform research in migration of SOA based application to microser-
vices architecture, this is the initial study conducted. Hence, we have chosen only one
case study application to demonstrate and evaluate the performance and complexity of the
applications built using both SOA and microservices architecture. However, based on this
initial study, we cannot comment whether the response time will be better for any given

microservices based application.

47

Chapter 4

A service graph based extraction of

microservices from monolith services of

SOA

In the previous chapter, we compared both SOA and microservices architecture, and the
results motivate us to migrate the existing applications to microservices style. However,
most of the works presented in the literature focus on migrating monolithic applications
to microservices but not from SOA to microservices. To the best of our knowledge, there
has been no or very limited work done in proposing approaches for the migration of SOA
based applications to microservices. Few efforts have been contributed to overcome the
challenges in SOA based applications by Mazlami G et al. [59]. One such approach is
proposed by Tusjunt M et al. to migrate web services based on business capabilities, and
scenario base analysis [50]. The proposed approach is domain-specific and cannot be ap-
plied to other domains, and identifying a complete set of vocabulary is difficult. A major
challenge in migration is identifying the appropriate partition of the system into microser-
vices [54]. Di Francesco P et al. [52] present challenges which occur while migrating to
microservices. Few challenges include decoupling of services, effort estimation for migra-
tion, identification of service boundaries, and the effort to analyze every part of the system
and decide what should be converted to microservice. However, a feedback study con-

ducted by Henry A et al. [10] identified that more than 50% of the responses state that

48

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.1

finding the right way to break the legacy applications is the major difficulty. In this chapter,
we attempt to propose a graph based microservices extraction approach from legacy SOA

based applications. The main contributions of this chapter are described below:

* Presented the concept of Task Graph (TG) and how each service in the Service Graph

(SG) contains this task graph in it.

* Algorithms for construction of service graph and task graphs for any given service

based application are proposed.

* Algorithms for extraction of microservices from SOA based applications and gener-

ation of service graph for the microservices based applications are also proposed.

* An SOA based web application is chosen for the demonstration of the proposed al-
gorithms, and the extracted microservices are compared with SOA services in terms

of loose coupling.

4.1 Service graph construction

Given an SOA application, we need to construct the service graph representation, which
helps in the extraction of the microservices. Every SOA based application has an API docu-
ment that contains the complete information about the services, operations in each service,
and input/output parameters of each operation. If the application is implemented using
web services, then we will have a WSDL file as the API document, and if we implement
the application as normal services, then we have XML format of the complete application.
Operations in each service are termed as a process. Using the API as input, we present
algorithm 4.1 and algorithm 4.2 to construct the service graph and the task graphs for the
SOA application.

In the algorithm 4.1, we can skip the first two steps if the application is not built using
web services. For the normal implementation of SOA as services, the XML file can be
directly generated, and we need not convert it again to XML format. In the service graph,

we are adding an undirected path between the services as the entry point can be from any

49

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.2

Algorithm 4.1 Service_Graph_Construction_for_SOA

Input: API (WSDL) file of SOA based application
Output: Service Graph G = (V, F)

R A O T o s e

S G S S —
B W NN = O

Begin

Read API file

Convert API to XML format

Parse the generated XML

Extract serviceNames from parsed file

> Each serviceName represents a service

V={s1,50, -+ $p}
where s; < service and n <— number of services
for each service s;,1+ 1,n do

Extract inputs and outputs of each service s;

: end for

. Sg.input <— input set of service s

: Sg.output <— output set of service sy
: fori < 1,ndo

O R R N N N N I I e e e T
AN A T S R A A

for j « 1,ndo
if i+ j and s;.output N s;.input # () then

E=EU {(Si,Sj)}
end if
end for

: end for
: for each service s; € V do

Call Task_Graph_Construction(s;)

: end for

. return G
- End

> Add edge from s; to s; in G

services in the application based on the business requirements. As each service is a set of

processes, the dependency among the processes inside each service is represented as a task

graph discussed in the next section.

4.2 Task Graph

Task graph is a directed acyclic graph where each node represents the process, and the

edge between the node represents the dependency of one node on another. Each service in

SOA may contain one or more processes performing different tasks (based on the defini-

50

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.2

tion of service from equation 1), and therefore we generate a task graph for processes in
each service. The task graph represents the application with a directed acyclic graph G(V,
E), where V is the set of nodes, each node representing a process, and E is the set of arcs
between communicating processes. Service graph with the task graphs inside each SOA
service is represented as shown in Figure 4.1 where s1,5,53,... are services and py,ps,ps,...

are processes inside each service.

Figure 4.1: Service graph containing task graphs

Task graph construction

The processes in each service as represented as a task graph as shown in Figure 4.1. Each
service that is built using the concepts of SOA will have an API file representing the oper-
ations performed in the service. As mentioned in section 4.1, we may have a WSDL file
or XML file based on the design approach of the application. For generating the service
graph, the complete API of the application is used, whereas to generate the task graph for
a single service, we consider the API of the particular service only. The API document
comprises the set of operations along with the input and output parameters involved in the
operation. The sequence of the tasks is determined by the inputs and outputs. If any of

the services have independent operation, they are connected with the input of the entire

51

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.4

service in which the task is performed. Services in SOA do not have constraints like mi-
croservices to perform only one business task. Therefore, they can be multiple operations
in each service, and we represent the processes as task graph using the algorithm 4.2. In
the task graph, the processes execute the business requests in some particular order. Hence,

we have represented the edges as directed paths.

Algorithm 4.2 Task_Graph_Construction(s;)

Input: API (WSDL) file of a SOA service
Output: Task graph G;=(V;,E})

: Begin

Read API file

Convert API to XML format

Parse the generated XML

Extract operations from parsed file

> Operation is designed as a process p;
V;f = {p17p27 T 7pn}
where p; <— process and n <— number of processes
for each process p;, i< 1,n do
Extract inputs and outputs of each process p;
Vi=V, U {pi}
: end for
. pr.input <— input set of service py
. pr.output <— the output set of service py
: fori < 1,ndo
for j < 1,ndo
if i+ j and p;.output N p;.input # () then

e A A o ey

e e e e
XD ERY 72

> Add edge from p; to p; in G,

,_.
N4

E, =L U {(pi»pj)}
end if
end for
: end for
: return G,
: End

DN N N
Sl N

4.3 Microservices extraction algorithm

Now, we extract the microservices from the service graph using algorithm 4.3, and it gen-
erates a set of microservices as the output. The variable Set,, in the algorithm indicates the

set of candidate microservices.

52

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.4

Algorithm 4.3 Microservices_Extraction

Input: Service graph G = (V, E)
Output: Set of candidate microservices Set,,

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:

N A A

Begin
V = {s1,59, -+, s, } where s; is a task graph.
for i+ 1,ndo
visit the node s; € V, if not visited before
calculate the order of node s;
if |s;|=1 then
Set,, = Set,, U s;
else
for j «— 1,ndo

1. visit node p; where p; € s;
ii. Set,, = Set,, Up;
end for
end if
end for
return Set,,

End

4.4 Service graph generation for microservices

After extracting the services, we retain the interactions of each service by constructing the

service graph for microservices based application.

Algorithm 4.4 Service_Graph_for_Microservices

Input: Service graph of the SOA application, G = (V,E) with V' = {5}, Ss,.. ., S, } where

S1,99,. . .,5, are task graphs.

Output: Service graph of microservices application, G’ = (V',E")

1:

2:

Begin

Let the given service graph vertex S; = (V;,E;) is a directed acyclic graph (DAG) of
order k; where, V; = {pl,p2,p2, ... p}.

Compute V' =U!", V;

Compute E' = {(p, p}) : p; € Vi, pl €V}, (51, SH € B, 1 <s <k, 1 <t <k} U B,
UFEs...UE,.

return G’

End

53

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.5

Thus, the generated graph G’ = (V/, E’) represents the service graph for the microser-
vices application where V' represents the services in the microservices application, and £’
represents the dependency among different microservices. The generation of service graph
and extraction of microservices using the proposed approach is demonstrated through a

case study application.

4.5 Case Study: Vehicle Management System

We applied our proposed algorithms to the same web-based application considered in
Chapter 3. However, the service graph representation in this chapter for the chosen ap-
plication contains the task graphs in each service (node) of the service graph. The service
graph, along with its internal task graphs of the VMS application, is illustrated in Figure
4.2.

Figure 4.2: Service graph representation of SOA based application

The details of the services of the SOA based VMS application are given below.

Sy: This service is used for configuring the details of the vehicle’s parts, products,

54

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.5

price information, dealer and to manage the inventory. The details are configured
through the user interface.

Syt This service provides information related to different parts of the vehicle avail-
able for the model. The details are configured through service ;.

Ss: This service provides information related to different models of the available
vehicles.

S4: This service is used to compare different models or parts of the vehicles.

Ss: This service is used to get the information related to price of each vehicle and
price of each part. It also searches for applicable incentives for the chosen vehicle or
part.

Se: The details of the vehicle and dealers who provide quotations to customers are
extracted using this service.

S7: The details entered through user interface are read and converted into a lead using
this service. These leads are sent to dealers for the business.

Ss: This is the front-end part of the application through which all the business oper-

ations are performed.

4.5.1 Extraction of microservices

Applying the algorithm 4.3, we now extract the set of candidate microservices from the
constructed service graph as shown in Figure 4.2. Let the Set,,=0) initially. We need to
visit each node of the graph and calculate the order of task graph in that particular node.
Therefore, the order of each service in graph G is as given below.

[Sil= 1,08 =1,]Sy |=1,] Su|=1,] S5 |=2.] S5 |=3,] S |=2.] S |=1
For services S5, Sg, S7, We need to visit each node of the task graph and add it to the Set,,.

Therefore, the final set of candidate microservices is given as Set,,={pi, p3, p3, pi, pt, P,

Dé» De» Do D3> D3 DR}

55

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.5

4.5.2 Service graph construction

The proposed approach to extract microservices described in this section is based on the
eight services in the VMS application. We construct the service graph of the application us-
ing the proposed approach. Let us consider the service graph of SOA application as shown
in Figure 4.2 as input graph G = (V, E). As there are eight services in the given service
graph, it represents the eight vertices of the graph. From the service graph,

V ={81,Ss, S5, 54, S5, S, S7, Ss } and

E={(51,52), (51, 53), (51, 54), (51, 55), (51, S6), (S1, Ss), (52, 54), (52, 55), (52, S6),
(S2,58), (53, 51), (S5,55), (53, 56), (53, 58), (4, Ss), (S5, S8), (6, 57), (56, Ss), (57, 98)}
where S7, Sy, . . ., Sg are the services of the application which internally consists of directed
acyclic graphs (DAG). Now we represent vertices and edges of DAG in each service. The
first service GGy is represented as S7 = (V;, Ep) where V1={p%} as it consists of only one
process in the service S; and E; = () as it has no dependency with other processes. Simi-
larly, other services are represented as below.

Sy = (Va, Ey) : where Vo = {pl} and Fy = 0),

Ss = (V3, E3) : where V3 = {pl} and F5 =0,

Sy =(Vy, Ey) : where V; = {pi} and E, = 0),

Ss5 = (Vs, E5) : where Vs = {p3, p3} and E5 = {(p3, p3)}

Se = (Vg, Eg) : where Vs = {pg, p§, pe} and Eg = {(pg, p)}

S7 = (Vz, Ey) : where V7 = {pz, p7} and E7 = {(p7, p?)}

Sg = (Vg, Eg) : where Vg = {pi} and Fg = ().

We need to determine the target output graph G’ = (V’, E’) which represents the service
graph of microservices application.

AsV'=U, Vi,

V' = {p1, Pa. D3» Pis Ps» D3 Des Do» PGs D1 D7 Ds)

We compute edge set E’ by considering the edges in the input graph.

E"={(p1,12). (p1,p3), (p1,), (p1. p3), (1, P2): (P1, p6), (P, 15), (p1, 18), (P1 ps),

(P2, P1); (P2 P3), (3. P3), (p2: Px), (03, 1), (P3, 15), (P, P2): (3. p2), (13, Ps), (Pi: 7).

(P, P8); (5, P3), (15, Ps), (P2, ps), (06, 16), (P> 1), (P, P2); (s, i), (06, P3), (D6 ps)

56

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.5

(P&, 1), (D&, 3), (08, ps), (P3, 03), (P, p3), V3, P8)}

Thus the service graph for microservices is represented using the graph G’ = (V',E"). For
better understanding of the application in generated graph G, nodes are renamed as ser-
vices msi, mss, mss, ..., msja. We have generated the service graph for microservices

application using the V' and £’ as shown in Figure 4.3.

Figure 4.3: Service graph representation of microservices based application

The details of the functionality of each microservice extracted from SOA based appli-

cations are as given below:

p1 This service is used for configuring the details of the vehicle’s parts, products,
price information, dealer and to manage the inventory. The details are configured

through the user interface.

p2 This service provides information related to different parts of the vehicle available

for the model. The details are configured through service p;.

p3 This service provides information related to different models of the available ve-

hicles.

p4 This service is used to compare different models or parts of the vehicles.

57

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.5

ps This service fetches the incentives applicable to the parts or models of vehicles

selected.

pg The price of each part of the vehicle and different models of vehicles are extracted

from this service.
pr The list of dealers available are presented with this service.

ps Once the user selects the parts and models of vehicles, this service generates a

Quote based on the inputs of the user.

p9 The dealer information is fetched once the lead is generated.

p1o All the details of the available parts and models are presented through the service.
p11 This service generates the lead with the user information.

p12 This is the front-end part of the application through which all the business oper-

ations are performed.

4.5.3 Discussion on proposed approach

The service graph constructed with the proposed approach represents the microservices
and their dependencies with other services in the application. Microservices architecture
follows the principle of single responsibility, where each service should accomplish only
one business task. The VMS application has few services which perform only a single task,
and few services are loaded with multiple business requirements. We applied the proposed
approach, partitioned the services, and generated individual microservices that perform
only a single task. The benefit of our approach is communication between the services in
the chosen SOA application hold intact in the service graph of microservices application.
We also get to know the services which have to be redesigned as microservices as few
existing services are performing only one task. Therefore, it helps the developer in easy
migration and saves time for migration. The number of services can be identified from the
service graph of microservices. It helps in doing other software engineering activities like

effort and cost estimation for migration of the application.

58

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.6

Apart from the benefits of our approach, it has a few limitations in the extraction of
microservices. We have taken a simple application to demonstrate our approach and repre-
sentation of large enterprise applications as service graphs may be complex. To overcome
this, architects should carefully analyze the system and generate the service graph automat-
ically using graph generation tools. In the future, we plan to consider the database also for

partition as it is suggested to have an individual database for each microservice.

4.6 Evaluation of the extracted microservices

One of the main reasons for migrating towards microservices is that it exhibits better QoS
compared to SOA based services. However, to the best of our knowledge, very few works
have been done in comparing both SOA based services and microservices. In one of our
earlier works, we have compared the services of both the architectures with respect to
performance, complexity, and scalability [87]. The results conclude that though the com-
plexity of microservices is higher, it has better response time and throughput compared to

SOA based services.

4.6.1 Evaluation criteria

In addition to the performance and complexity parameters, we consider loose coupling
as evaluation criteria for comparing both microservices and SOA based services. Loose
coupling is one of the essential characteristics of the service-oriented design. Coupling
is measured by the level of dependency each service has on other services in the system.
Coupling between the services should be minimal such that it holds the standards of ser-
vice design principles. If the coupling between the services increases, the complexity of
the architecture also increases. Hence coupling is a crucial factor among all the principles
of SOA. Other SOA principles, including statelessness, scalability, etc., are directly or indi-
rectly related to loose coupling which are discussed below. The relation between coupling

and other principles is represented in Figure 4.4.

* Nature of loose coupling minimizes cross-service dependencies, by this service au-

59

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.6

tonomy is achieved [88].

* Loose coupling frees the tight dependencies on other components. This increases

their availability for reuse opportunities [89, 90].
* Service statelessness is achieved by designing loosely coupled services [91].

* Scalability is achieved if the services are loosely coupled [92].

Service Service
Reusability Scalability
nhances
achieves
enables

Loose
Coupling
Service Service
Autonomy tatelessness

establishes
Figure 4.4: Relation between coupling and other SOA principles

4.6.2 Extraction of metric values from service graph

Service graph provides the details of basic metrics which are used to determine other metric
values. Number of Services (NoS) value is given by the count of nodes in the service graph,
NoS= n. Coupling of Services (CS) value is given by the degree of each node as given in
equation 4.1.

CS; = deg(s;) 4.1)

Relative Coupling of Services (RCS) denotes the degree of coupling in a particular service
[86]. RCS of service is calculated using the formula in equation 4.2.
CS]s]

RCSs| = < (4.2)

60

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.6

The complexity of the application can be measured with this metric. Coupling intensity of
a service is directly proportional to the value of the RCS. The complexity of the service-
oriented system is also indicated with another metric, Service Coupling Factor (SCF). It is

calculated as given in equation 4.3.

SCF . ZSES[*} OS[S]

~ NoS2— NoS .3

SCF metric is used to indicate the overall coupling of the application. The value of SCF
ranges between 0 and 1. The lower the SCF value, the better is the system. Moreover, any

service in a service-oriented system cannot have the values of SCF as O or 1.

4.6.3 Evaluation of SOA based application

Using the service graph for SOA based application as given in Figure 4.2, metric values
are calculated and presented in Table 4.1. The number of services (NoS) in SOA based
application is eight as we have eight nodes in the service graph. Coupling Value (CS) of
services is the number of interactions each service has with other services, and Relative
Coupling of services (RCS) value depends on CS value.

For example, the CS value of Incentives and Pricing Service is four as it has com-
munication with Config Service, Part Service, Product Service and User Interface Client
services. The corresponding RCS is calculated by % = 0.5, where 8 is the NoS value.
Similarly, CS and RCS values are calculated for all services. Services are assigned a num-
ber from 1 to 8, coupled services corresponding to each service are also given with the
assigned service numbers in Table 4.1. The interacting services field in the table indicates

the services with which the given service has communication in the application.

4.6.4 Evaluation of microservices based application

We calculate the CS and RCS values for the services of the application built using the
microservices style. Using the service graph generated for microservices based application,

we extract the values for the metrics defined. The number of services (NoS) in this style

61

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA

Section 4.6

Service | Service Name Interacting Services CS RCS
value | value
1. Config Service 2,3,4,5,6,8 6 0.75
2. Part Service 1,4,5,6,8 5 0.62
3. Product Service 1,4,5,6,8 5 0.62
4. Compare Service 1,2,3,8 4 0.5
5. Incentives and Pricing | 1,2,3,8 4 0.5
Service
6. Dealer and Inventory | 1,2,3,7,8 5 0.62
Service
7. Lead service 6.8 2 0.25
8. User Interface Client 1,2,3,4,5,6,7 7 0.87

Table 4.1: List of services with CS & RCS values of SOA based application

is 12. As like the SOA application, the Coupling of Services (CS) and Relative Coupling
of Services (RCS) are calculated for microservices based application. Each service, its CS

and RCS value are presented in Table 4.2.

4.6.5 Results

We evaluated both the systems using the metrics related to coupling derived from the ser-
vice graphs. The results are presented in terms of coupling as it is an important principle
of concentration in this work. The impact of coupling values on other principles is also

discussed.

4.6.5.1 Comparison based on RCS values

The RCS values of both the applications are calculated as shown in Tables 4.1 & 4.2. A
graph is plotted with the values of CS and RCS values as shown in Figure 4.5 in which
Coupling of Services (CS) values are represented in the X-axis, and Relative Coupling of
Services (RCS) values are represented in the Y-axis. It is observed from the graph that
microservices architecture has low RCS values. If the coupling values are less, then the

architecture is good for designing enterprise applications.

62

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.6

Service # Service Name Interacting Services | CS value | RCS value
1. Config Service 2,3,4,5,6,7,9,10,12 9 0.75
2. Part Service 1,4,5,6,10,12 6 0.5
3. Product Service 1,4,5,6,10,12 6 0.5
4. Compare Service 1,2,3,10,12 5 0.41
5. Incentives Service 1,2,3,6,12 5 0.41
6. Pricing Service 1,2,3,5,10,12 6 0.5
7. Dealer Service 1,9,10,11,12 5 0.41
8. Get-A-Quote Service 11,12 2 0.16
0. Dealer Locator Service 1,7,10,12 4 0.33
10. Inventory Service 1,2,3,4,6,7,9,12 8 0.67
11. Lead Processor Service 7,8,12 3 0.25
12. User Interface Client | 1,2,3,4,5,6,7,8,9,10,11 11 0.91

Table 4.2: List of services with CS & RCS values of microservices based application

4.6.5.2 Comparison based on SCF

* The SCF value can be calculated using the Number of Services (NoS) value and the
total sum of CS values. From Table 4.1 of web services based application, the total
of CS values is 38, and the NoS value is 8. Using the metric to calculate SCF value,

8
=0.67
8

SCF for web services= &

Similarly for microservices application, from Table 4.2, the sum of CS values is 70,

and NosS value i1s 12.

Or miCroservices S y c 122 —12

Any system with less SCF score has low coupling between the services. The SCF
score for web services based application is 0.67, and for microservices-based ap-
plication, it is 0.53. Therefore, the overall SCF is better for microservices when
comparing with web services. Microservices architecture is 20% less complex when
comparing the SCF scores with web services architecture for the chosen web-based

application.

63

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.7

1 T T T
091 SOA Services
" | | =—Microservices

0.8
0.7

0.5
0.4
0.3
0.2

RCS

CS

Figure 4.5: Comparison of coupling intensity

4.6.6 Discussion on comparison

From the above evaluation and comparison of extracted microservices with SOA services,
it is clear that microservices have low coupling. Though the number of services is more in
the microservices application, the overall coupling intensity is less compared to SOA based
application. It makes the developers easily handle additional change requirements, and the
time taken to deploy the services is reduced. Moreover, as the microservices are extracted
from SOA services, it becomes very easy to configure and deploy the extracted services. As
already discussed, many features and QoS parameters are dependent on loose coupling, and
from the results, it can be concluded that microservices have better QoS values compared

to SOA services.

4.7 Summary

To identify the candidate microservices from SOA applications, we proposed a new ap-
proach using the service graph. In this approach, we use the service graph representation
of SOA based application along with the task graph in each node of the service graph. We

presented algorithms for the construction of the service graph of a given SOA application,

64

CHAPTER 4. A SERVICE GRAPH BASED EXTRACTION OF MICROSERVICES FROM MONOLITH SERVICES OF SOA Section 4.7

microservices extraction, and for constructing the service graph of the microservices ap-
plication, which is to be designed. The generated service graph acts as a blueprint for the
new application to be designed, and it helps in easy and fast migration to microservices.
Additionally, the dependencies among the services are also represented in the service graph
of the microservices application. We have evaluated the extracted microservices w.r.t loose
coupling and compared them with existing SOA services. It is clear from the results that

microservices have low coupling compared to SOA services.

65

Chapter 5

A novel effort estimation approach for
migration of SOA applications to

microservices

As the pros and cons of using microservices are not known, some of the architects are
hesitant to migrate the applications to microservices architecture. The major challenge is
estimating the effort required to migrate the existing applications to microservices [51, 93].

To the best of our knowledge, there has been no work or very little work done in esti-
mating the effort required for migration of SOA based applications to microservices archi-
tecture. In this chapter, we attempt to propose an approach for effort estimation by recasting
the existing use case point model by enhancing it to suit appropriately for microservices.
Generally, effort estimation requires knowing about the system before the design phase,
and it is difficult. Service graph representation of the microservices application which is
generated by the migration approach is used [84] and it gives detailed information about
the number of services and dependency it has on other services. The main contributions of

this chapter are described below:
* Proposed different types of services involved during the migration process.

* Proposed an approach for estimating the effort required for migration considering the

service graph. The technical and environmental factors are updated such that they are

66

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.1

suitable for microservices architecture.
* Demonstrated the proposed approach on an SOA based web application.

* We also apply multiple regression analysis on the proposed approach with the Leave-
N-Out policy. To evaluate and compare the proposed techniques, seven SOA based

applications migrated to microservices are considered as the dataset.

5.1 Types of services involved in migration process

To migrate SOA based applications to a microservices architecture, the monolithic services
need to be broken into small and independent services. However, there may exist few
services in SOA based application which perform a single business task and can be directly
considered as microservices. For systematic estimation of the effort, business services
are classified into available, migrated, new, or composed services [94]. However, many
other types of services are involved in achieving the business requirements, such as utility
services, process services, proxy services, integration services and, suspended services, etc.
Here, we discuss the significance of each service in the migration of SOA to microservices

architecture.

* Available service: Services that can be used directly in the new architecture are
treated as available services. Service, which does a single business task and is inde-
pendent of other services, can be directly considered as microservice. It requires no

development effort, and hence it is considered as available service.

» Migrated service: Service, which is extracted from legacy applications and gen-
erated by applying different migration strategies, is considered as migrated service.
Here, the services in SOA which are partitioned to form microservices will be con-
sidered as migrated service. These services require an effort to redesign the new

application.

* New service: Service, which is built from scratch and required for achieving business

needs, is considered a new service. It requires effort, and it is very easy to calculate

67

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.2

the effort for a new service. However, as both SOA and microservices architectures
are service-based systems, no new services will be required while migration from
SOA to microservices. Therefore, we will not consider this kind of service in effort

estimation.

* Composed service: Service, which is formed by combining one or more services,
is considered as composed service. By the definition of microservices, each service
should perform only a single task and independent from other services. Therefore,

there will be no composed services in the new architecture.

It is inferred from the above that only the migrated services need to be considered in the
effort estimation of the migration process. So the proposed model considers only the mi-

grated services in the effort estimation.

5.2 Proposed approach

Our approach is stimulated from the use case points model of effort estimation. The use
case point method depends on the use case diagram, and our model depends on the ser-
vice graph as we estimate the effort for service-based architectures. The service graph is
a blueprint for the application to be designed, and it gives complete information regarding
the number of services and complexity of the services based on the dependencies on other
services. Similar to the use case point method, we propose a service point (SP) model to es-
timate the effort required for migration to microservices. We classify the services and then
calculate the weights and points using the classification of the services. Technical and envi-
ronmental factors are two important factors that play a major role in effort estimation. The
factors accessed for the existing use case point method do not suit well for microservices
architecture. Therefore, we have updated the technical and environmental factors consid-
ering the principles of service-oriented systems. The steps for effort estimation using the

service point technique are illustrated in Figure 5.1.

68

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.2

1. Service graph

2. Classification 3. calculation of 4. calculation of]
of services weights and points TCF and EF

Y

5. Final service
point evaluation

Figure 5.1: Service point calculation steps

5.2.1 Classification of services

The first step of the service point approach is to classify the services based on the inter-
actions it has with other services. Unlike the use case point, we don’t have actors entity
here in the proposed approach, instead, some of the services act as actors for other services.
So, we consider each service’s dependencies on other services and classify them as simple,
average, and complex. The service graph helps in the identification of services and their
dependencies. A service is classified as simple if it interacts with less than four services,
average if it interacts with less than eight services, and service is treated as complex if it
interacts with more than or equal to eight services [95]. We use the terms simple, average
and complex considering the impact of change requirements on other services. As men-
tioned, service is termed as simple, if it interacts with less than four services and to make a
change in that particular service, it may not impact more than four services and hence it is
considered as simple. Similarly, based on the number of interactions, we defined average
as well as complex service types. Based on the complexity, different weights are assigned
to each service, which is used in the calculation of service weights. The classification of

services and the weights assigned are given in Table 5.1.

69

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.2

Service complexity | Number of interacting services \ Weight \
Simple Less than or equal to 3 1
Average 4t07 2
Complex More than 7 3

Table 5.1: Classification of services with weights

5.2.2 Calculation of weights and points

The next step is to calculate the unadjusted service points based on the weights assigned
in Table 5.1. It is calculated by summation of number of services of each type multiplied
by weight assigned to corresponding service type. Unadjusted Service Points (USP) is

calculated as shown in equation (2).
3
USP =Y 8 xW, (5.1)
i=1

Where S; is the number of services of type i and WW; is the corresponding weight of the

service of type i where i={simple, average, complex}.

5.2.3 Technical and Environmental factors

We calculated the unadjusted service point value from equation 2 and the final value of
the service point depends on technical and environmental factors. The 21 factors [95]
relates to the factors which contribute to the complexity and the efficiency of the system.
However, most of the factors included in existing works presented in the literature are
related to object oriented systems and are not suitable for both service oriented architecture
and microservices. Therefore, we have removed few factors and added new factors relevant
to microservices architecture.

Each factor has a value assigned between 0 and 5 depending on the importance and
impact the factor has on the system. In the existing use case points approaches, weights
have been assigned based on the experience in their projects [95]. However, we have con-
ducted an online survey to collect the inputs from different practitioners working on SOA

and microservices architectures, software architects involved in the migration process and

70

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.2

developers working with microservices architecture. We have posted the online question-
naire on multiple social networking platforms, including the groups in LinkedIn, Twitter,

and Facebook, etc. The questionnaire included the following questions.
1. What is the current role/designation of the participant?
2. How much work experience the participant has in SOA and microservices projects?
3. Does the participant has real time experience in migration projects?
4. How much rating does the participant would like to rate for each of the 21 factors?

The rating of each factor between 0 and 5 for each factor is collected through this survey.
Based on the data collected, we have taken the average of ratings and assigned them to all
the factors. The weights assigned and ratings of technical and environmental factors are

indicated in Table 5.2 and Table 5.3.

Fi | Factors contributing to complexity | Wi | Rating
F1 Distributed systems 2 5
F2 | Application performance objectives 1 4
F3 End-user efficiency 1 2
F4 Complex internal processing 1 2
F5 Reusability 1 3
F6 Easy installation 0.5 1
F7 Interoperability 0.5 2
F8 Portability 0.5 1
F9 Changeability 1 1
F10 Coupling 1.5 5
F11 Scalability 2 4
F12 Statelessness 1 3
F13 Independent deployment 1 4

Table 5.2: Technical factors

71

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES

Section 5.2

Fi | Factors contributing to the efficiency | Wi | Rating
F1 Familiar with cloud container 1.5 3
F2 Service configurations 1 2
F3 Analyst capability 0.5 4
F4 Application experience 0.5 2
F5 Cloud computing experience 1 2
F6 Motivation 1 5
F7 Polyglot 1.5 2
F8 Stable requirements 1 4

5.2.3.1 Calculation of Technical Complexity Factor(TCF)

Table 5.3: Environmental factors

To calculate the TCEF, total weight of the 13 factors is calculated which is obtained by

multiplying the value assiged to each factor between 0 to 5 and weights assigned to each

factor. Calculation of TFactor is given by equation (3).

13
TFactor = Z TF;, x W;

i=1

(5.2)

where T'F; is the rating of the technical factor ¢+ and W is the weight assigned to corre-

sponding factor. Technical Complexity Factor (TCF) is calculated by the below equation

.

TCF = 0.6 + (0.01 x T'Factor)

72

(5.3)

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.3

5.2.3.2 Calculcation of Environmental Factor (EF)

Similarly, the impact of environmental factors in the final service point is evaluated by
finding the EF score. To calculate the EF value, the weight of each factor is multiplied with

the rating assigned to each factor. It is given by equation (5).

8
EFactor =» EF; x W; (5.4)

i=1
where E'F; is the rating of the environmental factor 7 and IV; is the weight assigned to the

corresponding factor. Environmental Factor (EF) is calculated by the below equation (6).

EF =14+ (-0.03 x EFactor) (5.5)

5.2.4 Final service point evaluation

The final Service Points (SP) is calculated by multiplying the unadjusted service point with

both technical and environmental factor values. It is given by the below equation (7).
SP=USP xTCF x EF (5.6)

According to Karner, [95], the effort required to implement each use case point is 20 hours.
Hence, we do consider the same 20 hours for each service point. Therefore, to estimate
the final man-hours, the calculated service point should be multiplied by 20 to get the
effort required for migration. Moreover, it is observed that the effort required for migrating
and designing a microservices application is more compared to designing existing legacy
applications [51].

We define the naming convention for different approaches proposed in this chapter. The
service points approach with the ratings collected through the online survey is denoted as
SP-Proposed Approach; the same service points approach with the Karner’s default value
as SP-Karner’s Approach and the SP-Proposed approach with regression analysis as SP-

Regression Approach. These notations are used throughout this chapter.

73

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.3

5.3 Empirical evaluation of the proposed approach

To evaluate the proposed approach, we choose a standard web application that is built based
on SOA. In [83], the author has chosen a Vehicle Management System (VMS) application
for the migration of the legacy application to SOA style. Taking the SOA based VMS
application as input and applying the microservices extraction approach proposed by Raj,
V. et al. [84], we have generated the service graph for the corresponding microservices
based VMS application. The service graph of the microservices application is represented
in Figure 5.2. The service graph is the prototype of a microservices application that has
to be built through the migration process. From the service graph represented in Figure
5.2, it is clear that there are 12 services in the migrated system. The details of the SOA
services, extracted microservices, and the type of services are mentioned in Table 5.4. As
mentioned in Section 5.1, we will consider only the migrated service for estimating the ef-
fort as few services in SOA based applications can be directly considered as microservices.
The calculation of service points, according to the proposed approach, is presented in the

next section.

SOA services Microservices Notation | Type
Config Service Config Service Sh Available
Part Service Part Service So Available
Product Service Product Service S Available
Compare Service Compare Service Sy Available
. .. . Incentives Service Ss Migrated
Incentives & Pricing Service Pricing Service S, Migrated
Dealer Service Sy Migrated
Dealer & Inventory Service | Dealer Locator Service Ss Migrated
Inventory Service So Migrated
. Get-A-Quote Service S1o Migrated
Lead service Lead Processor Service Si1 Migrated
User Interface Client User Interface Client Si9 Available

Table 5.4: Details of extracted microservices from SOA application

74

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.3

Figure 5.2: Service graph representation of microservices based application

5.3.1 Classification of services

The details of the services along with classification are presented in Table 5.5. Based on the
classification and the weights and ratings of technical and environmental factors, we calcu-
late the service point value used for migration of SOA based application to microservices
architecture. Only the services with tick marks will be considered for effort estimation as

they are migrated services. Efforts for available services will be considered zero.

5.3.2 Calculcation of USP

Unadjusted service point value is calculated by multiplying the number of services based
on each classification and the weights assigned to each type. From the information from
Table 5.5, there are 2 simple, 4 average and 1 complex services. Therefore, the value of
USP is

USP=(2x1)4+(4x2)+(1x3)=24+8+3=13.

75

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.3

Service # | Interacting Services | Classification| Services considered in estimation
S1 2,3,4,5,6,7,9,10,12 Complex

So 1,4,5,6,10,12 Average

Ss 1,4,5,6,10,12 Average

Sy 1,2,3,10,12 Average

S 1,2,3,6,12 Average v
Se 1,2,3,5,10,12 Average v
Sy 1,9,10,11,12 Average v
Ss 11,12 Simple v
Sy 1,7,10,12 Average v
Sio 1,2,3,4,6,7,9,12 Complex v
Si1 7,8,12 Simple v
S 1,2,3,4,5,6,7,8,9,10,11 | Complex

Table 5.5: Services along with classification for microservices based application

5.3.3 Effort estimation using SP Proposed Approach

The values of TCF and EF are calculated by considering the ratings collected through on-
line survey. We take the average of ratings for each factor given by different software
associates and use them in this approach.

Technical Complexity Factor: First, we need to calculate the TFactor using the informa-

tion from Table 5.2. TFactor value is calculated as given below
13
TFactor = ZTE- x W; = 46.5

=1

Now, we calculate the TCF value.

TCF = 0.6+ (0.01 x TFactor) = 0.6 + (0.01 x 46.5) = 1.065

76

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.3

Environmental Factor: Similarly, we calculate the EFactor using the information from

Table 5.3 and then use this value of EFactor to calculate the EF value.

8
EFactor = ZEE x W; =235

=1

Environmental Factor (EF) is calculated by the below equation
EF =14+ (—0.03 x EFactor) = 1.4 + (—0.03 x 23.5) = 0.695

Final service point calculation: The service point is given as the product of USP, TCF,

and EF. It is calculated as below.
SP=USP xTCF x EF =13 x 1.065 x 0.695 = 9.62

The total effort required for migrating the SOA based VMS application to microservices is
calculated by multiplying the number of services points with 20 hours.

Total estimated effort = 9.62 x 20 ~ 193 hours.

5.3.4 Effort estimation using SP-Karner’s Approach

Karner suggests that if we cannot fill the values for the factors for any reason, we can use
the default value as 3 for all the factors [95]. Considering this default value for all factors,
we calculated the TCF, EF and service points values.
Technical Complexity Factor
13
TFactor =Y TF, x W; = 42,
i=1

TCF = 0.6+ (0.01 x TFactor) = 0.6 + (0.01 x 42) = 1.02.

Environmental Factor:

8
EFactor = ZEE x W; = 24.

i=1

77

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.4

EF =14+ (—0.03 x EFactor) = 1.4+ (—0.03 x 23.5) = 0.68.

Final service point calculation:

SP=USP xTCF x EF =13 x 1.02 x 0.68 = 9.0.

Total estimated effort = 9.0 x 20 ~ 180 hours.

5.3.5 Observation

By considering the TCF, EF and SP values of both the approaches, the values are very close
to each other. As we have used the rating collected through online survey in SP-Proposed
approach and Karner’s default value in SP-Karner’s approach, the ratings of factors col-
lected by online survey can be used as reference for estimating the effort of other projects

as well.

Approach TCF | EF SP
SP Proposed Approach | 1.065 | 0.695 | 9.62

SP-Karner’s Approach | 1.02 | 0.68 | 9.01

Table 5.6: Comparison of TCF, EF and SP values

5.4 Experimental Study

Machine learning models have been widely applied in software effort estimation and it
has given promising benefits [96, 97]. In order to validate the efficiency of the proposed
method, we choose seven applications of SOA which are migrated to microservices and we
perform the regression analysis on the chosen datasets. In this section, the regression ap-
proach, description of the datasets and the measures to predict the accuracy of the proposed

models are discussed.

78

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.4

5.4.1 Regression Analysis

It is one of the popular analysis methods to study the relationship between dependent and
independent variables and present the relationship in the form of a model [98]. If we have
more than two variables, then it is referred to as multiple regression, and it is the most
preferred and applied method for cost estimation [99]. Since the proposed service point
approach is based on multiple factors, including USP, TCF and EF, we define the multiple

regression based effort estimation which is represented based on the below equation.

y = Bo+ Prx1 + Paa + € (5.7)

where y represents the effort caculated, x; represents the size metric calculated with U S P
of the chosen application and TCF, z, represents the adjustment factor (AF) considered
as an independent variable in this multiple regression and the coefficients 3, (2, and (3
represents the constant values. Here the additional e represents the error induced during the
calculation of the effort.

Size(x) =USP x TCF (5.8)

Adjustment Factor is calculated as the product of environment factor (EF) and the pro-
ductivity factor (PF). The value of PF can be considered as 20 hours as proposed by Karner,
if the projects do not have any historical data. We consider only the EF in the calculation

of x5 as TCF is already included in the first variable z;.

AdjustmentFactor(xzq) = ,PF X EF (5.9)

However, we calculate the productivity factor ,PF' by dividing the actual effort by the SP

as it gives the accurate effort required to implement each service point.

_ ActualEf fort

PF
P SP

(5.10)

79

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.4

5.4.2 Datasets

The effort estimation for migration to microservices architecture is based on the service
graph representation of the microservices application migrated from the SOA based appli-
cation. Moreover, the use of microservices architecture has just started, and there are very
few projects which are migrated from SOA. The authors in [100] state that data collection
is more important for the validation of effort estimation techniques. Due to the inability to
access SOA projects developed in the industry and the unavailability of datasets based on
UML artifacts in the industry, the study research investigation is collected from [66]. The
dataset is represented a dataframe and the size of the dataset is 7 rows with 5 columns. Out
of the 7 applications we gathered, 5 applications were collected from Indian IT organiza-
tions and one application from a research centre in UK where a team is working on the best
approaches for migration of SOA based applications to microservices. The remaining one
application is developed at our university by a team of Post Graduate (PG) students, which
is related to the online exam portal during the pandemic time. The details of the data col-
lected are presented in Table 5.7. As per the proposed approach, we are considering only
the services which are marked as migrated for estimating the effort required for migration.
We generated the service graphs for the chosen applications and identified the number of
services along with the complexity of the services. The Unadjusted Service Points (USP)

is also calculated for the applications and is presented in Table 5.7.

Application Simgztalglzﬁlfgier\gf;rslplex Usp
Al 6 5 2 22
A2 2 2 2 12
A3 6 10 2 32
A4 23 15 4 65
A5 0 7 3 23
A6 3 14 0 31
A7 20 15 21 113

Table 5.7: Characteristics of applications in dataset

80

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.4

5.4.3 Evaluation criteria

To evaluate the accuracy of the estimated approach, several frequently used measures [101]
are considered such as Magnitude Relative Error (MRE), Mean of MRE (MMRE), Root
Mean Square Error (RMSE), and prediction within 25% of the actual value. The defini-

tions of the measures are discussed below.

* The magnitude of relative error (MRE) is calculated as given below.

Actual Ef fort — EstimatedE f fort
MRE = 5.11
1 Actual E f fort 11

* MMRE is the mean of the MREs of all the applications and it is used to evaluate the

prediction performance of the model. The Mean of MRE is calculated as

1 n
MMRE = — MRE; 5.12
n(;) (5.12)

* The Root Mean Square Error (RMSE) evaluates the difference between actual effort
and the estimated effort. It is used to find the standard deviation of the errors which
occur after applying the proposed method on the datasets. RMSE is calculated as

given below.

n

RMSE = 1 Z(ActualEffort — EstimatedE f fort)? (5.13)
n

=1

* To verify whether the predicted values are within m% of the actual values, we use
a measure and in software engineering, the value of m is typically set to 25%. The

measure PRED(25) is calculated as

PRED(25) = % (5.14)

where k is the number of observations for those whose MRE is less than or equal to

81

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.5

0.25 and n is the total number of applications.

* The above discussed measures are criticised and behave differently when evaluating
prediction models, hence two other measures are suggested [102]. Mean Absolute

Error (MAE) is unbaised and it is calculated as given below.
1 n
MAE = — E | ActualE f fort; — EstimatedE f fort; | (5.15)
n
i=1

where n is the number of applications chosen for evaluation of performance.

» Standardized Accuracy (SA) is one the recommended measures for comparing the

performance of prediction models which is based on MAE. It is defined as follows:

MAEp;

A=1— —————
5 MAEguess

x 100 (5.16)
where M AEp; is the MAE of the proposed approach and M AE,,; is the value of MAE of
a random guess. The standard accuracy represents the impact of M/ AEp; when compared
to any random guess. For effort estimation techniques, the value of MAE should be less

and SA should be maximum.

5.5 Experimental Results

The SP-Proposed method with the collected ratings, SP-Karner’s method by considering
Karner’s default value and the proposed SP-Regression methods are applied on the 7 ap-
plications and the results obtained by comparing there three methods are presented in this

section.

5.5.1 Application of SP-Proposed and SP-Karner’s methods

The proposed service points approach is applied to the 7 applications, and the effort is
calculated by considering the TCF and EF values. The effort is calculated by considering

the collected ratings and also with Karner’s default value. The PF value for calculating the

82

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.5

effort is taken as 20 man-hours. The magnitude of relative error (MRE) is also calculated
with the help of the actual efforts of the applications. The results of the efforts calculated
are presented in Table 5.8. The actual efforts of the chosen applications where gathered

from the documentations of the projects managed by the project managers. From the data

Effort [h] Effort [h]
Al 396 326 0.176 305 0.229
A2 140 178 -0.271 166 -0.185
A3 587 474 0.192 444 0.243
A4 1205 962 0.201 902 0.251
AS 518 340 0.343 319 0.384
A6 502 459 0.08 430 0.143
A7 2034 1673 0.177 1567 0.229

Table 5.8: Applying service point approach to applications.

of Table 5.7, we can observe that if the number of complex services is high, then the value
of USP is also high, and hence the effort is also high for such applications. All three
types of services are combined to calculate the effort in this proposed approach. It is clear
from Table 5.8 that the estimated effort is more accurate when using the ratings collected
through an online survey when compared to the effort estimated by considering Karner’s
default value for factors while calculating the TCF and EF values. The results obtained by
the ratings collected through online survey are better because the collected data is given by

the professionals working or have good experience in microservices and SOA systems.

5.5.2 Application of SP-Regression model

The proposed regression method is applied on the same dataset and the function for effort
estimation is obtained. First, the variables x; and x, are calculated with the equations (9)
and (10). The calculated values of the variables are presented in Table 5.9. These values x;
and x5 will be used in the calculation of the effort using the regression model. We consider

the TCF value which is calculated using the ratings collected through an online survey in

83

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.5

the regression analysis.

Using the calculated values of variables, we applied multiple linear regression on the
applications. However, to improve the accuracy, we apply Leave-N-Out policy where we
train the model only on the first 5 applications to calculate the coefficients and test with the
remaining two applications. The values of the coefficients calculated are presented in the

effort estimation function, given in the below equation.

y=—274.10 + 15.017z1 + 17.1362- (5.17)
Application | Size (1) | AF (z2)
Al 23.43 16.8
A2 12.78 10.9
A3 34.08 17.1
A4 69.22 17.3
A5 24.49 21.1
A6 33.01 15.1
A7 120.34 16.8

Table 5.9: Variable values for multiple regression analysis.

Using the calculated coefficient values [y= -274.10, $,=15.017, and (3, = 17.136, we
test the remaining two applications. The efforts calculated using the generated coefficients
are presented in Table 5.10. It is clear from the table that the values are very close to the
actual efforts of the applications. The proposed regression model works as a recommen-
dation system for estimating the effort required for the migration of SOA applications to
microservices. The coefficients generated are used to calculate the efforts for all the other

applications which are used for training the model as well.

84

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.5

Application | Actual Effort [h] | Estimated Effort (Regression) [h] | MRE
A6 502 480.36 0.043

A7 2034 1940.99 0.045

Table 5.10: Application of regression model to testing data

5.5.3 Comparison

The estimation function is calculated for all the 7 applications by regression analysis on the
6 applications and leaving one application every time. The values of the coefficients are
calculated and the effort by regression analysis is generated for all the applications. The
results of the comparison of all the proposed methods are presented in Table 5.11. For
each approach, the estimated effort in hours and estimation success values are given in the
table. It is clear that the efforts calculated through the regression analysis give better values
closer to the actual efforts required for migration. For application A2, the efforts estimated
through SP-Proposed approach and SP-Karner’s approach are more than the actual efforts.
Hence the estimation success percentage is more than 100 which is marked as *. Gener-
ally, success percentage of more than 100 does not make sense. So, only the SP-Regression
model gives better results for the application A2. The efforts estimated by the SP-Proposed
approach, SP-Karner’s approach, SP-Regression approach and the actual efforts are com-
pared and presented as a bar graph as shown in Figure 5.3. The x-axis represents the 7
applications and the y-axis represents the efforts in man-hours for each application. From
the graph, it is clear that the effort estimated with the regression model is close to the actual
efforts of all the applications.

The accuracy of the proposed methods is evaluated using the measures discussed in
section 5.4.3 and the values are presented in Table 5.12. From the results, the MAE value
is very less and SA value is also better for the effort estimated through the regression model.
Though the MMRE and PRED values are close to each other, the RMSE value is better only

for the regression model.

85

Section 5.5

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES

sonbruyo9) uonewns? 1103j9 pasodoid jo uostredwo)) :11°G 9[qeL,

' S6 1761 Y0'LL LOCT CT'CY ¢L9] 7€0¢C LV
19°C6 08% ¢9°CY 09 % ev'16 6SY c0S oV
€8°LS 198 4 8C°19 61¢ £9°C9 (0149 8I¢C VvV
€188 901 S8 YL 06 £8°6L 96 ! vV
ST°06 16 €9°¢CL 1444 .08 1494 L8S v
0°SL 0] *811 991 «LC1 LI 014! [44
[444s 99¢ CO'LL S0¢ CeC8 9C¢ 96¢ 1V
(%) [ul (%) [u] (%) [u]
$$900NS 1o $5200Ng oq $$900NS 1o
uonewnsy | pajewnsg | uonewnsyg | pajewnsyg | uonewnsg | paewnsg
yoeorddy uorssaI3ay-ds yoeoiddy s ourey-ds yoeoirddy pasodoidg-ds [ul 1opd emoy uonedrddy

86

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES Section 5.5

2,200 F
I8 Actual Effort laSP-Proposed Method
2,000 | IaSpP-Karner’s Method 10 SP-Regression Method
1,800 |-
1,600 |-
1,400 |-
= 1,200 |-
£ 1,000 |
[8a)
800 -
600 [-
400 |-
200 III II
| &
1 2 3 4 5 6 7
Applications

Figure 5.3: Comparison of efforts estimated by proposed methods.

5.5.4 Threats to validity

There are few threats that might affect the validity of the proposed service point approach.

1. Though it is one of the first attempts to propose an effort estimation technique for
microservices architecture, we recast it from the use case point and proposed as a
new approach considering the service graph. The first step in the proposed approach
differs from the existing use case point as we consider the service graph instead of
the use case diagram. Moreover, the technical and environmental factors are updated
according to the SOA and microservices architectures. In some of the research ar-
ticles in the literature have highlighted the disadvantages of the traditional use case

point approach [103, 104].

87

CHAPTER 5. A NOVEL EFFORT ESTIMATION APPROACH FOR MIGRATION OF SOA APPLICATIONS TO MICROSERVICES

Section 5.6

Approach MMRE | RMSE | PRED(25) | MAE SA
SP-Proposed Approach 0.128 185.95 0.857 138.57 | 86.143
SP-Karner’s Approach 0.184 234.24 0.714 178.42 | 82.158
SP-Regression Approach | 0.107 74.55 0.857 63.24 93.67

Table 5.12: Accuracy of the proposed methods using different measures.

2. One of the threats is the dataset considered for validation of the proposed service

point approach. We used only 7 projects as it was very difficult to get the projects

which were migrated from SOA to microservices. Though there are other works

published by considering a small number of projects, we cannot validate the proposed

model with less number of projects.

5.6 Summary

In this chapter, we propose a new technique that is recasted from the well-known use case

points technique to estimate the effort required for the migration of SOA based applica-

tions to microservices architecture. We have demonstrated the new technique through a

case study application and calculated the effort required for migration. We have compared

the results with effort calculated by considering the default values for factors suggested by

Karner. Additionally, we propose a machine learning model using multiple linear regres-

sion with Leave-N-Out policy, where we train the model with N applications and test with

the remaining all-N applications. The comparison results show that the efforts estimated

using the SP-Regression model are close to the actual efforts, and the error rate is very low

compared to the SP-Proposed approach and SP-Karner’s approach.

88

Chapter 6

Patterns for migration of SOA based
applications to microservices

architecture

Many design and environmental challenges occur during the migration of one architecture
to another architecture. Similarly, the migration of SOA based applications to microser-
vices architecture also exhibits many challenges that occur during the migration process
and post-migration. We identified the most common recurring problems such as extrac-
tion of microservices from monolithic applications, evaluating the size of microservices,
bug detection in the complex microservices applications, etc. We proposed patterns for the
mentioned recurring problems in this chapter.

The use of patterns for providing recursive solutions in the migration of architectures is
less explored. Few researchers have contributed the patterns related to the migration of
monolithic applications in the literature. Lessons learned while migrating legacy mono-
lithic applications using the patterns are reported in [105]. Several patterns for migration
of monolithic applications to microservices and how each pattern benefits the migration
process are also addressed in [5]. The migration patterns needed for complete migration
and its related challenges are presented in [106]. The patterns for rearchitecting the exist-
ing monolithic applications are also discussed but we are considering patterns for migration

and decomposition of monolithic SOA services. Also, a new pattern called strangler pattern

89

CHAPTER 6. PATTERNS FOR MIGRATION OF SOA BASED APPLICATIONS TO MICROSERVICES ARCHITECTURE Section 6.1

is introduced that adds new microservices to the monolithic code [51]. In the long run, the
monolithic services will gradually be replaced with microservices. However, the migration
of SOA applications to microservices is our topic of interest.

Patterns for migration of SOA applications to microservices are proposed [107], but
these patterns do not support the independent development and deployment of services.
Under these scenarios, ESB is still used for communication between services. Legacy soft-
ware modernization using microservices is proposed with the help of patterns proposed in
[108]. However, the approach is not appropriate for migrating service oriented applications.

The main contributions of this chapter are described below:

* Presented the patterns for the most commonly occurring problems highlighted in the

literature.

* An SOA based web application is chosen for the demonstration of the proposed pat-

terns. We have evaluated those patterns on the chosen case study application.

6.1 Patterns

Patterns act as a framework for presenting tested solutions to issues that are suitable in any
given context. Every pattern has few sections which helps in understanding the problem
as well as the solution. This includes the criteria/requirement, context, problem, solution,
challenges, and the illustration or a diagram of the solution. The structure of the any pattern

consists of:

1. Name of the pattern: Pattern name is used to define the problem, its solution and
consequences. It increases the design vocabulary of the pattern and helps in under-

standing it.

2. Requirement: The problem space for the recurring problem and its technical, envi-
ronmental and configurational properties are discussed. The need for the pattern is

also highlighted in this step.

90

CHAPTER 6. PATTERNS FOR MIGRATION OF SOA BASED APPLICATIONS TO MICROSERVICES ARCHITECTURE Section 6.1

3. Problem: It describes the situation for applying the pattern. It also explains the
actual problem and its context. Any additional conditions under which the problem

may occur will also be discussed in this step.

4. Solution: It explains all the entities which make up the solution for the problem dis-
cussed. It does not give any implementation or design of the problem. The solution

is like a template that can be applied in different situations.

5. Challenges: These are the consequences and trade-offs that appear after applying
the pattern. It is important to list the challenges as it helps in the evaluation of the

patterns.

The below section discusses the proposed patterns.

6.1.1 Pattern 1: Decomposition of an SOA service to Microservices

This pattern is used to address the recurring challenge faced by software architects while
migrating legacy SOA based applications to microservices.

Requirement: There is a complex SOA based application and the software architects
plan to migrate the application to the microservices architecture which will reduce the scal-
ability issues and increase application performance. Also, the effort required for migration
should be reduced. There are few monolithic services in the application and few basic
services that can be called microservices. The presence of monolithic services makes the
application complex and the best approach is to migrate the application to microservices.

Problem: How to split the monolithic services in the SOA based application to mi-
croservices? How to extract the microservices from the SOA services?

Solution: Graph theory has been widely used to solve many complex problems since it
is easy to represent the components and their dependencies as a graph. The service graph,
along with its internal task graphs, is a formal representation of every SOA application and
it helps in identifying the monolithic services.

The architecture of microservices follows the single responsibility principle and states

that each service should perform only one business function. SOA based applications can

91

CHAPTER 6. PATTERNS FOR MIGRATION OF SOA BASED APPLICATIONS TO MICROSERVICES ARCHITECTURE Section 6.1

contain few services that perform only one task and these services may be regarded as
microservices directly. This reduces the migration effort as we do not need to consider all
the services for migration to microservices.

Further, identification of monolithic services or the services which need to be migrated
to microservices should be considered for the extraction of microservices. Using graph
properties from the service graph, find out the order of each task graph and the service
with the order as one can be directly considered as microservices and services with order
more than one should be treated as monolithic services. Only such monolithic applications
should be considered for the extraction of microservices.

Using the graph partition method [84], we can break the monolithic services into mi-
croservices and the independent task graph nodes represent the microservices. We use the
service graph to identify complex services and generate microservices.

Challenges: Representing the SOA framework as a service graph is difficult for large
enterprise applications, as it includes a large number of services and tools required for

generating such large graphs is challenging.

6.1.2 Pattern 2: Size of each Microservice

This pattern is used when designing the microservices or extracting from service oriented
based applications.

Requirement: There is a complex SOA based application and the architects want to
migrate the application to microservices architecture. During migration, the SOA services
are partitioned to generate the microservices. Yet one of the main issues faced by software
architects, microservices developers, and practitioners is what the size of each microservice
will be. By definition, microservices are small, independent, and scalable services that are
deployed using cloud-based technologies. So, the question is how small each microservice
should be.

Problem: What should be the size of each microservice? On what basis can we measure
the size of the microservices?

Solution: SOA based applications have feature level services and microservices have

92

CHAPTER 6. PATTERNS FOR MIGRATION OF SOA BASED APPLICATIONS TO MICROSERVICES ARCHITECTURE Section 6.1

task level services. Every service in the SOA application consists of many tasks that per-
form the business requirements. Microservices follow single responsibility principle that
requires each service to perform only one business function. We, therefore, use the service
graph representation of the SOA based application and consider each task in the task graph
to be microservices.

In this case, the size of the microservice is not a measurable metric. When a specific
service performs only one operation, it may be considered as a microservice and the size
of the service is not considered.

Challenges: While microservices perform a single task, there can be few services that
perform multiple computations to meet the business requirements. These microservices

can increase the complexity of the application.

6.1.3 Pattern 3: Bug Detection in Complex Microservices Application

This pattern is used to monitor and find bugs after migrating SOA-based applications to the
microservice architecture.

Requirement: An SOA based application is migrated to microservices architecture
with the help of Pattern 1 and Pattern 2. When the number of services increases in mi-
croservices based application, it is difficult to detect the bug if it happens. Among those
multiple microservices, it is difficult to trace the bug and recognize the service that causes
the bug in the entire application.

Problem: How to trace the service which is responsible for the bug? How to identify
the location of the bug among all available microservices in the application?

Solution: Business requirements are specified prior to the design phase of the software
development life cycle. The workflow of the business requirements is defined through the
use of UML diagrams in the software requirement specifications document. Nonetheless,
despite the nature of the specification, it is difficult to establish a connection between the
business requirements and the services that execute the requirements. As a result, the
service graph model allows us to map the criteria and the services that fulfill them.

Using the service graph representation, each workflow of the business requirements is

93

CHAPTER 6. PATTERNS FOR MIGRATION OF SOA BASED APPLICATIONS TO MICROSERVICES ARCHITECTURE Section 6.2

mapped with the nodes in the graph where each node has a service number. We need to
define the workflow of each requirement and store the sequence of services it passes to
fulfill the business request. Each sequence of service numbers is stored in the database
and anytime a particular service fails, we need to check for all the sequences in which the
service is involved. If a particular business request has failed, we get the corresponding
sequence of the business requirement and trace only the services involved in the sequence.

Challenges: If the application is complex, it is difficult to create a service graph and
store all the sequences in the database. Also, often a specific service can be involved in

several sequences, so it is difficult to determine the appropriate sequence for a given bug.

6.2 Evaluation

The above mentioned patterns are used to solve the most common recurring problems
which occur during the migration and after the migration of SOA based applications to
microservices architecture. In Chapter 4, we have extracted the microservices from the
SOA based Vehicle Management System (VMS) [83]. The challenges occurred during the
actual migration process of this VMS application to microservices are resolved using the
proposed patterns. The application of the proposed patterns on the vehicle management
system is discussed in this section.

The VMS application is used to select, customize, and purchase vehicles and its parts
using a web interface. This VMS web application is implemented and we created a service
graph (SG_SOA) using the API documents as shown in Figure 6.1. There are eight services
in the application and each service performs specific business tasks. Using the concept of
task graph, the processes within each service are depicted as a task graph along with the
edges between the processes. Using our earlier work of extracting microservices from SOA
based applications [84], we have created the service graph for microservices as shown in
Figure 6.2. The details of the services of both SOA and microservices based application
along with the representations in service graphs are presented in Table 6.1. SG_SOA indi-
cates the service graph of SOA based application and SG_MSA indicates the service graph

of microservices based application. Both SG_SOA and SG_MSA are used in the validation

94

CHAPTER 6. PATTERNS FOR MIGRATION OF SOA BASED APPLICATIONS TO MICROSERVICES ARCHITECTURE

Section 6.2

of the proposed patterns discussed in the below sections. Here, we present the application

of proposed patterns on the case study application.

Notation | SOA services Microservices Notation
in in
SG_SOA SG_MSA
Sy Config Service Config Service ms
S Part Service Part Service mso
S Product Service Product Service mss
Sy Compare Service Compare Service msy
S) .. . Incentives Service ms
> Incentives & Pricing Service — : >
Pricing Service mse
Se Dealer Service msy
Dealer & Inventory Service | Dealer Locator Service mss
Inventory Service msSg
S) Get-A-Quote Service ms
7 Lead service Q y 10
Lead Processor Service masiy
Sy User Interface Client User Interface Client msio

Table 6.1: Details of services of both SOA and Microservices based applications

6.2.1 Pattern1

From the given SOA based application, we need to extract the microservices by decompos-
ing the monolithic services of SOA. There are eight services in the application and they are
named S1, S2, S3, S8 in the service graph and each service has an internal task graph.
Applying the pattern, the degree of each graph indicates the number of nodes in the graph.
So, we need to calculate the order for each subgraph. Using the service graph information,
order of Sy, | S |= 1, as we have only one node in the service S;. Similarly, for all other

Sglzl, Sg’:].,’S4|=l, S5|=2, 56]=3,|Sy|=2,and]58|=1.

services,

Now, we need to consider only the services with orders greater than one, so we have
three services S5, Sg, and S7 which should be migrated to microservices. Using the graph
partition approach, we can break the monolithic services to generate the microservices. The
service graph provides an overview of the services and their interaction with other services

and helps in easy migration for software architects.

95

CHAPTER 6. PATTERNS FOR MIGRATION OF SOA BASED APPLICATIONS TO MICROSERVICES ARCHITECTURE Section 6.2

Figure 6.1: SG_SOA: Service graph representation of SOA based application

6.2.2 Pattern 2

The size of the microservices is immeasurable. Designing the service graph along with task
graphs helps us in identifying the size of the microservice. By the definition of microser-
vices, each service should perform only one business task and there is no specific metric
to determine the size of the microservice. As a consequence, nodes in the task graph itself

represent the microservices and each service performs only one task.

6.2.3 Pattern 3

In the complex application of microservices, if a service fails or a bug occurs, we need to
trace the route cause of the failure. The applications designed using microservices generally
have a complex network and it is difficult to trace and monitor the applications.

For the chosen application, the business requests should be stored in the database. From
the service graph given in Figure 6.2, we extract the sequence of the services in the order
of execution and map with the business request number. We have studied the chosen ap-

plication, and a few of the requests are considered. The possible business requests of the

96

CHAPTER 6. PATTERNS FOR MIGRATION OF SOA BASED APPLICATIONS TO MICROSERVICES ARCHITECTURE Section 6.2

Figure 6.2: SG_MSA: Service graph representation of microservices based application

given application are stored as shown in Table 6.2.

Business Requests Sequence of services

BRI1 MS19 — MS] — MS3 — MSy — MSg — MS5 — MSg
BR2 MS19 — MSg — MS3 — MSy — MSy

BR3 MS12 — MSg — MS3 — MSy — MSg — MS5 — MSy
BR4 msiz — Msg — MSy

BR5 MS12 — MSg — MS1g — MS11 — MSg — MSy

BR6 MmS12 — MS, — MS7 — MSy

BR7 ms19 — MS1 — MSs — MSg

Table 6.2: Mapping of business requests with workflows

From the logs and monitoring data, if any service fails, the root cause of the failure for
the particular business request can be traced. For example, if the service msy fails, it is
involved in business requests 5 and 6. We, therefore, need to analyze the error with the

business requests. Business request 5 is to get the quote, generate the lead and select the

97

CHAPTER 6. PATTERNS FOR MIGRATION OF SOA BASED APPLICATIONS TO MICROSERVICES ARCHITECTURE Section 6.3

proper dealer for the vehicle and business request 6 is to configure the dealer along with the
dealer’s location. Based on the business request and the error, the bug can be easily traced

and the problem can be quickly resolved.

6.3 Summary

In this chapter, we propose patterns for the most common recurring issues and these pat-
terns help in easy migration. The problems addressed are identified in a literature study on
the migration of legacy applications to microservices. The solutions provided are presented
with our experience in migrating SOA based applications to microservices. We proposed
solutions for some of the recurring problems which occur during the migration of SOA
based applications to microservices architecture. The proposed patterns are best illustrated

and evaluated using a standard case study application.

98

Chapter 7

Conclusion and Future Research

Here, we present the summary of contributions made in this thesis and mention the fu-
ture scope for research. The overall conclusion of the thesis work and conclusion of each

objective are discussed. The future scope of research from this thesis is also presented.

7.1 Conclusions

This thesis presents a framework for migration of service oriented applications to microser-
vices style which includes the comparison of SOA & microservices applications, algo-
rithms for extraction of microservices, the effort required for migration, and patterns for
problems that occur during the migration process.

In chapter 3, a formal model to represent any given service based application called
as service graph is proposed. To better understand the technical differences between the
service oriented architecture and microservices, we presented a comparison between these
two styles. The parameters used for comparison are complexity using the loose coupling
and performance using the load testing. Based on the analysis done for the complexity
of the applications, it is clear that microservices application has more number of services
and application is more complex than SOA application. The coupling between the services
is also less in microservices architecture. However, the performance testing shows better
results for microservices with quick response times for 500 and 1000 users. Furthermore,

the chosen case study application exhibits better results when chosen the business requests

99

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH Section 7.1

with the same number of services in both styles. After this experimental study, we conclude
that microservices architecture exhibits better performance results with the use of cloud-
based environments and can be used in the design of large enterprise applications. This
motivated us to migrate the SOA based applications to microservices architecture.

In chapter 4, to identify the candidate microservices from SOA applications, we pro-
posed a new approach using the service graph. In this approach, we use the service graph
representation of SOA based application along with the task graph in each node of the
service graph. We presented algorithms for the construction of service graph of a given
SOA application, microservices extraction, and for constructing the service graph of the
microservices application, which is to be designed. Additionally, the dependencies among
the services are also represented in the service graph of the microservices application. We
have evaluated the extracted microservices w.r.t loose coupling and compared them with
existing SOA services. It is clear from the results that microservices have low coupling
intensity compared to SOA services.

In chapter 5, we propose a new technique which is recasted from the well-known use
case points technique to estimate the effort required for the migration of SOA based ap-
plications to microservices architecture. We have revised the technical and environmental
factors as the existing factors are not compatible with the microservices architecture. We
have conducted an online survey to collect the ratings of each of these factors and used
them in our effort estimation model. We have demonstrated the new technique through a
case study application and calculated the effort required for migration. We have compared
the results with effort calculated by considering the default values for factors suggested by
Karner.

Additionally, we propose a machine learning model using multiple linear regression
with Leave-N-Out policy, where we train the model with N-k applications and test with
the remaining k applications. We have taken 7 applications designed with SOA and mi-
grated to microservices, and we calculated the efforts using the regression function. The
accuracy of the proposed models is evaluated using different metrics such as MRE, RMSE,
PRED, MAE, and SA. The comparison results show that the efforts estimated using the SP-

Regression approach are close to the actual efforts, and the error rate is very low compared

100

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH Section 7.2

to the SP-Proposed approach and SP-Karner’s approach.

In chapter 6, to address the most common recurring issues, we propose patterns that
help with easy migration. The problems addressed are identified in a literature study on the
migration of legacy applications to microservices. The solutions provided are presented

with our experience in migrating SOA based applications to microservices.

7.2 Future Scope

* The comparison between the two architectures is presented in terms of coupling,
complexity and performance. The other features such as scalability, maintenance,

architecture stability, etc., can be considered for comparison.

* In chapter 4, algorithms for extraction of microservices are presented. However,
the proposed approach can be enhanced by considering database in the migration

approach as each microservice should have individual database.

* The effort estimation approach proposed in chapter 5 uses only a limited dataset of
7 projects. However, the machine learning techniques give better results with more
number of projects in the dataset. The proposed approach is applied only on a single
case study application, and it can be tested on applications of different domains and

large enterprise applications.

* In this thesis, we have proposed a framework for migrating to microservices archi-
tecture. However, serverless computing is one of the recent trends and applications

can be migrated to serverless computing.

101

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Tasneem Salah, M Jamal Zemerly, Chan Yeob Yeun, Mahmoud Al-Qutayri, and
Yousof Al-Hammadi. The evolution of distributed systems towards microservices

architecture. In 2016 11th International Conference for Internet Technology and
Secured Transactions (ICITST), pages 318-325. IEEE, 2016.

Chen-Yuan Fan and Shang-Pin Ma. Migrating monolithic mobile application to
microservice architecture: An experiment report. In 2017 IEEFE International Con-

ference on Al & Mobile Services (AIMS), pages 109-112. IEEE, 2017.

James Lewis and Martin Fowler. Microservices: a definition of this new architectural
term. MartinFowler. com, 25:14-26, 2014.

Marcelo Amaral, Jorda Polo, David Carrera, Igbal Mohomed, Merve Unuvar, and
Malgorzata Steinder. Performance evaluation of microservices architectures using
containers. In 2015 IEEE 14th International Symposium on Network Computing and
Applications, pages 27-34. IEEE, 2015.

Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices archi-
tecture enables devops: Migration to a cloud-native architecture. leee Software,
33(3):42-52, 2016.

Sheng Wang, Zhijun Ding, and Changjun Jiang. Elastic scheduling for microser-
vice applications in clouds. IEEE Transactions on Parallel and Distributed Systems,
32(1):98-115, 2020.

Shanshan Li, He Zhang, Zijia Jia, Zheng Li, Cheng Zhang, Jiaqi Li, Qiuya Gao, Ji-
dong Ge, and Zhihao Shan. A dataflow-driven approach to identifying microservices
from monolithic applications. Journal of Systems and Software, 157:110380, 2019.

Dmitry Namiot and Manfred Sneps-Sneppe. On micro-services architecture. Inter-
national Journal of Open Information Technologies, 2(9):24-27, 2014.

Luiz Carvalho, Alessandro Garcia, Wesley KG Assuncdo, Rodrigo Bonifécio,
Leonardo P Tizzei, and Thelma Elita Colanzi. Extraction of configurable and
reusable microservices from legacy systems: an exploratory study. In Proceedings
of the 23rd International Systems and Software Product Line Conference-Volume A,
pages 2631, 2019.

102

[10] Alexis Henry and Youssef Ridene. Migrating to microservices. In Microservices,
pages 45—72. Springer, 2020.

[11] Claus Pahl and Pooyan Jamshidi. Microservices: A systematic mapping study. In
CLOSER (1), pages 137-146, 2016.

[12] Tomas Cerny, Michael J Donahoo, and Michal Trnka. Contextual understanding
of microservice architecture: current and future directions. ACM SIGAPP Applied
Computing Review, 17(4):29-45, 2018.

[13] Paolo Di Francesco. Architecting microservices. In 2017 IEEE International Con-
ference on Software Architecture Workshops (ICSAW), pages 224-229. IEEE, 2017.

[14] Alan Megargel, Venky Shankararaman, and David K Walker. Migrating from mono-
liths to cloud-based microservices: A banking industry example. In Software Engi-
neering in the Era of Cloud Computing, pages 85—108. Springer, 2020.

[15] Miika Kalske, Niko Mikitalo, and Tommi Mikkonen. Challenges when moving
from monolith to microservice architecture. In International Conference on Web
Engineering, pages 32—47. Springer, 2017.

[16] Lucas Krause. Microservices: patterns and applications. Lucas Krause, 2015.

[17] Zhongxiang Xiao, Inji Wijegunaratne, and Xinjian Qiang. Reflections on soa and
microservices. In 2016 4th International Conference on Enterprise Systems (ES),
pages 60—67. IEEE, 2016.

[18] Vinay Raj and S Ravichandra. Microservices: A perfect soa based solution for en-
terprise applications compared to web services. In 2018 3rd IEEE International
Conference on Recent Trends in Electronics, Information & Communication Tech-
nology (RTEICT), pages 1531-1536. IEEE, 2018.

[19] Justus Bogner, Stefan Wagner, and Alfred Zimmermann. Automatically measur-
ing the maintainability of service-and microservice-based systems: a literature re-
view. In Proceedings of the 27th International Workshop on Software Measurement
and 12th International Conference on Software Process and Product Measurement,
pages 107-115, 2017.

[20] Naghmeh Niknejad, Iraj Sadegh Amiri, et al. Literature review of service-oriented
architecture (soa) adoption researches and the related significant factors. The impact
of service oriented architecture adoption on organizations, pages 9—41, 2019.

[21] Tomas Cerny, Michael J Donahoo, and Jiri Pechanec. Disambiguation and com-
parison of soa, microservices and self-contained systems. In Proceedings of the
International Conference on Research in Adaptive and Convergent Systems, pages

228-235, 2017.

103

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

José C Delgado. Structural interoperability as a basis for service adaptability. In
Adaptive web services for modular and reusable software development: Tactics and
solutions, pages 33-59. IGI Global, 2013.

Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs.”
big”’web services: making the right architectural decision. In Proceedings of the
17th international conference on World Wide Web, pages 805-814, 2008.

Hasan Derhamy, Jens Eliasson, and Jerker Delsing. System of system composi-
tion based on decentralized service-oriented architecture. IEEE Systems Journal,
13(4):3675-3686, 2019.

Hong-Mei Chen, Rick Kazman, and Opal Perry. From software architecture analysis
to service engineering: An empirical study of methodology development for enter-
prise soa implementation. IEEE Transactions on Services Computing, 3(2):145-160,
2010.

Cristina Paniagua, Jens Eliasson, and Jerker Delsing. Efficient device-to-device ser-
vice invocation using arrowhead orchestration. IEEE Internet of Things Journal,
7(1):429-439, 2019.

Johannes Thones. Microservices. IEEE software, 32(1):116-116, 2015.

Kyle Brown and Bobby Woolf. Implementation patterns for microservices architec-
tures. In Proceedings of the 23rd Conference on Pattern Languages of Programs,
pages 1-35, 2016.

Saleem Durai MA et al. Rescue: Reputation based service for cloud user environ-
ment. International Journal of Engineering, 27(8):1179-1184, 2014.

Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano, Lorena Sala-
manca, Rubby Casallas, and Santiago Gil. Evaluating the monolithic and the mi-
croservice architecture pattern to deploy web applications in the cloud. In 2015 10th
Computing Colombian Conference (10CCC), pages 583-590. IEEE, 2015.

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday,

today, and tomorrow. Present and ulterior software engineering, pages 195-216,
2017.

Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, Manuel Mazzara, Ruslan
Mustafin, and Larisa Safina. Microservices: How to make your application scale. In
International Andrei Ershov Memorial Conference on Perspectives of System Infor-
matics, pages 95-104. Springer, 2017.

Wilhelm Hasselbring and Guido Steinacker. Microservice architectures for scalabil-
ity, agility and reliability in e-commerce. In 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW), pages 243-246. IEEE, 2017.

104

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Andy Singleton. The economics of microservices. IEEE Cloud Computing, 3(5):16—
20, 2016.

Pedro Valderas, Victoria Torres, and Vicente Pelechano. A microservice compo-
sition approach based on the choreography of bpmn fragments. Information and
Software Technology, 127:106370, 2020.

Rory V O’Connor, Peter Elger, and Paul M Clarke. Continuous software engineer-
ing—a microservices architecture perspective. Journal of Software: Evolution and
Process, 29(11):e1866, 2017.

Pooyan Jamshidi, Claus Pahl, Nabor C Mendonga, James Lewis, and Stefan Tilkov.
Microservices: The journey so far and challenges ahead. IEEE Software, 35(3):24—
35, 2018.

Muhammad Aslam Jarwar, Sajjad Ali, Muhammad Golam Kibria, Sunil Kumar,
and Ilyoung Chong. Exploiting interoperable microservices in web objects enabled
internet of things. In 2017 Ninth International Conference on Ubiquitous and Future
Networks (ICUFN), pages 49-54. IEEE, 2017.

Manuel Mazzara, Antonio Bucchiarone, Nicola Dragoni, and Victor Rivera. Size
matters: Microservices research and applications. In Microservices, pages 29—42.
Springer, 2020.

Norman Wilde, Bilal Gonen, Eman EIl-Sheikh, and Alfred Zimmermann. Ap-
proaches to the evolution of soa systems. In Emerging Trends in the Evolution of
Service-Oriented and Enterprise Architectures, pages 5-21. Springer, 2016.

Nico Lassing, PerOlof Bengtsson, Hans Van Vliet, and Jan Bosch. Experiences with
alma: architecture-level modifiability analysis. Journal of systems and software,

61(1):47-57, 2002.

Mohsen AlSharif, Walter P Bond, and Turky Al-Otaiby. Assessing the complex-
ity of software architecture. In Proceedings of the 42nd annual Southeast regional
conference, pages 98—103, 2004.

Marco Gribaudo, Mauro Iacono, and Daniele Manini. Performance evaluation of
massively distributed microservices based applications. In 37st European Confer-
ence on Modelling and Simulation, ECMS 2017, pages 598—604. European Council
for Modelling and Simulation, 2017.

Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. Research on architecting
microservices: trends, focus, and potential for industrial adoption. In 2017 IEEE In-
ternational Conference on Software Architecture (ICSA), pages 21-30. IEEE, 2017.

Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. Fault
analysis and debugging of microservice systems: Industrial survey, benchmark sys-
tem, and empirical study. IEEE Transactions on Software Engineering, 2018.

105

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Bridget Spitznagel and David Garlan. Architecture-based performance analysis.
1998.

Dmitri Nevedrov. Using jmeter to performance test web services. Published on
dev2dev, pages 1-11, 2006.

Tasneem Salah, M Jamal Zemerly, Chan Yeob Yeun, Mahmoud Al-Qutayri, and
Yousof Al-Hammadi. Performance comparison between container-based and vm-

based services. In 2017 20th Conference on Innovations in Clouds, Internet and
Networks (ICIN), pages 185-190. IEEE, 2017.

Eberhard Wolff. Microservices: flexible software architecture. Addison-Wesley
Professional, 2016.

Mathawee Tusjunt and Wiwat Vatanawood. Refactoring orchestrated web ser-
vices into microservices using decomposition pattern. In 2018 IEEE 4th Inter-

national Conference on Computer and Communications (ICCC), pages 609-613.
IEEE, 2018.

Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Processes, motivations, and is-

sues for migrating to microservices architectures: An empirical investigation. /EEE
Cloud Computing, 4(5):22-32, 2017.

Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. Architecting with microser-
vices: A systematic mapping study. Journal of Systems and Software, 150:77-97,
2019.

Valentina Lenarduzzi, Francesco Lomio, Nyyti Saariméki, and Davide Taibi. Does
migrating a monolithic system to microservices decrease the technical debt? Journal
of Systems and Software, page 110710, 2020.

Shmuel Tyszberowicz, Robert Heinrich, Bo Liu, and Zhiming Liu. Identifying mi-
croservices using functional decomposition. In International Symposium on De-
pendable Software Engineering: Theories, Tools, and Applications, pages 50-65.
Springer, 2018.

Heleno Cardoso da Silva Filho and Glauco de Figueiredo Carneiro. Strategies re-
ported in the literature to migrate to microservices based architecture. In 16th In-
ternational Conference on Information Technology-New Generations (ITNG 2019),
pages 575-580. Springer, 2019.

Andrei Furda, Colin Fidge, Olaf Zimmermann, Wayne Kelly, and Alistair Barros.
Migrating enterprise legacy source code to microservices: on multitenancy, stateful-
ness, and data consistency. IEEE Software, 35(3):63-72, 2017.

Manabu Kamimura, Keisuke Yano, Tomomi Hatano, and Akihiko Matsuo. Extract-
ing candidates of microservices from monolithic application code. In 2018 25th
Asia-Pacific Software Engineering Conference (APSEC), pages 571-580. IEEE,
2018.

106

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Michael Gysel, Lukas Kolbener, Wolfgang Giersche, and Olaf Zimmermann. Ser-
vice cutter: A systematic approach to service decomposition. In European Confer-
ence on Service-Oriented and Cloud Computing, pages 185-200. Springer, 2016.

Genc Mazlami, Jiirgen Cito, and Philipp Leitner. Extraction of microservices from
monolithic software architectures. In 2017 IEEE International Conference on Web
Services (ICWS), pages 524-531. IEEE, 2017.

Luciano Baresi, Martin Garriga, and Alan De Renzis. Microservices identification
through interface analysis. In European Conference on Service-Oriented and Cloud
Computing, pages 19-33. Springer, 2017.

Wauxia Jin, Ting Liu, Qinghua Zheng, Di Cui, and Yuanfang Cai. Functionality-
oriented microservice extraction based on execution trace clustering. In 2018 IEEE
International Conference on Web Services (ICWS), pages 211-218. IEEE, 2018.

Francisco Ponce, Gaston Marquez, and Herndn Astudillo. Migrating from mono-
lithic architecture to microservices: A rapid review. In 2019 38th International Con-

ference of the Chilean Computer Science Society (SCCC), pages 1-7. IEEE, 2019.

Venkata Swamy Martha and Maurin Lenglart. Webservices engineering. In Webser-
vices, pages 173—-196. Springer, 2019.

Parag C Pendharkar, Girish H Subramanian, and James A Rodger. A probabilistic
model for predicting software development effort. IEEE Transactions on software
engineering, 31(7):615-624, 2005.

Girish H Subramanian, Parag C Pendharkar, and Mary Wallace. An empirical study
of the effect of complexity, platform, and program type on software development
effort of business applications. Empirical Software Engineering, 11(4):541-553,
2006.

SAMSON WANJALA MUNIALO and SAMSON WANJALA. A SIZE METRIC-
BASED EFFORT ESTIMATION METHOD FOR SERVICE ORIENTED ARCHI-
TECTURE SYSTEMS. PhD thesis, MMUST, 2020.

Shashank Mouli Satapathy, Barada Prasanna Acharya, and Santanu Kumar Rath.
Early stage software effort estimation using random forest technique based on opti-
mized class point approach. INFOCOMP Journal of Computer Science, 13(2):22—
33, 2014.

Marcio Rodrigo Braz and Silvia Regina Vergilio. Software effort estimation based
on use cases. In 30th Annual International Computer Software and Applications
Conference (COMPSAC’06), volume 1, pages 221-228. IEEE, 2006.

Sergey Diev. Use cases modeling and software estimation: applying use case points.
ACM SIGSOFT Software Engineering Notes, 31(6):1-4, 2006.

107

[70] Parastoo Mohagheghi, Bente Anda, and Reidar Conradi. Effort estimation of use
cases for incremental large-scale software development. In Proceedings. 27th Inter-
national Conference on Software Engineering, 2005. ICSE 2005., pages 303-311.
IEEe, 2005.

[71] Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo, and Porfirio Tramontana. A
wrapping approach for migrating legacy system interactive functionalities to service
oriented architectures. Journal of Systems and Software, 81(4):463-480, 2008.

[72] Barry Boehm and Richard Turner. Management challenges to implementing agile
processes in traditional development organizations. IEEE software, 22(5):30-39,
2005.

[73] M Tajamolian and M Ghasemzadeh. A versioning approach to vm live migration.
International Journal of Engineering, 31(11):1838-1845, 2018.

[74] Janusz Zalewski. Real-time software architectures and design patterns: Fundamental
concepts and their consequences. Annual Reviews in Control, 25:133-146, 2001.

[75] Farah Lakhani and Michael J Pont. Using design patterns to support migration be-
tween different system architectures. In 2010 5th International Conference on Sys-
tem of Systems Engineering, pages 1-6. IEEE, 2010.

[76] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van Den Heuvel. The
pains and gains of microservices: A systematic grey literature review. Journal of
Systems and Software, 146:215-232, 2018.

[77] Sara Hassan and Rami Bahsoon. Microservices and their design trade-offs: A self-
adaptive roadmap. In 2016 IEEE International Conference on Services Computing
(SCC), pages 813-818. IEEE, 2016.

[78] Olaf Zimmermann. Microservices tenets. Computer Science-Research and Devel-
opment, 32(3):301-310, 2017.

[79] Hulya Vural, Murat Koyuncu, and Sinem Guney. A systematic literature review
on microservices. In International Conference on Computational Science and Its
Applications, pages 203-217. Springer, 2017.

[80] Justus Bogner, Stefan Wagner, and Alfred Zimmermann. Using architectural mod-
ifiability tactics to examine evolution qualities of service-and microservice-based
systems. SICS Software-Intensive Cyber-Physical Systems, 34(2):141-149, 2019.

[81] Claus Pahl, Pooyan Jamshidi, and Olaf Zimmermann. Architectural principles for
cloud software. ACM Transactions on Internet Technology (TOIT), 18(2):1-23,
2018.

[82] Aliaksei Yanchuk, Alexander Ivanyukovich, and Maurizio Marchese. Towards a
mathematical foundation for service-oriented applications design. Journal of Soft-
ware, 1(1):32-39, 2006.

108

[83] Pushparani Bhallamudi, Scott Tilley, and Arunesh Sinha. Migrating a web-based
application to a service-based system-an experience report. In 2009 11th IEEE In-
ternational Symposium on Web Systems Evolution, pages 71-74. 1IEEE, 2009.

[84] Vinay Raj and Ravichandra Sadam. A service graph based extraction of microser-
vices from monolith service of soa. Software: Practice and experience, 2021.

[85] Jianjun Zhao. On assessing the complexity of software architectures. In Proceedings
of the third international workshop on Software architecture, pages 163—-166, 1998.

[86] Zhang Qingqing and Li Xinke. Complexity metrics for service-oriented systems.

In 2009 second international symposium on knowledge acquisition and modeling,
volume 3, pages 375-378. IEEE, 2009.

[87] Vinay Raj and Ravichandra Sadam. Performance and complexity comparison of
service oriented architecture and microservices architecture. International Journal
of Communication Networks and Distributed Systems, 26(3), 2021.

[88] Frangois Jammes and Harm Smit. Service-oriented paradigms in industrial automa-
tion. IEEE Transactions on industrial informatics, 1(1):62-70, 2005.

[89] Hironori Washizaki, Hirokazu Yamamoto, and Yoshiaki Fukazawa. A metrics suite
for measuring reusability of software components. In Proceedings. 5th International
Workshop on Enterprise Networking and Computing in Healthcare Industry (IEEE
Cat. No. 03EX717), pages 211-223. IEEE, 2004.

[90] Renuka Sindhgatta, Bikram Sengupta, and Karthikeyan Ponnalagu. Measuring the
quality of service oriented design. In Service-Oriented Computing, pages 485—499.
Springer, 2009.

[91] Cesare Pautasso and Erik Wilde. Why is the web loosely coupled? a multi-faceted
metric for service design. In Proceedings of the 18th international conference on
World wide web, pages 911-920, 2009.

[92] Wilhelm Hasselbring. Microservices for scalability: Keynote talk abstract. In Pro-
ceedings of the 7th ACM/SPEC on International Conference on Performance Engi-
neering, pages 133—134, 2016.

[93] Xabier Larrucea, Izaskun Santamaria, Ricardo Colomo-Palacios, and Christof Ebert.
Microservices. IEEE Software, 35(3):96-100, 2018.

[94] Esraa A Farrag, Ramadan Moawad, et al. An approach for effort estimation of
service oriented architecture (soa) projects. 2015.

[95] Gustav Karner. Resource estimation for objectory projects. Objective Systems SF
AB, 17:1-9, 1993.

[96] Tim Menzies, Ye Yang, George Mathew, Barry Boehm, and Jairus Hihn. Negative
results for software effort estimation. Empirical Software Engineering, 22(5):2658—
2683, 2017.

109

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Siba Mishra and Chiranjeev Kumar. Effort estimation for service-oriented comput-
ing environments. Computing and Informatics, 37(3):553-580, 2018.

Jianfeng Wen, Shixian Li, Zhiyong Lin, Yong Hu, and Changqin Huang. Systematic
literature review of machine learning based software development effort estimation
models. Information and Software Technology, 54(1):41-59, 2012.

Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. Introduction to
linear regression analysis. John Wiley & Sons, 2021.

Federica Sarro, Alessio Petrozziello, and Mark Harman. Multi-objective software
effort estimation. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pages 619—630. IEEE, 2016.

Martin Shepperd and Chris Schofield. Estimating software project effort using
analogies. IEEE Transactions on software engineering, 23(11):736-743, 1997.

Justus Bogner, Alfred Zimmermann, and Stefan Wagner. Analyzing the relevance
of soa patterns for microservice-based systems. Zeus, 9:9-16, 2018.

Mohammad Azzeh, Ali Bou Nassif, and Imtinan Basem Attili. Predicting software

effort from use case points: A systematic review. Science of Computer Program-
ming, 204:102596, 2021.

Ali Bou Nassif, Luiz Fernando Capretz, and Danny Ho. Enhancing use case
points estimation method using soft computing techniques. arXiv preprint
arXiv:1612.01078, 2016.

Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Migrating to cloud-
native architectures using microservices: an experience report. In European Confer-
ence on Service-Oriented and Cloud Computing, pages 201-215. Springer, 2015.

Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian A Tamburri, and
Theo Lynn. Microservices migration patterns. Software: Practice and Experience,
48(11):2019-2042, 2018.

Frank Leymann, Christoph Fehling, Sebastian Wagner, and Johannes Wettinger. Na-
tive cloud applications: Why virtual machines, images and containers miss. In Pro-
ceedings of the 6th International Conference on Cloud Computing and, pages 7-15.
SciTePress.

Holger Knoche and Wilhelm Hasselbring. Using microservices for legacy software
modernization. IEEE Software, 35(3):44-49, 2018.

110

List of Publications

Journal Papers

1. Vinay Raj and Sadam Ravichandra, “Performance and complexity comparison of
SOA and microservices architectures”, International Journal of Communication Net-

works and Distributed Systems, Inderscience. (Published).

2. Vinay Raj and Sadam Ravichandra, ‘“Patterns for migration of SOA based applica-
tions to microservices architecture”, Journal of Web Engineering, River Publishers

(Published).

3. Vinay Raj and Sadam Ravichandra, “Evaluation of SOA based web services and mi-
croservices architecture using complexity metrics”, SN Computer Science, Springer

(Published).

4. Vinay Raj and Sadam Ravichandra, “A service graph based extraction of microser-
vices from monolith services of SOA”, Journal of Software: Practice and Experi-

ence, Wiley (Revisions Submitted).

5. Vinay Raj and Sadam Ravichandra, “A novel effort estimation approach for mi-
gration of SOA applications to microservices”, Journal of Information Systems and
Telecommunication, Advanced Information Systems (AlS) Research Group (Revi-

sions Submitted).

6. Vinay Raj and Sadam Ravichandra, ’‘A Framework for Migration of SOA based
Applications to Microservices Architecture”, Journal of Computer Science and Tech-

nology, Springer (Under Review).

Conference Papers

1. Vinay Raj and Sadam Ravichandra, “Microservices: A perfect SOA based solu-
tion for Enterprise Applications compared to Web Services”, 3rd IEEE International
Conference on Recent Trends in Electronics, Information & Communication Technol-
0ogy (RTEICT) May 18-19, 2018, held at Sri Venkateshwara College of Engineering,

Bengaluru, India.

111

	ACKNOWLEDGMENTS
	ABSTRACT
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Research Problems and Objectives
	1.3 Summary of the contributions
	1.3.1 Evaluation and comparison of SOA and microservices architecture based applications.
	1.3.2 A service graph based extraction of microservices from monolith services of SOA
	1.3.3 Effort estimation approach for migration of SOA applications to microservice architecture.
	1.3.4 Patterns for migration of SOA based applications to microservices architecture.

	1.4 Organization of the thesis

	2 Literature Review
	2.1 Monolithic Applications
	2.1.1 Benefits of Monolithic applications
	2.1.2 Drawbacks of Monolithic applications

	2.2 Service Oriented Architecture
	2.2.1 Principles of SOA
	2.2.2 Web services
	2.2.3 Drawbacks of SOA

	2.3 Microservices architecture
	2.3.1 Definition
	2.3.2 Characteristics of microservices
	2.3.3 Benefits of using microservices
	2.3.4 Technical differences between SOA and microservices
	2.3.5 Why use microservices?

	2.4 Characteristics of the SOA system to be suitable for migration
	2.5 Study on migration of SOA applications to microservices architecture
	2.5.1 Comparison of SOA and Microservices architecture based applications
	2.5.1.1 Complexity
	2.5.1.2 Performance testing

	2.5.2 Extraction of microservices from SOA based applications
	2.5.2.1 Need for migration to microservices
	2.5.2.2 Challenges in migration
	2.5.2.3 Existing migration techniques

	2.5.3 Effort estimation for microservices architecture
	2.5.4 Patterns for microservices architecture

	2.6 Summary

	3 Comparison of Service Oriented Architecture and Microservices Based Applications
	3.1 Service Graph
	3.2 Case Study: Vehicle Management System
	3.2.1 SOA based application
	3.2.2 Microservices based application

	3.3 Complexity Analysis
	3.3.1 SOA based application
	3.3.2 Microservices based application
	3.3.3 Comparison of Complexities

	3.4 Performance Testing
	3.4.1 Criteria for performance comparison
	3.4.2 Performance comparison results
	3.4.2.1 Business request having the same NoSs
	3.4.2.2 Business request having different NoSs

	3.5 Summary

	4 A service graph based extraction of microservices from monolith services of SOA
	4.1 Service graph construction
	4.2 Task Graph
	4.3 Microservices extraction algorithm
	4.4 Service graph generation for microservices
	4.5 Case Study: Vehicle Management System
	4.5.1 Extraction of microservices
	4.5.2 Service graph construction
	4.5.3 Discussion on proposed approach

	4.6 Evaluation of the extracted microservices
	4.6.1 Evaluation criteria
	4.6.2 Extraction of metric values from service graph
	4.6.3 Evaluation of SOA based application
	4.6.4 Evaluation of microservices based application
	4.6.5 Results
	4.6.5.1 Comparison based on RCS values
	4.6.5.2 Comparison based on SCF

	4.6.6 Discussion on comparison

	4.7 Summary

	5 A novel effort estimation approach for migration of SOA applications to microservices
	5.1 Types of services involved in migration process
	5.2 Proposed approach
	5.2.1 Classification of services
	5.2.2 Calculation of weights and points
	5.2.3 Technical and Environmental factors
	5.2.3.1 Calculation of Technical Complexity Factor(TCF)
	5.2.3.2 Calculcation of Environmental Factor (EF)

	5.2.4 Final service point evaluation

	5.3 Empirical evaluation of the proposed approach
	5.3.1 Classification of services
	5.3.2 Calculcation of USP
	5.3.3 Effort estimation using SP Proposed Approach
	5.3.4 Effort estimation using SP-Karner's Approach
	5.3.5 Observation

	5.4 Experimental Study
	5.4.1 Regression Analysis
	5.4.2 Datasets
	5.4.3 Evaluation criteria

	5.5 Experimental Results
	5.5.1 Application of SP-Proposed and SP-Karner's methods
	5.5.2 Application of SP-Regression model
	5.5.3 Comparison
	5.5.4 Threats to validity

	5.6 Summary

	6 Patterns for migration of SOA based applications to microservices architecture
	6.1 Patterns
	6.1.1 Pattern 1: Decomposition of an SOA service to Microservices
	6.1.2 Pattern 2: Size of each Microservice
	6.1.3 Pattern 3: Bug Detection in Complex Microservices Application

	6.2 Evaluation
	6.2.1 Pattern 1
	6.2.2 Pattern 2
	6.2.3 Pattern 3

	6.3 Summary

	7 Conclusion and Future Research
	7.1 Conclusions
	7.2 Future Scope

	Bibliography
	List of Publications

