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ABSTRACT

The rapid growth in the usage of location-based services has resulted in extensive

research on users’ trajectory data publishing or on continuous publications of location

statistics. The users’ trajectory information or location statistics are provided valuable

knowledge that supports various social benefits such as smart healthcare, real-time traffic

monitoring, online advertisement, etc. Even publishing or sharing such users’ trajectory

or location statistics without preserving users’ privacy. Then the participated users in a

published dataset may presume that a malicious adversary can breach participated users’

privacy because it contains users’ private information like disease, habits, etc. In literature,

there exist privacy preservation models to provide a privacy guarantee to users against an

efficient adversary, namely Data anonymization, ǫ-Differential Privacy (ǫ-DP), and ǫ-Local

Differential Privacy (ǫ-LDP). Data anonymization model protects users’ sensitive infor-

mation from record/identity linkage, attribute linkage, and table linkage attack, whereas

ǫ-Differential Privacy, and ǫ-Local Differential Privacy address probabilistic attack.

The above privacy preserving models preserve users privacy by assuming that data records

are independent from each other. However, in reality data records are not independent

(or correlated) which leads to achieve less privacy guarantee as compared to traditional

privacy preserving models. In other words, if an adversary has additional knowledge about

the correlated records, then these privacy models does not prevent all participated users

privacy. Specifically, single Data Anonymization approach is not addressed the correlated-

records linkage attack along with three common linkage attacks, namely identity linkage,

attribute linkage, and similarity attack. Further, the traditional DP and LDP mechanisms

are not provide sufficient privacy guarantee especially the the data records are in correlated

in nature.
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To address the correlation behavior challenges in all three privacy preservation models,

firstly we proposed a data anonymization approach to protect users’ privacy against a

correlated-records linkage attack along with three common linkage attacks, namely iden-

tity linkage, attribute linkage, and similarity attack. The proposed method consists of two

phases, namely virtualization and suppression. The virtualization method works as a re-

placement mechanism for the sensitive attribute, and the suppression method works as

an anonymization mechanism for users’ trajectories, in order to anonymize the trajectory

datasets for preserving users’ privacy from the above four linkage attacks. Secondly, we

presented a reformulated Differential Privacy definition to quantify the impact of temporal

correlation on privacy leakage. We also introduced a privacy budget allocation method

for allocating an adequate amount of privacy budget to each successive timestamps under

the protection of differential privacy. Thirdly, the ǫ-Local Differential Privacy also suffers

more privacy leakage when the dataset involves temporal correlation. We propose a pri-

vacy budget allocation method to allocate a sufficient amount of privacy budget at each

timestamp and prove that our proposed method achieves ǫ-LDP over an infinite length of

a user stream. Fourthly, we quantify the impact of data correlation on privacy leakage in

a combined (LDP+DP) approach. Since this combined (LDP+DP) approach having many

possible combinations by considering with or without temporal correlation, it is necessary

to study the impact of data correlation on privacy leakage in all possible combinations of

the combined (LDP+DP) approach.

In this thesis, we addressed the correlation challenge in privacy preserving models and

proposed possible privacy preserving methods under Data anonymization, ǫ-DP, and ǫ-

LDP models against the correlation issues. Finally, we evaluate the data utility of all

proposed methods by presenting experimental results for real and synthetic data sets.
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Chapter 1

Introduction

The advancements in the usage of location-aware devices such as GPS mobile phones,

RFID tags, has facilitated the easy collection of the user’s spatio-temporal data-points.

The sequence of spatio-temporal data-points of a user known as user’s trajectory, can be

used in various applications such as real-time traffic monitoring [1], smart healthcare [2],

online advertisement [3] etc. Further, numerous applications require continuous publica-

tion of location statistics for providing various social benefits to users or to support various

decision-making purpose. However, sharing such user’s trajectory or location statistics

without preserving users’ privacy may lead to serious mistrust between the users and the

data published organization [4]. This is because, the published data contains users’ sensi-

tive information like disease, habit’s etc. For instance, a hospital wants to share a collected

radio frequency identification (RFID) data of patients who suffer from a specific disease

with the researchers for the analysis of disease and disorder outbreaks. Due to the inadver-

tent sharing of patients’ data, the researchers can identify and disclose the type of disease

a targeted patient suffers from, which leads to compromising patients’ privacy. Therefore,

the privacy mechanism is required to prevent the users privacy.
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However, the privacy mechanisms provide privacy to participated users with a key concern,

which is ”Access to the published dataset should not allow the adversary to learn anything

extra about any target victim compared to no access to the dataset, even with the presence

of any adversary’s background knowledge obtained from other sources”. There exist few

privacy models for preserving users privacy namely Data Anonymization, ǫ-Differential

Privacy and ǫ-Local Differential Privacy. Data Anonymization is the process of modifying

the relation in such a way that minimal user’s private data may be inferred. It protects the

user’s private data by erasing or removing identifiers that connect a user to stored data.

Even though removed user identity, an efficient adversary can infer a user’s record (or

targeted victim) with high probability by using his/her prior (or background) knowledge.

There are many techniques to achieve a privacy guarantee in data anonymization, such as

generalization [5], suppression [6], perturbation [7] and clustering [8]. There are many

privacy preservation approaches in the literature to provide privacy against either single or

a combination of linkage attacks such as identity linkage attack, attribute linkage attack,

and similarity linkage attack.

The ǫ-Differential Privacy (ǫ-DP) [9] is a novel privacy mechanism for query answering.

It is proved that DP provides strong privacy guarantees to users against an adversary with

unbounded knowledge. It ensures that any user’s privacy leakage is to be strictly bounded

by at most a ǫ value, where ǫ is a user parameter. If the value of ǫ is small, it achieves a

strong privacy guarantee and vice versa. The ǫ-DP releases a noisy output instead of true

output for hiding user’s sensitive information. This noisy output is computed by adding a

random noise (derived from the Laplace distribution with scale λ) to the true output. On

the other hand, Local differential privacy (LDP) [10] is a variant of standard differential

privacy. The LDP mechanism address that most of the existing approaches under ǫ-DP

assume that the service provider collects the user’s sensitive information, adds noise to the
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output for a particular query, and releases the perturbed output. However, it is unfeasible

to assume that all service providers are trusted, which leads to untrusted service providers

misuse the collected information for other purposes [11, 12]. To overcome this, the LDP

mechanism follows a scheme which is, users make their location data-point private before

sending it to the service provider. Hence, this privacy model promises a privacy guarantee

to users even though the service provider is not trusted. Under the protection of LDP, the

service provider can still compute the correct statistical results even though not collecting

users’ private location data-points. According to the ǫ-LDP, the adversary cannot infer

users’ private or sensitive data with high confidence (controlled by ǫ). Here, the ǫ is a

privacy budget that controls the level of privacy guarantee.

Further, The above these three privacy preserving models also been applied in continuous

data publishing settings. Assume that the data records of individual are not independent (or

correlated) in continuous data publishing settings. Then, the data anonymization models

run out to maintain the trade-off between utility and privacy because of correlation and the

DP and LDP mechanisms are provide less privacy guarantee, especially when the user’s

records are not independent (i.e., correlated) or user’s data-points are not independent be-

tween consecutive timestamps (i.e., temporally correlated). This challenge is motivated us

to study and propose possible solutions for the above privacy models.

The major contribution in this thesis are as follows,

• Quantify the impact of prior knowledge on privacy leakage in trajectory data

publishing: This work present an Data Anonymization method that prevents users

sensitive information from the four linkage attacks, namely correlated-records link-

age attack, Identity linkage attack, Attribute linkage attack and Similarity attack. In

addition, the Virtualization method is introduced in proposed method for sensitive
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attributes to achieve no sensitive attribute information loss in the published dataset.

• Assess the impact of data correlation on privacy budget allocation in continuous

publication of location statistics: This work explores the effect of data correlation

on privacy leakage in ǫ-Differential Privacy, showing that if a temporal correlation

occurs between the data-points of a user stream, the privacy guarantee of the ǫ-

Differential Privacy mechanism can be violated. It also presents a Privacy Budget

Allocation strategy to allocate privacy budgets to the correlated location data-points

to achieve ǫ-DP in continuous location data publishing.

• Quantify the impact of data correlation on privacy leakage in Local differential

privacy for Continuous Data Release Settings This work analyzes the impact of

data correlation on privacy leakage in ǫ-Local Differential Privacy and shows that

ǫ-Local Differential Privacy mechanism could be degrading the privacy guarantee

if the temporal correlation exists between the data-points of a user stream. A Pri-

vacy Budget Allocation (PBA) mechanism is proposed in local settings. It allows to

compute and allocate the quantity of privacy budget to each publication in continu-

ous data release settings. Further, theoretically prove that the proposed mechanism

achieves ǫ-LDP.

• Compare the impacts of data correlation on privacy leakage in a combined pri-

vacy preserving approach: This work compares the privacy leakage of a combined

traditional (LDP+DP) approach with a combined temporally correlated (LDP+DP)

approach. And evaluate the data utility of all four different types of combined

(LDP+DP) approaches.
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1.1 Overview of the Contribution of this Thesis

In this section, an overview of chapter-wise contributions of this thesis has been presented.

Each subsection presents summary of contributions of the corresponding chapter.

1.1.1 Quantify the Impact of Prior Knowledge on Privacy Leakage in

Trajectory Data Publishing

The various linkage attacks are possible in trajectory data publishing such as Identity link-

age attack, Attribute linkage attack and Similarity attack. Therefore, privacy is very im-

portant to preserve users privacy from the efficient adversary.

The adversary model for breaching user’s privacy is characterized by two important spec-

ification (1) Adversary’s prior (or background) knowledge, (2) Adversary’s goal. We as-

sume that adversary can gain prior knowledge about the target victim from various sources

and his goal is to breach the sensitive information of target victim by linking his prior

knowledge to the published trajectory dataset. Let A be the adversary, that could be a

data analyst or data collector itself and his aim is to find the record or sensitive value of

the target victim in published dataset. Based on the A’s prior knowledge about the tar-

geted victim, A could perform following linkage attacks, to breach victim’s record or his

sensitive value.

Identity linkage attack: If the targeted victim’s record is unique in the published dataset,

then an adversary can identify a victim’s data-record by using his prior knowledge and

consequently he can find victim’s sensitive information.

Attribute linkage attack: This attack happens only when the sensitive value of a targeted

victim is occurring more frequently. Then there is a possibility that an adversary could
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breach the sensitive information even though the adversary does not have unique trajec-

tory information of a targeted victim.

Similarity attack: It happens only when an adversary succeeds to identify all possible sen-

sitive values of the targeted victim by using his prior knowledge. If the identified sensitive

values are semantically similar, then the adversary can breach a generalized sensitive value

of the targeted victim.

Correlated-records linkage attack: In the real dataset, a targeted victim may have multiple

data-records in the published dataset. If an adversary has additional knowledge about the

correlated records, then an adversary can predict the victim’s sensitive value with high

confidence.

The existing mechanism under data anonymization model in the literature to provide pri-

vacy against three common linkage attacks either single or combination of linkage attacks

such as identity linkage attack, an attribute linkage attack and similarity linkage attack.

However, the correlated-records linkage attack has not been addressed in existing data

anonymization approaches. Although, there is no privacy preservation approach to address

all the above four linkage attacks. Further, ǫ-Differential Privacy ( ǫ-DP) is a new privacy

notion and is defined as a property of a query answering mechanism[13]. However, pub-

lishing trajectory dataset with DP may not able to provide data truthfulness in published

trajectory dataset[14, 15]. This is due to the resulted output (or trajectory dataset) is un-

truthful because of uncertainty (eg. Laplace noise [13]) introduced for achieving ǫ-DP.

Therefore, it is required to develop a data anonymization method to prevent four differ-

ent types of linkage attacks against efficient adversary. The contributions of this work as

follows.

• We propose a privacy preservation anonymization method that preserves users’ pri-

vacy from four linkage attacks by enabling the virtualization method on the user’s
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sensitive values and suppression method on the user’s trajectory.

• We introduced a privacy threshold called privacy-height in our method, and it is used

to fix the upperbound to the privacy-risk.

• Finally, we compare the rate of information loss between previous approaches with

the propose anonymization approach by conducting an experiment on the synthetic

and real-time datasets.

1.1.2 Quantify the Impact of Data Correlation on Privacy Budget Al-

location in ǫ-Differential Privacy

ǫ-Differential Privacy (ǫ-DP) [9] is a query-answering privacy mechanism. It is proved

that DP provides strong privacy guarantees to users against an adversary with unbounded

knowledge. It ensures that any user’s privacy leakage is to be strictly bounded by at most a

ǫ value, where ǫ is a user parameter. Although, it has been applied in settings of continuous

data publishing [16, 17, 18].

In the literature, there exist a few privacy approaches under the protection of ǫ-DP for

continuous data publishing., such as Event-level privacy[19], User-level privacy[20] and

w-event privacy[17]. The Event-level privacy and User-level privacy has limited applica-

bility in most of the real-world applications. Recently, w-event privacy mechanism has

been proposed to address the limited use of event-level privacy and user-level privacy.

This mechanism offers a strong privacy guarantee to any user stream within a window of

w timestamps and achieves ǫ-DP on infinite length of an user stream. However, the w-

event privacy mechanism provides less privacy guarantee than traditional ǫ-DP, especially

when the user’s data-points are not independent (i.e., temporally correlated) between con-

secutive timestamps. It happens due to the allotted privacy budget at timestamps within
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a window of size w is not adequate, especially where the data-points of users’ stream

involve temporal correlation. The proposed allocation scheme involves two phases and

these two phases operate sequentially by using half of the total privacy budget. In the first

phase, calculates a dissimilarity value between the true statistic and last release private

statistic. Then, the obtained dissimilarity value is forwarded into the second phase. The

second phase divides a privacy budget into two parts: publication privacy budget and ab-

sorption privacy budget. The second phase decides whether to publish a true publication

with noise or null publication (last release private output). The contributions of this work

are as follows.

1. We present a reformulated differential privacy definition for continuous data publi-

cation and prove that it can achieve ǫ-DP. Then we quantify the impact of temporal

correlation on privacy leakage in reformulated ǫ-DP and analyze the privacy leakage

in ǫ-DP with a numerical example.

2. We introduce a Privacy Budget Allocation method for allocating an adequate amount

of privacy budget to each successive timestamps under the protection of ǫ-Differential

privacy.

3. Finally, we evaluate the data utility of our method by computing the average error

per timestamps through conducting a series of experiments on real and synthetic

datasets.

1.1.3 Quantify the Impact of Data Correlation on Privacy Leakage in

ǫ-Local Differential Privacy

The Local-Differential Privacy mechanism address the privacy issues at user side of an

real-time application. To achieve this, users make their location data-point private before
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sending it to the service provider. Hence, this privacy model promises a privacy guarantee

to users even though the service provider is not trusted. A few basic privacy approaches

are existed in literature for continuous data publishing, namely Event level, User-level,

and w-event privacy. The w-event privacy under the protection of ǫ-LDP offers a privacy

to the user’s stream of length infinity by using a sliding window methodology. However,

w-event privacy achieves comparatively less privacy guarantee than that traditional ǫ-LDP

especially when a user stream’s location data-points are correlated. This is because the

privacy budget allots to each timestamp’s data-point are not adequate due to the presence

of correlated location data points within the user stream. Therefore, it is necessary to de-

sign a privacy budget allocation scheme under the protection ǫ-LDP for allocating privacy

budgets to the correlated location data-points within the user’s stream. The proposed allo-

cation strategy within the sliding window involves two phases. These two phases operate

sequentially by using independent randomness. At the first phase of any timestamp, com-

pute dissimilarity between current location data-point and last release noisy data-point.

This dissimilarity value is made private by using the allotted privacy budget, and this pri-

vate dissimilarity value is forwarded into phase 2. The second phase decides whether to

publish the current location data-point or not. If the second phase decides not to pub-

lish the current location data-point, then the allotted privacy budget becomes free and can

be used for future publication if necessary. On the other hand, the second phase decides

to publish the current location data-point, then it absorbs one extra privacy budget that

became available from previous skipped publication if and only if the correlation exists

between the current location data-point and last published location data-point. Otherwise,

it uses only the allotted privacy budget for publication. The contribution of this work is as

follows.

1. We present a definition ǫ-Local Differential Privacy for continuous data publication
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and prove that it can achieve ǫ-LDP. We quantify the privacy degradation when cor-

relation exists in continuous data publication and analyze the privacy leakage with a

numerical example.

2. We propose a Privacy Budget Allocation method on ǫ-Local Differential Privacy for

distributing an adequate amount of privacy budgets to each timestamp’s data under

the protection of ǫ-LDP.

3. Finally, we demonstrate the effectiveness of our proposed method in terms of data

utility with existing allocation methods by considering real and synthetic datasets.

1.1.4 Compare the Impacts of Data Correlation on Privacy Leakage

in a Combined Privacy Preserving Approaches

In the era of digitization, some applications require users data from both data collection

and data sharing phases to provide better social benefits to users such as smart health

monitoring system, smart traffic control systems etc. The service provider collects the

user’s private data and provides the services to users or shares that collected private (or

sensitive) data with other service providers for providing better social benefits to users.

However, if it combined collected users’ data and shared users’ data may compromise

the user’s privacy, leading to disclosing the user’s sensitive information. Many privacy

preservation methods have been proposed for providing a privacy guarantee either at the

time of data collection or data sharing phases. ǫ-Differential Privacy provides a strong

privacy guarantee with the assumption that service providers are trustworthy and it is used

in data sharing phase. Since it is difficult to presume that all service providers are trusted,

a variant of standard Differential privacy for local settings has been proposed, named as

ǫ-Local Differential Privacy and it is used in data collection phase. There are few real-
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time applications require either a privacy guarantee by the data collector (i.e., DP) or a

privacy guarantee by the data provider itself (i.e., LDP) or a privacy guarantee by both

data provider and data collector (i.e., LDP and DP).

There is limited works to study the impact of data correlation on privacy leakage either

only DP involved in the application or only LDP involved in the application, but not both

mechanisms involved in the application. So, it is necessary to study the impact of data

correlation on privacy leakage of a combined approach. There are four different combina-

tions of a combined approach, such as either it requires (traditional LDP + traditional DP)

or (LDP with temporal correlation(TC)+ traditional DP) or (traditional LDP + DP with

temporal correlation) or (LDP with temporal correlation + DP with temporal correlation).

Depends on the type of query requirement, the curator chooses one amoung the four dif-

ferent combinations of a combined approach and release the statistics. The contributions

of this work are as follows.

1. We quantify the impact of data correlation on privacy leakage of all cases of a com-

bined approach in continuous data release settings.

2. We performed a series of experiments with real and synthetic datasets to determine

the average error rate per timestamp for evaluating the data utility of a combined

approach (LDP with TC+DP with TC) with other states of the art methods.

1.2 Organization of the Thesis

The main focus of this thesis is to analyze the impact of adversary’s prior knowledge (i.e.,

Data correlation) on privacy leakage in various privacy-preserving models. The proposed

algorithms achieve a strict privacy guarantee in location data publishing. The rest of the

thesis has been organized into six chapters.
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Chapter 2: In this chapter, Data Anonymization, ǫ-Differential Privacy and ǫ-Local Dif-

ferential Privacy enabled privacy preserving approaches have been discussed.

Chapter 3: A correlated-records linkage attack has been discussed and proposed a pri-

vacy reserving anonymization approach to achieve a privacy guarantee against correlated-

records linkage attack along with three common linkage attacks, namely Identity, Attribute

and Similarity.

Chapter 4: In this chapter, quantify the impact of data correlation on privacy leakage in

ǫ-Differential Privacy is presented. Design a privacy budget allocation scheme for allocat-

ing a privacy budget over the correlated data-points of successive timestamps. In addition,

proved that our proposed method satisfies ǫ-Differential Privacy.

Chapter 5: ǫ-Local Differential Privacy definition for continuous data publication is pre-

sented in this chapter and also, quantifies the impact of data correlation on privacy leakage

in ǫ-Local Differential Privacy in continuous data release setting A Privacy Budget Al-

location scheme under the protection of ǫ-Local Differential Privacy for distributing an

adequate amount of privacy budgets to each timestamp’s data is presented.

Chapter 6: This chapter presents the comparison of the privacy leakages of a combined

traditional (LDP+DP) approach with a combined temporally correlated (LDP+DP) ap-

proach. And an evaluation of the data utility of all four different types of combined

(LDP+DP) approaches is presented.

Chapter 7: This chapter summarizes the outcomes of the contributions and future scope

for expanding the work.

12



Chapter 2

Preliminaries

In this section, we are discussing a set of mathematical notations that helps to understand

the following chapters, the definitions of linkage attacks, differential privacy under contin-

ual observation and local differential privacy under continual observation. Then, we also

discussed a privacy challenges in privacy preserving models.

2.1 Notations

A trajectory dataset consists of users’ data-records and each data-record allows an identi-

fier, a user trajectory and a set of sensitive values. The trajectory dataset T is represented

as,

T = {(id1, T1, s1), (id2, T2, s2) . . . . . . . . . (idi, Ti, si)}

Where id is a keyword which identifies user’s record uniquely in T , si or Ti(s) is a sen-

sitive value of a user i derived from corresponding sensitive-attribute domain and Ti is a

13
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sequence of moving points (location and time) of user i and is represented as,

Ti = {(loc1, time1)
i, (loc2, time2)

i, (loc3, time3)
i . . . . . . (locn, timen)

i}

Let xn
i = (locn, timen)

i is a nth position moving point of a user i and (Ti)
m be a sequence

of moving points upto mth position of user i. The total number of moving points in a user

i′s trajectory is denoted as |Ti|.

Let a trajectory Ti = {x
1
i , x

2
i ,. . . . . . ,xm

i }, then the trajectory Tj = {x1
j , x

2
j ,. . . . . . ,xk

j} is

said to be a sub-trajectory of user i iff there exist an integer k ≤ m and (Tj)
k ≡ (Ti)

k

and is denoted as τj ⊆ Ti. Further, any two trajectory Ti = {x
1
i , x

2
i , . . . , x

k
i } and Tj =

{x1
j , x

2
j , . . . , x

k
j , . . . , x

m
j } can merge by using union operation and is represented as,

Ti ∪ Tj = {x
1
i , x

2
i , . . . , x

k
i , x

k+1
j , . . . , xm

j } if (Ti)
k ≡ (Tj)

k

Let χ be the universe of possible input location data-points. In our setting, we assume

that each location data-point is a vector of size L, where L is a total number of all possible

locations. Suppose, if a user is at location li ∈ L, then the corresponding bit (or column)

i in the vector is set to be 1, and all remaining bits are set to zero. At every timestamp t,

curator collects a dataset Dt with k rows, denoted as the set of indices [k] = {1, 2, ...k}.

Let S be the stream prefixes of location data-points and we represent the stream prefix S

up to t timestamp is St = (D1, D2, . . . , Dt). Let q : D → IRL be the counting query

function where D is the set of all datasets with L columns. The curator aims to publish a

result (or statistics) for a counting query at each timestamp. ai is the output of the dataset

S[i] = Di.

Each location data-point xt
i is a vector of size L, L ∈ χ. Each location data-point of a

user i has a value xt
i = lti . This value lti is private to user i. In addition, user i has visited
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location information (say Vi). This Vi is private to user i, but it is correlated with current

location data point of user i i.e., lti . This correlation is modeled as follows. If Vi be the

set of location data-points visited by the user i, then lti ∼ Θi, where Θi is a distribution

of transition probabilities over all possible location data points visited by the user i that

is known to all users and mechanism. At every timestamp t, curator collects a dataset Dt

with k rows.

2.2 Definitions

Definition 2.1 A trajectory dataset T preserves privacy for any sequence or trajectory Ti

if and only if Ti satisfies 0 < |Ti|≤ ρ and |Ti(τ)|≥ K for any integer ρ and K , where

|Ti| is the total number of moving points of user i′s trajectory and |Ti(τ)| is the total

number of data records which contains a sub-trajectory τ . In other words, an adversary

(with bounded prior knowledge) cannot identify any user’s trajectory Ti or sensitive value

si with high confidence.

2.2.1 Data anonymization

Definition 2.2 (Identity linkage attack:) If the targeted victim’s record is unique in the

published dataset, then an adversary can identify a victim’s data-record by using his prior

knowledge and consequently he can find victim’s sensitive information.

Definition 2.3(Attribute linkage attack:) This attack happens only when the sensitive

value of a targeted victim is occurring more frequently. Then there is a possibility that an

adversary could breach the sensitive information even though the adversary does not have

unique trajectory information of a targeted victim.

Definition 2.4(Similarity attack:) It happens only when an adversary succeeds to iden-
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tify all possible sensitive values of the targeted victim by using his prior knowledge. If the

identified sensitive values are semantically similar, then the adversary can breach a gener-

alized sensitive value of the targeted victim.

Definition 2.5(Correlated-records linkage attack:) In the real dataset, a targeted vic-

tim may have multiple data-records in the published dataset. If an adversary has additional

knowledge about the correlated records, then an adversary can predict the victim’s sensi-

tive value with high confidence.

2.2.2 Differential privacy

Definition 2.6 (Laplace mechanism:) It is one of the most common methods for achieving

ǫ-DP. Given a counting query q, the Laplace mechanism generates random noise (say x)

derived from Laplace distribution with scale Lap(λ) and is added to the true answer of a

query q i.e., ωt = q(Dt) + x. The probability density function of Laplace distribution is

P (x) =
1

2λ
exp(−|x|/λ) (2.1)

Where λ = ∆q/ǫ, ∆q is a global-sensitivity of a query q, which is a maximum difference

between the outputs over the adjacent stream prefixes St and S
′

t i.e., ∆q = maxSt,S
′

t
||q(St)−

q(S
′

t)||. The parameters ∆q and ǫ plays a significant role in calibrating the noise to the

query outputs.

Definition 2.7 (Adj(St, S
′

t):) Let St and S
′

t are the stream prefixes of location data-

points drawn from the χ. The St is adjacent to S
′

t if and only if they are differing in

one or more data-points of any one user stream prefixes. More formally, Adj(St, S
′

t) iff

∃m,n ∈ χ and ∃k ⊆ [|St|] such that St|k:m→n= S
′

t. Here, k is a set of indices in the stream

prefix St and St|K:m→n is the result of modifying all the occurrences of m at these indices

16
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with n.
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Chapter 3

Literature Survey

The recent advancements in technologies boost many real-world applications to serve var-

ious social benefits to users. These technologies collect and analyze users’ sensitive in-

formation to gain rich knowledge, helps to play various activities in many applications.

However, by collecting and analyzing users’ sensitive information, there may be a chance

to compromise users’ privacy. So, Privacy is an essential phenomenon in various applica-

tions that involve data publishing [21][22], data mining [23] [24] [25], etc. For instance,

since privacy is not incorporated in the medical dataset the state massachusetts, the med-

ical information of the governor of massachusetts was disclosed by linking his medical

data record with the voter registration list [26]. Various linkage attacks are possible in

published datasets in order to disclose users’ senstive information. To provide the pri-

vacy to users against various linkage attacks, it is necessary to build privacy preservation

methods for protecting users sensitive information.
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3.1 Privacy Preserving Models

3.1.1 Data Anonymization Approach

Data anonymiztion is one of the privacy preserving method, is a process of modifying the

relation in such a way that minimal user’s private data may be inferred. To protect the

users private data from adversary, it is necessary to remove users unique identifiers from

the published dataset. Even though removed user identifiers, an efficient adversary can

infer a user’s record (or targeted victim) with high probability via various linkage attacks.

To adress the linkage attack, Sweeney proposed a k-anonymity protection privacy model

[26]. This k-anonymity made the released dataset private, where at least the k number of

records are unique in each QID group in the released table. Later, various anonymization

methods have been proposed to protect users’ sensitive information from the other types

of linkage attacks, namely, attribute linkage attack, table linkage attack, similarity attack,

etc. Further, the privacy preserving in location data release settings or trajectory dataset

publishing is an emerging research topic in the recent decade. In literature, various data

anonymization methods have been proposed for protecting users’ sensitive information

against various linkage attacks in setting location data release settings or trajectory data

publishing. These privacy methods protect users’ sensitive information from either one or

a combination of linkage attacks from the adversary with bounded background knowledge.

However, the data anonymization methods are broadly classified into two categories: Clus-

tering based anonymization methods and Quasi identifiers based anonymization methods.

These two categories are protected users’ sensitive information from the published dataset

by using different methodologies.
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3.1.1.1 Clustering based anonymization methods

The following methods protect users’ sensitive information from various linkage attacks

by using clustering methods. Abdul et al. [27] proposed a (k,δ)-anonymity model to pre-

serve users location information. The trajectory of the moving object is presented in a

cylindrical volume instead of three-dimensional space. As they know that the moving ob-

ject is presented in the cylindrical volume, but they don’t know where it is placed. The

other moving objects are indistinguishable from each other in cylindrical volume. This

proportion leads to the definition of (k,δ) -anonymity. It takes advantage of location un-

certainty to limit the amount of distortion required to anonymize trajectory data. Although

they present a NWA method for achieving (k,δ)-anonymity. The NWA method starts with

partitioning the trajectory dataset into equivalent classes, then generates a set of clusters,

then transforms it into a space translation cluster to minimize translation distortions. Mon-

reale et al.[28] felt that a new privacy concern is required for mobility data published. The

de-identification of high precision and resolution trajectories is the only weak protection

and also it is possible to re-identify user mobility by observing routine mobility infor-

mation. They present a method of combining the notion of location generalization and

K-anonymity. It ensures that all generalized trajectories satisfy K-anonymity. Although,

this method ensures that data is protected and fixes the upper bound to the probability of re-

identification. Nergiz et al. [29] adrress the privacy issues while publishing the trajectory

dataset. They proposed a randomization-based reconstruction algorithm by adopting the

standard privacy notion k-anonymity to anonymize individuals’ trajectories in published

datasets. Further, it shows that how the underlying techniques can be adapted to other

anonymity standards. Domingo-Ferrer et al. [30] proposed Swap location and Reach lo-

cation data anonymization methods. Both methods preserve location user privacy. These

methods anonymize the trajectory dataset, which has no perturb or generalize the loca-
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tions and also it guarantees the anonymized dataset satisfies k-anonmity. Mahdavifar et al.

[8] claims that many privacy preservation approaches provide the same privacy level to

all participated users. They present a greedy clustering method in which it anonymizes

the trajectory dataset based on users’ location data-point privacy requirements. Hence this

method provides users personalized privacy in published trajectory datasets. This method

allows to assign a privacy level to user trajectory based on their privacy requirement, then

partition the trajectories into fixed radius cluster.

3.1.1.2 Quasi identifiers based anonymization methods

The following methods protect users’ sensitive information from various linkage attacks

by using Quasi identifiers based anonymization methods. Fung et al. [5] analyze the

privacy leakage threats caused by RFID data publishing. They claim that even though re-

moving quasi identifier values from the published dataset, the attacker can identify users’

sensitive information by using his prior knowledge of users’ visited location information.

If they applied the traditional k-anonymity method to RFID data, it suffers the curse of

high dimensionality, leading to affect the data truthfulness. Therefore, they define a pri-

vacy model called LKC privacy. It ensures that every sub-trajectory with at most L length

is shared at least K number of data-records in the trajectory dataset and confidence of any

users’ sensitive value is not greater than threshold C. Mohammed et al.[31] applied the

traditional QID-based anonymization method and its variants to the RFID dataset, con-

clude that these methods are not suitable because of the curse of high dimensionality,

which leads to inadequate data usefulness. To over come this, they propose an efficient

anonymization algorithm to address the particular challenges of anonymizing high dimen-

sional, sparse and sequential RFID datasets. Terrovitis and Mamoulis [32] studies how to

transfer a trajectory dataset into a format that controls adversaries infer a user’s missing
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location information with high certainty. They propose a privacy preservation method us-

ing the suppression technique. It iteratively suppresses the location information in order

to achieve the privacy requirement for secure data publishing. chen et al. [6] study the

privacy issue in trajectory dataset publishing and analyze the effectiveness in data min-

ing activities. They claim that the traditional privacy models are ineffective while dealing

with data mining activities. To address this challenge, they introduce the local suppres-

sion method to make the secure trajectory dataset publishing. This method adopts the

existing (K,C)L-privacy model for trajectory data anonymization and also allows various

utility metrics for different data mining tasks. This method supports both local and global

suppression, intending to increase the data utility of different data mining tasks. Hus-

saeni et al.[33] propose a new algorithm incremental trajectory stream anonymizer, which

anonymizes users’ trajectory stream using a sliding window concept. This sliding window

updated continuously while joining and leaving user trajectory. An efficient data struc-

ture is used for updating the sliding window when massive data is collected. Terrovitis et

al.[34] propose four anonymization methods that prevent linkage attacks from adversaries

whose having partial knowledge of users’ trajectory information. These anonymization

methods adopt the l-diversity privacy notion to protect users’ location information. They

proposed four anonymization methods namely suppression of locations, splitting of trajec-

tories or both, to handle large trajectory datasets. These methods employ both suppression

and splitting of users trajectories to anonymize the data in order to reduce the location in-

formation loss. Liu et al.[35] proposed a new privacy protection framework named SLAT-

a Sub-trajectory Linkage Attack Tolerance. Also introduced a (α,K,L) privacy model,

which adopts both generalization and suppression techniques to preserve users’ identity

and sensitive location information in published trajectory dataset. This privacy model is

an extended version of the LKC privacy model, which preserves privacy in the joint release

of trajectory and users-sensitive attributes. This model not only preserve user identity and
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sensitive value linkage attacks, but also sensitive location linkage attack. Ghasemzadeh et

al.[36] propose a hybrid approach that aims to preserve both spatio-temporal data privacy

and information quality of passenger flows. This approach utilizes both local and global

suppression to achieve a fair tradeoff between privacy and information quality and also

comparing two probabilistic flow graphs to assess the information quality before and after

data anonymization. Nergiz et al. [29] propose a randomization based reconstruction al-

gorithm for publishing anonymized trajectory data and also presented how the underlying

techniques can be adapted to other anonymity standards. Elahe Ghasemi Komishani et

al.[15] present a novel approach PPTD(preserving privacy in trajectory data publishing)

for preserving personalized privacy in trajectory data publishing. It involves two major

steps: sensitive attribute generalization and trajectory local suppression for generalize the

sensitive values and suppress the trajectories respectively. Lin Yao et al.[37] propose a

(l, α, β) privacy model to resist three types of linkage attacks. It is enhanced version of

l-diversity mechanism.

3.1.1.3 Location Privacy

Liu et al. [38] proposed a distributed dummy user generation system based on game-

theoretic approach and is the first mechanism using game theoretic approach to achieve

k-anonymity in trajectory data publishing. It ensures that users control their privacy them-

selves, called personalized privacy. They formulate two bayesian game models to analyze

the non-cooperative behaviors of users and propose a selection algorithm to gain opti-

mized payoffs. Cicek et al. [39] address the released data consists of nodes in the map

rather than users trajectories. Therefore, they proposed a ρ-confidentiality technique that

addresses the diversification problem in k-anonymity. It ensures that bound to the proba-

bility of a user who visits a sensitive location with ρ input parameter to achieve location
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diversity.

Table 3.1: List of privacy preservation approaches which prevents different types of link-

age attacks.

Approaches Identity Attribute Similarity Correlated-records

linkage attack linkage attack linkage attack linkage attack

Monreale[28] X − − −
Ghasemzadeh[36] X − − −
Nergiz[29] X − − −
Fung[5] X X − −
Mohammed[31] X X − −
Terrovitis[32] X X − −
Chen[6] X X − −
Hussaeni[33] X X − −
Terrovitis[34] X X − −
Liu[35] X X − −
komishani[15] X X X −
Yao[37] X X X −
Proposed approach X X X X

The above three categorize anonymization methods provide a privacy guarantee either

from single or combination three linkage attacks namely identity, attribute and similarity.

The Table 3.1 describes a list of privacy preservation approaches that prevent different

types of linkage attacks. To the best of our knowledge, the correlated-records linkage

attack has not been studied in the previous privacy preservation approaches, and also there

is no privacy preservation approach to address all the above four linkage attacks.

3.1.2 ǫ-Differential privacy

As we aware that a huge development in wireless sensor systems and crowdsourced in-

formation systems, a large amount of information is collected and analyzed to build rich

useful information about a single user or group of users, which can provide various social

benefits to everyone. The above data anonymization methods have limited applicability
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in real-world applications (ex: crowdsourced systems etc.) because more information loss

occurs when dealing with the crowdsourced system. Although, there may be a chance that

more new types of linkage attacks are possible in the future. To overcome this, recently,

ǫ-Differential privacy (DP) [40] has been introduced, in which it protects users’ sensitive

information from an adversary with unbounded background knowledge. This mechanism

provides a strict privacy guarantee only by removing or modifying a single data record

from the dataset. It is defined as a property of a query answering mechanism. It ensures

that the resulted answers are not affected by adding or removing of any data-record in

the trajectory dataset. Recently, few methods adopt this idea of DP on trajectory dataset

[41][42]. The goal of DP method is to publish noisy aggregate information that are effec-

tive for some specific data mining task[43] such as count query answering and frequent

itemset mining.

3.1.2.1 Trajectory or Location Privacy without correlation

The novel ǫ-DP privacy mechanism can also been applied in settings of continuous data

publishing. There are few mechanism which adopts DP privacy notion for continuous

data publishing. Dwork et al. [44, 19] first initiated and proposed two privacy approaches

such as event-level and user-level privacy for studying differential privacy under continual

observation or trajectory data publishing. There are privacy preserving approaches under

the protection of differential privacy that address only trajectory data publishing. Li et

al. [45] claim that the related works on trajectory data publishing cannot achieve strict

differential privacy due to adding unbounded noise, which affects to leak more privacy

leakage and the utility of information also less. Moreover, existing merging methods for

trajectory data publishing remove some users’ trajectory data from the input dataset. To

ovecome these limitations, they proposed a bounded noise generation algorithm under the
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protection differential privacy and also presented a trajectory merging algorithm. Quan et

al. [46] reformulate the standard differential privacy definition for the data, which belongs

to an arbitrary domain of secrets. Based on this reformulated definition, they can adjust

the noise based on privacy parameters. They present a trajectory or location obfuscation

mechanism in which it adds the noise using a polar laplacian method. If the settings

require a strong privacy requirement, then the privacy parameter is set to small (eps=0.1),

whereas the noise would be adding more if the setting requires less privacy requirement.

In the worst case, release the dataset without noise if and only if the setting does not

require any privacy requirement. Cao et al. [47] claim that if the user’s data points are

infinite, then the traditional e-differential privacy is not protected every data-points of the

user’s trajectory under the protection of ǫ-DP. Further, every user has not required the same

privacy level. So, they introduced an l-trajectory privacy model for preference length

of user trajectory under the protection of ǫ-differential privacy. Also, they presented an

algorithmic framework to publish l length user trajectory.

3.1.2.2 Trajectory or Location Privacy with correlation

In literature, a few privacy approaches exist under the protection of ǫ-DP that address the

correlation issue in trajectory data publishing. There are two types of correlation in trajec-

tory datasets: the correlation between the user records and the correlation between the data

points of the same user. Kifer et al. [48] first address the privacy issue in correlated kinds

of datasets. To overcome this kind of privacy issue, they proposed a pufferfish framework,

which requires three components that need to be explicitly specified: potential secrets,

discriminative pairs, and data generation. However, there are some challenges to applying

pufferfish framework to address the correlated issue in trajectory data publishing, which is

the lack of a suitable privacy mechanism. Song et al. [49] claim that there is a challenge by
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using the Pufferfish mechanism, which is lack of suitable mechanism. So, they proposed a

novel privacy mechanism, named as Wasserstein Mechanism. This mechanism is adopted

in any general pufferfish instantiation. Since the privacy mechanism is insufficient espe-

cially when the dataset involves correlation, they proposed a Markov Quilt mechanism.

This mechanism exploits the properties of the Bayesian network in order to reduce the

computational complexity. Yang et al. [50] claim that the correlation involved in the

dataset and adversary’s background knowledge affect privacy. To overcome this privacy

issue, they proposed a new definition for the Pufferfish mechanism, Bayesian differential

privacy. It provides a strict privacy guarantee, especially when the dataset involves in the

published dataset. Also, they proposed a Gaussian correlation model for complex data cor-

relation. Zhu et al. [51] present an effective correlated differential privacy mechanism by

defining the correlated sensitivity. This sensitivity significantly decreases the noise com-

pared with traditional global sensitivity. Liu et al. [52] proposed an extended version of

the differential privacy for correlated data, called dependent differential privacy (DDP). It

uses a dependence coefficient to find accurate query sensitivity for dependent data, leading

to better data-utility at the same privacy level. This mechanism ensures that no sensitive

information leaks even though the dataset involves data correlation. Wu et al. [53] ad-

dress a few privacy challenges in dataset publishing. The challenges are how to represent

the correlated relationship between the two different datasets in terms of privacy, how to

measure the utility of published dataset that involves correlation, and how to evaluate the

data owners’ value of privacy. To address these challenges, they proposed a game-based

definition of correlated differential privacy to evaluate the privacy level of a single user’s

record influenced by the other user. And analyze the above game model to evaluate the

efficiency or utility of adopted pure Nash equilibrium. Chen et al. [54] identifies two

vulnerabilities in the setting of sequential data release: to balance the trade-off between

the information of the underlying dataset preserve and the extent of noise added. To ad-

27



CHAPTER 3. LITERATURE SURVEY Section 3.1

dress these, they proposed the n-gram model under the protection of differential privacy

for sequential data publishing. Also, they introduced a set of novel Markov techniques that

include budget allocation adaptively, the best choice of the threshold value, and the other

consistency constraints. He et al. [55] claim that raw users trajectories contain highly

detailed information about user sensitive information, and it is not easy to preserve pri-

vacy in order to maintain the original behavior of users. Based on this challenge, they

present a trajectory synthesis method named DPT system to synthesize the users’ trajec-

tories based on original users’ trajectories; simultaneously, it provides strict privacy guar-

antees by achieving a differential privacy mechanism. The DPT system involves a set of

algorithms for capturing the user movements at various speeds by using a hierarchical ref-

erence system, using an adoptive method to choose a small set of a reference system, and

build prefix tree counts privately and finally, to improve the utility of the system they use

direction-weighted sampling. Wang et al. [56] introduced a Private Trajectories Calibra-

tion and Publication System (PTCP) to publish large-scale user trajectories. This system

provides a strict privacy guarantee with high utility. It builds a noisy enhanced prefix tree

to calibrate the noise for large-scale user trajectories. It adopts a post-processing sampling

method to increase the scale of data utility in the published dataset. This system supports

privacy budget distribution adaptively so that it saves privacy budget, leads to control the

noise. The above privacy methods deal with the correlation between the user’s records in

the dataset, i.e., user-user correlation, whereas, in our settings, we consider the correlation

among single user’s data at different timestamps, i.e., temporal-correlation.

On the other hand, to the best of our knowledge, there is very limited research on the analy-

sis of privacy risk of differential privacy under temporal correlation in continuous location

data release settings. Wang et al. [57, 58] present a RescueDP method under the protection

of differential privacy for publishing real-time Spatio-temporal crowd-sourced data. This
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method groups the regions based on similarity of data change and add the calibrated noise

to each group instead of each regions so that it avoids the error for small statistics. This

method allows the privacy budget allocation by using an adaptive sampling approach in

order to allocate a sufficient amount of privacy budget to each group. Since the presence

of temporal correlation in Spatio-temporal data, they use Kalman Filter to improve the

accuracy of released crowd-sourced data. Xiao et al. [59] addess the temporal correlation

privacy issue while sharing users’ location information to location-based application host.

They present a δ-location set method with differential privacy guarantee to protect users’

true location information from adversaries. The main idea of this solution is to hide users’

true location information in the δ-location set so that the adversary cannot distinguish the

location of a particular user. Also, they present a planar isotropic mechanism (PIM) for

perturbing the users’ location efficiently. Cao et al. [18] define the adversary’s back-

ground knowledge about the temporal correlation in the dataset using the Markov model.

The temporal correlation in user trajectory can be defined as either backward and forward

correlations. Next, they analyze the privacy leakage when the dataset involves temporal

correlation using the optimal solution, i.e., linear-fractional programming problem. The

analysis report that the temporal privacy leakage increases over time in continuous data

publishing. Therefore, they proposed α-differential privacy, especially for temporal cor-

relation in user steam or trajectory against the adversary. However, in continuous data

publishing settings, the w-event privacy mechanism [17] provides less privacy guarantee

than traditional ǫ-DP, especially when the user’s data-points are not independent (i.e., tem-

porally correlated) between consecutive timestamps. It happens due to the allotted privacy

budget at timestamps within a window of size w is not adequate, especially where the

data-points of users’ stream involve temporal correlation. Therefore, the privacy budget

distribution strategies in w-event privacy such as Budget Distribution (BD) and Budget

Absorption (BA) are not suitable in the presence of correlated datasets within a window.
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Therefore, it is necessary to design a privacy budget distribution method for allocating a

sufficient privacy budget to all timestamps within the sliding window of size w.

3.1.3 ǫ-Local differential privacy

Moreover, ǫ-Differential Privacy provides a strict privacy guarantee against an adversary

with unbounded knowledge. However, DP mechanism assumes that the system servers or

curators are trusted, but it is unfeasible to believe that all system servers or curators are

trusted, which leads to disclose users’ sensitive information before aggregation. To this

end, ǫ-Local Differential Privacy has been introduced to provide a strict privacy guarantee

even though the system servers or curators are not trusted. This mechanism allows users

to send their data private before sending it to an untrusted server or curator.

3.1.3.1 ǫ-LDP without correlation

The differential privacy in local settings was first proposed to investigate learning algo-

rithms in local settings [60]. Later, the local differential privacy has become the most

promising privacy technique and has been applied in various applications such as Google’s

Chrome browser [61], Apple’s IOS [62, 63], and collecting telemetry data in Microsoft

[64]. A randomized response (W − RR) method is used to achieve LDP, which is first

proposed by warner in 1965, and it applies only to binary attributes [65]. Due to this

limitation, Kariouz et al. [11] studies the trade-off between the local differential privacy

and information utility function. This study’s intuition is to maximize the utility of re-

leased statistics from the released dataset. To achieve this, they present a set of extremal

privatization mechanisms named staircase mechanisms. These mechanisms show that it

maximizes the information-theoretic utility function solved by linear programming. Also,

they introduce a K-randomized response mechanism for multiple attributes. Later, Wang
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et al. [66] propose a generalized randomized response method; it is a generalization of

W − RR and K − RR. Wang et al. [67] propose a framework for the frequency esti-

mation problem, and it enables us to analyze, compare, generalize, and choose an optimal

mechanism based on LDP based application’s requirement. In addition, there exist a few

LDP mechanisms to study on set-valued data [66, 12] and high dimensional data [68, 69].

3.1.3.2 ǫ-LDP with correlation

There is very limited research on local differential privacy in continuous location data

publishing. Bittau et al. [70] claim that the data collection, process, and privacy concerns

are very important in software engineering practice. Nevertheless, unfortunately, these

concerns are not addressed and are required to be addressed to give better data utility and

simultaneously provide a strong privacy guarantee. So, they present a system architec-

ture that includes Encode, Shuffle, and Analyze (ESA) architecture and its PROCHLO

implementation for large-scale monitoring of users’ data, and it provides high utility while

preserving user privacy. In addition, PROCHLO introduce a new type of cryptographic

primitives and an algorithm to balance privacy and utility. Joseph et al. [71] claim that a

single-purpose algorithm does not provide a strict privacy guarantee over large-scale de-

ployments because these deployments periodically recollect the users’ data and recompute

the statistics by using an algorithm that is made for single use. Therefore, they present a

new LDP-adopted technique for maintaining up-to-date statistics over time. This method

helps track and identify small changes in underlying distribution, and it analyzes theoret-

ically but not practical verification. Erlingsson et al. [72] finds the privacy gap between

central differential privacy and local differential privacy in the setting of continuous data

release setting. To overcome this challenge, they proposed a combination of local differ-

ential privacy and anonymity concept to protect the users’ data points from the published
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datasets. Also, they prove that the random shuffling of data points ensures that any local

differential privacy protocol satisfies central differential privacy. In addition, they pro-

pose a real-time monitoring protocol that protects the longitudinal privacy of users over

timestamps, irrespective of whether it involves correlated or independent. Ding et al. [64]

address that the traditional LDP mechanism provides a strong privacy guarantee while

collecting a single round of telemetry data. However, collect the telemetry data periodi-

cally then degrades the privacy guarantee. Hence, they claim that the naive memoization

method [61] fails to provide a differential privacy guarantee when a user’s data-point is

constant over timestamps due to the presence of temporal correlation in a user stream. To

overcome this, they present a rounding-based discretization and memoization method to

solve the problem. Also, they analyze two basic tasks, mean estimation and histogram

estimation, and proved that these two tasks provide the same level of privacy as in the

traditional LDP data collection mechanism. Chen et al. [73] identified few challenges to

address the issues in local differential privacy. The challenges are obtaining each individ-

ual’s privacy requirement in local settings, building a suitable mechanism that computes

statistics efficiently, and designing a unified approach for an untrusted server by consider-

ing each individual’s privacy requirement and learning accurate statistics. To address these

challenges, they present a unified private spatial data aggregation framework to achieve

personalized local differential privacy and maximize data utility by taking full advantage

of users’ personalized privacy requirements. This framework adopts a local randomizer

based on a randomized matrix (abbreviated as LRM) to protect a user location data-point

at each timestamp in local settings. Xiong et al. [74] studies the real-time problem while

using local differential privacy in continuous data release settings. To address this prob-

lem, they presented a new privacy notion (ǫ, δ)-LDP, provides the privacy against indi-

vidual personalized privacy requirement and temporal correlation in the real-time dataset.

Also, they build a privacy mechanism that adopts the generalized randomized response
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(GRR) concept, and it satisfies (ǫ, δ)-LDP. The above privacy-preserving methods under

spatio-temporal correlation can provide comparatively less privacy than the privacy gain

in traditional ǫ-LDP. Also, there are few approaches of ǫ-LDP to address privacy budget

allocation under temporal correlation in continuous data release settings. Therefore, it is

necessary to design a privacy budget distribution method for allocating a sufficient privacy

budget to all timestamps under the protection of ǫ-LDP.

3.2 Budget Allocation Methods

There are a few baseline methods for allocating privacy budgets to each timestamp in liter-

ature, such as Uniform [44], Sampling[75, 20], and Budget Absorption (BA) [17]. Firstly,

the Uniform method is a basic idea; it divides the privacy budget uniformly and allocates

to each timestamp. In other words, each timestamp acquires (ǫ / N) privacy budget if the

length of a user stream is N . This method achieves ǫ-LDP if combine all privacy budgets

of N length user stream. Second, a Sampling method allocates a privacy budget at given

sample interval data-points (say I) of the user stream. That is, the given sample interval

data-point acquires (ǫ∗ I / N) privacy budgets while assuming an N length user stream.

Finally, Budget Absorption (BA) is one of the allocation methods in w-event privacy. It

allocates the privacy budget at any timestamp when the privacy mechanism decides to pub-

lish outputs, or otherwise, the respective timestamp’s budget has become free for future

publication. The available privacy budget from the previous skipped publications is used

in the next immediate successive publication. The above three baseline methods violate

ǫ-LDP in continuous location data publication settings if the correlation exists between the

location data-points at the different timestamp. To the best of our knowledge, the privacy

budget allocation scheme has not been studied in existing DP and LDP adopted approaches

in continuous location data release setting. In this thesis, we proposed a privacy budget al-
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location scheme under the protection of ǫ-DP and ǫ-LDP for temporally correlated location

data-points release setting and achieves better utility while preserving user’s privacy.

This chapter summarizes that the above privacy models such as data anonymization, ǫ-

differential privacy, and ǫ-local differential privacy have been applied in continuous data

publishing settings. However, these privacy models provide less privacy guarantee, espe-

cially when the user’s records are not independent (i.e., correlated) or the user’s data points

are not independent between consecutive timestamps (i.e., temporally correlated). It hap-

pens due to an adversary has additional knowledge about the correlated records in the data

anonymization approach, or the allotted privacy budget at each timestamp in a user stream

is not adequate in ǫ-DP or in ǫ-LDP, especially where the data-points of a users’ stream

involve temporal correlation.
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Chapter 4

Quantify the Impact of Prior

Knowledge on Privacy Leakage in

Trajectory Data Publishing

In the era of digitization it is very important to preserve users privacy from the effi-

cient adversary. Many privacy-preserving methods have been proposed to protect users’

privacy and these methods follow a basic privacy protection principle like the removal of

user identity from the trajectory dataset before bringing (or publishing) into the public do-

main to achieve users’ privacy in the published dataset. Moreover, an efficient adversary

can infer a user’s record (or targeted victim) with high probability by using his/her prior

(or background) knowledge [14]. The prior knowledge about the targeted victim may gain

from various resources [5], or in most of the scenarios, it is readily available in public

[76]. Further, an adversary can perform various linkage attacks on a published (or private)

dataset to infer users’ sensitive information with high probability [77, 78, 79]. The fol-

lowing example illustrates how users’ privacy can breach via performing various linkage
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attacks.

Consider a hospital X that maintains a database contain patients’ details in the form of ID,

patient’s trajectory and their medical data as shown in Table 4.1. A patient’s trajectory is a

sequence of locations visited by a patient with respect to time and is represented as a pair

of (loc, time). For instance, a patient ID 6 visited locations are k,n and m at timestamps

6,7 and 8 respectively and the corresponding sensitive value is High blood sugar. The

hospital wants to release (or publish) a dataset to the data miners for research purposes.

The patients may expect that the malicious data miners (or adversary) can misuse the pub-

lished information in relates to disclosing patient’s sensitive information by performing the

four linkage attacks such as Identity, Attribute, Similarity and Correlated-records linkage

attacks.

Table 4.1: A Hospital trajectory dataset

Id Trajectory Sensitive attribute

1 a1→ d2→ p3→ m4→ k6→ m8 Dengue

2 d2→ n5→ k6→ n7 High blood sugar

1 a1→ p3→ n7→ m8 Virus infection

3 p3→ m4→ k6→ m8 High blood sugar

4 a1→ d2→ n5→ k6→ m9 Dengue

5 n5→ k6→ m9 Lung infection

6 k6→ n7→ m8 High blood sugar

7 a1→ d2→ k6→ n7→ m9 Cholera

8 d2→ n5→ n7→ m9 Typhoid

Moreover, the privacy models such as K-anonymity [80], l-diversity [81] and confidence

bounding [81] are not suitable for anonymous the trajectory dataset due to these models are

failing to address the following challenges such as high dimensionality [82], sparseness [5]

and sequentiality [6]. However, few methods under data anonymization focus either one or

more above challenges and present solutions for protecting users privacy against linkage
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attacks. The data anonymization methods are broadly classified into two categories: Clus-

tering based anonymization methods and Quasi identifiers based anonymization methods.

In literature, [28, 36, 29] present privacy preserving methods based on Quasi identifiers

and prevent only one linage attack (identity linkage attack) from the adversary with limited

background knowledge. [34, 35, 33] proposed methods based on clustering technique and

[5, 31, 33] based on Quasi identifiers and these two categories based approaches prevents

only two linkage attacks (identity and attribute linkage attacks) from the efficient adver-

sary. Finally, the works of [15, 37] proposed privacy solutions against three linkage attacks

(identity, attribute and similarity). The above approaches provide users privacy against ei-

ther single or combination of linkage attacks such as identity linkage attack, an attribute

linkage attack and similarity linkage attack. On the other side, Differential Privacy (DP)

is a new privacy notion and is defined as a property of a query answering mechanism [40].

It ensures that the resulted answers are not affected by adding or removing of any data-

record in the trajectory dataset. However, publishing trajectory dataset with DP may not

able to provide data truthfulness in published trajectory dataset [14, 15]. This is due to

the resulted output (or trajectory dataset) is untruthful because of uncertainty (eg. Laplace

noise [13]) introduced for achieving differential privacy. To the best of our knowledge,

the correlated-records linkage attack has not been studied in the previous privacy preser-

vation approaches, and also there is no privacy preservation approach to address all the

above four linkage attacks. In this work, we used a virtualization and suppression meth-

ods to anonymize the trajectory datasets for preserving users’ privacy from the above four

linkage attacks. The virtualization method works as a replacement mechanism for the

sensitive attribute by using privacy height threshold and the suppression method works as

anonymization mechanism for users data trajectories by using K-anonymity threshold.

The contributions of this work as follows. We propose a privacy preservation anonymiza-
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tion method that preserves users’ privacy from four linkage attacks by enabling the virtu-

alization method on the user’s sensitive values and suppression method on the user’s tra-

jectory. We are introducing a privacy threshold called privacy-height in our method, and

it is used to fix the upper-bound to the privacy-risk. Finally, we are comparing the rate of

information loss between previous approaches with the propose anonymization approach

by conducting an experiment on the synthetic and real-time datasets.

The rest of this work is organized as follows. Section 4.1 introduces the basic notations,

privacy attacks, privacy requirements and a utility metric definition. In section 4.2, we

propose a privacy preservation anonymization method for providing users privacy from

four linkage attacks. The results that experimented with synthetic and real-time datasets

are presented in section 4.3. Finally, the summary of this work is presenting in section 4.4.

4.1 System Framework

4.1.1 Adversary model

The adversary model for breaching user’s privacy is characterized by two important speci-

fication 1) Adversary’s prior (or background) knowledge, 2) Adversary’s goal. We assume

that adversary can gain prior knowledge about the target victim from various sources and

his goal is to breach the sensitive information of target victim by linking his prior knowl-

edge to the published trajectory dataset. Let A be the adversary, that could be a data

analyst or data collector itself and their aim is to find the record or sensitive value of the

target victim in T . For instance, Bob is a user and his details are stored in the given Ta-

ble 4.1. Based on the A′s prior knowledge about the Bob’s record, A could perform the

four types of linkage attacks such as identity, attribute, similarity and correlated-records

linkage attack, to breach victim’s record or his sensitive value.
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Identity linkage attack: Let an adversary A knows Bob’s visited locations d and m at

timestamps 2 and 4 respectively, then A can claim that a record T1 is belongs to Bob. This

is because, T1 is the only one record containing sub-trajectory {d2,m4} and subsequently

A finds Bob’s sensitive value is Dengue with 100% confidence.

Attribute linkage attack: Let A knows Bob’s visited locations with labeled a and k at

timestamps 1 and 6 respectively, then A can identify three records that contains a sub-

trajectory {a1, k6} such as T1, T4 and T7. The adversary A could predict that bob has

Dengue disease with 67% confidence because of two out of the three records having the

same sensitive value.

Similarity attack: Let A′s knowledge about the Bob’s record is {n7,m9}, then A can find

two records T7 and T8 and the corresponding sensitive values are Cholera and Typhoid

respectively. The adversary A could predict that bob has Bacterial infection with 100%

confidence, because the sensitive values of T7 and T8 are the different types of bacterial

infection.

Correlated-records linkage attack: Assume a user (Bob) having multiple records in a given

dataset. Let A knows the number of data-records that bob has in the dataset and also

knowledge about bob’s visited location {a1,m8}. Then the adversary A could predict that

bob has Dengue plus virus infection with 100% confidence. Because the number of

data-records identified by A is matched with A′s prior correlated knowledge.

To prevent the above the linkage attacks, it is required to provide privacy to each user

who participated in the published trajectory datasets. To achieve privacy against from the

adversary, it is necessitate to adopt few privacy requirements in our proposed method.
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4.1.2 Privacy Requirement

We used a taxonomy tree of sensitive attribute [83] in our propose method for calculating

the level of sensitive values. In general, the taxonomy tree is defined as a set of tuple

η = (ν, ℓ), where ν is a set of nodes and ℓ is a set of node’s level. The taxonomy tree of

a sensitive attribute is a hierarchy of various nodes (or sensitive-values) and it establish a

relationships among the various nodes of different levels. Each node in the taxonomy tree

has its own level, called privacy level and the level number starts from root node to leaf

nodes. Let a function ℓ(νi) is defined to return a level of sensitive value of user i. A node

νj is a parent of a node νi iff ℓ(νi) > ℓ(νj) and νj ∈ h̄(νi), where h̄(νi) is a family of

ancestors of node νi and h̄k(νi) is a kth ancestor of node νi. For example, h̄1(H1N1) =

virus infection as shown in the Figure 4.1.

Figure 4.1: A Taxonomy Tree of Human diseases

Next, we introduced a threshold called privacy-height in our method and is denoted

as Γ. It is used to fix the upper-bound to the privacy-risk. In other words, the proposed

method offers a privacy guarantee to the users in which the level of sensitive-values is

greater than the privacy-height threshold. For instance, the record T4 violates privacy-

height threshold when Γ is set to 2, because the level of sensitive value of T4 (Dengue)

is 3. Also, we adopt traditional thresholds[6] such as the trajectory of a user is appearing
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at least K times and limit the adversary’s prior knowledge (represented as ∂), i.e., an

adversary knows the maximum ρ number of moving points of any targeted user.

4.1.2.1 Virtualization

A method virtualization is used to virtualize(or pseudonym) the sensitive-value of users.

If a sensitive-value of any data-record violates given privacy-height threshold Γ (called

critical data-record ), then the virtualization method finds an appropriate virtual-sensitive

value from the taxomy tree which satisfies given privacy-height threshold and replace it

with original sensitive value. A sensitive value sv ∈ S is said to be a virtual-sensitive

value for a critical data record Ti(s) iff ℓ(sv) ≤ Γ and sv ∈ h̄(s). For instance, assume

Γ = 2, the record T4 violates Γ threshold (see Table 4.1). Then the virtualization method

determines a virtual-sensitive value for T4 i.e., V irus infection and it is replaced with

original sensitive value of record T4 as shown in the Table 4.2. The modified trajectory

dataset (Table 4.2) is named as virtual-trajectory dataset and is denoted as T v.

Table 4.2: Virtual-Trajectory dataset

Id Trajectory Virtual sensitive attribute

1 a1→ d2→ p3→ m4→ k6→ m8 Virus infection

2 d2→ n5→ k6→ n7 High blood sugar

1 a1→ p3→ n7→ m8 Virus infection

3 p3→ m4→ k6→ m8 High blood sugar

4 a1→ d2→ n5→ k6→ m9 Virus infection

5 n5→ k6→ m9 Lung infection

6 k6→ n7→ m8 High blood sugar

7 a1→ d2→ k6→ n7→ m9 Bacterial infection

8 d2→ n5→ n7→ m9 Bacterial infection
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4.1.2.2 Suppression

Suppression is a method to suppress (or eliminate) violate moving-points from the user’s

trajectory. A set of moving-points are said to be violate (or critical sub-trajectory) iff

|Tj(τi)|Tj∈(T )s
′≤ K−1 for all s′ = S−s, where |Tj(τi)| be the total number of data records

that contains a sub-trajectory τi. The suppression method can apply in two settings. 1) It

eliminates a moving-point only from the corresponding trajectory of the dataset is called

local-suppression. 2) It eliminates a moving-point from all trajectories of the dataset is

called global suppression. In our anonymization method, we adopt a local-suppression

setting to achieve high data utility in the published trajectory dataset. For instance, assume

a threshold K = 2, a sub-trajectory {a1,m4} of record T1 not satisfy K value. Because

{a1,m4} is not appeared in any trajectories of T v with respect to sensitive value of record

T1 as shown in Table 4.2. To suppress a moving-point of critical sub-trajectory is depends

on the suppression metric, which is discussed in the next following sub-section.

4.1.3 Utility Metrics

It is important to balance the trade-off between the users’ privacy and utility of anonymized

trajectory dataset T ′. We define a suppression metric to measure the suppression score of

each moving-point in the critical sub-trajectory. It helps to decide which moving-point has

to eliminate from the critical sub-trajectory, so that the anonymized trajectory datset gains

more utility. The suppression score is defined as follows.

Let (T )s be set of data records having same sensitive value s ∈ S and Ti ∈ (T )s be a data

record of user i. Assume that τi ∈ Ti is a critical sub-trajectory of user i. The suppression

score of a moving point xn ∈ τi with respect to (T )s, is denoted by Υ(xn, (T )s) and
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calculated as follows.

Υ(xn, (T )s) =
|(T (xn))s|

|(T )s|
(4.1)

Where (T (xn))s is a set of trajectories of sensitive value s contains a moving point xn.

The suppression metric of critical sub-trajectory τi with respect to (T )s, is denoted by

Υ(τi, (T )
s) and calculated as follows.

Υ(τi, (T )
s) = max

xn∈τi
Υ(xn, (T )s) (4.2)

Moreover, the local-suppression method always eliminates a moving-point whose suppres-

sion score lesser in the critical sub-trajectory. Once the method is to suppress a moving-

point of all critical sub-trajectories of the dataset T v, then replace all original sensitive

values in place of virtual sensitive values of the corresponding data-records in T v, as

shown in the Table 4.3. To the best of our knowledge, none of the previous anonymiza-

tion approaches use virtualization method in order to preserve the privacy of users in the

trajectory data publishing scenario. And also notice that there is no sensitive-attribute in-

formation loss in our proposed method. Hence, the proposed method provides better data

utility and also ensures a better privacy guarantee against four linkage attacks.

4.2 Proposed Method

In this section, we present an anonymization method that prevents users sensitive infor-

mation from the four linkage attacks. The proposed method consists of two phases, 1) the

sensitive attribute virtualization - works as a replacement mechanism for sensitive attribute

by using privacy height threshold, 2) the trajectory suppression - works as anonymization
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Table 4.3: Anonymized Trajectory dataset T ′

Id Trajectory Sensitive attribute

1 p3→ m4→ k6→ m8 Dengue

2 d2→ n5→ k6→ n7 High blood sugar

1 n7→ m8 Virus infection

3 p3→ m4→ k6→ m8 High blood sugar

4 d2→ n5→ k6→ m9 Dengue

5 n5→ k6→ m9 Lung infection

6 k6→ n7→ m8 High blood sugar

7 d2→ k6→ m9 Cholera

8 d2→ n5→ m9 Typhoid

mechanism for users’ trajectories by using K-anonymity threshold. The detailed proce-

dure for above two phases is follows.

1) Sensitive-attribute virtualization: The sensitive-attribute virtualization method aims

to identify all critical data records from the given trajectory dataset and replace their sen-

sitive value with virtual-sensitive value by using a taxonomy tree of the corresponding

sensitive-attribute domain. The algorithm 4.1 shows the pseudo-code of Sensitive-attribute

Virtualization SaV () method and is follows.

The algorithm SaV() takes a raw trajectory dataset, privacy-height threshold and a taxon-

omy tree as inputs and yields a virtual trajectory dataset as an output. The SaV () starts

with finding records that belong to the same user by comparing each record with succes-

sive records of T . If records are found, then verify whether both the records are satisfied

privacy-height threshold. If it satisfies, then check whether the sensitive values of both

records are equal. If equal, then it is not necessary to replace the virtual-sensitive value.

Otherwise, SaV () selects a record with the maximum level’s sensitive value among the

two records. Set maximum level’s sensitive value as a virtual-sensitive value and replaced

with other record’s sensitive value (Line 3 − 10). Further, there is a possibility that one

44



CHAPTER 4. QUANTIFY THE IMPACT OF PRIOR KNOWLEDGE ON PRIVACY LEAKAGE IN TRAJECTORY DATA PUBLISHING Section 4.2

Algorithm 4.1 Pseudocode of SaV()

INPUT: Trajectory dataset T , Taxonomy of sensitive-attribute, Privacy-Height Γ.

OUTPUT: Virtual-Trajectory dataset T v.

1: Scan Trajectory Dataset T
2: for each Ti compare with successive Ti+1 do

3: if (Ti, Ti+1) are belongs to an individual then

4: if (ℓ(Ti(s)) ≤ Γ ∧ ℓ(Ti+1(s)) ≤ Γ) then

5: if (Ti(s) ≡ Ti+1(s)) then

6: set: the sensitive values as virtual values

7: else

8: vs ← max(ℓ(Ti(s)), ℓ(Ti+1(s))),
9: set: Ti(s), Ti+1(s)← vs

10: end if

11: else if one of Ti, Ti+1 hold Γ threshold then

12: set: vs ← Ti(s) , assume that ℓ(Ti(s)) ≤ Γ,
13: set: Ti+1(s)← vs

14: else

15: call EVsV(Ti(s)),
16: set Ti(s), Ti+1(s)← vs

17: end if

18: else

19: if (ℓ(Ti(s)) ≤ Γ ∧ ℓ(Ti+1(s)) ≤ Γ) then

20: set: the sensitive values as virtual values

21: else if one of Ti, Ti+1 hold Γ threshold then

22: call EVsV(Ti(s)) , assume ℓ(Ti+1(s)) ≤ Γ,
23: set: Ti(s)← vs

24: else

25: call EVsV() for both Ti, Ti+1

26: set: Ti(s)← vs

27: set: Ti+1(s)← vs

28: end if

29: end if

30: end for

45



CHAPTER 4. QUANTIFY THE IMPACT OF PRIOR KNOWLEDGE ON PRIVACY LEAKAGE IN TRAJECTORY DATA PUBLISHING Section 4.2

of the records does not satisfy privacy threshold Γ, then the SaV () set a sensitive value of

other records as a virtual-sensitive value and it’s replaced with the sensitive value of vio-

lated record (Line 11−13). In the worst case, none of the records satisfy privacy threshold

Γ, then the SaV () call EV sV () algorithm to find virtual-sensitive value for both records

and is replaced with a corresponding sensitive value of violated records(line 14 − 16). In

case both records belong to the different users, then repeat a similar procedure as explained

before (line19 − 20). But in case one of the records does not satisfy the privacy-height

threshold, then the SaV () call EV sV () algorithm to find the virtual-sensitive value for vi-

olated record and it’s replaced with the sensitive value of violated data-record. In the worst

case, none of the data-records are satisfied Γ threshold, then the SaV () call EV sV () al-

gorithm to find a virtual-sensitive value and it’s replaced with the sensitive value of both

records (line21− 28).

Algorithm 4.2 Pseudocode of EVsV()

INPUT: Sensitive value of record Ti(s), Taxonomy of sensitive attribute, Privacy-Height Γ.
OUTPUT: Virtual-sensitive value vs.

1: Initialize vs ← ∅, j ← 1
2: do

3: set vs ← h̄j(Ti(s))
4: if (ℓ(vs) ≡ Γ) then

5: t← false

6: else

7: J ++
8: Ti(s)← vs

9: t← true

10: end if

11: while (t)
12: Return vs

The algorithm 4.2 EV sV () takes a sensitive value of the violated record, taxonomy

tree of the sensitive-attribute domain and a privacy-height threshold are as input and it

gives a virtual sensitive-value as an output. The algorithm EV sV () starts with identifying
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a parent of given sensitive value by using a taxonomy tree (line 3) and verify whether

the identified parent (or sensitive) value satisfies a privacy-height threshold (line 4). If

yes, then return a parent value as a virtual-sensitive value. Otherwise, followed the same

procedure for updated value or parent value.

Now, the given trajectory dataset is transformed into the virtual-trajectory dataset T v by

using SaV () and EV sV () algorithms. Further, several critical moving points are present

in the trajectories of the database T v, which leads to breach sensitive information of users.

To overcome this problem, the suppression method is applied to the dataset T v in order to

protect sensitive information of users.

2) Trajectory suppression The trajectory suppression method is used to remove all

critical moving points from the trajectories of the dataset T v and produced anonymized

trajectory dataset. The algorithm 4.3 shows the pseudo-code of the trajectory suppression

method ATdb() and as follows.

The algorithm ATdb() takes a virtual-trajectory dataset, adversary’s prior knowledge ∂ and

K threshold are as inputs and returns an anonymized trajectory dataset T ′ as an output. It

starts with grouping a set of all distinct sensitive values, named as set S (line 1). For each

sensitive value s from S do the following. Split the dataset T v into two different datasets,

say a set A consists of data-records with sensitive value s and the remaining data-records

into the set B (line 5−6). Then, finds all sub-trajectory of length 1 from the records of the

set A and examine whether every sub-trajectory of set A is appearing at least K − 1 times

in the data-records of set B. If yes, keep the sub-trajectory as it is in the set A. Otherwise,

eliminate a moving-point of the sub-trajectory from the corresponding data-record of the

set A (line 7 − 15). Next, it finds all sub-trajectory of length 2 by using union operation.

And examine whether any sub-trajectory of length 2 is not satisfied K privacy threshold.

If found, then eliminate a moving-point (computed by suppression score metric) from the
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Algorithm 4.3 Pseudocode of ATdb()

INPUT: Virtual-Trajectory dataset T v, A′s prior knowledge ∂ with maximum length ρ, K thresh-

old

OUTPUT: Anonymized Trajectory dataset T ′.

1: Scan Trajectory dataset T v

2: let S = {set of all distinct sensitive values}
3: for each s ∈ S do

4: i = 1,Cr = ∅,Di = ∅
5: A = {Tr | Tr ∈ T

v ∧ Tr(s) = s}
6: B = T v − {A}
7: for each Tr ∈ A do

8: Cr = {τr | τr ⊆ Tr∧ | τr |= 1}
9: for each τr ∈ Cr do

10: if (| τr ∈ Tr |∀Tr∈B≥ K) then

11: Di = Di ∪ τr
12: else

13: remove τr from Tr ∈ A
14: end if

15: end for

16: end for

17: while (i+ 1 ≤ ρ) do

18: for each τr ∈ Di join with successive τr+i in Di do

19: if (| τr ∪ τr+i ∈ Tr |∀Tr∈B≥ k) then

20: Di+1 = Di+1 ∪ {τr ∪ τr+i}
21: else

22: x = τr ∪ τr+i

23: remove Υ(x) from Tr ∈ A
24: end if

25: end for

26: i = i+ 1
27: end while

28: end for

29: Replace all original sensitive values
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sub-trajectory, and the remaining moving points of the sub-trajectory are kept as it is in

the corresponding data-record (line 18− 25). Repeat the steps until the length of the sub-

trajectory is equal to the adversary’s prior knowledge length ∂. Repeat the same procedure

for all S values. Then, the original sensitive values of all records are copied into the

corresponding virtual sensitive value of records in T ′, as shown in Table 4.3. Hence, there

is no sensitive-attribute information loss in our proposed method.

4.2.1 Correctness Proof of Algorithms

In this section, we validate our proposed algorithms resist all four linkage attacks, namely

identity, attribute, Similarity and correlated-records linkage attacks. The proposed anonymiza-

tion method produces an anonymized trajectory dataset T ′ (Table 4.3) and it ensures that

protect users’ privacy against four linkage attacks. To the best of our knowledge, none

of the previous anonymization approaches use the virtualization method to preserve the

privacy of users in the trajectory data publishing. Now we show that the anonymized

trajectory dataset T ′ is resistant to all four linkage attacks.

Consider Table 4.3 is a anonymized trajectory dataset and it satisfies the privacy re-

quirements such as Γ = 2, K = 2 and ρ = 2. Let an adversary A with prior knowledge

∂ = 2, for example {d2,m4}, {a1, k6}, {n7,m9} and {a1,m8}. Then, A can perform all

four linkage attacks on Table 4.1 that discussed in subsection 2.2. While Table 4.3 is resis-

tant to all four linkage attacks against A′s prior knowledge ∂ = 2. For example, A′s prior

knowledge about Bob is {d2,m4}, the adversary is not able to identify any data record

which matches the prior knowledge {d2,m4} in Table 4.3 and there are four data-record

which matches the prior knowledge {d2}, but the inference of Bob’s sensitive value is

lesser than or equal to minimum confidence 50%. Further, adversary cannot perform these

four linkage attacks with other prior knowledge of length ∂ = 2. For example, given prior
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knowledge is {k6,m9}, the adversary can infer Bob’s sensitive value is Dengu with 33%

confidence, that is lesser than or equal to minimum confidence 50%. Hence, Table 4.3 is

resistant to all four linkage attacks against A′s prior knowledge ∂ = 2.

4.3 Experimental Results

We conduct an experiment for evaluating the performance of our proposed algorithm in

terms of information-loss in anonymized trajectory dataset T ′. Generally, the information-

loss occurs in any anonymized trajectory dataset due to either eliminate a set of moving

points from the users’ trajectory or distortion (or generalization) of the sensitive value of

users or both. In our method, the sensitive value of all users in anonymized trajectory

dataset (T ′) is not distorted because the original sensitive values of all records are copied

into the corresponding virtual sensitive value of records in T ′ (see Table 4.3). Thus,

the information loss in our method only from the users’ trajectory, not from the sensi-

tive attribute. We considered four trajectory datasets for conducting experiments such as

Geolife[84], T-Drive[85], Metro100K[31] and private Wi-Fi datasets. A Geolife dataset

is a real-time GPS trajectory dataset that collects from 182 users in a span of three years.

The average frequency of data (location value) collection from the users is every 1 to 60

second. The T−Drive dataset contains the routes of 10357 taxis in a span of one year and

the average frequency of data (location value) collection from the users is every 3 minutes.

A private Wi-Fi dataset is a real-time dataset that involves around 12500 users trajectories

obtained from the 175 Wi-Fi points in 24 hours and the frequency of data collection from

the users in every 1 to 5 minute. Finally, a Metro100K dataset is a synthetic dataset that

contains 100000 users trajectories in a metropolitan area with 26 cities in 24 hours. In all

datasets, each trajectory corresponds to the routes of one person and a randomly assigned

sensitive value with one of six possible values to each trajectory data record.
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4.3.1 Metrics of Evaluation

We used various measures (or metrics) to evaluate the strength of our proposed method in

terms of privacy leakage and information loss.

• Privacy Breach (or leakage):

The privacy breach (denoted as σ) of a data-record Ti with respect to s ∈ S is

denoted as β(Ti)
s and is computed as follows.

β(Ti)
s = (Pb(Ti(s) | Ti(τ)) > σ) (4.3)

Where τ is a sub-trajectory of length at most ρ number of moving-points.

• Trajectory Information Loss:

Given an anonymized trajectory dataset T ′ and its original trajectory dataset T . Let

Φ : T ′ −→ T be a function that maps a data record of T ′ to its corresponding data

record of T . Then, the trajectory information loss of the data record T ′
i is.

IL(T ′
i ) =

| Φ(T ′
i ) | − | T

′
i |

| Φ(T ′
i ) |

(4.4)

Where |Φ(T ′
i )| be the total number of moving points in Ti of the dataset T and the

|T ′
i | be the total number of moving points in the corresponding data record T ′

i of the

dataset T ′. Then, the total trajectory information loss of the dataset T ′ is computed

as IL(T ′) = Σ
|T ′|
i=1IL(T

′
i ).

• Query Answering mechanism

Let µ be the mechanism that reads a query q and trajectory datasets as inputs and it

returns the error rate of anonymized trajectory dataset. The mechanism µ is com-
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puted as

µ =
| µT

q | − | µ
T ′

q |

| µT
q |

(4.5)

Where |µT
q | and |µT ′

q | are the total number of data-records satisfies the query q in T

and T ′ datasets respectively.

Initially, we start by analyzing the number of user’s privacy that can breach when

publishing a raw trajectory dataset into the public sector. To analyze, we adopt a privacy

breach threshold and it helps to fix the upper-bound to the privacy-risk. In other words, if

the probability of privacy-breach on the user’s sensitive value is greater than σ value, then

the user’s privacy is at risk from various linkage attacks. The adversary’s prior knowledge

∂ and K values increase, then the average users’ privacy breach β(Ti)
s in T also increases

because more number of users’ trajectories not satisfy K threshold. The effect of the

privacy breach threshold (fix σ = 0.5) on users’ privacy risk with various ∂ and K values

as shown in Figure 4.2. The result shows that the length of ∂ and K value increased while

the average users’ privacy breach also increases.

It is essential to calculate the number of user’s trajectory information loss in the published

trajectory dataset T ′. Otherwise, the result of data analysis may give incorrect output. The

trajectory information loss occurs due to the elimination of critical moving points from the

user’s trajectory for satisfying the privacy threshold values. Figure 4.3 shows the average

trajectory information loss in four trajectory datasets with various K threshold values. The

result suggests that, with increasing K values, then the average trajectory information loss

in T ′ is also increasing because the number of critical moving points is increased due to

not satisfying the privacy threshold values.

Further, we applied a query answering mechanism [15] on both the original trajectory
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Figure 4.2: The average privacy risk of users with respect to A’s prior knowledge of various

lengths while fix σ = 0.5. a) Geolife dataset b) T-Drive dataset c) Metro dataset d) Private

Wi-Fi dataset..
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Figure 4.3: The average trajectory information loss in T ′ with various K threshold values

a) Geolife dataset b) T-Drive dataset c) Metro dataset d) Private Wi-Fi dataset.

dataset and anonymized trajectory dataset to calculate the query-answer error rate (or to

test the utility of published trajectory dataset). Let q be the count query (ex: count the

number of data-records in T which contain a sub-trajectory τ ’). For experiment, we ran-

domly choose 500 sub-trajectories of different sizes from the four trajectory datasets and

calculate the average error-rate of count query. Figure 4.4 shows the result of the average

query-answer error rate while fixing various A′s prior knowledge ∂. The result shows that

the average query-answer error rate increases while increasing A′s prior knowledge due
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to more number of moving points are eliminated from the critical sub-trajectory as ∂ in-

creases. The effectiveness of privacy thresholds on the utility of the anonymized trajectory

dataset is as follows.
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Figure 4.4: The average query-answer error rate with various A’s prior knowledge a) Ge-

olife dataset b) T-Drive dataset c) Metro dataset d) Private Wi-Fi dataset.
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Figure 4.5: Effect of Privacy-Height Γ threshold on users trajectory-information loss for

different K-anonymity values a) Geolife dataset b) T-Drive dataset c) Metro dataset d)

Private Wi-Fi dataset.

Effect of Γ threshold: Figure 4.5 shows the effect of the privacy-height threshold on users

trajectory in T ′ of various K values, while fixing ρ = 2. The result shows that the average

trajectory information loss is diminished when the value of the privacy-height is increased.
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Because a small number of moving points are eliminated from the dataset T due to a small

number of sensitive values are generalized. Notice that the root node cannot be the value of

the privacy-height threshold. Because of the sensitive value of all users become a unique

sensitive value, that leads to an increase in more sensitive-attribute information loss.

Effect of K threshold: The effect of K privacy threshold on anonymized trajectory dataset

T ′ is shown in Table 4.3. The result shows that if a privacy threshold K value is increased,

then the average users’ trajectory information-loss is also increased. Therefore, the data

publisher has to choose an appropriate K threshold value in which it maintains moderate

utility of the dataset T ′ as well as users’ privacy.

Further, we demonstrate the effectiveness of anonymized trajectory datasets in terms

of user’s points of interest (PoIs). To determine the users PoIs for the particular area,

we need to consider the locations which are frequently visited by users and the span of

time interval they stayed in those locations. For experiment, we consider a set of time

intervals (eg. ≤ 5, ≤ 10, ≥ 5& ≤ 30 and ≥ 10& ≤ 60 minutes) and accordingly we

find time specific visited PoIs in original dataset and the anonymized datasets published

from the proposed method and other states of the art methods for analyzing average PoIs

information loss or number of PoIs distorted. Figure 4.6 shows the average frequency of

PoIs visited between the original dataset and the anonymized datasets published from the

proposed method and other states of the art methods. The result shows that the proposed

anonymized dataset has slightly high frequency of PoIs visited when compared with the

other states of the art methods.

4.3.2 Comparison

The KCL-local[6], KCL- Global[5][31] and KCL-PPTD[15] are the recent anonymiza-

tion approaches which provides users privacy against either single or combination of three
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Figure 4.6: The average frequency of PoIs visited between the original dataset and the

anonymized datasets published from the proposed method, KCL-PPTD, KCL-local and

KCL-Global. a) Geolife dataset b) T-Drive dataset c) Metro dataset d) Private Wi-Fi

dataset.

linkage attacks such as identity, attribute and similarity. We compare our proposed privacy

approach with the states of the art methods to validate the efficiency of our method and we

use exactly similar dataset (Metro100K), which is used in the above approaches for fair

comparison. The experimental results exhibit that the proposed approach results in better

performance with a significant reduction in information loss (includes both trajectory and

sensitive values), as shown in Figure 4.7. The information loss in the proposed method

is closely related to the KCL-PPTD method, because in KCL-PPTD, less trajectory in-

formation loss in user’s trajectories and more sensitive information loss in the sensitive

attribute. While in our method, no sensitive attribute loss and a little bit more trajectory

information loss in user’s trajectories. Therefore, the information loss of these two meth-

ods is comparatively similar. In contrast to KCL-PPTD, the proposed method prevents

one extra linkage attack (correlated-records linkage attack) as well. Thus, the proposed

method is a comparatively better approach than the existing approaches.
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Figure 4.7: The average trajectory information loss in T ′ with various K threshold values

a) Geolife dataset b) T-Drive dataset c) Metro dataset d) Private Wi-Fi dataset.

4.3.3 Complexity Analysis

The propose anonymization method consists of two phases. In the first phase, the sensitive

value of critical data-records is replaced with virtual sensitive-value to generate virtual-

trajectory dataset by using two algorithms SaV () and EV sV (). The worst-case time

complexity of SaV () is O(|T |2) and the worst-case time complexity of EV sV () is O(h),

where h is a height of the taxonomy tree. Since h is small, it becomes O(1). Therefore,

the worst-case time complexity of the first phase is O(|T |2). In the second phase, the

moving-points of critical data-records are suppressed by using an algorithm ATdb(). The

worst-case time complexity of ATdb() is O(Snρ|T |l|T |k), where the S be the set of all

distinct sensitive values, nρ be the set of discrete sub-trajectory of length ρ, |T |l is the total

number of data-records of set A, |A|= l and |T |k is the total number of data-records of set

B, |B|= k (refer Algorithm 4.3) i.e., |T |l+|T |k= |T |. Hence, the worst-case time com-

plexity of the proposed approach is O(Snρ|T |2). Figure 4.8 shows the result of running

time performance between the proposed method and previous existing methods. We can

observe that as Kvalues increases, the running time also increases because more number
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of trajectories satisfies different K-anonymity values.
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Figure 4.8: The run-time performance between the proposed privacy approach with KCL-

PPTD, KCL-local and KCL-Global a) Geolife dataset b) T-Drive dataset c) Metro dataset

d) Private Wi-Fi dataset.

4.4 Summary

In this work, we present a privacy preservation approach to prevent users’ privacy from

four different types of linkage attacks. Our method adopts an existing LK privacy model

to fix the upper-bound to the adversary’s background knowledge and lower-bound to the

number of unique trajectories in the dataset. And we introduced a new privacy threshold

called privacy-height, to represent the degree of privacy offered to the users. Further,

the proposed approach is tested with four different trajectory datasets, namely Geolife,

T-Drive, Metro100K and private Wi-Fi dataset. The result shows that the anonymized

dataset is freed from all four linkage attacks as well as better performance with a significant

reduction in the information loss when compared to other states of the art methods.
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Chapter 5

Quantify the Impact of Data

Correlation on Privacy Budget

Allocation in ǫ-Differential Privacy

ǫ-Differential Privacy (ǫ-DP) [86] is a popular privacy mechanism. It is proved that DP

provides strong privacy guarantees to users against an adversary with unbounded knowl-

edge. It ensures that any user’s privacy leakage is to be strictly bounded by at most a ǫ

value, where ǫ is a user parameter. If the value of ǫ is small, it achieves a strong privacy

guarantee and vice versa. The ǫ-DP releases a noisy output instead of true output for hid-

ing user’s sensitive information. This noisy output is computed by adding a random noise

(derived from the Laplace distribution with scale λ) to the true output.

Recently, the ǫ-DP privacy notion has been applied in settings of continuous data pub-

lishing [16, 17, 18]. For example, the traffic surveillance system periodically publishes a

count of people (or users) at each location per timestamps in privately. In the literature,

there exist a few privacy approaches such as event-level privacy[19], user-level privacy[20]
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and w-event privacy[17] for continuous private data publishing. Event-level privacy pro-

vides a ǫ-DP guarantee to each event’s (or each timestamp’s) count. In other words, it

protects only a single data-point of the user’s entire stream. However, by combining all

event’s count, the adversary can reconstruct the user’s stream, which leads to an effect on

users’ privacy [17]. In contrast, user-level privacy guarantees a ǫ-DP to finite event’s (or

timestamp’s) count. In other words, it protects only a finite length of users’ stream. Due to

this, the user-level privacy has limited applicability in most of the real-world applications.

The w-event privacy mechanism has been proposed to address the limited use of event-

level privacy and user-level privacy. This mechanism offers a strong privacy guarantee to

any user stream within a window of w timestamps. A w-event privacy presents a sliding

window methodology that involves a broad range of w-event private mechanisms. Each

mechanism constructs a separate sub-mechanism per timestamp, and each sub-mechanism

uses a certain privacy budget to control the noise (higher privacy budget, lower perturba-

tion, or less noise added). The w-event privacy achieves ǫ-DP when the sum of all privacy

budgets used in any window of w timestamps is at most total privacy budget ǫ.

However, the w-event privacy mechanism provides less privacy guarantee than traditional

ǫ-DP, especially when the user’s data-points are not independent (i.e., temporally corre-

lated) between consecutive timestamps. It happens due to the allotted privacy budget at

timestamps within a window of size w is not adequate, especially where the data-points

of users’ stream involve temporal correlation. Therefore, the privacy budget distribution

strategies in w-event privacy such as Budget Distribution (BD) and Budget Absorption

(BA) are not suitable in the presence of correlated datasets within a window. The follow-

ing example illustrates how privacy guarantee is degrading when users’ data-points have a

temporal correlation.

Assume that a trusted curator collects users’ location data-points in continuous times-
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Figure 5.1: Illustration of example 1 (a) Collection of users location data-points in continu-

ous timestamps (b) Statistics for event-level or user-level privacy (c) Statistics for w-event

privacy while set w = 3

tamps, as shown in Figure 5.1(a). The curator aims to publish a statistic (i.e., how many

users are in each location) at each timestamp without breach of any user privacy. Ac-

cording to the Laplace mechanism, the curator publishes private statistics at every times-

tamp using an independent random noise derived from the Laplace distribution with scale

Lap(1/ǫ), where ǫ is a privacy budget. However, if the nature of two location data-points

of users’ stream at consecutive timestamps is temporally correlated, then the independent

random noise with a scale Lap(1/ǫ) achieves 2ǫ-DP instead of ǫ-DP. It happens due to

the modification or removal of one data point affects two counts in the published statistics

(i.e., the global sensitivity (∆) is 2), as shown in the Figure 5.1(b). Consequently, the

presented two privacy budget distribution approaches in w-event privacy achieve wǫ-DP

instead of ǫ-DP, especially when the nature of all location data-points of users’ stream at

consecutive timestamps are temporally correlated. Hence, the w-event privacy mechanism

is not suitable for the publication of temporally correlated user streams, as shown in Figure

5.1(c).

Figure 5.2 shows that the distribution of total privacy budget ǫ to each timestamp within
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a sliding window of size 3. In the first window of size 3, the traditional ǫ-DP privacy

mechanism allots a privacy budget (ǫ/3) uniformly to each timestamp. Then, compute

noise lap(1/(ǫ/3)) to perturb each timestamp counts by using the allotted privacy budget.

Hence, the required ratio of the privacy budget at each timestamp is ǫ/3 to achieve ǫ-DP

in the first sliding window. In the second sliding window, the required ratio of privacy

budget at timestamps 2, 3 and 4 is ǫ/3, ǫ/3 and 2ǫ/3 respectively due to the presence of

temporal correlation between the timestamps 3 and 4 as shown in the Figure 5.1(c). The

sum of the privacy budgets in the second window is exceeded than the total privacy budget

ǫ (i.e., ǫ/3 + ǫ/3 + 2ǫ/3 > ǫ). Thus, the second sliding window violates ǫ-DP privacy

mechanism. Similarly, the third sliding window also violates ǫ-DP due to the presence

of temporal correlation between the timestamps 4 and 5 (i.e., the required ratio of pri-

vacy budget at timestamp 5 is 2ǫ/3). Therefore, it is necessary to design a privacy budget

distribution method for allocating a sufficient privacy budget to all timestamps within the

sliding window of size w.

Figure 5.2: Distribution of privacy budget over timestamps(or event) within the sliding

window of size w = 3.

Further, there is a limited state of art methods for distributing a privacy budget in continu-

ous data publishing settings. There exist a few baseline approaches for allocating privacy
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budgets in order to publish continuous location statistics privately. A Uniform method is

to uniformly allocate a privacy budget to N timestamp’s dataset. This approach achieves

ǫ-DP since it combines all privacy budgets of N timestamp’s datasets [75]. In our problem

settings, the datasets at consecutive timestamps require more privacy budget than the base-

line approach due to the presence of temporal-correlation. The fixed sampling [87, 20] is

another approach for allocating a privacy budget at a given sampling interval I among N

timestamps. Hence, the privacy budget at each interval I is (ǫ ∗ I)/N . It is also preserved

ǫ-DP by combining the privacy budgets of all samples. This approach is not useful because

pre-defined sampling intervals are not determined accurately if location data points arrive

dynamically, and occur high perturbation errors if sampling intervals are too frequent.

In summary, the privacy budget distribution into the series of temporally correlated

data-points in users stream remains unclear in the w-event privacy method. The contribu-

tions of this work are as follows.

1. We present a reformulated differential privacy definition for continuous data publi-

cation and prove that it can achieve ǫ-DP. Then we quantify the impact of temporal

correlation on privacy leakage in reformulated ǫ-DP and analyze the privacy leakage

in ǫ-DP with a numerical example.

2. We introduce a Privacy Budget Allocation method for allocating an adequate amount

of privacy budget to each successive timestamps under the protection of ǫ-Differential

privacy.

3. Finally, we evaluate the data utility of our method by computing the average error

per timestamps through conducting a series of experiments on real and synthetic

datasets.

The rest of this work is as follows. Section 5.1 introduces the necessary notations and
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definitions of differential privacy under continual observation. In section 5.2, we analyze

the impact of temporal correlation on privacy leakage with a numerical example. Section

5.3 proposes a Privacy Budget Allocation method (PBA) and presents a theoretical analysis

of privacy leakage and utility leakage of this method. A numerical experiment conducted

on various datasets to evaluate the data utility of our method is presented in section 5.4.

Finally, the summary of this work is presented in section 5.5.

5.1 System Framework

5.1.1 Differential Privacy under continual observation

Let M be a privacy mechanism which takes stream prefixes St as input and produced a

series of outputs ω = (ω1, ω2, ..., ωt) ∈ Ω at each timestamp. The privacy mechanismM

is said to be ǫ-Differentially private iff the following logarithmic function is to be bounded

by maximum ǫ value for any adjacent stream prefixes S, Adj(St, S
′

t) and any possible

output Ω of Range(M).

Pr(M(St) = (ω1, ω2, ..., ωt))

Pr(M(S
′

t) = (ω1, ω2, ..., ωt))
≤ ǫ

Where the parameter ǫ quantifies the degree of a user privacy leakage. Suppose,M is de-

composed into (M1,M2, ...,Mt) sub-mechanisms. Each sub-mechanism Mi(Di) pro-

duce an output ωi with independent randomness. Hence, it holds
Pr(Mi(Di)=ωi)

Pr(Mi(D
′

i)=ωi)
≤ eǫi and
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guarantees ǫi-DP. Therefore we derive

Pr(M(St) = (ω1, ω2, ..., ωt))

Pr(M(S
′

t) = (ω1, ω2, ..., ωt))
=

t∏

i=1

Pr(Mi(Di) = ωi)

Pr(Mi(D
′

i) = ωi)

≤
t∏

i=1

eǫi ≤ exp(
t∑

i=1

ǫi) ≤ eǫ

Let A = {Ai : i ∈ [1, k]} be the set of adversaries with arbitrary knowledge and

are interested in the user’s private data. Consider an adversary Ai whose target is ith

user private data and has knowledge of all other users’ private data except ith user, i.e.,

Ai knows St = St\{i}. The privacy leakage of privacy mechanism M (or ith user) at

timestamp t against Ai is as follows, in which lti and lt
′

i are two possible data points of ith

user at timestamps t.

LAi
(Mt) = sup

ω,lti ,l
t′

i

log
Pr(ω|l

t
i, St)

Pr(ω|lt
′

i , S
′

t)

L(Mt) = max
∀Ai,i∈[k]

LAi
(Mt)

The L(Mt) is the maximum privacy leakage at timestamp t caused by any k adversary.

Here, we considered a privacy budget ǫ as a metric of privacy leakage. If lesser ǫ value,

then lesser the privacy leakage.

5.2 Temporal correlation (TC) privacy leakage analysis

5.2.1 Adversary’s knowledge

In the stream data publication, it is fair to consider that an adversary knows the transi-

tion probability between the possible location data-points. In our settings, we adopted a
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Markov chain process (MC) for modeling a transition probability between the location

data-points (according to certain probabilistic rules) and is denoted as θ ∈ Θ, where Θ

is a set of all transition probability distributions. In MC, the transition matrix describes

the probabilities of transition from one data-point to another data-point, and the sum of

transition probabilities in each row is equal to 1. Let consider a transition matrix of size 2

as shown in the Table 5.1(a). If a user i is at loc1 (current location), then the probability of

coming from loc2 (previous location) is 0.4, represented as Pr[l
t−1
i = loc2|l

t
i = loc1] = 0.4.

Table 5.1: Transition probability matrix and sample dataset

(a) Transition Matrix

loc1 loc2
loc1 0.6 0.4

loc2 0.1 0.9

(b) Database D

D1 D2

u1 loc1 loc1
u2 loc1 loc2

5.2.2 TC privacy leakage

Consider an adversary Ai with knowledge of St = St\{i} and transition probability dis-

tributions θ, named as Aθ
i . Let Aθ

i collects all private outputs which were published under

the protection of ǫ-DP mechanismsM at each timestamps t ∈ [1, T ]. Now, the aim of the

adversary is to infer user i′s location data-point at timestamp t.

The TC privacy leakage (T CL) ofMt w.r.t Aθ
i is the maximum ratio of two laplace dis-

tribution for all different values of lti, l
t′

i and for all possible transition probability distribu-

tions.

T CLAθ
i
(Mt) = sup

ω,lti ,l
t′

i ,θ

log
Pr(ω ∈ Ω|lti, St, θ)

Pr(ω ∈ Ω|lt
′

i , S
′

t, θ)
(5.1)
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The TC privacy leakage ofMt w.r.t any Aθ
i where i ∈ [k] is less than or equal to ǫ, then

we callMt is ǫ-TC Differential privacy.

sup
θ,∀Ai,i∈[k]

T CLAθ
i
(Mt) ≤ ǫ (5.2)

Further, to understand the impact of temporal correlation on privacy leakage in continuous

data publish settings, Equation 5.1 is expanded and simplified by Bayes theorem, i.e.,

T CLAθ
i
(Mt) = sup

ω1,...,ωt,lti ,l
t′

i ,θ

log
Pr(ω1, ..., ωt|l

t
i, St, θ)

Pr(ω1, ..., ωt|lt
′

i , S
′

t, θ)

= sup
ω1,...,ωt−1,lti ,l

t
′

i ,θ

log

∑
lt−1
i

Pr(ω1, ..., ωt−1|l
t−1
i , St−1)Pr(l

t−1
i |l

t
i)

∑
lt−1

′

i

Pr(ω1, ..., ωt−1|l
t−1

′

i , S
′

t−1)Pr(l
t−1
i |l

t
i)

+ sup
ωt,lti ,l

t
′

i ,θ

log
Pr(ωt|l

t
i, St)

Pr(ωt|lt
′

i , S
′

t)
(5.3)

There are three annotated terms in Equation 5.3. The first term determines privacy leakage

at previous timestamp t−1; the second term indicates the probability of transition between

the data-points of previous timestamp (t− 1) and current timestamp (t), and the last term

is equal to the privacy leakage at time t. Hence, the privacy leakage at time t depends on

the privacy leakage at time t−1, TC transition probability, and the privacy leakage at time

t. Notice that, if t = 1, then T CLAθ
i
(Mt) = LAi

(M1). Otherwise, if t > 1, then we have

the following equation.

T CLAθ
i
(Mt) = T CLAθ

i
(Mt−1) + LAi

(Mt) (5.4)

The first term of the above equation 5.4 is calculated using the temporal privacy loss

function given in [18]. We illustrate how the TC factor influences privacy leakage w.r.t

adversary with and without knowledge of θ distribution through a numerical example.
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Consider a query to find the user i′s location value li is either locm or locn at timestamp t,

where locm and locn ∈ L. For simplicity, we assume that lti is,

lti =




1 i’s true location at time t,

0 Otherwise.

(5.5)

Example: Let a database D of two users u1 and u2 (as shown in the Table 5.1(b)), Aθ
1

and A1 are the two adversaries with and without knowledge of θ distribution respectively

and are interested in finding the location of u1 at timestamp 2. Assume that both adver-

saries know the location information of u2. According to the definition of TC −DP , we

compute T CLA1
(M) and T CLAθ

1
(M). For A1 without knowledge of θ, we get

T CLA1
(M2) = sup

ω1,ω2

log
Pr(ω1, ω2|l

2
1 = loc1, l

2
2 = loc2)

Pr(ω1, ω2|l2
′

1 = loc2, l22 = loc2)

= sup
ω1

log

∑
l1
1
exp(−|ω1 − (l11, l

1
2 = loc1)|)Pr(l

1
1|l

2
1 = loc1)∑

l1
′

1
exp(−|ω1 − (l1

′

1 , l
1
2 = loc1)|)Pr(l1

′

1 |l
2′
1 = loc2)

+ sup
ω2

log
exp(−|ω2 − (l21 = loc1, l

2
2 = loc2)|)

exp(−|ω2 − (l2
′

1 = loc2, l22 = loc2)|)

= 0 + sup
ω2

log
exp(−|ω2 − 2|)

exp(−|ω2 − 1|)
= 1
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For Aθ
1 with knowledge of θ, we get

T CLAθ
1
(M2) = sup

ω
log

Pr(ω1, ω2|l
2
1 = loc1, l

2
2 = loc2)

Pr(ω1, ω2|l2
′

1 = loc2, l22 = loc2)

= sup
ω1

log

∑
l1
1
exp(−|ω1 − (l11, l

1
2 = loc1)|)Pr(l

1
1|l

2
1 = loc1)∑

l1
′

1
exp(−|ω1 − (l1

′

1 , l
1
2 = loc1)|)Pr(l1

′

1 |l
2′
1 = loc2)

+ sup
ω2

log
exp(−|ω2 − (l21 = loc1, l

2
2 = loc2)|)

exp(−|ω2 − (l2
′

1 = loc2, l22 = loc2)|)

= 0.55 + 1 = 1.55

The above numeric analysis shows that TC has a significant influence on higher privacy

leakage i.e., T CLAθ
1
(M2) > T CLA1

(M2). Hence, we can state that the curator (or data

publisher) does not provide a strong privacy guarantee compared with traditional ǫ-DP in

continuous data publication settings. In detail, a recent privacy method called w-event

privacy allocates a ratio of privacy budget to each timestamp to achieve ǫ-DP guarantee of

any user’s stream within a window of size w by assuming the data-points in a user stream

are independent. However, most of the location data-points are temporally correlated with

a certain probability in real-time data collection. Due to this, the allotted privacy budget

at timestamps within a window is not adequate to achieve ǫ-DP, resulting in more privacy

leakage than the traditional ǫ-DP.

5.3 Proposed Method

This section discusses our Privacy Budget Allocation (PBA) mechanism, which is allowed

to compute and allocate the quantity of privacy budget to each publication in a continuous

data release setting. Then, we theoretically prove that our PBA mechanism achieves ǫ-DP

and shows the data utility of PBA mechanism.
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This mechanism is motivated by limited use of previous mechanisms such as Uniform,

Sampling, and w-event privacy, which are discussed in the introduction. In this mech-

anism, we adopt a w-event privacy concept called sliding window methodology, and it

follows that the window is moving one timestamp ahead after every w timestamps. A

sliding window consists of w number of timestamps and each timestamp t is operated by

a sub-mechanismMt. Since eachMt uses independent randomness,Mt achieves ǫt-DP

for some ǫt. The sum of the privacy budgets within the sliding window of size w must be

lesser than or equal to the total privacy budget ǫ. Note that, at any timestamp t, span of

sliding window is t− w + 1 to t.

The PBA mechanismM consists of series of sub-mechanismsM1,M2, . . . ,Mk, . . . ,Mt,

where eachMk takes dataset St[k] = Dk as input and publishes a private statistic ωk as

output by using allotted privacy budget ǫk. Thus,M publishes a series of private statistics,

namely ω1, ω2, .., ωk, .., ωt. In detail, the mechanismM involves two phasesM1 andM2.

These two phases operate sequentially by using half of the total privacy budget, i.e., ǫ1 and

ǫ2. In the first phase, M1 allocates a ratio of privacy budget from ǫ1 to each timestamp

uniformly within a sliding window. At timestamp k, the sub-mechanism M1
k calculates

a dissimilarity value between the true statistic ak and last release private statistic ωl. The

mean of absolute error (MAE) is a metric which measures the dissimilarity between ak and

ωl and is formulated as 1
|L|
Σ

|L|
j=1|ωl[j]−ak[j]| where ak and ωl are the vectors of length |L|.

Then, the obtained dissimilarity value is forwarded intoM2
k. In the second phase,M2 di-

vides a privacy budget ǫ2 into two parts; namely publication privacy budget and absorption

privacy budget. TheM2 allocates a publication privacy budget into each timestamp in an

exponential decreasing fashion. At timestamp k,M1
k forwards dissimilarity value toM2

k

to decide whether to publish a true publication with noise or null publication (last release

private output). IfM2
k decides not to publish a true publication at timestamp k, then kth
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Algorithm 5.1 Pseudocode of PBA mechanism at kth timestamp (Mk)

INPUT: Dataset Dk, total privacy budget ǫ, ǫ21, ǫ
2
2, . . . , ǫ

2
k−1 and ǫa1, ǫ

a
2, . . . , ǫ

a
k−1

OUTPUT: Release Noisy output ωk.

1: At sub-mechanismMk

2: Compute noise for last release output ωl

3: Calculate ak = M(Dk)
4: Calculate MAE(ωl, ak)
5: Allocated budget at time k: ǫ1k = ǫ · |L|/(2 · w)
6: Compute noise λ1

k = 1/ǫ1k
7: Set MAE() = MAE(ωl, ak) + Lap(λ1

k)
8: Compute noise for present publication ωk

9: Calculate remaining budget: ǫ2k = (ǫ/4− [Σk−1
j=k−w+1ǫj ])/2

10: If Correlation exists

11: ǫA = (ǫ/4− [
∑k−1

j=k−w+1 ǫ
a
j ])

12: Set ǫak = ǫ2k (absorbed from ǫA)
13: ǫ2k = ǫak + ǫ2k
14: Compute noise λ2

k = 1/ǫ2k
15: If MAE() > λ2

k

16: return ωk = ak + 〈Lap(λ
2
k)〉

|L|

17: Else

18: return ωk = ωl

19: end for

20: end for

allotted publication privacy budget is become free and can be used in the future publica-

tion if necessary. In contrast, ifM2
k decides true publication at timestamp k, then it uses

allotted publication privacy budget to publish statistics privately. Further, the absorption

privacy budget allocates an extra privacy budget at timestamp k only when a correlation

exists between the current timestamp k and the previous timestamp k−1. This is because a

statistic at timestamp k requires more privacy budget compared to the normal publication.

Algorithm 5.1 describes the mechanism of PBA in continuous data release settings. It takes

Dataset Dk, total privacy budget ǫ, allotted budgets upto (k−1)th timestamp (ǫ21, ǫ
2
2, . . . , ǫ

2
k−1)

and (ǫa1, ǫ
a
2, . . . , ǫ

a
k−1) are inputs and release a noisy statistic ωk as an output. PBA aims

to allocate an adequate amount of privacy budget at each timestamp within the sliding
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window to achieve ǫ-DP (line 2-20). At any timestamp k, the sliding window follows two

phases: the first phase is to calculate noisy dissimilarity value between ωl and ak (line 3-8),

and the second phase is to decide whether publish a private statistics of current timestamp

k if publications occur, otherwise publish ωl (line 9-19). The sub-mechanismMk com-

putes true answer (ak) from the dataset S[k] = Dk (line 4), then calculates dissimilarity

value between ak and ωl by using a metric called Mean of Absolute Error (line 5). After

that, Mk utilizes an allotted privacy budget ǫ1k to make noisy dissimilarity value shown

in the lines (6-8). Finally,Mk computes MAE() value (MAE + noise) and forwards into

phase 2 ofMk. In the second phase,Mk starts with finding a remaining amount of pri-

vacy budget available at the time of kth timestamp and assign half of the remaining budget

to the phase 2 of kth timestamp (line 10). If a correlation exists between the present and

previous timestamps, thenMk adds extra budget from the absorbed privacy budget ǫA to

the phase 2 of kth timestamp, is shown in the lines (12-15). OnceMk computes noise (line

16), then it decides whether publish ak with noise or ωl based on the comparison between

MAE() and computes noise λ2
k (lines 17-20). If MAE() is greater than λ2

k, then it releases

ak with noise otherwise releases last release output ωl.

Figure 5.3 shows the operation of PBA mechanism in continuous data release settings

of 5 timestamps while assuming the size of w = 3. Assume that M publishes private

outputs at timestamps 1, 3, 4, 5 and last release private output at timestamp 2 i.e., the noisy

output of timestamp 1. At each timestamp in phase 1,M allocates a fixed privacy budget

i.e., ǫ/2 · w = ǫ/6 (fix w = 3). Then M allocates half of the allotted privacy budget

in phase 2 (i.e., ǫ/4) in an exponential decreasing manner within the sliding window of

size w = 3. In other words, at timestamp 1, it assigns ǫ21 = (ǫ/4 − 0)/2 = ǫ/8. At

timestamp 2, ǫ22 = 0 because no output is generated at timestamp 2. At timestamp 3,

ǫ23 = (ǫ/4 − (0 + ǫ/8))/2 = ǫ/16. Since no correlation exists between the timestamps
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within the first sliding window, it is not required to add extra budget to any timestamps. At

timestamp 4, ǫ24 = (ǫ/4− (0+ ǫ/16))/2 = 3ǫ/32 and adds extra budget 3ǫ/32 to ǫ24 due to

the existence of correlation in between the timestamps of 4 and 3 as shown in Figure 5.1.

Similarly at timestamp 5, the PBA assigns ǫ25 = (ǫ/4− (ǫ/16+3ǫ/32))/2+3ǫ/64. Notice

that the total sum of all privacy budgets in phases 1 and 2 of respective sliding windows is

less than or equal to the total privacy budget ǫ.

Figure 5.3: Distribution of privacy budget over timestamps(or event) within the sliding

window of size w = 3.

5.3.1 Privacy Analysis

Theorem 5.3.1. Privacy Budget Allocation algorithm (PBA) achieves ǫ-Differential pri-

vacy.

Proof. A sub-mechanism Mk privately publishes either output of q(Dk) or immediate

last release output ωl by utilizing a privacy budget ǫk. The sub-mechanismMk has two

phases that use independent privacy budgets, i.e., ǫ1k and ǫ2k. Hence, we first prove that

the sub-mechanism at phase 1M1
k satisfies ǫ1k-DP for ǫ1k = ǫ/2w and M2

k satisfies ǫ2k-
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DP for ǫ2k = (ǫ/4 − [Σk−1
j=k−w+1ǫj]) if it publishes output of q(Dk), otherwise ǫ2k = 0. In

phase 1,M1
k publish private MAE() value i.e.,q′(Dk) =

1
|L|
Σ

|L|
j=1|ωl[j] − ak[j]|. If add or

remove a row from Dk, then the maximum alter in the result of q′(Dk) is 1/|L|. Hence,

the sensitivity of q′ is at most 1/|L|. By using this sensitivity, M1
k injects laplace noise

with scale λ1
k = ∆(q′)/ǫ1k = 2 · w/(ǫ · |L|) to MAE() value. According to definition 2,

M1
k is ǫ1k-DP for ǫ1k = 1/|L|

(2·w)/(ǫ·|L|)
= ǫ/(2 · w). In the second phase,M2

k publishes either

private output of q(Dk) value or null. In former differential privacy, if add or remove a

row from Dk, then the maximum alter in the result of q(Dk) is 1. Hence, the sensitivity

of q is at most 1. TheM2
k injects laplace noise with scale λ2

k = 2/(ǫ/4 − [Σk−1
j=k−w+1ǫj]).

In case if a correlation exists between the current timestamp and previous timestamp, then

M2
k borrow extra budget from the available ǫ/4. So,M2

k injects laplace noise with scale

λ2
k = 2/(ǫ/4− [Σk−1

j=k−w+1ǫj])+2/(ǫ/4− [Σk−1
j=k−w+1ǫj])) if a correlation exists; otherwise,

noise is λ2
k = 2/(ǫ/4 − [Σk−1

j=k−w+1ǫj]). We assume that the mechanismM used an entire

extra budget (ǫ/4) within a sliding window of size w. According to definition 2, M2
k is

ǫ2k-DP for ǫ2k = (ǫ/4−[Σk−1
j=k−w+1ǫj])/2+(ǫ/4−[Σk−1

j=k−w+1ǫj ])/2) = (ǫ/4−[Σk−1
j=k−w+1ǫj]).

Subsequently, we must prove that PBA holds Σk
j=k−w+1ǫj ≤ ǫ, for every k within the slid-

ing window. From composition property, PBA holds at jth privacy budget is ǫj = ǫ1j + ǫ2j ,

then it equals to Σk
j=k−w+1ǫj = Σk

j=k−w+1ǫ
1
j +Σk

j=k−w+1ǫ
2
j . Since every ǫ1j is set to ǫ/2 ·w,

the total privacy budget within the sliding window is Σk
j=k−w+1ǫj = ǫ/2 + Σk

j=k−w+1ǫ
2
j .

Now, it is required to prove that Σk
j=k−w+1ǫ

2
j ≤ ǫ/2. In our settings Σk

j=k−w+1ǫ
2
j is

Σk
j=k−w+1(ǫ/4 − [Σk−1

j=k−w+1ǫj])/2 + (ǫ/4 − [Σk−1
j=k−w+1ǫj])/2). These two terms can be

proved using inequality by induction. Since both terms are equal, we prove either one of

the terms is lesser than or equal to ǫ/4. and then we can say that another term is also lesser

than or equal to ǫ/4. In the induction part, first, simplify the term using geometric series

and prove that the term is lesser than or equal to (ǫ/2) using inductive steps (for more

74



CHAPTER 5. QUANTIFY THE IMPACT OF DATA CORRELATION ON PRIVACY BUDGET ALLOCATION IN ǫ-DIFFERENTIAL PRIVACY Section 5.3

details in appendix A). Therefore, sub-mechanism M2
k is always used up to half of the

available privacy budget, i.e.,(ǫ/2).

5.3.2 Utility Analysis

In the PBA mechanism, the error at any timestamps depends on two reasons 1) a privacy

budget utilized in true publications and 2) a privacy budget utilized in the last release

publication, which is an approximated publication of the current timestamp. In detail, if

publications occur at timestamp k, thenM operates both the phasesM1
k andM2

k. We use

the MAE metric of pair (ωl, ak) and pair (ωk, ak) for calculating error of publications at

M1
k andM2

k respectively. If publication does not occur at timestamp k, then the mecha-

nismM calculates the MAE metric of pair (ωl, ak) as a error of publications at timestamp

k. Therefore, the mechanismM produces error per timestamps from one or both of the

phases. Next, we show that the average error per timestamp in the PBA mechanism. As-

sume that there is an equal number of skipped publications between every occurrence of

true publications, and n represents the total number of true publications that occur within

a sliding window of size w.

Theorem 5.3.2. The average error per timestamp in PBA is at most 4
nǫ
·(2(2n−1)+1)+ 2w

ǫ|L|

Proof. At timestamp k, the private dissimilarity value of M1
k guides M2

k for deciding

to publish either true publication or null publication. Hence, we consider both M1
k and

M2
k for computing average error per timestamp in PBA mechanism. The M1

k induces

error when its private dissimilarity value suggests M2
k to make a wrong decision, i.e.,

wrongly skips a publication or wrongly performs true publication. If M1
k suggest true

publication occur at time k, then the error at timestamp k is the error induced by M2
k,

which is discussed later. Alternatively, if M1
k suggest true skipped publication occur at

time k, then the error at timestamp k is an original dissimilarity value between ωl and ak,
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it is bounded by the error ofM2
k. However, if wrongly performs true publication at time

k, then the original dissimilarity value is overrated due to noise of scale λ1
k added by the

M1
k. Conversely, if wrongly skips a publication at time k, then the original dissimilarity

value is underrated due to noise with scale λ1
k added by the M1

k. Therefore, the error

induced by the M1
k in PBA is at most 2w

ǫ|L|
. Recall that PBA allocates privacy budget in

exponential decreasing fashion in phase 2 ofM i.e., ǫ/8, ǫ/16, ǫ/32, .... Hence, the error

per each timestamp in phase 2 is 1/ǫr, where ǫr is a exponentially decreasing privacy

budget. Moreover,M2 phase uses the extra budget from the absorbed privacy budget, so

the error atM2 from the absorbed privacy budget is at most (4/ǫ). Therefore, the average

error per timestamps within a sliding window ofM2 in PBA is equal to

=
1

n
· (
8

ǫ
+

16

ǫ
+ · · ·+

2n+2

ǫ
) +

4

nǫ

=
8

nǫ
· (2n − 1) +

4

nǫ

=
4

nǫ
· (2(2n − 1) + 1)

The total average error per timestamps within the sliding window of size w in PBA mech-

anism is

=
4

nǫ
· (2(2n − 1) + 1) +

2w

ǫ|L|

5.4 Experimental Results

In this section, we conduct an experiment to demonstrate users’ privacy risk, especially

when the datasets have temporal-correlation at certain timestamps. Furthermore, we vali-

date the effectiveness of our proposed algorithm with existing states of art methods.
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We employed three real-time trajectory datasets such as Geolife [88], T−Drive [89, 90],

ShangHai [91], and a synthetic dataset, namely Metro100K [31] in our experiments. A

Geolife, T−Drive and Metro100K datasets are described in chapter 3. Apart from these

three datasets, we used ShangHai dataset in this work. It is a public trajectory data of

about 5000 buses and taxis in Shanghai collected by the Hong Kong University of Science

and Technology on February 20, 2007. The sampling interval of data is approximately

60 seconds. We optimized all real-time datasets for our experiment by considering that a

user is located at most one location at each timestamp and collected all samples (user’s

location data-point) every 5 minutes. The above trajectory datasets consist of a series of

tuples containing ID, timestamp, latitude, and longitude. We filter the real-time datasets

using two minimum requirements, i.e., each user is located at most one location at each

timestamp, and collect samples from the datasets according to the curator’s pre-defined

timestamp frequency (ex: every 5 min).

5.4.1 Metrics of Utility Evaluation

We used two popular metrics such as Mean of absolute error(MAE) and Mean of square

error(MSE) [92] for quantifying the data utility of our mechanism with existing states of

art methods. These two metrics are used to measure the dissimilarity (or error) between

the measured value and actual value. Moreover, these two metrics have good mathematical

properties, and also the MSE metric helps to find larger errors. In our settings, the PBA

method protects each user’s data point per timestamp (or user stream) within the sliding

window of size w. Hence, we measure the error per timestamp by using MAE and MSE
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metrics. The definition of MAE and MSE metric is as follows.

MAE() =
1

|T |

1

|L|
Σ

|L|
j=1|ωl[j]− at[j]|

MSE() =
1

|T |

1

|L|
Σ

|L|
j=1|ωl[j]− at[j]|

2

5.4.2 Result Analysis

According to our problem settings, we train the Markov model for modeling a transition

probability between all possible location data-points. This transition probability matrix

describes how a data-point is dependent on other possible remaining data-points. There

are three types of temporal correlation, such as strong, moderate, and no correlation. Let

assume that the temporal correlation between the data-points of a user stream is strong,

i.e., θs =



1 0

0 1



. The privacy-risk of users per timestamp is increasing linearly because

the same datasets are released in contiguous timestamps, as shown in Figure 5.4. In other

words, the location data-points of users are at time t to time 1 is equivalent, i.e., loct =

loct−1 = · · · = loc1. Hence, the privacy risk is increasing linearly at each timestamp.

In another extreme case, is a moderate temporal-correlation between the data-points, say

θm =



0.8 0.2

0 1



. The line with circle shape in Figure 5.4 shows users’ privacy risk from

timestamp 1 to t, which can be quantified by using equation 5.4. Finally, a line with a

triangle shape in Figure 5.4 shows each timestamp achieves 1-DP while assuming ǫ = 1

because no temporal-correlation exists.

Further, we demonstrate the effectiveness on TC privacy leakage when the transition prob-

ability matrix involves a large (or small) number of dimensions. Let consider a transition

probability matrix with a moderate correlation and d be the number of dimensions in the

transition matrix. If d is large, then the probability value on cells is well scattered in transi-

tion matrix. Figure 5.5 shows the variation of privacy leakage when the size of d varies in
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Figure 5.4: Analysis of privacy risk (or leakage) of 1-DP under different types of temporal

correlation
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Figure 5.5: Privacy leakage versus different degrees of correlation while set ǫ = 1 (a)

Geolife (b) T-Drive (c) ShangHai and (d) Metro100K datasets.

the transition probability matrix. The results show that the ǫ-DP attains less privacy leak-

age when the vast number of dimensions in the transition probability matrix. It is depicted

in the lines d = 50 and d = 10 of Figure 5.5 by considering ǫ = 1. This is because the

data points in a matrix are very close to the stronger correlation. In other words, a stronger

correlation in the transition matrix results in more privacy leakage. The transition matrix

involves a weaker correlation when the matrix dimension is larger, as shown in the lines

d = 200, d = 50 of Figure 5.5.
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Figure 5.6: MAE vs. w while fixing ǫ=1 (a) Geolife (b) T-Drive (c) ShangHai and (d)

Metro100K datasets.

5.4.3 Compare with Baseline approaches

Firstly, we started to compare our proposed method with baseline approaches such as Uni-

form, Sampling, and w-event privacy, to analyze the effectiveness of our method while

varying the size of the sliding window w and ǫ value. Figures 5.6 and 5.7 show the re-

sult of MAE and MSE values between the PBA method with baseline approaches, while

varying the size of the sliding window w. We observed that our PBA method outperforms

with baseline approaches on all datasets. This is because the rate of allotted privacy budget

within the sliding window is minimized in baseline approaches due to an increase in the

number of timestamps in the sliding window. In other words, the adequate amount of pri-

vacy budget is allotted at temporally correlated timestamps in the PBA method compared

to baseline approaches. Notice that MAE and MSE value in uniform method increases lin-

early when w increases because fixed privacy budget allotted at each timestamp. Similarly,

a privacy budget is allotted only at a given sample interval in a sampling approach.

Furthermore, the MAE values in PBA and BD methods (see Figures 5.6(b), (c) and (d))

are approximately the same because both methods follow the same allocation scheme, i.e.,

exponential decreasing fashion. However, our PBA method achieves ǫ-DP even though

the location data-points are temporally correlated at consecutive timestamps.
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Figure 5.7: MSE vs. w while fixing ǫ=1 (a) Geolife (b) T-Drive (c) ShangHai and (d)

Metro100K datasets.
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Figure 5.8: MAE vs. ǫ while fixing w=40 (a) Geolife (b) T-Drive (c) ShangHai and (d)

Metro100K datasets.

Further, we compared our PBA method with baseline approaches while varying ǫ values,

as shown in the Figure 5.8 and 5.9. The result shows that the error rate of MRE and

MSE is comparatively low while assigning a larger privacy budget at each timestamp. The

MRE and MSE values of baseline approaches have more update errors while comparing

our PBA method. This is because the uniform and sample methods use a fixed privacy

budget at each timestamp even-though the location data-points are temporally correlated.

Further, the error rate of the PBA and BD approach has almost similar because the PBA

adopts a similar allocation scheme (i.e., exponential decreasing fashion at stage 2) as in the

BD approach. However, our PBA method allocates an adequate amount of privacy budget
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Figure 5.9: MSE vs. ǫ while fixing w=40 (a) Geolife (b) T-Drive (c) ShangHai and (d)

Metro100K datasets.

even though the location data-points are temporally correlated at consecutive timestamps.

5.4.3.1 Analysis and Evaluation

In literature, several works have been proposed that consider the correlation between the

users in the dataset, i.e., user-user correlation, whereas we consider a correlation among

the single user’s location data-points at different timestamps (i.e., temporal correlation).

We found limited research on finding the privacy risk of differential privacy under tempo-

ral correlation for the continuous location data release settings. However, Quantification

[18] and Planar Isotropic Mechanisms (PIM) [59] are the recent privacy budget alloca-

tion methods for temporal correlation in continuous location data release settings. Figures

5.10 and 5.11 show the error rate of MAE and MSE between our PBA method with other

states of art methods such as Quantification and PIM while varying the size of the slid-

ing window w. The experimental results exhibit that the proposed PBA method provides

significant data utility compared to the above two methods. The error rate of the quantifi-

cation and PBA method are approximately similar. This is because the proposed method

achieves ǫ-DP under a temporal correlation whereas the quantification method achieves

α-DP under temporal correlation instead of ǫ-DP, where α is increased privacy leakage of
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range ǫ ≤ α ≤ Tǫ (assume that the length of temporally correlated data-points in user’s

stream is T ). In other words, the quantification method allocates more privacy budget (i.e.,

exceeds than the allotted budget of traditional ǫ-DP) to each timestamps. Hence, the error

rate (MAE and MSE) of quantification is almost same to the PBA method under temporal

correlation. And since the privacy budgets are assigned to each timestamps uniformly in

PIM, the error rate (MAE and MSE) of PIM increases linearly, as shown in Figures 5.10

and 5.11.
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Figure 5.10: MAE vs. w while fixing ǫ=1 (a) Geolife (b) T-Drive (c) ShangHai and (d)

Metro100K datasets.
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Figure 5.11: MSE vs. w while fixing ǫ=1 (a) Geolife (b) T-Drive (c) ShangHai and (d)

Metro100K datasets.

Figures 5.12 and 5.13 show the error rate of MAE and MSE between our PBA method

with Quantification and PIM while varying ǫ values. The result shows that the MRE and
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Figure 5.12: MAE vs. ǫ while fixing w=1 (a) Geolife (b) T-Drive (c) ShangHai and (d)

Metro100K datasets.
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Figure 5.13: MSE vs. ǫ while fixing w=1 (a) Geolife (b) T-Drive (c) ShangHai and (d)

Metro100K datasets.

MSE values decreasing when assigning more privacy budget at each timestamp while set-

ting w=40. The MAE and MSE of the PBA method are closely related to the quantification

method because the quantification method uses an increased privacy budget α, which leads

to fewer update errors even though the user’s stream involves temporal correlation. An-

other side, the PIM method follows a uniform approach for allocating privacy budgets that

leads to having more update errors, as shown in Figures 5.12 and 5.13.

Table 5.2 shows that the privacy guarantee of various privacy budget allocation methods

on temporally correlated data-points of length T . We observed that our PBA method

achieves ǫ-DP under temporal correlation in continuous stream data publishing compared
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Table 5.2: The privacy guarantee of various privacy budget allocation methods on tempo-

rally correlated data-points of length T

Privacy Privacy Budget Temporal privacy guarantee on

approaches Allocation scheme correlation T length user stream

Uniform[75] X − Tǫ-DP

Sampling[87] X − (T/I)ǫ-DP

Budget Distribution (BD)[17] X − wǫ-DP

PIM[59] − X Tǫ-DP

Quantification[18] X X α-DP

Proposed method X X ǫ-DP (i.e., Σk
j=k−w+1ǫj ≤ ǫ)

with other DP approaches under temporal correlation. The existing approaches such as

Uniform, Sampling, BD, PIM, and the Quantification method are provided less privacy

guarantee under a temporal correlation, i.e., Tǫ-DP, (T/I)ǫ-DP, wǫ-DP, Tǫ-DP and α-DP

respectively. In other words, the existing approaches require more privacy budgets (≥ ǫ)

in continuous temporally correlated stream data publishing to satisfy the definition of ǫ-DP.

Even though BD and PBA methods follow the same allocation strategy, BD achieves wǫ-

DP (assume that the length of temporally correlated data-points in the user’s stream is w)

instead of ǫ-DP under temporal correlation. Hence, the PBA method is a better approach

for allocating privacy budgets to temporally correlated data-points.

5.5 Summary

In this work, we present the definition of differential privacy under temporal correlation

to quantify the impact of temporal correlation on privacy leakage. Then, we illustrate

and prove that the adversaries who have knowledge of temporal correlation can disclose

more privacy leakage than the traditional ǫ-DP. Our analysis result shows that the privacy

leakage increases over time in w-event privacy when the dataset involves temporal correla-
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tion. Therefore, we introduce a privacy budget allocation (PBA) method for allocating an

adequate amount of privacy budget to each successive timestamp under the protection of

ǫ-differential privacy. This method protects any w length user stream that contains tempo-

rally correlated data-points. We conducted a series of experiments with real and synthetic

datasets to evaluate the average error per timestamp for analyzing the data utility of our

method.
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Chapter 6

Quantify the Impact of Data

Correlation on Privacy Leakage in

ǫ-Local Differential Privacy

Local differential privacy (LDP)[10] is a variant of standard differential privacy. It ad-

dresses the privacy issue in the data collection phase (i.e., untrusted service provider) and

is implemented in many applications, such as the Google Chrome browser[61], Apple’s

iOS-10 [62][63]. In particular, users make their location data-point private before sending

it to the service provider. Hence, this privacy model promises a privacy guarantee to users

even though the service provider is not trusted. Under the protection of LDP, the service

provider can still compute the correct statistical results even though not collecting users’

private location data-points. According to the ǫ-LDP, the adversary cannot infer users’

private or sensitive data with high confidence (controlled by ǫ). Here, ǫ is a privacy budget

that controls the level of privacy guarantee. If ǫ is small, then it signifies higher privacy

protection or vice versa. Most of the existing methods under LDP focuses on one-time data

87



CHAPTER 6. QUANTIFY THE IMPACT OF DATA CORRELATION ON PRIVACY LEAKAGE IN ǫ-LOCAL DIFFERENTIAL PRIVACY Section 6.0

publishing [61][93][66]. These methods face the challenge of privacy degradation if the

location data points are collected over time [64]. To overcome this challenge, in literature,

few existing methods have been proposed for continuous data publishing, such as event

level, user-level, and w-event privacy. The event-level privacy [44] achieves ǫ-DP at each

timestamp’s data (or location data-point). So, it protects only the user’s single location

data-point, not the entire user’s stream. In contrast, user-level privacy [20] protects user’s

stream data up to a limited length. If the length of a user stream is long, it is required

to add more noise, which reduces the data utility of the user stream. Both methods have

limited applicability in real-world applications.

Recently w-event privacy has been proposed to address event level and user-level privacy

issues. It offers privacy to the user’s stream of length w; hence it is called the w-event

privacy method. If w is set to 1, then w-event privacy becomes event-level privacy, and

if it is set to infinity, it becomes user-level privacy. This privacy method adopts a concept

called sliding window methodology of size w, and it moves one timestamp’s data ahead

after every w timestamp’s data till it reaches the last timestamp’s data of a user stream.

Each sliding window of size w achieves ǫ-LDP by consuming a ratio of privacy budget

to each timestamp’s data within the sliding window of size w. Moreover, the sum of the

privacy budgets of each timestamp’s data within the window should not be more than

the total privacy budget (ǫ). However, w-event privacy offers comparatively less privacy

guarantee when a user stream’s location data-points are correlated. This is because the

privacy budget allots to each timestamp’s data-point are not adequate due to the presence of

correlated location data points within the user stream. Moreover, w-event privacy presents

two budget allocation strategies, namely Budget Distribution (BD) and budget Absorption

(BA), for allocating a budget to each timestamp’s data within the window of size w for

achieving ǫ-LDP. These two methods are not appropriate for allocating budgets because the
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Figure 6.1: Distribution of privacy budget over timestamps(or event) when the user

stream’s data-points are correlated within the sliding window of size w = 3.

correlated location data-point requires more privacy budget than the normal timestamp’s

data-point. Therefore, it is necessary to design a privacy budget allocation scheme for

allocating privacy budgets to the correlated location data-points within the user’s stream.

The following example illustrates how w-event privacy degrades a privacy guarantee when

the user stream’s data points are correlated within a sliding window of size w.

Consider a user stream of length 7, say Ti = {li|li ∈ L, 1 ≤ i ≤ 7} where L is a universe

of location data-points and li is a location at timestamp i. Let us assume that a mobility

pattern, i.e.,always reaches a location l5 after visiting location l4 which is represented as

Pr(l5 = loc5|l4 = loc4) = 1. According to the w-event privacy, the privacy budget ǫ is

shared uniformly to each timestamp’s data within the sliding window of size 3, as shown

in Figure 6.1. At the first sliding window, the privacy mechanism allots a privacy budget

uniformly (i.e., ǫ/3) to each timestamp’s data to calculate noise Lap(1/(ǫ/3)). Hence the

required ratio of privacy budget at timestamps 1,2, and 3 is ǫ/3. Since the total sum of

the privacy budgets within the first sliding window is equal to ǫ, the first sliding window
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achieves ǫ-LDP. Similar to the second sliding window at timestamps 2,3, and 4. A third

sliding window, the required ratio of privacy budgets at timestamps 3, 4 and 5 is ǫ/3,ǫ/3

and 2ǫ/3, respectively, due to the presence of correlation between 4 and 5. Since the sum

of the third window’s privacy budgets is more than the total privacy budget ǫ, So the third

sliding window does not achieve ǫ-LDP. Similarly, the fourth and fifth windows also do not

satisfy ǫ-LDP because these windows require more budget than the total privacy budget ǫ.

In summary, the privacy budget allocation into a user stream for publication with pri-

vacy guarantees remains unclear, especially when the location data-points of a user stream

are correlated. Our contribution of this work is as follows.

1. We present a definition ǫ-Local Differential Privacy for continuous data publication

and prove that it can achieve ǫ-LDP. We quantify the privacy degradation when cor-

relation exists in continuous data publication and analyze the privacy leakage with a

numerical example.

2. We propose a Privacy Budget Allocation method on ǫ-Local Differential Privacy for

distributing an adequate amount of privacy budgets to each timestamp’s data under

the protection of ǫ-LDP.

3. Finally, we demonstrate the effectiveness of our proposed method in terms of data

utility with existing allocation methods by considering real and synthetic datasets.

The rest of this work is as follows. Section 6.1 describes the definition of ǫ-Local Differ-

ential Privacy for continuous stream data publication and analyzes the privacy leakage in

ǫ-LDP with and without presence of correlation between the location data-points of a user

stream. Section 6.2, we propose a privacy budget allocation method for correlated location

data-points in user stream publication and present a theoretical analysis of privacy leakage
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and utility leakage of our proposed method. We demonstrate the effectiveness of our pro-

posed method in terms of data utility is presented in section 6.3. Finally, the summary of

this work is presented in section 6.4.

6.1 System Framework

In this section, we describe the basic definition of Local-Differential privacy (LDP) under

continual observation. Also, we illustrate the privacy leakage of LDP under temporal

correlation with a numerical example.

6.1.1 Local differential privacy under continual observation

LetM be the randomized mechanism that takes the user’s trajectory (Ti)
t as input and pro-

duced a series of perturbed location data-points (x̂1
i , x̂

2
i , . . . , x̂

t
i) at each timestamp. Sup-

pose the mechanismM is decomposed into several sub-mechanisms (M1,M2, . . . ,Mt)

and each sub-mechanismMt takes a location data-point xt
i and produces a perturbed loca-

tion data-point x̂t
i. A sub-mechanismMt is satisfied ǫt-local differential privacy (LDP) if

and only if for any two input location data-points xt
i and xt′

i , and for any possible outputs

x̂t
i of range(Mt),Mt holds

log
Pr(Mt(x

t
i) = x̂t

i)

Pr(Mt(xt′
i ) = x̂t

i)
≤ ǫt (6.1)

Where ǫt is a privacy parameter that quantifies the degree of user’s privacy leakage at

timestamp t. According to equation, the curator does not distinguish the location data-

point of a user i is whether xt
i or xt′

i with high confidence by seeing the answer x̂t
i.

The mechanismM achieves ǫ-LDP if each user encodes his vector bits of his location data-

point (say xj
i [l], l = (1, 2, . . . , L)) before sending into curator. These perturbed vector bits
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of location data-point protects the user’s location information from the malicious curator.

In this fashion, a user publishes location data-points privately (x̂1
i , x̂

2
i , . . .) = x̂i under the

protection LDP at each timestamp. Each location data-point at time t uses independent

randomness for achieving ǫ-LDP. So, it holds

log
Pr(M((Ti)

t) = x̂1
i , x̂

2
i , . . . , x̂

t
i)

Pr(M((Ti)t
′) = x̂1

i , x̂
2
i , . . . , x̂

t
i)

=
t∏

t=1

Pr(Mt(x
t
i) = x̂t

i)

Pr(Mt(xt′
i ) = x̂t

i)

≤
t∏

t=1

eǫt ≤ exp(
t∑

t=1

ǫt)

≤ eǫ

MechanismM adopts the local randomize method to perturb each location data-point of

a user. RAPPOR is a basic method for local randomizer and is widely used in statistics

aggregation. This method follows two steps for achievingM satisfies ǫ-LDP. The steps

are

1. Each bit of xt
i is flipped into either 0 or 1 according to the following rules

x̂t
i[l] =





xt
i[l] with prob. 1− p,

0 with prob.
1

2
p,

1 with prob.
1

2
p,

(6.2)

Where p ∈ [0, 1] is a parameter that measures the level of randomness for local differential

privacy, x̂t
i[l] where l = (1, 2, . . . , L) are the fake bits of vector xi at timestamp t.

2. After deriving all fake bits of xi i.e., x̂t
i =< x̂t

i[1], x̂
t
i[2], . . . , x̂

t
i[L] >, then transmit it

into the curator.

In this fashion, the curator collects all user location data-points privately, and further, the
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curator can use or publish the location data-points for other useful purposes. LDP’s main

property is that a user can take full control of his/her privacy by independently perturbing

location data-points.

6.2 Threat model: privacy leakage analysis

The main objective of an adversary is to learn the user’s true location at a specific times-

tamp. Consider an adversary Ai with knowledge of all location data-points of user i ex-

cept tth time location data-point i.e., Ai knows at time t is (Ti)
tk = (Ti)

t\{xt
i} and he

wants to find the location data-point of ith user at timestamp t. The privacy leakage of

privacy mechanism Mt (or ith user at timestamp t) against Ai is as follows, we have

(Ti)
tk = (Ti)

t\{xt
i} and xt

i and xt′

i are two possible location data-points of ith user at

timestamps t. Then the privacy leakage ofMt is

LAi
(Mt) = sup

xt
i,x

t′

i ,x̂t
i

log
Pr(x̂i|x

t
i, (Ti)

tk)

Pr(x̂i|xt′
i , (Ti)tk)

TheLAi
(Mt) is the maximum privacy leakage of user i at timestamp t caused by adversary

Ai. If L(Mt) is lesser than or equal to ǫ, we say that Mt achieves ǫ-LDP. Here, we

considered a privacy budget ǫ as a metric for measuring the privacy leakage. If lesser ǫ

value, then lesser the privacy leakage.

6.2.1 Temporal correlation (TC) privacy leakage analysis

It is fair to assume that adversaries also have the knowledge of transition probabilities be-

tween the location data-points. In our settings, we adopt a Markov chain model to describe

the transition probabilities between the data-points and is represented by a variable called

Θ. For instance, consider a transition probability matrix of size 2 for a trajectory of user
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i is Ti = (x1
i = l1, x

2
i = l2, x

3
i = l2) as shown in Figure 6.2. If the location of xt+1

i is l2,

then the probability of coming from l1 at time t (i.e., xt
i = l1) is 0.4.

Figure 6.2: Transition probabilities between the data-points

Consider an adversary Ai with knowledge of Θ and (Ti)
tk = (Ti)

t\{xt
i}, so Ai is named

as AΘ
i . Assume that AΘ

i collects all perturbed location data points except tth location data

point of user i and AΘ
i wants to infer tth location data point of user i. The privacy leakage

analysis with respect to Θ is named as temporal privacy leakage (T CL). The T CL of LDP

mechanism at timestamp t with respect to AΘ
i is, the maximum ratio of two distribution

for all different values of xt
i and xt′

i and all possible outputs x̂i of range(M), we have

T CLAΘ
i
(Mt) = sup

x̂i,xt
i,x

t′

i ,Θ

log
Pr(x̂

1
i , ....., x̂

t
i|x

t
i, (Ti)

tk ,Θ)

Pr(x̂1
i , ....., x̂

t
i|x

t′
i , (Ti)tk ,Θ)

(6.3)

The T CL of mechanism Mt w.r.t AΘ
i satisfies ǫ-local differential privacy iff the above

equation 6.3 is bounded by atmost ǫ value for any adversary Ai, i ∈ n where n is set of

adversaries.

sup
Θ,∀Ai,i∈n

T CLAΘ
i
(Mt) ≤ ǫ

To understand the impact of temporal correlation on privacy leakage in ǫ-local differential

privacy, we expand the above equation 6.3 using the Bayesian theorem. The T CLAΘ
i
(Mt)

94

Matrix.eps


CHAPTER 6. QUANTIFY THE IMPACT OF DATA CORRELATION ON PRIVACY LEAKAGE IN ǫ-LOCAL DIFFERENTIAL PRIVACY Section 6.2

is equal to

= sup
x̂1
i ,.....,x̂

t−1
i ,xt

i,x
t′

i ,Θ

log

∑
xt−1
i

Pr(x̂
1
i , ....., x̂

t−1
i |x

t−1
i , (Ti)

tk−1 ,Θ) ∗ Pr(x
t−1
i |x

t
i)

∑
xt−1

′

i

Pr(x̂1
i , ....., x̂

t−1
i |x

t−1′

i , (Ti)tk−1 ,Θ) ∗ Pr(x
t−1′

i |xt′
i )

+ sup
x̂t
i,x

t
i,x

t′

i ,Θ

log
Pr(x̂

t
i|x

t
i, (Ti)

tk ,Θ)

Pr(x̂t
i|x

t′
i , (Ti)tk ,Θ)

(6.4)

The above expression involves three terms: 1) the first term is to evaluate the privacy

leakage at previous timestamp (t-1), 2) the second term finds the probability of transition

between the data-points of previous timestamp (t − 1) and current timestamp (t) and 3)

third is to find the privacy leakage at current timestamp t. Hence, we state that the privacy

leakage at current timestamp t depends on the privacy leakage at t − 1, TC transition

probability, and the privacy leakage at time t. Informally, we can write that equation 6.4 is

T CLAΘ
i
(Mt) = T CLAΘ

i
(Mt−1) + LAΘ

i
(Mt) (6.5)

According to equation 6.4, the first two terms determine temporal privacy leakage and this

can be calculated using linear fractional programing (LFP), discussed in [18]. In detail, let

q and d are the two distinct rows of transition probability matrix Θ and α be the privacy

parameter that quantifies the level of temporal privacy leakage. According to LFP, the

maximum value of objective function is

T CLAΘ
i
(Mt−1) = max

q,d∈Θ
log

q(eα − 1) + 1

d(eα − 1) + 1
(6.6)

In third term of equation 6.4, x̂t
i is conditionally independent of utk

i if given xt
i. So, the
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third term of equation 6.4 is as follows.

LAΘ
i
(Mt) = sup

x̂t
i,x

t
i,x

t′

i

log
Pr(x̂

t
i|x

t
i)

Pr(x̂t
i|x

t′
i )

Based on the steps of local randomizer, the relevant probabilities are

Pr(x̂
t
i[l] = 1|xt

i[l] = 1) =
1

2
p+ 1− p = 1−

1

2
p Pr(x̂

t
i[l] = 0|xt

i[l] = 1) =
1

2
p

Pr(x̂
t
i[l] = 1|xt

i[l] = 0) =
1

2
p Pr(x̂

t
i[l] = 0|xt

i[l] = 0) =
1

2
p+ 1− p = 1−

1

2
p

To satisfy the differential privacy condition, the ratio two conditional probabilities with

distinct values of xt
i, x and x′ i.e.,

Pr(x̂t
i=x̂|xt

i=x)

Pr(x̂t
i=x̂|xt′

i =x′)
should be bounded by eǫ.

Pr(x̂
t
i = x̂|xt

i = x)

Pr(x̂t
i = x̂|xt′

i = x′)
=

∑
x̂∈{0,1} Pr(x̂

t
i = x̂|xt

i = x)
∑

x̂∈{0,1} Pr(x̂t
i = x̂|xt′

i = x′)

Let a, b ≥ 0 and c, d ≥ 0 : a+b
c+d
≤ max(a

c
, b
d
), the above equation is

≤ max
x̂∈{0,1}

Pr(x̂
t
i = x̂|xt

i = x)

Pr(x̂t
i = x̂|xt′

i = x′)

=

(
1
2
p
)x̂1

(
1− 1

2
p
)1−x̂1 × . . .×

(
1
2
p
)x̂l

(
1− 1

2
p
)1−x̂l

(
1
2
p
)1−x̂1

(
1− 1

2
p
)x̂1 × . . .×

(
1
2
p
)1−x̂l

(
1− 1

2
p
)x̂l

×
(
1− 1

2
p
)x̂l+1

(
1
2
p
)1−x̂l+1 × . . .×

(
1− 1

2
p
)x̂L

(
1
2
p
)1−x̂L

×
(
1− 1

2
p
)x̂l+1

(
1
2
p
)1−x̂l+1 × . . .×

(
1− 1

2
p
)x̂L

(
1
2
p
)1−x̂L

=

(
1

2
p

)2(x̂1+x̂2+...+x̂l−x̂l+1−...−x̂L)

×

(
1−

1

2
p

)2(x̂l+1+x̂l+2+...+x̂L−x̂1−...−x̂l)
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The sensitivity is maximized when x̂l+1 = x̂l+2 = . . . = x̂L = 1 and x̂1 = x̂2 = . . . =

x̂l = 0, then

=

(
1− 1

2
p

1
2
p

)2h

ǫ = 2hln

(
1− 1

2
p

1
2
p

)

The local randomizer method satisfies ǫ-local differential privacy where ǫ = 2hln
(

1− 1

2
p

1

2
p

)
.

Therefore the total privacy leakage under temporal correlation in continuous data release

is as follows.

T CLAΘ
i
(Mt) = T CLAΘ

i
(Mt−1) + LAΘ

i
(Mt)

= max
q,d∈Θ

log
q(eα−1)+1
d(eα−1)+1

+ 2hln

(
1− 1

2
p

1
2
p

)

We illustrate how the TC factor influences privacy leakage w.r.t adversary with and without

knowledge of transition probability distribution Θ through a numerical example. Consider

a query to find the user i′s location value lti is either l1 or l2 at timestamp t, where l1 and

l2 ∈ L. For simplicity, we assume that lti is,

lti =




1 i’s true location at time t,

0 Otherwise.

(6.7)

Consider a user i′s trajectory of length 2 timestamps, say Ti = (x1
i = l1, x

2
i = l2) and the

transition probability matrix Θ for user i′s trajectory as shown in Figure 6.2. Let AΘ
i and

Ai are the two adversaries with and without knowledge of Θ distribution respectively and

are interested in finding the location of Ui at timestamp 2 (i.e., the location value of x2
i ).
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According to equation 6.5, we compute T CLAi
(M2) and T CLAθ

i
(M2). For adversary Ai

without knowledge of Θ, we get

T CLAi
(M2) = sup

x̂1
i ,x̂

2
i

log
Pr(x̂

1
i , x̂

2
i |x

2
i = l2)

Pr(x̂1
i , x̂

2
i |x

2′
i = l1)

= sup
x̂1
i

log
exp(−|x̂1

i − (x1
i = l1)|)Pr(x

1
i |x

2
i = l2)

exp(−|x̂1
i − (x1′

i = l2)|)Pr(x1′
i |x

2′
i = l1)

+ sup
x̂2
i

log
exp(−|x̂2

i − (x2
i = l2)|)

exp(−|x̂2
i − (x2′

i = l1)|)

= 0 + sup
x̂2
i

log
exp(−|x̂2

i − 1|)

exp(−|x̂2
i − 0|)

= 1

For adversary Ai with knowledge of Θ (i.e., AΘ
i ), we get

T CLAΘ
i
(M2) = sup

x̂1
i ,x̂

2
i

log
Pr(x̂

1
i , x̂

2
i |x

2
i = l2)

Pr(x̂1
i , x̂

2
i |x

2′
i = l1)

= sup
x̂1
i

log
exp(−|x̂1

i − (x1
i = l1)|)Pr(x

1
i |x

2
i = l2)

exp(−|x̂1
i − (x1′

i = l2)|)Pr(x1′
i |x

2′
i = l1)

+ sup
x̂2
i

log
exp(−|x̂2

i − (x2
i = l2)|)

exp(−|x̂2
i − (x2′

i = l1)|)

= 0.55 + 1 = 1.55

The above privacy analysis shows that privacy leakage is increased when the user’s loca-

tion data-points are temporally correlated. Hence, we can claim that the curator (or data

publisher) has more chance to disclose sensitive data (or location data-point) than tradi-

tional ǫ-LDP in continuous data publications settings. It happens due to an inadequate

supply of privacy budget for perturbing the temporally correlated location data-points of a

user stream. A recent privacy method called w-event privacy for allocating a ratio of pri-

vacy budget to each location data-point to achieve ǫ-LDP guarantee of any user’s stream
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of length w. However, this privacy method achieves ǫ-LDP by assuming the location data-

points of a user stream are independent. In real-time data collection, most of the location

data-points are temporally correlated of certain probability. Due to this, w-event privacy

has more privacy leakage as compared to traditional ǫ-LDP.

6.3 The Proposed Algorithm

In this section, we discuss our proposed Privacy Budget Allocation (PBA) mechanism in

local settings. It allows to compute and allocate the quantity of privacy budget to each

publication in continuous data release settings. Further, we theoretically prove that our

PBA mechanism achieves ǫ-LDP and shows the data utility of our PBA mechanism.

Let M be the PBA mechanism, which consists of series of sub-mechanisms, say M1 ,

M2 , . . . ,Mk , . . . ,Mt. Each sub-mechanismMk takes a location data-point of a user

stream as an input and generates a noisy location data-point x̂k
i as an output. Each sub-

mechanism Mk uses some amount of privacy budget (say ǫk) from total privacy budget

ǫ for perturbing Kth location data-point to achieve ǫk-LDP at sub-mechanism Mk. In

this fashion,M publishes a series of private location data-points of a user stream namely

(x̂1
i , x̂

2
i , . . . , x̂

k
i , . . . , x̂

t
i) to the data curator or the data collector.

In our PBA mechanismM, we adopt a sliding window methodology used in the w-event

privacy model. This privacy model promises to protect any sequence of location data-

points occurring within a sliding window of size w. If M to satisfy w-event privacy, it

ensures the following condition. Let us assume that the sliding window of size w consists

of w number of timestamps or location data-points and the span of any timestamp k within

the sliding window is from k − w + 1 to k. Each timestamp k is operated by a respective

sub-mechanismMk. SinceMk uses independent randomness, soMk achieves ǫk-LDP
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for some ǫk. The sum of privacy budgets used for randomness by each sub-mechanism

within the sliding window must be less than or equal to the total privacy budget ǫ. Then the

PBA mechanismM achieves w-event privacy. Moreover, the sliding window is moving

one timestamp ahead after every w timestamps. Hence, mechanismM achieves user-level

privacy of any length of the user’s stream.

The PBA mechanismMwithin the sliding window involves two phases. These two phases

operate sequentially by using independent randomness. At any timestamp k within the

window, the first phase of the M compute dissimilarity between current location data-

point (say xk
i ) and last release noisy data-point from the noisy data-points of timestamp

1 to k − 1 i.e., (x̂l
i, x̂

2
i , . . . , x̂

l
i, . . . , x̂

k−1
i ). The dissimilarity value is made privately by

using the allotted privacy budget at kth timestamp, and this private dissimilarity value is

forwarded into phase 2 ofM. The second phase ofM uses it to decide whether to publish

the current location data-point or not. If the second phase of M decides not to publish

the current location data-point at k (named as skipped publication), then the kth allotted

privacy budget becomes free and can be used for future publication if necessary. On the

other hand, M decides to publish the current location data-point at k, them M absorbs

one extra privacy budget that became available from previous skipped publication if and

only if the correlation exists between the current location data-point and last published

location data-point; otherwise, it uses only allotted privacy budget for publication at kth

timestamp. The quantity of extra privacy budget is the same as the privacy budget allotted

at the respective timestamp. Note that whenever the mechanism absorbs an extra privacy

budget from previous timestamps, then the mechanism must nullify immediately succeed-

ing timestamp’s publication, i.e., the result of x̂k+1
i = null if kth timestamp uses an extra

budget. This null publication’s privacy budget can not be used in any future publication,

because it exceeds the maximum privacy budget ǫ when the sliding window slides over
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Algorithm 6.1 Pseudocode ofMk in PBA

INPUT: Data-point xk
i , total privacy budget ǫ and sliding window size w.

OUTPUT: Release noisy data-point x̂k
i .

1: At sub-mechanismMk

2: Phase1: Compare last release noisy data-point x̂l
i and current data-point xk

i

3: Compute xk
i and retrieve x̂l

i

4: Calculate dissimilarity d(xk
i , x̂

l
i) =

1
|L|Σ

|L|
j=1|x̂

l
i[j]− xk

i [j]|

5: Calculate privacy budget ǫ1k = ǫ/(2 · w) = 2hln
(

1− 1

2
p

1

2
p

)
, where p ∈ [0, 1]

6: Convert nk
i = d(xk

i , x̂
l
i) into n̂k

i using Local Randomizer.

7: Phase2: Compute noise for current data-point xk
i

8: Calculate privacy budget at kth timestamp ǫ2k = ǫ/(2 · w) = 2hln
(

1− 1

2
p

1

2
p

)
, where p ∈ [0, 1]

9: Compute NnullP =
ǫ2
l

ǫ/(2·w) − 1

10: If k − l ≤ NnullP

11: xk
i = null

12: Else

13: Find NAbsorbedP = k − (l +NnullP )
14: ǫextra = ǫ/(2 · w) ∗NAbsorbedP − 1
15: ǫtotal = ǫtotal + ǫextra
16: If correlation exists

17: ǫtotal = ǫtotal − ǫ/(2 · w)
18: ǫ2k = 2 · ǫ/(2 · w)
19: Compute noise λ2

k = 1/ǫ2k
20: If d̂ki > λ2

k

21: Return x̂k
i

22: Else

23: Return x̂l
i

24: end for

25: end for

time. Although, any window utilizes some extra privacy budgets for publications if and

only if the window contains an equal or more number of skipped publications occurred.

However, both phases of M must be made private even-though phase 1 of M appears

within the internal process of the PBA mechanism. This is because the adversary knows

that phase 1 computes dissimilarity value, and this value affects the decision taken by

phase 2 ofM. Hence, phase 1 ofM must add proper noise to dissimilarity value.

Algorithm 6.1 shows the pseudocode for allocating a privacy budget at kth timestamp
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within the sliding window of size w by using the PBA method. A sub-mechanism Mk

takes a kth location data-point as an input and generates a noisy location data-point x̂k
i as

an output. As we know that the PBA mechanismM involves two phases, namelyM1 and

M2. These two phases operate sequentially by using half of the total privacy budget, such

as ǫ1 = ǫ/2 and ǫ2 = ǫ/2, respectively. In the first phase ofM,M1 uniformly allocates a

ratio of privacy budget from ǫ1 to each timestamp within a sliding window. At timestamp

k, M1
k computes the current location data-point (xk

i ) and retrieves the last release noisy

location data-point (x̂l
i) (line 3). Then it calculates a dissimilarity value between xk

i and

x̂l
i. To find dissimilarity value, we use a metric called mean of absolute error (MAE) and

it is formulated as 1
|L|
Σ

|L|
j=1|x̂

l
i[j] − xk

i [j]|, where xk
i [j] and x̂l

i[j] are the vectors of length

j = 1, 2, . . . , |L| (line 4). After, the obtained dissimilarity value d(xk
i , x̂

l
i) is made in pri-

vate using local randomizer i.e., n̂k
i (lines 5-6), and forward it into the sub-mechanismM2

k.

At phase 2,M2 uniformly allocates a ratio of privacy budget from ǫ2 to each timestamp

within a sliding window (line 8). At timestamp k,M2
k computes the number of null pub-

lications’ privacy budget absorbed by the last release publication. So that the mechanism

must nullify the same number of immediately succeeding timestamp’s publications. At k,

if the last release publication absorbs one extra privacy budget, then kth timestamp must be

null (lines 9-11). Otherwise, find the number of skipped publications before kth timestamp

and add their privacy budgets into the absorbed privacy budget variable named as ǫA (lines

13-15). If a correlation exists between the kth timestamp and last release publication, then

kth timestamp requires an extra budget from ǫA and add into the allotted privacy budget

at timestamp k ǫ2k (lines 16-18). Then, M2
k compute noise λ2

k for kth publication, if the

private dissimilarity value at phase 1 is greater than noise λ2
k computed for kth publica-

tion at phase 2, thenMk publishes xk
i with noise or otherwise last release noisy location

data-point x̂l
i.
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Figure 6.3: Distribution of privacy budget over timestamps(or event) within the sliding

window of size w = 3.

Figure 6.3 shows that the PBA method allocates the privacy budget into each timestamp

within the sliding window of size 3 while assuming the user trajectory length is 7. The PBA

method allocates ǫ/(2.w) = ǫ/6 privacy budget for both sub-mechanismM1
k andM2

k. At

the first timestamp, PBA publishes the private location data point by using M2
1 = ǫ/6.

Suppose at timestamp 2 and 3, PBA decides not to publish private location data points i.e.,

the output of timestamps 2 and 3 is null, and the outputs are approximated by x̂1
1. The

budgets of timestamps 2 and 3 become available for future publications i.e., ǫ/6 + ǫ/6 =

ǫ/3. At timestamp 4, PBA publishes a private location data point using allotted privacy

budgetM2
4 = ǫ/6at time 4. At time 5, the mechanism decides to publish a private location

data point, but the location value at time 5 correlates with the location value at time 4.

ThusM2
5 uses its own privacy budget and an extra privacy budget that became available

from the previous skipped publication (say timestamp 2 and 3). SinceM2
5 uses an extra

privacy budget, the publication at timestamp 6 must be null (i.e.,M2
6 = 0). Hence the sub-

mechanismM6 outputs null. Finally, at timestamp 7, the mechanism decides to publish a
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private location data point using the allotted privacy budgetM2
7 = ǫ/6. For any window,

the sum of the privacy budgets is atmost ǫ. Note that if PBA mechanism does not make

null at timestamp 6, the sum of the privacy budgets in the sliding window (of timestamp

4-6) is 7ǫ/6, which violates ǫ-LDP.

6.3.1 Privacy Analysis

Theorem 6.3.1. A privacy budget allocation(PBA) method satisfies w-event local differ-

ential privacy.

Proof. Any sliding window of size w, the mechanismM assigns half of the privacy budget

into phase1 and the remaining into phase2 of PBA method. Therefore, we should prove

that, at any timestamp k in w,M1
k satisfies ǫ1k-LDP where ǫ1k = ǫ/2w = 2hln

(
1− 1

2
p

1

2
p

)
and

M2
k satisfies ǫ2k-LDP where ǫ2k is atmost 2 ∗ 2hln

(
1− 1

2
p

1

2
p

)
if publication occurs at times-

tamp k, otherwise ǫ2k is zero. Here, ǫ2k is calculated according to the following situation

such as, if statistics at timestamp k involves correlation then ǫ2k requires 2 ∗ 2hln
(

1− 1

2
p

1

2
p

)

privacy budget, else otherwise requires 2hln
(

1− 1

2
p

1

2
p

)
. In phase1,M1

k publishes a dissimi-

larity value i.e., q(d) = d(xk
i , x̂

l
i) = |x̂

l
i[j]− xk

i [j]|, j = (1, 2, ..., L) in privately. Since the

one bit of vector xk
i is one, the maximum difference of q(d) and q(d′) is two bits. Hence,

the sensitivity of q is 2. Then, the noise ofM1
k is λ1

k = 2/2hln
(

1− 1

2
p

1

2
p

)
. According to the

definition LDP,M1
k satisfies ǫ1k-LDP where ǫ1k = 2

2/2hln

(
1− 1

2
p

1
2
p

) = 2hln
(

1− 1

2
p

1

2
p

)
= ǫ/2w

when p = 2

e
ǫ

4wh
+1

. Moreover, the sum of the privacy budget used by each M1
k within

the window of size w is equal to ǫ/2. Therefore, we next prove that each M2
k falls on

0 ≤ Σw+i−1
k=i ǫ2k ≤ ǫ/2. In phase2,M2

k uses ǫ2k budget, which quantifies is purely based on

statistic value at time k. Suppose k be the timestamp which absorbs extra budget(Eb) of

quantity Eb = 1, due to the existence of data correlation. According to the PBA method,

the quantity of extra budget at kth timestamp totally depends on the number of null pub-

104



CHAPTER 6. QUANTIFY THE IMPACT OF DATA CORRELATION ON PRIVACY LEAKAGE IN ǫ-LOCAL DIFFERENTIAL PRIVACY Section 6.3

lications (NnullP ) ≥ Eb appears before kth timestamp within the window and the same

Eb quantity of publication should be nullified after kth timestamp. Then, the sum of the

privacy budget of k along with NnullP publications is atmost (Eb + 1) ∗ ǫ/2w i.e., each of

these NnullP + 1 publications receives privacy budget
(Eb+1)∗ǫ/2w
NnullP+1

≤ ǫ/2w. This applies

any timestamp k′ which receives extra budget within the window of size w. Therefore,

Σw+i−1
k=i ǫ2k = Σw+i−1

k=i ǫ/2w ≤ ǫ/2. Hence,M satisfies ǫ-LDP where ǫ = ǫ1 + ǫ2.

Theorem 6.3.2. The average error per timestamp in PBA is at most 1
2Eb+1

· ( 2w
(Eb+1)ǫ

+Eb ·

errornull) +
2w
ǫ|L|

Proof. At timestamp k, the private dissimilarity value atM1
k guidesM2

k to decide whether

to publish either true publication or null publication. Hence, we consider both sub-mechanism’s

errors to compute the average error per timestamp in PBA. TheM1
k induces error when

its private dissimilarity value suggestsM2
k to make a wrong decision, i.e.,M2

k performs

wrongly skips a publication or wrongly performs the true publication. If M1
k made the

correct decision (i.e., true publication occurs at time k), then the error at timestamp k is

the error induced byM2
k. Or if the publication is correctly skipped at time k, the error at

timestamp k is an original dissimilarity value between xk
i and x̂l

i, which is bounded by the

error ofM2
k. However, ifM1

k wrongly performs true publication at time k, then the origi-

nal dissimilarity value is underrated due to noise of scale λ1
k added by theM1

k. Or ifM1
k

wrongly skips a publication at time k, then the original dissimilarity value is overrated due

to noise with scale λ1
k added by theM1

k. The expected under/overrated of dissimilarity is

equal 2w
ǫ|L|

due to the noise ofM1
k. Therefore, the error induced by theM1

k in PBA is at

most 2w
ǫ|L|

.

AtM2
k phase, if publication occurs, then the publication receives privacy budget provided

by the M2
k and also it may associated with the same amount of extra budget extracted

from previous null publication. So the kth publication receives privacy budget
(Eb+1)ǫ

2w
.
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Hence, it’s error is 2w
(Eb+1)ǫ

. As we know that, the immediate succeeding timestamp of kth

timestamp must be null publication and it introduces error errornull. For calculate error

at kth timestamp, we consider both and averaging it by 2Eb + 1. The average error per

timestamp ofM2
k in PBA is 1

2Eb+1
· ( 2w

(Eb+1)ǫ
+ Eb · errornull). Adding error induced by

M1
k, we get average error per timestamp in PBA is 1

2Eb+1
· ( 2w

(Eb+1)ǫ
+Eb · errornull) +

2w
ǫ|L|

6.4 Experimental Results

In this section, we start with an experiment to analyze the impact of different types of

correlation on privacy leakage. Then, we conduct an experiment to demonstrate the data

utility of our proposed method with the existing states of art methods.

We employed three real data sets and one synthetic dataset in our experiment for mea-

suring the effectiveness of our proposed PBA method with the existing allocation meth-

ods. A Gowalla dataset is used in this experiment along with Geolife, T − Drive and

Metro100K datasets which are described in chapter 3. A Gowalla dataset is real-time

dataset, is consists of more than 600000 users’ check-in history from November 2010 to

December 2011. We optimized the real-time datasets in our experiment by considering a

user is located at most one location at each timestamp and collected all samples (user’s

location data-point) every 5 minutes interval.

6.4.1 Impact of correlation on privacy leakage

We present the behavior of different types of correlation and their impact on privacy leak-

age of our proposed method.
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6.4.1.1 Correlation Behavior

According to our problem settings, we train the Markov model for modeling a transition

probability between all possible location data-points. This transition probability matrix de-

scribes how a location data-point is dependent on other possible remaining location data-

points. There are three types of correlation in the transition probability matrix: strong,

moderate, and no correlation. Now, we analyze the privacy leakage under the protec-

tion of traditional ǫ-LDP when the dataset involves correlation. Figure 6.4 shows that the

privacy leakage of ǫ-LDP under different types of correlation. Let assume that a strong

correlation occurs in the transition probability matrix, say



1 0

0 1



, then the privacy leak-

age of ǫ-LDP increases linearly due to the similar kind of location data-point is released

in all timestamps, shown in Figure 6.4(a). If a moderate correlation occurs in-between

location data-points, say



0.7 0.3

0.4 0.6



, then the privacy leakage of ǫ-LDP from timestamp 1

to t, as shown in Table 6.4(b). The privacy leakage under moderate correlation is quan-

tified by using equation 6. Finally, there is no correlation between the data-points, then

each timestamp’s data-point achieves 0.1-LDP while assuming ǫ=0.1, as shown in Figure

6.4(c).
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Figure 6.4: Privacy leakage vs Timestamps under different types of correlation (a) Strong

correlation (b) Moderate correlation (c) No correlation
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6.4.1.2 Privacy leakage under different degrees of correlation

Let assume that a transition probability matrix with a moderate correlation in which the

probability value on cells is scattered or uniformizes the probabilities by performing Lapla-

cian smoothing. Let d be the number of dimensions in the transition matrix. If d is large,

then the probability value on cells is well scattered. The figure shows the degradation of

privacy leakage when the size of d varies in the transition probability matrix.
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Figure 6.5: Privacy leakage vs different degrees of correlation while set ǫ = 1 (a) Geolife

(b) T-Drive (c) Gowalla and (d) Metro100K datasets.
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Figure 6.6: Privacy leakage vs different degrees of correlation while set ǫ = 0.1 (a) Geolife

(b) T-Drive (c) Gowalla and (d) Metro100K datasets.

Privacy leakage versus d: The result of the privacy leakage increases when the size of d
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decreases, as shown in the lines d = 50 and d = 10 of Figures 6.5 and 6.6. This is because

the data points in a matrix are very close to the stronger correlation. In other words, a

stronger correlation in the transition matrix results in more privacy leakage. The transition

matrix involves a weaker correlation when the matrix dimension is larger, as shown in the

lines d = 100, d = 200, d = 20, and d = 40 of Figures Figures 6.5 and 6.6.

Privacy leakage versus ǫ: We found that the growth of privacy leakage is significantly

detained in the case of ǫ = 0.1. For example, taking d = 100, the growth of privacy

leakage increases, and it continues for approximately 80 timestamps when ǫ = 1 (Fig

6.5). In contrast, it continues for almost 70 timestamps when ǫ = 0.1 (Fig 6.6). However,

after an over of timestamps, the privacy leakage in ǫ = 0.1 is not comparatively lower

than that of ǫ = 1 under strong correlation. This is because, even though a small privacy

budget eliminates privacy leakage at each timestamp, the adversary can study sufficient

information from the continuous data releases.

6.4.2 Utility Evaluation

To evaluate publishing statistic’s data utility, we used two metrics such as Mean of absolute

error(MAE) and Mean of square error(MSE). These two metrics measure dissimilarity (or

error) value between the published statistics and true statistics. Moreover, the MSE metric

helps to find larger errors. According to our PBA method, each timestamp acquires a piece

of the privacy budget to publish statistics under the protection of ǫ-LDP. Thus, we measure

dissimilarity (or error) values per timestamp using MAE and MSE metrics. The definition

of MAE and MSE metric is as follows.

MAE() = 1
|T |

1
|L|
Σ

|L|
j=1|x̂

l
i[j]− xk

i [j]|
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MSE() = 1
|T |

1
|L|
Σ

|L|
j=1|x̂

l
i[j]− xk

i [j]|
2

Where xk
i and x̂l

i are the location data-point of user i at time k and perturbed location data-

point of user i at time l (i.e., last release data-point) respectively. And both data-points are

the vectors of length L. T be the total number of location data-points of user i.
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Figure 6.7: MAE vs. w while fixing ǫ = 1 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.
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Figure 6.8: MSE vs. w while fixing ǫ = 1 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

There exist a few baseline methods for allocating privacy budgets to each timestamp in

literature, such as Uniform, Sampling, and Budget Absorption (BA). These methods allo-

cate privacy budgets using different strategies under the protection of ǫ-LDP. We compare

our proposed method with the above baseline approaches to analyze the effectiveness of
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our method while varying the size of the sliding window w and ǫ value. Figures 6.7 and

6.8 show the error rate of MAE and MSE between the PBA method and the baseline ap-

proaches while varying the sliding window size w. We observed that the error rate of

MAE and MSE increases while increasing the sliding window size w. Because the rate of

allotted budget to each timestamp is minimized when the large size of the sliding window.

However, the PBA method’s error rate is comparatively less as compared to the baseline

approaches. This is because the adequate amount of privacy budget is allotted at tempo-

rally correlated timestamps in the PBA method compared to baseline approaches. The

error rate of MAE and MSE between the PBA and BA methods are approximately simi-

lar because both methods follow the same privacy budget allocation strategy (i.e., sliding

window methodology). However, the BA method allows non-temporally correlated user

stream, while the PBA method allows temporally correlated user stream and proves that

the PBA method achieves ǫ-LDP under temporal correlation. Notice that the Uniform

method’s error rate increases linearly when w increases because of a fixed privacy budget

allotted to each timestamp, which leads to more error rates. Similarly, a sampling approach

allots privacy budget at a given sample interval of the entire user stream.
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Figure 6.9: MAE vs. ǫ while fixing w = 40 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

Further, we compared our proposed method with the above baseline approaches while
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Figure 6.10: MSE vs. ǫ while fixing w = 40 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

varying ǫ values, as shown in Figures 6.9 and 6.10. We observed that the error rate of

MAE and MSE decreases when the ǫ value increases because a lower ǫ value causes more

privacy level and obtain lower accuracy. However, the error rate of the baseline approaches

is higher than our PBA method because baseline methods use a fixed privacy budget even

though the user stream involves temporal correlation. Notice that the error rates of the

PBA and BA method are approximately similar because both methods follow the same

allocation strategy and note that the BA method provides ǫ-LDP when the user stream does

not involve temporal correlation, whereas the PBA method allows the user stream with

temporal correlation and proves that the PBA achieves ǫ-LDP under temporal correlation.

In literature, there is no related work that directly solves our problem settings as per the

best of our knowledge. We found three existing state-of-the-art methods that are most

relevant to our problem setting. [59] proposed a Planar Isotropic Mechanism (PIM) for

preserving a single trace of user’s privacy, and it achieves differential privacy against the

adversaries with knowledge of temporal correlation. [73] presents a local randomizer

framework based on a randomized matrix (abbreviated as LRM) to protect a user location

data-point at each timestamp in local settings. [74] introduced a generalized randomized

response (GRR) mechanism, which achieves ǫ-LDP under temporal correlation in spatio
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Figure 6.11: MAE vs. w while fixing ǫ = 1 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.
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Figure 6.12: MSE vs. w while fixing ǫ = 1 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

temporal data. We conducted a set of experiments to tested PIM, LRM, GRR, and PBA

methods at each timestamp in Geolife, T-Drive, ShangHai, and Metro100K datasets. Fig-

ures 6.11 and 6.12 show the performance of MAE and MSE between our PBA method

with PIM, LRM, and GRR over time while varying the size of the sliding window (w) and

a constant ǫ = 1. The experimental results exhibit that both metric (MAE and MSE) error

rate increases while increasing the size of the sliding window w. This is because larger

w may have more temporally correlated data-points, which leads to more error rates. The

error rate of the proposed PBA method provides a significant data utility compared with

other state-of-the-art methods. This is because the PBA method allocates a privacy budget
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only when the publication occurs at the timestamp. On the other side, the above state-of-

the-art methods allocate budgets uniformly at every timestamp.
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Figure 6.13: MAE vs. ǫ while fixing w = 40 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.
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Figure 6.14: MSE vs. ǫ while fixing w = 40 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

Figures 6.13 and 6.14 show the error rate’s performance between our proposed method and

existing state-of-the-art methods while varying the ǫ values and a constant size w = 40.

The experimental results show that the error rate decreasing while increasing the ǫ values.

This is because a large privacy budget value (ǫ) leads to better data utility (or less error

rate). The error rate of our proposed method is comparatively better than other existing

methods. This is because the PBA method utilizes ǫ value only when the publications

occur over time, and the remaining skipped publication’s ǫ value will be used for future
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publication over timestamps. So, the PBA method gives better data utility compared to

other state-of-the-art methods. On the other hand, the existing state-of-the-art methods

utilize constant e value over timestamp, leading to achieving ǫ-LDP but less data utility

than our proposed method.

6.5 Summary

This work presents the definition of Local differential privacy under temporal correlation

to study the impact of temporal correlation on privacy leakage. Then, we illustrate and

show that the adversaries who know temporal correlation can disclose more privacy leak-

age than the traditional ǫ-LDP. The outcome of our study shows that the privacy leakage in

w-event privacy increases over time when the temporal correlation is involved in the user

stream. Therefore, we proposed a Privacy Budget Allocation (PBA) method for allocating

an adequate amount of privacy budget to each successive timestamp under the protection

of ǫ-LDP. Our proposed method provides a privacy guarantee to any w length temporally

correlated user stream. Finally, we conduct experiments with real and synthetic datasets

to compare the effectiveness of our proposed method with state-of-the-art methods. The

demonstration results show that the proposed method is comparatively better under tem-

poral correlation than the existing state-of-art methods.
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Chapter 7

Compare the Impacts of Data

Correlation on Privacy Leakage in a

Combined Privacy Preserving

Approaches

Many applications require either single or both phases: data collection and data shar-

ing to provide better social benefits to users, such as intelligent healthcare system [94], in-

telligent traffic control systems [95], and online advertisements [96]. The service provider

collects the user’s private data and provides the services to users or service provider shares

that collected private (or sensitive) data with other service providers for providing bet-

ter social benefits to users. However, the collection and sharing of users’ private data

may compromise the user’s privacy, leading to disclosing the user’s sensitive information.

Many privacy preservation methods have been proposed for providing a privacy guarantee

at the time of data collection and data sharing phases [97, 98]. Initially, the anonymization
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[99, 26] technique is a popular method to preserve user privacy in data publishing. How-

ever, it is challenging to balance the trade-off between data utility and user privacy. To this

end, Differential Privacy (DP) [9] is a novel privacy preservation approach with a mathe-

matical standard. This approach provides a strong privacy guarantee with the assumption

that service providers are trustworthy. It is difficult to presume that all service providers

are trusted, resulting in untrusted service providers misusing the information collected for

other purposes [11, 12]. To overcome this, recently proposed a variant of standard Differ-

ential privacy for local settings, called Local Differential Privacy (LDP) [10]. It promises

that it provides a strong privacy guarantee even though the service provider is not trusted.

There are a few privacy approaches in the literature under the protection of ǫ-DP and ǫ-

LDP for continuous data release settings [93, 66, 17]. For continuous data release settings,

Dwork et al. [100] presented two privacy approaches: event-level privacy and user-level

privacy. Event-level privacy achieves ǫ-DP to each event, protecting a single data-point of

a user trajectory. At the same time, user-level privacy achieves ǫ-DP to the finite length of

a user trajectory. As a result, user-level privacy is limited usage in most real-world appli-

cations. To overcome these limitations, recently, a w-event privacy mechanism [17] has

been introduced to address the limited applicability in real-world applications. This pri-

vacy mechanism adopts a sliding window methodology to achieve ǫ-DP to infinite length

of user trajectory.

However, if the data collector or curator is malicious, users must send their sensitive in-

formation privately using the LDP mechanism. Or if the curator has the dataset and wants

to share it with third parties, then the curator applies the DP mechanism and sends it to the

third parties. Or the curator wants to release statistics for which it requires both private

data sent by the user (using LDP) and collected stored data, and then the curator releases

aggregated statistics using the DP mechanism, so the curator involves both mechanisms in
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order to release aggregate statistics. In other words, few applications require either a pri-

vacy guarantee by the data collector (i.e., DP) or a privacy guarantee by the data provider

itself (i.e., LDP) or a privacy guarantee by both data provider and data collector (i.e., LDP

and DP). Many authors studied the privacy leakage of the only DP involved in the ap-

plication or only LDP involved in the application, but not both mechanisms involved the

application. So, it is necessary to study the privacy leakage of a combined approach.

Furthermore, when the data points are not correlated, w-event privacy protects users’ pri-

vacy from the bounded knowledge of the adversary. However, in case the data points

are correlated, then it provides less privacy guarantee than the traditional w-event privacy

mechanism (either DP or LDP). This is because the quantity of privacy budgets which is

allotted to each timestamp is not sufficient in continuous data release settings. Recently

Privacy Budget Allocation strategies have been proposed to address this limitation in a

continuous data release setting under the DP and LDP protection. However, it shows the

impact of data correlation on privacy leakage in either DP or LDP mechanism but not

shown the impact of data correlation on privacy leakage in a combined (LDP+DP) ap-

proach. Since this combined (LDP+DP) approach having many possible combinations by

considering with or without temporal correlation, such as either it requires traditional LDP

+ traditional DP or LDP with temporal correlation (TC)+ traditional DP or traditional

LDP + DP with temporal correlation or LDP with temporal correlation + DP with tempo-

ral correlation, it is necessary to study the impact of data correlation on privacy leakage in

all possible combinations of the combined (LDP+DP) approach. Depends on the type of

query, the curator chooses one from the different combinations of combined approaches

to releasing statistics privately.

In summary, compare the privacy leakage of all combined approaches irrespective of

whether the data-points involve temporally correlated or independent in continuous data
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release setting with other states of the art methods. The contributions of this work are as

follows.

1. We quantify the impact of data correlation on privacy leakage of all cases of a com-

bined approach in continuous data release settings.

2. We performed a series of experiments to determine the average error rate per times-

tamp for evaluating the data utility of a combined approach (LDP with TC+DP with

TC) with other states of the art methods.

The organization of this work is as follows. Section 7.1 presents a reformulated definitions

of Differential Privacy in continuous data release settings and Local Differential Privacy in

continuous data release settings. And also presented privacy leakage analysis of both DP

and LDP mechanisms for correlated and non correlated datasets. Section 7.2 presents the

comparative analysis of all possible combinations of combined approach and shows the

effectiveness of data correlation on privacy leakage in a combined privacy approach. In

section 7.3, conduct an experiment to evaluate the data utility of the various combination

of LDP and DP mechanisms with other existing state-of-the-art methods. Finally, the

summary of this work is presented in section 7.4.

7.1 System Framework

In this section, we presents a reformulated definitions of Differential Privacy in continuous

data release settings and Local Differential Privacy in continuous data release settings.

And also we describe the the privacy leakage of DP and LDP under temporal correlation.
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7.1.1 Differential Privacy under continual observation

A privacy mechanismM is satisfied ǫ-DP, if and only if for any two neighboring stream

prefixes differ by atmost one user trajectory i.e., St and S
′

t, and for any possible outputs ω

of range(M),M holds

log
Pr(M(St) = (ω1, ω2, ..., ωt))

Pr(M(S
′

t) = (ω1, ω2, ..., ωt))
≤ ǫ

Where ǫ represents the degree of privacy offered to users. The most common approach

used for achieving ǫ-DP is Laplace mechanism. For instance, let a query q, according to

the ǫ-DP, add random noise which is derived from Laplace distribution with scale Lap(λ)

to the true answer. The density function of Laplace distribution is as follows.

P (r) =
1

2λ
exp(−|r|/λ) (7.1)

Where λ = ∆q/ǫ, ∆q is a maximum difference between the outputs over the neighboring

stream prefixes St and S
′

t i.e., ∆q = maxSt,S
′

t
||q(St)− q(S

′

t)||.

7.1.2 Local Differential Privacy under continual observation

A privacy mechanismM is satisfied ǫ-LDP, if and only if for any two any pair of input

value xt
i and xt′

i and for any possible outputs x̂ of range(M),M holds

log
Pr(M(xt

i) = x̂t
i)

Pr(M(xt′
i ) = x̂t

i)
≤ ǫ

log
Pr(M((Ti)

t) = (x̂1
i , x̂

2
i , ..., x̂

t
i))

Pr(M((Ti)t
′) = (x̂1

i , x̂
2
i , ..., x̂

t
i))
≤ ǫ

Where ǫt represents the degree of privacy offered at timestamp t. In local differential pri-
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vacy, each user encodes his vector bits of his location data-point (say xj
i [l], l = (1, 2, . . . , L))

before sending into curator. Thus the data collector cannot access the original data of the

contributors or the users.

7.1.3 Privacy leakage analysis for non-correlated dataset of DP and

LDP

Consider an adversary Ai, wants to infer ith user location data-point at timestamp t, which

means Ai knows other users’ locatoion data-points except ith user location data-point, i.e.,

Ai knows St = St\{i} or Ai knows (Ti)
tk = (Ti)

t\{lti}.

The privacy leakage of DP and LDP mechanism for non-correlated dataset at timestamp

t against Ai is as follows, assume that lti and lt
′

i are the ith user location data-points at

timestam t.

LDP (Mt, Ai) = sup
ω,lti ,l

t′

i

log
Pr(ω|l

t
i, St)

Pr(ω|lt
′

i , S
′

t)

LLDP (Mt, Ai) = sup
lti ,l

t′

i ,x̂i

log
Pr(x̂i|l

t
i, (Ti)

tk)

Pr(x̂i|lt
′

i , (Ti)tk)

The above equations are lesser ǫ value, then lesser the privacy leakage and vice-verse.

Here, we considered a privacy budget ǫ as a metric for privacy leakage.

7.1.4 Privacy leakage analysis for temporally correlated dataset of

DP and LDP

With the knowledge of adversary from other sources, It is reasonable to believe that an

adversary knows the transition probability between all possible position data-points. For

modeling a transition probability between location data-points (according to some proba-
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bilistic rules), we used a Markov chain process (MC), which is denoted as θ ∈ Θ, where Θ

is a transition probability distributions of all possible position data-points. For instance, Ai

knows St = St\{i} or (Ti)
tk = (Ti)

t\{lti} and θ, so Ai is represented as Aθ
i . The privacy

leakage of DP and LDP mechanism for temporally correlated (T C) dataset against Ai at

time t is as follows, where lti and lt
′

i are two ith user data-points at timestamps t.

T CLDP (Mt, A
θ
i ) = sup

ω,lti ,l
t′

i ,θ

log
Pr(ω|l

t
i, St, θ)

Pr(ω|lt
′

i , S
′

t, θ)

T CLLDP (Mt, A
Θ
i ) = sup

x̂i,lti ,l
t′

i ,Θ

log
Pr(x̂

1
i , ....., x̂

t
i|l

t
i, (Ti)

tk ,Θ)

Pr(x̂1
i , ....., x̂

t
i|l

t′
i , (Ti)tk ,Θ)

The privacy leakage of DP and LDP mechanisms for T C dataset at timestamp t w.r.t Aθ
i

where i ∈ [k] are less than or equal to privacy leakage metric (ǫ). Then, the adversary

cannot distinguish whether the data point of user i is lti or lt
′

i with high confidence in

DP and same as in LDP also. If the ǫ value is less, then less privacy leakage or vice-

versa. The privacy leakage of DP and LDP for T C datasets attain more privacy leakage

than the traditional DP and LDP for non-correlated datasets. To understand the impact

of temporal correlation on privacy leakage in DP in continuous data publish settings, the

above Equation is expanded and simplified by Bayes theorem, i.e.,

T CLDP (Mt, A
θ
i ) = sup

ω1,...,ωt,lti ,l
t′

i ,θ

log
Pr(ω1, ..., ωt|l

t
i, St, θ)

Pr(ω1, ..., ωt|lt
′

i , S
′

t, θ)

= sup
ω1,...,ωt−1,lti ,l

t
′

i ,θ

log

∑
lt−1
i

Pr(ω1, ..., ωt−1|l
t−1
i , St−1, θ)Pr(l

t−1
i |l

t
i)

∑
lt−1

′

i

Pr(ω1, ..., ωt−1|l
t−1

′

i , S
′

t−1, θ)Pr(l
t−1
i |l

t
i)

+ sup
ωt,lti ,l

t
′

i ,θ

log
Pr(ωt|l

t
i, St, θ)

Pr(ωt|lt
′

i , S
′

t, θ)
(7.2)
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Similarly in ǫ-LDP,

= sup
x̂1
i ,.....,x̂

t−1
i ,xt

i,x
t′

i ,θ

log

∑
xt−1
i

Pr(x̂
1
i , ....., x̂

t−1
i |x

t−1
i , (Ti)

tk−1 , θ) ∗ Pr(x
t−1
i |x

t
i)

∑
xt−1

′

i

Pr(x̂1
i , ....., x̂

t−1
i |x

t−1′

i , (Ti)tk−1 , θ) ∗ Pr(x
t−1′

i |xt′
i )

+ sup
x̂t
i,x

t
i,x

t′

i ,θ

log
Pr(x̂

t
i|x

t
i, (Ti)

tk , θ)

Pr(x̂t
i|x

t′
i , (Ti)tk , θ)

(7.3)

The first two terms of the above equations in ǫ-DP and ǫ-LDP are to determine tempo-

ral privacy leakage and this can be calculated using linear fractional programing (LFP),

discussed in [18]. In detail, let q and d are the two distinct rows of transition probabil-

ity matrix Θ and α be the privacy parameter that quantifies the level of temporal privacy

leakage. According to LFP, the maximum value of objective function is

T CLDP/LDP (Mt−1, A
θ
i ) = max

q,d∈Θ
log

q(eα − 1) + 1

d(eα − 1) + 1
(7.4)

The local randomizer method satisfies ǫ-local differential privacy where ǫ = 2hln
(

1− 1

2
p

1

2
p

)
.

Therefore the total privacy leakage under temporal correlation in continuous data release

is as follows.

In ǫ-DP:

T CLDP (Mt, A
θ
i ) = max

q,d∈Θ
log

q(eα − 1) + 1

d(eα − 1) + 1
+ ǫ (7.5)

In ǫ-LDP:

T CLLDP (Mt, A
θ
i ) = max

q,d∈Θ
log

q(eα − 1) + 1

d(eα − 1) + 1
+ 2hln

(
1− 1

2
p

1
2
p

)
(7.6)

The above privacy analysis shows that privacy leakage is increased when the user’s lo-
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cation data-points are temporally correlated. Hence, we can claim that the curator (or

data publisher) has more chance to disclose sensitive data (or location data-point) than

traditional ǫ-LDP in continuous data publications settings. However, the w-event privacy

mechanism achieves ǫ-DP and ǫ-LDP in continuous data release settings, assuming the

data-points in the trajectory are independent. In real-time data collection and data sharing

phases, the location data-points are temporally correlated with a certain probability. Due

to the presence of temporal correlation, the ratio of privacy budget to each timestamp in

w-event privacy is not adequate. Hence, w-event privacy fails to achieve ǫ-DP and ǫ-LDP,

especially when the data-points are temporally correlated. Recently, Privacy Budget Allo-

cation (PBA) [101] strategies have been proposed to address this limitation in a continuous

data release setting under the DP and LDP protection.

There are few applications that require either a privacy guarantee by the data collector (i.e.,

DP) or a privacy guarantee by the data provider itself (i.e., LDP) or a privacy guarantee by

both data provider and data collector (i.e., LDP and DP). If the dataset involves temporal

correlation (T C), then the applications require different cases of mechanisms such as only

DP under T C or only LDP under T C or LDP under T C and traditional DP or traditional

LDP and DP under T C or LDP under T C and DP under T C. However, the recently pro-

posed PBA approach shows the impact of data correlation on privacy leakage in either the

DP or LDP mechanism but not shown the impact of data correlation on privacy leakage in

a combined (LDP+DP) approach. Since this combined (LDP+DP) approach having many

possible combinations by considering with or without temporal correlation, it is necessary

to study the impact of data correlation on privacy leakage in all possible combinations of

the combined (LDP+DP) approach.

Figure 7.1 shows the framework of combined (LDP+DP) approach by considering with or

without temporal correlation. Let assume that a curator receives LDP statistics from a user
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Figure 7.1: Different combinations of combined (LDP+DP) approach assuming with or

without temporal correlation

and use the stored database, to answer a query. The curator uses either a stored database

directly or made it private by using the DP mechanism depends on the query requirements.

There are four possible cases of combined (LDP+DP) approach in our framework. Based

on the type of datasets (either temporally correlated or not), the curator can choose a

suitable case of mechanisms to answer a statistical query. For instance, a curator wants to

release an answer to count query, which requires both LDP statistics and stored database

D. If the stored database involves correlation, the curator chooses either LDP +DP (T C)

mechanism. If the query is correlated with the released existing query, the curator must

choose LDP (T C) +DP (T C) mechanism.

7.2 Comparative analysis

This section analyzes the privacy leakage of all cases of combined approach DP and LDP

mechanisms with or without considering temporal correlation.
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7.2.1 LDP and DP

To answer a query, the curator receives perturbed data sent by the user using Local Differ-

ential privacy (called LDP statistic), and the stored datasbase. Since the curator uses stored

database to answer a query, curator uses both traditional (LDP+DP) mechanism releases

aggregate statistics. The privacy leakage of the combined approach at timestamp t against

Ai is as follows.

PL(LDP+DP )(Mt, Ai) = LLDP (Mt, Ai) + LDP (Mt, Ai)

= 2hln

(
1− 1

2
p

1
2
p

)
+ ǫ

The first term of the above equation is a value which satisfies ǫ-LDP at timestamp t, where

ǫ = .2hln
(

1− 1

2
p

1

2
p

)
.

7.2.2 LDP(T C) and DP

To answer a query, the curator receives perturbed data sent by the user using Local Dif-

ferential privacy (called LDP statistic), and the stored datasbase. However, the data-points

sent by the user at different timestamp may be temporally correlated. If the data-points are

correlated, then the traditional ǫ-LDP in a continuous data release setting does not provide

expected privacy guarantee. Therefore, the curator uses a combined approach of LDP(T C)

and DP combination in order to release aggregate statistics. The privacy leakage of this

combined approach at timestamp t against Ai is as follows.

PL(LDP (T C)+DP )(Mt, Ai) = T CLLDP (Mt, A
Θ
i ) + LDP (Mt, Ai)

=

(
max
q,d∈Θ

log
q(eα − 1) + 1

d(eα − 1) + 1
+ 2hln

(
1− 1

2
p

1
2
p

))
+ ǫ
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The privacy leakage of T CLLDP involves two terms; the first term is to determine the

temporal privacy leakage between two adjacent data-points at timestamp t and t− 1. This

term has derived by using linear fractional programming (LFP), discussed in [18]. The

second term is a value which satisfies ǫ-LDP at timestamp t, where ǫ = 2hln
(

1− 1

2
p

1

2
p

)
.

7.2.3 LDP and DP(T C)

To answer a query, the curator receives perturbed data sent by the user using Local Differ-

ential privacy (called LDP statistic), and the stored datasbase. However, the data-points at

different timestamp in stored database may be temporally correlated. If the data-points are

correlated, then the traditional ǫ-DP in a continuous data release setting does not provide

expected privacy guarantee. Therefore, the curator uses a combined approach of LDP and

DP(T C) combination in order to release aggregate statistics. The privacy leakage of this

combined approach at timestamp t against Ai is as follows.

PL(LDP+DP (T C))(Mt, Ai) = LLDP (Mt, Ai) + T CLDP (Mt, A
Θ
i )

= 2hln

(
1− 1

2
p

1
2
p

)
+

(
max
q,d∈Θ

log
q(eα − 1) + 1

d(eα − 1) + 1
+ ǫ

)

The privacy leakage of T CLDP involves two terms; the first term is to determine the

temporal privacy leakage between two adjacent data-points at timestamp t and t− 1. This

term has derived by using linear fractional programming (LFP), discussed in [18] The

second term is a value which satisfies ǫ-LDP at timestamp t, where ǫ = 2hln
(

1− 1

2
p

1

2
p

)
.

7.2.4 LDP(T C) and DP(T C)

To answer a query, the curator receives perturbed data sent by the user using Local Dif-

ferential privacy (called LDP statistic), and the stored datasbase. However, the data-points
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sent by the user at different timestamp may be temporally correlated and the data-points at

different timestamp in stored database may be temporally correlated. If the data-points are

correlated in both datasets, then the traditional ǫ-LDP and traditional ǫ-DP in a continuous

data release setting does not provide expected privacy guarantee. Therefore, the curator

uses a combined approach of LDP(T C) and DP(T C) combination in order to release ag-

gregate statistics. The privacy leakage of this combined approach at timestamp t against

Ai is as follows.

PL(LDP (T C)+DP (T C))(Mt, Ai) = T CLLDP (Mt, A
Θ
i ) + T CLDP (Mt, A

Θ
i )

=

(
max
q,d∈Θ

log
q(eα − 1) + 1

d(eα − 1) + 1
+ 2hln

(
1− 1

2
p

1
2
p

))

+

(
max
q,d∈Θ

log
q(eα − 1) + 1

d(eα − 1) + 1
+ ǫ

)

= max
q,d∈Θ

log
q(eα − 1) + 1

d(eα − 1) + 1

(
2hln

(
1− 1

2
p

1
2
p

)
+ ǫ

)

The first term in both T CLLDP and T CLDP is to determine the temporal privacy leakage

between two adjacent data-points at timestamp t and t− 1. This term has derived by using

linear fractional programming (LFP), discussed in [18]. The second term in T CLLDP and

T CLDP is a value which satisfies ǫ-LDP and ǫ-DP at timestamp t, where ǫ = 2hln
(

1− 1

2
p

1

2
p

)

and ǫ respectively.

7.3 Experimental Results

In this section we conduct a series of experiments to examine the effect data correlation

on privacy leakage of combined (LDP+DP) approach. Also we evaluate the data utility of

combined (LDP+DP) approach by adopting various state-of-the-art methods od LDP and

DP mechanisms.
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In this experiment we used three real data sets and one synthetic dataset to test the effi-

ciency of the various combination of LDP and DP mechanisms. A Geolife is a real-time

dataset that includes GPS user trajectories obtained over a span of one year from 182 users

in real-time. A real-time T − Drive dataset includes a 10357 taxi GPS trajectory over a

span of one year. A Gowalla real-time dataset consists of a check-in background of more

than 600000 users from November 2010 to December 2011. Finally, a Metro100K is a

simulated dataset containing trajectories of 100000 gathered in 24 hours from a metropoli-

tan area with 26 towns. A collection of tuples containing an user Id, longitude, latitude,

and timestamp are involved in these four datasets. In our experiment, we optimized the

real-time datasets by assuming that a user is located at most one location at each timestamp

and collected all samples (user location data point) per interval of 5 minutes.

We used two metrics for measuring the data utility of published statistics, such as Mean

of absolute error(MAE) and Mean of square error (MSE). These two metrics calculate the

dissimilarity (or error) between the published statistic and the actual statistic. According to

ǫ-(LDP+DP), each timestamp receives a piece of the privacy budget ǫ in order to achieve

ǫ-(LDP+DP) in continuous data release settings. So, we calculate the dissimilarity (or

error) value per timestamp - the description of the MAE and MSE metrics are,

MAE() = 1
|T |

1
|L|
Σ

|L|
j=1|x̂

l
i[j]− xk

i [j]|

MSE() = 1
|T |

1
|L|
Σ

|L|
j=1|x̂

l
i[j]− xk

i [j]|
2

Where xt
i and x̂l

i are the location data-point of user i at time t and perturbed location data-

point of user i at time l (i.e., last release data-point) respectively. The T be the total number

of location data-points of user i.

There are few common baseline methods in the literature under the protection of ǫ-LDP
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Figure 7.2: MAE vs. w while fixing ǫ = 1 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

and ǫ-DP in continuous data release settings, such as Uniform, Sampling, w-event privacy.

These baseline methods allocates privacy budgets to each timestamp in continuous data

release settings under the protection differential privacy. But, these methods are assuming

the data-points in user streams are independent. Hence, these methods are not consider the

data-points which are temporally correlated. Whereas, a recently proposed a privacy bud-

get allocation (PBA) method considers temporally correlated data-points while achieving

ǫ-LDP and ǫ-DP. Since Uniform and sampling methods are basic methods and attain more

error rates than the recent approach w-event privacy thus, we measure the combined ap-

proach’s error rates (LDP+DP) under the protection of w-event privacy and PBA method

by using MAE and MSE metrics. Figures 7.2 and 7.3 shows the error rate of combined

approach (LDP+DP) under the protection of w-event privacy and PBA while varying the

sliding window size w. We observed that the error rate of w-event (LDP+DP) and PBA-

(LDP+DP) increases while increasing the sliding window size w because each timestamp’s

privacy budget is minimized when the large size of the sliding window. However, the PBA-

(LDP+DP) method’s error rate is comparatively less than the w-event (LDP+DP) because

the appropriate amount of privacy budget is allotted at temporally correlated timestamps

in the PBA method than the baseline approaches.
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Figure 7.3: MSE vs. w while fixing ǫ = 1 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

We compared the w-event (LDP+DP) and PBA-(LDP+DP) methods while varying ǫ val-

ues, as shown in Figures 7.4 and 7.5. We found that the error rate of w-event (LDP+DP)

and PBA-(LDP+DP) decreases as the ǫ value increases because a lower ǫ value causes

more privacy level and achieves lower accuracy. However, the error rate of the w-event

(LDP+DP) is higher than the PBA-(LDP+DP) method because the w-event (LDP+DP)

method uses a fixed privacy budget even though the user stream involves temporal corre-

lation.
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Figure 7.4: MAE vs. ǫ while fixing w = 40 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

There are four possible cases in a combined approach, such as (traditional LDP+traditional

DP), (traditional LDP+DP with TC), (LDP with TC+traditional DP), and (LDP with TC+DP
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Figure 7.5: MSE vs. ǫ while fixing w = 40 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

with TC). Here, we analyze the privacy leakage of only (LDP with TC+DP with TC)

combined approach with existing state-of-the-art methods. There is no related work that

directly solves the combined approach (LDP+DP) and also limited research on solving

temporal correlation under ǫ-LDP and temporal correlation under ǫ-DP. We found three

existing state-of-the-art methods under ǫ-DP and four methods under ǫ-LDP that are most

relevant to our problem setting. Then we compare the error rates of the combined ap-

proach by adapting existing methods under ǫ-LDP and ǫ-DP and analyze which com-

bination of approaches give better data utility. The Planar Isotropic Mechanism (PIM),

Local Randomizer Framework (LRM), Generalized Randomized Response (GRR), and

Privacy Budget Allocation (PBA) are the recent approaches for temporal correlation un-

der ǫ-LDP and the Quantification and Planar Isotropic Mechanism (PIM) are the meth-

ods for temporal correlation under ǫ-DP. Figures 7.6 and 7.7 shows the error rates of

MAE and MSE between the combined approaches such as PIM under LDP with quan-

tification under DP (LDP(PIM)+DP(quantification)), LRM under LDP with quantification

under DP (LDP(LRM)+DP(quantification)), GRR under LDP with quantification under

DP (LDP (GRR)+DP(quantification)) and PBA under LDP with quantification under DP

(LDP(PBA)+ DP(quantification)) while varying the size of the sliding window (w) and a
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constant ǫ = 1.
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Figure 7.6: MAE vs w: compare all combined approaches by adopting state-of-the-art

methods of LDP and DP while fixing ǫ = 1 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.
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Figure 7.7: MSE vs w: compare all combined approaches by adopting state-of-the-art

methods of LDP and DP while fixing ǫ = 1 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

The result exhibits that the above-combined approaches’ error rate increases while in-

creasing the size of the sliding window w. This is because larger w may have more

temporally correlated data-points, which leads to more error rates. The error rate of

(LDP(PBA)+DP(quantification)) combined approach provides a significant data utility

compared with other combined approaches because the LDP(PBA) method allocates a
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privacy budget only when the publication occurs at the timestamp and the quantification

under DP allocates more privacy budget when the data-points are temporally correlated.

On the other side, the remaining combined approaches PIM, LRM, GRR under LDP, allo-

cate privacy budget uniformly at every timestamp. Hence, these approaches’ error rate is

not better than LDP(PBA)+DP(quantification).
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Figure 7.8: MAE vs ǫ: compare all combined approaches by adopting state-of-the-art

methods of LDP and DP while fixing w = 40 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.
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Figure 7.9: MSE vs ǫ: compare all combined approaches by adopting state-of-the-art

methods of LDP and DP while fixing w = 40 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

Figures 7.8 and 7.9 show the error rates of the combined approaches LDP(PIM) + DP

(quantification), LDP(LRM) + DP(quantification), LDP(GRR) + DP(quantification), LDP
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(PBA) + DP(quantification) while varying the ǫ values and a constant size w = 40. The

experimental results show that the error rates of the above-combined approaches decreas-

ing while increasing the ǫ values because a high privacy budget value (ǫ) contributes to

improved data utility (or less error rate). The error rate of LDP(PBA)+DP(quantification)

is is comparatively better than the remaining combined approaches because the PBA under

LDP uses ǫ value only when the publications occur over time, and the remaining skipped

publication’s ǫ value will be used for future publication over timestamps, and the quan-

tification under DP uses an increased privacy budget α ≥ ǫ, which leads to decrease the

error rate even though the data-points involves temporal correlation. So, the PBA method

under LDP and quantification under DP provide better data utility than other remaining

combined approaches.

Figures 7.10 and 7.11 show the error rates of the combined approaches LDP(PIM)+DP(PIM),

LDP(LRM)+DP(PIM), LDP(GRR)+DP(PIM), LDP(PBA)+DP(PIM) while varying the w

values and a constant ǫ = 1. The error rate of combined approach LDP(PBA)+DP(PIM)

provides a significant data utility compared with other combined approaches because the

LDP(PBA) method allocates a privacy budget only when the publication occurs at the
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Figure 7.10: MAE vs w: compare all combined approaches by adopting state-of-the-art

methods of LDP and DP while fixing ǫ = 1 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.
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Figure 7.11: MSE vs w: compare all combined approaches by adopting state-of-the-art

methods of LDP and DP while fixing ǫ = 1 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

timestamp and the PIM under DP allocates privacy budget uniformly to each timestamp.

Even though PIM under DP error rate increases linearly due to uniform allocation, because

PBA under LDP, the combined approach LDP(PBA)+DP(PIM) provides better data utility.
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Figure 7.12: MAE vs ǫ: compare all combined approaches by adopting state-of-the-art

methods of LDP and DP while fixing w = 40 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

Figures 7.12 and 7.13 show the error rates of the combined approaches LDP(PIM)+DP

(PIM), LDP(LRM)+DP(PIM), LDP(GRR)+DP(PIM), LDP(PBA)+DP(PIM) while vary-

ing the ǫ values and a constant size w = 40. The error rate of LDP(PBA)+DP(PIM)

is comparatively better than the remaining combined approaches because the PBA under
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Figure 7.13: MSE vs ǫ: compare all combined approaches by adopting state-of-the-art

methods of LDP and DP while fixing w = 40 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

LDP uses ǫ value only when the publications occur over time, and the remaining skipped

publication’s ǫ value will be used for future publication over timestamps, and the PIM un-

der DP follows a uniform approach for allocating privacy budget, which leads to increase

the error rate. Even though PIM under DP error rate increases linearly due to uniform al-

location, because PBA under LDP, the combined approach LDP(PBA)+DP(PIM) provides

better data utility while varying an ǫ compared to other combined approaches.
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Figure 7.14: MAE vs w: compare all combined approaches by adopting state-of-the-art

methods of LDP and DP while fixing ǫ = 1 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

Figures 7.14 and 7.15 show the error rates of the combined approaches LDP(PIM)+DP(PBA),
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Figure 7.15: MSE vs w: compare all combined approaches by adopting state-of-the-art

methods of LDP and DP while fixing ǫ = 1 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

LDP(LRM)+DP(PBA), LDP(GRR)+DP(PBA), LDP(PBA)+DP(PBA) while varying the

w values and a constant ǫ = 1. The error rate of combined approach LDP(PBA)+DP(PBA)

offers a significant data utility compared with other combined approaches because the

LDP(PBA) method allocates a privacy budget only when the publication occurs at the

timestamp and the DP(PBA) method also follows the same strategy that is it assign privacy

at timestamp only the publication occurs. Since both privacy mechanisms (LDP and DP)

adopt the PBA method, the combined approach LDP(PBA)+DP(PBA) offers better data

utility.

Figures 7.16 and 7.17 show the error rates of the combined approaches LDP(PIM)+DP(PBA),

LDP(LRM)+DP(PBA), LDP(GRR)+DP(PBA), LDP(PBA)+DP(PBA) while varying the ǫ

values and a constant size w = 40. The error rate of LDP(PBA)+DP(PIM) is compara-

tively better than the remaining combined approaches because the PBA under LDP uses

ǫ value only when the publications occur over time, and the remaining skipped publica-

tion’s ǫ value will be used for future publication over timestamps, and the PBA under DP

also follows the same allocation strategy that is it uses privacy budget value only when the

publications occur, and any skipped publication’s ǫ value is collected for future publica-
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Figure 7.16: MAE vs ǫ: compare all combined approaches by adopting state-of-the-art

methods of LDP and DP while fixing w = 40 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

tion. Since both privacy mechanisms (LDP and DP) adopt the PBA method, the combined

approach LDP(PBA)+DP(PBA) offers better data utility than other combinations of the

combined approach.
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Figure 7.17: MSE vs ǫ: compare all combined approaches by adopting state-of-the-art

methods of LDP and DP while fixing w = 40 (a) Geolife (b) T-Drive (c) Gowalla and (d)

Metro100K datasets.

Table 7.1 shows that the privacy guarantee of combined approaches by adopting various

methods of LDP and DP under temporal correlation. Assume that the length of temporally

correlated data-points within user stream is T . We observed that the LDP(PBA)+DP(PBA)

method achieves 2ǫ-(LDP+DP) under temporal correlation compared with other combined
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Table 7.1: The privacy guarantee of combined approaches by adopting various methods of

LDP and DP under temporal correlation

Privacy approaches Temporal correlation privacy guarantee on

T length user stream

w-event-(LDP+DP) − 2wǫ-(LDP+DP)

PBA-(LDP+DP) X 2ǫ-(LDP+DP)

LDP(PIM)+DP(Quantification) − (Tǫ+ α)-(LDP+DP)

LDP(LRM)+DP(Quantification) − (Tǫ+ α)-(LDP+DP)

LDP(GRR)+DP(Quantification) X ((ǫ, δ) + α)-(LDP+DP)

LDP(PBA)+DP(Quantification) X (2ǫ+ α)-(LDP+DP)

LDP(PIM)+DP(PIM) − (2Tǫ-(LDP+DP)

LDP(LRM)+DP(PIM) − (2Tǫ-(LDP+DP)

LDP(GRR)+DP(PIM) X ((ǫ, δ) + Tǫ)-(LDP+DP)

LDP(PBA)+DP(PIM) X ǫ(2 + T )-(LDP+DP)

LDP(PIM)+DP(PBA) − (ǫ(T + 2))-(LDP+DP)

LDP(LRM)+DP(PBA) − (ǫ(T + 2))-(LDP+DP)

LDP(GRR)+DP(PBA) X ((ǫ, δ) + 2ǫ)-(LDP+DP)

LDP(PBA)+DP(PBA) X (2ǫ)-(LDP+DP)

approaches under temporal correlation. The existing LDP and DP approaches under tem-

poral correlation such as PIM, LRM, GRR, w-event privacy, and quantification methods

achieve Tǫ-LDP, Tǫ-LDP, (ǫ, δ)-LDP, wǫ-DP and α-DP, respectively. Due to more privacy

leakage in existing LDP and DP approaches, the combined approaches under existing LDP

and DP approaches has more privacy leakage. Hence, the combined approach that adopts

the PBA method is a better approach for allocating privacy budgets to temporally corre-

lated data-points.

7.4 Summary

In this work, we present the combined privacy approach by adopting both LDP and DP

mechanisms. There are four possible combinations of the combined approach, such as (tra-
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ditional LDP+traditional DP), (traditional LDP+DP with TC), (LDP with TC+traditional

DP), and (LDP with TC+DP with TC). All these approaches achieves ǫ-(LDP+DP). These

combinations may apply to any real-time applications depend on the application’s require-

ments or depends on query requirement. However, it is necessary to analyze the privacy

leakage of all cases of combined approach (LDP+DP) and quantify the impact of data cor-

relation on privacy leakage of all cases of combined approach (LDP+DP) in continuous

data release settings. In this work, we describe the privacy leakage under temporal corre-

lation of all cases of the combined approach. Then we performed a series of experiments

with real and synthetic datasets to determine the average error rate per timestamp for eval-

uating the data utility of our combined approach (LDP with TC+DP with TC) with other

states of the art methods.
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Chapter 8

Conclusion and Future Scope

This thesis investigates the design and development of privacy preserving methods which

provides a strict privacy guarantee against an adversary who has the knowledge of the

correlation either between the users or between the data-points within the user stream.

8.1 Conclusion of the thesis

In this thesis, we quantified the privacy risk in all three privacy preserving models such as

Data anonymization, ǫ-Differential privacy and ǫ-Local Differential privacy under correla-

tion. Then we present solutions for preserving privacy against an adversary with bounded

and unbounded background knowledge. The chapter 3 to 5 describes each privacy model

and proposed a privacy preserving solutions under correlation for preserving users pri-

vacy. The chapter 6 compares the privacy leakages under correlation in combined privacy

preserving models.

The first work of this thesis is to present a data anonymization approach that prevents

users’ privacy from four different types of linkage attacks, namely identity, attribute, sim-

ilarity, and correlated-records linkage attacks.Our data anonymization approach adopts an
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existing LK privacy model to fix the upper bound to the adversary’s background knowl-

edge and lower bound to the number of unique trajectories in the dataset. Also, we in-

troduced a new privacy threshold called privacy-height to represent the degree of privacy

offered to the users. The experimental result shows that the anonymized dataset produced

by our proposed method is freed from all four linkage attacks. It shows better perfor-

mance with a significant reduction in the information loss compared to other states of the

art methods.

The second work of this thesis is to presented the definition of differential privacy un-

der temporal correlation in continuous data release settings. The reformulated differential

privacy helps to quantify the impact of temporal correlation on privacy leakage in tradi-

tional ǫ-DP. Also, we illustrate that the adversary with knowledge of temporal correlation

could disclose more privacy leakage than the traditional ǫ-DP. This analysis result shows

that the privacy leakage increases over time in w-event privacy when the dataset involves

temporal correlation. Therefore, we presented a privacy budget allocation (PBA) method

for allocating an adequate amount of privacy budget to each successive timestamp under

the protection of ǫ-differential privacy. This method protects any w length user stream

that contains temporally correlated data points. Further, we evaluate the average error per

timestamp for analyzing the data utility of our proposed method. The result shows that the

PBA method’s data utility is significantly better than other state-of-the-art methods.

The third work of this thesis is to illustrated the impact of temporal correlation on privacy

leakage in ǫ-Local Differential Privacy using a numerical example. This analysis shows

that the adversaries with knowledge of temporal correlation can disclose more privacy

leakage than the traditional ǫ-LDP. In continuous data release settings, the privacy leak-

age in w-event privacy increases over time when the temporal correlation is involved in

the user stream. Therefore, we proposed a Privacy Budget Allocation (PBA) method for

allocating an adequate amount of privacy budget to each successive timestamp under the
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protection of ǫ-LDP. It provides a strict privacy guarantee to any w length temporally cor-

related user stream. Also, we conduct an experiment for evaluating the data utility of our

proposed method, and the results show that the proposed method is comparatively better

under temporal correlation than the existing state-of-art methods.

Finally the fourth work is to compared the a combined privacy preserving approach by

adopting both LDP and DP mechanisms. There are four possible combinations of a com-

bined approach, namely (traditional LDP+traditional DP), (traditional LDP+DP with TC),

(LDP with TC+traditional DP), and (LDP with TC+DP with TC). Depends on the query

requirement, any combination of a combined approach may apply in order to answer the

query. This chapter quantifies the impact of data correlation on privacy leakage of all

cases of combined approach (LDP+DP) in continuous data release settings. Further, we

conducted series of experiments to determine the average error rate per timestamp for eval-

uating the data utility of our combined approach (LDP with TC+DP with TC) with other

states of the art methods.

In this thesis, we addressed the correlation challenge in privacy preserving models and

proposed possible privacy preserving methods under Data anonymization, ǫ-DP, and ǫ-

LDP models against the correlation issues. Finally, we evaluate the data utility of all

proposed methods by presenting experimental results for real and synthetic data sets.

8.2 Future Scope

• The presented data anonymization approach prevents only four linkage attacks. It

is necessary to consider all possible linkage attacks in trajectory data publishing

and propose a unified privacy approach that prevents all different types of possible

linkage attacks in data publishing.
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• The future research direction in chapter 4 is to investigate the impact of temporal

correlation on privacy leakage combining with other types of correlation models.

Using our methodology, strengthen the previous research that ignored the impact of

temporal correlations in continuous data releases.

• In LDP, the server allocates the same privacy budget to each user in order to perturb

their data. However, it is unfeasible to use the same privacy budget allocated by

the server because different users have different privacy requirements for their data.

The future research direction in chapter 5 is to design a personalized privacy budget

allocation method under the protection of LDP.

• Effective technology is required when a combined privacy approach deals with mo-

bile crowdsourcing because the data is very large in mobile crowdsourcing.
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