Design of Efficient Caching Algorithms for Mobile
Kdge Networks

Submitted in partial fulfillment of the requirements

for the award of the degree of

DOCTOR OF PHILOSOPHY
Submitted by

Somesula Manoj Kumar

(Roll No. 716041)

Under the guidance of
Dr. Rashmi Ranjan Rout

and
Prof. D. V. L. N. Somayajulu

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA
OCTOBER 2021

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA

THESIS APPROVAL FOR Ph.D.

This is to certify that the thesis entitled, Design of Efficient Caching Algorithms for
Mobile Edge Networks, submitted by Mr. Somesula Manoj Kumar [Roll No. 716041]
is approved for the degree of DOCTOR OF PHILOSOPHY at National Institute of

Technology Warangal.
Examiner
Research Supervisor Research Supervisor
Dr. Rashmi Ranjan Rout Prof. D.V.L.N. Somayajulu
Dept. of Computer Science and Engg. Dept. of Computer Science and Engg.
NIT Warangal, India NIT Warangal, India
Chairman

Prof. P. Radha Krishna
Head, Dept. of Computer Science and Engg.
NIT Warangal, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA

CERTIFICATE

This is to certify that the thesis entitled, Design of Efficient Caching Algorithms for
Mobile Edge Networks, submitted in partial fulfillment of requirement for the award
of degree of DOCTOR OF PHILOSOPHY to National Institute of Technology Waran-
gal, is a bonafide research work done by Mr. Somesula Manoj Kumar [Roll No.
716041] under my supervision. The contents of the thesis have not been submitted

elsewhere for the award of any degree.

Research Supervisors

Dr. Rashmi Ranjan Rout
Associate Professor

Dept. of CSE, NIT Warangal, India

Prof. D.V.L.N. Somayajulu

Place: NIT Warangal Professor
Date: Dept. of CSE, NIT Warangal, India

DECLARATION

This is to certify that the work presented in the thesis entitled “Design of Efficient
Caching Algorithms for Mobile Edge Networks” is a bonafide work done by me under
the supervision of Dr. Rashmi Ranjan Rout and Prof. D.V.L.N. Somayajulu and was

not submitted elsewhere for the award of any degree.

I declare that this written submission represents my ideas in my own words
and where others ideas or words have been included, I have adequately cited and
referenced the original sources. I also declare that I have adhered to all principles of
academic honesty and integrity and have not misrepresented or fabricated or falsified
any idea/date/fact/source in my submission. I understand that any violation of the
above will be cause for disciplinary action by the institute and can also evoke penal
action from the sources which have thus not been properly cited or from whom proper

permission has not been taken when needed.

S Manoj Kumar

(Roll No. 716041)

ACKNOWLEDGMENTS

It is with great pleasure that I acknowledge my sincere thanks and deep sense of grati-
tude to my supervisor, Dr. Rashmi Ranjan Rout sir, from whom I have learnt so much about
how to conduct oneself being a teacher. His values as a teacher and as a human being, are
something I would like to take forward both in my professional and personal life. He has
been very supportive to me throughout my research period which has been full of 1’s and
0’s, and constantly encouraged me to do good work as a researcher. He has always given
ample time to me for research discussions, technical help, and the revision of the work. I
feel lucky to be associated with such a great human being in my life.

I also would like thank my co-supervisor, Prof. D.V.L.N. Somayajulu sir, who have in-
spired me immensely directly or indirectly throughout my association with NIT, Warangal.
His integrity and the core values with which he works as a teacher, are something I aspire
to imbibe into myself. He has been very supportive to me through out the Ph.D. period and
his insightful comments have immensely improved the quality of the research work.

I extend my gratitude to all my Doctoral Scrutiny Committee members Prof. B. B.
Amberker, Prof. S. G. Sanjeevi, and Dr. Ch. Venkaiah for their insightful comments and
suggestions during oral presentations.

I am immensely thankful to Dr. Ch. Sudhakar, Prof. R.B.V. Subramaanyam, and Prof.
P. Radha Krishna Heads of Dept. of CSE during my stay in the department, for providing
adequate facilities. I wish to express my thanks to faculty members of Computer Science
and Engineering department.

I thank my colleagues and friends at NITW, Sai Krishna, Mallikarjun, Sudarshan,
Sandipan Maiti, Ramesh, Abhilash, Govind, Sumalatha, Satyanarayanan, Pavan Kumar,
Preethi, Spoorthy, Suresh, Sanjib, Hem Kumar, Vinay Raj, Uma Maheswara Sharma,
Greeshma and Satish who has made my life at NITW easy and helped in their own ways to
better my research work.

I thank my close friends outside of NITW, Shekar, Gautam Reddy, Babu, Ganesh, Gu-

rappa and Subramanyam just for being there for me always.

I thank my brothers Ganesh Kumar and Sravan Kumar who always motivated and en-
couraged me to achieve good things in life. I am sure if not for their support, I wouldn’t
have the courage to take this career route. They have given me all kinds of support through-
out this Ph.D. period, be it emotional or financial. I will be forever thankful for the way
they back me in every endeavor of mine.

Finally, I thank my parents who brought me on to this earth and who have given their
blood and sweat to make me what I am today. They have made many sacrifices to provide
quality education to me and my brothers. From my childhood, my father consistently re-
iterated the importance of education in life. I am always in awe of the way my father
planned my education with all the financial constraints our family had. The dreams of my
parents and sheer determination with which they have worked to provide for us, has made

me to attain this level of education. I love you amma and nanna!

S Manoj Kumar

i

Dedicated to
My Parents Lakshmi Devi, Subramanyam, my
brothers Ganesh and Sravan & My little Nephew
Havish

ABSTRACT

The proliferation of mobile devices and processing capabilities escalates the demands
for multimedia content like remote education, video conferencing, augmented reality, vir-
tual reality, and video on demand. Multimedia applications consume more bandwidth on
the Internet, causing huge network traffic. The overwhelming network traffic in the coming
years affects the overall network efficiency with respect to quality of experience, energy
consumption, and delivery latency. To meet the user demands, deploying the base sta-
tions densely (network densification) is one of the important techniques. The tremendous
growth in mobile data traffic adds a burden on backhaul links, and this may cause conges-
tion leading to long delays in delivering content to users. Mobile edge caching is one of the
prominent techniques providing computation and communication capabilities along with
network caching capability where the MEC nodes are co-located with the base stations,
and the contents are brought closer to users. With the increase of Internet content and con-
sidering limited storage at edge nodes, the overall performance gain of the caching will be
reduced in mobile edge networks. Therefore, caching popular content at appropriate nodes
(to improve the overall performance) is an important research issue (in a MEC-based sys-
tem) that has been addressed in this thesis.

The thesis focuses on efficient caching algorithms for mobile edge networks. In this the-
sis, the proposed approaches achieve better cache hit ratio and acceleration ratio. Firstly,
an echo state network-assisted fuzzy logic-based cooperative caching mechanism has been
designed to maximize the saved delay in mobile edge networks. An approximation algo-
rithm has been presented to find the optimal caching strategy, and a fuzzy caching heuristic
is proposed to find a sub-optimal caching strategy by predicting the content popularity dis-
tribution using the Echo stat network. Secondly, a cooperative caching strategy has been
presented by considering heterogeneous user preferences, activity level, and uneven distri-
bution of users in large-scale mobile edge networks. The user preference learning is mod-
eled using long short term memory to capture the dynamic user behaviour, and a greedy
cooperative caching algorithm is presented by considering the submodular optimization to

optimize the caching strategy. Thirdly, a caching strategy has been presented by consid-

v

ering the user mobility across the MECs and randomness of contact duration in mobile
edge networks. The user moving path and the sojourn time of a user are modeled using the
Markov renewal process. A greedy caching algorithm is proposed to optimize the caching
strategy, and a genetic algorithm is presented to solve large-scale problems. Finally, a co-
operative cache updating strategy has been presented. Considering the dynamic nature of
the content popularity, high dimensional parameters, and for an intelligent caching deci-
sion, the problem has been modeled as a partially observable Markov decision process and
presents an efficient deep reinforcement learning algorithm. Performances of proposed ap-

proaches have been evaluated through simulation.

Keywords: Proactive caching, Popularity prediction, Fuzzy logic, Cooperative caching,
User mobility, Submodular optimization, Mobile edge networks, Genetic algorithm, Ma-
chine Learning, User preference learning, LSTM, Multi-agent deep reinforcement learning,

partially observable Markov decision process.

Contents

ACKNOWLEDGMENTS i
ABSTRACT iv
List of Figures xii
List of Tables XVvi
List of Algorithms Xvii
List of Abbreviations Xviil
1 Introduction 1
1.1 Motivation and objectives 4
1.2 Overview of the Contributions of this Thesis 7

1.2.1 Deadline-aware Content Caching using Echo State Network
Integrated Fuzzy Logic for Mobile Edge Networks 7

1.2.2 User Preference based Cooperative Cache Placement for Mo-
bile Edge Networks 9

1.2.3 Contact Duration-Aware Cooperative Cache Placement with

User Mobility Across MECs (i.e., BS) using Genetic Algo-

rithm for Mobile Edge Networks 11

1.2.4 Cooperative Cache Replacement using Recurrent Multi-Agent
Deep Reinforcement Learning for Mobile Edge Networks . . 13
1.3 Experimental Setup. 15
1.4 Organizationof the Thesis 15

vi

2 Literature Survey 17

2.1 Mobile Edge Networks Architecture 18
2.2 Mobile Edge Caching 19
2.3 Cooperative Caching 24
2.4 Mobility based Caching 27
2.5 CodedCaching e 29
2.6 Learning based Caching 31

2.6.1 Supervised Learning based Caching 31

2.6.2 Unsupervised Learning based Caching 33

2.6.3 Reinforcement Learning based Caching 34
2.7 Proactive and Reactive Caching 37
2.8 User Preference and Prediction based Caching 42
29 Summary e e 47

3 Deadline-aware Content Cache Placement using Echo State Network Inte-

grated Fuzzy Logic for Mobile Edge Networks 48
3.1 Mobile Edge Computing (MEC) Model and Problem Formulation 50
3.1.1 Popularity of Content and Content Types 52

3.1.2 Cache Decision Variables 53

3.13 Delay 54

3.14 Deadline 54

3.1.5 Problem Formulation 55

3.2 Approximation Algorithm based on Relaxation and Rounding Technique 56

3.2.1 Relaxation 57
3.2.2 Rounding 57
3.3 Fuzzy Caching Algorithm based on Content Request Prediction 60
3.3.1 Popularity Prediction using Echo State Networks 60
3.3.2 Fuzzy Inference System for cache node selection. 62
333 Fuzzy Caching Algorithm 67
334 Replacement Strategy 67

Vil

3.4 Performance Evaluation 69

34.1 Descriptionof DataSet 69
342 Simulation Environment L. 70
343 Performance Metrics 71
344 Reference Algorithms 71
345 Impact of Cache Capacity 73
3.4.6 Impact of numberof MECs 76
3.4.7 Impact of Number of Requests 76
348 Impact of Number of Contents 78
349 Impact of Content popularity 79
3.4.10 Impact of Cache Storage Utilization 81
3.5 Summary e e 82

4 User Preference Prediction based Cache Placement for Mobile Edge Net-

works with Adaptive User Clustering 83
4.1 SystemModel 84

4.2 User Preferences Prediction and Content based Clustering 86
4.2.1 User Preference Prediction based on LSTM 88

42.2 Content based User Clustering 90

4.2.2.1 Clustering Algorithm 90

4.2.3 Maximization of Saved Delay Optimization Problem 91

4.3 User Preference based Content Placement Mechanism using Sub-modular

Optimization o o v e e e e e e e 93
4.3.1 Greedy algorithm for user preference prediction based co-
operative content caching 96
4.4 Performance Evaluation 97
4.4.1 Simulation Environment 0oL 98
442 Performance Metrics L. 100
4.4.3 Reference Algorithms 100
4.4.4 Impactof Cache Size 101

viil

4.5

4.4.5 Impact of numberof MECs 103

4.4.6 Impact of user preference similarity 104
4.4.7 Impact of User activity level skewness 106
448 Impact of Zipf parameter 107
449 Impact of Number of clusters 108
Summary e e e 110

5 Contact Duration-Aware Cooperative Cache Placement with User Mobility

Across MECs using Genetic Algorithm for Mobile Edge Networks 111
5.1 MEC System Model and Problem Formulation 113
5.1.1 Network Model 113
5.1.2 Mobility Model, . 114
5.13 Content Request Model 115
5.14 Motivation 115
5.1.5 Static and mobility aware caching scenarios 117
5.1.6 Mobility and sojourn time prediction 121
5.1.7 Problem Formulation 122

5.2 Greedy Algorithm for Contact duration Aware Cooperative Content Place-
MENE o e e e e e e 124

5.2.1 Greedy Algorithm for Contact duration Aware Cooperative

Content Placement 127
5.3 GA based Cooperative Content Placement for large scale problems . . . 128
5.4 Performance Evaluation 131
54.1 Simulation Environmento 0oL 131
542 Performance Metrics L. 132
5423 Reference Algorithms 133
544 Mobility Model 133
545 Demand Model 134
5.4.6 Impact of numberof MECs 134
5.4.7 Impact of Cache Capacity 136

1X

54.8 Impact of data transmissionrate 138

5.4.9 Impact of contact duration 138
5.4.10 Impact of content popularity 140
5.5 Summary . .. L. e 140

6 Cooperative Cache Replacement using Recurrent Multi-Agent Deep Rein-

forcement Learning for Mobile Edge Networks 142
6.1 System Model and Problem Formulation 144
6.1.1 Network Model 144

6.1.2 Problem Formulation 146

6.2 Multi-Agent Deep Reinforcement Learning Model for Cooperative Caching 148

6.2.1 Observation and State Space 149
6.2.2 ActionSpace oo 149
6.2.3 Reward Function 150
6.3 Multi-agent Recurrent DRL for cooperative Content Caching 153
6.3.1 Multi-Agent Actor-Critic Framework 153
6.3.2 Multi-Agent Recurrent DRL based Cooperative Caching Al-
gorithm 157
6.4 Performance Evaluation 158
6.4.1 Performance Metrics 161
6.4.2 Reference Algorithms 162
6.4.3 Impactof Cache Size 163
6.4.4 Impact of Numberof MECs 165
6.4.5 Impact of Number of Contents 166
6.4.6 Impact of Zipf parameter 167
6.4.7 Performance evaluation with training episode 167
6.4.8 The convergence performance 169
6.5 Summary e e e 171
7 Conclusion and Future Directions 172
7.1 The Major Contributions of the Thesis 173

7.2 Future Directions

Appendix

Bibliography

List of Publications

X1

List of Figures

2.1
22
2.3
24
2.5
2.6

3.1
3.2
33

34

3.5

3.6

3.7

Mobile Edge Network Architecture 19
Edge Caching Architecture 20
Content cached at Local Cache 20
Content cached at Neighbour Cache 21
Content not cached atany edgenode 21
Reinforcement Learning Approach 35
[lustration of systemmodel 50
Fuzzy inference system Lo L. 64

Comparison of caching schemes using cache capacity vs (a) cache hit ratio
(b) acceleration ratio (c) number of requests satisfying deadline. The cache
capacity is measured when R =7, =50% and F'=100%. 74
Comparison of caching schemes using number of MECs vs (a) cache hit
ratio (b) acceleration ratio (c) number of requests satisfying deadline, when
S=7GB,r=50%and FF'=100%. 75
Comparison of caching schemes using number of requests vs (a) cache hit
ratio (b) acceleration ratio (c) number of requests satisfying deadline, when
S=7GB,R=7and F=100%. 77
Comparison of caching schemes using number of contents vs (a) cache hit
ratio (b) acceleration ratio (c) number of requests satisfying deadline, when
S=T7GB,R=7andr=50%., 79
Comparison of content popularity vs content rank, error as the number of

iterations varies and performance of prediction vs number of contents. . . . 80

Xii

3.8

4.1
4.2

4.3

4.4

4.5
4.6

4.7

4.8

4.9

4.10

4.11

5.1
5.2

5.3

Comparison of caching schemes using cache capacity vs cache utilization.

The cache capacity is measured when R =7, =50% and F'=100%. . .. 81

[llustration of the proposed systemmodel. 85
Content placement strategy based on user preference prediction and content
based clustering. 87
(a) Comparison of content popularity vs content rank (b) Comparison of
user activity level vs user activity rank of Lastfm dataset 98
(a) Comparison of three user preferences (Ist, 25th and 50th active users
with user ids 949, 685 and 882 respectively) (b) Voronoi cell diagram with
size 500m x 500m where blue circle indicates the BSs and red triangles are
mobile Users. L 99
Predicted value for user 945 and Content 54 99
Comparison of caching schemes using cache capacity vs (a) Cache Hit Ra-
tio (b) Acceleration Ratio (c) Local and Neighbour cluster Cache Hit Ratio. 101
Comparison of caching schemes using MEC density vs Hitratio. 103
Comparison of caching schemes using user preference similarity vs (a)
Cache Hit Ratio (b) Cache Utilization (c) Local and Neighbour cluster
Cache HitRatio. 105
Comparison of caching schemes using User activity level skewness vs (a)
Cache Hit Ratio (b) Acceleration Ratio. 106
Comparison of caching schemes using Zipf shape parameter vs (a) Cache
Hit Ratio (b) Acceleration Ratio. 107
Comparison of caching schemes using Number of clusters vs (a) Cache Hit

Ratio (b) Acceleration Ratio (c) Cache Utilization. 108

[llustration of the proposed systemmodel. 113
Ilustration of user mobility speed (a) Low mobility movement (b) High
mobility movement. L. 116
Illustration of caching scenarios for static and mobility cases (a) Static /

MAUC (case 1) (b) MAUC (case 2) and (¢) MACC scenarios. 117

Xiil

54

5.5

5.6

5.7

5.8

6.1
6.2
6.3

6.4

6.5

6.6

6.7

Comparison of caching schemes using number of MECs vs (a) cache hit
ratio (b) acceleration ratio. When C' =10 %, d = 3 slots and b = 8 Mbps. .
Comparison of caching schemes using cache capacity vs (a) cache hit ratio
(b) acceleration ratio. When N =10 %, d = 3 slots and b = 8§ Mbps.
Comparison of caching schemes using average data transmission rate vs (a)
cache hit ratio (b) acceleration ratio. When C' =10 %, d = 3 slots and N =
10, e
Comparison of caching schemes using contact time vs (a) cache hit ratio,
when C' =10 %, d = 3 slots, b = 8 Mbps and N = 10. (b) hit ratio for mobile
user with different contact time, where d =3 slots, b = 8 Mbps and N = 10.
(a) Comparison of different caching mechanisms with content popularity
profile (Zipf parameter) v where C' = 10%, d = 3 slots and b = 8 Mbps (b)
Convergence behavior of saved delay maximization with N, = 150, ¢, =

095and m, =0.05. o o

Illustration of the proposed systemmodel.
Illustration of requests servedby MEC.
Multi-agent recurrent DRL framework for cooperative caching. Here O;, a;
represents the observation and actions of agent ¢ and h,, h. represents the
history of actor and critic.
(a) Comparison of content popularity vs content rank Content popularity of
Movielens dataset (b) Voronoi cell diagram with size 500m x 500m where
blue circle indicates the BSs and red triangles are mobile users.
Comparison of caching schemes using cache capacity vs (a) Cache Hit Ra-
tio (b) Acceleration Ratio (c) Local and Neighbour Cache Hit Ratio.
Comparison of caching schemes using number of MECs vs (a) Cache Hit
Ratio (b) Acceleration Ratio.
Comparison of caching schemes using number of contents vs (c) Cache Hit

Ratio (d) Acceleration Ratio.

X1V

. 135

. 136

139

144

. 163

165

166

6.8 Comparison of caching schemes using Zipf shape parameter vs (a) Cache

Hit Ratio (b) AccelerationRatio. 166
6.9 Comparison of caching schemes using training episode vs (a) Cache Hit

Ratio (b) Local Cache Hit Ratio (c¢) Neighbour Cache Hit Ratio. 168
6.10 (a) Reward of all schemes vs Training episode (b) Reward of proposed

and MADDPG schemes during Training episodes (c) Training episode vs

Acceleration Ratio. 170

XV

List of Tables

3.1 Listof Notations. i i e e 51
3.2 Fuzzy input or output variable with their linguistic values 64
33 FuzzyRules 65
3.4 Simulation Parameters 71
4.1 Listof NotationS o o e, 86
4.2 Simulation Parameters e 100
5.1 Hit ratio and network overhead for caching scenarios 118
5.2 Listof Notations v v i i e e 120
5.3 Simulation Parameters L. 132
6.1 Listof Notations o i e 145
6.2 Simulation Parameterso 161

XVi

List of Algorithms

3.1
32
33
34
4.1
4.2

5.1
5.2
5.3
54
5.5
6.1

Relaxation-Rounding Algorithm 58
Fuzzy Cache Node(B,D,P) 66
Fuzzy Caching Algorithm 68
Cache Replacement Algorithm 69
Preference Based User Clustering Algorithm 91

User Preference Prediction based Greedy Cooperative Content Placement

Algorithm 97
Greedy Cooperative Content Placement Algorithm 126
Genetic Algorithm for Cooperative Content Placement 129
Repairing Process L 130
Selection Process 130
Crossover Process L L 131
MARDDPG based Content Caching Algorithm 159

XVil

List of Abbreviations

5G
A2C
A3C
ADMM
Al

AP

BS
BTPP
CDN
CPP
C-RAN
D2D
DC
DDPG
DL
DNN
DRL
DQL
DQN

EM

Fifth Generation Wireless

Advanced Actor Critic

Asynchronous Advantage Actor Critic
Alternating Direction Method of Multipliers
Artificial Intelligence

Access Point

Base Station

Back propagation through time
Content Delivery Network

Content Placement Problem

Cloud Radio Access Network

Device to Device

Data Center

Deep Deterministic Policy Gradient
Deep Learning

Deep Neural Network

Deep Reinforcement Learning

Deep Q-Learning

Deep Q-Network

Expectation Maximization

XVviil

FC

ESN
FBS
FCA
FIFO
FIS

GA

ILP

IoT

ISP

LFU

LP
LSTM
LRU
LTE
MADRL
MADDPG
MARDDPG
MBS
MCC
MDS
MDP
MEC
MEN
MF

MINLP

Femto Caching Algorithm

Echo State Network

Femto Base Station

Fuzzy logic-based Caching Algorithm

First In First Out

Fuzzy Inference System

Genetic Algorithm

Integer Linear Programming

Internet of Things

Internet Service Provider

Least Frequently Used

Linear Programming

Long Short Term Memory

Least Recently Used

Long-Term Evolution

Multi-Agent Depp Reinforcement Learning
Multi-Agent Deep Deterministic Policy Gradient
Multi-Agent Recurrent Deep Deterministic Policy Gradient
Macro Base Station

Mobile Cloud Computing

Maximum Distance Separable Codes
Markov Decision Process

Mobile Edge Computing

Mobile Edge Network

Membership Function

Mixed Integer Non-Linear Programming

X1X

MPC
NEF
NFV
PBS
PDA
POMDP
PPP
QoE
QoS
RAN
RAR
RDDPG
RL
RNN
RSU
SBS
SCN
SDN
TD- error
VoD
WiFi

WTD

Most Popular Content

Network Exposure Function
Network Function Virtualization
Pico Base Station

Personal Digital Assistant

Partially Observable Markov Decision Process
Poisson Point Process

Quality of Experience

Quality of Service

Radio Access Network

Relaxation and Rounding Algorithm
Recurrent Deep Deterministic Policy Gradient
Reinforcement Learning

Recurrent Neural Network

Road Side Unit

Small Base Station

Small Cell Network

Software Defined Networks
Temporal Difference error

Video on Demand

Wireless Fidelity

Wireless Topology Discovery

XX

Chapter 1

Introduction

The proliferation of mobile devices, processing capabilities and accelerated advancements
in multimedia applications escalate the demands for multimedia content like video con-
ferencing, virtual reality, augmented reality, video on demand and remote education. This
multimedia content utilizes extra resources for transmission on the Internet, which leads to
the exceptional growth of network traffic, imposes a massive load on the backhaul [1]. Ac-
cording to the Cisco survey overall mobile data traffic anticipated to rise 7-fold from 2017
to 2022 [2]. To meet user demands and deal with the overwhelming traffic, network den-
sification (deploying the base stations densely) is a fundamental technique in mobile edge
networks (MEN) [3]. A significant part of backhaul traffic is the duplicate downloads of
some popular content [4]. Thus, mobile edge caching is a prominent technique that utilizes
the edge nodes as caching nodes to bring the contents closer to users, enhancing the user
quality of experience (QoE) and alleviating the burden on backhaul and core network [3].
The mobile edge networks have merits over conventional network architecture regarding
latency, bandwidth, energy, etc. Latency: Bringing the computation and caching abilities
near users will reduces communication delay, particularly for the video content delivery
and computation offloading. In [5], authors have proven that offloading latency-sensitive
applications like health applications and highly interactive and computationally intensive
applications like AR attained significant improvement.Bandwidth: In [6], it has been shown
that bringing servers near users preserves the operation cost for computation-intensive and

bandwidth-hungry applications by 67%. Studies show that by employing proactive caching

CHAPTER 1. INTRODUCTION Section 1.0

mechanisms, the burden on backhaul reduces up to 22%. The authors [7] claimed that more
significant benefits could be achieved with expanded cache storage. Energy Efficiency: In
[8], authors demonstrated that the energy consumption of nano data centers (DCs) in fog
preserves the energy influenced by the type of application, ratio of active and idle time of
DCs, and type of access network. The energy consumption of various applications in LTE
and WiFi networks is studied and shown that significant energy saving achieved with edge
computing [5]. Context Information Utilization: The detailed context information com-
prises device level and network information obtained with the help of edge nodes placed
at various locations in the radio access network [9]. In MEN, the edge servers associated
with the BSs can accommodate the location-based applications that use the context infor-
mation to enhance the user experience and allocate the resources effectively. So, the edge
nodes can serve a massive amount of duplicate content requests, and hence there will be a
reduction in the service delay and the content delivery distance. Therefore, this can support
latency-critical mobile applications in a mobile edge computing framework.

With the increase of Internet content and considering limited storage at MECs, the
overall performance gain of the caching will be affected in mobile edge network. Due to
limited cache capacity at base stations (BS), caching popular content proactively reduces
the load on content servers during off-peak time. It is observed that the content popular-
ity follows Zipf distribution and this states that most of the content requests come for a
small number of frequently accessed top ranked content [10]. Therefore, caching popular
content at appropriate nodes (to improve the overall performance) is an important research
issue which has been addressed in this thesis. The above mentioned observations moti-
vate the present work for designing efficient caching strategies for data delivery in MEN.
Further, based on the cooperation among the BSs, caching can be classified as cooperative
and non-cooperative caching [11]. The non-cooperative edge caching may experience long
delays when a large number of contents are required to be fetched from content servers.
In cooperative caching, different BSs share their content, and this forms larger cache stor-
age. Therefore, the cooperative caching mechanism has a better cache hit ratio compared to
non-cooperative caching and improves the quality of service (QoS) [11]. Hence, the crucial

research problem is to take caching decisions including the content to be cached and place-

CHAPTER 1. INTRODUCTION Section 1.0

ment of the cache content. The problems related to content caching has been addressed in

MEN. The contributions in this thesis are as follows:

* Deadline-aware content caching using echo state network integrated fuzzy logic
for mobile edge networks: This work presents an echo state network-assisted fuzzy
logic-based cooperative caching mechanism in mobile edge networks. An approxi-
mation algorithm has been presented to find the optimal caching strategy. Further,
this work considers a proactive caching mechanism by predicting the content pop-
ularity distribution using the Echo state network, where the popularity is predicted
by leveraging the user context information. A fuzzy caching heuristic is proposed to
find a sub-optimal caching strategy. The proposed mechanisms improve the cache

hit ratio, acceleration ratio and the number of contents delivered.

* User Preference based Cooperative Cache Placement for Mobile Edge Networks:
This work presents a cooperative caching strategy by considering heterogeneous user
preferences, activity level and uneven distribution of users in large scale mobile edge
networks. In this work, user preference learning is modelled using long short term
memory to capture the dynamic user behaviour, and further content clustering is
presented to identify the relation between users. A greedy cooperative caching al-
gorithm is presented by considering the submodular optimization to optimize the
caching strategy. The proposed mechanism improves the cache hit ratio, acceleration

ratio and cache utilization.

* Contact duration-aware cooperative cache placement with user mobility across
MEC:s (i.e., BS) using genetic algorithm for mobile edge networks: This work
presents a caching strategy by considering the user mobility across the MECs and
randomness of contact duration in mobile edge networks. In this work, the user mov-
ing path and the sojourn time of a user is predicted using the Markov renewal process.
A greedy caching algorithm is proposed by considering the submodular optimization
to optimize the caching strategy. Further, a genetic algorithm is presented to solve
large-scale problems. The proposed mechanisms improve the cache hit ratio and ac-

celeration ratio.

CHAPTER 1. INTRODUCTION Section 1.1

* Cooperative Cache Replacement using Recurrent Multi-Agent Deep Reinforce-
ment Learning for Mobile Edge Networks: This work presents a cooperative cache
updating strategy. The content popularity is time-varying and unknown in reality,
so the assumption on content popularity known in advance makes it less practical.
Therefore, considering the dynamic nature of the content popularity, high dimen-
sional parameters, and for an intelligent caching decision, the problem is modelled
as a partially observable Markov decision process. Further, an efficient deep rein-
forcement learning algorithm has been presented by embedding the long short-term
memory network into a multi-agent deep deterministic policy gradient formalism.
The proposed algorithm improves the cache hit ratio, acceleration ratio and cache

reward.

The rest of this chapter is organized as follows. Motivation behind the work has been pre-
sented in Section 1.1. In Section 1.2.1, a deadline-aware caching using echo state network
integrated fuzzy logic for mobile edge networks has been highlighted. Content popularity
distribution prediction and fuzzy caching algorithm is presented in this section. In Section
1.2.2, a cooperative cache placement in mobile edge networks with user preference based
learning has been presented. A greedy algorithm is also presented in this section. In Sec-
tion 1.2.3, contact duration-aware cooperative cache placement for mobile edge network
has been highlighted and a greedy algorithm is presented. A genetic algorithm is also pre-
sented in this section. Section 1.2.4 describes the cooperative cache updating strategy in
mobile edge networks. Section 1.3 discusses experimental setup details. The organization

of the thesis has been presented in Section 1.4.

1.1 Motivation and objectives

The recent advancements in mobile and multimedia applications accelerate the demand for
more resources on the Internet. To accommodate the user demands and manage the network
traffic generated with these improvements, deploying base stations densely is a solution.
The dense deployment of edge nodes causes more burden on backhaul links by accessing

the same content. Therefore, to alleviate the burden on backhaul links, the most accessed

4

CHAPTER 1. INTRODUCTION Section 1.1

content needs to be cached at the edge of the network, and this technique is known as
edge caching. Edge caching brings the most frequently accessed content stored near users
by reducing the traffic generated by these requests. Hence, the edge nodes can serve the
user-requested content with less delay and minimal congestion at the core network and this
improves the quality of the service in the network. However, the effective cache utilization
is reduced when the individual edge nodes with limited cache capacity make their caching
decisions independently. A practical solution is to facilitate cooperation among edge nodes
by sharing the content. Different edge nodes share their content in cooperative caching,
which forms more extensive cache storage and enables cache diversity [11]. One of the
significant constraints in mobile edge networks is the limited cache capacity. Therefore, the
primary concern for mobile edge networks is the issue of effectively utilizing the limited
cache capacity by placing the appropriate content at each edge node. Recently, proactive
caching mechanisms have been designed for efficient data delivery in mobile edge networks
by proactively caching the most popular content at each edge node.

With the rapid growth in time-critical and delay-sensitive applications like video stream-
ing, Internet of Things (IoT), and financial applications need a response within a deadline
(i.e., a specific time limit) [12]. The deadline determines the maximum allowable time
for the response received for the request [13]. Some applications like health care and fi-
nancial transactions demand the guarantee of timeliness strictly (hard deadline), whereas
some IoT applications may tolerate the delay (soft deadline). If a request is not served
within the deadline, the quality of service would be affected, and this in turn affects user
QoE. Hence, to improve the user QoE, the request deadlines must be satisfied. There-
fore, MECs should cache content cooperatively by considering the deadline, and limited
caching capacity. Most of the existing proactive caching mechanisms assume that all users
have homogeneous preferences like content popularity, homogeneous activity level, and
uniform user distribution. However, the assumption made by the previous works is not
realistic and not valid based on the recent study. Hence, designing the cooperative cache
placement problem in a realistic scenario where unevenly distributed users, heterogeneity
of the user preferences, and activity level in large-scale mobile edge networks is a signif-

icant challenge. Most of the existing literature assumes static network models where all

CHAPTER 1. INTRODUCTION Section 1.2

the users remain static throughout the data transfer time, and the user can download the
requested content from the associated base station. Caching content by considering user
mobility and randomness of contact duration is an important research issue. In the proac-
tive caching mechanism, the caching decisions are based on the popularity of the content.
In the literature, earlier works consider the content popularity is either known in advance
[14] or content popularity be predicted [15, 16]. Practically, the content popularity may
be time-varying, so the above assumption (known in advance) makes it less practical. In
contrast, popularity prediction requires user association, and further user preferences may
vary in different contexts, such as personal information, topology, location, etc [16]. For
taking the caching decision, futuristic content popularity information may not be available.
Therefore, designing a cooperative cache replacement problem in a realistic scenario where
the edge nodes are unaware of the content’s popularity is a significant challenge. Thus, this
thesis also focuses on the above mentioned observations to increase the hit ratio while min-
imizing the latency and congestion in the mobile edge networks. The above mentioned
challenges motivate the present work towards efficient caching mechanisms for data deliv-

ery in mobile edge networks. The major objectives of this thesis are as follows.

1. Design of a deadline-aware cache placement scheme for the mobile edge network to

maximize the saved delay with capacity and deadline constraints.

2. Design of a user preference based cooperative caching scheme for mobile edge net-
works to maximize saved delay by considering the uneven distribution of users, het-

erogeneous user preferences and limited cache capacity.

3. Design of a contact duration-aware cooperative cache placement scheme with user

mobility across BSs for mobile edge network to maximize the saved delay.

4. Design of a cooperative content replacement mechanism in the obscene of content

popularity information for mobile edge networks to maximize saved delay.

CHAPTER 1. INTRODUCTION Section 1.2

1.2 Overview of the Contributions of this Thesis

In this section, an overview of chapter-wise contributions of this thesis has been presented.

Each subsection presents summary of contributions of the corresponding chapter.

1.2.1 Deadline-aware Content Caching using Echo State Network In-
tegrated Fuzzy Logic for Mobile Edge Networks

In this work, deadline-aware content placement mechanism has been proposed using the
fuzzy logic to maximize the saved delay in wireless networks. The novelty of the approach
lies in designing a caching mechanism for wireless networks (MEN) by considering limited
storage at base stations, the deadline of content request and popularity prediction. Initially,
the cache placement problem is formulated as an integer linear programming (ILP) prob-
lem. The solution is designed as relaxation-and-rounding based on the rounding technique.
Further, a fuzzy logic based caching algorithm has been proposed by considering deadline,
the benefit of caching content and content request distribution prediction for content place-
ment decisions. Moreover, an Echo State Network (ESN) based prediction mechanism has
been designed to predict the content request distribution for mobile edge network. The

major contributions of this work are as follows:

* Formulate a content placement problem (CPP) as an integer linear programming
problem in mobile edge networks with an objective to maximize the saved delay

subject to cache capacity and request deadline.

* Design an approximation algorithm based on the relaxation and rounding technique
to solve the integer linear programming version of content placement problem in

MEN:s.

* Propose a fuzzy logic-based caching algorithm (FCA) to find the near-optimal solu-
tion by considering content request distribution, deadline of the content and benefit
(distance) of caching content. The content request distribution prediction mechanism

is designed using echo state networks.

CHAPTER 1. INTRODUCTION Section 1.2

Formulation of a Content Placement Problem

In this section, first the delay is modelled then the problem is formulated as Integer linear
programming problem aiming to maximize the saved download delay with capacity and

deadline constraints. Then the proposed problem is shown as NP-hard.

Approximation algorithm

In this section, the proposed ILP problem is converted into linear programming problem
by relaxing the integer decision variables. Hence, the optimal solution can be found in
polynomial time then round the fraction solution. The deterministic rounding algorithm
[17] has been adopted by constructing the weighted bipartite graph for each content f of

different content types c.

Fuzzy Caching Algorithm based on Content Prediction

The content placement problem is proposed to maximize the saved delay, since the popu-
larity is determined by content request prediction (i.e., the appropriate content to be cached
at each base station cooperatively requires the content popularity prediction). To address
this issue, a fuzzy logic based cooperative content placement algorithm has been presented
using content popularity prediction. The content request distribution has been predicted
using the ESN (echo state network) [18]) model by considering the state of user content
requests observed by network evaluation function. ESN predicts the content request dis-
tribution by establishing the relationship between the requested content and user context
(user information). ESN trains the neurons using simple linear regression and it has fast
convergence speed. The idea of the fuzzy caching algorithm is to cooperatively cache more
popular content with minimal delay by considering content benefit, deadline and request
prediction (popularity) to improve the performance in terms of hit ratio, acceleration ratio
and the number of requests satisfying deadline. Further, a replacement strategy is presented
for dynamic network. The proposed caching algorithms is implemented with python by uti-
lizing the real-world movilens dataset for demand model. The performance metrics such as

cache hit ratio, acceleration ratio, number of requests satisfying deadline and cache utiliza-

CHAPTER 1. INTRODUCTION Section 1.2

tion are taken to compare the proposed caching mechanisms with most popular, random,
least recently used, cooperative and non-cooperative caching mechanisms. Simulation re-
sults show that the cache hit ratio and acceleration ratios are improved significantly using
the proposed mechanisms compared to reference algorithms. Further, it is observed that
there is an improvement of up to 20% on acceleration ratio, up to 18% on hit ratio and up

to 24% on number of deadline satisfied.

1.2.2 User Preference based Cooperative Cache Placement for Mobile

Edge Networks

Content popularity indicates the average interest of multiple users but not exhibits the in-
dividual user preferences [19]. Most of the existing literature considers that all users have
the same content distribution (homogeneous popularity). However, various users have di-
verse preferences. The assumption made on homogeneous popularity ignores the users’
preferences results in losing valuable information. Less than 20% of users generate 80% of
traffic, which shows the users’ activity level is heterogeneous [20]. The user activity level
and user preferences, and unevenly distributed users introduce new challenges into mobile
edge networks. In the literature, most proactive caching approaches ignored user behaviour,
such as heterogeneous user activity levels and user preferences. Therefore, employing the
individual user preferences and activity levels improves the cooperative caching strategy
design.

This work aims to maximize the saved delay by considering the capacity and deadline
constraints for accessing a large volume of data while reducing redundancy, congestion
and delay. The content request deadline has been considered for generality and practicality,
which is reasonable in latency-sensitive mobile and IoT applications but not sufficiently
investigated. The work’s novelty lies in designing a clustered cooperative cache place-
ment mechanism for mobile edge networks with uneven user distribution, heterogeneous
user preferences and activity levels into account. User preferences are predicted using the
recurrent neural network mechanism LSTM using the historical user behaviour, and the

users are clustered based on the predicted user preferences. Further, the clustered cooper-

CHAPTER 1. INTRODUCTION Section 1.2

ative content placement is designed by formulating the maximum saved delay problem. A
solution is obtained to maximize saved download delay using a submodular function with
matroid constraints for the cooperative content placement problem.

The contributions of our work are as follows:

* Design a user preference prediction mechanism by adopting the long short-term

memory network.

* Design a user preference-based clustering mechanism and formulate a clustered co-
operative caching problem as an integer linear programming problem in mobile edge
networks to maximize the saved download delay subject to the deadline of the con-

tent and cache capacity.

* Propose a submodular optimization based cooperative content caching algorithm by

utilizing the clustering and prediction mechanisms to solve the proposed problem.

User Preference Prediction

In this section, the user preferences are predicted by adopting long short term memory
model. In the training phase, the data of each user is supplied into the LSTM network.
Once the network is trained, the values are predicted and this indicate the number of times
a user requests content in each time slot. Based on the prediction result, the user activity

level and user preferences are computed.

User Clustering and Problem Formulation

In this section, the users are divided into logical groups based on the predicted user pref-
erences. Each cluster has similar type of user and associated base stations. The content
placement problem is formulated as Integer linear programming problem by maximizing
the saved download delay with capacity and deadline constrains. Then the proposed prob-

lem is shown as NP-hard.

10

CHAPTER 1. INTRODUCTION Section 1.2

Content Placement algorithm using Sub-modular Optimization

In this section, a submodular optimization based greedy algorithm is presented to solve the
proposed content placement problem. The submodular property with matroid constraint of
the given problem has been proved and the given problem is converted into submodular
optimization problem. Since the proposed problem satisfies the submodular property a
greedy approximation algorithm has been presented. The proposed mechanism is compared
with the global popular, local popular, femtocaching, cooperative and clustered cooperative
caching mechanisms in terms of hit ratio, acceleration ratio and cache utilization. From the
simulation results, it has been observed that the cache hit ratio and acceleration ratio are

improved significantly using the proposed caching approach.

1.2.3 Contact Duration-Aware Cooperative Cache Placement with User
Mobility Across MECs (i.e., BS) using Genetic Algorithm for
Mobile Edge Networks

In this work, the cache placement problem in a realistic scenario has been considered where
the users with different speeds intermittently connect to the BSs at irregular intervals. The
users will frequently move between BSs and can download only parts of the requested
content from different encountered BSs along the moving path. If the user fails to down-
load the complete content from encountered BSs, then the requested content is downloaded
from a macro base station (MBS), this in turn increases the overall delay and affects the
QoS. Hence, the caching mechanism should consider the user mobility pattern. Although
[21, 22] assumes the user mobility, the randomness of contact duration is not considered.
According to [23], data transmission is associated with contact duration (sojourn time). If
the contact duration is short, the user is moving at high speed and if the contact duration
is long, it means the user moves at low speed. Thus, contact duration randomness caused
by user mobility affects the transmission of data and this in turn affects the content place-
ment. Therefore, the aim of this work is to design caching methods by considering limited
resources, content popularity, deadline, the randomness of contact duration (speed of the

user) and user mobility.

11

CHAPTER 1. INTRODUCTION Section 1.2

The novelty of this work lies in designing a content placement mechanism for dynamic
networks where the moving users intermittently connect to the BSs at irregular intervals
of time. User mobility is modeled as Markov renewal process to predict contact duration
and user moving paths. Then the contact duration aware content placement is designed by
formulating the maximum saved delay problem. For the contact duration aware content
placement problem, a solution is obtained to maximize saved download delay using a sub-
modular function with matroid constraints. Further, a heuristic search mechanism based on
a genetic algorithm is designed to efficiently obtain content placement solution for large
scale problems (the scenarios that scale to large video library sizes).

Major contributions of this work are as follows:

* Formulation of a mixed integer non linear programming problem for contact duration
aware content placement problem: maximization of saved download delay subject
to constraints, namely cache capacity and popularity of the content in mobile edge

networks.

* Modeling user mobility as a Markov renewal process to predict the user moving paths

and contact duration.

* Design of a greedy algorithm by adopting submodular optimization to solve the prob-
lem and development of a heuristic search mechanism based on a genetic algorithm

to solve the content placement problem for large scale problems efficiently.

Greedy algorithm for contact duration aware cooperative content placement

In this section, a greedy algorithm is presented by predicting the user mobility and contact
duration with the base station. The proposed greedy algorithm achieves a polynomial time
complexity; the complexity grows with an increase in the number of contents. For real
scenarios as the scale continues to increase (large scale problems where hundreds of users,
tens of BSs), the complexity can be very high, making it impossible for implementation
[24, 25]. Therefore, low complexity sub-optimal algorithms are required due to cheap-
ness and delay sensitive implementations [25]. To address the system with a large number

of nodes, contents and mobility paths, and to simplify the computational complexity, a

12

CHAPTER 1. INTRODUCTION Section 1.2

heuristic algorithm has been designed based on the genetic algorithm (GA). GA gives a
near optimal and robust solution (video segment placement in content delivery networks
[26] and base station placement in heterogeneous network [27]) for NP-hard problems.
The proposed greedy and genetic algorithms provide improvement of up to 13 and 16 per

cent on hit ratio compared with MPC, FC and MCFD, respectively.

1.2.4 Cooperative Cache Replacement using Recurrent Multi-Agent

Deep Reinforcement Learning for Mobile Edge Networks

In the real world, the limited cache size restricts the mobile edge caching performance [28].
A simple solution is to devise efficient content placement mechanisms by considering user
preferences and content popularity [22]. The effective cache utilization reduced when the
individual nodes with limited storage make their independent decisions since they may re-
dundantly cache popular content. Different edge nodes share their content in cooperative
caching, which forms more extensive cache storage and enables cache diversity [11]. Gen-
erally, the caching decisions of various nodes depend on each other, but each edge node
is aware of its own caching decision and unaware of the other nodes decisions. Make use
of cooperative edge caching presents various technical problems. (1) To achieve coop-
eration, edge nodes should be aware of the neighbouring nodes caching state by sharing
content, which causes considerable burdens [29]. (2) Efficient cooperation control needs
an adaptive and dynamic framework. (3) Further, the designed caching mechanism has to
tackle large-scale information induced by enormous data and information interaction. The
conventional optimization mechanisms, such as dynamic programming and integer linear
programming, can handle the first two problems [30]. Considering the dynamic nature of
the content popularity, high dimensional parameters, and for an intelligent caching deci-
sion, the conventional optimization methods will not be suitable [30]. The recent success
in reinforcement learning (RL) [31] and deep reinforcement learning (DRL) [16, 32] has
encouraged this research work to use these learning mechanisms to tackle dynamic and
complex systems.

This work aims to maximize the saved delay by considering the capacity and dead-

13

CHAPTER 1. INTRODUCTION Section 1.3

line constraints for accessing a large volume of data. Content request deadline has been
considered for generality and practicality reasonable in latency-sensitive mobile and 10T
applications. The novelty of this work lies in designing a cache mechanism for a dynamic
environment where the time-varying nature of content popularity is unknown in advance
for latency-sensitive applications by considering the limited storage at each edge node.
Since each edge node observes its local state, the cooperative cache replacement problem
is modelled as a partially observable markov decision process (POMDP) [33]. Further, a
multi-agent actor-critic framework has been designed to manage nodes to coordinate the

caching decisions. The contributions of this work are as follows:

» Formulate the cooperative cache replacement as an integer linear programming prob-
lem to maximize the saved download delay and further the designed problem is mod-
eled as a POMDP based multi-agent decision problem to maximize the cumulative

reward by ensuring the MEC servers’ coordination.

* Design a recurrent multi-agent deep reinforcement learning-based cooperative cache
replacement algorithm for mobile edge networks by devising a multi-agent actor-

critic framework.

Multi-Agent Deep Reinforcement Learning Model for Cooperative Caching

In the real world, the environment has challenging conditions for a multi-agent system that
demands cooperation among agents, such as partial observable agents and non-stationary
nature. Therefore, the multi-agent decision problem has been modeled as a partially ob-
servable Markov decision problem and presented a multi-agent DRL framework for coop-
erative content replacement in MEN. In the proposed algorithm, LSTM is included in the
actor-network and critic network. The inclusion of LSTM enables a way to remember the

last communication (the effect of the actions on reward) received from other agents.

14

CHAPTER 1. INTRODUCTION Section 1.4

1.3 Experimental Setup

To evaluate the performance of the proposed caching algorithms, this thesis presents the
system setting in this section. The proposed mechanisms has been experimented using
Python with the TensorFlow platform. The proposed algorithms has been executed on a
desktop with a dual-core Intel 15-5200U 3.20 GHz and 8 GB of installed RAM. A square
region has been considered for simulation with an area of 500m x 500m. In the given
simulation area, a cellular network is considered with 15 BSs associated with MEC servers
and 90 mobile users, MECs are randomly deployed and connected and the mobile users’
initial locations are uniformly distributed over MECs at the beginning of the simulations
[24, 34, 35]. In the simulation, 500 contents have been considered with size determined
uniformly at random from a range of [10MB to 100MB]. Content request probability fol-
lows Zipf distribution with v = 0.6 [24]. Each content has a deadline picked randomly from
[5 to 30s]. Each MEC can cache 10% of the total files. The data transmission capacity of
MEC is 8 Mbps. The latency to fetch content from the base station to the user is specified
using uniform distribution ranges from [10 to 30s]. Latency to fetch content from the con-
tent server to BS is taken as 80s. The proposed algorithms are compared with the existing
algorithms based on publicly available real-world datasets available at WTD Project [36],
MovieLens [37] and Lastfm [38]. The presented simulations results are an average of 100

runs.

1.4 Organization of the Thesis

The main focus of this dissertation is to design caching algorithms in mobile edge networks
by considering dynamic environment conditions to improve cache hit ratio, acceleration ra-
tio and cache utilization. The thesis has been organized in seven chapters.

Chapter 1: In this chapter, a brief introduction to mobile edge networks and objectives of
the thesis have been presented. It also describes an overview of the major contributions and
outline of the thesis.

Chapter 2: In this chapter, proactive caching, cooperative caching, mobility based caching,

15

CHAPTER 1. INTRODUCTION Section 1.4

coded caching, prediction based policies, user preference based policies, reactive caching
and learning based policies are discussed. The challenges in content caching in mobile
edge network have also been presented.

Chapter 3: In this chapter, a cooperative content placement mechanism has been proposed
for mobile edge networks to maximize the saved download delay. The content placement
problem has been formulated as Integer linear programming problem with an objective to
maximize the saved download delay subject to cache capacity, request deadline and popu-
larity of the content. An approximation algorithm is presented to solve the proposed ILP
problem. Further, a fuzzy logic based caching algorithm is proposed to find near-optimal
solution for large scale problems.

Chapter 4: In this chapter, a user preference based cooperative caching mechanism has
been proposed for mobile edge networks. LSTM is used to model the user preference pre-
diction and further, a greedy algorithm is presented to cache the content.

Chapter 5: In this chapter, contact duration aware cooperative caching mechanism has
been presented. The mobility and contact duration is modeled with Markov renewal pro-
cess and further, a greedy algorithm is proposed to cache the content at MEC nodes.
Chapter 6: A recurrent multi-agent deep reinforcement learning algorithm has been pre-
sented to dynamically update the content in mobile edge networks. An LSTM model is
adopted to reduce the instability produced by partial observable environment. Inclusion of
the LSTM enables a way to remember the last communication (the effect of the actions on
reward) received from other agents.

Chapter 7: This chapter summarizes the work, outcomes of the contributions and future

scopes for expansion of the work.

16

Chapter 2

Literature Survey

The evolution of telecommunication and information technology has witnessed the five
generations of mobile cellular networks over the past two decades. At the same time, the
growth in mobile devices and multimedia applications enables the user demands for mo-
bile networks for lower latency and higher data rates. The conventional cellular network
with base station-centric architecture no longer satisfies the demands. Therefore, in the
Sth and sixth generations, mobile cellular networks emerge from conventional BS-centric
[39] to content-centric [40], device-centric networks. Furthermore, mobile devices are be-
coming smarter in their computing. Modern machine-type devices like sensors, wearable
devices, and human-type devices lead to huge machine-to-machine communications. These
machine-type communications introduce additional challenges like low latency, power con-
sumption, and limited processing abilities for cellular systems [41]. Different approaches
have been proposed in the literature like mobile cloud computing, cloudlets [42] and edge
computing to address the challenges raised by machine-type communications. Mobile
cloud computing (MCC) consists of a pool of servers called cloud and clients to address the
challenges provided by machine-type communications. MCC offloads the computational
tasks to the cloud to support multiple platforms and provide adequate resources. Even
though MCC addresses some issues, it suffers specific problems like long latencies and
a burden on backhaul due to bandwidth limitation. Like MCC, Cloudlet is a small-scale
data center near deployable users, energy-efficient, and self-managed [43]. Widespread

deployed cloudlet management is challenging. Mobile edge networks are a solution to ad-

17

CHAPTER 2. LITERATURE SURVEY Section 2.1

dress the demerits of the MCC and cloudlet.

Bringing the network resources (communication, caching, and computing), contents,
and functions near users by employing the NFV and SDN technologies is the primary ob-
jective of mobile edge networks. Each network resource invites distinct challenges [29].
The evolution of various smart devices and applications like the Internet of things (IoT),
augmented reality, virtual reality, haptic communications, and tactile Internet generate a
huge volume of content that requires additional resources on the Internet, and this leads
to the exceptional growth of network traffic and imposes a massive load on the backhaul
[1]. Thus, mobile edge caching (MEC) is a prominent technique that utilizes the edge
nodes as caching nodes to bring the contents near users, alleviating the backhaul and core
network burden that enhances user quality of experience (QoE) [3]. So, the edge nodes
can serve a massive amount of duplicate content requests, which reduces the service de-
lay and reduces the content delivery distance. Therefore, this can support latency-critical
mobile applications in a mobile edge computing framework. Content caching has been
investigated extensively in the literature like web caching [10, 44] and information cnetric
networks [45, 7, 46]. In [44], Ali et al. have presented caching approaches and studied
prefetching mechanisms to improve web performance. Podlipnig ef al. [47] have discussed
the merits and demerits of cache updating mechanisms. A survey on caching strategies in
an information-centric network is presented by [7]. However, the caching mechanism men-
tioned above may not be applied directly because of the wireless networks characteristics,

and further the caching mechanisms in cellular networks need to be studied in detail.

2.1 Mobile Edge Networks Architecture

In this section, first, an overview of mobile edge computing (MEC) and its architecture
has been provided. MEC is a prominent solution to minimize the delay between users and
cloud servers. As shown in Fig. 2.1, multiple scenarios exist with different edge paradigms.
In [48], authors studied different edge paradigms and showed each paradigm’s merits and
demerits in detail.

MEC affords caching ability, mobility, high computational capability, local and context-

18

CHAPTER 2. LITERATURE SURVEY Section 2.2

overage
area of MBS

Cooperation
among SBS

Coveragg/

rea of SBS;

Figure 2.1: Mobile Edge Network Architecture

aware support to the end-users by bringing proximity to users. Furthermore, MEC offers
high bandwidth, ultra-low latency, and energy-efficient environments to delay sensitive
applications like IoT for better responsiveness than other edge paradigms [48]. It can be
seen from Fig. 2.1 that the MEC servers are deployed along with the base stations to
support the task computation at the edge and forward the tasks to the remote cloud servers

for the applications to fulfil high computational requirements.

2.2 Mobile Edge Caching

Caching content at the edge nodes in MEN has advantages. Because of the densely de-
ployed base stations, the MEN will be hybrid and heterogeneous. In conventional cellu-
lar networks, the requested content is obtained from distant Internet CDN. Therefore, in
MEN, the cache can be placed at several positions to bring content near users. A mo-
bile edge caching architecture is shown in Fig. 2.2. With the evolution of technology, BS
and the cheaper storage cost lead to placement of storage at heterogeneous BSs is reason-
able. However, the densely deployed BS needs high-cost backhaul links among the core

networks and BSs [49]. The backhaul links witness more duplicate content transmission

19

CHAPTER 2. LITERATURE SURVEY Section 2.2

2 cache

SBS link
.......... MBS link
— D2D link

Core Network CDN

Backhaul
Link

Figure 2.2: Edge Caching Architecture

Content is cached in

Local StorageCase [anmll |~~~ > Request

............ > Response

Content Server

(I) Content Request p’
(l) Check if content in the cache ,“
(ll) Content Delivery 7

Figure 2.3: Content cached at Local Cache

because of the popular content [49, 50]. When multiple users from several locations request
a large number of contents repeatedly at different times, the need to serve the user demands
by fetching content from the central CDN leads to a vast amount of duplicate content pro-
ducing the backhaul traffic. If the edge node caches most of the users desired content at
its local storage, it can be served immediately without fetching from the central node every
time, reducing duplicate content [51, 52]. Therefore, the basic problem in caching for mo-
bile edge networks is to decide what content to cache, where to cache, and how to cache.

The cache storage units can be placed at several places in MEN. In the conventional

20

CHAPTER 2. LITERATURE SURVEY Section 2.2

Content is not cached in
Local Storage Case

Content Server

----- > Request
------------ > Response

() Content Request by user -
() Check if content in the cache ~
() Forward the content r,equ’etst to Neighbour
S~a (IV) Content Request Ey MEC1
——————— +W - Checkif content in the cache of MEC2
(VI) Content Delivery

Figure 2.4: Content cached at Neighbour Cache

Content is not cached in —.—--> Request
any MEC Case @~ = = [y | ... > Response

Content Server

o7 vy H\Z)

ECs cac

? (V|.)’,..»-§ v)
" Oy

(U] Conten_t Request_by user (V) Check if content in the cache of MEC2

(I Check if content in the cache (VI) Content not stored in MEC2's Cache

(1) Content not stored in MEC1 Local Cache (y||) Content Request by MEC1 to Content server
(IV) Content Request by MEC1 to MEC2 (VIll)Content Delivery

Figure 2.5: Content not cached at any edge node

centralized cellular network, the cache is deployed only at the core CDN. In contrast, in
the MEN, the cache can be deployed at multiple places like radio access networks (RAN)
(cloud RAN, fog RAN) [53], user devices (device to device networks) [54], HetNet (Het-
erogeneous networks) [24], macro (MBS) [55, 56], small BS (SBS), femto (FBS) [57],
and pico (PBS) cellular networks. As shown in Fig. 2.3, the content can be served to the
requested user based on availability of the content at local cache deployed at BS. If the

requested content is not available at local BS then corresponding BS serves the requested

21

CHAPTER 2. LITERATURE SURVEY Section 2.2

user by obtaining the content from nearby (neighbouring node) BS as shown in Fig. 2.4
otherwise the content will be fetched from the central server as shown in Fig. 2.5. This
thesis focuses on the design of cache placement (mainly what and where to cache the con-

tent).

* Caching at BS: Caching the content near users at the base stations is a good solu-
tion that provides lower latency and better throughput. Caching content at BS has
challenges like inter-cell inference, connection uncertainty, and limited coverage. In
HetNets overlapped BSs imposes additional complications in addition to inter-cell
inference, connection uncertainty, and limited coverage [58]. HetNets expand the
MBS by placing the SBSs (Femto base station (FBS) and Pico base stations (PBS))

to increase the throughput and network coverage [59].

1. Caching at MBS: MBS coverage is higher than SBS coverage and can accom-
modate more users lead to better performance in terms of hit rate. The per-
formance in MBS caching can be improved by proactively caching the more
popular content from the central node. The proactive and reactive caching at
MBS has been studied in [60] for scheduling the backhaul and wireless channel
and shown that the stalling probability has been reduced and the capacity of the
video capacity has been increased. In [61], the resource allocation in MBS was
solved using a heuristic approach by proving the problem as NP-hard. In [62],
a HetNet with two levels which consist of MBS level and SBS level is intro-
duced. This work aims to maximize the hit ratio. Users can be served in four
different ways like serving immediately by corresponding SBS, serving imme-
diately by corresponding MBS, serving from MBS through corresponding SBS,
and serving from nearby SBS through MBS. In [63], a matching algorithm has
been presented to map the content to the appropriate BSs (SBS and MBS) in
HetNets. The limitations of this work are that they consider only one content
in the entire network and this leads to intra-network overhead and restricts the

cache hit rate.

2. Caching at SBS: Small base stations have a lower coverage area than MBS, so

22

CHAPTER 2. LITERATURE SURVEY Section 2.2

they are placed densely under an MBS for better coverage. With limited cache
capacity, SBS brings the content near users, which boosts the higher data rates
and low transmission power and relieves the backhaul burden. For placement,
SBS needs different caching schemes than MBS because of its dense nature.
Cooperation among the SBS needs to be considered to avoid redundant data
storage at the entire network and this provides higher data rates to improve
cache storage utilization [51, 64, 57, 65]. In [57], the authors proposed a con-
tent placement problem (CPP) in cache-enabled SBS to minimize the expected
download delay. Authors in [64] consider the cache update problem for dy-
namic content popularity and presented a learning-based caching mechanism to
maximize the reward. Nevertheless, these works consider the caching and de-
livery phases individually. In [66], authors consider the D2D and SBS caching
where the SBS serves various users, and user devices share content among other
devices using the D2D communication. In [66], content caching and delivery

are considered jointly to optimize network performance.

3. Caching at FBS: The fundamental idea of Femto caching is to substitute the
backhaul capacity with storage capacity at small cell access points [57]. Femto
caching is a cost-effective and flexible technique to effectively handle the ex-
tremely anticipated massive traffic (VoD) by placing content at the edge nodes.
The femto caching architecture for video content is proposed in [57] and shown
the two order magnitude improvement in throughput than architecture without
helpers. Shanmugam ef al. [24] have discussed the way to minimize expected
download delay by assigning files to the helper (femtocells). They proposed
a greedy approach with a factor of 2-approximation for the NP-complete prob-
lem. By considering the dynamic nature of topology and user mobility, dynamic

Femto caching is presented in [67].

4. Caching at PBS: Pico caching is a cost-effective mechanism that assists in di-
minishing the load on the backhaul. PBS cooperates by sharing the content to
reduce the burden on backhaul. Caching in HetNet has been considered in [68],

where authors consider multiple PBS are deployed under an MBS. MBS serves

23

CHAPTER 2. LITERATURE SURVEY Section 2.3

as a central controller in the considered system that takes caching decisions and
assigns the appropriate content to the particular PBS. User requested content
can be served by the associated PBS or from the nearby PBS or the MBS based
on the availability of the content. In [69], the authors optimize the multicasting
by placing content randomly at PBS and at the MBS tier to maximize the suc-

cessful transmission probability in HetNet.

* Caching at User Devices: With the advancements in smartphones, computation and
storage abilities have been increased. Hence, user devices serve other mobile users
by caching and sharing the content. Caching the content at the user devices is known
as D2D caching, and it is a critical technology where the mobile users get the content
from the nearby users using D2D communications instead of fetching content from
a long distant core network by exploiting the device storage [70]. In D2D caching,
the BS tracks the status of each user device and is responsible for redirecting the user
requests to an appropriate device. If the requested content is not available with any
of the devices, BS serves the user request by fetching content through backhaul. In
D2D caching, several devices form a cluster based on social relationships or com-
mon interests. D2D caching provides the benefits offered by D2D communications,
such as throughput, energy efficiency, better spectrum utilization, and location-based
services [29]. Moreover, the user devices cache the content based on their favorites,
so it offers a higher cache performance and flexibility than caching at different places
(MBS, SBS, and core network) [71]. In the literature, these studies explored the op-
portunistic D2D mechanisms, social relationship and shared interests [72]. In this
thesis, caching content at the SBS has been considered to improve the acceleration
ratio, cache hit ratio and cache utility in MEN by considering the user mobility, het-

erogeneity of user preferences and absence of content popularity.

2.3 Cooperative Caching

Based on the cooperation among the BSs, caching can be classified as cooperative and

non-cooperative caching. The non-cooperative edge caching (content is not shared among

24

CHAPTER 2. LITERATURE SURVEY Section 2.3

the BSs) may experience long delays due to the large number of contents required to be
fetched from content servers. In cooperative caching, different BSs share their content
and this forms larger cache storage. Therefore, the cooperative caching mechanism has a
better cache hit ratio compared to non-cooperative caching and improves the user quality
of service (QoS) [11].

In cache enabled cellular networks, base stations typically cache a set of contents co-
operatively [3]. The user can get the interesting content either from its local base station or
from the neighbouring base station set [11]. Khreishah ez al. [55] have discussed collabora-
tive caching to minimize the operation cost in a multi-cell coordinated system. The authors
consider the coded and non-coded caching problems. In non-coded caching, the problem is
formulated as integer programming to maximize the profit with capacity constraint and it is
shown as NP-Complete. A fully polynomial-time algorithm is presented to solve the non-
coded caching problem. The coded caching problem is formulated as linear programming,
which is polynomial-time solvable. Peng et al. [49] have discussed a content placement
problem (CPP) to minimize the average download delay of wireless networks by consider-
ing backhaul delay and physical layer processing. The CPP is formulated as mixed-integer
non-linear programming and its hardness is shown. Since the proposed problem is com-
plex, the authors relaxed the problem into a distance of concave optimization problem and
presented a successive convex approximation algorithm with low computational complex-
ity.

Chen et al. [18] have investigated cooperative caching and transmission mechanisms
in cluster-centric SCN. In cluster-centric SCN, BSs are grouped into clusters, and each BS
reserves the cache space for the most popular content, and the remaining cache space is
for less popular content. The coordinated multi-point mechanism is adopted to serve the
users either with parallel or joint transmission. The authors consider the hexagonal grid
design for clusters. The users are distributed based on the Poisson point process, and the
analytical results on successful content delivery are provided to show the proposed trans-
mission mechanisms for the user positioned at the cluster center. Psomas et al. [73] have
investigated cache placement mechanisms at relays in cooperative communications. To

address the placement problem, the authors proposed optimal amplify and forward relay

25

CHAPTER 2. LITERATURE SURVEY Section 2.3

selection mechanisms, and the analytical results are presented to show the outage perfor-
mance, coding gain, and diversity order of various caching mechanisms. Josilo et al. [74]
have considered the bandwidth minimization in hierarchical cache networks through co-
operative caching. The CPP is formulated as a binary integer programming problem to
minimize the bandwidth in hierarchical networks and this is proved to be NP-hard. To
solve the problem, the authors presented an approximation algorithm. Further, two low
complexity distributed algorithms were presented.

To improve the user QoE, Tran ef al. [11] have investigated a cooperative hierarchical
caching framework in C-RAN. The cooperative CPP is formulated as an integer program-
ming problem to minimize the download delay and it is proved to be NP-Complete. Octo-
pus presents an efficient cache management scheme, including two low-complexity cache
mechanisms. Further, a user request aware cache replacement mechanism is presented.
Cui et al. [75] have discussed caching in ISP networks with software-defined networks
to minimize the download delay, reducing inter-ISP traffic. The CPP is formulated as an
integer programming problem with traffic and capacity constraints and shown as NP-Hard.
A relaxation-rounding-based approximation algorithm is presented to solve the proposed
CPP in ISP networks. Further, a low complexity heuristic solution is presented to solve the
content placement problem for large-scale problems. Kumar et al. [76] have designed the
consolidated cooperative cache placement and replacement schemes to reduce the content
access delay in MEN. The authors in [77] devised a test-bed to evaluate the cooperative
bit-rate adaptive caching scheme and consider the video caching and request routing using
the video trans-coding mechanism.

Ayenew et al. [78] have discussed the content placement problem in a heterogeneous
cellular network. The CPP is formulated as a 0/1 knapsack problem to maximize the cache
hit probability with known popularity and presented a dynamic programming solution to
obtain an optimal solution with minimized computational time. Ren et al. [79] have pro-
posed a hybrid cooperative caching in MEN to improve the quality of service interns of
service latency reduction and energy efficiency. The collaborative caching problem is for-
mulated as integer programming to maximize the service latency and energy savings with

popularity and capacity constraints. First, the BSs were logically grouped into clusters us-

26

CHAPTER 2. LITERATURE SURVEY Section 2.4

ing the fuzzy c-means clustering algorithm. Second, a hybrid collaborative caching scheme
has been presented using the Lagrange multiplier scheme. Further, a greedy approximation
algorithm has been designed to give a linear complexity solution. Yang et al. [80] have
discussed cooperative caching based on user access patterns. The interaction between the
user, BSs, and contents were investigated using the tensor decomposition technique with a
distance constraint.

The works mentioned above have not considered heterogeneous user preferences, user
activity, user contextual information, the randomness of contact duration, and the absence
of content popularity in cooperative settings. In contrast, this thesis considered designing
efficient cooperative caching algorithms for the problems mentioned above in Chapters 3,

4,5 and 6.

2.4 Mobility based Caching

Most of the existing works [11, 60, 24] focus on caching content cooperatively at BS for
static networks. This assumption made by the existing works [11, 60, 24] is unrealistic
in a dense network. In a realistic scenario, the users with different speeds intermittently
connect to the BSs at irregular intervals. The users will frequently move between BSs and
can download only parts of the requested content from different encountered BSs along
the moving path. If a user fails to download the complete content from encountered BSs,
then the requested content is downloaded from a macro base station (MBS); this, in turn, in-
creases the overall delay and affects the QoS. Consider an example customers move around
a shopping mall with three BSs. If a user wishes to download content, then the content
should be replicated in all three BSs due to user mobility. Replicating the same content at
three BSs is a wastage of resources, so disjoint content parts should be cached at the BSs
to improve cache hit ratio and cache utilization. Hence, the caching mechanism should
consider the user mobility pattern. Although [21] and [22] assume user mobility, the ran-
domness of contact duration is not considered. According to [23], data transmission is
associated with contact duration (sojourn time). If the contact duration is short, the user is

moving at high speed, and if the contact duration is long, it means the user moves at low

27

CHAPTER 2. LITERATURE SURVEY Section 2.4

speed. Thus, contact duration randomness caused by user mobility affects the data trans-
mission, which in turn affects the content placement.

There are a few studies on user mobility. Guan et al. [34] have presented a mobility-
aware cache placement problem in SCN (small cell network) to minimize the burden on the
backhaul network. The mobility-aware CPP is formulated as an optimization problem for
maximization of cache utility with capacity constraint and shown as NP-complete. Further,
a polynomial-time heuristic algorithm has been proposed to maximize cache utility. In
[34], authors have considered that the mobility paths of users are known in advance. In
reality, users may not follow the paths predicted from historical user trajectories. Liu et al.
[81] have presented a mobility-aware coded cache mechanism to improve the throughput
in dense wireless networks. In this work, the authors jointly consider the user mobility,
channel selection diversity, and content diversity in the optimization problem and proposed
a modified mobility model based on discrete jumps. Further, the authors presented two
lightweight heuristic solutions to solve MEC’s coded probabilistic caching algorithm that
enabled small cell networks to maximize throughput. In [81], authors considered only
single user mobility, but mobility among different users has not been considered. Liu et al.
[82] have proposed an optimal file allocation mechanism to minimize the download time
in a small cell network and assumed that the user mobility obeys exponential distribution.
The authors in [82] assumed that the user does not return once it leaves the base station.

Wang et al. [22] have proposed a mobility-aware cache placement scheme to maximize
data offloading ratio by considering the advantage of inter contact time between users and
proved this to be NP-hard. First, a dynamic programming solution has been presented to
achieve lower computational complexity. Second, the proposed problem has been reformu-
lated into a submodular optimization problem, and a greedy approximation algorithm has
also been presented, which gives an approximation ratio of at least % Chen et al. [83] have
proposed a mobility-aware caching scheme to cache content at the base station and mobile
device using user mobility. The CPP was formulated as integer programming to maximize
the offloading ratio with user mobility and randomness of contact duration. The greedy ap-
proximation algorithm solves the proposed problem by converting the given problem into

a submodular optimization problem. Ye ef al. [84] have proposed a caching mechanism

28

CHAPTER 2. LITERATURE SURVEY Section 2.5

for a decentralized multi-task learning problem based on mobility prediction and addressed
the problem using hybrid jacobian and Gauss-Seidel proximal multi-block ADMM based
mechanism. The sojourn time and mobility path are modeled with the Markov renewal pro-
cess. In [21, 85], the authors considered the coded cache placement in small cell networks
to minimize MBS load and presented a distributed caching paradigm using user mobility
predictions. However, the above-mentioned works considered user mobility where ran-
domness of the user contact duration has not been considered. In contrast, in this thesis,
user mobility and randomness of contact duration have been considered in Chapter 5 to

handle the dynamic scenarios.

2.5 Coded Caching

With the increasing demand for the content, increasing network traffic leads to more burden
on the content delivery networks, resulting in under utilization of resources in off-peak
time and more congestion at peak times. Therefore, duplicating the preferable content at
the idle resources in the network by shifting the underutilized network resources to reduce
the network congestion in peak hours. There are two phases in the network that operates
like content placement and content delivery. Each phase has its own issues. In the content
placement phase, the cache memory is restricted, and the congestion will not increase,
whereas, in the delivery phase, the system will be affected by the rate required to serve
the content and congestion. Hence, designing a caching mechanism to place the content
at each base station in the given network minimizes the user request rate. Based on the

comprehension of the nature of caching, there exist two types of caching mechanisms.

* Local content placement: In this mechanism, the content is replicated at the nodes
near the requesting users to serve the content nearby. If a user requests content, and
the requested content is available near the user, then that segment is served to the
user locally, and the rest of the segments are fetched from the distant server using
the unicast transmission. If multiple users request the same content and the content
is served to the user locally, then the rest of the segments are served from the server

using multi-cast transmission to users requesting. There exist several approaches

29

CHAPTER 2. LITERATURE SURVEY Section 2.5

[52, 60, 11] in the literature which uses the content popularity to choose the most
popular content and caches at appropriate location to enhance the benefit of caching.
The popular content caching mechanisms achieve better results with larger caches to

store a significant amount of the popular content locally.

* Simultaneous multi-casting approach: In this mechanism, content is cached to permit
the server to fulfill the multiple users’ demands with different requirements with a
single multi-cast stream. A coding mechanism produces these streams [86, 87]. In
this mechanism, each user downloads the coded stream and decodes the requested
content. Hence, the coding mechanism needs to be designed to satisfy all possible

user demands simultaneously.

Coded Caching: For all files F and users U each with cache of size M € {0, £ 2 3£ N

YU U U
R*(M) < R.(M) = F(1—4) min{ U} is achievable. For general 0 < M < U, the

lower convex enveloped of these points is achievable. Where R.(M) = F(1 — %)ﬁ
which is a global caching gain and M cache size.

Maddah-Ali et al. [87] have investigated the coded multi-casting mechanism to en-
hance the benefit of caching and reduces congestion significantly. In a conventional caching
mechanism, the benefit of caching depends on the size of the local cache. In contrast, in
the proposed coded multi-casting, the benefit is higher with cumulative cache available at
all users in the networks even though there exists no cooperation among the users. The
problem is formulated as an information-theoretic formulation and further a coded caching
mechanism has been presented to utilize local and global cache benefits. The authors have
shown that the overall improvement can be the order of the users in the network. In [88], an
effective decentralized coded cache mechanism is presented and proved that the proposed
coded multi-casting mechanism attains the rate near optimal to the centralized mechanism.

Pedarsani et al. [89] have presented an online coded caching by considering a dis-
tributed framework with a single centralized server connected via a shared bottleneck link
to multiple users having the limited cache size. The aim is to optimize the number of bits to
be sent via shared links to satisfy the user demands by managing the caches of the central-

ized server and users. The shared link average rate is modelled using the Markov model.

30

CHAPTER 2. LITERATURE SURVEY Section 2.6

The authors have proven that the proposed online algorithm has a similar performance as
the offline caching mechanism. Karamchandani et al. [90] have presented a hierarchical
coded caching mechanism by combining the coded multi-casting at individual layers and
coded multi-casting across the layers in hierarchical content delivery networks. Niesen et
al. [91] have studied the gain of coded caching for a caching system with non-uniform con-
tent popularities. The authors have shown that the optimal caching scheme in the multiple
cache scenario needs the coding mechanism. Zhang et al. [92] have investigated the coded
caching scheme for arbitrary content popularity and obtain an information-theoretic lower
bound on expected transmission rate. In Chapter 5, coded caching has been considered to

design an efficient contact duration aware caching scheme.

2.6 Learning based Caching

The fundamental problem in caching for mobile edge networks is what content to cache,
where to cache, and how to cache. Many caching schemes exist using several optimizations,
stochastic, and heuristic techniques to address some of these problems. The increasing dy-
namics in the mobile and wireless networks, such as diversity in content, number of users,
content, and mobility, causes challenges and complexity to implement. Therefore, the in-
clusion of machine learning into the caching mechanism gives better decision capabilities
to the mobile edge networks. Primarily machine learning techniques are classified into

three classes: supervise, unsupervised, and reinforcement learning.

2.6.1 Supervised Learning based Caching

Supervised learning is one of the significant practical learning mechanisms where the
model learns by example. This learning mechanism uses the idea of learning from the
label (mapping from the input to output), similar to learning under a teacher’s supervision.
Supervised learning aims to design a model that approximates the mapping function. This
learning technique is used in many real-world applications like spam filtering, fraud detec-
tion, classification of objects, and risk evaluation. Supervised learning is further divided

into classification and regression. Many supervised learning algorithms (decision tree, ran-

31

CHAPTER 2. LITERATURE SURVEY Section 2.6

dom forest, logistic regression, support vector machines and polynomial regression) exist
in the literature [93, 28, 94, 95], and the algorithm is chosen based on the requirement.

Bastug et al. [93, 28] proposed a learning-based caching mechanism at user devices
and BSs to enhance the user experience. In this work, the authors studied a proactive cache
mechanism at BS where individual BS learns the popularity of content using supervised
learning and collaborative filtering to fill the missing values in the popularity prediction
matrix. Initially, the content popularity is computed by minimizing the least square error,
and then the content is cached at individual BS greedily till the cache is full. Further, a
proactive caching mechanism has been designed based on the D2D communications by
caching content at user devices. In device caching, influential users are figured out by
evaluating the centrality of the social users and cluster the users into logical groups using
the K-means clustering algorithm. In this mechanism, the most popular content is cached
to the most influential user in each cluster.

Thar et al. [94] proposed a popularity prediction based on supervised and DL in two
stages and caches the content proactively at the BSs. First, the supervised learning algo-
rithm collects the user request count to estimate the content popularity in future time. Sec-
ond, deep learning is used to predict the request counts of content based on the collected
content request count in the first step. The problem is formulated as the minimization prob-
lem to reduce the delay with capacity constraints. RNN (recurrent neural network) is used
to evaluate the popularity prediction, and the caching decision is taken based on DNN (deep
neural network) with multiple hidden layers and levels of nonlinear operations. Zhang et
al. [95] have employed the supervised and unsupervised learning mechanism to make the
efficient caching decision in SCN. The caching problem is formulated as integer program-
ming to maximize the cache hit ratio with capacity constraint and shown it is NP-hard.
Therefore, the authors use the learn-to-rank technique to predict the content popularity by

utilizing content requests and forming logical groups using the K-means algorithm.

32

CHAPTER 2. LITERATURE SURVEY Section 2.6

2.6.2 Unsupervised Learning based Caching

Unsupervised learning models are not supervised using the training data. These mecha-
nisms explore the hidden patterns or data groupings with the given data. In supervised
learning, labeled data is used for training, whereas unsupervised learning learns the patterns
without labels. These mechanisms are perfect solutions for image recognition, customer
grouping, cross-selling policies, and exploratory data analysis because of the capability to
identify the data’s differences and similarities. Unsupervised learning is divided into clus-
tering, association and dimensionality reduction.

Clustering: Clustering is a mechanism to group the data into clusters based on more
similarity among the data points within the cluster and less similarity among the data points
outside the group or among the groups. Clustering is again classified into exclusive, hier-
archical, overlapping, and probabilistic.

Association: Association rule is a technique to discover the association among the vari-
ables in the given data. Association rule mechanism defines items that appear collectively
in the given data set, primarily used in market basket analysis. This technique does an
efficient marketing plan by understanding the usages of the consumers empowers the en-
terprise to produce more valuable recommendations and better selling strategies. It can be
observed that this association rule in retail and online marketing where the user who pur-
chases item A (bread) is also direct to purchase item B (butter). A similar approach has
been applied to content caching based on user preferences and correlation among the users
[96, 97, 98]. In literature, various algorithms exist like Apriori, FP-Growth, and Eclat;
among these, Apriori is the extensively used technique.

Dimensionality reduction: The more accurate results are produced when the data is
more. However, the machine learning algorithms suffer from a massive amount of data in
terms of performance like over-fitting and difficulty in visualization. Therefore, reducing
the not useful features (dimensions) by maintaining data integrity from the vast data set
eases the execution, known as dimensionality reduction. This technique is more generally
used in data preprocessing.

Shen et al. [99] have presented unsupervised learning mechanisms to improve the

33

CHAPTER 2. LITERATURE SURVEY Section 2.6

cache efficiency in an ultra-dense network. The caching problem is formulated as Inte-
ger programming to minimize the load on backhaul with capacity constraint and shown
it is NP-hard. Machine learning-based caching mechanisms are presented to handle the
difficulty of highly random content demands in ultra-dense networks. K-means algorithm
was applied to find the hidden Spatio-temporal patterns of user demands at each BS. A
K-nearest neighbor classification mechanism was presented to regularly classify the con-
tinually raising new contents and store the content at BSs at appropriate clusters with low
complexity and high accuracy.

Chen et al. [100] have studied the caching gain by learning the user request behav-
ior. The authors determined the relationship between the popularity of content and user
preferences and presented a probabilistic model to synthesize the user preferences by uti-
lizing the popularity of content. The content offloading problem is formulated as integer
programming to maximize the offloading probability for D2D networks. The user demand
behavior is modeled using probabilistic latent semantic analysis based on the expectation-
maximization mechanism to solve the user preference learning problem.

Caching the content at the user devices provides lower delay, minimal traffic, energy
efficiency, and higher throughput. In [101], the authors present an efficient learning-based
caching mechanism working collectively with a non-parametric estimator to minimize the
delay in the D2D network. The non-parametric estimator is used to learn the intensity
function of the content demands, and it is considered that the popularity information is not
known in advance. Further, a caching mechanism is presented to decide the most suitable
pairs that improve higher delay with higher throughput and minimal delay. This mechanism
can be further extended to the more dynamic system where the parameters fluctuate very

frequently.

2.6.3 Reinforcement Learning based Caching

The conventional optimization methods can not be adapted for intelligent caching deci-
sions in cooperative setting, in view of dynamic content popularity and mobility of nodes.

Recent success in reinforcement learning (RL) to solve complex control problems attracted

34

CHAPTER 2. LITERATURE SURVEY Section 2.6

Environment:

User requeest, Network constraints,
External Information.

Reward: QoE,
State Traffic
[y y \
Observe
Caching
Action
Learn

Caching Strategy

\Agent Y,

Figure 2.6: Reinforcement Learning Approach

the research community [31]. RL is one of the significant areas of machine learning shown
in Fig. 2.6. RL is a learning process where agents observe the dynamic environment and
adjust its policy to obtain an optimal strategy. However, getting the best strategy need
knowledge of the entire system. Hence, it is not applicable to solve large scale networks.
Deep learning (DL) is a well-known technique to address the RL limitation, and by com-
bining the RL with DL emerged as deep reinforcement learning (DRL). Recently, wireless
networks (Heterogeneous networks, unmanned aerial vehicle networks and [oT) turns out
to be autonomous, decentralized and ad-hoc in nature. These stochastic and uncertain en-
vironments complexity grows as the size of the network grows. Therefore, DRL is an
alternative solution.

Wang et al. [102] have presented a learning-based caching mechanism to maximize
the number of users served by the nearby nodes. The authors first present a collaborative
filtering mechanism to predict the popularity of the content, and then transfer learning is
utilized to increase the accuracy. Further, a distributed iterative algorithm is proposed to
maximize the number of users served by the nearby BSs by considering the interactions
between users and BSs. Hou er al. [103] have presented a caching problem in vehicular

networks by considering the mobility of vehicles and storage of the RSU to minimize the

35

CHAPTER 2. LITERATURE SURVEY Section 2.6

latency. The problem is modeled as a Markov decision process and designed a Q-learning
based solution by utilizing the user mobility prediction based on the LSTM network. Fur-
ther, the authors presented an optimal cache strategy based on a greedy heuristic.

In [104], the authors present an edge caching scheme to maximize the content offload-
ing ratio in hierarchical wireless networks through D2D communications. In proactive
caching, the most popular content is cached at the devices to reduce delay and traffic. How-
ever, the content popularity is not valid, and it does not exhibit user preferences since the
popularity is calculated based on the historical user request information collected within a
particular time. In contrast, the user preferences exhibit the probability of individual con-
tent demanded by each user. The authors consider the users’ social relationship, mobility,
and system learning to maximize the offloading ratio in this problem. The caching problem
is formulated as an Integer programming to maximize the offloading ratio by analyzing the
social relationship and mobility, and it is proved as NP-hard. Further, the proposed problem
is modeled as the Markov decision process and presented a Q-learning-based distributed
cache replacement scheme.

There are various single-agent learning algorithms like DQN, DDPG, and advantage
actor-critic (A2C) in the literature [105]. A Q-learning based cache update mechanism
presented to model the local and global content popularities as Markov chains in [106].
In [107], the authors presented the proactive caching mechanism based on policy gradient
reinforcement learning schemes to minimize the long-term average energy cost by assum-
ing the Poisson shot noise popularity dynamics. A DQN approach is presented in [108]
to address the large continuous state-action space. In [109], the authors formulated the
cache replacement problem as MDP to minimize the long term reward of fetching tran-
sient data item and presented a caching policy based on the A3C (asynchronous advantage
actor-critic) DRL mechanism. A DRL based framework with Wolpertinger architecture
is presented in [32] for content caching in a single BS scenario and presented a deep de-
terministic policy gradient training mechanism for the actor-critic network. However, the
works mentioned above consider the DRL mechanism for caching content, which is not
a practical solution to the distributed environments where multiple agents are involved in

decision making. In contrast, Chapter 6 considers the multi-agent DRL to handle the dis-

36

CHAPTER 2. LITERATURE SURVEY Section 2.7

tributed nature of the problem.

In reality, the environment is complex and there are several cases where the single-
agent can not deal effectively. In this cases multiple agent systems are essential. In the
multi agent scenario all the agents learn the policy by interacting within a common en-
vironment. Therefore, an agent must either compete or coordinate with other agents in
the environment to obtain the good results. The cooperative cache network can improve
performance [11]. Conventional single agent reinforcement learning mechanisms such as
Q-learning or policy gradient is not applicable in multi agent reinforcement learning be-
cause as the training progresses each agent policy changes and environment becomes non
stationary. Jiang et al. [110] have formulated the content caching in D2D networks as
multi-armed bandit problem to minimize the delay and presented two Q-learning based
multi agent learning mechanisms. Q-learning based multi agent learning mechanism main-
tains the Q-value in memory because the massive state-action space storage of individually
BS may exhaust. Zhong et al. [32] have presented a actor-critic framework with deep
deterministic policy gradient learning scheme to reduce the overall delay. The content
sharing is not considered by Zhong ef al. and this leads to cache under utilization. A
multi-agent RL mechanism is proposed in [111] to minimize the traffic congestion in the
multi-intersection scenario. Song et al. [112] have investigated the joint content caching
and content sharing in cooperative scenario and addressed the problem in view of multi-
armed bandit learning by designing an ADMM. However, the works mentioned above have
considered the multi-agent DRL mechanism where they suffer from exchanging informa-
tion hugely between MECs. As the number of contents and MECs rising leading to huge
exchange overhead, distributed cooperative caching has been considered with a recurrent

multi-agent DRL mechanism with long short term memory in Chapter 6.

2.7 Proactive and Reactive Caching

Caching can be classified into proactive and reactive based on fetching content from the
content server. In proactive caching, the content is cached at the bases stations based on

the popularity distribution of the content predicted from the historical user request pat-

37

CHAPTER 2. LITERATURE SURVEY Section 2.7

tern or known earlier. The caching problem has been studied extensively in the literature.
Shanmugam et al. [24], have discussed the way to minimize expected download delay by
assigning files to the helper (femtocells). They proposed a greedy approach with the factor
of 2-approximation for the NP-complete problem. Wu et al. [113] have presented the data
dissemination issue to guarantee the QoS while caching on the edge. Applegate et al. [114]
have presented an intelligent content placement algorithm for large-scale library sizes by
modeling the content placement problem as a mixed-integer program problem with popu-
larity, link bandwidth, and capacity constraints. The authors presented a Lagrangian-based
relaxation and rounding mechanism, and they proposed frequency of placement updates,
popularity fluctuation, content updates and content popularity estimation to address the
practical issues. Cao et al. [115] have briefly introduced mobile edge computing, its appli-
cations and also reviewed machine learning-based intelligent data offloading approaches in
MEC.

ElBamby er al. [14] have presented a cache placement problem to minimize the de-
lay in a small cell network. The authors first decomposed the problem into two parts.
First, similar users are grouped using the clustering mechanism. Second, a clustering-
based placement strategy was developed by estimating the popularity of content among
the users in the group using reinforcement learning. In [93], the authors studied the data
offloading problem in wireless networks by utilizing the social and spatial structure of the
network. The content is proactively placed at each node based on the correlation among the
users and content popularity. Then the authors presented a caching mechanism by predict-
ing the influential users in the network by utilizing the social correlation among the users.
Blaszczyszyn et al. [116] have proposed an optimal content placement policy to maximize
the hitting probability.

Qiao et al. [117] have proposed caching based mmWave framework to minimize the
retrieval and connection delays in fifth generation cellular networks. The authors designed
a cache management scheme and achieved optimal video streaming quality by formulating
the problem as MDP. A cell-by-cell decomposition mechanism is designed to practically
solve the MDP problem with dynamic programming by reducing the state space. Tadrous et

al. [118] have investigated a proactive caching problem for delay-sensitive applications to

38

CHAPTER 2. LITERATURE SURVEY Section 2.7

minimize the service cost. The authors learn the basic bounds for the caching strategy with
minimum possible cost and designed caching mechanism for fluctuating and uniform user
request pattern. Hou et al. [103] have presented a caching problem in vehicular networks
by considering the mobility of vehicles and storage of the RSU to minimize the latency.
The problem is modeled as a Markov decision process and a Q-learning based solution is
designed by utilizing the user mobility prediction based on the LSTM network. Further,
the authors presented an optimal cache strategy based on a greedy heuristic.

Shen et al. [119] have presented an incentive caching scheme in SCN with one mobile
network operator and several content providers. Content providers aim to maximize profits
by determining the number of contents cache at SBS to improve user QoS. The authors
modeled the problem as a Stackelberg game with the content providers as the followers
and mobile network operators as leaders. A non-cooperative game is modeled for followers
and proves its Nash equilibrium. Tong et al. [120] have investigated the optimal caching
mechanism of scalable video coding streaming in SCN by considering the video scalability
and channel diversity. The problem is modeled as ILP to maximize the average quality of
scalable video coding streaming with cache capacity constraints. Further authors presented
a low-complexity caching mechanism based on dynamic programming by simplifying the
caching of scalable video coding as a knapsack problem, and it shows that the proposed
caching mechanism caches the video based on the video popularity. Li ef al. [121] have
investigated the big data offloading from the cloud server to the mobile users and propose
a three-layer edge computing framework in industrial mobile wireless networks. In this
study, the authors considered the user mobility path, sojourn time, and the mobile node’s
capacity to offload the huge data through mobile networks and also presented a Hungarian
algorithm to solve the data fetching problem. Elsayed ef al. [122] have designed a caching
mechanism to improve the QoS of the vehicular user with the uniform social pattern. In this
work, the authors specifically considered the users who have predictive behavior regarding
time and type of access to social media platforms. Kumar er al. [123] have presented
a radio access network-aware adaptive video caching mechanism (RAVEN) to maximize
the hit ratio. The cache placement problem is formulated as Integer linear programming

problem and presented the RAVEN caching scheme by utilizing the predicted video request

39

CHAPTER 2. LITERATURE SURVEY Section 2.7

bit rate and video popularity information for caching decisions. To address the problem of
fetching the content from the distant cloud servers, the authors used the parked vehicles
as the caching nodes to store the appropriate content, which will be requested by the users
crossing the parked vehicles. Further, the authors present the greedy caching scheme to
choose the appropriate road segments for content caching.

The works mentioned above have not considered heterogeneous user preferences, user
contextual information, user mobility, and the randomness of contact duration in proactive
caching. Hence, in this thesis, proactive caching schemes have been designed by consider-
ing the popularity prediction, user preference learning, and mobility in Chapters 3, 4 and 5.

Practically, the content popularity is time-varying, so the above assumption (known in
advance) makes it less practical. In contrast, popularity prediction requires user association,
and further user preferences may vary in different contexts, such as personal information,
topology, location, etc [16]. For taking the caching decision, futuristic content popularity
information may not be available. In the real world, the limited cache size restricts the
mobile edge caching performance [28]. A simple solution is to devise efficient content
placement mechanisms by considering user preferences and content popularity [22]. Ef-
fective cache utilization is reduced when the individual nodes with limited storage make
independent decisions since they may redundantly cache popular content. A practical so-
lution is to facilitate cooperation among edge nodes by sharing the content. Different edge
nodes share their content in cooperative caching, forming more extensive cache storage and
enabling cache diversity [11]. Generally, the caching decisions of various nodes depend on
each other, but each edge node is aware of its own caching decision and unaware of the
other nodes decisions.

Li et al. [124] presented a survey on content placement and delivery mechanisms in var-
ious cellular networks. Content pre-fetching that depends on content popularity has been
investigated in the literature. Proactive caching has been studied in [24, 65, 114, 78, 125].
Collaborative cache placement has been investigated in SCN to handle the limitation of
cache capacity at each node [11, 126, 30, 127]. The works mentioned above consider
the content popularity known in advance. Moreover, popularity prediction based caching

strategies were also studied in [14, 128, 129, 15, 130, 131]. However, the works mentioned

40

CHAPTER 2. LITERATURE SURVEY Section 2.7

above consider the content popularity prediction and the dynamic user requests and envi-
ronment complexities are not considered.

Yuan et al. [132] have discussed proactive and reactive caching in the D2D communica-
tion aspect. In proactive caching, the prefetched content is cached at edge nodes, whereas in
reactive caching, the intermediate nodes decide whether to cache or drop the content to the
neighboring node, which comes into the user’s proximity. The authors proposed ProRec,
a unified framework to cache content, considering the proactive and reactive caching to
maximize the hit rate. A Lagrangian multiplier scheme has been proposed to find the opti-
mal content caching. Further, a greedy approximation algorithm has been presented. Hou
et al. [133] have discussed the resource allocation scheme for backhaul links to minimize
the average downloading delay and proposed the access and backhaul resources allocation
algorithms. Zhang et at. [134] have studied the collaborative task offloading and con-
tent caching models to reduce the overall latency of mobile device. Further, an effective
Lyapunov online mechanism is presented to perform joint dynamic data caching and task
offloading mechanisms.

Typically, wireless caching has a high time-varying user requests. To address user re-
quests’ time-varying nature, BS with finite cache capacity replaces the content very often.
Commonly used content replacement mechanisms are least frequently used (LFU), least
recently used (LRU) and first-in first-out (FIFO) [47]. The traditional replacement models
cannot capture the changing nature of content popularity because of the real environment’s
complexity. The conventional replacement mechanisms are suitable for single cache re-
placement. However, multiple cache replacement mechanisms require coordination among
the nodes.

Jiang et al. [110] have formulated content caching in D2D networks as multi-armed
bandit problem and presented two Q-learning based multi-agent learning mechanisms. Q-
learning based multi-agent learning mechanism maintains the Q-value in memory because
individual BS’s massive state-action space storage may exhaust. Zhong et al. [32] have pre-
sented an actor-critic framework with a deep deterministic policy gradient learning scheme
to reduce the overall delay. Content sharing is not considered by Zhong et al., and this leads

to cache underutilization. A multi-agent RL mechanism is proposed in [111] to minimize

41

CHAPTER 2. LITERATURE SURVEY Section 2.8

the traffic congestion in the multi-intersection scenario. Song et al. [112] have investigated
the joint content caching and content sharing in the cooperative scenario and addressed the
problem in view of multi-armed bandit learning by designing an ADMM. However, the
works mentioned above have considered the multi-agent DRL mechanism where they suf-
fer from exchanging information hugely between MECs. As the number of contents and
MEC:s rising leading to huge exchange overhead, the distributed cooperative caching has

been considered with a recurrent multi-agent DRL mechanism in Chapter 6.

2.8 User Preference and Prediction based Caching

Popularity prediction allows the caching mechanism to make an accurate decision to choose
appropriate content in the network. Practically, a few popular contents serve a wide vari-
ety of network traffic, whereas other contents are requested rarely (for example, 1% of
Facebook videos account for 83% of total watch time [135]). The content popularity infor-
mation is time-varying and unaware of in advance. To improve the user QoE the proactive
caching approaches relied on the popularity of the content. Thus, content popularity dis-
tribution prediction is needed, and the prediction algorithm should be accurate, quick, and
scalable.

Popularity prediction based caching strategies were studied in [14, 128, 15, 130, 131].
ElBamby et al. [14] have presented a cache placement problem to minimize the delay in a
small cell network. The authors first decompose the problem into two parts. First, similar
users are grouped using the clustering mechanism. Second, a clustering-based placement
strategy was developed by estimating the popularity of content among the users in the group
using reinforcement learning. Bharath ef al. [128] have presented a transfer learning mech-
anism to predict the popularity profile using the user request pattern for distributed hetero-
geneous cellular networks. Muller ef al. [129] have presented a context-aware proactive
caching mechanism by predicting the content popularity. Chen et al. [15] have presented
an echo state network to estimate content popularity and mobility of nodes to maximize the
user QoE in unmanned areal vehicle placement. In [131], Garg ef al. have investigated on-

line prediction and online learning mechanisms for content caching in the cellular network.

42

CHAPTER 2. LITERATURE SURVEY Section 2.8

Li et al. [136] have presented a popularity-based content caching mechanism by pre-
dicting the future request pattern of a TV program utilizing the demand pattern of the TV
program. The content popularity has been computed using neural networks. In [137], the
authors have discussed a popularity-based content replacement mechanism. The content
popularity has been learned online, which is more responsive to constantly change content
popularities because of no training phase. The proposed mechanism learns the popularity
of the content with the help of access pattern similarities of different contents. Abdelkrim
et al. [138] have presented a hybrid regression-based prediction model for user-generated
videos. The popularity prediction model dynamically adapts the popularity of content by
considering the end-user watch time and the number of shares. Further, a cache replace-
ment model was designed by utilizing the prediction model to decide on content eviction.

Tanzil et al. [139] have presented an adaptive caching mechanism to improve the user
QoE. The problem is formulated as a mixed-integer linear programming problem to mini-
mize the download delay. The adaptive caching mechanism involves the content popularity
prediction to select the appropriate node and size of the cache. The extreme learning ma-
chine [140] neural network has been utilized to predict the content with the help of request
statistics from users, content features, and user behavior. Hou et al. [141] have presented
a proactive caching scheme to improve the user QoE by predicting the content popularity.
In [141], the solution to the proposed problem is given in two phases. In the first phase, the
content popularity has been predicted using the transfer learning technique. In the second
phase, a greedy algorithm has been proposed to solve the proposed problem.

In [142], authors have devised a cooperative caching mechanism to minimize the trans-
mission delay by considering limited cache size and bandwidth constraints for mobile net-
works. In clustering-based caching, the BSs are clustered into different groups. Chen et al.
[18] have presented a cooperative caching mecahnism to balance the content diversity and
transmission in cluster centric cellular network. In [18], first, the cache storage has been
divided into two parts, one part stores the most popular content, and the second part caches
less popular content cooperatively. In [130], authors have proposed a learning theoretic
perspective for content caching heterogeneous networks with time-varying and unknown

popularity profiles.

43

CHAPTER 2. LITERATURE SURVEY Section 2.8

Proactively caching the predicted content at edge nodes reduces the network’s latency,
congestion, and traffic as the appropriate content is determined. The nodes’ next location
can be estimated using the user mobility prediction to cache the content. Abani et al. [143]
have presented a mobility prediction based caching scheme. The user mobility prediction
uncertainty has been measured using entropy. Yao et al. [144] have presented a mobility
prediction based cooperative caching mechanism for vehicular content-centric networks to
store the most popular content at mobile users that frequently visit the hot spot areas. The
probability of reaching the hot spot by a node has been predicted using partial matching.
Further, a cache replacement mechanism was designed based on the predicted content pop-
ularity to improve the user QoE. Khelifi et al. [145] have presented a mobility prediction
based caching mechanism to choose the RSU in the user moving direction to retrieve the
content from the RSU. The user mobility has been predicted using the LSTM network. The
work mentioned above has not considered the user contextual information to make caching
decisions. Therefore, in Chapter 3, content popularity distribution prediction using a ma-
chine learning algorithm has been designed to capture user interests efficiently.

Content popularity indicates the average interest of multiple users but not exhibits the
individual user preferences [19]. Most of the existing literature considers that all the users
have the same content distribution (homogeneous popularity). However, various users have
diverse preferences. The assumption made on homogeneous popularity ignores the users’
preferences and results in losing valuable information. Less than 20% of users generate
80% of traffic, which shows that the users’ activity level is heterogeneous [20]. In the lit-
erature, most proactive caching approaches ignored user behaviour, such as heterogeneous
user preferences and activity levels, introducing new challenges into mobile edge networks.
Therefore, employing the individual user activity levels and preferences improves the co-
operative caching strategy design.

User preferences play a crucial role in proactive caching. The user preference pre-
diction is broadly studied in recommender systems [96, 97], where most works consider
collaborative filtering. In [98], the authors studied the caching mechanism to enhance the
user QoE by combining the caching decisions with recommender systems. Including a rec-

ommender system enhances the caching performance by caching the appropriate content

44

CHAPTER 2. LITERATURE SURVEY Section 2.8

at the base stations by predicting the individual user preferences using the collaborative
filtering mechanism. In this scheme, each user preference is figured out using collaborative
filtering, then the content that attracts more users is ranked and the content is cached at
appropriate BSs. The content caching problem is formulated to maximize the cache hit
ratio by considering the user preferences and cache capacity. Further, the authors presented
a low-complexity heuristic caching approach to address the proposed problem effectively.

User preferences based caching mechanisms were studied in [146, 147, 148, 100, 19].
Bastug et al. [146] have presented a local content popularity based caching mechanism
for small cell networks. Liu et al. [147] have investigated a CPP in Fog-RANs (radio ac-
cess network) by considering user preferences and physical layer transmission. The cache
placement problem is formulated as an optimization problem to minimize the download de-
lay with capacity constraints and presented distributed and centralized caching policies. In
a centralized caching scheme, the CPP has been reformulated into a submodular optimiza-
tion problem and presented as an approximation algorithm based on a greedy strategy to
give at least % approximation ratio. In the distributed caching scheme, a belief propagation-
based mechanism has been presented to give a sub-optimal solution. In [148], authors have
investigated proactive caching schemes in wireless networks by considering spatial local-
ity, activity level, and user preferences. The authors presented a framework to optimize
caching schemes in D2D networks with spatial locality, heterogeneous activity level, and
user preferences. The caching problem is formulated as maximization of success proba-
bility and minimization of average user rate. A synthesized user preference mechanism is
presented by utilizing the user activity level and preferences.

Chen et al. [100] have studied the benefit by utilizing the association between the
popularity of content and user preferences and presented a method to synthesize the user
preferences. The cache placement problem has been formulated as an optimization prob-
lem to maximize the content offloading ratio from D2D networks with user activity level
and preferences. To solve the proposed problem, the authors first learn the user preferences
by modelling the user demand pattern by utilizing the probabilistic latent semantic analysis.
Next, the model parameters are learned by the EM (expectation-maximization) algorithm.

Further, a low-complexity greedy mechanism has been presented to achieve at least % ap-

45

CHAPTER 2. LITERATURE SURVEY Section 2.9

proximation ratio. Zhang et al. [149] have investigated the online content caching mecha-
nism in single cache node scenario where the content popularity is not known in advance.
The content popularity has been predicted using a novel grouped linear model based on the
historical user data. Further, a model-free RL mechanism has been presented to replace the
content at the base station to enhance the learning process in dynamic environments.

Jiang et al. [150] have studied the caching mechanism to find optimal strategy in fog
radio access networks. The caching problem has been formulated as an optimization prob-
lem to maximize the cache hit ratio. The authors have proposed two caching architectures
and a caching strategy by predicting the popularity of the content and learning the user
preferences. The online popularity prediction algorithm uses the user preferences and con-
tent features, and the offline user preference learning mechanism uses the online gradient
descent technique and follows the regularized leader technique. The caching mechanism
presented predicts the content popularity with low computational complexity and tracks
the popularity with temporal and spatial popularity without considering delay. Further, two
learning-based caching mechanisms have been presented, and the upper bound of the pop-
ularity prediction error, lower bound of hit ratio, and regret bound of overall hit ratio of
the caching strategy proven theoretically. Lee et al. [19] have studied the statistical mod-
eling of individual user preferences to effectively identify the individual user preferences
of video content. The authors proposed a novel modeling framework by characterizing the
essential features and parameters of genre-based historical data.

The work in this thesis considers the user preference prediction using a machine learn-
ing model to perceive the dynamic nature of content popularity which has not been given
adequate attention in the existing algorithms. As the number of MEC nodes and contents
rise, this leads to huge exchange overhead within the network. Therefore, a heterogeneous
user preference-based caching scheme has been proposed utilizing the heterogeneous user

activity levels and user preference prediction in Chapter 4.

46

CHAPTER 2. LITERATURE SURVEY Section 2.9

2.9 Summary

In this chapter, mobile edge network architecture and the advantages of MEN are discussed.
Moreover, mobile edge caching and different cache deployment scenarios in edge caching
are discussed. A survey on different mobile edge caching schemes has been presented,
such as cooperative, mobility and coding based caching schemes. An exhaustive survey
on learning-based caching, proactive and reactive caching is performed. Further, user pref-
erence and prediction based caching in MEN has been presented. In this thesis, proactive
and reactive caching approaches have been designed for mobile edge networks. Further,
the work presented in this thesis has been compared with the existing caching mechanism
in the literature. The next chapter presents deadline-aware content caching using an echo

state network integrated with fuzzy logic to improve the cache hit and acceleration ratios.

47

Chapter 3

Deadline-aware Content Cache
Placement using Echo State Network
Integrated Fuzzy Logic for Mobile Edge

Networks

The cooperative caching mechanism has a better cache hit ratio than non-cooperative caching
and improves the user quality of service [55]. Hence, deciding which content to cache at
which MEC cooperatively by utilizing limited cache capacity in MENSs is challenging.
However, time-critical and delay-sensitive applications like video streaming, Internet of
Things (IoT) and financial applications need a response within a deadline (i.e., a specific
time limit) [12]. The deadline determines the maximum allowable response time [13].
Some applications like healthcare demand the guarantee of timeliness strictly (hard dead-
line), whereas some IoT applications may tolerate the delay (soft deadline) [13]. If a request
is not served within the deadline, the quality of service would be affected, and this in turn
affects user QoE. Hence, to improve the user QoE, the request deadlines must be satisfied.
Therefore, caching decisions by considering the limited cache capacity of BS and content
deadline is a important task that is the focus of this research work.

In this chapter, content placement mechanism has been proposed using the fuzzy logic

48

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

to maximize the saved delay in wireless networks. The novelty of the approach lies in
designing a caching mechanism for mobile edge networks (MEN) by considering limited
storage at base stations, the deadline of content request and popularity prediction. Initially,
the cache placement problem is formulated as an integer linear programming (ILP) prob-
lem. The solution is designed as relaxation-and-rounding based on the rounding technique.
Further, a fuzzy logic based caching algorithm has been proposed by considering deadline,
the benefit of caching content and content request distribution prediction for content place-
ment decisions. Moreover, an Echo State Network (ESN) based prediction mechanism has
been designed to predict the content request distribution for mobile edge network.

The contributions of this chapter are as follows:

* Formulate a content placement problem (CPP) as an integer linear programming
problem in mobile edge networks with an objective to maximize the saved down-

load delay subject to cache capacity, request deadlines and popularity of the content.

* Design an approximation algorithm based on the relaxation and rounding technique

to solve the integer linear programming version of content placement problem.

* Propose a fuzzy logic-based caching algorithm (FCA) to find the near-optimal solu-
tion by considering content request distribution, deadline of the content and benefit
(distance) of caching content. A content request distribution prediction mechanism

is designed using echo state network.

» Simulation results show the efficacy of the proposed algorithm in terms of accelera-

tion ratio, cache hit ratio and number of files satisfying deadlines.

The rest of the chapter is organized as follows. In section 3.1, system model and formu-
lation of the content placement problem has been discussed. An approximation algorithm
for the proposed problem is presented in section 3.2. Content distribution prediction using
the echo state network is presented in section 3.3.1. Fuzzy inference system is discussed
in section 3.3.2, a fuzzy logic based caching algorithm is presented in section 3.3.3 and a
replacement strategy is discussed in section 3.3.4. Simulation environment and results are

presented in section 3.4. A summary of this chapter is mentioned in section 3.5.

49

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

3.1 Mobile Edge Computing (MEC) Model and Problem
Formulation

In this section, a base station integrated MEC network model is presented. Further, problem

formulation is presented in detail.

E MEC Server

Core Network ®
Base Station

Content Server & Mobile User

@ Content

Requesting
Content

Figure 3.1: Illustration of system model

Mobile edge computing improves users’ capabilities by providing cache capacity (stor-
age), network resources and computing in close proximity to users. Consider mobile edge
networks containing a set of users, set of MECs and a content server, as shown in Fig 3.1.
In MENs, each MEC has computational capability, limited storage capacity and deployed
with base stations. The storage of each MEC is used for content caching. The MECs are
connected with each other and also to the core network through backhaul links. The con-
tent server acts as an origin server that stores all contents. Network Exposure Function
(NEF) serves as a coordinator (it is a crucial network element in 5G networks) [151, 79].
NEF maintains the indexes of the content cached at individual MECs and also monitors the
content requests by users at each MEC [151]. A user is directly connected to base station
and the user may be in the communication range of more than one BS at any point in time.
However, any user can communicate with only one MEC at a particular time. A MEC
considered as a viable MEC for a user w if it is in the communication range of the user.

Mobile users are connected to the base stations according to a cellular network protocol.

50

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

The connected BSs are accountable for serving user requests. In this chapter, cooperative
caching between MEC nodes has been considered. The proposed algorithm will run on the
network evaluation function (NEF) [151] to compute and allocate contents to individual
MEC to maximize overall saved delay of MEN. NEF provides the content statistics (indexes
of cached content and request information of each content at MEC) and user context (as a
central element). The working process is as follows: If the user requested content is stored
at the corresponding MEC, then the MEC serves the user request. In case the content is
not stored at the MEC, then the corresponding MEC will query the NEF for the requested
content that is available in other MECs. Based on NEFs response, the requested MEC
fetches the content from the nearby MEC. Otherwise, MEC uses the core network with the
help of backhaul links to fetch the content from the content server.

Table 3.1: List of Notations

Term Definition

R Set of base stations coupled with MEC servers

F Set of contents

C Set of content type

U Setof users

S; The cache capacity of ¢-th BS

B; The size of f-th content (f € F)

T.; Deadline of content f of type c

ry Number of requests for content f

pi(f) Probability that content f is requested by

users from BS ¢

d,; The delay for transmitting content from
BS i to user u

d;; The delay for transmitting content to
BS ¢ from Internet /

z! s Binary variable indicating that content f of
type cis exist in BS ¢

y;‘} Binary variable indicating that user v fetches
content f of type ¢ from BS ¢

In the system model, the set of regions (MEC with BS) is denoted by R = {1,2,--- ,i,- -

The set of users in the network is indicated ast/ = {1,2,--- ,u,--- ,U}. The library con-
tains C different types of contents and 7 = {1,2,--- , f,--- , F'} contents in each content

type. Let By denote the size of f-th content (f € F). Every content in each category is

51

R},

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

intended to serve within the maximum allowable response time. This response time is cho-
sen as a deadline. The deadline can range from nearest (small) deadline to longest (large)
deadline. 7.; represents the deadline of the file f in the category c. The files with nearest
deadline are served first. Capacity of i-th BS is denoted as S;. The average downloading
time per information bit from BS ¢ to user u is denoted as d,; and d,,; denotes the down-
loading time per information bit from / (Internet) to user u. The download delay from a
base station with in region d,; is less than that from the other region j BS (d,;). Simi-
larly, the downloading delay from other region d,,; is less than that from Internet d,,; (i.e.,

dyi < dyj < dyr,Vj # 7). List of notations used in this chapter are presented in Table 3.1.

3.1.1 Popularity of Content and Content Types

Different content types may have different popularities. The content popularity of various
regions can be different from each other. Users may have significant preferences for specific
content types, which motivates this study to identify users’ content preferences in a region
in terms of their preferred content.

Probability that the user u requests content of a specific type c for all available content
types is represented as p(c|u). The probability that content belongs to a content type c is

requested by the user in a region i is p;(c), which can be represented as

pi(c) = éZp(u) - p(c|u) 3.1

Where U; is the number of users in the region ¢ and p(u) is the probability that user u
generates a request.

Given the overall popularity distribution of content and type of each content, identify
the content popularity distribution within each content type. Let p(f) denotes the overall

probability of content f overall contents and p.(f) denoted as the overall probability of

52

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

content f overall content types c.

1), if f
pe(f) = o) 1 ‘ (3.2)

0, otherwise

The popularity of content f with in content type ¢ can be expressed as

g = pe(f) (3.3)

F
Knowing the probability of request of different content types in a region and the popularity
of content in each content type, derive the probability that content f is requested by users

in the region 7 as p;(f).

c
pi(f) = prf -pi(c) (3.4)
c=1

3.1.2 Cache Decision Variables

Two decision variables have been defined, namely content placement decision variable
and content fetch decision variable to show the cooperative caching. Content placement

decision variable determines where to cache which content.

A 1, content f of type c is placed at BS ¢
Top = (3.5)
0, otherwise

Content fetch decision variable determines which base station should server the request.

(

1, wuser u will fetch content f of type ¢

ut

Yef = from BS ¢ (3.6)

0, otherwise

\

53

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

3.1.3 Delay

Consider a user u and its viable BSs are regarded as neighboring base station A/(u). The
size of neighborhood is | NV'(u) |. Let 4, denotes the region index with the i smallest
downloading delay to user u. 1 is a decision variable indicating that the content f of type
c exists on cache of BS 7. The average delay per information bit for user u is denoted by

D,. D, can be written as

N (u)] C i—1 . ‘
Dem S 43y [(1= 2ot - ()
i=1 =1 f=1 | h=1 i
C F [N (u)]—1 T ' (3.7
RS [(1= at) |aiy i)
=1 f=1 | h=1 i

Where, | - x?}‘)]x?} is the indicator function which is defined over decision
matrix X, which means the content f of type c is in the cache of the region 7, and it is not
in any of the regions with delay lower than h,, for h = {1,2,--- /i — 1}. Furthermore,
I Lﬁ(l“)‘fl(l — :c?;;)} x; is an indicator function for the condition that content f of type c

does not exist on any region.

3.1.4 Deadline

Definition 3.1.1 (Deadline). It is defined as the maximum allowable time for the response

to a requested content.

The requested content needs a response within the deadline, which describes the max-
imum allowable time for response. Hence, the content with specific deadline 7., gives

deadline constraint.
D, < T, Vie F,ceCuel (3.8)

where, 7. is the deadline of the content f of type c. This shows that the delay to download

content is less than the given deadline.
Definition 3.1.2 (Saved delay). The saved delay is defined as the difference between the

54

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

download delay from the Internet and base station.

3.1.5 Problem Formulation

The aim of this chapter is to maximize the saved delay by placing content in the BSs.
Thus the maximization problem is modeled as a multi-commodity facility location problem
subject to caching capacity and deadline constraints.

Therefore, the formulation becomes:

U
Max) (I = D.) (3.9)
u=1
S. t.
R
Zyg} = 17 VfeF,ceCueld (310)
i=1
yf} < xifa VfeF,ceCicRucld 3.11)
c F
2D Broay <8 vieR (3.12)
c=1 f=1
Dy < Tey, VfEF ceCucll (3.13)
Yep ey € {01}, VfEF ccCicR (3.14)

The objective (3.9) is the total saved delay caused by users of the overall network. Con-
straint (3.10) guarantees that each request from a user can obtain content from only one
base station. Constraint (3.11) represents the availability constraint, which ensures that
content can be fetched from a cache if and only if it is stored in the cache. Constraint
(3.12) provides the finite capacity of each BS. Constraint (3.13) is the deadline constraint,
which ensures that the maximum allowable delay for the response to a request. Thus, the
BS can satisfy the users’ QoS requirements. Finally, constraint (3.14) is the non-negativity

and integrality of the decision variables.
Theorem 3.1.1. The content placement problem in equation (3.9) is NP-hard.

Proof. To show the problem presented in equation (3.9) as an NP-hard, transform the

55

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

known NP-hard problem to this problem. Knapsack problem has been considered, which is
already NP-hard. Knapsack problem: Given a knapsack j of capacity S; and n items [=
{i1,42, -+ ,i,}, each with its own weight {wq,ws, -+ ,w,} and value {ay,as, - ,a,}.
The objective of knapsack problem is to select the number of each item to add in a knapsack
j such that the objective is to maximize the total value P(ix), i.e., P(ix) = >_7_, a;z; and
the total weight must be less than or equal to the capacity of the knapsack i.e., Z?Zl a;r; <
S;.

The problem in equation (3.9) is reduced to the knapsack problem as follows. Consider
the number of contents F = {1,2,---, f,--- | F'}, the size of the content is considered
as the weight B; and the saved delay is considered as the value i.e., P(ix) = S, D,.
xzf = 1 means that content f of type c is cached in j, otherwise 0. Thus, if problem in
equation (3.9) can be solved in polynomial time, the 0-1 knapsack problem can be solved
in polynomial time i.e., the 0-1 knapsack problem is polynomially time reducible to prob-

lem in equation (3.9). Since, NP-Hard problem is reducible to problem in equation (3.9),

problem in equation (3.9) is NP-Hard. This completes the proof. O

3.2 Approximation Algorithm based on Relaxation and

Rounding Technique

The relaxation and rounding algorithm (RAR) based on a relaxation technique is proposed
to handle the problem in equation (3.9). The integer linear programming is handled by

solving the relaxed fraction problem. The integer linear programming problem (0-1 binary

variable) is relaxed that is z/;, y¢} to real numbers 7., 7:; extended between 0 to 1. The

C
intuitive meaning of 7., is that BS 7 can store a fraction of content and 7} is user can
fetch part (fraction) of content. By relaxing the integer variable to non-negative integers,
the Integer linear programming problem transformed into linear programming. Linear pro-

gramming is known to be solvable in polynomial time [152]. The rounding technique is

used to produce approximate solution for given problem as shown in Algorithm 3.1.

56

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

3.2.1 Relaxation

Convert the integer linear programming (ILP) to linear programming (LP) by relaxing the
integer decision variables in equation (3.9) by introducing new variables T, £ 3710‘} € [0,1].
All the constraints exist in the given problem are linear equations. Therefore, optimal solu-
tion (fractional) can found in polynomial time represented as SD,. Construct the optimal
solution (approximate solution) by rounding the fractional solution obtained through re-
laxed version to integers. T, s Indicates where to cache content f of type ¢ and yg} indicates

the tendency where node ¢ determine to obtain content f of type c.

U
Max » (I - D,) (3.15)
u=1
S. t.
n
Z@Z} =1, VfEF ceCueld
i1
yep < T4 VfeF,ceC icR ueld
c F
ZZBf Ty <5, VieR
c=1 f:]_
D, < 7Ty, VfeF ceCucld
?Z}afif S [07 1]7 VfeF,ceCicR

3.2.2 Rounding

The fractional optimal solution is obtained by solving the relaxed version of the problem
presented in equation (3.15). The integral solution of the fractional optimal solutions is
derived by rounding technique. Deterministic rounding algorithm [17] has been adapted
by constructing the weighted bipartite graph for each content f of different content types
c. A weighted bipartite graph BP = (M, N, E,W (FE)) is constructed, where M and N
are the nonadjacent nodes, E represents the edge set and W (E) denoted as weight of the

edge E. User nodes present in one side and BSs present on the other side of bipartite graph,

57

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

where M and N denote the user and base station respectively.

The user node set M = {my, mo,--- ,m,} is constructed by sorting the request rates
in non-increasing order. Then, create the BS set N = {n;,[i = 1,--- ,q,v =1, -+ , ¢}
based on 77}, where ¢; = [., 74;]. Edges of the graph BP is setup between M and
N corresponding to the pair (u,7) such that yg; > (. For each positive 7, if ¢; < 1 then
there exist only one edge n,; in N add the edge e, ;; to E and weight w(e, ;1) = y”g} for
each user u, gg} > (. Otherwise, multiple nodes present in N corresponding to BS i, find
the minimum index 7, such that) ' 74 > 1. Let E contains the edges (1., 7,1),7 =
L,---,u; — 1, for each of these edges e, ; set its weight as w(e, ;1) = y’g}. Moreover,
add edge e,, ;1 and its weight w(e, ;1) = 1 — > ', w(ey1). This provides that the sum
of the components of w(e) for each edge incident to n; ; is 1.

If >, gg} > 1 then the value of the @Z} is not assigned completely, so create an
edge e, 2 and set its weight w(e,;2) = > ', yg} — 1. Then, construct an edge n; o for
client v > wuy, till total of one user assigned to 7, 2 and so on. The bipartite graph BP is
constructed for every content f and processed according to saved delay in descending order.
Then, the maximum weighted matching on BP is performed with capacity and deadline

constraints. M T is the result obtained by matching, for each selected edge in M T}y, set

yg} to 1, otherwise 0. Let the solution obtained from the rounding is represented as SD,,

Algorithm 3.1 Relaxation-Rounding Algorithm
INPUT: {Bl, BQ, e, BF}, {Sl, Sg, st ,SR},pj(f), duﬂ‘
where w = {1,2,--- U}, i={1,2,--- R}, c={1,2,--- ,C}and f ={1,2,--- , F'}.
OUTPUT: y}, x;.
1: Get the fractional solution yg;;, T ¢ for the given integer decision variables by solving
the relaxed version of the problem.
2: Get the integral solution yé‘}, ! by rounding the fractional solution.
3: Allocate the contents with suitable cache nodes.
4: return ., al;.

and SD* is denoted as optimal integer solution obtained by equation (3.15). The lower

bound of SD,, is evaluated as follows.
Theorem 3.2.1. SD,, > $SD*.
Proof. The sum of saved delay obtained by placing the content f at the base stations in the

58

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

mobile edge networks is SD, = Z\ﬁe 7S5Dy. The sum of the saved delay obtained by
integer rounding solution SD,, is expressed as SDyq = Y5 xS D{EP, where SDJMF =
0 represents that content f is not placed in the integer rounding scheme SD,,. For the
integer solution SD,,, a complementary solution SD,, is constructed according to [17]
i.e., for every edge in £ — MTg, set y;‘} to 1. Then, SD,, = Zer]—' SD;mp. In the
process of rounding some entries of yg‘} becomes zero, due to this some user requests may
not be satisfied with the saved delay SD,,. In order to satisfy these requests, make (i)
fractional value to an integer. (ii) the fractional value is considered if request is not met at

all, otherwise, the difference between fractional and integral saved delay is considered.

(

SDy, if SDIEP =0,

SD§™ = { o, if SDILP > SDy,

SD; — SDIP, if SDIF < SDy,

\

As per [17], rounding result satisfies SD,, + SD,, > SD,. It is easily understood that
SD,, > SD,,. Hence, SD,, > %SDT > %SD*. U]

The proposed relaxation and rounding technique solves the integer linear program-
ming problem presented in equation (3.9) in polynomial time. However, the relaxation
and rounding algorithm achieves a polynomial time complexity, and the complexity grows
remarkably with an increase in the number of contents. For real scenarios as the scale con-
tinues to increase (large scale problems), the relaxation and rounding mechanisms are not
efficient enough [75]. To address the system with a large number of nodes, contents and to
ease the computational complexity, a heuristic algorithm has been designed based on the

fuzzy logic in the next section.

59

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

3.3 Fuzzy Caching Algorithm based on Content Request
Prediction

The content placement problem presented in equation (3.9) is to maximize the saved de-
lay, since the popularity is determined by content request prediction (i.e., the appropriate
content to be cached at each base station cooperatively requires the content popularity pre-
diction). To address this issue, a fuzzy logic based cooperative content placement algorithm
has been presented using content popularity prediction. The proposed algorithm runs on
network evaluation function (NEF) [151] to compute and allocate contents to individual
MEC to maximize saved delay overall MEN. The content statistics (indexes of cached con-
tent and request information of each content at MEC) and user context are provided by

NEF (as a central element).

3.3.1 Popularity Prediction using Echo State Networks

A machine learning model echo state network [153, 15] (ESN) has been adopted to predict
the content request distribution. ESN is one of the emerging recurrent neural networks
with dynamic reservoir, which predicts the information and track the previous states of
the network [153]. ESN is extensively used in time series prediction and dynamic system
modeling because of the time-varying characteristics of the dynamic system.

ESN model is adopted to predict the content request distribution by considering the
state of user content requests observed by NEF. ESN predicts the content request distribu-
tion by establishing the relationship between the requested content and user context (user
information). ESN trains the neurons using simple linear regression and it has fast conver-

gence speed. The ESN comprises four modules: a) input b) output ¢) agent and d) model.

* Input: The context of user v (which includes content request time, week, occupation,
gender and age) at time ¢ is taken as input vector ¢!, = [¢%y,¢ s, - ,¢',]. The
output vector k! (content request distribution) is determined by the ¢',, where k is the
number of properties that comprise the user u context information. For example, the

type of content like TV series, movies, videos which young age people or students

60

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

interested is different from the old age people or household. In reality, the content

request preference affected by the user information and various demographics.

* Output: The output of user u at time ¢ is represented as a vector of values h!, =

(Rt Ry, -+ Rl]. Where h!, is the output value of request m at time .

uls "Pu2

» Agent: The agents in this model are the base stations. Each BS predicts for one user

at time. So, the base stations execute U algorithms in every time slot.

* Model: The relationship between user information (input ¢%,) and request distribution
(output hY) is constructed by model. Model in ESN approximates function between
input and output, which is a dynamic reservoir. The reservoir contains the input
weight matrix W™ and the output of the previous state (recurrent) matrix W,. In
ESN output weight matrix 2" required to estimate the prediction function. W'
indicates the relationship between user information and request distribution of user
u. Therefore, the dynamic reservoir of user u is represented as (W™, W,,). The initial
values of the dynamic reservoir are randomly generated using the uniform distribu-
tion. W™ is initialized randomly using uniform distribution and updated constantly
in successive training. ESNs performance is decided by different parameters (sparse

degree, spatial radius, input extensions and hidden layer size) of the reservoir.

Assume that the number of nodes in hidden layer is [of user u then the ESNs state at
time ¢ is represented as: 2! = [z, 2f,,- -, z%,]. The reservoir state of user u at time ¢ is
represented as z', and stores the state of user u. The updated equation is represented as:

A = tanh(W - g+ W 2+ WP B, (3-16)

u

where W /¥ is the weight matrix of the output of the previous state to the dynamic reservoir
of the next state. For each request of user u, the output vector of the ESN model records

the content request distribution. The ESN model output at time ¢ + 1 is:

hffl = tanh(W2" [szl; qffl]), (3.17)

61

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

where [;] represents the vertical concatenation of two vectors and W2 is output matrix at

time ¢. The expected output of the ESN model is H (e). [25T1: ¢i+1] is collected and stored

u

in vector Z and corresponding output is stored in H, therefore,
H=WwW".7 (3.18)

The difference between the predicted output H and original output H(e) should be mini-

mized by adjusting W°"*. The W2 is adjusted by training.
H(e) =W .7 (3.19)
where H (e) is expected output. By applying pseudo inverse

H(e)-ZT = wo (3.20)

AN VANVA IR A (3.21)
with (3.20) and (3.21) the W°"* becomes
weu = H(e)-(z%z)™'- 27 (3.22)

Due to noise, the W may result in larger weights. Therefore, output weights are com-

puted using the ridge regression with Tikhonov regularization:
W =H(e)-Z"(Z-Z" +¢- 1)} (3.23)

where c is the regularization coefficient and / is identity matrix.

3.3.2 Fuzzy Inference System for cache node selection

Fuzzy logic has been widely used in large number of applications because of its easy adap-

tation, interpretation of the rules and study on different inputs. The ability to use het-

62

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

erogeneous inputs facilitates the blending of several factors most desirably without using
mathematical relations [154, 155]. In the content placement problem, a content with high
benefit, large deadline and more popularity gets good opportunity to cache. A fuzzy logic
system has been presented to adjust the various content properties and their influencing
factors, choosing the more priority content to be cached based on well-chosen factors.

The uncertainties involved in computing the chance to become a caching node are han-
dled by fuzzy inference system (FIS) [154]. FIS utilizes the benefit, content popularity
prediction and deadline of the content to determine the chance of becoming a cache node.
The content with the nearest deadline needs to be cached in such a way that the delay
should be less than the deadline. The content with low popularity prediction means that
content has less chance of requests in the future. Similarly, a node with less benefit is also
not preferable. Therefore, by employing these parameters, each node calculates its chance
to cache the content by FIS.

Fuzzy modelling involves two distinct identification aspects, structure identification
and parameter identification. Structure identification includes the selection of input-output
variables, selecting a specific FIS, defining the linguistic terms for input and output vari-
ables and generating rules. Parameter identification includes choosing an appropriate mem-
bership function (MF), applying heuristic selection and refining the MFs with suitable
optimization techniques. To tune the generated membership function, heuristic selection
(common-sense knowledge, general information about the system) is used. Algorithm 3.2
shows the process of the fuzzy logic system. The fuzzy inference system, as shown in Fig.
3.2 consists of four components: fuzzification, rule-base, inference process and defuzzifi-
cation.

Fuzzification: Fuzzification is the process of mapping data to suitable linguistic vari-
ables. It determines the degree to which a crisp input belongs to each of the suitable fuzzy

set.
F:R—> p(x)

The triangular membership function (line 1, Algorithm 3.2) is used as the parameterized

63

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

High

F
1
2

Medium

o

Membership value
] o
o o

P’y 06 os 1
Benefit

o
o
N

Poor Mediocre Average Decent Good

Less Moderate More
1.0
‘ Fuzzy Inference Engine ‘

o.s

Membership value

o 025 o5 075 b
Chance of cache node

Fuzzy Rule Base

0.0

o.a 1

Membership value

o4 o6
Popularity

Defuzzifier

samll verage nference system
A Large Inf t

o.s

0.0

o 0.2 o8 1

Membership value

o4 EX
Deadline

Fuzzifier with membership functions

Figure 3.2: Fuzzy inference system

membership function, as shown in Fig. 3.2.

p(x) = max (mm(%, %) , O) (3.24)
The parameters k, [, m with & < [< m determine the x-coordinates of the three corners
of the triangular membership function. The linguistic variables of the input are considered
as benefit, content popularity prediction and deadline. The linguistic terms for benefit are
Low, Medium, High, content popularity are less, moderate, more and deadline are small,
average, large. The linguistic variables of output variable is considered as chance with

linguistic terms poor, mediocre, average, decent, good as shown in Table 3.2.

Table 3.2: Fuzzy input or output variable with their linguistic values

In/Output linguistic variable Linguistic values

Content Popularity Less, Moderate, More
Deadline Small, Average, Large
Benefit Low, Medium, High
Chance of Cache Poor, Mediocre, Average,

Decent, Good

Inference process: It is a mapping from the given input space to output space using the

rules. Mamdani [154] type fuzzy model is used in this chapter.

Rule-base: 1t specifies the control goals and control policies of domain experts by a

set of linguistic rules. Generally, fuzzy rules are produced based on experimental or expert

64

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

opinion (heuristic data) [156]. FIS consists of a set of rules of the form IF (set of conditions

satisfied) THEN (set of consequences can be inferred). Here, the linguistic statements are

produced based on heuristic data (if-then rules) according to the following principle: a node

with less benefit, low content popularity and small deadline have less chance to become

the node to cache the content. According to three fuzzy input parameter and one output

parameter, Table 3.3, shows the 27 fuzzy rules.

Table 3.3: Fuzzy Rules

Inputs Output
Benefit Deadline popularity Chance of Cache
Low Small Less Poor
Low Small Moderate Poor
Low Small More Poor
Low Average Less Poor
Low Average Moderate Poor
Low Average More Mediocre
Low Large Less Mediocre
Low Large Moderate Mediocre
Low Large More Average
Medium Small Less Poor
Medium Small Moderate Mediocre
Medium Small More Average
Medium Average Less Poor
Medium Average Moderate Mediocre
Medium Average More Average
Medium Large Less Mediocre
Medium Large Moderate Average
Medium Large More Decent
High Small Less Mediocre
High Small Moderate Average
High Small More Mediocre
High Average Less Average
High Average Moderate Decent
High Average More Good
High Large Less Average
High Large Moderate Good
High Large More Good

Defuzzification: 1t is the inverse of fuzzification. It maps the fuzzy sets into a crisp

output.

DF : pu(z)— > R

65

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

Algorithm 3.2 Fuzzy Cache Node(B, D, P)

INPUT: Benefit(B), Deadline(D), Content Popularity Prediction(P), Rule Base
OUTPUT: Probability to cache

1:

R N

—_— =
W N = O

Find the membership values (u(D), u(B) and p(P)) and membership levels using
triangular membership function (3.24);
Empty the list p(value, membershiplevel);
RuleBase = {A set of all combinations of linguistic levels}
for all rules in the RuleBase do
if 1(D), p(B), (1(P) then
fit the membership levels of this rule;
add an entry to the list p with;
value = maximum(u(B), (D), p(P));
membershiplevel = output membership level of this rule;
end if

. end for

Chance = Defuzzify(p) using equation (3.25);

: return Chance;

Center of Gravity (COQG) is considered for the defuzzification process.

Z?:l xz/v‘@z)
S) 6:2)

chance =

Input parameters:

The input parameters considered for the selection of the cache node are

1. Benefit (B): The saved delay of content f at base station ¢ is denoted as the benefit
B

B = arg max (Z BG”’TM(”) (3.26)
f

uUEL

where

Beny(f) =1 x (I —dy,)

2. Deadline (D): The response time of the content is denoted as D.

3. Content request distribution prediction (F): Echo state network gives the content

request distribution for each user using equation (3.18).

Output: Probability for a content to be cached at a BS.

66

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

Algorithm 3.2 shows the process of the fuzzy logic system. Line 1 calculates the mem-
bership values using triangular membership function with the membership levels. Line 3
derives the all combinations of membership levels. Lines 4 - 11 show the fuzzy inference

process. Further, the fuzzy output is converted into crisp value by the defuzzifier in line 12.

3.3.3 Fuzzy Caching Algorithm

In this section, the fuzzy caching algorithm (FCA) is constructed. The idea of the fuzzy
caching algorithm (Algorithm 3.3) is to cooperatively cache more popular content with
minimal delay by considering content benefit, deadline and request prediction (popular-
ity) to imporve the performance in terms of hit ratio, acceleration ratio and the number of
requests satisfying deadline. Algorithm 3.3, relies on computing the content request distri-
bution prediction based on the ESN by considering user context and request information.
Algorithm 3.3 shows the method of caching a content in appropriate BSs fuzzy logic.
The content request distribution of each user in the communication range of a base station
is computed in lines 2-4. The average of each predicted content request distribution of
different types is computed by line 5. Line 6 sorts the average of content in a base station.
Line 9 shows the computation of benefit and line 10 shows the chance of each content to
be placed in a base station using fuzzy logic. Line 13 sorts the chance of each content in
non-increasing order. Lines 15-21 show caching an item if the cache is empty, by choosing
the first element from the chance computed and sorted. Lines 22-35 show the cooperative
caching. While the cache is not full, the content which is not cached so far overall BSs
is chosen and the content will be cached if it satisfies the storage capacity. Lines 36-45
show user request allocation. For all the users in the communication range of node i, if the
requested content is cached at 7 then the request is served. Otherwise, find the nearest node

with less distance and serve the content.

3.3.4 Replacement Strategy

Caching algorithm (Algorithm 3.3) provides content placement which can be done during

peak-off time. However, re-configuring large scale system during peak hours causes extra

67

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

Algorithm 3.3 Fuzzy Caching Algorithm
INPUT: {Blv BZu e 7BF}7pl(f>7 du,i7 {Sl7 527 e 7SR}
where w = {1,2,--- U}, i={1,2,--- R}, c={1,2,--- ,C}and f ={1,2,--- , F}.
OUTPUT: =’ s+ Content placment matrix and yé‘} : Content fetch matrix.
1: foralli € Rdo

2: for all v in communication range of 7 do

3: P! = compute request distribution for user v using equation (3.18)
4: end for

5: P, = compute average of each f form P

6: sort P; in non-increasing order

7: for all c € C do

8: for all f € F do

9: bzf = compute benefit using equation (3.26)
10: fzl = Fuzzy Cache_Node(b!, Ty, Pi(f))
11: end for
12: end for
13: sort fz; in non-increasing order
14: end for

15: for alli € R do
16: f = first content of sorted fz;

17: if cache is empty then

18: a:éf =1, (i.e., cache f in BS 7 and remove f from fz;)
19: S;=S; — By

20: end if

21: end for

22: foralli € Rdo

23: while cache is not full do

24: f = first content of sorted fz;

25: if f is already cached in some BS then
26: f =succeeding item from fz; to cache
27: end if

28: if By <= S; then

29: wif =1, (i.e., Cache f in BS 1)

30: Sl = Sz — B f

31: else

32: Remove f from fz;

33: end if

34: end while

35: end for

36: foralli € Rdo

37: for all © in communication range of i do

38: if f € S; then

39: yer =1

40: else

41: j = the node with less distance to user
42: yel =1

43: end if 68

44; end for
45: end for

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

burden to the backhaul. Hence, a replacement strategy is presented to reconfigure the
content placement for a dynamic network. When the requested content is not available at a
node and the cache is full, then the requested content will be downloaded from the content
server to node. This results in the content miss and the overall delay will be increased. As
the cache of the MEC is full, NEF decides the replacement of the new content with existing
content. NEF takes the decision on the content replacement based on the advantage of the

MEC.

Algorithm 3.4 Cache Replacement Algorithm

1: For each request for a content f: f ¢ X

2: forall/ =0: Rdo

frep = the content which is having less chance to cache using fuzzy logic among all

nodes
4 if By <= left over capacity of node then
5 replace the f,., with f
6: end if
7. end for

(O8]

Algorithm 3.4 shows the cache replacement strategy when there is a content miss. Line
1 represents that when there is a cache miss, then the process will be initiated. Line 2 shows
the search for the R+1 iterations. Line 3 finds the content with less chance to cache among
all the base stations. Lines 4-6 show to replace the requested content with the content which

is having less chance to cache.

3.4 Performance Evaluation

In this section, the performance of the proposed cache placement algorithms (FCA, RAR)
has been validated using simulations. FCA, RAR has been compared with the existing

algorithms [157, 114, 139, 18, 49] based on publicly available real-world datasets.

3.4.1 Description of Data Set

In this simulation, the MovieLens 1M Dataset [37] has been used to evaluate the proposed

FCA and RAR, that has 6040 users with demographic information (age, gender, location

69

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

and occupation) and 1000209 ratings of 3952 movies. The dataset consists of user ID,
movie ID, movie ratings and time stamp. The timestamps divided as slots of one day
each, and assigned the user context information to the user requests [158]. A movie rating
from users is considered as the number of requests of that movie [131]. The user request
generation probability is computed as the fraction of requests generated by a user over total
requests of the all users in region. The content popularity is obtained in each time slot. The
popularity of content is computed as the fraction of requests for a movie over requests for
all movies. Content is updated based on the network traffic pattern. The wireless traffic
presents a regular high and low every day. Thus, content updation can be carried out in the
off-peak time to reduce the burden on backhaul [159]. It has been observed that more than
90% of the ratings existed within the first year. Therefore, only the first year of the dataset
[129] has been used. ESN uses the traces from dataset to train predict the distribution. The
performance of content popularity prediction is measured as an error. The error of content
distribution prediction is defined as the sum deviation from the estimated distribution of

content request to its original distribution [15].

3.4.2 Simulation Environment

In order to evaluate the performance of the proposed fuzzy caching algorithm, the exper-
iments have been executed based on the following settings. A cellular network with 15
BSs associated with MEC servers and 90 mobile users have been considered. In the given
simulation area, the MECs along with base stations are randomly deployed and there is a
link between the base stations. The users under each base station are placed uniformly. In
the content server, there are 3952 contents of 1128 labels (as per MovieLens dataset). Six
hundred movies have been chosen for simulation. The content sizes are chosen uniformly
at random from the range 300 K to 1999 K. The cache capacity of each BS is 20 MB. The
communication range of the base stations is 100 m respectively. The data rate of the BSs is
5 M. The values of the simulation parameters are presented in Table 3.4. All the simulation
results shown are average of 50 runs. The download delay of retrieving content from the

content server to the BS is considered as 25 ms [160], while the latency of retrieving the

70

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

content from the BS to the user is calculated based on the positioning of the user and the

BS. The deadlines of each file are assigned randomly from the range of 5 ms to 20 ms.

3.4.3 Performance Metrics

To compare the performance of cache placement schemes three metrics has been consid-
ered:
(1) Cache hit ratio: the fraction of requests satisfied (i.e., cache hits) from the available

caches over sum of cache hits and cache misses.

cache hits
Cache hit ratio = 3.27
ache hit ratio cache hits - cache misses (:

(2) Acceleration ratio: the fraction of saved transmission delay and original Internet delay

can be formulated as:

saved delay
original delay (from Internet)

Acceleration ratio = (3.28)

(3) Number of requests satisfying deadline.
(4) Cache utilization: the proportion that content in caches of base stations is accessed by

users. i.e., the cache storage utilization indicates the utilization of content cached by BSs.

Table 3.4: Simulation Parameters

Parameters Values

Simulation area 4500/m x 3400/m
Capacity of base station 20 MB
Communication range of BS 100 m
Communication speed of BS 5SM

Latency from content server to the BS ~ 25ms

3.4.4 Reference Algorithms

In this section, the proposed Fuzzy Caching Algorithm (FCA) and Relaxation-Rounding Al-
gorithm (RAR) has been compared with Cooperative Prediction Caching Algorithm (CPCA),
Non-cooperative Prediction Caching Algorithm (NPCA) [157], Random Caching (RC)

71

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

[114, 139, 15], Most Popular Content (MPC) [18, 49] and Least Recently Used (LRU)
[47].

1. MPC: In the most popular caching scheme, each base station caches the most popular
content estimated based on the user request statistics. Each base station caches the

popular content till the cache is full [18, 49].

2. NPCA: In non-cooperative prediction based caching scheme, each BS predicts the
user request distribution based on content request statistics. Each base station caches

the predicted popular content non-cooperatively till the cache is full [157].

3. CPCA: In cooperative prediction based caching scheme, each BS predicts the user
request distribution based on user context and content request statistics. The base

stations cache the predicted popular content cooperatively till the cache is full.

4. RC: In random caching, each BS caches the content randomly irrespective of the

content popularity till the cache is full [114, 139, 15].

5. LRU: It keeps a record with least access time for content and the newly requested
content is replaced with the content which has been idle for a long time when the

cache is full [47].

The proposed algorithms have been executed on a desktop with a dual-core Intel 15-5200U
3.20 GHz and 8 GB of installed RAM in this simulation. To find the solution for RAR, first
the relaxed version of the problem is solved and obtained the fractional solution. A general
idea for rounding the fractional values is to view the fractional values as probabilities. This
technique is called randomized rounding. The main drawback of using the probabilities
as caching variables in randomized rounding mechanism is that with certain inputs, it may
take more time or sometimes it may fail [161]. Therefore, the fractional solution is rounded
using the proposed deterministic algorithm.

Four scenarios are considered to show the performance of the proposed fuzzy caching
algorithm. In scenario 1, the number of MECs is 7, the number of requests is 50% of total

number of requests, the number of contents is 100% and the algorithms are compared in

72

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

terms of performance metrics by varying cache capacity from 5 GB to 10 GB with step
size 1. In scenario 2, the cache capacity is 7 GB, the number of requests is 50% of total
number of requests, the number of contents is 100% and the algorithms are compared in
terms of performance metrics by varying number of MECs from 5 to 10 with step size 1.
In scenario 3, the cache capacity is 7 GB, the number of contents is 100%, the number of
MEC:s is 7 and the algorithms are compared in terms of performance metrics by varying,
number of requests from 20% to 100% with step size 20. In scenario 4, the cache capacity
i1s 7 GB, number of MECs is 7, number of requests is 50% of total number of requests
and the algorithms are compared in terms of performance metrics by varying, number of

contents from 20% to 100% with step size 20.

3.4.5 Impact of Cache Capacity

The impact of cache hit ratio, acceleration ratio and number of requests satisfying deadline
on caching capacity of all schemes are presented in Fig. 3.3a, 3.3b and 3.3c respectively.
The simulation results are computed by taking the inputs specified in scenario 1.

Fig. 3.3a shows the increase of hit ratio as the cache capacity increases. It can be
observed from Fig. 3.3a that the hit ratio of proposed algorithms grow slowly with little
cache capacity and grow quickly with increase of cache capacity. The proposed FCA pro-
vides an improvement in the cache hit ratio compared to other algorithms. The reason is
that caching decision is made based on content request prediction, benefit and deadline.
Therefore, the FCA caches more appropriate content compared to other algorithms. The
CPCA caches content cooperatively based on prediction, whereas NPCA caches predicted
content with non-cooperation and MPC caches based on the popularity of the content. It
can be observed that the cooperative caching algorithms (FCA, RAR and CPCA) are per-
forming better than non-cooperative caching mechanisms (NPCA, MPC, LRU and RC).
The LRU is performing better than RC because it considers recency based caching. As
the cache size increases, the hit ratio of proposed algorithms is significantly improved over
other schemes. FCA achieves 8%, 15%, 20%, 19% and 18% better than CPCA, NPCA,
RC, LRU and MPC, respectively.

73

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

—s— RAR
g
T
o ~
g= =
< o
~ =
>
<
Cache Capacity(GB) Cache Capacity(GB)
(a) (b)
0.9
—— RAR
0.8 | % crea 4
—@— NPCA

I
>

requests satisfying deadline

) 6 7 8 9 10
Cache Capacity(GB)

(©)

Figure 3.3: Comparison of caching schemes using cache capacity vs (a) cache hit ratio
(b) acceleration ratio (c) number of requests satisfying deadline. The cache capacity is
measured when R =7, r =50% and F' = 100%.

Fig. 3.3b shows the improvement of acceleration ratio among FCA, RAR, RC, MPC,
LRU, CPCA and NPCA with various cache capacities. It can be observed from Fig. 3.3b
that as cache size increases the acceleration ratio of all schemes increases. The increase
in the acceleration ratio specifies that the increase in saved delay. The proposed caching
algorithms perform better than other caching algorithms. The reason is that FCA makes
the decision based on benefit, whereas CPCA and NPCA cache the content based on the
prediction with cooperation and non-cooperation. Therefore, the content with more benefit

is cached in the nodes. The acceleration ratio of RC increases slowly than other algorithms

74

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

0.7 R

—s— RAR

Hit Ratio

Acceleration Ratio

Number of MECs Number of MECs
(a) (b)

—_

<
oo

0.4

requests satisfying deadline
(@]
(@)

Number of MECs
©

Figure 3.4: Comparison of caching schemes using number of MECs vs (a) cache hit ratio
(b) acceleration ratio (c) number of requests satisfying deadline, when S =7 GB, r = 50%
and F' = 100%.

due to caching random content at nodes. FCA achieves 8%, 12%, 18%, 15% and 13%
better than CPCA, NPCA, RC, LRU and MPC.

Fig. 3.3c shows the number of nodes satisfying deadline among FCA, RAR, RC, MPC,
CPCA and NPCA with various cache capacities. It can be observed from Fig. 3.3c that the
proposed caching algorithms outperform with other mentioned caching algorithms. The
reason is that proposed algorithms consider the deadline of the content in decision making.
The number of nodes satisfying the deadline is less with a smaller cache size and grow
quickly when the cache size increases. FCA achieves 11%, 16%, 18%, 17% and 21%
better than CPCA, NPCA, RC, LRU and MPC.

75

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

3.4.6 Impact of number of MECs

In this section, the impact of the cache hit ratio, acceleration ratio and the number of re-
quests satisfying deadline on the number of MECs of all the schemes is presented in Fig.
3.4a, 3.4b and 3.4c. The simulation results are computed by taking the inputs specified in
scenario 2.

Fig. 3.4a shows that the proposed caching algorithms achieve better performance com-
pared to other schemes in terms of hit ratio. The reason is that as the number of MECs
increases, the proposed algorithms collaboratively caches more popular content results in-
crease of cache hit ratio. FCA achieves 4%, 9%, 16%, 14% and 13% better than CPCA,
NPCA, RC, LRU and MPC, respectively.

Fig. 3.4b shows that the proposed algorithms perform better than other schemes with
respect to acceleration ratio. As the number of nodes increases, CPCA grows slowly and the
proposed algorithms increases quickly. The reason is that the proposed algorithms caches
popular content along with benefit. Therefore, proposed algorithms caches the content near
(with less delay) to users. FCA achieves 6%, 9%, 16%, 13% and 10% better than CPCA,
NPCA, RC, LRU and MPC, respectively.

Fig. 3.4c shows that the proposed caching algorithms outperform other schemes in
terms of the number of deadlines. It can be observed from Fig. 3.4c that MPC is performing
better than CPCA and NCPA. The reason is that the prediction based mechanisms CPCA
and NPCA caches predicted content which may not satisfy the content deadlines. However,
the proposed caching algorithms cache the predicted content that makes available more
content to users. FCA achieves 21%, 22%, 24%, 20% and 17% better than CPCA, NPCA,
RC, LRU and MPC, respectively.

3.4.7 Impact of Number of Requests

The effect of hit ratio, acceleration ratio and the number of nodes satisfying deadline with
varying percentage of requests is presented in Fig. 3.5a, 3.5b and 3.5c. The simulation
results are obtained by taking the inputs specified in scenario 3.

Fig. 3.5a shows that the proposed caching algorithms increase slowly when the number

76

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

0.7 ‘ 0.7 |

—s— RAR —s— RAR
FCA FCA
0.6 | —o~ Nbca % 0.6
a4
@]
= 0.5 505
A b=
= 0.4 8 04
(]
Q
ﬁ?’ﬂ 2 03

0. : : 0. ? : J
20.2 0.4 0.6 0.8 1 %.2 0.4 0.6 0.8 1
Number of Requests(%) Number of Requests(%)

(a) b)

<
oo

<
o

o
o

requests satisfying deadline

o
(]

I i i
0.2 0.4 0.6 0.8 1
Number of Requests (%)
(©

Figure 3.5: Comparison of caching schemes using number of requests vs (a) cache hit ratio
(b) acceleration ratio (c) number of requests satisfying deadline, when S =7 GB, R =7
and F' = 100%.

of requests are less and increases quickly with an increasing number of requests. It can be
observed from Fig. 3.5a that FCA, RAR and CPCA are increasing quickly compared to
other algorithms (NPCA, MPC, LRU and RC). The reason is that the cooperative caching
mechanisms (FCA, RAR and CPCA) cache contents cooperatively, which improves the hit
ratio with the increase in the number of requests. FCA achieves 5%, 12%, 19%, 17% and
15% better than CPCA, NPCA, RC, LRU and MPC, respectively.

Fig. 3.5b, shows the proposed algorithms compared with other caching schemes. FCA

and RAR are performing better than other mentioned caching algorithms. The reason is

77

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

that with fewer requests, the saved delay is nearly equal for all algorithms. However, as
the number of requests increases, the saved delay to access content is better with proposed
algorithms because cooperatively caching the more benefit content. FCA achieves 2%, 4%,
8%, 7% and 5% better than CPCA, NPCA, RC, LRU and MPC, respectively.

Fig. 3.5c shows that the proposed caching algorithms increase quickly with the number
of requests. FCA achieves 7%, 8%, 9%, 8% and 9% better than CPCA, NPCA, RC, LRU
and MPC, respectively. The reason is that the proposed mechanisms consider deadline,
along with prediction and benefit. NPCA, LRU and MPC are performing similarly because

both the mechanisms are caching content non-cooperatively.

3.4.8 Impact of Number of Contents

The effect of hit ratio, acceleration ratio and deadline with the varying number of requests
has been shown in Fig. 3.6a, 3.6b and 3.6c. The simulation results represented by taking
the inputs are specified in scenario 4.

Fig. 3.6a shows that with less number of contents, the hit ratio is high. As the number
of contents increases the hit ratio decreases. It can be observed from Fig. 3.6a that the
cooperative caching mechanisms (FCA, RAR and CPCA) are performing relatively better
than non-cooperative caching mechanisms (NPCA, MPC and RC). The reason is that the
cooperative caching schemes cache more content cooperatively with less delay leads to
more hit rate. FCA achieves 3%, 9%, 17%, 12% and 11% better than CPCA, NPCA, RC,
LRU and MPC, respectively.

Fig. 3.6b shows that as the number of contents increases the acceleration ratio de-
creases. From Fig. 3.6b, it can noticed that the proposed algorithms is performing better
than other mentioned caching mechanisms with increase in the number of contents. FCA
and RAR decreases slowly compared to other mechanisms. The reason is that content
caching decision is made using the benefit, so a large portion of the content is cached near
to users. FCA achieves 4%, 8%, 13%, 12% and 9% better than CPCA, NPCA, RC, LRU
and MPC, respectively.

Fig. 3.6c shows that the proposed caching mechanism decreases quickly when the

78

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

—s— RAR FCA

4 CPCA —® NPCA
—o6—RC —a— MPC

—(F— LRU

0.6 ‘

0.5«

Hit Ratio

0.3

Acceleration Ratio
o
I

0. | I I O | I I
20.2 0.4 0.6 0.8 1 %.2 0.4 0.6 0.8 1
Number of Contents (%) Number of Contents (%)

(a) b)

0.6

o
o

FCA

4 CPCA —®— NPCA
—©6—RC —a— MPC

—(F— LRU

requests satisfying deadline

I T I
0'20.2 0.4 0.6 0.8 1
Number of Contents (%)

()

Figure 3.6: Comparison of caching schemes using number of contents vs (a) cache hit ratio
(b) acceleration ratio (c) number of requests satisfying deadline, when S =7 GB, R =7
and r = 50%.

number of contents is less and decreases slowly with increasing of contents. The proposed
algorithms outperforms other algorithms by satisfying content deadlines. FCA achieves
3%, 6%, 13%, 7% and 8% better than CPCA, NPCA, RC, LRU and MPC, respectively.

The reason is that FCA considers deadline, along with prediction and benefit.

3.4.9 Impact of Content popularity

The effect of content popularity has been shown in Fig. 3.7a. From Fig. 3.7a, it can be

noticed that the content popularity computed using Eq. 3.4 can be fitted by Zipf distribution

79

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

10 T x=o0.001
— Actual = A = 0.005
—— Fitted Zipf = .8 —4— A =0.01
=) 8 —®— A =0.05
0.81 Q.2
N
g 9
> < 8 |
= 0.6 O A
2 L =
3 S .2 i
3 0.4 b
E 0.4 o B
o — ‘:
c < N
021 b E
4|
0 M > ’r '\‘4
s B i 0 50 100 150 200 250
0 100 200 300 400 500 600 .
Content Rank Number of Iterations
(a) Content popularity (b) Accuracy of prediction

1 ‘ —sk— Prediction
Uniform

—4— Zipfwithy = 0.5

—®— Zipf withy = 0.9

—o— Zipf withy = 1.4

0.8

Hit Ratio
o
D

| | |
0.4 0.6 0.8 1
Number of Contents

(c) Performance of prediction

Figure 3.7: Comparison of content popularity vs content rank, error as the number of iter-
ations varies and performance of prediction vs number of contents.

with skewness parameter v = 1.4.

The error of the ESN based prediction with a varying number of iterations is shown in
Fig. 3.7b. From Fig. 3.7b, it can be observed that the error of the prediction is decreased
by increasing number of iterations. It can be noted that ESN needs less than 50 iterations
to predict the content distribution of each user for learning rate 0.001, 0.005 and 0.01.
Whereas for the learning rate, 0.05 ESN takes less than 110 iterations. Since ESN require
to trains only the output matrix. It also present that the error of 0.12, 0.2, 0.28 and 0.39
percentage for learning rates 0.001, 0.005, 0.01 and 0.05 respectively. Form Fig. 3.7b it

can be observed that the learning rate affects the accuracy of prediction.

80

Cache Utilization

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWORKS

. I I
2
.g 0.4+ — -
5
)
§ 0.2 H H A
@)
— ¢ CPCA —®— NPCA
—©6—RC —4a— MPC
—5— LRU
0 ‘ : 0 \ \ \ \ \ \ \
5 6 7 8 9 10 1 2 3 4 5 6 17
Cache Capacity(GB) MECs
(a) Cache utilization vs capacity (b) Cache utilization of each MEC

Figure 3.8: Comparison of caching schemes using cache capacity vs cache utilization. The
cache capacity is measured when R =7, r = 50% and F' = 100%.

The effect of the cache hit ratio with varying library size is presented in Fig.3.7c. In
Fig. 3.7c, the performance of the content placement mechanism under different popularity
distribution (uniform and Zipf [162]) is evaluated. The Zipf popularity distribution assumes

the request probability of content j** most popular content (form the set F') at node i can
1

ﬁ,w € R where v > 0 is the Zipf parameter. 7 decides

the rate of popularity decline as j values increases. The uniform distribution assumes the

be computed as p;; =

equal request probability of content j (i.e., p;; = ﬁ,vz € F). It can be observed from
Fig. 3.7c that, as 7 increases cache hit ratio also increases. It can also notice that as the
number of contents increases, all the distributions decreases. Since with more number of
contents the smaller set of contents report the identical popularities. The content request
distribution prediction shows superiority over other distribution since the future requesting

content becomes more popular, whereas in Zipf distribution evaluates popularity based on

the content frequency.

3.4.10 Impact of Cache Storage Utilization

The effect of cache storage utilization with varying cache capacity of all schemes is pre-
sented in Fig. 3.8a. It can be observed from Fig. 3.8a that the rise in the cache capacity

improves the cache storage utilization. Random caching is performing relatively well com-

81

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NISEWiORKS

pared to the LRU scheme. This is because, RC is free from the influence of popularity,
which caches the content randomly. In LRU, the frequently used content is cached. How-
ever, there exist many contents which are not used at all. The prediction based caching
schemes (FCA, CPCA and NPCA) is performing better compared to the non-prediction
based schemes (RC, MPC and LRU). The performance of CPCA is superior to NPCA.
Since CPCA uses cooperation among MECs. The FCA outperforms other algorithms be-
cause FCA caches content based on the popularity and benefit of the content. The cache
utilization of each MEC is presented in Fig. 3.8b. It can observe that all the caches are
utilized, and few caches are getting more utilization due to MEC located near other MECs.

It can be observed from the Fig. 3.8b that the minimum cache utilization is 0.2.

3.5 Summary

This chapter addresses a cache placement problem in mobile edge networks, aiming to
maximize saved delay by considering the capacity and deadline constraints. The place-
ment problem is designed as an integer linear programming. A relaxation and rounding
technique is used to design an approximation algorithm. Further, a fuzzy caching algorithm
is proposed as a solution to the cache placement problem. In the proposed algorithm, first,
an echo state network is used to predict content request distribution. Then the content to be
cached (in the base station) is evaluated based on prediction result, benefit and deadline of
the content request. Caching performance parameters, such as acceleration ratio, hit ratio
and the number of files satisfying deadlines, are taken for comparison of the proposed pre-
diction based fuzzy logic algorithm. Further, the performance of the proposed schemes are
measured by comparing with the existing most popular content based algorithms, the pre-
diction based caching algorithms (CPCA, NPCA), LRU and random caching algorithms.
From the simulation results, it has been observed that there is an improvement of up to 20%
on acceleration ratio, up to 18% on hit ratio and up to 24% on number of deadline satisfied.
The next chapter presents a user preference-based cooperative cache placement strategy by
considering the uneven distribution of users and the heterogeneity of user preferences and

activity levels to improve cache utilization.

82

Chapter 4

User Preference Prediction based Cache
Placement for Mobile Edge Networks
with Adaptive User Clustering

Content popularity indicates the average interest of multiple users but not exhibits the indi-
vidual user preferences [19]. Most of the existing literature considers that all users have the
same content distribution (homogeneous popularity). However, various users have diverse
preferences. The assumption made on homogeneous popularity ignores the users’ pref-
erences and this results in losing valuable information. Less than 20% of users generate
80% of traffic, which shows that the users’ activity level is heterogeneous [20]. In the lit-
erature, most proactive caching approaches ignored user behaviour, such as heterogeneous
user preferences and activity levels, introducing new challenges into mobile edge networks.
Therefore, employing the individual user activity levels and preferences facilitate design of
efficient cooperative caching strategies.

This chapter aims to maximize the saved delay by considering the uneven distribution
of users, user preferences and activity levels for accessing a large volume of data. The
content request deadline is considered for generality and practicality, which is reasonable in
latency-sensitive mobile and IoT applications. The novelty of this chapter lies in designing
a cooperative caching scheme for mobile edge networks with uneven user distribution,

heterogeneous user preferences, and activity levels. User preferences are predicted using

83

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.1

the recurrent neural network mechanism LSTM using the historical user behaviour. Further,
users are clustered depending on estimated user preferences. Then the cooperative cache
placement problem is modeled as Integer linear programming to maximize saved delay with
deadline and capacity constraints. For the modeled cache placement problem, a solution
using a submodular function with matroid constraints has been designed to maximize saved
delay.

The contributions of this chapter are as follows:

* Design a user preference prediction mechanism by adopting the long short-term

memory network.

* Design a user preference-based clustering mechanism and formulate a clustered co-
operative caching problem as an integer linear programming problem in mobile edge
networks to maximize the saved download delay subjective to the deadline of the

content and cache capacity.

* Design a submodular optimization based cooperative content caching algorithm by

utilizing the clustering and prediction mechanisms to solve the proposed problem.

* Extensive simulations have been performed to show the efficacy of the proposed
greedy cooperative caching algorithm by considering acceleration ratio, hit rate, and

cache utilization.

The rest of this chapter is organized as follows. The system model is presented in
Section 4.1. The user preference prediction using LSTM, user clustering and problem
formulation are presented in Section 4.2. A greedy approximation mechanism has been
presented in section 4.3. The simulation environment, and the results are discussed in

Section 4.4. A summary of this chapter is mentioned in Section 4.5.

4.1 System Model

In this section, the system model is presented in detail.

84

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.1

E MEC Server

Core Network /
Internet _(&» Base Station

‘ Mobile User

Figure 4.1: Illustration of the proposed system model.

Mobile edge computing improves users’ capabilities by providing cache capacity (i.e.,
storage), network resources and computing near users. Consider a mobile edge network
containing a set R of R small base stations (SBS) (i.e., edge node) is equipped with a
MEC server, a set & of U mobile users, a content server and a central coordinator NEF as
shown in Fig. 4.1. The distribution of base stations modelled as a Poisson point process
(PPP) with density Ag. The base station voronoi cells are non-overlapping. The users are
distributed within the coverage of BSs as per PPP with density ;. The users in a voronoi
cell associates with MEC located in that particular cell. Each MEC ¢ € R has a limited
cache S; called local storage. The storage of each MEC is used for content caching. The
MEC:s are connected and also to the core network through the backhaul link. The content
server acts as an origin server that stores all contents. Network Exposure Function (NEF)
serves as a coordinator (it is a crucial network element in 5G networks) [151]. NEF has a
global view, maintains the content cached at individual MECs and monitors users’ content
requests at each MEC [151]. Each user has different activity levels at each BS, 80% of
the total traffic generated by less than 20% of the all users. A user directly connected to a
base station and the user may be in the communication range of more than one BS at any
point in time. However, any user can communicate with only one BS at a particular time.
Mobile users are attached to the base stations according to a cellular network protocol. The

connected base stations are accountable for serving user requests. Consider a set F of F'

85

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

contents in the content library located in the content server. Each content f is determined
with two features B/ indicates the content size and d/; indicates maximum allowed access

latency to get content f. The summary of notations is shown in Table 4.1.

Table 4.1: List of Notations

Term Definition

R, F,U Set of base stations, contents and users, respectively
S; The cache capacity of MEC ¢

AR, \U Density of the BSs and users in PPP model

By The size of content f

dly The deadline of content f

pic Local content popularity in cell ¢

Df Global popularity of content f

Dflu User preference of content f

Pfs Pu Total number requests for content f and all requests by user «
P Number of times content f requested by user u.
P(v;) Activity probability of user at cell

i(t),o(t), f(t) | input, output and forget gates

we wh input and hidden state weight matrices

x(t), h(t — 1) | present input and previous hidden state

b, b;, b, bias of forget, input and output gates

iy, d; j, dic Delay from local MEC 4, neighbour MEC j and content server
' The content f cached in MEC 4

D, The expected saved delay

C Delay to get content from the content server

Nk Set of BSs in cluster k

4.2 User Preferences Prediction and Content based Clus-
tering

In this section, user preference prediction, content-based clustering, and maximization of
saved delay optimization problem are presented in detail.

The overall process is illustrated in Fig. 4.2. Firstly, in this section, the user request
information is predicted using LSTM by taking user historical information from NEF.
Secondly, the user preferences is computed from the predicted user request information.

Thirdly, the users are clustered into logical groups using content-based clustering and a

86

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

—_—_— e e — — = —_ —_- - - - = = = -

[.
NEF | Content based clustering I
| numberof |
. clusters |
I Computation of Determine the |
—+ User Activity and > number of Kmeans |
Users'histofica Preferences clusters Clustering
request |
informatidn |

Design of a caching mechanism

Reformulate the
problem using
Submodular

optimization

Design of a greedy
caching
algorithm

Content
placement

Figure 4.2: Content placement strategy based on user preference prediction and content
based clustering.

clustered cooperative cache placement problem is formulated. In section 4.3, the proposed
problem is reformulated into a submodular optimization problem by showing that the given
objective and constraints satisfy the monotone submodular property and matroid constraints
and a greedy caching algorithm has been designed to solve the content placement problem

efficiently.

User preferences

The frequency of content accessed or requested by the user is expressed as the popularity
of the content. The popularity of the content considered in a single cell is known as local
content popularity (pz}) and the popularity of all cells is known as global content popularity
(ps)- In general, the popularity of content is modelled with Zipf distribution. The popularity
of the content f at MEC 7 can be expressed as pjc = ﬁ, Vi € R where v > 0 is the
skewness parameter [11]. In reality, the content popularity cannot reflect the individual
user behaviour. Each user has its content preferences that may not reflect global content
popularity. The probability that user « demands a content f stated that the user u generates
a request is known as user preference py|, of content f € F (Z?Zl Pflu = 1). Moreover,
Prlw = P(f|v;) where P(v;) is the probability that user u requests.

User activity level is the probability that a user forward a request for content from a

cell and denoted as v;. The number of times content f is requested by user u is denoted as

87

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

p§- The total number of requests for all contents by user u and total number of requests for
content f are denoted as p,, and p respectively. Therefore, total number of requests for all

contents over total users is denoted as), ,, >~ rer Py- The activity of user is as follows

Pu

v; = " 4.1)
zueu > feF Py
and the user preference py,, can be written as
pu
Ppu =L (4.2)
Pu
From (4.1) and (4.2) the probability that user u request for content f is computed as
P} = ViDflu (4.3)

which is P(v;)py|,. Therefore, it can be observed from (4.3) that which content requested

by the user and active level of user need to be predicted.

4.2.1 User Preference Prediction based on LSTM

In MEC based network, the nearest edge nodes can serve user requests if the content is
well placed and reduces the burden on backhaul links. In contrast, if the content is not
appropriately placed at edge nodes affects the user experience. Therefore, user preference
prediction plays a significant role in placing appropriate content in appropriate location
to improve the effectiveness of caching. An LSTM model has been adopted to achieve a
better cache placement strategy by considering the user regularity of the request pattern.
The LSTM is extensively adopted RNN (recurrent neural network) for sequential data pro-
cessing [163] and very successful in various applications like image captioning, speech
recognition and machine translation. Hence, it is well suitable for user preference predic-
tion.

The LSTM network comprises three layers an input layer, hidden layer (memory blocks)
and an output layer to predict the user preferences. LSTM is an implementation of a clas-

sical RNN where the LSTM replaces the hidden layers with a new structure known as a

88

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

memory block [163]. The memory block includes three neural network blocks, such as an
input gate, an output gate and a forget gate, and one or more self-connected memory cells.
These gates enable the LSTM memory cell to store and access data over a long time, which
helps solve the disappearing gradient problem. The input to the LSTM cell is the user
preferences from t-1 time represented as x(t — 1) = xz1(t — 1),...,2n(t — 1). Output of
the LSTM cell is predicted user preferences in ¢ time denoted as x(t) = z1(t),...,zn(t).
Let Y indicates the output variable. The input layer prepares the given dataset to satisfy
the network input demands. The predicted values update the output layer. The BPTT al-
gorithm (back propagation through time) trains the network, optimising the loss function.
BPTT is an easier and computationally effective training mechanism. The loss function of
the LSTM depends on both the output layer and hidden layer of the next timestamp. The

loss function is defined as the squared error.

e(t) = (y(t) — p(t))* (4.4)

where y(t) is actual values, p(t) is predicted values and e(t) denotes the error.
The user preference predictions contain the user activity and the user’s content requests
in the next time slot. First the network will be trained for the given data then prediction can
be done. In the training phase, the data of each user is supplied into the LSTM network.
Once the network is trained, the values are predicted and this indicates the number of times
a user requests content in time t. Based on the prediction result, compute the user activity
level v; and user preferences py|,. The user activity level is calculated as
b = Pu A
Zueu > rer PY

4.5)

The conditional probability that the user request content given that the user really makes a

request is calculated as
5 Py
brn = =L (4.6)
p

u

89

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

Therefore, the user preference is expressed as

Placing the content at an individual time slot is not a cost-efficient solution, so the long-
term request probability has been considered. Hence, the fixed time window M/* has been
assumed. The user preference probability ¢, (f) is computed as the average of the predicted

preferences between the next time slot and fixed time window.

M+MTt

bu(f) = S0

4.2.2 Content based User Clustering

Proactively caching the content at the BSs during off peak time require efficient features
like user preferences and popularity of content to identify the frequently requested content
accurately. Most of the literature assumes that each user’s popularity is similar, whereas
this work utilizes a clustering-based mechanism. User clustering based on user preferences
allows us to evaluate the relationship between the users and design an effective caching
strategy. Unlike conventional location-based clustering mechanisms, content-based clus-
tering allows us to discover user request patterns to understand user preferences effectively.
Content popularity based clustering has been considered by grouping the correlated users
into the same group based on user popularity. The correlation is defined by the euclidean

distance among the users’ preference profiles.

4.2.2.1 Clustering Algorithm

Heterogeneous user preferences have been assumed in this work, but the user request pat-
tern may have some correlation based on social relations among the user. Thus, the content-
based clustering approach has been adopted to decrease the difference among the content
popularity distribution of users in the respective cluster. The cluster number is not known
in advance and need to be determined. In order to maintain the network to handle user re-

quest pattern modification, the system needs to determine the clusters based on user interest

90

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

Algorithm 4.1 Preference Based User Clustering Algorithm
1: Initialize Ny, and Nz
2: for k = Ny,in t0 Nipnaz dO
3 Run K-means algorithm
4: Calculate Silhouette Coefficient SCk using Eq. (4.9)
5
6

: end for
: Choose the k value as the best Silhouette Coefficient value

changes systematically. The number of clusters is determined using the Silhouette method
[164] since the label information is unknown, so evaluation needs to be performed using
the model. The Silhouette coefficient determines the coherence among the points within
a cluster separated from other cluster points. The Silhouette coefficient (SC(j)) is com-
puted using the mean nearest-cluster distance (ncd(j)) and the mean intra-cluster distance

(icd(7)). The SC for a data point j is

~ max(icd(5), ncd(5)) 49)

ncd(7) is the average distance between j, and all other clusters to where j do not belong and
icd(j) = @ﬁ Zz’ecj i d(7,1) is the average distance among all the other samples in the
cluster and j. The distance between data point j and 7 is denoted d;; and computed using
the euclidean distance. SC' values lie between -1 and 1 where 0 is overlapping clusters, -1
is the worst value, and 1 is the best value. The algorithm 4.1 computes the average SC' for
every k chosen from [min, max] and groups the users depend on the K-means algorithm
[165]. In the K-means algorithm, group the users based on the preferences to the nearest
centroid with a minimum distance between the user preference and cluster. The maximum

SC value is obtained with the optimal K value.

4.2.3 Maximization of Saved Delay Optimization Problem

In this section, download delay is defined and further a problem formulation is done to
maximizing saved delay with capacity constraints. The delay for getting content f from
MEC ¢ to user u is denoted as d; ,,. If the content demanded by the user retrieved from the

local storage of the corresponding MEC, then the delay is considered as 0. In case of the

91

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

content is not available at corresponding MEC ¢ then ¢ forwards the request to neighbouring
MEC:s as per the NEF direction. The delay is considered as the number of hops between
MEC j and user u (7 is the neighbouring node of MEC 7) and denoted as d; . If the content
requested by the user is unavailable within the network, then the user fetches the content
from the central server d,, . and d.,, > d;; > d; ,,Vj #1,j € R.

Let g (u) is set of base stations in cluster k, and its size is denoted as | 7 (u) |. Let
k € K represents the serving cluster of a user. Suppose 7, represents j** nearest BS (i.e.,
th

7" smallest delay) index with user u. A decision variable x} represents that BS ¢ has the

content f. The average download delay can be represented as

F ol -1 _
.= 3 o [TT0 -)
F=1 i=1 h=1
e ()) _
+ 3 Y dimjux;u[IT (- (4.10)
k'eG\k j=1 h=1)
e o)l
+ Zdu,cx‘}[H (1-— x?)}
keG h=1

In the above equation (4.10), it can be observed that x;“ [- x?“)} is the indicator

function that describes no other BS in the serving cluster with a delay lower than A, i.e., h,,

has the lower delay among all the BS in the cluster. xiﬁ [l;:]i/1(u)| (1

- x?“)} is an indicator
function that describes content f is not in the cache of the BSs in the serving cluster and it is
cached at the BS of other clusters. Moreover, the indicator function % [‘,72 (1“)| (1— xﬁﬁ“)}

describes content f in not available with any BS in the network.

Definition 4.2.1 (Saved delay). The difference in delay from the content server and MEC

node is defined as the saved delay.

This chapter aims to find the caching mechanism that maximizes the overall saved
delay of the requested contents at each MEC subjective to cache deadline and capacity

constraints. Thus, the formulation becomes:

U

1
Max - > (C—Dy) (4.11)

u=1

92

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.3

F
Y Byl <8, VieR (4.12)
f=1
F
> oah <, vieR (4.13)
f=1
D, < dly, VfeF VieR (4.14)
'l € {0,1}, VfEF ieR (4.15)

The objective (4.11) is the total saved delay of the overall network. Constraint (4.13)
guarantees that the MEC node is not allowed to cache duplicate content. Constraints (4.12)
provides the finite capacity of each BS. Constraints (4.14) is the deadline constraint, which
ensures that the maximum allowable delay for the response to a request. Thus, the BS can
satisfy the users’ QoS requirements. Finally, constraint (4.15) is the non-negativity and
integrality of the decision variables.

The cooperative cache placement problem as shown in Eq. (4.11) is proved as NP-hard
[24, 11]. Considering the combinatorial nature of the problem in Eq. (4.11), the optimal so-
lution for the problem typically arrives with exponential computational complexity. Due to
the exponential complexity, it is impractical to implement. Hence, a sub-optimal solution
with low computational complexity needs to be designed for practical systems to imple-
ment efficiently. Therefore, the problem has been formulated as a submodular optimization
problem that enables a way to apply a greedy approach for placement, which produces a %
approximation in the worst case [166]. The proposed problem Eq. (4.11) is reformulated
into the sub-modular optimization problem, and then a greedy approximation algorithm

has been designed in the next section.

4.3 User Preference based Content Placement Mechanism

using Sub-modular Optimization

In this section, a sub-optimal solution based on submodular optimization [166] has been

designed to solve the problem Eq. (4.11). The original problem presented in Eq. (4.11) is

93

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.3

reformulated into maximizing the monotone submodular function over matroid constraints,
and a greedy algorithm is designed. First, the essential background knowledge like proper-

ties and definitions of submodular optimization have been presented.

Definition 4.3.1 (Submodular function). Consider a finite ground set N and a real-valued
function g : 2 — R_. If the following properties are satisfied, then the function g is said

to be submodular.
1. g(A)+g(B)>g(AUB)+g(ANB), forall A,B C N.
2. g(A) < g(B), forall AC B C N.

The submodular function g is monotone submodular function if it satisfies the following
properties. Suppose gg(j) = g(B + {j}) — g(B) where gg(j) denotes the marginal value

of an element 7 € N concerning a subset B C N.
9a(4) > gB(J) > 0, forall ACBCN and jeN—B. (4.16)
The intuitive explanation of the monotone submodular function is that the gain of

adding a new element decreases when the set becomes large.

Definition 4.3.2 (Matroid). Suppose N is a finite ground set and M C 2" is a collection
of subsets of N and then a pair {N,Z} is called a matroid if it satisfies the following

properties:
1. ¢ €1, i.e., T is nonempty.
2. If BeZTand A C B then A € I.(downward closed)

3. IfA,B€Tand|Al <|B

,then3j € B — Asuchthat AU {j} € L.

Matroids induce the notion of linear independence observed in linear algebra to general
sets. The sets defined earlier are termed independent.
The ground set N is denoted as N = {y; | f € F,i € R} and Y C N is the

cache placement scheme. y} C Y denotes that content f is cached at MEC . Suppose

94

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.3

N = {y}|f =1,2,..., F} represents that overall configuration of content f is cached at

MEC i. The relationship between cache placement Y and 2! is
=Y NNl (4.17)

The following is a lemma.
Lemma 4.3.0.1. The objective function in Eq. (4.11) is a monotone submodular function.

Proof. The monotonicity of the objective functions is clear because any new placement of a
file cannot decrease the objective function value. A new file f € N\ A, suppose AUy}. Itis
simple to demonstrate that g(AUyY}) > g(A). Therefore, g(AUy}) is a monotonic function
A C N. Suppose B C N is another placement scheme and since ¢ is a monotonic function
we have Eq. (4.16). Because the sum of submodular functions is submodular, it is sufficient
to establish that the set function g(A) = C' — D, is submodular for a user u to verify the
specified goal functions submodularity. The marginal benefit gained by adding a content f
to a randomly chosen MEC node reduces while the placement set A grows big. The gain
obtained by including content to the placement set A increases the objective function g(A).
The submodularity of function g can be proved by satisfying the following condition Eq.
(4.16). Suppose two sets A and B are content placement sets where A C B C N. Suppose
adding an element y; € N\ B to the placement sets A and B for some i €| 7 (u) |. When
new content is added to the MEC node, it is not placed in either placement A or B. The

following scenarios exist, depending on the cached content and the size of the MECs.

1. As per placement B, user u receives content f from MEC j with j < 1, i.e., y? € B.
From this it can be perceived that g,(BUy}) —gu.(B) = 0, i.e., there exist any MEC j
with less delay than the MEC i, hence the marginal gain of including ¢ to the content
placement B is zero. As per the placement A, user u receives the content f form
MEC k with & > j. If £ < 7 meaning that there exist a MEC £ in the placement
of A with less delay than 7, so adding ¢ to placement A gives marginal benefit zero.

However, if & > i the marginal gain is g, (AUy}) — gu(A) = Yu(f)(dur, —dus,) > 0.
2. Asper placement B, user u receives content f form MEC j with j > i. Therefore, the

95

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.3

marginal gain is g,(BUY}) — gu(B) = ¥u(f)(duj, —du,). Since the user u receives
the content from k& with £ > 7 in the content placement A, the marginal value is
9u(AUYY) = gu(A) = Yu(f)(duk, — duz,) > 0. The difference between the marginal
gains is (9,(AUY}) = gu(A)) = (9u(BUYY) = 9u(B)) = bu(/)(du, — dus,) > 0.
It can be seen that the difference between these two situations is always bigger than

zero, indicating that g, is a monotone submodular function in V.
Hence, the monotone submodularity of Eq. (4.11) is proved. 0

Lemma 4.3.0.2. Let N, where i € R represents the set of contents that may be cached at
MEC i, which is N* = {y}|f € F}. Then, (4.12), (4.13) and (4.14) can be rewritten as
A € I, where

I={ACN|[ANN|<S;,|[ANN|<1} (4.18)

which is a matroid constraint.

Proof. The pair { N,Z} be a member of partition matroid, which is typical matroid [166].
]

The submodularity of the objective function with a matroid constraint can be decided

from the above proofs.

4.3.1 Greedy algorithm for user preference prediction based coopera-

tive content caching

The greedy approach gives an efficient solution with an approximation of % to solve the
maximization of monotonically submodular function with matroid constrain problems [166].
First, the greedy approach commences with an empty set of cache placement Y. Later, for
each element, the marginal gain is calculated, and the element with a maximum marginal
gain while fulfilling the matroid constraint is added to Y. The algorithm adds the elements
till there are no more elements to be added or the MECs cache is full. Depending on the
results from the lemma 2, it can be shown that the objective function is submodular. Thus,
the marginal gain reduces as adding additional content to Y. The algorithm continues to

add elements and stops when the marginal gain turns out to be zero.

96

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

Algorithm 4.2 User Preference Prediction based Greedy Cooperative Content Placement
Algorithm

1: Initialize A = 0 ; r#ie., ot =0Vi€ Rand f € F*
2: N, = Set of all elements that may be added to A; /#ie., N. = N assigning the ground set */
3: repeat
yi- = argmaxyicy, [9.(AU{y7}) — gu(A)] 5
A= AUy} me ol =14
N, =N, —{yjt}
ah =1
if j* is full then rsie., (AN Ni| ==, #/
Remove all the elements of N* from N,;
10: end if
11: until [A] > >~ S;
12: return 7 = {ANN'|i € R, f € F};

eI xR

The greedy algorithm is shown in Algorithm 4.2, where N, represents the remaining
set, consists of the elements included to X. Line 4 shows the highest marginal gain com-
putation. Adding an element y}: to the placement A is shown in line 5. The inclusion of
an element y7: to A should be removed from N,. If the MEC i is full and no vacancy to
store, then the corresponding content of the MEC 7 should be removed from the remaining
set NV, shown in lines 8 - 10. Further, following the inclusion of an element y}?i to A, based

on Eq. (4.16), the marginal gain needs be updated.

4.4 Performance Evaluation

In this section, the proposed clustered cooperative caching mechanism has been validated
using simulations. The real-world Lastfm 1K Dataset [38] has been used in the simu-
lations to investigate the user behaviour of requesting content. A song dataset has been
chosen to show the individual user request frequency for each content since songs may
be accessed multiple times. The Lastfm-1k dataset has been considered, consisting of
19,098,852 records such as user 1D, timestamp, artist ID, artist name, track ID and track
name, comprising 107,295 artists and 1K users [38]. The top 500 popular content re-
quested by users and the 100 most active users have been considered to analyze the user

request statistics (that account for 90% of the requests are the Lastfm dataset).

97

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

1o

= Actual Data
= Fitted Zipf

T e e e e B e B e e S A B R

= Actual Data
= Fitted Zipf

e
=]
L

e
o
L
e
o
L

=
S
L

Content Popularity
=
i
L

Activlity Level of user

o
9]
L

0.2 {1

. 1 : - 0.0 ‘ . . :
0 100 200 300 400 500 0 20 40 60 80 100
Content Rank Active User Rank

(a) (b)

0.0

Figure 4.3: (a) Comparison of content popularity vs content rank (b) Comparison of user
activity level vs user activity rank of Lastfm dataset

Fig. 4.3a shows that the content popularity of Lastfm dataset can be fitted by Zipf
distribution with pzf = f/ 25:1 n~“ the skewness parameter « = 1.4. Similarly the
activity level of the users is shown in Fig. 4.3b. Activity level of the users can be fitted
by Zipf distribution with a = 0.8 for the Lastfm dataset as shown in Fig. 4.3b. The
user preferences specify the number of requests for content. The top 100 users have been
considered with their demands for content. The user preferences can be fitted by Zipf
distribution. In Fig. 4.4a, the comparison of three users with their preferences has been

shown.

4.4.1 Simulation Environment

In order to evaluate the performance of the proposed caching algorithm, the experiments
have been executed based on the following settings. A square region with an area of 500m X
500m 1s considered. The Poisson point process (PPP) has been considered for base stations
in the given simulation area. The users are distributed within each base station coverage
based on PPP shown in Fig. 4.4b. Five hundred contents with size determined uniformly at
random from the range of 10 MB to 100 MB, 15 BSs, and 90 users have been considered.
Each content has a deadline picked randomly from [10 to 30ms]. Each MEC can cache

10% of the total files. The latency to fetch content from the base station to the user is

98

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

05 7

— User 949
— User 685
— User 882

Number of Requests

0.0 . - .
0 200 400 600 800 1000
User Preference Rank X

(a) (b)

Figure 4.4: (a) Comparison of three user preferences (1st, 25th and 50th active users with
user ids 949, 685 and 882 respectively) (b) Voronoi cell diagram with size 500m x 500m
where blue circle indicates the BSs and red triangles are mobile users.

specified using uniform distribution ranges from [5 to 25ms]. The latency to fetch content
from the content server to BS is taken as the 80ms. The clusters are determined by the
predicted user preferences. The number of clusters is determined using Algorithm 4.1. The

simulations results presented are an average of 100 runs. The simulation parameters are

shown in Table 4.2.
Predicted values of user 945 and content 54
i — Actual Data
0.8 - Train Predict Data 2 i
- —— Test Predict Data I i lishilTicE ism =
2 0.6 [rete—
5]
=
E’ 0.4
0.2
0.0 4 - - —
T T T T 1
0 10040 2000 3000 4000 5000
Time, t

Figure 4.5: Predicted value for user 945 and Content 54

The LSTM model is used to predict the user preferences using the user activity level.
The preferences predicted by the LSTM model for content 54 by user 945 are shown in
Fig. 4.5. Once the model predicts the user preferences, k-means clustering (Algorithm

2) has been performed on the predicted user preferences. Then by utilizing the predicted

99

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

Table 4.2: Simulation Parameters

Parameters Values
Simulation area 500/m x 500/m
BS 15

Users 90

Contents 500

Content size (10, 1001 MB
Deadline of Contents (10, 30]ms
Latency from BS to user [5,25]ms

Latency between BSs 20ms

Latency from content server to the BS | 80ms

user preferences, clustering, the content has been cached at each cluster using the proposed

algorithm.

4.4.2 Performance Metrics

To compare the performance of cache placement schemes, the following metrics have been

considered:
1. Cache Hit Ratio: The fraction of requests served over the total requests.

2. Acceleration ratio: The fraction of saved delay and overall delay (from the content

server).

3. Cache Utilization: The amount of content cached in BS that the users accessed, i.e.,

utilization of content cached by the base station.
4. Local Hit: The fraction of requests served within the cluster.

5. Neighbouring Hit: The fraction of requests served within the network and not within

the cluster.

4.4.3 Reference Algorithms

In this section, the proposed algorithm has been compared with the following caching algo-
rithms to show the superiority of the proposed mechanism: Globally most popular caching
(GMPC) [60], Locally most popular caching (LMPC) [52], Femtocaching (FC) [24], Coop-
erative prediction caching (CPC) [167] and Clustered cooperative caching (CL-CC) [18].

100

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

07 : 06
GMPC ‘

o T _ =
The| Baas it

+ —#— UPP-CL-CC
—57 /

4
S

e
n

(=}
2
[
o /] o I/ V ' !
= i c |
8 . / / g ! : :
o 0.4 Y =03 v |
o ! | o / i . '
T | 9 | ! |
g i !
0.3 002 !] GMPC
< -— 3 - CPC
i —4— LMPC-NC
02 g L 0.1 -k — FC
—— LMPC-CC

—&— UPP-CL-CC

01

T T T T T T T
4 6 8 10 12 14 4 6 8 10
Cache Size Cache Size

() (b)

—— UPP-CL-CC-WC
—&— LMPC-CL-WC

044 4= CL-CCWC '
I UPP-CL-CC-OC ; /
. cLCeoc i ' !

I [MPC-CL-OC

e
w
L

Hit Ratio
e
o

01—l

0.0-

Cache Size

(©)

Figure 4.6: Comparison of caching schemes using cache capacity vs (a) Cache Hit Ratio
(b) Acceleration Ratio (c) Local and Neighbour cluster Cache Hit Ratio.

The first two caching mechanisms cache the content without cooperation, whereas other al-
gorithms cooperatively cache the content at MEC till the cache is full. In the fifth caching
mechanism, clustering is considered, whereas the fourth algorithm employs popularity pre-

diction in caching decisions.

4.4.4 Impact of Cache Size

The impact of cache size on hit ratio and acceleration ratio is shown in Fig. 4.6. In this
simulation, the number of MECs is 15, MEC density is 0.8, user activity level is 0.4, user

preference similarity is 0.2, the number of clusters is three and the cache size varies from

101

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

4% to 14% total library size.

The effect of cache size on the cache hit rate is shown in Fig. 4.6a. The curves indicate
an upward trend as the cache size grows. The cooperative caching schemes are showing
superiority over non-cooperative caching schemes. It can also notice that LMPC-CC is
shown to maintain a higher hit rate compared to FC. The reason is that even though both
mechanisms follow a cooperative scheme, LMPC-CC caches content based on local popu-
larity, which enables caching user preferences. It can be seen that CPC is performing better
than FC and LMPC-CC due to the content popularity prediction. The proposed mechanism
outperforms the other algorithms since it utilizes the user preference prediction to cache
the more appropriate content at MECs.

The effect of cache size on the acceleration ratio is presented in Fig. 4.6b. The curves
indicate an upward trend as the cache capacity increases. The cooperative caching schemes
FC, LMPC-CC, CPC, and UPP-CL-CC, show superiority over non-cooperative caching
schemes LMPC-NC and GMPC. It can be observed that LMPC-NC is shown to maintain
a higher acceleration ratio than GMPC due to its local popularity. The proposed algorithm
performs well compared to other algorithms because the proposed mechanism caches the
predicted user preferences that permit content accessible to users with a minimal delay
compared to other mechanisms. In the FC and CPC, the content is cached farther to the
requested users. Even though FC and LMPC-CC mechanisms follow a cooperative scheme,
LMPC shows superiority because of the local popularity.

The effect of the cache size on the local and neighbouring cluster cache hit is shown in
Fig. 4.6c. The hit ratio between the clustering-based algorithms have been compared con-
cerning cache hit rate within-cluster and outside the cluster (within the network). LMPC-
CL is a clustered LMPC mechanism, WC denotes cache hit within the cluster, and OC
denotes cache hit outside the cluster. The proposed UPP-CL-CC-WC mechanism is show-
ing superiority over the other mechanisms. In the proposed mechanism, the content caches
based on the predicted user preferences allow the users to access the preferred content
within the cluster. It can also notice that the LMPC-CL mechanism has a higher hit rate
from outside clusters than the other schemes. LMPC-CL caches local popular content at

each cluster, which may differ from user preferences, leading to a lower hit rate within the

102

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

0.8 - - 0.9
GMPC —— FC i
—a— CPC —+— LMPC-CC

0.7] == MPC-NC —#— UPP-CL-CC |l 08

,,,,,,,,,,,,,,,,,,,,,,,,,,

e
o
L
e
~

Hit Ratio
o
»

Hit Ratio
o
&

o
IS
L
e
wn
L

04 ===V]
CPC,A=0.8 —4— CPCA=13
-& UPP-CL-CCA=0.8 —a— UPP-CL-CCA=13

0.3 4=

0.2 u u u 0.3 T T T T
0.5 0.6 0.7 0.8 0.9 10 4 6 8 10 12 14

MEC Density Cache Size

() (b)

Figure 4.7: Comparison of caching schemes using MEC density vs Hit ratio.

cluster and a higher hit rate outside the cluster. The CL-CC caches content based on global
popularity, so all the clusters have the same set of contents, leading to a higher cache hit
ratio outside the cluster. It is worth noting that the UPP-CL-CC mechanism has a higher hit

ratio within the cluster and a lower hit ratio outside the cluster compared to other schemes.

4.4.5 Impact of number of MECs

The impact of the cache hit ratio on MEC density has been shown in Fig. 4.7. In these sim-
ulations, user activity level is 0.4, user preference similarity is 0.2, the number of clusters
is three, the cache size varies is 10% total library size and MEC density varies from 0.5 to
1.0.

In Fig. 4.7a, the impact of the cache hit ratio is presented. The curves denoted an
upward trend as the MEC density increases. It can be observed that the cooperative mech-
anism performs well compared to the non-cooperative mechanism because, in traditional
non-cooperative mechanisms, all MECs caches the same content without cooperation. It
can be seen that the CPC shows superiority over LMPC-CC and FC because CPC caches
the content based on the popularity prediction. Both FC and LMPC-CC use cooperation
among the MEC FC to perform better due to the greedy policy. The proposed mechanism

shows superiority over other mechanisms since it uses the activity levels of users and pre-

103

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

dicted user preferences.

Fig. 4.7b shows the effect of cache size on cache hit rate for different MEC densi-
ties. Fig. 4.7b shows the comparison between the global content popularity based scheme
(CPC), where the same content popularity is assumed between all users and the content
preference predicted based scheme (UPP-CL-CC). It can be observed that the proposed
prediction-based clustering mechanism shows superiority over non-clustered globally pop-
ular mechanisms. The proposed mechanism with the MEC density of 0.8 MEC/m?, shows
an increase of 20.7% in hit ratio. As the MEC density rises, the cache size of all MECs also
increases allows to cache more appropriate content at MECs. Thus, the average delay in
fetching the content is reduced by using user clustering. The curves show an upward trend
with the growth in cache size. The benefit in hit ratio with MEC density of 1.3 MEC/m?,

shows an increase of 21.2%.

4.4.6 Impact of user preference similarity

The impact of user preference similarity on cache hit ratio and acceleration ratio have been
shown in Fig. 4.8. In this simulations, the number of MECs is 15, MEC density is 0.8,
user activity level is 0.4, the number of clusters is three, the cache capacity is 10% total
library size and user preference similarity is [0.0, 1.0] (0.0 is homogeneous and 1.0 is
heterogeneous preferences).

In Fig. 4.8a, the effect of the user preference similarity on the hit ratio has been shown.
The user preference heterogeneity does not affect the hit ratio for global popularity mech-
anisms (i.e., GMPC, FC, and CPC). Instead, the preference-based mechanisms show supe-
riority over the global popularity mechanisms because, in the preference base mechanisms,
the heterogeneity of user preferences allows the mechanisms to cache the appropriate con-
tent, leading to a higher cache hit ratio. The preference-based mechanisms show an upward
trend as the user preference similarity increases. Furthermore, it can notice that when user
preference similarity (heterogeneous content) is more, the proposed mechanism has better
performance than other preference-based mechanisms (i.e., LMPC-CC and LMPC-NC).

The effect of user preference similarity on cache utility is shown in Fig. 4.8b. It can

104

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

0.70 : : T
[UPP-CL-CC r
065 - Enl;l’:cca
0.8
0.60
.é %
0.55 B 06
=}
= GMPC £
f 050 1~ @~ cpC 5
= g 1}
T —— LMPC-NC I | £ 04 t
0.45 +-—i— FC : : F H
—— LMPC-CC | o I
0.40 1. —#— UPP-CL-CC ! '
H 0.2 -1
0.35 B e
0.30 : T 0.0 4
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
User Preference Similarity User Preference Similarity
(a) (b)

10 7= : T
—— UPP-CL-CC-OC

—m— LMPC-CL-OC
—4— CL-CC-OC

0.8 T I UPP-CL-CC-WC |~
. CL-CC-WC i
= LMPC-CLWC | |

Hit Ratio
o
o

o
=
4

0.2 -4

004 !]
0.0 0.2 0.4 0.6 0.8 10
User Preference Similarity
©

Figure 4.8: Comparison of caching schemes using user preference similarity vs (a) Cache
Hit Ratio (b) Cache Utilization (c) Local and Neighbour cluster Cache Hit Ratio.

be seen that the preference-based mechanisms have better performance than the global
popularity based mechanism. As the heterogeneity of user preferences increases, global
popularity has more deviation, whereas the local popularity and predicted mechanism has
the user preferred content within the cluster. Further, it can notice that CL-CC has good
performance when the preference similarity is low and nearly flatten when the similarity
increases.

In Fig. 4.8c, the effect of the user preference similarity on the local and neighbour-
ing cluster cache hit is shown. The clustering-based algorithms concerning cache hit rate

within-cluster and outside the cluster (within the network) has been compared. LMPC-CL

105

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

is a clustered LMPC mechanism, WC denotes cache hit within the cluster, and OC denotes
cache hit outside the cluster. The proposed mechanism (i.e., UPP-CL-CC) has a higher
cache hit ratio within the cluster because of predicting the user preferences and caching the
appropriate at each MEC 1n the cluster. The CL-CC has the lowest among the clustered
caching mechanisms since caching the content based on global content popularity differs
from the user’s preferred content. Further, it can be noticed that the proposed mechanism
has the lowest hit rate in the outside cluster because most of the user demands are satisfied
by the MECs within the cluster. It can be observed that both the user preference based
caching mechanisms have a higher hit rate when the user preference similarity is low and
increases as the heterogeneity increases. CL-CC-WC has a lower hit rate when the prefer-
ence similarity is less and grows as the similarity rises. The reason is that MECs in CL-CC

cache the globally popular content that may not satisfy the user preferences.

4.4.7 Impact of User activity level skewness

GMPC — FC | | GMPC — FC
—a— CPC —— LMPC-CC | | | —a— CPC —+— LMPC-CC
—4— LMPC-NC —#— UPP-CLCC | ! | —4— LMPC-NC —#— UPP-CL-CC | |

0.8 0.8 §

Hit Ratio
o
o

I
=
|
Acceleration Ratio

i i o

0.0

T T u u 0.0 T T u y
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
User Avtivity level Skewness User Avtivity level Skewness

() (b)

Figure 4.9: Comparison of caching schemes using User activity level skewness vs (a) Cache
Hit Ratio (b) Acceleration Ratio.

The impact of user activity level skewness on acceleration ratio cache hit ratio has been
shown in Fig. 4.9. In this simulation, the number of MECs is 15, MEC density is 0.8,
user preference similarity is 0.2, the number of clusters is three, the cache size is 10% total

library size and user activity level varies from O to 1 with step size 0.2.

106

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

The effect of the cache hit ratio with different user activity levels has been shown in
Fig. 4.9a. It can see that all the curves indicate an upward trend as the user activity level
skewness increases. The reason is that the more skewed user activity level means the users
are more actively requesting content. Since the users are highly active, the caching mecha-
nisms can cache those active users’ preferences, leading to an increase in the average rate of
these active users. The proposed mechanism is shown superiority over other mechanisms
since it considers users’ preference similarity and activity level.

In Fig. 4.9b, the impact of user activity level on acceleration ratio is presented. The
highly skewed user activity level allows the caching mechanisms to cache highly active user
preferences. Thus the saved delay is increased as the user activity level increases. It can be
seen that the FC is performing almost the same as CPC. LMPC-CC performs well as the
activity level increases compared to FC and CPC because of the local content popularity,

which captures the user preferences.

4.4.8 Impact of Zipf parameter

10

o J

0.8 ; | ‘ /
0.7 . 1 ¥

7T 084

e
o
'

Hit Ratio

0.6

o
=
L

Acceleration Ratio

0.5 ==

==

—=— CPC
—4— LMPC-NC 0.2

04y 777777 ' == FC

H —— LMPC-CC

—e— UPP-CL-CC

03 + f + f f 0.0 -

0.4 0.5 0.6 0.7 0.8 0.9 10 11 12 0.4 0.6 0.8 1.0 12
Zipf shape parameter Zipf shape parameter
(a) (b)

Figure 4.10: Comparison of caching schemes using Zipf shape parameter vs (a) Cache Hit
Ratio (b) Acceleration Ratio.

The impact of content popularity on acceleration ratio and cache hit ratio over the differ-
ent caching mechanisms is shown in Fig. 4.10a and 4.10b. It can be seen that the increase

in the performance of the proposed mechanism as the Zipf shape parameter « increases.

107

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

The proposed caching mechanism always outperforms other caching mechanisms, and as

the o increases (means content requests are more concentrated), the gap between the pro-

posed and other algorithm decreases.

4.4.9 Impact of Number of clusters

0.7

{ mm upp-cLCC

3 ccc
s LMPC-CL

0.60

=]
gosst———— 8 N W
o e
5 c
© o
o 5 050 -+ - S-S S,
= o
T 2
0.4 Coas] OB (AN BN B B
ol
P4
0.40 4|
B s S
H H H 0.35
GMPC ~ —§— LMPC-NC —— CL-CC
—8— CPC —— FC —8— UPP-CL-CC
0.2 - T T 0.30
1 2 3 4 5 6
Number of Cluster Number of Clusters
(@) (b)
mm cLcc
0.8 | ™ LMPC-CL
= UPP-CL-CC ‘
c
§os
b=
©
N
E
=)
@ 0.4 4
=
[¥]
o]
8]

3 4 5

Number of Clusters

(©

Figure 4.11: Comparison of caching schemes using Number of clusters vs (a) Cache Hit
Ratio (b) Acceleration Ratio (¢) Cache Utilization.

The impact of the number of clusters on cache hit ratio, acceleration ratio, and cache
utilization has been shown in Fig. 4.11. In this simulation, the number of MECs is 15,

MEC density is 0.8, user preference similarity is 0.2, the cache size is 10% total library

108

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

size, user activity level varies is 0.4, and the number of clusters varies from 1 to 6 with step
size 1.

Fig. 4.11a shows the effect of the number of clusters on the cache hit rate. It can be
seen that the number of clusters has no effect on the cache hit rate of the non-clustered
mechanisms like GMPC, LMPC-NC, FC and CPC. The non-clustered cooperative caching
mechanisms FC and CPC are constant and better than CL-CC and UPP-CL-CC. The reason
is that the non-clustered mechanisms cooperatively cache the content at MECs, whereas the
clustered mechanisms cache the redundant content among different clusters. It can be seen
that the proposed mechanism starts decreasing as the number of clusters increasing and re-
mains constant, whereas the CL-CC (cluster only) declines as the number of clusters rises.
Since the cluster-only mechanism caches globally popular content redundantly among the
clusters, the proposed mechanism caches the predicted user preferences in different clus-
ters, leading to more hit rates than CL-CC. However, the proposed mechanism loses the hit
rate of 8% compared to CPC and FC.

In Fig. 4.11b, the impact of the number of clusters on the acceleration ratio is presented.
Three clustering mechanisms has been considered, namely CL-CC (clustered cooperative
caching with global popularity), LMPC-CL (clustered cooperative caching with local pop-
ularity) and UPP-CL-CC (user preference predicted clustered cooperative). It can be seen
that the acceleration ratio increase till it reaches an optimal number of clusters and also
notices a downward trend as the number of clusters rises after the optimal cluster size. It
can be observed from fig. 4.11b, with cluster size one, the acceleration ratio is low because
with one cluster, MEC density is more (i.e., more number of MECs present in each cluster),
thus fetching content from long distance MECs leads to more delay. As the number of clus-
ters increases, redundant content is cached among the clusters, leading to less diversity of
content. It can be observed that the LMPC-CL performs well compared to CL-CC because
LMPC-CL caches the content based on local popularity, whereas CL-CC caches based on
global popularity. Thus the LMPC-CL allows the clusters to cache relatively user-preferred
content. The proposed mechanism outperforms the other mechanisms since it caches the
predicted user preferences leading to cache appropriate content that reduces the likelihood

of obtaining content from the content server.

109

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.5

The effect on cache utilization with a varying number of clusters has been shown in
Fig. 4.11c. The cache storage utilization of the proposed mechanism shows superiority
over the other two mechanisms. The reason is that each MEC in each cluster caches the
user preferred content leads to higher utilization of cache storage. CL-CC has less cache
utilization than LMPC-CL because it caches the same redundant content among the clusters
based on global popularity, differing from the user-preferred content. Even though the
proposed mechanism loses hit ratio, it can be noticed that it achieves a better acceleration

ratio and cache utilization from the above results.

4.5 Summary

In this chapter, a clustered cooperative cache placement has been analyzed in large-scale
mobile edge networks, aiming to maximize the saved delay by considering the heterogene-
ity of user preferences, activity level, and uneven user distribution. The LSTM model has
been considered to capture the dynamics of user activity and preferences. Content-based
clustering is used to group the MECs using K-means clustering and an efficient greedy
approach has been proposed to solve the cache placement problem. Simulation results il-
lustrate the relation between user preferences and local and global content popularity. It
has been observed that there is a significant performance gain in mobile edge network for
cache placement decision by exploiting the individual user behavior with the realistic set-
ting, such as higher user preference similarity, skewed user activity level distribution, and
unevenly distributed users. Simulation results show that the proposed content placement
mechanism improves up to 18, 21, and 23 percent on cache utilization, acceleration ratio,
and hit ratio over existing algorithms. The next chapter presents a contact duration-aware
cooperative cache placement strategy using a genetic algorithm by considering the user’s

mobility.

110

Chapter 5

Contact Duration-Aware Cooperative
Cache Placement with User Mobility
Across MECs using Genetic Algorithm
for Mobile Edge Networks

Most of the existing works [11, 60, 24] focus on caching content cooperatively at BS for
static networks. This assumption made by the existing works [11, 60, 24] is unrealistic in a
dense network. This chapter considers the cache placement problem in a realistic scenario
where the users with different speeds intermittently connect to the BSs at irregular intervals.
The users will frequently move between BSs and can download only parts of the requested
content from different encountered BSs along the moving path. If the user fails to download
the complete content from encountered BSs, then the requested content is downloaded from
a macro base station (MBS), this in turn increases the overall delay and affects the QoS.
Consider an example; customers move around a shopping mall with three BSs. If a user
wishes to download content, then the content should be replicated in all BSs. Replicating
the same content parts (segments) at three BSs is a wastage of resources, so disjoint content
parts should be cached at the BSs. Hence, the caching mechanism should consider the

user mobility pattern. Although [21, 22] assuming the user mobility, the randomness of

111

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.0

contact duration is not considered in content placement decision. According to [23], data
transmission is associated with contact duration (sojourn time). If the contact duration is
short, the user moves at high speed and if the contact duration is long, it means the user
moves at low speed. Thus, contact duration randomness caused by user mobility affects
the transmission of data and this in turn affects the content placement. Therefore, this
work aims to design caching methods by considering content popularity, the randomness
of contact duration (speed of the user) and user mobility along with content popularity and
resource limitation.

This chapter presents a content placement mechanism for dynamic networks where the
moving users intermittently connect to the BSs at irregular intervals of time. User mobil-
ity is modeled as a Markov renewal process to predict contact duration and user moving
paths. Then the contact duration aware content placement is designed by formulating the
maximum saved delay problem. For the contact duration aware content placement prob-
lem, a submodular function with matroid constraints can maximise saved download delay.
Further, a heuristic search mechanism has been designed based on a genetic algorithm to
efficiently obtain content placement solutions for large scale problems (the scenarios that
scale to large video library sizes).

The contributions of this chapter are as follows:

* Formulation of a mixed integer non linear programming problem for contact duration
aware content placement problem: maximization of saved download delay subject
to constraints, namely cache capacity and popularity of the content in mobile edge

networks.

* Modeling user mobility as a Markov renewal process to predict the user moving paths

and contact duration.

* Design of a greedy algorithm by adopting submodular optimization to solve the prob-
lem and development of a heuristic search mechanism based on a genetic algorithm

to solve the content placement problem for large scale problems efficiently.

* Extensive simulations have been performed to show the efficacy of proposed algo-

112

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

rithms with different parameters, including cache hit ratio and acceleration ratio us-

ing real-world data sets.

The rest of the chapter is organized as follows. In Section 5.1, system model, motivation
and formulation of the contact duration aware content placement problem are presented.
A greedy approximation algorithm for the proposed problem is presented in Section 5.2.
Then, a genetic algorithm-based heuristic caching algorithm is presented in Section 5.3.
Simulation environment and results are presented in Section 5.4. A summary of this chapter

1s mentioned in Section 5.5.

5.1 MEC System Model and Problem Formulation

In this section, the network model, mobility model, content request model along with mo-

tivation and problem formulation are presented in detail.

f
Content I%
Backhaul
fa

1 Macro-cell f3 f4
NEF k | Backhaul

overage
area of MBS

area of BS;

Figure 5.1: Illustration of the proposed system model.

5.1.1 Network Model

Mobile edge computing improves users’ capabilities by providing cache capacity (i.e., stor-
age), network resources and computing power near to users. Consider a mobile edge net-

work containing a macro base station, a set R of R small base stations (BS) equipped with

113

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

MEC server, a set U of U mobile users, a content server and a central coordinator NEF
as shown in Fig 5.1. Each MEC r € R has a limited cache S, called local storage and
transmission capacity § (bandwidth). The storage of each MEC is used for content caching
and f3, represents the amount of data transmitted between MEC r and a mobile user v at a
time slot. There is a set of locations (such as an educational hub, commercial area, sports
city, financial district and housing) in the macro cellular area. The MECs are connected and
also to the core network through backhaul links. The content server acts as an origin server
that stores all contents. Network Exposure Function (NEF) serves as a coordinator (it is a
crucial network element in 5G networks) [79, 151]. NEF maintains the indexes of the con-
tent cached at individual MECs and monitors users’ content requests at each MEC [151].
A user is directly connected to the base station, and the user may be in the communication
range of more than one BS at any point in time. However, any user can communicate with
only one BS at a particular time. Users may move across different base stations, so in a

different time, the user connects with different BSs.

5.1.2 Mobility Model

The requested content is transmitted successfully between the mobile user and BS when
the user is in communication range of BS. Time split into segments and each time slot
is denoted by 7. The user moves from one BS to another in a time slot 7', leading to
user content requests uncertainty. The mobility of user w is modeled as Markov renewal
process [84, 168] {(X,,T,) : v > 0} to predict the user moving path and MEC contact
duration (sojourn time), where X,, € R is v'" transition state and T}, is the v'" transitions
time instant. The base station sojourn time is defined as the time period a user served by a
specified BS, which influence the amount of data obtained from the BS. The sojourn time
is denoted as J;,. The sojourn time is estimated using the user moving statistics. P, is the
transition probability of Markov chain for user u. The distribution of time that the semi

Markov process of user u spend at BS r before making a transition is denoted as H,.

114

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

5.1.3 Content Request Model

Consider a set F of F' contents of length B bits in the content library located in content
server. Assume the demand for content is known already and content f is requested with
py probability. Given limited contact duration, complete content cannot be transmitted.
The simple content fragmentation may considerably decrease data access efficiency [169].
To improve the cache efficiency and reduce the redundant storage of content at BS, the
Maximum Distance Separable (MDS) code is adopted [169, 170, 86]. In MEC server local
storage, the encoded segments of the contents are cached instead of original content. The
content splits into multiple encoded segments. The number of encoded segments (of each
content) that need to be cached at each MEC needs to be determined. User has to collect at
least B bits to get the original content.

Mobile users are attached to the base stations according to a cellular network protocol.
The connected base stations are accountable for serving user requests. Upon receiving a re-
quest from a user, the connected MEC server checks its local storage for the content. If the
requested content exists in the local storage, then the MEC serves the request immediately.
This improves the user QoE by reducing the download delay. Moreover, no extra burden is
added on backhaul links reducing network traffic. Otherwise, the content is fetched from
the MBS. If the user moves from one BS to others, the user continues downloading content

from the corresponding BS.

5.1.4 Motivation

To show the need for the contact duration aware content placement using user mobility,
consider the scenario depicted in Fig. 5.2a, 5.2b with a user Uy, a file f and three MEC
servers with limited cache capacity.

In a system without mobility, the requested content is served by the corresponding BS.
In real-world, the user moves across different locations. Due to mobility, user pass through
different MECs and this affects the optimal content placement. User cannot be served
by only one base station because of movement. Different MECs serve the content to the

user based on the contact. To serve the user request the same content need to be stored

115

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

BS

Request
served by
the BS;

U

Coverage

(a)

area of BS,

(b)

Figure 5.2: Illustration of user mobility speed (a) Low mobility movement (b) High mobil-
ity movement.

in different MECs, leads to inefficient use of MEC storage. Therefore, to utilize the MEC
storage efficiently code the content and store the encoded content instead of raw content.
Each content divided into different segments. Then, the encoded segments need to place at
different MECs based on the user trajectory. However, if the contact duration is taken into
consideration, then the optimal content placement changes. The number of contacts with
multiple MECs will be very small if the user moves slowly where as the contact duration
with the connected MEC will be larger. Consider Fig. 5.2a, user U; requests a content
f of four segments. The user gets four segments from S;. In this case, the codes are
cached at M EC,. In Fig. 5.2b, user U; requests a content f with four segments. The
user moves with high speed this time. Therefore, the user obtains only one segment from
M EC, two segments from M EC5 and one segment from M EC5. In the second scenario,
the user obtains the content from three different MECs due to high movement. Therefore,

placing the content at different MECs becomes difficult because the three MECs provide

116

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

the requested encoded segments based on the user moving rate. Hence, the last two cases

indicate the importance of contact duration and user mobility in cache placement schemes.

5.1.5 Static and mobility aware caching scenarios

B rie

S| File2

Segments of

B i 1and

File 2
E MEC Server

‘ Base Station j
S

I3} User requesting
K3 File k

-----3 User movement

Figure 5.3: Illustration of caching scenarios for static and mobility cases (a) Static/ MAUC
(case 1) (b) MAUC (case 2) and (c) MACC scenarios.

The most popular content (MPC) mechanism is a heuristic caching mechanism that
caches the content based only on global popularity distribution irrespective of user mobil-
ity [60]. A globally more popular content may not be popular among the users associated
with a specific BS. The variety (different types) of content is not cached in BSs at different
locations as each BS caches the globally popular content [21, 22, 34]. The proposed mech-
anism considers user demand, the information of user mobility pattern and places MDS
(maximum distance separable) encoded content segments at the BSs instead of the entire
content. The proposed mechanism makes informed caching decisions by considering user

mobility. In the worst case (all the users move across the BSs), the proposed mechanism

117

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

caches multiple encoded segments of the same content at all BSs, which differs from MPC.
The MPC caches the complete content, whereas the proposed mechanism caches the MDS
encoded content allows the BSs to cache different types of coded content.

To illustrate the efficacy of the proposed mechanism over MPC, consider an example
shown in Fig. 5.3. Users move around a shopping mall with three BSs and each BS is
provided with unit-sized storage. Within a deadline of 2-time slots, mobile user contacts
(users come into the coverage of BS) uniformly at random two base stations while moving.
During the contact time, at the most, half of the data file can be transmitted. There exist
four files (F1, F2, F3, F4) of size one unit each. Assume that the users, as indicated in Fig.
5.3, request content K from the corresponding BS (in Fig. 5.3 the user with k represents
user requesting k" content, i.e., a user with 1 requesting F'1). Consider the content request
pattern { F'1, F2, F2, F'1, F'2} at each BS is identical unless specified. The proposed mech-
anism’s efficacy over MPC is demonstrated using two metrics (Network overhead and Hit
rate). Table 5.1 shows a summary of the findings. Network overhead is defined as the total
transmission cost (in terms of hops and assumes the unit cost is 1 per hop) of all requested
content. The hit rate is expressed as the hit percentage of all the user requests on the BSs.
In this example, consider three cases to show the efficacy of the proposed mechanism over

MPC, as shown in Fig. 5.3.

Table 5.1: Hit ratio and network overhead for caching scenarios

Metric Static MAUC MACC
Network overhead 12 12 0
Hit ratio (%) 60 60 100

Static scenario: In a static scenario, the mobile users remain static within a BS where
the corresponding BSs can serve the users. Consider the case when users at a BS have
repeatedly requested two files (F1, F2). Therefore, either F1 or F2 will be cached at each
BS and the other file will be fetched from MBS (macro base station). In this case, each
BS caches the file F2 as shown in Fig. 5.3a, which is globally popular (MPC) (consider
the scenario shown in Fig. 5.3a without user mobility). Since each BS caches F2, all the
requests for file F1 will be fetched from MBS. Therefore, network overhead is computed as

the cost of the number of requests missed at each base station. By considering the number

118

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

of missed requests (F1) as 2, the number of hops as 2 and number of BSs as 3, the network
overhead is computed as 12, i.e., 2 % 2 x 3 = 12. Further, by considering the number of hit
requests as 9 and total requests as 15, the hit ratio is computed as 60%), i.e., 9/15 % 100 =
60%.

Mobility aware uncoded caching scenario (MAUC): In the MAUC scenario, users
move across BSs; the caching decisions are based on user demand and mobility patterns.
Case 1: Assume that all the BSs cache popular file F2, as shown in Fig. 5.3a. On the
moving path, the user requested for file F2 can be download from the corresponding BSs
(i.e., a user gets half of the file from each BS as the user comes into contact with two BSs
at different time slots). Since each BS stores F2, all the requests for file F1 will be fetched
from MBS. By considering the number of missed requests (F1) as 2, the number of hops
as 2 and number of BSs as 3, the network overhead is computed as 12, i.e., 2 x 2 % 3 =
12. Further, by considering the number of hit requests as 9 and total requests as 15, the hit
ratio is computed as 60%, i.e., 9/15 x 100 = 60%. Case 2: Assume that one of the three
BSs (BS1) caches F1 (F1 has more demand at BS1), and other BSs cache file F2 as shown
in Fig. 5.3b. The users moving across BS2, BS3 within the deadline of 2-time slots (by
considering the use mobility pattern) can download the file F2 successfully. All other user
requests will be forwarded to MBS since half of each file downloaded from the BSs that
came across.

Mobility aware coded caching scenario (MACC): In the MACC scenario, users move
across BSs; the caching decisions are based on user demand and mobility patterns. In
this scenario, each BS caches half of the files’ (F1, F2) encoded data, as shown in Fig.
5.3c. Therefore, users will get half of the files’ encoded data from each BS irrespective of
the files requested by the users. Users can recover the requested file by downloading the
encoded data at least equal to the requested file size. Since each BS stores F1, F2 encoded
segments, the requested file can be downloaded from BSs. By considering the number of
missed requests (F1) as 0, the number of hops as 1 and number of of BSs as 3, the network
overhead is computed as 0, i.e., 0 x 1 x 3 = 0. Further, by considering the number of hit
requests as 15 and total requests as 15, the hit ratio is computed as 100%, 1.e., 15/15 * 100
=100%.

119

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

The three cases show that in the worst case (if each user path is independent and mul-
tiple users are requesting content), the mobility aware coded caching scheme caches the
encoded segments at each BS. This encoded caching scheme enables the BS to store differ-
ent types of content in the worst case. These scenarios show that the proposed mechanism
has a notable advantage over the reference algorithms in the worst-case scenario. List of

notations used in this chapter are presented in Table 5.2.

Table 5.2: List of Notations

Term Definition

R Set of base stations coupled with MEC servers

F Set of contents

U Set of mobile users

Sy, Br The cache, transmission capacity of r-th MEC

By The size of f-th content

tefT Time slot

d Deadline

T Delivery time of content

o, Contact duration of user v at MEC r

e, Average time user u stays at MEC r

X,, T, vt" transition state and time

mY € M, o™ path of user u

T it" transition of v path of user u

H Probability density function of sojourn time

o Number of appearances of MEC in v

Df Probability that content f is requested

Py Probability that user u taking path v

(e The average amount of f downloaded by a user

d,,d" The delay for transmitting unit of coded content
to mobile user u from BS, MBS

' Number of coded segments of f cached at MEC r

y;’l Useful content f downloaded from MEC r in [*" contact

P(n) Genetic population

Nk kt" segment of content f cached at MEC r

M Matroid with finite ground set N

Cp, My Crossover and mutation probabilities

Nyop, gen Population size and number of iterations

120

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

5.1.6 Mobility and sojourn time prediction

Mobile user moves from one state (MEC) to another state over time 7. The time duration
of a user resides in the state r is not known. The sojourn time of the user u resides in state
r is predicted using Markov renewal process [84, 168]. To predict the sojourn time of user,

average time is computed as

= /00 xH] (x)dx (5.1
0

where H! (z) is the probability density function of sojourn time for user v at MEC (state) .
i.e., the user u likely to move from one state to another state (transition) by staying average
time (u;,) duration at state 7.

User may move in multiple paths. The user u moving along a path in time 7" is defined
as M, = {ml,m?, ...m"} where v > 1. The initial state of the path v is represented as

m?% = mY. i.e., the initial state of path v is initial state for all paths of user u. Therefore,

u
the v'" path of user u is denoted as {m%% m2' ... m¥4} where d > 0. In a particular
path, a user may move to the same MEC multiple times, therefore the user path m; is
multi-set. The user resides in initial state for ¢ and moves to 1*' state. For all paths the 1°*

transition is predicted to happen at time instant
o
v,1 my°
T, = / cH"™ (x)dx (5.2)
0

where 7" is 0 and 7.,**! is same between all the paths of a user u. From this, the v path
i" transition is predicted as

v,i—1

T =T (5.3)

where ¢ < d. The last transition occur before the end of time instant 7'
. . . v,0 v,1 v,d
The sojourn time of v** path m? is represented as {§” = ™", §™«" ... ™ }, The

sojourn time is §™« = T — T~ and delivery time of content is considered as 7.

121

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

Therefore, the sojourn time is derived as

(7t = 7], i=0,
o = (1 s = 7], 1<i<d-—1 (5.4)
([T =m0 — 7], i=d
where © = [a] encloses the value x = 0 when @ < 0 and x = a while @ > 0. The

probability that user u taking path m; in time 7" is denoted as

d—1

PU - P v, Z,i+1 (5.5)

u My 51

=0

The average sojourn time of user u at state 7 in time 7' is represented as

d .
0= P 0 1, remR (5.6)

veEY 7=0
5.1.7 Problem Formulation

The caching scheme of coded segments in MEC is denoted as X, s, 2 € X indicates the
number of encoded segments of content f cached in MEC r. Due to user mobility, the user
may experience communication with the same MEC many times. Therefore, caching the
same content at different base stations in the user path is wastage of resources (storage).

The useful content downloaded by a user during the first contact with MEC r is denoted as

T,l . . r r /67‘
y; = min {xf,éugf} (5.7)
Downloading the useful content f by user during the /"contact (I € {2,3,...,a"}) with

r*" MEC is x’}’l =1t — Zf;i y;’t represented as

rl . Tl rﬁr
Y, = min {x : ,5u—} (5.8)
f Fre g

122

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

The successful download of a content means that the overall coded segments downloaded
by MEC must satisfy at least the size of the total number of encoded segments from the
requested content. i.e., overall segments downloaded < total segments. A user proceeds
with path v by requesting content f, the overall content downloaded by the encountered
base stations is 1y =) _p Zzwz y}’l. Then by considering contents and mobility paths,
¥y can be written as 1§ = >z > ey Pt (dy — dy). ¢§" is the average amount of
coded data downloaded from the BS by a user. Therefore, the coded data downloaded from

MEC by average number of users is represented as

1
U= D> pr > Pitbs(dy — dy) (5.9)
uel fEF weV
By changing the order of summation
av 1 v ([Jm r rk
U= DD ey P —d) Yy (5.10)

reR ueld feF veY keay,

Definition 5.1.1 (Saved delay). The saved delay defined as the difference between the

download delay from the macro base station and the small base station (MEC servers).

Aim of this study is to find the caching scheme that maximizes the overall saved delay

of requested contents. The problem is modeled as follows:

max ¢} (5.11)
S.t.
> Bya; <8, VreR (5.12)
feF
vy €{0,1,...,B}, VreR,fEF (5.13)

The objective (5.11) is the total saved delay caused by users of the overall network. The
constraints (5.12) provide the finite capacity of each base station. i.e., the total quantity

of content placed in the storage of MEC should not exceed the capacity of MEC. The

123

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.2

constraints (5.13) is the non-negativity constraint of the decision variables.

5.2 Greedy Algorithm for Contact duration Aware Coop-
erative Content Placement

The content placement problem presented in Eq. (5.11) is a mixed integer non-linear
programming (MINLP) problem and proved as NP-hard [21, 22]. To solve the problem
presented in (5.11), a sub-optimal greedy algorithm has been designed using submodular
optimization [166]. The greedy algorithm designed for the given constraints are matroid
constraints, and the objective function is monotone submodular. Greedy approximation
algorithm gives % approximation in the worst case [166]. A greedy algorithm has been pre-
sented by reformulating the problem presented in Eq. (5.11) into a monotone submodular

function with matroid constraints.

Definition 5.2.1 (Submodular function). Let N be a finite ground set and g : 2V — R is

submodular if the following properties are satisfied:
1. g(A)+g(B) > g(AUB)+g(ANB), forall A,B C N.
2. g(A) < g(B), forallAC B C N.

Equivalently, g is said to be a monotone submodular function if the following condition
satisfies. Let ga(j) = g(A+{j}) — g(A). Here, ga(j) indicates the marginal value of an

element j € N with respect to a subset A C N.
9a(4) > gB(J) >0, forall ACBCN and jeN—B. (5.14)
The intuition of monotone submodular function is that the benefit of adding a new

element decreases when the set becomes large.

Definition 5.2.2 (Matroid). A ruple {N,Z} is called a matroid M, if N is a finite ground set

and M is a nonempty collection of subsets of N which satisfies the following conditions:
1. ¢ €1, i.e., T is nonempty.

124

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.2

2. If BeTZand A C B then A € Z.(downward closed)

3. IfA,B€Tand|Al <|B

,then3j € B — Asuchthat AU {j} € .

Define the ground set N = {n’;, | f € F,r € R,k ={1,2,...,B}}and A C N is the
cache placement scheme. n}; C A represents that the k' segment of content f is cached
at MEC r. Let Nj = {n; ; |k = 1,2,..., B} represents that all B segments of content f is

cached at MEC r. The relationship between cache placement A and 27} is
r = [AN Ny (5.15)

Then, the original objective function (5.11) can be rewritten as:

9(A) = %ZZMZPQ’

ueU fEF weY

Y min {|A N N;|,5ﬁg—;}(d$ — &) (5.16)

reR

If g(A) satisfies the property of monotone submodular function (5.14), then the function
g(A) is said to be monotone submodular function. To prove submodularity of function g(A)
we prove g(AUnY%,) — g(A) > g(BUnY},) — g(B) > 0 where AC B C Nandn}, €
N - A

Lemma 5.2.0.1. The function in (5.16) is a monotone submodular function.

Proof. See Appendix for proof of lemma 1. 0

Next, The constraints present in the problem (5.11) can be written as matroid constraints

on V.

Lemma 5.2.0.2. Let N,, where r € R represents the set of content segments that may be
cached at MEC r, which is N, = {n;,|f € Fandk = {1,2,..., B}}. Then, (5.12) and

(5.13) can be rewritten as A € I, where
I={ACN||[ANN,| < 5,,v<|ANN,|,Vr € R} (5.17)

125

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.2

Algorithm 5.1 Greedy Cooperative Content Placement Algorithm
/l F: set of contents

/IU: set of users

/I S,: storage capacity ofréeR

/l B,: data transmission rater €R

/I pg: content popularity f e F

Il P): mobile probability

Output: X: Content Placement.

1: Initialize A = 0 ; fie.a} =0Vr e Rand f € F ¥

2: Nyem = Set of all elements that may be add to X; /#ie., Nyem = N assigning the ground set #/
3: Sort N,.,, In non-increasing order;

4: for all u € U do

5: Compute user moving probability from Eq. (5.5);

6 Compute sojourn time from Eq. (5.6);

7: end for

8: repeat

o = axgmax ey, [g(A + (2], 1) — 9(A)]

10: A=A+n" ;e an =1%

7 ey =
11 Nrem :Nrem_n;l7k/;
12: if j is full then r#ie, (AN N, | == 5, %
13: Remove all the elements of N, from N,..,,;

14: end if
15: until [A| > > - S,
16: return X = '

which is a matroid constraint.
Proof. The tuple (IV,Z) be a member of partition matroid, which is typical matroid. [

Finally, the problem (5.11) can be rewritten as

max g(A) (5.18)

S.t.
ACT (5.19)

126

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.3

5.2.1 Greedy Algorithm for Contact duration Aware Cooperative Con-

tent Placement

The converted submodular optimization problem presented in Eq. (5.18) can be solved us-
ing a greedy algorithm with an approximation of % in the worst case. The contact duration
aware cooperative caching algorithm is presented in Algorithm 5.1. The greedy algorithm
initially starts with an empty set. The marginal value is then computed for each element,
then the maximum marginal value is added to the content placement. The function pre-
sented is a submodular function. Therefore, by adding more number of elements to X, the
marginal value decreases. The algorithm stops when the marginal value becomes zero.

In Algorithm 5.1, N,.,, indicates the remaining set, which contains the elements that
are added to X. Line 9 computes the highest marginal value. After adding an item n? Y
to X as shown in line 10, it should be removed from the remaining set (/V,.,,) as shown
in line 11. Line 12-14 show that if the MEC 7 is full, then the segments stored at r are
removed. The process repeats until the cache capacity is full.

The proposed greedy algorithm achieves a polynomial time complexity; the complexity
grows with an increase in the number of contents. For real scenarios as the scale continues
to increase (large scale problems where hundreds of users, tens of BSs), the complexity can
be very high, making it impossible for implementation [24, 25]. Therefore, low complexity
sub-optimal algorithms are required due to cheapness and delay sensitive implementations
[25]. To address the system with a large number of nodes, contents and mobility paths, and
to simplify the computational complexity, a heuristic algorithm has been designed based
on the genetic algorithm (GA) and presented in the next section. GA gives a near optimal
and robust solution (video segment placement in content delivery networks [26] and base

station placement in heterogeneous network [27]) for NP-hard problems.

127

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.3

5.3 GA based Cooperative Content Placement for large
scale problems

Genetic Algorithm (GA) is a well known stochastic optimization technique which is in-
spired by the principle of natural evolution [171, 172]. It is observed that GA is fitted
for parallel optimization [172]. GA is an iterative approach; each iteration is known as a
generation. GA is a population (all possible individuals) based technique. From the given
population, GA generates individuals randomly, the generated individuals converted into
genetic form by encoding. The evolution of the encoded individuals is done by repeating

the following steps till termination criteria satisfies.

1. The fitness function determines the strongest individuals with high fitness values and

these strongest members are selected as parents for the next generation.

2. The genetic operators (crossover and mutations) carried out on the selected parents

to produce a new generation from the current.

This process continues where the individuals being adaptable to the environment. With this
idea of natural selection, a genetic algorithm has been proposed for contact duration aware
cooperative content placement.

The contact duration aware cooperative content placement based on a genetic algorithm
is presented as follows. The major steps involved in the genetic algorithm is presented

below:

1. Genetic coding generation: The first step in GA 1is to encode the genetic information
of population into a chromosome. In the proposed problem the decision variable %
is an integer variable, so an integer based encoding scheme is used. x indicates
that the number of segments of content f is cached at MEC r. The chromosome is

represented as 2" = {7, x5, ..., 2%,... 2%} from this X = {z', 2%, ... 2", .. 2"},

2. Initialization: Initialize the genetic parameters including the number of iterations,
crossover rate ¢,, mutation rate m,, population size and genetic population P(n)

composed of NV,,, chromosomes. Generate initial population randomly.

128

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.3

Algorithm 5.2 Genetic Algorithm for Cooperative Content Placement
Il Npop: Population size

I/l c¢p: Crossover probability

/l'my: Mutation probability

/I gen: Number of iterations

Output: X: Content Placement.

1: t=0;
2: Initialize P(n);
3: Repair P(n);
4: Evaluate P(n);
5: Store best solutions of P(n) in old B(m);
6: while t < gen do
7: Selection P(n);
8: Crossover P(n);
9: Mutation P(n);
10: Repair P(n);
11: Evaluate P(n);
12: Store the best fitness individuals of P(n) in new B(m);
13- if FIT(old B(m)) > FIT(new B(m)) then
14: new B(m) = old B(m);
15: end if
16: old B(m) = new B(m);
17: find the worst fitness value in P(n) and replace it with new B(m);

18: t=t+1;
19: end while

3. Re-pairing: In the given content placement, each MEC should not cache more than
its capacity (O rer By ay < S,). This condition satisfied by performing the repair

algorithm shown below (Algorithm 5.3).

4. Evaluation: The fitness of each individual is computed using Eq. (5.10). The pop-
ulation is evaluated based on the fitness calculated. The fitness values of an elite
individual in the current iteration and previous iteration are identified. This identi-
fied result is used to speed up the evaluation by replacing individual with the worst

fitness value.

5. Termination criteria: Once the iteration reaches the termination criteria, stop the

evaluation process and output the result otherwise continue the process.

6. Selection: The selection process chooses the elite individuals whose fitness value

129

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.3

Algorithm 5.3 Repairing Process
1: forr € R do
2: while >~ By - 2% > S, do
3: Remove content from z; in ascending order of popularity of contents at MEC

ST = Sr - B fs

end while

while ZfEfo % <5, do
Add content to z¢r in descending order of popularity of contents at MEC r;
ST = Sr + B fs

end while

10: end for

R S

is useful to next-generation (placing them in the mating pool). The roulette wheel
method is used to select the elite individuals. The individuals are selected by selec-
tion probability corresponding to its fitness function. The probability of selecting

each individual is defined as

FIT(j)
2 jeNyo, FIT ()

P, = (5.20)

where FIT(j) represents fitness value of j.

Algorithm 5.4 Selection Process
1: Compute selection probability of each individual by Eq. (5.20);
2: for j € Ny, do

3: 1 = 0; /# chromosome index */

4. P N = 0; /* accumulation probability of individuals */
5: while Py < random(0, 1) do

6: 1+ +;

7 PN:PN—FPS(Z');

8: end while

o: Selected individual = i;
10: end for

7. Recombination: The crossover (recombination) is process blending genetic informa-
tion of the parent chromosomes to produce new solutions. Crossover is carried out as
per crossover probability. Each row from a parent forms a pair from two individual

matrices. Two-point crossover mechanism is adopted in this chapter, where the two

130

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

crossover points are picked randomly within the length of the chromosome. Here,
the fragment from the chromosome of the first parent between two crossover points
and the fragment from the second parent is switched. The mutation process randomly

alters the points based on the mutation probability.

Algorithm 5.5 Crossover Process
1: for pick two chromosomes (Ch1, Ch2) from the given population with step size 2 do
2 if ¢, > random[0,1] then
3 cpl =random|[0, FJ;
4: cp2 =random[pl, FJ;
5: Switch the string fragment between two crossover points cpl, cp2 in two indi-
viduals Chl, Ch2;
6: end if
7: end for

5.4 Performance Evaluation

This section validates the performance of the proposed contact duration aware cooperative
content caching (Greedy) algorithm and genetic caching algorithm (GA) using simulations.
The proposed algorithms have been compared with the existing algorithms based on pub-

licly available real-world datasets available at WTD Project [36] and MovieLens [37].

5.4.1 Simulation Environment

A cellular network with 15 BSs associated with MEC servers and 90 mobile users has been
considered. In the given simulation area, MECs are randomly deployed and connected.
Assume that the mobile users’ initial locations are uniformly distributed over MECs at
the beginning of the simulations [24, 34, 35]. The content server holds a total of 3952
contents (MovieLens dataset) with a content size of 40 MB similar to [21] and each content
is encoded into two segments similar to [22]. Content request probability follows Zipf
distribution with v = 0.6 [24]. The cache capacity of each MEC is 10 per cent of the
entire video library. The data transmission capacity of MEC is 8 Mbps. The deadlines

of each file are 600s. The values of the simulation parameters are present in Table 5.3.

131

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

The presented simulation results are obtained by taking average of 50 runs. In order to
evaluate the performance of the proposed caching algorithms, the proposed mechanisms
experimented using publicly available code in the Visual Studio environment [173, 21]. The
code in [173] provides the simulation area setup (i.e., distribution of MECs and users) and
the mobility prediction using Markov chain [168] by considering the contents’ deadline.
The proposed contact duration aware cooperative content caching (Greedy algorithm), and
Genetic algorithm as well as the existing MCFD (Mobility aware caching with fixed amount
data delivery) [22, 21, 34], Femto caching [57] and most popular content [49, 60] caching

mechanisms have been implemented.

Table 5.3: Simulation Parameters

Parameters Values
Simulation area 500/m x 500/m
Content size 40 MB

Capacity of base station 10 % of library

Communication range of BS 100 m

5.4.2 Performance Metrics

To compare the performance of cache placement schemes, two metrics have been consid-
ered:
(1) Cache Hit Ratio: The fraction of requests satisfied (hits) from the available caches over

the sum of cache hits and cache misses.

cache hits
Cache hit ratio = 5.21
ache hit ratio cache hits -~ cache misses (:

(2) Acceleration ratio [75] : the fraction of saved transmission delay and original Internet

delay (from content server) can be formulated as:

d del
Acceleration Ratio = saved delay

5.22
original delay (from Internet) ()

132

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

5.4.3 Reference Algorithms

The proposed algorithms is compared with the following caching mechanisms: Most pop-
ular caching [49, 60], Femtocaching [57] and Mobility aware caching with fixed data de-
livery [22, 21, 34].

1. MPC (Popular Caching): In the most popular caching scheme, each base station
(MEC) caches the most popular content based on the user request statistics. Each

MEC caches the popular content until the cache is full.

2. FC (Femtocaching): Initially, all the caches are empty. In femtocaching, all the users
are distributed uniformly, and users remain static in the allocated cell, i.e., each user
is associated with the same MEC during the evaluation. The FC iteratively caches
the content into the MEC maximizing the saved delay. This process continues until

the cache is full.

3. MCFD (Mobility aware caching with fixed amount data can be delivered): In MCFD,
the mobility of users is considered, and each MEC delivers only fixed amount of data,
1.€., the contact duration of the user and MEC are not considered. So, a fixed amount

of content is cached at every MEC.

The first two caching mechanisms cache the content only based on user request rate,
whereas the third mechanism considers mobility of the user and coded segments are cached
at each MEC instead of the entire file. In the third caching mechanism contact duration is

not considered. So, a fixed amount of content is cached at each MEC.

5.4.4 Mobility Model

To demonstrate the efficacy of the proposed content placement mechanism, the real trace
of mobile users released by the Wireless Topology Discovery (WTD) project has been
used [36]. The trace comprises data from 275 personal digital assistant (PDA) users for 11
weeks period from 22/09/2002 to 8/12/2002. Each user holding the PDA device identifies
the WiFi access points encountered in its moving path for every 20 seconds. In the WTD

project, 400 access points (APs) are densely deployed and the locations of access points

133

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

are recorded by (X, y) values. Because of densely deployed access points user may be
under the coverage of multiple APs at a time. This simulation, considers a sub-area with
15 densely positioned access points, and replaces the MEC with APs [34, 21]. The busiest
day (16/10/2002) of the 11-week duration and four different one hour time intervals are
considered during simulation [34]. In this simulations, time is divided into slots of each 20
seconds (i.e., in the WTD project traces, the users record the MECs at each sampling point
(time interval between two sampling points is 20 seconds [36])). The locations of MECs
covered by the users during mobility are treated as users locations. These sets of locations
(as covered by a user) are called a walk of the user. Based on the traces, the value of P, ;
is computed as the fraction of the number of sequential visits to MECs (locations) ¢ and j
over the frequency of visits to . The P, ; value is increased if the user remains in the same

location (i.e., the user does not visit any of the MECs by the end of the time slot).

5.4.5 Demand Model

This simulation, uses the MovieLens 1M Dataset [37] to model user request demands.
Dataset has 6040 users with demographic information (age, gender, location and occupa-
tion) and 1000209 ratings of 3952 movies. The dataset consists of user ID, movie ID,
movie ratings and timestamp. The rating of users in timestamps has been assumed as the
content request of the user [129, 160, 158] (the assumption is that a user rates a movie after
watching it). It has been observed that more than 90% of the ratings existed within the first
year. Therefore, only the first year of the dataset has been used [129]. First, the timestamps
are divided as slots one hour each, later the user context information to the user requests is

assigned [158].

5.4.6 Impact of number of MECs

In this section, the influence of the number of MECs on acceleration ratio and cache hit
ratio is shown in Fig. 5.4a and 5.4b. In this simulations, cache capacity of MECs is 10%,
delay deadline is 3 slots, the data transmission rate is 8 Mbps, contact duration is 6 min,

and the number of MECs varies from 5 to 15 with step size 2.

134

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

0.5
.2
=
o 04 R~
o= o
< O
~ ‘g
T 0.3 9
3
<
02 | | | | O
5 7 9 11 13 15 5 7 9 11 13 15
Number of MECs Number of MECs

() (b)

Figure 5.4: Comparison of caching schemes using number of MECs vs (a) cache hit ratio
(b) acceleration ratio. When C' =10 %, d = 3 slots and b = 8§ Mbps.

The impact of the number of MECs on cache hit ratio is shown in Fig. 5.4a. It can be
observed from Fig. 5.4a that the cache hit ratio of all the algorithms is increasing with the
large number of MECs. It can be observe that, the mobility aware caching mechanisms are
outperformed the stationary caching mechanism because the users come across more MECs
in their mobility path within the deadline. The proposed algorithms perform better than the
MCEFD because the proposed caching mechanisms consider the contact duration, which
provides the space for unpopular content by caching the more popular content based on
contact duration. The gain of contact duration aware cooperative content caching (Greedy
algorithm) has been shown over existing algorithms MPC, FC and MCFD by 8, 5 and 1.3
per cent respectively. GA outperforms the MPC, FC and MCFD by 9, 6.3 and 2.5 per cent
respectively.

The influence of the number of MECs on acceleration ratio is shown in Fig. 5.4b. The
acceleration ratio grows slower with a small number of MECs and then grows faster for the
large number of MECs. The reason is that the majority of the requests are intended for most
popular cached content. MPC caches global popular content. The mobile users move across
MECs. Therefore, the requests are forwarded to the content server. FC performs better
compare to MPC because FC caches the content cooperatively. MCFD and contact duration

aware algorithms perform relatively similar in case of a small number of MECs. The

135

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

proposed mechanisms show better performance when the number of MECs increases. The
reason is that even though both mechanisms consider mobility, the proposed mechanisms
which cache requested content use contact duration along with mobility. Therefore, the

proposed greedy and genetic algorithms outperform the other algorithms.

0.6 0.8
g

0.5 3 0.6
o ~
g= =
S 2
0.4 =
= 3
0.3} S
9 <

2
0 5 10 15 20 25 30 05 10 15 20 25 30
Cache capacity (% of library) Cache capacity (% of library)

(a) b)

Figure 5.5: Comparison of caching schemes using cache capacity vs (a) cache hit ratio (b)
acceleration ratio. When N = 10 %, d = 3 slots and b = 8 Mbps.

5.4.7 Impact of Cache Capacity

This section shows that the impact of cache capacity on acceleration ratio and cache hit
ratio shown in Fig. 5.5a and 5.5b. In this simulations, number of MECs is 10, delay
deadline is 3 slots, the data transmission rate is 8 Mbps, contact duration is 6 min, and the
cache capacity varies from 5% to 30% of the total library size.

In Fig. 5.5a, cache hit ratio for different mechanisms is shown for different cache ca-
pacities. It can be observed that the mobility aware caching mechanisms MCFD, GA and
Greedy outperform static caching mechanisms Femto caching and MPC. The reason is that
mobility aware algorithms take caching decisions based on user mobility. The proposed
greedy and GA algorithms outperform all other algorithms because the caching decisions
are taken using the contact duration of users in MEC. MCFD scheme considers the user
mobility in caching decision. However, MCFD Scheme does not consider the contact time.

Most popular content caching (MPC) takes caching decisions based on the global popu-

136

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

larity of the content which may not be popular locally. Here, when the cache capacity in-
creases, the cache hit ratio also increases because more content is available when the cache
size is large. The gain of the proposed Greedy algorithm has been shown over existing
algorithms MPC, FC and MCFD in terms of hit ratio by 10, 6.8 and 1 per cent respectively.
Further, the proposed GA outperforms the MPC, FC and MCFD in terms of hit ratio by 11,
8 and 2.4 per cent respectively.

In Fig. 5.5b, acceleration ratio is shown for various cache capacities. It can be observed
from Fig. 5.5b that the increase in cache capacity leads to increase in acceleration ratio.
The reason is that more content will be cached as the cache capacity increases and this leads
to the availability of different contents at MEC. MPC does not perform well as compared
to other mechanisms (as shown in Fig. 5.5b) because the content will be cached at MEC
based on global popularity. In contrast, Femto caching considers the distributed cache as a
single cache due to the cooperation of the MECs. The mobility aware caching mechanisms
outperform static caching mechanisms because the cache placement decision is made based
on the mobility, which allows informed caching. The proposed caching mechanisms show
superiority over the MCFD by allowing more content to be placed at MECs because it

considers contact duration and coding.

0.4
S
0.3)=
o ~
g= =
< o
& 0.2 =
= b
= e
0.1 3
<
$
O L | | | | O | | | |
2 4 6 8 10 12 2 4 6 8 10 12
Data transmission rate (Mbps) Data transmission rate (Mbps)

(a) (b)

Figure 5.6: Comparison of caching schemes using average data transmission rate vs (a)
cache hit ratio (b) acceleration ratio. When C' = 10 %, d = 3 slots and N = 10.

137

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

5.4.8 Impact of data transmission rate

In this section, the effect of transmission rate on acceleration ratio and cache hit ratio is
shown in Fig. 5.6a and 5.6b. In this simulations, the number of MECs is 10, delay deadline
is 3 slots, contact duration is 6 minutes, cache capacity is 10% (of the library size), and
data transmission rate varies from 2mbps to 12mbps with step size 2.

The impact of the data transmission rate on the hit ratio is shown in Fig. 5.6a. The
hit ratio grows faster with low data transmission rate and then grows slowly for larger
transmission rates. The contact duration based mechanisms outperform MCFD because
the cache placement decision is made based on the contact duration and this allows MECs
to cache different content. The gain of the proposed Greedy algorithm has been shown
over existing algorithms MPC, FC and MCFD by 5.7, 6.2 and 1.6 per cent respectively.
Further, the proposed GA outperforms the MPC, FC and MCFD by 7.2, 7.7 and 3 per cent
respectively.

In Fig. 5.6b, acceleration ratio is shown for various data transmission rates. MPC
mechanism may not fulfill the user demands because MECs are cached with the globally
popular content. FC caches content cooperatively which allows different content to be
cached at MECs. MCFD considers a fixed data transmission rate. The contact duration
aware caching mechanisms performs well compared to MCFD because MCFD (delivers
the fixed amount of content even if contact time is more) does not consider users’ contact

duration.

5.4.9 Impact of contact duration

In this section, the effect of contact duration on cache hit ratio is shown in Fig. 5.7a and
5.7b. In this simulations, the number of MECs is 10, delay deadline is 3 slots, cache
capacity is 10% (of the library size), the data transmission rate is 8 Mbps, and contact
duration varies from 10 to 60 with step size 10.

The impact of the contact time on the hit ratio is shown in Fig. 5.7a. The hit ratio
increases with growth in the contact time. The contact duration aware caching strategies

outperform other caching mechanisms. The reason is that the MPC caches popular content

138

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

1
0.8
o))
g= = 0.6
a7 &
i = 0.47 -
= = el
o) —4— Greedy C=30
0.2 P/’// —®—GAC=10 |
—o—GAC=20
- 4+— GAC=30
0.1 ? \ \ \ \ 0 \ \ I |
10 20 30 40 50 60 10 20 30 40 50 60
Contact time (Minutes) Contact time (Minutes)
(a) (b)

Figure 5.7: Comparison of caching schemes using contact time vs (a) cache hit ratio, when
C =10 %, d =3 slots, b = 8 Mbps and N = 10. (b) hit ratio for mobile user with different
contact time, where d =3 slots, b = 8 Mbps and N = 10.

by not considering mobility. FC mechanism considers the cooperation among MECs, but
mobility is not considered. However, MCFD considers mobility, and it does not take a
coding scheme into consideration. Hence, the contact duration aware caching mechanisms
perform better than other schemes. Fig. 5.7a shows that with short contact time cache hit
ratio is low because users moving with high speed encounters more MECs. The hit ratio is
improved for slowly moving users because the contact time with a MEC increases. The gain
of the proposed Greedy algorithm has been shown over existing algorithms MPC, FC and
MCEFD by 12.9, 10.3 and 4.5 per cent respectively. Further, the proposed GA outperforms
the MPC, FC and MCFD by 16, 13.4 and 8 per cent respectively.

The impact of the mobility speed (i.e., with variable contact time) on hit ratio is shown
in Fig. 5.7b. This simulation, considers the hit ratio of mobile users with different contact
time with MECs. The contact time is inversely proportional to user mobility. The hit ratio
decreases with high mobility of the user because the user cannot receive the requested
content fully when the user mobility is high. With the low mobility speed, the user can

collect the requested content successfully from MECs.

139

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR

MOBILE EDGE NETWORKS Section 5.5
-10°
5.5 \
—— GA
\{-—-OPT |
5 [-
¢
o —
= S 4.5 8
R~ 4
= s 4 |
£
3.5 :
0 i i i 3 | | | |
‘%.4 0.6 0.8 1 1.9 0 500 1,000 1,500 2,000 2,500
Zipf parameter Number of generations

(a) (b)

Figure 5.8: (a) Comparison of different caching mechanisms with content popularity profile
(Zipf parameter) v where C' = 10%, d = 3 slots and b = 8 Mbps (b) Convergence behavior
of saved delay maximization with N,,, = 150, ¢, = 0.95 and m, =0.05.

5.4.10 Impact of content popularity

The effect of content popularity on the cache hit ratio is shown in Fig. 5.8a. It can be
observed from Fig. 5.8a that the cache hit ratio increases as the Zipf parameter v increases.
The reason is that as v increases, fewer popular content attracts more user requests. The
contact duration aware caching strategies outperform over existing caching schemes. The
proposed algorithms perform better compared to other caching schemes because the pro-
posed algorithms use the contact information.

Fig. 5.8b shows that as the number of generations increases the gap between the optimal
solution (OPT) and genetic algorithm-based solution decreases. From Fig. 5.8b, it can be
noticed that the fitness value raises sharply with a few generations. It converges to an

suboptimal solution when the number of generations become approximately 1000.

5.5 Summary

This chapter analyses the influence of user mobility and contact duration on cache place-
ment in mobile edge networks, aiming to maximize the saved delay by considering the

capacity constraint. The user mobility has been considered as a Markov renewal process to

140

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.5

predict the contact duration and the moving path in the problem formulation. An effective
greedy algorithm has been designed to solve the formulated problem. Further, a heuristic
search mechanism based on a genetic algorithm has been proposed to solve a large scale
problem. Simulation results based on real-world traces of user mobility and requests for
content demonstrate that the proposed contact duration aware caching mechanisms outper-
form three caching strategies (such as most popular caching, femto caching and mobility
aware caching). From the simulation results, it can be observed that the proposed greedy
and genetic algorithms provide improvement of up to 13 and 16 per cent on hit ratio com-
pared with MPC, FC and MCFD, respectively. The next chapter presents a cooperative
cache replacement mechanism using recurrent multi-agent deep reinforcement learning in

the obscene of content popularity information.

141

Chapter 6

Cooperative Cache Replacement using
Recurrent Multi-Agent Deep
Reinforcement Learning for Mobile

Edge Networks

The content needs to be fetched from the far distant content server in the peak time when
the requested content is not cached at the edge node and this leads to high delay, backhaul
load and congestion, which is known as reactive caching. In this chapter, a reactive caching
mechanism has been presented in a multi-cell scenario. Earlier works presented proactive
caching schemes by considering the content popularity which is known in advance [14]
or predicted [15, 16]. In some of the realistic scenarios, the content popularity is time-
varying, so the above assumption (known in advance) may not be feasible. Considering
the dynamic nature of the content popularity, high dimensional parameters, and for an in-
telligent caching decision, the conventional optimization methods will not be suitable [30].
The recent success in Reinforcement Learning (RL) [31], strong characteristic represen-
tation capability of Deep Reinforcement Learning (DRL) [16, 32] to tackle the changing
nature and complex systems has encouraged this research work to use these learning mech-

anisms to solve the above problem.

142

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWiORKS

This chapter aims to maximize the saved delay by considering the dynamic nature of
content popularity along with the capacity and deadline constraints for accessing a large
volume of data. A DRL based cooperative caching mechanism has been proposed using
the actor-critic framework. Since each edge node observes its local state, the cooperative
cache replacement problem is modelled as a Partially Observable Markov Decision Process
(POMDP) [33]. The modelled multi-agent decision problem optimizes the latency of ob-
taining content from local MEC, neighbouring MEC and content server. To manage nodes
to coordinate the caching decisions, a multi-agent actor-critic framework has been adopted.

The contributions of this chapter are as follows:

* Design an integer linear programming problem for content caching problem: maxi-
mization of saved download delay in the absence of content popularity information

with deadline and capacity constraint.

* Formulating the cooperative cache update problem as a POMDP based on a multi-
agent decision problem to maximize the cumulative reward by ensuring the coordi-

nation of the MEC servers.

* Design a multi-agent recurrent deep reinforcement learning-based cooperative caching
algorithm by devising the multi-agent actor-critic framework to solve the given prob-

lem (i.e., MARDDPG algorithm).

» Extensive simulations have been performed to show the efficacy of the proposed re-
current multi-agent cooperative caching algorithm by considering acceleration ratio,

hit ratio and caching reward.

The rest of the chapter is organized as follows. In Section 6.1, system model and formu-
lation of the content replacement problem are presented. A multi-agent DRL model for the
proposed problem is presented in Section 6.2. Then, a multi agent actor-critic framework
is presented in 6.3.1 and the multi-agent recurrent DRL algorithm is presented in Section
6.3.2. Simulation environment and results are presented in Section 6.4. A summary of this

chapter is mentioned in section 6.5.

143

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWiORKS

6.1 System Model and Problem Formulation

In this section, the network model and problem formulation are presented in detail.

6.1.1 Network Model

E MEC Server

Core Network /
Internet

@ Base Station

i Mobile User
@ Content

= Requesting
Content

Figure 6.1: Illustration of the proposed system model.

Mobile edge computing improves users’ capabilities by providing cache capacity (i.e.,
storage), network resources and computing near to the users. Consider a mobile edge
network containing a set M of M small base stations (BSs) equipped with a MEC server,
a set U of U mobile users, a content server and a central coordinator NEF as shown in
Fig. 6.1. Each MEC ¢ € M has a limited cache 5; called local storage. The storage
of each MEC is used for content caching. The MECs are connected and also to the core
network through the backhaul link. The content server acts as an origin server that stores
all contents. Network Exposure Function (NEF) serves as a coordinator (and it is a crucial
network element in 5G networks) [151]. NEF has a global view and it maintains the content
cached at individual MECs and monitors users’ content requests at each MEC [151]. A user
directly connected to a base station (BS) and the user may be in the communication range
of more than one BS at any point in time. However, any user can communicate with only
one BS at a particular time. Mobile users are attached to the base stations according to

a cellular network protocol. The connected base stations are accountable for serving user

144

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWiORKS

requests. Each BS receives content requests from multiple users in the communication
range without knowing its popularities. The MEC can serve the requests in three ways: 1)
local MEC, 2) neighbour MEC, and 3) content (central) server.

Consider a set F of F' contents in the content library located in the content server.
Each content f is determined with two features Sy denotes the size of the content and di;
denotes maximum allowed access latency to get content f. The time split into slots and
each time slot is denoted by ¢ € 7. Assume that the content requests are independent.
The user can request only one content in time ¢ and user location cannot change in any
given time slot. The requests generated by user u at time ¢ is represented by a binary vector

t t t
VVi,u - {wi,u,17 w

t t — :
fu2s s Wiy pte Wi, p = 1 means the user u requests content f in MEC

¢ at time ¢, wfu 7 = 0 otherwise. Assume that the content popularity is unknown. The
frequency of content is indicated as p},, = {0}, 1, i uos---»Piur} Where pi, . denotes
the cumulative requests for content f in MEC i at time ¢. Also, assume that in each time

slot, the MEC:s storage is filled with contents.

Table 6.1: List of Notations

Term Definition

M, F U Set of base stations, contents and users

Si The cache capacity of i-th MEC

Sy, dly The size and deadline of f-th content

teT Time slot

qu Requests generated by user v in MEC 7 at ¢

pfu Cumulative requests for content f in MEC 7 at ¢

din, djy,dy, Delay from local, neighbour and central server to user u
xﬁcl The content f cached in MEC : at time ¢

Dt The expected saved delay

st at, R} System state, action spaces and reward at MEC 7 in ¢
K! NI, B! Set of user requests, cache state and deadline of MEC i
@D;;’li, wj;f;, @D;}; Low, average and high priority of f in MEC 7 at ¢

Cis Cijs Cith Cost of serving f from local, nearby and central server
{5,757, | contents fetched from local, nearby and central server
o, 5}+’2 Cost of replacement and number of contents replaced at ¢
ht, ht Actor and critic network historical information

Yi target network

0,0 actor and critic network weight parameters

145

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWiORKS

6.1.2 Problem Formulation

The cooperative content replacement problem formed as an optimization problem to max-
imize the saved download delay. A binary indicator X* € {0, 1} denotes the cooperative
cache replacement scheme in MEC, x?z € X'is 1 if the content f is stored in cache of
MEC : at time ¢, O otherwise. The download delay is a typical metric to evaluate the per-
formance in mobile edge networks. First, find the expected saved delay, then formulate the
maximizing the saved delay subjective to capacity and deadline constraints.

The delay for getting content f from MEC i to user v is denoted as d;,. The content
requested by the user retrieved from the local storage of the corresponding MEC, then the
delay is considered as 0. In case of the content is not available at corresponding MEC ¢
then ¢ forward the request to neighbouring MECs as per the NEF direction. The delay is
considered as the number of hops between user © and MEC j (j is the neighbouring node
of MEC 1) as d;,. If the requested content is unavailable at any of the MECs, the user

fetches the content from the central server dj,,, and d; ,, < d;,, < dpn, V7] # 1,7 € M.

Definition 6.1.1 (Saved delay). The difference in delay from the content server and MEC

node is defined as the saved delay.

The saved delay depends on the frequency of cached content requests. The saved delay
is split into two parts in the proposed model, intra MEC saved delay (local caching) and
inter MEC saved delay (cooperative caching). Intra MEC saved delay is attained by locally

cached contents.

F U
Diy=Y"> wl, ;- pbus- S (dnu— din) ©6.1)

f=1u=1

Inter MEC saved delay is attained by the neighbouring MECs sharing the cached contents.

F U
Df,l = Z Zw;u,f ’ pi,u,f) Sf ’ (1 - x;,z) ’ Zzt ’ (dh,u - djvu) (62)

f=1u=1

146

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWiORKS

where z! = (1 — Hj]\il’j#(l — % ;)). The expected saved delay is

M
D'=>"D!,+ D}, (6.3)
=1

Aim of this work is to maximize the saved delay by replacing the requested contents at each

MEC subjective on deadline and capacity constraints. Hence, the problem is formulated

as:
1 T
t
Max — > D (6.4)
t=1
S. t.
F
> S8peal, < S, vieM (6.5)
f=1
F
Za:}z <1, VieM (6.6)
f=1
v
Zf}% <M, VfeF 1<i<M (6.7)
=1
D' < dly, VfEF YieM (6.8)
373% € {0,1}, VfEF ieM (6.9)

The objective (6.4) is the total saved delay of the overall network. Constraint (6.6) and
(6.7) guarantees that the MEC node is not allowed to cache duplicate content. Constraints
(6.5) provides the finite capacity of each BS. Constraints (6.8) is the deadline constraint,
which ensures that the maximum allowable delay for the response to a request. Thus, the
BS can satisfy the users’ QoS requirements. Finally, constraint (6.9) is the non-negativity
and integrality of the decision variables.

The cooperative content replacement problem presented in Eq. (6.4) is an integer lin-
ear programming (ILP) problem. The proposed problem can be shown as NP-hard by
transforming the knapsack problem (known as NP-hard) into our problem. The problem
presented in Eq. (6.4) can be addressed by finding the optimal decision variables { X'} in
the present time slot. Nevertheless, the decision variable present in Eq. (6.4) is a binary

variable and changing dynamically. Addressing the proposed problem requires to gather a

147

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

huge quantity of network state information. Besides, it is considered the practical scenario
with an unknown content request pattern in advance. The conventional optimisation meth-
ods cannot be adopted because of the changing nature of the content popularity and to take
an intelligent caching decision [30]. With the recent success in Reinforcement Learning
(RL) [31], strong characteristic representation capability of Deep Neural Network (DNN)
and Deep Learning (DL) [174] has encouraged the adoption of learning in wireless net-
works. The learning based mechanism allows an end-to-end solution from predicting the
content requests to cache decision. As a branch of Al reinforcement learning is extensively
adapted in several fields (self-driving, robot control, etc.) to solve decision optimization
problems. The multi-agent DRL (MADRL) [175] for cooperative content replacement has
been adopted in mobile edge network.

The content placement is determined mainly based on the present state and the caching
decision, which does not depend on the previous states. Therefore, the system states evo-
lution can be modelled using a Markov process. The MEC has its cache state and current
request information while taking the caching decision at time ¢. In the multiple MEC sce-
nario, each MEC takes the caching decision based on its local cache state and each MEC
does not have the caching state information of other (neighbouring) MEC nodes. In reality,
MEC can not observe the complete system information regarding the caching states and
content request distribution to take the cache decisions, which motivates to represent the
problem as a partially observable Markov decision process (POMDP) [33]. Then a coop-
erative content replacement strategy has been developed using multi-agent reinforcement

learning.

6.2 Multi-Agent Deep Reinforcement Learning Model for
Cooperative Caching

In a multi-agent environment, individual agent can observe its local state, which is partial
information about the environment. Therefore, in multi agent decision problems are mod-

elled by POMDP. A POMDP is defined by a tuple {S, A, R, P,Q2, O}. S is a set of states,

148

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

A set of actions, R is the reward function and P is the transition probability from state s to
s’, which is defined in the MDP model. 2 is the set of observations and O is the observation

probabilities. The observation, state, action and reward are defined as follows.

6.2.1 Observation and State Space

Let S is the set of system state space where S = {s;|s; = (N}, K}, B!)}. In each time slot
t the state s! contains the set of user requests K}, MEC i cache state N} and B! content de-
livery deadline of MEC i. Where K = {k{,ki,,...,k{;}, ki, is the contents requested
by user u at 7 in time ¢, Bf = {0} ;,0},, ..., b} p}, Ui ; is the content delivery deadlines of
MEC : for accessing the requested content f in time ¢. Since the content popularity is not
available, the caching decisions are derived depend on the content already cached in MEC
and the currently requested content. Therefore, the priority of the content cached in MEC
in time ¢ represented as ¢! = {w;i, w;’f;, w;};} Where w;i = ZLTZ Zgzl 05y 18 low
priority, w;j = Ei_m S P}, s is average priority and 2/1;? = Zi—m S 0} .. s 1s high

priority. The system state space is denoted as

st = (N}, K}, B!,) (6.10)

6.2.2 Action Space

Let A is the set of actions. Each MEC determines whether to keep or replace the content.
The challenge in the MADRL is that multiple contents need to be replaced in each time slot.
Since the system environment is multi-agent, each MEC serves multiple users. Therefore,
different MECs get a different number of content requests.

If some user requests are missing from corresponding MEC and neighbouring MECs,
then replace the missed content with appropriate content by fetching it from the content
server. Otherwise (all the user requests miss), MEC replaces contents comprises of newly
obtained content from the server with the suitable MECs and its cache. A = J,.- a!, Vs; €
S represents the action space analogous to the state space .S. Upon receiving the content

requests, MEC calculates each content’s priority and determines whether the content to

149

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

keep or replace based on priority by satisfying constraints (6.5) and (6.8).

6.2.3 Reward Function

............ > Request
_____ » Response

(a) Localc MEC 48
{b} Neighbour MEC .~
(C) Content server - ~

Figure 6.2: Illustration of requests served by MEC.

This work aims to maximize the saved transmission delay by obtaining the desired con-
tent at a low transmission delay within the fetching deadline. Each MEC node replaces the
cached content at local storage cooperatively. In the multi-agent cooperative environment,
based on the availability of the content, either neighbouring MECs or the central server,
serves the local MECs requests. The MEC associated with the user called local MEC, the
nearby MEC:s, is called neighbouring MECs.

1. Suppose the content requested by user is available at the local MEC, the content can
be delivered immediately with low latency. The cost of delivering content from local
MEC is denoted as ¢;. Let’s consider that the MEC ¢ fetches ! contents from its local
storage in time ¢ is indicated as 7} ;. Therefore, the cost of the local MEC service is

represented as ¢;r! .

2. Suppose some of the contents requested by the user are not served by the correspond-
ing MEC ¢. Consider that the content requested by user is available at neighbour
MEC 7, and the content is served by j to the user via MEC . The cost of fetching
content from j to 7 is denoted as ¢; ;. Let [contents are fetched from j to 4 in time ¢

is denoted as rf’ ;- Therefore, the cost of neighbouring MEC service is represented as
> il
]EMJ;&Z ©J i’j.

150

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

3. Suppose the content requested by the user is unavailable at any of the MECs. The
corresponding MEC obtains the content from the content server. Let’s consider the
cost to get the content from the content server to the user via MEC ¢ denoted as
cin- Let [contents are fetched from content server / to i in time ¢ is denoted as 7} .

Therefore, the cost of content server service is represented as ¢; 7% ;.

The overall cost of the service in time ¢ is represented as

Cﬂ“f,l + Z cmrf,j + Ci7h7’f7h (6.11)
JEM j#i

The content server serves the content miss at local MEC and neighbouring MEC. Hence,
the MEC replace the newly fetched content with less popular content. Therefore, the cost
should contain the replacement cost along with the delivery cost. Let the cost of replacing
content at MEC 7 is denoted by «;. The number of contents replaced by MEC 7 at time ¢
is indicated as 6, = f; — (x%, N «%.') where 2, indicates content f cached in MEC i
in time ¢, x'}‘ll indicates the content f cached in MEC 7 at time ¢ — 1 and f; indicates the

content requests at MEC . Therefore, the replacement cost is defined as

> aidh, (6.12)

fer

The total cost is represented as sum of (6.11) and (6.12). That is

crty+ Y digrt e, + > aidh (6.13)
JEM,j#i feF
It is considered that each content should be satisfied within the specified deadline of the
content. If the content does not get within the deadline, the penalty cost should be included
in the reward. The penalty cost of the system is represented as p; (b} ;, where b} ; is the
deadline of content f in MEC 7 and ,0; 7 18 the content frequency.
The cost of utilizing the local MECs cache is higher than without the local cache. There-

fore, the saved cost need to be maximized for an effective caching scheme. The reward

151

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

function of MEC 7 is denoted as

RE = (Cz‘,h — Ci)Tf’l + Z (Ci,h - Cz}j)rij - Z(aiéﬁﬁr,i + P;fbg,f) (6.14)
JEM,j#i feF
Maximizing the reward is maximizing the cost of saved delay. The term 7 ; depends on the

local cache and neighbouring cache. The instant reward of the system is defined as

R'=) R (6.15)
iEM

In a multi-agent system each MEC is considered as an agent. Based on the systems sates,
each agent determines its cache placement. 7 = {my, Ty, ..., Ty} indicate the set of all
caching strategies, 7 : S — A is a caching policy, which associates the current system
state s to a permissible action a. The optimal caching policy 7* maximizes the long-term
reward in the multi-agent system. To maximize the system’s long-term reward, each agent
needs to work cooperatively because the immediate and long-term rewards impact agent
actions. Hence, the cooperative content replacement problem expressed to maximize the

cumulative discounted reward. The value function V™(S) : is defined as

E| > +'Rs(0) = s,7 (6.16)
t=0

where 0 < v < 1 is the discount faction, v decides the future reward’s effectiveness to the
present decision. Lower 7 values give more weight to the immediate reward. Finding the

optimal caching policy 7* needs to follows Bellman’s functions

V™ (s) = R(s,7"(s)) +7 > PusV™ () (6.17)

s'eS

where Py is the state transition probability. Bellman’s functions usually solved by either
value or policy iteration methods. However, Bellman’s function presented in Eq. (6.17) is

challenging because of the following points.

1. The state transition probability Py 4 is not known in advance without any prior knowl-

152

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWiORKS

edge. It is difficult to estimate Py in real environment.

2. The time complexity is high with the traditional value or policy iteration methods
because of the vast state and action space, restricting practical cache systems’ appli-

cability.

3. Due to the cooperation among the MEC nodes, each MEC node should not cache
the cached content at neighbouring MEC nodes. Each MEC can only know its local

information and not aware of the full system sates and actions of the other MECs.

Hence, to address these issues, a MADRL based cooperative caching mechanism has been
presented. The following section presents a multi-agent DRL mechanism to handle the

proposed caching problem.

6.3 Multi-agent Recurrent DRL for cooperative Content
Caching

In real world, the environment has challenging conditions for multi-agent system that de-
mands the cooperation among agents, such as partial observable nature of agents and non-
stationary nature. Therefore, the multi-agent DRL framework has been presented for coop-

erative content replacement in MEN.

6.3.1 Multi-Agent Actor-Critic Framework

Usually, there are two approaches to develop caching decisions, namely decentralized and
centralized. In the centralized caching mechanism, the centralized server determines the
caching decisions depend on the caching states’ global view and assign them to edge nodes.
Each edge node is responsible for executing the caching decisions and data storage. In the
decentralized caching mechanism, the caching decisions determined by the edge nodes.
Each edge node determines its caching decision based on other nodes cache state informa-
tion received from the central server in this mechanism. The central server is responsible

for synchronization and cache state information interaction. However, both approaches

153

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWiORKS

Distributed Execution

N N\
Agent (MEC) 1 Agent (MEC) 2 Agent (MEC) M

AACHN 1 O4%/;ctor 2| ONHN M
- Do

Observation O(t)

i
i
3>
>

Reward R(t) ,

Replay

Memory :
(Experience) [:
(S,a,r,8) |

Environment

Action a(t)

—

Mini-batch :
(s, a,r,8s"

Figure 6.3: Multi-agent recurrent DRL framework for cooperative caching. Here O;, a;
represents the observation and actions of agent ¢ and h,, h. represents the history of actor
and critic.

induce new problems. A centralized mechanism causes additional delay since the central
server determines the cache decisions. Decentralized mechanism suffers from the cache
state information exchanging problem, and it has a severe effect on cooperation among
edge nodes.

A cooperative caching has been proposed by adopting centralized training with dis-
tributed execution framework to alleviate the problems mentioned earlier, providing the
policies to utilize additional knowledge to simplify the training. In general, Q-learning
cannot carry various information at the training and testing phase; therefore, making addi-
tional assumptions about the environment’s structure is unnatural. Hence, an Multi-Agent
Recurrent Deep Deterministic Policy Gradient (MARDDPG) algorithm has been proposed

to decide whether to evict or retain the requested content inspired by [176, 175]. The

154

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWiORKS

MARDDPG is a simple addition of the DDPG mechanism for a multi-agent system, where
the actor can only obtain its local information and the critic augmented with additional in-
formation about other agents’ policies. An individual agent is unaware of the other agents’
policies in a multi-agent system, leading to a non-stationary problem. Each agent estimates
the other agent policies by leveraging the actions and global state through the training phase
to avoid the environment from the non-stationary problem. Hence, each agent attains the
global optimal strategy by altering its policy depending on the other agents’ estimated pol-
icy. Each agent consists of its own actor and critic networks in the proposed mechanism
considering agent independently learns a distinct policy because of different locations.

Actor network: The actor-network described as a function that learns a caching policy
7w = {m,ms,..., Ty} that maps the state to a permissible action taken from the action
space .A. The state comprises the global state ¢ and local state s; observed by agent ¢. The
agent 7 chooses an action a} depends on its state s’ and policy 77? throughout the testing
phase without critic.

al = Vi (sh) (6.18)

Critic network: The critic network adopted for approximating the action-value function
V (S) provides the overall reward while taking action a} based on the state s! and the global
state g at time ¢ in the training phase. Each agent executes the actions in the environment
and sends the present state information s! and response from the environment to the critic
network after the actor-network in time ¢ chooses the actions a' = {a},d’, ... a%,}. The
feedback consists of the next time instant state information ¢'*! and reward R’. Hence,
Q-function defined as Q% (s!, s, ..., sh,,al, b, ..., a',) for each agent, which solves the
problem caused by a not-stationary environment. Consider M agents with policy of agent

1 1s m;, then

411 .t oyttt Lt t ot ot ¢
P(s;7 |s;; Env) =P(s; 7|81 81, 89, -+ Sppy Q15 A5, - -, Qs
7T1>7fz>---,7TM)
(6.19)
oyt b bt t ot ot ¢
=P(s;77|87; 81, 85, . ooy Shyy A1, Agy . oAy,
/ / !
1, Moy e vy Thy)

155

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWiORKS

By minimizing the loss function £(6;), each critic updates its network and the loss function

L(0;) prarameterized by 0 = {61,065, ..., 0y} defined as

L(6) = Eg [(Q(Z"(st, a') — yﬂ (6.20)
where s' = {st st ... s}, at ={a},dh, ... al,} and
y' =R +9Q7 (¢ al)|at=l i (6.21)

here 0 < ~v < 1 is the discount factor.
Update: Individual agent maximizes the reward by optimizing the policy directly where
the policy parameterized by (). Therefore, the objective is to maximize the cumulative

reward function.

J(@l) = Est’at Qf"(st, at)

at —w?i (z) (6.22)

s

In the MARDDPG algorithm, the recurrent neural network LSTM added to the actor-
network and critic network. Since the agents cannot communicate, the model takes a single
frame in each time slot. Adding the LSTM enables a way to remember the last communica-
tion (the effect of the actions on reward) received from other agents. The actor-network and
critic network historical information denoted by A’ and h!. The individual agent chooses

the action based on previous state hf, i.e., a! = 7" (h!), then the Q-function turn into

QY% (h%,a') where h! = {hiy, hig, ... hi). Likewise, loss function £(6;) in the critic

network is
2
£(6:) = Bngoe [(@101 a) = 9t) | (6.23)
where
'. 0 o,
gt =t Q (R), - mp () (6.24)

The objective function is denoted as

T0) = Brger Q1 (7l (2.l (05 (6.25)

[/
a;=m;" (hg ;)

156

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWiORKS

The replay buffer stores the experience information in the training phase. The critic and ac-
tor networks updated by randomly sampled episodes from the replay buffer in each training
step. The target critic and actor network parameters are denoted by 6" and ()’ respectively.

The target network is updated using soft updates.

6.3.2 Multi-Agent Recurrent DRL based Cooperative Caching Algo-

rithm

The MEC node receives the user requests and obtains their features. It supplies the current
request and caching state to the actor-network to get the caching actions. Following the
action executing based on the policy, each agent receives the reward and the next state.

Store the information received from the environment as history using LSTM.

R = LSTM(R!, s'*1)
6.26
R = LSTM(R!, s a®) (620

Then actor and critic network stores the experience in replay memory. To train the critic
and actor-network, randomly select a mini-batch of the transitions from replay memory.

For an individual sample, set the target critic network

Yl =1l (AN R (h”“) . (ht“”)) (6.27)

and updates its parameter ¢ by reducing the loss function over mini batch

£(0;) = %Z (in (hg{, LBl ,aﬁw> - y;j)Q (6.28)

jes

Furthermore, the actor computes the policy gradient leveraging the loss function and the

parameter () updated using the gradient over mini batch.

(I SZV @(hg@?va@fi(hiﬁw B
=S i o2

(1) 2)

157

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

Update the critic and actor parameters of the target network

0; < 70, + (1 —71)0
(6.30)
0; < 70; + (1 —7)0

Algorithm 1 summarizes the cooperative content caching mechanism based on MARD-
DPG. First, randomly initialize the critic network parameter ¢ and actor-network parameter

(). Initialize the replay memory G and the target network with weights 6" and ('. In each

t
a,i’

episode, initialize the empty history A héi and a random process for exploration. Lines

5 to 13 shows that MEC receives the requests and observe the state. The individual agent

selects an action a’ depend on the policy W? (hf“) After performing an action o, the agent

gets the following state s**! information, and the reward R’ then stores the information

collected from the environment in history using the LSTM network. Save the individual
t

agent’s experiences (s, af,rf|t = {1,...,T}) in the replay memory G to train actor and

critic networks. Line 14 shows that each agent randomly samples a mini batch of .S tran-

1 1 1 2 2 2
ijr g Tigis Sijo Qg T o

sitions {s ...} from the replay memory G to train the critic and
actor-network. Lines 15 to 19 show that for each agent, the critic network estimates the
Q-approximation for each sample 7 € S, then compute the temporal difference-error and
update its weights by minimizing the loss function £(6;) over the target network. Further,
the actor network computes the policy gradient Vy, J(();) leveraging the loss function and
update its weights by the average policy gradient over the target network. Then update the

target network weights, content properties and cache state in lines 21 and 22.

6.4 Performance Evaluation

This section, validates the performance of the proposed MARDDPG based cooperative
caching mechanism using simulations. Particularly, first, the simulation environment is
mentioned along with performance metrics and reference algorithms. Furthermore, the
performance of the MARDDPG mechanism is compared to the reference methods in terms
of system parameters, and the simulation results are analyzed in detail.

The real-world Dataset MovieLLens 1M Dataset [37] has been used in these simulations

158

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

Algorithm 6.1 MARDDPG based Content Caching Algorithm

Initialize the actor network W?i(hfl Z) with random weights () and the critic network

0;) .
Q, (ht,at)|nt = {h’éyl,h’ég,...,hZ’M},at = {a?aé,...,ah} with random weights 6
. 0!

Initialize the target network Tr?’ Q," with weights @ and @’
Initialize the replay memory G of each agent to capacity F

Output: X: Content Placement.

1: for all episode do

2 Initialize t = 1;

3 Initialize a random process M for action exploration;
4: Initialize empty history hJ ;, hl ;;
5: for t € T and o' # terminal do

6 The MEC receives user requests 1W?;

7 Observe the cache state s’ of each agent i;

8 For each agent i select an action a} = W?l(hzl) with respect to current policy and

exploration noise;

9: Execute action af, store the received reward r* and new state s‘™' information in
history using Eq. (6.26);

10: t=1t+1;

11: end for

12: Store episode (s, at, rf|t = {1,...,T}) for all agents;

13: for all i € M do

14: Randomly sample a mini batch of S episodes from replay memory
{si;,ai;,7i;,8%;,a;;,77;, ..} episodes from replay memory G’

15: for ¢ = T'tol do

16: Set target network Eq. (6.27);

17: Minimizing the loss using Eq. (6.28) and update the critic network;

18: Update the actor network policy using the sampled policy gradient Eq. (6.29);
19: end for

20: end for

21: Update the target networks using Eq. (6.30);

22: Update the content properties 1; and cache state s; ;

23: end for

to investigate for requesting content. The MovieLens dataset consists of 3952 movies,
1000209 user ratings that take integer values [1 (worst), 5 (best)] and 6040 users. Each row
of the dataset consists of userid, movieid, rating and timestamp. The rating information is
considered the content request since the user rates a movie followed by watching it [131].
The rating information is considered as the frequency of movies requested by a user. Also,
it is assumed that the number of requests for a movie within 10, 100 and 1000 requests
as the features. Therefore, the top 600 popular content requested by users and the 100

most active users have been selected to analyze the user request statistics. More than 90%

159

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

L0

— Actual Data
— Fitted Zipf

0.8

e
o

e
S

Content Popularity

1Y% PN, Y. NS A N O L S 0 A

0.0

T T T
0 100 200 300 400 500
Content Rank X

() (b)

Figure 6.4: (a) Comparison of content popularity vs content rank Content popularity of
Movielens dataset (b) Voronoi cell diagram with size 500m x 500m where blue circle
indicates the BSs and red triangles are mobile users.

of the ratings are from the first year in the dataset, so only the first year ratings has been
considered for simulation. The skewness parameter v = 0.8 is obtained by fitting the actual
data from the dataset with the Zipf distribution as shown in Fig 6.4a.

This section presents the system setting to evaluate the performance of the proposed
caching algorithm. A square region with an area of 500m x 500m is considered. In the
given simulation area, consider the Poisson point process (PPP) for base stations. The
users are distributed within each base station coverage based on PPP shown in Fig. 6.4b.
Six hundred contents with size determined uniformly at random from the range of [1I0MB
to 100MB], 15 BSs and 90 users has been considered. Each content has a deadline picked
randomly from [5 to 30s]. Each MEC can cache 10% of the total files. The latency to fetch
content from the base station to the user is specified using uniform distribution ranges from
[10 to 30s]. To obtain the file from the central server to MEC is taken as the 80s.

Python with the TensorFlow platform has been considered for implementing the pro-
posed MARDDPG caching mechanism and implemented it on the open-source R-MADDPG
package. The neural network model composes the evaluated actor and cretic network and
the target actor and critic network for each agent. The evaluated critic and actor networks

are similar to that of the target networks. The networks have three hidden layers with 64

160

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

neurons in each layer. The middle layer is an LSTM layer, and the other two layers are
fully connected, where the first layer has a ReLU activation function. The target network
is updated using the Adam optimizer, where the critic and actor networks learning rates are
0.001 and 0.0005, respectively, and the discount reward is 0.9. The capacity of the replay

memory and the mini-batch size is considered as 10° and 256, respectively.

Table 6.2: Simulation Parameters

Parameters Values
Simulation area 500/m x 500/m
Number of users 90

Number of contents 600

Number of base stations 15

Content size (10, 100] MB
The delay between BS and user (5,25]s

The delay between BSs 20s

The delay between content server and BS ~ 80s

The deadline of the content (10,30] s
Actor and critic learning rate 0.001, 0.0005
Network update rate 0.01
Discount 0.9

Mini batch size 256

Replay memory capacity 10°

Number of episodes 1500
Number of steps in each episode 100

6.4.1 Performance Metrics

To compare the performance of cache replacement schemes, the following metrics are con-

sidered:
1. Cache Hit Ratio: The fraction of requests served over the total requests.
2. Acceleration ratio: The fraction of saved delay and overall delay (from the controller)

3. Caching Reward: The reward measures the cumulative long-term reward collected

from caching (i.e., Sum of the intermediate reward of all MECs) using Eq. (6.15).

4. Local Hit: The fraction of requests served within the MEC.

161

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

5. Neighbouring Hit: The fraction of requests served within the network and not within

the MEC.

6.4.2 Reference Algorithms

In this section, the proposed algorithms is compared with the following caching mecha-
nisms: Least Recently Used (LRU) [177], First In First Out (FIFO) [178], Least Frequently
Used (LFU) [179], Multi-Agent Actor-Critic (MAC) [32] and Deep Reinforcement Learn-
ing (DRL) [16].

1. LRU (Least Recently Used): Itis a recency based mechanism where the least recently

requested file is updated with the fetched file when the cache is already full.

2. LFU (Least Frequently Used): It is a frequency-based mechanism where the least
number of times requested file is updated with the fetched file when the cache is

already full.

3. FIFO (First In First Out): FIFO is an arrival based mechanism where the earliest

cached file is updated with the fetched file when the cache is already full.

4. DRL (Deep Reinforcement Learning): DRL is a cache replacement decision mech-
anism where individual MEC performs the caching decisions individually with the

help of local observations without considering the impact of other MECs.

5. MAC (Multi-Agent Actor-Critic): MAC is a cache replacement decision mechanism
where the actor takes caching decisions and critic evaluates the policy. In this mecha-
nism, communication between the agents is not considered; hence, there is no global

state to process for actor networks.

The first three cache replacement strategies update the content individually based on arrival,
frequency and recency, whereas the other strategies consider deep reinforcement learning
to place the contents. The fourth cache replacement strategy (DRL) is different from the

fifth strategy (MAC) because, in DRL, the individual node is not aware of the other nodes’

162

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

0.7 0.6
FIFO
== LRU '/‘
06 e LFU i
0.5 4
- MAC
,,—/"/ A
05 =+~ DRL / e
% —o— MARDDPG _‘r.;,»—" =
o 04 s
o -
2 0.4 g / Sy d
-4 =} i
© .
R ER g i
ra H w 03 Qe
R FIFO g aN
0.2 w3 — RU < b i
P e LFU 0z .4
. il 1
01 —ae MAC —
-+ DRL i
—8— MARDDPG :
0.0 i | ; i f f f 0l f f f ; i ; ;
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
Cache Capacity (% of library) Cache Capacity (% of library)
(@) (b)
0.6
-8 LFIFO =&+ L-MAC 1 N-FIFO = N-MARDDPG
—4— LLRU =~ L-MARDDPG [] MN-LRU M N-MAC
051 -+- LLFU —e— L-DRL B N-LFU 1 N-DRL
0.4 =
T d
° i
% /%
S s o
s
= Jod
R
02 I /.
-
0.1 1 [-
0.0-
4 8 12 16 20
Cache Capacity (% of library)
©

Figure 6.5: Comparison of caching schemes using cache capacity vs (a) Cache Hit Ratio
(b) Acceleration Ratio (c) Local and Neighbour Cache Hit Ratio.

information, and the former is the value-based RL, and the latter is policy-based RL. More-
over, a multi agent deep deterministic policy gradient algorithm (i.e., MADDPG algorithm

[176]) has been considered for comparison.

6.4.3 Impact of Cache Size

The impact of cache size on acceleration ratio and cache hit ratio is shown in Figure 6.5.
In this simulations, the number of MECs is 15, skewness parameter is 0.8 and the cache
capacity varies from 4% to 20% total library size with step size 2.

In Fig. 6.5a, the impact of cache size on the cache hit ratio is presented. The curves

163

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

indicate an upward trend with the rise in cache size since the large cache size allows MECs
to cache more content, allowing them to satisfy more user requests from local or neighbour-
ing MECs. The learning-based mechanisms show superiority over conventional rule-based
replacement mechanisms since the learning-based mechanisms capture the user request
features from the historical data. MARDDPG has better performance than MAC and DRL.
The DRL mechanism does not consider the cooperation among the nodes where each node
tries to maximize its reward without concern about other nodes. MAC considers no coop-
eration between agents even though it considers the multi-agent framework. The proposed
MARDDPG mechanism provide improvement of up to 24, 19, 17, 9 and 4 % on hit ratio
compared with FIFO, LRU, LFU, DRL and MAC, respectively.

In Fig. 6.5b, the impact of cache size on the acceleration ratio is presented. The pro-
posed MARDDPG mechanism provide improvement of up to 20, 15, 13, 6 and 3 % on
acceleration ratio compared with FIFO, LRU, LFU, DRL and MAC, respectively.

In Fig. 6.5c¢, the impact of the cache size on the local and neighbouring cache hit is pre-
sented. The local hit rate is denoted with ‘L’ and the neighbouring hit rate denoted with ‘N’.
The local hit ratio of the learning-based algorithms has superiority over rule-based mech-
anisms. The reason is that the learning-based mechanisms perform the cache replacement
decision depend on the history of the data that enables the nodes to cache more popular
content locally to the MEC and moderately popular content cached at neighbouring nodes.
The upward trend indicates that the rise in cache size improves the local hit rate. It can
be noticed that the DRL has higher local hit ratio than MAC and MARDDPG and lower
neighbour hit ratio because each agent in DRL cache based on local cache information
leading to redundant content at each agent. It can also be noticed that MAC and the pro-
posed mechanisms have more neighbouring hit rate with less capacity and decreases as the
capacity increases. The reason is that both the MAC and proposed mechanisms considers
the cooperation among the agents leading to higher neighbour hit ratio. Overall, both MAC
and MARDDPG have a better cache hit ratio than DRL. Further, it can be observed that
the proposed mechanism may sacrifice the local hit rate, but it satisfies more user requests

with a small delay than all other baseline algorithms.

164

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

0.7 T T 0.7

-u: FFO =& MAC | -u: FFO =& MAC | <
= LRU =~ DRL [i 1 = LRU == DRL [i 7
cde IFU =8= MARDDPG | 3 ; . 061 +#+ LFU =8= MARDDPG i a4
0.6 —_— . ! ! ' - —— — | // =
1 1 { t i + s

NN

e
n

Hit Ratio

e
IS

Acceleration Ratio
)
s

e
w

03
0.2

02 0.1

T T T T T i T T
5 7 9 11 13 15 5 7 9 11 13 15
Number of MECs Number of MECs

() (b)

Figure 6.6: Comparison of caching schemes using number of MECs vs (a) Cache Hit Ratio
(b) Acceleration Ratio.

6.4.4 Impact of Number of MECs

The impact of the number of MECs on the cache hit ratio and acceleration ratio is shown in
Figure 6.6. In this simulations, the cache capacity is 10%, skewness parameter is 0.8 and
the number of MECs varies from 5 to 15 with step size 2.

It can be seen the effect of the cache hit ratio with a varying number of MECs in Figure
6.6a. It can be noticed that the proposed mechanism shows clear superiority over other
baseline mechanisms since it uses the cooperative mechanism and learning the user request
pattern from the history data. The conventional rule-based mechanism is performing less
than the learning-based mechanisms. The proposed MARDDPG mechanism provide im-
provement of up to 22.5, 18, 15, 6 and 4.5 % on hit ratio compared with FIFO, LRU, LFU,
DRL and MAC, respectively. From Fig. 6.6b, the acceleration ratio grows slowly with less
number of MECs is less, and rapidly increases as MECs increases. The propose mechanism
outperforms other mechanisms. The proposed MARDDPG mechanism provide improve-
ment of up to 19, 13,10, 6 and 1 % on acceleration ratio compared with FIFO, LRU, LFU,
DRL and MAC, respectively.

165

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

07 0.6

[J FFO [LFU [DRL [AFO [LFU [MAC
[LRU [MAC [MARDDPG [LRU [0 DRL [N MARDDPG
081 05
0.5
i o
S 04
1 M &
S 04 c
b= - =
T = <]
o . M - B 03 T T T T
p=l — = © —
T 03 o -
m [
3 02 =
02 < T T - il
01 0.1
0.0 0.0
0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10
Number of Contents Number of Contents
(a) (b)

Figure 6.7: Comparison of caching schemes using number of contents vs (c¢) Cache Hit
Ratio (d) Acceleration Ratio.

10

S
™

£ FFO EEN LFU EEE MAC I FFO W LFU mEm MAC
I (RU BN DRL WEW MARDDPG |

N MARDDPG

e
~

1 B RU [DRL

0.8

=4
@

e

=)
=
w

Hit Ratio

=]
kS
L

Acceleration Ratio
o o
w =

e
[N}

027

o
e

0.0~

=4
o

0.4 0.6 0.8 10 12 04 0.6 0.8 1.0 12
Zipf Shape Prameter Zipf Shape Prameter

(@) (b)

Figure 6.8: Comparison of caching schemes using Zipf shape parameter vs (a) Cache Hit
Ratio (b) Acceleration Ratio.

6.4.5 Impact of Number of Contents

The impact of contents on cache hit ratio and acceleration ratio is shown in Figure 6.7. In
this simulations, the number of MECs is 15, skewness parameter is 0.8, cache capacity is
10% total library size and number of contents varies from 0.2 to 1.0 with step size 0.2.

In Fig. 6.7a, the impact of number of contents on the cache hit ratio is presented. The

bars indicate an upward trend as contents rise. More popular content need to be cached at

166

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

MECs, leading to frequent cache replacement due to limited cache capacity. It can be seen
that MARDDPG has better performance than other reference algorithms. The DRL mecha-
nism does not consider the cooperation among the nodes where each node tries to maximize
its reward without concern about other nodes leading to less cache hit ratio than MAC and
MARDDPG. MAC considers no cooperation between agents even though it considers the
multi-agent framework. The proposed MARDDPG mechanism provide improvement of
up to 20, 17, 17, 11 and 2.2 per cent on hit ratio compared with FIFO, LRU, LFU, DRL
and MAC, respectively. It can be noticed from Fig. 6.7b, that the conventional replace-
ment mechanism grows slowly compared to the learning-based mechanisms. Because the
learning-based mechanism captures the content popularity, enabling the MEC to replace the
less popular content, leading to more saved delay. The proposed mechanism outperforms
other baseline algorithms. The proposed MARDDPG mechanism provide improvement of
up to 17, 13, 11, 6 and 3 % on acceleration ratio compared with FIFO, LRU, LFU, DRL

and MAC, respectively.

6.4.6 Impact of Zipf parameter

Them impact of Zipf parameter on cache hit ratio and accelerated ratio is presented in
Figure 6.8a and 6.8b respectively. The upward trend of all the algorithms indicates that
more requests are for few contents as the Zipf skewness parameter rises; this leads to an
increase in the hit ratio and allows access to the requested content within a smaller delay

improves the acceleration ratio.

6.4.7 Performance evaluation with training episode

In Fig. 6.9, the performance comparison of cache hit ratio, local and neighbour cache hit
ratio is presented. In this simulations, the number of MECs are 15, skeness parameter is
0.8, cache capacity is 10%.

From Fig. 6.9a, it can be seen that the rule-based cache replacement mechanism shows
a relatively stable hit ratio since they have not considered real-time continuous learning

from the environment. The learning-based algorithms curves indicate an upward trend and

167

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

0.8 - . . 06
-8 FFO = MAC i 1 I -8. FFO =&« DAL
4+ [RU == DRL 4 [RU == MAC
0.71 == LFU =8= MARDDPG == LFU =8= MARDDPG | !
- . ¥ 054 . - ! ;
T T I ep ey et
06 ° ! i
T 04 t
o © T
: a
< 05 L : 1 1 T ==k
] T e e e~ i ———— - | I |
T k- ! ¥ ! ! | 03 e poee A
i ,(4-........1.’.....‘...-*- [] R 3 ¥ :
0.4 g } ¥ ' ; I | L
| ! i ! | | i e | | ! =
b Eath Bt SR S My & SEN SR 3 B ! | | By T T Sl
g
03 ; i ‘ ; ; : ‘
02 ; i ; : ; : ; 0l i ; ; ; : : i
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Training Episode Training Episode
(a) (b)
0.30
.- FFO —a- DRL
4+ IRU —+— MAC
0251 = LFU -e MARDDPG |
. — —J : N T,
i ——— |
| i | e | |
2 BT TF WO Ly A i ——
T 020 : f ag] ' ' !
3 |
= I I '
I ! ! ! I !
PRl o & Hnr Yot T e Rt S e e
0 X Ty vl T TIRY SIEE SN SOmr Sy vy
8 —f—a—" : 4'?“1.._4_ o 2o '
5 | e — kel - -
| e I S
T 010 Ffrhac ot TR e /
FETTRT T
0.05
0.00

T i T T i T T
0 200 400 600 800 1000 1200 1400
Training Episode

(©)

Figure 6.9: Comparison of caching schemes using training episode vs (a) Cache Hit Ratio
(b) Local Cache Hit Ratio (c) Neighbour Cache Hit Ratio.

stabilize after that. The DRL has a higher hit ratio than MAC and MARDDPG initially, but
as the episodes increase, it slowly diminishes. That is because the DRL is a non-cooperative
cache replacement mechanism where each agent performs the cache replacement based
on local information, not considering the other agents’ information in caching decision.
Therefore, each agent may cache content redundantly leads to obtain more content from
the content server. In MAC, the agents cache the content based on the central controller,
which cooperates with communication overhead. The proposed MARDDPG outperforms
the other mechanisms since it uses the LSTM to learn the better policy to cache more

popular content.

168

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

Fig. 6.9b and 6.9c show that the rule-based mechanisms have more local hit ratios and
fewer neighbour-hit ratios. The reason is that the rule-based mechanism not consider the
learning from the environment; therefore, each MEC caches the redundant content leads to
fetch and replace more content compared to other mechanisms. It can also noticed that the
DRL mechanism has a lower neighbour hit ratio and higher local cache hit ratio since each
agent in DRL caches based on the local cache state. The MAC and MARDDPG have lower
local hit rate than DRL, but both mechanisms have better neighbour hit ratio. Overall,
both the MAC and MARDDPG have a better cache hit ratio than DRL, even though they
sacrifice a little local cache hit ratio. It can be observed that the proposed MARDDPG has
an improved neighbour hit ratio than all baseline algorithms since it learns the better policy
by using LSTM leads to cache more popular content near users instead of fetching from

the distant content server.

6.4.8 The convergence performance

From Fig. 6.10a, it can be noticed that the rule-based replacement mechanisms like FIFO,
LRU and LFU fluctuate around 33, 42 and 46, respectively, and do not increase training
episodes. The reason is that the rule-based mechanism cannot learn from the environment.
It can be seen that the DRL has an upward trend in the first 600 episodes and fluctuates
around reward 62. In DRL, each agent learns from its local cache state, leading to more
difficulty learning optimal strategy. The MAC raise slowly till 400 episodes and constantly
fluctuates around reward 80 since the centralized controller simultaneously controls the
multiple agents in the environment leading to slow convergence. It can be noticed that
the proposed MARDDPG curve increases quickly and fluctuates around reward 87, which
outperforms all other references algorithms. Thus, the MARDDPG finds the best strategy
quickly compared to other reference mechanisms in maximizing saved delay. Compared
to DRL and MAC, MARDDPG has a 12 and 15 per cent increase in reward. From Fig.
6.10b, It can be observed that both the curves have a similar trend. Both the curves raise
quickly till episode 400 and then stabilizes slowly. It can be noticed that even though both

curves have a similar trend, the proposed MARDDPG mechanism has a higher reward and

169

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

120 120
== MADDPG
]/ == MARDDPG
100 ! ‘ i | A 100 — I
| d R by |
80 L i T VR-UITE 80 :
60 - L ' , / i 60
Iy vea Ll U :
T w0 AR e T a0
o . i ©]
g i : ‘ : g i
¢ W a a @ 07
T S S S
-20 i i 3 -20
—&- FIFO =i~ MAC
—40 4 -4- LRU —+— DAL —40
i —— LFU -8 MARDDPG
-60 i i i f ; T ; -60 f i | i ; ; f
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Training Episode Training Episode
(a) (b)

08

) AFO [DRL
071 O3 RU HEE MAC i
[LFU W MARDDPG ||
e p———————

0.6

0.5

0.4

03

Acceleration Ratio

02

01

0.0

0 250 500 750 1000 1250 1500 1750
Training Episode

(©)

Figure 6.10: (a) Reward of all schemes vs Training episode (b) Reward of proposed and
MADDPG schemes during Training episodes (c) Training episode vs Acceleration Ratio.

more stability than the MADDPG. The reason is that the inclusion of LSTM enables the
agents in the MARDDPG algorithm to learn a better policy compared to MADDPG, where
the LSTM has not considered. Overall it can be noticed that the proposed MARDDPG
outperforms all other reference algorithms by considering the LSTM for learning a better
strategy to maximize the reward cooperatively among the agents.

In Fig. 6.10c, the impact of training episodes on the acceleration ratio is presented. It
can be seen that the rule-base mechanism does not increase as the training episode increase.
The proposed mechanism raises quickly and stabilizes after episode 1000. That indicates

that the MARDDPG learns a better policy quickly. That means the MARDDPG caches

170

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NISEWORKS

the more popular content cooperatively with fewer replacements leads to more saved delay.
The DRL and MAC have less acceleration ratio since in DRL agent updates policy based
on local cache state without cooperation. As in MAC, a centralized coordinator updates the

agents’ policy simultaneously.

6.5 Summary

This chapter considers caching in the multi-cell scenario. Specifically, a MARDDPG al-
gorithm has been designed to maximize the saved delay in the cooperative mobile edge
networks. The LSTM model is integrated in MADDPG to design the cooperative caching
algorithm for multi-cell scenarios and discussed the network update in detail. Extensive
simulations are performed to determine the performance of the proposed algorithm over
existing algorithms. The proposed cooperative cache update algorithm outperforms the
existing algorithms by considering performance metrics such as the cache hit ratio, accel-
eration ratio and reward. The proposed mechanism is shown an improvement over other

learning-based and non-learning (rule-based) based algorithms.

171

Chapter 7

Conclusion and Future Directions

This thesis investigates the design and development of caching algorithms, which reduce
the load on backhaul links and congestion in the mobile edge networks by placing appro-
priate content near the users. Different caching mechanisms that maximize the saved delay
when placing the content at the edge nodes in MEN are presented. The proposed caching
mechanisms achieve better performance in terms of the cache hit ratio, acceleration ratio,
and cache utilization. Performance evaluations have been done to show the efficacy of the
proposed algorithms. A comparative study of the proposed protocols has been presented
and discussed through several experiments in order to demonstrate their merits and capa-
bilities.

This thesis addresses the main challenges of mobile edge networks (MENSs), such as
uneven distribution of users, heterogeneity of user preferences, delay sensitivity, mobility,
randomness of contact duration, cache utilization improvement, and dynamic content pop-
ularity information. The rapid growth in time-critical and delay-sensitive applications like
video streaming, Internet of Things (IoT), and financial applications need a response within
a deadline. If a request is not served within the deadline, the quality of service would be af-
fected and this affects the user QoE. Hence, to improve the user QoE, the request deadlines
must be satisfied. Furthermore, the user mobility and dynamic content popularity imposed
additional challenges. In this thesis, contributions have been made by considering the main
challenges, such as the deadline of the content, heterogeneity of user preferences, user mo-

bility, and dynamic content popularity in making efficient caching decisions in MEN.

172

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS Section 7.2

7.1 The Major Contributions of the Thesis

A cache placement problem in mobile edge networks aiming to maximize saved delay by
considering the capacity and deadline constraints has been addressed in Chapter 3. The
proposed approach improves the acceleration ratio, cache hit ratio and cache utilization.
The echo state network is applied to predict content request distribution and a fuzzy caching
mechanism is designed based on the predicted content popularity, benefit and deadline.

The clustered cooperative cache placement has been analyzed in large-scale mobile
edge networks, aiming to maximize the saved delay by considering the heterogeneity of
user preferences, activity level, and uneven user distribution in Chapter 4. The dynamic
user behaviour is learned using LSTM model. The users are clustered based on the con-
tent based clustering mechanism to cache appropriate content near to users. An efficient
greedy mechanism is designed to solve the cache placement problem. The relation between
user preferences and local and global content popularity has been analyzed. The proposed
mechanism improves the cache hit ratio, acceleration ratio and cache utilization.

In Chapter 5, the impact of user mobility and contact duration on cache placement in
mobile edge networks aiming to maximize the saved delay by considering the capacity
constraint have been analyzed. The user mobility is modeled as a Markov renewal process
to predict the contact duration and the moving path. An effective greedy algorithm is
designed to solve the formulated problem. Further, a heuristic search mechanism based on
a genetic algorithm is proposed to solve a large scale problem. The proposed mechanism
shows improvement in terms of the cache hit ratio and acceleration ration in a mobility
based scenario.

In Chapter 6, an efficient deep reinforcement learning algorithm has been designed for
cooperative mobile edge networks in the absence of content popularity. In the proposed
mechanism LSTM is applied to remember the last communication received from other
agents. The proposed mechanism is shown an improvement over other learning-based
and non-learning (rule-based) based algorithms. The delay is minimized by replacing the

fetched content with the appropriate content at the base station.

173

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS Section 7.2

7.2 Future Directions

Although the proposed caching algorithms show promising performance improvements as
compared to the existing relevant mechanisms available in the literature, there are other
aspects and scenarios which could be considered. Some of the potential extensions of our
research work presented in this thesis are listed as follows:

Caching and computation offloading play a vital role in improving the user quality of
experience. However, providing an efficient method for joint caching and computation
offloading decisions to improve network resource utilization and performance for delay-
sensitive applications are challenging in large scale mobile edge networks. Further, design-
ing an efficient cache strategy by considering the user mobility into the joint caching and
computing in mobile edge networks is more practical.

Research can be extended to investigate the device-to-device communication based
incentive-based cooperative caching strategy in mobile edge networks. In Chapter 4, un-
even distribution of users and heterogeneous user preferences are considered in the static
network setting. However, users may move across the base stations at varying speeds.
Research may be extended to investigate caching strategy based on instant cell load in-
formation and varied channel conditions in large scale mobile edge networks. In Chapter
5, the contact duration aware cooperative caching mechanism is presented. The problem
presented in Chapter 5 can be further investigated by analyzing the mobility aware device-
to-device communication in hybrid mobile networks. The dynamic nature of the mobile
networks, content popularity, user position and user preferences play a vital role in deci-
sion making. Research can be extended by providing an efficient learning-based coopera-

tive caching scheme for big data-driven applications to improve the cache performance.

174

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS Section 7.2

Appendix

Proof of Lemma 1

Then the benefit of adding n’; ; to A is

g(AUn}) = ZprP”me{xf—l—l,ézBr}

uEU veEY feF

+) mm{x;,(sgﬁ}(dum_d;) (7.1)
JERj#r f

Here, min{z} + 1,4;, g""} > min{z, (5’“5—;} shows that the marginal benefit gained by
adding an element n’; ;. to the caching scheme A is non-negative. The monotone submodu-
larity of function g(A) is proved by satisfying the submodular property (5.14). Therefore,
g(AuUnY ;) —g(A) > g(BUn},) — g(B) > 0. We can obtain this 2%, < (2%, +1) <
Vi) < (2%, + 1) since A C B C N then 2’ C }. The difference of marginal values of

(g(Aunf,) —g(A) — (9(BUnj},) — g(B))is given as

(AU?’Lfk ZprPvDZX

ueu veV feF

[min{x;+1,w}+ A(A) = min{a’, w} + A(A)] (7.2)

where A(A) = cpis, min{a:f,)5 2 } D = (dy — d) and w = 9}, 5~ BT . The difference
of marginal values of g(AUn} ;) — g(A) — g(BUn%,) — g(B) is given as

DWTADIR

u€eU vey feF
[min{x; +1Lw}+ A(A) — min{z}, w} + A(A)}

. [min{b; +1,wh+ A(B) + min{b,w} + A(B)] (7.3)

175

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS Section 7.2

this can be written as

% UEZM ;foPgD fezfa (7.4)
where o = [min{x? + 1w} + A(A) — min{2}, w} + A(A)]
— [min{b;} + 1L,w} + A(B) + min{d},w} + A(B)} Based on the content cached and
range of the MECs there exist five cases. Case I = (w < 2% ;), Case Il = (2%, < w <
2%y + 1), Case Il = (2%, + 1 < w < b},), Case IV = (b}, < w < b}, + 1) and Case
V=(0},+1<w)

{w+ A4} — {w+ A4} - {w + AB)} + {w+ AB)} =0, I

{w+ A} — {2, + AA)} — {w+ AB)} +{w+ AB)} =w -2, T

{2+ 1+ A} = {2+ AA)} - {w+ AB)} + {w+ AB)}]
— 2+ 1+ A(A) — (2, + A(A)) = 1, Il
{2+ 1+ A(A)} = {2, + A(A)} — {w+ AB)} + {b, + AB)}

=w— b, +1, \Y

{2+ 1+ A4} = {2, + A(A)} = {B, + 1+ A(B)}

| +Hbp + AB)Y =0, v
(7.5)

From the all cases we can observe that the ¢ Y, >,y PrPyD Y ;e > 0 since
a > 0. Therefore, g(AUn%,) — g(A) > g(BUn},) — g(B). with this the monotone

submodularity of (5.16) is proved.

176

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min Chen.
In-edge ai: Intelligentizing mobile edge computing, caching and communication by
federated learning. IEEE Network, 33(5):156-165, 2019.

Cisco Systems Inc. Cisco visual networking index: Global mobile data traffic fore-
cast update, 2017--2022. White Paper, Feb 2019.

Jingjing Yao, Tao Han, and Nirwan Ansari. On mobile edge caching. IEEE Com-
munications Surveys & Tutorials, 21(3):2525-2553, 2019.

Li Qiu and Guohong Cao. Popularity-aware caching increases the capacity of wire-
less networks. IEEE Transactions on Mobile Computing, 19(1):173-187, 2019.

Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen, Pad-
manabhan Pillai, and Mahadev Satyanarayanan. Quantifying the impact of edge
computing on mobile applications. In Proceedings of the 7th ACM SIGOPS Asia-
Pacific Workshop on Systems, pages 1-8, 2016.

Amardeep Mehta, William Térneberg, Cristian Klein, Johan Tordsson, Maria Kihl,
and Erik Elmroth. How beneficial are intermediate layer data centers in mobile
edge networks? In 2016 IEEE Ist International Workshops on Foundations and
Applications of Self* Systems (FAS* W), pages 222-229. IEEE, 2016.

Meng Zhang, Hongbin Luo, and Hongke Zhang. A survey of caching mechanisms
in information-centric networking. [EEE Communications Surveys & Tutorials,
17(3):1473-1499, 2015.

Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S Tucker.
Fog computing may help to save energy in cloud computing. [EEE Journal on
Selected Areas in Communications, 34(5):1728-1739, 2016.

Swaroop Nunna, Apostolos Kousaridas, Mohamed Ibrahim, Markus Dillinger,
Christoph Thuemmler, Hubertus Feussner, and Armin Schneider. Enabling real-
time context-aware collaboration through 5g and mobile edge computing. In 2015
12th International Conference on Information Technology-New Generations, pages
601-605. IEEE, 2015.

177

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and
zipf-like distributions: Evidence and implications. In IEEE INFOCOM’99. Confer-
ence on Computer Communications. Proceedings. Eighteenth Annual Joint Confer-

ence of the IEEE Computer and Communications Societies. The Future is Now (Cat.
No. 99CH36320), volume 1, pages 126—134. IEEE, 1999.

Tuyen X Tran, Duc V Le, Guosen Yue, and Dario Pompili. Cooperative hierarchical
caching and request scheduling in a cloud radio access network. IEEE Transactions
on Mobile Computing, 17(12):2729-2743, 2018.

Sampa Sahoo, Bibhudatta Sahoo, and Ashok Kumar Turuk. A learning automata-
based scheduling for deadline sensitive task in the cloud. IEEE Transactions on
Services Computing, 2019.

Surbhi Saraswat, Hari Prabhat Gupta, Tanima Dutta, and Sajal K Das. Energy ef-
ficient data forwarding scheme in fog based ubiquitous system with deadline con-
straints. IEEE Transactions on Network and Service Management, 2019.

Mohammed S EIBamby, Mehdi Bennis, Walid Saad, and Matti Latva-Aho. Content-
aware user clustering and caching in wireless small cell networks. In 2014 11th In-

ternational Symposium on Wireless Communications Systems (ISWCS), pages 945—
949. IEEE, 2014.

Mingzhe Chen, Walid Saad, Changchuan Yin, and Mérouane Debbah. Echo state
networks for proactive caching in cloud-based radio access networks with mobile
users. IEEE Transactions on Wireless Communications, 16(6):3520-3535, 2017.

Hao Zhu, Yang Cao, Wei Wang, Tao Jiang, and Shi Jin. Deep reinforcement learning
for mobile edge caching: Review, new features, and open issues. IEEE Network,
32(6):50-57, 2018.

David B Shmoys and Eva Tardos. An approximation algorithm for the generalized
assignment problem. Mathematical programming, 62(1-3):461-474, 1993.

Zheng Chen, Jemin Lee, Tony QS Quek, and Marios Kountouris. Cooperative
caching and transmission design in cluster-centric small cell networks. IEEE Trans-
actions on Wireless Communications, 16(5):3401-3415, 2017.

Ming-Chun Lee, Andreas F Molisch, Nishanth Sastry, and Aravindh Raman. In-
dividual preference probability modeling and parameterization for video content in
wireless caching networks. IEEE/ACM Transactions on Networking, 27(2):676—
690, 2019.

Jie Yang, Yuanyuan Qiao, Xinyu Zhang, Haiyang He, Fang Liu, and Gang Cheng.
Characterizing user behavior in mobile internet. [EEE transactions on emerging
topics in computing, 3(1):95-106, 2014.

178

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Konstantinos Poularakis and Leandros Tassiulas. Code, cache and deliver on the
move: A novel caching paradigm in hyper-dense small-cell networks. IEEE Trans-
actions on Mobile Computing, 16(3):675-687, 2016.

Rui Wang, Jun Zhang, SH Song, and Khaled B Letaief. Mobility-aware caching in
d2d networks. IEEE Transactions on Wireless Communications, 16(8):5001-5015,
2017.

Zongqing Lu, Xiao Sun, and Thomas La Porta. Cooperative data offloading in op-
portunistic mobile networks. In IEEE INFOCOM 2016-The 35th Annual IEEE In-
ternational Conference on Computer Communications, pages 1-9. IEEE, 2016.

Karthikeyan Shanmugam, Negin Golrezaei, Alexandros G Dimakis, Andreas F
Molisch, and Giuseppe Caire. Femtocaching: Wireless content delivery through dis-
tributed caching helpers. IEEE Transactions on Information Theory, 59(12):8402—
8413, 2013.

Fengxian Guo, Heli Zhang, Hong Ji, Xi Li, and Victor CM Leung. An efficient com-
putation offloading management scheme in the densely deployed small cell networks
with mobile edge computing. IEEE/ACM Transactions on Networking, 26(6):2651—
2664, 2018.

Seungseob Lee, SuKyoung Lee, Kyungsoo Kim, and Yoon Hyuk Kim. Base sta-
tion placement algorithm for large-scale lte heterogeneous networks. PloS one,
10(10):e0139190, 2015.

Zhe Li and Gwendal Simon. In a telco-cdn, pushing content makes sense. IEEE
Transactions on Network and Service Management, 10(3):300-311, 2013.

Ejder Bastug, Marios Kountouris, Mehdi Bennis, and Mérouane Debbah. On the
delay of geographical caching methods in two-tiered heterogeneous networks. In
2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), pages 1-5. IEEE, 2016.

Shuo Wang, Xing Zhang, Yan Zhang, Lin Wang, Juwo Yang, and Wenbo Wang. A
survey on mobile edge networks: Convergence of computing, caching and commu-
nications. leee Access, 5:6757-6779, 2017.

Wei Jiang, Gang Feng, and Shuang Qin. Optimal cooperative content caching and
delivery policy for heterogeneous cellular networks. IEEE Transactions on Mobile
Computing, 16(5):1382-1393, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

Chen Zhong, M Cenk Gursoy, and Senem Velipasalar. Deep reinforcement learning-
based edge caching in wireless networks. IEEE Transactions on Cognitive Commu-
nications and Networking, 6(1):48-61, 2020.

179

[33] Matthijs TJ Spaan. Partially observable markov decision processes. In Reinforce-
ment Learning, pages 387—414. Springer, 2012.

[34] Yang Guan, Yao Xiao, Hao Feng, Chien-Chung Shen, and Leonard J Cimini. Mo-
bicacher: Mobility-aware content caching in small-cell networks. In 2014 IEEE
Global Communications Conference, pages 4537-4542. IEEE, 2014.

[35] Tuyen X Tran, Fatemeh Kazemi, Esmaeil Karimi, and Dario Pompili. Mobee:
Mobility-aware energy-efficient coded caching in cloud radio access networks. In
2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems
(MASS), pages 461-465. IEEE, 2017.

[36] Marvin McNett and Geoffrey M Voelker. Access and mobility of wireless pda users.
ACM SIGMOBILE Mobile Computing and Communications Review, 9(2):40-55,
2005.

[37] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4):19:1-19:19, December 2015.

[38] Brian McFee, Thierry Bertin-Mahieux, Daniel PW Ellis, and Gert RG Lanckriet.
The million song dataset challenge. In Proceedings of the 21st International Con-
ference on World Wide Web, pages 909-916, 2012.

[39] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next generation 5g wireless
networks: A comprehensive survey. [EEE Communications Surveys & Tutorials,
18(3):1617-1655, 2016.

[40] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and Borje
Ohlman. A survey of information-centric networking. IEEE Communications Mag-
azine, 50(7), 2012.

[41] Hamidreza Shariatmadari, Rapeepat Ratasuk, Sassan Iraji, Andrés Laya, Tarik
Taleb, Riku Jantti, and Amitava Ghosh. Machine-type communications: current
status and future perspectives toward 5g systems. IEEE Communications Magazine,
53(9):10-17, 2015.

[42] Mahadev Satyanarayanan. Mobile computing: the next decade. ACM SIGMOBILE
Mobile Computing and Communications Review, 15(2):2-10, 2011.

[43] Ying Gao, Wenlu Hu, Kiryong Ha, Brandon Amos, Padmanabhan Pillai, and Ma-
hadev Satyanarayanan. Are cloudlets necessary? School Comput. Sci., Carnegie
Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-CS-15-139, page 8, 2015.

[44] Waleed Ali, Siti Mariyam Shamsuddin, Abdul Samad Ismail, et al. A survey of web
caching and prefetching. Int. J. Advance. Soft Comput. Appl, 3(1):18-44, 2011.

[45] Xuan Liu, Zhuo Li, Peng Yang, and Yonggiang Dong. Information-centric mobile ad
hoc networks and content routing: a survey. Ad Hoc Networks, 58:255-268, 2017.

180

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

George Xylomenos, Christopher N Ververidis, Vasilios A Siris, Nikos Fotiou, Chris-
tos Tsilopoulos, Xenofon Vasilakos, Konstantinos V Katsaros, George C Polyzos,
et al. A survey of information-centric networking research. IEEE Communications
Surveys and Tutorials, 16(2):1024-1049, 2014.

Stefan Podlipnig and Laszlo Boszormenyi. A survey of web cache replacement
strategies. ACM Computing Surveys (CSUR), 35(4):374-398, 2003.

Kai Jiang, Huan Zhou, Xin Chen, and Haijun Zhang. Mobile edge computing for
ultra-reliable and low latency communications. IEEE Communications Standards
Magazine, 2021.

Xi Peng, Juei-Chin Shen, Jun Zhang, and Khaled B Letaief. Backhaul-aware caching
placement for wireless networks. In 2015 IEEE Global Communications Conference
(GLOBECOM), pages 1-6. IEEE, 2015.

Xiaofei Wang, Min Chen, Tarik Taleb, Adlen Ksentini, and Victor CM Leung. Cache
in the air: Exploiting content caching and delivery techniques for 5g systems. /IEEE
Communications Magazine, 52(2):131-139, 2014.

Ejder Bastug, Mehdi Bennis, Engin Zeydan, Manhal Abdel Kader, Ilyas Alper
Karatepe, Ahmet Salih Er, and Mérouane Debbah. Big data meets telcos: A proac-

tive caching perspective. Journal of Communications and Networks, 17(6):549-557,
2015.

Engin Zeydan, Ejder Bastug, Mehdi Bennis, Manhal Abdel Kader, Ilyas Alper
Karatepe, Ahmet Salih Er, and Mérouane Debbah. Big data caching for networking:
Moving from cloud to edge. IEEE Communications Magazine, 54(9):36-42, 2016.

Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B
Letaief. Mobile edge computing: Survey and research outlook. arXiv preprint
arXiv:1701.01090, 2017.

Mingyue Ji, Giuseppe Caire, and Andreas F Molisch. Fundamental limits of caching
in wireless d2d networks. [IEEE Transactions on Information Theory, 62(2):849—
869, 2015.

Abdallah Khreishah and Jacob Chakareski. Collaborative caching for multicell-
coordinated systems. In 2015 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 257-262. IEEE, 2015.

Mohammad Ali Maddah-Ali and Urs Niesen. Coding for caching: fundamental lim-
its and practical challenges. IEEE Communications Magazine, 54(8):23-29, 2016.

Negin Golrezaei, Andreas F Molisch, Alexandros G Dimakis, and Giuseppe Caire.
Femtocaching and device-to-device collaboration: A new architecture for wireless
video distribution. IEEE Communications Magazine, 51(4):142—-149, 2013.

181

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Dong Liu and Chenyang Yang. Energy efficiency of downlink networks with caching
at base stations. IEEE Journal on Selected Areas in Communications, 34(4):907—
922, 2016.

Min Sheng, Weijia Han, Chuan Huang, Jiandong Li, and Shuguang Cui. Video
delivery in heterogenous crans: architectures and strategies. IEEE Wireless Commu-
nications, 22(3):14-21, 2015.

Hasti Ahlehagh and Sujit Dey. Video-aware scheduling and caching in the radio
access network. IEEE/ACM Transactions on Networking (TON), 22(5):1444—-1462,
2014.

Jingxiong Gu, Wei Wang, Aiping Huang, and Hangguan Shan. Proactive storage
at caching-enable base stations in cellular networks. In 2013 IEEE 24th Annual
International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), pages 1543-1547. IEEE, 2013.

Syed Ali Raza Zaidi, Mounir Ghogho, and Desmond C McLernon. Information
centric modeling for two-tier cache enabled cellular networks. In 2015 IEEE In-
ternational Conference on Communication Workshop (ICCW), pages 80-86. IEEE,
2015.

Zheng Chang, Yunan Gu, Zhu Han, Xianfu Chen, and Tapani Ristaniemi. Context-
aware data caching for 5g heterogeneous small cells networks. In 2016 IEEE Inter-
national Conference on Communications (ICC), pages 1-6. IEEE, 2016.

Pol Blasco and Deniz Giindiiz. Learning-based optimization of cache content in a
small cell base station. In 2014 IEEE International Conference on Communications
(ICC), pages 1897-1903. IEEE, 2014.

Konstantinos Poularakis, George losifidis, and Leandros Tassiulas. Approximation
algorithms for mobile data caching in small cell networks. IEEE Transactions on
Communications, 62(10):3665-3677, 2014.

Maria Gregori, Jesis Gémez-Vilardebd, Javier Matamoros, and Deniz Giindiiz.
Wireless content caching for small cell and d2d networks. IEEE Journal on Se-
lected Areas in Communications, 34(5):1222—-1234, 2016.

Tianyu Wang, Lingyang Song, and Zhu Han. Dynamic femtocaching for mobile
users. In 2015 IEEE wireless communications and networking conference (WCNC),
pages 861-865. IEEE, 2015.

Xiuhua Li, Xiaofei Wang, and Victor CM Leung. Weighted network traffic offload-
ing in cache-enabled heterogeneous networks. In 2016 IEEE International Confer-
ence on Communications (ICC), pages 1-6. IEEE, 2016.

Ying Cui and Dongdong Jiang. Analysis and optimization of caching and multicas-
ting in large-scale cache-enabled heterogeneous wireless networks. IEEE transac-
tions on Wireless Communications, 16(1):250-264, 2016.

182

[70] Bo Bai, Li Wang, Zhu Han, Wei Chen, and Tommy Svensson. Caching based
socially-aware d2d communications in wireless content delivery networks: A hy-
pergraph framework. IEEE Wireless Communications, 23(4):74-81, 2016.

[71] Yecheng Wu, Sha Yao, Yang Yang, Ting Zhou, Hua Qian, Honglin Hu, and Matti
Hamalainen. Challenges of mobile social device caching. IEEE Access, 4:8938—
8947, 2016.

[72] Bingiang Chen, Chenyang Yang, and Gang Wang. Cooperative device-to-device
communications with caching. In 2016 IEEE 83rd Vehicular Technology Conference
(VTC Spring), pages 1-5. IEEE, 2016.

[73] Constantinos Psomas, Gan Zheng, and Ioannis Krikidis. Cooperative wireless edge
caching with relay selection. In 2017 IEEE International Conference on Communi-
cations (ICC), pages 1-5. IEEE, 2017.

[74] Sladana Josilo, Valentino Pacifici, and Gyorgy Dan. Distributed algorithms for con-
tent placement in hierarchical cache networks. Computer Networks, 125:160-171,
2017.

[75] Yong Cui, Jian Song, Minming Li, Qingmei Ren, Yangjun Zhang, and Xuejun
Cai. Sdn-based big data caching in isp networks. IEEE Transactions on Big Data,
4(3):356-367, 2018.

[76] Shashwat Kumar and A Antony Franklin. Consolidated caching with cache splitting
and trans-rating in mobile edge computing networks. In 2017 IEEE International
Conference on Advanced Networks and Telecommunications Systems (ANTS), pages
1-6. IEEE, 2017.

[77] Shashwat Kumar, Doddala Sai Vineeth, et al. Edge assisted dash video caching
mechanism for multi-access edge computing. In 2018 IEEE International Confer-

ence on Advanced Networks and Telecommunications Systems (ANTS), pages 1-6.
IEEE, 2018.

[78] Tadege Mihretu Ayenew, Dionysis Xenakis, Nikos Passas, and Lazaros Merakos.
A novel content placement strategy for heterogeneous cellular networks with small
cells. IEEE Networking Letters, 2019.

[79] Dewang Ren, Xiaolin Gui, Kaiyuan Zhang, and Jie Wu. Hybrid collaborative
caching in mobile edge networks: An analytical approach. Computer Networks,
158:1-16, 2019.

[80] Lintao Yang, Yanqiu Chen, Luqi Li, and Hao Jiang. Cooperative caching and de-
livery algorithm based on content access patterns at network edge. In International
Conference on 5G for Future Wireless Networks, pages 99-123. Springer, 2019.

[81] Xinwei Liu, Jiaxin Zhang, Xing Zhang, and Wenbo Wang. Mobility-aware coded
probabilistic caching scheme for mec-enabled small cell networks. IEEE Access,
5:17824-17833, 2017.

183

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Tuo Liu, Sheng Zhou, and Zhisheng Niu Tsinghua. Mobility-aware coded-caching
scheme for small cell network. In 2017 IEEE International Conference on Commu-
nications (ICC), pages 1-6. IEEE, 2017.

Min Chen, Yixue Hao, Long Hu, Kaibin Huang, and Vincent KN Lau. Green and
mobility-aware caching in 5g networks. IEEE Transactions on Wireless Communi-
cations, 16(12):8347-8361, 2017.

Yu Ye, Ming Xiao, and Mikael Skoglund. Mobility-aware content preference learn-
ing in decentralized caching networks. IEEE Transactions on Cognitive Communi-
cations and Networking, 6(1):62-73, 2019.

Emre Ozfatura and Deniz Giindiiz. Mobility and popularity-aware coded small-cell
caching. IEEE Communications Letters, 22(2):288-291, 2017.

Valerio Bioglio, Frederic Gabry, and Ingmar Land. Optimizing mds codes for
caching at the edge. In 2015 IEEE Global Communications Conference (GLOBE-
COM), pages 1-6. IEEE, 2015.

Mohammad Ali Maddah-Ali and Urs Niesen. Fundamental limits of caching. /EEE
Transactions on Information Theory, 60(5):2856-2867, 2014.

Mohammad Ali Maddah-Ali and Urs Niesen. Decentralized coded caching at-
tains order-optimal memory-rate tradeoff. IEEE/ACM Transactions On Networking,
23(4):1029-1040, 2014.

Ramtin Pedarsani, Mohammad Ali Maddah-Ali, and Urs Niesen. Online coded
caching. IEEE/ACM Transactions on Networking, 24(2):836-845, 2015.

Nikhil Karamchandani, Urs Niesen, Mohammad Ali Maddah-Ali, and Suhas N
Diggavi. Hierarchical coded caching. IEEE Transactions on Information Theory,
62(6):3212-3229, 2016.

Urs Niesen and Mohammad Ali Maddah-Ali. Coded caching with nonuniform de-
mands. IEEE Transactions on Information Theory, 63(2):1146—-1158, 2016.

Jinbei Zhang, Xiaojun Lin, and Xinbing Wang. Coded caching under arbitrary pop-
ularity distributions. [EEE Transactions on Information Theory, 64(1):349-366,
2017.

Ejder Bastug, Mehdi Bennis, and Mérouane Debbah. Social and spatial proactive
caching for mobile data offloading. In 2014 IEEE international conference on com-
munications workshops (ICC), pages 581-586. IEEE, 2014.

Kyi Thar, Nguyen H Tran, Thant Zin Oo, and Choong Seon Hong. Deepmec: Mobile
edge caching using deep learning. IEEE Access, 6:78260-78275, 2018.

Chenxi Zhang, Pinyi Ren, and Qinghe Du. Learning-to-rank based strategy for
caching in wireless small cell networks. In International Conference on Internet
of Things as a Service, pages 111-119. Springer, 2018.

184

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Michael D Ekstrand, John T Riedl, and Joseph A Konstan. Collaborative filtering
recommender systems. Now Publishers Inc, 2011.

Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Trans-
actions on Information Systems (TOIS), 22(1):89-115, 2004.

Livia Elena Chatzieleftheriou, Merkouris Karaliopoulos, and Iordanis Koutsopoulos.
Caching-aware recommendations: Nudging user preferences towards better caching
performance. In IEEE INFOCOM 2017-1EEE Conference on Computer Communi-
cations, pages 1-9. IEEE, 2017.

Gao Shen, Li Pei, Pan Zhiwen, Liu Nan, and You Xiaohu. Machine learning based
small cell cache strategy for ultra dense networks. In 2017 9th International Confer-
ence on Wireless Communications and Signal Processing (WCSP), pages 1-6. IEEE,
2017.

Bingiang Chen and Chenyang Yang. Caching policy for cache-enabled d2d com-
munications by learning user preference. IEEE Transactions on Communications,
66(12):6586-6601, 2018.

Yi Li, Chen Zhong, M Cenk Gursoy, and Senem Velipasalar. Learning-based delay-
aware caching in wireless d2d caching networks. IEEE Access, 6:77250-77264,
2018.

Yuyang Wang, Yun Chen, Haibo Dai, Yongming Huang, and Luxi Yang. A learning-
based approach for proactive caching in wireless communication networks. In 2017
9th International Conference on Wireless Communications and Signal Processing
(WCSP), pages 1-6. IEEE, 2017.

Lu Hou, Lei Lei, Kan Zheng, and Xianbin Wang. A ¢-learning-based proactive
caching strategy for non-safety related services in vehicular networks. IEEE Internet
of Things Journal, 6(3):4512-4520, 2018.

Chenyang Wang, Shanjia Wang, Ding Li, Xiaofei Wang, Xiuhua Li, and Victor CM
Leung. Q-learning based edge caching optimization for d2d enabled hierarchical
wireless networks. In 2018 IEEE 15th International Conference on Mobile Ad Hoc
and Sensor Systems (MASS), pages 55-63. IEEE, 2018.

Amal Feriani and Ekram Hossain. Single and multi-agent deep reinforcement learn-
ing for ai-enabled wireless networks: A tutorial. IEEE Communications Surveys &
Tutorials, 2021.

Alireza Sadeghi, Fatemeh Sheikholeslami, and Georgios B Giannakis. Optimal
and scalable caching for 5g using reinforcement learning of space-time populari-
ties. IEEE Journal of Selected Topics in Signal Processing, 12(1):180-190, 2017.

Samuel O Somuyiwa, Andras Gyorgy, and Deniz Giindiiz. A reinforcement-learning
approach to proactive caching in wireless networks. IEEE Journal on Selected Areas
in Communications, 36(6):1331-1344, 2018.

185

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Ying He, Zheng Zhang, F Richard Yu, Nan Zhao, Hongxi Yin, Victor CM Leung,
and Yanhua Zhang. Deep-reinforcement-learning-based optimization for cache-
enabled opportunistic interference alignment wireless networks. IEEE Transactions
on Vehicular Technology, 66(11):10433-10445, 2017.

Hao Zhu, Yang Cao, Xiao Wei, Wei Wang, Tao Jiang, and Shi Jin. Caching transient
data for internet of things: A deep reinforcement learning approach. IEEE Internet
of Things Journal, 6(2):2074-2083, 2018.

Wei Jiang, Gang Feng, Shuang Qin, Tak Shing Peter Yum, and Guohong Cao. Multi-
agent reinforcement learning for efficient content caching in mobile d2d networks.
IEEE Transactions on Wireless Communications, 18(3):1610-1622, 2019.

Tong Wu, Pan Zhou, Kai Liu, Yali Yuan, Xiumin Wang, Huawei Huang, and
Dapeng Oliver Wu. Multi-agent deep reinforcement learning for urban traffic
light control in vehicular networks. IEEE Transactions on Vehicular Technology,
69(8):8243-8256, 2020.

Jiongjiong Song, Min Sheng, Tony QS Quek, Chao Xu, and Xijun Wang. Learning-
based content caching and sharing for wireless networks. IEEE Transactions on
Communications, 65(10):4309-4324, 2017.

Di Wu, Yuan Zhang, Juan Luo, and Renfa Li. Efficient data dissemination by crowd-
sensing in vehicular networks. In 2014 IEEE 22nd International Symposium of Qual-
ity of Service (IWQoS), pages 314-319. IEEE, 2014.

David Applegate, Aaron Archer, Vijay Gopalakrishnan, Seungjoon Lee, and KK Ra-
makrishnan. Optimal content placement for a large-scale vod system. [EEE/ACM
Transactions on Networking, 24(4):2114-2127, 2016.

Bin Cao, Long Zhang, Yun Li, Daquan Feng, and Wei Cao. Intelligent offloading
in multi-access edge computing: A state-of-the-art review and framework. [EEE
Communications Magazine, 57(3):56-62, 2019.

Bartlomiej Blaszczyszyn and Anastasios Giovanidis. Optimal geographic caching
in cellular networks. In 2015 IEEE International Conference on Communications
(ICC), pages 3358-3363. IEEE, 2015.

Jian Qiao, Yejun He, and Xuemin Sherman Shen. Proactive caching for mobile
video streaming in millimeter wave 5g networks. IEEE Transactions on Wireless
Communications, 15(10):7187-7198, 2016.

J. Tadrous and A. Eryilmaz. On optimal proactive caching for mobile networks with
demand uncertainties. IEEE/ACM Transactions on Networking, 24(5):2715-2727,
October 2016.

Fei Shen, Kenza Hamidouche, Ejder Bastug, and Mérouane Debbah. A stackelberg
game for incentive proactive caching mechanisms in wireless networks. In 2016
IEEE Global Communications Conference (GLOBECOM), pages 1-6. IEEE, 2016.

186

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Zhen Tong, Yuedong Xu, Tao Yang, and Bo Hu. Quality-driven proactive caching
of scalable videos over small cell networks. In 2016 12th International Conference
on Mobile Ad-Hoc and Sensor Networks (MSN), pages 90-96. IEEE, 2016.

Xiaomin Li and Jiafu Wan. Proactive caching for edge computing-enabled industrial
mobile wireless networks. Future Generation Computer Systems, 89:89-97, 2018.

Sara A Elsayed, Sherin Abdelhamid, and Hossam S Hassanein. Proactive caching
at parked vehicles for social networking. In 2018 IEEE International conference on
communications (ICC), pages 1-6. IEEE, 2018.

Shashwat Kumar, Sai Vineeth Doddala, A Antony Franklin, and Jiong Jin. Ran-
aware adaptive video caching in multi-access edge computing networks. Journal of
Network and Computer Applications, 168:102737, 2020.

Liying Li, Guodong Zhao, and Rick S Blum. A survey of caching techniques in
cellular networks: Research issues and challenges in content placement and delivery
strategies. IEEE Communications Surveys & Tutorials, 20(3):1710-1732, 2018.

Tuyen X Tran, Mohammad-Parsa Hosseini, and Dario Pompili. Mobile edge com-
puting: Recent efforts and five key research directions. IEEE COMSOC MMTC
Commun.-Frontiers, 12(4):29-33, 2017.

Yaping Sun, Zhiyong Chen, and Hui Liu. Delay analysis and optimization in cache-
enabled multi-cell cooperative networks. In 2016 IEEE Global Communications
Conference (GLOBECOM), pages 1-7. IEEE, 2016.

Jingjing Yao and Nirwan Ansari. Joint content placement and storage allocation in
c-rans for iot sensing service. IEEE Internet of Things Journal, 6(1):1060-1067,
2018.

BN Bharath, Kyatsandra G Nagananda, and H Vincent Poor. A learning-based ap-
proach to caching in heterogenous small cell networks. IEEE Transactions on Com-
munications, 64(4):1674-1686, 2016.

Sabrina Miiller, Onur Atan, Mihaela van der Schaar, and Anja Klein. Context-aware
proactive content caching with service differentiation in wireless networks. [EEE
Transactions on Wireless Communications, 16(2):1024-1036, 2016.

BN Bharath, Kyatsandra G Nagananda, Deniz Giindiiz, and H Vincent Poor. Caching
with time-varying popularity profiles: A learning-theoretic perspective. IEEE Trans-
actions on Communications, 66(9):3837-3847, 2018.

Navneet Garg, Mathini Sellathurai, Vimal Bhatia, BN Bharath, and Tharmalingam
Ratnarajah. Online content popularity prediction and learning in wireless edge
caching. IEEE Transactions on Communications, 68(2):1087-1100, 2019.

187

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

Peiyan Yuan, Yunyun Cai, Yihang Liu, Junna Zhang, Yali Wang, and Xiaoyan Zhao.
Prorec: a unified content caching and replacement framework for mobile edge com-
puting. Wireless Networks, pages 1-13, 2020.

Ronghui Hou, Kaiwen Huang, Huilin Xie, King-Shan Lui, and Hongyan Li. Caching
and resource allocation in small cell networks. Computer Networks, page 107100,
2020.

Ni Zhang, Songtao Guo, Yifan Dong, and Defang Liu. Joint task offloading and data
caching in mobile edge computing networks. Computer Networks, page 107446,
2020.

Linpeng Tang, Qi Huang, Amit Puntambekar, Ymir Vigfusson, Wyatt Lloyd, and
Kai Li. Popularity prediction of facebook videos for higher quality streaming. In
2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17), pages 111-
123, 2017.

Jun Li, Shuang Hong, Sha Xia, and Shengmei Luo. Neural network based popularity
prediction for iptv system. J. Networks, 7(12):2051-2056, 2012.

Suoheng Li, Jie Xu, Mihaela Van Der Schaar, and Weiping Li. Popularity-driven
content caching. In IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, pages 1-9. IEEE, 2016.

Emira Ben Abdelkrim, Mohammad A Salahuddin, Halima Elbiaze, and Roch Glitho.
A hybrid regression model for video popularity-based cache replacement in content
delivery networks. In 2016 IEEE Global Communications Conference (GLOBE-
COM), pages 1-7. IEEE, 2016.

SM Shahrear Tanzil, William Hoiles, and Vikram Krishnamurthy. Adaptive scheme
for caching youtube content in a cellular network: Machine learning approach. leee
Access, 5:5870-5881, 2017.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine:
theory and applications. Neurocomputing, 70(1-3):489-501, 2006.

Tingting Hou, Gang Feng, Shuang Qin, and Wei Jiang. Proactive content caching
by exploiting transfer learning for mobile edge computing. International Journal of
Communication Systems, 31(11):¢3706, 2018.

Shan Zhang, Peter He, Katsuya Suto, Peng Yang, Lian Zhao, and Xuemin Shen.
Cooperative edge caching in user-centric clustered mobile networks. IEEE Transac-
tions on Mobile Computing, 17(8):1791-1805, 2017.

Noor Abani, Torsten Braun, and Mario Gerla. Proactive caching with mobility pre-
diction under uncertainty in information-centric networks. In Proceedings of the 4th
ACM Conference on Information-Centric Networking, pages 88—97, 2017.

188

[144] Lin Yao, Ailun Chen, Jing Deng, Jianbang Wang, and Guowei Wu. A cooperative
caching scheme based on mobility prediction in vehicular content centric networks.
IEEE Transactions on Vehicular Technology, 67(6):5435-5444, 2017.

[145] Hakima Khelifi, Senlin Luo, Boubakr Nour, Akrem Sellami, Hassine Moungla, and
Farid Nait-Abdesselam. An optimized proactive caching scheme based on mobility
prediction for vehicular networks. In 2018 IEEE Global Communications Confer-
ence (GLOBECOM), pages 1-6. IEEE, 2018.

[146] Ejder Bastug, Jean-Louis Guénégo, and Mérouane Debbah. Proactive small cell
networks. In ICT 2013, pages 1-5. IEEE, 2013.

[147] Juan Liu, Bo Bai, Jun Zhang, and Khaled B Letaief. Cache placement in fog-rans:
From centralized to distributed algorithms. /IEEE Transactions on Wireless Commu-
nications, 16(11):7039-7051, 2017.

[148] Dong Liu and Chenyang Yang. Caching at base stations with heterogeneous user
demands and spatial locality. IEEE Transactions on Communications, 67(2):1554—
1569, 2018.

[149] Naifu Zhang, Kaibin Zheng, and Meixia Tao. Using grouped linear prediction and
accelerated reinforcement learning for online content caching. In 2018 IEEFE Inter-
national Conference on Communications Workshops (ICC Workshops), pages 1-6.
IEEE, 2018.

[150] Yanxiang Jiang, Miaoli Ma, Mehdi Bennis, Fu-Chun Zheng, and Xiaohu You. User
preference learning-based edge caching for fog radio access network. IEEE Trans-
actions on Communications, 67(2):1268—-1283, 2018.

[151] Sami Kekki, Walter Featherstone, Yonggang Fang, Pekka Kuure, Alice Li, Anurag
Ranjan, Debashish Purkayastha, Feng Jiangping, Danny Frydman, Gianluca Verin,
et al. Mec in 5g networks. ETSI white paper, 28:1-28, 2018.

[152] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages
302-311, 1984.

[153] Mantas LukoSevicius. A practical guide to applying echo state networks. In Neural
networks: Tricks of the trade, pages 659-686. Springer, 2012.

[154] Ton Iancu. A mamdani type fuzzy logic controller. In Fuzzy Logic-Controls, Con-
cepts, Theories and Applications. InTech, 2012.

[155] Jie Cui, Lu Wei, Hong Zhong, Jing Zhang, Yan Xu, and Lu Liu. Edge computing in
vanets-an efficient and privacy-preserving cooperative downloading scheme. IEEE
Journal on Selected Areas in Communications, 38(6):1191-1204, 2020.

[156] Nazmul Siddique and Hojjat Adeli. Computational intelligence: synergies of fuzzy
logic, neural networks and evolutionary computing. John Wiley & Sons, 2013.

189

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

Jiaying Yin, Lixin Li, Huisheng Zhang, Xu Li, Ang Gao, and Zhu Han. A prediction-
based coordination caching scheme for content centric networking. In 2018 27th
Wireless and Optical Communication Conference (WOCC), pages 1-5. IEEE, 2018.

Yang Du, Pengyu Gao, Xiaodong Wang, Binhong Dong, Zhi Chen, and Shaoqian
Li. Monte-carlo tree search aided contextual online learning approach for wireless
caching. In 2018 IEEE Globecom Workshops (GC Wkshps), pages 1-7. IEEE, 2018.

Peng Yang, Ning Zhang, Shan Zhang, Li Yu, Junshan Zhang, and Xuemin Sherman
Shen. Content popularity prediction towards location-aware mobile edge caching.
IEEE Transactions on Multimedia, 21(4):915-929, 2018.

Long Teng, Xiang Yu, Jianhua Tang, and Mingxia Liao. Proactive caching strategy
with content-aware weighted feature matrix learning in small cell network. /EEE
Communications Letters, 23(4):700-703, 2019.

Teofilo F Gonzalez. Handbook of Approximation Algorithms and Metaheuristics:
Methologies and Traditional Applications, Volume 1. CRC Press, 2018.

Xiuhua Li, Xiaofei Wang, Keqiu Li, Zhu Han, and Victor CM Leung. Collaborative
multi-tier caching in heterogeneous networks: Modeling, analysis, and design. IEEE
Transactions on Wireless Communications, 16(10):6926-6939, 2017.

Yongxue Tian and Li Pan. Predicting short-term traffic flow by long short-term
memory recurrent neural network. In 2015 IEEE international conference on smart
city/SocialCom/SustainCom (SmartCity), pages 153—158. IEEE, 2015.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53-65,
1987.

Tzay Y Young and Thomas W Calvert. Classification, estimation, and pattern recog-
nition. Elsevier Publishing Company, 1974.

George L Nemhauser, Laurence A Wolsey, and Marshall L. Fisher. An analysis of
approximations for maximizing submodular set functions—i. Mathematical pro-
gramming, 14(1):265-294, 1978.

Manoj Kumar Somesula, Rashmi Ranjan Rout, and DVLN Somayajulu. Deadline-
aware caching using echo state network integrated fuzzy logic for mobile edge net-
works. Wireless Networks, pages 1-21, 2021.

Jong-Kwon Lee and Jennifer C Hou. Modeling steady-state and transient behaviors
of user mobility: formulation, analysis, and application. In Proceedings of the 7th

ACM international symposium on Mobile ad hoc networking and computing, pages
85-96, 2006.

190

[169]

[170]

[171]

[172]

[173]
[174]

[175]

[176]

[177]

[178]

[179]

Xuejun Zhuo, Qinghua Li, Wei Gao, Guohong Cao, and Yiqi Dai. Contact duration
aware data replication in delay tolerant networks. In 2011 19th IEEE International
Conference on Network Protocols, pages 236-245. IEEE, 2011.

Derek Leong, Alexandros G Dimakis, and Tracey Ho. Distributed storage alloca-
tions. IEEE Transactions on Information Theory, 58(7):4733-4752, 2012.

Peng Lin, Qingyang Song, and Abbas Jamalipour. Multidimensional cooperative
caching in comp-integrated ultra-dense cellular networks. IEEE Transactions on
Wireless Communications, 19(3):1977-1989, 2019.

Kumara Sastry and Graham Goldberg, David E.and Kendall. Genetic Algorithms.
Springer, Boston, MA, 2014.

Konstantinos Poularakis and Leandros Tassiulas. Publicly available code, 2016.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26-38, 2017.

Rose E Wang, Michael Everett, and Jonathan P How. R-maddpg for partially observ-
able environments and limited communication. arXiv preprint arXiv:2002.06684,
2020.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. arXiv
preprint arXiv:1706.02275, 2017.

Mohamed Ahmed, Stefano Traverso, Paolo Giaccone, Emilio Leonardi, and Saverio
Niccolini. Analyzing the performance of Iru caches under non-stationary traffic
patterns. arXiv preprint arXiv:1301.4909, 2013.

Dario Rossi and Giuseppe Rossini. Caching performance of content centric networks
under multi-path routing (and more). Relatorio técnico, Telecom ParisTech, pages
1-6, 2011.

Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer. High per-
formance cache replacement using re-reference interval prediction (rrip). ACM
SIGARCH Computer Architecture News, 38(3):60-71, 2010.

191

List of Publications

1. Manoj Kumar Somesula and Rashmi Ranjan Rout and D. V. L. N. So-
mayajulu. “Deadline-aware caching using echo state network integrated fuzzy
logic for mobile edge networks.” Wireless Networks, Springer (2021): 1-21.
https://doi.org/10.1007/s11276-021-02578-2

2. Manoj Kumar Somesula and Rashmi Ranjan Rout and D. V. L. N. Somayajulu.
“Contact Duration-Aware Cooperative Cache Placement using Genetic Algorithm

for Mobile Edge Networks.” Computer Networks, Elsevier (2021): 108062.

3. Manoj Kumar Somesula and Rashmi Ranjan Rout and D. V. L. N. Somaya-
julu. “Cooperative Cache Update using Multi-Agent Recurrent Deep Reinforcement
Learning for Mobile Edge Networks.” Computer Networks, Elsevier. (Under Re-

view)

4. Manoj Kumar Somesula and Rashmi Ranjan Rout and D. V. L. N. Somayajulu.
“User Preference Learning based Cooperative Cache Placement for Mobile Edge
Networks with Adaptive User Clustering.” Future Generation Computer Systems,

Elsevier. (Submitted)

192

	ACKNOWLEDGMENTS
	ABSTRACT
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	1 Introduction
	1.1 Motivation and objectives
	1.2 Overview of the Contributions of this Thesis
	1.2.1 Deadline-aware Content Caching using Echo State Network Integrated Fuzzy Logic for Mobile Edge Networks
	1.2.2 User Preference based Cooperative Cache Placement for Mobile Edge Networks
	1.2.3 Contact Duration-Aware Cooperative Cache Placement with User Mobility Across MECs (i.e., BS) using Genetic Algorithm for Mobile Edge Networks
	1.2.4 Cooperative Cache Replacement using Recurrent Multi-Agent Deep Reinforcement Learning for Mobile Edge Networks

	1.3 Experimental Setup
	1.4 Organization of the Thesis

	2 Literature Survey
	2.1 Mobile Edge Networks Architecture
	2.2 Mobile Edge Caching
	2.3 Cooperative Caching
	2.4 Mobility based Caching
	2.5 Coded Caching
	2.6 Learning based Caching
	2.6.1 Supervised Learning based Caching
	2.6.2 Unsupervised Learning based Caching
	2.6.3 Reinforcement Learning based Caching

	2.7 Proactive and Reactive Caching
	2.8 User Preference and Prediction based Caching
	2.9 Summary

	3 Deadline-aware Content Cache Placement using Echo State Network Integrated Fuzzy Logic for Mobile Edge Networks
	3.1 Mobile Edge Computing (MEC) Model and Problem Formulation
	3.1.1 Popularity of Content and Content Types
	3.1.2 Cache Decision Variables
	3.1.3 Delay
	3.1.4 Deadline
	3.1.5 Problem Formulation

	3.2 Approximation Algorithm based on Relaxation and Rounding Technique
	3.2.1 Relaxation
	3.2.2 Rounding

	3.3 Fuzzy Caching Algorithm based on Content Request Prediction
	3.3.1 Popularity Prediction using Echo State Networks
	3.3.2 Fuzzy Inference System for cache node selection
	3.3.3 Fuzzy Caching Algorithm
	3.3.4 Replacement Strategy

	3.4 Performance Evaluation
	3.4.1 Description of Data Set
	3.4.2 Simulation Environment
	3.4.3 Performance Metrics
	3.4.4 Reference Algorithms
	3.4.5 Impact of Cache Capacity
	3.4.6 Impact of number of MECs
	3.4.7 Impact of Number of Requests
	3.4.8 Impact of Number of Contents
	3.4.9 Impact of Content popularity
	3.4.10 Impact of Cache Storage Utilization

	3.5 Summary

	4 User Preference Prediction based Cache Placement for Mobile Edge Networks with Adaptive User Clustering
	4.1 System Model
	4.2 User Preferences Prediction and Content based Clustering
	4.2.1 User Preference Prediction based on LSTM
	4.2.2 Content based User Clustering
	4.2.2.1 Clustering Algorithm

	4.2.3 Maximization of Saved Delay Optimization Problem

	4.3 User Preference based Content Placement Mechanism using Sub-modular Optimization
	4.3.1 Greedy algorithm for user preference prediction based cooperative content caching

	4.4 Performance Evaluation
	4.4.1 Simulation Environment
	4.4.2 Performance Metrics
	4.4.3 Reference Algorithms
	4.4.4 Impact of Cache Size
	4.4.5 Impact of number of MECs
	4.4.6 Impact of user preference similarity
	4.4.7 Impact of User activity level skewness
	4.4.8 Impact of Zipf parameter
	4.4.9 Impact of Number of clusters

	4.5 Summary

	5 Contact Duration-Aware Cooperative Cache Placement with User Mobility Across MECs using Genetic Algorithm for Mobile Edge Networks
	5.1 MEC System Model and Problem Formulation
	5.1.1 Network Model
	5.1.2 Mobility Model
	5.1.3 Content Request Model
	5.1.4 Motivation
	5.1.5 Static and mobility aware caching scenarios
	5.1.6 Mobility and sojourn time prediction
	5.1.7 Problem Formulation

	5.2 Greedy Algorithm for Contact duration Aware Cooperative Content Placement
	5.2.1 Greedy Algorithm for Contact duration Aware Cooperative Content Placement

	5.3 GA based Cooperative Content Placement for large scale problems
	5.4 Performance Evaluation
	5.4.1 Simulation Environment
	5.4.2 Performance Metrics
	5.4.3 Reference Algorithms
	5.4.4 Mobility Model
	5.4.5 Demand Model
	5.4.6 Impact of number of MECs
	5.4.7 Impact of Cache Capacity
	5.4.8 Impact of data transmission rate
	5.4.9 Impact of contact duration
	5.4.10 Impact of content popularity

	5.5 Summary

	6 Cooperative Cache Replacement using Recurrent Multi-Agent Deep Reinforcement Learning for Mobile Edge Networks
	6.1 System Model and Problem Formulation
	6.1.1 Network Model
	6.1.2 Problem Formulation

	6.2 Multi-Agent Deep Reinforcement Learning Model for Cooperative Caching
	6.2.1 Observation and State Space
	6.2.2 Action Space
	6.2.3 Reward Function

	6.3 Multi-agent Recurrent DRL for cooperative Content Caching
	6.3.1 Multi-Agent Actor-Critic Framework
	6.3.2 Multi-Agent Recurrent DRL based Cooperative Caching Algorithm

	6.4 Performance Evaluation
	6.4.1 Performance Metrics
	6.4.2 Reference Algorithms
	6.4.3 Impact of Cache Size
	6.4.4 Impact of Number of MECs
	6.4.5 Impact of Number of Contents
	6.4.6 Impact of Zipf parameter
	6.4.7 Performance evaluation with training episode
	6.4.8 The convergence performance

	6.5 Summary

	7 Conclusion and Future Directions
	7.1 The Major Contributions of the Thesis
	7.2 Future Directions

	Appendix
	Bibliography
	List of Publications

