
Blockchain-based Fair Payment Protocols
for Cloud Services

Submitted in partial fulfillment of the requirements

for the award of the degree of

DOCTOR OF PHILOSOPHY

Submitted by

Dorsala Mallikarjun Reddy

(Roll No. 716042)

Under the guidance of

Prof. V. N. Sastry
and

Dr. Chapram Sudhakar

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL

TELANGANA - 506004, INDIA
December 2021

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL

TELANGANA - 506004, INDIA

THESIS APPROVAL FOR Ph.D.

This is to certify that the thesis entitled, Blockchain-based Fair Payment Protocols

for Cloud Services, submitted by Mr. Dorsala Mallikarjun Reddy [Roll No. 716042]

is approved for the degree of DOCTOR OF PHILOSOPHY at National Institute of

Technology Warangal.

Examiner

Research Supervisor Research Supervisor
Prof. V. N. Sastry Dr. Chapram Sudhakar
Professor Associate Professor

Center for Mobile Banking Dept. of Computer Science and Engg.
Institute for Development & NIT Warangal
Research in Banking Technology India
India

Chairman
Prof. P. Radha Krishna
Head, Dept. of Computer Science and Engg.
NIT Warangal
India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL

TELANGANA - 506004, INDIA

CERTIFICATE

This is to certify that the thesis entitled, Blockchain-based Fair Payment Protocols for

Cloud Services, submitted in partial fulfillment of requirement for the award of de-

gree of DOCTOR OF PHILOSOPHY to National Institute of Technology Warangal,

is a bonafide research work done at the Center for Mobile Banking (CMB), IDRBT

by Mr. Dorsala Mallikarjun Reddy [Roll No. 716042] under our supervision during

January 2016 to December 2021. The contents of the thesis have not been submitted

elsewhere for the award of any degree.

Research Supervisor Research Supervisor
Prof. V. N. Sastry Dr. Chapram Sudhakar
Professor Associate Professor

Center for Mobile Banking Dept. of Computer Science and Engg.
Institute for Development & NIT Warangal
Research in Banking Technology India
India

Hyderabad Warangal
Date: 15-12-2021 Date: 15-12-2021

3

DECLARATION

This is to certify that the work presented in the thesis entitled “Blockchain-

based Fair Payment Protocols for Cloud Services” is a bonafide work

done by me under the supervision of Prof. V. N. Sastry and Dr. Chapram

Sudhakar. The work was not submitted elsewhere for the award of any

degree.

I declare that this written submission represents my ideas in my

own words and where others ideas or words have been included, I have

adequately cited and referenced the original sources. I also declare that

I have adhered to all principles of academic honesty and integrity and

have not misrepresented or fabricated or falsified any idea / date / fact /

source in my submission. I understand that any violation of the above

will be cause for disciplinary action by the institute and can also evoke

penal action from the sources which have thus not been properly cited

or from whom proper permission has not been taken when needed.

Dorsala Mallikarjun Reddy
(Roll No. 716042)
Date: 15-12-2021

ACKNOWLEDGMENTS

I express my deep gratitude and thanks to my supervisors Prof. V. N. Sastry, Professor,

Institute for Development and Research in Banking Technology (IDRBT), Hyderabad and

Dr. Chapram Sudhakar, Associate Professor, Department of Computer Science and Engi-

neering, National Institute of Technology (NIT) - Warangal for their guidance, continued

support and encouragement throughout the research period.

I extend my gratitude to the Doctoral Scrutiny Committee (DSC) members Prof. P.

Radha Krishna, Prof. R. B. V. Subramanyam, Dr. R. R. Rout, and Dr. Ch. Venkaiah

for their insightful comments and suggestions during oral presentations. I am immensely

thankful to Dr. Ch. Sudhakar, Prof. R. B. V. Subramanyam and Prof. P. Radha Krishna,

Heads of Dept. of CSE and chairmans of DSC, during my tenure for providing adequate

facilities in the department to carry out the research works.

I wish to express my sincere thanks to Prof. N.V. Ramana Rao, Director, NIT Warangal,

Prof. D. Janakiram, Director, IDRBT and Dr. A. S. Ramasastri, Ex-Director, IDRBT,

Hyderabad, for providing the infrastructure and facilities to carry out the research. I am

also very grateful to the Computer Science and Engineering Department faculty members

and IDRBT faculty members for their moral support throughout my research work.

On a personal level, I would also like to thank my scholar friends in IDRBT and NIT-

Warangal for their valuable suggestions and for extending selfless cooperation. Lastly, I

express my gratitude to my family for their unconditional love, support, and prayers to

achieve the goal.

Dorsala Mallikarjun Reddy

i

Dedicated to
My Parents and wife

ii

ABSTRACT

Blockchain has become a prominent technology in recent years, and because of its char-

acteristics like decentralization, immutability, and transparency, it is deemed as an alterna-

tive for establishing a trusted platform. Initially introduced through Bitcoin for peer-to-peer

financial transactions, Blockchains have recently come to the forefront of the research and

industrial communities. Smart contracts have been a major driving factor in the broad

adoption of Blockchain technology as they introduce automatic control. Blockchain and

smart contracts are becoming popular in many engineering and computer science fields.

Cloud computing is one such field that can benefit from adopting Blockchain technology

to re-engineer its data centers. Blockchain is expected to be an indispensable tool to ful-

fill the expectations of cloud systems’ performance with minimal costs and management

overheads. Many recent works focus on utilizing Blockchain technology for establishing

trust and reliability in cloud operations. In cloud computing, it is generally assumed that the

user generally trusts the cloud provider for provisioning the service honestly and pays to the

provider before actually using the service. However, due to the monetary benefits involved,

a rational cloud provider may deviate from provisioning the service honestly. To address

this problem, existing solutions comprise trusted parties for fair payments between cloud

user and cloud provider. Nevertheless, having trusted parties does not entirely solve the

problem, and an additional financial cost is imposed on both the cloud user and the cloud

provider. In current literature, fair payments for cloud services is not addressed adequately

and hence, this thesis focus on designing fair payment protocols for cloud services with-

out a trusted intermediary between cloud provider and cloud users. We have identified fair

payment problems in all three traditional cloud service models and designed solutions for

them. For the platform-as-a-service model, we have proposed Blockchain-based fair pay-

ment protocols for outsourcing-as-a-service (verifiable computation) and data aggregation-

as-a-service (mobile crowdsensing). We have proposed Blockchain-based fair payment

protocols for cloud resource allocation and cloud data de-duplication for the infrastructure-

as-a-service model. We have designed a Blockchain-based fair rating, charging and billing

platform for microservices deployed on a cloud for the software-as-a-service model. Our

iii

theoretical analysis shows the fairness guarantees of the designed protocols, and our exten-

sive experimental analysis shows the feasibility of deploying the designed protocols in the

real world. Our experimental analysis also shows that the trusted third party in traditional

cloud computing can be replaced by a smart contract running on a public Blockchain net-

work with minimal overhead.

iv

Contents

ACKNOWLEDGMENTS i

ABSTRACT iii

List of Figures x

List of Tables xiii

List of Algorithms xvi

List of Notations xvii

Glossary xx

1 Introduction 1

1.1 Cloud Computing . 1

1.1.1 Cloud Service Models . 2

1.1.2 Cloud Pricing Models and Payment Models 3

1.1.3 Fair Payments . 5

1.2 Blockchain Technology . 8

1.2.1 Main characteristics of Blockchain 12

1.2.2 Formal Blockchain Model . 14

1.2.3 Ethereum, Solidity, Gas, Truffle framework and Simulation en-

vironment . 16

1.2.4 Need of Blockchain Technology in Cloud Computing 16

1.3 Motivation, Aim and Objectives of Proposed Work 19

v

1.3.1 Aim . 20

1.3.2 Objectives . 20

1.4 Overview of the Contributions of the Thesis 20

1.5 Thesis Organization . 21

2 Literature Survey 23

2.1 Comparison of existing Blockchain surveys 23

2.2 Systematic Literature Survey . 24

2.3 Blockchain-based Cloud Services . 26

2.3.1 Blockchain-based Infrastructure-as-a-Service (IaaS) 26

2.3.2 Blockchain-based Platform-as-a-Service 47

2.3.3 Blockchain-based Software-as-a-Service 58

2.4 Observations and Problems Identified 63

2.5 Summary . 64

3 Fair Payment Protocols for Outsourcing Computation under Platform-as-a-

Service 66

3.1 Verifiable Computation . 67

3.2 Proof-based Incentivized Outsourced Computation (IOC) using Smart

Contracts (PBIOC) . 68

3.2.1 PBIOC contract clauses . 69

3.2.2 PBIOC Protocol . 70

3.3 Replication-based Incentivized Outsourced Computation using Smart

Contracts . 75

3.3.1 Economic model . 75

3.3.2 Two providers Case (TUIOC Contract) 77

3.3.3 Multiple-provider Case (MUIOC) 83

3.4 Simulation Results and Discussions 90

3.4.1 Implementation of PBIOC . 90

3.4.2 Implementation of TUIOC . 91

3.4.3 Implementation of MUIOC . 93

vi

3.5 Summary . 97

4 Fair Payment Protocols for Mobile Crowdsensing under Platform-as-a-Service 98

4.1 Privacy-preserving aggregation . 99

4.1.1 Entities . 100

4.2 A naive trusted party based fair payment protocol for privacy-preserving

aggregation of mobile crowdsensing data (FairNaivePPA) 102

4.2.1 FairNaivePPA contract clauses 102

4.2.2 FairNaivePPA Protocol . 104

4.2.3 Limitations of FairNaivePPA 109

4.3 A trusted party free fair payment protocol for privacy-preserving ag-

gregation of mobile crowdsensing data (FairPPA) 111

4.3.1 Smart contract based key generation 111

4.3.2 Truth Discovery Algorithm (TDA) 112

4.3.3 Payment Mechanism . 113

4.3.4 Dispute Resolution Mechanism (DRM) 114

4.3.5 FairPPA contract clauses . 116

4.3.6 FairPPA contract phases . 119

4.4 Security Guarantees . 126

4.5 Implementation and comparisons . 127

4.5.1 MotionSense Dataset . 128

4.5.2 Implementation of FairNaivePPA 128

4.5.3 Implementation of FairPPA 130

4.6 Comparison with existing methods . 131

4.6.1 Comparison with privacy-preserving aggregation methods 131

4.6.2 Comparison with Blockchain-based mobile crowdsensing methods132

4.7 Summary . 133

5 Fair Payment Protocol for Virtual Machine Allocation under Infrastructure-

as-a-Service 134

5.1 Online auction . 136

vii

5.1.1 Entities . 138

5.2 Bidding language . 139

5.3 Decentralized online auction protocol (DeOAA) 140

5.3.1 Assumptions . 140

5.3.2 DeOAA contract clauses . 140

5.3.3 DeOAA protocol . 142

5.3.4 Correctness and fairness proofs 147

5.4 Implementation . 149

5.4.1 Floating point numbers . 150

5.4.2 Implementation of DeOAA . 150

5.4.3 Financial overhead . 151

5.4.4 Deploying on Ropsten test network 151

5.5 Comparison with existing works . 152

5.6 Summary . 154

6 Fair Payment Protocol for Data de-duplication under Infrastructure-as-a-

Service 155

6.1 Data de-duplication model . 157

6.1.1 Convergent Encryption (CE) . 158

6.1.2 Economic model . 158

6.2 Proposed incentive mechanism . 161

6.2.1 Blockchain-based de-duplication protocol 162

6.3 Fair data de-duplication method . 163

6.3.1 Assumptions . 163

6.3.2 BDEDU contract clauses . 163

6.3.3 BDEDU protocol . 164

6.3.4 Proofs of BDEDU . 170

6.4 Proposed Inter-cloud provider de-duplication protocol 173

6.4.1 Assumptions . 173

6.4.2 BI-DEDU . 173

viii

6.5 Implementation . 175

6.5.1 Implementation of BDEDU . 175

6.5.2 Experiment 1: Finding utility of the users and the cloud provider

by varying nCPd (t) and EFCP
CU (t) 177

6.5.3 Experiment 2: Testing BDEDU and BI-DEDU with public dataset . 177

6.6 Comparison with existing methods . 180

6.7 Summary . 182

7 Fair Payment Protocol for Microservices-based software deployed in cloud

under Software-as-a-Service 183

7.1 Introduction . 183

7.2 Microservice rating, charging and billing (RCB) architecture 185

7.3 Blockchain-based Microservice Rating, Charging and Billing (RCB)

System . 187

7.3.1 Smart contracts for RCB system 187

7.3.2 Cost computation model . 190

7.3.3 High-level overview of the RCB protocol 193

7.3.4 RCB Protocol . 194

7.4 Simulation Results and Discussions 197

7.5 Summary . 200

8 Conclusion and Future Scope 201

8.1 Conclusions . 201

8.2 Future Scope . 202

Author’s Publications 204

Bibliography 205

ix

List of Figures

1.1 Layers in cloud stack . 2

1.2 Cloud payment models . 4

1.3 Fairness hierarchy . 7

1.4 Block structure . 9

1.5 Distributed ledger (blockchain) as a sequence of blocks 9

1.6 Example of a smart contract . 12

2.1 The systematic literature mapping process 25

2.2 Technical dimensions of this survey . 26

2.3 List of works in Blockchain-based storage-as-a-service. 28

2.4 List of works in Blockchain-based Resource allocation and supervision . . 43

2.5 List of works in Blockchain-based platform-as-a-service. 48

2.6 List of works in Blockchain-based software-as-a-service. 59

3.1 PBIOC protocol . 72

3.2 TUIOC protocol . 80

3.3 MUIOC protocol . 87

3.4 Gas consumption of Merge Sort . 93

3.5 Gas Consumption of prime numbers . 93

3.6 Gas Consumption of non-prime numbers . 94

3.7 Gas Consumption of Binary Search . 94

3.8 Reward for honest cloud provider in different scenarios 96

4.1 FairNaivePPA protocol . 106

4.2 Overview of the proposed FairPPA protocol 116

x

4.3 Task Creation Phase protocol . 120

4.4 Spawn and Sensing Phase Protocol . 123

4.5 Data sharing and reward distribution phase protocol 126

4.6 Gas Consumption of FairNaivePPA - Aggregate and Payout functional-

ities . 129

4.7 Gas Consumption of FairPPA - Aggregate and Payout functionalities.

The Payout functionality includes the gas cost of executing DRM(). 131

5.1 Online auction infrastructure and resource allocation flow 136

5.2 An illustrative example of online auction 137

5.3 Overview of the proposed protocol . 139

5.4 DeOAA protocol . 142

5.5 Financial overhead of DeOAA . 152

6.1 BDedu protocol . 167

6.2 contract-BI-DEDU . 175

6.3 Costs of interacting with usrConf functionality 176

6.4 The effect of EFCP
CU (t) and nCPd (t) on average utility of the cloud users . . 178

6.5 The effect of EFCP
CU (t) and nCPd (t) on utility of the cloud provider 179

6.6 Utility of cloud providers with public dataset 181

7.1 Software deployment in cloud . 184

7.2 Traditional microservice rating, charging and billing system 186

7.3 Blockchain-based microservice RCB platform 188

7.4 Structure of the data records stored in SDC contract. 188

7.5 Structure of the data records stored in MEC contract. 188

7.6 Structure of the data records stored in UDC contract. 189

7.7 Structure of the data records stored in RCC contract. 189

7.8 Structure of the data records stored in EDC contract. 189

7.9 Initialization phase . 195

7.10 Service provisioning phase protocol . 197

xi

7.11 Billing Phase . 198

7.12 Gas Consumption of computeBill functionality 200

xii

List of Tables

1.1 Comparison among public, consortium and private Blockchains 14

1.2 Key characteristics of Blockchain and their potential applications to cloud

computing . 18

1.3 Some of the obstacles and opportunities for the growth of cloud computing

and Blockchain. 19

2.1 Comparison of surveys on Blockchain in various domains 24

2.2 Research questions and analysis of literature 25

2.3 Comparison of Data Management models 34

2.4 Comparison of Blockchain-based Searchable encryption systems 40

2.5 Comparison of Blockchain-based resource allocation methods 46

2.6 Comparison of Blockchain-based verifiable computing methods 52

2.7 Comparison of Blockchain-based crowdsensing systems 57

3.1 Utilities in two-provider case . 77

3.2 Analysis of TUIOC . 83

3.3 Costs of interacting with PBIOC Contract 91

3.4 Deployment and Execution costs of PBIOCV contracts 91

3.5 Costs of interacting with TUIOC Contract 92

3.6 Costs of running MUIOC Contract . 95

4.1 Costs of interacting with FairNaivePPA contract 129

4.2 Costs of interacting with FairPPA contract 130

4.3 Comparison of proposed methods with state-of-the-art privacy-preserving

methods . 132

xiii

4.4 Comparison of proposed methods with existing Blockchain-based mobile

crowdsensing methods. 132

5.1 Costs of interacting with DeOAA contract 150

5.2 Gas consumption of interaction with Request functionality. 151

5.3 Implementation configuration . 151

5.4 Transactions on Ethereum Ropsten test network 153

5.5 Comparison of proposed method with existing smart contract-based auction

methods. 154

6.1 Utilities of cloud user and cloud provider 160

6.2 Costs of interacting with BDEDU contract 176

6.3 Experiment Settings. 177

6.4 Comparison with existing data de-duplication works 181

7.1 Cost of interacting with proposed smart contracts 199

xiv

List of Algorithms

3.1 PBIOC.create . 72

3.2 PBIOC.intent . 73

3.3 PBIOC.commit . 73

3.4 PBIOC.agree . 73

3.5 PBIOC.verify . 74

3.6 PBIOC.result . 74

3.7 TUIOC.create . 81

3.8 TUIOC.intent . 81

3.9 TUIOC.commit . 81

3.10 TUIOC.reveal . 82

3.11 TUIOC.dispute . 82

3.12 MUIOC.create . 88

3.13 MUIOC.intent . 88

3.14 MUIOC.commit . 88

3.15 MUIOC.reveal . 89

3.16 MUIOC.dispute . 89

4.1 FairNaivePPA.create . 107

4.2 FairNaivePPA.intent . 107

4.3 FairNaivePPA.commit . 108

4.4 FairNaivePPA.aggregate . 108

4.5 FairNaivePPA.buy . 108

4.6 FairNaivePPA.Reveal . 109

4.7 FairPPA.keygen . 112

xv

4.8 FairPPA.TDA . 113

4.9 FairPPA.payment . 114

4.10 FairPPA.DRM . 115

4.11 FairPPA.DRM2 . 116

5.12 Simple online auction . 137

5.13 DeOAA.create . 143

5.14 DeOAA.request . 144

5.15 DeOAA.avail . 145

5.16 DeOAA.acknowledge . 146

5.17 DeOAA.free . 146

5.18 DeOAA.abrogate . 147

6.19 BDedu.create . 167

6.20 BDedu.request . 168

6.21 BDedu.pay . 168

6.22 BDedu.cspConf . 169

6.23 BDedu.usrConf . 169

6.24 BDedu.refund . 169

6.25 BDedu.claim . 170

6.26 BDedu.deLink . 170

xvi

List of Notations

JD Judiciary

T P Trusted party

B Block in Blockchain

G,H Hash functions

D Difficulty level

CP Cloud provider

CU Cloud user

DO Data owner

DU Data user

DP Data provider

F (x) Outsourced function / computation with input x

λ Security parameter

ekF , vkF Evaluation and verification keys of function F

y, πy Output and proof-of-correctness of output

τi, τr, τa, τc, τend Blockchain timing parameters

$d, $r, $f, $c, $b, $pay Monetary variables

u(·) Utility function

q1, q2 Safe primes

skCUi
, skcp, skA Secret keys of cloud user, cloud provider and accumulator respectively

XCUi,t Aggregated input of cloud user at time t

sumt Aggregated sum over inputs at time t

MBi Mobile device

YCUi,t Data collected by cloud user at time t

xvii

KCUi,CP Self generated symmetric key for CUi and CP

wCUI
Weight calculated during truth estimation for cloud user

x∗m Ground truth value generated for mth sensor

minDo Minimum number of cloud users

minDv Minimum number of data verifiers

th Threshold

listdo List of cloud users who shown intent

listdv List of data verifiers who shown intent

listho List of honest cloud users

listma List of malicious cloud users

listhv List of honest data verifiers

listsp List of cloud users who sent spawn message

listco List of cloud users who sent commit message

πCP , πC, πCUk Proof-of-correctness of truth discovery algorithm generated by cloud

provider, challenger and cloud users respectively

Q Computation resource capacity

A Auction mechanism

P (x) Auxiliary pricing function

inv capi Time invariant capacity requirement

[ai, di] Preferred time duration for accessing cloud resources

li Length of the required time duration

vi Valuation function

bi(·) Concavely increasing function

rId Request identity

U [τ, τsub] Resource utilization matrix

allocated[τ] Resource allocation vector

requests A mapping data structure to store all information regarding cloud users

requests

S Cloud storage system

D Set of data files

xviii

NCP
d (t) Number of users having the same data d at time t at a cloud storage

provided by cloud provider CP

BDEDU Smart contract facilitating data deduplication

U0
CU(t) Utility of cloud user when deduplication is not adopted

U1
CU(t) Utility of cloud user when deduplication with BDEDU is adopted

U0
CP (t) Utility of cloud provider when deduplication is not adopted

U1
CP (t) Utility of cloud provider when deduplication with BDEDU is adopted

SFCP
CU (t) Storage fee

SCCU
CP (t) Storage cost

EFCP
CU (t) Extra fee

nCPd (t) Data deduplication rate

ICP (t) Cost of deploying BDEDU smart contract

tag Hash value of data file

uTAB A mapping data structure to store information regarding user requests

AFCP (t) Fee paid by a cloud provider to another cloud provider

rj Meter value of jth resource

~U(CUi, τs, τe) Usage vector of cloud user

RCUi
Reputation of cloud user

RCP Reputation of cloud provider

E Set of errors

we Weight associated with error e

S(τ) State of the cloud operating environment

Pri(τ) Price of the resource at time τ

DCUi
Discount offered to cloud user

$pes Estimated cost of running a microservice chain

listrecUsage A mapping data structure to store user’s service requests

xix

Glossary

5G 5th Generation

ACM Association for Computing Machinery

APIs Application Programming Interfaces

AWS Amazon Web Services

BC Blockchain

BFT Byzantine Fault Tolerance

BI Business Intelligence

BIC Billing Contract

CaaS Computation-as-a-Service

CAB Collaborative Auditing Blockchain

CBVC Challenge-based Verifiable Computation

CDA Continuous Double Auction

CE Convergent Encryption

DaaS Data aggregation-as-a-Service

DB Database

DCR Decisional Composite Residuosity

DEC Decryption

DEDU / dedup Data Deduplication

DHT Data Hash Table

DPS Data Preservation System

DPoS Delegated Proof-of-Stake

DRM Dispute Resolution Mechanism

xx

EDC Error data contract

EHR Electronic Health Records

ENC Encryption

ETSI European Telecommunications Standards Institute

FPP Fair Payment Protocol

HDFS Hadoop Distributed File System

IaaS Infrastructure-as-a-Service

IEEE Institute for Electrical and Electronic Engineers

IoT Internet of Things

IPFS Interplanetary File System

ISH Inner State Hash

LAMB Long term Auction for Mobile Auction

MANO Management and Network Orchestration

MCS Mobile Crowd Sensing

MEC Message exchange contract

MITM Man-In-The-Middle

N/A Not Available

NFV Network Function Virtualization

NIST National Institute for Standards and Technology

OKS Oblivious Keyword Search

PaaS Platform-as-a-Service

PBVC Proof-based Verifiable Computation

PHD Personal Health Data

PoP Proof-of-Ownership

PoS Proof-of-Stake

PoW Proof-of-Work

PP Payment Protocol

PPA Privacy Preserving Aggregation

PRF Pseudo Random Function

QoS Quality of Service

xxi

RBAC Role-based Access Control

RBVC Replication-based Verifiable Computation

RCB Rating, Charging and Billing

RCC Rating and Charging Contract

RRC Registration and Reputation Contract

RSA Rivet-Shamir-Adleman

SaaS Software-as-a-Service

SC Smart Contract

SDC Service discovery contract

SE Searchable Encryption

SGX Software Gaurd Extension

SLA Service Level Agreement

trans Transaction

TDA Truth Discovery Algorithm

TEE Trusted Execution Environment

TKG Trusted Key Generator

TP Trusted Party

UDC Usage data contract

URL Uniform Resource Locator

VCG Vickrey-Clarke-Groves

VLAN Virtual Local Area Network

VMM Virtual Machine Manager

VNF Virtual Network Function

VNFO Virtual Network Function Orchestrator

XACML Extensible Access Control Markup Language

zk-SNARK Zero Knowledge Succinct Non-Interactive Argument of Knowledge

xxii

Chapter 1

Introduction

In this Chapter, we present an introduction to cloud computing, cloud service models, cloud

pricing models and payment models. Then, we discuss fair payments and hierarchy of fair-

ness guarantees. We also present fundamentals and main characteristics of Blockchain

technology and their potential applications to cloud computing. Later, we outline the moti-

vation, aim, and objectives of the thesis. At the end of the Chapter, we list our contributions

and organization of the thesis.

1.1 Cloud Computing

Cloud computing provides on-demand network access of configurable computing resources

enabling individuals and enterprises to pay only for the resources or services they use. A

cloud computing system is defined by the following set of properties:

(a) On demand self service: Cloud users access cloud resources as per need without

any human intervention.

(b) Broad access: Standardized mechanisms and protocols are defined for accessing

cloud resources.

(c) Resource pooling: Cloud resources are pooled into shared resources by a cloud

provider and are allocated to customers on demand.

1

CHAPTER 1. INTRODUCTION

(d) Rapid elasticity: Resources are allocated and released dynamically according to the

need of the user.

(e) Measured service: The resource usage is measured automatically allowing users to

monitor, control and report resource usage.

1.1.1 Cloud Service Models

National Institute of Standards and Technology (NIST) [1] defines three layers within cloud

computing stack as shown in Figure 1.1: (a) Infrastructure-as-a-service (IaaS) (b) Platform-

as-a-service (PaaS) and (c) Software-as-a-services (SaaS).

IaaS

PaaS

SaaS

Server Storage Network

OS and Application Stack

Server Storage Network

Packaged Software

OS and Application Stack

Server Storage Network

Figure 1.1: Layers in cloud stack

(a) Infrastructure-as-a-service: It is an instant computing infrastructure administered

over the Internet. IaaS acts as a backbone for PaaS and SaaS. Some of the standard

components in IaaS includes data centre physical building / plant, networking fire-

walls, computing servers, and storage disks. Well trained IT administrators manage

the IaaS components while the general public / enterprises purchase, install, con-

figure and manage their software—operating systems, middleware and applications.

The typical examples of IaaS providers are Amazon web services, Microsoft Azure,

Rackspace, and VMware.

(b) Platform-as-a-service: PaaS is a development and deployment environment in the

cloud. Any person / enterprise can develop and host their applications for their clients

2

CHAPTER 1. INTRODUCTION

without worrying about the management of underlying hardware. It includes all the

components of IaaS and also development tools, middleware, database management

systems, and business intelligence (BI) services. The typical examples of PaaS in-

clude Force.com, Heroku, Google App Engine, AWS Elastic Beanstalk, and Apache

Stratos.

(c) Software-as-a-service: SaaS allows user to connect to and use cloud-based appli-

cations over the Internet. The applications are accessible through a web browser or

application programming interfaces (APIs). The typical examples include Dropbox,

Salesforce, Google workspace, and Office 365.

1.1.2 Cloud Pricing Models and Payment Models

1.1.2.1 Pricing Models

Unlike telecoms or electricity services, there is no standard pricing unit in cloud computing.

However, cloud providers offer a combination of one or more of the following pricing

models:

1. Subscription Model: In this model, the services are sold on a fixed time period as

monthly / yearly basis (For example: per mailbox or per-app license). The customers

are billed for all the resources, whether used or not.

2. Pay-as-you-go / Pay-per-use: In this model, a user starts with a zero payment, pro-

visions services on demand, and gets charged based on the actual consumption. This

approach is the most attractive model as the user pays only for the services consumed.

3. Pay per user: This model is very similar to the subscription model. The price is

based on the number of active users provisioning a service (For example: per user

per month).

1.1.2.2 Payment Models

Consider the following example scenario to understand the payment models in cloud com-

puting.

3

CHAPTER 1. INTRODUCTION

Alice, a cloud user, wants to acquire a cloud service (For example a Virtual machine)

from Bob, a cloud provider. Alice and Bob do not necessarily trust each other. Alice visits

the catalogue offered by Bob and selects interested VM / VMs. Bob displays the price to

be paid by Alice according to the adopted pricing model (see section 1.1.2.1). To avail the

service, Alice has to pay for the resources provided by Bob. As depicted in Figure 1.2, over

the years, different payment models have evolved to facilitate payments between Alice and

Bob.

Figure 1.2: Cloud payment models

• Model 1: In this model, a service level agreement (SLA) is negotiated between Al-

ice and Bob. Then, Alice pays for the service through a bank. After receiving the

payment, Bob provides the service according to the SLA. If Bob does not adhere to

the SLA, then Alice approaches legal judiciary (JD) to resolve disputes caused due

4

CHAPTER 1. INTRODUCTION

to non-adhering to SLA. The disadvantage in this model is that Alice has to pay Bob

before getting the service. After receiving the payment, Bob may refuse to provide

the requested service or may provide only a partial service. Another disadvantage is

that the dispute resolution process through JD is tedious and costly.

• Model 2: Similar to model 1 in this model also, an SLA is negotiated between Alice

and Bob. They both recruit a trusted third party (T P) to resolve disputes. Alice

pays to T P through the bank then Bob provides the service according to the SLA.

At the end of the service, the T P verifies whether Bob adhered to the SLA or not.

Based on the verification result, the T P pays full / partial / zero amount to Bob. The

disadvantage in this model is the cost induced by the T P because the services of T P
are not free. The second disadvantage is difficulty in finding an ideal T P , which will

behave honestly without any prejudice at all times, is difficult.

• Model 3: In this model, the full SLA or some part of the SLA is transcoded as a

smart contract and deployed on a public Blockchain network (BC). Alice transfers

payment to the smart contract, and then Bob provides the service to Alice. At the

end of the service, the smart contract pays to Bob or refunds to Alice according to

their interactions and the rules encoded in the smart contract. This model has several

advantages when compared to previous models: (1) This model limits / eliminates

the role of banks during payments. (2) The disputes are resolved with respect to the

rules encoded in smart contracts; therefore, the services ofJD / T P are not required.

(3) The interactions with smart contracts and the operations of smart contracts are

publicly visible to both Alice and Bob instilling the trust on the payments.

• Model 4: This model is similar to model 3 but additionally incorporates the interop-

erability of the Blockchain networks.

1.1.3 Fair Payments

We follow the definition of fairness introduced by Asokan [2] and later enhanced by Pagina

and Vogt [3]. We assume a fair payment protocol is executed by two parties, cloud user

5

CHAPTER 1. INTRODUCTION

Alice and cloud provider Bob.

Payment protocol (PP): In general, a payment protocol consists of the following

steps: (1) Alice requests a service or a product provided by Bob. (2) Bob provides the

requested service or product to Alice as agreed. (3) Alice sends payment to Bob as agreed.

(4) Bob sends a receipt of payment to Alice. We assume that a payment protocol has two

possible termination states, either success or abort.

Fair payment protocol (FPP): A PP is said to be FPP if it satisfies the following

three requirements:

(a) Effectiveness: If both Alice and Bob behave according to PP and do not abort

during the PP , then at the end of the PP , Alice has received the service and Bob

has received the payment as agreed and PP has reached a success termination state.

(b) Termination: If Alice and Bob follow the PP honestly, then PP will eventually

reach either a success or an abort termination state.

(c) Fairness: If at least one of the two parties does not behave according to the PP , then

no honest party gains or loses anything valuable. In other words, Alice receives ser-

vice if and only if Bob receives payment otherwise the party (Alice or Bob) behaving

honestly do not lose anything valuable.

Pagina et al. [4] have defined the hierarchy of fairness guarantees from F0 to F6 as shown

in Figure 1.3.

(a) F0: No Fairness

(b) F1: Fairness can only be achieved outside of the system by an external dispute reso-

lution entity by providing compensation for a suffered disadvantage.

(c) F2: Fairness can only be guaranteed outside of the system by an external dispute

resolution entity with eventual cooperation of the other party.

(d) F3: Fairness can only be guaranteed outside of the system by an external dispute

resolution entity without further cooperation of the other party.

6

CHAPTER 1. INTRODUCTION

Figure 1.3: Fairness hierarchy from [4]

(e) F4: Fairness can be achieved automatically by the system through providing com-

pensation for a suffered disadvantage.

(f) F5: Fairness can be guaranteed automatically by the system with eventual coopera-

tion of the other party.

(g) F6: Fairness can be guaranteed automatically by the system without further commu-

nication with the other party.

Fair payment models constructed for hierarchy levels F1 - F3 have traditionally required

the presence of a trusted third party. The fairness levels F4 - F6 are considered as strong

fairness guarantees, and they are thought to be impossible to achieve [3]. However, the

7

CHAPTER 1. INTRODUCTION

advances in Blockchain and smart contracts shows that they can emulate the role of the

mediating third party and facilitate fair payments between Alice and Bob automatically

without the influence of any party.

1.2 Blockchain Technology

The term Blockchain has been introduced with the peer-to-peer electronic cash system

known as Bitcoin [5] designed by an anonymous person / group under the pseudonym

Satoshi Nakamoto. Although the initial purpose of the Blockchain technology was to fa-

cilitate peer-to-peer financial transactions without trusted intermediaries, its fundamental

concepts are used as building blocks to construct many decentralized applications in the

fields of digital assets [6], smart contracts [7], Internet of things (IoT) [8], public services

[9], cloud computing [10], security services [11], reputation systems [12] and 5G networks

[13]. The fundamental components in Blockchain technology are as follows [14]:

(a) Peer-to-peer transmission: All the communications (transactions) occur directly

between peers without a central entity. Each peer stores and forwards information to

all other peers.

(b) Public key cryptography: Every peer in the Blockchain network is associated with

a public-private key pair. The public key is used to identify a peer uniquely in the

network, and the corresponding private key is used to sign the transactions during

transfer of the assets (financial or non-financial) owned by the public key.

(c) Distributed database (blockchain): In Blockchain network, the transactions are

stored in a one-way append distributed ledger also called as blockchain. Every peer

in the network has access to information stored at the blockchain, and no single peer

can control the data stored at the blockchain. A block in blockchain consists of two

parts: block header and block body. The block header consists of:

(i) Block version: It shows which set of block validations rules have to be followed

during block validation.

8

CHAPTER 1. INTRODUCTION

(ii) Merkle tree root hash: The hash of the Merkle tree root constructed with the

transactions in the block.

(iii) Timestamp: The current time as seconds in the universal time since January 1,

1970.

(iv) Nonce: A 4-byte value computed during block creation.

(v) nBits: Represents the current target threshold of the block hash.

(vi) Parent / Previous block hash: A 256-bit hash value of the parent block.

The structure of the block is shown in Figure 1.4.

Figure 1.4: Block structure

A blockchain is a sequence of blocks which are linked cryptographically. Figure 1.5

illustrates an example of blockchain.

Figure 1.5: Distributed ledger (blockchain) as a sequence of blocks

(d) Consensus algorithm: A secure consensus algorithm is executed by a set of decen-

tralized peers known as miners to agree on a common global state of the blockchain.

Consensus algorithm guarantees the security of the blockchain. Bitcoin [5] uses the

9

CHAPTER 1. INTRODUCTION

Proof-of-Work (PoW) consensus algorithm, and most of the public Blockchain net-

works (commonly called as alt-coins / Nakamoto-style ledgers) proposed later fol-

lows Bitcoin’s PoW with little / no modifications. In PoW Blockchain networks, a

block B is of the form

B = 〈h, t, c,mh, ts, nb, v〉

where:

h ∈ {0, 1}s is the hash of the parent / previous block.

t ∈ {0, 1}∗ is the set of transactions included in this block.

mh ∈ {0, 1}sis the Merkle hash of t.

ts ∈ N is the number of seconds elapsed since the last UNIX epoch.

nb ∈ N is the difficulty target for this block.

v ∈ N is the version of the block validation rules.

c ∈ N is the nonce.

Every block B in a blockchain must satisfy the condition

(G(c,H(h, t,mh, ts, nb, v)) < D) and (c ≤ q)

where:

G(·), H(·)are cryptographic hash functions which gives outputs of strings of length s bits.

D ∈ N is known as block difficulty level set by consensus algorithm.

q ∈ N is the maximum value of nonce.

The following condition must be satisfied to add a new blockBj = 〈hj, tj, cj,mhj, tsj, nbj, vj〉
to a blockchain with Bi = 〈hi, ti, ci,mhi, tsi, nbi, vi〉 as right most block.

hj = G(ci, H(ti,mhi, tsi, nbi, vi)

PoW algorithm makes the miners compete to generate a new block periodically. The

miners are rewarded for mining new blocks in the form of currency native to the

10

CHAPTER 1. INTRODUCTION

Blockchain network (bitcoins in the case of Bitcoin). The PoW algorithm is com-

posed of several transactions and block validation rules. The following two rules

ensure the correctness of the execution of transactions: (1) The miners verify all the

received transactions before adding them to a block, and (2) A miner after receiving

a new block verifies the validity of block as well as transactions in that block before

adding it to their local blockchain. These verification steps make the Blockchain

network trusted for correctness. The hardness in solving PoW puzzle makes the

blockchain immutable, and a large number of participating miners ensure availability

of Blockchain network. Several consensus algorithms are proposed in the literature,

and one can refer to [7] for the analysis and comparison of different consensus algo-

rithms.

(e) Smart contracts: A smart contract (SC) is a program deployed and stored in a

Blockchain. A smart contract can hold many contractual clauses between mutually

distrusted parties. Similar to transactions, the smart contract is also executed by

miners and, its execution correctness is guaranteed by miners running the consensus

protocol. Assuming that the underlying consensus algorithm of a Blockchain is se-

cure, the smart contract can be thought of as a program executed by a trusted global

machine that will faithfully execute every instruction [15]. The complete analysis,

applications, design patterns and limitations of the smart contracts are found in [16].

An example of a smart contract between two parties A and B is given in Figure 1.6.

The parties in smart contracts can add the contract terms and set parameters accord-

ing to their own needs.

11

CHAPTER 1. INTRODUCTION

Contract Example()
Begin
IF A initiates a transaction AND condition(i) is met

Set timestamp OR trigger event
ELSE

transaction failed, A and B state regressed and ended the transaction
IF condition(j) is met AND no timeout

B confirmed the transaction AND quit
IF TIMEOUT

transaction failed, A and B state regressed and ended the transaction
END

Figure 1.6: Example of a smart contract [17].

1.2.1 Main characteristics of Blockchain

We discuss some of the main characteristics of Blockchain and their potential applications

to cloud computing.

(a) Decentralization: Decentralization in Blockchain refers to a lack of centralized au-

thority for managing identities, accounts, balances, databases, and code execution.

The consensus algorithms like Proof-of-work, Proof-of-Stake, etc., ensure the se-

curity of the Blockchain without any trusted authorities. This feature is essential

in cloud computing, especially when the cloud provider and user are mutually dis-

trusted. As no central authority controls the Blockchain, Blockchain-enabled cloud

computing services instil more trust and give more control to cloud users than tradi-

tional cloud computing services.

(b) Immutability: The complexity in solving the PoW puzzle makes the data stored in

the blockchain immutable. The blocks in the blockchain are chained cryptographi-

cally. To change a transaction / data in some ith block of a blockchain with nth block

as the current block, new PoW solutions have to be found for all blocks between i

and n. Finding PoW solutions is computationally expensive, especially if i is much

smaller than n. This property can be plausibly used to design data integrity and audit-

ing schemes because the traditional cloud computing solutions rely on trusted party

or heavy cryptographic primitives.

12

CHAPTER 1. INTRODUCTION

(c) Transparency: All the interactions / transactions stored in the blockchain are pub-

licly viewable by every member. Also, many parties (miners) contribute their com-

putational power to generate new blocks, verify newly generated transactions and

blocks. These steps ensure strong transparency which in turn enhances the integrity

of the data stored in the blockchain. If Blockchain is adopted in cloud computing and

the meta-data of interactions between users and cloud data / services are recorded in

the blockchain, then it enhances the trust and openness in cloud computing.

(d) Persistency: Every transaction and block are verified for the common good before

adding it to the blockchain. Any malicious attempt to destabilize blockchain by

adding malicious transactions is not possible due to public verifications. Once the

data is stored at blockchain, then that data is persistent and cannot be modified. This

property enhances the persistency and reliability of Blockchain-enabled cloud ser-

vices.

(e) Auditability: As the Blockchain data is retrievable publicly, it is subjected to public

auditing. This characteristic is required in cloud computing as most of the existing

cloud data integrity, and auditing schemes [18] depend on third party auditor and

complex cryptographic primitives. The auditability property of Blockchain dramati-

cally reduces the cost of auditing and also eliminates the role of trusted parties in the

traditional cloud auditing schemes.

(f) Security and privacy: For sending transactions in Blockchain, every participating

entity must generate an asymmetric key pair using public-key cryptography. Before

sending, every transaction has to be signed with a private key of a sender. During

verification of the transaction, the signature is verified with the help of the public key

of the sender. The asymmetric key helps preserve the privacy, ownership and non-

repudiation properties. However, in traditional cloud solutions, a trusted key gener-

ator (TKG) is required for generating and distributing keys causing the well-known

key-escrow problem [19]. The fusion of Blockchain and cloud greatly reduces the

dependence on TKG and increases the security of cloud systems. Also, in traditional

cloud computing, a trusted party is required for managing access control policies.

13

CHAPTER 1. INTRODUCTION

The dependence on the trusted party can be eliminated by transcoding the access

control policies as smart contracts. Nevertheless, the drawback of public Blockchain

systems is that they cannot provide privacy to the data stored on the Blockchain. In

order to mitigate the privacy problem, several privacy-preserving solutions [20] are

being explored along with the development of private Blockchain networks.

Although public Blockchain systems possess decentralization, immutability, trust, and trans-

parency properties, they suffer from scalability and privacy problems. To alleviate these

problems, private Blockchains and consortium Blockchains are being developed. However,

private / consortium Blockchains trade-off decentralization and transparency for the sake

of scalability and privacy. The comparisons of public, consortium and private Blockchain

is shown in Table 1.1.

S.No Characteristic Public Consortium Private

1 Decentralization Yes

No (selected set of nodes

spread across multiple

organisations)

No (single

orgranization)

2 Immutability Tamper-proof Cloud be tampered Cloud be tampered

3 Transparency Yes
Cloud be public or

restricted

Cloud be public or

restricted

4 Persistency Yes No No

5
Public

Auditability
Yes No No

6 Privacy No Partial Yes

7 Smart contracts Yes Yes Yes

Table 1.1: Comparison among public, consortium and private Blockchains

1.2.2 Formal Blockchain Model

The formal Blockchain model was first introduced in [21] and later adopted in [22], for

specifying and reasoning about the security of the protocols. We also adopt the same model

to describe our protocols.

14

CHAPTER 1. INTRODUCTION

(a) Timer: All parties are aware of the time which progress in rounds. At the beginning

of each round, the contract’s timer function is executed. The smart contract can also

query Blockchain for the current time denoted by variable τ .

(b) Pseudonymity: A party can obtain any number of pseudonyms to communicate with

a smart contract. Contract wrapper (G) in [22] generates pseudonyms on the request

of any party.

(c) Availability: We assume that the blockchain is always available to be queried by any

party.

(d) Correctness: We also assume that all the transactions are verified and only correct

transactions are added to a block. The blocks are also verified and only correct blocks

are added to Blockchain.

(e) Currency: All the monetary variables are prefixed with $ sign 1. ledger[P] denotes

the party P’s balance in native cryptocurrency of a Blockchain.

(f) Variable scope and functions: A smart contract is written as a set of functions, and

each function is invoked with a corresponding message type. We assume that all the

variables in a smart contract are globally scoped.

(g) Wrappers and Programs: Wrappers contain a set of common features that are

applicable for all the ideal and contract functionalities. We use the same wrap-

pers described in [21, 22]. We define our protocols in G(Contract)-hybrid model,

where G(·) is a contract wrapper which models many concepts of the decentralized

Blockchains like Bitcoin and Ethereum. The Contract program is the user-defined

portion of the contract, i.e., a Contract program contains the business logic, whereas

the G(·) contains the operational semantics. Both are combined to model a real-world

smart contract executing on top of a decentralized Blockchain system. Similarly, we

have ideal functionality wrappers F(·) to be used in combination with Ideal pro-

grams. All the wrappers are discussed in [22].
1Although we are using $ sign, it can be replaced with any currency symbol.

15

CHAPTER 1. INTRODUCTION

1.2.3 Ethereum, Solidity, Gas, Truffle framework and Simulation en-

vironment

Ethereum [23] is a major Blockchain network supporting smart contracts. A smart contract

in Ethereum is a piece of code having its address, balance and state. The execution of the

smart contract code changes its state. A smart contract is written as a set of functions.

The execution of a function in a smart contract is initiated by sending a transaction to its

contract address.

Solidity [24] is one of the scripting languages used to write smart contracts in Ethereum.

Solidity is a Turing-complete language; therefore, a wide variety of applications can be

developed using Solidity. However, to discourage developers from writing smart contract

functions that take a long execution time, Ethereum introduces gas.

A smart contract is compiled into Ethereum opcodes, and each opcode has a predefined

cost. The sum of all the opcodes’ cost is known as gas. Gas in Ethereum is a form of

transaction fee paid in Ether to miners. The unit of gas is gWei (grand Wei) which is

equal to 10−9 Ethers. Ether is a native cryptocurrency of Ethereum. The amount of gas

consumed by a transaction is converted into the Ether and charged from the transaction

initiator’s Ethereum account and paid to the miner in the form of a transaction fee.

Truffle framework [25] is a development and testing environment for Ethereum smart

contracts. Truffle offers automated smart contract compilation and deployment. It also

contains a private Ethereum Blockchain known as Ganache which mimics the Ethereum

production network. In this thesis, we have implemented proposed protocols using the

Solidity and Truffle framework.

We have set up a Ganache Blockchain and Truffle framework simulation environment

on a 2.50 GHz Intel Core i5 CPU and a 16 GB RAM machine. We have used the same

simulation environment to implement the contracts that we discuss in this thesis.

1.2.4 Need of Blockchain Technology in Cloud Computing

The mapping of Blockchain characteristics and their potential applications in cloud com-

puting is shown in Table 1.2. Each characteristic would enhance the quality of cloud

16

CHAPTER 1. INTRODUCTION

computing from the transparency and trust perspectives showing great potential of using

Blockchain in cloud computing. The development of Blockchain-enabled solutions for

cloud computing has only recently started and focuses on commercial targets. In the tradi-

tional cloud models, users are assumed to trust that the machine hardware, software, and

cloud administrator all perform as expected. A wide range of things can go wrong, partic-

ularly when one wishes to tie the results of such computations to monetized entities such

as smart contracts. Proper economic incentives, the cornerstone of any cryptocurrency, can

deter many types of errors occurring in ways that simple task repetition cannot.

17

CHAPTER 1. INTRODUCTION

S.No
Key

characteristics
of Blockchain

Description The potential application to cloud computing

1 Decentralization
No centralized or trusted party controls
the Blockchain.

Eliminates the need for trusted parties in the cloud
computing environment for services like data auditing,
data integrity, data timestamping, data searching, access
control, resource allocation, service allocation, service
discovery, billing and payments, and federated services.

2 Immutability
The data stored on the Blockchain can
not be modified

Every interaction with cloud data / service can be recorded
immutably on Blockchain, providing integrity and thus
enabling tamper-proof data auditing. The logging of
service interactions helps in monitoring user behaviour.
As no party can alter the records stored in the append-only
ledger, the billing of services based on these records will
be fair and correct.

3 Transperency
All the interactions with the
Blockchain are publicly available

Cloud provider, application developer, and the end-users
can thoroughly check and monitor the transactions with
equal rights. No party is deprived of its right to monitor
the transactions there by instilling
more trust and transparency in
the Blockchain-enabled cloud services.

4 Persistency

The data stored in the Blockchain are
subject to public verifiability. All the
transactions recorded on the
Blockchain is verified for correctness
and any attempt to maliciously change
the state of the Blockchain will be
thwarted.

Transactions created from all the interactions with cloud
data / services are recorded and verified by the cloud
provider and users. This verification enhances the
persistency and reliability of Blockchain-enabled cloud
services.

5 Auditability
As data is publicly available, it can be
traced and audited easily

Data auditing is one of the most critical tasks in cloud
computing. Currently, cloud provider and user mutually
distrust each other; hence a trusted party has to be required
for performing the data auditing tasks. As data is available
publicly, Blockchain eliminates the trusted party and
enables provider and user to trace and audit data on their
own.

6
Security and
privacy

Blockchain systems employ public-key
cryptography for authentication and
non-repudiation. Access controls can
be transcoded into smart contracts for
authorization. Privacy for data can be
provided either by employing private
Blockchain or some known encryption
techniques.

Blockchain supports secure cloud computing by providing
distributed trust models with authentication and data
privacy. Blockchain helps in protecting the cloud service
end-users privacy by masking the real identity of end-users
with a pseudonym generated through public-key
cryptography. Blockchain also helps in protecting access
control policies of cloud data / services from unauthorized
entities.

7 Smart contracts

A smart contract can be thought as a
program executed by a trusted global
machine (Blockchain network) that
will correctly execute every instruction

A broad spectrum of cloud computing applications can be
designed with smart contracts. For example, the service
layer agreements can be transcoded into smart contracts
and deployed on Blockchain for better trust, transparency
and reliability of cloud services.

Table 1.2: Key characteristics of Blockchain and their potential applications to cloud com-
puting

In Table 1.3, we present the major obstacles to cloud computing and the opportunity for

Blockchain to address the obstacles of cloud computing.

18

CHAPTER 1. INTRODUCTION

S.No Obstacle Opportunity for Cloud Opportunity for Blockchain

1 Service availability Use multiple cloud providers

Blockchain can be a reliable

communication medium which will instill

trust between multiple cloud providers.

2 Data lock-in Standardize APIs
Blockchain offers tamper-proof storage

for publishing standardized APIs.

3
Data confidentiality

and auditability

Deploy Encryption,

VLANs, and Firewalls;

Blockchain offers tamper-proof storage to

publish access control policies defined

on data stored at the cloud.

Blockchain offers tamper-proof storage to

store meta-data of the data / services

stored / running at the cloud helps

tamper-proof auditing.

4
Data transfer

bottlenecks

FedExing Disks;

Data Backup / Archival;

Efficient data migration tracking systems

can be constructed using Blockchain.

5
Reputation-fate

sharing

Offer reputation-guarding

services like those for email

Fair and open reputation management

schemes can be constructed using

Blockchain.

6 Software licensing
Pay-for-use licenses;

Bulk use sales

Fair billing and payments schemes without

trusted intermediaries can be constructed

using Blockchain.

Table 1.3: Some of the obstacles and opportunities for the growth of cloud computing and
Blockchain.

1.3 Motivation, Aim and Objectives of Proposed Work

In cloud computing, it is generally assumed that the users always trust the provider for

provisioning the service honestly and pays to the provider before actually using the ser-

vice. However, due to the monetary benefits involved, a rational provider may deviate from

provisioning the service honestly. In order to address the fair payment problem, existing so-

lutions comprise trusted parties for fair payments between user and provider. Nevertheless,

having trusted parties do not solve the problem completely, and an additional financial cost

is imposed on both user and provider. Blockchain, with its innovative properties like de-

19

CHAPTER 1. INTRODUCTION

centralization, immutability, transparency and smart contracts, emulate the trusted parties.

In recent years, fair payment protocols without trusted parties using Blockchain technology

are being explored. In current literature, fair payments for cloud services is not addressed

adequately, and this motivates us to develop fair payment protocols for cloud services using

Blockchain technology.

1.3.1 Aim

In this thesis, our aim is to design Blockchain-based fair payment protocols for cloud ser-

vices between cloud users and cloud provider.

1.3.2 Objectives

The main objectives of this thesis are stated as follows:

• To understand the main characteristics of Blockchain technology and its potential

applications to cloud computing.

• To do literature survey, identify research gaps and address them.

• To understand the existing cloud computing payment models and provide Blockchain-

based fair payment solutions for cloud services involving: (a) Platform-as-a-Service

(b) Infrastructure-as-a-service and (c) Software-as-a-service.

• To find future directions in the field of Blockchain-based cloud computing.

1.4 Overview of the Contributions of the Thesis

This thesis presents the following contributions:

1. Presented a comprehensive literature survey on Blockchain-based cloud services and

Blockchain-based fair payment models (Chapter 2).

20

CHAPTER 1. INTRODUCTION

2. Proposed a fair incentivized model for proof-based verifiable computation which

shows that the cost of running a smart contract is negligible when both cloud user

and provider are honest (Chapter 3).

3. Proposed a fair incentivized model for replication-based verifiable computation, which

shows that smart contracts are an efficient way to send payment to honest cloud ser-

vice providers and also to penalize malicious cloud service providers (Chapter 3).

4. Proposed a Blockchain-based fair payment protocol for monetizing mobile crowd-

sensing data. Proposed a new key establishment protocol using smart contracts as a

communication channel for mobile crowdsensing that does not require a trusted key

generator. Proposed a smart contract-based quality-aware incentivization model for

paying data providers in mobile crowdsensing (Chapter 4).

5. Proposed a Blockchain-based online virtual machine allocation auction which fo-

cuses on fair payments and correctness of the auction algorithm (Chapter 5).

6. Proposed a new incentive model for cloud data de-duplication which is individually

rational and incentive compatible for both cloud user and provider (Chapter 6).

7. Proposed a fair payment protocol for cloud data de-duplication which emphasizes

correctness of de-duplication rate and fair payments between cloud user and provider

(Chapter 6).

8. Proposed a Blockchain-based rating, charging and billing model for microservices

which consists of a new decentralized service discovery of microservices, a fair rating

and charging platform and a fair billing platform (Chapter 7).

1.5 Thesis Organization

The chapters of this thesis are organized as follows:

In Chapter 1, we have presented the preliminaries about cloud computing, fair pay-

ments, and Blockchain technology. We have also presented motivation, aim, objective and

contributions of the thesis.

21

CHAPTER 1. INTRODUCTION

Chapter 2 presents a comprehensive literature survey of Blockchain-based cloud ser-

vices. In particular, the survey focuses on the technical fusion of Blockchain and cloud

computing and investigates the recent advances in the field of Blockchain-based cloud ser-

vices. The Chapter also includes a survey of fair payment protocols constructed using

Blockchain technology. At the end of the Chapter, the main findings of the survey and gaps

in the literature are discussed.

Chapter 3 presents fair payment protocols for outsourcing a computation. It provides

fair payment protocols for outsourcing a computation of two types: (1) Proof-based ver-

ifiable computation and (2) Replication-based verifiable computations. The honest com-

putation from the provider is obtained by imposing monetary penalties, and our proposed

protocols guarantee to pay to the honest provider.

Chapter 4 discusses fair payment protocols for mobile crowdsensing. It presents two

protocols: The first protocol uses the services of a trusted party, whereas the second pro-

tocol eliminates the trusted party by using a smart contract-based key generation algo-

rithm. The two protocols ensure that a data provider receives fair payments from the cloud

provider for his / her data contribution towards the crowdsensing task.

Chapter 5 presents a fair payment protocol for virtual machine allocation. It shows

that the untrusted auctioneer in traditional cloud computing for allocating virtual machines

can be replaced by smart contract running on a public Blockchain network. The protocol

ensures that the provider receives the pay if and only if the cloud user receives the requested

virtual machines.

Chapter 6 discusses a fair payment protocol for data de-duplication. The Chapter

presents a new incentivization scheme for cloud data de-duplication. The protocol assures

correct and fair discounts on the storage fee for cloud users.

Chapter 7 provides a fair payment protocol for microservices which includes the rating,

charging and billing aspects of the microservices.

Chapter 8 concludes the thesis and outlines future research directions.

22

Chapter 2

Literature Survey

Blockchain and smart contracts are becoming popular in many engineering and computer

science fields. Cloud computing is one such field that can benefit from adopting Blockchain

technology to re-engineer its data centres. Blockchain is expected to be an indispensable

tool to fulfill the performance expectations for cloud systems with minimal costs and man-

agement overheads. We observe that the integration of Blockchain and cloud is rarely

addressed in the literature. So in this Chapter, we try to address the gap in the literature by

discussing the existing Blockchain-based cloud services and present a road map for further

integrating Blockchain and cloud.

2.1 Comparison of existing Blockchain surveys

Many studies have surveyed Blockchain technology from various perspectives e.g., dig-

ital currencies [26], privacy [20], smart contracts [16], consensus mechanisms [27], IoT

[28, 29], cloud computing [30, 10], edge computing [31], and 5G [13]. The comparison

of existing survey works on Blockchain in various domains is presented in Table 2.1. We

observe that only a few works have discussed Blockchain from the perspective of cloud

computing and also, none of the works have discussed the Blockchain-based cloud ap-

plications from the perspective of service models. In contrast, we discuss state-of-the-art

Blockchain-based cloud systems in all the three service models Iaas, PaaS and SaaS.

23

CHAPTER 2. LITERATURE SURVEY

S.No Related surveys Topic Key contribution Limitations and open issues

1 Yang et al. (2019) [31]
Blockchain
and edge

The authors investigated the
integration of Blockchain-based
edge computing and its
challenges.

There is a lack of discussion on service-
based cloud computing. The paper
emphasizes on the integration of edge and
IoT and have not considered the cloud.

2 Ali et al. (2019) [29]
Blockchain
and IoT

The authors discussed various
shortcomings of integration of
IoT and Cloud and investigated
solutions for those shortcomings
using Blockchain.

The paper only provides the concept of
Blockchain for IoT, and a detailed cloud
service-based analysis is missing.

3 Dai et al. (2019) [28]
Blockchain
and IoT

The authors investigated the
integration of Blockchain with
IoT.

The authors have focused more on IoT
and discussed cloud only as a backend
to IoT networks.

4 Nguyen et al. (2020) [13]
Blockchain
and 5G

The authors discussed the adoption
of Blockchain in 5G technology,
5G IoT and 5G services.

The authors have discussed some of the
Blockchain-based cloud computing
models from the perspective of 5G
networks. However, they have not
analysed from the perspective of cloud
services.

5 Xie et al. (2020) [30]
Blockchain
and cloud
exchanges

The authors discussed the
integration of Blockchain and
cloud exchanges.

The authors have focused on generalised
cloud services, and a detailed service-based
analysis is missing.

6 Gai et al. (2020) [10]
Blockchain
and cloud

The authors discussed the fusion of
cloud services with Blockchain.

Although most aspects of cloud computing
are covered some important topics like
computation-as-a-service and
data aggregation-as-a-service
are not discussed.

7 This Chapter
Blockchain
and cloud

We present a comprehensive
survey of Blockchain-based
cloud services. We present the
works published in all the three
service models IaaS, PaaS
and SaaS of cloud computing.

Table 2.1: Comparison of surveys on Blockchain in various domains

2.2 Systematic Literature Survey

Our objective is to explore the existing works on Blockchain-based cloud services, and

hence we adopted the systematic literature mapping given by Yli-Huumo et al. [32]. The

adopted mapping process is illustrated in Figure 2.1. In the first step, we define research

questions related to the integration of Blockchain and cloud computing, which are listed in

Table 2.2. By analyzing the key research questions, we discuss the merits of the Blockchain

and the cloud computing technologies and observe the pivotal issues of cloud computing

that can be solved with the help of Blockchain technology. After defining the scope of the

research, we have searched for the articles with the terms Blockchain and cloud computing

as query strings. We have collected papers from well-known peer-reviewed article publish-

ing platforms including (1) IEEE Xplore (2) Science direct (3) Springer Link and (4) ACM

digital library. Then, based on the article title and abstract, we have filtered out some ir-

24

CHAPTER 2. LITERATURE SURVEY

relevant papers and retained only papers related to Blockchain-based cloud services. Then,

with the help of keywords in the articles, we have categorized papers into three sets based

on the type of cloud service they have discussed. Finally, we have extracted information

from the articles that needed to address the research questions of this mapping study. Tech-

nical dimensions of this survey are presented in Figure 2.2.

Figure 2.1: The systematic literature mapping process [32]

S.No Research questions Motivations

1
What are the current challenges of
cloud computing ?

Cloud computing severely suffers from trust and transparency due to
centralized architecture. Currently, cloud providers and users have to
depend on trusted third parties to resolve disputes which arise due to
violation of service level agreements.

2
What are the key requirements of
cloud computing ?

The key requirements of cloud computing include availability, elasticity,
data security, manageability federated systems, on-demand integration,
multi-tenancy, resource management etc.

3
What are the key characteristics of
Blockchain ?

The key characteristics of Blockchain include decentralization,
immutability, transparency, persistency, auditability, security and smart
contracts

4
What are the potential benefits of
Blockchain for cloud computing ?

Cloud computing could benefit from Blockchain to build innovative
applications providing trust, transparency and giving more control to
cloud users.

5

What are the key advantages of
Blockchain over the traditional
technique for supporting cloud
computing ?

Blockchain offers new features like decentralization, trust, transparency
and immutability which does not exist in traditional cloud computing.
Significantly, Blockchain limits the dependency of the cloud provider
and users on trusted third parties.

6
How is the current Blockchain-
cloud research progress ?

Many recent works discussed Blockchain-based cloud services for data
management, access controls, resource management, data security,
service management, etc., across all the three domains SaaS, PaaS and
IaaS of cloud computing.

Table 2.2: Research questions and analysis of literature

25

CHAPTER 2. LITERATURE SURVEY

Figure 2.2: Technical dimensions of this survey

2.3 Blockchain-based Cloud Services

2.3.1 Blockchain-based Infrastructure-as-a-Service (IaaS)

IaaS is one of the most significant and fast growing cloud computing service model. A

cloud provider under IaaS offers computing resources like virtual machines, storage disks,

network devices, load balancers and firewalls. Most of the existing works on Blockchain-

based IaaS focus on storage management and computational resource management. There-

fore in this section we would first discuss the challenges in existing cloud storage and re-

source management and then elaborate the existing Blockchain-based storage and resource

management works. Finally, we conclude the section with the summary of our findings.

2.3.1.1 Storage-as-a-service

2.3.1.1.1 Issues in traditional cloud Storage-as-a-Service

Outsourcing data to a remote cloud has become a common practice [33]. Every day

large amounts of data are being generated, and data explosion is predicted when 5G and

IoT networks are deployed worldwide. More and more users are adopting cloud storage

to store their personal data, and many enterprises are also moving their data to the cloud

in order to reduce on-premise costs. We categorize the entities involved in storage-as-a-

26

CHAPTER 2. LITERATURE SURVEY

service into three types: (1) Cloud provider (CP), (2) Data owner (DO), and (3) Data

user (DU). CP is a rational and untrusted party with a large storage capacity. DO stores

his data at cloud managed by CP . DO also authorizes DU to read / retrieve his / her data

stored at the cloud. ADO has very little, or no control over his data as CP may give access

of DO’s data to third parties for monetary benefits. In today’s world, CP will always try

to reduce its costs adversely effecting data properties like:

(a) Data integrity: CP may modify stored data without the DO’s knowledge.

(b) Data auditability: CP may not record or tamper the recorded data about the actions

performed on DO’s data.

(c) Data searching: When requested for a data search operation, CP may return incor-

rect or partial search results.

(d) Data sharing and access control: CP may not adhere to the access policy stated by

a DO or may change the already stored access policy without DO’s knowledge.

(e) Data migration: CP may not comply with storage location policy and may migrate

DO’s data without his knowledge.

(f) Data deduplication: CP saves huge storage cost due to data deduplication, and a

rational CP may not pass those benefits to DO.

The list of Blockchain-based cloud data management works in literature is given in Figure

2.3.

27

CHAPTER 2. LITERATURE SURVEY

St
or

ag
e-

as
-a

-s
er

vi
ce

(a
)

A
ud

iti
ng

an
d

sh
ar

in
g

(a
)

D
at

a
tr

ak
in

g
ve

rs
io

ni
ng

(b
)

D
at

a
tim

es
t

-a
m

pi
ng

(c
)

D
at

a
m

ig
ra

tio
n

(d
)

D
at

a
de

le
tio

n
(e

)

M
on

et
ar

y
be

ne
fit

s
(f

)

A
cc

es
s

co
nt

ro
l

(g
)

Se
ar

ch
bl

e
en

cr
yp

tio
n

(h
)

D
at

a
de

du
pl

-i
ca

tio
n

(i
)

G
en

er
ic

or
Io

T
E

le
ct

ro
ni

c
he

al
th

re
co

rd
s

Z
ys

ki
nd

et
al

.
(2

01
5)

[3
4]

Sh
af

ag
h

et
al

.
(2

01
7)

[3
5]

L
ia

ng
et

al
.

(2
01

7)
[3

6]

G
et

an
ie

ta
l.

(2
01

7)
[3

7]

W
an

g
et

al
.

(2
01

8)
[3

8]

L
ie

ta
l.

(2
01

8)
[3

9]

zh
u

et
al

.
(2

01
9)

[4
0]

X
ue

et
al

.
(2

01
9)

[4
1]

X
u

et
al

.
(2

02
0)

[4
2]

H
ua

ng
et

al
.

(2
02

0)
[4

3]

B
B

D
S

(2
01

7)
[4

4]

M
eD

Sh
ar

e
(2

01
7)

[4
5]

L
ie

ta
l.

(2
01

8)
[4

6]

N
gu

ye
n

et
al

.
(2

01
9)

[4
7]

C
ao

et
al

.
(2

01
9)

[4
8]

B
en

il
et

al
(2

02
0)

[4
9]

H
ua

ng
et

al
(2

02
1)

[5
0]

Se
Sh

ar
e

(2
01

7)
[5

1]

R
am

ch
an

dr
an

et
al

.[
52

]

Z
ha

ng
et

al
.

(2
01

8)
[5

3]

E
nd

ol
ith

(2
01

8)
[5

4]

Y
an

g
et

al
.

(2
02

0)
[5

5]

C
hr

on
os

+

(2
01

9)
[5

6]

E
st

ev
am

et
al

.
(2

02
1)

[5
7]

K
ir

km
an

et
al

.
(2

01
8)

[5
8]

L
ie

ta
l.

(2
01

9)
[5

9]

Y
an

g
et

al
.

(2
01

8)
[6

0]

Fa
n

et
al

.
(2

01
8)

[6
1]

Z
he

ng
et

al
.

(2
01

8)
[6

2]

Y
an

g
et

al
.

(2
01

8)
[6

3]

D
St

or
e

(2
01

8)
[6

4]

H
ua

ng
et

al
.

(2
02

0)
[6

5]

A
la

ns
ar

ie
ta

l.
(2

01
7)

[6
6]

L
au

re
nt

et
al

.
(2

01
8)

[6
7]

C
ru

z
et

al
.

(2
01

8)
[6

8]

L
ee

et
al

.
(2

01
9)

[6
9]

C
ha

tte
rj

ee
et

al
.

(2
02

0)
[7

0]

X
u

et
al

.
(2

01
8)

[7
1]

M
ae

sa
et

al
.

(2
01

9)
[7

2]

G
uo

et
al

.
(2

01
9)

[7
3]

Z
ha

ng
et

al
.

(2
01

9)
[7

4]

Y
an

g
et

al
.

(2
02

0)
[7

5]

G
uo

et
al

.
(2

02
1)

[7
6]

H
u

et
al

.
(2

01
8)

[7
7]

C
he

n
et

al
.

(2
01

9)
[7

8]

Z
ha

ng
et

al
.

(2
01

8)
[7

9]

Ji
an

g
et

al
.

(2
01

9)
[8

0]

Ji
an

g
et

al
.

(2
01

9)
[8

1]

A
ig

is
si

no
va

et
al

.
(2

02
0)

[8
2]

C
ai

et
al

.(
20

18
)[

83
]

Y
an

g
et

al
.(

20
19

)[
84

]

Z
ha

ng
et

al
.(

20
19

)
[8

5,
86

]

N
iu

et
al

.(
20

19
)

[8
7]

Ta
ng

(2
01

9)
[8

8]

Y
an

et
al

.(
20

20
)[

89
]

Ji
an

g
et

al
.(

20
20

)[
90

]

L
ie

ta
l.

(2
01

8)
[9

1]

L
ie

ta
l.

(2
01

8)
[9

2]

W
an

g
et

al
.

(2
01

9)
[9

3]

Fi
gu

re
2.

3:
L

is
to

fw
or

ks
in

B
lo

ck
ch

ai
n-

ba
se

d
st

or
ag

e-
as

-a
-s

er
vi

ce
.

28

CHAPTER 2. LITERATURE SURVEY

In the following subsections, we discuss how Blockchain-based methods enforce the

above-discussed properties 1.

2.3.1.1.2 Blockchain-based cloud data management

(a) Data auditing and sharing: Zyskind et al. [34] have presented a personal data

management model in which the encrypted data is stored at a cloud, and the meta-data about

the stored data is embedded into a Blockchain along with the access control permissions.

The data storage and retrieval requests are sent as transactions (Tdata) to Blockchain, and

similarly, the changes in access control policies are also requested through transactions

(Taccess). During the verification of Tdata for data retrieving, the access policy stored in the

Blockchain is used to check whether the transaction initiator has necessary permissions to

retrieve the data. As meta-data about the data and all the actions performed on the data

are recorded in the immutable ledger this model ensures correct data auditability. Since the

access control rules are stored in the Blockchain, the model provides fair data sharing and

policy verification2. Shafagh et al. [35] and Liang et al. [36] applied the same technique

of [34] for IoT stream data and data collected from drones respectively.

Gaetani et al. [37] have designed a two-tier Blockchain model to ensure the integrity

of data stored in the cloud federation environment. The first tier Blockchain adopts a light-

weight consensus protocol for fast performance by storing every operation performed on

the federated database. The second tier Blockchain adopts proof-of-work (PoW) to ensure

the integrity of the data stored at the first-tier Blockchain. Wang et al. [38] have devel-

oped a data-sharing mechanism by leveraging Blockchain as a communication channel to

distribute the secret key used in attribute-based encryption of the data. They also store en-

crypted data indexes in smart contracts to increase trust on search operation.

Li and Zhou [39] have adopted Blockchain to store all the logs generated while storing

a data block in cloud. However, storing logs increases search time during data auditing.

To solve this problem, the authors introduced a proxy node which analyzes the blocks in

1To simplify the discussion; we purposely omit all the cryptographic concepts involved in securely storing,
retrieving, auditing, searching, deleting and deduplicating of the data stored in the cloud.

2Most of the works presented later follow [34] for data auditing and sharing with minor / major modifica-
tions. We will discuss the necessary modifications wherever applicable.

29

CHAPTER 2. LITERATURE SURVEY

Blockchain and forms an index. This indexing will reduce time when aDO searches for all

the historical changes of his data. Zhu et al. [40] have used a smart contract to validate and

trace modifications to cloud data. They have designed a delegated proof-of-stake (DPOS)

[94] like consensus mechanism with a Blockchain node having a veto power to detect and

override the attempts of adding erroneous data to Blockchain. However, a centralized entity

with a veto power opposes the cause of using Blockchain.

One of the main challenges in traditional cloud data auditing is that a trusted audi-

tor may compute the auditing result ahead of time and provide the evidence that he has

executed the auditing protocol correctly. So, the challenge messages generated during

the auditing must not depend on the DO or auditor and cannot be predefined (truly ran-

dom challenge messages are required). To solve this problem, Xue et al. [41] presented

an auditing model which uses random nonces generated during block creation of Bitcoin

Blockchain. The auditor has to include the nonce of a particular block specified by the

DO while generating challenge messages required for auditing. In [41], the auditors also

publish the auditing results to public Blockchain for further tracing and auditing in future.

Xu et al. [42] uses smart contracts as an arbitrator to resolve disputes regarding the in-

tegrity of data stored in the cloud and penalize misbehaving parties. Huang et al. [43] have

introduced collaborative auditing Blockchain (CAB) running a credit-based consensus al-

gorithm to increase the trust on data auditing results.

Electronic Health Records (EHR) auditing and sharing: Xia et al. have presented

two Blockchain-based secure medical data sharing methods namely BBDS [44] and MeD-

Share [45]. In BBDS, the authors employ a light-weight permissioned Blockchain with

a new Block structure to enhance the scalability and in MeDShare, the authors propose

to use smart contracts for storing access policies and routed the access requests through

Blockchain for secure data sharing. As smart contract tracks every action on data stored in

the cloud, trust-less auditing is possible. Li et al. [46] have constructed a data preservation

system (DPS) to store and share personal health data securely. DPS allows the users to

submit the hash of the unpreserved data to Blockchain. Later, the users can check and val-

idate the preserved data by retrieving hash from the Blockchain. Nguyen et al. [47] have

introduced a trusted manager who on receiving a data request verifies the request with ac-

30

CHAPTER 2. LITERATURE SURVEY

cess controls stored in smart contracts and take appropriate action based on the verification

result. Cao et al. [48] have adopted Blockchain to protect patient’s health data outsourced

to the cloud from illegal modifications by doctors. Benil and Jasper [49] have presented an

authorized Blockchain-based data sharing, and auditing model for personal health records.

Recently, Huang et al. [50] have proposed a Blockchain-based solution for identifying ma-

nipulation of EHR data. They have constructed proof-chain to store users’ manipulation

logs on EHR data. At the later stage, the logs stored in proof-chain are used as evidence

for rights protection.

(b) Data tracking and versioning: In SeShare [51], multiple DO’s shares and modify

cloud data and record those changes in the Blockchain for avoiding conflicts arising due

to file sharing. Ramachandran et al. [52] have designed a document management system

called DataProv which contains two types of smart contracts: Document Track and Vote.

The Document Track contract facilitates operations like adding a document, granting and

revoking access to the document, and tracking the changes in the document. Any changes

to the document are recorded in the ledger only through a voting process conducted by the

vote contract. Zhang et al. [53] have designed a document life-cycle management method

where all stages of document management like creation, modification and ownership trans-

fer are recorded in the Blockchain to ensure integrity and auditability. Endolith [54] stores

meta-data of the data stored in the cloud using a smart contract enabling data auditing, val-

idation, tracking and versioning.

To provide high availability and to avoid accidental loss of data, multiple replicas of

data may be stored at multiple clouds. However, managing multiple-replicas correctly

without loss of integrity of every replica is a challenging task. This challenge is considered

by Yang et al. [55], where a modification record table is maintained to track file changes,

and similar to [41] uses the random nonces from Blockchain to generate challenge mes-

sages during auditing.

(c) Data time-stamping: A tamper-proof, and correct time-stamping of files is required

before storing them in the cloud. However, in traditional cloud computing, a trusted time-

stamping server is setup, which may deviate from its operation by colluding with DO or

CP . To mitigate this problem, a time-stamping service based on Ethereum Blockchain

31

CHAPTER 2. LITERATURE SURVEY

known as Chronos+ is developed by Zhang et al. [56]. For secure and correct time-

stamping for a file, a DO has to retrieve the hash values of ϕ- successive blocks that are

most recently accepted on the Ethereum Blockchain and include those hash values in the

file. This procedure enables the users to prove that the file was generated no longer than the

physical time of the last block of ϕ- successive blocks. However, miners to some extent can

affect the block time-stamp. To mitigate this problem, Estevam et al. [57] have proposed

a time-stamping service which combines smart contracts and distinct time providers. They

have achieved a time-stamping accuracy of milliseconds.

(d) Data migration: DO do not have control over migration of his / her data between

cloud providers. Kirkman and Newman [58] uses smart contracts to record data migration

between cloud providers. DO can know the current position and status of their data by

querying the smart contract. Another data migration process between a group of connected

cloud data centres is discussed by Li et al. [59]. In their method, every data duplication

and data migration operation between cloud providers are recorded on the Blockchain.

(e) Data deletion: Yang [60] have introduced a cloud data deletion method, where the

cloud provider generates a proof of deletion and publishes it on a Blockchain. Then, the

proof is verified publicly making the deletion operation transparent.

(f) Monetary benefits: Fan et al. [61] have stored encrypted data in the cloud and

its access policies on Blockchain, but they have innovated in sharing the data by adopting

the DPOS [94] consensus mechanism. The miners in [61] are rewarded with data of their

interest. When a DU needs data, he / she has to send a request to the miner holding that

data. The miner verifies the access policy on data and sends the data to the DU if and only

if the access policy is satisfied. DU has to obtain the key to decrypt the data from the DO.

This setup reduces congestion and latency in the network as miners are distributed around

the world, and DUs are not required to send requests to a centralized cloud. Zheng et al.

[62] have designed a smart contract-based market place for selling and buying personal

data. They have designed a crypto-token known as Personal Health Data coin (PHD coin)

to pay a DO in exchange for personal data. Some DOs do not share / sell their data but

allows the queries on the data. In this model, the data is protected with differential privacy

techniques, and a threshold limit is set on the number of queries allowed before leaking

32

CHAPTER 2. LITERATURE SURVEY

privacy.

Yang et al. [63] have employed smart contracts to manage privacy budget. Smart con-

tract may accept / reject a query based on the remaining privacy budget. If a query is ac-

cepted, then an anonymization service outputs result by adding sufficient noise to the actual

query result, and the privacy budget in the smart contract is updated accordingly. DStore

[64] explores the idea of using empty disks of home users (lessors) to form a distributed

cloud. A single data file may be stored on several disks stationed at different locations

across the globe under different lessors causing data auditing problems. A smart contract

is used to check data auditing results, to pay storage fee to lessors, and to impose fines on

the lessors if they provide incorrect auditing results. Huang et al. [65] have extended their

work of [51] with fair incentives so that the users who contributed to the meta-data stored

in Blockchain will get their incentives fairly.

The comparison of different data management models is presented in Table 2.3.

33

CHAPTER 2. LITERATURE SURVEY

Paper Data

Blockchain

Platform /

Consensus

algorithm

Off-chain

data

sto-

rage

Data

access

control

through

BC

Data

sha-

ring

Data

int-

egrity /

aud-

iting

Data

del-

etion

Data

ver-

sio-

ning

Data

time-

sta-

mping

Zyskind et al. [34] Generic Bitcoin DHT Yes Yes Yes No No No

Shafagh et al. [35] IoT Bitcoin DHT Yes Yes Yes No No No

Gaetani et al. [37] Generic

Two tier:

Consortium

PoW

Distributed

Cloud
No No Yes No No No

Alansari et al. [66] Generic Ethereum
Federated

cloud
Yes Yes Yes No No No

BBDS [44] EHR Not discussed DB Yes Yes No No No No

MeDShare [45] EHR Ethereum DB Yes Yes Yes No No No

Wang et al. [38] Generic Ethereum DHT No Yes No No No No

Zhang et al. [53] Generic Ethereum DB No No Yes No Yes Yes

Liang et al. [36] Drone PoW DB No No Yes No No No

SeShare [51] Generic Not discussed DB No Yes Yes No Yes No

yang et al. [60] Generic Not discussed DB No No No Yes No No

Endolith [54] Generic Ethereum HDFS No No Yes Yes Yes No

DataProv [52] Generic Ethereum DB No No Yes No Yes No

Fan et al. [61] ESR Voting-based DB Yes Yes No No No No

Kirkman et al. [58] Generic Ethereum DB Yes Yes No No No No

Li et al. [59] Generic
Private

Ethereum

Federated

cloud
No Yes Yes No No No

Li et al. [39] Generic Ethereum Aliyun No No Yes No No No

Zheng et al. [62] EHR Ethereum DB No Yes No No No No

Yang et al. [63]

Privacy

sensitive

data

Hyperledger

(BFT)
DB Yes Yes No No No No

DStore [64] Generic Ethereum
Distributed

cloud
No No Yes No No No

Zhu et al. [40] Generic Ethereum DB No No Yes No Yes No

Xue et al. [41] Generic Bitcoin DB No No Yes No No No

Nguyen et al. [47] EHR Ethereum DHT Yes Yes Yes No No No

Cao et al. [48] EHR Ethereum DB No No Yes No No No

Li et al. [46] EHR Ethereum DB No Yes Yes No No No

Chronos+ [56] Generic Ethereum DB No No No No No Yes

Xu et al. [42] Generic

Two tier:

Consortium

Ethereum

DB No No Yes No No No

IPANM [65] Generic Ethereum DB No Yes Yes No No No

Yang et al. [55] Generic Not discussed DHT No No Yes Yes Yes No

Benil et al. [49] EHR Ethereum DB No Yes Yes No No No

Huang et al. [43] Generic Credit-based DB No No Yes No No No

Huang et al. [50] EHR PBFT Cloud No Yes Yes No No No

Estevam et al. [57] Generic Ethereum DB No No No No No Yes

Table 2.3: Comparison of Data Management models. DHT - Distributed hash table / Inter-
planetary file system (IPFS) in cloud. DB - Database in cloud. HDFS - Hadoop distributed
file system.

34

CHAPTER 2. LITERATURE SURVEY

(g) Blockchain-based cloud data access controls In traditional cloud computing, the

access policies are stored in the cloud, which is assumed to process the access requests

honestly according to the policy. However, in practice, the cloud provider may deviate

from the access policy and may reject access to legitimate DO / DUs or allow access to

illegitimate DO / DUs.

Alansari et al. [66] have presented an identity and access control system for federated

cloud by integrating Blockchain and Intel SGX [95] technologies. Blockchain ensures non-

tampering of access policies, and Intel SGX protects the confidentiality and integrity of the

policy enforcement process. Laurent et al. [67] have recommended creating a smart con-

tract with a specific access control list for every data block outsourced to a remote cloud.

So, a DU is authorized based on the challenge-response protocol played between him and

remote cloud based on the information stored in the smart contract. Cruz et al. [68] have de-

signed role-based access control using smart contracts (RBAC-SC) to verify access permis-

sion across different organizations effectively. Every organization creates a smart contract

which consists of functionalities for storing user-role assignments, modifying assignments,

and revoking assignments. Similar to [67] during authorization, a challenge-response pro-

tocol is executed that verifies the ownership of roles based on information stored in the

smart contract. Lee et al. [69] have also introduced RBAC with smart contracts without

the challenge-response protocol. Chatterjee et al. [70] have decoupled access control logic

with the business logic of the smart contract and proposes a dynamic role-based access

control model using smart contracts.

As the RBAC model suffers from scalability, heterogeneity, and spontaneity problems,

Xu et al. [71] have transcoded capability-based access control policy as smart contracts to

support hierarchical and multi-hop delegation in a federated environment. In their work,

the smart contract manages federated delegation relationships and capability tokens. CP

issues authorization and revocation tokens through smart contracts so that the other nodes

in the federation accept or reject the access requests. Maesa et al. [72] have codified

attribute-based access control policies as smart contracts. They have adopted XACML

[96] for defining policies, and the smart contracts are considered as an executable ver-

sion of XACML policy. The smart contract also manages the attributes representing the

35

CHAPTER 2. LITERATURE SURVEY

features of subjects required to evaluate the policy. Guo et al. [73] have introduced multi-

authority attribute-based access control with smart contracts. Guo et al. [76] have designed

an efficient traceable attribute-based encryption scheme for fine grained data sharing on

Blockchain.

Zhang et al. [74] have designed a smart contract-based access control framework with

both static access rights control and dynamic rights validation. They have developed three

types of contracts: (1) Access control contracts (ACCs) (2) Judge Contract (JC) and (3)

Register Contract (RC). For every object-subject pair, an ACC is created to support adding,

deleting and updating access controls. ACC also reports misbehaviour of subjects to JC. JC

on receiving ACC request initiates a misbehaviour judging method and returns appropriate

penalty. RC manages all the ACCs and the judging methods.

All the access control frameworks discussed till now suffer from privacy problems be-

cause the access data stored in Blockchain is publicly available. To mitigate this problem,

Yang et al. [75] have presented AuthPrivacyChain in which the access control policies are

encrypted and stored in the Blockchain. Whenever a cloud receives the access request, it

retrieves and decrypts the policy from a smart contract and verifies the access request. The

cloud also publishes logs of all the access requests on the Blockchain.

(h) Blockchain-based cloud data searchable encryption In tradition searchable en-

cryption (SE), CP is assumed to perform the search service and return the search results

correctly. However, in practice, CP is untrusted and rational entity which may indulge in

fraudulent activity and may return partial or incorrect search results. At the same time, the

DU may act as malicious and refuse to pay the service fee after receiving the correct search

results. This situation leads to the problem of service-payment unfairness and mutual dis-

trust between the DU and CP .

Hu et al. [77] have presented a Blockchain-based solution to address the limitations

of searchable encryption. The search index is stored in a smart contract, and the search

algorithm is also modeled as a smart contract functionality. These two steps ensure the

integrity of the index and correctness of search results. They also introduced the notion

of fairness in SE such that a DU receives the search results if and only if he pays for the

search operation and the DO receives the payment if the search token for the requested

36

CHAPTER 2. LITERATURE SURVEY

keyword is sent to the smart contract. Chen et al. [78] have adopted [77] for EHR data.

They build an index using complex logical expressions facilitating DU to construct queries

like ”(disease = ‘disease name‘) AND (num1 ≤ age ≤ num2)”. In both the works, the

search functionality is invoked by the DO inducing unnecessary cost to him.

Zhang et al. [79] have presented a Bitcoin-like transaction model for obtaining fair-

ness in search results. In their model, CP commits a transaction with enough deposit on

Bitcoin so that if it provides wrong results or aborts during the subsequent phases, the

DU can claim the deposit committed by CP . Similarly, DU also commits the payment,

which will be transferred to CP on providing correct search results or refunded in case the

CP behaves maliciously. Jiang et al. [80] have applied a stealth authorization method to

achieve privacy-preserving access authorization delivery through smart contract. In their

method, first, DO sends a stealth authorization information to a smart contract and later

this information is retrieved by DU to construct a search token. With that search token,

DU calls the search functionality to obtain search results, thereby reducing the burden on

DO. Another advantage is that once theDU is authorized, he can search the same keyword

multiple times without contacting DO.

Storing index and performing search operations are costly as they consume more com-

puting resources and time, leading to verifiers dilemma [97]. To reduce search cost, Jiang

et al. [81] have introduced bloom filter based search to find out low-frequency keyword in

the multi-keyword search and filter the encrypted database using the keyword. Since the

selected keyword is of low frequency, most of the keywords are excluded from the result,

thus reducing the search cost significantly. Another bloom filter based method developed

on Hyperledger fabric is discussed by Aigissinova et al. [82]. Cai et al. [83] presented

a reliable SE model with negligible cost when both DU and CP are honest. DU verifies

the correctness of the search result returned by a CP (Inter-planetary file system (IPFS)

service peer), and if found that the result is not correct, then he invokes a dispute resolution

mechanism. When a dispute has raised a set of volunteer nodes known as arbiter shard per-

form the search operation independently. They use a Byzantine voting mechanism to reach

consensus among the arbiter shard nodes. The smart contract rewards / penalize the DU

and CP according to the results returned by arbiter shard. Yang et al. [84] have designed

37

CHAPTER 2. LITERATURE SURVEY

a set of smart contracts interacting with each other to facilitate fair payments between DO,

DU and CP .

Contrary to other smart contract-based works, Yang et al. [84] have proposed to verify

the search results computed byCP using a smart contract for correctness. To further reduce

the cost incurred due to public Blockchain, Zhang et al. [85, 86] have employed a consor-

tium chain whose major stakeholders are CP s. Encrypted files are stored in Inter-Planetary

file system (IPFS) which returns the hash of the stored file as URL. Through transactions,

the consortium chain stores the mapping of URLs with the corresponding plain-text. The

Merkle root hash of the state of the consortium chain is committed periodically on a pub-

lic Blockchain guaranteeing its integrity. Apart from maintaining the consortium chain,

the CP s also provide computing power to DU for search operations and provide resultant

IPFS hash pointers of the queried data to the DU .

Niu et al. [87] have also adopted the permissioned Blockchain model for securely

searching and sharing electronic health records. Tang [88] has discussed several limita-

tions of directly adopting Blockchain to solve problems in searchable encryption. More

importantly, he has identified two privacy leakages: (a) Search pattern leakages and (b)

Access pattern leakages. He has also pointed out that storing search index and search re-

sults forever in the immutable ledger may lead to attacks in future which are currently

unknown. He has presented two new methods by storing and searching the encrypted in-

dexes in centralized servers, thus by limiting the Blockchain to ensure only the fairness.

He has employed N servers all will perform search operation on locally stored indexes and

commits the search result on the Blockchain. At a later stage, the servers reveal the com-

mitment and the smart contract compares all the results returned by servers for similarity. If

all are equal, then each server receives payment for computing search operation correctly;

otherwise, an off-line arbitration mechanism is initiated. To overcome employing third-

party arbitration, the author improved the initial design by using public-key encryption and

zero-knowledge proofs, where the entire dispute resolution will happen through a smart

contract.

Sometimes a data owner / user may send a misspelt keyword for searching the index.

As the above mentioned works fail to handle misspelt keywords, Yan et al. [89] have

38

CHAPTER 2. LITERATURE SURVEY

designed a verifiable fuzzy keyword SE [98] to handle misspelt keywords. Similar to [84],

in [89] also the search results are computed by CP and are verified by smart contract

for correctness. However, the authors applied RSA accumulators [99] for verifying the

search results. A DO after generating index computes an accumulated value acc(C) for a

document set C and sends this value to a smart contract. CP , after receiving search token

computes search results along with verification evidence proof pf(C) and sends proof to

a smart contract. The verify functionality of smart contract takes both acc(C) and pf(C)

along with search results as input and outputs search results if CP has sent the correct

result otherwise outputs ⊥ (error) indicating wrong results or wrong proof. Their design

also supports fair payments and penalizes malicious entities.

In most of the works discussed till now, the search token is generated by DO, and in

some works, DU generates search token based on authorization information sent by the

DO. However, in both models, DO knows about DU ’s keyword revealing their private

interest. To avoid this retrieval information leakage and hide data user’s keyword Jiang et

al. [90] have constructed searchchain that aims to assure private search over authorized

keywords with unchanged retrieval order. They modified the oblivious keyword search

(OKS) [100] as OKS with authorization (OKSA) through which DU can search privately

within an authorized set of keywords. Further, they use ordered multi-signatures (OMS)

while generating blocks to commit the sequence of retrieval transactions. Comparison of

Blockchain-based searchable encryption systems is presented in Table 2.4.

(i) Blockchain-based cloud data de-duplication Most of the data being uploaded to

the cloud is redundant [101] and thus wasting large storage space. To avoid redundancy

and save storage costs, CP use data de-duplication technique. However, the issues with

existing de-duplication techniques are:

(a) Correct de-duplication rate: As CP save storage costs by adopting de-duplication,

proper incentives on storage fee are required for DO to adopt de-duplication. In gen-

eral, the incentives on storage fee are calculated based on the de-duplication rate. A

rational CP to increase its profits may not compute the de-duplication rate correctly

and thus making theDO pay higher fees even though he opted for the de-duplication.

39

CHAPTER 2. LITERATURE SURVEY

S.No Paper Platform Storage
location Keyword Search Verification Fair

payments
1 Hu et al. [77] Ethereum Cloud Single Smart contract Not required Yes

2 Zhang et al. [79] Bitcoin Cloud Single Cloud
Bitcoin
Script Yes

3 Cai et al. [83] Ethereum Decentralized Single
Decentralized

node
Data user /

Arbitar Shard Yes

4 Zhang et al. [85]
Hybrid

(consortium
and public)

IPFS Multiple Cloud Data user No

5 Jiang et al. [80] Ethereum Cloud / IPFS Single Smart contract Not required No
6 Chen et al. [78] Ethereum Cloud Single Smart contract Not required Yes

7 Niu et al. [87] Permissioned Cloud Multiple
Permissioned
Blockchain Not required No

8 Jiang et al. [81] Ethereum Cloud Multiple Smart contract Not required No
9 Yang et al. [84] Ethereum Cloud Multiple Cloud Smart contract Yes

10 Tang [88] Ethereum Cloud Single Cloud
Arbitar /

smart contract Yes

11 Aigissinova et al. [82]
Hyperledger

Fabric Cloud Single Smart contract Not required No

12 Jiang et al. [90] Searchchain Decentralized Single Not discussed Data user No
13 Yan et al. [89] Ethereum Cloud Single Cloud Smart contract Yes

Table 2.4: Comparison of Blockchain-based Searchable encryption systems

(b) Fair payments: An honest CP should receive storage fee if and only if an honestDO

receives the file link of the data requested to store at the CP .

(c) Cross-CP de-duplication: Currently, to perform cross-CP de-duplication, a trusted

party have to be recruited, which maintains a central repository storing meta-data

of all the files stored at different CP s. However, having a trusted party introduces

a single point of failure and finding an idle party which will behave honestly at all

times is difficult.

Li et al. [91] have designed CloudShare to enable cross-CP data de-duplication. When

a CP receives an upload request for file a f , it checks whether it possesses a copy of f . If

the check is valid, then it simply adds the requested DO to the set of DOs that are already

registered to the file f . If the check is not valid, then it queries the private Blockchain

maintained by a set of CP s whether any CP has a copy of f . If a CPj holds the copy of

f , then the DO is added to set of the DOs that are already registered to the file f at CPj .

Otherwise, it asks the DO to upload the file and the ownership information is recorded in

the private Blockchain. Collaborating through Blockchain eliminates the need for a central

repository and saves a lot of storage spaces to CP and also saves bandwidth to DO.

40

CHAPTER 2. LITERATURE SURVEY

A smart contract-based de-duplication method is presented by li et al. [92]. Before

uploading the file, DO downloads the meta-data of the files stored at a CP from the

Blockchain and performs the duplication check locally. If a duplicate is found, then the

DO requests the smart contract to register him as an owner to the duplicated file. The

smart contract in-turn sends a script to DO. DO signs and send the script to the CP . Then,

the CP completes the script and sends it to the smart contract, which then adds the DO as

an owner to the requested file. Wang et al. [93] have used a smart contract to facilitate fair

payments for de-duplication between CP and a DO. They replaced the trusted party for

payments in traditional de-duplication with a smart contract. In their work, the DO has an

option to initiate the penalty transaction when the CP behave maliciously without sending

the file link to the DO.

2.3.1.1.3 Summary

In traditional Storage-as-a-Service model, the cloud provider is assumed as an honest-

but-curious party who behaves honestly at all times. Later, to have more trust in the cloud,

some works presented a trusted auditor to audit the data and a trusted access manager for

access control on data. Nevertheless, hiring a trusted party is costly and finding a trusted

party which will behave honestly at all times is difficult. Also, having a one more central-

ized entity in the loop makes the system more vulnerable to a single point of failure. In

this section, we have discussed works which replace the trusted party with Blockchain for

auditing and access control. Also, we have discussed the works realizing the correctness

through Blockchain in search results returned by the cloud. Outsourcing search queries

to smart contract yield a correct and immutable result and requires no further verifica-

tions. Further, we have discussed works obtaining correctness and fairness in cloud data

de-duplication.

2.3.1.2 Resource allocation, management and supervision

Resource allocation has been one of the most widely studied problems in cloud comput-

ing. Allocation of resources to users involves decision making concerning when, what,

how much and where to allocate the available resources [102]. The resource management

41

CHAPTER 2. LITERATURE SURVEY

life cycle comprises resource advertisement, allocation, monitoring and freeing. During

resource allocation, several factors, like resource utilization, pricing, availability, quality of

service, etc., are considered. Once the resources are allocated through some mechanism,

it is essential to monitor the state of the allocated resources. We categorize the entities

involved in resource allocation and supervision as cloud user CU and cloud provider CP .

2.3.1.2.1 Issues in cloud resource allocation, management and supervision

The issues in cloud resource allocation, management and supervision are as follows:

(a) CP advertises a resource for rent / lease. However, in conventional cloud computing,

users cannot verify the authenticity of the advertised resources.

(b) A rational CP may allocate the same resource to one or more users leading to over-

loading of resource, thereby severely affecting the quality of service.

(c) Resources are allocated by a resource allocator which is a part of CP . The allocator

may behave maliciously during the allocation and may not run the allocation algo-

rithm correctly without any prejudice.

(d) CP is in full possession of the logs generated during the resource usage. The

provider may tamper the logs to cover up his lapses during the resource provision-

ing. The logs may also contain sensitive information which can be accessed by an

untrusted provider.

The list of Blockchain-based resource allocation and supervision schemes is given in Figure

2.4.

2.3.1.2.2 Blockchain-based resource allocation, management and supervision

In Blockchain-based resource allocation, most of the works focus on resource pricing

because pricing models increase the total utility of the cloud provider [102]. Among sev-

eral resource pricing models, auction-style pricing mechanisms [117, 118, 119] have gained

more interest as they reflect the underlying trends in demand and supply of cloud resources.

Gu et al. [103] have designed a Vickrey–Clarke–Groves (VCG)-based auction [120] mech-

anism using smart contracts where a CU posts his request by sending a transaction to the

42

CHAPTER 2. LITERATURE SURVEY

Resource allocation and supervision

Resource allocation Resource supervision

Auction
-based

Multi
-tenant

Credit
-based

Multi
-provider Others

Gu et al.
(2018) [103]

Zavodovski
et al.

(2019) [104]

Liu et al.
(2020) [105]

Chen et al.
(2020) [106]

Xie et al.
(2020) [107]

Saranyu
2018[108]

Reanton
-gcome

et al.
(2020) [109]

Pan et al.
(2018) [110]

Zhang et al.
(2019)[111]

Li et al.
(2019) [112]

sun
et al.

(2020)
[113]

Zanzi et al.
(2020)
[114]

Zhao et al.
(2018) [115]

Wang et al.
(2020) [116]

Figure 2.4: List of works in Blockchain-based Resource allocation and supervision

smart contract. CP responds with a sealed-bid which is revealed at the end of the bid-

ding round. Then the smart contract computes the winner with the highest bid, and the

winner pays price equal to the highest bid of losers. The smart contract also handles the

payments to providers. Zavodovski et al. [104] have transcoded a dominant strategy incen-

tive compatible (DISC) double auction [121] method as a smart contract. They have also

used a two-phase bidding protocol similar to [103] where bids are committed initially and

revealed later. The smart contract computes the matching of CUs with CP s according to

the auction rules. Another two-phase bidding double auction method is presented by Liu et

al. [105], where a long-term auction for mobile blockchain (LAMB) is modeled as a smart

contract to determine optimal matching for users and providers.

A Blockchain-based combinatorial auction method for VM allocation is discussed by

Chen et al. [106]. They realize auction fairness (bids once committed cannot be modified)

and trade fairness (the honest provider receives pay if and only if the honest user receives

the requested VMs). They use the ladder mechanism presented in [122] to obtain trade

43

CHAPTER 2. LITERATURE SURVEY

fairness. A continuous double auction (CDA) method is modeled as a smart contract by

Xie et al. [107]. In [107], the providers and users submit asks and bids respectively at any

time to a smart contract. The smart contract runs CDA auction, and if there is a deal, then

the result is broadcast to everyone.

Zanzi et al. [114] have introduced NSBchain to allocate network slice resources to

CU through smart contracts. NSBchain is responsible for slice allocation, enforcing pol-

icy, billing and resource management. Reantongcome et al. [109] also have considered

smart contracts for resource allocation in multi-CU scenario. They have addressed the

co-resident attack by auditing the activities of malicious users logged in the Blockchain.

Zhang et al. [111] have developed two smart contracts namely smart trading contract (STC)

for facilitating resource trading and smart loan contract (SLC) for facilitating the resource

constraint users to borrow coins from banks and use these coins to pay to providers for

consuming resources.

Saranyu [108] is an application build on Quorum [123] to provide user management

through smart contracts. Initially, users and providers have to be registered with a smart

contract. And then a mapping between users and providers will happen through a smart

contract which results in issuing delegation rights to users. The smart contract also moni-

tors the resource usage, and this information is used for billing users. The billing is settled

in the native cryptocurrency of underlying Blockchain technology. Overall, Saranyu offers

four services: identity management, authentication of users, authorization on resource ex-

ploitation and charing. Kempf et al. [124] constructed a cloud market place based on [108]

improving the transparency and auditability of cloud market place.

Pan et al. [110] have discussed a credit-based resource management model in which the

provider’s resources are mapped with internal currency coins (credit coins). When a user’s

account is created on a Blockchain, it is bootstrapped with some initial credit coins. The

amount of coins a user is holding determines the number of resources he can obtain from

the provider. The provider keeps an account of debits and credits of a user and provides the

resources correspondingly (other factors like priority, application type, past behaviour, etc.,

are also considered). The interactions like registration, requesting and allocating resources

triggers the smart contracts for secure logging and auditing. Another credit-based resource

44

CHAPTER 2. LITERATURE SURVEY

allocation model is discussed by Li et al. [112]. The users can lend coins from other users

or providers and pay them to providers for fast computing resource trading. All the lending

and payment transactions are recorded on the Blockchain for secure transaction history,

and the credit values are automatically adjusted according to their lending and payment

transactions. Recently, sun et al. [113] have presented a Blockchain-based cooperative

method where the providers work cooperatively to provide resources to users. They have

modelled break-even and break-even free double auctions as smart contracts to determine

the price and to allocate resources.

Zhao et al. [115] have designed a hybrid Blockchain, namely Mchain to log all the ac-

tivities of VM (VM measurements) on Mchain to provide better transparency, integrity,

auditability and controllability on allocated cloud resources. Mchain is a two-layered

Blockchain where the first layer outputs a semi-finished block, and the second layer takes

the output from the first layer and generates a mature block which is stored on Mchain.

They are two types of blocks in Mchain: data block (VM measurements data) and policy

block (VM’s user-defined access policy). In the first layer, a candidate block is broadcast,

and every other node in the Blockchain validates all the data in the block and signs the

block if validated. If every node signs the block, then consensus on the candidate block is

achieved, and it is sent to the second layer. In the second layer, all the valid nodes begin the

PoW mining tasks, and when a nonce is found, the semi-finished block will become mature

and is broadcast in the Blockchain network. Then every node will validate the block and

adds it to their local copy of Mchain.

In previously discussed works when the providers advertise their resources, there is no

mechanism for users to verify the provider’s claims regarding available resources. Wang

et al. [116] have designed a hybrid Blockchain network consisting of a public Ethereum

network and consortium Blockchains. A provider before joining the consortium network

must brace for public verification of their resource capabilities on Ethereum network. The

consortium Blockchain is used for real-time monitoring of computing resources. They have

also introduced a token called ResourceCoin (RCoin) reflecting the available resources at

the provider. The comparison of resource allocation and supervision methods is presented

in Table 2.5.

45

CHAPTER 2. LITERATURE SURVEY

Category Paper Platform Blockchain
Objective

Auction-
based

Resource
Allocation

Gu et al. [103] Ethereum VCG auction

Zavodovski et al. [104] Ethereum
Double auction

(DISC)

Liu et al. [105]
Ethereum
(DPOS)

Double auction
(LAMB)

Chen et al. [106] Ethereum
Combinatorial

auction

Xie et al. [107] Ethereum
Double auction

(Continous)

Multi-tenant
Resource

Allocation

Reantongcome et al. [109] Ethereum
Resource allocation
and activity logging

Saranyu [108] Quorum
Resource allocation
and activity logging

Credit-based
Resource

Allocation

Zhang et al. [111] Ethereum
Resource allocation

and coin loaning

Pan et al. [110]
Permissioned

Ethereum
Resource allocation
and activity logging

Li et al. [112] PoW Resource allocation
Multi-provider

Resource
Allocation

sun et al. [113] Ethereum
Double

(break-even and
break-even free)

Resource
Supervision

Zhao et al. [115] Mchain VM measurments

Wang et al. [116]
Hybrid

(Ethereum and
Consortium)

Resource allocation
and monitoring

Zanzi et al. [114] Hyperledger
Network slice

allocation

Table 2.5: Comparison of Blockchain-based resource allocation methods

2.3.1.2.3 Summary

In this section, we have discussed various Blockchain-based resource allocation and su-

pervision systems. We observe that the untrusted resource allocator in traditional cloud

computing can be replaced by a Blockchain to allocate and price the resources correctly

and fairly. The inclusion of Blockchain increases the trust in resource allocation and pric-

ing. We have also discussed works which log resource usage into an immutable ledger,

thereby eliminating the odds for the untrusted provider to tamper the logs.

46

CHAPTER 2. LITERATURE SURVEY

2.3.2 Blockchain-based Platform-as-a-Service

PaaS support businesses to develop and host applications giving the developers freedom

to concentrate on building software without having to worry about the operating system,

software updates, infrastructure and storage. As PaaS is a connector between IaaS and

SaaS, the literature of Blockchain-based PaaS overlaps with that of Blockchain-based IaaS

and SaaS. Therefore, in this section, instead of discussing PaaS, we rather focus on the lit-

erature of Blockchain-based PaaS applications developed and hosted using PaaS. Mainly,

we focus on two of the most widely developed PaaS applications: (1) Computation-as-a-

service (CaaS) and (2) Data aggregation-as-a-service (DaaS). In CaaS, a cloud provider

sets up an execution environment and a user outsources a computation to cloud expect-

ing output. For example, user outsources a data mining task along with input to a cloud

which executes the task and returns the mining results. Similarly, in DaaS, a cloud provider

sets up a data collection application which requests specific data from users. For exam-

ple, a cloud provider sets up a mobile crowdsensing task and publishes the task details

publicly. Interested participants read the task requirements and send the requested data.

The cloud platform processes the received data and obtains meaningful results. The list of

Blockchain-based platform-as-a-service works is presented in Figure 2.5.

2.3.2.1 Computation-as-a-service

2.3.2.1.1 Issues in CaaS

Outsourcing computation has become a common practice. A resource-constrained user

outsources a resource-intensive computation to large computational systems like a cloud.

The cloud computes and returns the result of the outsourced computation. The user pays

a pre-agreed amount of money to cloud for using its computational resources. In today’s

world, an agreement between the user and the cloud provider about the cost and other

QoS parameters is needed before outsourcing the computation. In many cases, the cost of

consuming resources has to be paid before actually using cloud service. The user to have

greater confidence in the computation performed by the cloud, he has to verify the result of

the computation for correctness.

47

CHAPTER 2. LITERATURE SURVEY

Platform-as-a-service

Verifiable Computation CrowdSensing

Proof-based Challenge-based Replication-based

Kumaresan
et al.

(2014) [125]

BPay
(2018) [126]

BCPay
(2018) [127]

ZoKrates
(2018) [128]

Dorsala et al.
(2020) [129]

Guan et al.
(2021) [130]

Dong et al.
(2017) [15]

Avizheh et al.
(2019) [131]

Dorsala et al.
(2020) [129]

TrueBit
(2017) [132]

Harz et al.
(2018) [133]

Król et al.
(2018) [134]

Nabi et al.
(2020) [135]

Eisele et al.
(2020) [136]

Wang et al. (2018) [137]

Cai et al. (2018) [138]

ZebraLancer (2018) [139]

Shi et al. (2018) [140]

Chatzopoulos et al.
(2018) [141]

Wei et al. (2018) [137]

Yang et al. (2019) [142]

Li et al. (2019) [143]

MCS-Chain (2019) [144]

Zhang et al. (2019) [145]

CrowdR-FBC (2020) [146]

Hu et al. (2020) [147]

SenseChain (2020) [148]

ZkCrowd (2020) [149]

CrowdBLPS (2020) [150]

Huang et al. (2020) [151]

Figure 2.5: List of works in Blockchain-based platform-as-a-service.

In traditional cloud computing, it is not possible for a user to pay to a cloud only af-

ter verifying the correctness of the returned result. In general, the cloud is assumed to be

trusted by the user. However, the cloud may behave rational and to save computing re-

48

CHAPTER 2. LITERATURE SURVEY

sources; it may not compute the result correctly. Then, the only option for the user is to get

back his payment by going through a cumbersome legal process which may take additional

resources and time.

Nevertheless, with the advent of Blockchain technology and smart contracts, a new

cloud computing paradigm has evolved where the cost for outsourcing a computation will

be paid to the cloud provider if and only if the cloud provider computes and sends the result

of the outsourced computation correctly. The verification of correctness of result depends

on the type of the verification technique employed.

2.3.2.1.2 Types of verifiable computation techniques

There are three techniques to verify the correctness of the result computed by the cloud:

1) Proof-based methods (PBVC), 2) Replication-based methods (RBVC), and 3) Challenge-

based methods (CBVC). In PBVC, the cloud has to submit a proof of correctness along with

the result of the computation. Some of the well known proof-based systems are summa-

rized by Walfish et al. [152]. In RBVC, the computation is outsourced to multiple clouds,

and the results from them are compared for similarity. If the comparison is a success, then

the user accepts the result; otherwise, a dispute-resolution protocol is initiated to identify

the malicious cloud who submitted the wrong result. Some of the recent works in RBVC

are Belenkiy et al. [153], Cannetti et al. [154] and Kupcu [155]. In CBVC, the computation

is outsourced to only one cloud, and any public party can challenge the result computed by

the cloud. If no party challenges the result, then the user accepts it. Otherwise, a dispute

resolution mechanism is executed.

2.3.2.1.3 Blockchain-based Verifiable Computation

Kumaresan et al. [125] have introduced the notion of Blockchain-based verifiable com-

putation. In their work, the user creates a Bitcoin output script containing a pre-agreed

pay amount. Then the computation is outsourced to a cloud. The script can be redeemed

either by providing the correct output of the outsourced computation or by providing some

pre-shared secrets. Zhang et al. have presented two works, namely BPay [126] and BCPay

[127], for outsourcing computations using Bitcoin scripts. Similar to [125], the authors

49

CHAPTER 2. LITERATURE SURVEY

constructed a robust, fair payment model where a cloud provider receives the payment for

computation if and if it produces a valid proof of correctness of the computation. A scal-

able solution using smart contracts is presented by Eberhardt et al. [128]. The user and

the cloud provider runs a one-time setup process after which the user generates a verify-

ing contract and deploys it on the Ethereum network. The cloud computes the outsourced

computation and sends the proof of correctness consisting of witness to verifying contract.

Dorsala et al. [129] constructed a fair payment model using [128] as a verification contract

and shows that the cost of running a fair verifiable method on top of Ethereum is negligible

when both user and cloud provider are honest. Guan et al. [130] have also realized fairness

in outsourcing polynomial computation using smart contracts.

Dong et al. [15] have outsourced the same computation to two clouds and created a

prisoner’s dilemma between them to avoid collusion. They have constructed three con-

tracts to extract the correct result from two rational clouds: (1) Prisoner’s contract, which

rewards honest cloud and punishes malicious cloud. (2) However, the clouds can collude

and solve the prisoner’s dilemma using colluder’s contract. (3) Traitor’s contract provides

additional bounty to the honest cloud to counter collusion. The work in [15] assumes the

user as trusted and requires a trusted third party to resolve disputes when the outputs of

the clouds do not match. The work by Avizheh et al. [131] assumes a rational user and

uses a verification game to resolve disputes between the two clouds. The clouds have to

construct a Merkle tree with the intermediate states of the computation and have to return

the Merkle root hash along with the result of the computation. Then, the smart contract

randomly generates two different indexes, one for each cloud and asks the clouds to submit

Merkle proof. The smart contract identifies the malicious cloud by constructing the Merkle

root from the Merkle proofs submitted by clouds and matches it against the Merkle root

submitted earlier. However, [131] does not discuss the collusion attack where the clouds

collude to provide the same incorrect result, thereby increasing their payoff.

In Dorsala et al. [129], the clouds have to submit an inner sate hash (ISH) [155] along

with the result of the computation. A lazy cloud cannot submit a correct ISH without

actually computing the result. Even the copy attack cannot be performed because the clouds

have to commit a hash of the random number while showing intent and this random has

50

CHAPTER 2. LITERATURE SURVEY

to be concatenated to ISH while submitting the result. In case of disputes, a verifying

contract is executed, and its cost is collected from the malicious cloud. However, running

a verifying contract is costly, and due to the verifier’s dilemma [97], the costly verifying

contracts can jeopardize the Ethereum network. The major drawback of RBVC methods is

that the user has to pay the cost of computation to every cloud provider, which is a major

burden to the user.

In TrueBit [132], the computation is outsourced to a single cloud who submits the result

to a smart contract. Then challengers are invited to challenge the correctness of the result.

If there is a challenge, then a verification game is initiated through a series of rounds, where

each round recursively checks a smaller and smaller subset of the computation. The chal-

lengers are rewarded for finding the errors and penalized for wrong alarms. To encourage

the challengers to take part in the system, the system occasionally forces the honest cloud

to submit wrong results (forced errors) and offers a big bounty to verifiers for finding the

errors. Harz et al. [133] have presented a method similar to TrueBit except that a cloud

and challengers are randomly assigned, and all will compute the computation and report

the result to a smart contract, and any disputes in the results are resolved by a dispute res-

olution protocol similar to TrueBit. In [133], the probability of finding false computation

depends on the number of challengers recruited for a computation. Król et al. [134] have

presented a method using a trusted execution environment (TEE) [95]. Challengers are not

required in their method because the honest behaviour of the cloud is enforced by executing

the outsourced computation in a TEE. The shortcomings like collusion and sybil attacks of

[133] are discussed by Nabi et al. [135]. The authors introduce a random audit of results

returned by clouds and penalize malicious clouds by sharing their pre-committed deposit as

a reward to diligent clouds. Although [135] is better method than [133], it cannot eliminate

the collusion attacks completely. More recently, Eisele et al. [136] have proposed use of

trusted mediators for dispute resolution. Comparison of verifiable computation schemes is

presented in Table 2.6.

Three practical systems, namely Golem [156], iExec [157], and SONM [158] all built

on Ethereum for outsourcing computation to large computational systems. Golem uses

RBVC and log analysis for checking correctness whereas iExec employs an Intel SGX for

51

CHAPTER 2. LITERATURE SURVEY

correct computation. SONM currently supports verification only by users, and no verifi-

cation method is adopted. One may refer to [159] for a detailed analysis of these three

systems.

S.
No Paper

PB /
RB /
CB

Platorm Verifier Dispute
resolution Penalities Fair

Payment

1 Kumaresan et al. [125] PB Bitcoin Bitcoin scripts Not required yes yes
2 Dong et al. [15] RB Ethereum Third-party TTP yes yes

3 Teutsch et al. [132] CB Ethereum Verifiers
Verification

game yes yes

4 Harz et al. [133] CB Ethereum Verifiers TTP no yes
5 Eberhardt et al. [128] PB Ethereum Smart contract Not required no yes

6 Krol et al. [134] CB Ethereum
Trusted

Execution
Environments

Not discussed yes yes

7 Zhang et al. [126] CB Bitcoin Bitcoin scripts
Verification

game yes yes

8 Zhang et al. [127] CB Bitcoin Bitcoin scripts
Verification

game yes yes

9 Avizheh et al. [131] RB Ethereum Smart contract
Verification
game using
merkle tree

yes yes

10 Nabi et al. [135] RB Ethereum Verifiers TTP yes yes

11 Dorsala et al. [129]
PB
RB Ethereum Smart contracts

Verification
contracts yes yes

12 Eisele et al. [136] CB Ethereum Third-party TTP yes yes
13 Guan et al. [130] PB Ethereum Smart contracts Not required no yes

Table 2.6: Comparison of Blockchain-based verifiable computing methods

2.3.2.1.4 Summary

In this section, we have presented works discussing Blockchain-based computation-as-

a-service. In traditional cloud computing, the user has to trust the cloud for correct compu-

tation of outsourced computation. However, with the Blockchain-based CaaS, the user is

no longer required to trust the cloud or depend on trusted third parties for the correctness

of computation. The other benefit for the user is that he can pay if and only if the cloud

computes correctly. Likewise, the cloud also gets its payment as long as it performs the

computation correctly.

52

CHAPTER 2. LITERATURE SURVEY

2.3.2.2 Data aggregation-as-a-service

In this section, we review Blockchain-based crowdsensing methods as crowdsensing is the

most widely explored data aggregation service.

2.3.2.2.1 Issues in crowdsensing

The rapid increase in the number of mobile devices and wearable devices, equipped

with multiple sensors (e.g., gyroscope, accelerometer, microphone etc.) led to the emer-

gence of new sensing paradigm known as Mobile Crowdsensing (MCS). In MCS, a cloud

provider CP posts a sensing task and a data provider DP responds to the task by sending

the data. Although crowdsensing shows prominence in many applications such as trans-

portation [160, 161], healthcare [162], and environment monitoring [163, 164], it suffers

from the following problems:

(a) Privacy: Sensing data reveals users personal information, and hence privacy is the

utmost priority in MCS.

(b) Rewards: The rewards to a DP depends on factors like sensitivity of data, sensing

time, data quality, etc., The CP cannot be trusted to compute rewards correctly.

(c) Fairness: The CP may not pay to DP after receiving the data or a DP may not

provide data after receiving pay.

2.3.2.2.2 Blockchain-based crowdsensing solutions

Li et al. [143] have presented a Blockchain-based framework known as CrowdBC in

which a set of smart contracts are employed to perform sensing task posting, data receiving,

reputation management and reward assignment operations without a centralized entity. In

CrowdBC,CP evaluates the quality of the data submitted byDP s, and the evaluated results

are given to smart contract based on which the rewards and reputation values are calculated.

To achieve fairness and preserve privacy, Wang et al. [137] have presented a k-anonymity

privacy protection method where DP s form as a group of k members and submit their data

as group data for quality-evaluation. Miners evaluate the data and pay the group according

53

CHAPTER 2. LITERATURE SURVEY

to the quality of the data. However, the members in a group trust each other and the group

leader is expected to distribute the rewards correctly to group members.

Another work aiming to monetize sensing data fairly without compromising privacy is

discussed by Cai et al. [138]. They employ two servers as mediators between CP and

DP s. The two servers execute a protocol based on secret sharing and garbled circuits to

establish ground truth on encrypted data. Then, each server encrypts the learned ground

truth and commits it along with a masked encryption key (key = XOR(k,mask), k is

actual encryption key) on a smart contract. CP interested in buying the providers data

sends two keys encrypted with the corresponding server’s public key along with payment

to the smart contract. If the cloud server accepts the CP ’s offer, it will encrypt the mask

with the key sent by the CP (sn = SENC(mask, s), s is the key sent by the CP). In

order to avail the pay sent by the CP , the cloud server must reveal the masked key key

and sn. Then, smart contract verifies the commitments and sends rewards to the server,

which will be shared to providers according to the quality of their data with respect to the

estimated ground truth. The method is fair in between servers and CP , but the DP still

needs to trust the servers for correct computation of ground truth.

In ZebraLancer [139], the DP s encrypt their data with CP ’s public key and send it to

the smart contract. CP decrypts the data off-chain and computes the rewards toDP s based

on the quality of the data provided. Then, the CP computes a proof of correctness using

zk-SNARK about the computation of rewards and sends this proof to the smart contract.

The smart contract consists of zk-SNARK verification algorithm and returns true if and

only if the CP computed the rewards correctly. If the CP fails to produce correct proof,

the reward deposited by him is distributed to providers. ZebraLancer provides both privacy

and fairness, but zk-SNARK requires a setup phase where either a trusted entity or all the

participating entities jointly should establish a common reference string. Also, the verifica-

tion time increases with an increase in the number of DP s limiting the applicability of the

system. Shi et al. [140] have developed a decentralized application (Dapp) known as MPC-

SToken, where a fault-tolerant incentivization mechanism is modeled as a functionality of

a smart contract to facilitate payments between CP and DP . Chatzopoulos et al. [141]

have employed a trusted party (Internet service providers) to protect the location privacy of

54

CHAPTER 2. LITERATURE SURVEY

the DP s by masking their real-identities with pseudonyms. However, employing a trusted,

centralized party opposes the cause of using Blockchain.

To protect location privacy, a hybrid Blockchain model is discussed by Yang et al.

[142]. The authors have proposed to use a public Blockchain to publish task and assume

a trusted agent who retrieves the tasks from the public chain and publishes them to a pri-

vate Blockchain. DP s are allowed to transact with multiple private chains to thwart re-

identifications attack caused due to DP s transaction history. The trusted agent submits

the sensory data to the public Blockchain on behalf of the DP s, and the payments are

transferred according to the employed quality estimation method. MCS-Chain [144] is

similar to [143], except that a new light-weight consensus mechanism suitable for mobile

crowdsourcing is designed. Unlike in PoW, the generation of new blocks in the presented

consensus mechanism is determined by the total amount of payment records waiting to be

stored in the next block. The mechanism is guaranteed to eliminate forks by enforcing rules

based on time, reputation and awards. Miners compute the reputation values by running a

trust evaluation algorithm based on feedback received from all the participating entities.

Zhang et al. [145] have put forwarded a Blockchain-based MCS model without the

use of smart contracts. Initially, CP commits an incentive policy on a Blockchain and an-

nounces the task. Then theDP s encrypt their sensing data with a homomorphic encryption

key generated by the CP and send the commitment of the ciphertext to the Blockchain.

Later, the providers and CP reveal the committed data and the incentive policy, respec-

tively, by sending a transaction to Blockchain. Then, the CP decrypts the data, evalu-

ates it and computes the rewards accordingly, which will be transferred to DP s through

Blockchain. However, the model lacks fairness since the CP receives the data before actu-

ally paying DP s.

CrowdR-FBC [146] proposed to use fog nodes as an intermediary between CP s and

DP s. The fog nodes are responsible for maintaining the Blockchain network. A CP an-

nounces the task on an MCS platform which then encrypts the task and sends it to the

fog nodes. The fog nodes select the providers based on the reputation maintained in the

Blockchain and send the encrypted task to provider who then decrypts, computes the task

and sends the encrypted result back to fog nodes. Then the fog nodes forward the en-

55

CHAPTER 2. LITERATURE SURVEY

crypted results to MCS platform along with pseudo-ID of the DP s. Then the MCS plat-

form decrypts the result, computes the new reputation values and sends them to fog nodes.

The fog node maps the reputation values to real-world identities and updates them on the

Blockchain network. This approach solves the privacy problem as the MCS platform does

not know the real identities of DP s, and the fog nodes do not know the task or the data.

However, the work does not discuss the collusion between crowdsourcing platform and the

fog nodes which will seriously affect the privacy of the providers, and also did not discuss

the incentive policy for different participating entities. Wei et al. [165] have presented the

use of consortium Blockchain and constructed an incentive method based on reputation,

quality of data and provider’s valuation. Similar to [145], the method also lacks fairness.

Hu et al. [147] have transcoded a three-stage Stackelberg [166] game as a smart con-

tract which pays theDP s according to their category (instant and monthly). A fair payment

model similar to [143] is constructed using smart contracts in SenseChain [148] except that

the platform is constructed for multiple CP s and multiple DP s and reputation is main-

tained for both CP s and DP s. A hybrid Blockchain platform for MCS is presented by

Zhu et al. [149]. A public chain running DPOS consensus and many private subchains

running PBFT consensus are used to publish and record the information of public and pri-

vate crowdsourcing tasks, respectively. After the private task is completed, the leader of

the subchain generates a zk-SNARK proof about the all the subchain blocks of a task and

sends it to the public chain where a zk-SNARK functionality verifies the proof and records

it into Blockchain ledger. CrowdBLPS [150] use Blockchain to preserve location-privacy

of theDP s, and their main emphasis is on modeling an optimizedDP s selection as a smart

contract. Huang et al. [151] have introduced Blockchain-based MCS into smart factories

where DP s record the noise of the machines through their mobile and submit the data on

the Blockchain expecting a reward. They have designed a new reward mechanism, namely

dynamic reward ranking as a smart contract. Comparison of Blockchain-based MCS meth-

ods is given in Table 2.7.

56

CHAPTER 2. LITERATURE SURVEY

S. No
.

Pa
pe

r
Bl

oc
kc

ha
in

pla
tfo

rm
Re

gis
tra

tio
n

Pr
ov

ide
r

sel
ec

tio
n

cr
ite

ria

Qu
ali

ty
ev

alu
ati

on
Re

wa
rd

dis
tri

bu
tio

n

Re
pu

tat
ion

Fe
ed

ba
ck

W
or

ke
rP

riv
ac

y
Da

ta
Pr

iva
cy

Fa
ir

Pa
ym

en
ts

R
W

1
Cr

ow
dB

C
[1

43
]

Et
he

reu
m

Ye
s

Re
pu

tat
ion

SC
(M

ine
rs)

Eq
ua

l
Ye

s
Ye

s
Ps

ud
oa

no
ny

mi
ty

En
cry

pti
on

No
2

W
an

ge
ta

l.
[1

37
]

Bi
tco

in
No

Op
en

M
ine

rs
Qu

ali
ty-

aw
are

No
No

k-
an

on
ym

ity
No

3
Ca

ie
ta

l.
[1

38
]

Et
he

reu
m

No
Op

en
SC

(M
ine

rs)
Qu

ali
ty-

aw
are

No
No

Ps
ud

oa
no

ny
mi

ty
En

cry
pti

on
Ye

s
4

Ze
br

aL
an

ce
r[

13
9]

Et
he

reu
m

Ye
s

Op
en

Re
qu

es
tor

Qu
ali

ty-
aw

are
No

No
ZK

SN
AR

Ks
Ye

s

5
M

PC
ST

ok
en

[1
40

]
Et

he
reu

m
No

Au
cti

on
No

Fa
ult

To
ler

an
ce

In
ce

nti
vis

ati
on

M
ec

ha
nis

m
(F

TI
M

)
No

No
No

No
No

6
Ch

atz
op

ou
los

et
al.

[1
41

]
Et

he
reu

m
Ye

s
Au

cti
on

Th
ird

-p
art

y
Eq

ua
l

No
Ye

s
Ps

eu
do

an
on

ym
ity

wi
th

TT
P

No
Ye

s

7
Ya

ng
et

al.
[1

42
]

-
No

(p
ub

lic
BC

)
Ye

s(
pr

iva
te

BC
)

Op
en

SC
(M

ine
rs)

Eq
ua

l
No

No
Pr

iva
te

Bl
oc

kc
ha

in
ru

nb
yt

hir
d-

pa
rty

No
No

8
M

CS
-C

ha
in

[1
44

]
M

CS
-C

ha
in

Ye
s

Ba
rg

ain
an

d
Re

pu
tat

ion
Re

qu
es

tor
Eq

ua
l

Ye
s

Ye
s

Ps
eu

do
an

on
ym

ity
En

cry
pti

on
No

9
Zh

an
ge

ta
l.

[1
45

]
Tr

an
sa

cti
on

-b
as

ed
No

Op
en

Re
qu

es
tor

Eq
ua

l
No

No
Ps

eu
do

an
on

ym
ity

Ho
mo

mo
rp

hic
en

cry
pti

on
No

10
Cr

ow
dR

-F
BC

[1
46

]
Cr

ow
dR

-F
BC

Ye
s

Re
pu

tat
ion

Th
ird

-p
art

y
No

No
Ye

s
Ps

eu
do

an
on

ym
ity

En
cry

pti
on

No

11
W

ei
et

al.
[1

65
]

Co
ns

or
tiu

m
Ye

s
Au

cti
on

Re
qu

es
tor

Qu
ali

ty-
aw

are
,

Bi
d-

ba
se

da
nd

Re
pu

tat
ion

-b
as

ed
No

Ye
s

Co
ns

or
tiu

m
Bl

oc
kc

ha
in

ru
nb

y
tru

ste
da

ge
nts

En
cry

pti
on

No

12
Hu

et
al.

[1
47

]
Et

he
reu

m
Ye

s
Re

pu
tat

ion
SC

(M
ine

rs)
Qu

ali
ty-

aw
are

an
d

Re
pu

tat
ion

-b
as

ed
No

Ye
s

Ps
eu

do
an

on
ym

ity
No

Ye
s

13
Se

ns
eC

ha
in

[1
48

]
Et

he
reu

m
Ye

s
Re

se
rv

ati
on

SC
(M

ine
rs)

Qu
ali

ty-
aw

are
Ye

s
Ye

s
Ps

eu
do

an
on

ym
ity

No
Ye

s

14
zk

Cr
ow

d[
14

9]
Hy

br
id

(D
PO

S,
PB

FT
)

Ye
s

Ca
pa

cit
y

No
Eq

ua
l

No
No

ZK
-S

NA
RK

(p
riv

ate
tas

ks
)

No

15
Cr

ow
dB

LP
S

[1
50

]
Et

he
reu

m
Ye

s
Lo

ca
tio

n
Re

qu
es

tor
Qu

ali
ty-

aw
are

No
No

Ps
eu

do
an

on
ym

ity
En

cry
pti

on
No

16
Hu

an
ge

ta
l.

[1
51

]
Et

he
reu

m
No

Op
en

SC
(M

ine
rs)

Dy
na

mi
cr

ew
ard

ran
kin

g
No

No
Ps

eu
do

an
on

ym
ity

No
Ye

s

Ta
bl

e
2.

7:
C

om
pa

ri
so

n
of

B
lo

ck
ch

ai
n-

ba
se

d
cr

ow
ds

en
si

ng
sy

st
em

s

57

CHAPTER 2. LITERATURE SURVEY

2.3.2.2.3 Summary

In this section, we have discussed several Blockchain-based data aggregation-as-a-service

works which focus on preserving the privacy of the DP , computing correct rewards for

DP s and realizing financial fairness. Some of the works use the pseudo-anonymity feature

of the Blockchain networks to preserve the privacy of theDP . However, pseudo-anonymity

is not sufficient to preserve the privacy of the DP [167]. In some works, the reward distri-

bution depends on the quality of the data unearthed by executing a truth discovery algorithm

(TDA). However, the TDA algorithm is either executed by a cloud or modeled as a smart

contract. To have greater confidence in executions by cloud, it has to be verified by using

methods discussed in section 2.3.2.1.3. Also, modeling complex TDA algorithms as smart

contracts may lead to verifiers dilemma [97].

2.3.3 Blockchain-based Software-as-a-Service

Software-as-a-service allows users to access the software through the Internet on a sub-

scription basis. However, most of the SaaS applications are migrating from a monolithic

architecture to microservice architectures. Therefore, in this survey, we have considered

two emerging SaaS models: (1) Microservices and (2) Virtual network functions. The list

of Blockchain-based software-as-a-service works is presented in Figure 2.6.

2.3.3.1 Microservice-as-a-service

2.3.3.1.1 Challenges in Microservice-as-a-service

Containerization technology decomposes the traditional monolithic applications into a

suite of small services known as microservices each running in its own process and com-

municating through lightweight mechanisms. However, existing microservices architecture

suffers from the following problems:

1. Microservices are advertised on a centralized platform which may be untrusted, and

hence a trusted registry and service discovery is required for the advertisement and

discovery of microservices.

2. Microservices lacks trusted communication platform for exchanging messages. They

58

CHAPTER 2. LITERATURE SURVEY

Software-as-a-service

Microservice-as-a-Service VNF-as-a-Service

Tonelli et al. (2019) [168]

Nagothu et al. (2018) [169]

Xu et al. (2019) [170]

Xu et al. (2019) [171]

Xu et al. (2020) [172]

Bozic et al. (2017) [173]

Alvarenga et al. (2018) [174]

Rebello et al. (2019) [175]

Rebello et al. (2019) [176]

Scheid et al. (2019) [177]

Fu et al. (2020) [178]

Mishra et al. (2020) [179]

Figure 2.6: List of works in Blockchain-based software-as-a-service.

either depend on secret channels or public-key cryptography for secure and authen-

ticated message exchanges.

2.3.3.1.2 Blockchain-based Microservices

Tonelli et al. [168] have mapped the existing microservices architecture to smart con-

tracts architecture. They have also demonstrated a case study by modeling the exist-

ing microservices-based system as a set of smart contracts and tested them on Ethereum

Blockchain. Nagothu et al. [169] have adopted Blockchain for a smart surveillance system

constructed as a set of microservices. They have employed Blockchain for securing mes-

sages exchanged between microservices and also to provide integrity to the microservice

database by periodically storing the hash of the database in the Blockchain. Xu et al. [170]

have constructed BlendMAS; a Blockchain-based decentralized microservices architecture

for smart public safety. They have divided the permissioned Blockchain into two sets of

microservices: mining services and security policy services. Mining services are responsi-

ble for running the consensus algorithms, and security services are responsible for identity

management, access controls etc. These decentralized security microservices work as a

59

CHAPTER 2. LITERATURE SURVEY

service cluster to offer a scalable, flexible and lightweight data sharing and access control

mechanism. Similar approach is followed in [171] for constructing decentralized market-

place and in [172] for constructing decentralized multi-domain avionics systems.

2.3.3.1.3 Summary

Monolithic cloud applications are migrating towards microservices and incorporating

Blockchain into existing microservice architecture which enables trust and transparency.

Specifically, a public immutable microservice registry can be constructed using Blockchain.

Also, Blockchain, with its peer-to-peer messaging architecture, can act as a trusted overlay

for exchanging microservices messages.

2.3.3.2 Virtual network function-as-a-service

Cloud computing infrastructures contain a number of servers with storage and compute ca-

pabilities. With the advancement of technology and increase in demand of cloud servers,

the existing cloud infrastructure is being enhanced to support European Telecommunica-

tions Standards Institute (ETSI) Network Function Virtualization (NFV) architecture [180].

The core objective of NFV is to decouple the physical network infrastructure from the ser-

vice functions that run on them. NFV mainly consists of three components: NFV Infras-

tructure (NFVI), Virtual Network Functions (VNF) and Management and Network Orches-

tration (MANO). In NFV, a cloud service is decomposed into a set of VNFs, which could

be then deployed as a software running on one or more physical servers [181]. VNFs can

be easily managed as they can be relocated and instantiated at different network locations

on-demand.

2.3.3.2.1 Issues in virtual network function-as-a-service

In NFV, the VNF orchestrator (VNFO) receives the request from the user for setting up

a new VNF or scaling the already running VNF. Then, the VNFO relays the request to a

virtual machine manager (VMM). However, the communications between the VNFO and

VMM occurs through the unauthenticated channel leading to a variety of attacks [182].

Another issue in VNF is that multiple cloud providers may cooperatively deploy NFVs

60

CHAPTER 2. LITERATURE SURVEY

leading to data leakage problems.

2.3.3.2.2 Blockchain-based virtual network function-as-a-service

The communication between VNFO and VMM is generally secured by public-key cryp-

tography systems that depend on trusted third parties. The communication involves orches-

tration requests regarding how to create, modify, destroy or migrate the VMs. A compro-

mised communication channel may cause malicious creation, modification, destruction, or

migration of VMs. Hence, a secure, reliable and tamper-resistant interface is required to

relay requests from orchestrator to VMM.

Bozic et al. [173] have built a Blockchain-based Virtual Machine Orchestration Au-

thentication (VMOA) system to relay messages from orchestrator to VMM securely. In

VMOA, the orchestrator before sending a request to VMM, sends the request as a transac-

tion to a Blockchain network which is then stored in a secure and immutable ledger. When

VMM receives the request, it uses the information stored in the ledger for authenticating

the orchestrator and allocates the VMs only on successful authentication. The authors pro-

pose to build VMOA using Hyperledger Fabric. Alvarenga et al. [174] have proposed

secure configuration management of VNFs by logging the signed VNF configuration and

management information on the Blockchain. They employed a BFT consensus algorithm

[183] and designed two types of transactions: a configuration transaction to install config-

urations on VNFs and a configuration request transaction to request the configuration state

of a particular VNF. These transactions are appended to the Blockchain aiding traceability

and accountability of VNF configuration updates. Besides, they have also presented a se-

cure VNF migration through transactions on the Blockchain.

Another problem in NFV is to identify a malicious or faulty VNF configuration be-

cause the presence of a single malicious VNF configuration can affect the entire service

function chain. Further, if the orchestrator is compromised, it may overwrite the log to hide

its malicious activity / threats. In order to mitigate the activities of malicious VNFO, Re-

bello et al. [175, 176] have presented to connect every VNF in a network with Blockchain

to log all operations during execution of a service chain. The recording of operations in

Blockchain provides tamper-proof auditing of orchestration operations which helps in iden-

61

CHAPTER 2. LITERATURE SURVEY

tifying threats caused due to malicious VNF. In [175], the authors built BSec-NFVO for

providing non-repudiation, auditability and integrity of orchestration operations in multi-

tenant NFV environment. In [176], the authors have demonstrated the applicability of their

proposal by adopting network slices as a use case where all the VNFs in a particular net-

work slice are connected to a particular Blockchain. They have exploited the Hyperledger

Fabric channels to create different network slices running their own Blockchains in isola-

tion.

Fu et al. [178] have put forwarded an idea of adopting Blockchain for synchroniz-

ing messages between distributed NFV-MANO (Management and Network Orchestration)

systems. In their work, the NFV-enabled edge servers perform Blockchain computations

along with assigned tasks. Each NFV-MANO system collects their local messages, divides

them into transactions and broadcasts them. A Blockchain node tracks all the transac-

tions from the last synchronized state of the MANO systems, and a consensus process will

start after receiving the synchronization request from MANO systems. They have used

BFT protocol [183] for consensus in which one of the NFV-enabled nodes is designated

as Blockchain primary node and others as replica nodes. The primary node broadcasts

the pre-prepared messages consisting of transactions collected from the last synchronized

state of the MANO systems. Next, the replica nodes send a prepare message to all the

Blockchain nodes. Then, all the nodes send a commit message to all other nodes. Finally,

the blockchain nodes reply to all NFV-MANO systems with the new validated messages.

Thus, all the NFV-MANO systems are message synchronized.

Another critical factor in NFV is the trust in VNF orchestrator as it oversees the end-

to-end VNF lifecycle management. Mishra et al. [179] have developed a series of smart

contracts to increase transparency in the operations of VNF orchestrator for end-to-end

VNF lifecycle management. The smart contracts act as a market place for third-party VNF

developers to advertise their VNF packages and acts as a trusted platform for edge clouds

to buy the advertised packages. The VNF orchestrator will validate the package sent by

developers and requests sent by edge clouds. Upon successful validation, the orchestrator

selects the best suitable VNF from the available VNF pool and migrates that VNF from

cloud to the requested edge cloud. The system also contains a reputation / feedback contract

62

CHAPTER 2. LITERATURE SURVEY

to eliminate malicious VNF packages.

Although the above-discussed works solve some of the problems in NFV through Blockchain,

the limitation from the perspective of end-users is how to ensure that the VNF package ac-

quired by the end-user is not malicious and not tampered. Currently, the end-users rely on

a trusted centralized database to trust that the VNF packages are not malicious and not tam-

pered. However, the centralized database may be compromised or becomes a single point

of failure. Scheid et al. [177] have presented a VNF package repository called BUNKER

by replacing the centralized database with a smart contract. In BUNKER, a package creator

registers its new VNF packages with a smart contract by sending the hash value of a VNF

package. Users interested in a VNF package must obtain a license from the smart contract

by transferring the necessary payment. After obtaining the license, the users can retrieve

the VNF source code from the external VNF storage and can verify the integrity of the ob-

tained package by querying the smart contract. BUNKER also has a smart contract-based

reputation / feedback mechanism to avoid users submitting malicious VNF packages.

2.3.3.2.3 Summary

NFV offers end-to-end services by chaining VNFs between competing cloud infrastruc-

tures in a trustless environment. In this section, we have discussed the limitations of exist-

ing VNF architecture and their solutions with Blockchain technology.

2.4 Observations and Problems Identified

In this survey, we observe that many works attempt to improve the existing cloud architec-

ture with the help of novel features exhibited by Blockchain technology. We notice that the

centralization of cloud cannot be entirely abolished, preferably the degree of centralization

can be decreased through the adoption of Blockchain. The decrease in the centralization

gives cloud users more control and increase the trust and transparency in cloud comput-

ing. In this section, we list some of the open issues and future directions of the emerging

Blockchain-enabled cloud computing field.

1. We observe that most of the Blockchain-enabled IaaS research is focused on storage-

63

CHAPTER 2. LITERATURE SURVEY

as-a-service. However, there is a lack of focus on other IaaS services such as network

firewalls, security, and load balancing.

2. In general, the resources are acquired by users in pay-per-use / pay-as-you-go model.

These models benefit the IaaS provider as the user pays in advance before using

the services. However, with the advent of Blockchain, fair payments models are

being constructed where the users can pay only for the resources they obtained. Fair

payments models using Blockchain in IaaS are largely unexplored, and we expect in

future a great potential of useful work on constructing fair payment models.

3. In recent years, different cloud providers are mutually providing resources giving rise

to a federated paradigm. Blockchain with its properties can benefit federated cloud

computing to inculcate trust among untrusted cloud providers.

4. We have observed that the existing Blockchain-based resource allocation schemes

mostly follow commit and reveal methods during auctions. However, there is a gap

in designing online resource allocation schemes using Blockchain.

5. Although, many works are proposed in Blockchain-based verifiable computations

they either suffer from practicality or huge cost and hence efficient schemes have to

be designed.

6. We have observed that the one of the least explored but most important aspect of

cloud computing is rating, charging and billing of cloud services. Blockchain, with

its novel properties, can ensure transparency and trust in the billing of cloud services.

2.5 Summary

In this Chapter, we have surveyed existing Blockchain-based cloud computing models.

Our comprehensive survey maps the existing Blockchain-based cloud services to the most

primitive cloud service models IaaS, PaaS and SaaS. To be specific, we have explored

Blockchain-based storage-as-a-service, resource allocation, computation-as-a-service, data

aggregation-as-a-service, microservice-as-a-service and VNF-as-a-service. We have also

64

CHAPTER 2. LITERATURE SURVEY

listed open issues and future directions which will motivate the interested researchers and

practitioners to put focused research efforts into this promising area.

65

Chapter 3

Fair Payment Protocols for Outsourcing

Computation under

Platform-as-a-Service

With the advent of cloud computing, outsourcing a computation has become a common

practice. A cloud user to have greater confidence in computations performed by the cloud

/ cloud provider should verify the correctness of the results returned. Two approaches are

followed to verify the correctness of results: (1) Proof-based verifiable computing and (2)

Replication-based verifiable computing. The first approach uses cryptography techniques,

whereas the second approach follows game-theoretic methods. Although both approaches

are almost perfect solutions to verify the results, they do not discuss fairness in verifiable

computing.

In this Chapter, we consider fairness in verifiable computing, which means that the

provider receives the user’s payment for an outsourced computation if and only if the user

receives the correct output of the computation. The contributions of this Chapter are as

follows:

(a) We have designed a new fair incentivized model for proof-based verifiable computa-

tion. We show that the cost of running a smart contract is negligible when both user

and provider are honest.

66

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

(b) We have designed a new fair incentivized model for replication-based verifiable com-

putation for a two-provider case and a multi-provider case. We obtain honest com-

putation from the provider by imposing monetized penalties.

(c) We show that smart contracts are an efficient way to send the reward to honest

providers and penalize malicious providers. Using smart contracts, we are emulating

trusted entities like banks for payments between user and provider.

(d) We have listed the financial and transactional cost of the designed smart contracts by

implementing them in Solidity [24] using Truffle framework [25].

3.1 Verifiable Computation

A resource constraint cloud user (CU) outsources a computation to a cloud provider (CP),

who gets paid in return to deliver the correct output of the computation. The output returned

by the provider is verified by the user or by a third-party. The work performed to verify the

output must be lesser than the work required to compute the output. The user accepts the

output of the computation if and only if its correctness is verified.

Definition 3.1.1. A proof-based verifiable computation consists of a set of three algorithms

[184]:

(a) Keygen(F, 1λ) → (ekF , vkF): A randomized key generation algorithm takes the

function F to be outsourced, and a security parameter λ; It outputs a public evalua-

tion key ekF and a public verification key vkF .

(b) Compute(ekF , x) → (y, πy): This is a deterministic algorithm that takes ekF and

x as input. x is input of the function F . It outputs F (x) → y and a proof πy of y’s

correctness.

(c) V erifyvkF (x, (y, πy)) → {0, 1}: Given the verification key vkF , x, y and πy, the

deterministic verification algorithm outputs 1 if F (x) = y and 0 otherwise.

Definition 3.1.2. A replication-based verifiable computation consists of a set of three al-

gorithms:

67

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

(a) Outsource(F): CU outsources F on input x. Let CP1, CP2, ..., CPn be the set of

cloud providers who have shown intent to compute F (x).

(b) Compute(F, x) → yi: Every CPi ∈ {CP1, CP2, ..., CPn} computes F (x) and out-

puts yi = F (x).

(c) V erify(y1, ..., yn) → {0, 1}: Given all the providers’ outputs, the deterministic

algorithm outputs 1 if outputs of all the providers are equal and 0 otherwise.

Definition 3.1.3. A fair verifiable computation between two parties CU and CP must

provide the following guarantee:

(a) Fast verification: The work performed to verify the correctness of output of F is less

than the work performed to compute F .

(b) Fair payments: CP obtains pay from CU if and only if CU receives the correct

output of the computation from CP .

3.2 Proof-based Incentivized Outsourced Computation (IOC)

using Smart Contracts (PBIOC)

In this section, we discuss fair incentivization of proof-based verifiable computation. As

discussed earlier, a public verifiable computation scheme consists of two parties, a cloud

user CU and a cloud provider CP . CU runs Keygen algorithm (see Definition 3.1.1), and

CP runs Compute algorithm. The V erify algorithm is executed by a CU or by a trusted

third party TP . There are three possible approaches to incentivize verifiable computation.

Case 1: A contract is signed between CU and CP , such that CU runs V erify algorithm

and pays CP for using its services, if and only if V erify algorithm returns 1. An honest

CP receives pay only if CU is honest. In this case, CP has to put trust in CU for honest

payment.

Case 2: CU subscribes to CP ’s service by transferring some pay to it and asking it to

run Compute algorithm. Here a legal contract may be made between these two parties

68

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

containing all necessary clauses. CP may or may not adhere to the legal contract. If CP

does not adhere to a legal contract and sends an incorrect output to CU , CU ’s only way to

get back his pay is going through the cumbersome legal process. In this case, CU has to

put trust in CP for honest computation.

Case 3: Let CU and CP , recruit a third party TP similar to Model 2 in 1.1.2.2. CU sends

pay to TP and asks the CP to run Compute algorithm. CP sends the output to TP . Now,

TP runs V erify algorithm; if it returns 1, TP sends pay to CP ; otherwise, it will refund

CU ’s payment. Here CU trusts TP for honest verification and CP trust TP for honest

payment. A special scenario where the dis-honest CP can also be penalized by asking CP

to deposit some pay with TP , before claiming the pay for computation.

In case 3, both CU and CP put their trust in third party. However, use of TP services

comes with a cost, and TP may not guarantee to behave honestly every time. As the public

Blockchains are trusted for correctness and availability, they can emulate the trusted third

party functionality. The Blockchains also offer programmability to create and run small

programs known as smart contracts. Now, we show our proof-based verifiable computation

using smart contracts.

3.2.1 PBIOC contract clauses

PBIOC is an outsourcing contract between CU and CP . The high-level idea is if CU

and CP behave honestly, then CU will get the output F (x), and CP will get the pay for

computing F (x). Otherwise, a verifying contract PBIOCV is invoked, and payment is

made according to the PBIOCV contract’s result.

The clauses in the PBIOC contract are as follows:

(i) CU prepares two contracts PBIOC and PBIOCV where the V erify algo-

rithm from Definition 3.1.1 is modeled as PBIOCV contract and is executed

only in case of disputes.

(ii) CU chooses a function F (·), and an input x. CP agrees to compute F (x).

69

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

(iii) CU agrees to pay $r to CP for the correct computation of F (x). CU deposits a

reward $r and a safety deposit of $c with the PBIOC contract. CU also sends

(ekF , vkF , x) to CP in off-chain mode.

(iv) CU and CP agree on timing parameters τ < τi < τc < τa < τend, where τ is

the current time.

(v) CP must send a deposit $d to PBIOC before τi. IfCP fails to deposit $d before

τi, then the contract is terminated, and CU ’s deposit ($r + $c) is refunded.

(vi) CP computes F (x) and sends commitment of the output to the smart contract

before τc. CP sends (y, πy) to CU in off-chain mode. If CP fails to deliver the

commitment of the output before τc, then the deposit $d made by him and the

deposit ($r + $c) is sent to CU , and the contract is terminated.

(vii) If CU agrees to CP ’s output before τa, then ($d + $r) is sent to CP , and $c is

sent to CU , and the contract is terminated.

(viii) If τ > τa and the contract is not terminated, then the PBIOCV contract is

invoked.

(ix) If PBIOCV returns CP as honest before τ < τend, then ($r + $c + $d) is sent

to CP . If PBIOCV returns CP as lazy before τ < τend, then ($r + $c+ $d) is

sent to CU , and the contract is terminated.

(x) If τ > τend and the contract is not terminated, then ($r+ $c+ $d) is sent to CP ,

and contract is terminated.

3.2.2 PBIOC Protocol

PBIOC protocol is presented in Figure 3.1. PBIOC smart contract functionalities exe-

cuted by Blockchain are presented as Algorithms 3.1 to 3.6. CU chooses a function F , an

input x and generates an evaluation key ekF and a verification key vkF . CU also chooses

timing parameters τi, τc, τa, τend. These timing parameters are required to enforce timely

computation and avoid locking the funds if one party refuses to move forward in the pro-

tocol. The contract can always query the underlying blockchain for the current time1. CU

sends the chosen parameters to CP . He also sends the parameters along with $r and $c to

1Most smart contracts use block number / block timestamp as a timer

70

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

BC invoking Algorithm 3.1. $r is the reward to be given to CP and $c is the deposit to

avoid CU ’s malicious behavior. Algorithm 3.1 stores all the parameters and changes the

state to Created. If CP is willing to compute the outsourced task, he will send a deposit $d

to BC invoking Algorithm 3.2. Algorithm 3.2 stores the deposit and changes the contract

state to Intent. CP sends the commitment of F (x) result to BC invoking Algorithm 3.3.

Algorithm 3.3 stores the parameters sent by CP and changes the state to Committed CP

also sends the result to CU . Depending on the behavior of CU there are three cases as

follows:

Case 1: CU verifies the result locally, and if the result is correct, he sends a transaction

invoking Algorithm 3.4. In this case, Algorithm 3.4 sends $r to CP along with his deposit

and also sends CU ’s deposit to CU and the contract is terminated.

Case 2: CU verifies the result locally and if the result is correct and he does not send any

transaction to BC. In this case, CP reveals the output parameters by invoking Algorithm

3.5, which internally invokes another contract PBIOCV . The PBIOCV verifies the

output and sends the result to Algorithm 3.6. If CP has performed honest computation he

receives ($r + $d+ $c); otherwise, CU will receive ($r + $d+ $c).

Case 3: If neither CU invokes Algorithm 3.4 nor CP invokes Algorithm 3.5 before respec-

tive timeouts, then CU receives ($r + $d + $c). If PBIOCV fails to send result before

timeout then CP receives ($r + $d+ $c).

PBIOC protocol

For cloud user CU
1. To create a outsourcing task

(a) Run Keygen(F, 1λ)→ (ekF , vkF).
(b) Compute E ← H(ekF), V ← H(vkF), X ← H(x).
(c) Send transCUcreate =(E, V , X , τi, τc, τa, τend, $r, $c) to BC.
(d) Send (ekF , vkF , x) to CP .

2. On receiving (”verify”,y, πy) from CP .
(a) Run V erifyvkF (x, (y, πy)).
(b) If V erifyvkF (x, (y, πy))→ 1, then send transCUagree to BC.

For cloud provider CP

71

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

3. Verify PBIOC contract and task details.
4. To participate in the outsourcing task, send transCPintent = ($d) to BC.
5. To send the output

(a) Run Compute(ekF , x)→ (y, πy).
(b) Compute Y ← H(y) and P ← H(πy), where H is a hash function.
(c) Send transCPcommit = (Y, P) to BC.
(d) send (”verify”,y, πy) to CU .

6. If CU has not sent message transCUagree to BC before τa, then send
transCPverify = (ekF , vkF , x, y, πy) to BC.

For Blockchain BC: Set state← Init, $reward← 0, $deposit← {}
7. On receiving transCUcreate execute PBIOC.create(E, V , X , τi, τc, τa, τend, $r,

$c)
8. On receiving transCPintent execute PBIOC.intent($d)
9. On receiving transCPcommit execute PBIOC.commit(Y, P)

10. On receiving transCUagree execute PBIOC.agree()
11. On receiving transCPverify execute PBIOC.verify(ekF , vkF , x, y , πy)
12. On receiving transPBIOCVresult execute PBIOC.result(Honest)

Timer
if τ > τend and state! = Terminated then

if state = Created then
set ledger[CU]← ledger[CU] + $reward+ ($c, CU)

if state = Intent || Committed then
set ledger[CU]← ledger[CU] + $reward+ ($c, CU) + ($d, CP)

if state = Dispute then
set ledger[CP]← ledger[CP] + $reward+ ($c, CU) + ($d, CP)

set state← Terminated

Figure 3.1: PBIOC protocol

Algorithm 3.1 PBIOC.create
Input: E, V , X , τi, τc, τa, τend, $r, $c
Output: Success or Failure message

1: if state = Init then
2: if τ < τi < τc < τa < τend then
3: if ledger[CU] ≥ $r + $c then
4: ledger[CU]← ledger[CU]− ($r + $c);
5: $reward← $r;
6: $deposit← $deposit ∪ ($c, CU);
7: state← Created;
8: return (Success, Task created)
9: else return (Failure, Balance is low)

10: else return (Failure, Bad timing parameters)
11: else return (Failure, State is not Init)

72

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.2 PBIOC.intent
Input: $d
Output: Success or Failure message

1: if state = Created then
2: if τ < τi then
3: if ledger[CP] ≥ $d then
4: ledger[CP]← ledger[CP]− $d
5: $deposit← $deposit ∪ ($d,CP)
6: state← Intent
7: return (Success, Intent success)
8: else return (Failure, Balance is low)
9: else return (Failure, Intent timeout)

10: else return (Failure, State is not Created)

Algorithm 3.3 PBIOC.commit
Input: Y , P
Output: Success or Failure message

1: if state = Intent then
2: if τ < τc then
3: Store Y, P
4: state← Committed
5: return (Success, Commit success)
6: else return (Failure, Commit timeout)
7: else return (Failure, State is not Intent)

Algorithm 3.4 PBIOC.agree
Input: φ
Output: Success or Failure message

1: if state = Committed then
2: if τ < τa then
3: set ledger[CP]← ledger[CP] + $reward + ($d,CP)
4: set ledger[CU]← ledger[CU] + ($d,CU)
5: state← Terminated
6: return (Success, Agree success)
7: else return (Failure, Agree timeout)
8: else return (Failure, State is not Committed)

73

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.5 PBIOC.verify
Input: ekF , vkF , x, y , πy
Output: Success or Failure message

1: if state! = Terminated then
2: if τa < τ < τend then
3: if E = H(ekf) ∧ V = H(vkf) ∧ X = H(x) ∧ Y = H(y) ∧ P = H(πy) then
4: Invoke PBIOCV
5: set state← Dispute
6: return (Success, Dispute raised)
7: else return (Failure, Open commitment Failed)
8: else return (Failure, Verify timeout)
9: else return (Failure, Contract is Terminated)

Algorithm 3.6 PBIOC.result
Input: Honest
Output: Success or Failure message

1: if state = Dispute then
2: if τ < τend then
3: if Honest = true then
4: set ledger[CP]← ledger[CP] + $reward+ ($c, CU) + ($d,CP)
5: else
6: set ledger[CU]← ledger[CU] + $reward+ ($c, CU) + ($d,CP)

7: set state← Terminated
8: return (Success, Dispute resolved)
9: else return (Failure, Contract timeout)

10: else return (Failure, State is not Dispute)

If both CU and CP are honest, then the execution cost of PBIOC protocol is minimal and

also have the privacy of their inputs and outputs. However, if anyone party is dishonest,

then PBIOCV contract is invoked. As we have already discussed the V erify algorithm

from Parno et al. [184] is modeled as PBIOCV contract, running it is costly, and the

privacy of the results no longer exists. The inherent problem with the proof-based systems

is the provider’s overhead, and the verifier’s2 cost per instance is high. The verification time

for the state-of-the-art verifiable computation scheme [184] is 9ms and takes 288 bytes of

storage. In our protocol, even if we do not consider the user overhead in converting the

function into a boolean circuit, the verification of the proof (i.e., execution of PBIOCV

contract) by the Blockchain network will consume a huge amount of time. The verifiers in

public Blockchain systems can choose the transactions which will go into a block and then
2miners in Blockchain

74

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

into a blockchain. Since the average block generation time is very low, it is not practical for

the verifiers to accept transactions which would take a long time. Therefore, a verifier will

avoid the verification of the transactions which consumes huge computational resources

[97]. A generic PBIOCV contract can be very complex, costly and even may not be feasible

to deploy in current Blockchain networks.

3.3 Replication-based Incentivized Outsourced Computa-

tion using Smart Contracts

In this section, we discuss achieving fairness and correctness in verifiable computation by

outsourcing the same task to multiple providers.

3.3.1 Economic model

Let CU outsources a computation to multiple providers CP1,...,CPn. The providers will

compute the outsourced computation and return the output. There is a chance that providers

may use different algorithms other than the one prescribed by the user and yet deliver the

correct output with negligible probability. There might be an algorithm which gives higher

utility than the specified algorithm and yet deliver the correct output. The user always

wants the providers to compute the prescribed algorithm. For example, the user does not

outsource “search for an element in a given input set”. He will outsource a “particular

searching algorithm along with the input”. Another example is when the output range of

the outsourced algorithm is binary. In this case, the provider can guess the output with a

50% probability without running the algorithm. To prevent providers from using different

algorithms, Belenkiy et al.[153] introduced the concept known as the inner state of an

algorithm..

Definition 3.3.1. Assuming the algorithm is composed of a finite number of atomic op-

erations and each atomic operation takes some state information as input and produces

another state information as output. The inner state of an algorithm is defined as the con-

catenation of all the input and output states of the atomic operations of an algorithm, along

75

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

with the definition of the algorithm in terms of atomic operations.

Inner State Hash(ISH): An l-bit hash function takes an inner state of an algorithm

as input and maps it into an l-bit random string. Even if the algorithm has many number

of steps / its output is large, the hash value is always short having a constant length. The

probability of producing the same hash value without using the algorithm prescribed by the

user is negligible, i.e., neg = O(2−l).

Definition 3.3.2. The algorithm used by the provider to complete the assigned work that

outputs the correct answer with probability q is known as q-algorithm [155]. If a provider

runs the algorithm prescribed by the user, then q = 1. Similarly, if the provider uses any

algorithm other than the user prescribed, then q < 1.

The cost of running a q-algorithm is cost(q). As q = 1 for running the prescribed

algorithm, we denote the cost of honest computation as cost(1). The high-level description

of our approach is that CU outsources the same computation to multiple providers. The

providers compute and return the outputs along with the inner state hash. CU compares all

the inner state hashes and the outputs sent by providers. If they all are equal, he accepts

one of the output, otherwise re-outsources the algorithm. CU can not be trusted by the

providers, so he posts a smart contract on to a distributed ledger initiating it with some pay.

Similarly, the providers submit their inner state hash value and output to the smart contract.

Now smart contract verifies the outputs; if all are equal, providers will receive the payment.

Interestingly, even if all the providers submit the same incorrect output, they all get the pay.

We categorize the providers into three categories:

(a) Honest provider: An honest provider performs the computation exactly (running

the prescribed algorithm) as prescribed by the user.

(b) Rational provider: A rational provider performs the computation precisely as pre-

scribed by the user as long as his utility of computing the original algorithm is more

than the utility of doing anything else.

(c) Malicious provider: A malicious provider has two objectives: (1) Making the user

accept the incorrect result or (2) Making the user re-outsource the task.

76

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

The providers who use the algorithm as prescribed by the user be called diligent (all honest

providers and some rational providers who behave honestly) and who uses a q-algorithm

are called lazy (all rational who behaves maliciously and all malicious). The utilities of the

providers in a two-provider case are given in Table 3.1.

Other / This provider Diligent Lazy
Diligient u(1) = $r − cost(1) u(q) = $r ∗ q − $d ∗ (1− q)− cost(q)

Lazy u(1) = $r − cost(1) u(q) = $r − cost(q)

Table 3.1: Utilities in two-provider case from [153]

3.3.2 Two providers Case (TUIOC Contract)

3.3.2.1 TUIOC Contract Clauses

TUIOC is an outsourcing contract signed between three parties, a CU and two providers

(CP0, CP1). We follow the prisoner’s dilemma model presented by Belenkiy et al. [153]

and kupcu [155]. We assume F (x) is deterministic, and there exists a smart contract TU-

IOCV which can compute F (x) and return (y, ish) as output. CU pays a bounty $b along

with reward $r for an honest provider in case of disputes.

The clauses in the TUIOC contract are as follows:

(i) CU prepares two contracts TUIOC and TUIOCV . TUIOCV is executed only

in case of disputes.

(ii) CU chooses a function F (·) and an input x. CU agrees to pay $r to each provider

for the correct computation of F (x). CU also agrees to pay $b to the honest

provider in case of disputes.

(iii) All the three parties agree on timing parameters τ < τi < τc < τend.

(iv) Each CPi, i ∈ {0, 1} must pay a deposit of $d before τi. If any CPi fails to

deposit, then the contract is terminated and any deposits made are refunded.

(v) Each CPi computes F (x) and delivers the output to the contract before τc. If

any CPi fails to deliver output by τc, then its output is set as NULL. If both

77

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

providers fails to send output before τc, then 2∗ ($d+ $r) + $b is sent to CU and

the contract is terminated.

(vi) At τc < τ < τend, the contract compares the outputs delivered by providers for

equality. If both the outputs are equal, then $d+$r is sent to each CPi, $b is sent

to CU and the contract is terminated. Otherwise TUIOCV contract is invoked.

(vii) TUIOCV computes F (x) and returns the result before τend.

(viii) The smart contract compares the results sent by TUIOCV with the outputs de-

livered by providers.

(1) If TUIOCV and CPi outputs are same, then ($d+ $r + $b) is sent to CPi,

$d+ $r is sent to CU , and the contract is terminated.

(2) If TUIOCV output is not matching with any of the CPi’s output, then 2 ∗
($d+ $r) + $b is sent to CU , and contract is terminated.

(ix) If τ > τend and the contract is not terminated, then ($d+ $r) is sent to each CPi,

$b is sent to CU , and the contract is terminated.

3.3.2.2 TUIOC protocol

Unlike in Küpçü[155] and Belenkiy et al.[153], we do not assume the user acts diligently.

In our model, the providers do not trust the user for payment, and the user does not trust

the providers for correct computation. All the three entities trust the underlying Blockchain

for correct computation of the smart contract. TUIOC protocol is presented in Figure 3.2.

TUIOC smart contract functionalities executed by Blockchain are presented as Algorithms

3.7 - 3.11. CU chooses a function F , an input x, timing parameters τi, τc, τr, τend and

publishes these parameters on a public platform. He also sends these parameters along with

a pay $r, and a bounty $b to BC invoking Algorithm 3.7. Bounty is given to the honest

provider in case of disputes. Algorithm 3.7 stores the parameters and changes the state

to Created. Two interested cloud providers can show intent to compute the outsourcing

task by sending their deposits to BC invoking Algorithm 3.8. Algorithm 3.8 adds a cloud

provider to a worker set and if the two cloud providers have shown the intent, then the

state is changed to Compute. After showing intent the cloud providers have to send the

78

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

commitment of the output along with hash of the inner state to BC invoking Algorithm

3.9. Algorithm 3.9 stores the commitments sent by the cloud providers and if both the

cloud providers sent their commitments, then the state is set as Reveal. There are three

cases depending on the behavior of the providers

Case 1: Both the providers have committed the output. In this case, the providers have

to reveal the committed outputs by invoking the Algorithm 3.10. Algorithm 3.10 verifies

the revealed parameters against the commitments, and if the commitments are correct, then

they are stored. If both the provider’s commitments are correct, then the state is set as Pay

. There are three cases depending on the behavior of the providers

Case 1.1 Both the providers have revealed the output. In this case, the outputs are

compared for equality. If both the outputs are equal, then ($r + $d) is sent to each

provider and $b is sent to CU . Else, TUIOCV contract is invoked which will return

the output invoking Algorithm 3.11. Algorithm 3.11 compares the output returned by

TUIOCV with the outputs submitted by the cloud providers. If the output of any of

the cloud provider matches, then it is rewarded and the other provider is financially

penalized. Algorithm 3.11 also sets the state to Terminated.

Case 1.2: Only one of the provider have revealed the output. In this case, the output

of the other provider is set as φ and the TUIOCV contract is invoked.

Case 1.3: None of the providers have revealed the output. In this case, 2∗($r+$d)+$b

is sent to CU .

Case 2: Only one of the provider have committed the output. In this case, the contract state

is changed to Reveal.

Case 3: None of the providers have committed the output. In this case, 2 ∗ ($r + $d) + $b

is sent to CU .

TUIOC protocol

Let (G,P,Q) be the public parameters generated through a trusted setup such that

79

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

G is an order-q elliptic curve group over Fp, P and Q are random generators of G.
For cloud user CU

1. To create an outsourcing task send transCUcreate = (F , x, τi, τc, τr, τend, $r, $b)
to BC

For cloud provider CPi
2. To participate in the outsourcing task, send transCPi

intent = ($d) to BC.
3. To send the output

(a) Run compute(F, x)→ (yi, ishi)
(b) Generate two random numbers s1 ∈R Zq and s2 ∈R Zq
(c) Compute cmyi ← yiP + s1Q and cmishi ← ishiP + s2Q
(d) Send transCPi

commit = (cmyi , cmishi) to BC
4. To reveal the output send transCPi

reveal = (yi, ishi, s1, s2) to BC
For Blockchain:

5. On receiving transCUcreate execute TUIOC.create(F, x, τi, τc, τr, τend, $r, $b)
6. On receiving transCPi

intent execute TUIOC.intent($d)
7. On receiving transCPi

commit execute TUIOC.commit(cmyi , cmishi)
8. On receiving transCPi

reveal execute TUIOC.reveal()
9. On receiving transTUIOCdispute execute TUIOC.dispute()

Timer
If τ > τr and state = Pay then

If y0 = y1 and ish0 = ish1 then
Set ledger[CP0]← ledger[CP0] + $r + $d
Set ledger[CP1]← ledger[CP1] + $r + $d
Set ledger[CU]← ledger[CU] + $b and state← Terminated

Else send transTUIOCdispute to TUIOCV and set State← Dispute
If τ > τi and state = Created then

Set ledger[CU]← ledger[CU] + 2 ∗ $r + $b
If |worker|6= 0 then

Set ledger[CPi]← ledger[CPi] + $d, ∀ CPi ∈ workers
Set state← Aborted

If τ > τc and state = Compute and |commitment|6= 0 then set state ←
Reveal
If τ > τc and state = Compute and |commitment|= 0 then

Set ledger[CU]← ledger[CU]+2∗($r+$d)+$b and state← Aborted
If τ > τr and state = Reveal and |output|6= 0 then set state← Pay
If τ > τr and state = Reveal and |output|= 0 then

Set ledger[CU]← ledger[CU]+2∗($r+$d)+$b and state← Aborted
If τ > τend and state = Pay||Dispute then

Set ledger[CP0]← ledger[CP0] + $r + $d
Set ledger[CP1]← ledger[CP1] + $r + $d
Set ledger[CU]← ledger[CU] + $b and state← Terminated

Figure 3.2: TUIOC protocol

80

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.7 TUIOC.create
Input: F , x, τi, τc, τr, τend, $r, $b
Output: Success or Failure message

1: if state = Init then
2: if τ < τi < τc < τr < τend then
3: if ledger[CU] ≥ 2 ∗ $r + $b then
4: Set ledger[CU]← ledger[CU]− (2 ∗ $r)− $b;
5: Set state← Created
6: return (Success, Task created)
7: else return (Failure, Balance is low)
8: else return (Failure, Bad timing parameters)
9: else return (Failure, State is not Init)

Algorithm 3.8 TUIOC.intent
Input: $d
Output: Success or Failure message

1: if state = Created then
2: if τ < τi then
3: if ledger[CPi] ≥ $d then
4: if CPi /∈ worker then
5: set ledger[CPi]← ledger[CPi]− $d
6: set worker ← worker ∪ CPi
7: if |worker|= 2 then
8: set state← Compute

9: return (Success, Intent success)
10: else return (Failure, Duplicate provider)
11: else return (Failure, Balance is low)
12: else return (Failure, Intent timeout)
13: else return (Failure, State is not Created)

Algorithm 3.9 TUIOC.commit
Input: cmyi ,cmishi

Output: Success or Failure message
1: if state = Compute then
2: if τ < τc then
3: if CPi ∈ worker then
4: if (CPi, ∗, ∗) /∈ commitment then
5: set commitment← commitment ∪ (CPi, cmyi , cmishi)
6: return (Success, Commit success)
7: if |commitment|= 2 then
8: set state← Reveal
9: else return (Failure, Duplicate commitment)

10: else return (Failure, Wrong provider)
11: else return (Failure, Commit timeout)
12: else return (Failure, State is not Compute)

81

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.10 TUIOC.reveal
Input: φ
Output: Success or Failure message

1: if state = Reveal then
2: if τ < τr then
3: if (CPi, ∗, ∗) ∈ commitment then
4: if (CPi, ∗, ∗) /∈ output then
5: if cmyi = yiP + s1Q and cmishi

= ishiP + s2Q then
6: set output← output ∪ (CPi, yi, ishi)
7: if |output|= 2 then
8: set state← Pay

9: return (Success, Reveal success)
10: else return (Failure, Open commitment failed)
11: else return (Failure, Duplicate output found)
12: else return (Failure, Not committed)
13: else return (Failure, Reveal timeout)
14: else return (Failure, State is not Reveal)

Algorithm 3.11 TUIOC.dispute
Input: φ
Output: Success or Failure message

1: if state = Dispute then
2: if τr < τ < τend then
3: if yt = y0 and isht = ish0 then
4: set ledger[CP0]← ledger[CP0] + $r + $d + $b
5: set ledger[CU]← ledger[CU] + $d+ $r
6: else
7: if yt = y1 and isht = ish1 then
8: ledger[CP1]← ledger[CP1] + $r + $d+ $b
9: ledger[CU]← ledger[CU] + $d+ $r

10: else set ledger[CU]← ledger[CU] + 2 ∗ ($r + $d) + $b

11: set state← Terminated
12: return (Success, Dispute resolved)
13: else return (Failure, Contract timeout)
14: else return (Failure, State is not Dispute)

We have already defined that the cost of honest computation is cost(1), and the cost

of running a q-algorithm is cost(q). Let the cost of running the TUIOCV contract be

cost(V). We assume that the deposit by a provider $d ≥ cost(V). $d compensates the

user for the cost(V). The analysis of TUIOC protocol is presented in Table 3.2. If

the providers collude and sent the same incorrect output, then their utility will be maxi-

mum. If no collusion occurs, then the best strategy for the providers is to act diligently.

Colluding of the providers is avoided by offering a bounty for acting diligently such that

82

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

$r− cost(1) + $b > $r− cost(q). This bounty is given to the diligent provider only when

the outputs are different. Unfortunately, this bounty is a burden to the user as this is an

extra payment apart from the reward.

Entities Utility
s.no CP0 CP1 output µ(CU) µ(CP0) µ(CP1) Clause

1 1 1 CO - $r − cost(1) $r − cost(1) vi
2 1 0 CO $d− cost(V) $r + $b− cost(1) −$d− cost(q) viii.1
3 0 1 CO $d− cost(V) −$d− cost(q) $r + $b− cost(1) viii.1
4∗ 0 0 WO - $r − cost(q) $r − cost(q) vi
5∗∗ 0 0 WO 2 ∗ $d− cost(V) −$d− cost(q) −$d− cost(q) viii.2

Table 3.2: Analysis of TUIOC: 1-Diligent, 0-Lazy, CO-Correct Output, WO-Wrong Out-
put, cost(V) is cost of executing TUIOCV Contract. Here, we assume TUIOCV contract
is invoked by CU and hence the cost(V) is paid by CU . *when both providers return the
same incorrect outputs. ** when the providers return different incorrect results.

3.3.3 Multiple-provider Case (MUIOC)

We extend the two providers case to n providers case and try to achieve fair incentivized

outsourced computation. If n = 2, then this case is similar to a two providers case, hence

we assume n > 2.

3.3.3.1 MUIOC Contract Clauses

The high-level overview of the multiple-providers case is that the user outsources the job

on a public platform along with the smart contract address. Interested providers show

their intent by sending some deposit to the contract. The protocol proceeds in rounds, in

each round some k < n number of providers are randomly hired. The selected providers

compute the job and submit their outputs. The contract verifies all the received outputs,

and if all the outputs are same, then the contract is terminated by sending appropriate pay

to each provider who computed correctly. Otherwise, the contract re-outsources the job to

a different set of providers until a correct output is obtained. We assume at least one honest

provider is hired per round.

83

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

The clauses in the MUIOC contract are as follows:

(i) CU prepares two contracts MUIOC and MUIOCV . MUIOCV is executed

only in case of disputes.

(ii) CU chooses F (·) and an input x. CU agrees to pay a minimum of $r/k to

each CPi for correct and timely computation of F (x). He also chooses timing

parameters τ < τi < τc < τend and k, p, where k is the number of providers

hired per round and p is the time required per round.

(iii) As a condition, the providers who wish to compute F (x) must pay a deposit of

$d before τi. Let W ⊆ CP be all the providers who paid deposits before τi. Let

$d
′ be the sum of all the deposits made by providers. If |W |≤ 2 after τi, then the

contract is terminated, and the reward is refunded to CU and any deposits made

by the providers are also refunded.

(iv) Until |W |< k

(a) Smart contract generate a random subset of providers Ωr ⊂ W and notify

them to compute F (x).

(b) Every CPi ∈ Ωr computes F (x) and delivers its output before τc. If any

CPi ∈ Ωr fails to send the result by τc, it is marked as cheated and its

output is set as NULL.

(c) Smart contract compares all the outputs obtained in an rth round for equal-

ity.

(1) If all the outputs are equal, then every CPi ∈ Ωr is marked as hon-

est and also all the providers in previous rounds who sent the same

output are marked as honest. $d
′

|W |

(
r∗k

r∗k−|m|

)
+ $r

r∗k−|m| is sent to each

honest provider, where |m| is the size of malicious providers marked

as cheated and lost their deposit for behaving maliciously. $d
′
/|W | is

sent to all the providers who have not hired in any round and the con-

tract is terminated.

(2) Otherwise, all the providers in rth round are marked as cheated and the

parameters are updated as r = r + 1, τc = τc + p, W = W − Ωr.

84

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

(v) If |W |< k, thenMUIOCV contract is invoked and the output of theMUIOCV

contract is compared with all the hired providers output. The providers who sent

the output same as MUIOCV are marked as honest, and all the providers who

sent a different output are marked as cheated.

3.3.3.2 MUIOC protocol

MUIOC protocol is presented in Figure 3.3. MUIOC smart contract functionalities exe-

cuted by Blockchain are presented as Algorithms 3.12 - 3.16. CU chooses a function F , an

input x, timing parameters τi, τc, τr, τend and publishes these parameters on a public plat-

form. He also chooses two more parameters k and p, where k is the number of providers

hired per round, and p is the time required per round. He sends all these parameters along

with $r to BC invoking Algorithm 3.12. The pay $r is shared among the honest providers.

Algorithm 3.12 stores all the parameters and sets the state as Created. Interested providers

show intent by sending deposits to BC invoking Algorithm 3.13. Algorithm 3.13 stores a

provider’s deposit and adds the provider to a list and increments the count of the providers.

After the intent time is expired, a random set of providers is selected to perform the out-

sourcing task. The selected cloud provider has to compute and send the commitment of

the output and inner state hash to BC invoking Algorithm 3.14. Algorithm 3.14 stores the

commitment sent by every provider. Depending on the behavior of the providers there are

three cases as follows:

Case 1: All the selected providers have committed the output. In this case, the providers

have to reveal the output by invoking Algorithm 3.15. Algorithm 3.15 stores the output

received from a provider. Depending on the behavior of the providers there are two cases

as follows:

Case 1.1: All the providers who committed the output have revealed the output by

invoking Algorithm 3.15. In this case, after the reveal timeout, the outputs are com-

pared for equality. If all the outputs are equal, then the providers receive the agreed

payment. The providers in the previous rounds who sent the same output will also get

the agreed payment. Otherwise, all the providers are marked as cheated, and a new

85

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

round begins with a random selection of providers. If there are not enough providers

for the new round, thenMUIOCV contract is invoked, and pay is distributed accord-

ing to the output sent by theMUIOCV contract invoking Algorithm 3.16. Algorithm

3.16 computes honest and malicious lists according to the output sent by MUIOCV .

Case 1.2: Only a subset or none of the providers have revealed the output. All the

providers are marked as cheated, and a new round begins the same as the previous

case.

Case 2: Only a subset of providers have sent the output. In this case, the aborting providers’

commitment is set as NULL, and the rest of the providers will reveal the output.

Case 3: None of the providers has sent the output. In this case, all the providers’ commit-

ment and output is set as NULL, and a new round begins with a random set of providers.

If there are not enough providers for the new round, then MUIOCV contract is invoked,

and pay is distributed according to the output returned by the MUIOCV contract.

MUIOC protocol

Let (G,P,Q) be the public parameters generated through a trusted setup such that
G is an order-q elliptic curve group over Fp, P and Q are random generators of G
For cloud user CU

1. To create an outsourcing task send transCUcreate = (F , x, τi, τc, τr, τend, $r) to
BC

For cloud provider CPi
2. To participate in the outsourcing task send transCPi

intent = ($d) to BC
3. To commit the output

(a) Compute (ishi, yi)← F (x)
(b) Generate two random numbers s1 ∈R Zq and s2 ∈R Zq
(c) Compute cmyi ← yiP + s1Q and cmishi ← ishiP + s2Q
(d) Send transCPi

commit =(cmyi , cmishi) to BC
4. To reveal the output send transCPi

reveal = (yi, ishi, s1, s2) to BC
For Blockchain:

5. On receiving transCUcreate execute MUIOC.create(F, x, τi, τc, τr, τend, $r)
6. On receiving transCPi

intent execute MUIOC.intent($d)
7. On receiving transCPi

commit execute MUIOC.commit(cmyi , cmishi)
8. On receiving transCPi

reveal execute MUIOC.reveal(yi, ishi, s1, s2)
9. On receiving transMUIOC

dispute execute MUIOC.dispute(yt, isht)

86

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Timer
If τ > τi and state = Created||Discord then

If |CP |≥ k then
select a random subset Ωr ⊂ CP of size k
set CP ← CP − Ωr and state← Compute
send (”compute”,Ωr) to all parties

If τ > τr and state = Compute then
(status, y, ish)← compare(Ωr, output)
If status = agreed then

while r > 0
(H,M)← getHonest(r,Ωr, output, y, ish)
r ← r − 1

set state← Agreed
Else set τc ← τc + p, τr ← τr + p, r ← r + 1, state← Discord

If τ > τc and state = Discord, then send (”dispute”) to MULIOCV and set
state← Dispute
If τ > τend then

If state = Agreed then
set $mdeposit ← $deposit/(n − |M |−|CP |) and $deposit ←
$deposit− $mdeposit
for every CPi ∈ H

set ledger[CPi] ← ledger[CPi] + ($deposit/n) + ($reward/(k ∗ (r) − |M |)) +
($mdeposit/|H|)

for every CPi ∈ CP set
ledger[CPi]← ledger[CPi] + ($deposit/n).

set state← Terminated
If state = Created then

set ledger[CU]← ledger[CU] + $reward
for every CPi ∈ CP set ledger[CPi]← ledger[CPi] + $deposit/n
set state← Aborted

If state = Dispute then
for every CPi ∈ CP set ledger[CPi]← ledger[CPi] + $deposit/n
while r > 0

for everyCPi ∈ Ωr set ledger[CPi]← ledger[CPi] + ($deposit/n) + ($reward/(r∗k))
set r ← r − 1

set state← Terminated.

Figure 3.3: MUIOC protocol

87

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.12 MUIOC.create
Input: F , x, τi, τc, τr, τend, $r
Output: Success or Failure message

1: if state = Init then
2: if τ < τi < τc < τr < τend then
3: if ledger[CU] ≥ $r then
4: Set ledger[CU]← ledger[CU] − $r
5: Set $reward← $r
6: Set state← Created
7: return (Success, Task created)
8: else return (Failure, Balance is low)
9: else return (Failure, Bad timing parameters)

10: else return (Failure, State is not Init)

Algorithm 3.13 MUIOC.intent
Input: $d
Output: Success or Failure message

1: if state = Created then
2: if τ < τi then
3: if ledger[CPi] ≥ $d then
4: if $d ≥ $reward then
5: if CPi /∈ CP then
6: Set ledger[CPi]← ledger[CPi] − $d.
7: Set $deposit← $deposit+ $d.
8: Set CP ← CP ∪ CPi.
9: Set n← n+ 1

10: return (Success, Intent success)
11: else return (Failure, Duplicate request)
12: else return (Failure, Deposit not enough)
13: else return (Failure, Balance is low)
14: else return (Failure, Intent timeout)
15: else return (Failure, State is not Created)

Algorithm 3.14 MUIOC.commit
Input: cmyi , cmishi

Output: Success or Failure message
1: if state = Compute then
2: if τ ≤ τc then
3: if (CPi, ∗, ∗) /∈ commitments then
4: if CPi ∈ Ωr then
5: Set commitments← commitments ∪ (CPi, cmyi , cmishi)
6: return (Success, Committed)
7: else return (Failure, Wrong provider)
8: else return (Failure, Duplicate commitment)
9: else return (Failure, Commit timeout)

10: else return (Failure, State is not Compute)

88

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.15 MUIOC.reveal
Input: yi, ishi, s1, s2

Output: Success or Failure message
1: if τc < τ < τr then
2: if CPi ∈ Ωr then
3: if (CPi, ∗, ∗) /∈ output then
4: if cmyi = yiP + s1Q and cmishi

= ishiP + s2Q then
5: Set output← output ∪ (CPi, yi, ishi)
6: return (Success, Revealed)
7: else return (Failure, Reveal failed)
8: else return (Failure, Duplicate request)
9: else return (Failure, Wrong provider)

10: else return (Failure, Reveal timeout)

Algorithm 3.16 MUIOC.dispute
Input: yt, isht
Output: Success or Failure message

1: if state = Dispute then
2: if τc < τ < τend then
3: while r > 0 do
4: Set (H,M)← getHonest(r,Ωr, output, yt, isht)
5: Set r ← r − 1

6: Set state← Agreed
7: else return (Failure, Contract timeout)
8: else return (Failure, State is not Dispute)

Excepted number of rounds: The contract outsources the job until all the providers hired

in a round returns the same output. Let E be the probability of getting different outputs

in a single round then the expected number of rounds the task is outsourced is 1
1−E . The

contract outsources the task at least once. If the outputs returned in the first round are not

equal, then the contract outsources the task again, this will happen with a probability of E.

Again if the outputs are not equal, then the contract outsources with a probability of E2

and so on till all the outputs in a round are equal. The expected number of rounds the task

is outsourced is

1 + E + E2 + · · · = 1
1−E

89

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

3.4 Simulation Results and Discussions

The simulation environment is discussed in Section 1.2.3. The actual tasks are treated as

black boxes, and the contracts do not need to know their internal states. The contracts

are called before, during or after the execution of the tasks. We have implemented all the

contracts in private Ethereum network which mimics the Ethereum production network.

However, our goal of this implementation is to deploy it in public Blockchain networks in

real scenarios.

3.4.1 Implementation of PBIOC

We ran our experiments multiple times, and each transaction’s computational and financial

cost is listed in Table 3.3. It may be observed that the contract deployment is consuming

a large amount of gas, but this will be amortized over multiple agreements between user

and provider. We have designed our contract to be used for multiple outsourcing tasks

so that the user and provider can run multiple agreements on a single deployment. For

implementation feasibility, we have modified our PBIOC contract in Figure 3.1, because

the current blockchain networks do not support the scheduled function calls, which are

executed when the timer expires. The Timer functionality in Figure 3.1, and Algorithm 3.6

is implemented as a Payout functionality. The results in the Table 3.4 shows that the cost

of running the PBIOCV contracts even for small inputs is high when compared to Table

3.3. Hence, when both cloud user and provider are honest overhead of running a PBIOC

contract is minimal.

The lack of possibility of running heavy cryptography operations on Ethereum blockchain

limits the PBIOCV contract’s implementation. Recently, a new library ZoKrates [128] us-

ing zkSNARKs[184] is introduced to perform heavy computations off-chain, and the proof

of off-chain computations is verified on the Blockchain network. The user and provider run

an off-chain setup phase to establish a common reference string (CRS) to derive a proving

key and verification key. The PBIOCV contract is generated by the user using verification

key, and the user deploys the PBIOCV contract and sends its address to the provider. The

provider computes the witness and generates a proof. The provider then sends this proof to

90

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Algorithm 3.5. We ran the experiments for three problems 1) Sorting integers 2) Primality

test on non-prime numbers and 3) Searching in an array of integers. The costs of deploying

and running the PBIOCV contracts is shown in Table 3.4.

Function Caller Cost in Gas Cost in $
Deployment user 2117086 0.565

Create user 302889 0.080
Intent provider 92255 0.024

Commit provider 85709 0.022
Agree user 41905 0.011
Verify provider 30275 +cost(PBIOCV) 0.008+cost(PBIOCV)
Payout Anyone 37742 0.010

Table 3.3: Costs of interacting with PBIOC Contract. We have approximated the gas price
as 1 Gwei and 1 ETH = $267.76, which are the real world costs in June 2019. We have
rounded off the cost in $ value up to three decimals.

PBIOCV contract Deployment Cost in Gas Execution Cost in Gas
Sort(input size 10) 1281467 736975

Primality Test* 1005959 563902
Search(input size 10) 1311503 999455

Table 3.4: Deployment and Execution costs of PBIOCV contracts. * The factors multipli-
cation test is conducted only for non-prime number. The primality test for prime numbers
is not possible with current Zokrates implementation as modulo operations are expensive
on prime fields.

3.4.2 Implementation of TUIOC

3.4.2.1 Inner State Hash computation

The provider has to send the inner state hash and the algorithm’s output to prove that he

executed the prescribed algorithm given by the user. We have created an AspectJ aspect

which hashes all the inputs and outputs of a method without modifying the actual java

code. The user outsources the java code, which is compiled along with AspectJ aspect

which, when executed, returns the algorithm’s output along with inner state hash. We have

computed the inner state hash using a Merkle tree [185]. The input string and output string

of all the algorithm methods will become leaf nodes in the Merkle tree (i.e., two nodes for

91

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Functions Caller Cost in Gas Cost in $
Deployment user 2526981 0.67

Create user 64424 0.01
Intent provider 64320 0.01

Commit provider 118142 0.031
Reveal provider 386452 0.10
Dispute Anyone 40364 0.01
Payout Anyone 39640 0.01

Table 3.5: Costs of interacting with TUIOC Contract. We have approximated the gas price
as 1 Gwei and 1 ETH = $267.76 which are the real world costs in June 2019.

one method call). Once the execution is completed, a Merkle tree is constructed with all the

leaf nodes. The root of the Merkle tree is returned as the inner state hash of an algorithm.

The providers will compute the commitments using Pedersen [186] commitments based

on the public parameters given in Cryptocon [187]. We also use the Cryptocon contract for

verifying the commitments submitted by the providers. We have invoked several instances

of the TUIOC contract, and each transaction’s computational and financial cost is listed in

Table 3.5.

As we have discussed earlier, our TUIOC contract is simple and invokes TUIOCV

contract only in case of disputes. We have modeled 1) Merge sort 2) Primality test and 3)

Binary search as TUIOCV contracts and deployed them on Ethereum Blockchain. Merge

sort contract takes an array of integers as an input and outputs sorted array of numbers. We

have used a recursive merge sort implementation and hence we could not test it for large

input sizes due to the limit on the number of call stacks of a smart contract in Ethereum

Blockchain. The number of call stacks limit is hardcoded as 1024 stack frames which

limit the number of function calls allowed. We also could not test for sorting fractional

numbers as Ethereum does not support operations on floating-point numbers. The Merge

sort contract is tested for input sizes from 5 to 100, where all the numbers in a single test

are generated randomly, and the transaction costs are listed in Figure 3.4.

The second TUIOCV contract we have deployed will check whether the given number

is prime or not. We have tested the primality contract for integers up to 10000. The trans-

action cost of prime numbers is listed in Figure 3.5 and transactional cost of non-prime

numbers is given in Figure 3.6. The gas cost to test non-prime number is less than the

92

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

gas cost for testing prime numbers. Also, the gas cost to test prime numbers increases as

we move to higher numbers. Observe that the gas consumption of the non-prime number

varies dramatically due to the adoption of Fermat’s little theorem for primality test. To

reduce the gas cost, we have included a condition “if num%2 == 0 || num%3 == 0,

then return false“ where num is the input to primality test. This statement consumes an

almost constant amount of gas for all the non-prime numbers, which are having 2 or 3 as

one factor. For all the remaining non-prime numbers we check the condition “anum−1 ≡ 1

mod (num)” for some random 1 < a < num − 1. This condition is checked minimum

once and a maximum of
√
num times.

As a third TUIOCV contract, we have implemented and tested the binary search. The

binary search contract is tested for input sizes from 100 to 1000 elements. The transactional

costs for searching an element that does not exist in the input are shown in Figure 3.7.

0 10 20 30 40 50 60 70 80 90100
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7
·105

Input size

G
as

va
lu

e

Gas consumption of Merge Sort

Gas Consumption

Figure 3.4: Gas consumption of Merge Sort

0 0.10.20.30.40.50.60.70.80.9 1

·104

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3
·105

Prime Numbers

G
as

va
lu

e

Gas consumption of Primality Test

Gas Consumption

Figure 3.5: Gas Consumption of prime
numbers

3.4.3 Implementation of MUIOC

We have deployed our MUIOC contract in the Ethereum Blockchain and tested it under

different parameters. The first parameter we have varied is the number of providers. We

have varied the number of providers from 10 to 90. The second parameter we have varied

is the number of lazy providers who intend to compute the task. The percentage of lazy

providers varies from 10% to 50%. The third parameter we have varied is the number

93

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104
2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

·104

Non-Prime Numbers

G
a
s
V
a
lu
e

Gas Consumption for Non-prime numbers

Gas Consumption

Figure 3.6: Gas Consumption of non-prime
numbers

0 100 200 300 400 500 600 700 800 9001,000
0

0.5

1

1.5

2

2.5

3

3.5
·105

Input size
G

as
va

lu
e

Gas consumption of Binary Search

Gas Consumption

Figure 3.7: Gas Consumption of Binary Search

of providers selected per round. We have tested our contract for the number of providers

selected per round from 3 to 5. In Table 3.6, we show the cost of transactions sent to the

MUIOC contract. The timer functionality in Figure 3.3 is implemented as compute and

payout functionalities. Private Ethereum Blockchain does not support a large number of

accounts. We have simulated the contract in Java for n=100 to 1000 and showed the honest

providers’ pay in all the above scenarios in Figure 3.8.

94

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

Function Deployment Create Intent Commit Reveal
Cost in Gas 2908677 126179 150966 66576 33838
Cost in $ 0.77662 0.0337 0.04032 0.01778 0.00902
Function Compute Dispute Payout Compute Dispute payout

n=10

k=3 gas 219779 165631 131866

n=60

k=3 gas 424140 2483879 660366
$ 0.05869 0.04422 0.03522 $ 0.11323 0.6632 0.17633

k=4 gas 265589 190749 132541 k=4 gas 471637 2522335 661041
$ 0.07092 0.05092 0.03538 $ 0.12592 0.67345 0.17649

k=5 gas 314773 220080 133216 k=5 gas 519135 2562952 661716
$ 0.08405 0.05877 0.03556 $ 0.1386 0.68432 0.17667

n=20

k=3 gas 259300 373656 237566

n=70

k=3 gas 465350 3353794 766066
$ 0.06923 0.09978 0.06344 $ 0.12426 0.89546 0.20455

k=4 gas 306797 403904 238241 k=4 gas 512847 3378912 766741
$ 0.08192 0.10784 0.0636 $ 0.13692 0.90217 0.20471

k=5 gas 355153 421436 238916 k=5 gas 560345 3425172 767416
$ 0.09484 0.11251 0.06379 $ 0.1496 0.91453 0.2049

n=30

k=3 gas 300510 700721 343266

n=80

k=3 gas 506560 4331463 871766
$ 0.08023 0.18709 0.09166 $ 0.13526 1.15651 0.23277

k=4 gas 348007 733021 343941 k=4 gas 554057 4381718 872441
$ 0.09292 0.19571 0.09182 $ 0.14794 1.16991 0.23293

k=5 gas 395505 755170 344616 k=5 gas 601555 4356671 873116
$ 0.1056 0.20164 0.09201 $ 0.16063 1.16324 0.23312

n=40

k=3 gas 341720 1177093 448966

n=90

k=3 gas 547770 5409704 977466
$ 0.09123 0.31429 0.11988 $ 0.14626 1.44439 0.26099

k=4 gas 389217 1203750 449641 k=4 gas 595267 5440978 978141
$ 0.10392 0.32141 0.12004 $ 0.15895 1.45275 0.26115

k=5 gas 436715 1238211 450316 k=5 gas 643609 5497498 978816
$ 0.1166 0.3306 0.12023 $ 0.17184 1.46783 0.26134

n=50

k=3 gas 382930 1770453 554666

n=100

k=3 gas 584859 6537458 1072596
$ 0.10223 0.47272 0.1481 $ 0.15617 1.74551 0.28638

k=4 gas 430427 1828916 555341 k=4 gas 632356 6613876 1073271
$ 0.11492 0.48832 0.14827 $ 0.16885 1.76591 0.28657

k=5 gas 478769 1801817 556016 k=5 gas 679854 6628843 1073946
$ 0.12784 0.48108 0.14845 $ 0.18153 1.76989 0.28673

Table 3.6: Costs of running MUIOC Contract

95

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

0 100 200 300 400 500 600 700 800 9001,000
0

1

2

3

4

5

6

7

8

Number of providers

R
ew

ar
d

Reward for Honest provider When k=3

100 200 300 400 500 600 700 800 9001,000

1

2

3

4

5

6

7

8

9

10

Number of providers

R
ew

ar
d

Reward for Honest provider When k=4

100 200 300 400 500 600 700 800 9001,000

1

2

3

4

5

6

7

8

9

10

Number of providers

R
ew

ar
d

Reward for Honest provider When k=5

10% Lazy 20% Lazy 30% Lazy 40% Lazy 50% Lazy

Figure 3.8: Reward for honest cloud provider in different scenarios. The reward for the
computation is set as 10 Ethers, which is shared by all the honest providers.

96

CHAPTER 3. FAIR PAYMENT PROTOCOLS FOR OUTSOURCING COMPUTATION UNDER PLATFORM-AS-A-SERVICE

3.5 Summary

Blockchains and smart contracts provide new solutions to the problems which are thought

as hard to solve. One such issue is achieving fair payments for verifiable computations

without a trusted intermediary. We have designed fair payment protocols using smart con-

tracts for two types of verifiable computations: (1) Proof-based verifiable computation and

(2) Replication-based verifiable computation. Our experiments show that in fair proof-

based verifiable computation, the overhead of using a smart contract is minimal when both

the user and the provider are honest. We have achieved fairness in replication-based verifi-

able computation by imposing fines on cheating providers and offering bounties to honest

providers. We have shown that monetized penalties are an efficient way to deter cheating

providers. We ran experiments for both types of verifiable computations and presented the

transactional and financial costs of interacting with smart contracts. Our work could serve

as a founding stone to future works that can design more robust, secure smart contracts

for fair verifiable computations with fewer rounds of interactions. However, our protocols

do not provide privacy to the output. One area of future work will mainly focus on the

development of fair protocols for verifiable computations using smart contracts which will

also provide privacy of the inputs and outputs of an outsourced problem.

97

Chapter 4

Fair Payment Protocols for Mobile

Crowdsensing under

Platform-as-a-Service

A typical mobile crowdsensing data marketplace consists of a cloud provider, an aggre-

gation platform / aggregator to publish sensing tasks and many cloud users with mobile

devices. The cloud provider sends sensing tasks to the platform, which then publishes the

task. If a cloud user is interested in the task, he can participate in it, expecting incentives

to his data contribution. However, the cloud provider does not know the cloud users in

advance and may not be confident about the generated data by users due to differences

in cloud users age groups, smart-phone / watch capabilities etc. In this case, aggregated

statistics like sum, min, max, standard deviation, and variance about the aggregated data

collected from all the cloud users help the cloud provider know the dataset’s dispersion.

The aggregation platform generates aggregated statistics. Nevertheless, the cloud users do

not trust a cloud provider / aggregation platform and may not be willing to send the data for

computing statistics without proper incentives. Motivated by this challenge in this Chapter,

we design two protocols that compute aggregated statistics on private data. After knowing

the statistics, if the cloud provider is interested in buying, the data is revealed only after

being correctly paid to cloud users. The contributions of this Chapter are as follows:

98

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

(a) We propose two novel protocols to facilitate fair payments for monetizing mobile

crowdsensing data. As a first protocol, we show a naive protocol requiring a trusted

key dealer to establish encryption keys. As a second protocol, we design a more ro-

bust and trusted key dealer free system. We design a new key establishment protocol

using a smart contract as a communication channel that does not require a trusted

key dealer. We also design a new incentivization model that pays a cloud user based

on the quality of the data and impose penalties on the cloud users who do not follow

the intended protocol.

(b) We have implemented the proposed smart contracts using Solidity [24] and tested

the smart contracts for the MotionSense dataset [188]. We have also presented the

transactional and financial costs of interacting with smart contracts.

4.1 Privacy-preserving aggregation

Definition 4.1.1. A privacy-preserving aggregation model consists of a set of three algo-

rithms [189]:

(a) Setup(1λ)→ (N,H, {skCUi
}CUi∈CU , skA): It is run by a trusted key dealer TP . He

chooses two safe primes q1 and q2 and computes N = q1 ∗ q2. He also chooses a

hash function H : Z → Z∗N2 . TP sets the public parameters as PJL = (N,H), and

distributes to each cloud user CUi ∈ CU a secret key skCUi
∈ [0, N2] and sends

skA = −∑n
i=1 skCUi

to the untrusted aggregator A where n = |CU |.

(b) Encrypt(PJL, skCUi
, xCUi,t) → CCUi,t : At a time period t, each cloud user CUi

encrypts his private input xCUi,t using the secret key skCUi
and outputs

CCUi,t = (1 + xCUi,tN) ·H(t)skCUi mod N2.

(c) Aggregate(PJL, skA, CCU1,t, ..., CCUn,t) → sumt =
∑n

i=1 xCUi,t : Up on receiving

99

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

CCUi,t from every cloud user, the untrusted aggregator computes

Pt =
n∏
i=1

CCUi,tH(t)skA mod N2

sumt =
Pt − 1

.

N

The correctness of the algorithms is as follows

n∏
i=1

CCUi,tH(t)skA ≡
n∏
i=1

(1 + xCUi,tN)

≡ 1 + (
n∑
i=1

xCUi,t mod N)N(mod N2)

If
∑n

i=1 xCUi,t < N , then sumt = Pt−1
N

=
∑n

x=1 xCUi,t. One may refer to [189] for the

proof of aggregator obliviousness.

Definition 4.1.2. A fair data aggregation protocol must provide the following guarantees:

(a) Aggregator obliviousness:The protocol is aggregator obliviousness if the aggregator

learns nothing about cloud users’ private data except the aggregated statistics.

(b) Aggregator unforgeability : The protocol is said to be aggregator unforgeable if

aggregation operation solely depends on the inputs of the cloud users and no other

party can influence the result of the aggregation operation.

(c) Fair payments: The protocol is said to be financially fair if (1) the cloud users receive

the payments for their data contribution and (2) the cloud provider receives the data

4.1.1 Entities

A Blockchain-based framework for privacy-preserving aggregation of mobile crowdsens-

ing data has the following entities:

(a) Mobile device (MBi): A mobile device consists ofm sensorsM = (S1, S2, ..., Sm)1.
1Each sensor may produce more than one value. For example, an accelerometer produces x-axis, y-axis

and z-axis values.

100

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

At each specific interval of time [ts, te], a mobile device MBi produces a set of data

points YCUi,[ts,te].

YCUi,[ts,te] =


S1 S2 Sm

ts y1,s y2,s ym,s

te y1,e y2,e ym,e


Each data point y ∈ YCUi,[ts,te] is a sensor reading containing sensitive information

of a cloud user. From now onwards we represent the time [ts, te] with t.

(b) Cloud users (CUi): A cloud user collects data from the mobile deviceMBi and gen-

erates a vector XCUi,t = [
∑e

i=s y1,i, ...,
∑e

i=s ym,i]
2. To protect the confidentiality of

every value in XCUi,t against the eavesdroppers, CUi encrypts every value in XCUi,t

using a secret key skCUi
and sends the resulting cipher text vector CCUi,t to the smart

contract3.

(c) Cloud provider (CP): A cloud provider CP creates and deploys the smart contract

on a public Blockchain network. It will distribute an amount of $p to all the cloud

users if the data delivered generates desired aggregated statistics.

(d) Smart contract: A smart contract acts as an aggregation platform, which computes

the aggregated statistics on receipt of CCUi,t from every cloud user.

(e) Blockchain Network(BC): A Blockchain network is maintained by a set of peers

known as miners who execute the smart contract according to an underlying consen-

sus algorithm.

(f) Inter-planetary file system (IPFS): As storing large amounts of data in smart

contract incurs a high financial cost, we use a distributed storage network IPFS

to store YCUi,t, and XCUi,t is sent to the smart contract for computing aggregated

statistics. The IPFS network returns the hash of the data stored as a URL.
2In this Chapter, we consider sum as the aggregation operation, and hence the cloud user need not send

the entire data points.
3Even though XCUi,t consists of accumulated values, it can still reveal some private information about

the cloud user, and hence encryption is required.

101

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

4.2 A naive trusted party based fair payment protocol for

privacy-preserving aggregation of mobile crowdsens-

ing data (FairNaivePPA)

In this section, we design a naive protocol to facilitate fair payments for privacy-preserving

aggregation of mobile crowdsensing data where the aggregator services are modeled as a

smart contract deployed on a public Blockchain network.

4.2.1 FairNaivePPA contract clauses

The FairNaivePPA is a crowdsourcing contract signed between a cloud provider CP

and a set of cloud users CU . The high-level idea is that if CP and every CUi ∈ CU are

honest, then CP will get the sensing data and every CUi ∈ CU gets a pre-agreed payment.

The clauses in the FairNaivePPA contract are as follows:

(i) A cloud provider CP creates a smart contract FairNaivePPA for monetiz-

ing mobile sensing data where the aggregate algorithm from Definition 4.1.1 is

modeled as one of the contract’s functionalities. CP deploys the smart contract

on a public Blockchain network and publishes the contract address on a public

platform (like a website / bulletin board).

(ii) All parties agree on timing parameters τi < τc < τa < τb < τr and a pay $p,

distributed to cloud users for their data contribution.

(iii) As a condition, a cloud user CUi who wishes to participate in the sensing task

must pay a deposit of $d before τi. The safe deposit is required to ensure the

cloud user participation until the end of the protocol. Let listCU be the set of

users who have shown intent to contribute data. If listCU = 0, then $p is re-

funded, and the contract is terminated.

(iv) After τ > τi, a trusted key dealer TP generates a set {skCU1 ,..., skCU|CU| , skCP}
of |CU |+1 keys such that

∑|CU |
i=1 skCUi

+ skCP = 0. TP sends a key skCUi
to

102

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

every CUi ∈ CU and also skCP to CP through a secure channel.

(v) Every CUi ∈ CU generates data YCUi,t containing m attributes according to

the CP ’s specification. The data is encrypted with a self-generated symmetric

key, and the encrypted data is stored at IPFS. The data is also aggregated,

and the aggregated data is encrypted with the key received from TP . Encrypted

aggregated data and IPFS URL are sent to the contract before τ < τc. If any

CUi ∈ CU fails to send the encrypted data before τc, then the CUi’s deposit

is forfeited. The forfeited deposit is distributed to all other cloud users equally

along with their deposits. $p is refunded to CP , and the contract is terminated.

If no CUi has sent the encrypted data, all deposits and $p are sent to CP , and

the contract is terminated.

(vi) After τ > τc, CP sends the key skCP to the smart contract. The contract

performs the aggregation operation on the encrypted data and generates aggre-

gated statistics. If CP fails to send the key before τa, $p is distributed to every

CUi ∈ CU along with their deposits, and the contract is terminated.

(vii) After learning the aggregated statistics of the data, if CP is willing to buy the

data, it should send its willingness to the contract before τb. Otherwise, $p is

refunded to CP , deposits are refunded to cloud users, and the contract is termi-

nated.

(viii) If CP is willing to buy the data, then every CUi ∈ CU should reveal the skCUi

before τr. The contract will distribute $p to every CUi along with their deposit

$d. If any CUi fails to reveal the keya before τr, then their deposit is forfeited.

The deposits and the pay shares of forfeited cloud users are sent toCP . CP after

learning skCUi
can decrypt the encrypted url and obtain the encrypted data. The

encrypted data can be decrypted with the respective self-generated symmetric

key KCUi,CP .
aAs shown in Figure 4.1 the actual key is not revealed. But, to simplify the high-level description,

we assume that the key is revealed.

103

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

4.2.2 FairNaivePPA Protocol

FairNaivePPA protocol is presented in Figure 4.1. FairNaivePPA smart contract

functionalities executed by Blockchain are presented as Algorithms 4.1 to 4.6. CP pub-

lishes the details of the sensing task and timing parameters τi, τc, τa, τb, τr at a public

platform. It sends all these parameters along with $p to BC invoking Algorithm 4.1. Algo-

rithm 4.1 stores the provider’s pay and sets the state as Intent. Interested users show intent

by sending deposits to BC invoking Algorithm 4.2. Algorithm 4.2 stores the deposit sent

by a user and adds the user to a list and then increments the user count. The intended users

have to generate the data according to the given specifications, and the aggregated data has

to be sent to BC invoking Algorithm 4.3. Algorithm 4.3 stores the commitment sent by a

cloud user. Depending on the behavior of the users, there are three cases as follows:

Case 1: All the intended users have committed the data. In this case, the provider has to

send the secret key to initiate the computation of aggregated statistics. Depending on the

behavior of the provider, there are two cases as follows:

Case 1.1: The provider has sent the secret key invoking Algorithm 4.4. In this case,

the Algorithm 4.4 computes the aggregated statistics. Depending on the behavior of

the provider, there are two cases as follows:

Case 1.1.1: After learning the aggregated statistics, the provider is willing to buy.

In this case, the provider will send a transaction invoking Algorithm 4.5 which

sets the state as Reveal. The users have to reveal the data to get the payment and

their deposits by invoking Algorithm 4.6. After revealing the data by an user,

Algorithm 4.6 add that user to a list of honest users and sets the state as Buy.

The deposits and the aborted users’ pay shares are sent to the provider, and the

contract is terminated. At the end of the protocol, CP retrieves the dataset YCUi,t

of every cloud user in the following way:

After obtaining CKCUi
from every CUi ∈ CU , CP computes

skCUi
= DECKCUi,CP

(CKCUi
)

104

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

url = DECskCUi
(Curl)

obtains CYCUi,t from IPFS network using url

ȲCUi,t = DECskCUi
(CYCUi,t)

YCUi,t = DECKCUi,CP
(ȲCUi,t)

Case 1.1.2: After learning the aggregated statistics, the provider is not willing to

buy. In this case, the payment is refunded to the provider. The deposits of the

users are also refunded, and the contract is terminated.

Case 1.2 The provider has failed to send the secret key. In this case, the pay is equally

distributed to the users along with their deposits, and the contract is terminated.

Case 2: Only a subset of the intended users have committed the data. In this case, the

aborted users’ deposits are equally shared among the committed users, along with their

deposits. Pay is refunded to the provider, and the contract is terminated.

Case 3: None of the intended users has committed the data. All the deposits of the users

and the pay are sent to the provider, and the contract is terminated.

FairnaivePPA protocol

For trusted key dealer TP
1. To generate and send encryption keys

(a) Choose two safe primes q1 and q2 and compute N = q1 ∗ q2.
(b) Choose a hash function H : Z → Z∗N2 and set the public parameters as param =

(N,H,Gq, g) where g is a generator of group Gq with prime order q.
(c) Send a secret key skCUi

∈ [0, N2] to every user CUi ∈ CU through a secure channel.
(d) Send skCP to the cloud provider CP through a secure channel such that∑|CU |

i=1 skCUi
+ skCP = 0.

For a cloud provider CP
2. To create a sensing task

(a) Choose a random number rCP ∈ Zq and compute pkCP = grCP

(b) Send transCPcreate = (pkCP , $pay, τi, τc, τa, τb, τr) to BC.
3. To initiate the computation of aggregation statistics, send transCPaggregate = (skCP) to BC
4. To buy the data send transCPbuy to BC

For a cloud user CU
5. To participate in the sensing task

(a) Choose a random number rCUi
∈ Zq and compute a pkCUi

= grCUi .

105

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

(b) Send transCUi
intent = (pkCUi , $d) to BC.

6. To send the encrypted data
(a) Encrypt XCUi,t = [

∑e
i=s y1,i, ...,

∑e
i=s ym,i] as

CCUi,t = [(1 +
∑e

i=s y1,i ∗N) ·H(t)skCUi mod N2, ..., (1 +
∑e

i=s ym,i ∗N) ·H(t)skCUi mod N2]

(b) Encrypt YCUi,t with shared symmetric key KCUi,CP = pk
rCUi
CP = pk

rCP
CUi

= grCUi
rCP such that

CYCUi,t = EncskCUi
(EncKCUi,CP

(YCUi,t)) and send CYCUi,t to IPFS and obtain url.
(c) Encrypt urlwith skCUi

such thatCurl = EncskCUi
(url). ComputeCKCUi

= EncKCUi,CP
(skCUi

)

and ctCUi
= comm(CKCUi

, s) where s is randomly chosen.
(d) Send transCUi

commit=(CCUi,t, Curl, ctCUi
) to BC.

7. To reveal the data send transCUi

reveal=(CKCUi
, s) to BC

For Blockchain BC: set state ← Init, listCU ← {}, listco ← {}, listho ← {}, n ← 0, $p ← 0,
$deposit← 0

8. On receiving transCPcreate execute FairNaivePPA.cretae(pkCP , $pay, τi, τc, τa, τb, τr)
9. On receiving transCUi

intent execute FairNaivePPA.intent(pkCUi
, $d)

10. On receiving transCUi
commit execute FairNaivePPA.commit(CCUi,t, Curl, ctCUi

)
11. On receiving transCPaggregate execute FairNaivePPA.aggregate(skCP)

12. On receiving transCPbuy execute FairNaivePPA.buy()

13. On receiving transCUi

reveal execute FairNaivePPA.reveal(CKCUi
, s)

Timer
If τ > τi and |listcu|= 0 and state = Intent then

set ledger[CP]← ledger[CP] + $p and state← Aborted
If τ > τi and |listcu|6= 0 then set state← Commit
If τ > τc and |listco|= 0 then

set ledger[CP]← ledger[CP] + $p+ $deposit and state← Aborted
If τ > τc and |listco|6= |listcu| then

set ledger[CP]← ledger[CP] + $p

∀ CUi ∈ listco set ledger[CUi]← ledger[CUi] + $deposit
|listco|

set state← Aborted
If τ > τc and |listco|= |listcu| then set state← Aggregate
If τ > τa and state = Aggregate then

∀CUi ∈ listcu set ledger[CUi]← ledger[CUi] + $p
|listcu| + $deposit

|listcu|
set state← Aborted

If τ > τb and state = Buy then
set ledger[CP]← ledger[CP] + $p

∀CUi ∈ listcu set ledger[CUi]← ledger[CUi] + $deposit
|listcu|

set state← Aborted
If τ > τr and state = Reveal and |listho|= 0 then

set ledger[CP]← ledger[CP] + $p+ $deposit and state← Aborted
If τ > τr and state = Reveal and |listho|6= 0 then

∀CUi ∈ listho set ledger[CUi]← ledger[CUi] + $p
|listcu| + $deposit

|listcu|

set ledger[CP] ← ledger[CP] + $p
|listcu| ∗ (|listcu|−|listho|) + $deposit

|listcu| ∗
(|listcu|−|listho|)
set state← Terminated

Figure 4.1: FairNaivePPA protocol

106

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Algorithm 4.1 FairNaivePPA.create
Input: pkCP , $pay, τi, τc, τa, τb, τr
Output: Success or Failure message

1: if state = Init then
2: if τ < τi < τc < τa < τb < τr then
3: if ledger[CP] ≥ $pay then
4: set ledger[CP]← ledger[CP]− ($pay);
5: set $p← $pay;
6: set state← Intent;
7: return (Success, Task created)
8: else
9: return (Failure, Balance is low)

10: else
11: return (Failure, Bad timing parameters)
12: else
13: return (Failure, State is not Init)

Algorithm 4.2 FairNaivePPA.intent
Input: pkCUi

, $d
Output: Success or Failure message

1: if state = Intent then
2: if τ < τi then
3: if ledger[CUi] ≥ $d then
4: if (CUi, ∗) /∈ CU then
5: set ledger[CUi]← ledger[CUi]− $d
6: set $deposit← $deposit+ $d
7: set listCU ← listCU ∪ (CUi, pkCUi

)
8: set n← n+ 1
9: return (Success, Intent success)

10: else
11: return (Failure, Duplicate user)
12: else
13: return (Failure, Balance is low)
14: else
15: return (Failure, Intent timeout)
16: else
17: return (Failure, State is not Intent)

107

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Algorithm 4.3 FairNaivePPA.commit
Input: CCUi,t, Curl, ctCUi

Output: Success or Failure message
1: if state = Commit then
2: if τ < τc then
3: if (CUi, ∗) ∈ listCU then
4: if (CUi, ∗, ∗, ∗) /∈ commitments then
5: set commitments← commitments ∪ (CUi, CCUi,t, Curl, ctCUi

)
6: return (Success, Commit success)
7: else
8: return (Failure, Duplicate commitment)
9: else

10: return (Failure, Wrong user)
11: else
12: return (Failure, Commit timeout)
13: else
14: return (Failure, State is not Commit)

Algorithm 4.4 FairNaivePPA.aggregate
Input: skCP
Output: Success or Failure message

1: if state = Aggregate then
2: if τ < τa then
3: set Pj,t ← πlistCU

i=1 CCUi,tH(t)skCP mod N2 ∀j ← 1 to m
4: set sumj,t ← Pj,t−1

N ∀j ← 1 to m
5: set state← Buy
6: return (Success, Aggregate success)
7: else
8: return (Failure, Aggregate timeout)
9: else

10: return (Failure, State is not Aggregate)

Algorithm 4.5 FairNaivePPA.buy
Input: φ
Output: Success or Failure message

1: if state = Buy then
2: if τ < τb then
3: set state← Reveal
4: return (Success, Buy success)
5: else
6: return (Failure, Buy timeout)
7: else
8: return (Failure, State is not Buy)

108

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Algorithm 4.6 FairNaivePPA.Reveal
Input: CKCUi , s
Output: Success or Failure message

1: if state = Reveal then
2: if τ < τr then
3: if ctCUi

= comm(CKCUi
, s) then

4: set honest← honest ∪ CUi
5: set state← Buy
6: return (Success, Reveal success)
7: else
8: return (Failure, Wrong commitment)
9: else

10: return (Failure, Reveal timeout)
11: else
12: return (Failure, State is not Reveal)

4.2.3 Limitations of FairNaivePPA

(a) Trusted party TP : We have assumed a trusted party to generate and distribute the

secret keys securely. However, using a TP comes with a cost, and TP may not

guarantee to behave honestly every time (key escrow problem). Distributed key gen-

eration techniques are used to eliminate TP for a key generation. However, these

techniques involve generating a single private key that can be computed from shares

of all the cloud users increasing the communication cost. Recently, Schindler et al.

[190] establish a secret key using a smart contract as a communication channel. In

the next section, we employ a lighter key establishment protocol similar to [190] to

establish secret keys using smart contracts.

(b) All or nobody: We have assumed that either all the cloud users or no cloud user who

have shown intent to share data will call the commit functionality. In the real world,

a malicious cloud user may abort the protocol after showing intent or a cloud user

may experience communication problems with the smart contract and may not call

the commit functionality. The protocol fails even if one of the cloud users refuses to

commit after showing intent. Although the contract imposes monetary penalties on

aborting, a malicious cloud user who aborts intentionally causes the entire protocol

to be aborted.

109

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

(c) Quality of the data: The incentive model in FairNaivePPA is static, i.e., if all

the cloud users reveal their secret key, then every cloud user will get equal pay. In

this model, there is no choice for the cloud provider to pay according to the quality

of data. The incentive model will be more meaningful if the cloud provider can pay

according to some payment mechanism based on the data quality.

(d) Robustness: After intent phase, the number of cloud users participating in the pro-

tocol is fixed. The smart contract will compute aggregated statistics correctly only

if all the cloud users commit their data. In the next section, we show that the smart

contract computes aggregated statistics even if some cloud users abort the protocol

prematurely.

(e) Copy and Paste Attack: As communications with the smart contract are not through

secure channels, protocols interacting with public Blockchain networks suffer from

inherent copy and paste attack. A lazy cloud user CUl will listen to the interactions

between an honest cloud user CUi and smart contract. Then, CUl copies CUi’s in-

teractions and submit it to the smart contract without actually performing the sensing

task. One way to avoid this attack is by using the commit and reveal technique where

the commitment of the key is generated using a well-known commitment method

like Pedersen commitment [186]. If two cloud users submit the same commitment,

then smart contract rejects the second commitment and asks to recompute the com-

mitment with different parameters. In the reveal phase, the commitment is revealed

along with the parameters used to generate the commitment. For the sake of simplic-

ity, we are not considering this attack in our protocol.

110

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

4.3 A trusted party free fair payment protocol for privacy-

preserving aggregation of mobile crowdsensing data

(FairPPA)

In this section, our first objective is to eliminate the trusted party TP for key generation.

We propose a new smart-contract based key generation algorithm in which every cloud user

generates encryption keys non-interactively without using the TP . The second objective is

adding robustness. Even if some cloud users abort during the protocol execution, the smart

contract should compute the correct aggregated statistics. The cloud users are allowed to

abort during different phases, and still, our smart contract can compute the aggregated re-

sult. However, this increases the number of interactions between cloud users and the smart

contract. The third objective is to design a payment mechanism that will pay according to

the quality of data produced by the cloud users. In this protocol, we use a truth-finding al-

gorithm and compute weights according to the ground truth and pay a cloud user based on

the computed weight. The fourth objective is to introduce fairness through a robust dispute

resolution mechanism.

4.3.1 Smart contract based key generation

We use the smart contract as a communication channel for generating keys non-interactively

without a TP . The algorithm for key generation is presented in Algorithm 4.7. The algo-

rithm takes the list of cloud users CUi ∈ listdo obtained from the FairPPA contract

and two values r1, r2 given by CP during task creation. These values will change for ev-

ery new sensing task. The algorithm also takes l as input: the expected number of cloud

users to be selected as buddies during the key generation. The algorithm outputs a list

of buddies and a list of keys established with each buddy. Every CUi ∈ listdo computes

the encryption key as a sum of all the keys established with every buddy. Clearly, if CUi

selected CUj as a buddy, then dkeyCUi,CUj
− dkeyCUj ,CUi

= 0. Both of them will add

the same value to their encryption key such that one of them adds positive value, and

the other will add a negative value. This property cancels out the encryption keys during

111

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

the aggregation operation. If any CUi ∈ listdo aborts after showing intent, then a new

list of buddies and new encryption keys must be generated according to the new listdo.

Algorithm 4.7 FairPPA.keygen
Input: listcu, r1, r2, l
Output: indCUi

,skCUi

1: foreach CUj ∈ listdo − CUi do
2: KCUi,CUj

← (pkCUj
)rCUi = (pkCUi

)rCUj = grCUi
rCUj

3: if PRF (KCUi,CUj
, r1) ≤ l

|listdo|−1 then
4: add CUj to indCUi

5: foreach CUj ∈ indCUi
do

6: dkeyCUi,CUj
← i−j
|i−j| ∗ PRF (KCUi,CUj

, r2)

7: skCUi
← skCUi

+ dkeyCUi,CUj

4.3.2 Truth Discovery Algorithm (TDA)

As the quality of different cloud users’ data typically varies, it is sensible to pay more to the

users who sense the quality data. However, the data quality is unknown a priori. Therefore,

truth discovery algorithm (TDA) is used to find weights and estimate the ground truths.

Many TDA algorithms [191, 192, 193] are presented in the literature, and their common

procedure is summarized in Algorithm 4.8. The algorithm starts with a random ground-

truth value and has mainly two steps: weight calculation and truth estimation. During

weight calculation, the ground truth is assumed to be constant, and the weight wCUi
of each

user CUi ∈ listho is calculated as

wCUi
= ω

 ∑
m∈(s1,...,sn)

d(xCUi
m , x∗m)

 (4.1)

Where d(·) denotes the function that computes the distance between the user’s data xCUi
m ,

and the estimated ground truth x∗m. ω(·) is some monotonically decreasing function. The

d(·) and w(·) functions vary with respect to different TDAs. In truth estimation step, the

users’ weights are assumed to be fixed, and the estimated ground truth x∗m of each sensor

m ∈ (s1, ..., sm) is derived as

x∗m =

∑
CUi∈listho(wCUi

∗ xCUi
m)∑

CUi∈listho wCUi

(4.2)

112

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Clearly, the ground truth x∗m relies more on the user values with higher weights. The

converge criteria is application-specific.

Algorithm 4.8 FairPPA.TDA
Input: Cloud users’ data {XCUi

m |m ∈ (s1, ..., sm), CUi ∈ listho }
Output: Estimated ground truth {x∗m|m ∈ (s1, ..., sm)}, weights W = {wCUi

|CUi ∈ listho}, π
1: Randomly initialize the ground truth for a sensing task
2: repeat
3: for CUi ∈ listho do
4: update the weight wCUi

based on the current estimated ground truths using Equation 4.1
5: for m ∈ (s1, ..., sm) do
6: Update the estimated ground truth x∗m based on cloud users’ current weights using Equation 4.2
7: until Convergence criterion is satisfied

We do not focus on designing new d(·) and ω(·) functions; instead, we use simple

existing functions and design a payment mechanism based on the weights obtained from

the TDA. However, directly modeling Algorithm 4.8 as a smart contract is not feasible

due to costs involved and may lead to verifier’s dilemma [97]. In our protocol, the cloud

provider computes the weights and ground truth off-line and sends the weights to the smart

contract along with proof of correctness (π) of executing TDA. We use the inner state hash

(ISH) [129] to compute the proof-of-correctness. Assuming that the TDA algorithm is

composed of a finite number of atomic operations and each atomic operation takes some

state information as input and produces another state information as output. The inner state

of an algorithm is defined as the concatenation of all the input and output states of the

atomic operations of an algorithm, and the definition of the algorithm in terms of atomic

operations. An l-bit hash function takes an inner state of an algorithm as input and maps

it into an l-bit random string called as inner state hash. ISH helps in detecting the cheating

behavior accurately as the slightest deviation from the correct computation can be detected

accurately.

4.3.3 Payment Mechanism

The payment mechanism described in Algorithm 4.9 takes the weights calculated in Algo-

rithm 4.8 as input. It produces the amount of pay to be received by each cloud user who

followed the protocol honestly.

113

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Algorithm 4.9 FairPPA.payment
Input: Weights W = {wCUi

|CUi ∈ listho}, pay $p
Output: payment for each cloud user {$pCUi

|CUi ∈ listho
1: foreach CUi ∈ listho do

2: p̄CUi
←
[(

wCUi∑|listho|
i=1 wCUi

)
∗ 100

]
3: $pCUi

←
[
p̄CUi

∗
(

$p∑|listho|
i=1 p̄CUi

)]

4.3.4 Dispute Resolution Mechanism (DRM)

Dispute resolution mechanism is discussed in Algorithm 4.10 and Algorithm 4.11. It is

executed when a CP miscalculates weights, and a cloud user challenges these incorrect

weights. To resolve the dispute, we adopt a byzantine voting mechanism such that when

a dispute is raised, every CUk ∈ listdv runs Algorithm 4.8 locally and returns results to

FairPPA contract. Algorithm 4.10 compares the weights sent by data verifiers with the

weights sent by both cloud provider and challenger. Algorithm 4.10 rewards or penalizes

cloud users, data verifiers and cloud provider according to the results of the comparison.

Algorithm 4.11 is invoked when there is no consensus among the data verifiers. Algorithm

4.11 computes the weights and compares the weights with weight returned by verifiers,

provider and challenger. It rewards or penalizes the users, verifiers, provider and chal-

lenger according to the comparison results. If both the cloud provider and the challenger

are malicious, $fCP , $fC are added to corpus. As executing TDA using smart contracts is

costly, the corpus fund is used to compensate the party calling TDA smart contract func-

tionality.

114

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Algorithm 4.10 FairPPA.DRM
Input: WCP and πCP , W C and πC , ∀CUk ∈ listhv (WCUk , πCUk), minDv, th, $p, $depositdo,
$depositdv , $fCP , $fC , listho, listma, listhv
Output: φ

1: if |listhv|> minDv then
2: foreach CUk ∈ listhv do
3: if WCUk = WCP ∧ πCUk = πCP then
4: vCP ← vCP + 1
5: else
6: if WCUk = W C ∧ πCUk = πC then
7: vC ← vC + 1

8: if vCP ≥ th then
9: ∀CUi ∈ listho set $pCUi

← PM(WCP , $p)

10: ∀CUi ∈ listho set ledger[CUi]← ledger[CUi] + $depositdo
|listho|+|listma| + $pCUi

11: ∀CUk ∈ listhv set ledger[CUk]← ledger[CUk] + $depositdv
|listhv| + $fC

|listhv|

12: Set ledger[CP]← ledger[CP] + $depositdo
|listho|+|listma| ∗ (|listma|) + $fCP

13: else
14: if vC ≥ th then
15: ∀CUi ∈ listho set $pCUi

← PM(W C , $p)

16: ∀CUi ∈ listho set ledger[CUi]← ledger[CUi] + $depositdo
|listho|+|listma| + $pCUi

17: ∀CUk ∈ listhv set ledger[CUk]← ledger[CUk] + $depositdv
|listhv| + $fCP

|listhv|

18: Set ledger[CP]← ledger[CP] + $depositdo
|listho|+|listma| ∗ (|listma|)

19: Set ledger[C]← ledger[C] + $fC
20: else
21: Run FairPPA.DRM2(WCP , πCP , W C , πC , ∀CUk ∈ listhv (WCUk , πCUk))
22: else
23: Run FairPPA.DRM2(WCP , πCP , W C , πC , ∀CUk ∈ listhv (WCUk , πCUk))
24: Set State← Terminated

115

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Algorithm 4.11 FairPPA.DRM2

Input: WCP and πCP , W C and πC , ∀CUk ∈ listhv (WCUk , πCUk)
Output: φ

1: Compute (WSC , πSC)← TDA(XCUi
m |m ∈ (s1, ..., sm), CUi ∈ listho)

2: Compute $pCUi ← PM(WSC , $p)

3: ∀CUi ∈ listho set ledger[CUi]← ledger[CUi] + $depositdo
|listho|+|listma| + $pCUi

4: Set ledger[CP]← ledger[CP] + $depositdo
|listho|+|listma| ∗ (|listma|)

5: if WCP = WSC and πCP = πSC then
6: set ledger[CP]← ledger[CP] + $fCP
7: else
8: if W C = WSC and πC = πSC then
9: Set ledger[C]← ledger[C] + $fC

10: else
11: Set $corpus← $fCP + $fC
12: foreach CUk ∈ listhv do
13: if WCUk = WSC and πCUk = πSC then
14: set listhhv ← listhhv ∪ CUk
15: foreach CUk ∈ listhhv do
16: set ledger[CUk]← ledger[CUk] + $depositdv

|listhhv|

4.3.5 FairPPA contract clauses

The proposed system has four key entities: cloud provider, cloud user, verifiers and miners

(Blockchain nodes) -see also Figure 5.3. The system consists of three phases: (1) Task

creation phase (TCP) (2) Spawn and sensing phase (SSP) and (3) Data sharing and reward

distribution phase (DRP).

Task Creation Phase Spawn and Sensing Phase

3. Verify
SC details

Cloud user Smart
Phone

4. Intent

7.1 Sense
7.2 Data

7.3 Encrypted
data

7.4 URL

7.5 Encrypted
aggregated
data & URL

IPFS

8. Aggregated
statistics

Data Sharing and reward Distribution Phase

Cloud provider

Cloud user

9. Buy

13. Pay

14.1 URL

14.2 Encrypted
data

5. List
6.Spawn

list

10. Reveal
11. Quality report

12.1 DisputeB
lo

c
k

c
h

a
in

B
lo

c
k

c
h

a
in

B
lo

c
k

c
h

a
in

IPFS
12.2 data

Verifiers
12.3 Quality report

Cloud provider

Cloud user

1.1 Deploy SC
1.2 SC Address

1.3 SC Address

2. Sensing Task

Figure 4.2: Overview of the proposed FairPPA protocol

116

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

The clauses in FairPPA contract are as follows:

Task creation phase (TCP)

(i) A cloud provider CP designs, develops and deploys a smart contract FairPPA

in a public Blockchain network and publish the contract address on a public

platform (like a website / bulletin board).

(ii) CP initiates the FairPPAwith necessary parameters to which every participant

has to adhere. He also initializes it with a pay $p distributed to the cloud users

for participating in the sensing task.

Spawn and sensing phase (SSP)

(iii) A cloud user CUi verifies the contract and task details with the publicly available

contract address.

(iv) To participate in the sensing task, aCUi has to send an intent message toFairPPA

along with safety deposit $dCUi
. The safe deposit $dCUi

is required to avoid

abrupt aborts of the cloud users during the protocol. If no CUi has shown the

intent, $p is refunded to CP , and the contract is terminated.

(v) FairPPA contract randomly categorizes every CUi into one of the two sets

listdo and listdv. The first set computes the task, and the second set is assigned

as verifiers during dispute resolution. Every cloud user receives listdo and listdv

by querying the FairPPA.

(vi) After receiving listdo, every CUi ∈ listdo generates a list of buddies indCUi

using listdo and pseudo-random function. Each CUi computes a value skCUj
for

every CUj ∈ indCUi
. The encryption key is computed as

skCUi
=
∑

CUj∈indCUi
skCUj

. The CUi who sends the buddies list indCUi
to

FairPPA is added to listsp. If no CUi has sent the buddies list, then all the

deposits of cloud users, and $p are sent to CP . The deposits of ∀CUk ∈ listdv
are refunded and the contract is terminated. If any CUi fails to send the buddies

list, then that CUi is removed from listdo. listsp is set as empty, and a new

indCUi
is requested until all the cloud users in listdo have sent the buddies list.

(vii) Every CUi ∈ listsp generates data Y CUi,t
m according to the cloud provider’s spec-

117

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

ification and stores the encrypted Y CUi,t
m in IPFS. Aggregates Y CUi,t

m in to XCUi
m

and encrypts it with a key generated in the previous step and sends the encrypted

data to FairPPA, which will add CUi to listco. If any CUi ∈ listsp fails to

send the encrypted data, then he is removed from listdo. listsp, listco are set as

empty. A new indCUi
is requested until all the cloud users in listdo have sent the

buddies list and also sent the encrypted data. If no CUi has sent the encrypted

data, all the deposits of CUi ∈ listsp ∪ listdo along with $p are sent to CP . The

contract is terminated after refunding deposits to every CUk ∈ listdv.
Data sharing phase (DSP)

(viii) The smart contract performs the aggregation operation on the encrypted data and

generates aggregated statistics.

(ix) CP after learning the aggregated statistics of the data, if he is interested in buy-

ing the data, he will send a buy transaction to FairPPA along with a deposit

$fCP . This deposit is required to ensure honest behavior of CP during dis-

pute resolution. If CP is not interested in buying, then he will not send any

further transactions. $p is refunded to CP , and the deposits of CUi ∈ listco

and CUk ∈ listdv are refunded, and the contract is terminated. The cloud users

aborted during the SSP phase get a pay of $0 and their deposits are distributed

equally to CUi ∈ listco.
(x) Every CUi ∈ listco reveals the IPFS address of the Y CUi,t

m through FairPPA,

which adds CUi to listho.

(xi) CP runs a truth discovery algorithm (TDA) to find weightsWCP = {wCUi
|CUi ∈

listco} and sends WCP along with proof-of-correctness of the computation πCP

to FairPPA. If CP fails to send WCP then a dispute resolution mechanism is

initiated.

(xii) The cloud users who do not have trust on CP may optionally run TDA locally,

and if found that CP has not computed the weights correctly sends a challenge

request to FairPPA along with a deposit $fC and new weights W C and new

proof πC .

118

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

(xiii) If no challenge is raised then the FairPPA will distribute the pay to every

CUi ∈ listho according to WCP . The cloud users aborted during the SSP and

DSP phases get a pay of $0 and their deposits are sent to CP . $fCP is refunded

to CP . If any cloud user raises a dispute, then a dispute resolution mechanism

(DRM) is initiated.

(xiv) CP after learning skDOi
, retrieves the encrypted data from IPFS and decrypts it

locally to obtain Y CUi,t
m

4.3.6 FairPPA contract phases

4.3.6.1 Task creation phase

Before creating a task, CP designs, develops and sends a smart contract FairPPA to

a public Blockchain network. The Blockchain network deploys FairPPA according to

standard contract mining process and returns contract address. CP chooses two safe

primes q1 and q2 to compute N = q1 ∗ q2 and a generator g of group Gq with prime

order q. He also chooses a secure pseudorandom function PRF : {0, 1}a × {0, 1}∗ →
{0, 1}a, a hash function H : Z → Z∗N2 , a secure symmetric encryption method Enc

and a secure commitment method Comm. Then, CP prepares and sends a transaction

transCPPP = (N,H,Gq, g, Enc, Comm,PRF) to BC. All the received parameters are

stored in FairPPA contract storage. Then, CP chooses three random numbers rCP , r1,

and r2. Computes pkCP = grCP and sends a transaction transCPcreate = (taskid, pkCP , $p, τin,

τsp, τco, τbu, τre, τcp, τch, τdi, r1, r2, minDo, minDv, th, k). As FairPPA contract handles

multiple sensing task simultaneously, taskid is used to differentiate among multiple sensing

tasks4. Across the phases, the participating entities follow the timing parameters. These

timing parameters are required to enforce timely computation and also to avoid locking of

funds indefinitely. All the entities are aware of the timer which progresses in rounds and at

the beginning of each round the timer functionality is executed. The current time is fetched

by querying the underlying Blockchain. $p is distributed among cloud users according to

the quality of their sensed data. The random numbers r1, r2 values change for every new

sensing task. The parameters minDo and minDv ensures that there is a minimum number

4From here on we omit taskid for the sake of better clarity.

119

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

of cloud users and data verifiers before starting a sensing task. th is known as threshold

used during dispute resolution. The parameter k is used to update timing parameters. When

received transCPcreate, the FairPPA asserts τin < τsp < τco < τbu < τre < τcp < τch < τdi.

Then, the received parameters are stored in contract storage, and the state of the contract is

changed to Intent. The formal protocol for TCP is presented in Figure 4.3.

Protocol: Task Creation Phase

For cloud provider CP
1. Send transCPdeploy = (FairPPA) to Blockchain BC. After receiving the FairPPAaddress,

publish the address publicly.
2. Choose two safe primes q1 and q2 and computeN = q1∗q2. Choose a hash functionH : Z→

Z∗N2 , a pseudo-random function PRF : {0, 1}a×{0, 1}∗ → {0, 1}a a symmetric encryption
method Enc and commitment method Comm. Choose a generator g of group Gq with prime
order q.

3. Send transCPPP = (N,H,Gq, g, Enc, Comm,PRF) to FairPPA.
4. Choose a random number rCP ∈R Zq and compute pkCP = grCP .
5. Generate two random numbers r1, r2 ∈R Zq such that r1 6= r2.
6. Send transCPcreate = (taskid, pkCP , $p, τin, τsp, τco, τbu, τre, τcp, τch, τdi, r1, r2, minDo,

minDv, th, k) to FairPPA and publish the task details publicly.
Blockchain

7. On receiving transCPdeploy deploy FairPPA and return FairPPAaddress.
8. On receiving transCPPP , store all the received parameters.
9. On receiving transCPcreate

(a) Assert ledger[CP] ≥ $p and τin < τsp < τco < τbu < τre < τcp < τch < τdi
(b) Set state← Intent and store all the received parameters.

Figure 4.3: Task Creation Phase protocol

4.3.6.2 Spawn and sensing phase

An interested cloud user CUi fetches the contract details and verifies them. He computes

sensing cost and expected utility. If the expected utility is more than the sensing cost, then

he chooses a random number rCUi
and computes pkCUi

= grCUi . He prepares and sends

transCUi
intent = (pkCUi

, $dCUi
) to FairPPA. The deposit $dCUi

is required to ensure partic-

ipation of the cloud user till the end of the protocol. The contract verifies that CUi has not

sent the intent transaction for the same task previously. Then, the contract randomly adds

CUi in to one of two lists listdo or listdv. Generating true randomness is not possible due to

the deterministic nature of smart contracts. As currently, the cloud users cannot predict the

120

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

exact time-stamp of the new block, we use the result of blockhash(block.timestamp) as a

random number which meets our need to randomly assign cloud users to listdo and listdv.

block.timestamp returns the current block timestamp as seconds since UNIX epoch and

blockhash is a function that takes an integer as input and returns the hash of that block.

After τ > τin: (1) if state = Intent and |listdo|< minDo and |listdv|< minDv, $p is

refunded to CP and the deposits of CUi ∈ listdo and CUk ∈ listdv are also refunded. The

state of the contract is set to Aborted. (2) If state = Intent and |listdo|≥ minDo and

|listdv|≥ minDv, then the contract state is set as Spawn

Every CUi queries the FairPPA to fetch listdo and listdv. If CUi ∈ listdo, then they

run (indCUi
, skCUi

) ← KeyGen(CU, r1, r2, l). Next, CUi sends transCUi
spawn = (indCUi

).

After receiving transCUi
spawn, the contract checks τ < τs, state = Spawn, CUi ∈ listdo,

and CUi /∈ listsp. If all checks are passed, then the CUi along with received parameters

is added to listsp. After τ > τsp: (1) if state = Spawn and |listsp|= 0, then the contract

state is set as Aborted and $p is refunded to CP along with the deposits of CUi ∈ listdo.
The deposits of CUk ∈ listdv are refunded. (2) if state = Spawn and |listsp|6= |listdo|,
then the aborted cloud users are removed from listdo and all timing parameters except τi

are increased by a factor of k. listsp is set as empty. The contract will be in the Spawn

state until listsp = listdo or listdo = 0. (3) if state = Spawn and listsp = listdo, then the

contract state is set as Commit.

Now, every CUi ∈ listsp starts sensing according to the CP specifications and col-

lect the data Y CUi,t
m from the requested sensors (s1, ..., sm) in the requested time interval

[ts, te]. As Y CUi,t
m is large data set, it cannot be shared through Blockchain because stor-

age incurs a huge cost in public Blockchain networks. So, CUi aggregates Y CUi,t
m into

XCUi
m = [

∑e
i=s y1,i, ...,

∑e
i=s ym,i] and encrypts XCUi

m as CCUi
m = [(1 +

∑e
i=s y1,i ∗ N) ·

H(t)skCUi mod N2, ..., (1+
∑e

i=s ym,i∗N)·H(t)skCUi mod N2]. Then, a shared key is com-

puted asKCUi,CP = (pkCP)rCUi = (pkCUi
)rCP = grCUi

rCP . By using symmetric encryption

CUi performs double encryption on Y CUi,t
m to generateCY CUi,t

m = EncskCUi
(EncKCUi,CP

(Y CUi,t
m)).

The encryption with shared key protects the data from entities other than CP and encryp-

tion with skCUi
protects data from CP till the CUi reveals it. CY CUi,t

m is stored at IPFS

network which returns the hash of CY CUi,t
m as an URL url to access it. CUi encrypts

121

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

url and skCUi
as CCUi

url = EncskCUi
(url) and CKCUi = EncKCUi,CP

(skCUi
). As a final

step in this phase CUi commits the encryption of skCUi
as ctCUi = comm(CKCUi , s)

where s is a randomly chosen. Then, CUi prepares and sends a transaction transCUi
commit =

(CCUi
m , CCUi

url , ct
CUi) to FairPPA. After receiving transCUi

commit, the FairPPA contract

verifies (1) τ < τco (2) CUi ∈ listsp (3) CUi /∈ listco and (4) state = Commit. If all

the checks are passed, then CUi is added to listco along with all the received values. After

τ > τco: (1) if state = Commit and |listco|= 0, then the contract state is set as Aborted

and $p is refunded to CP along with deposits of CUi ∈ listdo ∪ listsp. The deposits of

CUk ∈ listdv are refunded. (2) if |listco|6= |listsp|, then the aborted cloud users are re-

moved from listdo. listsp, listco are set as empty. All timing parameters except τin are

increased by a factor of k, and the contract state is set as Spawn. (3) if listco = listsp, then

the contract computes the aggregated statistics as

Pj,t ←
∏|listco|

i=1 CCUi
j mod N2 ∀j = 1 to m

sumj,t ← Pj,t−1

N
∀j = 1 to m

FairPPA stores the computed statistics and the contract state is set as Buy. The formal

protocol for SSP is presented in Figure 4.4.

Protocol: Spawn and Sensing Phase

For cloud user CUi
1. Verify FairPPA contract and task details. Calculate sensing cost and utility according to

CP ’s specifications.
2. If satisfied with utility then choose a random number rCUi

∈R Zq and compute pkCUi
=

grCUi

3. Send transCUi
intent = (pkCUi , $dCUi) to FairPPA.

4. Query the smart contract for listdo and listdv . If CUi ∈ listdo, then run (indCUi , skCUi)
← KeyGen(listdo, r1, r2, l) and send transCUi

spawn = (indCUi
) to FairPPA

5. Using smart device collect sensing data from sensors S1, .., Sm in the time interval t = [ts, te]

Y CUi,t
m =


S1 S2 Sm

ts y1,s y2,s ym,s

te y1,e y2,e ym,e



6. Aggregates Y CUi,t
m in to xCUi

m and Compute

CCUi
m =

[(1 +
∑e
j=s y1,j ∗N) ·H(t)skCUi mod N2, ..., (1 +

∑e
j=s ym,j ∗N) ·H(t)skCUi mod N2]

7. Compute a shared key KCUi,CP = (pkCP)rCUi = (pkCUi
)rCP = grCUi

rCP

122

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

8. Compute CY CUi,t
m = EncskCUi

(EncKCUi,CP
(Y CUi,t
m)) and send CY CUi,t

m to IPFS and re-
ceive url.

9. Compute CCUi

url = EncskCUi
(url) and CKCUi = EncKCUi,CP

(skCUi
) and ctCUi =

comm(CKCUi , s) where s is a randomly chosen.
10. Send transCUi

commit = (CCUi
m , CCUi

url , ct
CUi) to FairPPA

Blockchain: listdo ← {}, listdv ← {}, listsp ← {}, listco ← {}, listma ← {}, $depositdo ← 0,
$depositdv ← 0

11. On receiving transCUi
intent

(a) Assert ledger[CUi] ≥ $d and τ < τin andCUi /∈ (listdo∪listdv) and state = Intent
(b) If (blockhash(block.timestamp))%2 = 0 then set listdo ← listdo ∪ CUi and

$depositdo ← $depositdo + $d. Else, set listdv ← listdv ∪ CUi and $depositdv ←
$depositdv + $d.

12. On receiving transCUi
spawn

(a) assert τ < τsp and state = Spawn and (CUi, ∗) /∈ listsp and CUi ∈ listdo
(b) set listsp ← listsp ∪ (CUi, indCUi)

13. On receiving transCUi
commit

(a) assert τ < τco and state = Commit and (CUi, ∗) ∈ listsp and (CUi, ∗, ∗, ∗) /∈ listco
(b) set listco ← listco ∪ (CUi, C

CUi
m , CCUi

url , ct
CUi)

Timer
if τ > τin and state = Intent and |listdo|< minDo and listdv < minDv

set ledger[CP]← ledger[CP] + $p

∀CUi ∈ listdo set ledger[CUi]← ledger[CUi] + $depositdo
|listdo|

∀CUk ∈ listdv set ledger[CUk] ← ledger[CUk] + $depositdv
|listdv| and set state ←

Aborted
if τ > τin and state = Intent and |listdo|> minDo and |listdv|> minDv then set state←
Spawn
if τ > τsp and state = Spawn and |listsp|= 0

set ledger[CP]← ledger[CP] + $p+ $depositdo
∀CUk ∈ listdv set ledger[CUk] ← ledger[CUk] + $depositdv

|listdv| and set state ←
Aborted

if τ > τsp and state = Spawn and |listsp|6= |listdo|
set listma ← listma ∪ (listdo − listsp) and listdo ← listdo − listma and listsp ← φ
and τsp ← τsp + k and τco ← τco + k and τbu ← τbu + k and τre ← τre + k and
τcp ← τcp + k and τch ← τch + k and τdi ← τdi + k

if τ > τsp and state = Spawn and |listsp|= |listdo| then set state← Commit
if τ > τco and state = Commit and |listco|= |listsp|

set Pj,t ←
∏|listco|
i=1 CCUi

j mod N2 ∀j = 1 to m

set sumj,t ← Pj,t−1
N ∀j = 1 to m and state← Buy

if τ > τco and state = Commit and |listco|6= |listsp|
set listma ← listma ∪ (listsp − listco) and listdo ← listdo − listma and listsp ← φ
and listco ← φ and listsp ← φ and τsp ← τsp+k and τco ← τco+k and τbu ← τbu+k
and τre ← τre + k and τcp ← τcp + k and τch ← τch + k and τdi ← τdi + k and
state← spawn

if τ > τco and state = Commit and |listco|= 0
set ledger[CP]← ledger[CP] + $p+ $depositdo
∀CUk ∈ listdv set ledger[CUk]← ledger[CUk] + $depositdv

|listdv| and state← Aborted

Figure 4.4: Spawn and Sensing Phase Protocol

123

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

4.3.6.3 Data sharing and reward distribution phase

The cloud provider receives the aggregated statistics by querying the FairPPA. Then,

he analyzes the statistics and if he is satisfied with the statistics, then he sends transCPbuy to

FairPPA along with a deposit of $fCP . After receiving transCPbuy , the FairPPA checks

whether τ < τbu and state = buy. If checks are valid, then the contract state is set

as Reveal. If CP is not interested in buying the data, then it aborts the protocol by not

sending any further transactions. If the contract state is Buy even after τ > τbu, then the

deposits of CUi ∈ listco and CUk ∈ listdv are refunded. To compensate CUi ∈ listco for

their honest participation, the deposits of aborted cloud users are distributed equally among

CUi ∈ listco. $p and $fCP are refunded to CP . The contract state is set as Aborted.

Soon after the contract state is set as Reveal, every CUi ∈ listco sends transCUi
reveal =

(XCUi
m , CKCUi , s) to FairPPA. After receiving transCUi

reveal, the contract checks whether

(1) τ < τre (2) state = Reveal (3) CUi ∈ listco (4) CUi /∈ listho and (5) ctCUi =

comm(CKCUi , s). If all checks are valid, then the contract adds CUi to listho along with

the received data. After τ > τre: (1) if state = Reveal and |listho|= 0, then the deposits

of CUi ∈ listdo, the deposits of aborted cloud users and $p, $fCP are sent to CP . The

deposits of CUk ∈ listdv are also refunded. The contract state is set as Aborted. (2) If

state = Reveal and |listho|6= 0, then the contract state is set as Compute.

Now, the CP executes Algorithm 4.8 to find ground truths and the corresponding

weights according to the quality of the data. CP prepares and sends transCPproof = (WCP , πCP)

to FairPPA where πCP is inner state hash (ISH) of the computation. After receiving

transCPproof , the contract verify whether τ < τcp and state = Compute. If checks are valid,

then the contract state is set as Challenge and the received data is stored in contract stor-

age. After τ > τcp, if state = Compute, then the state of the contract is set as Dispute.

If the contract state isChallenge, then anyCUi ∈ listho who does not have trust onCP

can execute Algorithm 4.8 locally. If the locally computed results have any discrepancies

with the results sent by CP , then CUi prepares and sends transCUi
challenge = (W C, πC, $fC)

where W C, πC are locally computed values. After receiving transCUi
challenge, the contract

verifies whether (1) τ < τch, (2) state = Challenge, and (3) CUi ∈ listho. If checks are

124

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

valid, then the contract state is set as Dispute and received parameters are stored. After

τ > τch and state = Challenge then, the FairPPA executes Algorithm 4.9 with WCP

and pays according to the results returned. $fCP is refunded to CP along with the deposits

of the aborted cloud users. The deposits of CUi ∈ listho, CUk ∈ listdv are refunded. The

contract state is set as Terminated.

When the contract state is set as Dispute, every CUk ∈ listdv executes Algorithm 4.8

locally and sends transCUk
verify = (WCUk , πCUk) to FairPPA. After receiving transCUk

verify,

the contract verifies whether (1) τ < τdi, (2) state = Dispute and (3) CUk ∈ listdv. If

all checks are valid, then the contract stores the received data. After τ > τdi, if state =

Dispute, then the FairPPA executes Algorithm 4.10. The formal protocol for DRP is

presented in Figure 4.5.

Protocol: Data Sharing Phase

For cloud provider CP
1. Query the FairPPA to receive Sumj,t ∀j = 1 to m, if satisfied with statistics send

transCPbuy = ($fCP) to FairPPA.
2. If τ > τre compute (WCP , πCP) ← TDA(xCUi

m |CUi ∈ listho) and send transCPproof =

(WCP , πCP) to FairPPA.
3. For every received CKCUi do

(a) Compute a shared key KCUi,CP ← (pkCP)rCUi = (pkCUi)
rCP = grCUi

rCP

(b) Compute skCUi
← DecKCUi,CP

(CKCUi) and url← DecskCUi
(CCUi

url).
(c) Access IPFS network with url to obtain CY CUi,t

m

(d) Compute Ȳ CUi,t
m ← DecskCUi

(CY CUi,t
m) and Y CUi,t

m ← DecKCUi,CP
(Ȳ CUi,t
m)

For cloud user CUi
4. If FairPPA’s state = Reveal then send transCUi

reveal = (xCUi
m , CKCUi , s) to FairPPA

5. If FairPPA’s state = Challenge then run (W C , πC)← TDA(xCUi
m |CUi ∈ listho).

6. If WCP 6= W C and/or πCP 6= πC then send transCUi

challenge = (W C , πC)
For Data Verifier CUk

7. If FairPPA’s state=Dispute then compute (WCUk , πCUk)← TDA(xCUi
m |CUi ∈ listho)

8. send transCUk

verify = (WCUk , πCUk) to FairPPA
Blockchain: listho ← {}, listhv ← {}

9. On receiving transCPbuy
(a) assert ledger[CP] ≥ $fCP τ < τbu and state = Buy
(b) set state← Reveal

10. On receiving transCUi

reveal

(a) assert τ < τre and state = Reveal and ctCUi = comm(CKCUi , s) and CUi ∈ listco
and CUi /∈ listho

(b) set listho ← listho ∪ (CUi, X
CUi
m)

11. On receiving transCPproof = (WCP , πCP)
(a) assert τ < τcp and state = Compute
(b) Store (WCP , πCP) and set State← Challenge

125

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

12. On receiving transCUi

challenge = (W C , πC)
(a) assert τ < τch and state = Challenge and CUi ∈ honest
(b) Store (W C , πC) and set state← Dispute

13. On receiving transCUk

verify = (WCUk , πCUk)
(a) assert τ < τdi and state = Dispute and CUk ∈ listdv
(b) set listhv ← listhv ∪ (CUk,W

CUk , πCUk)
Timer

if τ > τbu and state = Buy
set ledger[CP]← ledger[CP] + $p

∀CUi ∈ listco set ledger[CUi]← ledger[CUi] + $depositdo
|listco|

∀CUk ∈ listdv set ledger[CUk] ← ledger[CUk] + $depositdv
|listdv| and set state ←

Aborted
if τ > τre and state = Reveal and |listho|= 0

set ledger[CP]← ledger[CP] + $p+ $depositdo + $fCP
∀CUk ∈ listdv set ledger[CUk] ← ledger[CUk] + $depositdv

|listdv| and set state ←
Aborted

if τ > τre and state = Reveal and |listho|6= 0 set listma ← listma ∪ (listco − listho) and
state← Compute
if τ > τcp and state = Compute set state← Dispute
if τ > τch and state = Challenge

∀CUi ∈ listho set $pCUi
← PM(WCP , $p)

∀CUi ∈ listho set ledger[CUi]← ledger[CUi] + $depositdo
|listho|+|listma| + $pCUi

∀CUk ∈ listdv set ledger[CUk]← ledger[CUk] + $depositdv
|listdv|

set ledger[CP] = ledger[CP] + $depositdo
|listho|+|listma| ∗ (|listma|) + $fCP and set state←

Terminated
if τ > τdi and state = Dispute then run FairPPA.DRM(WCP , πCP ,W C , πC ,∀CUk ∈
listhv (WCUk , πCUk),minDv, th, $p, $depositdo, $depositdv , $fCP , $fC , listho, listma,
listhv).

Figure 4.5: Data sharing and reward distribution phase protocol

4.4 Security Guarantees

Theorem 4.4.1. Our proposed protocol satisfies aggregator obliviousness under Deci-

sional Composite Residuosity (DCR) in random oracle model.

We show that our protocol can be reduced to aggregator obliviousness protocol in Joye

et al. [189] which is sufficient to show that our protocol satisfies aggregator obliviousness

under DCR assumption. Our protocol is different from [189] in two aspects: First, in [189],

the keys are generated by a trusted party and are sent to cloud users securely, whereas in

our protocol the cloud users generate their keys. Both the protocols are the same from the

attacker’s perspective that is the secret key can be compromised if and only if the cloud user

126

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

is corrupted. Second, in [189] aggregator’s key is assumed to be compromised, whereas,

in our protocol, there is no aggregator key. So, from the attacker’s perspective, it is same

that the key is compromised or there is no key at all. In summary, if the protocol in [189]

satisfies aggregator obliviousness, then our protocol also satisfies aggregator obliviousness

as defined in Definition 4.1.2.

Theorem 4.4.2. Our proposed protocol satisfies fair payments

We prove fairness by considering the following cases:

Case 1: CUi is malicious and aborts after the Buy phase without revealing the actual

data. In this case, according to FairPPA contract, his deposit is forfeited, and moreover,

the payment for his data contribution is withheld. Here, the CUi does not receive any

payment without revealing the actual data. Thus, fairness holds.

Case 2: CP aborts after learning the aggregate statistics. In this case, according to

FairPPA contract the pay is refunded to CP and the deposit of every cloud user is re-

funded. Here, the CP does not receive data without initiating the payment. Thus, fairness

holds.

Case 3: CP aborts after knowing data without computing weights. In this case, ac-

cording to FairPPA contract, the contract asks a set of verifiers to compute weights and

payment to cloud users is made according to the weights returned by verifiers. Here, al-

though the CP receives data, he cannot avoid paying to the cloud users. Thus, fairness

holds.

In summary, our protocol satisfies fair payments as defined in Definition 4.1.2

4.5 Implementation and comparisons

The simulation environment is discussed in Section 1.2.3. We have adopted the factory

model of solidity [194] to design our contracts. The factory model helps in saving gas costs

during deployment of contracts for every new sensing task. The actual sensing tasks are

treated as black boxes, and the contracts do not need to know the sensors internal states.

The contracts are called before the start of sensing task and after the completion of the

127

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

sensing task. We have implemented all the contracts in private Ethereum network which

mimics the Ethereum production network. However, this implementation aims to deploy

the contracts on public Ethereum network in real-world scenarios.

4.5.1 MotionSense Dataset

We have tested the contracts for MotionSense [188] dataset. MotionSense5 contains time-

series data collected by both accelerometer and gyroscope sensors (attitude, gravity, user

acceleration and rotation rate). A total of 24 participants performed six activities in 15

trails. The activities are downstairs, upstairs, walking, jogging, sitting and standing. Two

different kinds of trails are conducted: (1) Long trails - numbered 1 to 9 with around 2

to 3 minutes duration (2) Short trails - numbered 11 to 16 that are around 30 seconds to

1-minute duration.

4.5.2 Implementation of FairNaivePPA

We ran our experiments multiple times, and each transaction’s computational and financial

cost computed is shown in Table 4.1. We have varied the number of cloud users from 1

to 24 and computed the gas consumption of aggregate and payout functionalities in Figure

4.6. For implementation feasibility, we have modified our FairNaivePPA in Figure 4.1.

The current blockchain networks support calling the function in a contract only through

an Ethereum account or a function in the same contract or another contract. That is the

scheduled function calls which are executed when the timer expires are not possible. The

timer is implemented as a payout functionality called by anyone, including a cloud user or

cloud provider. Observe that the contract deployment consumes a tremendous amount of

gas; this is due to large contract storage usage. Storing data in a contract is expensive in

Ethereum network.
5The MotionSense dataset consists of data collected from different age groups. So, naturally, there will be

a significant difference in sensor readings of different participants. Although we are aware that data quality
will vary due to the participant’s age, we use this dataset to test proof-of-concept implementation of proposed
smart contracts.

128

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Function Caller Cost in Gas Cost in $
Deployment CP 2501562* 26.491

Create CP 142536 1.509
Intent CUi 69124 0.732

Commit CUi 204218 2.162
Aggregate CP 500203** 5.297

Buy CP 41497 0.439
Reveal CUi 67446 0.714
Payout Anyone 232359** 2.46

Table 4.1: Costs of interacting with FairNaivePPA contract. We have approximated the
gas price as 30 Gwei and 1 ETH = $ 353, which are the real world costs in Oct 2020. We
have rounded off the cost in $ value up to three decimals. * - including contract deployment.
** - gas consumption for 24 cloud users.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
·105

Number of cloud users

G
as

C
on

su
m

pt
io

n

FairNaivePPA

Aggregate
Payout

Figure 4.6: Gas Consumption of FairNaivePPA - Aggregate and Payout functionalities

129

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

Function Caller Cost in Gas Cost in $
Deploy CP 3808389 1.485

PP CP 152537 0.059
Create CP 252965 0.098
Intent CUi 69337 0.027
Spawn CUi 188540* 0.073

Commit CUi 181492 0.07
Aggregate CP 409759** 0.159

Buy CP 41497 0.016
Reveal CUi 224142 0.087
Proof CP 590492 0.23

Challenge CUi 590492 0.23
Verify CUk 540624 0.213
Payout Anyone 359838*** 0.140

Table 4.2: Costs of interacting with FairPPA contract. We approximated the gas price as
1 Gwei and 1 ETH = $ 390, which are the real world costs in Sep 2020. We have rounded
off the cost in $ value up to three decimals. * - As gas consumption by Spawn functionality
varies due to the parameter l, we listed the maximum gas consumption value. ** - gas
consumption for 24 data owners. *** - gas consumption for an only single iteration of
weights computation for 24 data owners.

4.5.3 Implementation of FairPPA

The transactional and financial costs of interacting with FairPPA contract are listed in Ta-

ble 4.2. We have implemented FairPPA as a set of functions such that transaction transyx
is sent by a party y to function x. The current Ethereum blockchain network supports call-

ing of the function in a contract only through an Ethereum account or from a function in the

same contract or another contract. That is the scheduled function calls which are executed

when the timer expires are not possible. So, we implemented timer as two functionalities:

Aggregate function, which computes aggregated statistics and the rest of the timer, includ-

ing DRM is implemented as Payout function. We have taken the ω(·) and d(·) functions

in Equation 4.1 same as [195]. We have implemented Algorithm 4.8 in Java. We created an

AspectJ aspect which computes inner state hash without modifying the actual Java code.

Algorithm 4.8 is executed along with Aspectj aspect which outputs computed weights and

inner state hash. The gas cost for payout functionality in Table 4.2 includes only one round

of weight computation.

In Figure 4.7, we show the consumption of gas with respect to the number of data

130

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

owners. Observe that the gas consumption increases enormously with the increase in the

number of data owners.

0 4 8 12 16 20 24
0

0.5

1

1.5

2

2.5

3
·106

Number of Data Owners

G
as

C
on

su
m

pt
io

n

FairPPA

Aggregate

Payout

Figure 4.7: Gas Consumption of FairPPA - Aggregate and Payout functionalities. The
Payout functionality includes the gas cost of executing DRM().

4.6 Comparison with existing methods

4.6.1 Comparison with privacy-preserving aggregation methods

We compare our methods with some of the state-of-the-art privacy-preserving methods

in Table 4.3. Similar to our FairPPA method, the methods in [196, 197, 198] do not

require a trusted key dealer. However, they do not have a trusted key establishment platform

whereas in our method we use smart contracts as a communication platform for establishing

keys. The methods in [199, 200] provides aggregator unforgeability. Nevertheless, [199]

require an interactive complexity assumption and [200] require modified computational

Diffie–Hellman assumption to provide the aggregator unforgeability. On the other hand,

we prove the aggregator unforgeability by assuming the underlying consensus algorithm

of a public Blockchain is secure. Observe that our methods also extend PPA towards fair

payments when compared to the existing methods.

131

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

method
Trusted

key dealer
Free

Aggregator
oblivousness

Aggregator
unforgeability

Dynamic
leaves

(robustness)

Fair
Payments

Shi et al. [201] No Yes No No No
Acs et al. [196] Yes Yes No Yes No
Joye et al. [189] No Yes No No No
Leontiadis et al. [197] Yes Yes No Yes No
Chen et al. [198] Yes Yes No Yes No
Benhamouda et al. [202] No Yes No No No
Leontiadis et al. [199] No Yes Yes No No
Emura et al. [200] No Yes Yes No No
FairNaivePPA No Yes Yes No Yes
FairPPA Yes Yes Yes Yes Yes

Table 4.3: Comparison of proposed methods with state-of-the-art privacy-preserving meth-
ods

method Quality
evaluation

Incentive
Mechanism

Data owner
privacy Data Privacy Aggregator

correctness
Aggregated

Statistics
Fair

Payments
CrowdBC [143] Data buyer Quality-aware Psudoanonymity Encryption No No No
Wang et al. [137] Miners Quality-aware k-anonymity Yes No No
Cai et al. [138] SC (miners) Quality-aware Psudoanonymity Encryption No Yes No
ZebraLancer [139] Data buyer Quality-aware Zk-SNARKS Encryption Yes No Yes
Chatzopoulos
et al. [141] TTP Equal

Pseudoanonymity
with TTP No No No Yes

Wei et al. [165] Data buyer
Quality-aware,
Bid-based and

Reputation-based

Consortium
Blockchain run by

trusted agents
Encryption No No No

Hu et al. [147] SC (Miners)
Quality-aware and
Reputation-based Pseudoanonymity No Yes No Yes

SenseChain [148] SC (Miners) Quality-aware Pseudoanonymity No Yes No Yes
CrowdBLPS [150] Data buyer Quality-aware Pseudoanonymity Encryption No No No

FairNaivePPA - Equal Pseudoanonymity
Homomorphic

encryption Yes Yes Yes

FairPPA SC (Miners) Quality-aware Pseudoanonymity
Homomorphic

encryption Yes Yes Yes

Table 4.4: Comparison of proposed methods with existing Blockchain-based mobile
crowdsensing methods.

4.6.2 Comparison with Blockchain-based mobile crowdsensing meth-

ods

The comparison with existing Blockchain-based MCS methods is presented in Table 4.4.

Observe that apart from Cai et al. [138] method, only our methods provide aggregated

statistics. Zebralancer [139], Hu et al. [147], and SenseChain [148] provide both aggrega-

tor correctness and fair payments; however they do not provide aggregator statistics.

132

CHAPTER 4. FAIR PAYMENT PROTOCOLS FOR MOBILE CROWDSENSING UNDER PLATFORM-AS-A-SERVICE

4.7 Summary

We have designed two protocols for fair payments in the privacy-preserving aggregation

of the mobile crowdsensing. Our protocols show that the untrusted aggregator in tradi-

tional PPA methods can be replaced by smart contracts deployed on a public Blockchain

network. Moreover, our protocols guarantee the correctness of the aggregation operation

and fair payments without any additional cryptographic operations or trusted intermedi-

aries when compared to traditional PPA methods. We have shown our protocols’ feasibility

by deploying them on a private Ethereum network and listed the transactional and financial

cost of interacting with smart contracts.

133

Chapter 5

Fair Payment Protocol for Virtual

Machine Allocation under

Infrastructure-as-a-Service

Cloud computing offers on-demand network access of configurable computing resources

(virtual machines (VM)), enabling individuals and enterprises to pay only for the resources

or services they use. Resource allocation to cloud users depend on several factors, like

resource utilization, resource pricing, availability, and quality of service. Among all the

factors, resource pricing mechanisms are widely studied because they increase the cloud

provider’s utility [102]. In recent years, auction-style resource pricing mechanisms [117,

118, 119] have gained more interest as they reflect the underlying trends in demand and

supply of the cloud resources. Auction mechanisms are categorized into two types: (1) off-

line and (2) online. In off-line auctions, all the users’ requests are collected, and then the

auctioneer decides on allocation and price of VMs. (2) In online auctions, users’ requests

are processed instantly without prior knowledge of future requests. Online auctions are

extensively studied than off-line auctions because online setting provides faster services

and can efficiently allocate and price the resources [203].

However, most of the existing online auction methods have a resource allocator, as

shown in Figure 5.1, which processes user request by executing auction algorithm. In the

existing online auction setting, the request allocator is assumed as a trusted entity and does

134

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

not consider: (1) auction correctness: running the auction algorithm correctly without any

prejudice. (2) fairness: the provider receives the usage fee for his service if and only if

the user receives his requested resources. One of the significant challenges in an auction

is a lack of trust among users and providers. The users do not trust the provider for allo-

cation of VMs, and the provider does not trust the user for getting payment. Therefore the

resource allocator must be run by a trusted party to have greater confidence in the auction

mechanism. However, in practical situations hiring a trusted party is costly and finding

an ideal trusted party that will behave honestly is difficult. The solution is to distribute

trust among multiple entities instead of a single centralized trusted resource allocator. The

progress in Blockchain technology presents an alternate solution for using the services of a

trusted party [10].

In this Chapter, we present a Blockchain-based online auction for cloud VM allocation

and pricing. We realize both correctness and fairness of the auction mechanism by taking

advantage of two key components of a Blockchain network: smart contracts and cryp-

tocurrency. We achieve correctness by modeling the auction algorithm as a smart contract

running on a public Blockchain network. We achieve fairness by carefully encoding the

smart contract rules about the payment and allocation of VMs.

Our contributions in this Chapter are summarized as follows:

(a) To the best of our knowledge, we are the first to propose a Blockchain-based online

cloud resource auction protocol by leveraging the trust, immutability and correctness

properties of the public Blockchain networks.

(b) As most of the existing online auctions are truthful and focus on optimization of util-

ity and social welfare / cost, in this work, we focus on fair payments and correctness

of the online auction algorithm by modeling the auction algorithm as smart contract

running on a public Blockchain network.

(c) We have implemented the proposed smart contract written in solidity [24] and exe-

cuted them on a private Ethereum network and on Ropsten test network. We have

tested the proposed smart contract and presented the transaction and financial costs

135

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Figure 5.1: Online auction infrastructure and resource allocation flow

of interacting with proposed smart contract. Experimental results show the feasibil-

ity of our proposed smart contract with minimal financial overhead.

5.1 Online auction

Let CP be a cloud resource provider who has a large number of computational resources

with a fixed capacity Q in an infinite time interval [0,∞]. Let CUi be a cloud user who

would like to use the resources provided by the CP . Let DeOAA be a cloud auctioneer

who facilitates and executes auction mechanism A. An auction is said to be an online

auction if the allocation and payment for a CUi’s request is determined instantaneously

according to some adopted auction mechanism A. A simple online auction algorithm is

shown in Algorithm 5.12 and the online auction infrastructure is shown in Figure 5.1.

136

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Figure 5.2: An illustrative example of online auction [119]

Algorithm 5.12 Simple online auction
Input: A sequence of requests R = {r1, r2, ..., r∞}, such that tsub1 < tsub2 < ... < tsub∞ ;

A non decreasing pricing function P (x)
Output: Allocation and payment decision for every request ri ∈ R.

1: Initialize the utilization rate: ∀ t ∈ [0,∞], U(t, tcurrent) = 0;
2: for each request do
3: if the requested resources are free in the requested time slots then
4: Find the allocation that maximizes requester’s utility;
5: Compute payment for the allocation using an auxiliary pricing function P (x) and utilization rate

U of the requested time slots;
6: else Reject the request;
7: Reserve the requested resources and update the utilization rate;

In the algorithm, initially, utilization rate of the cloud resources for every future time

slot is set as zero. The utilization rate is the ratio of allocated and total resources at time

(t, tcurrent), where tcurrent is the current time and t is the time in future. Price of a resource

varies with respect to the utilization rate. The cloud users come on-the-fly and requests

the cloud resources. The request consists of information about the start time, end time,

valuation and number of resources required. The auction platform process the requests in a

sequence. First, the algorithm checks whether the requested resources are available in the

requested time slots. If resources are available, then a best allocation is computed according

to the user’s valuation. The usage fee pay is computed according to a pricing function and

the utilization rate at the allocated time slots. An example of the online auction is shown

in Figure 5.2. A cloud user requires 40 VMs in every time slot from 6 : 00 to 9 : 00. He

137

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

sends his request to the auction platform which determines the allocation and payment pay

immediately according to the adopted auction mechanism. He values his request at $10 if

all the requested VMs are allocated in the requested time slots. The valuation represents

the benefit a cloud user obtains from receiving the cloud resources. Also, utility represent

the net profit a cloud user gets from an allocation, that is utility = valuation - usage fee.

Definition 5.1.1. A fair online auction protocol must provide the following guarantees:

(a) Online: An auction protocol is said to be online if it provides the flexibility for users

to request cloud resources whenever they need, and their requests are processed by

the cloud provider instantaneously.

(b) Correctness of auction mechanism: An auction protocol is said to be correct if the

following three factors determine the allocation and payment for any user: (1) the

request by CUi (2) the requests which have been accepted before the CUi’s request

(3) auxiliary pricing function P (x). In other words, no party (CUi / CP / miners)

can influence the outcome of the auction except the above three factors.

(c) Fair Payments: An auction protocol is said to be fair if an honest CP receives

the usage fee for the resources it leases if and only if an honest CUi receives the

requested resources.

5.1.1 Entities

A Blockchain-based fair payment protocol for online auction of cloud resources consists

of the following entities:

(a) Cloud resources: A large cloud data center consists of resources like CPU, RAM,

storage, and bandwidth.

(b) Cloud Service Provider (CP) : A cloud service provider bundles the cloud resources

as virtual machines and leases the virtual machines to users.

(c) Cloud user (CUi): A cloud user requests for using resources provided by CP . If the

request is accepted, then he pays usage fee to CP and uses the allocated resources.

138

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Cloud Provider

DeOAA Smart Contract
Blockchain Network

Smart Contract
Execution

3. Smart Contract Address and Smart Contract ABI
7. VM Allocation for Time Slots1st k
10. VM Allocation for Time Slotk + 1

13. VM Allocation for Slotn th⋮ ⋮⋮
2. Sm

art Contract
 Address

1. Design
and deploy

Sm
art

Contract

4. Allocation request

5. Allocation decision and payment information

6. Usage fee

8. Acknowledgement for
 slot

1 st

11. Acknowledgement for
 slot

2 nd

14. Acknowledgement for
 slot

n th

⋮

⋮

⋮

9. P
ayment fo

r
 slot

1s
t

12. Payment fo
r

 slot

2n
d

15. Payment fo
r

 slot

nt
h

⋮

⋮

⋮

Cloud User

Figure 5.3: Overview of the proposed protocol

(d) Smart Contract: A smart contract emulates the trusted auction platform in Figure

5.1. It receives requests from users and computes the usage fee to be paid by CUi for

using resources provided by the CP .

(e) Blockchain Network (BC): It is maintained by a set of peers known as miners who

execute the smart contract functionalities according to an underlying consensus al-

gorithm.

The overview of the proposed protocol is presented in Figure 5.3.

5.2 Bidding language

We adopt the bidding language proposed by Zhang et al. [119]; more particularly, we adopt

TYPE III users as described in [119]. TYPE III users are resource-aggressive with time-

invariant capacity requirements. CUi may request the auction platform for cloud resources

of invariable capacity inv capi for a time length of li within a preferred time duration

[ai, di] (li ≤ di− ai). The request is organized as: ri = {ai, di, li, inv capi, vi} where vi =

bi(inv capi)∗ li is the user’s valuation and bi(·) is a concavely increasing function. One can

139

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

refer to [119] for more details about bidding language. Although, we have chosen TYPE

III users our smart contract can process other type of requests with simple modifications.

5.3 Decentralized online auction protocol (DeOAA)

In this section, we design a fair Blockchain-based online auction protocol by modeling the

trusted resource allocator in Figure 5.1 as a smart contract running on a public Blockchain

network.

5.3.1 Assumptions

(a) We assume that the resources like CPU, RAM, storage and bandwidth are bundled

as Virtual Machines(VM) or instances, and the cloud provider offers only a single

instance type. Although we are assuming a single type of VM, generalization to any

number of types of VMs is straightforward.

(b) We assume that the user and cloud provider is aware of the discrete timer running on

the public Blockchain network, which is different from the real-world timer.

(c) We assume that the number of time slots for a request is more than a predefined

parameter k.

(d) We treat the auxiliary pricing function as a black box, as any monotonic pricing

function commonly used in traditional online auction mechanisms can also be used

in our protocol.

5.3.2 DeOAA contract clauses

TheDeOAA is an online auction contract signed between a cloud service provider CP and

a cloud user CUi. The high-level idea is that if both CP and CUi are honest, CP receives

the usage fee for leased resources, and CUi receives the requested resources.

140

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

The clauses in the DeOAA contract are as follows:

(i) A cloud provider CP creates a smart contract DeOAA for online auction and

deploys the DeOAA on a public Blockchain network. CP publishes the con-

tract address on an open platform (like a website/bulletin board). CP initializes

DeOAA with parameters like the cloud capacity in terms of virtual machines

(VM) and an auxiliary pricing function that is used to compute the usage fee for

a user.

(ii) After verifying the contract details at the contract address, a user CUi sends

his request to DeOAA along with some safety deposit $d. This safe deposit

is required to penalize users for sending false requests. The request includes a

preferred start time, preferred end time, required number of time slots, required

number of VMs, and valuation of the user.

(iii) As soon as the DeOAA receives the user request, it assigns a submission time

to the request. DeOAA finds the best allocation for the CUi’s request, which

maximizes CUi’s utility. If there are enough VMs in every time slot to satisfy

CUi’s request, then those VMs are reserved, and the corresponding allocation

decision and usage fee are communicated to CUi. If DeOAA cannot find the

allocation for a request, then the request’s deposit is refunded.

(iv) If VMs are reserved to a request, then the user of that request has to send the

usage fee to DeOAA before the actual start time of the request. If the user sends

the usage fee successfully, then his deposit $d is returned.

(v) If the user fails to send the usage fee before the actual start time of the request,

CP will send a message to DeOAA to free up the reserved VMs. In this case,

CUi forfeits his deposit which will be sent to CP . Otherwise, CP allocates the

VMs for first k time slots. The cloud provider allocates VMs for the next time

slot if the user sends acknowledgements of the previous allocation to DeOAA.

The allocation is like a sliding window. For every acknowledgement received,

VMs for the next time slot is allocated by the CP . The process will continue till

the end of all the time slots of the request. The user cannot send the acknowl-

141

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

edgement of ith slot without sending the acknowledgement of (i− 1)th slot. The

payment to CP is also divided into parts equal to the number of time slots. The

CP receives the usage fee for allocating the resources in a time slot as soon as

the DeOAA receives that particular time slot acknowledgement.

(vi) The maximum time slots that can be allocated without acknowledgement are k.

For every time slot i ≥ (start time + k), if the user fails to send (i − k)th slot

acknowledgment before the start of (i − k − 1)th slot, the CP will not allocate

resources from ith time slot and the resources are freed up for the remaining time

slots. The remaining usage fee for the unused time slots is refunded to CUi.

5.3.3 DeOAA protocol

DeOAA protocol is presented in Figure 5.4. DeOAA smart contract functionalities exe-

cuted by Blockchain are presented as Algorithms 5.13 to 5.18.

For cloud provider:
1. To initiate the auction process send transCPcreate = (capacity, d) to BC.
2. To free up the virtual machines send transCPfree = (rId) to BC.
3. IfCU neither sends acknowledgements for the alloted slots nor sends abrogate

transaction, then send transCPCPAbrogate = (rId).
For cloud user:

4. To request virtual machine allocation, send transCUi
request = (ai, di, li, vi,

inv capi, $d) to BC.
5. To avail the resources, send transCUi

avail = (rId, $pay) to BC.
6. To acknowledge the alloted slot, send transCUi

ack = (rId, ackNum) to BC.
7. If CP fails to allocate the requested virtual machines, then send transCUi

abrogate

= (rId).
Blockchain: state ← Init, Q ← 0, ∀t ∈ [τ,∞] U [t][τ] ← 0, ∀t ∈ [τ,∞]
allocated[t]← 0, requests← {}, rId← 0, deposit← 0

8. On receiving transCPcreate execute DeOAA.create(capacity, d)
9. On receiving transCUi

request execute DeOAA.request(ai, di, li, vi, inv capi, $d)
10. On receiving transCUi

avail execute DeOAA.avail(rId, $pay)
11. On receiving transCUi

ack execute DeOAA.ack(rId, ackNum)
12. On receiving transCPfree execute DeOAA.free(rId)

13. On receiving transCUi
abrogate execute DeOAA.abrogate(rId)

14. On receiving transCPabrogate execute DeOAA.CPAbrogate(rId)

142

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Figure 5.4: DeOAA protocol

5.3.3.1 Initializing the smart contract

The cloud provider CP deploys the smart contract initialized with global parameters Q, U ,

allocated, requests, and rId. Q is the maximum number of VMs that CP can provide

for each time slot. We allow reserving resources before the actual start time of a request.

We use the utilization matrix U to track utilization rates at each time slot with respect to

the submission time of the request. allocated is an array to keep track of the number of

VMs allocated at each time slot. requests is a structure to store all the request related

parameters, rId is the number of requests submitted, and deposit is the minimum amount

of safety deposit to be paid by the users. At this stage, the contract will be in the Init state.

CP invokes Algorithm 5.13 to set the parameters Q and deposit. Now, the contract state

will be changed to Created. The create functionality provides the flexibility for the CP to

update the parameters Q, and deposit in the future.

Algorithm 5.13 DeOAA.create
Input: capacity, d
Output: Success or failure message

1: if state = Init || Created then
2: Set Q← capacity
3: Set deposit← d
4: Set state← Created

5.3.3.2 Submission of a request

A cloud user sends his request toBC invoking Algorithm 5.14. After receiving the request,

the contract makes sure that the preferred timings of the request are greater than the current

time. The contract also checks whether the CUi has sent the minimum safety deposit. If

all the checks are passed, then the contract finds the best allocation that maximizes CUi’s

utility according to his request and the current utilization rate. If there is an allocation (i.e.,

VMs are available for the requested number of time slots), then the actual start time, end

time, usage fee to be paid are computed. The allocated array and U matrix are updated ac-

cording to new allocation, and the request state is set to Accepted. If there is no allocation,

then the user’s deposit is refunded, and the request state is set to Rejected. The bidding

143

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

information is stored as a structure, and the user is notified about the allocation decision

and the usage fee. In the end, the requests count is updated.

Algorithm 5.14 DeOAA.request
Input: ai, di, li, vi, inv capi, $d
Output: Success or failure message

1: if state = Created then
2: if τ < ai ≤ di then
3: if $d ≥ deposit then
4: if ledger[CUi] ≥ $d then
5: Set ledger[CUi]← ledger[CUi]− $d
6: Set τsub ← τ , end← 0, start← ai, maxUtility ← 0, pay ← 0
7: while end ≤ di do
8: Set end← start+ li − 1
9: Set flag ← true

10: foreach t ∈ [start, end] do
11: if allocated[t] + size ≥ Q then
12: Set flag ← false

13: if flag then
14: Set isAllocated← flag

15: Set tpay ←
∫ end
start

∫ U(t,τsub)+inv capi/Q

U(t,τsub)
P (x) ·Q dxdt where t ∈ [start, end]

16: Set tUtility ← vi − tpay
17: if tUtility > maxUtility then
18: Set maxUtility ← tUtility, pay ← tpay
19: Set τ−r ← start, τ+

r ← end

20: Set start← start+ 1

21: if isAllocated then
22: foreach t ∈ [τ−r , τ

+
r] do

23: Set allocated[t]← allocated[t] + inv capi
24: Set U(t, τsub) = U(t, τsub) + allocated[t]/Q

25: Set rState← Accepted
26: else
27: Set pay ← 0
28: Set ledger[CUi]← ledger[CUi] + $d
29: Set rState← Rejected

30: foreach t ∈ [τ−r , τ
+
r] do

31: Set ack[t]← false

32: Set $payment← 0
33: Set requests[rId] ← (ai, di, τ−r , τ+

r , τsub, vi, inv capi, rState, pay, ack, $payment,
$d)

34: Set rId← rId+ 1
35: return (Success, Reveal success)
36: else return (Failure, Not enough balance)
37: else return (Failure, Not enough deposit)
38: else return (Failure, Wrong timing parameters)
39: else return (Failure, State is not created)

144

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

5.3.3.3 Sending the usage fee

The user CUi upon learning the usage fee, sends payment to BC invoking Algorithm 5.15.

After receiving the CUi’s transaction, the contract checks whether the usage fee has been

sent before the actual start time of the request. The contract also checks whether the usage

fee sent is greater than or equal to the value computed earlier. One more check is on the

request state which should be in Accepted state. If all these checks are passed, then the

user’s deposit is refunded, and the request state is changed to Payed.

Algorithm 5.15 DeOAA.avail
Input: rId, $pay
Output: Success or failure message

1: if requests[rId].rState = Accepted then
2: if requests[rId].τ−r > τ then
3: if requests[rId].pay ≤ $pay then
4: if ledger[CUi] ≥ $pay then
5: Set ledger[CUi]← ledger[CUi]− $pay
6: Set requests[rId].$payment← $pay
7: Set ledger[CUi]← ledger[CUi] + requests[rId].$d
8: Set requests[rId].rState← Payed
9: return (Success, Avail success)

10: else return (Success, Avail success)
11: else return (Failure, Pay not enough)
12: else return (Failure, Avail timeout)
13: else return (Failure, Request not accepted)

5.3.3.4 Acknowledging the allocation

If CP allocates VMs to CUi, the user sends acknowledgements about the allocated slots

to BC invoking Algorithm 5.16. For each acknowledgement received the contract checks

whether the received acknowledgement number is between the actual start and end times

of the request. The contract also checks whether the previous allocation slot has been

acknowledged or not. The acknowledgement for the ith slot cannot be sent before ac-

knowledging the (i − 1)th slot unless it is an acknowledgement for the 1st time slot. If all

the checks are passed, the CP gets the usage fee for that slot from the contract. If all the

acknowledgements are received, then the request state is changed to Finished.

145

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Algorithm 5.16 DeOAA.acknowledge
Input: rId, ackNum
Output: Success or failure message

1: if requests[rId].τ−r ≤ ackNum ≤ requests[rId].τ+
r then

2: if requests[rId].rState = Payed then
3: if ackNum = requests[rId].τ−r then
4: Set requests[rId].ack[ackNum]← true

5: Set ledger[CP]← ledger[CP] + requests[rId].$payment
requests[rId].li

6: return (Success, Acknowledge success)
7: else
8: if requests[rId].ack[ackNum− 1] = true then
9: Set ledger[CP]← ledger[CP] + requests[rId].$payment

(requests[rId].li)

10: Set requests[rId].ack[ackNum]← true
11: return (Success, Acknowledge success)
12: if ackNum = request[rId].τ+

r then
13: Set requests[rId].rState← Finished

14: else return (Failure, State is not payed)
15: else return (Failure, Wrong acknowledgement number)

5.3.3.5 Freeing up the resources

If CUi, refuses to send usage fee even though VMs are reserved for his request then CP

calls the BC to invoke Algorithm 5.17 to free the allocated resources and claim the deposit

made by CUi. CP can call Free functionality only if the request state is Accepted and only

after the actual start time of the request. If checks are valid, then the previously allocated

resources are deallocated. The deposit made by CUi is sent to CP , and the request state is

set to Aborted.

Algorithm 5.17 DeOAA.free
Input: rId
Output: Success or failure message

1: if requests[rId].τ−r < τ then
2: if requests[rId].rState = Accepted then
3: foreach t ∈ [start, end] do
4: Set allocated[t]← allocated[t]− inv capi
5: Set U(t, τsub) = U(t, τsub)− allocated[t]/Q

6: Set ledger[CP]← ledger[CP] + requests[rId].$d
7: Set requests[rId].rState← Aborted
8: return (Success, Free success)
9: else return (Failure, Request not accepted)

10: else return (Failure, Free timeout)

146

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

5.3.3.6 Abrogate by the user

If CP refuses to allocate VMs or allocates VMs less than requested, then CUi calls the

BC invoking Algorithm 5.18 to redeem the usage fee paid by him. The number of ac-

knowledged slots are calculated, and deallocation of resources is invoked with the last

acknowledged slot and the payment belonging to the unacknowledged slots is sent to CUi.

The request state is set to userAborted.

Algorithm 5.18 DeOAA.abrogate
Input: rId
Output: Success or failure message

1: if τ > requests[rId].τ−r then
2: if requests[rId].rState = Payed then
3: foreach t ∈ [requests[rId].τ−r , requests[rId].τ+

r] do
4: if requests[rId].ack[t] = false then
5: Set NotAckSlots← NotAckSlots+ 1

6: Set lastAckSlot← requests[rId].τ+
r − requests[rId].τ−r +NotAckSlots

7: if lastAckSlot+ k ≤ τ then
8: foreach t ∈ [start, end] do
9: Set allocated[t]← allocated[t]− inv capi

10: Set U(t, τsub) = U(t, τsub)− allocated[t]/Q

11: if caller is cloud user then
12: Set ledger[CUi]← ledger[CUi] + requests[rId].$payment

(requests[rId].li)
∗NotAckSlots

13: Set requests[rId].rState← userAborted
14: else
15: Set ledger[CP]← ledger[CP] + requests[rId].$payment

(requests[rId].li)
∗NotAckSlots

16: Set requests[rId].rState← Terminated

5.3.3.7 Abrogate by the cloud provider

If CUi neither sends acknowledgements nor calls abrogate functionality, then CP callsBC

invoking Algorithm 5.18, sending the payment belonging to unacknowledged slots to CP .

5.3.4 Correctness and fairness proofs

Now we prove the correctness and fairness of the proposed protocol defined above.

Theorem 5.3.1. Our proposed protocol satisfies correctness

LetDeOAA deployed on a public Blockchain network using PoW as a consensus algo-

rithm. Let b be the current block of the Blockchain which is extended by blocks b1 and b2.

147

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Let txrequest be the request transaction and txavail be the avail transaction sent to DeOAA

which are eventually placed in b1 and b2 respectively. We will prove the correctness by

considering the following cases.

Case 1: CUi influence the auction mechanism to decrease the pay to be paid by him.

This case can happen if the CUi pre-mines two blocks b′1 and b′2 containing transactions

tx
′
request and tx′

avail respectively with a modified pay pay′ . It may be noted that, in this case,

CUi does not broadcast transactions to the network. Now, CUi broadcast b′1 extending b and

b
′
2 extending b′1 to the Blockchain network. Let all the other miners in the network verify the

transactions in b′1 for the common good and add this block to their local distributed ledger

if all the transactions in b′1 and their outputs are correct1. So, as the output of txrequest is

pay but not pay′ other miners will discard this block without adding new blocks extending

b
′
1. As b′1 is discarded, b′2 is also discarded because it is extending a wrong block. Miners

with at least 51% of hash-rate cumulatively required to correctly verify the transactions in

the block.

Case 2: CUi broadcast txrequest but pre-mines block b
′
2 that consists tx′

avail with a

modified pay pay′ . In this case, as the actual pay is already stored in DeOAA, during b′2

verification, the pay′ is compared against pay (Figure 5.15, Line 3). The comparison will

fail, and the block is rejected.

Case 3: CP influences the auction mechanism to increase the pay to be paid by CUi.

This case is similar to Case 1 except that now CP mines b′1 and broadcasts it to network.

Similarly, all the transactions with DeOAA are executed correctly; otherwise, those

transactions are rejected. Nevertheless, CUi or CP can influence some miners to include

the wrong blocks to their local ledger and generate new blocks extending these wrong

blocks. But, CUi or CP should accumulate more than 50% of hash rate to make the entire

network accept wrong blocks which are a difficult task unless they have large mining pools

under their control [204].

In summary, as the miners in public Blockchain networks are reasonably assumed to act

honestly for the common good and follow the rules encoded in consensus algorithm, it is

difficult for CUi or CP to make the network accept wrong blocks. Considering the above

1These rules are encoded in the consensus algorithm.

148

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

cases, our protocol satisfies correctness as defined in Definition 5.1.1.

Theorem 5.3.2. Our proposed protocol satisfies fair payments

We will prove the fairness by considering the following cases.

Case 1: CP is malicious, and CUi is honest. In this case, if CP refuses to allocate

VMs according to the CUi’s request, then the CUi will not send acknowledgements to

unallocated time slots. CUi can retrieve his pay paid earlier by sending a message to

Abrogate functionality. As we know, DeOAA pays to CP if and only if it receives an

acknowledgement for a particular time slot. So, CUi will not lose any money even if the

CP acts maliciously without allocating requested VMs. Thus the fairness holds.

Case 2: CP is honest, and the CUi is malicious. In this case, CP allocates the re-

quested number of VMs, but CUi acts maliciously and refuses to send acknowledgements

for the allocated VMs. CP waits for k number of time slots, even then if CUi fails to

send acknowledgements of previously allocated VMs, then CP will not allocate any fur-

ther VMs. Let $p be the amount to be paid by CUi for each time slot; then CP will incur a

tiny loss of (k ∗ $p) for the resources allocated for the unacknowledged k time slots. Thus

the fairness holds in this case with a (k ∗ $p) loss to CP .

Case 3: CP is malicious, and CUi is also malicious. This case is straightforward and

similar to the above two cases.

Case 4: CP is honest, and CUi is also honest. In this case, CUi sends an acknowledg-

ment to all the time slots that are requested and satisfied by CP . CUi gets the VMs, and

CP receives the payment for the allocated resources. Thus the fairness holds.

In summary, our protocol satisfies the fair payments.

5.4 Implementation

The simulation environment is discussed in Section 1.2.3. We have also deployed the

contracts on the Ethereum Ropsten test network.

149

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

5.4.1 Floating point numbers

Ethereum solidity smart contract language does not support floating-point numbers. We

have taken all the input values to the Request functionality as integers, but the utilization

matrix values are floating-point values. Therefore the intermediate values generated during

computation of payment are floating-point numbers. To handle these floating-point values,

we have used ABDK Math Quad smart contract library2.

5.4.2 Implementation of DeOAA

We ran our experiments multiple times, and each transaction’s computational and finan-

cial cost is shown in Table 5.1. Observe that the contract deployment consumes enormous

amounts of gas, but this is a one time cost for CP . Next, call to the request functionality

incurs a huge cost to CUi, this is due to the computation of payment function in Algorithm

5.14 using Simpson 1/3 rule. We have computed gas cost for Request functionality sep-

arately in local Blockchain network by varying both (di − ai) and li and listed the costs

in Table 5.2. Observe that the costs are enormous and more than the Ethereum block gas

limit. Most of these high costs are due to the computation of Algorithm 5.14. To reduce

the costs, some other payment computation algorithm may be adopted. Another option to

reduce the cost is increasing the step size of the integral. We have chosen 0.01 and 1 as a

step size of inner integral and outer integral, respectively.

Function Caller Cost in gas Cost in $
Init (contract deployment) CP 3,483,962 0.547

Create CP 27,383 0.004
Request* CUi 1,837,360 0.288

Avail CUi 58,648 0.009
Acknowledge CUi 57,388 0.009

Free* CP 99,834 0.015
Abrogate** CUi 49,684 0.007

Table 5.1: Costs of interacting with DeOAA contract. We have approximated the gas price
as 1 Gwei and 1 ETH = $ 157.01, which are the real world costs in April 2020. We have
rounded off the cost in $ value up to three decimals. * - depends on (di − ai) and li. ** -
depends on li. We have taken (di − ai) = 5 and li = 4

2https://github.com/abdk-consulting/abdk-libraries-solidity/blob/master/ABDKMathQuad.sol

150

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

(di − ai)
li

10 15 20 25 30 35 40 45 50

1 2173478 3089484 3990024 4906529 5839211 6740594 7657853 8575347 9493075
2 2665707 3937249 5208757 6481330 7754254 9029398 10302445 11576590 12851086
3 3125388 4813598 6500951 8204563 9878714 11568429 13273542 14949149 16640992
4 3384653 5514963 7614702 9715805 11817699 13920188 16023238 18126993 20231404
5 3497380 6055547 8571281 11086227 13617833 16120191 18609243 21157598 23663326
6 3515706 6442044 9353608 12281743 15210934 18141836 21042406 24004724 26953125
7 3297068 6635919 9932698 13319201 16587845 20022563 23323736 26716148 30049877
8 2925568 6663405 10843283 14185407 17941733 21699664 25459145 29220176 32982758
9 2390432 6541064 10736967 14889765 19059887 23217734 27361583 31476531 35758914
10 1659823 6055547 10843283 15423243 20005551 24589711 29176113 33719694 38355335

Table 5.2: Gas consumption of interaction with Request functionality.

k τsub ai di

3 block.number [τsub,500] [ai + k,min(ai + 10,500]
li inv cap i pi bi(·)

[1,min(di − ai + 1, 5)] [100,10000] [1,2] pi ∗ inv capi ∗ li

Table 5.3: Implementation configuration

5.4.3 Financial overhead

We have computed the proposed protocol’s financial overhead by varying the requests re-

ceived by the DeOAA. We consider Q = 104 (i.e., the provider can host up to 104 VMs

simultaneously). All the bidding parameters are uniformly distributed, and their possible

ranges are presented in Table 5.3. Figure 5.5 shows the financial overhead of DeOAA

compared with the results obtained without DeOAA. Let E and EDeOAA be the sum

of all payments paid by users without DeOAA and with DeOAA respectively such that

EDeOAA = E−Cost(Request+Avail+Acknowledge). Observe that the ratios are closer

to 1, which means the financial overhead of deploying an online auction using a smart con-

tract is minimal3.

5.4.4 Deploying on Ropsten test network

We have also deployed DeOAA in Ethereum Ropsten test network, interacted with the de-

ployed contract and the transaction hashes / address are given in Table 5.4. The transactions

can be verified using the transaction address at https://ropsten.etherscan.io/. We have tested

3We have taken the payment, valuation, cost of a VM and transaction cost in U.S. dollars($). The fractional
part of the values in Figure 5.5 may change depending on the denomination of the currency.

151

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

8 16 32 64 128 256 512
0.99965

0.99970

0.99975

0.99980

0.99985

Number of requests

E
/E

D
eO
A
A

Overhead ratio

Figure 5.5: Financial overhead of DeOAA

the contract for four cases. The contract deployment and create functionalities are called

only once, and the remaining functionalities are called according to the test case. All the

test cases have the same input to Request functionality. We have taken (di − ai) = 5 and

li = 4. Test case 1 is similar to case 4 in theorem 5.3.2 where both CP and CUi are honest.

In test case 2, the user aborts after learning the usage fee and allocation decision. In test

case 3, similar to case 1 in theorem 5.3.2, the CP acts maliciously and do not allocate VMs

to CUi. So, CUi calls the Abrogate functionality to retrieve the usage fee he paid earlier.

In test case 4, CP call the Abrogate functionality as CUi fails to send an acknowledgement

and fails to call Abrogate functionality.

5.5 Comparison with existing works

The comparison of the existing smart contract-based auctions with our proposed method is

presented in Table 5.5. No existing methods support online auctions. In existing methods,

the smart contract has to collect all users’ requests and then decide the allocation and price

of item / goods. Except [106], no method supports fair payments. In existing method,

the cloud service provider receives payment without delivering goods, or the bidder re-

ceives goods without paying. Observe that our method does not provide privacy because

152

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Test
cases Function Transaction hash/address

Contract
Deployemnt 0xe3a93b4230103826250689267ee64fb71bd8a99452e8aec3f6b0818625a35818

Create 0x9cf1f8c7e124f43118478e11fc271f3468d3853b8b262443232b466a57b94f76

Case 1

Request 0xc39e7aa99b3f5b8cd64a46e359820681c2512c1f7ab9b0322c2c41845a19d0a1
Avail 0x8fa2cefb5095cd064b0ba1e24d11cff35db3329c2a2d5f5037d239707299d049

Acknowledge

0x4152ec82a9e7e0e985065418a668ac207ba775e8ce830a21196b28f7ddddb0b0
0x231ce9d8868e877afbb7b9cae240cc0ef83f9dbe3fdbe70d90bec34fd0b36859
0xe51a8d7a09cfa93c232e1981bc4e6496edf0da4572026f46b85c85279b754e3b
0x43806098c7884e8bc8e27d4000d28fc33f1a04c06378c54c08a2db9e1fdb4965

Case 2 Request 0x2917542fec7aa03c17b0c0ef88e14ddb34766c2b630051f72474e7cf9b7256c3
Free 0xcb562eb8e47f3cd7db6058e0b8f6ebb09dd8e63d30ce48b9ac215a9d9acca6bc

Case 3

Request 0x13209c72a5f042cbb646cf6e038c927eaabebd559544ad61af14e4bdcb14eca1
Avail 0xa4f45ab2fd7e3d4479f03ac33d4d74c833f851c2803b361d78d0b5a687143be9

Acknowledge 0xdbc851a9925b8b5bbcc7f6474afe5c330677d93bb3001b595c2b461e3b409105
Abrogate 0x6de4d605ab3bf6ea0ff7cb2cbd4bccd1c7b53f773011829238cf90c19840a950

Case 4

Request 0xf4176c7d921937b09336ca35cd8e01c9c0923854c7f054549d76648fa3c853de
Avail 0x3fbf6922c048bf5437e867d965b62be6dffdc5e41918136a1f17d615aa2e9e6c

Acknowledge 0x15a017c546ba5c2ecc6d3ee5b6c1ad8dfa23e2f32ada3c2a2bb7191dd41fc5e7
Abrogate 0x35561ea38c509db15b14eb9adc7b2544d64372110a9d8951748a9dd2de2b67ff

Table 5.4: Transactions on Ethereum Ropsten test network

our scheme is online, which process bids instantly. Instant processing requires bids with-

out applying encryption / hashing. Another reason for lack of privacy is that our auction

algorithm is truthful, which means bidder revealing his true valuation will maximize his

utility [119]. So, a malicious bidder cannot maximize his utility by copying other bidder’s

valuation. In some cases, the bidder does not want to reveal his bid to competitors. To

achieve this, a bidder has to trust the semi-honest auctioneer similar to Galal et al. [205].

However, due to the lack of semi-honest auctioneer, our method cannot provide privacy.

153

CHAPTER 5. FAIR PAYMENT PROTOCOL FOR VIRTUAL MACHINE ALLOCATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Method Auction Type Trading
Item

Privacy Truthful Online Fair Pay-
ments

Hahn et
al. [206]

Vickrey Energy Timed Com-
mitments

No No No

Chen et
al. [207]

Vickrey Generic Timed Com-
mitments

No No No

Wu et al.
[208]

Collusion resis-
tant Vickrey

Generic Timed Com-
mitments

Yes No No

Braghin
et al.
[209]

English, Dutch,
FPSB and Vick-
rey

Generic Timed Com-
mitments

No No No

Galal et
al. [205]

FPSB Generic ZKP No No No

Thakur
et al.
[210]

Double Energy No No No No

Blass et
al. [211]

FPSB Generic Goldwasser-
Micali encryp-
tion and ZKP

No No No

Galal
[212]

Vickrey Generic Trusted execu-
tion environ-
ment

No No No

Hassija
et al.
[213]

Double Supply-
chain

No No No No

Zavodovski
et
al.[104]

Double Generic Timed-
Commitments

No No No

Chen et
al.[106]

Combinatorial Cloud VM Timed-
Commitments

Yes No Yes

Proposed
model

Online Cloud VM No Yes Yes Yes

Table 5.5: Comparison of proposed method with existing smart contract-based auction
methods.

5.6 Summary

We have designed a decentralized protocol for fair payments in the online cloud auction.

Our protocol shows that the untrusted resource allocator in traditional online auction proto-

cols can be replaced by smart contracts running on a public Blockchain network. Moreover,

our protocol guarantees the correctness of the auction algorithm and fair payments with-

out any trusted intermediaries. We have shown our protocol’s feasibility by deploying the

designed smart contract on a private Ethereum network and listed the transactional and fi-

nancial cost of interacting with smart contracts.

154

Chapter 6

Fair Payment Protocol for Data

de-duplication under

Infrastructure-as-a-Service

With the advent of cloud computing, outsourcing data to a remote cloud storage servers has

become a common practice [33]. However, most of the data being uploaded is redundant

[101] and thus wasting large storage spaces. Storage systems use de-duplication (dedup)

techniques to eliminate redundancy. Dedup eliminates the need to upload and store redun-

dant data by verifying whether a data already exists in a cloud storage before each upload.

If the check is valid, then the data is not uploaded, and simply the corresponding cloud

user account is added to the existing file. The file link is sent to the requested user upon

successful verification of Proof-of-Ownership.

Although there are many advantages, dedup introduces interesting challenges. First, to

prevent a cloud provider from accessing sensitive information, it is common for cloud users

to encrypt their data. If the data is encrypted using conventional encryption techniques,

it is difficult to apply de-duplication techniques. Two identical files encrypted with two

different keys generate two different cipher-texts which cannot be compared for similarity.

Encrypted data dedup schemes are proposed based on convergent encryption [214, 215,

216, 217], secret sharing [218], proof-of-ownerships [219], keyword search [220], and

password-authenticated key exchange [218].

155

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Second, it is clear that the greatest beneficiary of the dedup is the cloud provider as

it saves storage cost. It is required to motivate cloud users to opt for dedup by offering

incentives / discounts on storage fee. Although several schemes are proposed for secure

de-duplication in literature, only a few schemes [221, 222, 223, 224, 225, 93] discuss the

incentives in de-duplication.

Even though the best encryption and incentive mechanisms are available, the cloud

provider has to be trusted by the cloud user for fair computation of storage fee or a trusted

party has to be recruited for computing storage fee correctly. However, hiring a trusted

party is costly and finding an ideal trusted party that will behave honestly is difficult. The

recent progress in Blockchain technology allows a public Blockchain network to emulate

the properties of a trusted party. The public Blockchain network is trusted for the im-

mutability of data it possesses, the correctness of the code (smart contract) execution in its

environment and its availability.

This Chapter proposes a new Blockchain-based secure cloud storage system where no

party can influence the computation of storage fee, and the proposed scheme also provides

fair payments. We guarantee correct computation of storage fee even if the cloud provider

is untrusted and cloud users are selfish. We employ a convergent encryption (CE) scheme

for providing secrecy and a proof-of-ownership (PoP) scheme for proving ownership of

duplicated data by a cloud user. Both CE and PoP schemes are black-boxes in our model,

and we solely focus on designing a Blockchain-based secure cloud storage system with

new incentive mechanism.

We summarize the contributions of this Chapter as follows:

(a) The contributions in this Chapter are two-fold: First, we design a new incentive

mechanism, and second, we design a new Blockchain-based dedup scheme by lever-

aging the immutability, trust, and correctness properties of a public Blockchain net-

work.

(b) The proposed incentive mechanism motivates the cloud users to choose dedup while

ensuring profits for cloud provider. Experimental analysis shows that the proposed

incentive mechanism is individually rational and incentive compatible for both users

156

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

and cloud provider.

(c) As most of the existing schemes focus on secure de-duplication, we have proposed

a dedup scheme which emphasizes correctness of dedup rate and fair payments be-

tween cloud user and cloud providers. We design a smart contract to realize the

correctness and fairness of the proposed scheme.

(d) We have implemented the proposed smart contracts using solidity and executed them

on a private Ethereum network which emulates the public Ethereum network. We

have tested the proposed smart contract for the publicly available dataset and pre-

sented the transactional and financial costs of interacting with the smart contract.

6.1 Data de-duplication model

Let S = {C,U} be the cloud storage system with a smart contract BDEDU running on

a public Blockchain network BC where C = {CP1, CP2, ..., CPC} is the set of cloud

providers, and U = {CU1, CU2, ..., CUU} is the set of cloud users.

Cloud providers provide data storage service to cloud users. If a cloud provider receives

a data storage request from a cloud user, it will check whether any cloud user has previously

stored the same data in its storage. If the check is negative, then it will ask the user to

encrypt and upload the data. Otherwise, it will ask the user to send proof-of-ownership of

the data. In both the cases, the cloud provider sends a file link to the user to access the

stored file.

Many cloud users may exist in the system, and some may request to store the same

data. If they all accept the de-duplication, then only one copy of that data is stored in the

cloud. Let D = {d1, d2, ..., dD} be the set of data files that the users may wish to store in

the cloud. Each d ∈ D belongs to at least one user. Let NCP
d (t) represent the number of

users having the same data d at time t, therefore, NCP
d (t) ≥ 1 and Σd∈DNd = U .

A smart contract BDEDU facilitates fair payments. It assures the users for a correct

dedup rate (based on which the storage fee is computed) and assures the cloud providers

for a fair payment.

157

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

A public Blockchain network BC is maintained by a set of peers known as miners who

will execute the BDEDU according to an underlying consensus algorithm.

6.1.1 Convergent Encryption (CE)

A convergent encryption method consists of four algorithms.

(a) K ← KeyGenCE(d). The key generation algorithm takes the data file d as input and

outputs a convergent key K.

(b) C ← EncryptCE(K, d). The symmetric encryption algorithm takes the convergent

key K and the file d as input and generates a cipher-text C as output.

(c) d← DecryptCE(K,C). The decryption algorithm takes both the convergent key K

and cipher-text C as input and outputs the original file d.

(d) tag ← TGCE(C). TG is a tag generation algorithm which takes the cipher-text C

as input and outputs a hash value tag.

6.1.2 Economic model

Both the cloud provider and user are rational, and they try to maximize their utility, and the

utility is based on their interactions with the proposed system.

6.1.2.1 Utility of Cloud user

Let a cloud user CU ∈ U stores data d ∈ D at a cloud managed by a cloud provider

CP ∈ C. Let U0
CU(t) and U1

CU(t) be the utilities of CU when he does not adopt dedup and

adopt dedup with BDEDU , respectively.

U0
CU(t) = PCU(t)− SFCP

CU (t). (6.1)

Where PCU(t) is the profit earned by storing data in cloud, SFCP
CU (t) is the storage fee CU

has to pay to CP .

158

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Now let us define the utility of a user when dedup with BDEDU is adopted.

U1
CU(t) = PCU(t)− SFCP

CU (t)

nCPd (t)
− EFCP

CU (t)− ICU(t) (6.2)

Where nCPd (t) is the data dedup rate atCP , i.e., the number of users having data d opted for

dedup before CP receives CU ’s request. In our model, the fee depends on two parameters

(1) Storage fee (SFCP
CU (t)) - computed according to the current dedup rate and (2) Extra

fee (EFCP
CU (t)) - a cost paid by the user apart from storage fee to make the cloud incentive

compatible. The cost of interacting with the smart contract is represented with ICU(t).

6.1.2.2 Utility of cloud provider

Let U0
CP (t) be the utility of a cloud provider when dedup is not adopted.

U0
CP (t) =

∑
d∈D

NCP
d (t) ∗ (SFCP

CU (t)− SCCU
CP (t)) (6.3)

where NCP
d (t) is the number users having data d ∈ D. SFCP

CU (t) is the storage fee received

by CP and SCCU
CP (t) is the cost incurred to CP for storing data.

Let U1
CP (t) be the utility of cloud provider when dedup with BDEDU is adopted.

U1
CP (t) =

∑
d∈D

(NCP
d (t)− nCPd (t) + 1) ∗ (SFCP

CU (t)− SCCU
CP (t))

+
∑
d∈D

nCPd (t) ∗ EFCP
CU (t)−

∑
d∈D

NCP
d (t) ∗ ICP (t)− Ideploy(t)

(6.4)

where IdeployCP (t) is the cost of deploying smart contract and ICP (t) is the cost of interacting

with smart contract.

The summary of cloud user and cloud provider utilities are given in Table 6.1.

Definition 6.1.1. A fair data de-duplication protocol must provide the following guaran-

tees:

(a) Individually rational (IR-constraint): An incentive mechanism is said to be individu-

159

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

without dedup dedup with BDEDU

Cloud
user

U0
CU(t) = PCU(t) −

SFCP
CU (t)

U1
CU(t) = PCU(t) − SFCP

CU (t)

nCP
d (t)

− EFCP
CU (t) −

ICU(t)
Cloud
provider

U0
CP (t) =

∑
d∈DN

CP
d (t) ∗

(SFCP
CU (t)− SCCU

CP (t))
U1
CP (t) =

∑
d∈D(NCP

d (t) − nCPd (t) + 1) ∗
(SFCP

CU (t)− SCCU
CP (t))

+
∑

d∈D n
CP
d (t) ∗ EFCP

CU (t)
−∑d∈DN

CP
d (t) ∗ ICP (t)− Ideploy

Table 6.1: Utilities of cloud user and cloud provider

ally rational if a rational user / cloud provider choosing de-duplication with BDEDU

obtains a non-negative utility. That is ∀u ∈ U with BDEDU U
1
CU(t) ≥ 0 and ∀c ∈ C

U1
CP (t) ≥ 0.

(b) Incentive-compatibility (IC-constraint): An incentive mechanism is said to be incentive-

compatible if the cloud provider or cloud users cannot gain more profits from not

adopting dedup. The best strategy for a cloud user is to opt de-duplication with

BDEDU . That is ∀u ∈ U U1
CU(t) − U0

CU(t) ≥ 0. The cloud provider obtains more

profits by choosing de-duplication with BDEDU . That is ∀c ∈ C U1
CP (t)− U0

CP (t) ≥
0.

(c) Correctness: A dedup protocol is said to be correct if the storage fee for any user is

defined by the following three factors: (1) size of the data to be stored (2) dedup rate

and (3) auxiliary pricing function p(|d|) at time t set by the cloud provider. In other

words, no party (cloud provider / cloud users / miners) should influence the storage

fee to be paid by the user except the above three factors.

(d) Uniform payments: A dedup protocol is said to be uniform if every user holding data

d at CP pays the same storage fee irrespective of when their request arrives.

(e) Fair payments: A dedup protocol is fair if an honest cloud provider receives storage

fee if and only if an honest user receives the file link of the data stored in the cloud

managed by the cloud provider.

160

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

6.2 Proposed incentive mechanism

To make a cloud provider incentive-compatible, we introduced a new parameter EF c
u in

Equation (6.2). In this section, we find the minimum and maximum values of EFCP
CU (t) so

that a user / cloud provider obtains non-negative utility when opted for dedup withBDEDU .

According to the IC-Constraint in Definition 6.1.1, a cloud provider CP is said to be in-

centive compatible if

U1
CP (t)− U0

CP (t) ≥ 0 (6.5)

Substituting the utilities from Table 6.1 in Equation (6.5)

∑
d∈D

(NCP
d (t)− nCPd (t) + 1) ∗ (SFCP

CU (t)− SCCU
CP (t)) +

∑
d∈D

nCPd (t) ∗ EFCP
CU (t)

−
∑
d∈D

NCP
d (t) ∗ ICP (t)− Ideploy(t)−

∑
d∈D

NCP
d (t) ∗ (SFCP

CU (t)− SCCU
CP (t) ≥ 0

Assuming the cost of interacting with BDEDU is negligible when compared to SFCP
CU (t)

and SCCU
CP (t), we have

∑
d∈D

(NCP
d (t)− nCPd (t) + 1) ∗ (SFCP

CU (t)− SCCU
CP (t)) +

∑
d∈D

nCPd (t) ∗ EFCP
CU (t)

−
∑
d∈D

(NCP
d (t)) ∗ (SFCP

CU (t)− SCCU
CP (t)) ≥ 0

For a single data file we have

(1− nCPd (t)) ∗ (SFCP
CU (t)− SCCU

CP (t)) + nCPd (t) ∗ EFCP
CU (t) ≥ 0

nCPd (t) ∗ EFCP
CU (t) ≥ (nCPd (t)− 1) ∗ (SFCP

CU (t)− SCCU
CP (t))

EFCP
CU (t) ≥ nCPd (t)− 1

nCPd (t)
∗ (SFCP

CU (t)− SCCU
CP (t)) (6.6)

Now, we find the maximum value of EFCP
CU (t) so that a user is incentive-compatible when

opted for dedup with BDEDU . According to the IC-Constraint in definition (b), a user CU

161

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

is said to be incentive-compatible if

U1
CU(t)− U0

CU(t) ≥ 0 (6.7)

Substituting the utilities from Table 6.1 in Equation (6.7)

PCU(t)− SFCP
CU (t)

nCPd (t)
− EFCP

CU (t)− ICU(t)− PCU(t) + SFCP
CU (t) ≥ 0

Assuming the cost of interacting with BDEDU is negligible when compared to SFCP
CU (t),

we have

SFCP
CU (t)− SFCP

CU (t)

nCPd (t)
− EFCP

CU (t) ≥ 0

EFCP
CU (t) ≤ nCPd (t)− 1

nCPd (t)
∗ SFCP

CU (t) (6.8)

From (6.6) and (6.8) the minimum and maximum values of EFCP
CU (t) are set as

EFCP
CU (t) =

[
nCPd (t)− 1

nCPd (t)
∗ (SFCP

CU (t)− SCCU
CP (t)),

nCPd (t)− 1

nCPd (t)
∗ SFCP

CU (t)

]
(6.9)

when the cost of interacting with BDEDU is considered then

EFCP
CU (t) =

[
nCPd (t)− 1

nCPd (t)
∗ (SFCP

CU (t)− SCCU
CP (t)) + (nCPd (t) ∗ ICP (t)) + Ideploy,

(
nCPd (t)− 1

nCPd (t)
∗ SFCP

CU (t)) + ICU(t)

]
(6.10)

6.2.1 Blockchain-based de-duplication protocol

In this section, we discuss a Blockchain-based cloud storage system which consists of a

smart contractBDEDU , a protocol to interact withBDEDU and a public Blockchain network

to deploy BDEDU . At the end of the section, we provide an analysis of our proposed smart

contract.

162

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

6.3 Fair data de-duplication method

6.3.1 Assumptions

(a) We assume that there are no unintentional system failures that may affect the cloud

provider and the user’s utilities.

(b) The cloud provider, the cloud, the smart contract and the Blockchain network are

available all the time.

6.3.2 BDEDU contract clauses

BDEDU is a contract between a cloud provider CP and a cloud user CU . The high-level

idea is that if both CP and CU are honest, then CP will receive the fee1 paid by CU and

CU will receive the file link to access his / her file in the cloud managed by CP . The fee

is computed according to rules encoded in BDEDU contract.

The clauses in the BDEDU contract are as follows:

(i) All parties agree on timing parameters τp < τc1 < τc2 and two payment parame-

ters: SFCP
CU (t) and EFCP

CU (t).

(ii) CP creates a smart contract (BDEDU) for facilitating payments for cloud storage

de-duplication. CP deploys theBDEDU on a public Blockchain network and an-

nounces the smart contract address and smart contract ABI on a public platform

(like a website / bulletin board).

(iii) After verifying the contract details at the contract address, a userCU if willing to

store data at cloud managed by CP , has to send a request to BDEDU along with

some safety deposit $d. This safe deposit is required to penalize CU for sending

false requests. CU ’s request includes a tag computed from the encrypted file,

and length of the file in bits.

(iv) After receiving the request, BDEDU checks whether the tag sent by CU is re-

ceived previously. If the check is valid, it will compute the fee as (SF
c
u(t)∗|d|
nCP
d (t)

+

1From here on we call the amount paid byCU as fee which includes both SFCPCU (t) andEFCPCU (t) values.

163

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

EFCP
CU (t)) and send this information to CU . Otherwise, it will compute the fee

as SF c
u(t) ∗ |d|+EFCP

CU (t) and sends it to CU . |d| is the length of the data to be

stored in bits.

(v) CU must send the fee to BDEDU before τ > τp. If CU fails, then his deposit $d

is sent to CP , and the request is marked as terminated. Otherwise, CU ’s deposit

$d is refunded.

(vi) CP has to send the confirmation message toBDEDU before τ > τc1 acknowledg-

ing the receipt of file or correct PoP . Otherwise, the fee paid by CU is refunded,

and the request is marked as terminated. CP should send the file link with cor-

rect access rights to CU .

(vii) CU has to send the confirmation message to BDEDU before τ > τc2 acknowl-

edging the receipt of file link. Otherwise, the fee paid by CU is refunded. If CU

has sent the confirmation message before τ > τc2 then,

(a) if CU is the first uploader of d then the fee is sent to CP .

(b) if CU is not the first uploader of d, then the EFCP
CU (t) part of fee is sent to

CP and the SFCP
CU (t) part of fee is distributed equally among all the users

who hold the file link of d before CU . In either case, the request is marked

as terminated and the value of nCPd (t) is incremented.

6.3.3 BDEDU protocol

BDEDU protocol is presented in Figure 6.1. BDEDU smart contract functionalities executed

by Blockchain are presented as Algorithms 6.19 to 6.26.

A CP initializes the parameters SF and EF by invoking Algorithm 6.19. CP sets

these parameters according to current storage costs and utility. If storage costs vary in

future, he can change SF and EF values according to new storage costs. The parameter

interval is required to compute timing parameters τp, τc1 and τc2. These timing parameters

are required for timely computation of protocol and avoiding indefinite locking of funds in

the contract. A CU sends his storage request to BC invoking Algorithm 6.21. His request

consists of parameters like tag, |d| and $d. tag is computed using a convergent encryption

algorithm, and |d| is the length of the file requested for storage and $d is a safety deposit.

164

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Algorithm 6.21 computes the pays in two ways. If the tag sent by CU already exists and

is in an active state at cloud maintained by CP , then pay is computed according to the

current discounted storage fee of file F with tag tag. Otherwise, the pay is computed as

pay = SF ∗|d|+EF . Depending on the behavior of the user, there are two cases as follows:

Case 1: CU has sent the storage fee to BC invoking Algorithm 6.21. Depending on the

behavior of the user, there are five cases as follows:

Case 1.1: CU has sent the correct file d 2 to CP . Depending on the behavior of CP ,

there are four cases as follows:

Case 1.1.1: CP has sent the confirmation message to BC invoking Algorithm

6.22. Depending on the behavior of CP , there are two cases as follows:

Case 1.1.1.1: CP has sent the file link to CU . Depending on the behavior of

the CU , there are two cases as follows:

Case 1.1.1.1.1: CU has sent the confirmation message to BC invoking

Algorithm 6.23. In this case, if file d is not previously stored at CP , then

all the pay is sent to CP . Otherwise, the number of owners currently

having a link to file d is calculated, and pay is divided into rem and DF

components. rem is distributed among the file owners equally, and DF is

sent to CP . The new pay to be paid by the next de-duplication requester

is computed and stored at contract storage.

Case 1.1.1.1.2: CU has failed to send the confirmation message. This case

occurs when CU has not received the file link from CP or CU intention-

ally / unintentionally fail to send a confirmation message. In this case, the

CP can invalidate the link sent to CU and CU can send a transaction to

BC invoking Algorithm 6.24, which refunds pay to CU .

Case 1.1.1.2: CP has failed to send the file link to CU . This case is similar

to case 1.1.1.1.2 where CU can obtain a refund by invoking Algorithm 6.24.
2The correctness of the file is verified using the tag, based on which the payment is computed in Algorithm

6.20.

165

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Case 1.1.2: CP has failed to send the confirmation message to BC. This case

is similar to case 1.1.1.1.2 where CU can obtain a refund by invoking Algorithm

6.24.

Case 1.2: CU has sent the incorrect file toCP . In this case, theCP discards theCU ’s

request and will not send any further transactions. CU can obtain its pay invoking

Algorithm 6.24.

Case 1.3: CU has sent the correct proof-of-possession to CP . In this case, CP adds

CU to the list of owners of file d and sends the file link to CU . From now on this case

proceeds similarly to case 1.1.1.1.

Case 1.4: CU has sent the incorrect proof-of-possession to CP . This case is similar

to case 1.2.

Case 1.5: CU neither sends file nor proof-of-possession to CP . This case is similar

to case 1.2.

Case 2: CU has failed to send the storage fee. In this case, CP sends a transaction to BC

invoking Algorithm 6.25 to claim CU ’s deposit.

BDEDU protocol

Let (KeyGenCE, EncryptCE, DecryptCE, TGCE) be a secure convergent encryp-
tion method.
For cloud storage provider CP

1. To set up storage fee send transCPcreate = (SPay, EPay, interval) to BC.
2. After receiving a storage request

(a) Assert that CU has sent $pay to BC with the same tag
(b) Send transCPcspconf =(tag, reqNum) to BC.
(c) Store d and send the file link (tag, reqNum, L) to user CU .

3. After receiving (”proof”, PoP , tag, reqNum) from user CU .
(a) Assert that PoP is the correct proof for tag
(b) Assert that CU has sent $pay to BC with the same tag.
(c) Send transCUcspConf = (tag, reqNum) to BC.
(d) Store d or add CU to the user list of d and send file link (tag, reqNum,

L) to user CU
4. To claim the storage fee send transCPclaim = (tag, reqNum) to BC.
5. After receiving a delink request (tag, reqNum, L) from user CU

166

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

(a) Assert that CU has sent ”deLink” message to BC with same tag and
reqNum.

(b) Disable the link L for CU or remove d if no other users have active links
to d

For user CU
6. To send a storage request

(a) Compute K ← KeyGenCE(d).
(b) Set C ← EncryptCE(K, d).
(c) Set tag ← TGCE(C).
(d) Send transCUrequest = (tag, |d|, $d) to BC.

7. To send storage fee
(a) Assert that a request message has sent earlier with the same tag.
(b) Send transCUpay = (tag, reqNum, $pay) to BC
(c) If SF ∗ |d|+EF = pay, then send file (d, tag, reqNum) to CP . Other-

wise send the proof of possession (PoP , tag, reqNum) to CP .
8. To confirm receiving file link

(a) Assert that L is a correct link to File d.
(b) Assert that CP has sent ”cspConf” message to BC with the same tag.
(c) Send transCUusrConf = (tag, reqNum) to BC.

9. To request a refund send transrefundCU = (tag, reqNum) to BC.
10. To delink a file

(a) Send transCUdeLink = (tag, reqNum) to BC.
(b) Send (tag, reqNum, L) to CP .

Blockchain BC: SF := 0, EF := 0, uTAB := {}, k := 0
11. On receiving transCPcreate execute BDedu.create(SPay,EPay, interval)
12. On receiving transCUrequest execute BDedu.request(tag, |d|, $d)
13. On receiving transCUpay execute BDedu.pay(tag, reqNum, $pay)
14. On receiving transCPcspConf execute BDedu.cspConf(tag, reqNum)
15. On receiving transCUusrConf execute BDedu.usrConf(tag, reqNum)

16. On receiving transrefundCU execute BDedu.refund(tag, reqNum)
17. On receiving transCPclaim execute BDedu.claim(tag, reqNum)
18. On receiving transCUdeLink execute BDedu.deLink(tag, reqNum)

Figure 6.1: BDedu protocol

Algorithm 6.19 BDedu.create
Input: SPay, EPay, interval
Output: Φ

1: Set SF ← SPay
2: Set EF ← EPay
3: Set k ← interval

167

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Algorithm 6.20 BDedu.request
Input: tag, |d|, $d
Output: Success or failure message along with pay and timing parameters

1: if ledger[u] ≥ $d then
2: Set ledger[u]← ledger[u]− $d
3: if (tag, ∗, ∗, ∗) ∈ uTAB then
4: if ∃ request(∗, ∗, ∗, ∗, ∗, active, ∗, ∗) ∈ uTAB[tag] then
5: Set pay ← uTAB[tag].cPay
6: else
7: set pay ← SF ∗ |d|+EF
8: else
9: Set pay ← SF ∗ |d|+EF

10: Set numReq ← 0
11: Set uTAB ← uTAB ∪ (tag, numReq, ∗, ∗)
12: Set ID ← u, rState← waitForPay
13: Set $paid← 0, reqNum← uTAB[tag].numReq
14: Set τsub ← τ , τp ← τsub + k, τc1 ← τp + k, τc2 ← τc1 + k
15: Set uTAB[tag].requests← uTAB[tag].requests ∪ (ID, τsub, τp, τc1, τc2, rState, pay, $paid)
16: Set uTAB[tag].cPay ← pay
17: Set uTAB[tag].numReq ← uTAB[tag].numReq + 1
18: return (Success, tag, SF , pay, reqNum, τp, τc1, τc2)
19: else return (Failure, Not enough balance)

Algorithm 6.21 BDedu.pay
Input: tag, reqNum, $pay
Output: Success or failure message

1: if τ ≤ τp then
2: if uTAB[tag].requests[reqNum].ID = u then
3: if uTAB[tag].requests[reqNum].pay ≥ $pay then
4: if uTAB[tag].requests[reqNum].rState := waitForPay then
5: if ledger[u] ≥ $pay then
6: Set ledger[u]← ledger[u]− $pay
7: Set uTAB[tag].requests[reqNum].$paid← $pay
8: Set ledger[u]← ledger[u] + uTAB[tag].requests[reqNum].$d
9: Set uTAB[tag].requests[reqNum].rState← waitForcloudproviderConf

10: return (Success, Pay success)
11: else return (Failure, Not enough balance)
12: else return (Failure, Request state is not waitForPay)
13: else return (Failure, Not enough pay)
14: else return (Failure, Wrong user)
15: else return (Failure, Pay timeout)

168

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Algorithm 6.22 BDedu.cspConf
Input: tag, reqNum
Output: Success or failure message

1: if τ ≤ τc1 then
2: if uTAB[tag].requests[reqNum].rState = waitForcloudproviderConf then
3: Set uTAB[tag].requests[reqNum].rState← waitForCliConf
4: return (Success, Provider confirmation success)
5: else return (Failure, Request state is not waitForcloudproviderConf)
6: else return (Failure, Provider confirmation timeout)

Algorithm 6.23 BDedu.usrConf
Input: tag, reqNum
Output: Success or failure message

1: if τ ≤ τc2 then
2: if uTAB[tag].requests[reqNum].ID = u then
3: if uTAB[tag].requests[reqNum].rState = waitForCliConf then
4: foreach i ∈ [0, uTAB[tag].numReq − 2] do
5: if uTAB[tag].requests[i].rState = active then
6: Set activeRequests← activeRequests+ 1

7: if activeRequests = 0 then
8: Set ledger[c]← ledger[c] + uTAB[tag].requests[rNum].$paid
9: else

10: Set $rem← uTAB[tag].requests[reqNum].$paid− EF
11: Set $DF ← uTAB[tag].requests[reqNum].$paid− $rem
12: Set ledger[c]← ledger[c] + $DF
13: foreach i ∈ [0, activeRequests] do
14: if uTAB[tag].requests[i].rState = active then
15: Set ledger[uTAB[tag].requests[i].ID]← ledger[uTAB[tag].requests[i].ID]

+ $rem
activeRequests

16: Set uTAB[tag].cPay ← SF
activeRequests+2 + EF

17: Set uTAB[tag].requests[reqNum].rState← active

18: return (Success, User confirmation success)
19: else return (Failure, Request state is not waitForCliConf)
20: else return (Failure, Wrong user)
21: else return (Failure, User confirmation timeout)

Algorithm 6.24 BDedu.refund
Input: tag, reqNum
Output: Success or failure message

1: if uTAB[tag].requests[reqNum].ID = u then
2: if (τ > τc1 && uTAB[tag].requests[reqNum].rState = waitForcloudproviderConf) || (τ >
τc2 && uTAB[tag].requests[reqNum].rState = waitForCliConf)) then

3: Set ledger[uTAB[tag].requests[reqNum].ID]← ledger[uTAB[tag].requests[reqNum].ID]
+ uTAB[tag].requests[reqNum].$paid

4: return (Success, refund success)
5: else return (Failure, Refund timeout)
6: else return (Failure, Wrong user)

169

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Algorithm 6.25 BDedu.claim
Input: tag, reqNum
Output: Success or failure message

1: if τ > τp&&uTAB[tag].requests[reqNum].rState := waitForPay then
2: Set ledger[c]← ledger[c] + uTAB[tag].requests[reqNum].$d
3: return (Success, Claim success)
4: else return (Failure, Claim timeout)

Algorithm 6.26 BDedu.deLink
Input: tag, reqNum
Output: Success or failure message

1: if uTAB[tag].requests[reqNum].ID = u then
2: if uTAB[tag].requests[reqNum].rState = active then
3: Set uTAB[tag].requests[reqNum].rState← inActive
4: return (Success, DeLink Success)
5: else return (Failure, Request state is not active)
6: else return (Failure, Wrong user)

6.3.4 Proofs of BDEDU

Theorem 6.3.1. Proposed protocol satisfies correctness

Let contract-BDEDU is deployed on a Nakamoto-style Blockchain network using Proof-

of-Work as a consensus algorithm. Let b be the current block of the blockchain which is

extended by block b1 and then by block b2. Let txrequest and txpay be the request and pay

transactions respectively initiated by a user CU . txrequest and txpay are eventually embed-

ded in b1 and b2, respectively. We will prove the correctness by considering the following

cases.

Case 1: A user CU influences the execution of the request functionality to decrease the

fee f to be paid by him. This can happen if CU assumes the role of a miner and pre-mines

two blocks b′1 and b′2 that contain the tx′
request and tx′

pay transactions respectively with a

modified fee f ′ . Observe that in this case, CU does not broadcast tx′
request to the network.

Now CU broadcast b′1 extending b and b′2 extending b′1 to the Blockchain network. All the

other miners in the Blockchain network verify every transaction in b′1 and extends b′1 if and

only if all the outputs of every transaction in b′1 are correct. As the output of txrequest is f

but not f ′ the miners discard the block b′1. As b′2 is extending the wrong block b′1, it is also

170

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

discarded. Miners with at least 51% of hash-rate cumulatively required to guarantee the

correctness of the transactions in the block.

Case 2: CU broadcasts txrequest but pre-mines b′2 that contains tx′
pay transaction with

modified fee f ′ . In this case, the actual fee f to be paid by CU is already stored in the

contract storage. Therefore, during verification of the tx′
pay in b′2, the f ′ received through

tx
′
pay is compared against the stored value. The comparison will fail, and the block b′2 is

discarded.

Case 3: A cloud storage provider CP influences the execution of request functionality

to increase the fee to be paid by CU . This case is similar to Case 1 except that now CP

assumes the role of a miner and broadcasts b′1 consisting the modified fee.

Similarly, all the transactions with BDEDU are executed correctly; otherwise, those

transactions are rejected. Nevertheless, CP or CU can influence some miners to include

the wrong blocks to their local ledger and generate new blocks extending these wrong

blocks. However, CP or CU should accumulate more than 50% of hash rate to make the

entire network to accept wrong blocks which is difficult unless they have large mining pools

under their control [204].

In summary, as the miners in public Blockchain networks are reasonably assumed to

act honestly for the common good and follow the rules encoded in consensus algorithm, it

is difficult for CP or CU to make the network to accept wrong blocks. Considering the

above cases, our protocol satisfies correctness as defined in Definition 6.1.1.

Theorem 6.3.2. Proposed protocol satisfies fair payments

We prove fairness by considering the following cases.

Case 1: CU is malicious and aborts after learning the fee he needs to pay. In this case,

according to BDEDU contract clause (v), CU forfeits his deposit, and his data is not stored

in the cloud. Here, the CU ’s data cannot be stored in the cloud unless he pays the fee. Thus

the fairness holds.

Case 2: CU fails to send the data d or sends incorrect PoP to CP . In this case,

according to BDEDU contract clause (vi), CP refuses to acknowledge the receipt of d /

PoP and the fee paid by CU is refunded. Here, the CU cannot obtain the storage link if

171

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

he fails to send the d or the correct PoP . Thus the fairness holds.

Case 3: CP is malicious and does not acknowledge the receipt of d or correct PoP .

This case similar to Case 2. The fee paid by CU is refunded. Here CP cannot obtain the

fee without acknowledging the receipt of d or correct PoP . Thus the fairness holds.

Case 4: CP is malicious and does not send the file link to CU . In this case, according

to BDEDU contract clause (vii), CU will not acknowledge the receipt of file link. Then the

fee paid by CU is refunded. Here, CP cannot obtain the fee without sending the file link

to CU . Thus the fairness holds.

Case 5: CU is malicious and do not acknowledge the receipt of the file link. This case

is similar to case 4. The fee paid by CU is refunded. If CP does not receive the fee, it

disables the file link sent to CU . Here, CU cannot store his data without acknowledging

the receipt of the file link. Thus the fairness holds.

In summary, considering the above cases, our protocol holds fairness.

Theorem 6.3.3. Proposed protocol satisfies uniform payments

According to clause (iv), the first user pays a fee of SFCP
CU (t)+EFCP

CU (t) 3. The second

user pays a fee of SFCP
CU (t)

2
+ EFCP

CU (t). Due to the second user, the first user gets a refund

of SFCP
CU (t)

2
. So at the end each user pays a fee of SFCP

CU (t)

2
+ EFCP

CU (t).

The nth user pays a fee of SFCP
CU (t)

n
+ EFCP

CU (t) and due to the nth user each of the

previous n− 1 users receive a refund of SFCP
CU (t)

n∗(n−1)
. At the end of nth user’s payment, the first

user pays SFCP
CU (t) +EFCP

CU (t)− SFCP
CU (t)

2
− SFCP

CU (t)

6
, ...,−SFCP

CU (t)

n∗(n−1)
=

SFCP
CU (t)

n
+EFCP

CU (t).

The second user pays SFCP
CU (t)

2
+ EFCP

CU (t)− SFCP
CU (t)

6
, ...,−SFCP

CU (t)

n∗(n−1)
=

SFCP
CU (t)

n
+ EFCP

CU (t).

Similarly the (n−1)th user pays SFCP
CU (t)

n−1
+EFCP

CU (t)− SFCP
CU (t)

n∗(n−1)
=

SFCP
CU (t)

n
+EFCP

CU (t). So,

every user having a data d opting for dedup with BDEDU at CP pays the same fee.

In summary, the proposed protocol satisfies uniform payments irrespective of when a

user submits his/her request.

3Assuming |d|= 1.

172

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

6.4 Proposed Inter-cloud provider de-duplication proto-

col

In the previous section, we have proposed a dedup protocol with a single cloud provider.

This section proposes a Blockchain-based inter-cloud provider de-duplication protocol,

which consists of a root-level smart contract BI-DEDU , a smart contract BDEDU for each

cloud provider, protocols to interact with BDEDU , and a public Blockchain network to de-

ploy the smart contracts.

6.4.1 Assumptions

(a) We assume that all the cloud providers charge the same SFCP
CU (t) and EFCP

CU (t) val-

ues.

(b) We assume that no cloud provider will collect extra fee other than SFCP
CU (t) or

EFCP
CU (t) for inter-cloud provider de-duplication. Inter-cloud provider de-duplication

is same as a single cloud provider de-duplication from the cloud users perspective.

(c) A cloud provider CP1 pays a fee of AFCP (t) to a cloud provider CP2 for accessing

the data stored at CP2.

6.4.2 BI-DEDU

The inter-cloud provider de-duplication is similar to single cloud provider de-duplication

except that now a root-level smart contract has information about tags of data stored in

different cloud providers.

The clauses in BI-DEDU are as follows:

(i) An organizationO (like a consortium of cloud providers) creates a smart contract

to facilitate inter-cloud de-duplication. O designs and deploys the BI-DEDU on a

public Blockchain network and shares the smart contract address and ABI with

all the registered cloud providersa.

(ii) Each cloud provider CPi also deploys a smart contract Bi
DEDU on a public

173

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Blockchain network and announces the smart contract address and smart con-

tract ABI on a public platform (like a website / bulletin board) and also registers

Bi
DEDU address with BI-DEDU .

(iii) A user CU sends a request to Bi
DEDU similar to clause (3) in Section 6.3.2.

(iv) Bi
DEDU performs checks similar to clause (4) in Section 6.3.2. If the check is

valid, it will compute the fee to be paid by CU according to the dedup rate and

sends this information to CU . Otherwise, it will send a request containing tag

to BI-DEDU .

(v) BI-DEDU checks whether any cloud provider is holding data with the same tag. If

the check is not valid, it will return N/A to Bi
DEDU . Then BDEDU will compute

the fee as SFCP
CU (t)∗ |d|+EFCP

CU (t) and send it to CU . Otherwise, BI-DEDU will

send the information about the smart contract Bj
DEDU and cloud provider CPj ,

holding the data with tag.

(vi) If Bi
DEDU receives the info about CPj , then a request message is sent to Bj

DEDU

from Bi
DEDU . Then Bj

DEDU computes the fee according to the dedup rate and

sends it to Bi
DEDU , which is then forward to user CU by Bi

DEDU .

From here on, we assume that inter-cloud de-duplication is found and the con-

tract proceeds as follows:

(vii) If τ > τp and CU has not sent the fee to Bi
DEDU , then Bi

DEDU also will not send

the fee to Bj
DEDU . CU ’s deposit is forfeited. This deposit is sent to CPj and the

request is marked as terminated by both Bj
DEDU and Bi

DEDU .

(viii) If τ > τc1 and CPj has not sent the confirmation message to Bj
DEDU , then the

fee paid by CU is refunded, and the request is marked as terminated by both

Bj
DEDU and Bi

DEDU .

(ix) If τ > τc2 and CU has not sent the confirmation message to Bi
DEDU , then

Bi
DEDU will not send confirmation to Bj

DEDU . The fee paid by CU is refunded.

Else, a fee AFCP (t) is sent to CPj from CPi, and the request is marked as ter-

minated by both Bj
DEDU and Bi

DEDU .
aWe assume a registration phase is executed before deploying the smart contract and only registered

cloud providers can exchange messages with BI-DEDU

174

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

The analysis of BI-DEDU is similar to BDEDU and all the properties satisfied by BDEDU

are also satisfied by BI-DEDU . The formal smart contract contract-BI-DEDU is presented

in Figure 6.2.

contract-BI-DEDU

Init: list := {}, tags := {}
Register: Upon receiving (”register”, BDEDU , info) from a cloud storage provider

CP
assert (c, ∗, ∗) /∈ list
set list := list ∪ (c, BDEDU , info)

setTag: Upon receiving (”setTag”, tag) from a contract BDEDU

assert tag /∈ tags
set cloudprovider := list[BDEDU].c
set info := list[BDEDU].info
set tags := tags ∪ (tag, BDEDU , cloudprovider, info)

getTag: Upon receiving (”getTag”, tag) from a contract BDEDU

assert (∗, BDEDU , ∗) ∈ list
if (tag, ∗, ∗, ∗) ∈ tags

send (”tagFound”, tag, tags[tag].BDEDU , tags[tag].cloudprovider,
tags[tag].info) to BDEDU

else send (”N/A”, tag) to BDEDU

Figure 6.2: contract-BI-DEDU

6.5 Implementation

The simulation environment is discussed in Section 1.2.3.

6.5.1 Implementation of BDEDU

We have tested the proposed smart contract BDEDU multiple times, and each transaction’s

transactional cost and its equivalent financial cost is shown in Table 6.2. Observe that the

contract deployment transaction consumes a large amount of gas; however, this is a one

time cost for cloud provider. Next, the create and request functionalities also consumes a

large amount of gas due to the modification of contract storage variables. Storing data in

a contract is an expensive operation in Ethereum. As the usrConf function executes main

tasks like computing dedup rate, sending the storage fee to cloud provider, and sending

175

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

Function Caller Gas cost Cost in Ether Cost in $
Init (contract deployment) cloud provider 187467 0.000187 0.045

Create cloud provider 143464 0.000143 0.035
Request User 161168 0.000161 0.039

Pay User 66558 0.000066 0.016
cspConf cloud provider 31457 0.000031 0.007
Refund User 31779 0.000031 0.007
Claim cloud provider 31549 0.000031 0.007

DeLink User 29318 0.000029 0.007

Table 6.2: Costs of interacting with BDEDU contract. The gas price is approximated as
1Gwei and 1 Eth = $243.45, which are real-world prices in June 2020. We have rounded
off the cost in $ value up to 3 decimals.

refunds to users, the transaction to usrConf also consumes a large amount of gas. The gas

consumption of usrConf varies and depends on the number of users opted for de-duplication

before the transaction initiator’s call. We have listed the gas consumption of usrConf func-

tion in Figure 6.3. Observe that the gas consumption increases with the increase in dedup

rate, and it reaches more than the block gas limit.

0 100 200 300 400 500

0

2

4

6

·106

Number of users

G
as

co
ns

um
pt

io
n

Figure 6.3: Costs of interacting with usrConf functionality

176

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

6.5.2 Experiment 1: Finding utility of the users and the cloud provider

by varying nCPd (t) and EFCP
CU (t)

We have conducted experiments with the values shown in Table 6.3 adopted from Gao et

al. [226] and Liang et al. [225]. The utility of the users and the cloud provider are shown

in Figure 6.4 and Figure 6.5, respectively. We have varied EFCP
CU (t) from 10% to 50%

of SFCP
CU (t) in both the figures. We have also varied the de-duplication rate nCPd (t) as

10%, 50%, 90%, 100% of NCP
d (t) . It is observed that both the users and cloud provider

obtain non-negative utilities when opted for dedup with BDEDU . The results show that our

proposed model is individually rational.

In Figure 6.4, the utilities of the users decreases as the EFCP
CU (t) increases. However,

for any constantEFCP
CU (t) value the average utility of users increases with increase in dedup

rate. This result agrees with the general notion of increase in dedup rate with increase in

the average utility of users. Figure 6.4 also shows that the user is incentive-compatible

that is U1
CU(t) > U0

CU(t) ∀nCPd (t) > 1. The results show that the proposed model is not

incentive compatible for nCPd (t) = 1, due to the new parameter EFCP
CU (t). To make the

user incentive compatible when nCPd (t) = 1, the EFCP
CU (t) value should be set to zero.

Figure 6.5 shows that the cloud provider is not incentive compatible until EFCP
CU (t) ≥

36% of SFCP
CU (t). This result is in line with equation (6.6) when the values in Table 6.3 are

substituted.

Parameter Value in Ether
PCU(t) 2.165
SFCP

CU (t) 0.165
SCCU

CP (t) 0.1
AFc(t) 0.1

Table 6.3: Experiment Settings.

6.5.3 Experiment 2: Testing BDEDU and BI-DEDU with public dataset

In Experiment 1, we have considered only similar requests where all users have the same

data file with the same size. In this experiment, we have chosen a dataset that consists of

177

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

50 100

2

2.05

2.1

2.15

Number of users

A
ve

ra
ge

ut
ili

ty
of

us
er

s

EFCP
CU (t) = 10% of SFCP

CU (t)

50 100

2

2.05

2.1

Number of users

A
ve

ra
ge

ut
ili

ty
of

us
er

s

EFCP
CU (t) = 20% of SFCP

CU (t)

50 100

2

2.05

2.1

Number of users

A
ve

ra
ge

ut
ili

ty
of

us
er

s

EFCP
CU (t) = 30% of SFCP

CU (t)

50 100

2

2.05

2.1

Number of users

A
ve

ra
ge

ut
ili

ty
of

us
er

s

EFCP
CU (t) = 40% of SFCP

CU (t)

50 100

2

2.05

Number of users

A
ve

ra
ge

ut
ili

ty
of

us
er

s

EFCP
CU (t) = 50% of SFCP

CU (t)

U0
CU(t) U1

CU(t)(nCPd (t) = 10%) U1
CU(t)(nCPd (t) = 50%)

U1
CU(t)(nCPd (t) = 90%) U1

CU(t)(nCPd (t) = 100%)

Figure 6.4: The effect of EFCP
CU (t) and nCPd (t) on average utility of the cloud users

information of Debian packages gathered from Debian popularity contest

(https://popcon.debian.org/contrib/by inst). We took a snapshot of the number of packages,

the number of installations of a single package, and size of each package as on 7th May

178

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

50 100
0

2

4

6

Number of users

U
til

ity
of

cl
ou

d
pr

ov
id

er
EFCP

CU (t) = 10% of SFCP
CU (t)

50 100
0

2

4

6

Number of users

U
til

ity
of

cl
ou

d
pr

ov
id

er

EFCP
CU (t) = 20% of SFCP

CU (t)

50 100
0

2

4

6

Number of users

U
til

ity
of

cl
ou

d
pr

ov
id

er

EFCP
CU (t) = 30% of SFCP

CU (t)

50 100

2

4

6

Number of users

U
til

ity
of

cl
ou

d
pr

ov
id

er

EFCP
CU (t) = 40% of SFCP

CU (t)

50 100
0

2

4

6

8

Number of users

U
til

ity
of

cl
ou

d
pr

ov
id

er

EFCP
CU (t) = 50% of SFCP

CU (t)

U0
CP (t) U1

CP (t)(nCPd (t) = 10%) U1
CP (t)(nCPd (t) = 50%)

U1
CP (t)(nCPd (t) = 90%) U1

CP (t)(nCPd (t) = 100%)

Figure 6.5: The effect of EFCP
CU (t) and nCPd (t) on utility of the cloud provider

179

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

2020. Each package represents a data file to be stored in the cloud, and the installations

serve as the de-duplication requests. They were a total of 403 packages (data files) and

270738 installations requests (users). The dataset is very diverse as it consists of data

files having different sizes and each data file have a different number of installations. We

uniformly distributed the requests among two cloud providers CP1, CP2 and computed the

two cloud providers’ utility. As discussed earlier in section 6.4, the inter-cloud provider

de-duplication is the same as single cloud provider de-duplication from the user point of

view, and there is no change in users’ utility. The utility of the cloud provider changes

as U2
c (t) = U1

CP (t) + AF c
in(t) − AF c

out(t). AFCP (t) is the fee paid by a cloud provider

CPi to cloud provider CPj for accessing the data stored at CPj . In Figure 6.6, we show

the utilities of the above-considered dataset by taking EFCP
CU (t) = 40% of SFCP

CU (t) and

nCPd (t) = 100%ofNCP
d (t). We observe that the cloud providers gain more utility when

opted for inter-cloud de-duplication. The gain is due to the increase in the dedup rate.

Therefore, with our proposed incentive mechanism dedup with BI-DEDU is more profitable

than dedup with BDEDU and dedup with BDEDU is more profitable than no de-duplication.

6.6 Comparison with existing methods

Table 6.4 shows the comparison of our work with [221], [92], [225], and [93] in terms of

category, incentives, features of incentives, correctness in the computation of de-duplication

rate and fairness. Miao et al. [221] provides correctness of dedup rate but uses a trusted

party known as de-duplication rate manager. In contrast, our method does not rely on the

trusted party and still has correctness. The incentive mechanism in [221] supports only IR-

constraint, whereas our method supports both IR-constraint and IC-constraint. The dedup

method proposed by Li et al. [92] focuses more on the integrity of the deduplicated data

stored in the cloud, whereas our method focuses on incentives and fair payment mech-

anism. The incentive mechanism in Liang et al. [225] supports both IR-constraint and

IC-constraint, but, an untrusted cloud provider computes the dedup rate. Also, the incen-

tives in [225] are time-variant, whereas our method supports uniform payments. Although

180

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

c1 c2

3

4

5

6

7

8
U

til
ity

of
cl

ou
d

pr
ov

id
er

No dedup dedup with BDEDU dedup with BI-DEDU

Figure 6.6: Utility of cloud providers with public dataset

in Wang et al. [93], the authors have considered fair payments, their method does not sup-

port fair payments in all the cases defined in Theorem 6.3.2.

Scheme Category Incentive Feature of Incen-
tives

Correctness of
de-duplication
rate

Fairness

[221] PC X IR X x
[92] BC x x x x
[225] PC X IR, IC x x
[93] UC X - x X
Proposed
method

BC X IR, IC X X

Table 6.4: Comparison with existing data de-duplication works. PC - provider controlled,
UC - user controlled, BC - Blockchain controlled

181

CHAPTER 6. FAIR PAYMENT PROTOCOL FOR DATA DE-DUPLICATION UNDER INFRASTRUCTURE-AS-A-SERVICE

6.7 Summary

de-duplication techniques save storage costs of a cloud storage provider. However, adop-

tion of de-duplication techniques by cloud users require strong incentives and a fair pay-

ment platform. In this Chapter, our contributions are two-fold: first, we have designed a

new incentive mechanism, and second, we have designed a Blockchain-based de-duplication

protocol. Experimental results show that our proposed incentive mechanism is individually

rational and incentive compatible for both cloud provider and users. The proposed dedup

protocol solves correctness, uniform payments and fair payments in de-duplication of cloud

data without a trusted intermediary. The designed smart contracts in the proposed protocol

are implemented in the Ethereum network, and the costs of interacting with the smart con-

tract are presented.

182

Chapter 7

Fair Payment Protocol for

Microservices-based software deployed

in cloud under Software-as-a-Service

7.1 Introduction

With the advances in containerization technology [227], the traditional monolithic applica-

tions are being decomposed into a suite of small services known as microservices [228],

each running in its process and communicating with lightweight mechanisms. Microser-

vices now are a new trend in software architecture, emphasizing the design and develop-

ment of highly maintainable and scalable software [229]. Industry giants like Amazon

[230], Netflix [231], Linkedin [232] and Uber [233] are adopting and enhancing the mi-

croservice architecture. On the other hand, many individuals and enterprises prefer the

cloud to deploy their applications that are delivered as services over the Internet. The

adoption of microservice architecture in cloud-hosted software reduces infrastructure and

maintenance costs [234]. The traditional and microservice-based software deployment in

the cloud is shown in Figure 7.1. In Figure 7.1(a), users interact with a front-end appli-

cation, which redirects user requests to multiple instances of the software hosted within

a container. In Figure 7.1(b), the application is split into multiple components hosted in

183

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

Figure 7.1: Software deployment in cloud [235]. (a) Traditional (b) Microservice-based

multiple containers and replicated at the user’s convenience. Microservices architecture

provides benefits like isolation, scalability, productivity, flexibility, and faster application

development. Although there are some advantages of development and deployment of

cloud applications using microservices, there are some limitations:

(a) Trusted registry, and service discovery: Microservice architecture by design ap-

pears to be fully decentralized. However, it includes centralized components like a

trusted registry and a service discovery module (ZooKeeper [236], Eureka [237]).

These two components are required to publish and discover microservices by a user

interface or another microservice. These centralized components may become a sin-

gle point of failure and require additional security methods to avoid attacks like de-

nial of service, microservice integrity breach etc. A distributed immutable storage is

required to avoid the attacks.

(b) Microservice communication: Since every microservice is independent, commu-

nication between them is complex. Microservices are designed to trust each other

completely; the compromise of one microservice jeopardises the entire application.

Several attacks like Man-In-The-Middle (MITM), service identity spoofing etc., can

occur during communications between microservices. A reliable communication

platform is required to mitigate the attacks.

(c) Rating and billing: As microservices consume cloud resources dynamically, real-

time rating and billing models are required [238]. However, existing models do not

consider transparency, and in most cases, the user ends up paying for more resources

184

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

than consumed. Also, the cloud being rational may tamper with the usage records of

a user to increase bill. Hence, a transparent and immutable rating and billing platform

are required where a user can verify his consumption and trust the billing process.

(d) Double charging: Most of the times, cloud resources are shared by multiple mi-

croservices simultaneously. For example, a microservice only spends five minutes

per hour doing any processing. However, it is charged for the entire hour. During the

ideal time, the resources are allocated to other microservice, and the cloud provider

benefits from charging both the microservices. In many cases, the users are unaware

of double charging. A publicly available, transparent and immutable resource usage

record log is required to detect double charging or ideal time charging.

The recent progress in Blockchain and smart contract technologies can reduce the previ-

ously discussed limitations. This Chapter proposes a new Blockchain-based rating, charg-

ing and billing system for microservices deployed on a cloud platform.

We summarize the contributions of this Chapter as follows:

1. We design a Blockchain-based registry to publish microservices and a Blockchain-

based tamper-proof communication platform for microservices.

2. We design a new cost computation model based on real-time usage and dynamic

pricing of resources with respect to the state of the cloud operating environment.

3. To the best of our knowledge, we are the first to propose a Blockchain-based rating

charging and billing platform for microservices deployed on a cloud platform.

4. We have implemented the proposed system using Solidity [24] and presented the

transactional and financial costs of the proposed system.

7.2 Microservice rating, charging and billing (RCB) ar-

chitecture

A microservice RCB architecture is presented in Figure 7.2. The architecture consists of

three core services and two supporting services. The three core services are (1) Usage

185

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

Figure 7.2: Traditional microservice rating, charging and billing system

data record (UDR) service, (2) Rating and charging service and (3) Billing service. The

two supporting services are (1) Authentication and authorization service and (2) Message

broker service.

The message broker service fetches the usage data records from an external SaaS ap-

plication (a SaaS application is a collection of several microservices). These usage records

are used in the calculation of bill. The RCB services interact with the authentication and

authorization service to validate the service request’s authenticity. The cloud user uses the

dashboard to interact with the RCB platform.

Definition 7.2.1. A fair rating, charging, and billing platform for microservices must pro-

vide the following guarantees:

(a) Decentralized service discovery: Decentralized service discovery is available all the

times, and no party can control the service discovery.

(b) Tamper-proof communication platform: The messages exchanged between microser-

vices are tamper-proofed, and the messages are stored securely for future auditing.

(c) Fair Rating and charging platform: A platform is said to be a fair rating and charg-

ing platform if the rating and charging values depend on the environment variables

and no other party can influence the rating and charging variables.

186

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

(d) Fair Billing platform: A platform is said to be a fair billing platform if the billing

solely depends on the user consumption of the resources and the prices of the re-

sources, and no other party can influence the billing process.

7.3 Blockchain-based Microservice Rating, Charging and

Billing (RCB) System

In this section, we first present the architecture of the Blockchain-based RCB system. Then,

we build a mathematical model for reputation-based rating, charging and billing system.

We later construct protocols for the Blockchain-based RCB platform and conclude the

section with the proofs for the goals described in Definition 7.2.1.

A Blockchain-based rating charging and billing platform is shown in Figure 7.3. The

architecture consists of several smart contracts, which are discussed briefly in the following

subsection. The architecture also contains a dashboard similar to Figure 7.2. The message

broker service from Figure 7.2 is divided into two different broker services: (1) Server bro-

ker service - fetches the usage data records from external SaaS application. (2) Operating

environment broker service - fetches the state of the operating environment.

7.3.1 Smart contracts for RCB system

The RCB system consists of a total seven contracts: (1) Service discovery contract (SDC),

(2) Message exchange contract (MEC), (3) Usage data contract (UDC), (4) Rating and

charging contract (RCC), (5) Billing contract (BIC), (6) Registration and reputation con-

tract (RRC), and (7) Error data contract (EDC).

Service discovery contract (SDC): A cloud provider deploys a set of microservices

at the cloud and lists the microservices’ details in the SDC contract. The SDC contract

contains details such as a service name, available endpoints, API specification, current

load etc. The contract also contains service chains specifying the order of microservice

execution. The structure of data records stored at the SDC is shown in Figure 7.4.

Message exchange contract (MEC): Microservices communicate with each other via

187

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

Figure 7.3: Blockchain-based microservice RCB platform

Service

Name

List of

end-points

Hash of

API desc

List of

Inputs

List of

Outputs

Current

Load

Service

Chain ID

Start Service

Name
End Service

Name

Sequence of

Intermidiate Services

Figure 7.4: Structure of the data records stored in SDC contract.

MEC contract. The contract generates an event whenever a message arrives. Microser-

vices listen to events and processes the messages intended for them. The contract also

ensures that only the authorized microservices can send and receive messages. The struc-

ture of the data records stored at MEC is given in Figure 7.5.

Caller

Service

Caller

End-point

Callee

Service

Callee

End-point

List of

Inputs

Figure 7.5: Structure of the data records stored in MEC contract.

Usage data contract (UDC): The contract stores the usage statistics of all the users of

the SaaS application. A server broker service collects the usage information from the cloud

server and sends it to the UDC contract. However, a cloud provider may influence the

broker service from fetching the correct usage statistics. To avoid this attack, we assume

that the server broker service runs in a secure enclave such as Intel SGX. The structure of

188

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

the data records stored in the UDC is shown in Figure 7.6.

Time User Resource Usage Unit

Figure 7.6: Structure of the data records stored in UDC contract.

Rating and charging contract (RCC): An operating environment broker service

fetches a number of parameters of the cloud environment and sends them to RCC. We

assume this broker service also runs in a secure enclave to avoid malicious cloud provider

affecting resources’ price. The parameters include power rate, operating load, number of

active customers and other similar parameters. The RCC computes the prices of the re-

source based on the received parameters’ value. However, the cloud provider has to code

the rules into RCC for determining the resource prices with respect to operating environ-

ment parameters. The structure of the records stored in the RCC is shown in Figure 7.7.

Time
Resource

Name
Price

Figure 7.7: Structure of the data records stored in RCC contract.

Error data contract (EDC): The operating environment service broker also logs the

errors during service provisioning in EDC. The structure of the records stored in EDC is

shown in Figure 7.8.

Figure 7.8: Structure of the data records stored in EDC contract.

Registration and reputation contract (RRC): A cloud user has to register with RRC

to use services provided by a cloud provider. Initially, the default reputation values of cloud

user and provider are set to 1. Later, the reputation of cloud user is updated according to his

interactions with the system and the reputation of the cloud provider is updated according

to the quality of the service provided.

Billing contract (BIC): The cloud user calls BIC to deposit the estimated pay before

the start of execution of the service. After completing the service, BIC receives usage

data from UDC, rating data from RCC, reputation data from RRC and generates the final

payment the user has to pay. The cloud provider also inputs the discounts offered to the

user during service level agreement negotiations.

189

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

7.3.2 Cost computation model

Let CUi be the set of cloud users and CP be a cloud provider. Let R be the set of re-

sources provided by CP , O be the set of operating environment parameters, and E be the

set of errors that could occur during service provisioning. The cost to be paid by a cloud

user for using cloud resources is computed from the following four factors: (1) Resource

consumption of the user, (2) Reputation of the user, (3) Reputation of the cloud provider,

and (4) State of the operating environment.

7.3.2.1 Resource consumption of cloud user

Let a cloud user CUi ∈ CU consume resources in the time between τs and τe. Then the

usage vector of the user CUi measured between τs and τe is represented as:

~U(CUi, τs, τe) =
∑

τs≤τ≤τe

~U(CUi, τ) (7.1)

Let rj be the meter value measuring the resource consumption of jth resource in R. Let

n = |R| be the total number of resource types provided by a cloud provider. Then, the

usage vector at time τ is expressed as:

~U(CUi, τ) = 〈(CUi, r1, τ), (CUi, r2, τ), ..., (CUi, rn, τ)〉 (7.2)

7.3.2.2 Reputation of cloud user

The reputation of a cloud user RCUi
depends on his behavior with the system. If CUi has

paid the fee without any delays, his reputation is not affected; otherwise decreased. The

decrease in the reputation value is directly proportional to the amount the user defaulted.

Let f be the amount defaulted by CUi, then the reputation RCUi
(CPτ) for defaulting f

190

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

computed as:

RCUi
(CPτ) =



V1 if f > A1

V2 if f > A2

· · · · · · · · · · · · · · ·

Vn if f > An

Where V1, V2, ..., Vn are the values defined byCP for categoriesA1, A2, ..., An respectively.

The reputation is calculated as

RCUi
=

RCUi
if f = 0

β ∗RCUi
(CPτ) + (1− β) ∗RCUi

otherwise
(7.3)

Where β ∈ [0, 1] is smoothing factor.

7.3.2.3 Reputation of cloud provider

A cloud provider’s reputation RCP depends on the errors that occur during the service

provision. Let RCP (CUτ) be the reputation of CP while serving CUi at time τ . Let E be

the set of errors that can occur during the service provision, and we is the weight associated

with the error e ∈ E. The value of RCP (CUτ) can be computed as:

RCP (CUτ) =
1

E∑
e=1

we ∗Xe

(7.4)

where Xe is the number of times an error e ∈ E occurs during the service provisioning.

The reputation of a cloud provider is updated as

RCP = α ∗RCP (CUτ) + (1− α) ∗RCP (7.5)

where 0 < α < 1 is a smoothing factor.

191

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

7.3.2.4 Operating environment of the cloud

The state of the cloud operating environment S(τ) is expressed as a set of variables rep-

resenting different parameters like the number of active users, operating load, power rate

etc., Let there are m number of operating system parameters, and wk be the weight given

to parameter pk. The state of the cloud operating environment S(τ) is defined as:

S(τ) = w0 ∗ p0 + w1 ∗ p1, ...,+wm ∗ pm (7.6)

such that
m∑
k=0

wk = 1 (7.7)

Let the state space of S is denoted by Z such that S(τ) ∈ Z. Therefore the price of a

resource varies depending on the state of the operating environment.

Pri(τ) =



P1 if S(τ) ∈ Z1

P2 if S(τ) ∈ Z2

· · · · · · · · · · · · · · ·

Pn if S(τ) ∈ Zn

such that Pi ∈ Z and
n⋃
i=1

Zi = Z. The price vector for resources at time τ is given as

~P (τ) = 〈Pr1(τ), Pr2(τ), ..., Prn(τ)〉 (7.8)

Now the cost incurred to a cloud user CUi at time τ is computed as

PCUi
(τs, τe) =

∑
τs≤τ≤τe

~U(CUi, τ) · ~P (τ) (7.9)

The cost payable by the cloud user at time τ is computed as

CCUi
(τs, τe) = (PCUi

(τs, τe) ∗RCP ∗
1

RCUi

)−DCUi
(7.10)

192

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

where DCUi
is the discount offered to CUi during service layer agreement negotiations

7.3.3 High-level overview of the RCB protocol

The protocol consists of three phases: (1) Initialization phase (IP) (2) Service provi-

sioning phase (SAP) (3) Rating, charing and billing phase (RBP).

Initialization phase

(i) During this phase, a cloud provider CP prepares and deploys a series of smart

contracts on a public Blockchain platform and publishes their addresses on a

public platform.

(ii) CP also develops a dashboard where users can login and monitor their resource

usage, resources rating and billing information.

Service provisioning phase (SAP)

(iii) A cloud user CUi requests a service from CP through a dashboard. The request

is received by a service discovery contract which returns the approximate cost

$pes of the service execution.

(iv) The request is executed as soon as the CUi sends $pes to the billing contract.

The request may initiate a series of microservices execution. The microservices

communicate among themselves through a message exchange contract.

(v) A server broker service SBS fetches the users’ resource usage information and

sends this information to the usage data contractd.

(vi) An operating environment broker service OEBS fetches the operating environ-

ment variables values and sends this information to the rating and charging con-

tract. Also, the OEBS logs the errors during service provisioning in the error

data contract.

Billing Phase

(vii) CUi request a bill by sending a request to the billing contract. The billing con-

tract fetches the usage records from UDC, charging records from RCC, the

reputation of CP and CUi from RRC.

(viii) Then, BIC computes the final bill and the amount to be paid by CUi after de-

193

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

ducting $pes. If $pes is greater than the computed amount, then BIC will refund

the excess amount.

(ix) The final bill may also include user-specific discounts set by the cloud provider.

(x) If CUi fails to send the excess amount, then his reputation is decreased. BIC

also calculates CP ’s reputation based on the error data records, and a new repu-

tation value is updated in the reputation contract.

7.3.4 RCB Protocol

7.3.4.1 Initialization phase

During this phase, a cloud service provider CP deploys a set of smart contracts described

in section 7.3.1 on a public Blockchain network and publishes their address publicly. CP

deploys the microservices at a cloud operated by it and sends the details of deployed mi-

croservices to the SDC contract. This a one-time setup for a single SaaS application 1.

The registration contains details like application name, service name, service endpoints,

the hash value of API, and estimated cost. CP also registers the microservice chains with

SDC contract. Although microservices are distributed and independent, they are executed

in a sequence to accomplish a task. The sequence is called microservice chaining. The ser-

vice chaining also helps in predicting the execution time and cost of microservices. After

receiving the details of microservice or microservice chains, the SDC contract stores them

in contract storage. To access the application, a cloud user has to send a registration request

and a self-generated public key to RRC. The protocol for the initialization phase is given

in Figure 7.9.

Protocol: Initialization phase

For Cloud provider CP
1. Send transCPdeploy = (SDC,MEC,UDC,RCC,RRC,EDC,BIC) to

Blockchain BC. After receiving the addresses of the deployed contracts, pub-
lish the addresses publicly.

1Even though our framework does not explicitly mention multiple instantiations and load balancing of
microservices, it can effectively incorporate those concepts.

194

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

2. Host the microservices at cloud and send transCPmService = (sAppName,
sName, sEndPoints, APIHash, sInputs, sOutputs, Costs) to SDC.

3. To register service chains, send transCPsChain= (sAppName, sChainID,
sNames,..., sNamee, Costc) to SDC.

For cloud user CUi
4. To register with CP for using an application sAppName, send transCUi

reg =
(pkCUi

, sAppName) to RRC
For Blockchain BC: listms ← {}, listsc ← {}, listCU ← {}

5. On receiving transCPdeploy, deploy all the received contracts and return the con-
tracts’ address.

6. On receiving transCPmService, set listms ← listms∪ (CP, sAppName, sName,
sEndPoints, APIHash, sInputs, sOutputs, Costs).

7. On receiving transCPsChain, set listsc ← listsc∪ (CP, sChainID, sAppName,
sNames,...,sNamee, Costs)

8. On receiving transCUi
reg

set listCU ← listCU ∪ (CUi, sAppName)

Figure 7.9: Initialization phase

7.3.4.2 Service provisioning phase

To access an application, CUi has to send a request to SDC along with the application

name, start time and end time 2. The SDC returns the estimated cost ($pes) to CUi. CUi

has to send the $pes to BIC before the start time of the application. Estimating cost is un-

known a priori and may not be possible in most cases. We assume that the cloud provider

sends an exhaustive list of service chains of the service provided, which will be used to esti-

mate the cost. Another option is to compute and feed the estimated cost to SDC manually.

However, the cost estimation is beyond the scope of this Chapter, and we assume a proper

cost estimation mechanism is already in place. After the receiving the $pes, the execution

sequence of microservices begins. Every microservice (except the initial microservice)

publish messages to MEC and receive the messages by listening to the events generated in

the MEC contract. The server broker service (SMS) periodically collects resource usage

records from the cloud servers and sends them to UDC. Similarly, an operating environ-

ment broker service (OEBS) periodically collects the values of environmental parameters

2We note that sometimes specifying the start time and end time is not possible. In that case, the user omits
both fields.

195

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

and computes the cost of each parameter according to rates set by the cloud provider and

sends the result to RCC. The OEBS also collects the error data during service provision-

ing and sends the data to EDC.

Protocol: Service provisioning phase

For cloud user CUi:
1. To access a cloud application, send transCUi

callSer = (sAppName, τs, τe) to
SDC.

2. After receiving the estimated cost, send transCUi
estCost = (sAppName, $pes) to

BIC
For a microservice sName:

3. Subscribe to the communication events in the MEC.
4. To send message to another microservice, send transsNamecall =

(sNamecallee, endPointcallee, inputscallee) to MEC
5. If an communication event is generated, process the received message.

For server broker service SBS:
6. Send transSBSrecUsage = (τ, CUi, serviceID, rj, us, un) to UDC for logging us-

age information.
For operating environment broker OEBS:

7. Send transOEBSrecEnv = (τ, rj, price) to RCC for logging operating environment
information.

8. Send transOEBSrecErr = (τ, serviceID, ename, eweight) to EDC for logging opera-
tional error information.

For Blockchain BC: listd ← {}, listrecUsage ← {}, listrecEnv ← {}, listrecError ←
{}

9. On receiving transCUi
callSer

(a) Assert CUi ∈ listCU
(b) Assert (∗, sAppName, ∗, ∗, ∗, ∗, ∗, ∗) ∈ listms
(c) Assert τ < τs
(d) Compute and return the estimated cost for the requested service.

10. On receiving transCUi
estCost

(a) Assert (CUi, sAppName) ∈ listCU
(b) Assert ledger[CUi] ≥ $pes
(c) Set ledger[CUi]← ledger[CUi]− $pes
(d) Create a new serviceID and return the serviceID.
(e) Set billPaid := false, startT ime := τs, endT ime := τe, cost := $pes,

billGenT ime = τe + k, billPayT ime = τe + l, user = CUi.
(f) Set listd ← listd ∪ (serviceID, user, cost, billPaid, startT ime,

endT ime, billGenT ime)
11. On receiving transsNamecall

(a) Assert sName ∈ listms and sNamecallee ∈ listms

196

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

(b) Notify sNamecallee about the call
12. On receiving transSMB

recUsage

(a) Set listrecUsage[serviceID].rec[τ].res[rj].usage := us
(b) Set listrecUsage[serviceID].rec[τ].res[rj].units := un

13. On receiving transOESBrecEnv

(a) Set listrecEnv.rec[τ].value := price
14. On receiving transOESBrecErr

(a) Set listrecError[serviceID].rec[τ].error = ename
(b) Set listrecError[serviceID].rec[τ].weight = eweight

Figure 7.10: Service provisioning phase protocol

7.3.4.3 Billing phase

After the application execution, the user must request a bill by sending the serviceID to

BIC. The BIC contract fetches the usage details from UDC, rating and charging details

from RCC, reputation details from RRC and computes the bill. The reputation of the

cloud provider is calculated according to the errors reported during service provisioning.

The final bill is generated after deducting the $pes paid earlier. If the final bill is negative,

the billing contract sends the excess amount to the user. Otherwise, depending on the

behavior of CUi, there are two cases as follows:

Case 1: CUi has paid the final bill before the given time. In this case, the reputation of

CUi is not changed.

Case 2: CUi has failed to pay the final bill before the given time. In this case, the new

reputation value for CUi is computed. The new value depends on the amount of payment

the CUi has defaulted.

7.4 Simulation Results and Discussions

The simulation environment is discussed in Section 1.2.3. The transactional and financial

costs of the proposed RCB platform are shown in Table 7.1. The table consists of each

contracts’ deployment and its functionalities execution cost. We notice that the deployment

197

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

Protocol: Billing phase

For cloud user CUi
(1) To request a bill, send transCUi

reqBill = (serviceID) to BIC.
(2) To pay the final cost, send transCUi

finalBill = (serviceID, $pay) to BIC
For Blockchain BC

(3) On receiving transCUi
reqBill

Assert listd[serviceID].billPaid = false
Assert listd[serviceID].endT ime ≤ τ
Assert listd[serviceID].billGenT ime ≥ τ
Assert listd[serviceID].user = CUi
∀ i ∈ [listd[serviceID].startT ime, listd[serviceID].endT ime]
∀ j ∈ Resources

Set Costtotal := Costtotal +
listrecUsage[serviceID].rec[i].resource[j].units ∗
listrecEnv.rec[i].resource[j].value

Eval := Eval + listrecError[serviceID].rec[i].weight
Set Eval := 1

Eval

Set RCP ← α ∗ Eval + (1− α) ∗RCP

Set Costp := Costtotal ∗RCP ∗ 1
RCU
−DCUi

if Costp ≤ listd[serviceID].cost
Set ledger[CUi] := ledger[CUi]+(listd[serviceID].cost−Costp)
Set ledger[CP] := ledger[CP] + listd[serviceID].cost
Set listd[serviceID].paid := true

else
Set Costpayable := Costp − listd[serviceID].cost
Set ledger[CP] := ledger[CP] + listd[serviceID].cost

(4) On receiving transCUi
finalBill

Assert $pay ≥ Costpayable
Assert τ < listd[serviceID].billPayT ime
Assert ledger[CUi] ≥ $pay
Set ledger[CUi] := ledger[CUi]− $pay
Set ledger[CP] := ledger[CP] + $pay
Set listd[serviceID].paid := true

Timer
if listd[serviceID].paid = false and listd[serviceID].billPayT ime ≥ τ

If costpayable > Ai set Rval = Vi, Set RCUi
= β ∗Rval + (1− β) ∗RCUi

Figure 7.11: Billing Phase

198

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

Contract Function Caller Cost in gas Cost in $
Registration

(RRC)
Deployment CP 241900 49.50
Add user CUi 85751 17.54

Communication
(CC)

Deployment CP 764518 156.46
Receive message Microservice 78805 16.12

Service discovery
(SDC)

Deployment CP 832771 170.43
Add service CP 90097 18.43
Add service chain CP 37137 7.6

Usgae data
(UDC)

Deployment CP 398048 81.46
Add record SBS 108921 22.29

Rating
(RAC)

Deployment CP 132747 27.16
Add record OEBS 42949 8.79

Billing
(BIC)

Deployment CP 535968 109.69
Compute bill CUi See Figure 7.12
Pay bill CUi 40120 8.21
Update user
reputation CP 32127 6.57

Table 7.1: Cost of interacting with proposed smart contracts

costs of smart contracts are high due to access to large contract storage. However, this a

one time process and can be amortized over several interactions. Most of the computations

take place in the billing contract, and the number of computations depends on the usage

records collected during the service provisioning to a cloud user. The execution cost of the

billing contract is presented in Figure 7.12. We observe that the execution cost increases

with the increase in the number of usage records.

199

CHAPTER 7. FAIR PAYMENT PROTOCOL FOR MICROSERVICES-BASED SOFTWARE DEPLOYED IN CLOUD UNDER SOFTWARE-AS-A-SERVICE

0 100 200 300 400 500
0

0.9

1.8

2.7

3.6

4.5

·106

Number of Records

G
as

C
on

su
m

pt
io

n

ComputeCost

Cost

Figure 7.12: Gas Consumption of computeBill functionality

7.5 Summary

In this work, we have designed a Blockchain-based registry and a Blockchain-based com-

munication platform for microservices. We have developed a new cost computation model

based on real-time usage and dynamic pricing of resources with respect to the state of the

cloud operating environment. We have also considered the reputation of the cloud user and

provider during bill generation. We have implemented the proposed system and presented

the transactional and financial costs of the proposed system.

200

Chapter 8

Conclusion and Future Scope

8.1 Conclusions

This thesis has investigated the design of fair payment protocols for cloud services without

a trusted intermediary.

In Chapter 2, we have presented a literature survey on existing Blockchain-based cloud

services and listed the open issues in Blockchain-based cloud services.

In Chapter 3, we have designed fair payment protocols for proof-based and replication-

based verifiable computation. Our theoretical analysis shows that our designed protocols

are fair, and our experimental analysis using the Ethereum network shows the feasibility

of our protocols. We have achieved fairness by imposing fines on cheating cloud providers

and offering bounties to honest cloud providers.

In Chapter 4, we have proposed two fair payment protocols for the privacy-preserving

aggregation of mobile crowdsensing data. Our protocols show that the untrusted data ag-

gregator in traditional privacy-preserving aggregation (PPA) methods can be replaced by a

smart contract running on a public Blockchain network. Unlike traditional PPA methods,

we have achieved fairness without any additional cryptographic operations or trusted in-

termediaries. We have tested the protocols for the MotionSense dataset and presented the

transactional and financial costs of interacting with the smart contracts. Our methods allow

the data aggregator to know the dataset properties before buying the data without losing

privacy.

201

CHAPTER 8. CONCLUSION AND FUTURE SCOPE

In Chapter 5, a fair payment protocol for cloud resource allocation is proposed. Our

protocol shows that the resource allocator in a traditional online auction can be replaced

by a smart contract running on a public Blockchain network. Modeling an online auction

algorithm as a smart contract also guarantees auction correctness. Our theoretical analy-

sis shows that the proposed protocol is fair without any trusted intermediaries. We have

tested the smart contract with real-world online auction configuration and presented the

transactional and financial costs. We have also deployed the designed smart contract in the

Ropsten test network and listed the transaction’s addresses.

In Chapter 6, a fair payment protocol for cloud data de-duplication is proposed. We

have designed a new incentive model for data de-duplication that is individually rational

and incentive compatible. We have also designed a Blockchain-based data de-duplication

protocol that satisfies correctness, uniform payments and fairness properties without a

trusted intermediary. We have tested the designed smart contracts for the Debian dataset

and shows that the Blockchain-based data de-duplication generates more profits for both

cloud users and cloud providers when compared to user-controlled and provider-controlled

data de-duplication. When compared to existing de-duplication methods, our method pro-

vides correctness of data de-duplication rate and financial fairness.

In Chapter 7, we have designed a fair rating, charging and billing (RCB) platform for

microservices deployed in the cloud. We have designed a new cost computation model

for microservices usage based on four factors: resource consumption of the cloud user,

the reputation of the cloud user, the reputation of the cloud provider and the state of the

operating environment. We have designed the RCB platform as a set of smart contracts

running on a public Blockchain network. Our experiment analysis shows the transactional

and financial costs of interacting with the designed smart contracts.

8.2 Future Scope

The following research directions are suggested for the future:

(1) Although we have considered several cloud services and developed fair payment pro-

tocols, they are still many services like Function-as-a-service, Security-as-a-service,

202

CHAPTER 8. CONCLUSION AND FUTURE SCOPE

Virtual Network Function (VNF)-as-a-service, Benchmarking-as-a-service etc., for

which fair payment protocols have to be developed.

(2) In most of our protocols, if both cloud user and provider are honest and follow the

protocol correctly, then the overhead due to Blockchain is negligible. However, the

execution of fair payment protocols in case of disputes is costly. Efficient off-chain

dispute resolution techniques with little / no cost have to be developed.

(3) There are many automated security testing frameworks available for performing se-

curity analysis of a protocol. However, an automated fairness testing framework is

not available. In future, an automated fairness testing framework may be developed.

(4) In this thesis, we have designed different fair payment protocols for different cloud

services. However, having a generalized fair payment protocol for all the cloud ser-

vices is beneficial to both cloud users and providers.

(5) The high write latency of public Blockchain systems makes most cloud applications

unsuitable for real-time usage. Hence, research efforts are to be made to develop low

latency real-time cloud applications using Blockchain.

(6) Different cloud providers are integrating their cloud infrastructure, giving rise to fed-

erated cloud computing. Fair payment protocols for federated cloud computing have

to be developed.

203

Author’s Publications

Journals:

1. Mallikarjun Reddy Dorsala, V. N. Sastry, and Sudhakar Chapram. “Fair payments

for verifiable cloud services using smart contracts.” Computers & Security (Elsevier),

90:101712, March 2020.

DOI: https://doi.org/10.1016/j.cose.2019.101712 (Accepted & Published)

2. Mallikarjun Reddy Dorsala, V. N. Sastry, and Sudhakar Chapram. “Fair payments

for privacy-preserving aggregation of mobile crowdsensing data.” Journal of King

Saud University - Computer and Information Sciences (Elsevier), 2021. DOI:

https://doi.org/10.1016/j.jksuci.2021.01.009 (Accepted & Published)

3. Mallikarjun Reddy Dorsala, V. N. Sastry, and Sudhakar Chapram. “Blockchain-

based solutions for cloud computing: a survey.” Journal of Networks and Computer

Applications (Elsevier), 2021. DOI: https://doi.org/10.1016/j.jnca.2021.103246

(Accepted & Published)

4. Mallikarjun Reddy Dorsala, V. N. Sastry, and Sudhakar Chapram. “Blockchain-

based online auction scheme for resource allocation in cloud computing with fair

payments.” Journal of Ambient Intelligence and Humanized Computing (Springer).

(Under review)

5. Mallikarjun Reddy Dorsala, V. N. Sastry, and Sudhakar Chapram. “Fair payments for

secure cloud data deduplication using smart contracts.” Journal of Computer Science

and Technology (Springer). (Under review)

Conferences:

1. Mallikarjun Reddy Dorsala, V. N. Sastry, and Sudhakar Chapram. “Fair Protocols for

Verifiable Computations Using Bitcoin and Ethereum.” In Proceedings of the 2018

IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco,

U.S.A, pp. 786-793, 2018.

204

Bibliography

[1] Peter Mell and Timothy Grance. The NIST Definition of Cloud Comput-
ing (Draft). https://www.nist.gov/system/files/documents/itl/
cloud/NISTSP-500-291Version-22013June18FINAL.pdf. Online; ac-
cessed 11 November 2020.

[2] Nadarajah Asokan. Fairness in electronic commerce. 1998. PhD. thesis, University
of Waterloo.

[3] Henning Pagnia and Felix C Gärtner. On the impossibility of fair exchange without a
trusted third party. Technical report, Technical Report TUD-BS-1999-02, Darmstadt
University of Technology, 1999.

[4] Henning Pagnia, Holger Vogt, and Felix C Gärtner. Fair exchange. The Computer
Journal, 46(1):55–75, 2003.

[5] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://
git.dhimmel.com/bitcoin-whitepaper/. Online; accessed 11 November
2020.

[6] Meni Rosenfeld. Overview of Colored Coins. https://bitcoil.co.il/
BitcoinX.pdf. Online; accessed 11 November 2020.

[7] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F. Wang. Blockchain-Enabled
Smart Contracts: Architecture, Applications, and Future Trends. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 49(11):2266–2277, November 2019.

[8] M. Conoscenti, A. Vetrò, and J. C. De Martin. Blockchain for the Internet of Things:
A systematic literature review. In 2016 IEEE/ACS 13th International Conference of
Computer Systems and Applications (AICCSA), Agadir, Morocco, pages 1–6. IEEE,
November 2016.

[9] Victoria Louise Lemieux. Trusting records: Is Blockchain technology the answer?
Records Management Journal, 26(2):110–139, July 2016.

[10] Keke Gai, Jinnan Guo, Liehuang Zhu, and Shui Yu. Blockchain Meets Cloud Com-
puting: A Survey. IEEE Communications Surveys & Tutorials, 22(3):2009–2030,
23.

205

[11] Charles Noyes. BitAV: Fast Anti-Malware by Distributed Blockchain Consensus and
Feedforward Scanning. https://arxiv.org/pdf/1601.01405.pdf, Jan-
uary 2016. Online; accessed 11 November 2020.

[12] Mike Sharples and John Domingue. The Blockchain and Kudos: A Distributed
System for Educational Record, Reputation and Reward. In Proceedings of Adaptive
and Adaptable Learning, Lyon, France, pages 490–496. Springer, 2016.

[13] Dinh C. Nguyen, Pubudu N. Pathirana, Ming Ding, and Aruna Seneviratne.
Blockchain for 5G and beyond networks: A state of the art survey. Journal of Net-
work and Computer Applications, 166:102693, September 2020.

[14] Marco Iansiti and Karim R Lakhani. The truth about blockchain harvard business
review. https://hbr.org/2017/01/the-truth-about-blockchain.
Online; accessed 11 November 2020.

[15] Changyu Dong, Yilei Wang, Amjad Aldweesh, Patrick McCorry, and Aad van
Moorsel. Betrayal, Distrust, and Rationality: Smart Counter-Collusion Contracts for
Verifiable Cloud Computing. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, Dallas, Texas, USA, pages 211–227.
ACM, October 2017.

[16] Massimo Bartoletti and Livio Pompianu. An empirical analysis of smart contracts:
Platforms, applications, and design patterns. In Proceedings of the 2017 Interna-
tional conference on Financial Cryptography and Data Security, Sliema, Malta,
pages 494–509. Springer, April, 2017.

[17] Xiaomin Bai, Zijing Cheng, Zhangbo Duan, and Kai Hu. Formal modeling and veri-
fication of smart contracts. In Proceedings of the 2018 7th International Conference
on Software and Computer Applications,Kuantan, Malaysia, pages 322–326, Febru-
ary 2018.

[18] Faheem Zafar, Abid Khan, Saif Ur Rehman Malik, Mansoor Ahmed, Adeel Anjum,
Majid Iqbal Khan, Nadeem Javed, Masoom Alam, and Fuzel Jamil. A survey of
cloud computing data integrity schemes: Design challenges, taxonomy and future
trends. Computers & Security, 65:29–49, March 2017.

[19] S. Wang, K. Liang, J. K. Liu, J. Chen, J. Yu, and W. Xie. Attribute-Based Data
Sharing Scheme Revisited in Cloud Computing. IEEE Transactions on Information
Forensics and Security, 11(8):1661–1673, August 2016.

[20] Qi Feng, Debiao He, Sherali Zeadally, Muhammad Khurram Khan, and Neeraj Ku-
mar. A survey on privacy protection in blockchain system. Journal of Network and
Computer Applications, 126:45–58, January 2019.

[21] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The Blockchain
Model of Cryptography and Privacy-Preserving Smart Contracts. In 2016 IEEE
Symposium on Security and Privacy (SP), San Jose, CA, USA, pages 839–858. IEEE,
May 2016.

206

[22] Ari Juels, Ahmed Kosba, and Elaine Shi. The Ring of Gyges: Investigating the Fu-
ture of Criminal Smart Contracts. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vienna, Austria, pages 283–295.
ACM, October 2016.

[23] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014.

[24] Solidity Documentation. https://readthedocs.org/projects/
solidity/downloads/pdf/v0.5.8/. Online; accessed Dec 2020.

[25] Truffle suite. https://trufflesuite.com/docs/index. Online; accessed
Dec 2020.

[26] F. Tschorsch and B. Scheuermann. Bitcoin and Beyond: A Technical Survey
on Decentralized Digital Currencies. IEEE Communications Surveys Tutorials,
18(3):2084–2123, thirdquarter 2016.

[27] Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niyato, Ping
Wang, Yonggang Wen, and Dong In Kim. A Survey on Consensus Mechanisms
and Mining Strategy Management in Blockchain Networks. IEEE Access, 7:22328–
22370, 2019.

[28] Hong-Ning Dai, Zibin Zheng, and Yan Zhang. Blockchain for Internet of Things: A
Survey. IEEE Internet of Things Journal, 6(5):8076–8094, October 2019.

[29] Muhammad Salek Ali, Massimo Vecchio, Miguel Pincheira, Koustabh Dolui, Fabio
Antonelli, and Mubashir Husain Rehmani. Applications of Blockchains in the Inter-
net of Things: A Comprehensive Survey. IEEE Communications Surveys Tutorials,
21(2):1676–1717, Secondquarter 2019.

[30] Shaoan Xie, Zibin Zheng, Weili Chen, Jiajing Wu, Hong-Ning Dai, and Muhammad
Imran. Blockchain for cloud exchange: A survey. Computers & Electrical Engi-
neering, 81:106526, January 2020.

[31] Ruizhe Yang, F. Richard Yu, Pengbo Si, Zhaoxin Yang, and Yanhua Zhang. In-
tegrated Blockchain and Edge Computing Systems: A Survey, Some Research Is-
sues and Challenges. IEEE Communications Surveys & Tutorials, 21(2):1508–1532,
2019.

[32] Jesse Yli-Huumo, Deokyoon Ko, Sujin Choi, Sooyong Park, and Kari Smolander.
Where Is Current Research on Blockchain Technology?—A Systematic Review.
PLOS ONE, 11(10):e0163477, October 2016.

[33] J. Li and B. Li. Erasure coding for cloud storage systems: A survey. Tsinghua
Science and Technology, 18(3):259–272, June 2013.

207

[34] Guy Zyskind, Oz Nathan, and Alex ’Sandy’ Pentland. Decentralizing Privacy: Using
Blockchain to Protect Personal Data. In 2015 IEEE Security and Privacy Workshops,
San Jose, CA, USA, pages 180–184. IEEE, May, 2015.

[35] Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy. To-
wards Blockchain-based Auditable Storage and Sharing of IoT Data. In Proceedings
of the 2017 on Cloud Computing Security Workshop - CCSW ’17, Dallas, Texas,
USA, pages 45–50. ACM Press, November 2017.

[36] Xueping Liang, Juan Zhao, Sachin Shetty, and Danyi Li. Towards data assurance and
resilience in IoT using blockchain. In MILCOM 2017 - 2017 IEEE Military Com-
munications Conference (MILCOM), Baltimore, MD, USA, pages 261–266. IEEE,
October 2017.

[37] Edoardo Gaetani, Leonardo Aniello, Roberto Baldoni, Federico Lombardi, Andrea
Margheri, and Vladimiro Sassone. Blockchain-based Database to Ensure Data In-
tegrity in Cloud Computing Environments. In Italian Conference on Cybersecurity,
Venice, Italy, January 2017.

[38] Shangping Wang, Yinglong Zhang, and Yaling Zhang. A Blockchain-Based Frame-
work for Data Sharing With Fine-Grained Access Control in Decentralized Storage
Systems. IEEE Access, 6:38437–38450, 2018.

[39] Chunhua Li, Jiaqi Hu, Ke Zhou, Yuanzhang Wang, and Hongyu Deng. Using
Blockchain for Data Auditing in Cloud Storage. In Cloud Computing and Security,
volume 11065, pages 335–345. Springer International Publishing, August 2018.

[40] Liehuang Zhu, Yulu Wu, Keke Gai, and Kim-Kwang Raymond Choo. Controllable
and trustworthy blockchain-based cloud data management. Future Generation Com-
puter Systems, 91:527–535, February 2019.

[41] Jingting Xue, Chunxiang Xu, Jining Zhao, and Jianfeng Ma. Identity-based public
auditing for cloud storage systems against malicious auditors via blockchain. Sci-
ence China Information Sciences, 62(3):32104, March 2019.

[42] Yang Xu, Ju Ren, Yan Zhang, Cheng Zhang, Bo Shen, and Yaoxue Zhang.
Blockchain Empowered Arbitrable Data Auditing Scheme for Network Storage as a
Service. IEEE Transactions on Services Computing, 13(2):289–300, March 2020.

[43] Pei Huang, Kai Fan, Hanzhe Yang, Kuan Zhang, Hui Li, and Yintang Yang. A
Collaborative Auditing Blockchain for Trustworthy Data Integrity in Cloud Storage
System. IEEE Access, 8:94780–94794, November 2020.

[44] Qi Xia, Emmanuel Sifah, Abla Smahi, Sandro Amofa, and Xiaosong Zhang. BBDS:
Blockchain-Based Data Sharing for Electronic Medical Records in Cloud Environ-
ments. Information, 8(2):44, April 2017.

208

[45] Qi Xia, Emmanuel Boateng Sifah, Kwame Omono Asamoah, Jianbin Gao, Xiao-
jiang Du, and Mohsen Guizani. MeDShare: Trust-Less Medical Data Sharing
Among Cloud Service Providers via Blockchain. IEEE Access, 5:14757–14767,
July 2017.

[46] Hongyu Li, Liehuang Zhu, Meng Shen, Feng Gao, Xiaoling Tao, and Sheng Liu.
Blockchain-Based Data Preservation System for Medical Data. Journal of Medical
Systems, 42(8):141, August 2018.

[47] Dinh C. Nguyen, Pubudu N. Pathirana, Ming Ding, and Aruna Seneviratne.
Blockchain for Secure EHRs Sharing of Mobile Cloud Based E-Health Systems.
IEEE Access, 7:66792–66806, May 2019.

[48] Sheng Cao, Gexiang Zhang, Pengfei Liu, Xiaosong Zhang, and Ferrante Neri.
Cloud-assisted secure eHealth systems for tamper-proofing EHR via blockchain. In-
formation Sciences, 485:427–440, June 2019.

[49] T. Benil and J. Jasper. Cloud based security on outsourcing using blockchain in E-
health systems. Computer Networks, 178:107344, September 2020.

[50] Haiping Huang, Xiang Sun, Fu Xiao, Peng Zhu, and Wenming Wang. Blockchain-
based eHealth system for auditable EHRs manipulation in cloud environments. Jour-
nal of Parallel and Distributed Computing, 148:46–57, February 2021.

[51] Longxia Huang, Gongxuan Zhang, Shui Yu, Anmin Fu, and John Yearwood. Se-
Share: Secure cloud data sharing based on blockchain and public auditing. Concur-
rency and Computation: Practice and Experience, 31(22), September 2017.

[52] Aravind Ramachandran and Dr Murat Kantarcioglu. Using Blockchain and smart
contracts for secure data provenance management. https://arxiv.org/pdf/
1709.10000.pdf, September 2017. Online; accesed on 14 may 2021.

[53] Yuan Zhang, Xiaodong Lin, and Chunxiang Xu. Blockchain-Based Secure Data
Provenance for Cloud Storage. In Information and Communications Security, vol-
ume 11149, pages 3–19. Springer International Publishing, Cham, 2018.

[54] Thomas Renner, Johannes Muller, and Odej Kao. Endolith: A Blockchain-Based
Framework to Enhance Data Retention in Cloud Storages. In 2018 26th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing
(PDP),Cambridge, UK, pages 627–634. IEEE, March 2018.

[55] Xiaodong Yang, Xizhen Pei, Meiding Wang, Ting Li, and Caifen Wang. Multi-
Replica and Multi-Cloud Data Public Audit Scheme Based on Blockchain. IEEE
Access, 8:144809–144822, July 2020.

[56] Yuan Zhang, Chunxiang Xu, Nan Cheng, Hongwei Li, Haomiao Yang, and
Xuemin Sherman Shen. Chronos+: An Accurate Blockchain-based Time-stamping
Scheme for Cloud Storage. IEEE Transactions on Services Computing, 13(2):216–
229, March 2020.

209

[57] Gabriel Estevam, Lucas M. Palma, Luan R. Silva, Jean E. Martina, and Martı́n Vigil.
Accurate and decentralized timestamping using smart contracts on the Ethereum
blockchain. 58(3), 2021.

[58] Stephen Kirkman and Richard Newman. A Cloud Data Movement Policy Archi-
tecture Based on Smart Contracts and the Ethereum Blockchain. In 2018 IEEE
International Conference on Cloud Engineering (IC2E), Orlando, FL,USA, pages
371–377. IEEE, April 2018.

[59] Haochen Li, Keke Gai, Zhengkang Fang, Liehuang Zhu, Lei Xu, and Peng Jiang.
Blockchain-enabled Data Provenance in Cloud Datacenter Reengineering. In Pro-
ceedings of the 2019 ACM International Symposium on Blockchain and Secure Crit-
ical Infrastructure - BSCI ’19, Auckland, New Zealand, pages 47–55. ACM Press,
August 2019.

[60] Changsong Yang, Xiaofeng Chen, and Yang Xiang. Blockchain-based publicly ver-
ifiable data deletion scheme for cloud storage. Journal of Network and Computer
Applications, 103:185–193, February 2018.

[61] Kai Fan, Yanhui Ren, Yue Wang, Hui Li, and Yingtang Yang. Blockchain-based
efficient privacy preserving and data sharing scheme of content-centric network in
5G. IET Communications, 12(5):527–532, March 2018.

[62] Xiaochen Zheng, Raghava Rao Mukkamala, Ravi Vatrapu, and Joaqun Ordieres-
Mere. Blockchain-based Personal Health Data Sharing System Using Cloud Storage.
In 2018 IEEE 20th International Conference on E-Health Networking, Applications
and Services (Healthcom), Ostrava, Czech Republic, pages 1–6. IEEE, September
2018.

[63] Mu Yang, Andrea Margheri, Runshan Hu, and Vladimiro Sassone. Differentially
Private Data Sharing in a Cloud Federation with Blockchain. IEEE Cloud Comput-
ing, 5(6):69–79, November 2018.

[64] Jingting Xue, Chunxiang Xu, Yuan Zhang, and Lanhua Bai. DStore: A Distributed
Cloud Storage System Based on Smart Contracts and Blockchain. In Algorithms
and Architectures for Parallel Processing,Guangzhou, China, volume 11336, pages
385–401. Springer International Publishing, November 2018.

[65] Longxia Huang, Junlong Zhou, Gongxuan Zhang, Jin Sun, Tongquan Wei, Shui
Yu, and Shiyan Hu. IPANM: Incentive Public Auditing Scheme for Non-Manager
Groups in Clouds. IEEE Transactions on Dependable and Secure Computing, pages
1–1, June 2020.

[66] Shorouq Alansari, Federica Paci, and Vladimiro Sassone. A Distributed Access
Control System for Cloud Federations. In 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS),Atlanta, GA, USA, pages 2131–2136.
IEEE, June 2017.

210

[67] Maryline Laurent, Nesrine Kaaniche, Christian Le, and Mathieu Vander Plaetse. A
Blockchain based Access Control Scheme. In Proceedings of the 15th International
Joint Conference on E-Business and Telecommunications, Porto, Portugal, pages
168–176. SCITEPRESS - Science and Technology Publications, 2018.

[68] Jason Paul Cruz, Yuichi Kaji, and Naoto Yanai. RBAC-SC: Role-Based Access
Control Using Smart Contract. IEEE Access, 6:12240–12251, 2018.

[69] YongJoo Lee and Keon Myung Lee. Blockchain-based RBAC for user authentication
with anonymity. In Proceedings of the Conference on Research in Adaptive and
Convergent Systems,Chongqing, China, pages 289–294. ACM, September 2019.

[70] Arnab Chatterjee, Yash Pitroda, and Manojkumar Parmar. Dynamic Role-Based
Access Control for Decentralized Applications. In International conference on
Blockchain - ICBC, Honolulu, HI, USA.

[71] Ronghua Xu, Yu Chen, Erik Blasch, and Genshe Chen. BlendCAC: A Smart Con-
tract Enabled Decentralized Capability-Based Access Control Mechanism for the
IoT. Computers, 7(3):39, July 2018.

[72] Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci. A blockchain based
approach for the definition of auditable Access Control systems. Computers & Se-
curity, 84:93–119, July 2019.

[73] Hao Guo, Ehsan Meamari, and Chien-Chung Shen. Multi-Authority Attribute-Based
Access Control with Smart Contract. In Proceedings of the 2019 International Con-
ference on Blockchain Technology - ICBCT, Honolulu, HI, USA, pages 6–11. ACM
Press, 2019.

[74] Yuanyu Zhang, Shoji Kasahara, Yulong Shen, Xiaohong Jiang, and Jianxiong Wan.
Smart Contract-Based Access Control for the Internet of Things. IEEE Internet of
Things Journal, 6(2):1594–1605, April 2019.

[75] Caixia Yang, Liang Tan, Na Shi, Bolei Xu, Yang Cao, and Keping Yu. AuthPrivacy-
Chain: A Blockchain-Based Access Control Framework With Privacy Protection in
Cloud. IEEE Access, 8:70604–70615, 2020.

[76] L. Guo, X. Yang, and W.-C. Yau. TABE-DAC: Efficient Traceable Attribute-Based
Encryption Scheme With Dynamic Access Control Based on Blockchain. IEEE
Access, 9:8479–8490, 2021.

[77] Shengshan Hu, Chengjun Cai, Qian Wang, Cong Wang, Xiangyang Luo, and Kui
Ren. Searching an Encrypted Cloud Meets Blockchain: A Decentralized, Reliable
and Fair Realization. In IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, Honolulu, HI, USA, pages 792–800. IEEE, April 2018.

[78] Lanxiang Chen, Wai-Kong Lee, Chin-Chen Chang, Kim-Kwang Raymond Choo,
and Nan Zhang. Blockchain based searchable encryption for electronic health record
sharing. Future Generation Computer Systems, 95:420–429, June 2019.

211

[79] Yinghui Zhang, Robert H. Deng, Jiangang Shu, Kan Yang, and Dong Zheng. TKSE:
Trustworthy Keyword Search Over Encrypted Data With Two-Side Verifiability via
Blockchain. IEEE Access, 6:31077–31087, June 2018.

[80] Shunrong Jiang, Jianqing Liu, Liangmin Wang, and Seong-Moo Yoo. Verifiable
Search Meets Blockchain: A Privacy-Preserving Framework for Outsourced En-
crypted Data. In ICC 2019 - 2019 IEEE International Conference on Communica-
tions (ICC), Shanghai, China, pages 1–6. IEEE, May 2019.

[81] Shan Jiang, Jiannong Cao, Julie A. McCann, Yanni Yang, Yang Liu, Xiaoqing Wang,
and Yuming Deng. Privacy-Preserving and Efficient Multi-Keyword Search over En-
crypted Data on Blockchain. In 2019 IEEE International Conference on Blockchain
(Blockchain),Atlanta, GA, USA, pages 405–410. IEEE, July 2019.

[82] Agipa Aigissinova, Hieu Hanh Le, and Haruo Yokota. Evaluation of the perfor-
mance of secure keyword search using bit-string signatures in the blockchain.
https://db-event.jpn.org/deim2020/post/proceedings/
papers/E1-5.pdf, 2020. Online; accessed on 14 May 2021.

[83] Chengjun Cai, Jian Weng, Xingliang Yuan, and Cong Wang. Enabling Reliable
Keyword Search in Encrypted Decentralized Storage with Fairness. 18(1):131–144,
January 2021.

[84] Yang Yang, Hongrui Lin, Ximeng Liu, Wenzhong Guo, Xianghan Zheng, and Zhi-
quan Liu. Blockchain-Based Verifiable Multi-Keyword Ranked Search on Encrypted
Cloud With Fair Payment. IEEE Access, 7:140818–140832, September 2019.

[85] Chao Zhang, Shaojing Fu, and Weijun Ao. A blockchain based searchable encryp-
tion scheme for multiple cloud storage. In Jaideep Vaidya, Xiao Zhang, and Jin
Li, editors, Cyberspace Safety and Security, Guangzhou, China, pages 585–600.
Springer International Publishing, December 2019.

[86] Shaojing Fu, Chao Zhang, and Weijun Ao. Searchable encryption scheme for mul-
tiple cloud storage using double-layer blockchain. Concurrency and Computation:
Practice and Experience, April 2020.

[87] Shufen Niu, Lixia Chen, Jinfeng Wang, and Fei Yu. Electronic Health Record Shar-
ing Scheme With Searchable Attribute-Based Encryption on Blockchain. IEEE Ac-
cess, 8:7195–7204, June 2019.

[88] Qiang Tang. Towards blockchain-enabled searchable encryption, copenhagen, den-
mark. In Jianying Zhou, Xiapu Luo, Qingni Shen, and Zhen Xu, editors, Information
and Communications Security,, pages 482–500. Springer International Publishing,
2020.

[89] Xixi Yan, Xiaohan Yuan, Qing Ye, and Yongli Tang. Blockchain-Based Searchable
Encryption Scheme With Fair Payment. IEEE Access, 8:109687–109706, June 2020.

212

[90] Peng Jiang, Fuchun Guo, Kaitai Liang, Jianchang Lai, and Qiaoyan Wen. Searchain:
Blockchain-based private keyword search in decentralized storage. Future Genera-
tion Computer Systems, 107:781–792, June 2020.

[91] Yandong Li, Liehuang Zhu, Meng Shen, Feng Gao, Baokun Zheng, Xiaojiang
Du, Sheng Liu, and Shu Yin. CloudShare: Towards a Cost-Efficient and Privacy-
Preserving Alliance Cloud Using Permissioned Blockchains. In Mobile Networks
and Management, Melbourne, VIC, Australia, volume 235, pages 339–352. Springer
International Publishing, December 2017.

[92] Jingyi Li, Jigang Wu, Long Chen, and Xi’an China Li, Jiaxing. Deduplication with
Blockchain for Secure Cloud Storage. In Big Data, volume 945, pages 558–570.
Springer Singapore, 2018.

[93] Shangping Wang, Yuying Wang, and Yaling Zhang. Blockchain-Based Fair Payment
Protocol for Deduplication Cloud Storage System. IEEE Access, 7:127652–127668,
2019.

[94] Sunny King and Scott Nadal. PPCoin: Peer-to-Peer Crypto-Currency with Proof-
of-Stake. https://www.chainwhy.com/upload/default/20180619/
126a057fef926dc286accb372da46955.pdf. Online; accessed on 14 may
2021.

[95] Intel Corporation. Intel(r) software guard extensions (intel(r) sgx) sdk. https://
software.intel.com/en-us/sgx-sdk, 2015. Online; accessed on 14 May
2021.

[96] OASIS Standard. extensible access control markup language (xacml) ver-
sion 3.0. http://docs.oasis-open.org/xacml/2.0/accesscontrol-
xacml-2.0-core-spec-os.pdf, 2013. Online; accessed on 14 May 2021.

[97] Sanjay Jain, Prateek Saxena, Frank Stephan, and Jason Teutsch. How to
verify computation with a rational network. https://arxiv.org/pdf/
1606.05917.pdf, June 2016. Online; accessed on 14 May 2021.

[98] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou. Fuzzy Keyword Search over
Encrypted Data in Cloud Computing. In 2010 Proceedings IEEE INFOCOM, San
Diego, CA, USA, pages 1–5. IEEE, March 2010.

[99] X. Zhu, Q. Liu, and G. Wang. A Novel Verifiable and Dynamic Fuzzy Keyword
Search Scheme over Encrypted Data in Cloud Computing. In 2016 IEEE Trust-
com/BigDataSE/ISPA, Tianjin, China, pages 845–851. IEEE, August 2016.

[100] Wakaha Ogata and Kaoru Kurosawa. Oblivious keyword search. Journal of Com-
plexity, 20(2-3):356–371, April 2004.

[101] Dutch T Meyer and William J Bolosky. A study of practical deduplication. ACM
Transactions on Storage, 7(4):20.

213

[102] Abdullah Yousafzai, Abdullah Gani, Rafidah Md Noor, Mehdi Sookhak, Hamid
Talebian, Muhammad Shiraz, and Muhammad Khurram Khan. Cloud resource allo-
cation schemes: Review, taxonomy, and opportunities. Knowledge and Information
Systems, 50(2):347–381, February 2017.

[103] Yonggen Gu, Dingding Hou, and Xiaohong Wu. A Cloud Storage Resource Trans-
action Mechanism Based on Smart Contract. In Proceedings of the 8th Interna-
tional Conference on Communication and Network Security - ICCNS 2018, Qing-
dao, China, pages 134–138. ACM Press, February 2018.

[104] Aleksandr Zavodovski, Suzan Bayhan, Nitinder Mohan, Pengyuan Zhou, Walter
Wong, and Jussi Kangasharju. DeCloud: Truthful Decentralized Double Auction
for Edge Clouds. In 2019 IEEE 39th International Conference on Distributed Com-
puting Systems (ICDCS), Dallas, TX, USA, pages 2157–2167. IEEE, July 2019.

[105] Tonglai Liu, Jigang Wu, Long Chen, Yalan Wu, and Yinan Li. Smart Contract-Based
Long-Term Auction for Mobile Blockchain Computation Offloading. IEEE Access,
8:36029–36042, February 2020.

[106] Zhili Chen, Wei Ding, Yan Xu, Miaomiao Tian, and Hong Zhong. Fair Auction
and Trade Framework for Cloud VM Allocation based on Blockchain. https:
//arxiv.org/pdf/2001.00771.pdf, January 2020. Online; accessed on 14
May 2021.

[107] Zixuan Xie, Run Wu, Miao Hu, and Haibo Tian. Blockchain-Enabled Computing
Resource Trading: A Deep Reinforcement Learning Approach. In 2020 IEEE Wire-
less Communications and Networking Conference (WCNC),Seoul, Korea (South),
pages 1–8. IEEE, May 2020.

[108] Sambit Nayak, Nanjangud C Narendra, Anshu Shukla, and James Kempf. Saranyu:
Using Smart Contracts and Blockchain for Cloud Tenant Management. In 2018
IEEE 11th International Conference on Cloud Computing (CLOUD),San Francisco,
CA, USA, pages 857–861. IEEE, July 2018.

[109] Vorameth Reantongcome, Vasaka Visoottiviseth, Wudhichart Sawangphol, As-
sadarat Khurat, Shigeru Kashihara, and Doudou Fall. Securing and Trustworthy
Blockchain-based Multi-Tenant Cloud Computing. In 2020 IEEE 10th Symposium
on Computer Applications & Industrial Electronics (ISCAIE), Malaysia, pages 256–
261. IEEE, April 2020.

[110] Jianli Pan, Jianyu Wang, Austin Hester, Ismail Alqerm, Yuanni Liu, and Ying
Zhao. EdgeChain: An Edge-IoT Framework and Prototype Based on Blockchain
and Smart Contracts. IEEE Internet of Things Journal, 6(3):4719–4732, October
2018.

[111] Zhen Zhang, Zicong Hong, Wuhui Chen, Zibin Zheng, and Xu Chen. Joint Compu-
tation Offloading and Coin Loaning for Blockchain-Empowered Mobile-Edge Com-
puting. IEEE Internet of Things Journal, 6(6):9934–9950, December 2019.

214

[112] Zhenni Li, Zuyuan Yang, Shengli Xie, Wuhui Chen, and Kang Liu. Credit-Based
Payments for Fast Computing Resource Trading in Edge-Assisted Internet of Things.
IEEE Internet of Things Journal, 6(4):6606–6617, August 2019.

[113] Wen Sun, Jiajia Liu, Yanlin Yue, and Peng Wang. Joint Resource Allocation and
Incentive Design for Blockchain-Based Mobile Edge Computing. 19(9), 2020.

[114] Lanfranco Zanzi, Antonio Albanese, Vincenzo Sciancalepore, and Xavier Costa-
Perez. NSBchain: A Secure Blockchain Framework for Network Slicing Broker-
age. In ICC 2020 - 2020 IEEE International Conference on Communications (ICC),
Dublin, Ireland.

[115] Bo Zhao, Peiru Fan, and Mingtao Ni. Mchain: A Blockchain-Based VM Measure-
ments Secure Storage Approach in IaaS Cloud With Enhanced Integrity and Con-
trollability. IEEE Access, 6:43758–43769, January 2018.

[116] Tongchen Wang, Jianwei Liu, Dawei Li, and Qianhong Wu. A Blockchain-Based
Resource Supervision Scheme for Edge Devices Under Cloud-Fog-End Computing
Models. In Joseph K. Liu and Hui Cui, editors, Information Security and Privacy,
Perth, WA, Australia, volume 12248, pages 285–305. Springer International Pub-
lishing, 2020.

[117] W. Wang, B. Li, and B. Liang. Towards Optimal Capacity Segmentation with Hy-
brid Cloud Pricing. In 2012 IEEE 32nd International Conference on Distributed
Computing Systems, Macau, China, pages 425–434. IEEE, June 2012.

[118] Weijie Shi, Linquan Zhang, Chuan Wu, Zongpeng Li, and Francis C.M. Lau. An
online auction framework for dynamic resource provisioning in cloud computing. In
The 2014 ACM International Conference on Measurement and Modeling of Com-
puter Systems - SIGMETRICS ’14, Austin, Texas, USA, pages 71–83. ACM Press,
2014.

[119] H. Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, and J. Liu. A Framework for
Truthful Online Auctions in Cloud Computing with Heterogeneous User Demands.
IEEE Transactions on Computers, 65(3):805–818, March 2016.

[120] Hal R. Varian and Christopher Harris. The VCG Auction in Theory and Practice.
American Economic Review, 104(5):442–445, May 2014.

[121] Tim Roughgarden. Algorithmic game theory. Communications of the ACM,
53(7):78–86, July 2010.

[122] Iddo Bentov and Ranjit Kumaresan. How to Use Bitcoin to Design Fair Protocols.
In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO,
Santa Barbara, CA, USA, Lecture Notes in Computer Science, pages 421–439, Au-
gust 2014.

[123] J. P. Morgan Chase. A Permissioned Implementation of Ethereum. https://
github.com/ConsenSys/quorum, 2018.

215

[124] James Kempf, Sambit Nayak, Remi Robert, Jim Feng, Kunal Rajan Deshmukh, An-
shu Shukla, Aleksandra Obeso Duque, Nanjangud Narendra, and Johan Sjöberg.
The Nubo Virtual Services Marketplace. https://arxiv.org/ftp/arxiv/
papers/1909/1909.04934.pdf, November 2019. Online; accessed on 14 May
2021.

[125] Ranjit Kumaresan and Iddo Bentov. How to Use Bitcoin to Incentivize Correct
Computations. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security - CCS ’14, Scottsdale, Arizona, USA, pages 30–41.
ACM Press, 2014.

[126] Yinghui Zhang, Robert Deng, Ximeng Liu, and Dong Zheng. Outsourcing Service
Fair Payment based on Blockchain and its Applications in Cloud Computing. IEEE
Transactions on Services Computing, pages 1–1, August 2018.

[127] Yinghui Zhang, Robert H. Deng, Ximeng Liu, and Dong Zheng. Blockchain based
efficient and robust fair payment for outsourcing services in cloud computing. In-
formation Sciences, 462:262–277, September 2018.

[128] Jacob Eberhardt and Stefan Tai. ZoKrates - Scalable Privacy-Preserving Off-
Chain Computations. In 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (Smart-
Data), Halifax, NS, Canada, pages 1084–1091. IEEE, July 2018.

[129] Mallikarjun Reddy Dorsala, V.N. Sastry, and Sudhakar Chapram. Fair payments for
verifiable cloud services using smart contracts. Computers & Security, 90:101712,
March 2020.

[130] Y. Guan, H. Zheng, J. Shao, R. Lu, and G. Wei. Fair Outsourcing Polynomial Com-
putation Based on the Blockchain. IEEE Transactions on Services Computing, pages
1–1, 2021.

[131] Sepideh Avizheh, Mahmudun Nabi, Reihaneh Safavi-Naini, and Muni
Venkateswarlu K. Verifiable Computation using Smart Contracts. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop - CCSW’19, London, United Kingdom, pages 17–28. ACM Press,
November 2019.

[132] Jason Teutsch and Christian Reitwießner. A scalable verification solution for
blockchains. https://arxiv.org/pdf/1908.04756.pdf, November 2017.
Online; accessed on 14 May 2021.

[133] Dominik Harz and Magnus Boman. The Scalability of Trustless Trust.

[134] Michal Król and Ioannis Psaras. SPOC: Secure Payments for Outsourced Com-
putations. https://arxiv.org/pdf/1807.06462.pdf, July 2018. Online;
accessed on 14 May 2021.

216

[135] Mahmudun Nabi, Sepideh Avizheh, Muni Venkateswarlu Kumaramangalam, and
Reihaneh Safavi-Naini. Game-Theoretic Analysis of an Incentivized Verifiable
Computation System. In Financial Cryptography and Data Security, Kota Kinabalu,
Malaysia, volume 11599, pages 50–66. Springer International Publishing, 2020.

[136] Scott Eisele, Taha Eghtesad, Nicholas Troutman, Aron Laszka, and Abhishek
Dubey. Mechanisms for Outsourcing Computation via a Decentralized Market. In
Proceedings of the 14th ACM International Conference on Distributed and Event-
based Systems, Montreal, Quebec, Canada, pages 61–72. ACM, July 2020.

[137] Jingzhong Wang, Mengru Li, Yunhua He, Hong Li, Ke Xiao, and Chao Wang. A
Blockchain Based Privacy-Preserving Incentive Mechanism in Crowdsensing Appli-
cations. IEEE Access, 6:17545–17556, 2018.

[138] Chengjun Cai, Yifeng Zheng, and Cong Wang. Leveraging Crowdsensed Data
Streams to Discover and Sell Knowledge: A Secure and Efficient Realization.
In 2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), Vienna, Austria, pages 589–599. IEEE, July 2018.

[139] Yuan Lu, Qiang Tang, and Guiling Wang. ZebraLancer: Private and Anonymous
Crowdsourcing System atop Open Blockchain. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, pages
853–865, July 2018.

[140] Fengrui Shi, Zhijin Qin, Di Wu, and Julie McCann. MPCSToken: Smart Contract
Enabled Fault-Tolerant Incentivisation for Mobile P2P Crowd Services. In 2018
IEEE 38th International Conference on Distributed Computing Systems (ICDCS),
Vienna, Austria, pages 961–971, July 2018.

[141] Dimitris Chatzopoulos, Sujit Gujar, Boi Faltings, and Pan Hui. Privacy Preserving
and Cost Optimal Mobile Crowdsensing using Smart Contracts on Blockchain. In
2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems
(MASS), Chengdu, China, pages 442 – 450, October 2018.

[142] Mengmeng Yang, Tianqing Zhu, Kaitai Liang, Wanlei Zhou, and Robert H. Deng.
A blockchain-based location privacy-preserving crowdsensing system. Future Gen-
eration Computer Systems, 94:408–418, May 2019.

[143] M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J. Liu, Y. Xiang, and R. H.
Deng. CrowdBC: A Blockchain-Based Decentralized Framework for Crowdsourc-
ing. IEEE Transactions on Parallel and Distributed Systems, 30(6):1251–1266, June
2019.

[144] Wei Feng and Zheng Yan. MCS-Chain: Decentralized and trustworthy mobile
crowdsourcing based on blockchain. Future Generation Computer Systems, 95:649–
666, June 2019.

217

[145] Junwei Zhang, Wenxuan Cui, Jianfeng Ma, and Chao Yang. Blockchain-based se-
cure and fair crowdsourcing scheme. International Journal of Distributed Sensor
Networks, 15(7):1550147719864890, July 2019.

[146] Yao Yu, Shumei Liu, Lei Guo, Phee Lep Yeoh, Branka Vucetic, and Yonghui Li.
CrowdR-FBC: A Distributed Fog-Blockchains for Mobile Crowdsourcing Reputa-
tion Management. IEEE Internet of Things Journal, 7(9):8722 – 8735, September
2020.

[147] Jiejun Hu, Kun Yang, Kezhi Wang, and Kai Zhang. A Blockchain-Based Reward
Mechanism for Mobile Crowdsensing. IEEE Transactions on Computational Social
Systems, 7(1):178–191, February 2020.

[148] Maha Kadadha, Hadi Otrok, Rabeb Mizouni, Shakti Singh, and Anis Ouali.
SenseChain: A blockchain-based crowdsensing framework for multiple requesters
and multiple workers. Future Generation Computer Systems, 105:650–664, April
2020.

[149] Saide Zhu, Zhipeng Cai, Huafu Hu, Yingshu Li, and Wei Li. zkCrowd: A Hybrid
Blockchain-Based Crowdsourcing Platform. IEEE Transactions on Industrial Infor-
matics, 16(6):4196–4205, June 2020.

[150] Shihong Zou, Jinwen Xi, Honggang Wang, and Guoai Xu. CrowdBLPS:
A Blockchain-Based Location-Privacy-Preserving Mobile Crowdsensing System.
IEEE Transactions on Industrial Informatics, 16(6):4206–4218, June 2020.

[151] Junqin Huang, Linghe Kong, Hong-Ning Dai, Weiping Ding, Long Cheng, Guihai
Chen, Xi Jin, and Peng Zeng. Blockchain-Based Mobile Crowd Sensing in Industrial
Systems. IEEE Transactions on Industrial Informatics, 16(10):6553–6563, October
2020.

[152] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexe-
cuting them. Communications of the ACM, 58(2):74–84, January 2015.

[153] Mira Belenkiy, Melissa Chase, C. Chris Erway, John Jannotti, Alptekin Küpçü, and
Anna Lysyanskaya. Incentivizing outsourced computation. In Proceedings of the 3rd
International Workshop on Economics of Networked Systems - NetEcon ’08, Seattle,
WA, USA, page 85. ACM Press, 2008.

[154] Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of computation
using multiple servers. In Proceedings of the 18th ACM Conference on Computer
and Communications Security - CCS ’11, Chicago, Illinois, USA, page 445. ACM
Press, 2011.

[155] A. Küpçü. Incentivized Outsourced Computation Resistant to Malicious Contrac-
tors. IEEE Transactions on Dependable and Secure Computing, 14(6):633–649,
November 2017.

218

[156] Golem whitepaper - whitepaper.io. https://whitepaper.io/document/
21/golem-whitepaper, 2014. Online; accessed on 14 May 2021.

[157] G Fedak, H He, M Moca, W Bendella, and E Alves. Blockchain-based decentralized
cloud computing. iExec Blockchain Tech, Tech. Rep., 2018.

[158] About SONM — SONM. https://docs.sonm.com/.

[159] Rafael Brundo Uriarte and Rocco DeNicola. Blockchain-Based Decentralized
Cloud/Fog Solutions: Challenges, Opportunities, and Standards. IEEE Commu-
nications Standards Magazine, 2(3):22–28, September 2018.

[160] Prashanth Mohan, Venkata N. Padmanabhan, and Ramachandran Ramjee. Nericell:
Rich monitoring of road and traffic conditions using mobile smartphones. In Pro-
ceedings of the 6th ACM Conference on Embedded Network Sensor Systems, New
York, NY, USA, SenSys ’08, pages 323–336. Association for Computing Machinery,
November 2008.

[161] Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts, Samuel Madden, Hari
Balakrishnan, Sivan Toledo, and Jakob Eriksson. VTrack: Accurate, energy-aware
road traffic delay estimation using mobile phones. In Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems, New York, NY, USA, SenSys
’09, pages 85–98. Association for Computing Machinery, November 2009.

[162] Amit Datta, Marc Joye, and Nadia Fawaz. Private Data Aggregation over Selected
Subsets of Users. In International Conference on Cryptology and Network Security,
Fuzhou, China, Lecture Notes in Computer Science, pages 375–391. Springer Inter-
national Publishing, 2019.

[163] Nicolas Maisonneuve, Matthias Stevens, Maria E. Niessen, and Luc Steels. Noise-
Tube: Measuring and mapping noise pollution with mobile phones. In Information
Technologies in Environmental Engineering, Thessaloniki, Greece, Environmental
Science and Engineering, pages 215–228. Springer, 2009.

[164] Min Mun, Sasank Reddy, Katie Shilton, Nathan Yau, Jeff Burke, Deborah Estrin,
Mark Hansen, Eric Howard, Ruth West, and Péter Boda. PEIR, the personal envi-
ronmental impact report, as a platform for participatory sensing systems research. In
Proceedings of the 7th International Conference on Mobile Systems, Applications,
and Services, Kraków Poland, MobiSys ’09, pages 55–68. ACM, June 2009.

[165] Lijun Wei, Jing Wu, and Chengnian Long. A Blockchain-Based Hybrid Incentive
Model for Crowdsensing. Electronics, 9(2):215, January 2020.

[166] Heinrich von Stackelberg. Market Structure and Equilibrium. Springer Science &
Business Media, November 2010.

219

[167] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. Deanonymisation of
Clients in Bitcoin P2P Network. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, Scottsdale, Arizona, USA, CCS
’14, pages 15–29. Association for Computing Machinery, November 2014.

[168] Roberto Tonelli, Maria Ilaria Lunesu, Andrea Pinna, Davide Taibi, and Michele
Marchesi. Implementing a Microservices System with Blockchain Smart Contracts.
In 2019 IEEE International Workshop on Blockchain Oriented Software Engineer-
ing (IWBOSE), Hangzhou, China, pages 22–31. IEEE, February 2019.

[169] Deeraj Nagothu, Ronghua Xu, Seyed Yahya Nikouei, and Yu Chen. A Microservice-
enabled Architecture for Smart Surveillance using Blockchain Technology. In 2018
IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, pages
1–4, July 2018.

[170] Ronghua Xu, Seyed Yahya Nikouei, Yu Chen, Erik Blasch, and Alex Aved. Blend-
MAS: A BLockchain-ENabled Decentralized Microservices Architecture for Smart
Public Safety. In 2019 IEEE International Conference on Blockchain, Atlanta, GA,
USA, pages 564 – 571, February 2019.

[171] Ronghua Xu, Gowri Sankar Ramachandran, Yu Chen, and Bhaskar Krishna-
machari. BlendSM-DDM: BLockchain-ENabled Secure Microservices for Decen-
tralized Data Marketplaces. In 2019 IEEE International Smart Cities Conference
(ISC2), Casablanca, Morocco, pages 14 – 17, September 2019.

[172] Ronghua Xu, Yu Chen, Erik Blasch, Alexander Aved, Genshe Chen, and Dan Shen.
Hybrid Blockchain-Enabled Secure Microservices Fabric for Decentralized Multi-
Domain Avionics Systems. In Sensors and Systems for Space Applications XIII,
pages 150 – 164. SPIE, April 2020.

[173] Nikola Bozic, Guy Pujolle, and Stefano Secci. Securing virtual machine orches-
tration with blockchains. In 2017 1st Cyber Security in Networking Conference
(CSNet),Rio de Janeiro, Brazil, pages 1–8. IEEE, October 2017.

[174] Igor D. Alvarenga, Gabriel A. F. Rebello, and Otto Carlos M. B. Duarte. Secur-
ing configuration management and migration of virtual network functions using
blockchain. In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Manage-
ment Symposium, Taipei, Taiwan, pages 1–9. IEEE, April 2018.

[175] Gabriel Antonio F. Rebello, Igor D. Alvarenga, Igor J. Sanz, and Otto Carlos M. B.
Duarte. BSec-NFVO: A Blockchain-Based Security for Network Function Virtual-
ization Orchestration. In ICC 2019 - 2019 IEEE International Conference on Com-
munications (ICC), Shanghai, China, pages 1–6. IEEE, May 2019.

[176] Gabriel Antonio F. Rebello, Gustavo F. Camilo, Leonardo G. C. Silva, Lucas C.
B. Guimarães, Lucas Airam C. de Souza, Igor D. Alvarenga, and Otto Carlos
M. B. Duarte. Providing a Sliced, Secure, and Isolated Software Infrastructure

220

of Virtual Functions Through Blockchain Technology. In 2019 IEEE 20th Inter-
national Conference on High Performance Switching and Routing (HPSR), Xi’an,
China, pages 1–6. IEEE, May 2019.

[177] Eder J. Scheid, Manuel Keller, Muriel F. Franco, and Burkhard Stiller. BUNKER:
A Blockchain-based trUsted VNF pacKagE Repository. In Economics of Grids,
Clouds, Systems, and Services, Leeds, United Kingdom, volume 11819, pages 188–
196. Springer International Publishing, September 2019.

[178] Xiaoyuan Fu, F. Richard Yu, Jingyu Wang, Qi Qi, and Jianxin Liao. Perfor-
mance Optimization for Blockchain-Enabled Distributed Network Function Virtu-
alization Management and Orchestration. IEEE Transactions on Vehicular Technol-
ogy, 69(6):6670–6679, June 2020.

[179] R. A. Mishra, A. Kalla, K. Shukla, A. Nag, and M. Liyanage. B-vnf: Blockchain-
enhanced architecture for vnf orchestration in mec-5g networks. In 2020 IEEE 3rd
5G World Forum (5GWF), Bangalore, India, pages 229–234, September 2020.

[180] France ETSI Ind. Spec. Group (ISG) Netw. Functions Virtualisation (NFV),
Sophia-Antipolis Cedex. ETSI GS NFV 003 V1.2.1: Network Functions
Virtualisation (NFV); Terminology for main concepts in NFV. http:
//www.etsi.org/deliver/etsigs/NFV/001099/003/01.02.0160/
gsNFV003v010201p.pdf, Dec 2014. Online; accessed on 14 May 2021.

[181] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba. Network
Function Virtualization: State-of-the-Art and Research Challenges. IEEE Commu-
nications Surveys Tutorials, 18(1):236–262, Firstquarter 2016.

[182] S. Lal, A. Kalliola, I. Oliver, K. Ahola, and T. Taleb. Securing VNF communication
in NFVI. In 2017 IEEE Conference on Standards for Communications and Network-
ing (CSCN), Helsinki, Finland, pages 187–192. IEEE, September 2017.

[183] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

[184] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly Practical Ver-
ifiable Computation. In 2013 IEEE Symposium on Security and Privacy, Berkeley,
CA, USA, pages 238–252. IEEE, May 2013.

[185] Ralph C. Merkle. A Digital Signature Based on a Conventional Encryption Function.
In Carl Pomerance, editor, Advances in Cryptology — CRYPTO ’87, Santa Barbara,
CA, USA, Lecture Notes in Computer Science, pages 369–378. Springer, 1988.

[186] Torben Pryds Pedersen. Non-Interactive and Information-Theoretic Secure Veri-
fiable Secret Sharing. In Joan Feigenbaum, editor, Advances in Cryptology —
CRYPTO ’91, Santa Barbara, CA, USA, Lecture Notes in Computer Science, pages
129–140. Springer, 1992.

221

[187] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. A Smart Contract for
Boardroom Voting with Maximum Voter Privacy. In Financial Cryptography and
Data Security, Sliema, Malta, Lecture Notes in Computer Science, pages 357–375.
Springer International Publishing, 2017.

[188] Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, and Hamed Had-
dadi. Mobile sensor data anonymization. In Proceedings of the International Confer-
ence on Internet of Things Design and Implementation, Montreal Quebec Canada,
pages 49–58. ACM, April 2019.

[189] Marc Joye and Benoı̂t Libert. A Scalable Scheme for Privacy-Preserving Aggrega-
tion of Time-Series Data. In Financial Cryptography and Data Security, Okinawa,
Japan, volume 7859, pages 111–125. Springer Berlin Heidelberg, 2013.

[190] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl.
ETHDKG: Distributed Key Generation with Ethereum Smart Contracts. https:
//eprint.iacr.org/2019/985.pdf, 2019. Online; accessed on 14 May
2021.

[191] Qi Li, Yaliang Li, Jing Gao, Lu Su, Bo Zhao, Murat Demirbas, Wei Fan, and Jiawei
Han. A confidence-aware approach for truth discovery on long-tail data. Proceed-
ings of the VLDB Endowment, 8(4):425–436, December 2014.

[192] S. Yao, M. T. Amin, L. Su, S. Hu, S. Li, S. Wang, Y. Zhao, T. Abdelzaher, L. Ka-
plan, C. Aggarwal, and A. Yener. Recursive Ground Truth Estimator for Social Data
Streams. In 2016 15th ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks (IPSN), Vienna, Austria, pages 1–12. IEEE, April 2016.

[193] Chuishi Meng, Wenjun Jiang, Yaliang Li, Jing Gao, Lu Su, Hu Ding, and Yun Cheng.
Truth Discovery on Crowd Sensing of Correlated Entities. In Proceedings of the
13th ACM Conference on Embedded Networked Sensor Systems,Seoul, South Korea,
SenSys ’15, pages 169–182. ACM, November 2015.

[194] Yue Liu, Qinghua Lu, Xiwei Xu, Liming Zhu, and Haonan Yao. Applying Design
Patterns in Smart Contracts. In Blockchain – ICBC 2018, Seattle, WA, USA, Lecture
Notes in Computer Science, pages 92–106. Springer International Publishing, 2018.

[195] G. Xu, H. Li, S. Liu, M. Wen, and R. Lu. Efficient and Privacy-Preserving Truth Dis-
covery in Mobile Crowd Sensing Systems. IEEE Transactions on Vehicular Tech-
nology, 68(4):3854–3865, April 2019.

[196] Gergely Ács and Claude Castelluccia. I have a dream!(differentially private smart
metering). In International Workshop on Information Hiding, Prague, Czech Repub-
lic, pages 118–132. Springer, May 18-20, 2011.

[197] Iraklis Leontiadis, Kaoutar Elkhiyaoui, and Refik Molva. Private and dynamic time-
series data aggregation with trust relaxation. In International Conference on Cryp-
tology and Network Security, Heraklion, Crete, Greece, pages 305–320. Springer,
October 22-24, 2014.

222

[198] Jianwei Chen and Huadong Ma. Privacy-preserving aggregation for participatory
sensing with efficient group management. In 2014 IEEE Global Communications
Conference, Austin, TX, USA, pages 2757–2762. IEEE, 2014.

[199] Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva. Puda–
privacy and unforgeability for data aggregation. In International Conference on
Cryptology and Network Security, Marrakesh, Morocco, pages 3–18. Springer, De-
cember 10-12, 2015.

[200] Keita Emura. Privacy-preserving aggregation of time-series data with public veri-
fiability from simple assumptions. In Information Security and Privacy, Auckland,
New Zealand, pages 193–213. Springer International Publishing, July 3–5,2017.

[201] Elaine Shi, HTH Chan, Eleanor Rieffel, Richard Chow, and Dawn Song. Privacy-
preserving aggregation of time-series data. In Annual Network & Distributed System
Security Symposium (NDSS), San Diego, California, pages 1–17, 2011.

[202] Fabrice Benhamouda, Marc JOYE, and Benoı̂t Libert. A New Framework for
Privacy-Preserving Aggregation of Time-Series Data. ACM Transactions on Infor-
mation and System Security, 18(3):21, April 2016.

[203] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos. An Online Mechanism
for Resource Allocation and Pricing in Clouds. IEEE Transactions on Computers,
65(4):1172–1184, April 2016.

[204] Joshua A Kroll, Ian C Davey, and Edward W Felten. The economics of bitcoin min-
ing, or bitcoin in the presence of adversaries. In Proceedings of WEIS, Washington,
D.C., USA, volume 2013, page 11, June 23-24, 2013.

[205] Hisham S. Galal and Amr M. Youssef. Verifiable Sealed-Bid Auction on the
Ethereum Blockchain. In Financial Cryptography and Data Security, Nieuwpoort,
Curaçao.

[206] A. Hahn, R. Singh, C. Liu, and S. Chen. Smart contract-based campus demonstration
of decentralized transactive energy auctions. In 2017 IEEE Power Energy Society
Innovative Smart Grid Technologies Conference (ISGT), pages 1–5, April 2017.

[207] Y. Chen, S. Chen, and I. Lin. Blockchain based smart contract for bidding system. In
2018 IEEE International Conference on Applied System Invention (ICASI), Chiba,
Japan, pages 208–211. IEEE, April 2018.

[208] Shuangke Wu, Yanjiao Chen, Qian Wang, Minghui Li, Cong Wang, and Xiangyang
Luo. CReam: A Smart Contract Enabled Collusion-Resistant e-Auction. IEEE
Transactions on Information Forensics and Security, 14(7):1687–1701, July 2019.

[209] Chiara Braghin, Stelvio Cimato, Ernesto Damiani, and Michael Baronchelli. De-
signing Smart-Contract Based Auctions. In Security with Intelligent Computing and
Big-Data Services, New Taipei City, Taiwan, Advances in Intelligent Systems and
Computing, pages 54–64. Springer International Publishing, 2019.

223

[210] S. Thakur, B. P. Hayes, and J. G. Breslin. Distributed Double Auction for Peer
to Peer Energy Trade using Blockchains. In 2018 5th International Symposium on
Environment-Friendly Energies and Applications (EFEA),Rome, Italy, pages 1–8.
IEEE, September 2018.

[211] Erik-Oliver Blass and Florian Kerschbaum. Strain: A Secure Auction for
Blockchains. In European Symposium on Research in Computer Security,
Barcelona, Spain, Lecture Notes in Computer Science, pages 87–110. Springer In-
ternational Publishing, September 2018.

[212] Hisham S. Galal and Amr M. Youssef. Trustee: Full Privacy Preserving Vickrey
Auction on Top of Ethereum. In Financial Cryptography and Data Security, St.
Kitts, Saint Kitts and Nevis, Lecture Notes in Computer Science, pages 190–207.
Springer International Publishing, February 2019.

[213] V. Hassija, G. Bansal, V. Chamola, V. Saxena, and B. Sikdar. BlockCom: A
Blockchain Based Commerce Model for Smart Communities using Auction Mecha-
nism. In 2019 IEEE International Conference on Communications Workshops (ICC
Workshops), Shanghai, China, pages 1–6. IEEE, May 2019.

[214] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer. Reclaiming
space from duplicate files in a serverless distributed file system. In Proceedings
22nd International Conference on Distributed Computing Systems, Vienna, Austria,
pages 617–624. IEEE, July 2002.

[215] J. Li, Y. K. Li, X. Chen, P. P. C. Lee, and W. Lou. A Hybrid Cloud Approach for
Secure Authorized Deduplication. IEEE Transactions on Parallel and Distributed
Systems, 26(5):1206–1216, May 2015.

[216] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-Locked
Encryption and Secure Deduplication. In Advances in Cryptology – EURO-
CRYPT 2013, Athens, Greece, Lecture Notes in Computer Science, pages 296–312.
Springer, 2013.

[217] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. DupLESS: Server-Aided
Encryption for Deduplicated Storage. In 22nd USENIX Security Symposium, Wash-
ington, D.C., USA, pages 179–194. ACM, August 2013.

[218] J. Li, X. Chen, X. Huang, S. Tang, Y. Xiang, M. M. Hassan, and A. Alelaiwi. Secure
Distributed Deduplication Systems with Improved Reliability. IEEE Transactions
on Computers, 64(12):3569–3579, December 2015.

[219] Z. Yan, W. Ding, X. Yu, H. Zhu, and R. H. Deng. Deduplication on Encrypted Big
Data in Cloud. IEEE Transactions on Big Data, 2(2):138–150, June 2016.

[220] M. Wen, K. Lu, J. Lei, F. Li, and J. Li. BDO-SD: An efficient scheme for big
data outsourcing with secure deduplication. In 2015 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Hong Kong, China, pages
214–219. IEEE, April 2015.

224

[221] Meixia Miao, Tao Jiang, and Ilsun You. Payment-based incentive mechanism for
secure cloud deduplication. International Journal of Information Management,
35(3):379–386, June 2015.

[222] Jian Liu, N. Asokan, and Benny Pinkas. Secure Deduplication of Encrypted Data
without Additional Independent Servers. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, Colorado, USA,
CCS ’15, pages 874–885. Association for Computing Machinery, October 2015.

[223] Taek-Young Youn and Ku-Young Chang. Necessity of Incentive System for the
First Uploader in Client-Side Deduplication. In Advances in Computer Science and
Ubiquitous Computing, Cebu, Philippines, Lecture Notes in Electrical Engineering,
pages 397–402. Springer, December 2015.

[224] Vladimir Rabotka and Mohammad Mannan. An evaluation of recent secure dedu-
plication proposals. Journal of Information Security and Applications, 27-28:3–18,
April 2016.

[225] X. Liang, Z. Yan, X. Chen, L. T. Yang, W. Lou, and Y. T. Hou. Game Theoretical
Analysis on Encrypted Cloud Data Deduplication. IEEE Transactions on Industrial
Informatics, 15(10):5778–5789, October 2019.

[226] L. Gao, Z. Yan, and L. T. Yang. Game Theoretical Analysis on Acceptance of a
Cloud Data Access Control System Based on Reputation. IEEE Transactions on
Cloud Computing, 8(4):1003–1017, October 2020.

[227] R. Dua, A. R. Raja, and D. Kakadia. Virtualization vs Containerization to Support
PaaS. In 2014 IEEE International Conference on Cloud Engineering,Boston, MA,
USA, pages 610–614. IEEE, March 2014.

[228] Microservices. https://martinfowler.com/articles/
microservices.html. Online; accessed on 14 May 2021.

[229] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: Yesterday,
today, and tomorrow. In Proceeding of Present and Ulterior Software Engineering,
pages 195–216. Springer, April 2017.

[230] What Led Amazon to its Own Microservices Architecture. https://
thenewstack.io/led-amazon-microservices-architecture/#:

˜:text=Amazon’s%20approach%20is%20not%20to,can%20be%
20scripted%20and%20automated. Online; accessed on 14 May 2021.

[231] Adopting Microservices at Netflix: Lessons for Architectural Design.
https://www.nginx.com/blog/microservices-at-netflix-
architectural-best-practices/. Online; accessed on 14 May 2021.

225

[232] Steven Ihde and Karan Parikh. From a monolith to microservices+ rest: the evolution
of linkedin’s service architecture. https://www.slideshare.net/InfoQ/
from-a-monolith-to-microservices-rest-the-evolution-of-
linkedins-service-architecture. Online; accessed on 14 May 2021.

[233] Service-Oriented Architecture: Scaling the UBER Engineering Codebase As We
Grow. http://zookeeper.apache.org/. Online; accessed on 14 May 2021.

[234] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casal-
las, S. Gil, C. Valencia, A. Zambrano, and M. Lang. Infrastructure Cost Comparison
of Running Web Applications in the Cloud Using AWS Lambda and Monolithic and
Microservice Architectures. In 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid),Cartagena, Colombia, pages 179–
182. IEEE, May 2016.

[235] C. Esposito, A. Castiglione, and K. R. Choo. Challenges in Delivering Software in
the Cloud as Microservices. IEEE Cloud Computing, 3(5):10–14, September 2016.

[236] Apace zookeeper. https://zookeeper.apache.org/. Online; accessed on
14 May 2021.

[237] Eureka. https://spring.io/guides/gs/service-registration-
and-discovery/. Online; accessed on 14 May 2021.

[238] Srikanta Patanjali, Benjamin Truninger, Piyush Harsh, and Thomas Michael Bohn-
ert. CYCLOPS: A micro service based approach for dynamic rating, charging
& billing for cloud. In 2015 13th International Conference on Telecommu-
nications (ConTEL), Graz, Austria, pages 1–8. IEEE, July 2015.

226

	ACKNOWLEDGMENTS
	ABSTRACT
	List of Figures
	List of Tables
	List of Algorithms
	List of Notations
	Glossary
	1 Introduction
	1.1 Cloud Computing
	1.1.1 Cloud Service Models
	1.1.2 Cloud Pricing Models and Payment Models
	1.1.3 Fair Payments

	1.2 Blockchain Technology
	1.2.1 Main characteristics of Blockchain
	1.2.2 Formal Blockchain Model
	1.2.3 Ethereum, Solidity, Gas, Truffle framework and Simulation environment
	1.2.4 Need of Blockchain Technology in Cloud Computing

	1.3 Motivation, Aim and Objectives of Proposed Work
	1.3.1 Aim
	1.3.2 Objectives

	1.4 Overview of the Contributions of the Thesis
	1.5 Thesis Organization

	2 Literature Survey
	2.1 Comparison of existing Blockchain surveys
	2.2 Systematic Literature Survey
	2.3 Blockchain-based Cloud Services
	2.3.1 Blockchain-based Infrastructure-as-a-Service (IaaS)
	2.3.2 Blockchain-based Platform-as-a-Service
	2.3.3 Blockchain-based Software-as-a-Service

	2.4 Observations and Problems Identified
	2.5 Summary

	3 Fair Payment Protocols for Outsourcing Computation under Platform-as-a-Service
	3.1 Verifiable Computation
	3.2 Proof-based Incentivized Outsourced Computation (IOC) using Smart Contracts (PBIOC)
	3.2.1 PBIOC contract clauses
	3.2.2 PBIOC Protocol

	3.3 Replication-based Incentivized Outsourced Computation using Smart Contracts
	3.3.1 Economic model
	3.3.2 Two providers Case (TUIOC Contract)
	3.3.3 Multiple-provider Case (MUIOC)

	3.4 Simulation Results and Discussions
	3.4.1 Implementation of PBIOC
	3.4.2 Implementation of TUIOC
	3.4.3 Implementation of MUIOC

	3.5 Summary

	4 Fair Payment Protocols for Mobile Crowdsensing under Platform-as-a-Service
	4.1 Privacy-preserving aggregation
	4.1.1 Entities

	4.2 A naive trusted party based fair payment protocol for privacy-preserving aggregation of mobile crowdsensing data (FairNaivePPA)
	4.2.1 FairNaivePPA contract clauses
	4.2.2 FairNaivePPA Protocol
	4.2.3 Limitations of FairNaivePPA

	4.3 A trusted party free fair payment protocol for privacy-preserving aggregation of mobile crowdsensing data (FairPPA)
	4.3.1 Smart contract based key generation
	4.3.2 Truth Discovery Algorithm (TDA)
	4.3.3 Payment Mechanism
	4.3.4 Dispute Resolution Mechanism (DRM)
	4.3.5 FairPPA contract clauses
	4.3.6 FairPPA contract phases

	4.4 Security Guarantees
	4.5 Implementation and comparisons
	4.5.1 MotionSense Dataset
	4.5.2 Implementation of FairNaivePPA
	4.5.3 Implementation of FairPPA

	4.6 Comparison with existing methods
	4.6.1 Comparison with privacy-preserving aggregation methods
	4.6.2 Comparison with Blockchain-based mobile crowdsensing methods

	4.7 Summary

	5 Fair Payment Protocol for Virtual Machine Allocation under Infrastructure-as-a-Service
	5.1 Online auction
	5.1.1 Entities

	5.2 Bidding language
	5.3 Decentralized online auction protocol (DeOAA)
	5.3.1 Assumptions
	5.3.2 DeOAA contract clauses
	5.3.3 DeOAA protocol
	5.3.4 Correctness and fairness proofs

	5.4 Implementation
	5.4.1 Floating point numbers
	5.4.2 Implementation of DeOAA
	5.4.3 Financial overhead
	5.4.4 Deploying on Ropsten test network

	5.5 Comparison with existing works
	5.6 Summary

	6 Fair Payment Protocol for Data de-duplication under Infrastructure-as-a-Service
	6.1 Data de-duplication model
	6.1.1 Convergent Encryption (CE)
	6.1.2 Economic model

	6.2 Proposed incentive mechanism
	6.2.1 Blockchain-based de-duplication protocol

	6.3 Fair data de-duplication method
	6.3.1 Assumptions
	6.3.2 B_DEDU contract clauses
	6.3.3 B_DEDU protocol
	6.3.4 Proofs of B_DEDU

	6.4 Proposed Inter-cloud provider de-duplication protocol
	6.4.1 Assumptions
	6.4.2 B_I-DEDU

	6.5 Implementation
	6.5.1 Implementation of B_DEDU
	6.5.2 Experiment 1: Finding utility of the users and the cloud provider by varying n_d^CP(t) and EF_CU^CP(t)
	6.5.3 Experiment 2: Testing B_DEDU and B_I-DEDU with public dataset

	6.6 Comparison with existing methods
	6.7 Summary

	7 Fair Payment Protocol for Microservices-based software deployed in cloud under Software-as-a-Service
	7.1 Introduction
	7.2 Microservice rating, charging and billing (RCB) architecture
	7.3 Blockchain-based Microservice Rating, Charging and Billing (RCB) System
	7.3.1 Smart contracts for RCB system
	7.3.2 Cost computation model
	7.3.3 High-level overview of the RCB protocol
	7.3.4 RCB Protocol

	7.4 Simulation Results and Discussions
	7.5 Summary

	8 Conclusion and Future Scope
	8.1 Conclusions
	8.2 Future Scope

	Author's Publications
	Bibliography

