Blockchain-based Fair Payment Protocols
for Cloud Services

Submitted in partial fulfillment of the requirements
for the award of the degree of
DOCTOR OF PHILOSOPHY
Submitted by
Dorsala Mallikarjun Reddy
(Roll No. 716042)

Under the guidance of

Prof. V. N. Sastry
and

Dr. Chapram Sudhakar

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA
December 2021

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA

THESIS APPROVAL FOR Ph.D.

This is to certify that the thesis entitled, Blockchain-based Fair Payment Protocols
for Cloud Services, submitted by Mr. Dorsala Mallikarjun Reddy [Roll No. 716042]
is approved for the degree of DOCTOR OF PHILOSOPHY at National Institute of

Technology Warangal.
Examiner
Research Supervisor Research Supervisor
Prof. V. N. Sastry Dr. Chapram Sudhakar
Professor Associate Professor
Center for Mobile Banking Dept. of Computer Science and Engg.
Institute for Development & NIT Warangal
Research in Banking Technology India
India
Chairman

Prof. P. Radha Krishna

Head, Dept. of Computer Science and Engg.
NIT Warangal

India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA

CERTIFICATE

This is to certify that the thesis entitled,

, submitted in partial fulfillment of requirement for the award of de-
gree of DOCTOR OF PHILOSOPHY to National Institute of Technology Warangal,
is a bonafide research work done at the Center for Mobile Banking (CMB), IDRBT
by Mr. Dorsala Mallikarjun Reddy [Roll No. 716042] under our supervision during
January 2016 to December 2021. The contents of the thesis have not been submitted

elsewhere for the award of any degree.

segrchSupérvisor Research Supervisor
Prof. V. N. Sastry Dr. Chapram Sudhakar
Professor Associate Professor
Center for Mobile Banking Dept. of Computer Science and Engg.
Institute for Development & NIT Warangal
Research in Banking Technology India
India
Hyderabad Warangal
Date: 15-12-2021 Date: 15-12-2021

DECLARATION

This is to certify that the work presented in the thesis entitled “Blockchain-
based Fair Payment Protocols for Cloud Services” is a bonafide work
done by me under the supervision of Prof. V. N. Sastry and Dr. Chapram
Sudhakar. The work was not submitted elsewhere for the award of any

degree.

I declare that this written submission represents my ideas in my
own words and where others ideas or words have been included, I have
adequately cited and referenced the original sources. I also declare that
I have adhered to all principles of academic honesty and integrity and
have not misrepresented or fabricated or falsified any idea / date / fact /
source in my submission. I understand that any violation of the above
will be cause for disciplinary action by the institute and can also evoke
penal action from the sources which have thus not been properly cited

or from whom proper permission has not been taken when needed.

Dorsala Mallikarjun Reddy
(Roll No. 716042)
Date: 15-12-2021

ACKNOWLEDGMENTS

I express my deep gratitude and thanks to my supervisors Prof. V. N. Sastry, Professor,
Institute for Development and Research in Banking Technology (IDRBT), Hyderabad and
Dr. Chapram Sudhakar, Associate Professor, Department of Computer Science and Engi-
neering, National Institute of Technology (NIT) - Warangal for their guidance, continued
support and encouragement throughout the research period.

I extend my gratitude to the Doctoral Scrutiny Committee (DSC) members Prof. P.
Radha Krishna, Prof. R. B. V. Subramanyam, Dr. R. R. Rout, and Dr. Ch. Venkaiah
for their insightful comments and suggestions during oral presentations. I am immensely
thankful to Dr. Ch. Sudhakar, Prof. R. B. V. Subramanyam and Prof. P. Radha Krishna,
Heads of Dept. of CSE and chairmans of DSC, during my tenure for providing adequate
facilities in the department to carry out the research works.

I wish to express my sincere thanks to Prof. N.V. Ramana Rao, Director, NIT Warangal,
Prof. D. Janakiram, Director, IDRBT and Dr. A. S. Ramasastri, Ex-Director, IDRBT,
Hyderabad, for providing the infrastructure and facilities to carry out the research. I am
also very grateful to the Computer Science and Engineering Department faculty members
and IDRBT faculty members for their moral support throughout my research work.

On a personal level, I would also like to thank my scholar friends in IDRBT and NIT-
Warangal for their valuable suggestions and for extending selfless cooperation. Lastly, I
express my gratitude to my family for their unconditional love, support, and prayers to

achieve the goal.

Dorsala Mallikarjun Reddy

Dedicated to
My Parents and wife

i

ABSTRACT

Blockchain has become a prominent technology in recent years, and because of its char-
acteristics like decentralization, immutability, and transparency, it is deemed as an alterna-
tive for establishing a trusted platform. Initially introduced through Bitcoin for peer-to-peer
financial transactions, Blockchains have recently come to the forefront of the research and
industrial communities. Smart contracts have been a major driving factor in the broad
adoption of Blockchain technology as they introduce automatic control. Blockchain and
smart contracts are becoming popular in many engineering and computer science fields.
Cloud computing is one such field that can benefit from adopting Blockchain technology
to re-engineer its data centers. Blockchain is expected to be an indispensable tool to ful-
fill the expectations of cloud systems’ performance with minimal costs and management
overheads. Many recent works focus on utilizing Blockchain technology for establishing
trust and reliability in cloud operations. In cloud computing, it is generally assumed that the
user generally trusts the cloud provider for provisioning the service honestly and pays to the
provider before actually using the service. However, due to the monetary benefits involved,
a rational cloud provider may deviate from provisioning the service honestly. To address
this problem, existing solutions comprise trusted parties for fair payments between cloud
user and cloud provider. Nevertheless, having trusted parties does not entirely solve the
problem, and an additional financial cost is imposed on both the cloud user and the cloud
provider. In current literature, fair payments for cloud services is not addressed adequately
and hence, this thesis focus on designing fair payment protocols for cloud services with-
out a trusted intermediary between cloud provider and cloud users. We have identified fair
payment problems in all three traditional cloud service models and designed solutions for
them. For the platform-as-a-service model, we have proposed Blockchain-based fair pay-
ment protocols for outsourcing-as-a-service (verifiable computation) and data aggregation-
as-a-service (mobile crowdsensing). We have proposed Blockchain-based fair payment
protocols for cloud resource allocation and cloud data de-duplication for the infrastructure-
as-a-service model. We have designed a Blockchain-based fair rating, charging and billing

platform for microservices deployed on a cloud for the software-as-a-service model. Our

1l

theoretical analysis shows the fairness guarantees of the designed protocols, and our exten-
sive experimental analysis shows the feasibility of deploying the designed protocols in the
real world. Our experimental analysis also shows that the trusted third party in traditional
cloud computing can be replaced by a smart contract running on a public Blockchain net-

work with minimal overhead.

v

Contents

ACKNOWLEDGMENTS i
ABSTRACT iii
List of Figures X
List of Tables xiii
List of Algorithms Xvi
List of Notations xvii
Glossary XX
1 Introduction 1
1.1 Cloud Computing i 1

1.1.1 Cloud Service Models 2

1.1.2 Cloud Pricing Models and Payment Models 3

1.1.3 FairPayments 5

1.2 Blockchain Technology 8

1.2.1 Main characteristics of Blockchain 12

1.2.2 Formal BlockchainModel 14

1.2.3 Ethereum, Solidity, Gas, Truffle framework and Simulation en-

VIFONMENt oo e e 16
1.2.4 Need of Blockchain Technology in Cloud Computing 16
1.3 Motivation, Aim and Objectives of Proposed Work 19

1.3.1 Aim s
1.3.2 Objectives e
1.4 Overview of the Contributions of the Thesis

1.5 Thesis Organization it

2 Literature Survey

2.1 Comparison of existing Blockchain surveys
2.2 Systematic Literature Survey
2.3 Blockchain-based Cloud Services
2.3.1 Blockchain-based Infrastructure-as-a-Service (IaaS)
2.3.2 Blockchain-based Platform-as-a-Service
2.3.3 Blockchain-based Software-as-a-Service
2.4 Observations and Problems Identified

2.5 Summary .. o.o. .. e e e e

3 Fair Payment Protocols for Outsourcing Computation under Platform-as-a-

Service

3.1 Verifiable Computation oL

3.2 Proof-based Incentivized Outsourced Computation (IOC) using Smart
Contracts (PBIOC)
32.1 PBIOC contractclauses
3.22 PBIOCProtocol,

3.3 Replication-based Incentivized Outsourced Computation using Smart
Contracts e
3.3.1 Economicmodel 0.
3.3.2 Two providers Case (TUIOC Contract)
3.3.3 Multiple-provider Case MUIOC)
3.4 Simulation Results and Discussions
3.4.1 Implementation of PBIOC
3.4.2 Implementation of TUIOC
3.4.3 Implementation of MUIOC

vi

35 Summary ... 97

4 Fair Payment Protocols for Mobile Crowdsensing under Platform-as-a-Service 98
4.1 Privacy-preserving aggregation 99
4.1.1 Entities 100

4.2 Anaive trusted party based fair payment protocol for privacy-preserving

aggregation of mobile crowdsensing data (F'air Naive PPA) 102
42.1 FairNaivePPA contractclauses 102
422 FairNaiwvePPAProtocol 104
4.2.3 Limitations of FairNaivePPA 109

4.3 A trusted party free fair payment protocol for privacy-preserving ag-

gregation of mobile crowdsensing data (FairPPA) 111

4.3.1 Smart contract based key generation 111
4.3.2 Truth Discovery Algorithm (TDA) 112
4.3.3 Payment Mechanism 113
4.3.4 Dispute Resolution Mechanism (DRM) 114
435 FairPPAcontractclauses 116
43.6 FairPPAcontractphases 119

4.4 Security Guaranteeso e 126
4.5 Implementation and comparisons 127
4.5.1 MotionSense Dataset 128
4.5.2 Implementation of FairNaivePPA 128
4.5.3 Implementation of FairPPA 130

4.6 Comparison with existingmethods 131
4.6.1 Comparison with privacy-preserving aggregation methods 131

4.6.2 Comparison with Blockchain-based mobile crowdsensing methods 132

477 Summary e e e 133

5 Fair Payment Protocol for Virtual Machine Allocation under Infrastructure-
as-a-Service 134

5.1 Onlineauction v v i i 136

Vil

5.2
53

54

5.5
5.6

S.1.1 Entities Lo 138

Bidding language L 139
Decentralized online auction protocol (DeOAA) 140
5.3.1 Assumptionso ...l e 140
532 DeOAAcontractclauses 140
533 DeOAAprotocol 142
5.3.4 Correctness and fairness proofs 147
Implementation 149
5.4.1 Floating pointnumbers 150
5.4.2 Implementation of DeOAA 150
543 Financialoverheado oo 151
5.4.4 Deploying on Ropsten test network 151
Comparison with existing works 152
Summary L e e 154

6 Fair Payment Protocol for Data de-duplication under Infrastructure-as-a-

Service

6.1

6.2

6.3

6.4

155

Data de-duplication model 157
6.1.1 Convergent Encryption(CE) 158
6.1.2 Economicmodel oL 158
Proposed incentive mechanism Lo 161
6.2.1 Blockchain-based de-duplication protocol 162
Fair data de-duplication method 163
6.3.1 Assumptions 163
6.3.2 Bpgpycontractclauseso 163
6.3.3 DBpgpyprotocol 164
6.3.4 Proofsof Bpepy - - - - v v v e e e e e 170
Proposed Inter-cloud provider de-duplication protocol 173
6.4.1 Assumptions 173
6.4.2 BIDEDU - « « = « ¢ o v e e e e e e e e e 173

viil

6.5 Implementation 175
6.5.1 Implementation of Bpgpy - « - « « v v v v v i e e 175

6.5.2 Experiment 1: Finding utility of the users and the cloud provider

by varying nGF(t)and EFSE(t) 177

6.5.3 Experiment 2: Testing Bpppy and By pppy with public dataset . 177

6.6 Comparison with existing methods 180
6.7 Summary 182

7 Fair Payment Protocol for Microservices-based software deployed in cloud

under Software-as-a-Service 183
7.1 Introduction L. 183
7.2 Microservice rating, charging and billing (RCB) architecture 185

7.3 Blockchain-based Microservice Rating, Charging and Billing (RCB)

System e e 187

7.3.1 Smart contracts for RCB system 187

7.3.2 Costcomputationmodel 190

7.3.3 High-level overview of the RCB protocol 193

734 RCBProtocol 194

7.4 Simulation Results and Discussions 197

7.5 Summary 200

8 Conclusion and Future Scope 201
8.1 Conclusions 201

8.2 Future Scope 202
Author’s Publications 204
Bibliography 205

1X

List of Figures

1.1
1.2
1.3
1.4
L.5
1.6

2.1
2.2
2.3
24
2.5
2.6

3.1
32
33
34
3.5
3.6
3.7
3.8

4.1
4.2

Layersincloudstack 2
Cloud paymentmodels, 4
Fairness hierarchy 7
Block structure 9
Distributed ledger (blockchain) as a sequence of blocks 9
Example of a smartcontract., 12
The systematic literature mapping process o 25
Technical dimensions of thissurvey 26
List of works in Blockchain-based storage-as-a-service. 28
List of works in Blockchain-based Resource allocation and supervision . . 43
List of works in Blockchain-based platform-as-a-service. 48
List of works in Blockchain-based software-as-a-service. 59
PBIOC protocol 72
TUIOC protocol e 80
MUIOC protocol 87
Gas consumption of Merge Sort 93
Gas Consumption of prime numbers 93
Gas Consumption of non-prime numbers 94
Gas Consumption of Binary Search 94
Reward for honest cloud provider in different scenarios 96
FairNaivePPAprotocol 106
Overview of the proposed FairPPAprotocol 116

4.3 Task Creation Phase protocol 120
4.4 Spawn and Sensing Phase Protocol oo 123
4.5 Data sharing and reward distribution phase protocol 126
4.6 Gas Consumption of Flair Naive PP A - Aggregate and Payout functional-

IHES . . o e e e 129
4.7 Gas Consumption of FairPPA - Aggregate and Payout functionalities.

The Payout functionality includes the gas cost of executing DRM (). 131
5.1 Online auction infrastructure and resource allocation flow 136
5.2 Anillustrative example of online auction 137
5.3 Overview of the proposed protocol 139
54 DeOAAprotocol e 142
5.5 Financial overhead of DeOAA 152
6.1 Bpegu protocol L e 167
6.2 contract-Br.pEDU « « « v v e e e e e e e e e e e 175
6.3 Costs of interacting with usrConf functionality 176
6.4 The effect of EFSE (t) and nG?(t) on average utility of the cloud users . . 178
6.5 The effect of EFSE () and nGF () on utility of the cloud provider 179
6.6 Utility of cloud providers with public dataset 181
7.1 Software deploymentincloud 184
7.2 Traditional microservice rating, charging and billing system 186
7.3 Blockchain-based microservice RCB platform 188
7.4 Structure of the data records stored in SDC contract. 188
7.5 Structure of the data records stored in M EC contract. 188
7.6 Structure of the data records stored in U DC' contract. 189
7.7 Structure of the data records stored in RCC' contract. 189
7.8 Structure of the data records stored in EDC contract. 189
7.9 Initializationphase Lo o 195
7.10 Service provisioning phase protocol Lo 197

X1

7.11 Billing Phase

7.12 Gas Consumption of computeBill functionality

Xii

List of Tables

1.1
1.2

1.3

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
33
34
3.5
3.6

4.1
4.2
4.3

Comparison among public, consortium and private Blockchains 14
Key characteristics of Blockchain and their potential applications to cloud
COMPULING . . . o o ot i e e e e e e e e e e e e e 18

Some of the obstacles and opportunities for the growth of cloud computing

and Blockchain. o o 19
Comparison of surveys on Blockchain in various domains 24
Research questions and analysis of literature 25
Comparison of Data Management models 34
Comparison of Blockchain-based Searchable encryption systems 40
Comparison of Blockchain-based resource allocation methods 46
Comparison of Blockchain-based verifiable computing methods 52
Comparison of Blockchain-based crowdsensing systems 57
Utilities in two-providercase 77
Analysis of TUIOC 83
Costs of interacting with PBIOC Contract 91
Deployment and Execution costs of PBIOC'V contracts 91
Costs of interacting with TUIOC Contract 92
Costs of running MUIOC Contract 95
Costs of interacting with Fair NaivePPA contract 129
Costs of interacting with FlairPPAcontract 130

Comparison of proposed methods with state-of-the-art privacy-preserving

methods e, 132

Xiil

4.4

5.1
5.2
53
54
5.5

6.1
6.2
6.3
6.4

7.1

Comparison of proposed methods with existing Blockchain-based mobile

crowdsensing methods. Lo 132
Costs of interacting with DeOAA contract 150
Gas consumption of interaction with Request functionality. 151
Implementation configuration 151
Transactions on Ethereum Ropsten test network 153

Comparison of proposed method with existing smart contract-based auction

methods. L 154
Utilities of cloud user and cloud provider 160
Costs of interacting with Bpgpy contract 176
Experiment Settings.o 177
Comparison with existing data de-duplication works 181
Cost of interacting with proposed smart contracts 199

X1v

List of Algorithms

3.1
32
33
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
4.1
4.2
4.3
4.4
4.5
4.6
4.7

PBIOC.create i e 72
PBIOC. ntent e 73
PBIOC.commit 73
PBIOC.agree e e e e 73
PBIOCwerifyo o 74
PBIOC.result e 74
TUIOC.create o o i it i i e e s e e 81
TUIOC.antent o o e e e e e e e 81
TUIOC.commil ettt e e e 81
TUIOC.reveal o s s e e 82
TUIOC. dispute e e e e e 82
MUIOC.create ittt e 88
MUIOC.antent 0o e e e e e e 88
MUIOC.commiat 0 s e e e e 88
MUIOC.reveal it 89
MUIOC.dispute 0 s e 89
FairNaivePPA.create 107
FairNaivePPA.intent i 107
FairNaivePPA.commit 108
FairNaivePPA.aggregate 108
FairNaivePPAbuy i i e 108
FairNaivePPA.Reveal 109
FairPPA.keygen e e 112

XV

4.8

4.9

4.10
4.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26

FairPPATDA 113

FairPPA.payment e 114
FairPPA.DRM e 115
FairPPA.DRM?2 e 116
Simple online auction Lo L 137
DeOAA.create e 143
DeOAA.request e e e e 144
DeOAA.auail e 145
DeOAA.acknowledge 146
DeOAA.free o . o e e 146
DeOAA.abrogate e 147
Bpeau.createo e e e 167
Bpeau-request . . .o e e e e 168
BpDequ-Pay - . o o e e e e 168
Bpeauw-cspConf . . . 0 . e 169
BpeauwusrConf e 169
Bpeau-refund e e 169
Bpegu-clatm e e e 170
Bpeau-deLinko e 170

xXvi

List of Notations

JD
TP

G H

cP
cU
DO
DU

A
ekp,vkp
Y,y
Tis Trs Tay Tes Tend
$d, $r,$f, $c, $b, $pay
u(:)
q1, 92

skcu,, Skep, ska

Judiciary

Trusted party

Block in Blockchain

Hash functions

Difficulty level

Cloud provider

Cloud user

Data owner

Data user

Data provider

Outsourced function / computation with input x
Security parameter

Evaluation and verification keys of function F’
Output and proof-of-correctness of output
Blockchain timing parameters

Monetary variables

Utility function

Safe primes

Secret keys of cloud user, cloud provider and accumulator respectively
Aggregated input of cloud user at time ¢
Aggregated sum over inputs at time ¢

Mobile device

Data collected by cloud user at time ¢

XVil

Kcu,cp

Wceuy

minDo
minDv
th

listy,
{15t 4,
listy,
list,na
listy,
lists,

liste,

7TCP, Cc . CUg

™,

Q

P(x)
nv_cap;
[ai, d]

l;

(%
bi(-)
rld
UlT, Tsup)
allocated|r]

requests

n

Self generated symmetric key for CU; and C' P

Weight calculated during truth estimation for cloud user
Ground truth value generated for m'™ sensor

Minimum number of cloud users

Minimum number of data verifiers

Threshold

List of cloud users who shown intent

List of data verifiers who shown intent

List of honest cloud users

List of malicious cloud users

List of honest data verifiers

List of cloud users who sent spawn message

List of cloud users who sent commit message
Proof-of-correctness of truth discovery algorithm generated by cloud
provider, challenger and cloud users respectively
Computation resource capacity

Auction mechanism

Auxiliary pricing function

Time invariant capacity requirement

Preferred time duration for accessing cloud resources
Length of the required time duration

Valuation function

Concavely increasing function

Request identity

Resource utilization matrix

Resource allocation vector

A mapping data structure to store all information regarding cloud users
requests

Cloud storage system

Set of data files

XViil

liStrchsage

Number of users having the same data d at time ¢ at a cloud storage
provided by cloud provider C'P

Smart contract facilitating data deduplication

Utility of cloud user when deduplication is not adopted

Utility of cloud user when deduplication with Bpgpy is adopted
Utility of cloud provider when deduplication is not adopted

Utility of cloud provider when deduplication with Bpgpy is adopted
Storage fee

Storage cost

Extra fee

Data deduplication rate

Cost of deploying Bpgpy smart contract

Hash value of data file

A mapping data structure to store information regarding user requests
Fee paid by a cloud provider to another cloud provider

Meter value of j™* resource

Usage vector of cloud user

Reputation of cloud user

Reputation of cloud provider

Set of errors

Weight associated with error e

State of the cloud operating environment

Price of the resource at time 7

Discount offered to cloud user

Estimated cost of running a microservice chain

A mapping data structure to store user’s service requests

X1X

Glossary

5G
ACM
APIs
AWS
BC
BFT
BI
BIC
CaaS
CAB
CBVC
CDA
CE
DaaS
DB
DCR
DEC
DEDU / dedup
DHT
DPS
DPoS
DRM

5" Generation

Association for Computing Machinery
Application Programming Interfaces
Amazon Web Services

Blockchain

Byzantine Fault Tolerance

Business Intelligence

Billing Contract
Computation-as-a-Service
Collaborative Auditing Blockchain
Challenge-based Verifiable Computation
Continuous Double Auction
Convergent Encryption

Data aggregation-as-a-Service
Database

Decisional Composite Residuosity
Decryption

Data Deduplication

Data Hash Table

Data Preservation System
Delegated Proof-of-Stake

Dispute Resolution Mechanism

XX

EDC
EHR
ENC
ETSI
FPP
HDFS
[aaS
IEEE
IoT
IPEFS
ISH
LAMB
MANO
MCS
MEC
MITM
N/A
NFV
NIST
OKS
PaaS
PBVC
PHD
PoP
PoS
PoW
PP
PPA
PRF

QoS

Error data contract

Electronic Health Records

Encryption

European Telecommunications Standards Institute
Fair Payment Protocol

Hadoop Distributed File System
Infrastructure-as-a-Service

Institute for Electrical and Electronic Engineers
Internet of Things

Interplanetary File System

Inner State Hash

Long term Auction for Mobile Auction
Management and Network Orchestration
Mobile Crowd Sensing

Message exchange contract
Man-In-The-Middle

Not Available

Network Function Virtualization

National Institute for Standards and Technology
Oblivious Keyword Search
Platform-as-a-Service

Proof-based Verifiable Computation

Personal Health Data

Proof-of-Ownership

Proof-of-Stake

Proof-of-Work

Payment Protocol

Privacy Preserving Aggregation

Pseudo Random Function

Quality of Service

XX1

RBAC
RBVC
RCB
RCC
RRC
RSA
SaaS
SC
SDC
SE
SGX
SLA
trans
TDA
TEE
TKG
TP
UDC
URL
VCG
VLAN
VMM
VNF
VNFO
XACML
zk-SNARK

Role-based Access Control
Replication-based Verifiable Computation
Rating, Charging and Billing

Rating and Charging Contract
Registration and Reputation Contract
Rivet-Shamir-Adleman
Software-as-a-Service

Smart Contract

Service discovery contract

Searchable Encryption

Software Gaurd Extension

Service Level Agreement

Transaction

Truth Discovery Algorithm

Trusted Execution Environment
Trusted Key Generator

Trusted Party

Usage data contract

Uniform Resource Locator
Vickrey-Clarke-Groves

Virtual Local Area Network

Virtual Machine Manager

Virtual Network Function

Virtual Network Function Orchestrator
Extensible Access Control Markup Language

Zero Knowledge Succinct Non-Interactive Argument of Knowledge

XXil

Chapter 1

Introduction

In this Chapter, we present an introduction to cloud computing, cloud service models, cloud
pricing models and payment models. Then, we discuss fair payments and hierarchy of fair-
ness guarantees. We also present fundamentals and main characteristics of Blockchain
technology and their potential applications to cloud computing. Later, we outline the moti-
vation, aim, and objectives of the thesis. At the end of the Chapter, we list our contributions

and organization of the thesis.

1.1 Cloud Computing

Cloud computing provides on-demand network access of configurable computing resources
enabling individuals and enterprises to pay only for the resources or services they use. A

cloud computing system is defined by the following set of properties:

(a) On demand self service: Cloud users access cloud resources as per need without

any human intervention.

(b) Broad access: Standardized mechanisms and protocols are defined for accessing

cloud resources.

(c) Resource pooling: Cloud resources are pooled into shared resources by a cloud

provider and are allocated to customers on demand.

CHAPTER 1. INTRODUCTION

(d) Rapid elasticity: Resources are allocated and released dynamically according to the

need of the user.

(e) Measured service: The resource usage is measured automatically allowing users to

monitor, control and report resource usage.

1.1.1 Cloud Service Models

National Institute of Standards and Technology (NIST) [1] defines three layers within cloud
computing stack as shown in Figure 1.1: (a) Infrastructure-as-a-service (IaaS) (b) Platform-

as-a-service (PaaS) and (c) Software-as-a-services (SaaS).

Packaged Software
OS and Application Stack
Server Storage Network

End Users

Application

OS and Application Stack Developers

Server Storage Network

Server Storage Network IT Administrators

B\

Figure 1.1: Layers in cloud stack

(a) Infrastructure-as-a-service: It is an instant computing infrastructure administered
over the Internet. IaaS acts as a backbone for PaaS and SaaS. Some of the standard
components in laaS includes data centre physical building / plant, networking fire-
walls, computing servers, and storage disks. Well trained IT administrators manage
the IaaS components while the general public / enterprises purchase, install, con-
figure and manage their software—operating systems, middleware and applications.
The typical examples of [aaS providers are Amazon web services, Microsoft Azure,

Rackspace, and VMware.

(b) Platform-as-a-service: PaaS is a development and deployment environment in the

cloud. Any person / enterprise can develop and host their applications for their clients

CHAPTER 1. INTRODUCTION

(c)

without worrying about the management of underlying hardware. It includes all the
components of [aaS and also development tools, middleware, database management
systems, and business intelligence (BI) services. The typical examples of PaaS in-
clude Force.com, Heroku, Google App Engine, AWS Elastic Beanstalk, and Apache

Stratos.

Software-as-a-service: SaaS allows user to connect to and use cloud-based appli-
cations over the Internet. The applications are accessible through a web browser or
application programming interfaces (APIs). The typical examples include Dropbox,

Salesforce, Google workspace, and Office 365.

1.1.2 Cloud Pricing Models and Payment Models

1.1.2.1 Pricing Models

Unlike telecoms or electricity services, there is no standard pricing unit in cloud computing.

However, cloud providers offer a combination of one or more of the following pricing

models:

1.

Subscription Model: In this model, the services are sold on a fixed time period as
monthly / yearly basis (For example: per mailbox or per-app license). The customers

are billed for all the resources, whether used or not.

Pay-as-you-go / Pay-per-use: In this model, a user starts with a zero payment, pro-
visions services on demand, and gets charged based on the actual consumption. This

approach is the most attractive model as the user pays only for the services consumed.

Pay per user: This model is very similar to the subscription model. The price is
based on the number of active users provisioning a service (For example: per user

per month).

1.1.2.2 Payment Models

Consider the following example scenario to understand the payment models in cloud com-

puting.

CHAPTER 1. INTRODUCTION

Alice, a cloud user, wants to acquire a cloud service (For example a Virtual machine)
from Bob, a cloud provider. Alice and Bob do not necessarily trust each other. Alice visits
the catalogue offered by Bob and selects interested VM / VMs. Bob displays the price to
be paid by Alice according to the adopted pricing model (see section 1.1.2.1). To avail the
service, Alice has to pay for the resources provided by Bob. As depicted in Figure 1.2, over
the years, different payment models have evolved to facilitate payments between Alice and

Bob.

< jD %e)
x§

’\‘9Q\> &
Q 4

Alice|<22M< 1B5h

N ¢

Bank
(a) Model 1 (b) Model 2

Exchange
BC Info BCZ

ﬁ
o)
e

] Service . S i
Alice| Bob Alicel<«<="< 1 Bob

(c) Model 3 (d) Model 4

Figure 1.2: Cloud payment models

* Model 1: In this model, a service level agreement (SLA) is negotiated between Al-
ice and Bob. Then, Alice pays for the service through a bank. After receiving the
payment, Bob provides the service according to the SLA. If Bob does not adhere to

the SLA, then Alice approaches legal judiciary (7 D) to resolve disputes caused due

CHAPTER 1. INTRODUCTION

to non-adhering to SLA. The disadvantage in this model is that Alice has to pay Bob
before getting the service. After receiving the payment, Bob may refuse to provide
the requested service or may provide only a partial service. Another disadvantage is

that the dispute resolution process through JD is tedious and costly.

* Model 2: Similar to model 1 in this model also, an SLA is negotiated between Alice
and Bob. They both recruit a trusted third party (7 P) to resolve disputes. Alice
pays to 7P through the bank then Bob provides the service according to the SLA.
At the end of the service, the TP verifies whether Bob adhered to the SLA or not.
Based on the verification result, the 7P pays full / partial / zero amount to Bob. The
disadvantage in this model is the cost induced by the 7 P because the services of 7P
are not free. The second disadvantage is difficulty in finding an ideal 7P, which will

behave honestly without any prejudice at all times, is difficult.

* Model 3: In this model, the full SLA or some part of the SLA is transcoded as a
smart contract and deployed on a public Blockchain network (BC'). Alice transfers
payment to the smart contract, and then Bob provides the service to Alice. At the
end of the service, the smart contract pays to Bob or refunds to Alice according to
their interactions and the rules encoded in the smart contract. This model has several
advantages when compared to previous models: (1) This model limits / eliminates
the role of banks during payments. (2) The disputes are resolved with respect to the
rules encoded in smart contracts; therefore, the services of 7D /T P are not required.
(3) The interactions with smart contracts and the operations of smart contracts are

publicly visible to both Alice and Bob instilling the trust on the payments.

* Model 4: This model is similar to model 3 but additionally incorporates the interop-

erability of the Blockchain networks.

1.1.3 Fair Payments

We follow the definition of fairness introduced by Asokan [2] and later enhanced by Pagina

and Vogt [3]. We assume a fair payment protocol is executed by two parties, cloud user

CHAPTER 1. INTRODUCTION

Alice and cloud provider Bob.

Payment protocol (PP): In general, a payment protocol consists of the following
steps: (1) Alice requests a service or a product provided by Bob. (2) Bob provides the
requested service or product to Alice as agreed. (3) Alice sends payment to Bob as agreed.
(4) Bob sends a receipt of payment to Alice. We assume that a payment protocol has two
possible termination states, either success or abort.

Fair payment protocol (F'PP): A PP is said to be F'PP if it satisfies the following

three requirements:

(a) Effectiveness: If both Alice and Bob behave according to PP and do not abort
during the PP, then at the end of the PP, Alice has received the service and Bob

has received the payment as agreed and P P has reached a success termination state.

(b) Termination: If Alice and Bob follow the PP honestly, then PP will eventually

reach either a success or an abort termination state.

(c) Fairness: If at least one of the two parties does not behave according to the PP, then
no honest party gains or loses anything valuable. In other words, Alice receives ser-
vice if and only if Bob receives payment otherwise the party (Alice or Bob) behaving

honestly do not lose anything valuable.

Pagina et al. [4] have defined the hierarchy of fairness guarantees from F{ to Fg as shown

in Figure 1.3.
(a) Fj: No Fairness

(b) Fi: Fairness can only be achieved outside of the system by an external dispute reso-

lution entity by providing compensation for a suffered disadvantage.

(c) F5: Fairness can only be guaranteed outside of the system by an external dispute

resolution entity with eventual cooperation of the other party.

(d) Fjs: Fairness can only be guaranteed outside of the system by an external dispute

resolution entity without further cooperation of the other party.

CHAPTER 1. INTRODUCTION

Figure 1.3: Fairness hierarchy from [4]

(e) Fj: Fairness can be achieved automatically by the system through providing com-

pensation for a suffered disadvantage.

(f) Fj5: Fairness can be guaranteed automatically by the system with eventual coopera-

tion of the other party.

(g) Fg: Fairness can be guaranteed automatically by the system without further commu-

nication with the other party.

Fair payment models constructed for hierarchy levels F7 - F3 have traditionally required
the presence of a trusted third party. The fairness levels £y - Fj are considered as strong

fairness guarantees, and they are thought to be impossible to achieve [3]. However, the

CHAPTER 1. INTRODUCTION

advances in Blockchain and smart contracts shows that they can emulate the role of the
mediating third party and facilitate fair payments between Alice and Bob automatically

without the influence of any party.

1.2 Blockchain Technology

The term Blockchain has been introduced with the peer-to-peer electronic cash system
known as Bitcoin [5] designed by an anonymous person / group under the pseudonym
Satoshi Nakamoto. Although the initial purpose of the Blockchain technology was to fa-
cilitate peer-to-peer financial transactions without trusted intermediaries, its fundamental
concepts are used as building blocks to construct many decentralized applications in the
fields of digital assets [6], smart contracts [7], Internet of things (IoT) [8], public services
[9], cloud computing [10], security services [11], reputation systems [12] and 5G networks

[13]. The fundamental components in Blockchain technology are as follows [14]:

(a) Peer-to-peer transmission: All the communications (transactions) occur directly
between peers without a central entity. Each peer stores and forwards information to

all other peers.

(b) Public key cryptography: Every peer in the Blockchain network is associated with
a public-private key pair. The public key is used to identify a peer uniquely in the
network, and the corresponding private key is used to sign the transactions during

transfer of the assets (financial or non-financial) owned by the public key.

(c) Distributed database (blockchain): In Blockchain network, the transactions are
stored in a one-way append distributed ledger also called as blockchain. Every peer
in the network has access to information stored at the blockchain, and no single peer
can control the data stored at the blockchain. A block in blockchain consists of two

parts: block header and block body. The block header consists of:

(1) Block version: It shows which set of block validations rules have to be followed

during block validation.

CHAPTER 1. INTRODUCTION

(i1) Merkle tree root hash: The hash of the Merkle tree root constructed with the

transactions in the block.

(iii)) Timestamp: The current time as seconds in the universal time since January 1,

1970.
(iv) Nonce: A 4-byte value computed during block creation.
(v) nBits: Represents the current target threshold of the block hash.

(vi) Parent / Previous block hash: A 256-bit hash value of the parent block.

The structure of the block is shown in Figure 1.4.

Block header

parent Merkle .
block | [tree | L

root stamp
hash [|hash

Nonce| | nBits| |Version

Block body
Transaction counter

TX TX TX Tx TX TX

Figure 1.4: Block structure

A blockchain is a sequence of blocks which are linked cryptographically. Figure 1.5

illustrates an example of blockchain.

Block header Block header Block header
Hash off | Merkie [) . Hash off | Merkie [) ! Hash off | Merklef |,)]
ok 0l 152 |stam| [Nonce] [nits] versin x e | |stamp| 0nce| | nBits| {verion| | |.. . . 3ok | |25 | [stamp| 0N | nBits [versio

hash hash i-1 hash

Block body Block body Block body
| Transaction counter | | Transaction counter | | Transaction counter |
o) o] [] o] [o] [[]] [

Genesis block (Block 0) Block 1 Block i

Figure 1.5: Distributed ledger (blockchain) as a sequence of blocks

(d) Consensus algorithm: A secure consensus algorithm is executed by a set of decen-
tralized peers known as miners to agree on a common global state of the blockchain.

Consensus algorithm guarantees the security of the blockchain. Bitcoin [5] uses the

9

CHAPTER 1. INTRODUCTION

Proof-of-Work (PoW) consensus algorithm, and most of the public Blockchain net-
works (commonly called as alt-coins / Nakamoto-style ledgers) proposed later fol-
lows Bitcoin’s PoW with little / no modifications. In PoW Blockchain networks, a
block B is of the form

B = (h,t,c,mh,ts,nb,v)

where:

h € {0,1}* is the hash of the parent / previous block.

t € {0,1}* is the set of transactions included in this block.

mh € {0,1}%is the Merkle hash of ¢.

ts € N is the number of seconds elapsed since the last UNIX epoch.
nb e N is the difficulty target for this block.

veN is the version of the block validation rules.

ceN is the nonce.

Every block B in a blockchain must satisfy the condition
(G(e, H(h,t,mh,ts,nb,v)) < D) and (¢ < q)

where:

G(-), H(+)are cryptographic hash functions which gives outputs of strings of length s bits.
D € N is known as block difficulty level set by consensus algorithm.

qgeN is the maximum value of nonce.

The following condition must be satisfied to add a new block B/ = (h7, 7, ¢/, mh? ts?, nb’, v7)

to a blockchain with B* = (h', t', ¢!, mh', ts', nb’, v') as right most block.
B = G(c', H(t',mh' ts', nb", v")

PoW algorithm makes the miners compete to generate a new block periodically. The

miners are rewarded for mining new blocks in the form of currency native to the

10

CHAPTER 1. INTRODUCTION

(e)

Blockchain network (bitcoins in the case of Bitcoin). The PoW algorithm is com-
posed of several transactions and block validation rules. The following two rules
ensure the correctness of the execution of transactions: (1) The miners verify all the
received transactions before adding them to a block, and (2) A miner after receiving
a new block verifies the validity of block as well as transactions in that block before
adding it to their local blockchain. These verification steps make the Blockchain
network trusted for correctness. The hardness in solving PoW puzzle makes the
blockchain immutable, and a large number of participating miners ensure availability
of Blockchain network. Several consensus algorithms are proposed in the literature,
and one can refer to [7] for the analysis and comparison of different consensus algo-

rithms.

Smart contracts: A smart contract (SC) is a program deployed and stored in a
Blockchain. A smart contract can hold many contractual clauses between mutually
distrusted parties. Similar to transactions, the smart contract is also executed by
miners and, its execution correctness is guaranteed by miners running the consensus
protocol. Assuming that the underlying consensus algorithm of a Blockchain is se-
cure, the smart contract can be thought of as a program executed by a trusted global
machine that will faithfully execute every instruction [15]. The complete analysis,
applications, design patterns and limitations of the smart contracts are found in [16].
An example of a smart contract between two parties A and B is given in Figure 1.6.
The parties in smart contracts can add the contract terms and set parameters accord-

ing to their own needs.

11

CHAPTER 1. INTRODUCTION

Contract Example()
Begin
IF A initiates a transaction AND condition(i) is met
Set timestamp OR trigger event
ELSE
transaction failed, A and B state regressed and ended the transaction
IF condition(j) is met AND no timeout
B confirmed the transaction AND quit
IF TIMEOUT
transaction failed, A and B state regressed and ended the transaction
END

Figure 1.6: Example of a smart contract [17].

1.2.1 Main characteristics of Blockchain

We discuss some of the main characteristics of Blockchain and their potential applications

to cloud computing.

(a)

(b)

Decentralization: Decentralization in Blockchain refers to a lack of centralized au-
thority for managing identities, accounts, balances, databases, and code execution.
The consensus algorithms like Proof-of-work, Proof-of-Stake, etc., ensure the se-
curity of the Blockchain without any trusted authorities. This feature is essential
in cloud computing, especially when the cloud provider and user are mutually dis-
trusted. As no central authority controls the Blockchain, Blockchain-enabled cloud
computing services instil more trust and give more control to cloud users than tradi-

tional cloud computing services.

Immutability: The complexity in solving the PoW puzzle makes the data stored in
the blockchain immutable. The blocks in the blockchain are chained cryptographi-
cally. To change a transaction / data in some ‘" block of a blockchain with n" block
as the current block, new PoW solutions have to be found for all blocks between 7
and n. Finding PoW solutions is computationally expensive, especially if ¢ is much
smaller than n. This property can be plausibly used to design data integrity and audit-
ing schemes because the traditional cloud computing solutions rely on trusted party

or heavy cryptographic primitives.

12

CHAPTER 1. INTRODUCTION

(c)

(d)

(e

®

Transparency: All the interactions / transactions stored in the blockchain are pub-
licly viewable by every member. Also, many parties (miners) contribute their com-
putational power to generate new blocks, verify newly generated transactions and
blocks. These steps ensure strong transparency which in turn enhances the integrity
of the data stored in the blockchain. If Blockchain is adopted in cloud computing and
the meta-data of interactions between users and cloud data / services are recorded in

the blockchain, then it enhances the trust and openness in cloud computing.

Persistency: Every transaction and block are verified for the common good before
adding it to the blockchain. Any malicious attempt to destabilize blockchain by
adding malicious transactions is not possible due to public verifications. Once the
data is stored at blockchain, then that data is persistent and cannot be modified. This
property enhances the persistency and reliability of Blockchain-enabled cloud ser-

vices.

Auditability: As the Blockchain data is retrievable publicly, it is subjected to public
auditing. This characteristic is required in cloud computing as most of the existing
cloud data integrity, and auditing schemes [18] depend on third party auditor and
complex cryptographic primitives. The auditability property of Blockchain dramati-
cally reduces the cost of auditing and also eliminates the role of trusted parties in the

traditional cloud auditing schemes.

Security and privacy: For sending transactions in Blockchain, every participating
entity must generate an asymmetric key pair using public-key cryptography. Before
sending, every transaction has to be signed with a private key of a sender. During
verification of the transaction, the signature is verified with the help of the public key
of the sender. The asymmetric key helps preserve the privacy, ownership and non-
repudiation properties. However, in traditional cloud solutions, a trusted key gener-
ator (TKG) is required for generating and distributing keys causing the well-known
key-escrow problem [19]. The fusion of Blockchain and cloud greatly reduces the
dependence on TKG and increases the security of cloud systems. Also, in traditional

cloud computing, a trusted party is required for managing access control policies.

13

CHAPTER 1. INTRODUCTION

The dependence on the trusted party can be eliminated by transcoding the access
control policies as smart contracts. Nevertheless, the drawback of public Blockchain
systems is that they cannot provide privacy to the data stored on the Blockchain. In
order to mitigate the privacy problem, several privacy-preserving solutions [20] are

being explored along with the development of private Blockchain networks.

Although public Blockchain systems possess decentralization, immutability, trust, and trans-
parency properties, they suffer from scalability and privacy problems. To alleviate these
problems, private Blockchains and consortium Blockchains are being developed. However,
private / consortium Blockchains trade-off decentralization and transparency for the sake
of scalability and privacy. The comparisons of public, consortium and private Blockchain

is shown in Table 1.1.

S.No | Characteristic Public Consortium Private
No (selected set of nodes
o No (single
1 Decentralization | Yes spread across multiple
orgranization)
organisations)
2 Immutability Tamper-proof | Cloud be tampered Cloud be tampered
Cloud be public or Cloud be public or
3 Transparency Yes
restricted restricted
4 | Persistency Yes No No
Public
5 Yes No No
Auditability
6 Privacy No Partial Yes
7 Smart contracts | Yes Yes Yes

Table 1.1: Comparison among public, consortium and private Blockchains

1.2.2 Formal Blockchain Model

The formal Blockchain model was first introduced in [21] and later adopted in [22], for
specifying and reasoning about the security of the protocols. We also adopt the same model

to describe our protocols.

14

CHAPTER 1. INTRODUCTION

(a)

(b)

(c)

(d)

(e)

®)

€y

Timer: All parties are aware of the time which progress in rounds. At the beginning
of each round, the contract’s timer function is executed. The smart contract can also

query Blockchain for the current time denoted by variable 7.

Pseudonymity: A party can obtain any number of pseudonyms to communicate with
a smart contract. Contract wrapper (G) in [22] generates pseudonyms on the request

of any party.

Availability: We assume that the blockchain is always available to be queried by any

party.

Correctness: We also assume that all the transactions are verified and only correct
transactions are added to a block. The blocks are also verified and only correct blocks

are added to Blockchain.

Currency: All the monetary variables are prefixed with $ sign . ledger[P] denotes

the party P’s balance in native cryptocurrency of a Blockchain.

Variable scope and functions: A smart contract is written as a set of functions, and
each function is invoked with a corresponding message type. We assume that all the

variables in a smart contract are globally scoped.

Wrappers and Programs: Wrappers contain a set of common features that are
applicable for all the ideal and contract functionalities. We use the same wrap-
pers described in [21, 22]. We define our protocols in G(Contract)-hybrid model,
where G(+) is a contract wrapper which models many concepts of the decentralized
Blockchains like Bitcoin and Ethereum. The Contract program is the user-defined
portion of the contract, i.e., a Contract program contains the business logic, whereas
the G(-) contains the operational semantics. Both are combined to model a real-world
smart contract executing on top of a decentralized Blockchain system. Similarly, we
have ideal functionality wrappers F(-) to be used in combination with Ideal pro-

grams. All the wrappers are discussed in [22].

! Although we are using $ sign, it can be replaced with any currency symbol.

15

CHAPTER 1. INTRODUCTION

1.2.3 Ethereum, Solidity, Gas, Truffle framework and Simulation en-

vironment

Ethereum [23] is a major Blockchain network supporting smart contracts. A smart contract
in Ethereum is a piece of code having its address, balance and state. The execution of the
smart contract code changes its state. A smart contract is written as a set of functions.
The execution of a function in a smart contract is initiated by sending a transaction to its
contract address.

Solidity [24] is one of the scripting languages used to write smart contracts in Ethereum.
Solidity is a Turing-complete language; therefore, a wide variety of applications can be
developed using Solidity. However, to discourage developers from writing smart contract
functions that take a long execution time, Ethereum introduces gas.

A smart contract is compiled into Ethereum opcodes, and each opcode has a predefined
cost. The sum of all the opcodes’ cost is known as gas. Gas in Ethereum is a form of
transaction fee paid in Ether to miners. The unit of gas is gWei (grand Wei) which is
equal to 10~ Ethers. Ether is a native cryptocurrency of Ethereum. The amount of gas
consumed by a transaction is converted into the Ether and charged from the transaction
initiator’s Ethereum account and paid to the miner in the form of a transaction fee.

Truffle framework [25] is a development and testing environment for Ethereum smart
contracts. Truffle offers automated smart contract compilation and deployment. It also
contains a private Ethereum Blockchain known as Ganache which mimics the Ethereum
production network. In this thesis, we have implemented proposed protocols using the
Solidity and Truffle framework.

We have set up a Ganache Blockchain and Truffle framework simulation environment
on a 2.50 GHz Intel Core 15 CPU and a 16 GB RAM machine. We have used the same

simulation environment to implement the contracts that we discuss in this thesis.

1.2.4 Need of Blockchain Technology in Cloud Computing

The mapping of Blockchain characteristics and their potential applications in cloud com-

puting is shown in Table 1.2. Each characteristic would enhance the quality of cloud

16

CHAPTER 1. INTRODUCTION

computing from the transparency and trust perspectives showing great potential of using
Blockchain in cloud computing. The development of Blockchain-enabled solutions for
cloud computing has only recently started and focuses on commercial targets. In the tradi-
tional cloud models, users are assumed to trust that the machine hardware, software, and
cloud administrator all perform as expected. A wide range of things can go wrong, partic-
ularly when one wishes to tie the results of such computations to monetized entities such
as smart contracts. Proper economic incentives, the cornerstone of any cryptocurrency, can

deter many types of errors occurring in ways that simple task repetition cannot.

17

CHAPTER 1. INTRODUCTION

Key
S.No | characteristics Description The potential application to cloud computing
of Blockchain
Eliminates the need for trusted parties in the cloud
. computing environment for services like data auditing,
L No centralized or trusted party controls
1 Decentralization . data integrity, data timestamping, data searching, access
the Blockchain.
control, resource allocation, service allocation, service
discovery, billing and payments, and federated services.
Every interaction with cloud data / service can be recorded
immutably on Blockchain, providing integrity and thus
- The data stored on the Blockchain can enab'hng tampe.r—p roof dat.a aUdltl.ng'. The logging O.f
2 Immutability . service interactions helps in monitoring user behaviour.
not be modified .
As no party can alter the records stored in the append-only
ledger, the billing of services based on these records will
be fair and correct.
Cloud provider, application developer, and the end-users
can thoroughly check and monitor the transactions with
All the interactions with the equal rights. No party is deprived of its right to monitor
3 Transperency T
Blockchain are publicly available the transactions there by instilling
more trust and transparency in
the Blockchain-enabled cloud services.
The data stored in the Blockchain are
subject to public verifiability. All the Transactions created from all the interactions with cloud
transactions recorded on the data / services are recorded and verified by the cloud
4 Persistency Blockchain is verified for correctness provider and users. This verification enhances the
and any attempt to maliciously change | persistency and reliability of Blockchain-enabled cloud
the state of the Blockchain will be services.
thwarted.
Data auditing is one of the most critical tasks in cloud
computing. Currently, cloud provider and user mutually
o As data is publicly available, it can be distrust eacb other; hence a.tr.usted party has to pe regulred
5 Auditability . . for performing the data auditing tasks. As data is available
traced and audited easily . L
publicly, Blockchain eliminates the trusted party and
enables provider and user to trace and audit data on their
own.
Blockchain systems employ public-key | Blockchain supports secure cloud computing by providing
cryptography for authentication and distributed trust models with authentication and data
non-repudiation. Access controls can privacy. Blockchain helps in protecting the cloud service
6 Security and be transcoded into smart contracts for | end-users privacy by masking the real identity of end-users
privacy authorization. Privacy for data can be | with a pseudonym generated through public-key
provided either by employing private cryptography. Blockchain also helps in protecting access
Blockchain or some known encryption | control policies of cloud data / services from unauthorized
techniques. entities.
A smart contract can be thought as a A b.road spgctrum of cloud computing applications can be
designed with smart contracts. For example, the service
program executed by a trusted global .
7 Smart contracts layer agreements can be transcoded into smart contracts

machine (Blockchain network) that
will correctly execute every instruction

and deployed on Blockchain for better trust, transparency
and reliability of cloud services.

Table 1.2: Key characteristics of Blockchain and their potential applications to cloud com-
puting

In Table 1.3, we present the major obstacles to cloud computing and the opportunity for

Blockchain to address the obstacles of cloud computing.

18

CHAPTER 1. INTRODUCTION

S.No Obstacle

Opportunity for Cloud

Opportunity for Blockchain

1 Service availability

Use multiple cloud providers

Blockchain can be a reliable
communication medium which will instill

trust between multiple cloud providers.

Blockchain offers tamper-proof storage

sharing

services like those for email

2 Data lock-in Standardize APIs
for publishing standardized APIs.
Blockchain offers tamper-proof storage to
publish access control policies defined
on data stored at the cloud.
Data confidentiality | Deploy Encryption,
3 Blockchain offers tamper-proof storage to
and auditability VLANS, and Firewalls;
store meta-data of the data / services
stored / running at the cloud helps
tamper-proof auditing.
4 Data transfer FedExing Disks; Efficient data migration tracking systems
bottlenecks Data Backup / Archival; can be constructed using Blockchain.
Fair and open reputation management
Reputation-fate Offer reputation-guarding
5 schemes can be constructed using

Blockchain.

6 Software licensing

Pay-for-use licenses;

Bulk use sales

Fair billing and payments schemes without
trusted intermediaries can be constructed

using Blockchain.

Table 1.3: Some of the obstacles and opportunities for the growth of cloud computing and

Blockchain.

1.3 Motivation, Aim and Objectives of Proposed Work

In cloud computing, it is generally assumed that the users always trust the provider for

provisioning the service honestly and pays to the provider before actually using the ser-

vice. However, due to the monetary benefits involved, a rational provider may deviate from

provisioning the service honestly. In order to address the fair payment problem, existing so-

lutions comprise trusted parties for fair payments between user and provider. Nevertheless,

having trusted parties do not solve the problem completely, and an additional financial cost

is imposed on both user and provider. Blockchain, with its innovative properties like de-

19

CHAPTER 1. INTRODUCTION

centralization, immutability, transparency and smart contracts, emulate the trusted parties.
In recent years, fair payment protocols without trusted parties using Blockchain technology
are being explored. In current literature, fair payments for cloud services is not addressed
adequately, and this motivates us to develop fair payment protocols for cloud services using

Blockchain technology.

1.3.1 Aim

In this thesis, our aim is to design Blockchain-based fair payment protocols for cloud ser-

vices between cloud users and cloud provider.

1.3.2 Objectives

The main objectives of this thesis are stated as follows:

* To understand the main characteristics of Blockchain technology and its potential

applications to cloud computing.
* To do literature survey, identify research gaps and address them.

* To understand the existing cloud computing payment models and provide Blockchain-
based fair payment solutions for cloud services involving: (a) Platform-as-a-Service

(b) Infrastructure-as-a-service and (c) Software-as-a-service.

* To find future directions in the field of Blockchain-based cloud computing.

1.4 Overview of the Contributions of the Thesis

This thesis presents the following contributions:

1. Presented a comprehensive literature survey on Blockchain-based cloud services and

Blockchain-based fair payment models (Chapter 2).

20

CHAPTER 1. INTRODUCTION

2. Proposed a fair incentivized model for proof-based verifiable computation which
shows that the cost of running a smart contract is negligible when both cloud user

and provider are honest (Chapter 3).

3. Proposed a fair incentivized model for replication-based verifiable computation, which
shows that smart contracts are an efficient way to send payment to honest cloud ser-

vice providers and also to penalize malicious cloud service providers (Chapter 3).

4. Proposed a Blockchain-based fair payment protocol for monetizing mobile crowd-
sensing data. Proposed a new key establishment protocol using smart contracts as a
communication channel for mobile crowdsensing that does not require a trusted key
generator. Proposed a smart contract-based quality-aware incentivization model for

paying data providers in mobile crowdsensing (Chapter 4).

5. Proposed a Blockchain-based online virtual machine allocation auction which fo-

cuses on fair payments and correctness of the auction algorithm (Chapter 5).

6. Proposed a new incentive model for cloud data de-duplication which is individually

rational and incentive compatible for both cloud user and provider (Chapter 6).

7. Proposed a fair payment protocol for cloud data de-duplication which emphasizes
correctness of de-duplication rate and fair payments between cloud user and provider

(Chapter 6).

8. Proposed a Blockchain-based rating, charging and billing model for microservices
which consists of a new decentralized service discovery of microservices, a fair rating

and charging platform and a fair billing platform (Chapter 7).

1.5 Thesis Organization

The chapters of this thesis are organized as follows:
In Chapter 1, we have presented the preliminaries about cloud computing, fair pay-
ments, and Blockchain technology. We have also presented motivation, aim, objective and

contributions of the thesis.

21

CHAPTER 1. INTRODUCTION

Chapter 2 presents a comprehensive literature survey of Blockchain-based cloud ser-
vices. In particular, the survey focuses on the technical fusion of Blockchain and cloud
computing and investigates the recent advances in the field of Blockchain-based cloud ser-
vices. The Chapter also includes a survey of fair payment protocols constructed using
Blockchain technology. At the end of the Chapter, the main findings of the survey and gaps
in the literature are discussed.

Chapter 3 presents fair payment protocols for outsourcing a computation. It provides
fair payment protocols for outsourcing a computation of two types: (1) Proof-based ver-
ifiable computation and (2) Replication-based verifiable computations. The honest com-
putation from the provider is obtained by imposing monetary penalties, and our proposed
protocols guarantee to pay to the honest provider.

Chapter 4 discusses fair payment protocols for mobile crowdsensing. It presents two
protocols: The first protocol uses the services of a trusted party, whereas the second pro-
tocol eliminates the trusted party by using a smart contract-based key generation algo-
rithm. The two protocols ensure that a data provider receives fair payments from the cloud
provider for his / her data contribution towards the crowdsensing task.

Chapter 5 presents a fair payment protocol for virtual machine allocation. It shows
that the untrusted auctioneer in traditional cloud computing for allocating virtual machines
can be replaced by smart contract running on a public Blockchain network. The protocol
ensures that the provider receives the pay if and only if the cloud user receives the requested
virtual machines.

Chapter 6 discusses a fair payment protocol for data de-duplication. The Chapter
presents a new incentivization scheme for cloud data de-duplication. The protocol assures
correct and fair discounts on the storage fee for cloud users.

Chapter 7 provides a fair payment protocol for microservices which includes the rating,
charging and billing aspects of the microservices.

Chapter 8 concludes the thesis and outlines future research directions.

22

Chapter 2

Literature Survey

Blockchain and smart contracts are becoming popular in many engineering and computer
science fields. Cloud computing is one such field that can benefit from adopting Blockchain
technology to re-engineer its data centres. Blockchain is expected to be an indispensable
tool to fulfill the performance expectations for cloud systems with minimal costs and man-
agement overheads. We observe that the integration of Blockchain and cloud is rarely
addressed in the literature. So in this Chapter, we try to address the gap in the literature by
discussing the existing Blockchain-based cloud services and present a road map for further

integrating Blockchain and cloud.

2.1 Comparison of existing Blockchain surveys

Many studies have surveyed Blockchain technology from various perspectives e.g., dig-
ital currencies [26], privacy [20], smart contracts [16], consensus mechanisms [27], 10T
[28, 29], cloud computing [30, 10], edge computing [31], and 5G [13]. The comparison
of existing survey works on Blockchain in various domains is presented in Table 2.1. We
observe that only a few works have discussed Blockchain from the perspective of cloud
computing and also, none of the works have discussed the Blockchain-based cloud ap-
plications from the perspective of service models. In contrast, we discuss state-of-the-art

Blockchain-based cloud systems in all the three service models Iaas, PaaS and SaaS.

23

CHAPTER 2. LITERATURE SURVEY

S.No Related surveys Topic Key contribution Limitations and open issues
The authors investigated the There is a lack of discussion on service-
Blockchain | integration of Blockchain-based based cloud computing. The paper
! Yang et al. (2019) [31] and edge edge computing and its emphasizes on the integration of edge and
challenges. ToT and have not considered the cloud.
The authors discussed various
Blockehain shortcomings of integration of The paper only provides the concept of
2 Ali et al. (2019) [29] and ToT IoT and Cloud and investigated Blockchain for IoT, and a detailed cloud
solutions for those shortcomings service-based analysis is missing.
using Blockchain.
Blockchain The authors investigated the The authors have focused more on IoT
3 Dai et al. (2019) [28] integration of Blockchain with and discussed cloud only as a backend
and IoT
ToT. to IoT networks.
The authors have discussed some of the
.| The authors discussed the adoption Blockehain-based cloud c.omputmg
Blockchain A models from the perspective of 5G
4 Nguyen et al. (2020) [13] of Blockchain in 5G technology,
and 5G R networks. However, they have not
5G IoT and 5G services. .
analysed from the perspective of cloud
services.
Blockchain | The authors discussed the The authors have focused on generalised
5 Xie et al. (2020) [30] and cloud | integration of Blockchain and cloud services, and a detailed service-based
exchanges | cloud exchanges. analysis is missing.
Although most aspects of cloud computing
. Blockchain | The authors discussed the fusion of | * coverc.ad some lmp(.)rtant topics like
6 Gai et al. (2020) [10] . . . computation-as-a-service and
and cloud | cloud services with Blockchain. . .
data aggregation-as-a-service
are not discussed.
We present a comprehensive
survey of Blockchain-based
. Blockchain | cloud services. We present the
7| This Chapter and cloud | works published in all the three N
service models IaaS, PaaS
and SaaS of cloud computing.

Table 2.1: Comparison of surveys on Blockchain in various domains

2.2 Systematic Literature Survey

Our objective is to explore the existing works on Blockchain-based cloud services, and
hence we adopted the systematic literature mapping given by Yli-Huumo et al. [32]. The
adopted mapping process is illustrated in Figure 2.1. In the first step, we define research
questions related to the integration of Blockchain and cloud computing, which are listed in
Table 2.2. By analyzing the key research questions, we discuss the merits of the Blockchain
and the cloud computing technologies and observe the pivotal issues of cloud computing
that can be solved with the help of Blockchain technology. After defining the scope of the
research, we have searched for the articles with the terms Blockchain and cloud computing
as query strings. We have collected papers from well-known peer-reviewed article publish-
ing platforms including (1) IEEE Xplore (2) Science direct (3) Springer Link and (4) ACM

digital library. Then, based on the article title and abstract, we have filtered out some ir-

24

CHAPTER 2. LITERATURE SURVEY

relevant papers and retained only papers related to Blockchain-based cloud services. Then,
with the help of keywords in the articles, we have categorized papers into three sets based
on the type of cloud service they have discussed. Finally, we have extracted information

from the articles that needed to address the research questions of this mapping study. Tech-

nical dimensions of this survey are presented in Figure 2.2.

T - Data
3:::‘;:';1" of Conduct Screening of E:I‘:l ‘gord'"g - | Extraction
“~|1 and Mappin
Questions Search Papers Abstract Procesrspp g
Review All Papers Relevant Classification Systematic
Scope Papers Scheme Map
Figure 2.1: The systematic literature mapping process [32]
S.No Research questions Motivations
Cloud computing severely suffers from trust and transparency due to
| What are the current challenges of | centralized architecture. Currently, cloud providers and users have to
cloud computing ? depend on trusted third parties to resolve disputes which arise due to
violation of service level agreements.
. The key requirements of cloud computing include availability, elasticity,
What are the key requirements of yred .. puting Y ety
2 . data security, manageability federated systems, on-demand integration,
cloud computing ? .
multi-tenancy, resource management etc.
. The key characteristics of Blockchain include decentralization,
What are the key characteristics of | . - . . .
3 . immutability, transparency, persistency, auditability, security and smart
Blockchain ?
contracts
. Cloud computing could benefit from Blockchain to build innovative
4 What are the potential benefits of a licationrs) rO\g/idin trust, transparency and giving more control to
Blockchain for cloud computing ? pp P £ ’ p Y giving
cloud users.
What are the key advantages of Blockchain offers new features like decentralization, trust, transparency
5 Blockchain over the traditional and immutability which does not exist in traditional cloud computing.
technique for supporting cloud Significantly, Blockchain limits the dependency of the cloud provider
computing ? and users on trusted third parties.
Many recent works discussed Blockchain-based cloud services for data
6 How is the current Blockchain- management, access controls, resource management, data security,
cloud research progress ? service management, etc., across all the three domains SaaS, PaaS and
TaaS of cloud computing.

Table 2.2: Research questions and analysis of literature

25

CHAPTER 2. LITERATURE SURVEY

Cloud |

Cloud computing

¢ |

Infrastructu{e)-as-a-Service PIafrom-?g)-a-Service Software-a(sia-Service
d C
\ AN AN
\ / - \\ / \\
) Resource allocation, . . . N . . .
-a5-a- .| |Computation-as-a-Service| |Data aggregation-as-a-Service -35-3- 353
Storage-as-a-Service managementand supeisin p 99eg Microservice-as-a-Service VNF-as-a-Service

! l l

Data Management | |Data Access Control| |Searchble Encryption| | Data Deduplication

Blockchain'|

Figure 2.2: Technical dimensions of this survey

2.3 Blockchain-based Cloud Services

2.3.1 Blockchain-based Infrastructure-as-a-Service (IaaS)

IaaS is one of the most significant and fast growing cloud computing service model. A
cloud provider under IaaS offers computing resources like virtual machines, storage disks,
network devices, load balancers and firewalls. Most of the existing works on Blockchain-
based IaaS focus on storage management and computational resource management. There-
fore in this section we would first discuss the challenges in existing cloud storage and re-
source management and then elaborate the existing Blockchain-based storage and resource

management works. Finally, we conclude the section with the summary of our findings.

2.3.1.1 Storage-as-a-service

2.3.1.1.1 Issues in traditional cloud Storage-as-a-Service

Outsourcing data to a remote cloud has become a common practice [33]. Every day
large amounts of data are being generated, and data explosion is predicted when 5G and
IoT networks are deployed worldwide. More and more users are adopting cloud storage
to store their personal data, and many enterprises are also moving their data to the cloud

in order to reduce on-premise costs. We categorize the entities involved in storage-as-a-

26

CHAPTER 2. LITERATURE SURVEY

service into three types: (1) Cloud provider (C'P), (2) Data owner (DQO), and (3) Data
user (DU). C'P is a rational and untrusted party with a large storage capacity. DO stores
his data at cloud managed by C'P. DO also authorizes DU to read / retrieve his / her data
stored at the cloud. A DO has very little, or no control over his data as C'P may give access
of DO’s data to third parties for monetary benefits. In today’s world, C'P will always try

to reduce its costs adversely effecting data properties like:
(a) Data integrity: C'P may modify stored data without the DO’s knowledge.

(b) Data auditability: C' P may not record or tamper the recorded data about the actions

performed on DO’s data.

(¢) Data searching: When requested for a data search operation, C'P may return incor-

rect or partial search results.

(d) Data sharing and access control: C'P may not adhere to the access policy stated by

a DO or may change the already stored access policy without DO’s knowledge.

(e) Data migration: C'P may not comply with storage location policy and may migrate

DQO’s data without his knowledge.

(f) Data deduplication: C'P saves huge storage cost due to data deduplication, and a

rational C'P may not pass those benefits to DO.

The list of Blockchain-based cloud data management works in literature is given in Figure

2.3.

27

CHAPTER 2. LITERATURE SURVEY

[061(0207) ‘Te 10 Suelf f«—

[681(0202T) T 10 uex |«—

(881 (6107) Sue, ~—

[£8]1 (6107) "Te 10 NIN [+—

[98 ‘581 (6102) "Ie 12 Suryz |~

[¥81(6102) 'T® 10 Suex |«

"90TAIQS-B-SB-05.I0)S PASBQ-UTBYINOO[{ UT SIOM JO ISTT "7 2In3L]

(91 (1200)
‘[e 10 onn

[sL] (0z0D)
‘Te 10 Suex

[¥L] (6102)
‘[® 19 Sueyz

[€L] (6102)
‘Te 39 onn

[zL] (6102)

(051 (1200
[e 10 Sueny

«—

[6¥] (0202)
[e 10 [ruog

[8+] (6102)

[e¥] (0202
‘[e 32 Sueny

[z¥] (0202)
‘Te 10 nX

[1+] (6100)
‘Te 19 anyx

~—

[o¥] (6102)
Te 10 nyz

[6€] (8102)
TR

<

‘Te 39 BSARIA |
[€81(8107) T8 10 12D |« ‘e 19 08D [8¢] Awﬁowv n
(121 (8100) [ss1(0202) ‘Te 19 suep\
[c6] e [<9]() [LS] (1202) e 30 3uex ‘T2 10 U2ANSN [L€] (L10D)
(6107) | [raoussiry 021 (0200) §91(0c02) | _ . . .
.mﬁom . X e T2 10 Sueny & 10 wead)syg [+<] (8102) vl (100 [19 TuReD
e 19 [18]1(61020) |__| dolroney) qIopug | 4 102 |
Suepy || | 3uer f [¥9] (8100) |_| [oc] (6102) i eI [9¢] MS@ n
[691 (6100) 210 ’ ‘Te 10 Suer|
[z6] s ey e > +50U0IO WMWM%N < | [sv](L10D) |_|
(8100) 14 . —L— | [[e9l8100) | | Los] oreygaow ||| [s€1(L10D) | |
T’ leLlg100) | | T sw%w ~— | Te 10 Sueg .aﬁo@] [zsl e | 10D ‘[® 10 ySeyeys
I 10 Sueyyz |LRERS| urIpUBOWEY | :umu Amﬁomv
[16] 5l 6100 (9] (8100) (291 (8100) | | 0] ool sadd . s
(8100) M |wouwy | | |[wewemer || 10 3uayz ||| 109 8 151 (L10D) spiooar || 1?20 PURISAZ
o1 ; (8100) || (8100) |_| oreyses || oo Tor 0
i (e soo |, | [wolion || [[191(810D) | || ‘rese T° 10 Preay
Qv HURERUS ‘[B 19 LIesuR[Y ‘T8 10 ueq wcm% uRw Iy AOV An—v JTUON I JLIdUAn)
: < 7
uoneoI- -
i o@ 1) 3) o)) Surdwre SUTUOISIOA (v) Surreys
ﬁm % uondAioud [0nu0d S1Iyousq | | uonsp | | uoneidru Isouwm Suryen pue
A]| 5iquoreeg $$000Y Areuopy | | eRQ v1eq vied vied Sunipny
f x 5 I 5 5 f I ¥
%
QOIAISS-B-SB-93RI0IS (®)

28

CHAPTER 2. LITERATURE SURVEY

In the following subsections, we discuss how Blockchain-based methods enforce the

above-discussed properties .

2.3.1.1.2 Blockchain-based cloud data management

(a) Data auditing and sharing: Zyskind et al. [34] have presented a personal data
management model in which the encrypted data is stored at a cloud, and the meta-data about
the stored data is embedded into a Blockchain along with the access control permissions.
The data storage and retrieval requests are sent as transactions (7};,;,) to Blockchain, and
similarly, the changes in access control policies are also requested through transactions
(T ccess)- During the verification of 7y, for data retrieving, the access policy stored in the
Blockchain is used to check whether the transaction initiator has necessary permissions to
retrieve the data. As meta-data about the data and all the actions performed on the data
are recorded in the immutable ledger this model ensures correct data auditability. Since the
access control rules are stored in the Blockchain, the model provides fair data sharing and
policy verification’. Shafagh et al. [35] and Liang et al. [36] applied the same technique
of [34] for IoT stream data and data collected from drones respectively.

Gaetani et al. [37] have designed a two-tier Blockchain model to ensure the integrity
of data stored in the cloud federation environment. The first tier Blockchain adopts a light-
weight consensus protocol for fast performance by storing every operation performed on
the federated database. The second tier Blockchain adopts proof-of-work (PoW) to ensure
the integrity of the data stored at the first-tier Blockchain. Wang et al. [38] have devel-
oped a data-sharing mechanism by leveraging Blockchain as a communication channel to
distribute the secret key used in attribute-based encryption of the data. They also store en-
crypted data indexes in smart contracts to increase trust on search operation.

Li and Zhou [39] have adopted Blockchain to store all the logs generated while storing
a data block in cloud. However, storing logs increases search time during data auditing.

To solve this problem, the authors introduced a proxy node which analyzes the blocks in

I'To simplify the discussion; we purposely omit all the cryptographic concepts involved in securely storing,
retrieving, auditing, searching, deleting and deduplicating of the data stored in the cloud.

ZMost of the works presented later follow [34] for data auditing and sharing with minor / major modifica-
tions. We will discuss the necessary modifications wherever applicable.

29

CHAPTER 2. LITERATURE SURVEY

Blockchain and forms an index. This indexing will reduce time when a DO searches for all
the historical changes of his data. Zhu et al. [40] have used a smart contract to validate and
trace modifications to cloud data. They have designed a delegated proof-of-stake (DPOS)
[94] like consensus mechanism with a Blockchain node having a veto power to detect and
override the attempts of adding erroneous data to Blockchain. However, a centralized entity
with a veto power opposes the cause of using Blockchain.

One of the main challenges in traditional cloud data auditing is that a trusted audi-
tor may compute the auditing result ahead of time and provide the evidence that he has
executed the auditing protocol correctly. So, the challenge messages generated during
the auditing must not depend on the DO or auditor and cannot be predefined (truly ran-
dom challenge messages are required). To solve this problem, Xue et al. [41] presented
an auditing model which uses random nonces generated during block creation of Bitcoin
Blockchain. The auditor has to include the nonce of a particular block specified by the
DO while generating challenge messages required for auditing. In [41], the auditors also
publish the auditing results to public Blockchain for further tracing and auditing in future.
Xu et al. [42] uses smart contracts as an arbitrator to resolve disputes regarding the in-
tegrity of data stored in the cloud and penalize misbehaving parties. Huang et al. [43] have
introduced collaborative auditing Blockchain (CAB) running a credit-based consensus al-
gorithm to increase the trust on data auditing results.

Electronic Health Records (EHR) auditing and sharing: Xia er al. have presented
two Blockchain-based secure medical data sharing methods namely BBDS [44] and MeD-
Share [45]. In BBDS, the authors employ a light-weight permissioned Blockchain with
a new Block structure to enhance the scalability and in MeDShare, the authors propose
to use smart contracts for storing access policies and routed the access requests through
Blockchain for secure data sharing. As smart contract tracks every action on data stored in
the cloud, trust-less auditing is possible. Li et al. [46] have constructed a data preservation
system (DPS) to store and share personal health data securely. DPS allows the users to
submit the hash of the unpreserved data to Blockchain. Later, the users can check and val-
idate the preserved data by retrieving hash from the Blockchain. Nguyen et al. [47] have

introduced a trusted manager who on receiving a data request verifies the request with ac-

30

CHAPTER 2. LITERATURE SURVEY

cess controls stored in smart contracts and take appropriate action based on the verification
result. Cao et al. [48] have adopted Blockchain to protect patient’s health data outsourced
to the cloud from illegal modifications by doctors. Benil and Jasper [49] have presented an
authorized Blockchain-based data sharing, and auditing model for personal health records.
Recently, Huang ef al. [50] have proposed a Blockchain-based solution for identifying ma-
nipulation of EHR data. They have constructed proof-chain to store users’ manipulation
logs on EHR data. At the later stage, the logs stored in proof-chain are used as evidence
for rights protection.

(b) Data tracking and versioning: In SeShare [51], multiple DO’s shares and modify
cloud data and record those changes in the Blockchain for avoiding conflicts arising due
to file sharing. Ramachandran et al. [52] have designed a document management system
called DataProv which contains two types of smart contracts: Document_Track and Vote.
The Document _Track contract facilitates operations like adding a document, granting and
revoking access to the document, and tracking the changes in the document. Any changes
to the document are recorded in the ledger only through a voting process conducted by the
vote contract. Zhang et al. [53] have designed a document life-cycle management method
where all stages of document management like creation, modification and ownership trans-
fer are recorded in the Blockchain to ensure integrity and auditability. Endolith [54] stores
meta-data of the data stored in the cloud using a smart contract enabling data auditing, val-
idation, tracking and versioning.

To provide high availability and to avoid accidental loss of data, multiple replicas of
data may be stored at multiple clouds. However, managing multiple-replicas correctly
without loss of integrity of every replica is a challenging task. This challenge is considered
by Yang et al. [55], where a modification record table is maintained to track file changes,
and similar to [41] uses the random nonces from Blockchain to generate challenge mes-
sages during auditing.

(c) Data time-stamping: A tamper-proof, and correct time-stamping of files is required
before storing them in the cloud. However, in traditional cloud computing, a trusted time-
stamping server is setup, which may deviate from its operation by colluding with DO or

CP. To mitigate this problem, a time-stamping service based on Ethereum Blockchain

31

CHAPTER 2. LITERATURE SURVEY

known as Chronos™ is developed by Zhang e al. [56]. For secure and correct time-
stamping for a file, a DO has to retrieve the hash values of (- successive blocks that are
most recently accepted on the Ethereum Blockchain and include those hash values in the
file. This procedure enables the users to prove that the file was generated no longer than the
physical time of the last block of (- successive blocks. However, miners to some extent can
affect the block time-stamp. To mitigate this problem, Estevam et al. [57] have proposed
a time-stamping service which combines smart contracts and distinct time providers. They
have achieved a time-stamping accuracy of milliseconds.

(d) Data migration: DO do not have control over migration of his / her data between
cloud providers. Kirkman and Newman [58] uses smart contracts to record data migration
between cloud providers. DO can know the current position and status of their data by
querying the smart contract. Another data migration process between a group of connected
cloud data centres is discussed by Li et al. [59]. In their method, every data duplication
and data migration operation between cloud providers are recorded on the Blockchain.

(e) Data deletion: Yang [60] have introduced a cloud data deletion method, where the
cloud provider generates a proof of deletion and publishes it on a Blockchain. Then, the
proof is verified publicly making the deletion operation transparent.

(f) Monetary benefits: Fan ef al. [61] have stored encrypted data in the cloud and
its access policies on Blockchain, but they have innovated in sharing the data by adopting
the DPOS [94] consensus mechanism. The miners in [61] are rewarded with data of their
interest. When a DU needs data, he / she has to send a request to the miner holding that
data. The miner verifies the access policy on data and sends the data to the DU if and only
if the access policy is satisfied. DU has to obtain the key to decrypt the data from the DO.
This setup reduces congestion and latency in the network as miners are distributed around
the world, and DU’ are not required to send requests to a centralized cloud. Zheng et al.
[62] have designed a smart contract-based market place for selling and buying personal
data. They have designed a crypto-token known as Personal Health Data coin (PHD coin)
to pay a DO in exchange for personal data. Some DOs do not share / sell their data but
allows the queries on the data. In this model, the data is protected with differential privacy

techniques, and a threshold limit is set on the number of queries allowed before leaking

32

CHAPTER 2. LITERATURE SURVEY

privacy.

Yang et al. [63] have employed smart contracts to manage privacy budget. Smart con-
tract may accept / reject a query based on the remaining privacy budget. If a query is ac-
cepted, then an anonymization service outputs result by adding sufficient noise to the actual
query result, and the privacy budget in the smart contract is updated accordingly. DStore
[64] explores the idea of using empty disks of home users (lessors) to form a distributed
cloud. A single data file may be stored on several disks stationed at different locations
across the globe under different lessors causing data auditing problems. A smart contract
is used to check data auditing results, to pay storage fee to lessors, and to impose fines on
the lessors if they provide incorrect auditing results. Huang et al. [65] have extended their
work of [51] with fair incentives so that the users who contributed to the meta-data stored
in Blockchain will get their incentives fairly.

The comparison of different data management models is presented in Table 2.3.

33

CHAPTER 2. LITERATURE SURVEY

Data Data
Blockchain Off-chain Data Data
access Data int- Data
Platform / data ver- time-
Paper Data control sha- | egrity/ | del-
Consensus sto- sio- sta-
through | ring aud- etion
algorithm rage ning | mping
BC iting
Zyskind et al. [34] Generic Bitcoin DHT Yes Yes Yes No No No
Shafagh ez al. [35] IoT Bitcoin DHT Yes Yes Yes No No No
Two tier:
. . Distributed
Gaetani et al. [37] Generic Consortium No No Yes No No No
Cloud
Pow
Federated
Alansari et al. [66] Generic Ethereum Yes Yes Yes No No No
cloud
BBDS [44] EHR Not discussed DB Yes Yes No No No No
MeDShare [45] EHR Ethereum DB Yes Yes Yes No No No
Wang er al. [38] Generic Ethereum DHT No Yes No No No No
Zhang et al. [53] Generic Ethereum DB No No Yes No Yes Yes
Liang er al. [36] Drone PowW DB No No Yes No No No
SeShare [51] Generic Not discussed DB No Yes Yes No Yes No
yang et al. [60] Generic | Not discussed DB No No No Yes No No
Endolith [54] Generic Ethereum HDFS No No Yes Yes Yes No
DataProv [52] Generic Ethereum DB No No Yes No Yes No
Fan er al. [61] ESR Voting-based DB Yes Yes No No No No
Kirkman ez al. [58] Generic Ethereum DB Yes Yes No No No No
. . Private Federated
Li et al. [59] Generic No Yes Yes No No No
Ethereum cloud
Li et al. [39] Generic Ethereum Aliyun No No Yes No No No
Zheng er al. [62] EHR Ethereum DB No Yes No No No No
Privacy
Hyperledger
Yang et al. [63] sensitive DB Yes Yes No No No No
(BFT)
data
. Distributed
DStore [64] Generic Ethereum No No Yes No No No
cloud
Zhu et al. [40] Generic Ethereum DB No No Yes No Yes No
Xue et al. [41] Generic Bitcoin DB No No Yes No No No
Nguyen et al. [47] EHR Ethereum DHT Yes Yes Yes No No No
Cao er al. [48] EHR Ethereum DB No No Yes No No No
Li et al. [46] EHR Ethereum DB No Yes Yes No No No
Chronos+ [56] Generic Ethereum DB No No No No No Yes
Two tier:
Xu et al. [42] Generic Consortium DB No No Yes No No No
Ethereum
IPANM [65] Generic Ethereum DB No Yes Yes No No No
Yang et al. [55] Generic Not discussed DHT No No Yes Yes Yes No
Benil er al. [49] EHR Ethereum DB No Yes Yes No No No
Huang er al. [43] Generic Credit-based DB No No Yes No No No
Huang er al. [50] EHR PBFT Cloud No Yes Yes No No No
Estevam er al. [57] Generic Ethereum DB No No No No No Yes

Table 2.3: Comparison of Data Management models. DHT - Distributed hash table / Inter-
planetary file system (IPFS) in cloud. DB - Database in cloud. HDFS - Hadoop distributed
file system.

34

CHAPTER 2. LITERATURE SURVEY

(g) Blockchain-based cloud data access controls In traditional cloud computing, the
access policies are stored in the cloud, which is assumed to process the access requests
honestly according to the policy. However, in practice, the cloud provider may deviate
from the access policy and may reject access to legitimate DO / DUs or allow access to
illegitimate DO / DUs .

Alansari et al. [66] have presented an identity and access control system for federated
cloud by integrating Blockchain and Intel SGX [95] technologies. Blockchain ensures non-
tampering of access policies, and Intel SGX protects the confidentiality and integrity of the
policy enforcement process. Laurent et al. [67] have recommended creating a smart con-
tract with a specific access control list for every data block outsourced to a remote cloud.
So, a DU 1is authorized based on the challenge-response protocol played between him and
remote cloud based on the information stored in the smart contract. Cruz et al. [68] have de-
signed role-based access control using smart contracts (RBAC-SC) to verify access permis-
sion across different organizations effectively. Every organization creates a smart contract
which consists of functionalities for storing user-role assignments, modifying assignments,
and revoking assignments. Similar to [67] during authorization, a challenge-response pro-
tocol is executed that verifies the ownership of roles based on information stored in the
smart contract. Lee ef al. [69] have also introduced RBAC with smart contracts without
the challenge-response protocol. Chatterjee et al. [70] have decoupled access control logic
with the business logic of the smart contract and proposes a dynamic role-based access
control model using smart contracts.

As the RBAC model suffers from scalability, heterogeneity, and spontaneity problems,
Xu et al. [71] have transcoded capability-based access control policy as smart contracts to
support hierarchical and multi-hop delegation in a federated environment. In their work,
the smart contract manages federated delegation relationships and capability tokens. C'P
issues authorization and revocation tokens through smart contracts so that the other nodes
in the federation accept or reject the access requests. Maesa ef al. [72] have codified
attribute-based access control policies as smart contracts. They have adopted XACML
[96] for defining policies, and the smart contracts are considered as an executable ver-

sion of XACML policy. The smart contract also manages the attributes representing the

35

CHAPTER 2. LITERATURE SURVEY

features of subjects required to evaluate the policy. Guo et al. [73] have introduced multi-
authority attribute-based access control with smart contracts. Guo et al. [76] have designed
an efficient traceable attribute-based encryption scheme for fine grained data sharing on
Blockchain.

Zhang et al. [74] have designed a smart contract-based access control framework with
both static access rights control and dynamic rights validation. They have developed three
types of contracts: (1) Access control contracts (ACCs) (2) Judge Contract (JC) and (3)
Register Contract (RC). For every object-subject pair, an ACC is created to support adding,
deleting and updating access controls. ACC also reports misbehaviour of subjects to JC. JC
on receiving ACC request initiates a misbehaviour judging method and returns appropriate
penalty. RC manages all the ACCs and the judging methods.

All the access control frameworks discussed till now suffer from privacy problems be-
cause the access data stored in Blockchain is publicly available. To mitigate this problem,
Yang et al. [75] have presented AuthPrivacyChain in which the access control policies are
encrypted and stored in the Blockchain. Whenever a cloud receives the access request, it
retrieves and decrypts the policy from a smart contract and verifies the access request. The
cloud also publishes logs of all the access requests on the Blockchain.

(h) Blockchain-based cloud data searchable encryption In tradition searchable en-
cryption (SE), C'P is assumed to perform the search service and return the search results
correctly. However, in practice, C'P is untrusted and rational entity which may indulge in
fraudulent activity and may return partial or incorrect search results. At the same time, the
DU may act as malicious and refuse to pay the service fee after receiving the correct search
results. This situation leads to the problem of service-payment unfairness and mutual dis-
trust between the DU and C'P.

Hu et al. [77] have presented a Blockchain-based solution to address the limitations
of searchable encryption. The search index is stored in a smart contract, and the search
algorithm is also modeled as a smart contract functionality. These two steps ensure the
integrity of the index and correctness of search results. They also introduced the notion
of fairness in SE such that a DU receives the search results if and only if he pays for the

search operation and the DO receives the payment if the search token for the requested

36

CHAPTER 2. LITERATURE SURVEY

keyword is sent to the smart contract. Chen et al. [78] have adopted [77] for EHR data.
They build an index using complex logical expressions facilitating DU to construct queries
like (disease = ‘disease name‘) AND (numl < age < num2)”. In both the works, the
search functionality is invoked by the DO inducing unnecessary cost to him.

Zhang et al. [79] have presented a Bitcoin-like transaction model for obtaining fair-
ness in search results. In their model, C'P commits a transaction with enough deposit on
Bitcoin so that if it provides wrong results or aborts during the subsequent phases, the
DU can claim the deposit committed by C'P. Similarly, DU also commits the payment,
which will be transferred to C'P on providing correct search results or refunded in case the
C P behaves maliciously. Jiang ef al. [80] have applied a stealth authorization method to
achieve privacy-preserving access authorization delivery through smart contract. In their
method, first, DO sends a stealth authorization information to a smart contract and later
this information is retrieved by DU to construct a search token. With that search token,
DU calls the search functionality to obtain search results, thereby reducing the burden on
DO. Another advantage is that once the DU is authorized, he can search the same keyword
multiple times without contacting DO.

Storing index and performing search operations are costly as they consume more com-
puting resources and time, leading to verifiers dilemma [97]. To reduce search cost, Jiang
et al. [81] have introduced bloom filter based search to find out low-frequency keyword in
the multi-keyword search and filter the encrypted database using the keyword. Since the
selected keyword is of low frequency, most of the keywords are excluded from the result,
thus reducing the search cost significantly. Another bloom filter based method developed
on Hyperledger fabric is discussed by Aigissinova et al. [82]. Cai et al. [83] presented
a reliable SE model with negligible cost when both DU and C'P are honest. DU verifies
the correctness of the search result returned by a C'P (Inter-planetary file system (IPFS)
service peer), and if found that the result is not correct, then he invokes a dispute resolution
mechanism. When a dispute has raised a set of volunteer nodes known as arbiter shard per-
form the search operation independently. They use a Byzantine voting mechanism to reach
consensus among the arbiter shard nodes. The smart contract rewards / penalize the DU

and C'P according to the results returned by arbiter shard. Yang er al. [84] have designed

37

CHAPTER 2. LITERATURE SURVEY

a set of smart contracts interacting with each other to facilitate fair payments between DO,
DU and C'P.

Contrary to other smart contract-based works, Yang et al. [84] have proposed to verify
the search results computed by C' P using a smart contract for correctness. To further reduce
the cost incurred due to public Blockchain, Zhang et al. [85, 86] have employed a consor-
tium chain whose major stakeholders are C' Ps. Encrypted files are stored in Inter-Planetary
file system (IPFS) which returns the hash of the stored file as URL. Through transactions,
the consortium chain stores the mapping of URLs with the corresponding plain-text. The
Merkle root hash of the state of the consortium chain is committed periodically on a pub-
lic Blockchain guaranteeing its integrity. Apart from maintaining the consortium chain,
the C'Ps also provide computing power to DU for search operations and provide resultant
IPES hash pointers of the queried data to the DU.

Niu et al. [87] have also adopted the permissioned Blockchain model for securely
searching and sharing electronic health records. Tang [88] has discussed several limita-
tions of directly adopting Blockchain to solve problems in searchable encryption. More
importantly, he has identified two privacy leakages: (a) Search pattern leakages and (b)
Access pattern leakages. He has also pointed out that storing search index and search re-
sults forever in the immutable ledger may lead to attacks in future which are currently
unknown. He has presented two new methods by storing and searching the encrypted in-
dexes in centralized servers, thus by limiting the Blockchain to ensure only the fairness.
He has employed N servers all will perform search operation on locally stored indexes and
commits the search result on the Blockchain. At a later stage, the servers reveal the com-
mitment and the smart contract compares all the results returned by servers for similarity. If
all are equal, then each server receives payment for computing search operation correctly;
otherwise, an off-line arbitration mechanism is initiated. To overcome employing third-
party arbitration, the author improved the initial design by using public-key encryption and
zero-knowledge proofs, where the entire dispute resolution will happen through a smart
contract.

Sometimes a data owner / user may send a misspelt keyword for searching the index.

As the above mentioned works fail to handle misspelt keywords, Yan et al. [89] have

38

CHAPTER 2. LITERATURE SURVEY

designed a verifiable fuzzy keyword SE [98] to handle misspelt keywords. Similar to [84],
in [89] also the search results are computed by C'P and are verified by smart contract
for correctness. However, the authors applied RSA accumulators [99] for verifying the
search results. A DO after generating index computes an accumulated value acc(C') for a
document set C' and sends this value to a smart contract. C' P, after receiving search token
computes search results along with verification evidence proof pf(C') and sends proof to
a smart contract. The verify functionality of smart contract takes both acc(C) and pf(C)
along with search results as input and outputs search results if C'P has sent the correct
result otherwise outputs L (error) indicating wrong results or wrong proof. Their design
also supports fair payments and penalizes malicious entities.

In most of the works discussed till now, the search token is generated by DO, and in
some works, DU generates search token based on authorization information sent by the
DO. However, in both models, DO knows about DU’s keyword revealing their private
interest. To avoid this retrieval information leakage and hide data user’s keyword Jiang et
al. [90] have constructed searchchain that aims to assure private search over authorized
keywords with unchanged retrieval order. They modified the oblivious keyword search
(OKS) [100] as OKS with authorization (OKSA) through which DU can search privately
within an authorized set of keywords. Further, they use ordered multi-signatures (OMS)
while generating blocks to commit the sequence of retrieval transactions. Comparison of
Blockchain-based searchable encryption systems is presented in Table 2.4.

(i) Blockchain-based cloud data de-duplication Most of the data being uploaded to
the cloud is redundant [101] and thus wasting large storage space. To avoid redundancy
and save storage costs, C'P use data de-duplication technique. However, the issues with

existing de-duplication techniques are:

(a) Correct de-duplication rate: As C'P save storage costs by adopting de-duplication,
proper incentives on storage fee are required for DO to adopt de-duplication. In gen-
eral, the incentives on storage fee are calculated based on the de-duplication rate. A
rational C'P to increase its profits may not compute the de-duplication rate correctly

and thus making the DO pay higher fees even though he opted for the de-duplication.

39

CHAPTER 2. LITERATURE SURVEY

S.No Paper Platform Stora'lge Keyword Search Verification Fair
location payments
1 Hu et al. [77] Ethereum Cloud Single | Smart contract | Not required Yes
2 Zhang et al. [79] Bitcoin Cloud Single Cloud BSl:r:l();:? Yes
. . . Decentralized Data user /
3 Cai et al. [83] Ethereum Decentralized Single node Arbitar Shard Yes
Hybrid
4 Zhang et al. [85] (consortium IPFS Multiple Cloud Data user No
and public)
5 Jiang et al. [80] Ethereum Cloud / IPFS Single | Smart contract | Not required No
6 | Chenetal. [78] Ethereum Cloud Single | Smart contract | Not required Yes
. .. . Permissioned .
7 Niu et al. [87] Permissioned Cloud Multiple Blockchain Not required No
8 Jiang et al. [81] Ethereum Cloud Multiple | Smart contract | Not required No
9 Yang et al. [84] Ethereum Cloud Multiple Cloud Smart contract Yes
. Arbitar /

10 | Tang [88] Ethereum Cloud Single Cloud emart contract Yes
11 | Aigissinova et al. [82] Hygzr;rei(iger Cloud Single | Smart contract | Not required No
12 | Jiang et al. [90] Searchchain | Decentralized Single Not discussed Data user No
13 | Yaneral [89] Ethereum Cloud Single Cloud Smart contract Yes

Table 2.4: Comparison of Blockchain-based Searchable encryption systems

(b)

Fair payments: An honest C'P should receive storage fee if and only if an honest DO

receives the file link of the data requested to store at the C'P.

(¢) Cross-C'P de-duplication: Currently, to perform cross-C'P de-duplication, a trusted
party have to be recruited, which maintains a central repository storing meta-data
of all the files stored at different C'Ps. However, having a trusted party introduces
a single point of failure and finding an idle party which will behave honestly at all

times is difficult.

Li et al. [91] have designed CloudShare to enable cross-C'P data de-duplication. When
a C'P receives an upload request for file a f, it checks whether it possesses a copy of f. If
the check is valid, then it simply adds the requested DO to the set of DOs that are already
registered to the file f. If the check is not valid, then it queries the private Blockchain
maintained by a set of C'Ps whether any C'P has a copy of f. If a C'P; holds the copy of
f, then the DO is added to set of the DOs that are already registered to the file f at C'P;.
Otherwise, it asks the DO to upload the file and the ownership information is recorded in
the private Blockchain. Collaborating through Blockchain eliminates the need for a central

repository and saves a lot of storage spaces to C'P and also saves bandwidth to DO.

40

CHAPTER 2. LITERATURE SURVEY

A smart contract-based de-duplication method is presented by li ef al. [92]. Before
uploading the file, DO downloads the meta-data of the files stored at a C'P from the
Blockchain and performs the duplication check locally. If a duplicate is found, then the
DO requests the smart contract to register him as an owner to the duplicated file. The
smart contract in-turn sends a script to DO. DO signs and send the script to the C'P. Then,
the C'P completes the script and sends it to the smart contract, which then adds the DO as
an owner to the requested file. Wang et al. [93] have used a smart contract to facilitate fair
payments for de-duplication between C'P and a DO. They replaced the trusted party for
payments in traditional de-duplication with a smart contract. In their work, the DO has an
option to initiate the penalty transaction when the C'P behave maliciously without sending

the file link to the DO.

2.3.1.1.3 Summary

In traditional Storage-as-a-Service model, the cloud provider is assumed as an honest-
but-curious party who behaves honestly at all times. Later, to have more trust in the cloud,
some works presented a trusted auditor to audit the data and a trusted access manager for
access control on data. Nevertheless, hiring a trusted party is costly and finding a trusted
party which will behave honestly at all times is difficult. Also, having a one more central-
ized entity in the loop makes the system more vulnerable to a single point of failure. In
this section, we have discussed works which replace the trusted party with Blockchain for
auditing and access control. Also, we have discussed the works realizing the correctness
through Blockchain in search results returned by the cloud. Outsourcing search queries
to smart contract yield a correct and immutable result and requires no further verifica-
tions. Further, we have discussed works obtaining correctness and fairness in cloud data

de-duplication.

2.3.1.2 Resource allocation, management and supervision

Resource allocation has been one of the most widely studied problems in cloud comput-
ing. Allocation of resources to users involves decision making concerning when, what,

how much and where to allocate the available resources [102]. The resource management

41

CHAPTER 2. LITERATURE SURVEY

life cycle comprises resource advertisement, allocation, monitoring and freeing. During
resource allocation, several factors, like resource utilization, pricing, availability, quality of
service, etc., are considered. Once the resources are allocated through some mechanism,
it is essential to monitor the state of the allocated resources. We categorize the entities

involved in resource allocation and supervision as cloud user CU and cloud provider C'P.

2.3.1.2.1 Issues in cloud resource allocation, management and supervision

The issues in cloud resource allocation, management and supervision are as follows:

(a) C'P advertises a resource for rent / lease. However, in conventional cloud computing,

users cannot verify the authenticity of the advertised resources.

(b) A rational C'P may allocate the same resource to one or more users leading to over-

loading of resource, thereby severely affecting the quality of service.

(c) Resources are allocated by a resource allocator which is a part of C'P. The allocator
may behave maliciously during the allocation and may not run the allocation algo-

rithm correctly without any prejudice.

(d) CP is in full possession of the logs generated during the resource usage. The
provider may tamper the logs to cover up his lapses during the resource provision-
ing. The logs may also contain sensitive information which can be accessed by an

untrusted provider.

The list of Blockchain-based resource allocation and supervision schemes is given in Figure

24.

2.3.1.2.2 Blockchain-based resource allocation, management and supervision

In Blockchain-based resource allocation, most of the works focus on resource pricing
because pricing models increase the total utility of the cloud provider [102]. Among sev-
eral resource pricing models, auction-style pricing mechanisms [117, 118, 119] have gained
more interest as they reflect the underlying trends in demand and supply of cloud resources.
Gu et al. [103] have designed a Vickrey—Clarke—Groves (VCG)-based auction [120] mech-

anism using smart contracts where a C'U posts his request by sending a transaction to the

42

CHAPTER 2. LITERATURE SURVEY

Resource allocation and supervision

[

l

Resource allocation

|

!

Resource supervision

¢. : . ' . M¢1 . } Zhao et al.
Auction Multi Credit u.t1 Others (2018) [115]
-based -tenant -based -provider W 1
t al.
Gu et al. Saranyu Pan et al. sun (20812%% (El ?6]
(2018) [103] 2018[108] (2018) [110] et al.
Zavodovski Reanton | L| Zhang et al. 1 (2020) Zanzi et al.
—~ etal (2019)[111] [113] (2020)
| | -gcome [114]
(2019) [104] etal. Liet al,
Liu et al. (2020) [109] | |(2019) [112]
(2020) [105]
Chen et al.
(2020) [106]
Xie et al.

71(2020) [107]

Figure 2.4: List of works in Blockchain-based Resource allocation and supervision

smart contract. C'P responds with a sealed-bid which is revealed at the end of the bid-
ding round. Then the smart contract computes the winner with the highest bid, and the
winner pays price equal to the highest bid of losers. The smart contract also handles the
payments to providers. Zavodovski et al. [104] have transcoded a dominant strategy incen-
tive compatible (DISC) double auction [121] method as a smart contract. They have also
used a two-phase bidding protocol similar to [103] where bids are committed initially and
revealed later. The smart contract computes the matching of C'Us with C'Ps according to
the auction rules. Another two-phase bidding double auction method is presented by Liu et
al. [105], where a long-term auction for mobile blockchain (LAMB) is modeled as a smart
contract to determine optimal matching for users and providers.

A Blockchain-based combinatorial auction method for VM allocation is discussed by
Chen et al. [106]. They realize auction fairness (bids once committed cannot be modified)
and trade fairness (the honest provider receives pay if and only if the honest user receives

the requested VMs). They use the ladder mechanism presented in [122] to obtain trade

43

CHAPTER 2. LITERATURE SURVEY

fairness. A continuous double auction (CDA) method is modeled as a smart contract by
Xie et al. [107]. In [107], the providers and users submit asks and bids respectively at any
time to a smart contract. The smart contract runs CDA auction, and if there is a deal, then
the result is broadcast to everyone.

Zanzi et al. [114] have introduced NSBchain to allocate network slice resources to
CU through smart contracts. NSBchain is responsible for slice allocation, enforcing pol-
icy, billing and resource management. Reantongcome et al. [109] also have considered
smart contracts for resource allocation in multi-C'U scenario. They have addressed the
co-resident attack by auditing the activities of malicious users logged in the Blockchain.
Zhang et al. [111] have developed two smart contracts namely smart trading contract (STC)
for facilitating resource trading and smart loan contract (SLC) for facilitating the resource
constraint users to borrow coins from banks and use these coins to pay to providers for
consuming resources.

Saranyu [108] is an application build on Quorum [123] to provide user management
through smart contracts. Initially, users and providers have to be registered with a smart
contract. And then a mapping between users and providers will happen through a smart
contract which results in issuing delegation rights to users. The smart contract also moni-
tors the resource usage, and this information is used for billing users. The billing is settled
in the native cryptocurrency of underlying Blockchain technology. Overall, Saranyu offers
four services: identity management, authentication of users, authorization on resource ex-
ploitation and charing. Kempf er al. [124] constructed a cloud market place based on [108]
improving the transparency and auditability of cloud market place.

Pan et al. [110] have discussed a credit-based resource management model in which the
provider’s resources are mapped with internal currency coins (credit coins). When a user’s
account is created on a Blockchain, it is bootstrapped with some initial credit coins. The
amount of coins a user is holding determines the number of resources he can obtain from
the provider. The provider keeps an account of debits and credits of a user and provides the
resources correspondingly (other factors like priority, application type, past behaviour, etc.,
are also considered). The interactions like registration, requesting and allocating resources

triggers the smart contracts for secure logging and auditing. Another credit-based resource

44

CHAPTER 2. LITERATURE SURVEY

allocation model is discussed by Li ef al. [112]. The users can lend coins from other users
or providers and pay them to providers for fast computing resource trading. All the lending
and payment transactions are recorded on the Blockchain for secure transaction history,
and the credit values are automatically adjusted according to their lending and payment
transactions. Recently, sun ef al. [113] have presented a Blockchain-based cooperative
method where the providers work cooperatively to provide resources to users. They have
modelled break-even and break-even free double auctions as smart contracts to determine
the price and to allocate resources.

Zhao et al. [115] have designed a hybrid Blockchain, namely Mchain to log all the ac-
tivities of VM (VM measurements) on Mchain to provide better transparency, integrity,
auditability and controllability on allocated cloud resources. Mchain is a two-layered
Blockchain where the first layer outputs a semi-finished block, and the second layer takes
the output from the first layer and generates a mature block which is stored on Mchain.
They are two types of blocks in Mchain: data block (VM measurements data) and policy
block (VM’s user-defined access policy). In the first layer, a candidate block is broadcast,
and every other node in the Blockchain validates all the data in the block and signs the
block if validated. If every node signs the block, then consensus on the candidate block is
achieved, and it is sent to the second layer. In the second layer, all the valid nodes begin the
PoW mining tasks, and when a nonce is found, the semi-finished block will become mature
and is broadcast in the Blockchain network. Then every node will validate the block and
adds it to their local copy of Mchain.

In previously discussed works when the providers advertise their resources, there is no
mechanism for users to verify the provider’s claims regarding available resources. Wang
et al. [116] have designed a hybrid Blockchain network consisting of a public Ethereum
network and consortium Blockchains. A provider before joining the consortium network
must brace for public verification of their resource capabilities on Ethereum network. The
consortium Blockchain is used for real-time monitoring of computing resources. They have
also introduced a token called ResourceCoin (RCoin) reflecting the available resources at
the provider. The comparison of resource allocation and supervision methods is presented

in Table 2.5.

45

CHAPTER 2. LITERATURE SURVEY

Blockchain

Category Paper Platform Objective
. Gu et al. [103] Ethereum VCG auction
Auction- Double auction
based Zavodovski et al. [104] Ethereum
(DISC)
Resource -
Allocation Liu et al. [105] Ethereum Double auction
) (DPOS) (LAMB)
Chen et al. [106] Ethereum Combm‘atonal
auction
Xie et al. [107] Ethereum Double.auctlon
(Continous)
Multi-tenant | Reantongcome et al. [109] Ethereum Resourf:e. allocat%on
and activity logging
Resource Resource allocation
Allocation Saranyu [108] Quorum and activity logging
Credit-based | Zhang et al. [111] Ethereum Resourc'e alloce'mon
and coin loaning
Resource — ;
. Permissioned | Resource allocation
Allocation Pan et al. [110] . . .
Ethereum and activity logging
Lietal [112] PoW Resource allocation
Multi-provider Double
Resource sun et al. [113] Ethereum (break-even and
Allocation break-even free)
Resource Zhao et al. [115] Mchain VM measurments
Supervision Hybrid Resource allocation
Wang et al. [116] (Ethereum and ..
. and monitoring
Consortium)
Zanzi et al. [114] Hyperledger | TetWork slice

allocation

Table 2.5: Comparison of Blockchain-based resource allocation methods

2.3.1.2.3 Summary

In this section, we have discussed various Blockchain-based resource allocation and su-
pervision systems. We observe that the untrusted resource allocator in traditional cloud
computing can be replaced by a Blockchain to allocate and price the resources correctly
and fairly. The inclusion of Blockchain increases the trust in resource allocation and pric-

ing. We have also discussed works which log resource usage into an immutable ledger,

thereby eliminating the odds for the untrusted provider to tamper the logs.

46

CHAPTER 2. LITERATURE SURVEY

2.3.2 Blockchain-based Platform-as-a-Service

PaaS support businesses to develop and host applications giving the developers freedom
to concentrate on building software without having to worry about the operating system,
software updates, infrastructure and storage. As PaaS is a connector between IaaS and
SaaS, the literature of Blockchain-based PaaS overlaps with that of Blockchain-based IaaS
and SaaS. Therefore, in this section, instead of discussing PaaS, we rather focus on the lit-
erature of Blockchain-based PaaS applications developed and hosted using PaaS. Mainly,
we focus on two of the most widely developed PaaS applications: (1) Computation-as-a-
service (CaaS) and (2) Data aggregation-as-a-service (DaaS). In CaaS, a cloud provider
sets up an execution environment and a user outsources a computation to cloud expect-
ing output. For example, user outsources a data mining task along with input to a cloud
which executes the task and returns the mining results. Similarly, in DaaS, a cloud provider
sets up a data collection application which requests specific data from users. For exam-
ple, a cloud provider sets up a mobile crowdsensing task and publishes the task details
publicly. Interested participants read the task requirements and send the requested data.
The cloud platform processes the received data and obtains meaningful results. The list of

Blockchain-based platform-as-a-service works is presented in Figure 2.5.

2.3.2.1 Computation-as-a-service

2.3.2.1.1 Issuesin CaaS

Outsourcing computation has become a common practice. A resource-constrained user
outsources a resource-intensive computation to large computational systems like a cloud.
The cloud computes and returns the result of the outsourced computation. The user pays
a pre-agreed amount of money to cloud for using its computational resources. In today’s
world, an agreement between the user and the cloud provider about the cost and other
QoS parameters is needed before outsourcing the computation. In many cases, the cost of
consuming resources has to be paid before actually using cloud service. The user to have
greater confidence in the computation performed by the cloud, he has to verify the result of

the computation for correctness.

47

CHAPTER 2. LITERATURE SURVEY

‘ Platform-as-a-service

[

|

Verifiable Computation
Proof-based Challenge-based | | Replication-based
Kumaresan .
TrueBit Dong et al.
et al.

(2014) [125]

BPay
(2018) [126]

BCPay
(2018) [127]

ZoKrates
(2018) [128]

(2020) [129]

Guan et al.
(2021) [130]

1(2017) [132]

(2017) [15]

Harz et al.

" 1(2018) [133]

7 (2019) [131]

Avizheh et al.

Krdl et al.

T 1(2018) [134]

1 (2020) [129]

Dorsala et al.

Nabi et al.

1(2020) [135]

Dorsala et al. |

Eisele et al.

(2020) [136]

}

CrowdSensing

>

Wang et al. (2018) [137]

Cai et al. (2018) [138]

Zebralancer (2018) [139]

Shi et al. (2018) [140]

Chatzopoulos et al.
(2018) [141]

Wei et al. (2018) [137]

Yang et al. (2019) [142]

Lietal. (2019) [143]

MCS-Chain (2019) [144]

Zhang et al. (2019) [145]

CrowdR-FBC (2020) [146]

Hu et al. (2020) [147]

SenseChain (2020) [148]

ZkCrowd (2020) [149]

CrowdBLPS (2020) [150]

Huang et al. (2020) [151]

Figure 2.5: List of works in Blockchain-based platform-as-a-service.

In traditional cloud computing, it is not possible for a user to pay to a cloud only af-
ter verifying the correctness of the returned result. In general, the cloud is assumed to be

trusted by the user. However, the cloud may behave rational and to save computing re-

48

CHAPTER 2. LITERATURE SURVEY

sources; it may not compute the result correctly. Then, the only option for the user is to get
back his payment by going through a cumbersome legal process which may take additional
resources and time.

Nevertheless, with the advent of Blockchain technology and smart contracts, a new
cloud computing paradigm has evolved where the cost for outsourcing a computation will
be paid to the cloud provider if and only if the cloud provider computes and sends the result
of the outsourced computation correctly. The verification of correctness of result depends

on the type of the verification technique employed.

2.3.2.1.2 Types of verifiable computation techniques

There are three techniques to verify the correctness of the result computed by the cloud:
1) Proof-based methods (PBVC), 2) Replication-based methods (RBVC), and 3) Challenge-
based methods (CBVC). In PBVC, the cloud has to submit a proof of correctness along with
the result of the computation. Some of the well known proof-based systems are summa-
rized by Walfish et al. [152]. In RBVC, the computation is outsourced to multiple clouds,
and the results from them are compared for similarity. If the comparison is a success, then
the user accepts the result; otherwise, a dispute-resolution protocol is initiated to identify
the malicious cloud who submitted the wrong result. Some of the recent works in RBVC
are Belenkiy et al. [153], Cannetti et al. [154] and Kupcu [155]. In CBVC, the computation
is outsourced to only one cloud, and any public party can challenge the result computed by
the cloud. If no party challenges the result, then the user accepts it. Otherwise, a dispute

resolution mechanism is executed.

2.3.2.1.3 Blockchain-based Verifiable Computation

Kumaresan et al. [125] have introduced the notion of Blockchain-based verifiable com-
putation. In their work, the user creates a Bitcoin output script containing a pre-agreed
pay amount. Then the computation is outsourced to a cloud. The script can be redeemed
either by providing the correct output of the outsourced computation or by providing some
pre-shared secrets. Zhang et al. have presented two works, namely BPay [126] and BCPay

[127], for outsourcing computations using Bitcoin scripts. Similar to [125], the authors

49

CHAPTER 2. LITERATURE SURVEY

constructed a robust, fair payment model where a cloud provider receives the payment for
computation if and if it produces a valid proof of correctness of the computation. A scal-
able solution using smart contracts is presented by Eberhardt ef al. [128]. The user and
the cloud provider runs a one-time setup process after which the user generates a verify-
ing contract and deploys it on the Ethereum network. The cloud computes the outsourced
computation and sends the proof of correctness consisting of witness to verifying contract.
Dorsala ef al. [129] constructed a fair payment model using [128] as a verification contract
and shows that the cost of running a fair verifiable method on top of Ethereum is negligible
when both user and cloud provider are honest. Guan et al. [130] have also realized fairness
in outsourcing polynomial computation using smart contracts.

Dong et al. [15] have outsourced the same computation to two clouds and created a
prisoner’s dilemma between them to avoid collusion. They have constructed three con-
tracts to extract the correct result from two rational clouds: (1) Prisoner’s contract, which
rewards honest cloud and punishes malicious cloud. (2) However, the clouds can collude
and solve the prisoner’s dilemma using colluder’s contract. (3) Traitor’s contract provides
additional bounty to the honest cloud to counter collusion. The work in [15] assumes the
user as trusted and requires a trusted third party to resolve disputes when the outputs of
the clouds do not match. The work by Avizheh ef al. [131] assumes a rational user and
uses a verification game to resolve disputes between the two clouds. The clouds have to
construct a Merkle tree with the intermediate states of the computation and have to return
the Merkle root hash along with the result of the computation. Then, the smart contract
randomly generates two different indexes, one for each cloud and asks the clouds to submit
Merkle proof. The smart contract identifies the malicious cloud by constructing the Merkle
root from the Merkle proofs submitted by clouds and matches it against the Merkle root
submitted earlier. However, [131] does not discuss the collusion attack where the clouds
collude to provide the same incorrect result, thereby increasing their payoff.

In Dorsala et al. [129], the clouds have to submit an inner sate hash (ISH) [155] along
with the result of the computation. A lazy cloud cannot submit a correct ISH without
actually computing the result. Even the copy attack cannot be performed because the clouds

have to commit a hash of the random number while showing intent and this random has

50

CHAPTER 2. LITERATURE SURVEY

to be concatenated to ISH while submitting the result. In case of disputes, a verifying
contract is executed, and its cost is collected from the malicious cloud. However, running
a verifying contract is costly, and due to the verifier’s dilemma [97], the costly verifying
contracts can jeopardize the Ethereum network. The major drawback of RBVC methods is
that the user has to pay the cost of computation to every cloud provider, which is a major
burden to the user.

In TrueBit [132], the computation is outsourced to a single cloud who submits the result
to a smart contract. Then challengers are invited to challenge the correctness of the result.
If there is a challenge, then a verification game is initiated through a series of rounds, where
each round recursively checks a smaller and smaller subset of the computation. The chal-
lengers are rewarded for finding the errors and penalized for wrong alarms. To encourage
the challengers to take part in the system, the system occasionally forces the honest cloud
to submit wrong results (forced errors) and offers a big bounty to verifiers for finding the
errors. Harz et al. [133] have presented a method similar to TrueBit except that a cloud
and challengers are randomly assigned, and all will compute the computation and report
the result to a smart contract, and any disputes in the results are resolved by a dispute res-
olution protocol similar to TrueBit. In [133], the probability of finding false computation
depends on the number of challengers recruited for a computation. Krdl et al. [134] have
presented a method using a trusted execution environment (TEE) [95]. Challengers are not
required in their method because the honest behaviour of the cloud is enforced by executing
the outsourced computation in a TEE. The shortcomings like collusion and sybil attacks of
[133] are discussed by Nabi et al. [135]. The authors introduce a random audit of results
returned by clouds and penalize malicious clouds by sharing their pre-committed deposit as
a reward to diligent clouds. Although [135] is better method than [133], it cannot eliminate
the collusion attacks completely. More recently, Eisele ef al. [136] have proposed use of
trusted mediators for dispute resolution. Comparison of verifiable computation schemes is
presented in Table 2.6.

Three practical systems, namely Golem [156], iExec [157], and SONM [158] all built
on Ethereum for outsourcing computation to large computational systems. Golem uses

RBVC and log analysis for checking correctness whereas iExec employs an Intel SGX for

51

CHAPTER 2. LITERATURE SURVEY

correct computation. SONM currently supports verification only by users, and no verifi-

cation method is adopted. One may refer to [159] for a detailed analysis of these three

systems.
PB/ . .
S. Paper RB/ | Platorm Verifier Dlspu.t € Penalities Fair
No CB resolution Payment
1 | Kumaresan et al. [125] | PB Bitcoin | Bitcoin scripts | Not required yes yes
2 Dong et al. [15] RB | Ethereum Third-party TTP yes yes
3 Teutsch et al. [132] CB | Ethereum Verifiers Ver;;frzli:on yes yes
4 Harz et al. [133] CB | Ethereum Verifiers TTP no yes
5 | Eberhardtetal [128] | PB | Ethereum | Smart contract | Not required no yes
Trusted
6 Krol et al. [134] CB | Ethereum Execution Not discussed yes yes
Environments
7 Zhang et al. [126] CB Bitcoin | Bitcoin scripts Ver;i:s:on yes yes
L N . Verification
8 Zhang et al. [127] CB Bitcoin | Bitcoin scripts game yes yes
Verification
9 Avizheh et al. [131] RB | Ethereum | Smart contract | game using yes yes
merkle tree
10 Nabi et al. [135] RB | Ethereum Verifiers TTP yes yes
PB Verification
11 Dorsala et al. [129] RB Ethereum | Smart contracts contracts yes yes
12 Eisele et al. [136] CB | Ethereum Third-party TTP yes yes
13 Guan et al. [130] PB | Ethereum | Smart contracts | Not required no yes

Table 2.6: Comparison of Blockchain-based verifiable computing methods

2.3.2.1.4 Summary

In this section, we have presented works discussing Blockchain-based computation-as-
a-service. In traditional cloud computing, the user has to trust the cloud for correct compu-
tation of outsourced computation. However, with the Blockchain-based CaaS, the user is
no longer required to trust the cloud or depend on trusted third parties for the correctness
of computation. The other benefit for the user is that he can pay if and only if the cloud
computes correctly. Likewise, the cloud also gets its payment as long as it performs the

computation correctly.

52

CHAPTER 2. LITERATURE SURVEY

2.3.2.2 Data aggregation-as-a-service

In this section, we review Blockchain-based crowdsensing methods as crowdsensing is the

most widely explored data aggregation service.

2.3.2.2.1 Issues in crowdsensing

The rapid increase in the number of mobile devices and wearable devices, equipped
with multiple sensors (e.g., gyroscope, accelerometer, microphone etc.) led to the emer-
gence of new sensing paradigm known as Mobile Crowdsensing (MCS). In MCS, a cloud
provider C'P posts a sensing task and a data provider D P responds to the task by sending
the data. Although crowdsensing shows prominence in many applications such as trans-
portation [160, 161], healthcare [162], and environment monitoring [163, 164], it suffers

from the following problems:

(a) Privacy: Sensing data reveals users personal information, and hence privacy is the

utmost priority in MCS.

(b) Rewards: The rewards to a D P depends on factors like sensitivity of data, sensing

time, data quality, etc., The C'P cannot be trusted to compute rewards correctly.

(c) Fairness: The C'P may not pay to D P after receiving the data or a D P may not

provide data after receiving pay.

2.3.2.2.2 Blockchain-based crowdsensing solutions

Li et al. [143] have presented a Blockchain-based framework known as CrowdBC in
which a set of smart contracts are employed to perform sensing task posting, data receiving,
reputation management and reward assignment operations without a centralized entity. In
CrowdBC, C' P evaluates the quality of the data submitted by D Ps, and the evaluated results
are given to smart contract based on which the rewards and reputation values are calculated.
To achieve fairness and preserve privacy, Wang et al. [137] have presented a k-anonymity
privacy protection method where D Ps form as a group of k¥ members and submit their data

as group data for quality-evaluation. Miners evaluate the data and pay the group according

53

CHAPTER 2. LITERATURE SURVEY

to the quality of the data. However, the members in a group trust each other and the group
leader is expected to distribute the rewards correctly to group members.

Another work aiming to monetize sensing data fairly without compromising privacy is
discussed by Cai et al. [138]. They employ two servers as mediators between C'P and
DPs. The two servers execute a protocol based on secret sharing and garbled circuits to
establish ground truth on encrypted data. Then, each server encrypts the learned ground
truth and commits it along with a masked encryption key (key = XOR(k, mask), k is
actual encryption key) on a smart contract. C'P interested in buying the providers data
sends two keys encrypted with the corresponding server’s public key along with payment
to the smart contract. If the cloud server accepts the C'P’s offer, it will encrypt the mask
with the key sent by the C'P (sn = SENC(mask, s), s is the key sent by the C'P). In
order to avail the pay sent by the C'P, the cloud server must reveal the masked key key
and sn. Then, smart contract verifies the commitments and sends rewards to the server,
which will be shared to providers according to the quality of their data with respect to the
estimated ground truth. The method is fair in between servers and C'P, but the D P still
needs to trust the servers for correct computation of ground truth.

In ZebralLancer [139], the D Ps encrypt their data with C'P’s public key and send it to
the smart contract. C'P decrypts the data off-chain and computes the rewards to D Ps based
on the quality of the data provided. Then, the C'P computes a proof of correctness using
zk-SNARK about the computation of rewards and sends this proof to the smart contract.
The smart contract consists of zk-SNARK verification algorithm and returns true if and
only if the C'P computed the rewards correctly. If the C'P fails to produce correct proof,
the reward deposited by him is distributed to providers. ZebraLancer provides both privacy
and fairness, but zk-SNARK requires a setup phase where either a trusted entity or all the
participating entities jointly should establish a common reference string. Also, the verifica-
tion time increases with an increase in the number of D Ps limiting the applicability of the
system. Shi et al. [140] have developed a decentralized application (Dapp) known as MPC-
SToken, where a fault-tolerant incentivization mechanism is modeled as a functionality of
a smart contract to facilitate payments between C'P and D P. Chatzopoulos et al. [141]

have employed a trusted party (Internet service providers) to protect the location privacy of

54

CHAPTER 2. LITERATURE SURVEY

the D Ps by masking their real-identities with pseudonyms. However, employing a trusted,
centralized party opposes the cause of using Blockchain.

To protect location privacy, a hybrid Blockchain model is discussed by Yang et al.
[142]. The authors have proposed to use a public Blockchain to publish task and assume
a trusted agent who retrieves the tasks from the public chain and publishes them to a pri-
vate Blockchain. D Ps are allowed to transact with multiple private chains to thwart re-
identifications attack caused due to D Ps transaction history. The trusted agent submits
the sensory data to the public Blockchain on behalf of the DPs, and the payments are
transferred according to the employed quality estimation method. MCS-Chain [144] is
similar to [143], except that a new light-weight consensus mechanism suitable for mobile
crowdsourcing is designed. Unlike in PoW, the generation of new blocks in the presented
consensus mechanism is determined by the total amount of payment records waiting to be
stored in the next block. The mechanism is guaranteed to eliminate forks by enforcing rules
based on time, reputation and awards. Miners compute the reputation values by running a
trust evaluation algorithm based on feedback received from all the participating entities.

Zhang et al. [145] have put forwarded a Blockchain-based MCS model without the
use of smart contracts. Initially, C'P commits an incentive policy on a Blockchain and an-
nounces the task. Then the D Ps encrypt their sensing data with a homomorphic encryption
key generated by the C'P and send the commitment of the ciphertext to the Blockchain.
Later, the providers and C'P reveal the committed data and the incentive policy, respec-
tively, by sending a transaction to Blockchain. Then, the C'P decrypts the data, evalu-
ates it and computes the rewards accordingly, which will be transferred to D Ps through
Blockchain. However, the model lacks fairness since the C'P receives the data before actu-
ally paying D Ps.

CrowdR-FBC [146] proposed to use fog nodes as an intermediary between C'Ps and
DPs. The fog nodes are responsible for maintaining the Blockchain network. A C'P an-
nounces the task on an MCS platform which then encrypts the task and sends it to the
fog nodes. The fog nodes select the providers based on the reputation maintained in the
Blockchain and send the encrypted task to provider who then decrypts, computes the task

and sends the encrypted result back to fog nodes. Then the fog nodes forward the en-

55

CHAPTER 2. LITERATURE SURVEY

crypted results to MCS platform along with pseudo-ID of the D Ps. Then the MCS plat-
form decrypts the result, computes the new reputation values and sends them to fog nodes.
The fog node maps the reputation values to real-world identities and updates them on the
Blockchain network. This approach solves the privacy problem as the MCS platform does
not know the real identities of D Ps, and the fog nodes do not know the task or the data.
However, the work does not discuss the collusion between crowdsourcing platform and the
fog nodes which will seriously affect the privacy of the providers, and also did not discuss
the incentive policy for different participating entities. Wei ef al. [165] have presented the
use of consortium Blockchain and constructed an incentive method based on reputation,
quality of data and provider’s valuation. Similar to [145], the method also lacks fairness.
Hu et al. [147] have transcoded a three-stage Stackelberg [166] game as a smart con-
tract which pays the D Ps according to their category (instant and monthly). A fair payment
model similar to [143] is constructed using smart contracts in SenseChain [148] except that
the platform is constructed for multiple C'Ps and multiple D Ps and reputation is main-
tained for both C'Ps and DPs. A hybrid Blockchain platform for MCS is presented by
Zhu et al. [149]. A public chain running DPOS consensus and many private subchains
running PBFT consensus are used to publish and record the information of public and pri-
vate crowdsourcing tasks, respectively. After the private task is completed, the leader of
the subchain generates a zZk-SNARK proof about the all the subchain blocks of a task and
sends it to the public chain where a zk-SNARK functionality verifies the proof and records
it into Blockchain ledger. CrowdBLPS [150] use Blockchain to preserve location-privacy
of the D Ps, and their main emphasis is on modeling an optimized D Ps selection as a smart
contract. Huang et al. [151] have introduced Blockchain-based MCS into smart factories
where D Ps record the noise of the machines through their mobile and submit the data on
the Blockchain expecting a reward. They have designed a new reward mechanism, namely
dynamic reward ranking as a smart contract. Comparison of Blockchain-based MCS meth-

ods is given in Table 2.7.

56

CHAPTER 2. LITERATURE SURVEY

SWISAS FUISUISPMOID PAseq-ureyoydo[q Jo uosuedwo)) :/ 7 dqeL

$9 ON | Anwfuoueopnas ON | O supjues (sTouTA) uad 0 WNAI [161] ' o Suen
A N | Al posq N | ON pIEAI dIIRUAQ IN) DS 0 N bLet IS1] w1 H| 91
ON uondAruy | Anukuoueopnasq | ON | ON areme-Ayend) | Jojsenbay | womedo Sk WnaYIg [0S1] Sd1gpMmor) | ¢T
(144d
ON (s2y5e) ayeAnid) YYYNS-NZ ON | ON [enbg ON | Aoede) SOk ‘S0dQ) [671] pMoOIDNZ | #1
PUaSH
SOK ON | AmwAuoueopnasd | Sof | Sk areme-Ayeng) | (SIOUIA) DS | UOTIBAIISIY SOk wWnaIdYIg [8p1] ureyDasuag | €1
) oN | Amufuoueopnas x| o pastq-uopeInday (s1ou1py) uonenda) wnaIa [L¥1] i2n
A N | M pasq A | ON puE areme-A7end) IN) OS fendoy A 0 Lyl piong | 71
sjuage pajsnn paseq-uoneinday
ON uondAmouyg | Aquniureyoyoo[g | Sk | ON pue paseq-pig | Jojsanbay uonony S3A | wnniosuo) [So1] wiatom | 11
WNIoSUo) ‘areme-£yeng)
ON uondAoug | AyrwAuouvopnasd | SIK | ON ON | Aued-pmyy, | uonenday SOK | DgI-gpMmoI) 91] Dga-9gpmor) | 01
uondA1oua paseq- .
ON ngdiowouto fmuAuouropnasd | ON | ON fenbg | Jo)sanbay uadp ON o [cp1] pioSueyz | 6
uoneinday
ON uondAioug | ArwAuousopnasq | SOk | Sex fenbg | 10)sanbay ‘ SOk | UeyD-SON [Fr1] urey)-SOIN | 8
. : pue uresreg : .
fyred-pimy) £q un (Og areand) sax)
ON N | yegoyporg arenng | ON| ON Tenby | (s1aUIA) DS uadp (Og onand) oN [cp1] o Sueg | L
SOk ON dLL B SOk | ON [enbg | Aued-payy, uonony 3R wnasayy | [141] v 42 somodoziey) | 9
fmwAuouropnas g : :
(NILLJ) wStueyapy
ON ON ON| ON| ON UOTJBSIATIUAOU] ON uonony ON wnaayyg [OP1] OISO | S
Q0URIA[0], J[Ne]
SOk SYYYNSIZ ON | ON areme-Ayend) | Joysanbay uad Sk wnaJyIg [6¢1] J0oueTRIqQa7 | ¢
SOk uondfoug | AmwAuoueopnsd | ON | ON areme-Aeng) | (SIQUIA) DS uadp ON WAL [8cT] i) | ¢
ON fmuAuoue-y ON | ON areme-£yeng) SIUT uadp ON uo)g [LcT1] iaduepy | ¢
ON uondoug | AmuAuoueopnsg | SOk | SO [enbg | (siourpy) DS | uoneindoy SOk WAL [cp1] Dgpmor) | 1
-SQ.ﬁu;-\
M|
syumse uonnqLysIp uonen[eAd | UONIIPS wioperd 0N
. Keagejeq | AovALL PDYI0A | YOrQPIIY presay fqend) sopuoig uonensisy S Jddeg S

uonenday

57

CHAPTER 2. LITERATURE SURVEY

2.3.2.2.3 Summary

In this section, we have discussed several Blockchain-based data aggregation-as-a-service
works which focus on preserving the privacy of the D P, computing correct rewards for
D Ps and realizing financial fairness. Some of the works use the pseudo-anonymity feature
of the Blockchain networks to preserve the privacy of the D P. However, pseudo-anonymity
is not sufficient to preserve the privacy of the D P [167]. In some works, the reward distri-
bution depends on the quality of the data unearthed by executing a truth discovery algorithm
(TDA). However, the TDA algorithm is either executed by a cloud or modeled as a smart
contract. To have greater confidence in executions by cloud, it has to be verified by using
methods discussed in section 2.3.2.1.3. Also, modeling complex TDA algorithms as smart

contracts may lead to verifiers dilemma [97].

2.3.3 Blockchain-based Software-as-a-Service

Software-as-a-service allows users to access the software through the Internet on a sub-
scription basis. However, most of the SaaS applications are migrating from a monolithic
architecture to microservice architectures. Therefore, in this survey, we have considered
two emerging SaaS models: (1) Microservices and (2) Virtual network functions. The list

of Blockchain-based software-as-a-service works is presented in Figure 2.6.

2.3.3.1 Microservice-as-a-service

2.3.3.1.1 Challenges in Microservice-as-a-service

Containerization technology decomposes the traditional monolithic applications into a
suite of small services known as microservices each running in its own process and com-
municating through lightweight mechanisms. However, existing microservices architecture

suffers from the following problems:

1. Microservices are advertised on a centralized platform which may be untrusted, and
hence a trusted registry and service discovery is required for the advertisement and

discovery of microservices.

2. Microservices lacks trusted communication platform for exchanging messages. They

58

CHAPTER 2. LITERATURE SURVEY

Software-as-a-service

1
I !

Microservice-as-a-Service VNF-as-a-Service
— Tonelli et al. (2019) [168] —{ Bozic et al. (2017) [173]
— Nagothu et al. (2018) [169] — Alvarenga et al. (2018) [174]
— Xu et al. (2019) [170] —| Rebello et al. (2019) [175]
— Xu et al. (2019) [171] —| Rebello et al. (2019) [176]
—{ Xu et al. (2020) [172] —| Scheid et al. (2019) [177]

— Fu et al. (2020) [178]

'— Mishra et al. (2020) [179]

Figure 2.6: List of works in Blockchain-based software-as-a-service.

either depend on secret channels or public-key cryptography for secure and authen-

ticated message exchanges.

2.3.3.1.2 Blockchain-based Microservices

Tonelli et al. [168] have mapped the existing microservices architecture to smart con-
tracts architecture. They have also demonstrated a case study by modeling the exist-
ing microservices-based system as a set of smart contracts and tested them on Ethereum
Blockchain. Nagothu et al. [169] have adopted Blockchain for a smart surveillance system
constructed as a set of microservices. They have employed Blockchain for securing mes-
sages exchanged between microservices and also to provide integrity to the microservice
database by periodically storing the hash of the database in the Blockchain. Xu ez al. [170]
have constructed BlendMAS; a Blockchain-based decentralized microservices architecture
for smart public safety. They have divided the permissioned Blockchain into two sets of
microservices: mining services and security policy services. Mining services are responsi-
ble for running the consensus algorithms, and security services are responsible for identity

management, access controls etc. These decentralized security microservices work as a

59

CHAPTER 2. LITERATURE SURVEY

service cluster to offer a scalable, flexible and lightweight data sharing and access control
mechanism. Similar approach is followed in [171] for constructing decentralized market-

place and in [172] for constructing decentralized multi-domain avionics systems.

2.3.3.1.3 Summary

Monolithic cloud applications are migrating towards microservices and incorporating
Blockchain into existing microservice architecture which enables trust and transparency.
Specifically, a public immutable microservice registry can be constructed using Blockchain.
Also, Blockchain, with its peer-to-peer messaging architecture, can act as a trusted overlay

for exchanging microservices messages.

2.3.3.2 Virtual network function-as-a-service

Cloud computing infrastructures contain a number of servers with storage and compute ca-
pabilities. With the advancement of technology and increase in demand of cloud servers,
the existing cloud infrastructure is being enhanced to support European Telecommunica-
tions Standards Institute (ETSI) Network Function Virtualization (NFV) architecture [180].
The core objective of NFV is to decouple the physical network infrastructure from the ser-
vice functions that run on them. NFV mainly consists of three components: NFV Infras-
tructure (NFVI), Virtual Network Functions (VNF) and Management and Network Orches-
tration (MANO). In NFV, a cloud service is decomposed into a set of VNFs, which could
be then deployed as a software running on one or more physical servers [181]. VNFs can
be easily managed as they can be relocated and instantiated at different network locations

on-demand.

2.3.3.2.1 Issues in virtual network function-as-a-service

In NFV, the VNF orchestrator (VNFO) receives the request from the user for setting up
a new VNF or scaling the already running VNF. Then, the VNFO relays the request to a
virtual machine manager (VMM). However, the communications between the VNFO and
VMM occurs through the unauthenticated channel leading to a variety of attacks [182].

Another issue in VNF is that multiple cloud providers may cooperatively deploy NFVs

60

CHAPTER 2. LITERATURE SURVEY

leading to data leakage problems.

2.3.3.2.2 Blockchain-based virtual network function-as-a-service

The communication between VNFO and VMM is generally secured by public-key cryp-
tography systems that depend on trusted third parties. The communication involves orches-
tration requests regarding how to create, modify, destroy or migrate the VMs. A compro-
mised communication channel may cause malicious creation, modification, destruction, or
migration of VMs. Hence, a secure, reliable and tamper-resistant interface is required to
relay requests from orchestrator to VMM.

Bozic et al. [173] have built a Blockchain-based Virtual Machine Orchestration Au-
thentication (VMOA) system to relay messages from orchestrator to VMM securely. In
VMOA, the orchestrator before sending a request to VMM, sends the request as a transac-
tion to a Blockchain network which is then stored in a secure and immutable ledger. When
VMM receives the request, it uses the information stored in the ledger for authenticating
the orchestrator and allocates the VMs only on successful authentication. The authors pro-
pose to build VMOA using Hyperledger Fabric. Alvarenga et al. [174] have proposed
secure configuration management of VNFs by logging the signed VNF configuration and
management information on the Blockchain. They employed a BFT consensus algorithm
[183] and designed two types of transactions: a configuration transaction to install config-
urations on VNFs and a configuration request transaction to request the configuration state
of a particular VNF. These transactions are appended to the Blockchain aiding traceability
and accountability of VNF configuration updates. Besides, they have also presented a se-
cure VNF migration through transactions on the Blockchain.

Another problem in NFV is to identify a malicious or faulty VNF configuration be-
cause the presence of a single malicious VNF configuration can affect the entire service
function chain. Further, if the orchestrator is compromised, it may overwrite the log to hide
its malicious activity / threats. In order to mitigate the activities of malicious VNFO, Re-
bello et al. [175, 176] have presented to connect every VNF in a network with Blockchain
to log all operations during execution of a service chain. The recording of operations in

Blockchain provides tamper-proof auditing of orchestration operations which helps in iden-

61

CHAPTER 2. LITERATURE SURVEY

tifying threats caused due to malicious VNF. In [175], the authors built BSec-NFVO for
providing non-repudiation, auditability and integrity of orchestration operations in multi-
tenant NFV environment. In [176], the authors have demonstrated the applicability of their
proposal by adopting network slices as a use case where all the VNFs in a particular net-
work slice are connected to a particular Blockchain. They have exploited the Hyperledger
Fabric channels to create different network slices running their own Blockchains in isola-
tion.

Fu et al. [178] have put forwarded an idea of adopting Blockchain for synchroniz-
ing messages between distributed NFV-MANO (Management and Network Orchestration)
systems. In their work, the NFV-enabled edge servers perform Blockchain computations
along with assigned tasks. Each NFV-MANO system collects their local messages, divides
them into transactions and broadcasts them. A Blockchain node tracks all the transac-
tions from the last synchronized state of the MANO systems, and a consensus process will
start after receiving the synchronization request from MANO systems. They have used
BFT protocol [183] for consensus in which one of the NFV-enabled nodes is designated
as Blockchain primary node and others as replica nodes. The primary node broadcasts
the pre-prepared messages consisting of transactions collected from the last synchronized
state of the MANO systems. Next, the replica nodes send a prepare message to all the
Blockchain nodes. Then, all the nodes send a commit message to all other nodes. Finally,
the blockchain nodes reply to all NFV-MANO systems with the new validated messages.
Thus, all the NFV-MANO systems are message synchronized.

Another critical factor in NFV is the trust in VNF orchestrator as it oversees the end-
to-end VNF lifecycle management. Mishra ef al. [179] have developed a series of smart
contracts to increase transparency in the operations of VNF orchestrator for end-to-end
VNF lifecycle management. The smart contracts act as a market place for third-party VNF
developers to advertise their VNF packages and acts as a trusted platform for edge clouds
to buy the advertised packages. The VNF orchestrator will validate the package sent by
developers and requests sent by edge clouds. Upon successful validation, the orchestrator
selects the best suitable VNF from the available VNF pool and migrates that VNF from

cloud to the requested edge cloud. The system also contains a reputation / feedback contract

62

CHAPTER 2. LITERATURE SURVEY

to eliminate malicious VNF packages.

Although the above-discussed works solve some of the problems in NFV through Blockchain,
the limitation from the perspective of end-users is how to ensure that the VNF package ac-
quired by the end-user is not malicious and not tampered. Currently, the end-users rely on
a trusted centralized database to trust that the VNF packages are not malicious and not tam-
pered. However, the centralized database may be compromised or becomes a single point
of failure. Scheid et al. [177] have presented a VNF package repository called BUNKER
by replacing the centralized database with a smart contract. In BUNKER, a package creator
registers its new VNF packages with a smart contract by sending the hash value of a VNF
package. Users interested in a VNF package must obtain a license from the smart contract
by transferring the necessary payment. After obtaining the license, the users can retrieve
the VNF source code from the external VNF storage and can verify the integrity of the ob-
tained package by querying the smart contract. BUNKER also has a smart contract-based

reputation / feedback mechanism to avoid users submitting malicious VNF packages.

2.3.3.2.3 Summary
NFV offers end-to-end services by chaining VNFs between competing cloud infrastruc-
tures in a trustless environment. In this section, we have discussed the limitations of exist-

ing VNF architecture and their solutions with Blockchain technology.

2.4 Observations and Problems Identified

In this survey, we observe that many works attempt to improve the existing cloud architec-
ture with the help of novel features exhibited by Blockchain technology. We notice that the
centralization of cloud cannot be entirely abolished, preferably the degree of centralization
can be decreased through the adoption of Blockchain. The decrease in the centralization
gives cloud users more control and increase the trust and transparency in cloud comput-
ing. In this section, we list some of the open issues and future directions of the emerging

Blockchain-enabled cloud computing field.
1. We observe that most of the Blockchain-enabled IaaS research is focused on storage-

63

CHAPTER 2. LITERATURE SURVEY

as-a-service. However, there is a lack of focus on other IaaS services such as network

firewalls, security, and load balancing.

2. In general, the resources are acquired by users in pay-per-use / pay-as-you-go model.
These models benefit the IaaS provider as the user pays in advance before using
the services. However, with the advent of Blockchain, fair payments models are
being constructed where the users can pay only for the resources they obtained. Fair
payments models using Blockchain in IaaS are largely unexplored, and we expect in

future a great potential of useful work on constructing fair payment models.

3. Inrecent years, different cloud providers are mutually providing resources giving rise
to a federated paradigm. Blockchain with its properties can benefit federated cloud

computing to inculcate trust among untrusted cloud providers.

4. We have observed that the existing Blockchain-based resource allocation schemes
mostly follow commit and reveal methods during auctions. However, there is a gap

in designing online resource allocation schemes using Blockchain.

5. Although, many works are proposed in Blockchain-based verifiable computations
they either suffer from practicality or huge cost and hence efficient schemes have to

be designed.

6. We have observed that the one of the least explored but most important aspect of
cloud computing is rating, charging and billing of cloud services. Blockchain, with

its novel properties, can ensure transparency and trust in the billing of cloud services.

2.5 Summary

In this Chapter, we have surveyed existing Blockchain-based cloud computing models.
Our comprehensive survey maps the existing Blockchain-based cloud services to the most
primitive cloud service models laaS, PaaS and SaaS. To be specific, we have explored
Blockchain-based storage-as-a-service, resource allocation, computation-as-a-service, data

aggregation-as-a-service, microservice-as-a-service and VNF-as-a-service. We have also

64

CHAPTER 2. LITERATURE SURVEY

listed open issues and future directions which will motivate the interested researchers and

practitioners to put focused research efforts into this promising area.

65

Chapter 3

Fair Payment Protocols for Outsourcing
Computation under

Platform-as-a-Service

With the advent of cloud computing, outsourcing a computation has become a common
practice. A cloud user to have greater confidence in computations performed by the cloud
/ cloud provider should verify the correctness of the results returned. Two approaches are
followed to verify the correctness of results: (1) Proof-based verifiable computing and (2)
Replication-based verifiable computing. The first approach uses cryptography techniques,
whereas the second approach follows game-theoretic methods. Although both approaches
are almost perfect solutions to verify the results, they do not discuss fairness in verifiable
computing.

In this Chapter, we consider fairness in verifiable computing, which means that the
provider receives the user’s payment for an outsourced computation if and only if the user
receives the correct output of the computation. The contributions of this Chapter are as

follows:

(a) We have designed a new fair incentivized model for proof-based verifiable computa-
tion. We show that the cost of running a smart contract is negligible when both user

and provider are honest.

66

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

(b) We have designed a new fair incentivized model for replication-based verifiable com-
putation for a two-provider case and a multi-provider case. We obtain honest com-

putation from the provider by imposing monetized penalties.

(c) We show that smart contracts are an efficient way to send the reward to honest
providers and penalize malicious providers. Using smart contracts, we are emulating

trusted entities like banks for payments between user and provider.

(d) We have listed the financial and transactional cost of the designed smart contracts by

implementing them in Solidity [24] using Truffle framework [25].

3.1 Verifiable Computation

A resource constraint cloud user (C'U) outsources a computation to a cloud provider (C'P),
who gets paid in return to deliver the correct output of the computation. The output returned
by the provider is verified by the user or by a third-party. The work performed to verify the
output must be lesser than the work required to compute the output. The user accepts the

output of the computation if and only if its correctness is verified.

Definition 3.1.1. A proof-based verifiable computation consists of a set of three algorithms

[184]:

(a) Keygen(F,1\) — (ekp,vkr): A randomized key generation algorithm takes the
function F to be outsourced, and a security parameter \; It outputs a public evalua-

tion key ek and a public verification key vkp.

(b) Compute(ekp,x) — (y,m,): This is a deterministic algorithm that takes ekr and
x as input. x is input of the function F. It outputs F'(x) — y and a proof m, of y’s

correctness.

(c) Verifyw,(z, (y, 7)) — {0,1}: Given the verification key vkp,x.y and m,, the

deterministic verification algorithm outputs 1 if F'(x) = y and 0 otherwise.

Definition 3.1.2. A replication-based verifiable computation consists of a set of three al-

gorithms:

67

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

(a) Outsource(F): CU outsources F on input x. Let CP;,CPs,...,CP, be the set of

cloud providers who have shown intent to compute F ().

(b) Compute(F,x) — y;: Every CP; € {CP,,CP,,...,CP,} computes F(z) and out-
puts y; = F(x).

(c) Verify(yi,...,yn) — {0,1}: Given all the providers’ outputs, the deterministic

algorithm outputs 1 if outputs of all the providers are equal and 0 otherwise.

Definition 3.1.3. A fair verifiable computation between two parties CU and C'P must

provide the following guarantee:

(a) Fast verification: The work performed to verify the correctness of output of I is less

than the work performed to compute F'.

(b) Fair payments: CP obtains pay from CU if and only if CU receives the correct

output of the computation from CP.

3.2 Proof-based Incentivized Outsourced Computation (I0C)
using Smart Contracts (PBIOC)

In this section, we discuss fair incentivization of proof-based verifiable computation. As
discussed earlier, a public verifiable computation scheme consists of two parties, a cloud
user C'U and a cloud provider C'P. C'U runs Keygen algorithm (see Definition 3.1.1), and
C'P runs Compute algorithm. The Veri fy algorithm is executed by a CU or by a trusted

third party 7'P. There are three possible approaches to incentivize verifiable computation.

Case 1: A contract is signed between CU and C'P, such that C'U runs Veri fy algorithm
and pays C'P for using its services, if and only if Ver: fy algorithm returns 1. An honest
C P receives pay only if C'U is honest. In this case, C'P has to put trust in C'U for honest

payment.

Case 2: C'U subscribes to C'P’s service by transferring some pay to it and asking it to

run C'ompute algorithm. Here a legal contract may be made between these two parties

68

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

containing all necessary clauses. C'P may or may not adhere to the legal contract. If C'P
does not adhere to a legal contract and sends an incorrect output to CU, C'U’s only way to
get back his pay is going through the cumbersome legal process. In this case, CU has to

put trust in C'P for honest computation.

Case 3: Let CU and C'P, recruit a third party 7'P similar to Model 2 in 1.1.2.2. CU sends
pay to TP and asks the C'P to run Compute algorithm. C'P sends the output to 7'P. Now,
T P runs Veri fy algorithm; if it returns 1, T'P sends pay to C'P; otherwise, it will refund
CU’s payment. Here C'U trusts T'P for honest verification and C'P trust T'P for honest
payment. A special scenario where the dis-honest C'P can also be penalized by asking C'P

to deposit some pay with T'P, before claiming the pay for computation.

In case 3, both C'U and C'P put their trust in third party. However, use of T'P services
comes with a cost, and 7'P may not guarantee to behave honestly every time. As the public
Blockchains are trusted for correctness and availability, they can emulate the trusted third
party functionality. The Blockchains also offer programmability to create and run small
programs known as smart contracts. Now, we show our proof-based verifiable computation

using smart contracts.

3.2.1 PBIOC contract clauses

PBIOC is an outsourcing contract between C'U and C'P. The high-level idea is if CU
and C'P behave honestly, then CU will get the output F'(z), and C'P will get the pay for
computing F'(x). Otherwise, a verifying contract PBIOCYV is invoked, and payment is

made according to the PBIOC'V contract’s result.

The clauses in the PBIOC contract are as follows:
(i) CU prepares two contracts PBIOC and PBIOCYV where the Verify algo-
rithm from Definition 3.1.1 is modeled as PBIOC'V contract and is executed
only in case of disputes.

(ii) CU chooses a function F'(-), and an input x. C'P agrees to compute F'(z).

69

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

(iii) CU agrees to pay $r to C'P for the correct computation of F'(x). CU deposits a
reward $r and a safety deposit of $¢ with the PBIOC contract. C'U also sends
(ekp,vkp, z) to C'P in off-chain mode.

(iv) CU and C'P agree on timing parameters 7 < 7; < T. < T, < Teng, Where 7 is
the current time.

(v) C'P must send a deposit $d to PBIOC before 7;. If C' P fails to deposit $d before
7;, then the contract is terminated, and C'U’s deposit ($r + $¢) is refunded.

(vi) CP computes F'(z) and sends commitment of the output to the smart contract
before 7.. C'P sends (y, m,) to CU in off-chain mode. If C'P fails to deliver the
commitment of the output before 7., then the deposit $d made by him and the
deposit (37 + $c) is sent to CU, and the contract is terminated.

(vii) If CU agrees to C'P’s output before 7, then ($d + $r) is sent to C'P, and $c is
sent to C'U, and the contract is terminated.

(viii) If 7 > 7, and the contract is not terminated, then the PBIOCV contract is
invoked.

(ix) If PBIOCYV returns C'P as honest before 7 < T.,4, then ($7 + $c + $d) is sent
to CP. If PBIOCYV returns C'P as lazy before 7 < 7,4, then ($7 + $c + $d) is
sent to C'U, and the contract is terminated.

(x) If 7 > 7.,4 and the contract is not terminated, then ($r 4 $c + $d) is sent to C P,

and contract is terminated.

3.2.2 PBIOC Protocol

PBIOC protocol is presented in Figure 3.1. PBIOC smart contract functionalities exe-
cuted by Blockchain are presented as Algorithms 3.1 to 3.6. CU chooses a function F', an
input = and generates an evaluation key ekp and a verification key vkp. CU also chooses
timing parameters T;, T, Tq, Tend- Lhese timing parameters are required to enforce timely
computation and avoid locking the funds if one party refuses to move forward in the pro-
tocol. The contract can always query the underlying blockchain for the current time'. CU

sends the chosen parameters to C'P. He also sends the parameters along with $r and $c to

'Most smart contracts use block number / block timestamp as a timer

70

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

BC invoking Algorithm 3.1. $r is the reward to be given to C'P and $c is the deposit to
avoid C'U’s malicious behavior. Algorithm 3.1 stores all the parameters and changes the
state to Created. If C' P is willing to compute the outsourced task, he will send a deposit $d
to BC' invoking Algorithm 3.2. Algorithm 3.2 stores the deposit and changes the contract
state to Intent. C'P sends the commitment of F'(z) result to BC' invoking Algorithm 3.3.
Algorithm 3.3 stores the parameters sent by C'P and changes the state to Committed C' P
also sends the result to CU. Depending on the behavior of C'U there are three cases as

follows:

Case 1: CU verifies the result locally, and if the result is correct, he sends a transaction
invoking Algorithm 3.4. In this case, Algorithm 3.4 sends $r to C'P along with his deposit

and also sends C'U’s deposit to C'U and the contract is terminated.

Case 2: C'U verifies the result locally and if the result is correct and he does not send any
transaction to BC. In this case, C'P reveals the output parameters by invoking Algorithm
3.5, which internally invokes another contract PBIOCV. The PBIOCYV verifies the
output and sends the result to Algorithm 3.6. If C'P has performed honest computation he
receives (37 + $d + $c); otherwise, CU will receive ($r + $d + $c).

Case 3: If neither C'U invokes Algorithm 3.4 nor C'P invokes Algorithm 3.5 before respec-
tive timeouts, then CU receives ($r + $d + $c¢). If PBIOCYV fails to send result before
timeout then C'P receives ($r + $d + $¢).

PBIOC protocol

For cloud user CU
1. To create a outsourcing task
(a) Run Keygen(F, 1) — (ekp, vkr).
(b) Compute E < H(ekp),V < H(vkp), X < H(z).
(c) Send trans$Y . =(FE,V, X, Ti, Tes Ta» Tend» 37> $¢) to BC.
(d) Send (ekp, vkp, x)to C'P.
2. On receiving ("verify”,y, m,) from C'P.
(a) Run Verifyu,(z, (v, m,)).
(b) If Verifyw, (z, (y,m,)) — 1, then send trans[. to BC.
For cloud provider C'P

71

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

3. Verify PBIOC contract and task details.
4. To participate in the outsourcing task, send trans$ == ($d) to BC.
5. To send the output
(a) Run Compute(ekp,z) — (y, m,).
(b) Compute Y < H(y) and P < H(m,), where H is a hash function.
(c) Send transC’ . = (Y, P)to BC.
(d) send ("verify”,y, m,) to CU.
6. If CU has not sent message transC”_ to BC before 7,, then send

agree
trans?. . = (ekp, vkp, 1, y, my) to BC.

For Blockchair{%C: Set state < Init, $reward < 0, $deposit < {}
7. On receiving transggate execute PBIOC.create(E, V', X, Ty, Tes Tas Tends ST
$c)
8. On receiving trans{? execute PBIOC.intent($d)
9. On receiving transC! . execute PBIOC.commit(Y, P)
10. On receiving transC”__ execute PBIOC.agree()
11. On receiving trans’., . execute PBIOC.verify(ekg, vkp, x,y , 7,)
12. On receiving trans’2:0CV execute PBIOC.result(Honest)
Timer
if 7 > 7.,4 and state! = Terminated then
if state = Created then
set ledger[CU] « ledger[CU] + $reward + ($¢, CU)
if state = Intent || Committed then
set ledger|CU| < ledger|CU| + $reward + ($¢, CU) + (3d, CP)
if state = Dispute then
set ledger|C P] < ledger[C P] + $reward + ($¢, CU) + ($d, C'P)
set state < Terminated

Figure 3.1: PBIOC protocol

Algorithm 3.1 PBIOC .create

Input: E,V, X, 75, Te, Ta» Tend, 37, $c
Output: Success or Failure message

1: if state = Init then

2 ifm <7 <7 <7y < Teng then

3 if ledger[CU] > $r + $c then

4: ledger|CU] < ledger[CU] — ($r + $¢);
5: $reward — $r;

6 $deposit + $deposit U ($¢, CU);

7 state < Created;

8 return (Success, Task created)

9 else return (Failure, Balance is low)

10: else return (Failure, Bad timing parameters)

11: else return (Failure, State is not Init)

72

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.2 PBIOC.intent

Input: $d

Output: Success or Failure message

1: if state = Created then

2 if 7 < 7; then

3 if ledger[C'P] > $d then

4: ledger|CP) < ledger[CP] — $d
5: $deposit « $deposit U ($d, C'P)
6: state < Intent

7 return (Success, Intent success)
8 else return (Failure, Balance is low)
9: else return (Failure, Intent timeout)

10: else return (Failure, State is not C'reated)

Algorithm 3.3 PBIOC.commit

Input: Y, P
Output: Success or Failure message
1: if state = Intent then
2 if 7 < 7. then
3 Store Y, P
4. state < Committed
5 return (Success, Commit success)
6 else return (Failure, Commit timeout)
7: else return (Failure, State is not Intent)

Algorithm 3.4 PBIOC.agree

Input: ¢

Output: Success or Failure message
1: if state = Committed then

2 if 7 < 7, then

3 set ledger|[C'P] « ledger[C'P| + $reward + ($d, CP)
4 set ledger[CU| < ledger[CU] + ($d,CU)

5: state < Terminated

6 return (Success, Agree success)

7 else return (Failure, Agree timeout)

8

. else return (Failure, State is not Committed)

73

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.5 PBIOC .verify
Input: ekr, vkp, x,y, ™y,
Output: Success or Failure message

1: if state! = Terminated then

2 if 7, < 7 < Teng then

3 if B =H(ek;) NV =H@k;) NX =H(z) NY = H(y) N P = H(m,) then
4 Invoke PBIOCV

5: set state < Dispute

6: return (Success, Dispute raised)

7 else return (Failure, Open commitment Failed)

8 else return (Failure, Verify timeout)

9:

else return (Failure, Contract is T'erminated)

Algorithm 3.6 PBIOC'result

Input: Honest
Output: Success or Failure message

1: if state = Dispute then

2 if 7 < 7.4 then

3 if Honest = true then

4: set ledger[C'P] < ledger[C'P] + $reward + ($¢, CU) + (3d, C'P)
5: else

6: set ledger[CU] «+ ledger[CU] + $reward + ($¢, CU) + ($d, CP)
7 set state < Terminated

8 return (Success, Dispute resolved)

9: else return (Failure, Contract timeout)

10: else return (Failure, State is not Dispute)

If both C'U and C'P are honest, then the execution cost of PBIOC protocol is minimal and
also have the privacy of their inputs and outputs. However, if anyone party is dishonest,
then PBIOCV contract is invoked. As we have already discussed the Verify algorithm
from Parno et al. [184] is modeled as PBIOCV contract, running it is costly, and the
privacy of the results no longer exists. The inherent problem with the proof-based systems
is the provider’s overhead, and the verifier’s” cost per instance is high. The verification time
for the state-of-the-art verifiable computation scheme [184] is 9ms and takes 288 bytes of
storage. In our protocol, even if we do not consider the user overhead in converting the
function into a boolean circuit, the verification of the proof (i.e., execution of PBIOCV
contract) by the Blockchain network will consume a huge amount of time. The verifiers in

public Blockchain systems can choose the transactions which will go into a block and then

2miners in Blockchain

74

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

into a blockchain. Since the average block generation time is very low, it is not practical for
the verifiers to accept transactions which would take a long time. Therefore, a verifier will
avoid the verification of the transactions which consumes huge computational resources
[97]. A generic PBIOCYV contract can be very complex, costly and even may not be feasible

to deploy in current Blockchain networks.

3.3 Replication-based Incentivized Outsourced Computa-

tion using Smart Contracts

In this section, we discuss achieving fairness and correctness in verifiable computation by

outsourcing the same task to multiple providers.

3.3.1 Economic model

Let C'U outsources a computation to multiple providers C'Py,...,C'P,. The providers will
compute the outsourced computation and return the output. There is a chance that providers
may use different algorithms other than the one prescribed by the user and yet deliver the
correct output with negligible probability. There might be an algorithm which gives higher
utility than the specified algorithm and yet deliver the correct output. The user always
wants the providers to compute the prescribed algorithm. For example, the user does not
outsource “search for an element in a given input set”. He will outsource a “particular
searching algorithm along with the input”. Another example is when the output range of
the outsourced algorithm is binary. In this case, the provider can guess the output with a
50% probability without running the algorithm. To prevent providers from using different
algorithms, Belenkiy ef al.[153] introduced the concept known as the inner state of an

algorithm..

Definition 3.3.1. Assuming the algorithm is composed of a finite number of atomic op-
erations and each atomic operation takes some state information as input and produces
another state information as output. The inner state of an algorithm is defined as the con-

catenation of all the input and output states of the atomic operations of an algorithm, along

75

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

with the definition of the algorithm in terms of atomic operations.

Inner State Hash(ISH): An 1-bit hash function takes an inner state of an algorithm
as input and maps it into an 1-bit random string. Even if the algorithm has many number
of steps / its output is large, the hash value is always short having a constant length. The
probability of producing the same hash value without using the algorithm prescribed by the

user is negligible, i.e., neg = O(27).

Definition 3.3.2. The algorithm used by the provider to complete the assigned work that
outputs the correct answer with probability q is known as g-algorithm [155]. If a provider
runs the algorithm prescribed by the user, then ¢ = 1. Similarly, if the provider uses any

algorithm other than the user prescribed, then q < 1.

The cost of running a g-algorithm is cost(q). As ¢ = 1 for running the prescribed
algorithm, we denote the cost of honest computation as cost(1). The high-level description
of our approach is that C'U outsources the same computation to multiple providers. The
providers compute and return the outputs along with the inner state hash. C'U compares all
the inner state hashes and the outputs sent by providers. If they all are equal, he accepts
one of the output, otherwise re-outsources the algorithm. C'U can not be trusted by the
providers, so he posts a smart contract on to a distributed ledger initiating it with some pay.
Similarly, the providers submit their inner state hash value and output to the smart contract.
Now smart contract verifies the outputs; if all are equal, providers will receive the payment.
Interestingly, even if all the providers submit the same incorrect output, they all get the pay.

We categorize the providers into three categories:

(a) Honest provider: An honest provider performs the computation exactly (running

the prescribed algorithm) as prescribed by the user.

(b) Rational provider: A rational provider performs the computation precisely as pre-
scribed by the user as long as his utility of computing the original algorithm is more

than the utility of doing anything else.

(c) Malicious provider: A malicious provider has two objectives: (1) Making the user

accept the incorrect result or (2) Making the user re-outsource the task.

76

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

The providers who use the algorithm as prescribed by the user be called diligent (all honest
providers and some rational providers who behave honestly) and who uses a g-algorithm
are called lazy (all rational who behaves maliciously and all malicious). The utilities of the

providers in a two-provider case are given in Table 3.1.

Other / This provider Diligent Lazy
Diligient u(l) =$r —cost(1) | u(q) =9%r*q—3d=* (1 —q) — cost(q)
Lazy u(l) = $r — cost(1) u(q) = $r — cost(q)

Table 3.1: Utilities in two-provider case from [153]

3.3.2 Two providers Case (TUIOC Contract)
3.3.2.1 TUIOC Contract Clauses

TUIOC is an outsourcing contract signed between three parties, a CU and two providers
(C'Fy, C'Py). We follow the prisoner’s dilemma model presented by Belenkiy et al. [153]
and kupcu [155]. We assume F'(x) is deterministic, and there exists a smart contract TU-
IOCV which can compute F'(x) and return (y, ish) as output. CU pays a bounty $b along

with reward $r for an honest provider in case of disputes.

The clauses in the TUIOC contract are as follows:
(i) CU prepares two contracts TUIOC and TUIOCV . TUIOC'V is executed only
in case of disputes.

(ii) CU chooses a function F'(-) and an input . C'U agrees to pay $r to each provider
for the correct computation of F'(x). CU also agrees to pay $b to the honest
provider in case of disputes.

(ii1) All the three parties agree on timing parameters 7 < 7; < T, < Tend-

(iv) Each CP;, i € {0,1} must pay a deposit of $d before 7;. If any C'P; fails to
deposit, then the contract is terminated and any deposits made are refunded.

(v) Each C'P; computes F'(z) and delivers the output to the contract before 7. If

any C'P; fails to deliver output by 7, then its output is set as NULL. If both

77

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

providers fails to send output before 7., then 2 * ($d + $r) + $b is sent to CU and
the contract is terminated.

(vi) At 7. < T < Teng, the contract compares the outputs delivered by providers for
equality. If both the outputs are equal, then $d + $r is sent to each C'P;, $b is sent
to C'U and the contract is terminated. Otherwise TUOC'V contract is invoked.

(vii) TUIOCYV computes F'(x) and returns the result before 7,,,4.
(viii) The smart contract compares the results sent by TU [OC'V with the outputs de-

livered by providers.

(1) If TUIOCYV and C'P,; outputs are same, then ($d + $r + $b) is sent to C'P;,

$d + $r is sent to CU, and the contract is terminated.

(2) If TUIOCYV output is not matching with any of the C'P;’s output, then 2 x

($d + $r) + $b is sent to CU, and contract is terminated.

(ix) If 7 > 7.,4 and the contract is not terminated, then ($d + $r) is sent to each C'P;,

$0 is sent to CU, and the contract is terminated.

3.3.2.2 TUIOC protocol

Unlike in Kiipcii[155] and Belenkiy et al.[153], we do not assume the user acts diligently.
In our model, the providers do not trust the user for payment, and the user does not trust
the providers for correct computation. All the three entities trust the underlying Blockchain
for correct computation of the smart contract. TUIOC protocol is presented in Figure 3.2.
TUIOC smart contract functionalities executed by Blockchain are presented as Algorithms
3.7 - 3.11. CU chooses a function F', an input x, timing parameters 7;, T., Ty, Tenqd and
publishes these parameters on a public platform. He also sends these parameters along with
a pay $r, and a bounty $b to BC invoking Algorithm 3.7. Bounty is given to the honest
provider in case of disputes. Algorithm 3.7 stores the parameters and changes the state
to Created. Two interested cloud providers can show intent to compute the outsourcing
task by sending their deposits to BC' invoking Algorithm 3.8. Algorithm 3.8 adds a cloud
provider to a worker set and if the two cloud providers have shown the intent, then the

state is changed to Compute. After showing intent the cloud providers have to send the

78

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

commitment of the output along with hash of the inner state to BC invoking Algorithm
3.9. Algorithm 3.9 stores the commitments sent by the cloud providers and if both the
cloud providers sent their commitments, then the state is set as Reveal. There are three

cases depending on the behavior of the providers

Case 1: Both the providers have committed the output. In this case, the providers have
to reveal the committed outputs by invoking the Algorithm 3.10. Algorithm 3.10 verifies
the revealed parameters against the commitments, and if the commitments are correct, then
they are stored. If both the provider’s commitments are correct, then the state is set as Pay

. There are three cases depending on the behavior of the providers

Case 1.1 Both the providers have revealed the output. In this case, the outputs are
compared for equality. If both the outputs are equal, then ($r + $d) is sent to each
provider and $b is sent to CU. Else, TUIOC'V contract is invoked which will return
the output invoking Algorithm 3.11. Algorithm 3.11 compares the output returned by
TUIOCYV with the outputs submitted by the cloud providers. If the output of any of
the cloud provider matches, then it is rewarded and the other provider is financially

penalized. Algorithm 3.11 also sets the state to Terminated.

Case 1.2: Only one of the provider have revealed the output. In this case, the output

of the other provider is set as ¢ and the TU IOC'V contract is invoked.
Case 1.3: None of the providers have revealed the output. In this case, 2x($r+$d)+$b

is sent to C'U.

Case 2: Only one of the provider have committed the output. In this case, the contract state

is changed to Reveal.

Case 3: None of the providers have committed the output. In this case, 2 * ($r + $d) + $b

is sent to C'U.

TUIOC protocol

Let (G, P, () be the public parameters generated through a trusted setup such that

79

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

G is an order-q elliptic curve group over I,,, P and () are random generators of G.
For cloud user CU
1. To create an outsourcing task send trans¢”

to BC'
For cloud provider C'P;

create — (F9 Ty Tis Tes Trs Tends $7’, $b)

2. To participate in the outsourcing task, send trans_. = ($d) to BC.
3. To send the output

(a) Run compute(F,x) — (y;,ish;)

(b) Generate two random numbers s; €r Z, and s, € Z,

(c) Compute cm,, < y; P + 51Q and cmygp, < ish; P + 520

zntent

(d) Send trans’ ' . =(cmy,, cmig,) to BC
4. To reveal the output send trans’: = (y;, ish;, 51, 52) to BC
For Blockchain:

5. On receiving trans®V . execute TUIOC .create(F, x,Ti, Te, Try Tend, 37, $D)
6. On receiving trans ' execute TUIOC.intent($d)
7. On receiving trans’, ' . execute TUIOC.commit(cm,,, cmigp,)
8. On receiving trans_! execute TUIOC.reveal)
9. On receiving trans}” %< execute TUIOC dispute()
Timer
If 7 > 7, and state = Pay then
If yo = v, and 1shy = ish; then
Set ledger|C Py < ledger[C' Py + $r + $d
Set ledger[C Py « ledger[C' Py] + $r + $d
Set ledger[CU] < ledger[CU] + $b and state < Terminated
Else send trans}/9C to TUIOCV and set State < Dispute
If 7 > 7; and state = Created then
Set ledger|CU| + ledger[CU] + 2 x $r + $b
If |worker|# 0 then
Set ledger|C P}| < ledger|CP)] + $d, VY CP; € workers
Set state <— Aborted
If 7 > 7. and state = Compute and |commitment|# 0 then set state <
Reveal
If 7 > 7. and state = Compute and |commitment|= 0 then
Set ledger[CU] <« ledger[CU]+2x($r+3d)+$b and state < Aborted
If 7 > 7, and state = Reveal and |output|# 0 then set state < Pay
If 7 > 7, and state = Reveal and |output|= 0 then
Set ledger[CU] < ledger[CU]+2x ($r+3%d)+3$b and state < Aborted
If 7 > 7,4 and state = Payl||Dispute then
Set ledger|C Py] < ledger|C By] + $r + $d
Set ledger|C Py] < ledger|C Py] + $r + $d
Set ledger|CU| < ledger[CU] + $b and state < Terminated

Figure 3.2: TUIOC protocol

80

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.7 TU [OC'.create

Input: F, x, 75, T¢, Tr, Tend, 37, $0
Output: Success or Failure message
1: if state = Init then

2 if 7 <7, <7. <7 < Teng then

3 if ledger[CU] > 2 * $r + $b then

4: Set ledger|CU| + ledger[CU] — (2 * $r) — $b;
5: Set state < Created

6: return (Success, Task created)

7 else return (Failure, Balance is low)

8 else return (Failure, Bad timing parameters)

9: else return (Failure, State is not Init)

Algorithm 3.8 TUIOC intent

Input: $d

Output: Success or Failure message

1: if state = Created then

2 if 7 < 7; then

3 if ledger|C'P;] > $d then

4: if CP; ¢ worker then

5: set ledger|C'P;] < ledger[C'P;] — $d
6: set worker < worker U CP;

7 if |worker|= 2 then

8 set state < Compute

9: return (Success, Intent success)
10: else return (Failure, Duplicate provider)
11: else return (Failure, Balance is low)
12: else return (Failure, Intent timeout)

13: else return (Failure, State is not C'reated)

Algorithm 3.9 TUIOC.commit

Input: cm,,,cm;sh,

Output: Success or Failure message

1: if state = Compute then

2 if 7 < 7. then

3 if CP; € worker then

4 if (CP;, *,x) ¢ commitment then

5: set commitment < commitment U (CP;, cmy,, cmysh,)
6 return (Success, Commit success)

7 if |commitment|= 2 then

8 set state < Reveal

9: else return (Failure, Duplicate commitment)
10: else return (Failure, Wrong provider)
11: else return (Failure, Commit timeout)

12: else return (Failure, State is not Compute)

81

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.10 T7U [OC'.reveal
Input: ¢
Output: Success or Failure message

1: if state = Reveal then

2 if 7 < 7, then

3 if (CP;, *,x) € commitment then

4 if (CP;, *,x) ¢ output then

5: if cmy, = y; P + 51Q and cmygp, = ish P + s2() then
6: set output + output U (C'P;,y;, ish;)

7 if |output|= 2 then
8 set state <— Pay

9: return (Success, Reveal success)
10: else return (Failure, Open commitment failed)
11: else return (Failure, Duplicate output found)
12: else return (Failure, Not committed)
13: else return (Failure, Reveal timeout)

14: else return (Failure, State is not Reveal)

Algorithm 3.11 TUIOC .dispute
Input: ¢
Output: Success or Failure message

1: if state = Dispute then

2 if 7. < T < Teng then

3 if y; = yo and ish; = ishy then

4: set ledger[C Py| + ledger[C Py + $r + $d + $b
5: set ledger[CU| < ledger[CU| + $d + $r

6 else

7 if y; = y1 and ish; = ish; then

8: ledger|C Py] < ledger[C'Py] + $r + $d + $b
9: ledger[CU] < ledger[CU] + $d + $r
10: else set ledger|CU| + ledger[CU] + 2 x ($r + $d) + $b
11: set state < Terminated
12: return (Success, Dispute resolved)
13: else return (Failure, Contract timeout)

14: else return (Failure, State is not Dispute)

We have already defined that the cost of honest computation is cost(1), and the cost
of running a g-algorithm is cost(q). Let the cost of running the TUIOCV contract be
cost(V). We assume that the deposit by a provider $d > cost(V'). $d compensates the
user for the cost(V). The analysis of TUIOC' protocol is presented in Table 3.2. If
the providers collude and sent the same incorrect output, then their utility will be maxi-
mum. If no collusion occurs, then the best strategy for the providers is to act diligently.

Colluding of the providers is avoided by offering a bounty for acting diligently such that

82

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

$r — cost(1) + $b > $r — cost(q). This bounty is given to the diligent provider only when

the outputs are different. Unfortunately, this bounty is a burden to the user as this is an

extra payment apart from the reward.

Entities Utility
sno | CPy | CP; | output w(CU) w(C'Py) w(CPy) Clause
1 1 1 CcoO - $r — cost(1) $r — cost(1) vi
2 1 0 CO $d — cost(V) $r + $b — cost(1) —8d — cost(q) viii. 1
3 0 1 CO $d — cost(V) —8$d — cost(q) $r + $b — cost(1) | wviii.l
4* 0 0 WO - $r — cost(q) $r — cost(q) vi
5** 0 0 WO | 2x8d — cost(V) —8d — cost(q) —8d — cost(q) viii.2

Table 3.2: Analysis of TUIOC: 1-Diligent, 0-Lazy, CO-Correct Output, WO-Wrong Out-
put, cost(V) is cost of executing TUIOCV Contract. Here, we assume TUIOCV contract
is invoked by C'U and hence the cost(V') is paid by CU. *when both providers return the
same incorrect outputs. ** when the providers return different incorrect results.

3.3.3 Multiple-provider Case (MUIOC)

We extend the two providers case to n providers case and try to achieve fair incentivized
outsourced computation. If n = 2, then this case is similar to a two providers case, hence

we assume n > 2.

3.3.3.1 MUIOC Contract Clauses

The high-level overview of the multiple-providers case is that the user outsources the job
on a public platform along with the smart contract address. Interested providers show
their intent by sending some deposit to the contract. The protocol proceeds in rounds, in
each round some £ < n number of providers are randomly hired. The selected providers
compute the job and submit their outputs. The contract verifies all the received outputs,
and if all the outputs are same, then the contract is terminated by sending appropriate pay
to each provider who computed correctly. Otherwise, the contract re-outsources the job to
a different set of providers until a correct output is obtained. We assume at least one honest

provider is hired per round.

83

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

The clauses in the M UIOC contract are as follows:

(i) CU prepares two contracts MUIOC and MUIOCV. MUIOCYV is executed
only in case of disputes.

(ii) CU chooses F(-) and an input z. CU agrees to pay a minimum of $r/k to
each C'P; for correct and timely computation of F'(x). He also chooses timing
parameters 7 < T; < T, < Teng and k, p, where k is the number of providers
hired per round and p is the time required per round.

(iii) As a condition, the providers who wish to compute F'(x) must pay a deposit of
$d before 7;. Let W C C'P be all the providers who paid deposits before 7;. Let
$d' be the sum of all the deposits made by providers. If [IW|< 2 after 7;, then the
contract is terminated, and the reward is refunded to C'U and any deposits made
by the providers are also refunded.

(iv) Until |W|< k

(a) Smart contract generate a random subset of providers €2, C W and notify
them to compute F'(z).

(b) Every CP; € Q, computes F'(x) and delivers its output before 7. If any
CP; € €, fails to send the result by 7, it is marked as cheated and its
output is set as NULL.

h

(c) Smart contract compares all the outputs obtained in an 7" round for equal-

ity.
(1) If all the outputs are equal, then every C'P; € (). is marked as hon-

est and also all the providers in previous rounds who sent the same

$_d/ rxk $r :
output are marked as honest. W] <T*k_|m|> + ko 18 sent to each

honest provider, where |m| is the size of malicious providers marked
as cheated and lost their deposit for behaving maliciously. $d’ /|| is
sent to all the providers who have not hired in any round and the con-
tract is terminated.

h

(2) Otherwise, all the providers in r*" round are marked as cheated and the

parameters are updatedasr =r+ 1, 7. =7.+p, W =W — Q,.

84

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

(v) If [W|< k, then MUIOCYV contract is invoked and the output of the M UIOCV
contract is compared with all the hired providers output. The providers who sent
the output same as MU IOC'V are marked as honest, and all the providers who

sent a different output are marked as cheated.

3.3.3.2 MUIOC protocol

MUIOC protocol is presented in Figure 3.3. MUIOC' smart contract functionalities exe-
cuted by Blockchain are presented as Algorithms 3.12 - 3.16. C'U chooses a function F', an
input x, timing parameters 7;, T, T, Tenq and publishes these parameters on a public plat-
form. He also chooses two more parameters k and p, where £ is the number of providers
hired per round, and p is the time required per round. He sends all these parameters along
with $r to BC' invoking Algorithm 3.12. The pay $r is shared among the honest providers.
Algorithm 3.12 stores all the parameters and sets the state as Created. Interested providers
show intent by sending deposits to BC' invoking Algorithm 3.13. Algorithm 3.13 stores a
provider’s deposit and adds the provider to a list and increments the count of the providers.
After the intent time is expired, a random set of providers is selected to perform the out-
sourcing task. The selected cloud provider has to compute and send the commitment of
the output and inner state hash to BC' invoking Algorithm 3.14. Algorithm 3.14 stores the
commitment sent by every provider. Depending on the behavior of the providers there are

three cases as follows:

Case 1: All the selected providers have committed the output. In this case, the providers
have to reveal the output by invoking Algorithm 3.15. Algorithm 3.15 stores the output
received from a provider. Depending on the behavior of the providers there are two cases

as follows:

Case 1.1: All the providers who committed the output have revealed the output by
invoking Algorithm 3.15. In this case, after the reveal timeout, the outputs are com-
pared for equality. If all the outputs are equal, then the providers receive the agreed
payment. The providers in the previous rounds who sent the same output will also get

the agreed payment. Otherwise, all the providers are marked as cheated, and a new

85

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

round begins with a random selection of providers. If there are not enough providers

for the new round, then M UIOC'V contract is invoked, and pay is distributed accord-

ing to the output sent by the M UIOCV contract invoking Algorithm 3.16. Algorithm

3.16 computes honest and malicious lists according to the output sent by MU IOC'V'.

Case 1.2: Only a subset or none of the providers have revealed the output. All the

providers are marked as cheated, and a new round begins the same as the previous

case.

Case 2: Only a subset of providers have sent the output. In this case, the aborting providers’

commitment is set as NULL, and the rest of the providers will reveal the output.

Case 3: None of the providers has sent the output. In this case, all the providers’ commit-

ment and output is set as NULL, and a new round begins with a random set of providers.

If there are not enough providers for the new round, then MUIOC'V contract is invoked,

and pay is distributed according to the output returned by the MU IOC'V contract.

MUIOC protocol

For cloud user CU
1. To create an outsourcing task send transCY
BC
For cloud provider C'P;

create —

2. To participate in the outsourcing task send trans$ > = = ($d) to BC
3. To commit the output
(a) Compute (ish;,y;) < F(z)
(b) Generate two random numbers s; €z Z, and s, € Z,
(c) Compute cm,, < y; P + 51Q and cmygp, < ish; P + 520
(d) Send trans_'i . =(cm,,,cmis,) to BC
4. To reveal the output send trans®’? = (y;,ish;, 51, s3) to BC
For Blockchain:
5. On receiving transSY
On receiving trans’! execute MUIOC.intent($d)
On receiving trans_, | .. execute M UIOC.commit(cmy,, cmisp,)
On receiving trans’ ! execute MUIOC.reveal(y;, ishi, 51,)

On receiving trans};/U !¢ execute MUIOC.dispute(y;, ishy)

zntent

oI 0ol =11 O

86

Let (G, P, () be the public parameters generated through a trusted setup such that
G is an order-g elliptic curve group over IF,,, P and () are random generators of G

(F, Ty Tis Tes Trs Tends $T) to

execute MUIOC create(F, z,T;, Te, Try Tend, 1)

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Timer
If 7 > 7, and state = Created||Discord then
If |CP|> k then
select a random subset €2, C C'P of size k
set CP <+ C'P — (), and state < Compute
send ("compute”,(,) to all parties
If 7 > 7, and state = Compute then
(status,y,ish) <— compare(,., output)
If status = agreed then
while r > 0
(H, M) < getHonest(r, ., output, y, ish)
r<—nr—1
set state < Agreed
Else set 7. < 7.+ p, 7. < 7. + p,r < r + 1, state < Discord
If 7 > 7. and state = Discord, then send ("dispute”) to MU LIOCV and set
state <— Dispute
If - > 7., then
If state = Agreed then
set $mdeposit < $deposit/(n — |M|—|CP|) and $deposit <+
$deposit — $mdeposit

forevery CP, € H
Set ledger[CP;] <« ledger[CP;] + ($deposit/n) + ($reward/(k * (r) — |M]|)) +
($mdeposit/|H|)

for every C'P; € C'P set
ledger[C'P)] < ledger[C'P;] + ($deposit/n).
set state <— Terminated
If state = C'reated then
set ledger[CU| < ledger[CU| + $reward
for every C'P; € C'P set ledger|C P;| + ledger|[C P;] + $deposit/n
set state <— Aborted
If state = Dispute then
for every C'P; € C'P set ledger|C P} <+ ledger[CP;] 4+ $deposit/n

while r > 0
for every CP; € Q. setledger[CP;] < ledger|[CP;] + ($deposit/n) + ($reward/(rxk))
setr <=7 —1

set state < Terminated.

Figure 3.3: MUIOC protocol

87

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.12 MUIOC .create

Input: F, x, 7;, Te, Trs Tend» 97
Output: Success or Failure message
1: if state = Init then
2 if 7 <7, <7. <7 < Teng then
3 if ledger[CU] > $r then
4 Set ledger[CU] < ledger|CU| — $r
5: Set $reward < $r
6: Set state < Created
7 return (Success, Task created)
8 else return (Failure, Balance is low)
9: else return (Failure, Bad timing parameters)

10: else return (Failure, State is not Init)

Algorithm 3.13 MUIOC intent

Input: $d
Output: Success or Failure message
1: if state = Created then
2 if 7 < 7; then
3 if ledger|C'P;] > $d then
4 if $d > $reward then
5: if CP; ¢ CP then
6: Set ledger|C P;] + ledger|CP;] — $d.
7 Set $deposit < $deposit + $d.
8: Set CP + CPUCP,.
9: Setn<+n+1

10: return (Success, Intent success)
11: else return (Failure, Duplicate request)
12: else return (Failure, Deposit not enough)
13: else return (Failure, Balance is low)

14: else return (Failure, Intent timeout)

15: else return (Failure, State is not C'reated)

Algorithm 3.14 MUIOC.commit

Input: cm,,, cm;gp,
Output: Success or Failure message
1: if state = Compute then
2 if 7 < 7, then
3 if (CP;,*,x) ¢ commitments then
4 if CP; € Q,. then
5: Set commitments < commitments U (CP;, cmy,, cmysp,)
6: return (Success, Committed)
7 else return (Failure, Wrong provider)
8 else return (Failure, Duplicate commitment)
9 else return (Failure, Commit timeout)
10: else return (Failure, State is not Compute)

88

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.15 MUIOC reveal
Input: Yi, iShZ‘, 81,82
Output: Success or Failure message
1: if 7. <7 < 7, then
2 if CP; € (), then
3 if (CP;, *,x) ¢ output then
4: if cmy, = y; P + 51Q and cmysp, = ish; P + 52Q) then
5: Set output < output U (CP;, y;,ish;)
6.
7
8

return (Success, Revealed)
else return (Failure, Reveal failed)

else return (Failure, Duplicate request)
9: else return (Failure, Wrong provider)
10: else return (Failure, Reveal timeout)

Algorithm 3.16 M UIOC .dispute
Input: y;, ish;
Output: Success or Failure message

1: if state = Dispute then

2 if 7. <7 < Teng then

3 while r > 0 do

4: Set (H, M) < getHonest(r,Q,., output,y;, ishy)
5: Setr<r—1

6 Set state < Agreed

7 else return (Failure, Contract timeout)

8:

else return (Failure, State is not Dispute)

Excepted number of rounds: The contract outsources the job until all the providers hired
in a round returns the same output. Let £ be the probability of getting different outputs
in a single round then the expected number of rounds the task is outsourced is ﬁ The
contract outsources the task at least once. If the outputs returned in the first round are not
equal, then the contract outsources the task again, this will happen with a probability of F£.
Again if the outputs are not equal, then the contract outsources with a probability of £?
and so on till all the outputs in a round are equal. The expected number of rounds the task

is outsourced is

1+ E+ B+ =

89

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

3.4 Simulation Results and Discussions

The simulation environment is discussed in Section 1.2.3. The actual tasks are treated as
black boxes, and the contracts do not need to know their internal states. The contracts
are called before, during or after the execution of the tasks. We have implemented all the
contracts in private Ethereum network which mimics the Ethereum production network.
However, our goal of this implementation is to deploy it in public Blockchain networks in

real scenarios.

3.4.1 Implementation of PBIOC

We ran our experiments multiple times, and each transaction’s computational and financial
cost is listed in Table 3.3. It may be observed that the contract deployment is consuming
a large amount of gas, but this will be amortized over multiple agreements between user
and provider. We have designed our contract to be used for multiple outsourcing tasks
so that the user and provider can run multiple agreements on a single deployment. For
implementation feasibility, we have modified our PBIOC contract in Figure 3.1, because
the current blockchain networks do not support the scheduled function calls, which are
executed when the timer expires. The Timer functionality in Figure 3.1, and Algorithm 3.6
is implemented as a Payout functionality. The results in the Table 3.4 shows that the cost
of running the PBIOCV contracts even for small inputs is high when compared to Table
3.3. Hence, when both cloud user and provider are honest overhead of running a PBIOC
contract is minimal.

The lack of possibility of running heavy cryptography operations on Ethereum blockchain
limits the PBIOCV contract’s implementation. Recently, a new library ZoKrates [128] us-
ing zZkSNARKSs[184] is introduced to perform heavy computations off-chain, and the proof
of off-chain computations is verified on the Blockchain network. The user and provider run
an off-chain setup phase to establish a common reference string (CRS) to derive a proving
key and verification key. The PBIOC'V contract is generated by the user using verification
key, and the user deploys the PBIOC'V contract and sends its address to the provider. The

provider computes the witness and generates a proof. The provider then sends this proof to

90

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.5. We ran the experiments for three problems 1) Sorting integers 2) Primality
test on non-prime numbers and 3) Searching in an array of integers. The costs of deploying

and running the PBIOC'V contracts is shown in Table 3.4.

Function | Caller Cost in Gas Cost in $
Deployment user 2117086 0.565
Create user 302889 0.080
Intent provider 92255 0.024
Commit provider 85709 0.022
Agree user 41905 0.011
Verify provider | 30275 +cost(PBIOCV) | 0.008+cost(PBIOCYV)
Payout Anyone 37742 0.010

Table 3.3: Costs of interacting with PBIOC Contract. We have approximated the gas price
as 1 Gwei and 1 ETH = $267.76, which are the real world costs in June 2019. We have
rounded off the cost in $§ value up to three decimals.

PBIOCY contract | Deployment Cost in Gas | Execution Cost in Gas
Sort(input size 10) 1281467 736975
Primality Test* 1005959 563902
Search(input size 10) 1311503 999455

Table 3.4: Deployment and Execution costs of PBIOC'V contracts. * The factors multipli-
cation test is conducted only for non-prime number. The primality test for prime numbers
is not possible with current Zokrates implementation as modulo operations are expensive
on prime fields.

3.4.2 Implementation of TUIOC
3.4.2.1 Inner State Hash computation

The provider has to send the inner state hash and the algorithm’s output to prove that he
executed the prescribed algorithm given by the user. We have created an Aspect] aspect
which hashes all the inputs and outputs of a method without modifying the actual java
code. The user outsources the java code, which is compiled along with Aspect] aspect
which, when executed, returns the algorithm’s output along with inner state hash. We have
computed the inner state hash using a Merkle tree [185]. The input string and output string

of all the algorithm methods will become leaf nodes in the Merkle tree (i.e., two nodes for

91

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Functions | Caller | Costin Gas | Costin $

Deployment user 2526981 0.67
Create user 64424 0.01
Intent provider 64320 0.01
Commit provider 118142 0.031
Reveal provider 386452 0.10
Dispute Anyone 40364 0.01
Payout Anyone 39640 0.01

Table 3.5: Costs of interacting with TUIOC Contract. We have approximated the gas price
as 1 Gwei and 1 ETH = $267.76 which are the real world costs in June 2019.

one method call). Once the execution is completed, a Merkle tree is constructed with all the
leaf nodes. The root of the Merkle tree is returned as the inner state hash of an algorithm.

The providers will compute the commitments using Pedersen [186] commitments based
on the public parameters given in Cryptocon [187]. We also use the Cryptocon contract for
verifying the commitments submitted by the providers. We have invoked several instances
of the TUIOC contract, and each transaction’s computational and financial cost is listed in
Table 3.5.

As we have discussed earlier, our TUIOC contract is simple and invokes TUIOCV
contract only in case of disputes. We have modeled 1) Merge sort 2) Primality test and 3)
Binary search as TUIOCV contracts and deployed them on Ethereum Blockchain. Merge
sort contract takes an array of integers as an input and outputs sorted array of numbers. We
have used a recursive merge sort implementation and hence we could not test it for large
input sizes due to the limit on the number of call stacks of a smart contract in Ethereum
Blockchain. The number of call stacks limit is hardcoded as 1024 stack frames which
limit the number of function calls allowed. We also could not test for sorting fractional
numbers as Ethereum does not support operations on floating-point numbers. The Merge
sort contract is tested for input sizes from 5 to 100, where all the numbers in a single test
are generated randomly, and the transaction costs are listed in Figure 3.4.

The second TUIOCV contract we have deployed will check whether the given number
is prime or not. We have tested the primality contract for integers up to 10000. The trans-
action cost of prime numbers is listed in Figure 3.5 and transactional cost of non-prime

numbers is given in Figure 3.6. The gas cost to test non-prime number is less than the

92

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

gas cost for testing prime numbers. Also, the gas cost to test prime numbers increases as
we move to higher numbers. Observe that the gas consumption of the non-prime number
varies dramatically due to the adoption of Fermat’s little theorem for primality test. To
reduce the gas cost, we have included a condition “if num%2 == 0 || num%3 == 0,
then return false® where num is the input to primality test. This statement consumes an
almost constant amount of gas for all the non-prime numbers, which are having 2 or 3 as
one factor. For all the remaining non-prime numbers we check the condition “a™™ ! = 1
mod (num)” for some random 1 < a < num — 1. This condition is checked minimum
once and a maximum of y/num times.

As a third TUIOCYV contract, we have implemented and tested the binary search. The
binary search contract is tested for input sizes from 100 to 1000 elements. The transactional

costs for searching an element that does not exist in the input are shown in Figure 3.7.

gas consumption of Primality Test

0 5Gas consumption of Merge Sort 3 -10
S B S B B

—— Gas Consumption

-1

I I I I I I I T
—5— Gas Consumption

T

5

Gas value
Gas value

6
)
2
4
3.
3
2.9
2
D
1
0

OO 0.10.20.30.40.50.60.70.80.9 1
Prime Numbers .1(%

| | | | | | | | |
0 10 20 30 40 50 60 70 80 90100
Input size

Figure 3.5: Gas Consumption of prime

Figure 3.4: Gas consumption of Merge Sort numbers

3.4.3 Implementation of MUIOC

We have deployed our MUIOC contract in the Ethereum Blockchain and tested it under
different parameters. The first parameter we have varied is the number of providers. We
have varied the number of providers from 10 to 90. The second parameter we have varied
is the number of lazy providers who intend to compute the task. The percentage of lazy

providers varies from 10% to 50%. The third parameter we have varied is the number

93

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Gas consumption of Binary Search

109
GELS Consumption for Non-prime numbers 3.5 ! ! ‘ ! — ‘ ‘
w0 5 —5— Gas Consumption
2.75 ,‘ —— Gas Consumption
27 [25 [
)
2.65
. el
£ 26 ;
%f 255 g 15)
£ 95
B 25 11
2.45
2.4 0.5 N
2.35 0 ! ! ! ! ! ! ! ! !
ggl 0 100200300400 500600 700800900 ,000
0 010203040506 070809 1

Non-Prime Numbers 104 Input size

Figure 3.6: Gas Consumption of non-prime Figure 3.7: Gas Consumption of Binary Search
numbers

of providers selected per round. We have tested our contract for the number of providers
selected per round from 3 to 5. In Table 3.6, we show the cost of transactions sent to the
MUIOC contract. The timer functionality in Figure 3.3 is implemented as compute and
payout functionalities. Private Ethereum Blockchain does not support a large number of
accounts. We have simulated the contract in Java for n=100 to 1000 and showed the honest

providers’ pay in all the above scenarios in Figure 3.8.

94

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Function Deployment | Create Intent Commit Reveal
Costin Gas 2908677 126179 | 150966 | 66576 33838
Costin $ 0.77662 0.0337 | 0.04032 | 0.01778 0.00902

Function Compute Dispute | Payout Compute | Dispute | payout

\3 |gas | 219779 165631 | 131866 (3 |gas | 424140 2483879 | 660366

$ | 0.05869 0.04422 | 0.03522 S | 0.11323 | 06632 | 0.17633

10 | koq 285 | 265589 190749 | 132541 | o [[gas | 471637 2522335 | 661041

$ [0.07092 0.05092 | 0.03538 $ | 0.12592 | 0.67345 | 0.17649

s |_eas | 314773 220080 | 133216 W5 |_gas | 519135 2562952 | 661716

$ [0.08405 0.05877 | 0.03556 $ [0.1386 0.68432 | 0.17667

\3 |_gas | 259300 373656 | 237566 \3 |_gas | 465350 3353794 | 766066

$ | 0.06923 0.09978 | 0.06344 $ | 0.12426 | 0.89546 | 0.20455

as | 306797 703904 | 238241 as | 512847 3378912 | 766741

n=20 | k=4 § 0.08192 010784 [00636 | "0 | k=4 § 0.13692 | 0.90217 | 0.20471

(s |_gas | 355153 121436 | 238916 (s |_gas | 560345 3425172 | 767416

$ [0.09484 0.11251 | 0.06379 $ [0.149 091453 | 0.2049

\3 |_gas | 300510 700721 | 343266 13 |_gas | 506560 4331463 | 871766

$ | 0.08023 0.18709 | 0.09166 $ | 0.13526 | 1.15651 | 0.23277

gas | 348007 733021 | 343941 gas | 554057 1381718 | 872441

n=30 | k=4 =——509202 0.19571 [000182 | "80 | K= 014794 [1.16991 | 023293

\s |_gas | 395505 755170 | 344616 <5 |_gas | 601555 7356671 | 873116

$ [01036 0.20164 | 0.09201 $ | 0.16063 | 1.16324 | 023312

W3 |_gas | 341720 1177093 | 448966 "3 |_gas | 547770 5409704 | 977466

$ [009123 031429 | 0.11988 S | 0.14626 | 1.44439 | 0.26099

gas | 389217 1203750 | 449641 gas | 595267 5440978 | 978141

n=40 | k=4 = 10302 032141 [012006 | "0 | X4 s 0.15895 [145275 [026115

s |_eas | 436715 1238211 | 450316 w5 |_eas | 643609 5497498 | 978816

$ [01166 03306 | 0.12023 $ | 0.17184 | 1.46783 | 026134

\3 |_gas | 382930 1770453 | 554666 (3 |_gas | 584859 6537458 | 1072596

$ | 010223 047272 | 0.1481 S | 0.15617 | 1.74551 | 0.28638

as | 430427 1828016 | 555341 as | 632356 6613876 | 1073271

n=30 | k=4 % 0.11492 048832 | 014827 | "100 | k=4 % 0.16885 | 1.76591 | 0.28657

s | _gas | 478769 1801817 | 556016 s | eas | 679854 6628843 | 1073946

$ [0.12784 048108 | 0.14845 $ | 0.18153 | 1.76989 | 0.28673

Table 3.6: Costs of running MUIOC Contract

95

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Reward for Honest provider When k=3 Reward for Honest provider When k=4
8 T 10 \
Tr 9 7
6l 8 n
R
k) 51 = 6 B {‘L'\ﬂ,lef"”&"'ﬂ}»ﬂ/g\J
24 : 5
L L 5 i
3] O D,,,,,Ef—fEi 5 o B—g = q
2 3+ n . 4r D\E»——B\E\& E}—/E‘EI—ED—;
31 B—B—W]
2 - -
2 [-
1r R 1k i
(1 | | | | | | | | | | | | | | | | |
)0 100200 300400 500 600 700 800 9001,000 100200 300400 500 600 700 800 900L,000
Number of providers Number of providers

Reward for Honest provider When k=5

10 :
9 | -
8- E/E/B‘E'\EF\E—E/E\E"E
T s a8 E/B\g/&”ﬂf—fﬂ\f
g 6 :
z 5 |
é 41 = B e & 8 85 o |
3 B—F—g B B/H\?—/B\E
—8—f&fF—Ff—5 B5—8—5—5F—%
2 | =
1 | -

| | L . L ‘

1
100200 300400 500 600 700 800 900L,000

Number of providers

—8-10% Lazy —8-20% Lazy —5-30% Lazy 5-40% Lazy —8-50% Lazy

Figure 3.8: Reward for honest cloud provider in different scenarios. The reward for the
computation is set as 10 Ethers, which is shared by all the honest providers.

96

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

3.5 Summary

Blockchains and smart contracts provide new solutions to the problems which are thought
as hard to solve. One such issue is achieving fair payments for verifiable computations
without a trusted intermediary. We have designed fair payment protocols using smart con-
tracts for two types of verifiable computations: (1) Proof-based verifiable computation and
(2) Replication-based verifiable computation. Our experiments show that in fair proof-
based verifiable computation, the overhead of using a smart contract is minimal when both
the user and the provider are honest. We have achieved fairness in replication-based verifi-
able computation by imposing fines on cheating providers and offering bounties to honest
providers. We have shown that monetized penalties are an efficient way to deter cheating
providers. We ran experiments for both types of verifiable computations and presented the
transactional and financial costs of interacting with smart contracts. Our work could serve
as a founding stone to future works that can design more robust, secure smart contracts
for fair verifiable computations with fewer rounds of interactions. However, our protocols
do not provide privacy to the output. One area of future work will mainly focus on the
development of fair protocols for verifiable computations using smart contracts which will

also provide privacy of the inputs and outputs of an outsourced problem.

97

Chapter 4

Fair Payment Protocols for Mobile
Crowdsensing under

Platform-as-a-Service

A typical mobile crowdsensing data marketplace consists of a cloud provider, an aggre-
gation platform / aggregator to publish sensing tasks and many cloud users with mobile
devices. The cloud provider sends sensing tasks to the platform, which then publishes the
task. If a cloud user is interested in the task, he can participate in it, expecting incentives
to his data contribution. However, the cloud provider does not know the cloud users in
advance and may not be confident about the generated data by users due to differences
in cloud users age groups, smart-phone / watch capabilities etc. In this case, aggregated
statistics like sum, min, max, standard deviation, and variance about the aggregated data
collected from all the cloud users help the cloud provider know the dataset’s dispersion.
The aggregation platform generates aggregated statistics. Nevertheless, the cloud users do
not trust a cloud provider / aggregation platform and may not be willing to send the data for
computing statistics without proper incentives. Motivated by this challenge in this Chapter,
we design two protocols that compute aggregated statistics on private data. After knowing
the statistics, if the cloud provider is interested in buying, the data is revealed only after

being correctly paid to cloud users. The contributions of this Chapter are as follows:

98

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

(a) We propose two novel protocols to facilitate fair payments for monetizing mobile
crowdsensing data. As a first protocol, we show a naive protocol requiring a trusted
key dealer to establish encryption keys. As a second protocol, we design a more ro-
bust and trusted key dealer free system. We design a new key establishment protocol
using a smart contract as a communication channel that does not require a trusted
key dealer. We also design a new incentivization model that pays a cloud user based
on the quality of the data and impose penalties on the cloud users who do not follow

the intended protocol.

(b) We have implemented the proposed smart contracts using Solidity [24] and tested
the smart contracts for the MotionSense dataset [188]. We have also presented the

transactional and financial costs of interacting with smart contracts.

4.1 Privacy-preserving aggregation

Definition 4.1.1. A privacy-preserving aggregation model consists of a set of three algo-

rithms [189]:

(a) Setup(1) — (N, H,{skcv, }cv.ccu, ska): It is run by a trusted key dealer T P. He
chooses two safe primes q, and qs and computes N = q, x qo. He also chooses a
hash function H : 7. — Z,. TP sets the public parameters as Py, = (N, H), and
distributes to each cloud user CU; € CU a secret key skcy, € [0, N?] and sends

ska = —)1_, skcy, to the untrusted aggregator A where n = |CU|.

(b) Encrypt(P,L, skcu,, xcu, 1) — Ceu,t @ At a time period t, each cloud user CU;

encrypts his private input ¢y, + using the secret key skcy, and outputs

Cov,i = (14 zoy, N) - H(t)* Vi mod N>

(c) Aggregate(Pyr, ska,Couyty ..., Cou,p) — sumy =Y o e, - Up on receiving

99

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Ccu, + from every cloud user, the untrusted aggregator computes
H Cov, +H (1) mod N*

P—1
N

sum; =

The correctness of the algorithms is as follows

n

H CC’U tH 8kA = H(l —+ $CU1.7,5N)

i=1

+ (X" o, mod N)N (mod N?)
i=1
IfF >0 xcuy < N, then sumy = 2L = 37" 2oy, . One may refer to [189] for the

proof of aggregator obliviousness.
Definition 4.1.2. A fair data aggregation protocol must provide the following guarantees:

(a) Aggregator obliviousness:The protocol is aggregator obliviousness if the aggregator

learns nothing about cloud users’ private data except the aggregated statistics.

(b) Aggregator unforgeability : The protocol is said to be aggregator unforgeable if
aggregation operation solely depends on the inputs of the cloud users and no other

party can influence the result of the aggregation operation.

(c¢) Fair payments: The protocol is said to be financially fair if (1) the cloud users receive

the payments for their data contribution and (2) the cloud provider receives the data

4.1.1 Entities

A Blockchain-based framework for privacy-preserving aggregation of mobile crowdsens-

ing data has the following entities:

(a) Mobile device (M B;): A mobile device consists of m sensors M = (S}, Sy, ..., Sy

'Each sensor may produce more than one value. For example, an accelerometer produces x-axis, y-axis
and z-axis values.

100

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

At each specific interval of time [t,, t.|, a mobile device M B; produces a set of data

points Yeu, it t.]-

Sl 5'2 Sm

s |Yis Y25 Ym.s

YCUi,[ts,te] = : : :
te|Yie Yoo Ymie

Each data point y € Yy, 1, ,.] 1S @ sensor reading containing sensitive information

of a cloud user. From now onwards we represent the time [¢,, t.] with ¢.

(b) Cloud users (CU;): A cloud user collects data from the mobile device M B; and gen-
erates a vector Xcp, s = [D 5o Ytis - D5 Ym.i) - To protect the confidentiality of
every value in Xy, + against the eavesdroppers, C'U; encrypts every value in Xy, ¢+
using a secret key skcy, and sends the resulting cipher text vector Ccy, ; to the smart

contract’.

(c) Cloud provider (C'P): A cloud provider C'P creates and deploys the smart contract
on a public Blockchain network. It will distribute an amount of $p to all the cloud

users if the data delivered generates desired aggregated statistics.

(d) Smart contract: A smart contract acts as an aggregation platform, which computes

the aggregated statistics on receipt of C¢y, , from every cloud user.

(e) Blockchain Network(BC'): A Blockchain network is maintained by a set of peers
known as miners who execute the smart contract according to an underlying consen-

sus algorithm.

(f) Inter-planetary file system (/ PF'S): As storing large amounts of data in smart
contract incurs a high financial cost, we use a distributed storage network [PFS
to store Yy, +, and X¢p, 4 1s sent to the smart contract for computing aggregated

statistics. The I PF'S network returns the hash of the data stored as a URL.

%In this Chapter, we consider sum as the aggregation operation, and hence the cloud user need not send
the entire data points.

3Even though Xcu, ¢ consists of accumulated values, it can still reveal some private information about
the cloud user, and hence encryption is required.

101

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

4.2 A naive trusted party based fair payment protocol for
privacy-preserving aggregation of mobile crowdsens-

ing data (Fair NaivePPA)

In this section, we design a naive protocol to facilitate fair payments for privacy-preserving
aggregation of mobile crowdsensing data where the aggregator services are modeled as a

smart contract deployed on a public Blockchain network.

4.2.1 FairNaivePPA contract clauses

The FairNaivePPA is a crowdsourcing contract signed between a cloud provider C' P
and a set of cloud users C'U. The high-level idea is that if C'P and every CU; € CU are

honest, then C' P will get the sensing data and every C'U; € C'U gets a pre-agreed payment.

The clauses in the Fair Naive PP A contract are as follows:

(1) A cloud provider C'P creates a smart contract F'air Naive PP A for monetiz-
ing mobile sensing data where the aggregate algorithm from Definition 4.1.1 is
modeled as one of the contract’s functionalities. C'P deploys the smart contract
on a public Blockchain network and publishes the contract address on a public
platform (like a website / bulletin board).

(ii) All parties agree on timing parameters 7; < 7. < 7, < 7, < 7, and a pay $p,
distributed to cloud users for their data contribution.

(iii) As a condition, a cloud user C'U; who wishes to participate in the sensing task
must pay a deposit of $d before 7;. The safe deposit is required to ensure the
cloud user participation until the end of the protocol. Let listoy be the set of
users who have shown intent to contribute data. If listcyy = 0, then $p is re-
funded, and the contract is terminated.

(iv) After 7 > 7;, atrusted key dealer 7' P generates a set {skcy, ..., skcuey,s skcp}

of |CU|+1 keys such that Z'li[l” skcu, + skcp = 0. TP sends a key skoy, to

102

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

v)

(vi)

(vii)

(viii)

every C'U; € C'U and also sk¢p to C'P through a secure channel.

Every CU; € CU generates data Yy, ; containing m attributes according to
the C'P’s specification. The data is encrypted with a self-generated symmetric
key, and the encrypted data is stored at /PF'S. The data is also aggregated,
and the aggregated data is encrypted with the key received from 7'P. Encrypted
aggregated data and / PF'S URL are sent to the contract before 7 < 7.. If any
CU; € CU fails to send the encrypted data before 7., then the C'U;’s deposit
is forfeited. The forfeited deposit is distributed to all other cloud users equally
along with their deposits. $p is refunded to C'P, and the contract is terminated.
If no CU; has sent the encrypted data, all deposits and $p are sent to C'P, and
the contract is terminated.

After 7 > 7., C'P sends the key skcp to the smart contract. The contract
performs the aggregation operation on the encrypted data and generates aggre-
gated statistics. If C'P fails to send the key before 7,, $p is distributed to every
CU; € CU along with their deposits, and the contract is terminated.

After learning the aggregated statistics of the data, if C'P is willing to buy the
data, it should send its willingness to the contract before 7,. Otherwise, $p is
refunded to C'P, deposits are refunded to cloud users, and the contract is termi-
nated.

If CP is willing to buy the data, then every CU; € C'U should reveal the skqy,
before 7,. The contract will distribute $p to every C'U; along with their deposit
$d. If any CU; fails to reveal the key” before 7,, then their deposit is forfeited.
The deposits and the pay shares of forfeited cloud users are sent to C' P. C'P after
learning sk¢y, can decrypt the encrypted url and obtain the encrypted data. The

encrypted data can be decrypted with the respective self-generated symmetric

key KCUi,CP-

“As shown in Figure 4.1 the actual key is not revealed. But, to simplify the high-level description,
we assume that the key is revealed.

103

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

4.2.2 FairNaiveP P A Protocol

Fair Naive PP A protocol is presented in Figure 4.1. Fair NaivePPA smart contract
functionalities executed by Blockchain are presented as Algorithms 4.1 to 4.6. C'P pub-
lishes the details of the sensing task and timing parameters 7;, 7., T4, Ty, 7, at a public
platform. It sends all these parameters along with $p to BC invoking Algorithm 4.1. Algo-
rithm 4.1 stores the provider’s pay and sets the state as Infent. Interested users show intent
by sending deposits to BC' invoking Algorithm 4.2. Algorithm 4.2 stores the deposit sent
by a user and adds the user to a list and then increments the user count. The intended users
have to generate the data according to the given specifications, and the aggregated data has
to be sent to BC' invoking Algorithm 4.3. Algorithm 4.3 stores the commitment sent by a

cloud user. Depending on the behavior of the users, there are three cases as follows:

Case 1: All the intended users have committed the data. In this case, the provider has to
send the secret key to initiate the computation of aggregated statistics. Depending on the

behavior of the provider, there are two cases as follows:

Case 1.1: The provider has sent the secret key invoking Algorithm 4.4. In this case,
the Algorithm 4.4 computes the aggregated statistics. Depending on the behavior of

the provider, there are two cases as follows:

Case 1.1.1: After learning the aggregated statistics, the provider is willing to buy.
In this case, the provider will send a transaction invoking Algorithm 4.5 which
sets the state as Reveal. The users have to reveal the data to get the payment and
their deposits by invoking Algorithm 4.6. After revealing the data by an user,
Algorithm 4.6 add that user to a list of honest users and sets the state as Buy.
The deposits and the aborted users’ pay shares are sent to the provider, and the
contract is terminated. At the end of the protocol, C'P retrieves the dataset Yy, +
of every cloud user in the following way:

After obtaining C'K ¢y, from every CU; € CU, C' P computes

SkCUl - DECKCUi,CP (CKCU1>

104

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

url = DEC’SkCUi (Curt)

obtains C'Y¢y, , from [PF'S network using url
You,i = DEC e, (CYou, 1)

You,p = DECKCUZ-,CP (YCUM)

Case 1.1.2: After learning the aggregated statistics, the provider is not willing to
buy. In this case, the payment is refunded to the provider. The deposits of the

users are also refunded, and the contract is terminated.

Case 1.2 The provider has failed to send the secret key. In this case, the pay is equally

distributed to the users along with their deposits, and the contract is terminated.

Case 2: Only a subset of the intended users have committed the data. In this case, the
aborted users’ deposits are equally shared among the committed users, along with their

deposits. Pay is refunded to the provider, and the contract is terminated.

Case 3: None of the intended users has committed the data. All the deposits of the users

and the pay are sent to the provider, and the contract is terminated.

FairnaivePPA protocol

For trusted key dealer T'P
1. To generate and send encryption keys
(a) Choose two safe primes ¢; and g and compute N = q1 * go.
(b) Choose a hash function H : Z — Z}, and set the public parameters as param =
(N, H,Gg, g) where g is a generator of group G, with prime order g.
(c) Send asecret key skop, € [0, N?] to every user CU; € CU through a secure channel.
(d) Send skcp to the cloud provider C'P through a secure channel such that
leillﬂ skcu, + skcep = 0.
For a cloud provider C'P
2. To create a sensing task
(a) Choose a random number rcp € Zq and compute pkcp = g"°F
(b) Send transgf;te = (pkcp, $Spay, i, Te, Tas Ty, Tr) to BC.
3. To initiate the computation of aggregation statistics, send transg;;re gate = (skcp) to BC
4. To buy the data send transbc;f; to BC
For a cloud user CU
5. To participate in the sensing task
(a) Choose a random number rcy, € Z4 and compute a pkcy, = g"°Vi.

105

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

(b) Send trans{ '’ . = (pkcu,, $d) to BC.
6. To send the encrypted data
e e
(@) Encrypt Xcu, ¢ = [D s Yliis -+ D ims Ymii] @S
Cov, e = [(14+ 5 y1,i % N) - H(£)* Ui mod N2, ..., (14+ 3 ym,i ¥ N) - H(t)**CUi mod N2]
(b) Encrypt Yoy, ¢ with shared symmetric key Kcvy,,cp = kaSDU = perP = ¢"CUi"CP guch that
CYcu, + = Encskey. (Bnckey. op(You,,t)) and send CYoy, 1 to IPFS and obtain url.
(c) Encrypt url with skcy, such that Cypp = Encskcui (url). Compute CKcy, = EnCKC’U,L,CP(SkCUi)
and ctcy, = comm(CKcy,, s) where s is randomly chosen.
(@ Send transC"i . =(Cou, i, Curis ctew,;) to BC.
7. To reveal the data send transregeal (CKcuy,, s) to BC
For Blockchain BC: set state < Init, listcy < {}, listeo < {}, listpo < {}., m < 0, $p < 0,
$deposit + 0

o . CP . .
8. On receiving transg . ,. execute Fair Naive PP A.cretae(pkcp, $pay, Ti, ey Tay Toy Tr)
9. On receiving trans

CU: execute FairNaivePPA.intent(pkcu,, $d)
10. On receiving transg;lfnmit execute Fair NaivePPA.commit(Ccu, 1, Curi, Ctou,)
11. On receiving trans execute Fair Naive PP A.aggregate(skcp)

aggregate
12. On receiving transgf; execute Fair Naive PP A.buy()
13. On receiving trans®": execute Fair NaivePPA.reveal(CKcuy,, 5)
Timer
If 7 > 7; and |list.,|= 0 and state = Intent then
set ledger[C'P] < ledger[C'P] + $p and state < Aborted
If 7 > 7; and |liste,|# O then set state < Commit
If 7 > 7. and |list.,|= O then
set ledger[C'P] < ledger[C'P] + $p + $deposit and state <— Aborted
If 7 > 7. and |listeo|# |liste,| then
set ledger[C P] < ledger[C'P] + $p
YV CU; € liste, setledger|CU;] < ledger|CU;) + $‘Cllfg:1t
set state <— Aborted
If 7 > 7. and |list.,|= |liste,| then set state < Aggregate
If 7 > 7, and state = Aggregate then
VCU; € list,, setledger|CU;] < ledger|CU;] + \lzs —+ $ﬁllesz;2izlt
set state <— Aborted
If 7 > 7, and state = Buy then
set ledger[C P] < ledger[C'P] + $p
VCU; € listey set ledger[CU;] + ledger[CU;] + Sickestt
set state < Aborted
If 7 > 7, and state = Reveal and |listp,|= 0 then
set ledger[C P] < ledger[C'P] + $p + $deposit and state <— Aborted
If 7 > 7, and state = Reveal and |listp,|# O then

VYCU; € listy, setledger|CU;| + ledger[CU;] + |l15 Cu‘ | Sdeposit

[listeq]

set ledger(CP] ledger[CP] + pfy + ([listeu|=[listhol) + FEEET +
([listew|—|listrol)

set state < Terminated

Figure 4.1: Fair Naive P P A protocol

106

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Algorithm 4.1 Fair NaiveP P A.create

Input: pkcp, $pay, 7, Te, Ta, To, Tr
Output: Success or Failure message
1: if state = Init then

2 ifr <71, <7.<71, <7 <7 then

3 if ledger[C'P] > $pay then

4: set ledger[C P] «+ ledger[C'P] — ($pay);
5: set $p + $pay;

6: set state <+ Intent;

7 return (Success, Task created)

8

else
9: return (Failure, Balance is low)
10: else
11: return (Failure, Bad timing parameters)
12: else
13: return (Failure, State is not Init)

Algorithm 4.2 Fair NaiveP P A.intent

Input: pkcy,, $d

Output: Success or Failure message

1: if state = Intent then

2 if 7 < 7; then

3 if ledger[CU;] > $d then

4 if (CU;, %) ¢ CU then

5: set ledger|CU;] < ledger|CU;] — $d
6: set $deposit + $deposit + $d

7 set listoy < listoy U (CU;, pkeu,)
8 setn < n+1

9: return (Success, Intent success)
10: else
11: return (Failure, Duplicate user)
12: else
13: return (Failure, Balance is low)
14: else
15: return (Failure, Intent timeout)
16: else
17: return (Failure, State is not Intent)

107

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Algorithm 4.3 Fair Naive PP A.commit

Input: Ccy, 1, Curts cteu,
Output: Success or Failure message

1: if state = Commit then
2 if 7 < 7. then
3 if (CU;, *) € listoy then
4 if (CUj;, *, *, %) ¢ commitments then
5: set commitments < commitments U (CU;, Ccu, ¢, Curi, ctcu,)
6 return (Success, Commit success)
7 else
8 return (Failure, Duplicate commitment)
9: else
10: return (Failure, Wrong user)
11: else
12: return (Failure, Commit timeout)
13: else
14: return (Failure, State is not Commit)

Algorithm 4.4 Fair Naive PP A.aggregate

Input: skcop
Output: Success or Failure message

1: if state = Aggregate then

2: if 7 <7, then

3: set P, < m5ev Oy H(t)*%eP mod N2 Vj < 1tom
4: set sum; 4 < Pj'l’(l Vj <« ltom

5: set state < Buy

6: return (Success, Aggregate success)

7: else

8: return (Failure, Aggregate timeout)

9: else
10: return (Failure, State is not Aggregate)

Algorithm 4.5 Fair NaiveP P A.buy

Input: ¢
Output: Success or Failure message
if state = Buy then
if 7 < 7, then
set state + Reveal
return (Success, Buy success)
else
return (Failure, Buy timeout)
else
return (Failure, State is not Buy)

e AR ol ey

108

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Algorithm 4.6 Fair Naive PPA.Reveal

Input: CKcy,, s
Output: Success or Failure message

1: if state = Reveal then
2 if 7 < 7, then
3 if ctoy, = comm(CKey,, s) then
4. set honest < honest U CU;
5: set state < Buy
6: return (Success, Reveal success)
7 else
8: return (Failure, Wrong commitment)
9: else
10: return (Failure, Reveal timeout)
11: else
12: return (Failure, State is not Reveal)

4.2.3 Limitations of Fair NaivePPA

(a) Trusted party 7'P: We have assumed a trusted party to generate and distribute the

(b)

secret keys securely. However, using a T'P comes with a cost, and 7'P may not
guarantee to behave honestly every time (key escrow problem). Distributed key gen-
eration techniques are used to eliminate 7'P for a key generation. However, these
techniques involve generating a single private key that can be computed from shares
of all the cloud users increasing the communication cost. Recently, Schindler et al.
[190] establish a secret key using a smart contract as a communication channel. In
the next section, we employ a lighter key establishment protocol similar to [190] to

establish secret keys using smart contracts.

All or nobody: We have assumed that either all the cloud users or no cloud user who
have shown intent to share data will call the commit functionality. In the real world,
a malicious cloud user may abort the protocol after showing intent or a cloud user
may experience communication problems with the smart contract and may not call
the commit functionality. The protocol fails even if one of the cloud users refuses to
commit after showing intent. Although the contract imposes monetary penalties on
aborting, a malicious cloud user who aborts intentionally causes the entire protocol

to be aborted.

109

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

(c)

(d)

(e)

Quality of the data: The incentive model in Fair Naive PP A is static, i.e., if all
the cloud users reveal their secret key, then every cloud user will get equal pay. In
this model, there is no choice for the cloud provider to pay according to the quality
of data. The incentive model will be more meaningful if the cloud provider can pay

according to some payment mechanism based on the data quality.

Robustness: After intent phase, the number of cloud users participating in the pro-
tocol is fixed. The smart contract will compute aggregated statistics correctly only
if all the cloud users commit their data. In the next section, we show that the smart
contract computes aggregated statistics even if some cloud users abort the protocol

prematurely.

Copy and Paste Attack: As communications with the smart contract are not through
secure channels, protocols interacting with public Blockchain networks suffer from
inherent copy and paste attack. A lazy cloud user C'U; will listen to the interactions
between an honest cloud user CU; and smart contract. Then, C'U; copies C'U;’s in-
teractions and submit it to the smart contract without actually performing the sensing
task. One way to avoid this attack is by using the commit and reveal technique where
the commitment of the key is generated using a well-known commitment method
like Pedersen commitment [186]. If two cloud users submit the same commitment,
then smart contract rejects the second commitment and asks to recompute the com-
mitment with different parameters. In the reveal phase, the commitment is revealed
along with the parameters used to generate the commitment. For the sake of simplic-

ity, we are not considering this attack in our protocol.

110

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

4.3 A trusted party free fair payment protocol for privacy-

preserving aggregation of mobile crowdsensing data

(FairPPA)

In this section, our first objective is to eliminate the trusted party 7'P for key generation.
We propose a new smart-contract based key generation algorithm in which every cloud user
generates encryption keys non-interactively without using the 7'P. The second objective is
adding robustness. Even if some cloud users abort during the protocol execution, the smart
contract should compute the correct aggregated statistics. The cloud users are allowed to
abort during different phases, and still, our smart contract can compute the aggregated re-
sult. However, this increases the number of interactions between cloud users and the smart
contract. The third objective is to design a payment mechanism that will pay according to
the quality of data produced by the cloud users. In this protocol, we use a truth-finding al-
gorithm and compute weights according to the ground truth and pay a cloud user based on
the computed weight. The fourth objective is to introduce fairness through a robust dispute

resolution mechanism.

4.3.1 Smart contract based key generation

We use the smart contract as a communication channel for generating keys non-interactively
without a T'P. The algorithm for key generation is presented in Algorithm 4.7. The algo-
rithm takes the list of cloud users CU; € list,, obtained from the Fair PPA contract
and two values 7, ry given by C'P during task creation. These values will change for ev-
ery new sensing task. The algorithm also takes [as input: the expected number of cloud
users to be selected as buddies during the key generation. The algorithm outputs a list
of buddies and a list of keys established with each buddy. Every CU; € listy, computes
the encryption key as a sum of all the keys established with every buddy. Clearly, if C'U;
selected C'U; as a buddy, then dkeycu, cu; — dkeycu,;,cu, = 0. Both of them will add
the same value to their encryption key such that one of them adds positive value, and

the other will add a negative value. This property cancels out the encryption keys during

111

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

the aggregation operation. If any C'U; € list,, aborts after showing intent, then a new

list of buddies and new encryption keys must be generated according to the new [isty,.

Algorithm 4.7 Fair PPA.keygen
Input: list.,,r1,72,1
Output: Z'ndCUi,SkCUi
1: foreach CU; € listq, — CU; do
2 Kcu, cu; + (pkcu,) v = (PkCU)
3 if PRF(KCU;,,CU]' s 7'1) then
4. add CU; to indcy,
5:
6
7

rcu; rCcu,;TCU;

=g
\llst ol—
foreach CU; ¢ deU do

dkeycu, cu, < 1= * PRF(Kcu, cu,,T2)
skcu, < skcu, + dkeycu,.cu;

4.3.2 Truth Discovery Algorithm (TDA)

As the quality of different cloud users’ data typically varies, it is sensible to pay more to the
users who sense the quality data. However, the data quality is unknown a priori. Therefore,
truth discovery algorithm (TDA) is used to find weights and estimate the ground truths.
Many TDA algorithms [191, 192, 193] are presented in the literature, and their common
procedure is summarized in Algorithm 4.8. The algorithm starts with a random ground-
truth value and has mainly two steps: weight calculation and truth estimation. During
weight calculation, the ground truth is assumed to be constant, and the weight wc¢y, of each

user C'U; € listy,, is calculated as

Wey, = w Z d(zCY x*) 4.1)

ME(S1,...,5n)

Where d(-) denotes the function that computes the distance between the user’s data ¢V |

and the estimated ground truth z* . w(-) is some monotonically decreasing function. The
d(-) and w(-) functions vary with respect to different TDAs. In truth estimation step, the
users’ weights are assumed to be fixed, and the estimated ground truth z, of each sensor

m € (81, ..., S is derived as
x _ ZCUielz‘sthO (wew, * %CnU)

4.2)
ZCUiEZiSthO wCUi

112

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Clearly, the ground truth 2z relies more on the user values with higher weights. The

converge criteria is application-specific.

Algorithm 4.8 FairPPATDA
Input: Cloud users’ data {XSYi|m € (s1, ..., 8m), CU; € listp, }
Output: Estimated ground truth {z,|m € (s1, ..., $m)}, weights W = {wcy, |CU; € listpo}, 7
Randomly initialize the ground truth for a sensing task
repeat
for CU; € listy, do
update the weight woy, based on the current estimated ground truths using Equation 4.1

for m € (s1,...,8,,) do
Update the estimated ground truth =, based on cloud users’ current weights using Equation 4.2

AR ol e

until Convergence criterion is satisfied

We do not focus on designing new d(-) and w(-) functions; instead, we use simple
existing functions and design a payment mechanism based on the weights obtained from
the TDA. However, directly modeling Algorithm 4.8 as a smart contract is not feasible
due to costs involved and may lead to verifier’s dilemma [97]. In our protocol, the cloud
provider computes the weights and ground truth off-line and sends the weights to the smart
contract along with proof of correctness () of executing TDA. We use the inner state hash
(ISH) [129] to compute the proof-of-correctness. Assuming that the TDA algorithm is
composed of a finite number of atomic operations and each atomic operation takes some
state information as input and produces another state information as output. The inner state
of an algorithm is defined as the concatenation of all the input and output states of the
atomic operations of an algorithm, and the definition of the algorithm in terms of atomic
operations. An [-bit hash function takes an inner state of an algorithm as input and maps
it into an I-bit random string called as inner state hash. ISH helps in detecting the cheating
behavior accurately as the slightest deviation from the correct computation can be detected

accurately.

4.3.3 Payment Mechanism

The payment mechanism described in Algorithm 4.9 takes the weights calculated in Algo-
rithm 4.8 as input. It produces the amount of pay to be received by each cloud user who

followed the protocol honestly.

113

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Algorithm 4.9 Fair PP A.payment
Input: Weights W = {wcy, |CU; € listp,}, pay $p
Output: payment for each cloud user {$pcy, |CU; € listp,
1: foreach C'U; € listy, do

. _ wcu,
2. Z)C‘[]7 <— [(M) * 100:|

3: $Spcu, {ﬁcw * (let?l;ﬁcu }

4.3.4 Dispute Resolution Mechanism (DRM)

Dispute resolution mechanism is discussed in Algorithm 4.10 and Algorithm 4.11. It is
executed when a C'P miscalculates weights, and a cloud user challenges these incorrect
weights. To resolve the dispute, we adopt a byzantine voting mechanism such that when
a dispute is raised, every C'U; € listy, runs Algorithm 4.8 locally and returns results to
Fair PPA contract. Algorithm 4.10 compares the weights sent by data verifiers with the
weights sent by both cloud provider and challenger. Algorithm 4.10 rewards or penalizes
cloud users, data verifiers and cloud provider according to the results of the comparison.
Algorithm 4.11 is invoked when there is no consensus among the data verifiers. Algorithm
4.11 computes the weights and compares the weights with weight returned by verifiers,
provider and challenger. It rewards or penalizes the users, verifiers, provider and chal-
lenger according to the comparison results. If both the cloud provider and the challenger
are malicious, $ fcp, $ /¢ are added to corpus. As executing T'D A using smart contracts is
costly, the corpus fund is used to compensate the party calling 7D A smart contract func-

tionality.

114

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Algorithm 4.10 FairPPA.DRM

Input: WP and 7¢F, W€ and 7€, VCU,, € listy, (WCYUr xCU%), minDuv, th, $p, $deposit,,
$depositay, $fcp, $fc, listho, listma, listy,

Output: ¢

1: if |listp,|> minDuv then

2 foreach C'U,, € listy, do

3 if WCUr = WOP A 7CUx — zCP then
4. vop — vep +1

5: else
6.
7

8

9

if WOUk = WCE A nCUr = 7€ then
ve <—ve+1
if vop Z th then
VCU; € listy, set $poy, <+ PM (WP $p)

10: VCU; € listy, setledger[CU;| + ledger[CU;] + m% + $pcu,
11: VCU}, € listp, setledger[CUy] < ledger[CU] + $dﬁf’8‘;ilfl‘“ + ”ii’;cw‘

12: Set ledger[C P] + ledger|C'P] + \liﬁ(;:ﬁ% * (|listmal) + $fcp

13: else

14: if v > th then

15: YOU; € listy, set $pcy, + PM(WEC, $p)

16: VCU; € listy, set ledger|CU;] + ledger|CU;) + Wﬁ%m + $pcu,
17: VCUy, € listy, setledger[CUy] < ledger[CUk] + $dﬁf£ff‘” + ﬁéff;‘
18: Set ledger|C P < ledger[CP] + % ([listial)

19: Set ledger[C] < ledger|C] + $ fc

20: else

21: Run FairPPA.DRM2(WCF 7CP WC =€ VYCU,, € listy, (WCUr nCUk))
22: else

23: Run FairPPA.DRM2(WCP 7P WC € YOUy € listy, (WCUr 7CUk))
24: Set State < Terminated

115

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Algorithm 4.11 Fair PPA.DRM?2

Input: WP and 77, W€ and 7€, VCUj, € listy, (WCUk 7CUr)
Qutput: ¢

Compute (W€, 75¢) « TDA(
Compute $pcy, + PM(WSC, $p)

VCU; € listp, setledger|CU;| < ledger[CU;] + ”Zjdepoisi?d"l + $pcu,

thol+|listma

Set ledger|C P < ledger[CP] + % * (|listmal)
if WCP = WS and 7¢°F = 75€ then

set ledger|C P] « ledger[CP] + $fcp
else

if W€ = WSC and ¢ = 75¢ then
9: Set ledger[C] « ledger|C] + $fc
10: else
11: Set $corpus < $fop + $fc
12: foreach CU,, € listy, do
13: i WOUr = WSC and 7¢Ur = 75¢ then
14: set listppy < listpp, U CUL
15: foreach CUy, € listy,,, do
16: set ledger[CUy| < ledger|CUy| + Sdepositen

[listnnol

(81, -y 8m), CU; € listp,)

°°\‘°\U"'> W

4.3.5 FairPPA contract clauses

The proposed system has four key entities: cloud provider, cloud user, verifiers and miners
(Blockchain nodes) -see also Figure 5.3. The system consists of three phases: (1) Task
creation phase (TCP) (2) Spawn and sensing phase (SSP) and (3) Data sharing and reward
distribution phase (DRP).

! 14 2 Encrypted
1 1 Deploy SC—> ; 8. Aggregated |, data
' tatisti
(‘1 2 SC Address— ! 2 Verly statistics 141 URL
- eri e 9. Buy—
2 Sensing Task-> £ SC details 73 Encrypted i loid prowder
Cloud provider £ L data s 11 uallty report
| % 4. Intent / 74 URL s 2 10 Reveal IPFS
1.38C Address ‘_g ' 8 + 5 List_ 19 \
O Q0 <« 6.Spawn \A i 121 Dlspute | 12.2 data
O I;I : |:| 1.5E o t d 1Sense~)' 13. P
nerypte ay CIoud user
m |:| v aggregated o, 7 2 Data M Verifiers
: data& URL 'oud user Smart; 12.3 Quality report
Cloud user Phone
Task Creation Phase Spawn and Sensing Phase Data Sharing and reward Distribution Phase

Figure 4.2: Overview of the proposed F'air PP A protocol

116

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

The clauses in Fair PP A contract are as follows:
Task creation phase (TCP)

(1) A cloud provider C'P designs, develops and deploys a smart contract Flair PPA
in a public Blockchain network and publish the contract address on a public
platform (like a website / bulletin board).

(i) C'P initiates the F'air P P A with necessary parameters to which every participant
has to adhere. He also initializes it with a pay $p distributed to the cloud users
for participating in the sensing task.

Spawn and sensing phase (SSP)

(iii) A cloud user C'U; verifies the contract and task details with the publicly available
contract address.

(iv) To participate in the sensing task, a C'U; has to send an intent message to F'air PP A
along with safety deposit $dcp,. The safe deposit $dcy, is required to avoid
abrupt aborts of the cloud users during the protocol. If no C'U; has shown the
intent, $p is refunded to C'P, and the contract is terminated.

(v) FairPPA contract randomly categorizes every C'U; into one of the two sets
listy, and listg,. The first set computes the task, and the second set is assigned
as verifiers during dispute resolution. Every cloud user receives list,, and listy,
by querying the Fair PPA.

(vi) After receiving listq,, every CU; € listy, generates a list of buddies indcy,
using list4, and pseudo-random function. Each C'U; computes a value skcy; for
every CU; € indcy,. The encryption key is computed as
skoy, = ZCUj cindou, skcu,. The CU; who sends the buddies list indcy, to
FairPPA is added to lists,. If no C'U; has sent the buddies list, then all the
deposits of cloud users, and $p are sent to C'P. The deposits of VCU, € listg,
are refunded and the contract is terminated. If any C'U; fails to send the buddies
list, then that C'U; is removed from listg,. lists, is set as empty, and a new
indcy, s requested until all the cloud users in list,, have sent the buddies list.

Ut

(vii) Bvery CU; € list, generates data Y,CVs! according to the cloud provider’s spec-

117

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

ification and stores the encrypted Y,¢Vi! in IPFS. Aggregates Y,CVit in to XU
and encrypts it with a key generated in the previous step and sends the encrypted
data to Fair PPA, which will add CU; to list.. If any CU; € list,, fails to
send the encrypted data, then he is removed from listy,. listy, list., are set as
empty. A new indcy, is requested until all the cloud users in list,, have sent the
buddies list and also sent the encrypted data. If no C'U; has sent the encrypted
data, all the deposits of CU; € listg, U listy, along with $p are sent to C'P. The

contract is terminated after refunding deposits to every CUy € listy,.

Data sharing phase (DSP)

(viii)

(ix)

(x)

(x1)

(xi1)

The smart contract performs the aggregation operation on the encrypted data and

generates aggregated statistics.

C'P after learning the aggregated statistics of the data, if he is interested in buy-

ing the data, he will send a buy transaction to Fair PP A along with a deposit

$fcp. This deposit is required to ensure honest behavior of C'P during dis-

pute resolution. If C'P is not interested in buying, then he will not send any

further transactions. $p is refunded to C'P, and the deposits of CU; € list,,

and CU, € listg, are refunded, and the contract is terminated. The cloud users

aborted during the SSP phase get a pay of $0 and their deposits are distributed

equally to CU; € list,,.

Every CU; € list,, reveals the IPFS address of the Y,¢Vi through Fair PPA,

which adds C'U; to listy,.

C P runs a truth discovery algorithm (TDA) to find weights WP = {w¢y,|CU; €
list.,} and sends WCT along with proof-of-correctness of the computation 7%
to FairPPA. If CP fails to send W then a dispute resolution mechanism is
initiated.

The cloud users who do not have trust on C'P may optionally run TDA locally,
and if found that C'P has not computed the weights correctly sends a challenge
request to Fair PP A along with a deposit $f. and new weights W° and new

proof €.

118

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

(xiii) If no challenge is raised then the Fair PPA will distribute the pay to every
CU; € listy, according to WP, The cloud users aborted during the SSP and
DSP phases get a pay of $0 and their deposits are sent to C'P. $ fcop is refunded
to C'P. If any cloud user raises a dispute, then a dispute resolution mechanism
(DRM) is initiated.

(xiv) C'P after learning skpo,, retrieves the encrypted data from IPFS and decrypts it

locally to obtain Y,CUi:t

4.3.6 Fair PPA contract phases
4.3.6.1 Task creation phase

Before creating a task, C'P designs, develops and sends a smart contract Flair PPA to
a public Blockchain network. The Blockchain network deploys Fair PP A according to
standard contract mining process and returns contract address. C'P chooses two safe
primes ¢; and g¢» to compute N = q; * g2 and a generator g of group G, with prime
order ¢. He also chooses a secure pseudorandom function PRF : {0,1}* x {0,1}* —
{0,1}%, a hash function H : Z — 2, a secure symmetric encryption method Enc
and a secure commitment method Comm. Then, C'P prepares and sends a transaction
trans$C = (N, H,G,, g, Enc,Comm, PRF) to BC. All the received parameters are
stored in Fair PP A contract storage. Then, C'P chooses three random numbers r¢p, 71,

and r,. Computes pkcp = ¢g"°F and sends a transaction trans$. = = (taskiq, pkcp, $p, Tin,

create
Tsps Teos Tous Tres Teps Tehs Tdis T1, T2, minDo, minDwv, th, k). As Fair PP A contract handles
multiple sensing task simultaneously, task;, is used to differentiate among multiple sensing
tasks*. Across the phases, the participating entities follow the timing parameters. These
timing parameters are required to enforce timely computation and also to avoid locking of
funds indefinitely. All the entities are aware of the timer which progresses in rounds and at
the beginning of each round the timer functionality is executed. The current time is fetched
by querying the underlying Blockchain. $p is distributed among cloud users according to

the quality of their sensed data. The random numbers 71,7, values change for every new

sensing task. The parameters min Do and min Dv ensures that there is a minimum number

4From here on we omit task;, for the sake of better clarity.

119

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

of cloud users and data verifiers before starting a sensing task. th is known as threshold

used during dispute resolution. The parameter £ is used to update timing parameters. When

CcP

received trans, .,

the Fair PPA asserts Ty, < Top < Teo < Tou < Tre < Tep < Teh < Tdi-
Then, the received parameters are stored in contract storage, and the state of the contract is

changed to Intent. The formal protocol for TCP is presented in Figure 4.3.

Protocol: Task Creation Phase

For cloud provider C' P

1. Send transg;;loy = (FairPPA) to Blockchain BC. After receiving the Fair PP A, qdresss

publish the address publicly.
2. Choose two safe primes ¢; and g2 and compute N = ¢; *go. Choose a hash function H : Z —
Z’y», a pseudo-random function PRF : {0,1} x {0,1}* — {0,1}* a symmetric encryption
method Enc and commitment method Comm. Choose a generator g of group G, with prime
order q.
Send trans$5 = (N, H, Gq, 9, Enc,Comm, PRF) to FairPPA.
Choose a random number rcp €r Z4 and compute pkcp = g"°".
Generate two random numbers 1,79 €g Z, such that 7y # ro.
Send transCL . = (taskiq, pkcp, $p, Tin, Tsps Teos Tous Tres Teps Tehs Tdis T1, T2, minDo,
minDwv, th, k) to Fair PP A and publish the task details publicly.
Blockchain

7. On receiving transdceiloy deploy Fair PPA and return Fair PP A qgress-

8. On receiving trans$5, store all the received parameters.
o . CP
9. Onreceiving trans;. ;.

(a) Assert ledger[CP] > $p and Ty, < Tsp < Too < Tou < Tre < Tep < Teh < Tdi
(b) Set state <— Intent and store all the received parameters.

o o> §2

Figure 4.3: Task Creation Phase protocol

4.3.6.2 Spawn and sensing phase

An interested cloud user C'U; fetches the contract details and verifies them. He computes
sensing cost and expected utility. If the expected utility is more than the sensing cost, then
he chooses a random number ¢, and computes pkcy, = ¢"“Vi. He prepares and sends

trans¢¥: = (pkcu,, $dcu,) to Fair PP A. The deposit $dqy, is required to ensure partic-

intent

ipation of the cloud user till the end of the protocol. The contract verifies that C'U; has not
sent the intent transaction for the same task previously. Then, the contract randomly adds
CU; in to one of two lists listy, or list4,. Generating true randomness is not possible due to

the deterministic nature of smart contracts. As currently, the cloud users cannot predict the

120

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

exact time-stamp of the new block, we use the result of blockhash(block.timestamp) as a
random number which meets our need to randomly assign cloud users to listy, and [istg,.
block.timestamp returns the current block timestamp as seconds since UNIX epoch and
blockhash is a function that takes an integer as input and returns the hash of that block.
After 7 > 7,0 (1) if state = Intent and |listq,|< minDo and |listy,|< minDv, $p is
refunded to C'P and the deposits of CU; € listy, and CU, € listy, are also refunded. The
state of the contract is set to Aborted. (2) If state = Intent and |listg,|> minDo and
|listay|> minDwv, then the contract state is set as Spawn

Every C'U; queries the Flair PP A to fetch listy, and listy,. If CU; € listy,, then they

run (indcy,, skcy,) <+ KeyGen(CU, ry,ry,1). Next, CU; sends trans€Vi = (indcy,).

spawn

cU;
spawn?

After receiving trans the contract checks 7 < 74, state = Spawn, CU; € listgy,,
and CU; ¢ listgy,. If all checks are passed, then the C'U; along with received parameters
is added to listy,. After 7 > 74,1 (1) if state = Spawn and |list,|= 0, then the contract
state is set as Aborted and $p is refunded to C'P along with the deposits of CU; € listg,.

The deposits of CU, € list,, are refunded. (2) if state = Spawn and |listg,|# |listq,

B

then the aborted cloud users are removed from [ist,, and all timing parameters except 7;
are increased by a factor of k. list,, is set as empty. The contract will be in the Spawn
state until listy, = listg, or listy, = 0. (3) if state = Spawn and list,, = list,, then the
contract state is set as Commit.

Now, every CU; € list,, starts sensing according to the C'P specifications and col-
lect the data Y,CU! from the requested sensors (si, ..., 5,,) in the requested time interval
[ts,te]. As YCUil is large data set, it cannot be shared through Blockchain because stor-
age incurs a huge cost in public Blockchain networks. So, CU; aggregates Y,SVi into
XEU = [0 Yris oo S0 Yma] and encrypts XS0 as CSV = [(1+ 0 yri + N) -
H(t)*cvi mod N2, ..., (1+> 5, Ym,i*N)- H(t)**Vs mod N?|. Then, a shared key is com-
puted as Koy, cp = (pkop) Vi = (pkcy,)"@F = ¢g"°Vi"°F. By using symmetric encryption
CU; performs double encryption on Y,$* to generate C'Y,SV" = Encee,, (Enciey, op(Y5)).
The encryption with shared key protects the data from entities other than C'P and encryp-
tion with skcy, protects data from CP till the C'U; reveals it. C’Ynf Uit is stored at IPFS

network which returns the hash of C'Y,¢Vi* as an URL wurl to access it. CU; encrypts

121

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

url and skcy, as CGy" = Encgg,, (url) and CKY' = Enciq,, ..(skcu,). As a final

step in this phase C'U; commits the encryption of skcy, as ct®Yi = comm(CKCYi, s)

CU; _
commit —

(CCU:i CCUi ctCUi) to FairPPA. After receiving transCi . the FairPPA contract

url commit?

where s is a randomly chosen. Then, C'U; prepares and sends a transaction trans

verifies (1) 7 < 7., (2) CU; € lists, (3) CU; ¢ list., and (4) state = Commit. If all
the checks are passed, then C'U; is added to list., along with all the received values. After
T > Teo: (1) if state = Commit and |list.,|= 0, then the contract state is set as Aborted
and $p is refunded to C'P along with deposits of CU; € listy, U lists,. The deposits of
CUy, € listg, are refunded. (2) if |list.,|# |listsy|, then the aborted cloud users are re-
moved from listy,. listg,, list., are set as empty. All timing parameters except 7;,, are
increased by a factor of k, and the contract state is set as Spawn. (3) if list., = list,y,, then

the contract computes the aggregated statistics as

P T €8 mod N2 = tom
Pj’;v_l Vj=1tom

SUMj g 4

Fair PP A stores the computed statistics and the contract state is set as Buy. The formal

protocol for SSP is presented in Figure 4.4.

Protocol: Spawn and Sensing Phase

For cloud user CU;
1. Verify Fair PPA contract and task details. Calculate sensing cost and utility according to
C P’s specifications.
2. If satisfied with utility then choose a random number rcy, €r Z4 and compute pkcy, =
JieLet

3. Send trans"Y: = = (pkcu,,$dcv,) to Fair PPA.

intent ~
4. Query the smart contract for listg, and listy,. If CU; € listy,, then run (indcy,, skcu,)

— KeyGen(listg,,r1,72,1) and send transC: = (indcoy,) to FairPPA

spawn
5. Using smart device collect sensing data from sensors S, .., Sy, in the time interval ¢ = [t,, t.]

S1 Sg v oo S
ts [Y1,s Y2,s * + = - - ym,b]

cULt _ -
Y,GUst =

telule wvae- oo e
CUt cU;
6. Aggregates Y,’V#" in to x,;,~* and Compute

CSYi =
(1435 v, % N) - H(t)**cvi mod N2, ..., (1 + D s Ym,j * V) - H(t)**cvi mod N?]

7. Compute a shared key Kcy, cp = (pkcp) Vi = (pkcy,)"°F = groviTer

122

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

8. Compute CY,5V"" = Encaey, (Enckey, op (Y 0")) and send CY,SV" to IPFS and re-

ceive url.

9. Compute C’Sfl]l = Encskey, (url) and CKCYi = Enckey, op(skcu,) and ctClVi =
comm(CKCYi, s) where s is a randomly chosen.

10. Send transgogl‘mlt (CSU:, CCYi ctCUi) to FairPPA

Blockchain: listg, < {}, listq, < {}, listsp < {}, listeo < {}, listma < {}, $depositq, < 0,
$depositdv «~0
. On receiving translcnltjem
(a) Assertledger[CU;] > $dand T < 7;,, and CU; ¢ (listq,Ulistq,) and state = Intent
(b) If (blockhash(block.timestamp))%2 = 0 then set listy, < listg, U CU; and
$deposity, < $deposity, + $d. Else, set listy, < listg, U CU; and $deposity, <
$deposit 4, + $d.
12. On receiving transgggm
(a) assert T < Ty, and state = Spawn and (CU;,) ¢ lists, and CU; € listq,
(b) setlists, < lists, U (CU;,indcy,)
13. On receiving trans_ /..
(a) assert T < T, and state = Commit and (CUj,) € listg, and (CUj, *, %, %) ¢ list,,
(b) setlisto, < liste, U (CU;, CSYi, €Tt ctCUr)
Timer
if 7 > 7;,, and state = Intent and |listg,|< minDo and listg, < minDv
set ledger[C'P] < ledger[C'P] + $p

YCU; € listy, setledger[CU;| + ledger|CU;| + $deposity,

[listao]
VCUy € listg, set ledger[CUg| < ledger[CUyg] + M‘leﬁo%tf“’ and set state <—
Aborted
if 7 > 7;,, and state = Intent and |listq,|> minDo and |list4,|> minDuv then set state +
Spawn

if 7 > 74, and state = Spawn and |listsy|= 0
set ledger[C'P] < ledger[CP| + $p + $depositq,
VCU € listy, set ledger[CUg] + ledger|CUy] + % and set state <
Aborted

if 7 > 74, and state = Spawn and |listp|# |listqo|
set listyg < listme U (listqe — listsy) and listq, = listqo — listymg and lists, < ¢
and 7y, < Top + Kk and 7., < T, + k and Ty, < Ty + k and 7. < 7. + k and
Tep < Tep + k and 7ep, <= Top + K and 75 < 74 +

if T > 7, and state = Spawn and |lists,|= |list,| then set state <— Commit

if 7 > 7., and state = Commit and |list.,|= |listsp|
set P;y + [lsteel CSY mod N2Vj =1tom

set sum; ¢ < Ll Vj = 1tom and state - Buy

if 7 > 7., and state = Commlt and |listco|# |listsp|
set listmg < listmq U (listsy — listeo) and listg, < listgo — listmg and lists, < ¢
and list., +— ¢ and list,, < ¢ and Ty, < Tsp+k and 7, < Teo+k and 7y, < T +£
and T, < T + k and 7, < 7 + Kk and 7o, < Ten + k and 745 < T4 + k and
state < spawn

if 7 > 7., and state = Commit and |list.,|= 0
set ledger[C'P] < ledger[CP] + $p + $depositq,

VCUy, € listq, set ledger|CU] < ledger[CU] + W’%ﬁd“ and state < Aborted

Figure 4.4: Spawn and Sensing Phase Protocol

123

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

4.3.6.3 Data sharing and reward distribution phase

The cloud provider receives the aggregated statistics by querying the Fair PPA. Then,
he analyzes the statistics and if he is satisfied with the statistics, then he sends transbuy to
Fair PPA along with a deposit of $fop. After receiving transbuy, the Fair PPA checks
whether 7 < 7, and state = buy. If checks are valid, then the contract state is set
as Reveal. If C'P is not interested in buying the data, then it aborts the protocol by not
sending any further transactions. If the contract state is Buy even after 7 > 7, then the
deposits of CU; € list., and CUy, € listy, are refunded. To compensate CU; € list,, for
their honest participation, the deposits of aborted cloud users are distributed equally among
CU; € list.,. $p and $ fcp are refunded to C'P. The contract state is set as Aborted.

Soon after the contract state is set as Reveal, every C'U; € list,., sends transC’i | =

reveal
(XCUi, CKCYi) to FairPPA. After receiving transC. ,

(1) 7 < T (2) state = Reveal (3) CU; € list., (4) CU; & listy, and (5) ctCli =

the contract checks whether

comm(CKCYi s). If all checks are valid, then the contract adds CUj to list, along with
the received data. After 7 > 7,.: (1) if state = Reveal and |listy,|= 0, then the deposits
of CU; € listg,, the deposits of aborted cloud users and $p, $fcp are sent to C'P. The
deposits of CU, € listy, are also refunded. The contract state is set as Aborted. (2) If
state = Reveal and |listy,|# 0, then the contract state is set as Compute.

Now, the C'P executes Algorithm 4.8 to find ground truths and the corresponding
WCP 7CP)

weights according to the quality of the data. C'P prepares and sends transpmo =

to FairPPA where 7T is inner state hash (/SH) of the computation. After receiving

CP

trans, .,

the contract verify whether 7 < 7, and state = Compute. If checks are valid,

then the contract state is set as C'hallenge and the received data is stored in contract stor-

age. After 7 > 7, if state = Compute, then the state of the contract is set as Dispute.
If the contract state is C'hallenge, then any C'U; € listy, who does not have trust on C'P

can execute Algorithm 4.8 locally. If the locally computed results have any discrepancies

with the results sent by C'P, then C'U; prepares and sends transcha”en ge = (WE, 7¢, $fc)
CU;

challenge’

where W¢, 7€ are locally computed values. After receiving trans the contract

verifies whether (1) 7 < 7., (2) state = C'hallenge, and (3) CU; € listy,. If checks are

124

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

valid, then the contract state is set as Dispute and received parameters are stored. After
T > 7.5, and state = Challenge then, the Fair PP A executes Algorithm 4.9 with W¢F
and pays according to the results returned. $ fop is refunded to C' P along with the deposits
of the aborted cloud users. The deposits of C'U; € listy,, CUy € listy, are refunded. The
contract state is set as T'erminated.

When the contract state is set as Dispute, every CU,, € listy, executes Algorithm 4.8
locally and sends trans,,. %, = (WU 7¢Ur) to Fair PPA. After receiving trans(, 5, .
the contract verifies whether (1) 7 < 7y, (2) state = Dispute and (3) CU,, € listy,. If
all checks are valid, then the contract stores the received data. After 7 > 7y, if state =

Dispute, then the Fair PP A executes Algorithm 4.10. The formal protocol for DRP is

presented in Figure 4.5.

Protocol: Data Sharing Phase

For cloud provider C' P
1. Query the FairPPA to receive Sum;; Vj = 1tom, if satisfied with statistics send
transbuy ($fcp) to FairPPA.
2. If 7 > 7. compute (WP 7¢F) < TDA(2S
(WEP 1€P) to FairPPA.
3. For every received CK Vi do
(a) Compute a shared key K¢y, cp < (pkcp) Vi = (pkcy,)"cF = greviter
(b) Compute skcy, < Decry, op (CKCV") and url < Decyig,, (C7).
(c) Access I PFS network with url to obtain C'Y,CUs:t
(@ Compute VEV - Decape, (OVEU) and VSVt 4 ey, op (VUM
For cloud user C'U; /
4. If Fair PP A’s state = Reveal then send transCV: = (2CVi O KCU: s) to FairPPA

7eveal -
).

5. If FairPPA’s state = Challenge then run (W¢, 7¢) <~ TDA(zGY:

) and send transpmo ;=

6. If WEF £ WC and/or m°F # 7€ then send transch[{l”enge = (W€, r°)

For Data Verifier CU},
7. If Fair PP A’s state=Dispute then compute (WUr 7C€Ur) < TDA(zSY)
8. send trans{ ", = (WCUs 7Uk)to FairPPA

Blockchain: listy, < {}, listp, < {}

s CcP
9. On receiving trans;,,,

(a) assertledger|[CP] > $fcp T < by, and state = Buy
(b) set state < Reveal

10. On receiving transfeveal
(a) assert T < T, and state = Reveal and ct®Vi = comm(CKCY:, s) and CU; € list,,

and CU; ¢ listp,

(b) set listp, < listy, U (CU;, XEU?)

11. Onreceiving transS? . = (WF 7¢F)

(a) assert T < T, and state = Compute

(b) Store (WP 7CP) and set State + Challenge

125

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

12. On receiving trans(, ., .. = (W€, 7)
(a) assert 7 < 7. and state = C'hallenge and CU; € honest
(b) Store (W€, 7€) and set state < Dispute
13. On receiving trans(, ¢, = (WEUs, 7CUk)
(a) assert 7 < 74; and state = Dispute and C'Uy, € listy,
(b) set listp, < listp, U (CUy, WCUr 7CUk)
Timer
if 7 > 7, and state = Buy
set ledger[C P] + ledger[C'P] + $p

YCU; € list,, set ledger[CU;] < ledger|CU;] + Sdepositg,

[listeo|
VYCUy € listy, set ledger[CUg] <+ ledger[CU] + %?{f#tld” and set state <
Aborted
if 7 > 7. and state = Reveal and |listy,|= 0
set ledger[C'P] « ledger[C'P] + $p + $depositq, + $fcp
YCUy € listy, set ledger[CUg] < ledger|CU] + %?f#tld” and set state <
Aborted
if 7 > 7, and state = Reveal and |listp,|# 0 set list g listyg U (liste, — listy,) and
state < Compute
if 7 > 71, and state = Compute set state < Dispute
if 7 > 7.3, and state = Challenge
YOU; € listy, set $poy, < PM(WET $p)
YCU; € listy, setledger|CU;| + ledger[CU;] + W%EM + $pcu,

Sthol+|listmal

YCU}, € listq, set ledger[CUy) + ledger[CUy| + 3depositay

[listay]
set ledger[CP| = ledger|CP] + Iliiiiﬁ% * (|listima]) + $fcp and set state +
Terminated
if 7 > 74 and state = Dispute then run FairPPA.DRM (WP 7¢P W¢ =€ vCU, €
listy, (WCUr 7CUr) minDu,th, $p, $depositq,, $deposita,, $fop. $fc. listhe, listma,

liSt}w).

Figure 4.5: Data sharing and reward distribution phase protocol

4.4 Security Guarantees

Theorem 4.4.1. Our proposed protocol satisfies aggregator obliviousness under Deci-

sional Composite Residuosity (DCR) in random oracle model.

We show that our protocol can be reduced to aggregator obliviousness protocol in Joye
et al. [189] which is sufficient to show that our protocol satisfies aggregator obliviousness
under DCR assumption. Our protocol is different from [189] in two aspects: First, in [189],
the keys are generated by a trusted party and are sent to cloud users securely, whereas in
our protocol the cloud users generate their keys. Both the protocols are the same from the

attacker’s perspective that is the secret key can be compromised if and only if the cloud user

126

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

is corrupted. Second, in [189] aggregator’s key is assumed to be compromised, whereas,
in our protocol, there is no aggregator key. So, from the attacker’s perspective, it is same
that the key is compromised or there is no key at all. In summary, if the protocol in [189]
satisfies aggregator obliviousness, then our protocol also satisfies aggregator obliviousness

as defined in Definition 4.1.2.
Theorem 4.4.2. Our proposed protocol satisfies fair payments

We prove fairness by considering the following cases:

Case 1: C'U; is malicious and aborts after the Buy phase without revealing the actual
data. In this case, according to F'air PP A contract, his deposit is forfeited, and moreover,
the payment for his data contribution is withheld. Here, the C'U; does not receive any
payment without revealing the actual data. Thus, fairness holds.

Case 2: C'P aborts after learning the aggregate statistics. In this case, according to
Fair PP A contract the pay is refunded to C'P and the deposit of every cloud user is re-
funded. Here, the C'P does not receive data without initiating the payment. Thus, fairness
holds.

Case 3: C'P aborts after knowing data without computing weights. In this case, ac-
cording to Fair PP A contract, the contract asks a set of verifiers to compute weights and
payment to cloud users is made according to the weights returned by verifiers. Here, al-
though the C'P receives data, he cannot avoid paying to the cloud users. Thus, fairness
holds.

In summary, our protocol satisfies fair payments as defined in Definition 4.1.2

4.5 Implementation and comparisons

The simulation environment is discussed in Section 1.2.3. We have adopted the factory
model of solidity [194] to design our contracts. The factory model helps in saving gas costs
during deployment of contracts for every new sensing task. The actual sensing tasks are
treated as black boxes, and the contracts do not need to know the sensors internal states.

The contracts are called before the start of sensing task and after the completion of the

127

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

sensing task. We have implemented all the contracts in private Ethereum network which
mimics the Ethereum production network. However, this implementation aims to deploy

the contracts on public Ethereum network in real-world scenarios.

4.5.1 MotionSense Dataset

We have tested the contracts for MotionSense [188] dataset. MotionSense® contains time-
series data collected by both accelerometer and gyroscope sensors (attitude, gravity, user
acceleration and rotation rate). A total of 24 participants performed six activities in 15
trails. The activities are downstairs, upstairs, walking, jogging, sitting and standing. Two
different kinds of trails are conducted: (1) Long trails - numbered 1 to 9 with around 2
to 3 minutes duration (2) Short trails - numbered 11 to 16 that are around 30 seconds to

1-minute duration.

4.5.2 Implementation of Fair NaivePPA

We ran our experiments multiple times, and each transaction’s computational and financial
cost computed is shown in Table 4.1. We have varied the number of cloud users from 1
to 24 and computed the gas consumption of aggregate and payout functionalities in Figure
4.6. For implementation feasibility, we have modified our Fair Naive PP A in Figure 4.1.
The current blockchain networks support calling the function in a contract only through
an Ethereum account or a function in the same contract or another contract. That is the
scheduled function calls which are executed when the timer expires are not possible. The
timer is implemented as a payout functionality called by anyone, including a cloud user or
cloud provider. Observe that the contract deployment consumes a tremendous amount of
gas; this is due to large contract storage usage. Storing data in a contract is expensive in

Ethereum network.

>The MotionSense dataset consists of data collected from different age groups. So, naturally, there will be
a significant difference in sensor readings of different participants. Although we are aware that data quality
will vary due to the participant’s age, we use this dataset to test proof-of-concept implementation of proposed
smart contracts.

128

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Function Caller Costin Gas Costin $
Deployment C'P 2501562* 26.491

Create cpr 142536 1.509
Intent CU; 69124 0.732
Commit CU; 204218 2.162
Aggregate CP 500203** 5.297
Buy cpr 41497 0.439
Reveal CcU; 67446 0.714

Payout Anyone 232350%* 2.46

Table 4.1: Costs of interacting with Fair Naive PP A contract. We have approximated the
gas price as 30 Gwei and 1 ETH = $ 353, which are the real world costs in Oct 2020. We
have rounded off the cost in $ value up to three decimals. * - including contract deployment.
** - gas consumption for 24 cloud users.

107 FairNaivePPA
55 I I T I I T T T
5 || —— Aggregate
4.5 ||—— Payout

Gas Consumption

0 2 4 6 8 101214 16 18 20 22 24
Number of cloud users

Figure 4.6: Gas Consumption of Fair Naive PP A - Aggregate and Payout functionalities

129

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Function Caller Costin Gas Costin $
Deploy CP 3808389 1.485

PP CP 152537 0.059
Create cpP 252965 0.098
Intent CcU; 69337 0.027
Spawn CcU; 188540* 0.073

Commit cU; 181492 0.07
Aggregate CP 409759%** 0.159
Buy CP 41497 0.016
Reveal cU; 224142 0.087
Proof cpP 590492 0.23
Challenge CU; 590492 0.23

Verify CUy 540624 0.213
Payout ~ Anyone 359838 0.140

Table 4.2: Costs of interacting with F'air PP A contract. We approximated the gas price as
1 Gwei and 1 ETH = $ 390, which are the real world costs in Sep 2020. We have rounded
off the cost in $ value up to three decimals. * - As gas consumption by Spawn functionality
varies due to the parameter [, we listed the maximum gas consumption value. ** - gas
consumption for 24 data owners. *** - gas consumption for an only single iteration of
weights computation for 24 data owners.

4.5.3 Implementation of FairPPA

The transactional and financial costs of interacting with F'air PP A contract are listed in Ta-
ble 4.2. We have implemented F'air PP A as a set of functions such that transaction trans?
is sent by a party y to function . The current Ethereum blockchain network supports call-
ing of the function in a contract only through an Ethereum account or from a function in the
same contract or another contract. That is the scheduled function calls which are executed
when the timer expires are not possible. So, we implemented timer as two functionalities:
Aggregate function, which computes aggregated statistics and the rest of the timer, includ-
ing DRM is implemented as Payout function. We have taken the w(-) and d(-) functions
in Equation 4.1 same as [195]. We have implemented Algorithm 4.8 in Java. We created an
Aspect] aspect which computes inner state hash without modifying the actual Java code.
Algorithm 4.8 is executed along with Aspectj aspect which outputs computed weights and
inner state hash. The gas cost for payout functionality in Table 4.2 includes only one round
of weight computation.

In Figure 4.7, we show the consumption of gas with respect to the number of data

130

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

owners. Observe that the gas consumption increases enormously with the increase in the

number of data owners.

. 106 FairPPA
3 T T T |
—A— Aggregate
2‘ 5 | —*&— Payout B

Gas Consumption
[u—
(@
I

0O 4 8 12 16 20 24

Number of Data Owners

Figure 4.7: Gas Consumption of Fair PPA - Aggregate and Payout functionalities. The
Payout functionality includes the gas cost of executing DRM ().

4.6 Comparison with existing methods

4.6.1 Comparison with privacy-preserving aggregation methods

We compare our methods with some of the state-of-the-art privacy-preserving methods
in Table 4.3. Similar to our Fair PPA method, the methods in [196, 197, 198] do not
require a trusted key dealer. However, they do not have a trusted key establishment platform
whereas in our method we use smart contracts as a communication platform for establishing
keys. The methods in [199, 200] provides aggregator unforgeability. Nevertheless, [199]
require an interactive complexity assumption and [200] require modified computational
Diffie—Hellman assumption to provide the aggregator unforgeability. On the other hand,
we prove the aggregator unforgeability by assuming the underlying consensus algorithm
of a public Blockchain is secure. Observe that our methods also extend PPA towards fair

payments when compared to the existing methods.

131

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Trusted Dynamic .
Aggregator Aggregator Fair
method key dealer oblivousness | unforgeability leaves Payments
Free (robustness)

Shi et al. [201] No Yes No No No
Acs et al. [196] Yes Yes No Yes No
Joye et al. [189] No Yes No No No
Leontiadis et al. [197] Yes Yes No Yes No
Chen et al. [198] Yes Yes No Yes No
Benhamouda et al. [202] No Yes No No No
Leontiadis et al. [199] No Yes Yes No No
Emura et al. [200] No Yes Yes No No
FairNaivePPA No Yes Yes No Yes
FairPPA Yes Yes Yes Yes Yes

Table 4.3: Comparison of proposed methods with state-of-the-art privacy-preserving meth-
ods

method Quallt‘y Incentl've Data‘ owner Data Privacy Aggregator Aggre':gz‘lted Fair
evaluation Mechanism privacy correctness | Statistics | Payments
CrowdBC [143] Data buyer Quality-aware Psudoanonymity Encryption No No No
Wang et al. [137] Miners Quality-aware k-anonymity Yes No No
Cai et al. [138] SC (miners) Quality-aware Psudoanonymity Encryption No Yes No
ZebraLancer [139] | Data buyer Quality-aware Zk-SNARKS Encryption Yes No Yes
Chatzopoulos Pseudoanonymity
etal. [141] TTP Equal with TTP No No No Yes
Quality-aware, Consortium
Wei et al. [165] Data buyer Bid-based and Blockchain run by | Encryption No No No
Reputation-based trusted agents
. Quality-aware and .
Hu et al. [147] SC (Miners) Reputation-based Pseudoanonymity No Yes No Yes
SenseChain [148] | SC (Miners) Quality-aware Pseudoanonymity No Yes No Yes
CrowdBLPS [150] | Data buyer Quality-aware Pseudoanonymity Encryption No No No
FairNaivePPA - Equal Pseudoanonymity Homomorphlc Yes Yes Yes
encryption
FairPPA SC (Miners) Quality-aware Pseudoanonymity Homomo.rphlc Yes Yes Yes
encryption

Table 4.4: Comparison of proposed methods with existing Blockchain-based mobile
crowdsensing methods.

4.6.2 Comparison with Blockchain-based mobile crowdsensing meth-

ods
The comparison with existing Blockchain-based MCS methods is presented in Table 4.4.
Observe that apart from Cai et al. [138] method, only our methods provide aggregated

statistics. Zebralancer [139], Hu et al. [147], and SenseChain [148] provide both aggrega-

tor correctness and fair payments; however they do not provide aggregator statistics.

132

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

4.7 Summary

We have designed two protocols for fair payments in the privacy-preserving aggregation
of the mobile crowdsensing. Our protocols show that the untrusted aggregator in tradi-
tional PPA methods can be replaced by smart contracts deployed on a public Blockchain
network. Moreover, our protocols guarantee the correctness of the aggregation operation
and fair payments without any additional cryptographic operations or trusted intermedi-
aries when compared to traditional PPA methods. We have shown our protocols’ feasibility
by deploying them on a private Ethereum network and listed the transactional and financial

cost of interacting with smart contracts.

133

Chapter 5

Fair Payment Protocol for Virtual
Machine Allocation under

Infrastructure-as-a-Service

Cloud computing offers on-demand network access of configurable computing resources
(virtual machines (VM)), enabling individuals and enterprises to pay only for the resources
or services they use. Resource allocation to cloud users depend on several factors, like
resource utilization, resource pricing, availability, and quality of service. Among all the
factors, resource pricing mechanisms are widely studied because they increase the cloud
provider’s utility [102]. In recent years, auction-style resource pricing mechanisms [117,
118, 119] have gained more interest as they reflect the underlying trends in demand and
supply of the cloud resources. Auction mechanisms are categorized into two types: (1) off-
line and (2) online. In off-line auctions, all the users’ requests are collected, and then the
auctioneer decides on allocation and price of VMs. (2) In online auctions, users’ requests
are processed instantly without prior knowledge of future requests. Online auctions are
extensively studied than off-line auctions because online setting provides faster services
and can efficiently allocate and price the resources [203].

However, most of the existing online auction methods have a resource allocator, as
shown in Figure 5.1, which processes user request by executing auction algorithm. In the

existing online auction setting, the request allocator is assumed as a trusted entity and does

134

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

not consider: (1) auction correctness: running the auction algorithm correctly without any
prejudice. (2) fairness: the provider receives the usage fee for his service if and only if
the user receives his requested resources. One of the significant challenges in an auction
is a lack of trust among users and providers. The users do not trust the provider for allo-
cation of VMs, and the provider does not trust the user for getting payment. Therefore the
resource allocator must be run by a trusted party to have greater confidence in the auction
mechanism. However, in practical situations hiring a trusted party is costly and finding
an ideal trusted party that will behave honestly is difficult. The solution is to distribute
trust among multiple entities instead of a single centralized trusted resource allocator. The
progress in Blockchain technology presents an alternate solution for using the services of a
trusted party [10].

In this Chapter, we present a Blockchain-based online auction for cloud VM allocation
and pricing. We realize both correctness and fairness of the auction mechanism by taking
advantage of two key components of a Blockchain network: smart contracts and cryp-
tocurrency. We achieve correctness by modeling the auction algorithm as a smart contract
running on a public Blockchain network. We achieve fairness by carefully encoding the
smart contract rules about the payment and allocation of VMs.

Our contributions in this Chapter are summarized as follows:

(a) To the best of our knowledge, we are the first to propose a Blockchain-based online
cloud resource auction protocol by leveraging the trust, immutability and correctness

properties of the public Blockchain networks.

(b) As most of the existing online auctions are truthful and focus on optimization of util-
ity and social welfare / cost, in this work, we focus on fair payments and correctness
of the online auction algorithm by modeling the auction algorithm as smart contract

running on a public Blockchain network.

(c) We have implemented the proposed smart contract written in solidity [24] and exe-
cuted them on a private Ethereum network and on Ropsten test network. We have

tested the proposed smart contract and presented the transaction and financial costs

135

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

8.Cost g
ICloud users coming on-the-fly
9.Pay
O O ooo O
v + + 1. Request+ +
Resource allocator (5o [Request] Request] [Request
- 000
Auction m m+1 n
algorithm
A p Request queue
7. Inform 3. Inform 0'4//0
v Cap
. e . 0/7\
ProvLsrllcthmng RV |:| |:| |:|
Instatiation VM pool
A
5. Provision v 4. Request
IAAS

Figure 5.1: Online auction infrastructure and resource allocation flow

of interacting with proposed smart contract. Experimental results show the feasibil-

ity of our proposed smart contract with minimal financial overhead.

5.1 Online auction

Let C'P be a cloud resource provider who has a large number of computational resources
with a fixed capacity () in an infinite time interval [0, co]. Let CU; be a cloud user who
would like to use the resources provided by the C'P. Let DeOAA be a cloud auctioneer
who facilitates and executes auction mechanism .A. An auction is said to be an online
auction if the allocation and payment for a C'U;’s request is determined instantaneously
according to some adopted auction mechanism 4. A simple online auction algorithm is

shown in Algorithm 5.12 and the online auction infrastructure is shown in Figure 5.1.

136

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Incoming ‘ < Valuation Function:
user () o (00
. 108 [50 ()t > 40
Mapping Valuation Ui(%’) = :
PP Function 0 elsewhere;
(bidding _
language Allocation
Payment
Request
a Auction Request (Bid):
Mechanism - .)
Submission r; = {6 : 00,9 : 00, $10,40}
Resource
provider
4

Figure 5.2: An illustrative example of online auction [119]

Algorithm 5.12 Simple online auction

Input: A sequence of requests R = {r1,72, ..., 700}, sSuch that teup, < tsuby < .o < tsubs
A non decreasing pricing function P(z)
Output: Allocation and payment decision for every request r; € R.
1: Initialize the utilization rate: V ¢ € [0, o0], U (¢, teurrent) = 0;
2: for each request do
3: if the requested resources are free in the requested time slots then
4
5

Find the allocation that maximizes requester’s utility;
Compute payment for the allocation using an auxiliary pricing function P(z) and utilization rate
U of the requested time slots;
6: else Reject the request;

7 Reserve the requested resources and update the utilization rate;

In the algorithm, initially, utilization rate of the cloud resources for every future time
slot is set as zero. The utilization rate is the ratio of allocated and total resources at time
(t, tewrrent), Where oy rens 1 the current time and ¢ is the time in future. Price of a resource
varies with respect to the utilization rate. The cloud users come on-the-fly and requests
the cloud resources. The request consists of information about the start time, end time,
valuation and number of resources required. The auction platform process the requests in a
sequence. First, the algorithm checks whether the requested resources are available in the
requested time slots. If resources are available, then a best allocation is computed according
to the user’s valuation. The usage fee pay is computed according to a pricing function and
the utilization rate at the allocated time slots. An example of the online auction is shown

in Figure 5.2. A cloud user requires 40 VMs in every time slot from 6 : 00 to 9 : 00. He

137

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

sends his request to the auction platform which determines the allocation and payment pay
immediately according to the adopted auction mechanism. He values his request at $10 if
all the requested VMs are allocated in the requested time slots. The valuation represents
the benefit a cloud user obtains from receiving the cloud resources. Also, utility represent

the net profit a cloud user gets from an allocation, that is utility = valuation - usage fee.
Definition 5.1.1. A fair online auction protocol must provide the following guarantees:

(a) Online: An auction protocol is said to be online if it provides the flexibility for users
to request cloud resources whenever they need, and their requests are processed by

the cloud provider instantaneously.

(b) Correctness of auction mechanism: An auction protocol is said to be correct if the
following three factors determine the allocation and payment for any user: (1) the
request by CU; (2) the requests which have been accepted before the CU;’s request
(3) auxiliary pricing function P(x). In other words, no party (CU; / C'P / miners)

can influence the outcome of the auction except the above three factors.

(c) Fair Payments: An auction protocol is said to be fair if an honest C'P receives
the usage fee for the resources it leases if and only if an honest C'U; receives the

requested resources.

5.1.1 KEntities

A Blockchain-based fair payment protocol for online auction of cloud resources consists

of the following entities:

(a) Cloud resources: A large cloud data center consists of resources like CPU, RAM,

storage, and bandwidth.

(b) Cloud Service Provider (C'P) : A cloud service provider bundles the cloud resources

as virtual machines and leases the virtual machines to users.

(c) Cloud user (C'U;): A cloud user requests for using resources provided by C'P. If the

request is accepted, then he pays usage fee to C'P and uses the allocated resources.

138

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Cloud User

<«— 3. Smart Contract Address and Smart Contract ABI
7. VM Allocation for 1% k Time Slots
10. VM Allocation for k + 1 Time Slot

Cloud Provider

A AA

13. VM Allocation for n™ Slot

ssalppy

Smart Contract 4
Execution

A

Blockchain Network

DeOAA Smart Contract

Figure 5.3: Overview of the proposed protocol

(d) Smart Contract: A smart contract emulates the trusted auction platform in Figure
5.1. Tt receives requests from users and computes the usage fee to be paid by C'U; for

using resources provided by the C'P.

(e) Blockchain Network (BC'): It is maintained by a set of peers known as miners who
execute the smart contract functionalities according to an underlying consensus al-

gorithm.

The overview of the proposed protocol is presented in Figure 5.3.

5.2 Bidding language

We adopt the bidding language proposed by Zhang et al. [119]; more particularly, we adopt
TYPE III users as described in [119]. TYPE III users are resource-aggressive with time-
invariant capacity requirements. C'U; may request the auction platform for cloud resources
of invariable capacity inv_cap; for a time length of [; within a preferred time duration
la;, d;] (I; < d; — a;). The request is organized as: r; = {a;, d;, l;, inv_cap;, v; } where v; =

b;(inv_cap;) *1; is the user’s valuation and b;(-) is a concavely increasing function. One can

139

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

refer to [119] for more details about bidding language. Although, we have chosen TYPE

IIT users our smart contract can process other type of requests with simple modifications.

5.3 Decentralized online auction protocol (DeOAA)

In this section, we design a fair Blockchain-based online auction protocol by modeling the
trusted resource allocator in Figure 5.1 as a smart contract running on a public Blockchain

network.

5.3.1 Assumptions

(a) We assume that the resources like CPU, RAM, storage and bandwidth are bundled
as Virtual Machines(VM) or instances, and the cloud provider offers only a single
instance type. Although we are assuming a single type of VM, generalization to any

number of types of VMs is straightforward.

(b) We assume that the user and cloud provider is aware of the discrete timer running on

the public Blockchain network, which is different from the real-world timer.

(c) We assume that the number of time slots for a request is more than a predefined

parameter k.

(d) We treat the auxiliary pricing function as a black box, as any monotonic pricing
function commonly used in traditional online auction mechanisms can also be used

in our protocol.

5.3.2 DeOAA contract clauses

The DeO A A is an online auction contract signed between a cloud service provider C'P and
a cloud user C'U;. The high-level idea is that if both C'P and C'U; are honest, C'P receives

the usage fee for leased resources, and C'U; receives the requested resources.

140

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

The clauses in the DeO A A contract are as follows:

(@)

(ii)

(iii)

(iv)

v)

A cloud provider C'P creates a smart contract DeOAA for online auction and
deploys the DeOAA on a public Blockchain network. C'P publishes the con-
tract address on an open platform (like a website/bulletin board). C'P initializes
DeOAA with parameters like the cloud capacity in terms of virtual machines
(VM) and an auxiliary pricing function that is used to compute the usage fee for
a user.

After verifying the contract details at the contract address, a user C'U; sends
his request to DeOAA along with some safety deposit $d. This safe deposit
is required to penalize users for sending false requests. The request includes a
preferred start time, preferred end time, required number of time slots, required
number of VMs, and valuation of the user.

As soon as the DeOAA receives the user request, it assigns a submission time
to the request. DeOAA finds the best allocation for the C'U;’s request, which
maximizes C'U;’s utility. If there are enough VMs in every time slot to satisfy
CU;’s request, then those VMs are reserved, and the corresponding allocation
decision and usage fee are communicated to C'U;. If DeOAA cannot find the
allocation for a request, then the request’s deposit is refunded.

If VMs are reserved to a request, then the user of that request has to send the
usage fee to De(A A before the actual start time of the request. If the user sends
the usage fee successfully, then his deposit $d is returned.

If the user fails to send the usage fee before the actual start time of the request,
C' P will send a message to DeOAA to free up the reserved VMs. In this case,
C'U; forfeits his deposit which will be sent to C'P. Otherwise, C'P allocates the
VMs for first £ time slots. The cloud provider allocates VMs for the next time
slot if the user sends acknowledgements of the previous allocation to DeOAA.
The allocation is like a sliding window. For every acknowledgement received,
VMs for the next time slot is allocated by the C'P. The process will continue till

the end of all the time slots of the request. The user cannot send the acknowl-

141

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

edgement of i slot without sending the acknowledgement of (i — 1) slot. The
payment to C'P is also divided into parts equal to the number of time slots. The
C'P receives the usage fee for allocating the resources in a time slot as soon as
the DeO A A receives that particular time slot acknowledgement.

(vi) The maximum time slots that can be allocated without acknowledgement are k.
For every time slot i > (start time + k), if the user fails to send (i — k) slot
acknowledgment before the start of (i — k — 1) slot, the C'P will not allocate
resources from 7 time slot and the resources are freed up for the remaining time

slots. The remaining usage fee for the unused time slots is refunded to C'U;.

5.3.3 DeOAA protocol

DeOAA protocol is presented in Figure 5.4. DeOAA smart contract functionalities exe-

cuted by Blockchain are presented as Algorithms 5.13 to 5.18.

For cloud provider:

1. To initiate the auction process send transCZ = (capacity,d) to BC.
2. To free up the virtual machines send trans$,”, = (r1d) to BC.

3. If CU neither sends acknowledgements for the alloted slots nor sends abrogate
transaction, then send transg.j, 4y,0gaze = (1)
For cloud user:
4. To request virtual machine allocation, send transrceg;est = (a;, d;, ;, v;,
inv_cap;, $d) to BC.

5. To avail the resources, send transacv[é"il =(rld, $pay) to BC.
CU;

6. To acknowledge the alloted slot, send trans_ ;' = (rId, ackNum) to BC.
7. If C'P fails to allocate the requested virtual machines, then send trans’ gate
= (rld).
Blockchain: state < Init, Q <« 0, Vt € [r,00] U[t][r] < 0, Vt € [r,]
allocated[t] < 0, requests < {}, rId < 0, deposit < 0
8. On receiving transC2 execute DeOAA.create(capacity, d)

create

9. On receiving trans®’ . execute DeOAA.request(a;, d;, i, v;, inv_cap;, $d)

reques

10. On receiving trans® " execute DeOAA.avail(rld, $pay)

ail

11. On receiving trans_ ' execute DeOAA.ack(rId, ack Num)
12. On receiving trans$”_ execute DeOAA. free(rId)

free

13. On receiving trans’," gate €xecute DeO AA.abrogate(rld)

14. On receiving trans$t . execute DeOAA.C' P Abrogate(rld)

abrogate

142

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Figure 5.4: DeO A A protocol

5.3.3.1 Initializing the smart contract

The cloud provider C'P deploys the smart contract initialized with global parameters (), U,
allocated, requests, and rId. () is the maximum number of VMs that C'P can provide
for each time slot. We allow reserving resources before the actual start time of a request.
We use the utilization matrix U to track utilization rates at each time slot with respect to
the submission time of the request. allocated is an array to keep track of the number of
VMs allocated at each time slot. requests is a structure to store all the request related
parameters, 7/d is the number of requests submitted, and deposit is the minimum amount
of safety deposit to be paid by the users. At this stage, the contract will be in the Init state.
CP invokes Algorithm 5.13 to set the parameters () and deposit. Now, the contract state
will be changed to C'reated. The create functionality provides the flexibility for the C'P to

update the parameters (), and deposit in the future.

Algorithm 5.13 DeOAA.create
Input: capacity, d
Output: Success or failure message
1: if state = Init || Created then
2 Set QQ < capacity
3: Set deposit < d
4 Set state <— C'reated

5.3.3.2 Submission of a request

A cloud user sends his request to BC' invoking Algorithm 5.14. After receiving the request,
the contract makes sure that the preferred timings of the request are greater than the current
time. The contract also checks whether the C'U; has sent the minimum safety deposit. If
all the checks are passed, then the contract finds the best allocation that maximizes C'U;’s
utility according to his request and the current utilization rate. If there is an allocation (i.e.,
VMs are available for the requested number of time slots), then the actual start time, end
time, usage fee to be paid are computed. The allocated array and U matrix are updated ac-
cording to new allocation, and the request state is set to Accepted. If there is no allocation,

then the user’s deposit is refunded, and the request state is set to Rejected. The bidding

143

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

information is stored as a structure, and the user is notified about the allocation decision

and the usage fee. In the end, the requests count is updated.

Algorithm 5.14 DeOAA.request
Input: a;, d;, l;, v;, inv_cap;, $d
Output: Success or failure message

1: if state = Created then

2 if 7 < a; < d; then

3 if $d > deposit then

4: if ledger[CU;] > $d then

5: Set ledger[CU;] < ledger[CU;| — $d
6.

7

8

Set Tsup < T, end < 0, start < a;, maxUtility < 0, pay < 0
while end < d; do
Setend < start +1; — 1

9: Set flag + true
10: foreach t € [start, end] do
11: if allocated[t] + size > @ then
12: Set flag + false
13: if flag then
14: Set isAllocated < flag
15: Set tpay <+ |. :;i e g((:;:l“:))ﬂmwap /9 P(z) - Q dzdt where t € [start, end]
16: Set tUtility < v; — tpay
17: if tUtility > maxUtility then
18: Set maxUtility < tUtility, pay < tpay
19: Set 7,” « start, 7,7 < end
20: Set start < start + 1
21: if isAllocated then
22: foreach t € 7,7, 7,'] do
23: Set allocated|[t] « allocated[t] + inv_cap;
24: Set U(t, Tsup) = U(t, Tsup) + allocated|[t]/Q
25: Set rState < Accepted
26: else
27: Set pay < 0
28: Set ledger|CU;] « ledger|CU;] + $d
29: Set rState < Rejected
30: foreach t € [r,7,7.7] do
31 Set ack[t] «+ false
32: Set $payment < 0
33: Set requests(rid] < (a;, d;, 7,7, T,¥, Tsup» Vi» inv_cap;, rState, pay, ack, $payment,
$d)
34: Setrld <+ rid+1
35: return (Success, Reveal success)
36: else return (Failure, Not enough balance)
37: else return (Failure, Not enough deposit)
38: else return (Failure, Wrong timing parameters)

39: else return (Failure, State is not created)

144

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

5.3.3.3 Sending the usage fee

The user C'U; upon learning the usage fee, sends payment to BC invoking Algorithm 5.15.
After receiving the C'U;’s transaction, the contract checks whether the usage fee has been
sent before the actual start time of the request. The contract also checks whether the usage
fee sent is greater than or equal to the value computed earlier. One more check is on the
request state which should be in Accepted state. If all these checks are passed, then the

user’s deposit is refunded, and the request state is changed to Payed.

Algorithm 5.15 DeOAA.avail
Input: rId, $pay
Output: Success or failure message
1: if requests[rId].rState = Accepted then
2 if requests[rId].r,” > T then
3 if requests|rId].pay < $pay then
4: if ledger[CU;] > $pay then
5: Set ledger|CU;| + ledger[CU;] — $pay
6.
7
8

Set requests|rld].$payment «+ $pay
Set ledger[CU;] < ledger[CU;] + requests|rld].$d
Set requests|rld].rState < Payed

9: return (Success, Avail success)
10: else return (Success, Avail success)
11: else return (Failure, Pay not enough)
12: else return (Failure, Avail timeout)

13: else return (Failure, Request not accepted)

5.3.3.4 Acknowledging the allocation

If C'P allocates VMs to C'U;, the user sends acknowledgements about the allocated slots
to BC' invoking Algorithm 5.16. For each acknowledgement received the contract checks
whether the received acknowledgement number is between the actual start and end times
of the request. The contract also checks whether the previous allocation slot has been
acknowledged or not. The acknowledgement for the " slot cannot be sent before ac-
knowledging the (i — 1)™ slot unless it is an acknowledgement for the 1°¢ time slot. If all
the checks are passed, the C'P gets the usage fee for that slot from the contract. If all the

acknowledgements are received, then the request state is changed to F'inished.

145

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Algorithm 5.16 DeOAA.acknowledge

Input: r1d, ack Num
Output: Success or failure message

1: if requests[rid].7; < ackNum < requests[rId].7;" then
2 if requests|rId].rState = Payed then

3 if ackNum = requests[rId].7,” then

4: Set requests[rld].ack[ackNum]| + true
5 Set ledger|CP] «+ ledger|CP] + requests(rld] $payment
6.
7
8

requests|rld].l;
return (Success, Acknowledge success)

else
: if requests|rid].ack[ackNum — 1] = true then
9: Set ledger[C P] + ledger[C'P] + req?:jgz[;ii][;?fj%’gem
10: Set requests|rld].acklackNum)] « true
11: return (Success, Acknowledge success)
12: if ackNum = request[rId].7,;" then
13: Set requests|rld].rState < Finished
14: else return (Failure, State is not payed)

15: else return (Failure, Wrong acknowledgement number)

5.3.3.5 Freeing up the resources

If C'U;, refuses to send usage fee even though VMs are reserved for his request then C'P
calls the BC to invoke Algorithm 5.17 to free the allocated resources and claim the deposit
made by C'U;. C'P can call Free functionality only if the request state is Accepted and only
after the actual start time of the request. If checks are valid, then the previously allocated
resources are deallocated. The deposit made by C'U; is sent to C'P, and the request state is

set to Aborted.

Algorithm 5.17 DeOAA. free
Input: r1d
QOutput: Success or failure message

if requests|rId].7,” < 7 then
if requests[rId].rState = Accepted then
foreach t € [start, end] do
Set allocated|[t] + allocated[t] — inv_cap;
Set U(t, Tsub) = U(t, Toup) — allocated[t]/Q
Set ledger[CP] < ledger|CP] + requests[rid].$d
Set requests[rld].rState <— Aborted
return (Success, Free success)
else return (Failure, Request not accepted)

oy Nk

10: else return (Failure, Free timeout)

146

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

5.3.3.6 Abrogate by the user

If C'P refuses to allocate VMs or allocates VMs less than requested, then C'U; calls the
BC invoking Algorithm 5.18 to redeem the usage fee paid by him. The number of ac-
knowledged slots are calculated, and deallocation of resources is invoked with the last
acknowledged slot and the payment belonging to the unacknowledged slots is sent to C'U;.

The request state is set to user Aborted.

Algorithm 5.18 DeOAA.abrogate

Input: r1d
Output: Success or failure message

1: if 7 > requests[rId].7,” then

2 if requests|rId].rState = Payed then

3 foreach ¢ € [requests[rld).7,”,requests[rld].7,"] do

4: if requests|rid].ack[t] = false then

5 Set NotAckSlots <— NotAckSlots + 1

6 Set last AckSlot < requests[rld).7;t — requests[rId).7,” + NotAckSlots
7 if last AckSlot + k < 7 then

8 foreach ¢ € [start, end] do

9: Set allocated|t] + allocated[t] — inv_cap;

10: Set U(t, Tsup) = U(t, Tsup) — allocated[t]/Q

11: if caller is cloud user then

12: Set ledger|CU;] < ledger|CU;] + reql(fj;ziﬁ][ffﬁzgem * NotAckSlots
13: Set requests|rld].rState < user Aborted

14: else

15: Set ledger|C P < ledger[CP] + TEq?f:;i[;ﬁ]['ff;ﬁge"t x NotAckSlots
16: Set requests[rld].rState < Terminated

5.3.3.7 Abrogate by the cloud provider

If C'U; neither sends acknowledgements nor calls abrogate functionality, then C'P calls BC'

invoking Algorithm 5.18, sending the payment belonging to unacknowledged slots to C'P.

5.3.4 Correctness and fairness proofs

Now we prove the correctness and fairness of the proposed protocol defined above.
Theorem 5.3.1. Our proposed protocol satisfies correctness

Let DeOAA deployed on a public Blockchain network using PoW as a consensus algo-

rithm. Let b be the current block of the Blockchain which is extended by blocks b; and bs.

147

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Let tZyequest be the request transaction and ¢z,,4; be the avail transaction sent to DeOAA
which are eventually placed in b, and b, respectively. We will prove the correctness by
considering the following cases.

Case 1: C'U; influence the auction mechanism to decrease the pay to be paid by him.
This case can happen if the CU; pre-mines two blocks b; and b, containing transactions
tx;equest and tx,, ; respectively with a modified pay pay’. It may be noted that, in this case,
CU; does not broadcast transactions to the network. Now, C'U; broadcast b'1 extending b and
b, extending b, to the Blockchain network. Let all the other miners in the network verify the
transactions in b, for the common good and add this block to their local distributed ledger
if all the transactions in b'1 and their outputs are correct'. So, as the output of tZrequest 15
pay but not pay other miners will discard this block without adding new blocks extending
b,. As b; is discarded, b, is also discarded because it is extending a wrong block. Miners
with at least 51% of hash-rate cumulatively required to correctly verify the transactions in
the block.

Case 2: CU; broadcast tZ,equest but pre-mines block b; that consists tx’awil with a
modified pay pay. In this case, as the actual pay is already stored in DeOAA, during b,
verification, the pay’ is compared against pay (Figure 5.15, Line 3). The comparison will
fail, and the block is rejected.

Case 3: C'P influences the auction mechanism to increase the pay to be paid by C'U;.
This case is similar to Case 1 except that now C'P mines b, and broadcasts it to network.

Similarly, all the transactions with DeOAA are executed correctly; otherwise, those
transactions are rejected. Nevertheless, C'U; or C'P can influence some miners to include
the wrong blocks to their local ledger and generate new blocks extending these wrong
blocks. But, CU; or C'P should accumulate more than 50% of hash rate to make the entire
network accept wrong blocks which are a difficult task unless they have large mining pools
under their control [204].

In summary, as the miners in public Blockchain networks are reasonably assumed to act
honestly for the common good and follow the rules encoded in consensus algorithm, it is

difficult for C'U; or C'P to make the network accept wrong blocks. Considering the above

I'These rules are encoded in the consensus algorithm.

148

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

cases, our protocol satisfies correctness as defined in Definition 5.1.1.
Theorem 5.3.2. Our proposed protocol satisfies fair payments

We will prove the fairness by considering the following cases.

Case 1: CP is malicious, and C'U; is honest. In this case, if C'P refuses to allocate
VMs according to the C'U;’s request, then the C'U; will not send acknowledgements to
unallocated time slots. C'U; can retrieve his pay paid earlier by sending a message to
Abrogate functionality. As we know, DeOAA pays to C'P if and only if it receives an
acknowledgement for a particular time slot. So, C'U; will not lose any money even if the
C'P acts maliciously without allocating requested VMs. Thus the fairness holds.

Case 2: CP is honest, and the CU; is malicious. In this case, C'P allocates the re-
quested number of VMs, but C'U; acts maliciously and refuses to send acknowledgements
for the allocated VMs. C'P waits for k number of time slots, even then if C'U; fails to
send acknowledgements of previously allocated VMs, then C'P will not allocate any fur-
ther VMs. Let $p be the amount to be paid by CU; for each time slot; then C'P will incur a
tiny loss of (k * $p) for the resources allocated for the unacknowledged % time slots. Thus
the fairness holds in this case with a (k * $p) loss to C'P.

Case 3: C'P is malicious, and C'U; is also malicious. This case is straightforward and
similar to the above two cases.

Case 4: C'P is honest, and C'U; is also honest. In this case, C'U; sends an acknowledg-
ment to all the time slots that are requested and satisfied by C'P. C'U; gets the VMs, and
C'P receives the payment for the allocated resources. Thus the fairness holds.

In summary, our protocol satisfies the fair payments.

5.4 Implementation

The simulation environment is discussed in Section 1.2.3. We have also deployed the

contracts on the Ethereum Ropsten test network.

149

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

5.4.1 Floating point numbers

Ethereum solidity smart contract language does not support floating-point numbers. We
have taken all the input values to the Request functionality as integers, but the utilization
matrix values are floating-point values. Therefore the intermediate values generated during
computation of payment are floating-point numbers. To handle these floating-point values,

we have used ABDK Math Quad smart contract library~.

5.4.2 Implementation of DecOAA

We ran our experiments multiple times, and each transaction’s computational and finan-
cial cost is shown in Table 5.1. Observe that the contract deployment consumes enormous
amounts of gas, but this is a one time cost for C'P. Next, call to the request functionality
incurs a huge cost to C'Uj, this is due to the computation of payment function in Algorithm
5.14 using Simpson 1/3 rule. We have computed gas cost for Request functionality sep-
arately in local Blockchain network by varying both (d; — a;) and [; and listed the costs
in Table 5.2. Observe that the costs are enormous and more than the Ethereum block gas
limit. Most of these high costs are due to the computation of Algorithm 5.14. To reduce
the costs, some other payment computation algorithm may be adopted. Another option to
reduce the cost is increasing the step size of the integral. We have chosen 0.01 and 1 as a

step size of inner integral and outer integral, respectively.

Function Caller Costingas Costin$
Init (contract deployment) CP 3,483,962 0.547
Create CcP 27,383 0.004
Request* CU; 1,837,360 0.288
Avail CU; 58,648 0.009
Acknowledge CU; 57,388 0.009
Free* CP 99,834 0.015
Abrogate** CU; 49,684 0.007

Table 5.1: Costs of interacting with DeO A A contract. We have approximated the gas price
as 1 Gwei and 1 ETH = $ 157.01, which are the real world costs in April 2020. We have
rounded off the cost in $§ value up to three decimals. * - depends on (d; — ai) and [;. ** -
depends on [;. We have taken (d; — a;) = 5 and [; = 4

Zhttps://github.com/abdk-consulting/abdk-libraries-solidity/blob/master/ABDKMathQuad.sol

150

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

gfi"ai) 10 15 20 25 30 35 40 45 50

1 2173478 | 3089484 | 3990024 | 4906529 | 5839211 | 6740594 | 7657853 | 8575347 | 9493075
2 2665707 | 3937249 | 5208757 | 6481330 | 7754254 | 9029398 | 10302445 | 11576590 | 12851086
3 3125388 | 4813598 | 6500051 | 8204563 | 9878714 | 11568429 | 13273542 | 14949149 | 16640992
4 3384653 | 5514963 | 7614702 | 9715805 | 11817699 | 13920188 | 16023238 | 18126993 | 20231404
5 3497380 | 6055547 | 8571281 11086227 | 13617833 | 16120191 | 18609243 | 21157598 | 23663326
6 3515706 | 6442044 | 9353608 | 12281743 | 15210934 | 18141836 | 21042406 | 24004724 | 26953125
7 3297068 | 6635919 | 9932698 | 13319201 | 16587845 | 20022563 | 23323736 | 26716148 | 30049877
8 2025568 | 6663405 | 10843283 | 14185407 | 17941733 | 21699664 | 25459145 | 29220176 | 32982758
9 2390432 | 6541064 | 10736967 | 14889765 | 19059887 | 23217734 | 27361583 | 31476531 | 35758914
10 1659823 | 6055547 | 10843283 | 15423243 | 20005551 | 24589711 | 29176113 | 33719694 | 38355335

Table 5.2: Gas consumption of interaction with Request functionality.

k Tsub a; dz
3 block.number | [Tsu,500] | [a; + k,min(a; + 10,500]
l; inv_cap_i i bi(+)

[1,min(d; — a; + 1,5)] | [100,10000] [1,2] ;i * inv_cap; * l;

Table 5.3: Implementation configuration

5.4.3 Financial overhead

We have computed the proposed protocol’s financial overhead by varying the requests re-
ceived by the DeOAA. We consider () = 10* (i.e., the provider can host up to 10* VMs
simultaneously). All the bidding parameters are uniformly distributed, and their possible
ranges are presented in Table 5.3. Figure 5.5 shows the financial overhead of DeOAA
compared with the results obtained without DeOAA. Let E and Ep.oaa be the sum
of all payments paid by users without DeOAA and with DeOAA respectively such that
Epeoas = E—Cost(Request+ Avail + Acknowledge). Observe that the ratios are closer
to 1, which means the financial overhead of deploying an online auction using a smart con-

tract is minimal’.

5.4.4 Deploying on Ropsten test network

We have also deployed DeO A A in Ethereum Ropsten test network, interacted with the de-
ployed contract and the transaction hashes / address are given in Table 5.4. The transactions

can be verified using the transaction address at https://ropsten.etherscan.io/. We have tested

3We have taken the payment, valuation, cost of a VM and transaction cost in U.S. dollars($). The fractional
part of the values in Figure 5.5 may change depending on the denomination of the currency.

151

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

0.99985

0.99980

0.99975

E/Epeoaa

0.99970 :

—e— QOverhead ratio

0.99965 : ‘ ‘ : : :
8 16 32 64 128 256 512

Number of requests

Figure 5.5: Financial overhead of DeOAA

the contract for four cases. The contract deployment and create functionalities are called
only once, and the remaining functionalities are called according to the test case. All the
test cases have the same input to Request functionality. We have taken (d; — a;) = 5 and
[; = 4. Test case 1 is similar to case 4 in theorem 5.3.2 where both C'P and C'U; are honest.
In test case 2, the user aborts after learning the usage fee and allocation decision. In test
case 3, similar to case 1 in theorem 5.3.2, the C'P acts maliciously and do not allocate VMs
to C'U;. So, CU; calls the Abrogate functionality to retrieve the usage fee he paid earlier.
In test case 4, C'P call the Abrogate functionality as C'U; fails to send an acknowledgement

and fails to call Abrogate functionality.

5.5 Comparison with existing works

The comparison of the existing smart contract-based auctions with our proposed method is
presented in Table 5.5. No existing methods support online auctions. In existing methods,
the smart contract has to collect all users’ requests and then decide the allocation and price
of item / goods. Except [106], no method supports fair payments. In existing method,
the cloud service provider receives payment without delivering goods, or the bidder re-

ceives goods without paying. Observe that our method does not provide privacy because

152

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Test Function Transaction hash/address
cases
Contract
0xe3a93b4230103826250689267ee64fb71bd8299452e8aec3f6b0818625a35818
Deployemnt

Create 0x9cf1f8c7e124£43118478e11fc271f3468d3853b8b262443232b466a57b94f76

Request 0xc39e72a99b3f5b8cd64a46e359820681c2512¢1f7ab9b0322c2c41845a19d0al

Avail 0x8fa2cefb5095cd064b0bale24d11cff35db3329¢2a2d5f5037d239707299d049
Case 1 0x4152ec82a9¢7e0e985065418a668ac207ba775e8ce830a21196b28f7ddddb0b0
Acknowledge 0x231ce9d8868e877afbb7b9cae240cc0ef83f9dbe3fdbe70d90bec34fd0b36859
Oxe51a8d7a09cfa93c232e1981bcde6496edf0dad572026f46b85¢85279b754e3b
0x43806098c7884e8bc8e27d4000d28fc33f1a04c06378c54c08a2db9e1fdb4965

Case 2 Request 0x2917542fec7aa03c17b0c0ef88e14ddb34766c2b630051£72474e7cf9b7256¢3
Free 0xcb562eb8e47f3cd7db6058e0b8f6ebb09dd8e63d30ce48b9ac215a9d9accabbe

Request 0x13209¢72a5f042cbb646cf6e038c927eaabebd559544ad61af14ed4bdcbl4ecal

Case 3 Avail Oxa4f45ab2fd7e3d4479f03ac33d4d74c833f851¢2803b361d78d0b5a687143be9
Acknowledge | 0xdbc85129925b8b5bbec7f6474afe5c330677d93bb3001b595¢2b461e3b409105

Abrogate 0x6de4d605ab3bf6ealff7cb2cbd4becd1c7b53£773011829238cf90c19840a950

Request 0xf4176¢7d921937b09336ca35c¢d8e01c9c0923854c7t054549d76648fa3c853de

Case 4 Avail 0x3fbf6922c048bf5437e867d965b62beb6dffdc5e41918136a1f17d615aa2e9ebe

Acknowledge | 0x15a017c546ba5c2ecc6d3ee5boclad8dfa23e2f32ada3c2a2bb7191dd41fc5e7
Abrogate 0x35561ea38c509db15b14eb9adc7b2544d64372110a9d8951748a9dd2de2b671f

Table 5.4: Transactions on Ethereum Ropsten test network

our scheme is online, which process bids instantly. Instant processing requires bids with-

out applying encryption / hashing. Another reason for lack of privacy is that our auction

algorithm is truthful, which means bidder revealing his true valuation will maximize his

utility [119]. So, a malicious bidder cannot maximize his utility by copying other bidder’s

valuation. In some cases, the bidder does not want to reveal his bid to competitors. To

achieve this, a bidder has to trust the semi-honest auctioneer similar to Galal et al. [205].

However, due to the lack of semi-honest auctioneer, our method cannot provide privacy.

153

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Method Auction Type Trading Privacy Truthful | Online Fair Pay-
Item ments

Hahn er | Vickrey Energy Timed Com- | No No No
al. [206] mitments
Chen et | Vickrey Generic Timed Com- | No No No
al. [207] mitments
Wuetal. | Collusion resis- | Generic Timed Com- | Yes No No
[208] tant Vickrey mitments
Braghin English, Dutch, | Generic Timed Com- | No No No
et al. | FPSB and Vick- mitments
[209] rey
Galal er | FPSB Generic ZKP No No No
al. [205]
Thakur Double Energy No No No No
et al.
[210]
Blass et | FPSB Generic Goldwasser- No No No
al. [211] Micali encryp-

tion and ZKP
Galal Vickrey Generic Trusted execu- | No No No
[212] tion environ-

ment
Hassija Double Supply- No No No No
et al. chain
[213]
ZavodovsKi Double Generic Timed- No No No
et Commitments
al.[104]
Chen et | Combinatorial Cloud VM Timed- Yes No Yes
al.[106] Commitments
Proposed | Online Cloud VM No Yes Yes Yes
model

Table 5.5: Comparison of proposed method with existing smart contract-based auction
methods.

5.6 Summary

We have designed a decentralized protocol for fair payments in the online cloud auction.
Our protocol shows that the untrusted resource allocator in traditional online auction proto-
cols can be replaced by smart contracts running on a public Blockchain network. Moreover,
our protocol guarantees the correctness of the auction algorithm and fair payments with-
out any trusted intermediaries. We have shown our protocol’s feasibility by deploying the
designed smart contract on a private Ethereum network and listed the transactional and fi-

nancial cost of interacting with smart contracts.

154

Chapter 6

Fair Payment Protocol for Data
de-duplication under

Infrastructure-as-a-Service

With the advent of cloud computing, outsourcing data to a remote cloud storage servers has
become a common practice [33]. However, most of the data being uploaded is redundant
[101] and thus wasting large storage spaces. Storage systems use de-duplication (dedup)
techniques to eliminate redundancy. Dedup eliminates the need to upload and store redun-
dant data by verifying whether a data already exists in a cloud storage before each upload.
If the check is valid, then the data is not uploaded, and simply the corresponding cloud
user account is added to the existing file. The file link is sent to the requested user upon
successful verification of Proof-of-Ownership.

Although there are many advantages, dedup introduces interesting challenges. First, to
prevent a cloud provider from accessing sensitive information, it is common for cloud users
to encrypt their data. If the data is encrypted using conventional encryption techniques,
it is difficult to apply de-duplication techniques. Two identical files encrypted with two
different keys generate two different cipher-texts which cannot be compared for similarity.
Encrypted data dedup schemes are proposed based on convergent encryption [214, 215,
216, 217], secret sharing [218], proof-of-ownerships [219], keyword search [220], and

password-authenticated key exchange [218].

155

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Second, it is clear that the greatest beneficiary of the dedup is the cloud provider as
it saves storage cost. It is required to motivate cloud users to opt for dedup by offering
incentives / discounts on storage fee. Although several schemes are proposed for secure
de-duplication in literature, only a few schemes [221, 222, 223, 224, 225, 93] discuss the
incentives in de-duplication.

Even though the best encryption and incentive mechanisms are available, the cloud
provider has to be trusted by the cloud user for fair computation of storage fee or a trusted
party has to be recruited for computing storage fee correctly. However, hiring a trusted
party is costly and finding an ideal trusted party that will behave honestly is difficult. The
recent progress in Blockchain technology allows a public Blockchain network to emulate
the properties of a trusted party. The public Blockchain network is trusted for the im-
mutability of data it possesses, the correctness of the code (smart contract) execution in its
environment and its availability.

This Chapter proposes a new Blockchain-based secure cloud storage system where no
party can influence the computation of storage fee, and the proposed scheme also provides
fair payments. We guarantee correct computation of storage fee even if the cloud provider
is untrusted and cloud users are selfish. We employ a convergent encryption (CE) scheme
for providing secrecy and a proof-of-ownership (PoP) scheme for proving ownership of
duplicated data by a cloud user. Both CE and PoP schemes are black-boxes in our model,
and we solely focus on designing a Blockchain-based secure cloud storage system with
new incentive mechanism.

We summarize the contributions of this Chapter as follows:

(a) The contributions in this Chapter are two-fold: First, we design a new incentive
mechanism, and second, we design a new Blockchain-based dedup scheme by lever-
aging the immutability, trust, and correctness properties of a public Blockchain net-

work.

(b) The proposed incentive mechanism motivates the cloud users to choose dedup while
ensuring profits for cloud provider. Experimental analysis shows that the proposed

incentive mechanism is individually rational and incentive compatible for both users

156

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

and cloud provider.

(c) As most of the existing schemes focus on secure de-duplication, we have proposed
a dedup scheme which emphasizes correctness of dedup rate and fair payments be-
tween cloud user and cloud providers. We design a smart contract to realize the

correctness and fairness of the proposed scheme.

(d) We have implemented the proposed smart contracts using solidity and executed them
on a private Ethereum network which emulates the public Ethereum network. We
have tested the proposed smart contract for the publicly available dataset and pre-

sented the transactional and financial costs of interacting with the smart contract.

6.1 Data de-duplication model

Let S = {C,U} be the cloud storage system with a smart contract Bpgpy running on
a public Blockchain network BC' where C = {C'Py,CP,...,CPs} is the set of cloud
providers, and Y = {CU;, CUs, ..., CUy} is the set of cloud users.

Cloud providers provide data storage service to cloud users. If a cloud provider receives
a data storage request from a cloud user, it will check whether any cloud user has previously
stored the same data in its storage. If the check is negative, then it will ask the user to
encrypt and upload the data. Otherwise, it will ask the user to send proof-of-ownership of
the data. In both the cases, the cloud provider sends a file link to the user to access the
stored file.

Many cloud users may exist in the system, and some may request to store the same
data. If they all accept the de-duplication, then only one copy of that data is stored in the
cloud. Let D = {dy,ds, ...,dp} be the set of data files that the users may wish to store in
the cloud. Each d € D belongs to at least one user. Let NS (¢) represent the number of
users having the same data d at time ¢, therefore, NSF(t) > 1 and Xgep Ny = U.

A smart contract Bpppy facilitates fair payments. It assures the users for a correct
dedup rate (based on which the storage fee is computed) and assures the cloud providers

for a fair payment.

157

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

A public Blockchain network BC' is maintained by a set of peers known as miners who

will execute the Bpgpy according to an underlying consensus algorithm.

6.1.1 Convergent Encryption (CE)

A convergent encryption method consists of four algorithms.

(a) K < KeyGencg(d). The key generation algorithm takes the data file d as input and

outputs a convergent key K.

(b) C <+ Encryptop(K,d). The symmetric encryption algorithm takes the convergent

key K and the file d as input and generates a cipher-text C' as output.

(¢c) d <+ Decryptcp(K,C). The decryption algorithm takes both the convergent key K

and cipher-text C' as input and outputs the original file d.

(d) tag < TGcp(C). TG is a tag generation algorithm which takes the cipher-text C

as input and outputs a hash value tag.

6.1.2 Economic model

Both the cloud provider and user are rational, and they try to maximize their utility, and the

utility is based on their interactions with the proposed system.

6.1.2.1 Utility of Cloud user

Let a cloud user CU € U stores data d € D at a cloud managed by a cloud provider
CP € C. Let Ul (t) and U} (¢) be the utilities of CU when he does not adopt dedup and

adopt dedup with Bpgpy, respectively.
Uly(t) = Peu(t) — SEGL (t). ©6.1)

Where Pcp(t) is the profit earned by storing data in cloud, SFSE () is the storage fee CU

has to pay to C'P.

158

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Now let us define the utility of a user when dedup with Bpgpy is adopted.

SFG (t)

 pCPpy
nCP) EFgy (t) — Icu(t) (6.2)

Ucy(t) = Peu(t) -

Where n§'(t) is the data dedup rate at CP, i.e., the number of users having data d opted for
dedup before C'P receives C'U’s request. In our model, the fee depends on two parameters
(1) Storage fee (SFSF (t)) - computed according to the current dedup rate and (2) Extra
fee (EFSE (1)) - a cost paid by the user apart from storage fee to make the cloud incentive

compatible. The cost of interacting with the smart contract is represented with Iy ().

6.1.2.2 Utility of cloud provider

Let U2 5(t) be the utility of a cloud provider when dedup is not adopted.

Ubp(t) =Y NGP(t) = (SEGE () — SCER(t)) (6.3)
deD

where N7 (t) is the number users having data d € D. SFSE (t) is the storage fee received
by C'P and SCEY(t) is the cost incurred to C'P for storing data.

Let U5 (t) be the utility of cloud provider when dedup with Bpgpy is adopted.

Ubp(t) =D (NG(t) =ng"(t) + 1) * (SEG) (1) — SCER (L))

deD
+) nGP(t) « EFGS(t) =Y NGP () # Iop(t) = Liepioy(t)
deD deD
6.4)
where I2%'Y () is the cost of deploying smart contract and I¢p(t) is the cost of interacting

with smart contract.

The summary of cloud user and cloud provider utilities are given in Table 6.1.

Definition 6.1.1. A fair data de-duplication protocol must provide the following guaran-

tees:
(a) Individually rational (IR-constraint): An incentive mechanism is said to be individu-

159

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

without dedup dedup with Bpgpy

0 _ 1 _ SFEL(®) cp
Cloud Uou(t) = Peu(t) — | Ubu(t) = Poult) — Sy — BFGo (1) —
user SFSE(t) Ieu(t)
Cloud Uep(t) = 2gep Ny T () * | Ubp(t) = 2 yen(NGT(t) — ng"(t) + 1) *
provider | (SF&J (t) — SCEp(t)) (SFGE () — SCER (1))
+ 2 gep g (1) % EFSS ()
- Zdep Ndcp(t) * Iop(t) — Laeploy

Table 6.1: Utilities of cloud user and cloud provider

ally rational if a rational user / cloud provider choosing de-duplication with Bpgpu
obtains a non-negative utility. That is Yu € U with Bpgpy Uly(t) > 0 and Ve € C
Ubp(t) > 0.

(b) Incentive-compatibility (IC-constraint): An incentive mechanism is said to be incentive-
compatible if the cloud provider or cloud users cannot gain more profits from not
adopting dedup. The best strategy for a cloud user is to opt de-duplication with
Bpgpu. That isVu € U Uk, (t) — UL, (t) > 0. The cloud provider obtains more
profits by choosing de-duplication with Bpgpy. That isVc € C ULp(t) — Udp(t) >
0.

(c) Correctness: A dedup protocol is said to be correct if the storage fee for any user is
defined by the following three factors: (1) size of the data to be stored (2) dedup rate
and (3) auxiliary pricing function p(|d|) at time t set by the cloud provider. In other
words, no party (cloud provider / cloud users / miners) should influence the storage

fee to be paid by the user except the above three factors.

(d) Uniform payments: A dedup protocol is said to be uniform if every user holding data

d at C'P pays the same storage fee irrespective of when their request arrives.

(e) Fair payments: A dedup protocol is fair if an honest cloud provider receives storage
fee if and only if an honest user receives the file link of the data stored in the cloud

managed by the cloud provider.

160

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

6.2 Proposed incentive mechanism

To make a cloud provider incentive-compatible, we introduced a new parameter £F in
Equation (6.2). In this section, we find the minimum and maximum values of EFS[(t) so
that a user / cloud provider obtains non-negative utility when opted for dedup with Bpgpy.
According to the IC-Constraint in Definition 6.1.1, a cloud provider C'P is said to be in-

centive compatible if

Uep(t) = Ugp(t) >0 (6.5)

Substituting the utilities from Table 6.1 in Equation (6.5)

D (NGP() = ng" () + 1) * (SFEF (1) — £) + Y _ng"(t)* EFGS (1)
deD deD
= D NG Lep(t) = Lapioy (1) = D NG () * (SFGH (t) = SCEE() 2 0
deD deD

Assuming the cost of interacting with Bpgrpy is negligible when compared to SFSE (t)

and SCSY(t), we have

D (NGP(t) = nGP(t) + 1)+ (SES () —)+ > nGF(t)« EFSL(t)
deD deD
=Y (NG (1) = (SESS (t) — SCER(t) > 0
deD

For a single data file we have
(1= ng"(8)) * (SFE (t) — SCER(1)) +ng " (t) x EFEy (t) > 0

ng" (1) % EFGy () 2 (ng" (t) — 1) = (SFGy () — SCEp (1))

ngP()_1

« (SFE[(t) — SCER(L)) (6.6)

Now, we find the maximum value of EFSF (t) so that a user is incentive-compatible when

opted for dedup with Bpgpy. According to the IC-Constraint in definition (b), a user CU

161

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

is said to be incentive-compatible if
Ubu(t) = Usy(t) = 0 (6.7)

Substituting the utilities from Table 6.1 in Equation (6.7)

SFG (t)

P EFEE(t) — Icu(t) — Pou(t) + SF&E () > 0

Pey(t) —

Assuming the cost of interacting with Bpgpy is negligible when compared to SFSE (t),

we have
SFSE(t
sEGEw - Sree W prgrn > o
ng (t)
nSP(t) —1
EFSE(t) < % * SESE (1) (6.8)
d

From (6.6) and (6.8) the minimum and maximum values of F Fgg (t) are set as

nSP(t) — 1 nSP(t) — 1
ErSE@) = | "L D=L srgre - seshn, "L 0 L sEsr)| 69
ng*(t) ng (t)
when the cost of interacting with Bpgpy 1s considered then
EFCP _ TLgP(t) —1 SFCP SCCU cprP I I
cu (t) = TRCP() * (SFoy (1) — SCap () + (ng™ () * Lop(t)) + Laepioy,
nSP(t) —1
(“or— c(p) « SF&G (1) + Ieu ()| (6.10)
ng " (t)

6.2.1 Blockchain-based de-duplication protocol

In this section, we discuss a Blockchain-based cloud storage system which consists of a
smart contract Bpppy, a protocol to interact with Bpppp and a public Blockchain network
to deploy Bprpy. At the end of the section, we provide an analysis of our proposed smart

contract.

162

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

6.3 Fair data de-duplication method

6.3.1 Assumptions

(a) We assume that there are no unintentional system failures that may affect the cloud

provider and the user’s utilities.

(b) The cloud provider, the cloud, the smart contract and the Blockchain network are

available all the time.

6.3.2 Bpgpy contract clauses

Bpgepu is a contract between a cloud provider C'P and a cloud user CU. The high-level
idea is that if both C'P and C'U are honest, then C' P will receive the fee' paid by CU and
CU will receive the file link to access his / her file in the cloud managed by C'P. The fee

is computed according to rules encoded in Bpgpy contract.

The clauses in the Bpgpy contract are as follows:
(1) All parties agree on timing parameters 7, < T.; < T.2 and two payment parame-
ters: SFSE(t) and EESE ().

(i) C'P creates a smart contract (Bpgpy) for facilitating payments for cloud storage
de-duplication. C'P deploys the Bpgrpy on a public Blockchain network and an-
nounces the smart contract address and smart contract ABI on a public platform
(like a website / bulletin board).

(iii) After verifying the contract details at the contract address, a user C'U if willing to
store data at cloud managed by C'P, has to send a request to Bpgpy along with
some safety deposit $d. This safe deposit is required to penalize C'U for sending
false requests. C'U’s request includes a tag computed from the encrypted file,
and length of the file in bits.

(iv) After receiving the request, Bprpy checks whether the tag sent by CU is re-

SFEE(t)*|d]

ceived previously. If the check is valid, it will compute the fee as (nCP ()
d

+

"From here on we call the amount paid by CU as fee which includes both SES (¢) and EFSE (t) values.

163

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

v)

(vi)

(vii)

EFSE(t)) and send this information to CU. Otherwise, it will compute the fee
as SEC(t) |d|+EFSE (t) and sends it to CU. |d| is the length of the data to be
stored in bits.
CU must send the fee to Bpgpy before 7 > 7,. If CU fails, then his deposit $d
is sent to C'P, and the request is marked as terminated. Otherwise, CU’s deposit
$d is refunded.
C'P has to send the confirmation message to Bpgpy before 7 > 7., acknowledg-
ing the receipt of file or correct PoP . Otherwise, the fee paid by C'U is refunded,
and the request is marked as terminated. C'P should send the file link with cor-
rect access rights to C'U.
C'U has to send the confirmation message to Bpgpy before 7 > 7. acknowl-
edging the receipt of file link. Otherwise, the fee paid by C'U is refunded. If CU
has sent the confirmation message before 7 > 7. then,
(a) if CU is the first uploader of d then the fee is sent to C'P.
(b) if CU is not the first uploader of d, then the EFS[(t) part of fee is sent to
CP and the SFSE (t) part of fee is distributed equally among all the users
who hold the file link of d before C'U. In either case, the request is marked

as terminated and the value of n§” (t) is incremented.

6.3.3

Bpgpu protocol

Bpepy protocol is presented in Figure 6.1. Bpppy smart contract functionalities executed

by Blockchain are presented as Algorithms 6.19 to 6.26.

A CP initializes the parameters SF' and E'F' by invoking Algorithm 6.19. C'P sets

these parameters according to current storage costs and utility. If storage costs vary in

future, he can change SF' and F'F values according to new storage costs. The parameter

interval is required to compute timing parameters 7,, 7.; and 7. These timing parameters

are required for timely computation of protocol and avoiding indefinite locking of funds in

the contract. A C'U sends his storage request to BC' invoking Algorithm 6.21. His request

consists of parameters like tag, |d| and $d. tag is computed using a convergent encryption

algorithm, and |d| is the length of the file requested for storage and $d is a safety deposit.

164

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Algorithm 6.21 computes the pays in two ways. If the tag sent by C'U already exists and
is in an active state at cloud maintained by C'P, then pay is computed according to the
current discounted storage fee of file F' with tag tag. Otherwise, the pay is computed as

pay = SFx|d|+EF. Depending on the behavior of the user, there are two cases as follows:

Case 1: C'U has sent the storage fee to BC' invoking Algorithm 6.21. Depending on the

behavior of the user, there are five cases as follows:

Case 1.1: CU has sent the correct file d > to C'P. Depending on the behavior of C'P,

there are four cases as follows:

Case 1.1.1: C'P has sent the confirmation message to BC' invoking Algorithm

6.22. Depending on the behavior of C' P, there are two cases as follows:

Case 1.1.1.1: C'P has sent the file link to C'U. Depending on the behavior of

the C'U, there are two cases as follows:

Case 1.1.1.1.1: CU has sent the confirmation message to BC' invoking
Algorithm 6.23. In this case, if file d is not previously stored at C'P, then
all the pay is sent to C'P. Otherwise, the number of owners currently
having a link to file d is calculated, and pay is divided into rem and D F
components. rem is distributed among the file owners equally, and D F'is
sent to C'P. The new pay to be paid by the next de-duplication requester

is computed and stored at contract storage.

Case 1.1.1.1.2: C'U has failed to send the confirmation message. This case
occurs when C'U has not received the file link from C'P or C'U intention-
ally / unintentionally fail to send a confirmation message. In this case, the
C'P can invalidate the link sent to C'U and C'U can send a transaction to

BC invoking Algorithm 6.24, which refunds pay to C'U.

Case 1.1.1.2: C'P has failed to send the file link to CU. This case is similar
to case 1.1.1.1.2 where C'U can obtain a refund by invoking Algorithm 6.24.

’The correctness of the file is verified using the tag, based on which the payment is computed in Algorithm
6.20.

165

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Case 1.1.2: C'P has failed to send the confirmation message to BC'. This case
is similar to case 1.1.1.1.2 where C'U can obtain a refund by invoking Algorithm
6.24.
Case 1.2: CU has sent the incorrect file to C'P. In this case, the C'P discards the CU’s
request and will not send any further transactions. C'U can obtain its pay invoking
Algorithm 6.24.
Case 1.3: C'U has sent the correct proof-of-possession to C'P. In this case, C'P adds
C'U to the list of owners of file d and sends the file link to C'U. From now on this case
proceeds similarly to case 1.1.1.1.
Case 1.4: C'U has sent the incorrect proof-of-possession to C'P. This case is similar
to case 1.2.
Case 1.5: C'U neither sends file nor proof-of-possession to C'P. This case is similar

to case 1.2.

Case 2: C'U has failed to send the storage fee. In this case, C'P sends a transaction to BC'

invoking Algorithm 6.25 to claim C'U’s deposit.

Bpepu protocol

Let (KeyGencg, Encryptop, Decryptep, TGop) be a secure convergent encryp-
tion method.
For cloud storage provider C'P
1. To set up storage fee send trans’ =
2. After receiving a storage request
(a) Assert that CU has sent $pay to BC with the same tag
(b) Send transcspcon s =(tag, reqNum) to BC'
(c) Store d and send the file link (tag, regNum, L) to user C'U.
3. After receiving ("proof”, PoP, tag, reqNum) from user CU.
(a) Assert that PoP is the correct proof for tag
(b) Assert that CU has sent $pay to BC' with the same tag.
(c) Send transcspcon s = (tag, regNum) to BC.
(d) Store d or add C'U to the user list of d and send file link (tag, regNum,
L) to user CU
4. To claim the storage fee send trans(’. = (tag, regqNum) to BC.
5. After receiving a delink request (tag, reqNum, L) from user CU

= (SPay, EPay, interval) to BC.

166

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

(a) Assert that C'U has sent ”deLink” message to BC' with same tag and
reqNum.
(b) Disable the link L for CU or remove d if no other users have active links
tod
For user C'U
6. To send a storage request
(a) Compute K + KeyGencg(d).
(b) Set C' + Encryptcor(K,d).
(c) Settag + TGep(C).
(d) Send trans(Y .., = (tag, |d|, $d) to BC.
7. To send storage fee
(a) Assert that a request message has sent earlier with the same tag.
(b) Send trans{,[= (tag, reqNum, $pay) to BC
(c) If SF x |d|+EF = pay, then send file (d, tag, reqgNum) to C'P. Other-
wise send the proof of possession (PoP, tag, regNum) to C'P.
8. To confirm receiving file link
(a) Assert that L is a correct link to File d.
(b) Assert that C'P has sent “cspConf” message to BC' with the same tag.
(c) Send trans(' ., . = (tag, regNum) to BC.

9. To request a refund send transTCe{;""d = (tag, reqNum) to BC.
10. To delink a file
(a) Send trans$y ; , = (tag, reqNum) to BC.
(b) Send (tag, regNum, L) to C'P.
Blockchain BC: SF :=0, EF :=0,uTAB :={},k:=0
11. On receiving transC? . execute Bp.q,.create(SPay, EPay, interval)
12. On receiving transC.V, . execute Bp.q,.request(tag,|d|, $d)
13. On receiving transgag execute Bpeg,-pay(tag, regNum, $pay)
14. On receiving transccf Conf €Xecute Bpegy.cspConf(tag, regNum)
15. On receiving transg,, ., ; execute Bpcqy.usrCon f(tag, regNum)

refund

16. On receiving trans;;, """ execute Bp.q,.refund(tag, regNum)

17. On receiving trans”, execute Bpeg,.claim(tag, reqgNum)

18. On receiving trans$y , . execute Bp.g,.deLink(tag, regNum)

Figure 6.1: Bpeg, protocol

Algorithm 6.19 Bp.4,.create

Input: SPay, EPay, interval
Output: ¢

1: Set SF < SPay

2: Set EF < EPay

3: Set k « interval

167

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Algorithm 6.20 Bp.4,.request

Input: tag, |d|, $d
Output: Success or failure message along with pay and timing parameters

1: if ledger[u] > $d then

2 Set ledger(u] < ledger[u] — $d

3 if (tag, x, %,) € uT'AB then

4 if 3 request(x, x, *, x, %, active, x, %) € uT AB[tag] then
5: Set pay < uT ABltag].cPay

6 else

7 set pay « SF * |d|[+EF

8: else

9: Set pay < SF x |d|+EF
10: Set numReq < 0
11: Set uT'AB <+ uT AB U (tag, numReq, %, *)

12: Set I D < u, rState < waitForPay

13: Set $paid + 0, regNum <« uT AB[tag].numReq

14: Set Toup < T, Tp < Tsup + K, Ter Tp + K, Teo < Te1 + F

15: Set uT'ABltag].requests < uIT AB[tag|.requests U (ID, Tsub, Tp, Te1, Tea, TState, pay, $paid)
16: Set uT ABltag|.cPay <+ pay

17: Set uT ABltag].numReq < uT AB[tag].numReq + 1

18: return (Success, tag, SF, pay, regNum, Ty, Tc1, Te2)

19: else return (Failure, Not enough balance)

Algorithm 6.21 Bp.4,.pay

Input: tag, reqgNum, $pay
Output: Success or failure message

1: if 7 < 7, then
2: if uT AB[tag].requests|reqNum].ID = u then
3: if uT AB[tag].requests[reqNum|.pay > $pay then
4: if uT ABltag].requests[regNum].r State := waitFor Pay then
5: if ledger|u] > $pay then
6: Set ledger|u] <+ ledger|u] — $pay
7: Set uT' ABltag].requests|regNum].$paid < $pay
8: Set ledger|u] + ledger|u] + uT ABltag].requests[reqNum].$d
9: Set uT ABltag].requests[reqNum].rState < waitForcloudproviderCon f
10: return (Success, Pay success)
11: else return (Failure, Not enough balance)
12: else return (Failure, Request state is not wait F'or Pay)
13: else return (Failure, Not enough pay)
14: else return (Failure, Wrong user)

15: else return (Failure, Pay timeout)

168

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Algorithm 6.22 Bp.4,.cspCon f

1:
2
3:
4.
5
6:

Input: tag, reqgNum
Output: Success or failure message
if 7 < 7.; then
if uT AB[tag].requests[reqNum]|.rState = wait ForcloudproviderCon f then
Set uT ABltag|.requests[reqNum].rState + waitForCliCon f
return (Success, Provider confirmation success)
else return (Failure, Request state is not wait ForcloudproviderConf)

else return (Failure, Provider confirmation timeout)

Algorithm 6.23 Bp.4,.usrCon f

16:
17:

18:
19:

20:
21:

AN A ol

Input: tag, reqgNum
Output: Success or failure message
if 7 < 7.5 then
if uT AB[tag].requests[reqNum|.ID = u then
if uT AB[tag].requests[regNum)|.r State = wait ForCliConf then
foreach i € [0, uT AB[tag].numReq — 2] do
if uT ABltag].requests[i].rState = active then
Set active Requests < active Requests + 1
if active Requests = O then
Set ledger|c] < ledger|c] + uT AB[tag].requests[r Num)|.$paid
else
Set $rem < uT AB[tag].requests[reqNum].$paid — EF
Set $DF < uT AB|[tag].requests[regNum].$paid — $rem
Set ledger][c] < ledger|c] + $DF
foreach i € [0, activeRequests] do
if uT AB[tag].requests|i].rState = active then

Set ledger[uT AB[tag].requests[i].I D] < ledger[uT ABltag).requestsli].1 D]
$rem
|

activeRequests

Set uT' ABJtag].cPay + —acti1JeRi§1‘Lests+2 + EF

Set uT ABltag].requests[reqNum].rState < active

return (Success, User confirmation success)
else return (Failure, Request state is not wait ForCliCon f)

else return (Failure, Wrong user)
else return (Failure, User confirmation timeout)

Algorithm 6.24 Bp.4,.refund

N =

i

Input: tag, regNum
Output: Success or failure message

. if uT' AB[tag|.requests[regNum].ID = u then
: if (7 > 7.1 && uT AB[tag|.requests[reqNum].rState = wait ForcloudproviderConf) || (1 >
Tea && uT ABltag].requests[reqNum].rState = wait ForCliConf)) then
Set ledger[uT AB[tag].requests[regNum].I D] < ledger[uT AB[tag].requests[reqNum]|.ID]
+ uT ABltag].requests[reqgNum].$paid
return (Success, refund success)
else return (Failure, Refund timeout)
else return (Failure, Wrong user)

169

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Algorithm 6.25 Bp.4,,.claim

Input: tag, reqgNum

Output: Success or failure message

if 7 > 7,&&uT ABltag|.requests[regNum].rState := wait For Pay then
Set ledger|c] < ledger|c] + T AB[tag].requests[reqNum]|.$d
return (Success, Claim success)

else return (Failure, Claim timeout)

Rz

Algorithm 6.26 Bp.4,.deLink

Input: tag, regNum

Output: Success or failure message
1: if uT' AB[tag].requests[regNum|.ID = u then
2 if uT AB[tag].requests[reqgNum].rState = active then
3 Set uT' ABltag|.requests[reqNum].rState < inActive
4: return (Success, DeLink Success)
5
6:

else return (Failure, Request state is not active)
else return (Failure, Wrong user)

6.3.4 Proofs of Bprpy

Theorem 6.3.1. Proposed protocol satisfies correctness

Let contract-Bpgpy is deployed on a Nakamoto-style Blockchain network using Proof-
of-Work as a consensus algorithm. Let b be the current block of the blockchain which is
extended by block b; and then by block by. Let t2;cquest and tx,,, be the request and pay
transactions respectively initiated by a user CU. tZ,¢quest and tx,,, are eventually embed-
ded in b; and by, respectively. We will prove the correctness by considering the following
cases.

Case 1: A user C'U influences the execution of the request functionality to decrease the

fee f to be paid by him. This can happen if C'U assumes the role of a miner and pre-mines

/

/ . . .
request and 1z, transactions respectively with a

two blocks b, and b, that contain the ¢z
modified fee f'. Observe that in this case, CU does not broadcast tx;equest to the network.
Now CU broadcast b, extending b and b, extending b, to the Blockchain network. All the
other miners in the Blockchain network verify every transaction in b, and extends b; if and

only if all the outputs of every transaction in b/1 are correct. As the output of {2,cqyest 18 f

but not f’ the miners discard the block b;. As b, is extending the wrong block b/, it is also

170

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

discarded. Miners with at least 51% of hash-rate cumulatively required to guarantee the
correctness of the transactions in the block.

Case 2: C'U broadcasts tZ,¢quest but pre-mines b; that contains tx;ay transaction with
modified fee f'. In this case, the actual fee f to be paid by CU is already stored in the
contract storage. Therefore, during verification of the tx;my in b,, the f received through
tx;my is compared against the stored value. The comparison will fail, and the block b, is
discarded.

Case 3: A cloud storage provider C'P influences the execution of request functionality
to increase the fee to be paid by C'U. This case is similar to Case 1 except that now C'P
assumes the role of a miner and broadcasts b, consisting the modified fee.

Similarly, all the transactions with Bpgpy are executed correctly; otherwise, those
transactions are rejected. Nevertheless, C' P or C'U can influence some miners to include
the wrong blocks to their local ledger and generate new blocks extending these wrong
blocks. However, C P or C'U should accumulate more than 50% of hash rate to make the
entire network to accept wrong blocks which is difficult unless they have large mining pools
under their control [204].

In summary, as the miners in public Blockchain networks are reasonably assumed to
act honestly for the common good and follow the rules encoded in consensus algorithm, it
is difficult for C'P or C'U to make the network to accept wrong blocks. Considering the

above cases, our protocol satisfies correctness as defined in Definition 6.1.1.
Theorem 6.3.2. Proposed protocol satisfies fair payments

We prove fairness by considering the following cases.

Case 1: C'U is malicious and aborts after learning the fee he needs to pay. In this case,
according to Bpgpy contract clause (v), CU forfeits his deposit, and his data is not stored
in the cloud. Here, the C'U’s data cannot be stored in the cloud unless he pays the fee. Thus
the fairness holds.

Case 2: CU fails to send the data d or sends incorrect PoP to C'P. In this case,
according to Bpgpy contract clause (vi), C'P refuses to acknowledge the receipt of d /

PoP and the fee paid by C'U is refunded. Here, the C'U cannot obtain the storage link if

171

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

he fails to send the d or the correct PoP. Thus the fairness holds.

Case 3: C'P is malicious and does not acknowledge the receipt of d or correct PoP.
This case similar to Case 2. The fee paid by C'U is refunded. Here C'P cannot obtain the
fee without acknowledging the receipt of d or correct PoP. Thus the fairness holds.

Case 4: C'P is malicious and does not send the file link to C'U. In this case, according
to Bprpy contract clause (vii), CU will not acknowledge the receipt of file link. Then the
fee paid by CU is refunded. Here, C'P cannot obtain the fee without sending the file link
to C'U. Thus the fairness holds.

Case 5: C'U is malicious and do not acknowledge the receipt of the file link. This case
is similar to case 4. The fee paid by C'U is refunded. If C'P does not receive the fee, it
disables the file link sent to C'U. Here, C'U cannot store his data without acknowledging
the receipt of the file link. Thus the fairness holds.

In summary, considering the above cases, our protocol holds fairness.
Theorem 6.3.3. Proposed protocol satisfies uniform payments

According to clause (iv), the first user pays a fee of SFSF (t) + EFSE (t) 3. The second
user pays a fee of 2fcr® () + EF SF(t). Due to the second user, the first user gets a refund
of %() So at the end each user pays a fee of % + EESE(1).

The n'" user pays a fee of SFCU ® 4 EFSP(t) and due to the n'* user each of the

previous n — 1 users receive a refund of if(cn U_(l)) . At the end of n'" user’s payment, the first
SFESE (¢ SESE (¢ SESE (¢ SESE(t

user pays SFSH (1) + EFCP()— e St || Sl — STl 4 BRGR().

The second user pays 2ot () ()+ EF P() — %, s if(ip(l)) = SFCU W 4 BFSP ().

Similarly the (n — 1) user pays 2cz-) () ¢+ EFSE (1) — if(%}i(f)) — SFccnu() + EFSE(D). So,

every user having a data d opting for dedup with Bpgpy at C'P pays the same fee.
In summary, the proposed protocol satisfies uniform payments irrespective of when a

user submits his/her request.

3 Assuming |d|= 1.

172

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

6.4 Proposed Inter-cloud provider de-duplication proto-

col

In the previous section, we have proposed a dedup protocol with a single cloud provider.
This section proposes a Blockchain-based inter-cloud provider de-duplication protocol,
which consists of a root-level smart contract B;.prpy, a smart contract Bpgpi for each
cloud provider, protocols to interact with Bpgpy, and a public Blockchain network to de-

ploy the smart contracts.

6.4.1 Assumptions

(a) We assume that all the cloud providers charge the same SESY (t) and EFSE (t) val-

ucs.

(b) We assume that no cloud provider will collect extra fee other than SFSF (t) or
EFSE (t) for inter-cloud provider de-duplication. Inter-cloud provider de-duplication

is same as a single cloud provider de-duplication from the cloud users perspective.

(c) A cloud provider C P, pays a fee of AFF(t) to a cloud provider C P, for accessing

the data stored at C'P;.

6.4.2 BI-DEDU

The inter-cloud provider de-duplication is similar to single cloud provider de-duplication
except that now a root-level smart contract has information about tags of data stored in

different cloud providers.

The clauses in B;.pgpy are as follows:
(i) Anorganization O (like a consortium of cloud providers) creates a smart contract
to facilitate inter-cloud de-duplication. O designs and deploys the B;.pgpy on a
public Blockchain network and shares the smart contract address and ABI with
all the registered cloud providers®.

(i) Each cloud provider C'P; also deploys a smart contract B}, on a public

173

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

(iii)
(iv)

v)

(vi)

(vii)

(vii1)

(ix)

Blockchain network and announces the smart contract address and smart con-

tract ABI on a public platform (like a website / bulletin board) and also registers

B% ppy address with By pepy.

A user CU sends a request to B% ., similar to clause (3) in Section 6.3.2.

B ppy performs checks similar to clause (4) in Section 6.3.2. If the check is

valid, it will compute the fee to be paid by C'U according to the dedup rate and

sends this information to C'U. Otherwise, it will send a request containing tag

to Br.pEpu-

B1_pepu checks whether any cloud provider is holding data with the same tag. If

the check is not valid, it will return N/ A to B% ;- Then Bpgpy will compute

the fee as SFSE (t) x|d|+ EFSE () and send it to CU. Otherwise, Br.prpy will

send the information about the smart contract B}_;) gpy and cloud provider C'P;,

holding the data with tag.

If BY, ;0 receives the info about C'P;, then a request message is sent to B},

from B .. Then BY ., computes the fee according to the dedup rate and

sends it to B% 7, Which is then forward to user CU by B -

From here on, we assume that inter-cloud de-duplication is found and the con-

tract proceeds as follows:

If 7 > 7, and CU has not sent the fee to B}, 5, then BY, .y, also will not send

the fee to B{) gpu- CU’s deposit is forfeited. This deposit is sent to C'P; and the

request is marked as terminated by both BY, ., and Bb -

If 7 > 7., and C'P; has not sent the confirmation message to B}/, then the

fee paid by C'U is refunded, and the request is marked as terminated by both

Bpppy and Bhgpy-

If 7 > 7. and CU has not sent the confirmation message to Bh s, then
 zpy Will not send confirmation to B{) gpu- The fee paid by C'U is refunded.

Else, a fee AF“F(t) is sent to C'P; from C'P;, and the request is marked as ter-

minated by both BY, ., and Bb .

“We assume a registration phase is executed before deploying the smart contract and only registered
cloud providers can exchange messages with Br.pgpu

174

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

The analysis of B pppy 1s similar to Bpppy and all the properties satisfied by Bpgppy

are also satisfied by By pppy. The formal smart contract contract-B;.pgpy is presented

in Figure 6.2.
contract-Br.pepu
Init: list :={}, tags := {}
Register: Upon receiving ("register”, Bpgpu, in fo) from a cloud storage provider

CP

assert (¢, %, *) ¢ list

set list := list U (¢, Bpgpu,info)
setTag: Upon receiving (setTag”, tag) from a contract Bpgpy

assert tag ¢ tags

set cloudprovider := list[Bprpy].c

setinfo := list|Bpgpy|.info

set tags := tags U (tag, Bpepu, cloudprovider, in fo)
getTag: Upon receiving ("getTag”, tag) from a contract Bpgpy

assert (x, Bpppy, *) € list

if (tag, *,*, %) € tags

send ("tagFound”, tag, tags(tag].Bpepu, tags[tag].cloudprovider,
tags(tagl.info) to Bpepu
else send ("N/A”, tag) to Bpepu

Figure 6.2: contract-Br.pepu

6.5 Implementation

The simulation environment is discussed in Section 1.2.3.

6.5.1 Implementation of Bprpy

We have tested the proposed smart contract Bpppy multiple times, and each transaction’s
transactional cost and its equivalent financial cost is shown in Table 6.2. Observe that the
contract deployment transaction consumes a large amount of gas; however, this is a one
time cost for cloud provider. Next, the create and request functionalities also consumes a
large amount of gas due to the modification of contract storage variables. Storing data in
a contract is an expensive operation in Ethereum. As the usrConf function executes main

tasks like computing dedup rate, sending the storage fee to cloud provider, and sending

175

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Function Caller Gas cost Costin Ether Costin $

Init (contract deployment) cloud provider 187467 0.000187 0.045
Create cloud provider 143464 0.000143 0.035

Request User 161168 0.000161 0.039

Pay User 66558 0.000066 0.016

cspConf cloud provider 31457 0.000031 0.007

Refund User 31779 0.000031 0.007

Claim cloud provider 31549 0.000031 0.007

DeLink User 29318 0.000029 0.007

Table 6.2: Costs of interacting with Bpppy contract. The gas price is approximated as
1Gwei and 1 Eth = $243.45, which are real-world prices in June 2020. We have rounded
off the cost in $ value up to 3 decimals.

refunds to users, the transaction to usrConf also consumes a large amount of gas. The gas
consumption of usrConf varies and depends on the number of users opted for de-duplication
before the transaction initiator’s call. We have listed the gas consumption of usrConf func-
tion in Figure 6.3. Observe that the gas consumption increases with the increase in dedup

rate, and it reaches more than the block gas limit.

-10°

Gas consumption

| |
0 100 200 300 400 500
Number of users

Figure 6.3: Costs of interacting with usrConf functionality

176

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

6.5.2 Experiment 1: Finding utility of the users and the cloud provider
by varying nG”(t) and EFSE (t)

We have conducted experiments with the values shown in Table 6.3 adopted from Gao et
al. [226] and Liang et al. [225]. The utility of the users and the cloud provider are shown
in Figure 6.4 and Figure 6.5, respectively. We have varied EFSE (t) from 10% to 50%
of SESE(t) in both the figures. We have also varied the de-duplication rate nG”(t) as
10%, 50%, 90%, 100% of NdCP (t) . Tt is observed that both the users and cloud provider
obtain non-negative utilities when opted for dedup with Bppp. The results show that our
proposed model is individually rational.

In Figure 6.4, the utilities of the users decreases as the EFS/F (t) increases. However,
for any constant FFS (t) value the average utility of users increases with increase in dedup
rate. This result agrees with the general notion of increase in dedup rate with increase in
the average utility of users. Figure 6.4 also shows that the user is incentive-compatible
that is U}y, (t) > US,(t) VnGT(t) > 1. The results show that the proposed model is not
incentive compatible for n§¥(t) = 1, due to the new parameter EFSY(t). To make the
user incentive compatible when nG”(t) = 1, the EFSY (t) value should be set to zero.

Figure 6.5 shows that the cloud provider is not incentive compatible until EFSF (t) >
36% of SFSE (t). This result is in line with equation (6.6) when the values in Table 6.3 are

substituted.

Parameter | Value in Ether

Poy(t) 2.165
SESE(t) 0.165
SCEY () 0.1

AF,(t) 0.1

Table 6.3: Experiment Settings.

6.5.3 Experiment 2: Testing Bprpy and B;.pppy with public dataset

In Experiment 1, we have considered only similar requests where all users have the same

data file with the same size. In this experiment, we have chosen a dataset that consists of

177

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

EFSE(t) = 10% of SFSE (1) EFSE(t) = 20% of SFSE (1)

2.15*./,/,_+4‘—0—0—0—0—07
W

2.1} 2

2.1

205 i ././...—Q—Q—Q—H—. |

2.05 .

Average utility of users
Average utility of users

20 100 50 100

Number of users Number of users
EFSE(t) = 30% of SESE (1) EFSE(t) = 40% of SESE (1)

e N R EE==s

2051 ./’/k*_H—o—o—o—o | 2.05 W N

Average utility of users
Average utility of users

| |
50 100 50 100
Number of users Number of users

EFSE(t) = 50% of SFSE (1)

2.05 2

Average utility of users

50 100

Number of users
—e— Ul (t) —a= Uy () (nG"(t) = 10%) —e= Uk (t)(ng" (t) = 50%)

== Uby(t)(nG"(t) = 90%) —— Uy (1) (ng"(t) = 100%)

Figure 6.4: The effect of EFSE (t) and nG” (t) on average utility of the cloud users

information of Debian packages gathered from Debian popularity contest
(https://popcon.debian.org/contrib/by _inst). We took a snapshot of the number of packages,

the number of installations of a single package, and size of each package as on 7th May

178

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

EFSE(t) = 10% of SESE (t)

Utility of cloud provider

|
50 100

Number of users

EFSE(t) = 30% of SFSE (1)

Utility of cloud provider

EFSE(t) = 20% of SFSE (1)

50
Number of users

100

EFEE(t) = 40% of SESE (t)

3 — 3 w
2 6| I |
2 S
2 4t 1 3B
2 24 |
Q Q
5] 20 = kS 21 .
2 2
% 0 [| - g | |
50 100 50 100
Number of users Number of users
EFSE(t) = 50% of SFEE (1)
3 ‘
= 8 R
o
.
= 6 b
3
S 4] g
ks
z 2| |
E O L | -
= 50 100
Number of users
—e— Uep(t) —a= Ubp(t)(nG"(t) = 10%) —o=Ulp(t)(ng" (t) = 50%)
——Ulp(t)(n§F(t) = 90%) —— Uk p(t)(nG(t) = 100%)

Figure 6.5: The effect of EFSE (t) and nGF (t) on utility of the cloud provider

179

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

2020. Each package represents a data file to be stored in the cloud, and the installations
serve as the de-duplication requests. They were a total of 403 packages (data files) and
270738 installations requests (users). The dataset is very diverse as it consists of data
files having different sizes and each data file have a different number of installations. We
uniformly distributed the requests among two cloud providers C'P;, C' P, and computed the
two cloud providers’ utility. As discussed earlier in section 6.4, the inter-cloud provider
de-duplication is the same as single cloud provider de-duplication from the user point of
view, and there is no change in users’ utility. The utility of the cloud provider changes

as UZ(t) = Ugp(t) + AFj(t) — AF;,

out

(t). AFCP(t) is the fee paid by a cloud provider
CP; to cloud provider C'P; for accessing the data stored at C'P;. In Figure 6.6, we show
the utilities of the above-considered dataset by taking EFSF (t) = 40% of SESE (t) and
nGF(t) = 100%o0f N§T (t). We observe that the cloud providers gain more utility when
opted for inter-cloud de-duplication. The gain is due to the increase in the dedup rate.
Therefore, with our proposed incentive mechanism dedup with B;.pgpy is more profitable

than dedup with Bpgpy and dedup with Bpgpy is more profitable than no de-duplication.

6.6 Comparison with existing methods

Table 6.4 shows the comparison of our work with [221], [92], [225], and [93] in terms of
category, incentives, features of incentives, correctness in the computation of de-duplication
rate and fairness. Miao et al. [221] provides correctness of dedup rate but uses a trusted
party known as de-duplication rate manager. In contrast, our method does not rely on the
trusted party and still has correctness. The incentive mechanism in [221] supports only IR-
constraint, whereas our method supports both IR-constraint and IC-constraint. The dedup
method proposed by Li et al. [92] focuses more on the integrity of the deduplicated data
stored in the cloud, whereas our method focuses on incentives and fair payment mech-
anism. The incentive mechanism in Liang ef al. [225] supports both IR-constraint and
IC-constraint, but, an untrusted cloud provider computes the dedup rate. Also, the incen-

tives in [225] are time-variant, whereas our method supports uniform payments. Although

180

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Utility of cloud provider

[
C1

[
Co

11No dedupllidedup with Bpgpy 10dedup with Bi.prpo

Figure 6.6: Utility of cloud providers with public dataset

in Wang et al. [93], the authors have considered fair payments, their method does not sup-

port fair payments in all the cases defined in Theorem 6.3.2.

Scheme | Category| Incentive| Feature of Incen- | Correctness of | Fairness
tives de-duplication
rate
[221] pPC v IR v X
[92] BC X X X X
[225] PC v IR, IC X X
[93] uC v - X v
Proposed | BC v IR, IC ve v
method

Table 6.4: Comparison with existing data de-duplication works. PC - provider controlled,
UC - user controlled, BC - Blockchain controlled

181

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

6.7 Summary

de-duplication techniques save storage costs of a cloud storage provider. However, adop-
tion of de-duplication techniques by cloud users require strong incentives and a fair pay-
ment platform. In this Chapter, our contributions are two-fold: first, we have designed a
new incentive mechanism, and second, we have designed a Blockchain-based de-duplication
protocol. Experimental results show that our proposed incentive mechanism is individually
rational and incentive compatible for both cloud provider and users. The proposed dedup
protocol solves correctness, uniform payments and fair payments in de-duplication of cloud
data without a trusted intermediary. The designed smart contracts in the proposed protocol
are implemented in the Ethereum network, and the costs of interacting with the smart con-

tract are presented.

182

Chapter 7

Fair Payment Protocol for
Microservices-based software deployed

in cloud under Software-as-a-Service

7.1 Introduction

With the advances in containerization technology [227], the traditional monolithic applica-
tions are being decomposed into a suite of small services known as microservices [228],
each running in its process and communicating with lightweight mechanisms. Microser-
vices now are a new trend in software architecture, emphasizing the design and develop-
ment of highly maintainable and scalable software [229]. Industry giants like Amazon
[230], Netflix [231], Linkedin [232] and Uber [233] are adopting and enhancing the mi-
croservice architecture. On the other hand, many individuals and enterprises prefer the
cloud to deploy their applications that are delivered as services over the Internet. The
adoption of microservice architecture in cloud-hosted software reduces infrastructure and
maintenance costs [234]. The traditional and microservice-based software deployment in
the cloud is shown in Figure 7.1. In Figure 7.1(a), users interact with a front-end appli-
cation, which redirects user requests to multiple instances of the software hosted within

a container. In Figure 7.1(b), the application is split into multiple components hosted in

183

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

@@ a 88 (00| | G

VM1 || |[vM2]] || vM3 Communication bus vM1 || ||vm2]| || vM3
—
— — = - - — — —
Traditional application Microservice-based
HlMl Hle H|V||3 application ‘HlMl HITIZ H|V||3
Cloud Service Provider Cloud Service Provider
() (b)

Figure 7.1: Software deployment in cloud [235]. (a) Traditional (b) Microservice-based

multiple containers and replicated at the user’s convenience. Microservices architecture

provides benefits like isolation, scalability, productivity, flexibility, and faster application

development. Although there are some advantages of development and deployment of

cloud applications using microservices, there are some limitations:

(a)

(b)

(©)

Trusted registry, and service discovery: Microservice architecture by design ap-
pears to be fully decentralized. However, it includes centralized components like a
trusted registry and a service discovery module (ZooKeeper [236], Eureka [237]).
These two components are required to publish and discover microservices by a user
interface or another microservice. These centralized components may become a sin-
gle point of failure and require additional security methods to avoid attacks like de-
nial of service, microservice integrity breach etc. A distributed immutable storage is

required to avoid the attacks.

Microservice communication: Since every microservice is independent, commu-
nication between them is complex. Microservices are designed to trust each other
completely; the compromise of one microservice jeopardises the entire application.
Several attacks like Man-In-The-Middle (MITM), service identity spoofing etc., can
occur during communications between microservices. A reliable communication

platform is required to mitigate the attacks.

Rating and billing: As microservices consume cloud resources dynamically, real-
time rating and billing models are required [238]. However, existing models do not

consider transparency, and in most cases, the user ends up paying for more resources

184

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

(d)

than consumed. Also, the cloud being rational may tamper with the usage records of
auser to increase bill. Hence, a transparent and immutable rating and billing platform

are required where a user can verify his consumption and trust the billing process.

Double charging: Most of the times, cloud resources are shared by multiple mi-
croservices simultaneously. For example, a microservice only spends five minutes
per hour doing any processing. However, it is charged for the entire hour. During the
ideal time, the resources are allocated to other microservice, and the cloud provider
benefits from charging both the microservices. In many cases, the users are unaware
of double charging. A publicly available, transparent and immutable resource usage

record log is required to detect double charging or ideal time charging.

The recent progress in Blockchain and smart contract technologies can reduce the previ-

ously discussed limitations. This Chapter proposes a new Blockchain-based rating, charg-

ing and billing system for microservices deployed on a cloud platform.

We summarize the contributions of this Chapter as follows:

1.

7.2

We design a Blockchain-based registry to publish microservices and a Blockchain-

based tamper-proof communication platform for microservices.

We design a new cost computation model based on real-time usage and dynamic

pricing of resources with respect to the state of the cloud operating environment.

To the best of our knowledge, we are the first to propose a Blockchain-based rating

charging and billing platform for microservices deployed on a cloud platform.

We have implemented the proposed system using Solidity [24] and presented the

transactional and financial costs of the proposed system.

Microservice rating, charging and billing (RCB) ar-

chitecture

A microservice RCB architecture is presented in Figure 7.2. The architecture consists of

three core services and two supporting services. The three core services are (1) Usage

185

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

SaaS

Application
Dashboard

4) HTTP + + +
| HTTP HTTP HTTP

Message) : Rating & Billin

service SlérDvliD\ce Charing Servicge TP
Broker [HTTP HTTP | Service |HTTP

+H1TP + HTTP + HTTP

Authentication & Authorization Service

Figure 7.2: Traditional microservice rating, charging and billing system

data record (UDR) service, (2) Rating and charging service and (3) Billing service. The
two supporting services are (1) Authentication and authorization service and (2) Message
broker service.

The message broker service fetches the usage data records from an external SaaS ap-
plication (a SaaS application is a collection of several microservices). These usage records
are used in the calculation of bill. The RCB services interact with the authentication and
authorization service to validate the service request’s authenticity. The cloud user uses the

dashboard to interact with the RCB platform.

Definition 7.2.1. A fair rating, charging, and billing platform for microservices must pro-

vide the following guarantees:

(a) Decentralized service discovery: Decentralized service discovery is available all the

times, and no party can control the service discovery.

(b) Tamper-proof communication platform: The messages exchanged between microser-

vices are tamper-proofed, and the messages are stored securely for future auditing.

(c) Fair Rating and charging platform: A platform is said to be a fair rating and charg-
ing platform if the rating and charging values depend on the environment variables

and no other party can influence the rating and charging variables.

186

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

(d) Fair Billing platform: A platform is said to be a fair billing platform if the billing
solely depends on the user consumption of the resources and the prices of the re-

sources, and no other party can influence the billing process.

7.3 Blockchain-based Microservice Rating, Charging and
Billing (RCB) System

In this section, we first present the architecture of the Blockchain-based RCB system. Then,
we build a mathematical model for reputation-based rating, charging and billing system.
We later construct protocols for the Blockchain-based RCB platform and conclude the
section with the proofs for the goals described in Definition 7.2.1.

A Blockchain-based rating charging and billing platform is shown in Figure 7.3. The
architecture consists of several smart contracts, which are discussed briefly in the following
subsection. The architecture also contains a dashboard similar to Figure 7.2. The message
broker service from Figure 7.2 is divided into two different broker services: (1) Server bro-
ker service - fetches the usage data records from external SaaS application. (2) Operating

environment broker service - fetches the state of the operating environment.

7.3.1 Smart contracts for RCB system

The RCB system consists of a total seven contracts: (1) Service discovery contract (SDC'),
(2) Message exchange contract (M EC), (3) Usage data contract (U DC)), (4) Rating and
charging contract (RCC'), (5) Billing contract (BIC), (6) Registration and reputation con-
tract (RRC), and (7) Error data contract (£ D(C").

Service discovery contract (SDC'): A cloud provider deploys a set of microservices
at the cloud and lists the microservices’ details in the SDC contract. The SDC' contract
contains details such as a service name, available endpoints, API specification, current
load etc. The contract also contains service chains specifying the order of microservice
execution. The structure of data records stored at the SDC' is shown in Figure 7.4.

Message exchange contract (M E£'C'): Microservices communicate with each other via

187

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

Cloud Environment

OE
SaaS
3aS [Broker
Application Service

Server
Broker
Service

Message Erdor
exchange Y
tract DaEa y_
() U = Conttact —
<>l < G i =
. Y &
Cloud T Service y _~Kating &
User T Discovery A Charging
Cenies Contract
8 —
< =
= 5=
Registration and =
Q Reputation {E}""
W Billing
Contract
Figure 7.3: Blockchain-based microservice RCB platform
| Service List of J Hash of List of List of Current |
Name |end-points| API desc Inputs Outputs Load
Service Start Service| End Service Sequence of |
Chain ID Name Name Intermidiate Services

Figure 7.4: Structure of the data records stored in SDC' contract.

M EC contract. The contract generates an event whenever a message arrives. Microser-
vices listen to events and processes the messages intended for them. The contract also
ensures that only the authorized microservices can send and receive messages. The struc-

ture of the data records stored at M E/C' is given in Figure 7.5.

Caller | Caller Callee I Callee List of
Service End-point Service End-point Inputs

Figure 7.5: Structure of the data records stored in M E'C' contract.

Usage data contract (U DC): The contract stores the usage statistics of all the users of
the SaaS application. A server broker service collects the usage information from the cloud
server and sends it to the UDC contract. However, a cloud provider may influence the
broker service from fetching the correct usage statistics. To avoid this attack, we assume

that the server broker service runs in a secure enclave such as Intel SGX. The structure of

188

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

the data records stored in the U DC' is shown in Figure 7.6.

I Time I User I Resource I Usage I Unit

Figure 7.6: Structure of the data records stored in U DC' contract.

Rating and charging contract (RC'C'): An operating environment broker service
fetches a number of parameters of the cloud environment and sends them to RCC. We
assume this broker service also runs in a secure enclave to avoid malicious cloud provider
affecting resources’ price. The parameters include power rate, operating load, number of
active customers and other similar parameters. The RC'C' computes the prices of the re-
source based on the received parameters’ value. However, the cloud provider has to code
the rules into RC'C for determining the resource prices with respect to operating environ-

ment parameters. The structure of the records stored in the RC'C' is shown in Figure 7.7.

| Resource Price

™ |
| 'me Name

Figure 7.7: Structure of the data records stored in RC'C' contract.

Error data contract (£ DC): The operating environment service broker also logs the
errors during service provisioning in £ DC'. The structure of the records stored in EDC'is

shown in Figure 7.8.

Error | Error

| Time |Service ID| Name Weight

Figure 7.8: Structure of the data records stored in £ DC' contract.

Registration and reputation contract (R RC'): A cloud user has to register with RRC'
to use services provided by a cloud provider. Initially, the default reputation values of cloud
user and provider are set to 1. Later, the reputation of cloud user is updated according to his
interactions with the system and the reputation of the cloud provider is updated according
to the quality of the service provided.

Billing contract (B1C'): The cloud user calls BIC' to deposit the estimated pay before
the start of execution of the service. After completing the service, BIC receives usage
data from U DC, rating data from RC'C) reputation data from RRC' and generates the final
payment the user has to pay. The cloud provider also inputs the discounts offered to the

user during service level agreement negotiations.

189

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

7.3.2 Cost computation model

Let C'U; be the set of cloud users and C'P be a cloud provider. Let R be the set of re-
sources provided by C'P, O be the set of operating environment parameters, and £ be the
set of errors that could occur during service provisioning. The cost to be paid by a cloud
user for using cloud resources is computed from the following four factors: (1) Resource
consumption of the user, (2) Reputation of the user, (3) Reputation of the cloud provider,

and (4) State of the operating environment.

7.3.2.1 Resource consumption of cloud user

Let a cloud user CU; € CU consume resources in the time between 7, and 7.. Then the

usage vector of the user C'U; measured between 7, and 7, is represented as:

U(CU, 1) = Y U(CU;,T) (7.1)
Ts ST<Te
Let r; be the meter value measuring the resource consumption of ;% resource in R. Let

n = |R| be the total number of resource types provided by a cloud provider. Then, the

usage vector at time 7 is expressed as:
U(CU,T) = ((CUs 11, 7), (CU;, 72, 7),s ovey (CUs, 10, 7)) (7.2)

7.3.2.2 Reputation of cloud user

The reputation of a cloud user R, depends on his behavior with the system. If CU; has
paid the fee without any delays, his reputation is not affected; otherwise decreased. The
decrease in the reputation value is directly proportional to the amount the user defaulted.

Let f be the amount defaulted by C'U;, then the reputation Rcy,(C P;) for defaulting f

190

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

computed as:

Vi iff>A

Vo if f > Ay
Rey,(CPr) =

\Vn if f > A,

Where Vi, Vs, ..., V,, are the values defined by C'P for categories Ay, A, ..., A,, respectively.

The reputation is calculated as

Rev, if f=0

Rey, = (7.3)
p* Rey,(CP;) + (1 — 8) x Roy, otherwise

Where 5 € [0, 1] is smoothing factor.

7.3.2.3 Reputation of cloud provider

A cloud provider’s reputation Rcp depends on the errors that occur during the service
provision. Let Rop(CU.) be the reputation of C'P while serving CU; at time 7. Let £ be
the set of errors that can occur during the service provision, and w, is the weight associated

with the error e € E. The value of R¢cp(CU.) can be computed as:

1

Rep(CU;) = (7.4)

£
>owe x X,

e=1

where X, is the number of times an error e € E occurs during the service provisioning.

The reputation of a cloud provider is updated as
Rep = ax* ch(OUT) + (1 — a) x Rop (7.5)

where 0 < o < 1 is a smoothing factor.

191

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

7.3.2.4 Operating environment of the cloud

The state of the cloud operating environment S(7) is expressed as a set of variables rep-
resenting different parameters like the number of active users, operating load, power rate
etc., Let there are m number of operating system parameters, and w;, be the weight given

to parameter pj. The state of the cloud operating environment S(7) is defined as:

S(T):wO*pO—i_wl*plw”;—i_wm*pm (76)
such that
> wp=1 (7.7)
k=0

Let the state space of S is denoted by Z such that S(7) € Z. Therefore the price of a

resource varies depending on the state of the operating environment.

(

Pl lfS(T)EZI
PQ lfS(T)EZQ

P, ifS(r) € Z,

\

n
such that P; € Z and |J Z; = Z. The price vector for resources at time 7 is given as
=1

ﬁ(ﬂ = <PT1(7—)7P1"2(7—)a~-'>Prn(‘r)> (7.8)
Now the cost incurred to a cloud user C'U; at time 7 is computed as

Pey(re7e) = > U(CU;,7)- P(7) (7.9)

Ts<T<Te¢

The cost payable by the cloud user at time 7 is computed as

Cou,(7s, 7e) = (Pev,(7s, Te) * Rop *) — Dcu, (7.10)

Reu

12

192

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

where D¢y, is the discount offered to C'U; during service layer agreement negotiations

7.3.3 High-level overview of the RCB protocol

The protocol consists of three phases: (1) Initialization phase (IP) (2) Service provi-
sioning phase (SAP) (3) Rating, charing and billing phase (RBP).
Initialization phase
(i) During this phase, a cloud provider C'P prepares and deploys a series of smart
contracts on a public Blockchain platform and publishes their addresses on a
public platform.
(i) C'P also develops a dashboard where users can login and monitor their resource
usage, resources rating and billing information.
Service provisioning phase (SAP)

(iii) A cloud user C'U; requests a service from C P through a dashboard. The request
is received by a service discovery contract which returns the approximate cost
$p.s of the service execution.

(iv) The request is executed as soon as the C'U; sends $p.; to the billing contract.
The request may initiate a series of microservices execution. The microservices
communicate among themselves through a message exchange contract.

(v) A server broker service SBS fetches the users’ resource usage information and
sends this information to the usage data contractd.

(vi) An operating environment broker service O EBS fetches the operating environ-
ment variables values and sends this information to the rating and charging con-
tract. Also, the OFEBS logs the errors during service provisioning in the error
data contract.

Billing Phase

(vii) CU; request a bill by sending a request to the billing contract. The billing con-
tract fetches the usage records from U DC, charging records from RCC, the
reputation of C'P and C'U; from RRC'.

(viii) Then, BIC computes the final bill and the amount to be paid by C'U; after de-

193

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

ducting $p.,. If $p. is greater than the computed amount, then BIC' will refund
the excess amount.
(ix) The final bill may also include user-specific discounts set by the cloud provider.
(x) If CU; fails to send the excess amount, then his reputation is decreased. BIC'
also calculates C'P’s reputation based on the error data records, and a new repu-

tation value is updated in the reputation contract.

7.3.4 RCB Protocol

7.3.4.1 Initialization phase

During this phase, a cloud service provider C'P deploys a set of smart contracts described
in section 7.3.1 on a public Blockchain network and publishes their address publicly. C'P
deploys the microservices at a cloud operated by it and sends the details of deployed mi-
croservices to the SDC contract. This a one-time setup for a single SaaS application .
The registration contains details like application name, service name, service endpoints,
the hash value of API, and estimated cost. C' P also registers the microservice chains with
SDC contract. Although microservices are distributed and independent, they are executed
in a sequence to accomplish a task. The sequence is called microservice chaining. The ser-
vice chaining also helps in predicting the execution time and cost of microservices. After
receiving the details of microservice or microservice chains, the SDC contract stores them
in contract storage. To access the application, a cloud user has to send a registration request

and a self-generated public key to RRC'. The protocol for the initialization phase is given

in Figure 7.9.

Protocol: Initialization phase

For Cloud provider C'P
1. Send transdcegloy = (SDC,MEC,UDC,RCC,RRC,EDC,BIC) to

Blockchain BC'. After receiving the addresses of the deployed contracts, pub-
lish the addresses publicly.

"Even though our framework does not explicitly mention multiple instantiations and load balancing of
microservices, it can effectively incorporate those concepts.

194

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

2. Host the microservices at cloud and send trans$t . = (sAppName,

sName, sEndPoints, API Hash, sInputs, sOutputs, Costs) to SDC.
3. To register service chains, send trans$, . = (sAppName, sChainlD,
sNames,..., sName,, Cost.) to SDC.
For cloud user CU;
4. To register with C'P for using an application sAppName, send trans{): =
(pkcu,, sAppName) to RRC
For Blockchain BC': list,,s < {}, lists. < {},listoy < {}
5. On receiving transg’g;loy, deploy all the received contracts and return the con-
tracts’ address.
6. Onreceiving trans®%_ . setlist,,s < list,,s U(CP, sAppName, sName,
sEndPoints, APIHash, sInputs, sOutputs, Costs).
7. Onreceiving trans$f, . . set listy. « list,. U (CP, sChainl D, s AppName,
sNames,....sName,, Costy)
8. On receiving transC’:

reg

set listoy < listoy U (CU;, sAppName)

Figure 7.9: Initialization phase

7.3.4.2 Service provisioning phase

To access an application, C'U; has to send a request to SDC' along with the application
name, start time and end time 2. The SDC returns the estimated cost ($p,;) to CU;. CU;
has to send the $p.; to BIC before the start time of the application. Estimating cost is un-
known a priori and may not be possible in most cases. We assume that the cloud provider
sends an exhaustive list of service chains of the service provided, which will be used to esti-
mate the cost. Another option is to compute and feed the estimated cost to S DC manually.
However, the cost estimation is beyond the scope of this Chapter, and we assume a proper
cost estimation mechanism is already in place. After the receiving the $p., the execution
sequence of microservices begins. Every microservice (except the initial microservice)
publish messages to M EC and receive the messages by listening to the events generated in
the M EC contract. The server broker service (SM S) periodically collects resource usage
records from the cloud servers and sends them to U DC'. Similarly, an operating environ-

ment broker service (OE BS) periodically collects the values of environmental parameters

2We note that sometimes specifying the start time and end time is not possible. In that case, the user omits
both fields.

195

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

and computes the cost of each parameter according to rates set by the cloud provider and
sends the result to RC'C. The OEB.S also collects the error data during service provision-

ing and sends the data to £ DC'.

Protocol: Service provisioning phase

For cloud user CU;:
1. To access a cloud application, send trans’ ... = (sAppName,,,7.) to
SDC.
2. After receiving the estimated cost, send transg%ost = (sAppName, $p.s) to
BIC

For a microservice sName:
3. Subscribe to the communication events in the M EC.
4. To send message to another microservice, send trans:)me
(sNamecqiiee, endPoint cjee , inputseqpee) to MEC
5. If an communication event is generated, process the received message.
For server broker service SBS"
6. Send trans’’;., . = (7, CU;, servicel D, r;, us,un) to UDC for logging us-
age information.
For operating environment broker OEBS'":
7. Send transQZ55
information.
8. Send trans®ZBS = (7, servicel D, €pame, €weight) t0 EDC for logging opera-
tional error information.
For Blockchain BC': listy < {}, listrecsage < {}s listrecmny < {} listrecmrror
{}
9. On receiving transg%’ser
(a) Assert CU; € listoy
(b) Assert (x, sAppName, , *, %, *, %, %) € liSt s
(c) Assert T < T,
(d) Compute and return the estimated cost for the requested service.
10. On receiving trans".¢,
(a) Assert (CU;, sAppName) € listcoy
(b) Assert ledger[CU;] > $pes
(¢) Setledger|[CU;] + ledger[CU;] — $pes
(d) Create a new servicel D and return the servicel D.
(e) Set billPaid := false, startTime := 7, endTime := 7,, cost := $p.s,
billGenTime = 71, + k, billPayTime = 1. + [, user = CU,.
(f) Set listy < listy U (servicel D,user, cost,bill Paid, startTime,
endTime, billGenTime)
11. On receiving trans??eme

call
(a) Assert sName € list,,s and sSName qjee € 115t

= (7,75, price) to RCC for logging operating environment

196

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

(b) Notify sNameqe. about the call
12. On receiving trans?i7}, .
(@) Set list,ecrsage[servicel D].rec[t].res(r;].usage := us
(b) Set list,cctrsage|servicel D].rec[t].res|r;].units :== un
13. On receiving trans?Z55
(a) Set list,ecpny-rec|T].value := price

o OESB
14. On receiving trans, -

(@) Set list,ecprror|servicel D].rec|T].error = epame

(b) Set list,ecirror[servicel D].rec[T].weight = eyeight

Figure 7.10: Service provisioning phase protocol

7.3.4.3 Billing phase

After the application execution, the user must request a bill by sending the servicel D to
BIC'. The BIC contract fetches the usage details from U DC, rating and charging details
from RCC, reputation details from RRC' and computes the bill. The reputation of the
cloud provider is calculated according to the errors reported during service provisioning.
The final bill is generated after deducting the $p., paid earlier. If the final bill is negative,
the billing contract sends the excess amount to the user. Otherwise, depending on the

behavior of CU;, there are two cases as follows:

Case 1: CU; has paid the final bill before the given time. In this case, the reputation of

CU, is not changed.

Case 2: C'U; has failed to pay the final bill before the given time. In this case, the new

reputation value for C'U; is computed. The new value depends on the amount of payment

the C'U; has defaulted.

7.4 Simulation Results and Discussions

The simulation environment is discussed in Section 1.2.3. The transactional and financial
costs of the proposed RCB platform are shown in Table 7.1. The table consists of each

contracts’ deployment and its functionalities execution cost. We notice that the deployment

197

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

Protocol: Billing phase

For cloud user CU;

(1) To request a bill, send transiZ”Bm = (servicel D) to BIC.

(2) To pay the final cost, send trans?ig;l g = (servicel D, $pay) to BIC
For Blockchain BC

(3) On receiving transgg"Bm

Assert listy[servicel D].bill Paid = false

Assert listy[servicel D]).endTime < 7
].
]

Assert listy[servicel D).billGenT'ime > 7
Assert listy[servicel D]).user = CU;
Vi € [listy]servicel D].startTime, listy[servicel D].endTime]
V j € Resources
Set Costipiq := CoStiprar +
liSt ectsage|S€Tvicel D].recli].resource|j].units x
liStrecEny-Tecli].resourcej].value
Eval := Eya + list,ecprror|Servicel D).recli].weight
Set Eval = ﬁ
Set Rep «+— ax E,q + (1 = a) * Rop
Set Cost,, := Costyoa * Rop * R_éu — Dcy,
if Cost, < listq[servicel D].cost
Set ledger|CU;| = ledger|CU;]+ (list4[servicel D].cost — Cost,,)
Set ledger[C P| := ledger|C P] + listy[servicel D].cost
Set listy[servicel D|.paid = true
else
Set Costpayabie = Cost, — listq[servicel D).cost
Set ledger|C P] := ledger[C P] + listq|servicel D)].cost
(4) On receiving trans?g;l Bill
Assert $pay > Costpayaie
Assert 7 < listg[servicel D].bill PayTime
Assert ledger[CU;| > $pay
Set ledger[CU;] := ledger[CU;| — $pay
Set ledger|C P := ledger[C P] + $pay
Set listy|servicel D].paid := true
Timer
if listy[servicel D].paid = false and listy[servicel D].billPayTime > T
If COStpayable = A; set Ry = Vi, Set RC’UZ- =% Ryu + (1 = 6) * RCUi

Figure 7.11: Billing Phase

198

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

Contract Function Caller Cost in gas | Costin $
Registration Deployment CP 241900 49.50
(RRCO) Add user CU; 85751 17.54
Communication | Deployment CP 764518 156.46
(CO) Receive message | Microservice | 78805 16.12
Service discovery Deploym?nt CP 832771 170.43
(SDC) Add service CP 90097 18.43
Add service chain | CP 37137 7.6
Usgae data Deployment CcP 398048 81.46
(UDC) Add record SBS 108921 22.29
Rating Deployment CcP 132747 27.16
(RAC) Add record OEBS 42949 8.79
Deployment CP 535968 109.69
Billing Compute bill CU; See Figure 7.12
(BIC) Pay bill CU; 40120 8.21
Update user cP 32127 6.57
reputation

Table 7.1: Cost of interacting with proposed smart contracts

costs of smart contracts are high due to access to large contract storage. However, this a
one time process and can be amortized over several interactions. Most of the computations
take place in the billing contract, and the number of computations depends on the usage
records collected during the service provisioning to a cloud user. The execution cost of the
billing contract is presented in Figure 7.12. We observe that the execution cost increases

with the increase in the number of usage records.

199

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

106 ComputeCost

——Cost

3.6 [.

2.7 a

Gas Consumption

0.9 .

0 100 200 300 400 500
Number of Records

Figure 7.12: Gas Consumption of computeBill functionality

7.5 Summary

In this work, we have designed a Blockchain-based registry and a Blockchain-based com-
munication platform for microservices. We have developed a new cost computation model
based on real-time usage and dynamic pricing of resources with respect to the state of the
cloud operating environment. We have also considered the reputation of the cloud user and
provider during bill generation. We have implemented the proposed system and presented

the transactional and financial costs of the proposed system.

200

Chapter 8

Conclusion and Future Scope

8.1 Conclusions

This thesis has investigated the design of fair payment protocols for cloud services without
a trusted intermediary.

In Chapter 2, we have presented a literature survey on existing Blockchain-based cloud
services and listed the open issues in Blockchain-based cloud services.

In Chapter 3, we have designed fair payment protocols for proof-based and replication-
based verifiable computation. Our theoretical analysis shows that our designed protocols
are fair, and our experimental analysis using the Ethereum network shows the feasibility
of our protocols. We have achieved fairness by imposing fines on cheating cloud providers
and offering bounties to honest cloud providers.

In Chapter 4, we have proposed two fair payment protocols for the privacy-preserving
aggregation of mobile crowdsensing data. Our protocols show that the untrusted data ag-
gregator in traditional privacy-preserving aggregation (PPA) methods can be replaced by a
smart contract running on a public Blockchain network. Unlike traditional PPA methods,
we have achieved fairness without any additional cryptographic operations or trusted in-
termediaries. We have tested the protocols for the MotionSense dataset and presented the
transactional and financial costs of interacting with the smart contracts. Our methods allow
the data aggregator to know the dataset properties before buying the data without losing

privacy.

201

CHAPTER 8. CONCLUSION AND FUTURE SCOPE

In Chapter 5, a fair payment protocol for cloud resource allocation is proposed. Our
protocol shows that the resource allocator in a traditional online auction can be replaced
by a smart contract running on a public Blockchain network. Modeling an online auction
algorithm as a smart contract also guarantees auction correctness. Our theoretical analy-
sis shows that the proposed protocol is fair without any trusted intermediaries. We have
tested the smart contract with real-world online auction configuration and presented the
transactional and financial costs. We have also deployed the designed smart contract in the
Ropsten test network and listed the transaction’s addresses.

In Chapter 6, a fair payment protocol for cloud data de-duplication is proposed. We
have designed a new incentive model for data de-duplication that is individually rational
and incentive compatible. We have also designed a Blockchain-based data de-duplication
protocol that satisfies correctness, uniform payments and fairness properties without a
trusted intermediary. We have tested the designed smart contracts for the Debian dataset
and shows that the Blockchain-based data de-duplication generates more profits for both
cloud users and cloud providers when compared to user-controlled and provider-controlled
data de-duplication. When compared to existing de-duplication methods, our method pro-
vides correctness of data de-duplication rate and financial fairness.

In Chapter 7, we have designed a fair rating, charging and billing (RCB) platform for
microservices deployed in the cloud. We have designed a new cost computation model
for microservices usage based on four factors: resource consumption of the cloud user,
the reputation of the cloud user, the reputation of the cloud provider and the state of the
operating environment. We have designed the RCB platform as a set of smart contracts
running on a public Blockchain network. Our experiment analysis shows the transactional

and financial costs of interacting with the designed smart contracts.

8.2 Future Scope

The following research directions are suggested for the future:

(1) Although we have considered several cloud services and developed fair payment pro-

tocols, they are still many services like Function-as-a-service, Security-as-a-service,

202

CHAPTER 8. CONCLUSION AND FUTURE SCOPE

(2)

3)

“4)

®)

(6)

Virtual Network Function (VNF)-as-a-service, Benchmarking-as-a-service etc., for

which fair payment protocols have to be developed.

In most of our protocols, if both cloud user and provider are honest and follow the
protocol correctly, then the overhead due to Blockchain is negligible. However, the
execution of fair payment protocols in case of disputes is costly. Efficient off-chain

dispute resolution techniques with little / no cost have to be developed.

There are many automated security testing frameworks available for performing se-
curity analysis of a protocol. However, an automated fairness testing framework is

not available. In future, an automated fairness testing framework may be developed.

In this thesis, we have designed different fair payment protocols for different cloud
services. However, having a generalized fair payment protocol for all the cloud ser-

vices is beneficial to both cloud users and providers.

The high write latency of public Blockchain systems makes most cloud applications
unsuitable for real-time usage. Hence, research efforts are to be made to develop low

latency real-time cloud applications using Blockchain.

Different cloud providers are integrating their cloud infrastructure, giving rise to fed-
erated cloud computing. Fair payment protocols for federated cloud computing have

to be developed.

203

Author’s Publications

Journals:

1. Mallikarjun Reddy Dorsala, V. N. Sastry, and Sudhakar Chapram. “Fair payments
for verifiable cloud services using smart contracts.” Computers & Security (Elsevier),
90:101712, March 2020.

DOI: https://doi.org/10.1016/j.cose.2019.101712 (Accepted & Published)

2. Mallikarjun Reddy Dorsala, V. N. Sastry, and Sudhakar Chapram. “Fair payments
for privacy-preserving aggregation of mobile crowdsensing data.” Journal of King
Saud University - Computer and Information Sciences (Elsevier), 2021. DOI:
https://doi.org/10.1016/j.jksuci.2021.01.009 (Accepted & Published)

3. Mallikarjun Reddy Dorsala, V. N. Sastry, and Sudhakar Chapram. “Blockchain-
based solutions for cloud computing: a survey.” Journal of Networks and Computer
Applications (Elsevier), 2021. DOI: https://doi.org/10.1016/j.jnca.2021.103246
(Accepted & Published)

4. Mallikarjun Reddy Dorsala, V. N. Sastry, and Sudhakar Chapram. “Blockchain-
based online auction scheme for resource allocation in cloud computing with fair
payments.” Journal of Ambient Intelligence and Humanized Computing (Springer).

(Under review)

5. Mallikarjun Reddy Dorsala, V. N. Sastry, and Sudhakar Chapram. “Fair payments for
secure cloud data deduplication using smart contracts.” Journal of Computer Science

and Technology (Springer). (Under review)
Conferences:

1. Mallikarjun Reddy Dorsala, V. N. Sastry, and Sudhakar Chapram. “Fair Protocols for
Verifiable Computations Using Bitcoin and Ethereum.” In Proceedings of the 2018
IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco,
U.S.A, pp. 786-793, 2018.

204

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Peter Mell and Timothy Grance. The NIST Definition of Cloud Comput-
ing (Draft). https://www.nist.gov/system/files/documents/itl/
cloud/NISTsP-500-291yersion—2,013;unel8rINAL.pdf. Online; ac-
cessed 11 November 2020.

Nadarajah Asokan. Fairness in electronic commerce. 1998. PhD. thesis, University
of Waterloo.

Henning Pagnia and Felix C Gértner. On the impossibility of fair exchange without a
trusted third party. Technical report, Technical Report TUD-BS-1999-02, Darmstadt
University of Technology, 1999.

Henning Pagnia, Holger Vogt, and Felix C Girtner. Fair exchange. The Computer
Journal, 46(1):55-75, 2003.

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://

git.dhimmel.com/bitcoin-whitepaper/. Online; accessed 11 November
2020.

Meni Rosenfeld. Overview of Colored Coins. https://bitcoil.co.il/
BitcoinX.pdf. Online; accessed 11 November 2020.

S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F. Wang. Blockchain-Enabled
Smart Contracts: Architecture, Applications, and Future Trends. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 49(11):2266-2277, November 2019.

M. Conoscenti, A. Vetro, and J. C. De Martin. Blockchain for the Internet of Things:
A systematic literature review. In 2016 IEEE/ACS 13th International Conference of
Computer Systems and Applications (AICCSA), Agadir, Morocco, pages 1-6. IEEE,
November 2016.

Victoria Louise Lemieux. Trusting records: Is Blockchain technology the answer?
Records Management Journal, 26(2):110-139, July 2016.

Keke Gai, Jinnan Guo, Liehuang Zhu, and Shui Yu. Blockchain Meets Cloud Com-
puting: A Survey. IEEE Communications Surveys & Tutorials, 22(3):2009-2030,
23.

205

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Charles Noyes. BitAV: Fast Anti-Malware by Distributed Blockchain Consensus and
Feedforward Scanning. https://arxiv.org/pdf/1601.01405.pdf, Jan-
uary 2016. Online; accessed 11 November 2020.

Mike Sharples and John Domingue. The Blockchain and Kudos: A Distributed
System for Educational Record, Reputation and Reward. In Proceedings of Adaptive
and Adaptable Learning, Lyon, France, pages 490—496. Springer, 2016.

Dinh C. Nguyen, Pubudu N. Pathirana, Ming Ding, and Aruna Seneviratne.
Blockchain for 5G and beyond networks: A state of the art survey. Journal of Net-
work and Computer Applications, 166:102693, September 2020.

Marco lansiti and Karim R Lakhani. The truth about blockchain harvard business
review. https://hbr.org/2017/01/the-truth—-about-blockchain.
Online; accessed 11 November 2020.

Changyu Dong, Yilei Wang, Amjad Aldweesh, Patrick McCorry, and Aad van
Moorsel. Betrayal, Distrust, and Rationality: Smart Counter-Collusion Contracts for
Verifiable Cloud Computing. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, Dallas, Texas, USA, pages 211-227.
ACM, October 2017.

Massimo Bartoletti and Livio Pompianu. An empirical analysis of smart contracts:
Platforms, applications, and design patterns. In Proceedings of the 2017 Interna-
tional conference on Financial Cryptography and Data Security, Sliema, Malta,

pages 494-509. Springer, April, 2017.

Xiaomin Bai, Zijing Cheng, Zhangbo Duan, and Kai Hu. Formal modeling and veri-
fication of smart contracts. In Proceedings of the 2018 7th International Conference
on Software and Computer Applications, Kuantan, Malaysia, pages 322-326, Febru-
ary 2018.

Faheem Zafar, Abid Khan, Saif Ur Rehman Malik, Mansoor Ahmed, Adeel Anjum,
Majid Igbal Khan, Nadeem Javed, Masoom Alam, and Fuzel Jamil. A survey of
cloud computing data integrity schemes: Design challenges, taxonomy and future
trends. Computers & Security, 65:29-49, March 2017.

S. Wang, K. Liang, J. K. Liu, J. Chen, J. Yu, and W. Xie. Attribute-Based Data
Sharing Scheme Revisited in Cloud Computing. IEEE Transactions on Information
Forensics and Security, 11(8):1661-1673, August 2016.

Qi Feng, Debiao He, Sherali Zeadally, Muhammad Khurram Khan, and Neeraj Ku-
mar. A survey on privacy protection in blockchain system. Journal of Network and
Computer Applications, 126:45-58, January 2019.

A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The Blockchain
Model of Cryptography and Privacy-Preserving Smart Contracts. In 2016 IEEE
Symposium on Security and Privacy (SP), San Jose, CA, USA, pages 839—-858. IEEE,
May 2016.

206

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Ari Juels, Ahmed Kosba, and Elaine Shi. The Ring of Gyges: Investigating the Fu-
ture of Criminal Smart Contracts. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vienna, Austria, pages 283-295.
ACM, October 2016.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1-32, 2014.

Solidity Documentation. https://readthedocs.org/projects/
solidity/downloads/pdf/v0.5.8/. Online; accessed Dec 2020.

Truffle suite. https://trufflesuite.com/docs/index. Online; accessed
Dec 2020.

F. Tschorsch and B. Scheuermann. Bitcoin and Beyond: A Technical Survey
on Decentralized Digital Currencies. [EEE Communications Surveys Tutorials,
18(3):2084-2123, thirdquarter 2016.

Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niyato, Ping
Wang, Yonggang Wen, and Dong In Kim. A Survey on Consensus Mechanisms
and Mining Strategy Management in Blockchain Networks. IEEE Access, 7:22328—
22370, 2019.

Hong-Ning Dai, Zibin Zheng, and Yan Zhang. Blockchain for Internet of Things: A
Survey. IEEE Internet of Things Journal, 6(5):8076-8094, October 2019.

Muhammad Salek Ali, Massimo Vecchio, Miguel Pincheira, Koustabh Dolui, Fabio
Antonelli, and Mubashir Husain Rehmani. Applications of Blockchains in the Inter-
net of Things: A Comprehensive Survey. IEEE Communications Surveys Tutorials,

21(2):1676—-1717, Secondquarter 2019.

Shaoan Xie, Zibin Zheng, Weili Chen, Jiajing Wu, Hong-Ning Dai, and Muhammad
Imran. Blockchain for cloud exchange: A survey. Computers & Electrical Engi-
neering, 81:106526, January 2020.

Ruizhe Yang, F. Richard Yu, Pengbo Si, Zhaoxin Yang, and Yanhua Zhang. In-
tegrated Blockchain and Edge Computing Systems: A Survey, Some Research Is-
sues and Challenges. IEEE Communications Surveys & Tutorials, 21(2):1508—-1532,
2019.

Jesse Yli-Huumo, Deokyoon Ko, Sujin Choi, Sooyong Park, and Kari Smolander.
Where Is Current Research on Blockchain Technology?—A Systematic Review.
PLOS ONE, 11(10):e0163477, October 2016.

J. Li and B. Li. Erasure coding for cloud storage systems: A survey. Tsinghua
Science and Technology, 18(3):259-272, June 2013.

207

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Guy Zyskind, Oz Nathan, and Alex ’Sandy’ Pentland. Decentralizing Privacy: Using
Blockchain to Protect Personal Data. In 2015 IEEE Security and Privacy Workshops,
San Jose, CA, USA, pages 180—184. IEEE, May, 2015.

Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy. To-
wards Blockchain-based Auditable Storage and Sharing of [oT Data. In Proceedings
of the 2017 on Cloud Computing Security Workshop - CCSW ’17, Dallas, Texas,
USA, pages 45-50. ACM Press, November 2017.

Xueping Liang, Juan Zhao, Sachin Shetty, and Danyi Li. Towards data assurance and
resilience in IoT using blockchain. In MILCOM 2017 - 2017 IEEE Military Com-
munications Conference (MILCOM), Baltimore, MD, USA, pages 261-266. 1EEE,
October 2017.

Edoardo Gaetani, Leonardo Aniello, Roberto Baldoni, Federico Lombardi, Andrea
Margheri, and Vladimiro Sassone. Blockchain-based Database to Ensure Data In-
tegrity in Cloud Computing Environments. In Italian Conference on Cybersecurity,
Venice, Italy, January 2017.

Shangping Wang, Yinglong Zhang, and Yaling Zhang. A Blockchain-Based Frame-
work for Data Sharing With Fine-Grained Access Control in Decentralized Storage
Systems. IEEE Access, 6:38437-38450, 2018.

Chunhua Li, Jiaqi Hu, Ke Zhou, Yuanzhang Wang, and Hongyu Deng. Using
Blockchain for Data Auditing in Cloud Storage. In Cloud Computing and Security,
volume 11065, pages 335-345. Springer International Publishing, August 2018.

Liehuang Zhu, Yulu Wu, Keke Gai, and Kim-Kwang Raymond Choo. Controllable
and trustworthy blockchain-based cloud data management. Future Generation Com-
puter Systems, 91:527-535, February 2019.

Jingting Xue, Chunxiang Xu, Jining Zhao, and Jianfeng Ma. Identity-based public
auditing for cloud storage systems against malicious auditors via blockchain. Sci-
ence China Information Sciences, 62(3):32104, March 2019.

Yang Xu, Ju Ren, Yan Zhang, Cheng Zhang, Bo Shen, and Yaoxue Zhang.
Blockchain Empowered Arbitrable Data Auditing Scheme for Network Storage as a
Service. IEEE Transactions on Services Computing, 13(2):289-300, March 2020.

Pei Huang, Kai Fan, Hanzhe Yang, Kuan Zhang, Hui Li, and Yintang Yang. A
Collaborative Auditing Blockchain for Trustworthy Data Integrity in Cloud Storage
System. IEEE Access, 8:94780-94794, November 2020.

Qi Xia, Emmanuel Sifah, Abla Smahi, Sandro Amofa, and Xiaosong Zhang. BBDS:
Blockchain-Based Data Sharing for Electronic Medical Records in Cloud Environ-
ments. Information, 8(2):44, April 2017.

208

[45] Qi Xia, Emmanuel Boateng Sifah, Kwame Omono Asamoah, Jianbin Gao, Xiao-
jiang Du, and Mohsen Guizani. MeDShare: Trust-Less Medical Data Sharing
Among Cloud Service Providers via Blockchain. [EEE Access, 5:14757-14767,
July 2017.

[46] Hongyu Li, Liehuang Zhu, Meng Shen, Feng Gao, Xiaoling Tao, and Sheng Liu.
Blockchain-Based Data Preservation System for Medical Data. Journal of Medical
Systems, 42(8):141, August 2018.

[47] Dinh C. Nguyen, Pubudu N. Pathirana, Ming Ding, and Aruna Seneviratne.
Blockchain for Secure EHRs Sharing of Mobile Cloud Based E-Health Systems.
IEEE Access, 7:66792-66806, May 2019.

[48] Sheng Cao, Gexiang Zhang, Pengfei Liu, Xiaosong Zhang, and Ferrante Neri.
Cloud-assisted secure eHealth systems for tamper-proofing EHR via blockchain. In-
formation Sciences, 485:427-440, June 2019.

[49] T. Benil and J. Jasper. Cloud based security on outsourcing using blockchain in E-
health systems. Computer Networks, 178:107344, September 2020.

[50] Haiping Huang, Xiang Sun, Fu Xiao, Peng Zhu, and Wenming Wang. Blockchain-
based eHealth system for auditable EHRs manipulation in cloud environments. Jour-
nal of Parallel and Distributed Computing, 148:46-57, February 2021.

[51] Longxia Huang, Gongxuan Zhang, Shui Yu, Anmin Fu, and John Yearwood. Se-
Share: Secure cloud data sharing based on blockchain and public auditing. Concur-
rency and Computation: Practice and Experience, 31(22), September 2017.

[52] Aravind Ramachandran and Dr Murat Kantarcioglu. Using Blockchain and smart
contracts for secure data provenance management. https://arxiv.org/pdf/
1709.10000.pdf, September 2017. Online; accesed on 14 may 2021.

[53] Yuan Zhang, Xiaodong Lin, and Chunxiang Xu. Blockchain-Based Secure Data
Provenance for Cloud Storage. In Information and Communications Security, vol-
ume 11149, pages 3—19. Springer International Publishing, Cham, 2018.

[54] Thomas Renner, Johannes Muller, and Odej Kao. Endolith: A Blockchain-Based
Framework to Enhance Data Retention in Cloud Storages. In 2018 26th Euromicro

International Conference on Parallel, Distributed and Network-Based Processing
(PDP),Cambridge, UK, pages 627-634. IEEE, March 2018.

[55] Xiaodong Yang, Xizhen Pei, Meiding Wang, Ting Li, and Caifen Wang. Multi-
Replica and Multi-Cloud Data Public Audit Scheme Based on Blockchain. /EEE
Access, 8:144809-144822, July 2020.

[56] Yuan Zhang, Chunxiang Xu, Nan Cheng, Hongwei Li, Haomiao Yang, and
Xuemin Sherman Shen. Chronos+: An Accurate Blockchain-based Time-stamping
Scheme for Cloud Storage. IEEE Transactions on Services Computing, 13(2):216—
229, March 2020.

209

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Gabriel Estevam, Lucas M. Palma, Luan R. Silva, Jean E. Martina, and Martin Vigil.

Accurate and decentralized timestamping using smart contracts on the Ethereum
blockchain. 58(3), 2021.

Stephen Kirkman and Richard Newman. A Cloud Data Movement Policy Archi-
tecture Based on Smart Contracts and the Ethereum Blockchain. In 20/8 IEEE
International Conference on Cloud Engineering (IC2E), Orlando, FL,USA, pages
371-3717. IEEE, April 2018.

Haochen Li, Keke Gai, Zhengkang Fang, Liehuang Zhu, Lei Xu, and Peng Jiang.
Blockchain-enabled Data Provenance in Cloud Datacenter Reengineering. In Pro-
ceedings of the 2019 ACM International Symposium on Blockchain and Secure Crit-
ical Infrastructure - BSCI ’19, Auckland, New Zealand, pages 47-55. ACM Press,
August 2019.

Changsong Yang, Xiaofeng Chen, and Yang Xiang. Blockchain-based publicly ver-
ifiable data deletion scheme for cloud storage. Journal of Network and Computer
Applications, 103:185-193, February 2018.

Kai Fan, Yanhui Ren, Yue Wang, Hui Li, and Yingtang Yang. Blockchain-based
efficient privacy preserving and data sharing scheme of content-centric network in
5G. IET Communications, 12(5):527-532, March 2018.

Xiaochen Zheng, Raghava Rao Mukkamala, Ravi Vatrapu, and Joaqun Ordieres-
Mere. Blockchain-based Personal Health Data Sharing System Using Cloud Storage.
In 2018 IEEE 20th International Conference on E-Health Networking, Applications
and Services (Healthcom), Ostrava, Czech Republic, pages 1-6. IEEE, September
2018.

Mu Yang, Andrea Margheri, Runshan Hu, and Vladimiro Sassone. Differentially
Private Data Sharing in a Cloud Federation with Blockchain. /IEEE Cloud Comput-
ing, 5(6):69-79, November 2018.

Jingting Xue, Chunxiang Xu, Yuan Zhang, and Lanhua Bai. DStore: A Distributed
Cloud Storage System Based on Smart Contracts and Blockchain. In Algorithms
and Architectures for Parallel Processing, Guangzhou, China, volume 11336, pages
385-401. Springer International Publishing, November 2018.

Longxia Huang, Junlong Zhou, Gongxuan Zhang, Jin Sun, Tongquan Wei, Shui
Yu, and Shiyan Hu. IPANM: Incentive Public Auditing Scheme for Non-Manager
Groups in Clouds. IEEE Transactions on Dependable and Secure Computing, pages
1-1, June 2020.

Shorouq Alansari, Federica Paci, and Vladimiro Sassone. A Distributed Access
Control System for Cloud Federations. In 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS),Atlanta, GA, USA, pages 2131-2136.
IEEE, June 2017.

210

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Maryline Laurent, Nesrine Kaaniche, Christian Le, and Mathieu Vander Plaetse. A
Blockchain based Access Control Scheme. In Proceedings of the 15th International
Joint Conference on E-Business and Telecommunications, Porto, Portugal, pages
168—176. SCITEPRESS - Science and Technology Publications, 2018.

Jason Paul Cruz, Yuichi Kaji, and Naoto Yanai. RBAC-SC: Role-Based Access
Control Using Smart Contract. IEEE Access, 6:12240-12251, 2018.

YongJoo Lee and Keon Myung Lee. Blockchain-based RBAC for user authentication
with anonymity. In Proceedings of the Conference on Research in Adaptive and
Convergent Systems,Chongqing, China, pages 289-294. ACM, September 2019.

Arnab Chatterjee, Yash Pitroda, and Manojkumar Parmar. Dynamic Role-Based
Access Control for Decentralized Applications. In International conference on
Blockchain - ICBC, Honolulu, HI, USA.

Ronghua Xu, Yu Chen, Erik Blasch, and Genshe Chen. BlendCAC: A Smart Con-
tract Enabled Decentralized Capability-Based Access Control Mechanism for the
[0T. Computers, 7(3):39, July 2018.

Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci. A blockchain based
approach for the definition of auditable Access Control systems. Computers & Se-
curity, 84:93-119, July 2019.

Hao Guo, Ehsan Meamari, and Chien-Chung Shen. Multi-Authority Attribute-Based
Access Control with Smart Contract. In Proceedings of the 2019 International Con-
ference on Blockchain Technology - ICBCT, Honolulu, HI, USA, pages 6—-11. ACM
Press, 2019.

Yuanyu Zhang, Shoji Kasahara, Yulong Shen, Xiaohong Jiang, and Jianxiong Wan.
Smart Contract-Based Access Control for the Internet of Things. IEEE Internet of
Things Journal, 6(2):1594-1605, April 2019.

Caixia Yang, Liang Tan, Na Shi, Bolei Xu, Yang Cao, and Keping Yu. AuthPrivacy-
Chain: A Blockchain-Based Access Control Framework With Privacy Protection in
Cloud. IEEE Access, 8:70604-70615, 2020.

L. Guo, X. Yang, and W.-C. Yau. TABE-DAC: Efficient Traceable Attribute-Based
Encryption Scheme With Dynamic Access Control Based on Blockchain. [EEE
Access, 9:8479-8490, 2021.

Shengshan Hu, Chengjun Cai, Qian Wang, Cong Wang, Xiangyang Luo, and Kui
Ren. Searching an Encrypted Cloud Meets Blockchain: A Decentralized, Reliable
and Fair Realization. In IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, Honolulu, HI, USA, pages 792—-800. IEEE, April 2018.

Lanxiang Chen, Wai-Kong Lee, Chin-Chen Chang, Kim-Kwang Raymond Choo,
and Nan Zhang. Blockchain based searchable encryption for electronic health record
sharing. Future Generation Computer Systems, 95:420-429, June 2019.

211

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Yinghui Zhang, Robert H. Deng, Jiangang Shu, Kan Yang, and Dong Zheng. TKSE:
Trustworthy Keyword Search Over Encrypted Data With Two-Side Verifiability via
Blockchain. IEEE Access, 6:31077-31087, June 2018.

Shunrong Jiang, Jianqing Liu, Liangmin Wang, and Seong-Moo Yoo. Verifiable
Search Meets Blockchain: A Privacy-Preserving Framework for Outsourced En-
crypted Data. In ICC 2019 - 2019 IEEE International Conference on Communica-
tions (ICC), Shanghai, China, pages 1-6. IEEE, May 2019.

Shan Jiang, Jiannong Cao, Julie A. McCann, Yanni Yang, Yang Liu, Xiaoqing Wang,
and Yuming Deng. Privacy-Preserving and Efficient Multi-Keyword Search over En-
crypted Data on Blockchain. In 2019 IEEE International Conference on Blockchain
(Blockchain),Atlanta, GA, USA, pages 405-410. IEEE, July 2019.

Agipa Aigissinova, Hieu Hanh Le, and Haruo Yokota. Evaluation of the perfor-
mance of secure keyword search using bit-string signatures in the blockchain.
https://db-event.jpn.org/deim2020/post/proceedings/
papers/E1-5.pdf, 2020. Online; accessed on 14 May 2021.

Chengjun Cai, Jian Weng, Xingliang Yuan, and Cong Wang. Enabling Reliable
Keyword Search in Encrypted Decentralized Storage with Fairness. 18(1):131-144,
January 2021.

Yang Yang, Hongrui Lin, Ximeng Liu, Wenzhong Guo, Xianghan Zheng, and Zhi-
quan Liu. Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted
Cloud With Fair Payment. IEEE Access, 7:140818-140832, September 2019.

Chao Zhang, Shaojing Fu, and Weijun Ao. A blockchain based searchable encryp-
tion scheme for multiple cloud storage. In Jaideep Vaidya, Xiao Zhang, and Jin
Li, editors, Cyberspace Safety and Security, Guangzhou, China, pages 585-600.
Springer International Publishing, December 2019.

Shaojing Fu, Chao Zhang, and Weijun Ao. Searchable encryption scheme for mul-
tiple cloud storage using double-layer blockchain. Concurrency and Computation:
Practice and Experience, April 2020.

Shufen Niu, Lixia Chen, Jinfeng Wang, and Fei Yu. Electronic Health Record Shar-
ing Scheme With Searchable Attribute-Based Encryption on Blockchain. IEEE Ac-
cess, 8:7195-7204, June 2019.

Qiang Tang. Towards blockchain-enabled searchable encryption, copenhagen, den-
mark. In Jianying Zhou, Xiapu Luo, Qingni Shen, and Zhen Xu, editors, Information
and Communications Security,, pages 482—-500. Springer International Publishing,
2020.

Xixi Yan, Xiaohan Yuan, Qing Ye, and Yongli Tang. Blockchain-Based Searchable
Encryption Scheme With Fair Payment. IEEE Access, 8:109687-109706, June 2020.

212

[90] Peng Jiang, Fuchun Guo, Kaitai Liang, Jianchang Lai, and Qiaoyan Wen. Searchain:
Blockchain-based private keyword search in decentralized storage. Future Genera-
tion Computer Systems, 107:781-792, June 2020.

[91] Yandong Li, Liehuang Zhu, Meng Shen, Feng Gao, Baokun Zheng, Xiaojiang
Du, Sheng Liu, and Shu Yin. CloudShare: Towards a Cost-Efficient and Privacy-
Preserving Alliance Cloud Using Permissioned Blockchains. In Mobile Networks
and Management, Melbourne, VIC, Australia, volume 235, pages 339-352. Springer
International Publishing, December 2017.

[92] Jingyi Li, Jigang Wu, Long Chen, and Xi’an China Li, Jiaxing. Deduplication with
Blockchain for Secure Cloud Storage. In Big Data, volume 945, pages 558-570.
Springer Singapore, 2018.

[93] Shangping Wang, Yuying Wang, and Yaling Zhang. Blockchain-Based Fair Payment
Protocol for Deduplication Cloud Storage System. IEEE Access, 7:127652—127668,
2019.

[94] Sunny King and Scott Nadal. PPCoin: Peer-to-Peer Crypto-Currency with Proof-
of-Stake. https://www.chainwhy.com/upload/default/20180619/
126a057fef926dc286acch372da46955.pdf. Online; accessed on 14 may
2021.

[95] Intel Corporation. Intel(r) software guard extensions (intel(r) sgx) sdk. https://
software.intel.com/en—-us/sgx—sdk, 2015. Online; accessed on 14 May
2021.

[96] OASIS Standard. extensible access control markup language (xacml) ver-
sion 3.0. http://docs.casis—-open.org/xacml/2.0/access,ontrol—-
xacml-2.0-core-spec-os.pdf, 2013. Online; accessed on 14 May 2021.

[97] Sanjay Jain, Prateek Saxena, Frank Stephan, and Jason Teutsch. @ How to
verify computation with a rational network. https://arxiv.org/pdf/
1606.05917.pdf, June 2016. Online; accessed on 14 May 2021.

[98] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou. Fuzzy Keyword Search over
Encrypted Data in Cloud Computing. In 2010 Proceedings IEEE INFOCOM, San
Diego, CA, USA, pages 1-5. IEEE, March 2010.

[99] X. Zhu, Q. Liu, and G. Wang. A Novel Verifiable and Dynamic Fuzzy Keyword
Search Scheme over Encrypted Data in Cloud Computing. In 2016 IEEE Trust-
com/BigDataSE/ISPA, Tianjin, China, pages 845-851. IEEE, August 2016.

[100] Wakaha Ogata and Kaoru Kurosawa. Oblivious keyword search. Journal of Com-
plexity, 20(2-3):356-371, April 2004.

[101] Dutch T Meyer and William J Bolosky. A study of practical deduplication. ACM
Transactions on Storage, 7(4):20.

213

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Abdullah Yousafzai, Abdullah Gani, Rafidah Md Noor, Mehdi Sookhak, Hamid
Talebian, Muhammad Shiraz, and Muhammad Khurram Khan. Cloud resource allo-
cation schemes: Review, taxonomy, and opportunities. Knowledge and Information
Systems, 50(2):347-381, February 2017.

Yonggen Gu, Dingding Hou, and Xiaohong Wu. A Cloud Storage Resource Trans-
action Mechanism Based on Smart Contract. In Proceedings of the Sth Interna-
tional Conference on Communication and Network Security - ICCNS 2018, Qing-
dao, China, pages 134-138. ACM Press, February 2018.

Aleksandr Zavodovski, Suzan Bayhan, Nitinder Mohan, Pengyuan Zhou, Walter
Wong, and Jussi Kangasharju. DeCloud: Truthful Decentralized Double Auction
for Edge Clouds. In 2019 IEEE 39th International Conference on Distributed Com-
puting Systems (ICDCS), Dallas, TX, USA, pages 2157-2167. IEEE, July 2019.

Tonglai Liu, Jigang Wu, Long Chen, Yalan Wu, and Yinan Li. Smart Contract-Based
Long-Term Auction for Mobile Blockchain Computation Offloading. IEEE Access,
8:36029-36042, February 2020.

Zhili Chen, Wei Ding, Yan Xu, Miaomiao Tian, and Hong Zhong. Fair Auction
and Trade Framework for Cloud VM Allocation based on Blockchain. https:
//arxiv.org/pdf/2001.00771.pdf, January 2020. Online; accessed on 14
May 2021.

Zixuan Xie, Run Wu, Miao Hu, and Haibo Tian. Blockchain-Enabled Computing
Resource Trading: A Deep Reinforcement Learning Approach. In 2020 IEEE Wire-
less Communications and Networking Conference (WCNC),Seoul, Korea (South),
pages 1-8. IEEE, May 2020.

Sambit Nayak, Nanjangud C Narendra, Anshu Shukla, and James Kempf. Saranyu:
Using Smart Contracts and Blockchain for Cloud Tenant Management. In 2018
IEEE 11th International Conference on Cloud Computing (CLOUD),San Francisco,
CA, USA, pages 857-861. IEEE, July 2018.

Vorameth Reantongcome, Vasaka Visoottiviseth, Wudhichart Sawangphol, As-
sadarat Khurat, Shigeru Kashihara, and Doudou Fall. Securing and Trustworthy
Blockchain-based Multi-Tenant Cloud Computing. In 2020 IEEE 10th Symposium
on Computer Applications & Industrial Electronics (ISCAIE), Malaysia, pages 256—
261. IEEE, April 2020.

Jianli Pan, Jianyu Wang, Austin Hester, Ismail Algerm, Yuanni Liu, and Ying
Zhao. EdgeChain: An Edge-loT Framework and Prototype Based on Blockchain
and Smart Contracts. IEEE Internet of Things Journal, 6(3):4719—4732, October
2018.

Zhen Zhang, Zicong Hong, Wuhui Chen, Zibin Zheng, and Xu Chen. Joint Compu-
tation Offloading and Coin Loaning for Blockchain-Empowered Mobile-Edge Com-
puting. IEEE Internet of Things Journal, 6(6):9934-9950, December 2019.

214

[112] Zhenni Li, Zuyuan Yang, Shengli Xie, Wuhui Chen, and Kang Liu. Credit-Based
Payments for Fast Computing Resource Trading in Edge-Assisted Internet of Things.
IEEE Internet of Things Journal, 6(4):6606—6617, August 2019.

[113] Wen Sun, Jiajia Liu, Yanlin Yue, and Peng Wang. Joint Resource Allocation and
Incentive Design for Blockchain-Based Mobile Edge Computing. 19(9), 2020.

[114] Lanfranco Zanzi, Antonio Albanese, Vincenzo Sciancalepore, and Xavier Costa-
Perez. NSBchain: A Secure Blockchain Framework for Network Slicing Broker-
age. In ICC 2020 - 2020 IEEE International Conference on Communications (ICC),
Dublin, Ireland.

[115] Bo Zhao, Peiru Fan, and Mingtao Ni. Mchain: A Blockchain-Based VM Measure-
ments Secure Storage Approach in [aaS Cloud With Enhanced Integrity and Con-
trollability. IEEE Access, 6:43758-43769, January 2018.

[116] Tongchen Wang, Jianwei Liu, Dawei Li, and Qianhong Wu. A Blockchain-Based
Resource Supervision Scheme for Edge Devices Under Cloud-Fog-End Computing
Models. In Joseph K. Liu and Hui Cui, editors, Information Security and Privacy,
Perth, WA, Australia, volume 12248, pages 285-305. Springer International Pub-
lishing, 2020.

[117] W. Wang, B. Li, and B. Liang. Towards Optimal Capacity Segmentation with Hy-
brid Cloud Pricing. In 2012 IEEE 32nd International Conference on Distributed
Computing Systems, Macau, China, pages 425-434. IEEE, June 2012.

[118] Weijie Shi, Linquan Zhang, Chuan Wu, Zongpeng Li, and Francis C.M. Lau. An
online auction framework for dynamic resource provisioning in cloud computing. In
The 2014 ACM International Conference on Measurement and Modeling of Com-
puter Systems - SIGMETRICS ’14, Austin, Texas, USA, pages 71-83. ACM Press,
2014.

[119] H. Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, and J. Liu. A Framework for
Truthful Online Auctions in Cloud Computing with Heterogeneous User Demands.
IEEE Transactions on Computers, 65(3):805-818, March 2016.

[120] Hal R. Varian and Christopher Harris. The VCG Auction in Theory and Practice.
American Economic Review, 104(5):442-445, May 2014.

[121] Tim Roughgarden. Algorithmic game theory. Communications of the ACM,
53(7):78-86, July 2010.

[122] Iddo Bentov and Ranjit Kumaresan. How to Use Bitcoin to Design Fair Protocols.
In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology — CRYPTO,
Santa Barbara, CA, USA, Lecture Notes in Computer Science, pages 421-439, Au-
gust 2014.

[123] J. P. Morgan Chase. A Permissioned Implementation of Ethereum. https://
github.com/ConsenSys/quorum, 2018.

215

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]
[134]

James Kempf, Sambit Nayak, Remi Robert, Jim Feng, Kunal Rajan Deshmukh, An-
shu Shukla, Aleksandra Obeso Duque, Nanjangud Narendra, and Johan Sjoberg.
The Nubo Virtual Services Marketplace. https://arxiv.org/ftp/arxiv/
papers/1909/1909.04934.pdf, November 2019. Online; accessed on 14 May
2021.

Ranjit Kumaresan and Iddo Bentov. How to Use Bitcoin to Incentivize Correct
Computations. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security - CCS 14, Scottsdale, Arizona, USA, pages 30—41.
ACM Press, 2014.

Yinghui Zhang, Robert Deng, Ximeng Liu, and Dong Zheng. Outsourcing Service
Fair Payment based on Blockchain and its Applications in Cloud Computing. /[EEE
Transactions on Services Computing, pages 1-1, August 2018.

Yinghui Zhang, Robert H. Deng, Ximeng Liu, and Dong Zheng. Blockchain based
efficient and robust fair payment for outsourcing services in cloud computing. In-
formation Sciences, 462:262-277, September 2018.

Jacob Eberhardt and Stefan Tai. ZoKrates - Scalable Privacy-Preserving Off-
Chain Computations. In 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (Smart-
Data), Halifax, NS, Canada, pages 1084-1091. IEEE, July 2018.

Mallikarjun Reddy Dorsala, V.N. Sastry, and Sudhakar Chapram. Fair payments for
verifiable cloud services using smart contracts. Computers & Security, 90:101712,
March 2020.

Y. Guan, H. Zheng, J. Shao, R. Lu, and G. Wei. Fair Outsourcing Polynomial Com-
putation Based on the Blockchain. IEEE Transactions on Services Computing, pages
1-1, 2021.

Sepideh Avizheh, Mahmudun Nabi, Reihaneh Safavi-Naini, and Muni
Venkateswarlu K. Verifiable Computation using Smart Contracts. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop - CCSW’19, London, United Kingdom, pages 17-28. ACM Press,
November 2019.

Jason Teutsch and Christian ReitwieBner. A scalable verification solution for
blockchains. https://arxiv.org/pdf/1908.04756.pdf, November 2017.
Online; accessed on 14 May 2021.

Dominik Harz and Magnus Boman. The Scalability of Trustless Trust.

Michal Krdl and Ioannis Psaras. SPOC: Secure Payments for Outsourced Com-
putations. https://arxiv.org/pdf/1807.06462.pdf, July 2018. Online;
accessed on 14 May 2021.

216

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

Mahmudun Nabi, Sepideh Avizheh, Muni Venkateswarlu Kumaramangalam, and
Reihaneh Safavi-Naini. Game-Theoretic Analysis of an Incentivized Verifiable
Computation System. In Financial Cryptography and Data Security, Kota Kinabalu,
Malaysia, volume 11599, pages 50—66. Springer International Publishing, 2020.

Scott Eisele, Taha Eghtesad, Nicholas Troutman, Aron Laszka, and Abhishek
Dubey. Mechanisms for Outsourcing Computation via a Decentralized Market. In
Proceedings of the 14th ACM International Conference on Distributed and Event-
based Systems, Montreal, Quebec, Canada, pages 61-72. ACM, July 2020.

Jingzhong Wang, Mengru Li, Yunhua He, Hong Li, Ke Xiao, and Chao Wang. A
Blockchain Based Privacy-Preserving Incentive Mechanism in Crowdsensing Appli-
cations. IEEE Access, 6:17545-17556, 2018.

Chengjun Cai, Yifeng Zheng, and Cong Wang. Leveraging Crowdsensed Data
Streams to Discover and Sell Knowledge: A Secure and Efficient Realization.
In 2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), Vienna, Austria, pages 589-599. IEEE, July 2018.

Yuan Lu, Qiang Tang, and Guiling Wang. Zebralancer: Private and Anonymous
Crowdsourcing System atop Open Blockchain. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, pages
853-865, July 2018.

Fengrui Shi, Zhijin Qin, Di Wu, and Julie McCann. MPCSToken: Smart Contract
Enabled Fault-Tolerant Incentivisation for Mobile P2P Crowd Services. In 2018
IEEE 38th International Conference on Distributed Computing Systems (ICDCS),
Vienna, Austria, pages 961-971, July 2018.

Dimitris Chatzopoulos, Sujit Gujar, Boi Faltings, and Pan Hui. Privacy Preserving
and Cost Optimal Mobile Crowdsensing using Smart Contracts on Blockchain. In
2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems
(MASS), Chengdu, China, pages 442 — 450, October 2018.

Mengmeng Yang, Tianqing Zhu, Kaitai Liang, Wanlei Zhou, and Robert H. Deng.
A blockchain-based location privacy-preserving crowdsensing system. Future Gen-
eration Computer Systems, 94:408—418, May 2019.

M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J. Liu, Y. Xiang, and R. H.
Deng. CrowdBC: A Blockchain-Based Decentralized Framework for Crowdsourc-
ing. IEEE Transactions on Parallel and Distributed Systems, 30(6):1251-1266, June
2019.

Wei Feng and Zheng Yan. MCS-Chain: Decentralized and trustworthy mobile
crowdsourcing based on blockchain. Future Generation Computer Systems, 95:649—
666, June 2019.

217

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Junwei Zhang, Wenxuan Cui, Jianfeng Ma, and Chao Yang. Blockchain-based se-

cure and fair crowdsourcing scheme. International Journal of Distributed Sensor
Networks, 15(7):1550147719864890, July 2019.

Yao Yu, Shumei Liu, Lei Guo, Phee Lep Yeoh, Branka Vucetic, and Yonghui Li.
CrowdR-FBC: A Distributed Fog-Blockchains for Mobile Crowdsourcing Reputa-
tion Management. IEEE Internet of Things Journal, 7(9):8722 — 8735, September
2020.

Jiejun Hu, Kun Yang, Kezhi Wang, and Kai Zhang. A Blockchain-Based Reward
Mechanism for Mobile Crowdsensing. IEEE Transactions on Computational Social
Systems, 7(1):178-191, February 2020.

Maha Kadadha, Hadi Otrok, Rabeb Mizouni, Shakti Singh, and Anis Ouali.
SenseChain: A blockchain-based crowdsensing framework for multiple requesters

and multiple workers. Future Generation Computer Systems, 105:650-664, April
2020.

Saide Zhu, Zhipeng Cai, Huafu Hu, Yingshu Li, and Wei Li. zkCrowd: A Hybrid
Blockchain-Based Crowdsourcing Platform. IEEE Transactions on Industrial Infor-
matics, 16(6):4196-4205, June 2020.

Shihong Zou, Jinwen Xi, Honggang Wang, and Guoai Xu. CrowdBLPS:
A Blockchain-Based Location-Privacy-Preserving Mobile Crowdsensing System.
IEEE Transactions on Industrial Informatics, 16(6):4206—4218, June 2020.

Junqin Huang, Linghe Kong, Hong-Ning Dai, Weiping Ding, Long Cheng, Guihai
Chen, Xi Jin, and Peng Zeng. Blockchain-Based Mobile Crowd Sensing in Industrial
Systems. IEEE Transactions on Industrial Informatics, 16(10):6553-6563, October
2020.

Michael Walfish and Andrew J. Blumberg. Verifying computations without reexe-
cuting them. Communications of the ACM, 58(2):74-84, January 2015.

Mira Belenkiy, Melissa Chase, C. Chris Erway, John Jannotti, Alptekin Kiip¢ii, and
Anna Lysyanskaya. Incentivizing outsourced computation. In Proceedings of the 3rd
International Workshop on Economics of Networked Systems - NetEcon *08, Seattle,
WA, USA, page 85. ACM Press, 2008.

Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of computation
using multiple servers. In Proceedings of the 18th ACM Conference on Computer
and Communications Security - CCS 11, Chicago, lllinois, USA, page 445. ACM
Press, 2011.

A. Kiipgii. Incentivized Outsourced Computation Resistant to Malicious Contrac-
tors. [EEE Transactions on Dependable and Secure Computing, 14(6):633-649,
November 2017.

218

[156]

[157]

[158]
[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

Golem whitepaper - whitepaper.io. https://whitepaper.io/document/
21/golem-whitepaper, 2014. Online; accessed on 14 May 2021.

G Fedak, H He, M Moca, W Bendella, and E Alves. Blockchain-based decentralized
cloud computing. iExec Blockchain Tech, Tech. Rep., 2018.

About SONM — SONM. https://docs.sonm.com/.

Rafael Brundo Uriarte and Rocco DeNicola. Blockchain-Based Decentralized
Cloud/Fog Solutions: Challenges, Opportunities, and Standards. IEEE Commu-
nications Standards Magazine, 2(3):22-28, September 2018.

Prashanth Mohan, Venkata N. Padmanabhan, and Ramachandran Ramjee. Nericell:
Rich monitoring of road and traffic conditions using mobile smartphones. In Pro-
ceedings of the 6th ACM Conference on Embedded Network Sensor Systems, New
York, NY, USA, SenSys ’08, pages 323-336. Association for Computing Machinery,
November 2008.

Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts, Samuel Madden, Hari
Balakrishnan, Sivan Toledo, and Jakob Eriksson. VTrack: Accurate, energy-aware
road traffic delay estimation using mobile phones. In Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems, New York, NY, USA, SenSys
’09, pages 85-98. Association for Computing Machinery, November 2009.

Amit Datta, Marc Joye, and Nadia Fawaz. Private Data Aggregation over Selected
Subsets of Users. In International Conference on Cryptology and Network Security,
Fuzhou, China, Lecture Notes in Computer Science, pages 375-391. Springer Inter-
national Publishing, 2019.

Nicolas Maisonneuve, Matthias Stevens, Maria E. Niessen, and Luc Steels. Noise-
Tube: Measuring and mapping noise pollution with mobile phones. In Information
Technologies in Environmental Engineering, Thessaloniki, Greece, Environmental
Science and Engineering, pages 215-228. Springer, 2009.

Min Mun, Sasank Reddy, Katie Shilton, Nathan Yau, Jeff Burke, Deborah Estrin,
Mark Hansen, Eric Howard, Ruth West, and Péter Boda. PEIR, the personal envi-
ronmental impact report, as a platform for participatory sensing systems research. In
Proceedings of the 7th International Conference on Mobile Systems, Applications,
and Services, Krakow Poland, MobiSys ’09, pages 55-68. ACM, June 2009.

Lijun Wei, Jing Wu, and Chengnian Long. A Blockchain-Based Hybrid Incentive
Model for Crowdsensing. Electronics, 9(2):215, January 2020.

Heinrich von Stackelberg. Market Structure and Equilibrium. Springer Science &
Business Media, November 2010.

219

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. Deanonymisation of
Clients in Bitcoin P2P Network. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, Scottsdale, Arizona, USA, CCS
"14, pages 15-29. Association for Computing Machinery, November 2014.

Roberto Tonelli, Maria Ilaria Lunesu, Andrea Pinna, Davide Taibi, and Michele
Marchesi. Implementing a Microservices System with Blockchain Smart Contracts.
In 2019 IEEE International Workshop on Blockchain Oriented Software Engineer-
ing (IWBOSE), Hangzhou, China, pages 22-31. IEEE, February 2019.

Deeraj Nagothu, Ronghua Xu, Seyed Yahya Nikouei, and Yu Chen. A Microservice-
enabled Architecture for Smart Surveillance using Blockchain Technology. In 2018
IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, pages
1-4, July 2018.

Ronghua Xu, Seyed Yahya Nikouei, Yu Chen, Erik Blasch, and Alex Aved. Blend-
MAS: A BLockchain-ENabled Decentralized Microservices Architecture for Smart
Public Safety. In 2019 IEEE International Conference on Blockchain, Atlanta, GA,
USA, pages 564 — 571, February 2019.

Ronghua Xu, Gowri Sankar Ramachandran, Yu Chen, and Bhaskar Krishna-
machari. BlendSM-DDM: BLockchain-ENabled Secure Microservices for Decen-
tralized Data Marketplaces. In 2019 IEEE International Smart Cities Conference
(ISC2), Casablanca, Morocco, pages 14 — 17, September 2019.

Ronghua Xu, Yu Chen, Erik Blasch, Alexander Aved, Genshe Chen, and Dan Shen.
Hybrid Blockchain-Enabled Secure Microservices Fabric for Decentralized Multi-

Domain Avionics Systems. In Sensors and Systems for Space Applications XIII,
pages 150 — 164. SPIE, April 2020.

Nikola Bozic, Guy Pujolle, and Stefano Secci. Securing virtual machine orches-
tration with blockchains. In 2017 Ist Cyber Security in Networking Conference
(CSNet),Rio de Janeiro, Brazil, pages 1-8. IEEE, October 2017.

Igor D. Alvarenga, Gabriel A. F. Rebello, and Otto Carlos M. B. Duarte. Secur-
ing configuration management and migration of virtual network functions using
blockchain. In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Manage-
ment Symposium, Taipei, Taiwan, pages 1-9. IEEE, April 2018.

Gabriel Antonio F. Rebello, Igor D. Alvarenga, Igor J. Sanz, and Otto Carlos M. B.
Duarte. BSec-NFVO: A Blockchain-Based Security for Network Function Virtual-
ization Orchestration. In ICC 2019 - 2019 IEEE International Conference on Com-
munications (ICC), Shanghai, China, pages 1-6. IEEE, May 2019.

Gabriel Antonio F. Rebello, Gustavo F. Camilo, Leonardo G. C. Silva, Lucas C.
B. Guimardes, Lucas Airam C. de Souza, Igor D. Alvarenga, and Otto Carlos
M. B. Duarte. Providing a Sliced, Secure, and Isolated Software Infrastructure

220

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

of Virtual Functions Through Blockchain Technology. In 2019 IEEE 20th Inter-
national Conference on High Performance Switching and Routing (HPSR), Xi’an,
China, pages 1-6. IEEE, May 2019.

Eder J. Scheid, Manuel Keller, Muriel F. Franco, and Burkhard Stiller. BUNKER:
A Blockchain-based trUsted VNF pacKagE Repository. In Economics of Grids,
Clouds, Systems, and Services, Leeds, United Kingdom, volume 11819, pages 188—
196. Springer International Publishing, September 2019.

Xiaoyuan Fu, F. Richard Yu, Jingyu Wang, Qi Qi, and Jianxin Liao. Perfor-
mance Optimization for Blockchain-Enabled Distributed Network Function Virtu-
alization Management and Orchestration. /[EEE Transactions on Vehicular Technol-
0gy, 69(6):6670—6679, June 2020.

R. A. Mishra, A. Kalla, K. Shukla, A. Nag, and M. Liyanage. B-vnf: Blockchain-
enhanced architecture for vnf orchestration in mec-5g networks. In 2020 IEEE 3rd
5G World Forum (5SGWF), Bangalore, India, pages 229-234, September 2020.

France ETSI Ind. Spec. Group (ISG) Netw. Functions Virtualisation (NFV),
Sophia-Antipolis Cedex. ETSI GS NFV 003 V1.2.1: Network Functions
Virtualisation (NFV); Terminology for main concepts in NFV. http:
//www.etsi.org/deliver/etsiys/NFV/001799/003/01.02.0160/
gsNEV003v010201p.pdf, Dec 2014. Online; accessed on 14 May 2021.

R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba. Network
Function Virtualization: State-of-the-Art and Research Challenges. IEEE Commu-
nications Surveys Tutorials, 18(1):236-262, Firstquarter 2016.

S. Lal, A. Kalliola, I. Oliver, K. Ahola, and T. Taleb. Securing VNF communication
in NFVI. In 2017 IEEE Conference on Standards for Communications and Network-
ing (CSCN), Helsinki, Finland, pages 187-192. IEEE, September 2017.

Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173-186, 1999.

B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly Practical Ver-
ifiable Computation. In 2013 IEEE Symposium on Security and Privacy, Berkeley,
CA, USA, pages 238-252. IEEE, May 2013.

Ralph C. Merkle. A Digital Signature Based on a Conventional Encryption Function.
In Carl Pomerance, editor, Advances in Cryptology — CRYPTO ’87, Santa Barbara,
CA, USA, Lecture Notes in Computer Science, pages 369—378. Springer, 1988.

Torben Pryds Pedersen. Non-Interactive and Information-Theoretic Secure Veri-
fiable Secret Sharing. In Joan Feigenbaum, editor, Advances in Cryptology —
CRYPTO ’91, Santa Barbara, CA, USA, Lecture Notes in Computer Science, pages
129-140. Springer, 1992.

221

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. A Smart Contract for
Boardroom Voting with Maximum Voter Privacy. In Financial Cryptography and
Data Security, Sliema, Malta, Lecture Notes in Computer Science, pages 357-375.
Springer International Publishing, 2017.

Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, and Hamed Had-
dadi. Mobile sensor data anonymization. In Proceedings of the International Confer-

ence on Internet of Things Design and Implementation, Montreal Quebec Canada,
pages 49-58. ACM, April 2019.

Marc Joye and Benoit Libert. A Scalable Scheme for Privacy-Preserving Aggrega-
tion of Time-Series Data. In Financial Cryptography and Data Security, Okinawa,
Japan, volume 7859, pages 111-125. Springer Berlin Heidelberg, 2013.

Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl.
ETHDKG: Distributed Key Generation with Ethereum Smart Contracts. https:
//eprint.iacr.org/2019/985.pdf, 2019. Online; accessed on 14 May
2021.

Qi Li, Yaliang Li, Jing Gao, Lu Su, Bo Zhao, Murat Demirbas, Wei Fan, and Jiawei
Han. A confidence-aware approach for truth discovery on long-tail data. Proceed-
ings of the VLDB Endowment, 8(4):425-436, December 2014.

S. Yao, M. T. Amin, L. Su, S. Hu, S. Li, S. Wang, Y. Zhao, T. Abdelzaher, L. Ka-
plan, C. Aggarwal, and A. Yener. Recursive Ground Truth Estimator for Social Data
Streams. In 2016 15th ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks (IPSN), Vienna, Austria, pages 1-12. IEEE, April 2016.

Chuishi Meng, Wenjun Jiang, Yaliang Li, Jing Gao, Lu Su, Hu Ding, and Yun Cheng.
Truth Discovery on Crowd Sensing of Correlated Entities. In Proceedings of the
13th ACM Conference on Embedded Networked Sensor Systems,Seoul, South Korea,
SenSys ’15, pages 169—182. ACM, November 2015.

Yue Liu, Qinghua Lu, Xiwei Xu, Liming Zhu, and Haonan Yao. Applying Design
Patterns in Smart Contracts. In Blockchain — ICBC 2018, Seattle, WA, USA, Lecture
Notes in Computer Science, pages 92—106. Springer International Publishing, 2018.

G. Xu, H. Li, S. Liu, M. Wen, and R. Lu. Efficient and Privacy-Preserving Truth Dis-
covery in Mobile Crowd Sensing Systems. IEEE Transactions on Vehicular Tech-
nology, 68(4):3854-3865, April 2019.

Gergely Acs and Claude Castelluccia. I have a dream!(differentially private smart
metering). In International Workshop on Information Hiding, Prague, Czech Repub-
lic, pages 118-132. Springer, May 18-20, 2011.

Iraklis Leontiadis, Kaoutar Elkhiyaoui, and Refik Molva. Private and dynamic time-
series data aggregation with trust relaxation. In International Conference on Cryp-
tology and Network Security, Heraklion, Crete, Greece, pages 305-320. Springer,
October 22-24, 2014.

222

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

Jianwei Chen and Huadong Ma. Privacy-preserving aggregation for participatory
sensing with efficient group management. In 2014 IEEE Global Communications
Conference, Austin, TX, USA, pages 2757-2762. IEEE, 2014.

Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Onen, and Refik Molva. Puda—
privacy and unforgeability for data aggregation. In International Conference on

Cryptology and Network Security, Marrakesh, Morocco, pages 3—18. Springer, De-
cember 10-12, 2015.

Keita Emura. Privacy-preserving aggregation of time-series data with public veri-
fiability from simple assumptions. In Information Security and Privacy, Auckland,
New Zealand, pages 193-213. Springer International Publishing, July 3-5,2017.

Elaine Shi, HTH Chan, Eleanor Rieffel, Richard Chow, and Dawn Song. Privacy-
preserving aggregation of time-series data. In Annual Network & Distributed System
Security Symposium (NDSS), San Diego, California, pages 1-17, 2011.

Fabrice Benhamouda, Marc JOYE, and Benoit Libert. A New Framework for
Privacy-Preserving Aggregation of Time-Series Data. ACM Transactions on Infor-
mation and System Security, 18(3):21, April 2016.

L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos. An Online Mechanism
for Resource Allocation and Pricing in Clouds. IEEE Transactions on Computers,
65(4):1172-1184, April 2016.

Joshua A Kroll, Ian C Davey, and Edward W Felten. The economics of bitcoin min-
ing, or bitcoin in the presence of adversaries. In Proceedings of WEIS, Washington,
D.C., USA, volume 2013, page 11, June 23-24, 2013.

Hisham S. Galal and Amr M. Youssef. Verifiable Sealed-Bid Auction on the
Ethereum Blockchain. In Financial Cryptography and Data Security, Nieuwpoort,
Curagao.

A. Hahn, R. Singh, C. Liu, and S. Chen. Smart contract-based campus demonstration
of decentralized transactive energy auctions. In 2017 IEEE Power Energy Society
Innovative Smart Grid Technologies Conference (ISGT), pages 1-5, April 2017.

Y. Chen, S. Chen, and I. Lin. Blockchain based smart contract for bidding system. In
2018 IEEE International Conference on Applied System Invention (ICASI), Chiba,
Japan, pages 208-211. IEEE, April 2018.

Shuangke Wu, Yanjiao Chen, Qian Wang, Minghui Li, Cong Wang, and Xiangyang
Luo. CReam: A Smart Contract Enabled Collusion-Resistant e-Auction. [EEE
Transactions on Information Forensics and Security, 14(7):1687-1701, July 2019.

Chiara Braghin, Stelvio Cimato, Ernesto Damiani, and Michael Baronchelli. De-
signing Smart-Contract Based Auctions. In Security with Intelligent Computing and
Big-Data Services, New Taipei City, Taiwan, Advances in Intelligent Systems and
Computing, pages 54—64. Springer International Publishing, 2019.

223

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

S. Thakur, B. P. Hayes, and J. G. Breslin. Distributed Double Auction for Peer
to Peer Energy Trade using Blockchains. In 2018 5th International Symposium on
Environment-Friendly Energies and Applications (EFEA),Rome, Italy, pages 1-8.
IEEE, September 2018.

Erik-Oliver Blass and Florian Kerschbaum. Strain: A Secure Auction for
Blockchains. In European Symposium on Research in Computer Security,
Barcelona, Spain, Lecture Notes in Computer Science, pages 87—110. Springer In-
ternational Publishing, September 2018.

Hisham S. Galal and Amr M. Youssef. Trustee: Full Privacy Preserving Vickrey
Auction on Top of Ethereum. In Financial Cryptography and Data Security, St.
Kitts, Saint Kitts and Nevis, Lecture Notes in Computer Science, pages 190-207.
Springer International Publishing, February 2019.

V. Hassija, G. Bansal, V. Chamola, V. Saxena, and B. Sikdar. BlockCom: A
Blockchain Based Commerce Model for Smart Communities using Auction Mecha-
nism. In 2019 IEEE International Conference on Communications Workshops (ICC
Workshops), Shanghai, China, pages 1-6. IEEE, May 2019.

J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer. Reclaiming
space from duplicate files in a serverless distributed file system. In Proceedings
22nd International Conference on Distributed Computing Systems, Vienna, Austria,
pages 617-624. IEEE, July 2002.

J. Li, Y. K. Li, X. Chen, P. P. C. Lee, and W. Lou. A Hybrid Cloud Approach for
Secure Authorized Deduplication. IEEE Transactions on Parallel and Distributed
Systems, 26(5):1206-1216, May 2015.

Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-Locked
Encryption and Secure Deduplication. In Advances in Cryptology — EURO-
CRYPT 2013, Athens, Greece, Lecture Notes in Computer Science, pages 296-312.
Springer, 2013.

Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. DupLESS: Server-Aided
Encryption for Deduplicated Storage. In 22nd USENIX Security Symposium, Wash-
ington, D.C., USA, pages 179-194. ACM, August 2013.

J. Li, X. Chen, X. Huang, S. Tang, Y. Xiang, M. M. Hassan, and A. Alelaiwi. Secure
Distributed Deduplication Systems with Improved Reliability. IEEE Transactions
on Computers, 64(12):3569-3579, December 2015.

Z. Yan, W. Ding, X. Yu, H. Zhu, and R. H. Deng. Deduplication on Encrypted Big
Data in Cloud. IEEE Transactions on Big Data, 2(2):138—150, June 2016.

M. Wen, K. Lu, J. Lei, F. Li, and J. Li. BDO-SD: An efficient scheme for big
data outsourcing with secure deduplication. In 2015 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Hong Kong, China, pages
214-219. IEEE, April 2015.

224

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

Meixia Miao, Tao Jiang, and Ilsun You. Payment-based incentive mechanism for

secure cloud deduplication. [International Journal of Information Management,
35(3):379-386, June 2015.

Jian Liu, N. Asokan, and Benny Pinkas. Secure Deduplication of Encrypted Data
without Additional Independent Servers. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, Colorado, USA,
CCS 15, pages 874—885. Association for Computing Machinery, October 2015.

Taek-Young Youn and Ku-Young Chang. Necessity of Incentive System for the
First Uploader in Client-Side Deduplication. In Advances in Computer Science and
Ubiquitous Computing, Cebu, Philippines, Lecture Notes in Electrical Engineering,
pages 397-402. Springer, December 2015.

Vladimir Rabotka and Mohammad Mannan. An evaluation of recent secure dedu-
plication proposals. Journal of Information Security and Applications, 27-28:3—18,
April 2016.

X. Liang, Z. Yan, X. Chen, L. T. Yang, W. Lou, and Y. T. Hou. Game Theoretical
Analysis on Encrypted Cloud Data Deduplication. IEEE Transactions on Industrial
Informatics, 15(10):5778-5789, October 2019.

L. Gao, Z. Yan, and L. T. Yang. Game Theoretical Analysis on Acceptance of a
Cloud Data Access Control System Based on Reputation. IEEE Transactions on
Cloud Computing, 8(4):1003-1017, October 2020.

R. Dua, A. R. Raja, and D. Kakadia. Virtualization vs Containerization to Support
PaaS. In 2014 IEEE International Conference on Cloud Engineering, Boston, MA,
USA, pages 610-614. IEEE, March 2014.

Microservices. https://martinfowler.com/articles/
microservices.html. Online; accessed on 14 May 2021.

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: Yesterday,
today, and tomorrow. In Proceeding of Present and Ulterior Software Engineering,
pages 195-216. Springer, April 2017.

What Led Amazon to its Own Microservices Architecture. https://
thenewstack.io/led-amazon-microservices—architecture/#:
~:text=Amazon’ s%20approach%20is%$20not%20to,can%$20be%
20scripted%20and%20automated. Online; accessed on 14 May 2021.

Adopting Microservices at Netflix: Lessons for Architectural Design.
https://www.nginx.com/blog/microservices—at-netflix-
architectural-best-practices/. Online; accessed on 14 May 2021.

225

[232]

[233]

[234]

[235]

[236]

[237]

[238]

Steven Thde and Karan Parikh. From a monolith to microservices+ rest: the evolution
of linkedin’s service architecture. https://www.slideshare.net/InfoQ/
from—-a-monolith-to-microservices—-rest—-the—-evolution-of-
linkedins—service-architecture. Online; accessed on 14 May 2021.

Service-Oriented Architecture: Scaling the UBER Engineering Codebase As We
Grow. http://zookeeper.apache.org/. Online; accessed on 14 May 2021.

M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casal-
las, S. Gil, C. Valencia, A. Zambrano, and M. Lang. Infrastructure Cost Comparison
of Running Web Applications in the Cloud Using AWS Lambda and Monolithic and
Microservice Architectures. In 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid),Cartagena, Colombia, pages 179—
182. IEEE, May 2016.

C. Esposito, A. Castiglione, and K. R. Choo. Challenges in Delivering Software in
the Cloud as Microservices. IEEE Cloud Computing, 3(5):10-14, September 2016.

Apace zookeeper. https://zookeeper.apache.org/. Online; accessed on
14 May 2021.

Eureka. https://spring.io/guides/gs/service-registration-
and-discovery/. Online; accessed on 14 May 2021.

Srikanta Patanjali, Benjamin Truninger, Piyush Harsh, and Thomas Michael Bohn-
ert. CYCLOPS: A micro service based approach for dynamic rating, charging
& billing for cloud. In 2015 13th International Conference on Telecommu-
nications (ConTEL), Graz, Austria, pages 1-8. IEEE, July 2015.

226

	ACKNOWLEDGMENTS
	ABSTRACT
	List of Figures
	List of Tables
	List of Algorithms
	List of Notations
	Glossary
	1 Introduction
	1.1 Cloud Computing
	1.1.1 Cloud Service Models
	1.1.2 Cloud Pricing Models and Payment Models
	1.1.3 Fair Payments

	1.2 Blockchain Technology
	1.2.1 Main characteristics of Blockchain
	1.2.2 Formal Blockchain Model
	1.2.3 Ethereum, Solidity, Gas, Truffle framework and Simulation environment
	1.2.4 Need of Blockchain Technology in Cloud Computing

	1.3 Motivation, Aim and Objectives of Proposed Work
	1.3.1 Aim
	1.3.2 Objectives

	1.4 Overview of the Contributions of the Thesis
	1.5 Thesis Organization

	2 Literature Survey
	2.1 Comparison of existing Blockchain surveys
	2.2 Systematic Literature Survey
	2.3 Blockchain-based Cloud Services
	2.3.1 Blockchain-based Infrastructure-as-a-Service (IaaS)
	2.3.2 Blockchain-based Platform-as-a-Service
	2.3.3 Blockchain-based Software-as-a-Service

	2.4 Observations and Problems Identified
	2.5 Summary

	3 Fair Payment Protocols for Outsourcing Computation under Platform-as-a-Service
	3.1 Verifiable Computation
	3.2 Proof-based Incentivized Outsourced Computation (IOC) using Smart Contracts (PBIOC)
	3.2.1 PBIOC contract clauses
	3.2.2 PBIOC Protocol

	3.3 Replication-based Incentivized Outsourced Computation using Smart Contracts
	3.3.1 Economic model
	3.3.2 Two providers Case (TUIOC Contract)
	3.3.3 Multiple-provider Case (MUIOC)

	3.4 Simulation Results and Discussions
	3.4.1 Implementation of PBIOC
	3.4.2 Implementation of TUIOC
	3.4.3 Implementation of MUIOC

	3.5 Summary

	4 Fair Payment Protocols for Mobile Crowdsensing under Platform-as-a-Service
	4.1 Privacy-preserving aggregation
	4.1.1 Entities

	4.2 A naive trusted party based fair payment protocol for privacy-preserving aggregation of mobile crowdsensing data (FairNaivePPA)
	4.2.1 FairNaivePPA contract clauses
	4.2.2 FairNaivePPA Protocol
	4.2.3 Limitations of FairNaivePPA

	4.3 A trusted party free fair payment protocol for privacy-preserving aggregation of mobile crowdsensing data (FairPPA)
	4.3.1 Smart contract based key generation
	4.3.2 Truth Discovery Algorithm (TDA)
	4.3.3 Payment Mechanism
	4.3.4 Dispute Resolution Mechanism (DRM)
	4.3.5 FairPPA contract clauses
	4.3.6 FairPPA contract phases

	4.4 Security Guarantees
	4.5 Implementation and comparisons
	4.5.1 MotionSense Dataset
	4.5.2 Implementation of FairNaivePPA
	4.5.3 Implementation of FairPPA

	4.6 Comparison with existing methods
	4.6.1 Comparison with privacy-preserving aggregation methods
	4.6.2 Comparison with Blockchain-based mobile crowdsensing methods

	4.7 Summary

	5 Fair Payment Protocol for Virtual Machine Allocation under Infrastructure-as-a-Service
	5.1 Online auction
	5.1.1 Entities

	5.2 Bidding language
	5.3 Decentralized online auction protocol (DeOAA)
	5.3.1 Assumptions
	5.3.2 DeOAA contract clauses
	5.3.3 DeOAA protocol
	5.3.4 Correctness and fairness proofs

	5.4 Implementation
	5.4.1 Floating point numbers
	5.4.2 Implementation of DeOAA
	5.4.3 Financial overhead
	5.4.4 Deploying on Ropsten test network

	5.5 Comparison with existing works
	5.6 Summary

	6 Fair Payment Protocol for Data de-duplication under Infrastructure-as-a-Service
	6.1 Data de-duplication model
	6.1.1 Convergent Encryption (CE)
	6.1.2 Economic model

	6.2 Proposed incentive mechanism
	6.2.1 Blockchain-based de-duplication protocol

	6.3 Fair data de-duplication method
	6.3.1 Assumptions
	6.3.2 B_DEDU contract clauses
	6.3.3 B_DEDU protocol
	6.3.4 Proofs of B_DEDU

	6.4 Proposed Inter-cloud provider de-duplication protocol
	6.4.1 Assumptions
	6.4.2 B_I-DEDU

	6.5 Implementation
	6.5.1 Implementation of B_DEDU
	6.5.2 Experiment 1: Finding utility of the users and the cloud provider by varying n_d^CP(t) and EF_CU^CP(t)
	6.5.3 Experiment 2: Testing B_DEDU and B_I-DEDU with public dataset

	6.6 Comparison with existing methods
	6.7 Summary

	7 Fair Payment Protocol for Microservices-based software deployed in cloud under Software-as-a-Service
	7.1 Introduction
	7.2 Microservice rating, charging and billing (RCB) architecture
	7.3 Blockchain-based Microservice Rating, Charging and Billing (RCB) System
	7.3.1 Smart contracts for RCB system
	7.3.2 Cost computation model
	7.3.3 High-level overview of the RCB protocol
	7.3.4 RCB Protocol

	7.4 Simulation Results and Discussions
	7.5 Summary

	8 Conclusion and Future Scope
	8.1 Conclusions
	8.2 Future Scope

	Author's Publications
	Bibliography

