
Design of Efficient Caching Algorithms for Mobile
Edge Networks

Submitted in partial fulfillment of the requirements

for the award of the degree of

DOCTOR OF PHILOSOPHY
Submitted by

Somesula Manoj Kumar

(Roll No. 716041)

Under the guidance of

Dr. Rashmi Ranjan Rout
and

Prof. D. V. L. N. Somayajulu

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL

TELANGANA - 506004, INDIA
OCTOBER 2021

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL

TELANGANA - 506004, INDIA

THESIS APPROVAL FOR Ph.D.

This is to certify that the thesis entitled, Design of Efficient Caching Algorithms for

Mobile Edge Networks, submitted by Mr. Somesula Manoj Kumar [Roll No. 716041]

is approved for the degree of DOCTOR OF PHILOSOPHY at National Institute of

Technology Warangal.

Examiner

Research Supervisor Research Supervisor

Dr. Rashmi Ranjan Rout Prof. D.V.L.N. Somayajulu

Dept. of Computer Science and Engg. Dept. of Computer Science and Engg.

NIT Warangal, India NIT Warangal, India

Chairman

Prof. P. Radha Krishna

Head, Dept. of Computer Science and Engg.

NIT Warangal, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL

TELANGANA - 506004, INDIA

CERTIFICATE

This is to certify that the thesis entitled, Design of Efficient Caching Algorithms for

Mobile Edge Networks, submitted in partial fulfillment of requirement for the award

of degree of DOCTOR OF PHILOSOPHY to National Institute of Technology Waran-

gal, is a bonafide research work done by Mr. Somesula Manoj Kumar [Roll No.

716041] under my supervision. The contents of the thesis have not been submitted

elsewhere for the award of any degree.

Research Supervisors

Dr. Rashmi Ranjan Rout
Associate Professor

Dept. of CSE, NIT Warangal, India

Prof. D.V.L.N. Somayajulu
Place: NIT Warangal Professor

Date: Dept. of CSE, NIT Warangal, India

DECLARATION

This is to certify that the work presented in the thesis entitled “Design of Efficient

Caching Algorithms for Mobile Edge Networks” is a bonafide work done by me under

the supervision of Dr. Rashmi Ranjan Rout and Prof. D.V.L.N. Somayajulu and was

not submitted elsewhere for the award of any degree.

I declare that this written submission represents my ideas in my own words

and where others ideas or words have been included, I have adequately cited and

referenced the original sources. I also declare that I have adhered to all principles of

academic honesty and integrity and have not misrepresented or fabricated or falsified

any idea/date/fact/source in my submission. I understand that any violation of the

above will be cause for disciplinary action by the institute and can also evoke penal

action from the sources which have thus not been properly cited or from whom proper

permission has not been taken when needed.

S Manoj Kumar

(Roll No. 716041)

ACKNOWLEDGMENTS

It is with great pleasure that I acknowledge my sincere thanks and deep sense of grati-

tude to my supervisor, Dr. Rashmi Ranjan Rout sir, from whom I have learnt so much about

how to conduct oneself being a teacher. His values as a teacher and as a human being, are

something I would like to take forward both in my professional and personal life. He has

been very supportive to me throughout my research period which has been full of 1’s and

0’s, and constantly encouraged me to do good work as a researcher. He has always given

ample time to me for research discussions, technical help, and the revision of the work. I

feel lucky to be associated with such a great human being in my life.

I also would like thank my co-supervisor, Prof. D.V.L.N. Somayajulu sir, who have in-

spired me immensely directly or indirectly throughout my association with NIT, Warangal.

His integrity and the core values with which he works as a teacher, are something I aspire

to imbibe into myself. He has been very supportive to me through out the Ph.D. period and

his insightful comments have immensely improved the quality of the research work.

I extend my gratitude to all my Doctoral Scrutiny Committee members Prof. B. B.

Amberker, Prof. S. G. Sanjeevi, and Dr. Ch. Venkaiah for their insightful comments and

suggestions during oral presentations.

I am immensely thankful to Dr. Ch. Sudhakar, Prof. R.B.V. Subramaanyam, and Prof.

P. Radha Krishna Heads of Dept. of CSE during my stay in the department, for providing

adequate facilities. I wish to express my thanks to faculty members of Computer Science

and Engineering department.

I thank my colleagues and friends at NITW, Sai Krishna, Mallikarjun, Sudarshan,

Sandipan Maiti, Ramesh, Abhilash, Govind, Sumalatha, Satyanarayanan, Pavan Kumar,

Preethi, Spoorthy, Suresh, Sanjib, Hem Kumar, Vinay Raj, Uma Maheswara Sharma,

Greeshma and Satish who has made my life at NITW easy and helped in their own ways to

better my research work.

I thank my close friends outside of NITW, Shekar, Gautam Reddy, Babu, Ganesh, Gu-

rappa and Subramanyam just for being there for me always.

i

I thank my brothers Ganesh Kumar and Sravan Kumar who always motivated and en-

couraged me to achieve good things in life. I am sure if not for their support, I wouldn’t

have the courage to take this career route. They have given me all kinds of support through-

out this Ph.D. period, be it emotional or financial. I will be forever thankful for the way

they back me in every endeavor of mine.

Finally, I thank my parents who brought me on to this earth and who have given their

blood and sweat to make me what I am today. They have made many sacrifices to provide

quality education to me and my brothers. From my childhood, my father consistently re-

iterated the importance of education in life. I am always in awe of the way my father

planned my education with all the financial constraints our family had. The dreams of my

parents and sheer determination with which they have worked to provide for us, has made

me to attain this level of education. I love you amma and nanna!

S Manoj Kumar

ii

Dedicated to
My Parents Lakshmi Devi, Subramanyam, my

brothers Ganesh and Sravan & My little Nephew

Havish

ABSTRACT

The proliferation of mobile devices and processing capabilities escalates the demands

for multimedia content like remote education, video conferencing, augmented reality, vir-

tual reality, and video on demand. Multimedia applications consume more bandwidth on

the Internet, causing huge network traffic. The overwhelming network traffic in the coming

years affects the overall network efficiency with respect to quality of experience, energy

consumption, and delivery latency. To meet the user demands, deploying the base sta-

tions densely (network densification) is one of the important techniques. The tremendous

growth in mobile data traffic adds a burden on backhaul links, and this may cause conges-

tion leading to long delays in delivering content to users. Mobile edge caching is one of the

prominent techniques providing computation and communication capabilities along with

network caching capability where the MEC nodes are co-located with the base stations,

and the contents are brought closer to users. With the increase of Internet content and con-

sidering limited storage at edge nodes, the overall performance gain of the caching will be

reduced in mobile edge networks. Therefore, caching popular content at appropriate nodes

(to improve the overall performance) is an important research issue (in a MEC-based sys-

tem) that has been addressed in this thesis.

The thesis focuses on efficient caching algorithms for mobile edge networks. In this the-

sis, the proposed approaches achieve better cache hit ratio and acceleration ratio. Firstly,

an echo state network-assisted fuzzy logic-based cooperative caching mechanism has been

designed to maximize the saved delay in mobile edge networks. An approximation algo-

rithm has been presented to find the optimal caching strategy, and a fuzzy caching heuristic

is proposed to find a sub-optimal caching strategy by predicting the content popularity dis-

tribution using the Echo stat network. Secondly, a cooperative caching strategy has been

presented by considering heterogeneous user preferences, activity level, and uneven distri-

bution of users in large-scale mobile edge networks. The user preference learning is mod-

eled using long short term memory to capture the dynamic user behaviour, and a greedy

cooperative caching algorithm is presented by considering the submodular optimization to

optimize the caching strategy. Thirdly, a caching strategy has been presented by consid-

iv

ering the user mobility across the MECs and randomness of contact duration in mobile

edge networks. The user moving path and the sojourn time of a user are modeled using the

Markov renewal process. A greedy caching algorithm is proposed to optimize the caching

strategy, and a genetic algorithm is presented to solve large-scale problems. Finally, a co-

operative cache updating strategy has been presented. Considering the dynamic nature of

the content popularity, high dimensional parameters, and for an intelligent caching deci-

sion, the problem has been modeled as a partially observable Markov decision process and

presents an efficient deep reinforcement learning algorithm. Performances of proposed ap-

proaches have been evaluated through simulation.

Keywords: Proactive caching, Popularity prediction, Fuzzy logic, Cooperative caching,

User mobility, Submodular optimization, Mobile edge networks, Genetic algorithm, Ma-

chine Learning, User preference learning, LSTM, Multi-agent deep reinforcement learning,

partially observable Markov decision process.

v

Contents

ACKNOWLEDGMENTS i

ABSTRACT iv

List of Figures xii

List of Tables xvi

List of Algorithms xvii

List of Abbreviations xviii

1 Introduction 1

1.1 Motivation and objectives . 4

1.2 Overview of the Contributions of this Thesis 7

1.2.1 Deadline-aware Content Caching using Echo State Network

Integrated Fuzzy Logic for Mobile Edge Networks 7

1.2.2 User Preference based Cooperative Cache Placement for Mo-

bile Edge Networks . 9

1.2.3 Contact Duration-Aware Cooperative Cache Placement with

User Mobility Across MECs (i.e., BS) using Genetic Algo-

rithm for Mobile Edge Networks 11

1.2.4 Cooperative Cache Replacement using Recurrent Multi-Agent

Deep Reinforcement Learning for Mobile Edge Networks . . 13

1.3 Experimental Setup . 15

1.4 Organization of the Thesis . 15

vi

2 Literature Survey 17

2.1 Mobile Edge Networks Architecture . 18

2.2 Mobile Edge Caching . 19

2.3 Cooperative Caching . 24

2.4 Mobility based Caching . 27

2.5 Coded Caching . 29

2.6 Learning based Caching . 31

2.6.1 Supervised Learning based Caching 31

2.6.2 Unsupervised Learning based Caching 33

2.6.3 Reinforcement Learning based Caching 34

2.7 Proactive and Reactive Caching . 37

2.8 User Preference and Prediction based Caching 42

2.9 Summary . 47

3 Deadline-aware Content Cache Placement using Echo State Network Inte-

grated Fuzzy Logic for Mobile Edge Networks 48

3.1 Mobile Edge Computing (MEC) Model and Problem Formulation 50

3.1.1 Popularity of Content and Content Types 52

3.1.2 Cache Decision Variables 53

3.1.3 Delay . 54

3.1.4 Deadline . 54

3.1.5 Problem Formulation . 55

3.2 Approximation Algorithm based on Relaxation and Rounding Technique 56

3.2.1 Relaxation . 57

3.2.2 Rounding . 57

3.3 Fuzzy Caching Algorithm based on Content Request Prediction 60

3.3.1 Popularity Prediction using Echo State Networks 60

3.3.2 Fuzzy Inference System for cache node selection 62

3.3.3 Fuzzy Caching Algorithm 67

3.3.4 Replacement Strategy . 67

vii

3.4 Performance Evaluation . 69

3.4.1 Description of Data Set . 69

3.4.2 Simulation Environment . 70

3.4.3 Performance Metrics . 71

3.4.4 Reference Algorithms . 71

3.4.5 Impact of Cache Capacity 73

3.4.6 Impact of number of MECs 76

3.4.7 Impact of Number of Requests 76

3.4.8 Impact of Number of Contents 78

3.4.9 Impact of Content popularity 79

3.4.10 Impact of Cache Storage Utilization 81

3.5 Summary . 82

4 User Preference Prediction based Cache Placement for Mobile Edge Net-

works with Adaptive User Clustering 83

4.1 System Model . 84

4.2 User Preferences Prediction and Content based Clustering 86

4.2.1 User Preference Prediction based on LSTM 88

4.2.2 Content based User Clustering 90

4.2.2.1 Clustering Algorithm 90

4.2.3 Maximization of Saved Delay Optimization Problem 91

4.3 User Preference based Content Placement Mechanism using Sub-modular

Optimization . 93

4.3.1 Greedy algorithm for user preference prediction based co-

operative content caching 96

4.4 Performance Evaluation . 97

4.4.1 Simulation Environment . 98

4.4.2 Performance Metrics . 100

4.4.3 Reference Algorithms . 100

4.4.4 Impact of Cache Size . 101

viii

4.4.5 Impact of number of MECs 103

4.4.6 Impact of user preference similarity 104

4.4.7 Impact of User activity level skewness 106

4.4.8 Impact of Zipf parameter 107

4.4.9 Impact of Number of clusters 108

4.5 Summary . 110

5 Contact Duration-Aware Cooperative Cache Placement with User Mobility

Across MECs using Genetic Algorithm for Mobile Edge Networks 111

5.1 MEC System Model and Problem Formulation 113

5.1.1 Network Model . 113

5.1.2 Mobility Model . 114

5.1.3 Content Request Model . 115

5.1.4 Motivation . 115

5.1.5 Static and mobility aware caching scenarios 117

5.1.6 Mobility and sojourn time prediction 121

5.1.7 Problem Formulation . 122

5.2 Greedy Algorithm for Contact duration Aware Cooperative Content Place-

ment . 124

5.2.1 Greedy Algorithm for Contact duration Aware Cooperative

Content Placement . 127

5.3 GA based Cooperative Content Placement for large scale problems . . . 128

5.4 Performance Evaluation . 131

5.4.1 Simulation Environment . 131

5.4.2 Performance Metrics . 132

5.4.3 Reference Algorithms . 133

5.4.4 Mobility Model . 133

5.4.5 Demand Model . 134

5.4.6 Impact of number of MECs 134

5.4.7 Impact of Cache Capacity 136

ix

5.4.8 Impact of data transmission rate 138

5.4.9 Impact of contact duration 138

5.4.10 Impact of content popularity 140

5.5 Summary . 140

6 Cooperative Cache Replacement using Recurrent Multi-Agent Deep Rein-

forcement Learning for Mobile Edge Networks 142

6.1 System Model and Problem Formulation 144

6.1.1 Network Model . 144

6.1.2 Problem Formulation . 146

6.2 Multi-Agent Deep Reinforcement Learning Model for Cooperative Caching148

6.2.1 Observation and State Space 149

6.2.2 Action Space . 149

6.2.3 Reward Function . 150

6.3 Multi-agent Recurrent DRL for cooperative Content Caching 153

6.3.1 Multi-Agent Actor-Critic Framework 153

6.3.2 Multi-Agent Recurrent DRL based Cooperative Caching Al-

gorithm . 157

6.4 Performance Evaluation . 158

6.4.1 Performance Metrics . 161

6.4.2 Reference Algorithms . 162

6.4.3 Impact of Cache Size . 163

6.4.4 Impact of Number of MECs 165

6.4.5 Impact of Number of Contents 166

6.4.6 Impact of Zipf parameter 167

6.4.7 Performance evaluation with training episode 167

6.4.8 The convergence performance 169

6.5 Summary . 171

7 Conclusion and Future Directions 172

7.1 The Major Contributions of the Thesis 173

x

7.2 Future Directions . 174

Appendix 175

Bibliography 177

List of Publications 192

xi

List of Figures

2.1 Mobile Edge Network Architecture . 19

2.2 Edge Caching Architecture . 20

2.3 Content cached at Local Cache . 20

2.4 Content cached at Neighbour Cache . 21

2.5 Content not cached at any edge node . 21

2.6 Reinforcement Learning Approach . 35

3.1 Illustration of system model . 50

3.2 Fuzzy inference system . 64

3.3 Comparison of caching schemes using cache capacity vs (a) cache hit ratio

(b) acceleration ratio (c) number of requests satisfying deadline. The cache

capacity is measured when R = 7, r = 50% and F = 100%. 74

3.4 Comparison of caching schemes using number of MECs vs (a) cache hit

ratio (b) acceleration ratio (c) number of requests satisfying deadline, when

S = 7 GB, r = 50% and F = 100%. 75

3.5 Comparison of caching schemes using number of requests vs (a) cache hit

ratio (b) acceleration ratio (c) number of requests satisfying deadline, when

S = 7 GB, R = 7 and F = 100%. 77

3.6 Comparison of caching schemes using number of contents vs (a) cache hit

ratio (b) acceleration ratio (c) number of requests satisfying deadline, when

S = 7 GB, R = 7 and r = 50%. 79

3.7 Comparison of content popularity vs content rank, error as the number of

iterations varies and performance of prediction vs number of contents. . . . 80

xii

3.8 Comparison of caching schemes using cache capacity vs cache utilization.

The cache capacity is measured when R = 7, r = 50% and F = 100%. . . . 81

4.1 Illustration of the proposed system model. 85

4.2 Content placement strategy based on user preference prediction and content

based clustering. 87

4.3 (a) Comparison of content popularity vs content rank (b) Comparison of

user activity level vs user activity rank of Lastfm dataset 98

4.4 (a) Comparison of three user preferences (1st, 25th and 50th active users

with user ids 949, 685 and 882 respectively) (b) Voronoi cell diagram with

size 500m×500m where blue circle indicates the BSs and red triangles are

mobile users. 99

4.5 Predicted value for user 945 and Content 54 99

4.6 Comparison of caching schemes using cache capacity vs (a) Cache Hit Ra-

tio (b) Acceleration Ratio (c) Local and Neighbour cluster Cache Hit Ratio. 101

4.7 Comparison of caching schemes using MEC density vs Hit ratio. 103

4.8 Comparison of caching schemes using user preference similarity vs (a)

Cache Hit Ratio (b) Cache Utilization (c) Local and Neighbour cluster

Cache Hit Ratio. 105

4.9 Comparison of caching schemes using User activity level skewness vs (a)

Cache Hit Ratio (b) Acceleration Ratio. 106

4.10 Comparison of caching schemes using Zipf shape parameter vs (a) Cache

Hit Ratio (b) Acceleration Ratio. 107

4.11 Comparison of caching schemes using Number of clusters vs (a) Cache Hit

Ratio (b) Acceleration Ratio (c) Cache Utilization. 108

5.1 Illustration of the proposed system model. 113

5.2 Illustration of user mobility speed (a) Low mobility movement (b) High

mobility movement. 116

5.3 Illustration of caching scenarios for static and mobility cases (a) Static /

MAUC (case 1) (b) MAUC (case 2) and (c) MACC scenarios. 117

xiii

5.4 Comparison of caching schemes using number of MECs vs (a) cache hit

ratio (b) acceleration ratio. When C = 10 %, d = 3 slots and b = 8 Mbps. . . 135

5.5 Comparison of caching schemes using cache capacity vs (a) cache hit ratio

(b) acceleration ratio. When N = 10 %, d = 3 slots and b = 8 Mbps. 136

5.6 Comparison of caching schemes using average data transmission rate vs (a)

cache hit ratio (b) acceleration ratio. When C = 10 %, d = 3 slots and N =

10. 137

5.7 Comparison of caching schemes using contact time vs (a) cache hit ratio,

when C = 10 %, d = 3 slots, b = 8 Mbps andN = 10. (b) hit ratio for mobile

user with different contact time, where d =3 slots, b = 8 Mbps and N = 10. 139

5.8 (a) Comparison of different caching mechanisms with content popularity

profile (Zipf parameter) γ where C = 10%, d = 3 slots and b = 8 Mbps (b)

Convergence behavior of saved delay maximization with Npop = 150, cp =

0.95 and mp =0.05. 140

6.1 Illustration of the proposed system model. 144

6.2 Illustration of requests served by MEC. 150

6.3 Multi-agent recurrent DRL framework for cooperative caching. HereOi, ai

represents the observation and actions of agent i and ha, hc represents the

history of actor and critic. 154

6.4 (a) Comparison of content popularity vs content rank Content popularity of

Movielens dataset (b) Voronoi cell diagram with size 500m× 500m where

blue circle indicates the BSs and red triangles are mobile users. 160

6.5 Comparison of caching schemes using cache capacity vs (a) Cache Hit Ra-

tio (b) Acceleration Ratio (c) Local and Neighbour Cache Hit Ratio. 163

6.6 Comparison of caching schemes using number of MECs vs (a) Cache Hit

Ratio (b) Acceleration Ratio. 165

6.7 Comparison of caching schemes using number of contents vs (c) Cache Hit

Ratio (d) Acceleration Ratio. 166

xiv

6.8 Comparison of caching schemes using Zipf shape parameter vs (a) Cache

Hit Ratio (b) Acceleration Ratio. 166

6.9 Comparison of caching schemes using training episode vs (a) Cache Hit

Ratio (b) Local Cache Hit Ratio (c) Neighbour Cache Hit Ratio. 168

6.10 (a) Reward of all schemes vs Training episode (b) Reward of proposed

and MADDPG schemes during Training episodes (c) Training episode vs

Acceleration Ratio. 170

xv

List of Tables

3.1 List of Notations . 51

3.2 Fuzzy input or output variable with their linguistic values 64

3.3 Fuzzy Rules . 65

3.4 Simulation Parameters . 71

4.1 List of Notations . 86

4.2 Simulation Parameters . 100

5.1 Hit ratio and network overhead for caching scenarios 118

5.2 List of Notations . 120

5.3 Simulation Parameters . 132

6.1 List of Notations . 145

6.2 Simulation Parameters . 161

xvi

List of Algorithms

3.1 Relaxation-Rounding Algorithm . 58

3.2 Fuzzy Cache Node(B, D, P) . 66

3.3 Fuzzy Caching Algorithm . 68

3.4 Cache Replacement Algorithm . 69

4.1 Preference Based User Clustering Algorithm 91

4.2 User Preference Prediction based Greedy Cooperative Content Placement

Algorithm . 97

5.1 Greedy Cooperative Content Placement Algorithm 126

5.2 Genetic Algorithm for Cooperative Content Placement 129

5.3 Repairing Process . 130

5.4 Selection Process . 130

5.5 Crossover Process . 131

6.1 MARDDPG based Content Caching Algorithm 159

xvii

List of Abbreviations

5G Fifth Generation Wireless

A2C Advanced Actor Critic

A3C Asynchronous Advantage Actor Critic

ADMM Alternating Direction Method of Multipliers

AI Artificial Intelligence

AP Access Point

BS Base Station

BTPP Back propagation through time

CDN Content Delivery Network

CPP Content Placement Problem

C-RAN Cloud Radio Access Network

D2D Device to Device

DC Data Center

DDPG Deep Deterministic Policy Gradient

DL Deep Learning

DNN Deep Neural Network

DRL Deep Reinforcement Learning

DQL Deep Q-Learning

DQN Deep Q-Network

EM Expectation Maximization

xviii

FC Femto Caching Algorithm

ESN Echo State Network

FBS Femto Base Station

FCA Fuzzy logic-based Caching Algorithm

FIFO First In First Out

FIS Fuzzy Inference System

GA Genetic Algorithm

ILP Integer Linear Programming

IoT Internet of Things

ISP Internet Service Provider

LFU Least Frequently Used

LP Linear Programming

LSTM Long Short Term Memory

LRU Least Recently Used

LTE Long-Term Evolution

MADRL Multi-Agent Depp Reinforcement Learning

MADDPG Multi-Agent Deep Deterministic Policy Gradient

MARDDPG Multi-Agent Recurrent Deep Deterministic Policy Gradient

MBS Macro Base Station

MCC Mobile Cloud Computing

MDS Maximum Distance Separable Codes

MDP Markov Decision Process

MEC Mobile Edge Computing

MEN Mobile Edge Network

MF Membership Function

MINLP Mixed Integer Non-Linear Programming

xix

MPC Most Popular Content

NEF Network Exposure Function

NFV Network Function Virtualization

PBS Pico Base Station

PDA Personal Digital Assistant

POMDP Partially Observable Markov Decision Process

PPP Poisson Point Process

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RAR Relaxation and Rounding Algorithm

RDDPG Recurrent Deep Deterministic Policy Gradient

RL Reinforcement Learning

RNN Recurrent Neural Network

RSU Road Side Unit

SBS Small Base Station

SCN Small Cell Network

SDN Software Defined Networks

TD- error Temporal Difference error

VoD Video on Demand

WiFi Wireless Fidelity

WTD Wireless Topology Discovery

xx

Chapter 1

Introduction

The proliferation of mobile devices, processing capabilities and accelerated advancements

in multimedia applications escalate the demands for multimedia content like video con-

ferencing, virtual reality, augmented reality, video on demand and remote education. This

multimedia content utilizes extra resources for transmission on the Internet, which leads to

the exceptional growth of network traffic, imposes a massive load on the backhaul [1]. Ac-

cording to the Cisco survey overall mobile data traffic anticipated to rise 7-fold from 2017

to 2022 [2]. To meet user demands and deal with the overwhelming traffic, network den-

sification (deploying the base stations densely) is a fundamental technique in mobile edge

networks (MEN) [3]. A significant part of backhaul traffic is the duplicate downloads of

some popular content [4]. Thus, mobile edge caching is a prominent technique that utilizes

the edge nodes as caching nodes to bring the contents closer to users, enhancing the user

quality of experience (QoE) and alleviating the burden on backhaul and core network [3].

The mobile edge networks have merits over conventional network architecture regarding

latency, bandwidth, energy, etc. Latency: Bringing the computation and caching abilities

near users will reduces communication delay, particularly for the video content delivery

and computation offloading. In [5], authors have proven that offloading latency-sensitive

applications like health applications and highly interactive and computationally intensive

applications like AR attained significant improvement.Bandwidth: In [6], it has been shown

that bringing servers near users preserves the operation cost for computation-intensive and

bandwidth-hungry applications by 67%. Studies show that by employing proactive caching

1

CHAPTER 1. INTRODUCTION Section 1.0

mechanisms, the burden on backhaul reduces up to 22%. The authors [7] claimed that more

significant benefits could be achieved with expanded cache storage. Energy Efficiency: In

[8], authors demonstrated that the energy consumption of nano data centers (DCs) in fog

preserves the energy influenced by the type of application, ratio of active and idle time of

DCs, and type of access network. The energy consumption of various applications in LTE

and WiFi networks is studied and shown that significant energy saving achieved with edge

computing [5]. Context Information Utilization: The detailed context information com-

prises device level and network information obtained with the help of edge nodes placed

at various locations in the radio access network [9]. In MEN, the edge servers associated

with the BSs can accommodate the location-based applications that use the context infor-

mation to enhance the user experience and allocate the resources effectively. So, the edge

nodes can serve a massive amount of duplicate content requests, and hence there will be a

reduction in the service delay and the content delivery distance. Therefore, this can support

latency-critical mobile applications in a mobile edge computing framework.

With the increase of Internet content and considering limited storage at MECs, the

overall performance gain of the caching will be affected in mobile edge network. Due to

limited cache capacity at base stations (BS), caching popular content proactively reduces

the load on content servers during off-peak time. It is observed that the content popular-

ity follows Zipf distribution and this states that most of the content requests come for a

small number of frequently accessed top ranked content [10]. Therefore, caching popular

content at appropriate nodes (to improve the overall performance) is an important research

issue which has been addressed in this thesis. The above mentioned observations moti-

vate the present work for designing efficient caching strategies for data delivery in MEN.

Further, based on the cooperation among the BSs, caching can be classified as cooperative

and non-cooperative caching [11]. The non-cooperative edge caching may experience long

delays when a large number of contents are required to be fetched from content servers.

In cooperative caching, different BSs share their content, and this forms larger cache stor-

age. Therefore, the cooperative caching mechanism has a better cache hit ratio compared to

non-cooperative caching and improves the quality of service (QoS) [11]. Hence, the crucial

research problem is to take caching decisions including the content to be cached and place-

2

CHAPTER 1. INTRODUCTION Section 1.0

ment of the cache content. The problems related to content caching has been addressed in

MEN. The contributions in this thesis are as follows:

• Deadline-aware content caching using echo state network integrated fuzzy logic

for mobile edge networks: This work presents an echo state network-assisted fuzzy

logic-based cooperative caching mechanism in mobile edge networks. An approxi-

mation algorithm has been presented to find the optimal caching strategy. Further,

this work considers a proactive caching mechanism by predicting the content pop-

ularity distribution using the Echo state network, where the popularity is predicted

by leveraging the user context information. A fuzzy caching heuristic is proposed to

find a sub-optimal caching strategy. The proposed mechanisms improve the cache

hit ratio, acceleration ratio and the number of contents delivered.

• User Preference based Cooperative Cache Placement for Mobile Edge Networks:

This work presents a cooperative caching strategy by considering heterogeneous user

preferences, activity level and uneven distribution of users in large scale mobile edge

networks. In this work, user preference learning is modelled using long short term

memory to capture the dynamic user behaviour, and further content clustering is

presented to identify the relation between users. A greedy cooperative caching al-

gorithm is presented by considering the submodular optimization to optimize the

caching strategy. The proposed mechanism improves the cache hit ratio, acceleration

ratio and cache utilization.

• Contact duration-aware cooperative cache placement with user mobility across

MECs (i.e., BS) using genetic algorithm for mobile edge networks: This work

presents a caching strategy by considering the user mobility across the MECs and

randomness of contact duration in mobile edge networks. In this work, the user mov-

ing path and the sojourn time of a user is predicted using the Markov renewal process.

A greedy caching algorithm is proposed by considering the submodular optimization

to optimize the caching strategy. Further, a genetic algorithm is presented to solve

large-scale problems. The proposed mechanisms improve the cache hit ratio and ac-

celeration ratio.

3

CHAPTER 1. INTRODUCTION Section 1.1

• Cooperative Cache Replacement using Recurrent Multi-Agent Deep Reinforce-

ment Learning for Mobile Edge Networks: This work presents a cooperative cache

updating strategy. The content popularity is time-varying and unknown in reality,

so the assumption on content popularity known in advance makes it less practical.

Therefore, considering the dynamic nature of the content popularity, high dimen-

sional parameters, and for an intelligent caching decision, the problem is modelled

as a partially observable Markov decision process. Further, an efficient deep rein-

forcement learning algorithm has been presented by embedding the long short-term

memory network into a multi-agent deep deterministic policy gradient formalism.

The proposed algorithm improves the cache hit ratio, acceleration ratio and cache

reward.

The rest of this chapter is organized as follows. Motivation behind the work has been pre-

sented in Section 1.1. In Section 1.2.1, a deadline-aware caching using echo state network

integrated fuzzy logic for mobile edge networks has been highlighted. Content popularity

distribution prediction and fuzzy caching algorithm is presented in this section. In Section

1.2.2, a cooperative cache placement in mobile edge networks with user preference based

learning has been presented. A greedy algorithm is also presented in this section. In Sec-

tion 1.2.3, contact duration-aware cooperative cache placement for mobile edge network

has been highlighted and a greedy algorithm is presented. A genetic algorithm is also pre-

sented in this section. Section 1.2.4 describes the cooperative cache updating strategy in

mobile edge networks. Section 1.3 discusses experimental setup details. The organization

of the thesis has been presented in Section 1.4.

1.1 Motivation and objectives

The recent advancements in mobile and multimedia applications accelerate the demand for

more resources on the Internet. To accommodate the user demands and manage the network

traffic generated with these improvements, deploying base stations densely is a solution.

The dense deployment of edge nodes causes more burden on backhaul links by accessing

the same content. Therefore, to alleviate the burden on backhaul links, the most accessed

4

CHAPTER 1. INTRODUCTION Section 1.1

content needs to be cached at the edge of the network, and this technique is known as

edge caching. Edge caching brings the most frequently accessed content stored near users

by reducing the traffic generated by these requests. Hence, the edge nodes can serve the

user-requested content with less delay and minimal congestion at the core network and this

improves the quality of the service in the network. However, the effective cache utilization

is reduced when the individual edge nodes with limited cache capacity make their caching

decisions independently. A practical solution is to facilitate cooperation among edge nodes

by sharing the content. Different edge nodes share their content in cooperative caching,

which forms more extensive cache storage and enables cache diversity [11]. One of the

significant constraints in mobile edge networks is the limited cache capacity. Therefore, the

primary concern for mobile edge networks is the issue of effectively utilizing the limited

cache capacity by placing the appropriate content at each edge node. Recently, proactive

caching mechanisms have been designed for efficient data delivery in mobile edge networks

by proactively caching the most popular content at each edge node.

With the rapid growth in time-critical and delay-sensitive applications like video stream-

ing, Internet of Things (IoT), and financial applications need a response within a deadline

(i.e., a specific time limit) [12]. The deadline determines the maximum allowable time

for the response received for the request [13]. Some applications like health care and fi-

nancial transactions demand the guarantee of timeliness strictly (hard deadline), whereas

some IoT applications may tolerate the delay (soft deadline). If a request is not served

within the deadline, the quality of service would be affected, and this in turn affects user

QoE. Hence, to improve the user QoE, the request deadlines must be satisfied. There-

fore, MECs should cache content cooperatively by considering the deadline, and limited

caching capacity. Most of the existing proactive caching mechanisms assume that all users

have homogeneous preferences like content popularity, homogeneous activity level, and

uniform user distribution. However, the assumption made by the previous works is not

realistic and not valid based on the recent study. Hence, designing the cooperative cache

placement problem in a realistic scenario where unevenly distributed users, heterogeneity

of the user preferences, and activity level in large-scale mobile edge networks is a signif-

icant challenge. Most of the existing literature assumes static network models where all

5

CHAPTER 1. INTRODUCTION Section 1.2

the users remain static throughout the data transfer time, and the user can download the

requested content from the associated base station. Caching content by considering user

mobility and randomness of contact duration is an important research issue. In the proac-

tive caching mechanism, the caching decisions are based on the popularity of the content.

In the literature, earlier works consider the content popularity is either known in advance

[14] or content popularity be predicted [15, 16]. Practically, the content popularity may

be time-varying, so the above assumption (known in advance) makes it less practical. In

contrast, popularity prediction requires user association, and further user preferences may

vary in different contexts, such as personal information, topology, location, etc [16]. For

taking the caching decision, futuristic content popularity information may not be available.

Therefore, designing a cooperative cache replacement problem in a realistic scenario where

the edge nodes are unaware of the content’s popularity is a significant challenge. Thus, this

thesis also focuses on the above mentioned observations to increase the hit ratio while min-

imizing the latency and congestion in the mobile edge networks. The above mentioned

challenges motivate the present work towards efficient caching mechanisms for data deliv-

ery in mobile edge networks. The major objectives of this thesis are as follows.

1. Design of a deadline-aware cache placement scheme for the mobile edge network to

maximize the saved delay with capacity and deadline constraints.

2. Design of a user preference based cooperative caching scheme for mobile edge net-

works to maximize saved delay by considering the uneven distribution of users, het-

erogeneous user preferences and limited cache capacity.

3. Design of a contact duration-aware cooperative cache placement scheme with user

mobility across BSs for mobile edge network to maximize the saved delay.

4. Design of a cooperative content replacement mechanism in the obscene of content

popularity information for mobile edge networks to maximize saved delay.

6

CHAPTER 1. INTRODUCTION Section 1.2

1.2 Overview of the Contributions of this Thesis

In this section, an overview of chapter-wise contributions of this thesis has been presented.

Each subsection presents summary of contributions of the corresponding chapter.

1.2.1 Deadline-aware Content Caching using Echo State Network In-

tegrated Fuzzy Logic for Mobile Edge Networks

In this work, deadline-aware content placement mechanism has been proposed using the

fuzzy logic to maximize the saved delay in wireless networks. The novelty of the approach

lies in designing a caching mechanism for wireless networks (MEN) by considering limited

storage at base stations, the deadline of content request and popularity prediction. Initially,

the cache placement problem is formulated as an integer linear programming (ILP) prob-

lem. The solution is designed as relaxation-and-rounding based on the rounding technique.

Further, a fuzzy logic based caching algorithm has been proposed by considering deadline,

the benefit of caching content and content request distribution prediction for content place-

ment decisions. Moreover, an Echo State Network (ESN) based prediction mechanism has

been designed to predict the content request distribution for mobile edge network. The

major contributions of this work are as follows:

• Formulate a content placement problem (CPP) as an integer linear programming

problem in mobile edge networks with an objective to maximize the saved delay

subject to cache capacity and request deadline.

• Design an approximation algorithm based on the relaxation and rounding technique

to solve the integer linear programming version of content placement problem in

MENs.

• Propose a fuzzy logic-based caching algorithm (FCA) to find the near-optimal solu-

tion by considering content request distribution, deadline of the content and benefit

(distance) of caching content. The content request distribution prediction mechanism

is designed using echo state networks.

7

CHAPTER 1. INTRODUCTION Section 1.2

Formulation of a Content Placement Problem

In this section, first the delay is modelled then the problem is formulated as Integer linear

programming problem aiming to maximize the saved download delay with capacity and

deadline constraints. Then the proposed problem is shown as NP-hard.

Approximation algorithm

In this section, the proposed ILP problem is converted into linear programming problem

by relaxing the integer decision variables. Hence, the optimal solution can be found in

polynomial time then round the fraction solution. The deterministic rounding algorithm

[17] has been adopted by constructing the weighted bipartite graph for each content f of

different content types c.

Fuzzy Caching Algorithm based on Content Prediction

The content placement problem is proposed to maximize the saved delay, since the popu-

larity is determined by content request prediction (i.e., the appropriate content to be cached

at each base station cooperatively requires the content popularity prediction). To address

this issue, a fuzzy logic based cooperative content placement algorithm has been presented

using content popularity prediction. The content request distribution has been predicted

using the ESN (echo state network) [18]) model by considering the state of user content

requests observed by network evaluation function. ESN predicts the content request dis-

tribution by establishing the relationship between the requested content and user context

(user information). ESN trains the neurons using simple linear regression and it has fast

convergence speed. The idea of the fuzzy caching algorithm is to cooperatively cache more

popular content with minimal delay by considering content benefit, deadline and request

prediction (popularity) to improve the performance in terms of hit ratio, acceleration ratio

and the number of requests satisfying deadline. Further, a replacement strategy is presented

for dynamic network. The proposed caching algorithms is implemented with python by uti-

lizing the real-world movilens dataset for demand model. The performance metrics such as

cache hit ratio, acceleration ratio, number of requests satisfying deadline and cache utiliza-

8

CHAPTER 1. INTRODUCTION Section 1.2

tion are taken to compare the proposed caching mechanisms with most popular, random,

least recently used, cooperative and non-cooperative caching mechanisms. Simulation re-

sults show that the cache hit ratio and acceleration ratios are improved significantly using

the proposed mechanisms compared to reference algorithms. Further, it is observed that

there is an improvement of up to 20% on acceleration ratio, up to 18% on hit ratio and up

to 24% on number of deadline satisfied.

1.2.2 User Preference based Cooperative Cache Placement for Mobile

Edge Networks

Content popularity indicates the average interest of multiple users but not exhibits the in-

dividual user preferences [19]. Most of the existing literature considers that all users have

the same content distribution (homogeneous popularity). However, various users have di-

verse preferences. The assumption made on homogeneous popularity ignores the users’

preferences results in losing valuable information. Less than 20% of users generate 80% of

traffic, which shows the users’ activity level is heterogeneous [20]. The user activity level

and user preferences, and unevenly distributed users introduce new challenges into mobile

edge networks. In the literature, most proactive caching approaches ignored user behaviour,

such as heterogeneous user activity levels and user preferences. Therefore, employing the

individual user preferences and activity levels improves the cooperative caching strategy

design.

This work aims to maximize the saved delay by considering the capacity and deadline

constraints for accessing a large volume of data while reducing redundancy, congestion

and delay. The content request deadline has been considered for generality and practicality,

which is reasonable in latency-sensitive mobile and IoT applications but not sufficiently

investigated. The work’s novelty lies in designing a clustered cooperative cache place-

ment mechanism for mobile edge networks with uneven user distribution, heterogeneous

user preferences and activity levels into account. User preferences are predicted using the

recurrent neural network mechanism LSTM using the historical user behaviour, and the

users are clustered based on the predicted user preferences. Further, the clustered cooper-

9

CHAPTER 1. INTRODUCTION Section 1.2

ative content placement is designed by formulating the maximum saved delay problem. A

solution is obtained to maximize saved download delay using a submodular function with

matroid constraints for the cooperative content placement problem.

The contributions of our work are as follows:

• Design a user preference prediction mechanism by adopting the long short-term

memory network.

• Design a user preference-based clustering mechanism and formulate a clustered co-

operative caching problem as an integer linear programming problem in mobile edge

networks to maximize the saved download delay subject to the deadline of the con-

tent and cache capacity.

• Propose a submodular optimization based cooperative content caching algorithm by

utilizing the clustering and prediction mechanisms to solve the proposed problem.

User Preference Prediction

In this section, the user preferences are predicted by adopting long short term memory

model. In the training phase, the data of each user is supplied into the LSTM network.

Once the network is trained, the values are predicted and this indicate the number of times

a user requests content in each time slot. Based on the prediction result, the user activity

level and user preferences are computed.

User Clustering and Problem Formulation

In this section, the users are divided into logical groups based on the predicted user pref-

erences. Each cluster has similar type of user and associated base stations. The content

placement problem is formulated as Integer linear programming problem by maximizing

the saved download delay with capacity and deadline constrains. Then the proposed prob-

lem is shown as NP-hard.

10

CHAPTER 1. INTRODUCTION Section 1.2

Content Placement algorithm using Sub-modular Optimization

In this section, a submodular optimization based greedy algorithm is presented to solve the

proposed content placement problem. The submodular property with matroid constraint of

the given problem has been proved and the given problem is converted into submodular

optimization problem. Since the proposed problem satisfies the submodular property a

greedy approximation algorithm has been presented. The proposed mechanism is compared

with the global popular, local popular, femtocaching, cooperative and clustered cooperative

caching mechanisms in terms of hit ratio, acceleration ratio and cache utilization. From the

simulation results, it has been observed that the cache hit ratio and acceleration ratio are

improved significantly using the proposed caching approach.

1.2.3 Contact Duration-Aware Cooperative Cache Placement with User

Mobility Across MECs (i.e., BS) using Genetic Algorithm for

Mobile Edge Networks

In this work, the cache placement problem in a realistic scenario has been considered where

the users with different speeds intermittently connect to the BSs at irregular intervals. The

users will frequently move between BSs and can download only parts of the requested

content from different encountered BSs along the moving path. If the user fails to down-

load the complete content from encountered BSs, then the requested content is downloaded

from a macro base station (MBS), this in turn increases the overall delay and affects the

QoS. Hence, the caching mechanism should consider the user mobility pattern. Although

[21, 22] assumes the user mobility, the randomness of contact duration is not considered.

According to [23], data transmission is associated with contact duration (sojourn time). If

the contact duration is short, the user is moving at high speed and if the contact duration

is long, it means the user moves at low speed. Thus, contact duration randomness caused

by user mobility affects the transmission of data and this in turn affects the content place-

ment. Therefore, the aim of this work is to design caching methods by considering limited

resources, content popularity, deadline, the randomness of contact duration (speed of the

user) and user mobility.

11

CHAPTER 1. INTRODUCTION Section 1.2

The novelty of this work lies in designing a content placement mechanism for dynamic

networks where the moving users intermittently connect to the BSs at irregular intervals

of time. User mobility is modeled as Markov renewal process to predict contact duration

and user moving paths. Then the contact duration aware content placement is designed by

formulating the maximum saved delay problem. For the contact duration aware content

placement problem, a solution is obtained to maximize saved download delay using a sub-

modular function with matroid constraints. Further, a heuristic search mechanism based on

a genetic algorithm is designed to efficiently obtain content placement solution for large

scale problems (the scenarios that scale to large video library sizes).

Major contributions of this work are as follows:

• Formulation of a mixed integer non linear programming problem for contact duration

aware content placement problem: maximization of saved download delay subject

to constraints, namely cache capacity and popularity of the content in mobile edge

networks.

• Modeling user mobility as a Markov renewal process to predict the user moving paths

and contact duration.

• Design of a greedy algorithm by adopting submodular optimization to solve the prob-

lem and development of a heuristic search mechanism based on a genetic algorithm

to solve the content placement problem for large scale problems efficiently.

Greedy algorithm for contact duration aware cooperative content placement

In this section, a greedy algorithm is presented by predicting the user mobility and contact

duration with the base station. The proposed greedy algorithm achieves a polynomial time

complexity; the complexity grows with an increase in the number of contents. For real

scenarios as the scale continues to increase (large scale problems where hundreds of users,

tens of BSs), the complexity can be very high, making it impossible for implementation

[24, 25]. Therefore, low complexity sub-optimal algorithms are required due to cheap-

ness and delay sensitive implementations [25]. To address the system with a large number

of nodes, contents and mobility paths, and to simplify the computational complexity, a

12

CHAPTER 1. INTRODUCTION Section 1.2

heuristic algorithm has been designed based on the genetic algorithm (GA). GA gives a

near optimal and robust solution (video segment placement in content delivery networks

[26] and base station placement in heterogeneous network [27]) for NP-hard problems.

The proposed greedy and genetic algorithms provide improvement of up to 13 and 16 per

cent on hit ratio compared with MPC, FC and MCFD, respectively.

1.2.4 Cooperative Cache Replacement using Recurrent Multi-Agent

Deep Reinforcement Learning for Mobile Edge Networks

In the real world, the limited cache size restricts the mobile edge caching performance [28].

A simple solution is to devise efficient content placement mechanisms by considering user

preferences and content popularity [22]. The effective cache utilization reduced when the

individual nodes with limited storage make their independent decisions since they may re-

dundantly cache popular content. Different edge nodes share their content in cooperative

caching, which forms more extensive cache storage and enables cache diversity [11]. Gen-

erally, the caching decisions of various nodes depend on each other, but each edge node

is aware of its own caching decision and unaware of the other nodes decisions. Make use

of cooperative edge caching presents various technical problems. (1) To achieve coop-

eration, edge nodes should be aware of the neighbouring nodes caching state by sharing

content, which causes considerable burdens [29]. (2) Efficient cooperation control needs

an adaptive and dynamic framework. (3) Further, the designed caching mechanism has to

tackle large-scale information induced by enormous data and information interaction. The

conventional optimization mechanisms, such as dynamic programming and integer linear

programming, can handle the first two problems [30]. Considering the dynamic nature of

the content popularity, high dimensional parameters, and for an intelligent caching deci-

sion, the conventional optimization methods will not be suitable [30]. The recent success

in reinforcement learning (RL) [31] and deep reinforcement learning (DRL) [16, 32] has

encouraged this research work to use these learning mechanisms to tackle dynamic and

complex systems.

This work aims to maximize the saved delay by considering the capacity and dead-

13

CHAPTER 1. INTRODUCTION Section 1.3

line constraints for accessing a large volume of data. Content request deadline has been

considered for generality and practicality reasonable in latency-sensitive mobile and IoT

applications. The novelty of this work lies in designing a cache mechanism for a dynamic

environment where the time-varying nature of content popularity is unknown in advance

for latency-sensitive applications by considering the limited storage at each edge node.

Since each edge node observes its local state, the cooperative cache replacement problem

is modelled as a partially observable markov decision process (POMDP) [33]. Further, a

multi-agent actor-critic framework has been designed to manage nodes to coordinate the

caching decisions. The contributions of this work are as follows:

• Formulate the cooperative cache replacement as an integer linear programming prob-

lem to maximize the saved download delay and further the designed problem is mod-

eled as a POMDP based multi-agent decision problem to maximize the cumulative

reward by ensuring the MEC servers’ coordination.

• Design a recurrent multi-agent deep reinforcement learning-based cooperative cache

replacement algorithm for mobile edge networks by devising a multi-agent actor-

critic framework.

Multi-Agent Deep Reinforcement Learning Model for Cooperative Caching

In the real world, the environment has challenging conditions for a multi-agent system that

demands cooperation among agents, such as partial observable agents and non-stationary

nature. Therefore, the multi-agent decision problem has been modeled as a partially ob-

servable Markov decision problem and presented a multi-agent DRL framework for coop-

erative content replacement in MEN. In the proposed algorithm, LSTM is included in the

actor-network and critic network. The inclusion of LSTM enables a way to remember the

last communication (the effect of the actions on reward) received from other agents.

14

CHAPTER 1. INTRODUCTION Section 1.4

1.3 Experimental Setup

To evaluate the performance of the proposed caching algorithms, this thesis presents the

system setting in this section. The proposed mechanisms has been experimented using

Python with the TensorFlow platform. The proposed algorithms has been executed on a

desktop with a dual-core Intel i5-5200U 3.20 GHz and 8 GB of installed RAM. A square

region has been considered for simulation with an area of 500m × 500m. In the given

simulation area, a cellular network is considered with 15 BSs associated with MEC servers

and 90 mobile users, MECs are randomly deployed and connected and the mobile users’

initial locations are uniformly distributed over MECs at the beginning of the simulations

[24, 34, 35]. In the simulation, 500 contents have been considered with size determined

uniformly at random from a range of [10MB to 100MB]. Content request probability fol-

lows Zipf distribution with γ = 0.6 [24]. Each content has a deadline picked randomly from

[5 to 30s]. Each MEC can cache 10% of the total files. The data transmission capacity of

MEC is 8 Mbps. The latency to fetch content from the base station to the user is specified

using uniform distribution ranges from [10 to 30s]. Latency to fetch content from the con-

tent server to BS is taken as 80s. The proposed algorithms are compared with the existing

algorithms based on publicly available real-world datasets available at WTD Project [36],

MovieLens [37] and Lastfm [38]. The presented simulations results are an average of 100

runs.

1.4 Organization of the Thesis

The main focus of this dissertation is to design caching algorithms in mobile edge networks

by considering dynamic environment conditions to improve cache hit ratio, acceleration ra-

tio and cache utilization. The thesis has been organized in seven chapters.

Chapter 1: In this chapter, a brief introduction to mobile edge networks and objectives of

the thesis have been presented. It also describes an overview of the major contributions and

outline of the thesis.

Chapter 2: In this chapter, proactive caching, cooperative caching, mobility based caching,

15

CHAPTER 1. INTRODUCTION Section 1.4

coded caching, prediction based policies, user preference based policies, reactive caching

and learning based policies are discussed. The challenges in content caching in mobile

edge network have also been presented.

Chapter 3: In this chapter, a cooperative content placement mechanism has been proposed

for mobile edge networks to maximize the saved download delay. The content placement

problem has been formulated as Integer linear programming problem with an objective to

maximize the saved download delay subject to cache capacity, request deadline and popu-

larity of the content. An approximation algorithm is presented to solve the proposed ILP

problem. Further, a fuzzy logic based caching algorithm is proposed to find near-optimal

solution for large scale problems.

Chapter 4: In this chapter, a user preference based cooperative caching mechanism has

been proposed for mobile edge networks. LSTM is used to model the user preference pre-

diction and further, a greedy algorithm is presented to cache the content.

Chapter 5: In this chapter, contact duration aware cooperative caching mechanism has

been presented. The mobility and contact duration is modeled with Markov renewal pro-

cess and further, a greedy algorithm is proposed to cache the content at MEC nodes.

Chapter 6: A recurrent multi-agent deep reinforcement learning algorithm has been pre-

sented to dynamically update the content in mobile edge networks. An LSTM model is

adopted to reduce the instability produced by partial observable environment. Inclusion of

the LSTM enables a way to remember the last communication (the effect of the actions on

reward) received from other agents.

Chapter 7: This chapter summarizes the work, outcomes of the contributions and future

scopes for expansion of the work.

16

Chapter 2

Literature Survey

The evolution of telecommunication and information technology has witnessed the five

generations of mobile cellular networks over the past two decades. At the same time, the

growth in mobile devices and multimedia applications enables the user demands for mo-

bile networks for lower latency and higher data rates. The conventional cellular network

with base station-centric architecture no longer satisfies the demands. Therefore, in the

5th and sixth generations, mobile cellular networks emerge from conventional BS-centric

[39] to content-centric [40], device-centric networks. Furthermore, mobile devices are be-

coming smarter in their computing. Modern machine-type devices like sensors, wearable

devices, and human-type devices lead to huge machine-to-machine communications. These

machine-type communications introduce additional challenges like low latency, power con-

sumption, and limited processing abilities for cellular systems [41]. Different approaches

have been proposed in the literature like mobile cloud computing, cloudlets [42] and edge

computing to address the challenges raised by machine-type communications. Mobile

cloud computing (MCC) consists of a pool of servers called cloud and clients to address the

challenges provided by machine-type communications. MCC offloads the computational

tasks to the cloud to support multiple platforms and provide adequate resources. Even

though MCC addresses some issues, it suffers specific problems like long latencies and

a burden on backhaul due to bandwidth limitation. Like MCC, Cloudlet is a small-scale

data center near deployable users, energy-efficient, and self-managed [43]. Widespread

deployed cloudlet management is challenging. Mobile edge networks are a solution to ad-

17

CHAPTER 2. LITERATURE SURVEY Section 2.1

dress the demerits of the MCC and cloudlet.

Bringing the network resources (communication, caching, and computing), contents,

and functions near users by employing the NFV and SDN technologies is the primary ob-

jective of mobile edge networks. Each network resource invites distinct challenges [29].

The evolution of various smart devices and applications like the Internet of things (IoT),

augmented reality, virtual reality, haptic communications, and tactile Internet generate a

huge volume of content that requires additional resources on the Internet, and this leads

to the exceptional growth of network traffic and imposes a massive load on the backhaul

[1]. Thus, mobile edge caching (MEC) is a prominent technique that utilizes the edge

nodes as caching nodes to bring the contents near users, alleviating the backhaul and core

network burden that enhances user quality of experience (QoE) [3]. So, the edge nodes

can serve a massive amount of duplicate content requests, which reduces the service de-

lay and reduces the content delivery distance. Therefore, this can support latency-critical

mobile applications in a mobile edge computing framework. Content caching has been

investigated extensively in the literature like web caching [10, 44] and information cnetric

networks [45, 7, 46]. In [44], Ali et al. have presented caching approaches and studied

prefetching mechanisms to improve web performance. Podlipnig et al. [47] have discussed

the merits and demerits of cache updating mechanisms. A survey on caching strategies in

an information-centric network is presented by [7]. However, the caching mechanism men-

tioned above may not be applied directly because of the wireless networks characteristics,

and further the caching mechanisms in cellular networks need to be studied in detail.

2.1 Mobile Edge Networks Architecture

In this section, first, an overview of mobile edge computing (MEC) and its architecture

has been provided. MEC is a prominent solution to minimize the delay between users and

cloud servers. As shown in Fig. 2.1, multiple scenarios exist with different edge paradigms.

In [48], authors studied different edge paradigms and showed each paradigm’s merits and

demerits in detail.

MEC affords caching ability, mobility, high computational capability, local and context-

18

CHAPTER 2. LITERATURE SURVEY Section 2.2

SBSk
SBSj

MBS

CDNCore Network

Coverage

area of SBSi

Coverage

area of MBS

MEC

Cooperation

among SBS

Device-to
-

Device

Figure 2.1: Mobile Edge Network Architecture

aware support to the end-users by bringing proximity to users. Furthermore, MEC offers

high bandwidth, ultra-low latency, and energy-efficient environments to delay sensitive

applications like IoT for better responsiveness than other edge paradigms [48]. It can be

seen from Fig. 2.1 that the MEC servers are deployed along with the base stations to

support the task computation at the edge and forward the tasks to the remote cloud servers

for the applications to fulfil high computational requirements.

2.2 Mobile Edge Caching

Caching content at the edge nodes in MEN has advantages. Because of the densely de-

ployed base stations, the MEN will be hybrid and heterogeneous. In conventional cellu-

lar networks, the requested content is obtained from distant Internet CDN. Therefore, in

MEN, the cache can be placed at several positions to bring content near users. A mo-

bile edge caching architecture is shown in Fig. 2.2. With the evolution of technology, BS

and the cheaper storage cost lead to placement of storage at heterogeneous BSs is reason-

able. However, the densely deployed BS needs high-cost backhaul links among the core

networks and BSs [49]. The backhaul links witness more duplicate content transmission

19

CHAPTER 2. LITERATURE SURVEY Section 2.2

SBSk
SBSj

MBS

CDNCore Network

De
vic
e-
to
-

De
vic
e

Figure 2.2: Edge Caching Architecture

MEC 1

MEC 2

Content Server

Local cache

Request

Response

(I) Content Request

(II) Check if content in the cache

(III) Content Delivery

User (III)

(I)

(I)

(II) (III)

Content is cached in

Local Storage Case

Figure 2.3: Content cached at Local Cache

because of the popular content [49, 50]. When multiple users from several locations request

a large number of contents repeatedly at different times, the need to serve the user demands

by fetching content from the central CDN leads to a vast amount of duplicate content pro-

ducing the backhaul traffic. If the edge node caches most of the users desired content at

its local storage, it can be served immediately without fetching from the central node every

time, reducing duplicate content [51, 52]. Therefore, the basic problem in caching for mo-

bile edge networks is to decide what content to cache, where to cache, and how to cache.

The cache storage units can be placed at several places in MEN. In the conventional

20

CHAPTER 2. LITERATURE SURVEY Section 2.2

MEC 1

MEC 2

Content Server

Local cache

Neighbouring

MECs cache

User

requestin
g

content

(I) Content Request by user

(II) Check if content in the cache

(III) Forward the content requetst to Neighbour

(IV) Content Request by MEC1

(V) Check if content in the cache of MEC2

(VI) Content Delivery

Content is not cached in

Local Storage Case

(I)

Request

Response

(I)

(II) (III)

(IV)

(IV

(V)(VI)

(VI)
(VI)

Figure 2.4: Content cached at Neighbour Cache

MEC 1

MEC 2

Content Server

Local cache

Neighbouring

MECs cache

User

requestin
g

content

(I) Content Request by user

(II) Check if content in the cache

(III) Content not stored in MEC1 Local Cache

(IV) Content Request by MEC1 to MEC2

Content is not cached in

any MEC Case

(I)

Request

Response

(I)

(II) (III)

(IV)

(IV

(V)(VI)

(VI)
(VIII)

(V) Check if content in the cache of MEC2

(VI) Content not stored in MEC2's Cache

(VII) Content Request by MEC1 to Content server

(VIII)Content Delivery

(VII)(VIII)

Figure 2.5: Content not cached at any edge node

centralized cellular network, the cache is deployed only at the core CDN. In contrast, in

the MEN, the cache can be deployed at multiple places like radio access networks (RAN)

(cloud RAN, fog RAN) [53], user devices (device to device networks) [54], HetNet (Het-

erogeneous networks) [24], macro (MBS) [55, 56], small BS (SBS), femto (FBS) [57],

and pico (PBS) cellular networks. As shown in Fig. 2.3, the content can be served to the

requested user based on availability of the content at local cache deployed at BS. If the

requested content is not available at local BS then corresponding BS serves the requested

21

CHAPTER 2. LITERATURE SURVEY Section 2.2

user by obtaining the content from nearby (neighbouring node) BS as shown in Fig. 2.4

otherwise the content will be fetched from the central server as shown in Fig. 2.5. This

thesis focuses on the design of cache placement (mainly what and where to cache the con-

tent).

• Caching at BS: Caching the content near users at the base stations is a good solu-

tion that provides lower latency and better throughput. Caching content at BS has

challenges like inter-cell inference, connection uncertainty, and limited coverage. In

HetNets overlapped BSs imposes additional complications in addition to inter-cell

inference, connection uncertainty, and limited coverage [58]. HetNets expand the

MBS by placing the SBSs (Femto base station (FBS) and Pico base stations (PBS))

to increase the throughput and network coverage [59].

1. Caching at MBS: MBS coverage is higher than SBS coverage and can accom-

modate more users lead to better performance in terms of hit rate. The per-

formance in MBS caching can be improved by proactively caching the more

popular content from the central node. The proactive and reactive caching at

MBS has been studied in [60] for scheduling the backhaul and wireless channel

and shown that the stalling probability has been reduced and the capacity of the

video capacity has been increased. In [61], the resource allocation in MBS was

solved using a heuristic approach by proving the problem as NP-hard. In [62],

a HetNet with two levels which consist of MBS level and SBS level is intro-

duced. This work aims to maximize the hit ratio. Users can be served in four

different ways like serving immediately by corresponding SBS, serving imme-

diately by corresponding MBS, serving from MBS through corresponding SBS,

and serving from nearby SBS through MBS. In [63], a matching algorithm has

been presented to map the content to the appropriate BSs (SBS and MBS) in

HetNets. The limitations of this work are that they consider only one content

in the entire network and this leads to intra-network overhead and restricts the

cache hit rate.

2. Caching at SBS: Small base stations have a lower coverage area than MBS, so

22

CHAPTER 2. LITERATURE SURVEY Section 2.2

they are placed densely under an MBS for better coverage. With limited cache

capacity, SBS brings the content near users, which boosts the higher data rates

and low transmission power and relieves the backhaul burden. For placement,

SBS needs different caching schemes than MBS because of its dense nature.

Cooperation among the SBS needs to be considered to avoid redundant data

storage at the entire network and this provides higher data rates to improve

cache storage utilization [51, 64, 57, 65]. In [57], the authors proposed a con-

tent placement problem (CPP) in cache-enabled SBS to minimize the expected

download delay. Authors in [64] consider the cache update problem for dy-

namic content popularity and presented a learning-based caching mechanism to

maximize the reward. Nevertheless, these works consider the caching and de-

livery phases individually. In [66], authors consider the D2D and SBS caching

where the SBS serves various users, and user devices share content among other

devices using the D2D communication. In [66], content caching and delivery

are considered jointly to optimize network performance.

3. Caching at FBS: The fundamental idea of Femto caching is to substitute the

backhaul capacity with storage capacity at small cell access points [57]. Femto

caching is a cost-effective and flexible technique to effectively handle the ex-

tremely anticipated massive traffic (VoD) by placing content at the edge nodes.

The femto caching architecture for video content is proposed in [57] and shown

the two order magnitude improvement in throughput than architecture without

helpers. Shanmugam et al. [24] have discussed the way to minimize expected

download delay by assigning files to the helper (femtocells). They proposed

a greedy approach with a factor of 2-approximation for the NP-complete prob-

lem. By considering the dynamic nature of topology and user mobility, dynamic

Femto caching is presented in [67].

4. Caching at PBS: Pico caching is a cost-effective mechanism that assists in di-

minishing the load on the backhaul. PBS cooperates by sharing the content to

reduce the burden on backhaul. Caching in HetNet has been considered in [68],

where authors consider multiple PBS are deployed under an MBS. MBS serves

23

CHAPTER 2. LITERATURE SURVEY Section 2.3

as a central controller in the considered system that takes caching decisions and

assigns the appropriate content to the particular PBS. User requested content

can be served by the associated PBS or from the nearby PBS or the MBS based

on the availability of the content. In [69], the authors optimize the multicasting

by placing content randomly at PBS and at the MBS tier to maximize the suc-

cessful transmission probability in HetNet.

• Caching at User Devices: With the advancements in smartphones, computation and

storage abilities have been increased. Hence, user devices serve other mobile users

by caching and sharing the content. Caching the content at the user devices is known

as D2D caching, and it is a critical technology where the mobile users get the content

from the nearby users using D2D communications instead of fetching content from

a long distant core network by exploiting the device storage [70]. In D2D caching,

the BS tracks the status of each user device and is responsible for redirecting the user

requests to an appropriate device. If the requested content is not available with any

of the devices, BS serves the user request by fetching content through backhaul. In

D2D caching, several devices form a cluster based on social relationships or com-

mon interests. D2D caching provides the benefits offered by D2D communications,

such as throughput, energy efficiency, better spectrum utilization, and location-based

services [29]. Moreover, the user devices cache the content based on their favorites,

so it offers a higher cache performance and flexibility than caching at different places

(MBS, SBS, and core network) [71]. In the literature, these studies explored the op-

portunistic D2D mechanisms, social relationship and shared interests [72]. In this

thesis, caching content at the SBS has been considered to improve the acceleration

ratio, cache hit ratio and cache utility in MEN by considering the user mobility, het-

erogeneity of user preferences and absence of content popularity.

2.3 Cooperative Caching

Based on the cooperation among the BSs, caching can be classified as cooperative and

non-cooperative caching. The non-cooperative edge caching (content is not shared among

24

CHAPTER 2. LITERATURE SURVEY Section 2.3

the BSs) may experience long delays due to the large number of contents required to be

fetched from content servers. In cooperative caching, different BSs share their content

and this forms larger cache storage. Therefore, the cooperative caching mechanism has a

better cache hit ratio compared to non-cooperative caching and improves the user quality

of service (QoS) [11].

In cache enabled cellular networks, base stations typically cache a set of contents co-

operatively [3]. The user can get the interesting content either from its local base station or

from the neighbouring base station set [11]. Khreishah et al. [55] have discussed collabora-

tive caching to minimize the operation cost in a multi-cell coordinated system. The authors

consider the coded and non-coded caching problems. In non-coded caching, the problem is

formulated as integer programming to maximize the profit with capacity constraint and it is

shown as NP-Complete. A fully polynomial-time algorithm is presented to solve the non-

coded caching problem. The coded caching problem is formulated as linear programming,

which is polynomial-time solvable. Peng et al. [49] have discussed a content placement

problem (CPP) to minimize the average download delay of wireless networks by consider-

ing backhaul delay and physical layer processing. The CPP is formulated as mixed-integer

non-linear programming and its hardness is shown. Since the proposed problem is com-

plex, the authors relaxed the problem into a distance of concave optimization problem and

presented a successive convex approximation algorithm with low computational complex-

ity.

Chen et al. [18] have investigated cooperative caching and transmission mechanisms

in cluster-centric SCN. In cluster-centric SCN, BSs are grouped into clusters, and each BS

reserves the cache space for the most popular content, and the remaining cache space is

for less popular content. The coordinated multi-point mechanism is adopted to serve the

users either with parallel or joint transmission. The authors consider the hexagonal grid

design for clusters. The users are distributed based on the Poisson point process, and the

analytical results on successful content delivery are provided to show the proposed trans-

mission mechanisms for the user positioned at the cluster center. Psomas et al. [73] have

investigated cache placement mechanisms at relays in cooperative communications. To

address the placement problem, the authors proposed optimal amplify and forward relay

25

CHAPTER 2. LITERATURE SURVEY Section 2.3

selection mechanisms, and the analytical results are presented to show the outage perfor-

mance, coding gain, and diversity order of various caching mechanisms. Josilo et al. [74]

have considered the bandwidth minimization in hierarchical cache networks through co-

operative caching. The CPP is formulated as a binary integer programming problem to

minimize the bandwidth in hierarchical networks and this is proved to be NP-hard. To

solve the problem, the authors presented an approximation algorithm. Further, two low

complexity distributed algorithms were presented.

To improve the user QoE, Tran et al. [11] have investigated a cooperative hierarchical

caching framework in C-RAN. The cooperative CPP is formulated as an integer program-

ming problem to minimize the download delay and it is proved to be NP-Complete. Octo-

pus presents an efficient cache management scheme, including two low-complexity cache

mechanisms. Further, a user request aware cache replacement mechanism is presented.

Cui et al. [75] have discussed caching in ISP networks with software-defined networks

to minimize the download delay, reducing inter-ISP traffic. The CPP is formulated as an

integer programming problem with traffic and capacity constraints and shown as NP-Hard.

A relaxation-rounding-based approximation algorithm is presented to solve the proposed

CPP in ISP networks. Further, a low complexity heuristic solution is presented to solve the

content placement problem for large-scale problems. Kumar et al. [76] have designed the

consolidated cooperative cache placement and replacement schemes to reduce the content

access delay in MEN. The authors in [77] devised a test-bed to evaluate the cooperative

bit-rate adaptive caching scheme and consider the video caching and request routing using

the video trans-coding mechanism.

Ayenew et al. [78] have discussed the content placement problem in a heterogeneous

cellular network. The CPP is formulated as a 0/1 knapsack problem to maximize the cache

hit probability with known popularity and presented a dynamic programming solution to

obtain an optimal solution with minimized computational time. Ren et al. [79] have pro-

posed a hybrid cooperative caching in MEN to improve the quality of service interns of

service latency reduction and energy efficiency. The collaborative caching problem is for-

mulated as integer programming to maximize the service latency and energy savings with

popularity and capacity constraints. First, the BSs were logically grouped into clusters us-

26

CHAPTER 2. LITERATURE SURVEY Section 2.4

ing the fuzzy c-means clustering algorithm. Second, a hybrid collaborative caching scheme

has been presented using the Lagrange multiplier scheme. Further, a greedy approximation

algorithm has been designed to give a linear complexity solution. Yang et al. [80] have

discussed cooperative caching based on user access patterns. The interaction between the

user, BSs, and contents were investigated using the tensor decomposition technique with a

distance constraint.

The works mentioned above have not considered heterogeneous user preferences, user

activity, user contextual information, the randomness of contact duration, and the absence

of content popularity in cooperative settings. In contrast, this thesis considered designing

efficient cooperative caching algorithms for the problems mentioned above in Chapters 3,

4, 5 and 6.

2.4 Mobility based Caching

Most of the existing works [11, 60, 24] focus on caching content cooperatively at BS for

static networks. This assumption made by the existing works [11, 60, 24] is unrealistic

in a dense network. In a realistic scenario, the users with different speeds intermittently

connect to the BSs at irregular intervals. The users will frequently move between BSs and

can download only parts of the requested content from different encountered BSs along

the moving path. If a user fails to download the complete content from encountered BSs,

then the requested content is downloaded from a macro base station (MBS); this, in turn, in-

creases the overall delay and affects the QoS. Consider an example customers move around

a shopping mall with three BSs. If a user wishes to download content, then the content

should be replicated in all three BSs due to user mobility. Replicating the same content at

three BSs is a wastage of resources, so disjoint content parts should be cached at the BSs

to improve cache hit ratio and cache utilization. Hence, the caching mechanism should

consider the user mobility pattern. Although [21] and [22] assume user mobility, the ran-

domness of contact duration is not considered. According to [23], data transmission is

associated with contact duration (sojourn time). If the contact duration is short, the user is

moving at high speed, and if the contact duration is long, it means the user moves at low

27

CHAPTER 2. LITERATURE SURVEY Section 2.4

speed. Thus, contact duration randomness caused by user mobility affects the data trans-

mission, which in turn affects the content placement.

There are a few studies on user mobility. Guan et al. [34] have presented a mobility-

aware cache placement problem in SCN (small cell network) to minimize the burden on the

backhaul network. The mobility-aware CPP is formulated as an optimization problem for

maximization of cache utility with capacity constraint and shown as NP-complete. Further,

a polynomial-time heuristic algorithm has been proposed to maximize cache utility. In

[34], authors have considered that the mobility paths of users are known in advance. In

reality, users may not follow the paths predicted from historical user trajectories. Liu et al.

[81] have presented a mobility-aware coded cache mechanism to improve the throughput

in dense wireless networks. In this work, the authors jointly consider the user mobility,

channel selection diversity, and content diversity in the optimization problem and proposed

a modified mobility model based on discrete jumps. Further, the authors presented two

lightweight heuristic solutions to solve MEC’s coded probabilistic caching algorithm that

enabled small cell networks to maximize throughput. In [81], authors considered only

single user mobility, but mobility among different users has not been considered. Liu et al.

[82] have proposed an optimal file allocation mechanism to minimize the download time

in a small cell network and assumed that the user mobility obeys exponential distribution.

The authors in [82] assumed that the user does not return once it leaves the base station.

Wang et al. [22] have proposed a mobility-aware cache placement scheme to maximize

data offloading ratio by considering the advantage of inter contact time between users and

proved this to be NP-hard. First, a dynamic programming solution has been presented to

achieve lower computational complexity. Second, the proposed problem has been reformu-

lated into a submodular optimization problem, and a greedy approximation algorithm has

also been presented, which gives an approximation ratio of at least 1
2
. Chen et al. [83] have

proposed a mobility-aware caching scheme to cache content at the base station and mobile

device using user mobility. The CPP was formulated as integer programming to maximize

the offloading ratio with user mobility and randomness of contact duration. The greedy ap-

proximation algorithm solves the proposed problem by converting the given problem into

a submodular optimization problem. Ye et al. [84] have proposed a caching mechanism

28

CHAPTER 2. LITERATURE SURVEY Section 2.5

for a decentralized multi-task learning problem based on mobility prediction and addressed

the problem using hybrid jacobian and Gauss-Seidel proximal multi-block ADMM based

mechanism. The sojourn time and mobility path are modeled with the Markov renewal pro-

cess. In [21, 85], the authors considered the coded cache placement in small cell networks

to minimize MBS load and presented a distributed caching paradigm using user mobility

predictions. However, the above-mentioned works considered user mobility where ran-

domness of the user contact duration has not been considered. In contrast, in this thesis,

user mobility and randomness of contact duration have been considered in Chapter 5 to

handle the dynamic scenarios.

2.5 Coded Caching

With the increasing demand for the content, increasing network traffic leads to more burden

on the content delivery networks, resulting in under utilization of resources in off-peak

time and more congestion at peak times. Therefore, duplicating the preferable content at

the idle resources in the network by shifting the underutilized network resources to reduce

the network congestion in peak hours. There are two phases in the network that operates

like content placement and content delivery. Each phase has its own issues. In the content

placement phase, the cache memory is restricted, and the congestion will not increase,

whereas, in the delivery phase, the system will be affected by the rate required to serve

the content and congestion. Hence, designing a caching mechanism to place the content

at each base station in the given network minimizes the user request rate. Based on the

comprehension of the nature of caching, there exist two types of caching mechanisms.

• Local content placement: In this mechanism, the content is replicated at the nodes

near the requesting users to serve the content nearby. If a user requests content, and

the requested content is available near the user, then that segment is served to the

user locally, and the rest of the segments are fetched from the distant server using

the unicast transmission. If multiple users request the same content and the content

is served to the user locally, then the rest of the segments are served from the server

using multi-cast transmission to users requesting. There exist several approaches

29

CHAPTER 2. LITERATURE SURVEY Section 2.5

[52, 60, 11] in the literature which uses the content popularity to choose the most

popular content and caches at appropriate location to enhance the benefit of caching.

The popular content caching mechanisms achieve better results with larger caches to

store a significant amount of the popular content locally.

• Simultaneous multi-casting approach: In this mechanism, content is cached to permit

the server to fulfill the multiple users’ demands with different requirements with a

single multi-cast stream. A coding mechanism produces these streams [86, 87]. In

this mechanism, each user downloads the coded stream and decodes the requested

content. Hence, the coding mechanism needs to be designed to satisfy all possible

user demands simultaneously.

Coded Caching: For all filesF and usersU each with cache of sizeM ∈ {0, F
U
, 2F

U
, 3F

U
, . . . , N},

R∗(M) ≤ Rc(M) = F (1−M
U
)min{ 1

1+F M
U

, U
F
} is achievable. For general 0 ≤M ≤ U , the

lower convex enveloped of these points is achievable. Where Rc(M) = F (1 − M
U
) 1
1+F M

U

which is a global caching gain and M cache size.

Maddah-Ali et al. [87] have investigated the coded multi-casting mechanism to en-

hance the benefit of caching and reduces congestion significantly. In a conventional caching

mechanism, the benefit of caching depends on the size of the local cache. In contrast, in

the proposed coded multi-casting, the benefit is higher with cumulative cache available at

all users in the networks even though there exists no cooperation among the users. The

problem is formulated as an information-theoretic formulation and further a coded caching

mechanism has been presented to utilize local and global cache benefits. The authors have

shown that the overall improvement can be the order of the users in the network. In [88], an

effective decentralized coded cache mechanism is presented and proved that the proposed

coded multi-casting mechanism attains the rate near optimal to the centralized mechanism.

Pedarsani et al. [89] have presented an online coded caching by considering a dis-

tributed framework with a single centralized server connected via a shared bottleneck link

to multiple users having the limited cache size. The aim is to optimize the number of bits to

be sent via shared links to satisfy the user demands by managing the caches of the central-

ized server and users. The shared link average rate is modelled using the Markov model.

30

CHAPTER 2. LITERATURE SURVEY Section 2.6

The authors have proven that the proposed online algorithm has a similar performance as

the offline caching mechanism. Karamchandani et al. [90] have presented a hierarchical

coded caching mechanism by combining the coded multi-casting at individual layers and

coded multi-casting across the layers in hierarchical content delivery networks. Niesen et

al. [91] have studied the gain of coded caching for a caching system with non-uniform con-

tent popularities. The authors have shown that the optimal caching scheme in the multiple

cache scenario needs the coding mechanism. Zhang et al. [92] have investigated the coded

caching scheme for arbitrary content popularity and obtain an information-theoretic lower

bound on expected transmission rate. In Chapter 5, coded caching has been considered to

design an efficient contact duration aware caching scheme.

2.6 Learning based Caching

The fundamental problem in caching for mobile edge networks is what content to cache,

where to cache, and how to cache. Many caching schemes exist using several optimizations,

stochastic, and heuristic techniques to address some of these problems. The increasing dy-

namics in the mobile and wireless networks, such as diversity in content, number of users,

content, and mobility, causes challenges and complexity to implement. Therefore, the in-

clusion of machine learning into the caching mechanism gives better decision capabilities

to the mobile edge networks. Primarily machine learning techniques are classified into

three classes: supervise, unsupervised, and reinforcement learning.

2.6.1 Supervised Learning based Caching

Supervised learning is one of the significant practical learning mechanisms where the

model learns by example. This learning mechanism uses the idea of learning from the

label (mapping from the input to output), similar to learning under a teacher’s supervision.

Supervised learning aims to design a model that approximates the mapping function. This

learning technique is used in many real-world applications like spam filtering, fraud detec-

tion, classification of objects, and risk evaluation. Supervised learning is further divided

into classification and regression. Many supervised learning algorithms (decision tree, ran-

31

CHAPTER 2. LITERATURE SURVEY Section 2.6

dom forest, logistic regression, support vector machines and polynomial regression) exist

in the literature [93, 28, 94, 95], and the algorithm is chosen based on the requirement.

Bastug et al. [93, 28] proposed a learning-based caching mechanism at user devices

and BSs to enhance the user experience. In this work, the authors studied a proactive cache

mechanism at BS where individual BS learns the popularity of content using supervised

learning and collaborative filtering to fill the missing values in the popularity prediction

matrix. Initially, the content popularity is computed by minimizing the least square error,

and then the content is cached at individual BS greedily till the cache is full. Further, a

proactive caching mechanism has been designed based on the D2D communications by

caching content at user devices. In device caching, influential users are figured out by

evaluating the centrality of the social users and cluster the users into logical groups using

the K-means clustering algorithm. In this mechanism, the most popular content is cached

to the most influential user in each cluster.

Thar et al. [94] proposed a popularity prediction based on supervised and DL in two

stages and caches the content proactively at the BSs. First, the supervised learning algo-

rithm collects the user request count to estimate the content popularity in future time. Sec-

ond, deep learning is used to predict the request counts of content based on the collected

content request count in the first step. The problem is formulated as the minimization prob-

lem to reduce the delay with capacity constraints. RNN (recurrent neural network) is used

to evaluate the popularity prediction, and the caching decision is taken based on DNN (deep

neural network) with multiple hidden layers and levels of nonlinear operations. Zhang et

al. [95] have employed the supervised and unsupervised learning mechanism to make the

efficient caching decision in SCN. The caching problem is formulated as integer program-

ming to maximize the cache hit ratio with capacity constraint and shown it is NP-hard.

Therefore, the authors use the learn-to-rank technique to predict the content popularity by

utilizing content requests and forming logical groups using the K-means algorithm.

32

CHAPTER 2. LITERATURE SURVEY Section 2.6

2.6.2 Unsupervised Learning based Caching

Unsupervised learning models are not supervised using the training data. These mecha-

nisms explore the hidden patterns or data groupings with the given data. In supervised

learning, labeled data is used for training, whereas unsupervised learning learns the patterns

without labels. These mechanisms are perfect solutions for image recognition, customer

grouping, cross-selling policies, and exploratory data analysis because of the capability to

identify the data’s differences and similarities. Unsupervised learning is divided into clus-

tering, association and dimensionality reduction.

Clustering: Clustering is a mechanism to group the data into clusters based on more

similarity among the data points within the cluster and less similarity among the data points

outside the group or among the groups. Clustering is again classified into exclusive, hier-

archical, overlapping, and probabilistic.

Association: Association rule is a technique to discover the association among the vari-

ables in the given data. Association rule mechanism defines items that appear collectively

in the given data set, primarily used in market basket analysis. This technique does an

efficient marketing plan by understanding the usages of the consumers empowers the en-

terprise to produce more valuable recommendations and better selling strategies. It can be

observed that this association rule in retail and online marketing where the user who pur-

chases item A (bread) is also direct to purchase item B (butter). A similar approach has

been applied to content caching based on user preferences and correlation among the users

[96, 97, 98]. In literature, various algorithms exist like Apriori, FP-Growth, and Eclat;

among these, Apriori is the extensively used technique.

Dimensionality reduction: The more accurate results are produced when the data is

more. However, the machine learning algorithms suffer from a massive amount of data in

terms of performance like over-fitting and difficulty in visualization. Therefore, reducing

the not useful features (dimensions) by maintaining data integrity from the vast data set

eases the execution, known as dimensionality reduction. This technique is more generally

used in data preprocessing.

Shen et al. [99] have presented unsupervised learning mechanisms to improve the

33

CHAPTER 2. LITERATURE SURVEY Section 2.6

cache efficiency in an ultra-dense network. The caching problem is formulated as Inte-

ger programming to minimize the load on backhaul with capacity constraint and shown

it is NP-hard. Machine learning-based caching mechanisms are presented to handle the

difficulty of highly random content demands in ultra-dense networks. K-means algorithm

was applied to find the hidden Spatio-temporal patterns of user demands at each BS. A

K-nearest neighbor classification mechanism was presented to regularly classify the con-

tinually raising new contents and store the content at BSs at appropriate clusters with low

complexity and high accuracy.

Chen et al. [100] have studied the caching gain by learning the user request behav-

ior. The authors determined the relationship between the popularity of content and user

preferences and presented a probabilistic model to synthesize the user preferences by uti-

lizing the popularity of content. The content offloading problem is formulated as integer

programming to maximize the offloading probability for D2D networks. The user demand

behavior is modeled using probabilistic latent semantic analysis based on the expectation-

maximization mechanism to solve the user preference learning problem.

Caching the content at the user devices provides lower delay, minimal traffic, energy

efficiency, and higher throughput. In [101], the authors present an efficient learning-based

caching mechanism working collectively with a non-parametric estimator to minimize the

delay in the D2D network. The non-parametric estimator is used to learn the intensity

function of the content demands, and it is considered that the popularity information is not

known in advance. Further, a caching mechanism is presented to decide the most suitable

pairs that improve higher delay with higher throughput and minimal delay. This mechanism

can be further extended to the more dynamic system where the parameters fluctuate very

frequently.

2.6.3 Reinforcement Learning based Caching

The conventional optimization methods can not be adapted for intelligent caching deci-

sions in cooperative setting, in view of dynamic content popularity and mobility of nodes.

Recent success in reinforcement learning (RL) to solve complex control problems attracted

34

CHAPTER 2. LITERATURE SURVEY Section 2.6

Observe

Learn

Caching Strategy

Agent

Environment:

User requeest, Network constraints,

 External Information.

State
Reward: QoE,

Traffic

Caching

Action

Figure 2.6: Reinforcement Learning Approach

the research community [31]. RL is one of the significant areas of machine learning shown

in Fig. 2.6. RL is a learning process where agents observe the dynamic environment and

adjust its policy to obtain an optimal strategy. However, getting the best strategy need

knowledge of the entire system. Hence, it is not applicable to solve large scale networks.

Deep learning (DL) is a well-known technique to address the RL limitation, and by com-

bining the RL with DL emerged as deep reinforcement learning (DRL). Recently, wireless

networks (Heterogeneous networks, unmanned aerial vehicle networks and IoT) turns out

to be autonomous, decentralized and ad-hoc in nature. These stochastic and uncertain en-

vironments complexity grows as the size of the network grows. Therefore, DRL is an

alternative solution.

Wang et al. [102] have presented a learning-based caching mechanism to maximize

the number of users served by the nearby nodes. The authors first present a collaborative

filtering mechanism to predict the popularity of the content, and then transfer learning is

utilized to increase the accuracy. Further, a distributed iterative algorithm is proposed to

maximize the number of users served by the nearby BSs by considering the interactions

between users and BSs. Hou et al. [103] have presented a caching problem in vehicular

networks by considering the mobility of vehicles and storage of the RSU to minimize the

35

CHAPTER 2. LITERATURE SURVEY Section 2.6

latency. The problem is modeled as a Markov decision process and designed a Q-learning

based solution by utilizing the user mobility prediction based on the LSTM network. Fur-

ther, the authors presented an optimal cache strategy based on a greedy heuristic.

In [104], the authors present an edge caching scheme to maximize the content offload-

ing ratio in hierarchical wireless networks through D2D communications. In proactive

caching, the most popular content is cached at the devices to reduce delay and traffic. How-

ever, the content popularity is not valid, and it does not exhibit user preferences since the

popularity is calculated based on the historical user request information collected within a

particular time. In contrast, the user preferences exhibit the probability of individual con-

tent demanded by each user. The authors consider the users’ social relationship, mobility,

and system learning to maximize the offloading ratio in this problem. The caching problem

is formulated as an Integer programming to maximize the offloading ratio by analyzing the

social relationship and mobility, and it is proved as NP-hard. Further, the proposed problem

is modeled as the Markov decision process and presented a Q-learning-based distributed

cache replacement scheme.

There are various single-agent learning algorithms like DQN, DDPG, and advantage

actor-critic (A2C) in the literature [105]. A Q-learning based cache update mechanism

presented to model the local and global content popularities as Markov chains in [106].

In [107], the authors presented the proactive caching mechanism based on policy gradient

reinforcement learning schemes to minimize the long-term average energy cost by assum-

ing the Poisson shot noise popularity dynamics. A DQN approach is presented in [108]

to address the large continuous state-action space. In [109], the authors formulated the

cache replacement problem as MDP to minimize the long term reward of fetching tran-

sient data item and presented a caching policy based on the A3C (asynchronous advantage

actor-critic) DRL mechanism. A DRL based framework with Wolpertinger architecture

is presented in [32] for content caching in a single BS scenario and presented a deep de-

terministic policy gradient training mechanism for the actor-critic network. However, the

works mentioned above consider the DRL mechanism for caching content, which is not

a practical solution to the distributed environments where multiple agents are involved in

decision making. In contrast, Chapter 6 considers the multi-agent DRL to handle the dis-

36

CHAPTER 2. LITERATURE SURVEY Section 2.7

tributed nature of the problem.

In reality, the environment is complex and there are several cases where the single-

agent can not deal effectively. In this cases multiple agent systems are essential. In the

multi agent scenario all the agents learn the policy by interacting within a common en-

vironment. Therefore, an agent must either compete or coordinate with other agents in

the environment to obtain the good results. The cooperative cache network can improve

performance [11]. Conventional single agent reinforcement learning mechanisms such as

Q-learning or policy gradient is not applicable in multi agent reinforcement learning be-

cause as the training progresses each agent policy changes and environment becomes non

stationary. Jiang et al. [110] have formulated the content caching in D2D networks as

multi-armed bandit problem to minimize the delay and presented two Q-learning based

multi agent learning mechanisms. Q-learning based multi agent learning mechanism main-

tains the Q-value in memory because the massive state-action space storage of individually

BS may exhaust. Zhong et al. [32] have presented a actor-critic framework with deep

deterministic policy gradient learning scheme to reduce the overall delay. The content

sharing is not considered by Zhong et al. and this leads to cache under utilization. A

multi-agent RL mechanism is proposed in [111] to minimize the traffic congestion in the

multi-intersection scenario. Song et al. [112] have investigated the joint content caching

and content sharing in cooperative scenario and addressed the problem in view of multi-

armed bandit learning by designing an ADMM. However, the works mentioned above have

considered the multi-agent DRL mechanism where they suffer from exchanging informa-

tion hugely between MECs. As the number of contents and MECs rising leading to huge

exchange overhead, distributed cooperative caching has been considered with a recurrent

multi-agent DRL mechanism with long short term memory in Chapter 6.

2.7 Proactive and Reactive Caching

Caching can be classified into proactive and reactive based on fetching content from the

content server. In proactive caching, the content is cached at the bases stations based on

the popularity distribution of the content predicted from the historical user request pat-

37

CHAPTER 2. LITERATURE SURVEY Section 2.7

tern or known earlier. The caching problem has been studied extensively in the literature.

Shanmugam et al. [24], have discussed the way to minimize expected download delay by

assigning files to the helper (femtocells). They proposed a greedy approach with the factor

of 2-approximation for the NP-complete problem. Wu et al. [113] have presented the data

dissemination issue to guarantee the QoS while caching on the edge. Applegate et al. [114]

have presented an intelligent content placement algorithm for large-scale library sizes by

modeling the content placement problem as a mixed-integer program problem with popu-

larity, link bandwidth, and capacity constraints. The authors presented a Lagrangian-based

relaxation and rounding mechanism, and they proposed frequency of placement updates,

popularity fluctuation, content updates and content popularity estimation to address the

practical issues. Cao et al. [115] have briefly introduced mobile edge computing, its appli-

cations and also reviewed machine learning-based intelligent data offloading approaches in

MEC.

ElBamby et al. [14] have presented a cache placement problem to minimize the de-

lay in a small cell network. The authors first decomposed the problem into two parts.

First, similar users are grouped using the clustering mechanism. Second, a clustering-

based placement strategy was developed by estimating the popularity of content among

the users in the group using reinforcement learning. In [93], the authors studied the data

offloading problem in wireless networks by utilizing the social and spatial structure of the

network. The content is proactively placed at each node based on the correlation among the

users and content popularity. Then the authors presented a caching mechanism by predict-

ing the influential users in the network by utilizing the social correlation among the users.

Blaszczyszyn et al. [116] have proposed an optimal content placement policy to maximize

the hitting probability.

Qiao et al. [117] have proposed caching based mmWave framework to minimize the

retrieval and connection delays in fifth generation cellular networks. The authors designed

a cache management scheme and achieved optimal video streaming quality by formulating

the problem as MDP. A cell-by-cell decomposition mechanism is designed to practically

solve the MDP problem with dynamic programming by reducing the state space. Tadrous et

al. [118] have investigated a proactive caching problem for delay-sensitive applications to

38

CHAPTER 2. LITERATURE SURVEY Section 2.7

minimize the service cost. The authors learn the basic bounds for the caching strategy with

minimum possible cost and designed caching mechanism for fluctuating and uniform user

request pattern. Hou et al. [103] have presented a caching problem in vehicular networks

by considering the mobility of vehicles and storage of the RSU to minimize the latency.

The problem is modeled as a Markov decision process and a Q-learning based solution is

designed by utilizing the user mobility prediction based on the LSTM network. Further,

the authors presented an optimal cache strategy based on a greedy heuristic.

Shen et al. [119] have presented an incentive caching scheme in SCN with one mobile

network operator and several content providers. Content providers aim to maximize profits

by determining the number of contents cache at SBS to improve user QoS. The authors

modeled the problem as a Stackelberg game with the content providers as the followers

and mobile network operators as leaders. A non-cooperative game is modeled for followers

and proves its Nash equilibrium. Tong et al. [120] have investigated the optimal caching

mechanism of scalable video coding streaming in SCN by considering the video scalability

and channel diversity. The problem is modeled as ILP to maximize the average quality of

scalable video coding streaming with cache capacity constraints. Further authors presented

a low-complexity caching mechanism based on dynamic programming by simplifying the

caching of scalable video coding as a knapsack problem, and it shows that the proposed

caching mechanism caches the video based on the video popularity. Li et al. [121] have

investigated the big data offloading from the cloud server to the mobile users and propose

a three-layer edge computing framework in industrial mobile wireless networks. In this

study, the authors considered the user mobility path, sojourn time, and the mobile node’s

capacity to offload the huge data through mobile networks and also presented a Hungarian

algorithm to solve the data fetching problem. Elsayed et al. [122] have designed a caching

mechanism to improve the QoS of the vehicular user with the uniform social pattern. In this

work, the authors specifically considered the users who have predictive behavior regarding

time and type of access to social media platforms. Kumar et al. [123] have presented

a radio access network-aware adaptive video caching mechanism (RAVEN) to maximize

the hit ratio. The cache placement problem is formulated as Integer linear programming

problem and presented the RAVEN caching scheme by utilizing the predicted video request

39

CHAPTER 2. LITERATURE SURVEY Section 2.7

bit rate and video popularity information for caching decisions. To address the problem of

fetching the content from the distant cloud servers, the authors used the parked vehicles

as the caching nodes to store the appropriate content, which will be requested by the users

crossing the parked vehicles. Further, the authors present the greedy caching scheme to

choose the appropriate road segments for content caching.

The works mentioned above have not considered heterogeneous user preferences, user

contextual information, user mobility, and the randomness of contact duration in proactive

caching. Hence, in this thesis, proactive caching schemes have been designed by consider-

ing the popularity prediction, user preference learning, and mobility in Chapters 3, 4 and 5.

Practically, the content popularity is time-varying, so the above assumption (known in

advance) makes it less practical. In contrast, popularity prediction requires user association,

and further user preferences may vary in different contexts, such as personal information,

topology, location, etc [16]. For taking the caching decision, futuristic content popularity

information may not be available. In the real world, the limited cache size restricts the

mobile edge caching performance [28]. A simple solution is to devise efficient content

placement mechanisms by considering user preferences and content popularity [22]. Ef-

fective cache utilization is reduced when the individual nodes with limited storage make

independent decisions since they may redundantly cache popular content. A practical so-

lution is to facilitate cooperation among edge nodes by sharing the content. Different edge

nodes share their content in cooperative caching, forming more extensive cache storage and

enabling cache diversity [11]. Generally, the caching decisions of various nodes depend on

each other, but each edge node is aware of its own caching decision and unaware of the

other nodes decisions.

Li et al. [124] presented a survey on content placement and delivery mechanisms in var-

ious cellular networks. Content pre-fetching that depends on content popularity has been

investigated in the literature. Proactive caching has been studied in [24, 65, 114, 78, 125].

Collaborative cache placement has been investigated in SCN to handle the limitation of

cache capacity at each node [11, 126, 30, 127]. The works mentioned above consider

the content popularity known in advance. Moreover, popularity prediction based caching

strategies were also studied in [14, 128, 129, 15, 130, 131]. However, the works mentioned

40

CHAPTER 2. LITERATURE SURVEY Section 2.7

above consider the content popularity prediction and the dynamic user requests and envi-

ronment complexities are not considered.

Yuan et al. [132] have discussed proactive and reactive caching in the D2D communica-

tion aspect. In proactive caching, the prefetched content is cached at edge nodes, whereas in

reactive caching, the intermediate nodes decide whether to cache or drop the content to the

neighboring node, which comes into the user’s proximity. The authors proposed ProRec,

a unified framework to cache content, considering the proactive and reactive caching to

maximize the hit rate. A Lagrangian multiplier scheme has been proposed to find the opti-

mal content caching. Further, a greedy approximation algorithm has been presented. Hou

et al. [133] have discussed the resource allocation scheme for backhaul links to minimize

the average downloading delay and proposed the access and backhaul resources allocation

algorithms. Zhang et at. [134] have studied the collaborative task offloading and con-

tent caching models to reduce the overall latency of mobile device. Further, an effective

Lyapunov online mechanism is presented to perform joint dynamic data caching and task

offloading mechanisms.

Typically, wireless caching has a high time-varying user requests. To address user re-

quests’ time-varying nature, BS with finite cache capacity replaces the content very often.

Commonly used content replacement mechanisms are least frequently used (LFU), least

recently used (LRU) and first-in first-out (FIFO) [47]. The traditional replacement models

cannot capture the changing nature of content popularity because of the real environment’s

complexity. The conventional replacement mechanisms are suitable for single cache re-

placement. However, multiple cache replacement mechanisms require coordination among

the nodes.

Jiang et al. [110] have formulated content caching in D2D networks as multi-armed

bandit problem and presented two Q-learning based multi-agent learning mechanisms. Q-

learning based multi-agent learning mechanism maintains the Q-value in memory because

individual BS’s massive state-action space storage may exhaust. Zhong et al. [32] have pre-

sented an actor-critic framework with a deep deterministic policy gradient learning scheme

to reduce the overall delay. Content sharing is not considered by Zhong et al., and this leads

to cache underutilization. A multi-agent RL mechanism is proposed in [111] to minimize

41

CHAPTER 2. LITERATURE SURVEY Section 2.8

the traffic congestion in the multi-intersection scenario. Song et al. [112] have investigated

the joint content caching and content sharing in the cooperative scenario and addressed the

problem in view of multi-armed bandit learning by designing an ADMM. However, the

works mentioned above have considered the multi-agent DRL mechanism where they suf-

fer from exchanging information hugely between MECs. As the number of contents and

MECs rising leading to huge exchange overhead, the distributed cooperative caching has

been considered with a recurrent multi-agent DRL mechanism in Chapter 6.

2.8 User Preference and Prediction based Caching

Popularity prediction allows the caching mechanism to make an accurate decision to choose

appropriate content in the network. Practically, a few popular contents serve a wide vari-

ety of network traffic, whereas other contents are requested rarely (for example, 1% of

Facebook videos account for 83% of total watch time [135]). The content popularity infor-

mation is time-varying and unaware of in advance. To improve the user QoE the proactive

caching approaches relied on the popularity of the content. Thus, content popularity dis-

tribution prediction is needed, and the prediction algorithm should be accurate, quick, and

scalable.

Popularity prediction based caching strategies were studied in [14, 128, 15, 130, 131].

ElBamby et al. [14] have presented a cache placement problem to minimize the delay in a

small cell network. The authors first decompose the problem into two parts. First, similar

users are grouped using the clustering mechanism. Second, a clustering-based placement

strategy was developed by estimating the popularity of content among the users in the group

using reinforcement learning. Bharath et al. [128] have presented a transfer learning mech-

anism to predict the popularity profile using the user request pattern for distributed hetero-

geneous cellular networks. Muller et al. [129] have presented a context-aware proactive

caching mechanism by predicting the content popularity. Chen et al. [15] have presented

an echo state network to estimate content popularity and mobility of nodes to maximize the

user QoE in unmanned areal vehicle placement. In [131], Garg et al. have investigated on-

line prediction and online learning mechanisms for content caching in the cellular network.

42

CHAPTER 2. LITERATURE SURVEY Section 2.8

Li et al. [136] have presented a popularity-based content caching mechanism by pre-

dicting the future request pattern of a TV program utilizing the demand pattern of the TV

program. The content popularity has been computed using neural networks. In [137], the

authors have discussed a popularity-based content replacement mechanism. The content

popularity has been learned online, which is more responsive to constantly change content

popularities because of no training phase. The proposed mechanism learns the popularity

of the content with the help of access pattern similarities of different contents. Abdelkrim

et al. [138] have presented a hybrid regression-based prediction model for user-generated

videos. The popularity prediction model dynamically adapts the popularity of content by

considering the end-user watch time and the number of shares. Further, a cache replace-

ment model was designed by utilizing the prediction model to decide on content eviction.

Tanzil et al. [139] have presented an adaptive caching mechanism to improve the user

QoE. The problem is formulated as a mixed-integer linear programming problem to mini-

mize the download delay. The adaptive caching mechanism involves the content popularity

prediction to select the appropriate node and size of the cache. The extreme learning ma-

chine [140] neural network has been utilized to predict the content with the help of request

statistics from users, content features, and user behavior. Hou et al. [141] have presented

a proactive caching scheme to improve the user QoE by predicting the content popularity.

In [141], the solution to the proposed problem is given in two phases. In the first phase, the

content popularity has been predicted using the transfer learning technique. In the second

phase, a greedy algorithm has been proposed to solve the proposed problem.

In [142], authors have devised a cooperative caching mechanism to minimize the trans-

mission delay by considering limited cache size and bandwidth constraints for mobile net-

works. In clustering-based caching, the BSs are clustered into different groups. Chen et al.

[18] have presented a cooperative caching mecahnism to balance the content diversity and

transmission in cluster centric cellular network. In [18], first, the cache storage has been

divided into two parts, one part stores the most popular content, and the second part caches

less popular content cooperatively. In [130], authors have proposed a learning theoretic

perspective for content caching heterogeneous networks with time-varying and unknown

popularity profiles.

43

CHAPTER 2. LITERATURE SURVEY Section 2.8

Proactively caching the predicted content at edge nodes reduces the network’s latency,

congestion, and traffic as the appropriate content is determined. The nodes’ next location

can be estimated using the user mobility prediction to cache the content. Abani et al. [143]

have presented a mobility prediction based caching scheme. The user mobility prediction

uncertainty has been measured using entropy. Yao et al. [144] have presented a mobility

prediction based cooperative caching mechanism for vehicular content-centric networks to

store the most popular content at mobile users that frequently visit the hot spot areas. The

probability of reaching the hot spot by a node has been predicted using partial matching.

Further, a cache replacement mechanism was designed based on the predicted content pop-

ularity to improve the user QoE. Khelifi et al. [145] have presented a mobility prediction

based caching mechanism to choose the RSU in the user moving direction to retrieve the

content from the RSU. The user mobility has been predicted using the LSTM network. The

work mentioned above has not considered the user contextual information to make caching

decisions. Therefore, in Chapter 3, content popularity distribution prediction using a ma-

chine learning algorithm has been designed to capture user interests efficiently.

Content popularity indicates the average interest of multiple users but not exhibits the

individual user preferences [19]. Most of the existing literature considers that all the users

have the same content distribution (homogeneous popularity). However, various users have

diverse preferences. The assumption made on homogeneous popularity ignores the users’

preferences and results in losing valuable information. Less than 20% of users generate

80% of traffic, which shows that the users’ activity level is heterogeneous [20]. In the lit-

erature, most proactive caching approaches ignored user behaviour, such as heterogeneous

user preferences and activity levels, introducing new challenges into mobile edge networks.

Therefore, employing the individual user activity levels and preferences improves the co-

operative caching strategy design.

User preferences play a crucial role in proactive caching. The user preference pre-

diction is broadly studied in recommender systems [96, 97], where most works consider

collaborative filtering. In [98], the authors studied the caching mechanism to enhance the

user QoE by combining the caching decisions with recommender systems. Including a rec-

ommender system enhances the caching performance by caching the appropriate content

44

CHAPTER 2. LITERATURE SURVEY Section 2.8

at the base stations by predicting the individual user preferences using the collaborative

filtering mechanism. In this scheme, each user preference is figured out using collaborative

filtering, then the content that attracts more users is ranked and the content is cached at

appropriate BSs. The content caching problem is formulated to maximize the cache hit

ratio by considering the user preferences and cache capacity. Further, the authors presented

a low-complexity heuristic caching approach to address the proposed problem effectively.

User preferences based caching mechanisms were studied in [146, 147, 148, 100, 19].

Bastug et al. [146] have presented a local content popularity based caching mechanism

for small cell networks. Liu et al. [147] have investigated a CPP in Fog-RANs (radio ac-

cess network) by considering user preferences and physical layer transmission. The cache

placement problem is formulated as an optimization problem to minimize the download de-

lay with capacity constraints and presented distributed and centralized caching policies. In

a centralized caching scheme, the CPP has been reformulated into a submodular optimiza-

tion problem and presented as an approximation algorithm based on a greedy strategy to

give at least 1
2

approximation ratio. In the distributed caching scheme, a belief propagation-

based mechanism has been presented to give a sub-optimal solution. In [148], authors have

investigated proactive caching schemes in wireless networks by considering spatial local-

ity, activity level, and user preferences. The authors presented a framework to optimize

caching schemes in D2D networks with spatial locality, heterogeneous activity level, and

user preferences. The caching problem is formulated as maximization of success proba-

bility and minimization of average user rate. A synthesized user preference mechanism is

presented by utilizing the user activity level and preferences.

Chen et al. [100] have studied the benefit by utilizing the association between the

popularity of content and user preferences and presented a method to synthesize the user

preferences. The cache placement problem has been formulated as an optimization prob-

lem to maximize the content offloading ratio from D2D networks with user activity level

and preferences. To solve the proposed problem, the authors first learn the user preferences

by modelling the user demand pattern by utilizing the probabilistic latent semantic analysis.

Next, the model parameters are learned by the EM (expectation-maximization) algorithm.

Further, a low-complexity greedy mechanism has been presented to achieve at least 1
2

ap-

45

CHAPTER 2. LITERATURE SURVEY Section 2.9

proximation ratio. Zhang et al. [149] have investigated the online content caching mecha-

nism in single cache node scenario where the content popularity is not known in advance.

The content popularity has been predicted using a novel grouped linear model based on the

historical user data. Further, a model-free RL mechanism has been presented to replace the

content at the base station to enhance the learning process in dynamic environments.

Jiang et al. [150] have studied the caching mechanism to find optimal strategy in fog

radio access networks. The caching problem has been formulated as an optimization prob-

lem to maximize the cache hit ratio. The authors have proposed two caching architectures

and a caching strategy by predicting the popularity of the content and learning the user

preferences. The online popularity prediction algorithm uses the user preferences and con-

tent features, and the offline user preference learning mechanism uses the online gradient

descent technique and follows the regularized leader technique. The caching mechanism

presented predicts the content popularity with low computational complexity and tracks

the popularity with temporal and spatial popularity without considering delay. Further, two

learning-based caching mechanisms have been presented, and the upper bound of the pop-

ularity prediction error, lower bound of hit ratio, and regret bound of overall hit ratio of

the caching strategy proven theoretically. Lee et al. [19] have studied the statistical mod-

eling of individual user preferences to effectively identify the individual user preferences

of video content. The authors proposed a novel modeling framework by characterizing the

essential features and parameters of genre-based historical data.

The work in this thesis considers the user preference prediction using a machine learn-

ing model to perceive the dynamic nature of content popularity which has not been given

adequate attention in the existing algorithms. As the number of MEC nodes and contents

rise, this leads to huge exchange overhead within the network. Therefore, a heterogeneous

user preference-based caching scheme has been proposed utilizing the heterogeneous user

activity levels and user preference prediction in Chapter 4.

46

CHAPTER 2. LITERATURE SURVEY Section 2.9

2.9 Summary

In this chapter, mobile edge network architecture and the advantages of MEN are discussed.

Moreover, mobile edge caching and different cache deployment scenarios in edge caching

are discussed. A survey on different mobile edge caching schemes has been presented,

such as cooperative, mobility and coding based caching schemes. An exhaustive survey

on learning-based caching, proactive and reactive caching is performed. Further, user pref-

erence and prediction based caching in MEN has been presented. In this thesis, proactive

and reactive caching approaches have been designed for mobile edge networks. Further,

the work presented in this thesis has been compared with the existing caching mechanism

in the literature. The next chapter presents deadline-aware content caching using an echo

state network integrated with fuzzy logic to improve the cache hit and acceleration ratios.

47

Chapter 3

Deadline-aware Content Cache

Placement using Echo State Network

Integrated Fuzzy Logic for Mobile Edge

Networks

The cooperative caching mechanism has a better cache hit ratio than non-cooperative caching

and improves the user quality of service [55]. Hence, deciding which content to cache at

which MEC cooperatively by utilizing limited cache capacity in MENs is challenging.

However, time-critical and delay-sensitive applications like video streaming, Internet of

Things (IoT) and financial applications need a response within a deadline (i.e., a specific

time limit) [12]. The deadline determines the maximum allowable response time [13].

Some applications like healthcare demand the guarantee of timeliness strictly (hard dead-

line), whereas some IoT applications may tolerate the delay (soft deadline) [13]. If a request

is not served within the deadline, the quality of service would be affected, and this in turn

affects user QoE. Hence, to improve the user QoE, the request deadlines must be satisfied.

Therefore, caching decisions by considering the limited cache capacity of BS and content

deadline is a important task that is the focus of this research work.

In this chapter, content placement mechanism has been proposed using the fuzzy logic

48

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.1

to maximize the saved delay in wireless networks. The novelty of the approach lies in

designing a caching mechanism for mobile edge networks (MEN) by considering limited

storage at base stations, the deadline of content request and popularity prediction. Initially,

the cache placement problem is formulated as an integer linear programming (ILP) prob-

lem. The solution is designed as relaxation-and-rounding based on the rounding technique.

Further, a fuzzy logic based caching algorithm has been proposed by considering deadline,

the benefit of caching content and content request distribution prediction for content place-

ment decisions. Moreover, an Echo State Network (ESN) based prediction mechanism has

been designed to predict the content request distribution for mobile edge network.

The contributions of this chapter are as follows:

• Formulate a content placement problem (CPP) as an integer linear programming

problem in mobile edge networks with an objective to maximize the saved down-

load delay subject to cache capacity, request deadlines and popularity of the content.

• Design an approximation algorithm based on the relaxation and rounding technique

to solve the integer linear programming version of content placement problem.

• Propose a fuzzy logic-based caching algorithm (FCA) to find the near-optimal solu-

tion by considering content request distribution, deadline of the content and benefit

(distance) of caching content. A content request distribution prediction mechanism

is designed using echo state network.

• Simulation results show the efficacy of the proposed algorithm in terms of accelera-

tion ratio, cache hit ratio and number of files satisfying deadlines.

The rest of the chapter is organized as follows. In section 3.1, system model and formu-

lation of the content placement problem has been discussed. An approximation algorithm

for the proposed problem is presented in section 3.2. Content distribution prediction using

the echo state network is presented in section 3.3.1. Fuzzy inference system is discussed

in section 3.3.2, a fuzzy logic based caching algorithm is presented in section 3.3.3 and a

replacement strategy is discussed in section 3.3.4. Simulation environment and results are

presented in section 3.4. A summary of this chapter is mentioned in section 3.5.

49

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.1

3.1 Mobile Edge Computing (MEC) Model and Problem

Formulation

In this section, a base station integrated MEC network model is presented. Further, problem

formulation is presented in detail.

Backhaul

Core Network

Content Server

NEF

Mobile User

Base Station

Requesting

Content

MEC Server

Content

MEC 1 MEC 2

MEC 4

Cooperation

among MECs

Figure 3.1: Illustration of system model

Mobile edge computing improves users’ capabilities by providing cache capacity (stor-

age), network resources and computing in close proximity to users. Consider mobile edge

networks containing a set of users, set of MECs and a content server, as shown in Fig 3.1.

In MENs, each MEC has computational capability, limited storage capacity and deployed

with base stations. The storage of each MEC is used for content caching. The MECs are

connected with each other and also to the core network through backhaul links. The con-

tent server acts as an origin server that stores all contents. Network Exposure Function

(NEF) serves as a coordinator (it is a crucial network element in 5G networks) [151, 79].

NEF maintains the indexes of the content cached at individual MECs and also monitors the

content requests by users at each MEC [151]. A user is directly connected to base station

and the user may be in the communication range of more than one BS at any point in time.

However, any user can communicate with only one MEC at a particular time. A MEC

considered as a viable MEC for a user u if it is in the communication range of the user.

Mobile users are connected to the base stations according to a cellular network protocol.

50

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.1

The connected BSs are accountable for serving user requests. In this chapter, cooperative

caching between MEC nodes has been considered. The proposed algorithm will run on the

network evaluation function (NEF) [151] to compute and allocate contents to individual

MEC to maximize overall saved delay of MEN. NEF provides the content statistics (indexes

of cached content and request information of each content at MEC) and user context (as a

central element). The working process is as follows: If the user requested content is stored

at the corresponding MEC, then the MEC serves the user request. In case the content is

not stored at the MEC, then the corresponding MEC will query the NEF for the requested

content that is available in other MECs. Based on NEFs response, the requested MEC

fetches the content from the nearby MEC. Otherwise, MEC uses the core network with the

help of backhaul links to fetch the content from the content server.

Table 3.1: List of Notations

Term Definition

R Set of base stations coupled with MEC servers
F Set of contents
C Set of content type
U Set of users
Si The cache capacity of i-th BS
Bf The size of f -th content (f ∈ F)
Tcf Deadline of content f of type c
rf Number of requests for content f
pi(f) Probability that content f is requested by

users from BS i
dui The delay for transmitting content from

BS i to user u
diI The delay for transmitting content to

BS i from Internet I
xicf Binary variable indicating that content f of

type c is exist in BS i
yuicf Binary variable indicating that user u fetches

content f of type c from BS i

In the system model, the set of regions (MEC with BS) is denoted byR = {1, 2, · · · , i, · · · , R}.

The set of users in the network is indicated as U = {1, 2, · · · , u, · · · , U}. The library con-

tains C different types of contents and F = {1, 2, · · · , f, · · · , F} contents in each content

type. Let Bf denote the size of f -th content (f ∈ F). Every content in each category is

51

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.1

intended to serve within the maximum allowable response time. This response time is cho-

sen as a deadline. The deadline can range from nearest (small) deadline to longest (large)

deadline. Tcf represents the deadline of the file f in the category c. The files with nearest

deadline are served first. Capacity of i-th BS is denoted as Si. The average downloading

time per information bit from BS i to user u is denoted as dui and duI denotes the down-

loading time per information bit from I (Internet) to user u. The download delay from a

base station with in region dui is less than that from the other region j BS (duj). Simi-

larly, the downloading delay from other region duj is less than that from Internet duI (i.e.,

dui < duj < duI ,∀j ̸= i). List of notations used in this chapter are presented in Table 3.1.

3.1.1 Popularity of Content and Content Types

Different content types may have different popularities. The content popularity of various

regions can be different from each other. Users may have significant preferences for specific

content types, which motivates this study to identify users’ content preferences in a region

in terms of their preferred content.

Probability that the user u requests content of a specific type c for all available content

types is represented as p(c|u). The probability that content belongs to a content type c is

requested by the user in a region i is pi(c), which can be represented as

pi(c) =
1

Ui

Ui∑
u=1

p(u) · p(c|u) (3.1)

Where Ui is the number of users in the region i and p(u) is the probability that user u

generates a request.

Given the overall popularity distribution of content and type of each content, identify

the content popularity distribution within each content type. Let p(f) denotes the overall

probability of content f overall contents and pc(f) denoted as the overall probability of

52

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.1

content f overall content types c.

pc(f) =

p(f), if f ∈ c

0, otherwise
(3.2)

The popularity of content f with in content type c can be expressed as

pcf =
pc(f)∑F
f=1 pc(f)

(3.3)

Knowing the probability of request of different content types in a region and the popularity

of content in each content type, derive the probability that content f is requested by users

in the region i as pi(f).

pi(f) =
C∑
c=1

pcf · pi(c) (3.4)

3.1.2 Cache Decision Variables

Two decision variables have been defined, namely content placement decision variable

and content fetch decision variable to show the cooperative caching. Content placement

decision variable determines where to cache which content.

xicf =

1, content f of type c is placed at BS i

0, otherwise
(3.5)

Content fetch decision variable determines which base station should server the request.

yuicf =


1, user u will fetch content f of type c

from BS i

0, otherwise

(3.6)

53

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.1

3.1.3 Delay

Consider a user u and its viable BSs are regarded as neighboring base station N (u). The

size of neighborhood is | N (u) |. Let iu denotes the region index with the ith smallest

downloading delay to user u. xicf is a decision variable indicating that the content f of type

c exists on cache of BS i. The average delay per information bit for user u is denoted by

Du. Du can be written as

Du =

|N (u)|∑
i=1

du,iu

C∑
c=1

F∑
f=1

[
i−1∏
h=1

(1− xhu
cf)

]
xiucf · pi(f)

+ duI

C∑
c=1

F∑
f=1

[|N (u)|−1∏
h=1

(1− xhu
cf)

]
xicf · pi(f)

(3.7)

Where,
[∏i−1

h=1(1 − xhu
cf)
]
xiucf is the indicator function which is defined over decision

matrix X , which means the content f of type c is in the cache of the region iu and it is not

in any of the regions with delay lower than hu, for h = {1, 2, · · · , i − 1}. Furthermore,[∏|N (u)|−1
h=1 (1− xhu

cf)
]
xicf is an indicator function for the condition that content f of type c

does not exist on any region.

3.1.4 Deadline

Definition 3.1.1 (Deadline). It is defined as the maximum allowable time for the response

to a requested content.

The requested content needs a response within the deadline, which describes the max-

imum allowable time for response. Hence, the content with specific deadline Tcf gives

deadline constraint.

Du ≤ Tcf , ∀f ∈ F , c ∈ C, u ∈ U (3.8)

where, Tcf is the deadline of the content f of type c. This shows that the delay to download

content is less than the given deadline.

Definition 3.1.2 (Saved delay). The saved delay is defined as the difference between the

54

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.1

download delay from the Internet and base station.

3.1.5 Problem Formulation

The aim of this chapter is to maximize the saved delay by placing content in the BSs.

Thus the maximization problem is modeled as a multi-commodity facility location problem

subject to caching capacity and deadline constraints.

Therefore, the formulation becomes:

Max
U∑

u=1

(I −Du) (3.9)

s. t.

R∑
i=1

yuicf = 1, ∀f∈F ,c∈C,u∈U (3.10)

yuicf ≤ xicf , ∀f∈F ,c∈C,i∈R,u∈U (3.11)
C∑
c=1

F∑
f=1

Bf · xicf ≤ Si, ∀i∈R (3.12)

Du ≤ Tcf , ∀f∈F ,c∈C,u∈U (3.13)

yuicf , x
i
cf ∈ {0, 1}, ∀f∈F ,c∈C,i∈R (3.14)

The objective (3.9) is the total saved delay caused by users of the overall network. Con-

straint (3.10) guarantees that each request from a user can obtain content from only one

base station. Constraint (3.11) represents the availability constraint, which ensures that

content can be fetched from a cache if and only if it is stored in the cache. Constraint

(3.12) provides the finite capacity of each BS. Constraint (3.13) is the deadline constraint,

which ensures that the maximum allowable delay for the response to a request. Thus, the

BS can satisfy the users’ QoS requirements. Finally, constraint (3.14) is the non-negativity

and integrality of the decision variables.

Theorem 3.1.1. The content placement problem in equation (3.9) is NP-hard.

Proof. To show the problem presented in equation (3.9) as an NP-hard, transform the

55

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.2

known NP-hard problem to this problem. Knapsack problem has been considered, which is

already NP-hard. Knapsack problem: Given a knapsack j of capacity Sj and n items I =

{i1, i2, · · · , in}, each with its own weight {w1, w2, · · · , wn} and value {a1, a2, · · · , an}.

The objective of knapsack problem is to select the number of each item to add in a knapsack

j such that the objective is to maximize the total value P (ik), i.e., P (ik) =
∑n

j=1 ajxj and

the total weight must be less than or equal to the capacity of the knapsack i.e.,
∑n

j=1 ajxj ≤

Sj .

The problem in equation (3.9) is reduced to the knapsack problem as follows. Consider

the number of contents F = {1, 2, · · · , f, · · · , F}, the size of the content is considered

as the weight Bf and the saved delay is considered as the value i.e., P (ik) =
∑U

u=1Du.

xjcf = 1 means that content f of type c is cached in j, otherwise 0. Thus, if problem in

equation (3.9) can be solved in polynomial time, the 0-1 knapsack problem can be solved

in polynomial time i.e., the 0-1 knapsack problem is polynomially time reducible to prob-

lem in equation (3.9). Since, NP-Hard problem is reducible to problem in equation (3.9),

problem in equation (3.9) is NP-Hard. This completes the proof.

3.2 Approximation Algorithm based on Relaxation and

Rounding Technique

The relaxation and rounding algorithm (RAR) based on a relaxation technique is proposed

to handle the problem in equation (3.9). The integer linear programming is handled by

solving the relaxed fraction problem. The integer linear programming problem (0-1 binary

variable) is relaxed that is xicf , y
ui
cf to real numbers xicf , y

ui
cf extended between 0 to 1. The

intuitive meaning of xicf is that BS i can store a fraction of content and yuicf is user can

fetch part (fraction) of content. By relaxing the integer variable to non-negative integers,

the Integer linear programming problem transformed into linear programming. Linear pro-

gramming is known to be solvable in polynomial time [152]. The rounding technique is

used to produce approximate solution for given problem as shown in Algorithm 3.1.

56

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.2

3.2.1 Relaxation

Convert the integer linear programming (ILP) to linear programming (LP) by relaxing the

integer decision variables in equation (3.9) by introducing new variables xicf , y
ui
cf ∈ [0, 1].

All the constraints exist in the given problem are linear equations. Therefore, optimal solu-

tion (fractional) can found in polynomial time represented as SDr. Construct the optimal

solution (approximate solution) by rounding the fractional solution obtained through re-

laxed version to integers. xicf indicates where to cache content f of type c and yuicf indicates

the tendency where node i determine to obtain content f of type c.

Max
U∑

u=1

(I −Du) (3.15)

s. t.

n∑
i=1

yuicf = 1, ∀f∈F ,c∈C,u∈U

yuicf ≤ xicf , ∀f∈F ,c∈C,i∈R,u∈U

C∑
c=1

F∑
f=1

Bf · xicf ≤ Si, ∀i∈R

Du ≤ Tcf , ∀f∈F ,c∈C,u∈U

yuicf , x
i
cf ∈ [0, 1], ∀f∈F ,c∈C,i∈R

3.2.2 Rounding

The fractional optimal solution is obtained by solving the relaxed version of the problem

presented in equation (3.15). The integral solution of the fractional optimal solutions is

derived by rounding technique. Deterministic rounding algorithm [17] has been adapted

by constructing the weighted bipartite graph for each content f of different content types

c. A weighted bipartite graph BP = (M,N,E,W (E)) is constructed, where M and N

are the nonadjacent nodes, E represents the edge set and W (E) denoted as weight of the

edge E. User nodes present in one side and BSs present on the other side of bipartite graph,

57

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.2

where M and N denote the user and base station respectively.

The user node set M = {m1,m2, · · · ,mq} is constructed by sorting the request rates

in non-increasing order. Then, create the BS set N = {ni,v|i = 1, · · · , q, v = 1, · · · , ci}

based on yuicf , where ci = ⌈
∑

u∈E y
ui
cf⌉. Edges of the graph BP is setup between M and

N corresponding to the pair (u, i) such that yuicf > 0. For each positive i, if ci ≤ 1 then

there exist only one edge ni,1 in N add the edge eu,i,1 to E and weight w(eu,i,1) = yuicf for

each user u, yuicf > 0. Otherwise, multiple nodes present in N corresponding to BS i, find

the minimum index i1 such that
∑u1

u=1 y
ui
cf ≥ 1. Let E contains the edges (mu, ni,1), i =

1, · · · , u1 − 1, for each of these edges eu,i,1 set its weight as w(eu,i,1) = yuicf . Moreover,

add edge eu1,i,1 and its weight w(eu,i,1) = 1 −
∑u1

u=1w(eu,i,1). This provides that the sum

of the components of w(e) for each edge incident to ni,1 is 1.

If
∑u1

u=1 y
ui
cf > 1 then the value of the yuicf is not assigned completely, so create an

edge eu,i,2 and set its weight w(eu,i,2) =
∑u1

u=1 y
ui
cf − 1. Then, construct an edge ni,2 for

client u > u1, till total of one user assigned to ni,2 and so on. The bipartite graph BP is

constructed for every content f and processed according to saved delay in descending order.

Then, the maximum weighted matching on BP is performed with capacity and deadline

constraints. MTE is the result obtained by matching, for each selected edge in MTE , set

yuicf to 1, otherwise 0. Let the solution obtained from the rounding is represented as SDra

Algorithm 3.1 Relaxation-Rounding Algorithm
INPUT: {B1, B2, · · · , BF}, {S1, S2, · · · , SR}, pj(f), du,i
where u = {1, 2, · · · , U}, i = {1, 2, · · · , R}, c = {1, 2, · · · , C} and f = {1, 2, · · · , F}.
OUTPUT: yuicf , xicf .

1: Get the fractional solution yuicf , x
i
cf for the given integer decision variables by solving

the relaxed version of the problem.
2: Get the integral solution yuicf , x

i
cf by rounding the fractional solution.

3: Allocate the contents with suitable cache nodes.
4: return yuicf , xicf .

and SD∗ is denoted as optimal integer solution obtained by equation (3.15). The lower

bound of SDra is evaluated as follows.

Theorem 3.2.1. SDra ≥ 1
2
SD∗.

Proof. The sum of saved delay obtained by placing the content f at the base stations in the

58

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.3

mobile edge networks is SDr =
∑

∀f∈F SDf . The sum of the saved delay obtained by

integer rounding solution SDra is expressed as SDra =
∑

∀f∈F SD
ILP
f , where SDILP

f =

0 represents that content f is not placed in the integer rounding scheme SDra. For the

integer solution SDra, a complementary solution SDra is constructed according to [17]

i.e., for every edge in E − MTE , set yuicf to 1. Then, SDra =
∑

∀f∈F SD
cmp
f . In the

process of rounding some entries of yuicf becomes zero, due to this some user requests may

not be satisfied with the saved delay SDra. In order to satisfy these requests, make (i)

fractional value to an integer. (ii) the fractional value is considered if request is not met at

all, otherwise, the difference between fractional and integral saved delay is considered.

SDcmp
f =


SDf , if SDILP

f = 0,

0, if SDILP
f ≥ SDf ,

SDf − SDILP
f , if SDILP

f < SDf ,

As per [17], rounding result satisfies SDra + SDra ≥ SDr. It is easily understood that

SDra ≥ SDra. Hence, SDra ≥ 1
2
SDr ≥ 1

2
SD∗.

The proposed relaxation and rounding technique solves the integer linear program-

ming problem presented in equation (3.9) in polynomial time. However, the relaxation

and rounding algorithm achieves a polynomial time complexity, and the complexity grows

remarkably with an increase in the number of contents. For real scenarios as the scale con-

tinues to increase (large scale problems), the relaxation and rounding mechanisms are not

efficient enough [75]. To address the system with a large number of nodes, contents and to

ease the computational complexity, a heuristic algorithm has been designed based on the

fuzzy logic in the next section.

59

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.3

3.3 Fuzzy Caching Algorithm based on Content Request

Prediction

The content placement problem presented in equation (3.9) is to maximize the saved de-

lay, since the popularity is determined by content request prediction (i.e., the appropriate

content to be cached at each base station cooperatively requires the content popularity pre-

diction). To address this issue, a fuzzy logic based cooperative content placement algorithm

has been presented using content popularity prediction. The proposed algorithm runs on

network evaluation function (NEF) [151] to compute and allocate contents to individual

MEC to maximize saved delay overall MEN. The content statistics (indexes of cached con-

tent and request information of each content at MEC) and user context are provided by

NEF (as a central element).

3.3.1 Popularity Prediction using Echo State Networks

A machine learning model echo state network [153, 15] (ESN) has been adopted to predict

the content request distribution. ESN is one of the emerging recurrent neural networks

with dynamic reservoir, which predicts the information and track the previous states of

the network [153]. ESN is extensively used in time series prediction and dynamic system

modeling because of the time-varying characteristics of the dynamic system.

ESN model is adopted to predict the content request distribution by considering the

state of user content requests observed by NEF. ESN predicts the content request distribu-

tion by establishing the relationship between the requested content and user context (user

information). ESN trains the neurons using simple linear regression and it has fast conver-

gence speed. The ESN comprises four modules: a) input b) output c) agent and d) model.

• Input: The context of user u (which includes content request time, week, occupation,

gender and age) at time t is taken as input vector qtu = [qtu1, q
t
u2, · · · , qtuk]. The

output vector htu (content request distribution) is determined by the qtu, where k is the

number of properties that comprise the user u context information. For example, the

type of content like TV series, movies, videos which young age people or students

60

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.3

interested is different from the old age people or household. In reality, the content

request preference affected by the user information and various demographics.

• Output: The output of user u at time t is represented as a vector of values htu =

[htu1, h
t
u2, · · · , htum]. Where htum is the output value of request m at time t.

• Agent: The agents in this model are the base stations. Each BS predicts for one user

at time. So, the base stations execute U algorithms in every time slot.

• Model: The relationship between user information (input qtu) and request distribution

(output htu) is constructed by model. Model in ESN approximates function between

input and output, which is a dynamic reservoir. The reservoir contains the input

weight matrix W in
u and the output of the previous state (recurrent) matrix Wu. In

ESN output weight matrix W out
u required to estimate the prediction function. W in

u

indicates the relationship between user information and request distribution of user

u. Therefore, the dynamic reservoir of user u is represented as (W in
u ,Wu). The initial

values of the dynamic reservoir are randomly generated using the uniform distribu-

tion. W in
u is initialized randomly using uniform distribution and updated constantly

in successive training. ESNs performance is decided by different parameters (sparse

degree, spatial radius, input extensions and hidden layer size) of the reservoir.

Assume that the number of nodes in hidden layer is l of user u then the ESNs state at

time t is represented as: ztu = [ztu1, z
t
u2, · · · , ztul]. The reservoir state of user u at time t is

represented as ztu, and stores the state of user u. The updated equation is represented as:

zt+1
u = tanh(W in

u · qt+1
u +Wu · ztu +W fb

u · htu), (3.16)

where W fb
u is the weight matrix of the output of the previous state to the dynamic reservoir

of the next state. For each request of user u, the output vector of the ESN model records

the content request distribution. The ESN model output at time t+ 1 is:

ht+1
u = tanh(W out

u [zt+1
u ; qt+1

u]), (3.17)

61

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.3

where [;] represents the vertical concatenation of two vectors and W out
u is output matrix at

time t. The expected output of the ESN model is H(e). [zt+1
u ; qt+1

u] is collected and stored

in vector Z and corresponding output is stored in H , therefore,

H = W out
u · Z (3.18)

The difference between the predicted output H and original output H(e) should be mini-

mized by adjusting W out
u . The W out

u is adjusted by training.

H(e) = W out
u · Z (3.19)

where H(e) is expected output. By applying pseudo inverse

H(e) · Z† = W out
u (3.20)

Z† = (ZTZ)−1 · ZT (3.21)

with (3.20) and (3.21) the W out
u becomes

W out
u = H(e) · (ZTZ)−1 · ZT (3.22)

Due to noise, the W out
u may result in larger weights. Therefore, output weights are com-

puted using the ridge regression with Tikhonov regularization:

W out
u = H(e) · ZT (Z · ZT + c · I)−1 (3.23)

where c is the regularization coefficient and I is identity matrix.

3.3.2 Fuzzy Inference System for cache node selection

Fuzzy logic has been widely used in large number of applications because of its easy adap-

tation, interpretation of the rules and study on different inputs. The ability to use het-

62

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.3

erogeneous inputs facilitates the blending of several factors most desirably without using

mathematical relations [154, 155]. In the content placement problem, a content with high

benefit, large deadline and more popularity gets good opportunity to cache. A fuzzy logic

system has been presented to adjust the various content properties and their influencing

factors, choosing the more priority content to be cached based on well-chosen factors.

The uncertainties involved in computing the chance to become a caching node are han-

dled by fuzzy inference system (FIS) [154]. FIS utilizes the benefit, content popularity

prediction and deadline of the content to determine the chance of becoming a cache node.

The content with the nearest deadline needs to be cached in such a way that the delay

should be less than the deadline. The content with low popularity prediction means that

content has less chance of requests in the future. Similarly, a node with less benefit is also

not preferable. Therefore, by employing these parameters, each node calculates its chance

to cache the content by FIS.

Fuzzy modelling involves two distinct identification aspects, structure identification

and parameter identification. Structure identification includes the selection of input-output

variables, selecting a specific FIS, defining the linguistic terms for input and output vari-

ables and generating rules. Parameter identification includes choosing an appropriate mem-

bership function (MF), applying heuristic selection and refining the MFs with suitable

optimization techniques. To tune the generated membership function, heuristic selection

(common-sense knowledge, general information about the system) is used. Algorithm 3.2

shows the process of the fuzzy logic system. The fuzzy inference system, as shown in Fig.

3.2 consists of four components: fuzzification, rule-base, inference process and defuzzifi-

cation.

Fuzzification: Fuzzification is the process of mapping data to suitable linguistic vari-

ables. It determines the degree to which a crisp input belongs to each of the suitable fuzzy

set.

F : R− > µ(x)

The triangular membership function (line 1, Algorithm 3.2) is used as the parameterized

63

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.3

0

0.5

1

0.0

0.2 0.4 0.6 0.8

1.0

0

0.5

1

0.0

0.2 0.4 0.6 0.8

1.0

0

0.5

1

0.0

0.2 0.4 0.6 0.8

1.0

0

0.5

1

0.0

0.25 0.5 0.75

1.0

 Fuzzy Inference Engine

 Fuzzy Rule Base

Inference system

Poor DecentMediocre Average Good

Chance of cache node

Defuzzifier

Fuzzifier with membership functions

Deadline

Popularity

Benefit

Medium HighLow

M
e
m

b
e
rs

h
ip

 v
a

lu
e

M
e
m

b
e
rs

h
ip

 v
a

lu
e

M
e
m

b
e
rs

h
ip

 v
a

lu
e

M
e
m

b
e
rs

h
ip

 v
a

lu
e

Less Moderate More

Samll Average Large

Figure 3.2: Fuzzy inference system

membership function, as shown in Fig. 3.2.

µ(x) = max
(
min

(x− k
l − k

,
m− x
m− l

)
, 0
)

(3.24)

The parameters k, l,m with k < l < m determine the x-coordinates of the three corners

of the triangular membership function. The linguistic variables of the input are considered

as benefit, content popularity prediction and deadline. The linguistic terms for benefit are

Low, Medium, High, content popularity are less, moderate, more and deadline are small,

average, large. The linguistic variables of output variable is considered as chance with

linguistic terms poor, mediocre, average, decent, good as shown in Table 3.2.

Table 3.2: Fuzzy input or output variable with their linguistic values

In/Output linguistic variable Linguistic values

Content Popularity Less, Moderate, More
Deadline Small, Average, Large
Benefit Low, Medium, High
Chance of Cache Poor, Mediocre, Average,

Decent, Good

Inference process: It is a mapping from the given input space to output space using the

rules. Mamdani [154] type fuzzy model is used in this chapter.

Rule-base: It specifies the control goals and control policies of domain experts by a

set of linguistic rules. Generally, fuzzy rules are produced based on experimental or expert

64

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.3

opinion (heuristic data) [156]. FIS consists of a set of rules of the form IF (set of conditions

satisfied) THEN (set of consequences can be inferred). Here, the linguistic statements are

produced based on heuristic data (if-then rules) according to the following principle: a node

with less benefit, low content popularity and small deadline have less chance to become

the node to cache the content. According to three fuzzy input parameter and one output

parameter, Table 3.3, shows the 27 fuzzy rules.

Table 3.3: Fuzzy Rules

Inputs Output

Benefit Deadline popularity Chance of Cache

Low Small Less Poor
Low Small Moderate Poor
Low Small More Poor
Low Average Less Poor
Low Average Moderate Poor
Low Average More Mediocre
Low Large Less Mediocre
Low Large Moderate Mediocre
Low Large More Average
Medium Small Less Poor
Medium Small Moderate Mediocre
Medium Small More Average
Medium Average Less Poor
Medium Average Moderate Mediocre
Medium Average More Average
Medium Large Less Mediocre
Medium Large Moderate Average
Medium Large More Decent
High Small Less Mediocre
High Small Moderate Average
High Small More Mediocre
High Average Less Average
High Average Moderate Decent
High Average More Good
High Large Less Average
High Large Moderate Good
High Large More Good

Defuzzification: It is the inverse of fuzzification. It maps the fuzzy sets into a crisp

output.

DF : µ(x)− > R

65

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.3

Algorithm 3.2 Fuzzy Cache Node(B, D, P)
INPUT: Benefit(B), Deadline(D), Content Popularity Prediction(P), Rule Base
OUTPUT: Probability to cache

1: Find the membership values (µ(D), µ(B) and µ(P)) and membership levels using
triangular membership function (3.24);

2: Empty the list p(value,membershiplevel);
3: RuleBase = {A set of all combinations of linguistic levels}
4: for all rules in the RuleBase do
5: if µ(D), µ(B), µ(P) then
6: fit the membership levels of this rule;
7: add an entry to the list p with;
8: value = maximum(µ(B), µ(D), µ(P));
9: membershiplevel = output membership level of this rule;

10: end if
11: end for
12: Chance = Defuzzify(p) using equation (3.25);
13: return Chance;

Center of Gravity (COG) is considered for the defuzzification process.

chance =

∑n
i=1 xi.µ(xi)∑n
i=1 µ(xi)

(3.25)

Input parameters:

The input parameters considered for the selection of the cache node are

1. Benefit (B): The saved delay of content f at base station i is denoted as the benefit

B

B = argmax
(∑

u∈i

Benui(f)

Bf

)
(3.26)

where

Benui(f) = rf × (I − du,i)

2. Deadline (D): The response time of the content is denoted as D.

3. Content request distribution prediction (P): Echo state network gives the content

request distribution for each user using equation (3.18).

Output: Probability for a content to be cached at a BS.

66

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.3

Algorithm 3.2 shows the process of the fuzzy logic system. Line 1 calculates the mem-

bership values using triangular membership function with the membership levels. Line 3

derives the all combinations of membership levels. Lines 4 - 11 show the fuzzy inference

process. Further, the fuzzy output is converted into crisp value by the defuzzifier in line 12.

3.3.3 Fuzzy Caching Algorithm

In this section, the fuzzy caching algorithm (FCA) is constructed. The idea of the fuzzy

caching algorithm (Algorithm 3.3) is to cooperatively cache more popular content with

minimal delay by considering content benefit, deadline and request prediction (popular-

ity) to imporve the performance in terms of hit ratio, acceleration ratio and the number of

requests satisfying deadline. Algorithm 3.3, relies on computing the content request distri-

bution prediction based on the ESN by considering user context and request information.

Algorithm 3.3 shows the method of caching a content in appropriate BSs fuzzy logic.

The content request distribution of each user in the communication range of a base station

is computed in lines 2-4. The average of each predicted content request distribution of

different types is computed by line 5. Line 6 sorts the average of content in a base station.

Line 9 shows the computation of benefit and line 10 shows the chance of each content to

be placed in a base station using fuzzy logic. Line 13 sorts the chance of each content in

non-increasing order. Lines 15-21 show caching an item if the cache is empty, by choosing

the first element from the chance computed and sorted. Lines 22-35 show the cooperative

caching. While the cache is not full, the content which is not cached so far overall BSs

is chosen and the content will be cached if it satisfies the storage capacity. Lines 36-45

show user request allocation. For all the users in the communication range of node i, if the

requested content is cached at i then the request is served. Otherwise, find the nearest node

with less distance and serve the content.

3.3.4 Replacement Strategy

Caching algorithm (Algorithm 3.3) provides content placement which can be done during

peak-off time. However, re-configuring large scale system during peak hours causes extra

67

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.3

Algorithm 3.3 Fuzzy Caching Algorithm
INPUT: {B1, B2, · · · , BF}, pi(f), du,i, {S1, S2, · · · , SR}
where u = {1, 2, · · · , U}, i = {1, 2, · · · , R}, c = {1, 2, · · · , C} and f = {1, 2, · · · , F}.
OUTPUT: xicf : Content placment matrix and yuicf : Content fetch matrix.

1: for all i ∈ R do
2: for all u in communication range of i do
3: P u

i = compute request distribution for user u using equation (3.18)
4: end for
5: Pi = compute average of each f form P u

i

6: sort Pi in non-increasing order
7: for all c ∈ C do
8: for all f ∈ F do
9: bfi = compute benefit using equation (3.26)

10: fzfi = Fuzzy Cache Node(bfi , Tcf , Pi(f))
11: end for
12: end for
13: sort fzi in non-increasing order
14: end for
15: for all i ∈ R do
16: f = first content of sorted fzi
17: if cache is empty then
18: xicf = 1, (i.e., cache f in BS i and remove f from fzi)
19: Si = Si −Bf

20: end if
21: end for
22: for all i ∈ R do
23: while cache is not full do
24: f = first content of sorted fzi
25: if f is already cached in some BS then
26: f = succeeding item from fzi to cache
27: end if
28: if Bf <= Si then
29: xicf = 1, (i.e., Cache f in BS i)
30: Si = Si −Bf

31: else
32: Remove f from fzi
33: end if
34: end while
35: end for
36: for all i ∈ R do
37: for all u in communication range of i do
38: if f ∈ Si then
39: yuicf = 1
40: else
41: j = the node with less distance to user
42: yujcf = 1
43: end if
44: end for
45: end for

68

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

burden to the backhaul. Hence, a replacement strategy is presented to reconfigure the

content placement for a dynamic network. When the requested content is not available at a

node and the cache is full, then the requested content will be downloaded from the content

server to node. This results in the content miss and the overall delay will be increased. As

the cache of the MEC is full, NEF decides the replacement of the new content with existing

content. NEF takes the decision on the content replacement based on the advantage of the

MEC.

Algorithm 3.4 Cache Replacement Algorithm
1: For each request for a content f : f /∈ X
2: for all l = 0 : R do
3: frep = the content which is having less chance to cache using fuzzy logic among all

nodes
4: if Bf <= left over capacity of node then
5: replace the frep with f
6: end if
7: end for

Algorithm 3.4 shows the cache replacement strategy when there is a content miss. Line

1 represents that when there is a cache miss, then the process will be initiated. Line 2 shows

the search for the R+1 iterations. Line 3 finds the content with less chance to cache among

all the base stations. Lines 4-6 show to replace the requested content with the content which

is having less chance to cache.

3.4 Performance Evaluation

In this section, the performance of the proposed cache placement algorithms (FCA, RAR)

has been validated using simulations. FCA, RAR has been compared with the existing

algorithms [157, 114, 139, 18, 49] based on publicly available real-world datasets.

3.4.1 Description of Data Set

In this simulation, the MovieLens 1M Dataset [37] has been used to evaluate the proposed

FCA and RAR, that has 6040 users with demographic information (age, gender, location

69

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

and occupation) and 1000209 ratings of 3952 movies. The dataset consists of user ID,

movie ID, movie ratings and time stamp. The timestamps divided as slots of one day

each, and assigned the user context information to the user requests [158]. A movie rating

from users is considered as the number of requests of that movie [131]. The user request

generation probability is computed as the fraction of requests generated by a user over total

requests of the all users in region. The content popularity is obtained in each time slot. The

popularity of content is computed as the fraction of requests for a movie over requests for

all movies. Content is updated based on the network traffic pattern. The wireless traffic

presents a regular high and low every day. Thus, content updation can be carried out in the

off-peak time to reduce the burden on backhaul [159]. It has been observed that more than

90% of the ratings existed within the first year. Therefore, only the first year of the dataset

[129] has been used. ESN uses the traces from dataset to train predict the distribution. The

performance of content popularity prediction is measured as an error. The error of content

distribution prediction is defined as the sum deviation from the estimated distribution of

content request to its original distribution [15].

3.4.2 Simulation Environment

In order to evaluate the performance of the proposed fuzzy caching algorithm, the exper-

iments have been executed based on the following settings. A cellular network with 15

BSs associated with MEC servers and 90 mobile users have been considered. In the given

simulation area, the MECs along with base stations are randomly deployed and there is a

link between the base stations. The users under each base station are placed uniformly. In

the content server, there are 3952 contents of 1128 labels (as per MovieLens dataset). Six

hundred movies have been chosen for simulation. The content sizes are chosen uniformly

at random from the range 300 K to 1999 K. The cache capacity of each BS is 20 MB. The

communication range of the base stations is 100 m respectively. The data rate of the BSs is

5 M. The values of the simulation parameters are presented in Table 3.4. All the simulation

results shown are average of 50 runs. The download delay of retrieving content from the

content server to the BS is considered as 25 ms [160], while the latency of retrieving the

70

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

content from the BS to the user is calculated based on the positioning of the user and the

BS. The deadlines of each file are assigned randomly from the range of 5 ms to 20 ms.

3.4.3 Performance Metrics

To compare the performance of cache placement schemes three metrics has been consid-

ered:

(1) Cache hit ratio: the fraction of requests satisfied (i.e., cache hits) from the available

caches over sum of cache hits and cache misses.

Cache hit ratio =
cache hits

cache hits + cache misses
(3.27)

(2) Acceleration ratio: the fraction of saved transmission delay and original Internet delay

can be formulated as:

Acceleration ratio =
saved delay

original delay (from Internet)
(3.28)

(3) Number of requests satisfying deadline.

(4) Cache utilization: the proportion that content in caches of base stations is accessed by

users. i.e., the cache storage utilization indicates the utilization of content cached by BSs.

Table 3.4: Simulation Parameters

Parameters Values

Simulation area 4500/m× 3400/m
Capacity of base station 20 MB
Communication range of BS 100 m
Communication speed of BS 5 M
Latency from content server to the BS 25ms

3.4.4 Reference Algorithms

In this section, the proposed Fuzzy Caching Algorithm (FCA) and Relaxation-Rounding Al-

gorithm (RAR) has been compared with Cooperative Prediction Caching Algorithm (CPCA),

Non-cooperative Prediction Caching Algorithm (NPCA) [157], Random Caching (RC)

71

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

[114, 139, 15], Most Popular Content (MPC) [18, 49] and Least Recently Used (LRU)

[47].

1. MPC: In the most popular caching scheme, each base station caches the most popular

content estimated based on the user request statistics. Each base station caches the

popular content till the cache is full [18, 49].

2. NPCA: In non-cooperative prediction based caching scheme, each BS predicts the

user request distribution based on content request statistics. Each base station caches

the predicted popular content non-cooperatively till the cache is full [157].

3. CPCA: In cooperative prediction based caching scheme, each BS predicts the user

request distribution based on user context and content request statistics. The base

stations cache the predicted popular content cooperatively till the cache is full.

4. RC: In random caching, each BS caches the content randomly irrespective of the

content popularity till the cache is full [114, 139, 15].

5. LRU: It keeps a record with least access time for content and the newly requested

content is replaced with the content which has been idle for a long time when the

cache is full [47].

The proposed algorithms have been executed on a desktop with a dual-core Intel i5-5200U

3.20 GHz and 8 GB of installed RAM in this simulation. To find the solution for RAR, first

the relaxed version of the problem is solved and obtained the fractional solution. A general

idea for rounding the fractional values is to view the fractional values as probabilities. This

technique is called randomized rounding. The main drawback of using the probabilities

as caching variables in randomized rounding mechanism is that with certain inputs, it may

take more time or sometimes it may fail [161]. Therefore, the fractional solution is rounded

using the proposed deterministic algorithm.

Four scenarios are considered to show the performance of the proposed fuzzy caching

algorithm. In scenario 1, the number of MECs is 7, the number of requests is 50% of total

number of requests, the number of contents is 100% and the algorithms are compared in

72

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

terms of performance metrics by varying cache capacity from 5 GB to 10 GB with step

size 1. In scenario 2, the cache capacity is 7 GB, the number of requests is 50% of total

number of requests, the number of contents is 100% and the algorithms are compared in

terms of performance metrics by varying number of MECs from 5 to 10 with step size 1.

In scenario 3, the cache capacity is 7 GB, the number of contents is 100%, the number of

MECs is 7 and the algorithms are compared in terms of performance metrics by varying,

number of requests from 20% to 100% with step size 20. In scenario 4, the cache capacity

is 7 GB, number of MECs is 7, number of requests is 50% of total number of requests

and the algorithms are compared in terms of performance metrics by varying, number of

contents from 20% to 100% with step size 20.

3.4.5 Impact of Cache Capacity

The impact of cache hit ratio, acceleration ratio and number of requests satisfying deadline

on caching capacity of all schemes are presented in Fig. 3.3a, 3.3b and 3.3c respectively.

The simulation results are computed by taking the inputs specified in scenario 1.

Fig. 3.3a shows the increase of hit ratio as the cache capacity increases. It can be

observed from Fig. 3.3a that the hit ratio of proposed algorithms grow slowly with little

cache capacity and grow quickly with increase of cache capacity. The proposed FCA pro-

vides an improvement in the cache hit ratio compared to other algorithms. The reason is

that caching decision is made based on content request prediction, benefit and deadline.

Therefore, the FCA caches more appropriate content compared to other algorithms. The

CPCA caches content cooperatively based on prediction, whereas NPCA caches predicted

content with non-cooperation and MPC caches based on the popularity of the content. It

can be observed that the cooperative caching algorithms (FCA, RAR and CPCA) are per-

forming better than non-cooperative caching mechanisms (NPCA, MPC, LRU and RC).

The LRU is performing better than RC because it considers recency based caching. As

the cache size increases, the hit ratio of proposed algorithms is significantly improved over

other schemes. FCA achieves 8%, 15%, 20%, 19% and 18% better than CPCA, NPCA,

RC, LRU and MPC, respectively.

73

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

5 6 7 8 9 10
0.1

0.3

0.5

0.7

Cache Capacity(GB)

H
it

R
at

io

RAR
FCA
CPCA
NPCA
RC
MPC
LRU

(a)

5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

Cache Capacity(GB)

A
cc

el
er

at
io

n
R

at
io

RAR
FCA
CPCA
NPCA
RC
MPC
LRU

(b)

5 6 7 8 9 10
0.2

0.4

0.6

0.8

0.9

Cache Capacity(GB)

#
re

qu
es

ts
sa

tis
fy

in
g

de
ad

lin
e

RAR
FCA
CPCA
NPCA
RC
MPC
LRU

(c)

Figure 3.3: Comparison of caching schemes using cache capacity vs (a) cache hit ratio
(b) acceleration ratio (c) number of requests satisfying deadline. The cache capacity is
measured when R = 7, r = 50% and F = 100%.

Fig. 3.3b shows the improvement of acceleration ratio among FCA, RAR, RC, MPC,

LRU, CPCA and NPCA with various cache capacities. It can be observed from Fig. 3.3b

that as cache size increases the acceleration ratio of all schemes increases. The increase

in the acceleration ratio specifies that the increase in saved delay. The proposed caching

algorithms perform better than other caching algorithms. The reason is that FCA makes

the decision based on benefit, whereas CPCA and NPCA cache the content based on the

prediction with cooperation and non-cooperation. Therefore, the content with more benefit

is cached in the nodes. The acceleration ratio of RC increases slowly than other algorithms

74

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

5 6 7 8 9 10
0.1

0.3

0.5

0.7

Number of MECs

H
it

R
at

io

RAR
FCA
CPCA
NPCA
RC
MPC
LRU

(a)

5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

Number of MECs

A
cc

el
er

at
io

n
R

at
io

RAR
FCA
CPCA
NPCA
RC
MPC
LRU

(b)

5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

Number of MECs

#
re

qu
es

ts
sa

tis
fy

in
g

de
ad

lin
e

RAR
FCA
CPCA
NPCA
RC
MPC
LRU

(c)

Figure 3.4: Comparison of caching schemes using number of MECs vs (a) cache hit ratio
(b) acceleration ratio (c) number of requests satisfying deadline, when S = 7 GB, r = 50%
and F = 100%.

due to caching random content at nodes. FCA achieves 8%, 12%, 18%, 15% and 13%

better than CPCA, NPCA, RC, LRU and MPC.

Fig. 3.3c shows the number of nodes satisfying deadline among FCA, RAR, RC, MPC,

CPCA and NPCA with various cache capacities. It can be observed from Fig. 3.3c that the

proposed caching algorithms outperform with other mentioned caching algorithms. The

reason is that proposed algorithms consider the deadline of the content in decision making.

The number of nodes satisfying the deadline is less with a smaller cache size and grow

quickly when the cache size increases. FCA achieves 11%, 16%, 18%, 17% and 21%

better than CPCA, NPCA, RC, LRU and MPC.

75

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

3.4.6 Impact of number of MECs

In this section, the impact of the cache hit ratio, acceleration ratio and the number of re-

quests satisfying deadline on the number of MECs of all the schemes is presented in Fig.

3.4a, 3.4b and 3.4c. The simulation results are computed by taking the inputs specified in

scenario 2.

Fig. 3.4a shows that the proposed caching algorithms achieve better performance com-

pared to other schemes in terms of hit ratio. The reason is that as the number of MECs

increases, the proposed algorithms collaboratively caches more popular content results in-

crease of cache hit ratio. FCA achieves 4%, 9%, 16%, 14% and 13% better than CPCA,

NPCA, RC, LRU and MPC, respectively.

Fig. 3.4b shows that the proposed algorithms perform better than other schemes with

respect to acceleration ratio. As the number of nodes increases, CPCA grows slowly and the

proposed algorithms increases quickly. The reason is that the proposed algorithms caches

popular content along with benefit. Therefore, proposed algorithms caches the content near

(with less delay) to users. FCA achieves 6%, 9%, 16%, 13% and 10% better than CPCA,

NPCA, RC, LRU and MPC, respectively.

Fig. 3.4c shows that the proposed caching algorithms outperform other schemes in

terms of the number of deadlines. It can be observed from Fig. 3.4c that MPC is performing

better than CPCA and NCPA. The reason is that the prediction based mechanisms CPCA

and NPCA caches predicted content which may not satisfy the content deadlines. However,

the proposed caching algorithms cache the predicted content that makes available more

content to users. FCA achieves 21%, 22%, 24%, 20% and 17% better than CPCA, NPCA,

RC, LRU and MPC, respectively.

3.4.7 Impact of Number of Requests

The effect of hit ratio, acceleration ratio and the number of nodes satisfying deadline with

varying percentage of requests is presented in Fig. 3.5a, 3.5b and 3.5c. The simulation

results are obtained by taking the inputs specified in scenario 3.

Fig. 3.5a shows that the proposed caching algorithms increase slowly when the number

76

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

Number of Requests(%)

H
it

R
at

io

RAR
FCA
CPCA
NPCA
RC
MPC
LRU

(a)

0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

Number of Requests(%)

A
cc

el
er

at
io

n
R

at
io

RAR
FCA
CPCA
NPCA
RC
MPC
LRU

(b)

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

Number of Requests (%)

#
re

qu
es

ts
sa

tis
fy

in
g

de
ad

lin
e

RAR
FCA
CPCA
NPCA
RC
MPC
LRU

(c)

Figure 3.5: Comparison of caching schemes using number of requests vs (a) cache hit ratio
(b) acceleration ratio (c) number of requests satisfying deadline, when S = 7 GB, R = 7
and F = 100%.

of requests are less and increases quickly with an increasing number of requests. It can be

observed from Fig. 3.5a that FCA, RAR and CPCA are increasing quickly compared to

other algorithms (NPCA, MPC, LRU and RC). The reason is that the cooperative caching

mechanisms (FCA, RAR and CPCA) cache contents cooperatively, which improves the hit

ratio with the increase in the number of requests. FCA achieves 5%, 12%, 19%, 17% and

15% better than CPCA, NPCA, RC, LRU and MPC, respectively.

Fig. 3.5b, shows the proposed algorithms compared with other caching schemes. FCA

and RAR are performing better than other mentioned caching algorithms. The reason is

77

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

that with fewer requests, the saved delay is nearly equal for all algorithms. However, as

the number of requests increases, the saved delay to access content is better with proposed

algorithms because cooperatively caching the more benefit content. FCA achieves 2%, 4%,

8%, 7% and 5% better than CPCA, NPCA, RC, LRU and MPC, respectively.

Fig. 3.5c shows that the proposed caching algorithms increase quickly with the number

of requests. FCA achieves 7%, 8%, 9%, 8% and 9% better than CPCA, NPCA, RC, LRU

and MPC, respectively. The reason is that the proposed mechanisms consider deadline,

along with prediction and benefit. NPCA, LRU and MPC are performing similarly because

both the mechanisms are caching content non-cooperatively.

3.4.8 Impact of Number of Contents

The effect of hit ratio, acceleration ratio and deadline with the varying number of requests

has been shown in Fig. 3.6a, 3.6b and 3.6c. The simulation results represented by taking

the inputs are specified in scenario 4.

Fig. 3.6a shows that with less number of contents, the hit ratio is high. As the number

of contents increases the hit ratio decreases. It can be observed from Fig. 3.6a that the

cooperative caching mechanisms (FCA, RAR and CPCA) are performing relatively better

than non-cooperative caching mechanisms (NPCA, MPC and RC). The reason is that the

cooperative caching schemes cache more content cooperatively with less delay leads to

more hit rate. FCA achieves 3%, 9%, 17%, 12% and 11% better than CPCA, NPCA, RC,

LRU and MPC, respectively.

Fig. 3.6b shows that as the number of contents increases the acceleration ratio de-

creases. From Fig. 3.6b, it can noticed that the proposed algorithms is performing better

than other mentioned caching mechanisms with increase in the number of contents. FCA

and RAR decreases slowly compared to other mechanisms. The reason is that content

caching decision is made using the benefit, so a large portion of the content is cached near

to users. FCA achieves 4%, 8%, 13%, 12% and 9% better than CPCA, NPCA, RC, LRU

and MPC, respectively.

Fig. 3.6c shows that the proposed caching mechanism decreases quickly when the

78

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

Number of Contents (%)

H
it

R
at

io

RAR
FCA
CPCA
NPCA
RC
MPC
LRU

(a)

0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

Number of Contents (%)

A
cc

el
er

at
io

n
R

at
io

RAR FCA
CPCA NPCA
RC MPC
LRU

(b)

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

Number of Contents (%)

#
re

qu
es

ts
sa

tis
fy

in
g

de
ad

lin
e

RAR FCA
CPCA NPCA
RC MPC
LRU

(c)

Figure 3.6: Comparison of caching schemes using number of contents vs (a) cache hit ratio
(b) acceleration ratio (c) number of requests satisfying deadline, when S = 7 GB, R = 7
and r = 50%.

number of contents is less and decreases slowly with increasing of contents. The proposed

algorithms outperforms other algorithms by satisfying content deadlines. FCA achieves

3%, 6%, 13%, 7% and 8% better than CPCA, NPCA, RC, LRU and MPC, respectively.

The reason is that FCA considers deadline, along with prediction and benefit.

3.4.9 Impact of Content popularity

The effect of content popularity has been shown in Fig. 3.7a. From Fig. 3.7a, it can be

noticed that the content popularity computed using Eq. 3.4 can be fitted by Zipf distribution

79

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

0 100 200 300 400 500 600
Content Rank

0.0

0.2

0.4

0.6

0.8

1.0

Co
nt

en
t P

op
ul

ar
ity

Actual
Fitted Zipf

(a) Content popularity

0 50 100 150 200 250
0

1

2

3

4

5

Number of Iterations

E
rr

or
of

th
e

C
on

te
nt

D
is

tr
ib

ut
io

n
Pr

ed
ic

tio
n λ = 0.001

λ = 0.005
λ = 0.01
λ = 0.05

(b) Accuracy of prediction

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Number of Contents

H
it

R
at

io

Prediction
Uniform
Zipf with γ = 0.5
Zipf with γ = 0.9
Zipf with γ = 1.4

(c) Performance of prediction

Figure 3.7: Comparison of content popularity vs content rank, error as the number of iter-
ations varies and performance of prediction vs number of contents.

with skewness parameter γ = 1.4.

The error of the ESN based prediction with a varying number of iterations is shown in

Fig. 3.7b. From Fig. 3.7b, it can be observed that the error of the prediction is decreased

by increasing number of iterations. It can be noted that ESN needs less than 50 iterations

to predict the content distribution of each user for learning rate 0.001, 0.005 and 0.01.

Whereas for the learning rate, 0.05 ESN takes less than 110 iterations. Since ESN require

to trains only the output matrix. It also present that the error of 0.12, 0.2, 0.28 and 0.39

percentage for learning rates 0.001, 0.005, 0.01 and 0.05 respectively. Form Fig. 3.7b it

can be observed that the learning rate affects the accuracy of prediction.

80

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.4

5 6 7 8 9 10
0

0.1

0.2

0.3

0.45

Cache Capacity(GB)

C
ac

he
U

til
iz

at
io

n

RAR FCA
CPCA NPCA
RC MPC
LRU

(a) Cache utilization vs capacity

1 2 3 4 5 6 7
0

0.2

0.4

0.6

MECs

C
ac

he
U

til
iz

at
io

n

FCA

(b) Cache utilization of each MEC

Figure 3.8: Comparison of caching schemes using cache capacity vs cache utilization. The
cache capacity is measured when R = 7, r = 50% and F = 100%.

The effect of the cache hit ratio with varying library size is presented in Fig.3.7c. In

Fig. 3.7c, the performance of the content placement mechanism under different popularity

distribution (uniform and Zipf [162]) is evaluated. The Zipf popularity distribution assumes

the request probability of content jth most popular content (form the set F) at node i can

be computed as pij =
1
jγ∑F

n=1
1
nγ
, ∀i ∈ R where γ ≥ 0 is the Zipf parameter. γ decides

the rate of popularity decline as j values increases. The uniform distribution assumes the

equal request probability of content j (i.e., pij = 1
|F | ,∀i ∈ F). It can be observed from

Fig. 3.7c that, as γ increases cache hit ratio also increases. It can also notice that as the

number of contents increases, all the distributions decreases. Since with more number of

contents the smaller set of contents report the identical popularities. The content request

distribution prediction shows superiority over other distribution since the future requesting

content becomes more popular, whereas in Zipf distribution evaluates popularity based on

the content frequency.

3.4.10 Impact of Cache Storage Utilization

The effect of cache storage utilization with varying cache capacity of all schemes is pre-

sented in Fig. 3.8a. It can be observed from Fig. 3.8a that the rise in the cache capacity

improves the cache storage utilization. Random caching is performing relatively well com-

81

CHAPTER 3. DEADLINE-AWARE CONTENT CACHE PLACEMENT USING ECHO STATE NETWORK INTEGRATED FUZZY LOGIC FOR MOBILE EDGE NETWORKSSection 3.5

pared to the LRU scheme. This is because, RC is free from the influence of popularity,

which caches the content randomly. In LRU, the frequently used content is cached. How-

ever, there exist many contents which are not used at all. The prediction based caching

schemes (FCA, CPCA and NPCA) is performing better compared to the non-prediction

based schemes (RC, MPC and LRU). The performance of CPCA is superior to NPCA.

Since CPCA uses cooperation among MECs. The FCA outperforms other algorithms be-

cause FCA caches content based on the popularity and benefit of the content. The cache

utilization of each MEC is presented in Fig. 3.8b. It can observe that all the caches are

utilized, and few caches are getting more utilization due to MEC located near other MECs.

It can be observed from the Fig. 3.8b that the minimum cache utilization is 0.2.

3.5 Summary

This chapter addresses a cache placement problem in mobile edge networks, aiming to

maximize saved delay by considering the capacity and deadline constraints. The place-

ment problem is designed as an integer linear programming. A relaxation and rounding

technique is used to design an approximation algorithm. Further, a fuzzy caching algorithm

is proposed as a solution to the cache placement problem. In the proposed algorithm, first,

an echo state network is used to predict content request distribution. Then the content to be

cached (in the base station) is evaluated based on prediction result, benefit and deadline of

the content request. Caching performance parameters, such as acceleration ratio, hit ratio

and the number of files satisfying deadlines, are taken for comparison of the proposed pre-

diction based fuzzy logic algorithm. Further, the performance of the proposed schemes are

measured by comparing with the existing most popular content based algorithms, the pre-

diction based caching algorithms (CPCA, NPCA), LRU and random caching algorithms.

From the simulation results, it has been observed that there is an improvement of up to 20%

on acceleration ratio, up to 18% on hit ratio and up to 24% on number of deadline satisfied.

The next chapter presents a user preference-based cooperative cache placement strategy by

considering the uneven distribution of users and the heterogeneity of user preferences and

activity levels to improve cache utilization.

82

Chapter 4

User Preference Prediction based Cache

Placement for Mobile Edge Networks

with Adaptive User Clustering

Content popularity indicates the average interest of multiple users but not exhibits the indi-

vidual user preferences [19]. Most of the existing literature considers that all users have the

same content distribution (homogeneous popularity). However, various users have diverse

preferences. The assumption made on homogeneous popularity ignores the users’ pref-

erences and this results in losing valuable information. Less than 20% of users generate

80% of traffic, which shows that the users’ activity level is heterogeneous [20]. In the lit-

erature, most proactive caching approaches ignored user behaviour, such as heterogeneous

user preferences and activity levels, introducing new challenges into mobile edge networks.

Therefore, employing the individual user activity levels and preferences facilitate design of

efficient cooperative caching strategies.

This chapter aims to maximize the saved delay by considering the uneven distribution

of users, user preferences and activity levels for accessing a large volume of data. The

content request deadline is considered for generality and practicality, which is reasonable in

latency-sensitive mobile and IoT applications. The novelty of this chapter lies in designing

a cooperative caching scheme for mobile edge networks with uneven user distribution,

heterogeneous user preferences, and activity levels. User preferences are predicted using

83

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.1

the recurrent neural network mechanism LSTM using the historical user behaviour. Further,

users are clustered depending on estimated user preferences. Then the cooperative cache

placement problem is modeled as Integer linear programming to maximize saved delay with

deadline and capacity constraints. For the modeled cache placement problem, a solution

using a submodular function with matroid constraints has been designed to maximize saved

delay.

The contributions of this chapter are as follows:

• Design a user preference prediction mechanism by adopting the long short-term

memory network.

• Design a user preference-based clustering mechanism and formulate a clustered co-

operative caching problem as an integer linear programming problem in mobile edge

networks to maximize the saved download delay subjective to the deadline of the

content and cache capacity.

• Design a submodular optimization based cooperative content caching algorithm by

utilizing the clustering and prediction mechanisms to solve the proposed problem.

• Extensive simulations have been performed to show the efficacy of the proposed

greedy cooperative caching algorithm by considering acceleration ratio, hit rate, and

cache utilization.

The rest of this chapter is organized as follows. The system model is presented in

Section 4.1. The user preference prediction using LSTM, user clustering and problem

formulation are presented in Section 4.2. A greedy approximation mechanism has been

presented in section 4.3. The simulation environment, and the results are discussed in

Section 4.4. A summary of this chapter is mentioned in Section 4.5.

4.1 System Model

In this section, the system model is presented in detail.

84

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.1

Backhaul

Core Network /

Internet

Content Server

NEF

Mobile User

Base Station

MEC Server

MEC 1 MEC 2

MEC 3MEC 4

Cooperation

among MECs

MEC 5

Figure 4.1: Illustration of the proposed system model.

Mobile edge computing improves users’ capabilities by providing cache capacity (i.e.,

storage), network resources and computing near users. Consider a mobile edge network

containing a set R of R small base stations (SBS) (i.e., edge node) is equipped with a

MEC server, a set U of U mobile users, a content server and a central coordinator NEF as

shown in Fig. 4.1. The distribution of base stations modelled as a Poisson point process

(PPP) with density λR. The base station voronoi cells are non-overlapping. The users are

distributed within the coverage of BSs as per PPP with density λU . The users in a voronoi

cell associates with MEC located in that particular cell. Each MEC i ∈ R has a limited

cache Si called local storage. The storage of each MEC is used for content caching. The

MECs are connected and also to the core network through the backhaul link. The content

server acts as an origin server that stores all contents. Network Exposure Function (NEF)

serves as a coordinator (it is a crucial network element in 5G networks) [151]. NEF has a

global view, maintains the content cached at individual MECs and monitors users’ content

requests at each MEC [151]. Each user has different activity levels at each BS, 80% of

the total traffic generated by less than 20% of the all users. A user directly connected to a

base station and the user may be in the communication range of more than one BS at any

point in time. However, any user can communicate with only one BS at a particular time.

Mobile users are attached to the base stations according to a cellular network protocol. The

connected base stations are accountable for serving user requests. Consider a set F of F

85

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

contents in the content library located in the content server. Each content f is determined

with two features Bf indicates the content size and dlf indicates maximum allowed access

latency to get content f . The summary of notations is shown in Table 4.1.

Table 4.1: List of Notations

Term Definition
R,F ,U Set of base stations, contents and users, respectively
Si The cache capacity of MEC i
λR, λU Density of the BSs and users in PPP model
Bf The size of content f
dlf The deadline of content f
pif Local content popularity in cell i
pf Global popularity of content f
pf |u User preference of content f
ρf , ρu Total number requests for content f and all requests by user u
ρuf Number of times content f requested by user u.
P (vi) Activity probability of user at cell i
i(t), o(t), f(t) input, output and forget gates
W x,W h input and hidden state weight matrices
x(t), h(t− 1) present input and previous hidden state
bf , bi, bo bias of forget, input and output gates
di,u, di,j, di,c Delay from local MEC i, neighbour MEC j and content server
xif The content f cached in MEC i
Du The expected saved delay
C Delay to get content from the content server
ηk Set of BSs in cluster k

4.2 User Preferences Prediction and Content based Clus-

tering

In this section, user preference prediction, content-based clustering, and maximization of

saved delay optimization problem are presented in detail.

The overall process is illustrated in Fig. 4.2. Firstly, in this section, the user request

information is predicted using LSTM by taking user historical information from NEF.

Secondly, the user preferences is computed from the predicted user request information.

Thirdly, the users are clustered into logical groups using content-based clustering and a

86

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

Prediction of user preference using LSTM

Determine the

number of

clusters

Content based clustering

K-means

Clustering

Reformulate the

problem using

Submodular

optimization

Design of a greedy

caching

algorithm

Design of a caching mechanism

Content

placement

LSTM

Computation of

User Activity and

Preferences

User

preferences

number of

clusters

Logical

groups

Reformulated

problem

Users' historical

request

information

Training

 data
Losss

caclulation
Test

Data

Prediction

result

NEF

Figure 4.2: Content placement strategy based on user preference prediction and content
based clustering.

clustered cooperative cache placement problem is formulated. In section 4.3, the proposed

problem is reformulated into a submodular optimization problem by showing that the given

objective and constraints satisfy the monotone submodular property and matroid constraints

and a greedy caching algorithm has been designed to solve the content placement problem

efficiently.

User preferences

The frequency of content accessed or requested by the user is expressed as the popularity

of the content. The popularity of the content considered in a single cell is known as local

content popularity (pif) and the popularity of all cells is known as global content popularity

(pf). In general, the popularity of content is modelled with Zipf distribution. The popularity

of the content f at MEC i can be expressed as pif =
1
iγ∑F

n=1
1
nγ
, ∀i ∈ R where γ ≥ 0 is the

skewness parameter [11]. In reality, the content popularity cannot reflect the individual

user behaviour. Each user has its content preferences that may not reflect global content

popularity. The probability that user u demands a content f stated that the user u generates

a request is known as user preference pf |u of content f ∈ F (
∑F

f=1 pf |u = 1). Moreover,

pf |u = P (f |vi) where P (vi) is the probability that user u requests.

User activity level is the probability that a user forward a request for content from a

cell and denoted as vi. The number of times content f is requested by user u is denoted as

87

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

ρuf . The total number of requests for all contents by user u and total number of requests for

content f are denoted as ρu and ρf respectively. Therefore, total number of requests for all

contents over total users is denoted as
∑

u∈U
∑

f∈F ρ
u
f . The activity of user is as follows

vi =
ρu∑

u∈U
∑

f∈F ρ
u
f

(4.1)

and the user preference pf |u can be written as

pf |u =
ρuf
ρu

(4.2)

From (4.1) and (4.2) the probability that user u request for content f is computed as

puf = vipf |u (4.3)

which is P (vi)pf |u. Therefore, it can be observed from (4.3) that which content requested

by the user and active level of user need to be predicted.

4.2.1 User Preference Prediction based on LSTM

In MEC based network, the nearest edge nodes can serve user requests if the content is

well placed and reduces the burden on backhaul links. In contrast, if the content is not

appropriately placed at edge nodes affects the user experience. Therefore, user preference

prediction plays a significant role in placing appropriate content in appropriate location

to improve the effectiveness of caching. An LSTM model has been adopted to achieve a

better cache placement strategy by considering the user regularity of the request pattern.

The LSTM is extensively adopted RNN (recurrent neural network) for sequential data pro-

cessing [163] and very successful in various applications like image captioning, speech

recognition and machine translation. Hence, it is well suitable for user preference predic-

tion.

The LSTM network comprises three layers an input layer, hidden layer (memory blocks)

and an output layer to predict the user preferences. LSTM is an implementation of a clas-

sical RNN where the LSTM replaces the hidden layers with a new structure known as a

88

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

memory block [163]. The memory block includes three neural network blocks, such as an

input gate, an output gate and a forget gate, and one or more self-connected memory cells.

These gates enable the LSTM memory cell to store and access data over a long time, which

helps solve the disappearing gradient problem. The input to the LSTM cell is the user

preferences from t-1 time represented as x(t − 1) = x1(t − 1), . . . , xn(t − 1). Output of

the LSTM cell is predicted user preferences in t time denoted as x(t) = x1(t), . . . , xn(t).

Let Y indicates the output variable. The input layer prepares the given dataset to satisfy

the network input demands. The predicted values update the output layer. The BPTT al-

gorithm (back propagation through time) trains the network, optimising the loss function.

BPTT is an easier and computationally effective training mechanism. The loss function of

the LSTM depends on both the output layer and hidden layer of the next timestamp. The

loss function is defined as the squared error.

e(t) =
∑

(y(t)− p(t))2 (4.4)

where y(t) is actual values, p(t) is predicted values and e(t) denotes the error.

The user preference predictions contain the user activity and the user’s content requests

in the next time slot. First the network will be trained for the given data then prediction can

be done. In the training phase, the data of each user is supplied into the LSTM network.

Once the network is trained, the values are predicted and this indicates the number of times

a user requests content in time t. Based on the prediction result, compute the user activity

level vi and user preferences pf |u. The user activity level is calculated as

v̂i =
ρ̂u∑

u∈U
∑

f∈F ρ̂
u
f

(4.5)

The conditional probability that the user request content given that the user really makes a

request is calculated as

p̂f |u =
ρ̂uf
ρ̂u

(4.6)

89

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

Therefore, the user preference is expressed as

p̂f,u = v̂i · p̂f |u (4.7)

Placing the content at an individual time slot is not a cost-efficient solution, so the long-

term request probability has been considered. Hence, the fixed time window M ft has been

assumed. The user preference probability ψu(f) is computed as the average of the predicted

preferences between the next time slot and fixed time window.

ψu(f) =

∑M+Mft

t0=M+1 p̂f,u

M ft
(4.8)

4.2.2 Content based User Clustering

Proactively caching the content at the BSs during off peak time require efficient features

like user preferences and popularity of content to identify the frequently requested content

accurately. Most of the literature assumes that each user’s popularity is similar, whereas

this work utilizes a clustering-based mechanism. User clustering based on user preferences

allows us to evaluate the relationship between the users and design an effective caching

strategy. Unlike conventional location-based clustering mechanisms, content-based clus-

tering allows us to discover user request patterns to understand user preferences effectively.

Content popularity based clustering has been considered by grouping the correlated users

into the same group based on user popularity. The correlation is defined by the euclidean

distance among the users’ preference profiles.

4.2.2.1 Clustering Algorithm

Heterogeneous user preferences have been assumed in this work, but the user request pat-

tern may have some correlation based on social relations among the user. Thus, the content-

based clustering approach has been adopted to decrease the difference among the content

popularity distribution of users in the respective cluster. The cluster number is not known

in advance and need to be determined. In order to maintain the network to handle user re-

quest pattern modification, the system needs to determine the clusters based on user interest

90

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

Algorithm 4.1 Preference Based User Clustering Algorithm
1: Initialize Nkmin and Nkmax

2: for k = Nkmin to Nkmax do
3: Run K-means algorithm
4: Calculate Silhouette Coefficient SCK using Eq. (4.9)
5: end for
6: Choose the k value as the best Silhouette Coefficient value

changes systematically. The number of clusters is determined using the Silhouette method

[164] since the label information is unknown, so evaluation needs to be performed using

the model. The Silhouette coefficient determines the coherence among the points within

a cluster separated from other cluster points. The Silhouette coefficient (SC(j)) is com-

puted using the mean nearest-cluster distance (ncd(j)) and the mean intra-cluster distance

(icd(j)). The SC for a data point j is

SC(j) =
(ncd(j))− icd(j))
max(icd(j), ncd(j))

(4.9)

ncd(j) is the average distance between j, and all other clusters to where j do not belong and

icd(j) = 1
|Cj |−1

∑
i∈Cj ,j ̸=i d(j, i) is the average distance among all the other samples in the

cluster and j. The distance between data point j and i is denoted dj,i and computed using

the euclidean distance. SC values lie between -1 and 1 where 0 is overlapping clusters, -1

is the worst value, and 1 is the best value. The algorithm 4.1 computes the average SC for

every k chosen from [min, max] and groups the users depend on the K-means algorithm

[165]. In the K-means algorithm, group the users based on the preferences to the nearest

centroid with a minimum distance between the user preference and cluster. The maximum

SC value is obtained with the optimal K value.

4.2.3 Maximization of Saved Delay Optimization Problem

In this section, download delay is defined and further a problem formulation is done to

maximizing saved delay with capacity constraints. The delay for getting content f from

MEC i to user u is denoted as di,u. If the content demanded by the user retrieved from the

local storage of the corresponding MEC, then the delay is considered as 0. In case of the

91

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.2

content is not available at corresponding MEC i then i forwards the request to neighbouring

MECs as per the NEF direction. The delay is considered as the number of hops between

MEC j and user u (j is the neighbouring node of MEC i) and denoted as dj,u. If the content

requested by the user is unavailable within the network, then the user fetches the content

from the central server du,c and dc,u > dj,i > di,u,∀j ̸= i, j ∈ R.

Let ηk(u) is set of base stations in cluster k, and its size is denoted as | ηk(u) |. Let

k ∈ K represents the serving cluster of a user. Suppose ju represents jth nearest BS (i.e.,

jth smallest delay) index with user u. A decision variable xif represents that BS i has the

content f . The average download delay can be represented as

Du =
F∑

f=1

ψu(f)

(|η0(u)|∑
i=1

du,iux
iu
f

[i−1∏
h=1

(1− xhu
f)
]

+
∑

k′∈G\k

|ηk′ (u)|∑
j=1

diu,jux
ju
f

[|ηk′ (u)|∏
h=1

(1− xhu
f)
]

+
∑
k∈G

du,cx
c
f

[|ηk(u)|∏
h=1

(1− xhu
f)
])

(4.10)

In the above equation (4.10), it can be observed that xiuf
[∏i−1

h=1(1 − x
hu
f)
]

is the indicator

function that describes no other BS in the serving cluster with a delay lower than hu, i.e., hu

has the lower delay among all the BS in the cluster. xjuf
[∏|ηk′ (u)|

h=1 (1− xhu
f)
]

is an indicator

function that describes content f is not in the cache of the BSs in the serving cluster and it is

cached at the BS of other clusters. Moreover, the indicator function xcf
[∏|ηk(u)|

h=1 (1− xhu
f)
]

describes content f in not available with any BS in the network.

Definition 4.2.1 (Saved delay). The difference in delay from the content server and MEC

node is defined as the saved delay.

This chapter aims to find the caching mechanism that maximizes the overall saved

delay of the requested contents at each MEC subjective to cache deadline and capacity

constraints. Thus, the formulation becomes:

Max
1

U

U∑
u=1

(C −Du) (4.11)

92

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.3

s. t.
F∑

f=1

Bf · xif ≤ Si, ∀i∈R (4.12)

F∑
f=1

xif ≤ 1, ∀i∈R (4.13)

Du ≤ dlf , ∀f∈F ,∀i∈R (4.14)

xif ∈ {0, 1}, ∀f∈F ,i∈R (4.15)

The objective (4.11) is the total saved delay of the overall network. Constraint (4.13)

guarantees that the MEC node is not allowed to cache duplicate content. Constraints (4.12)

provides the finite capacity of each BS. Constraints (4.14) is the deadline constraint, which

ensures that the maximum allowable delay for the response to a request. Thus, the BS can

satisfy the users’ QoS requirements. Finally, constraint (4.15) is the non-negativity and

integrality of the decision variables.

The cooperative cache placement problem as shown in Eq. (4.11) is proved as NP-hard

[24, 11]. Considering the combinatorial nature of the problem in Eq. (4.11), the optimal so-

lution for the problem typically arrives with exponential computational complexity. Due to

the exponential complexity, it is impractical to implement. Hence, a sub-optimal solution

with low computational complexity needs to be designed for practical systems to imple-

ment efficiently. Therefore, the problem has been formulated as a submodular optimization

problem that enables a way to apply a greedy approach for placement, which produces a 1
2

approximation in the worst case [166]. The proposed problem Eq. (4.11) is reformulated

into the sub-modular optimization problem, and then a greedy approximation algorithm

has been designed in the next section.

4.3 User Preference based Content Placement Mechanism

using Sub-modular Optimization

In this section, a sub-optimal solution based on submodular optimization [166] has been

designed to solve the problem Eq. (4.11). The original problem presented in Eq. (4.11) is

93

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.3

reformulated into maximizing the monotone submodular function over matroid constraints,

and a greedy algorithm is designed. First, the essential background knowledge like proper-

ties and definitions of submodular optimization have been presented.

Definition 4.3.1 (Submodular function). Consider a finite ground set N and a real-valued

function g : 2N → R+. If the following properties are satisfied, then the function g is said

to be submodular.

1. g(A) + g(B) ≥ g(A ∪B) + g(A ∩B), for all A,B ⊆ N .

2. g(A) ≤ g(B), for all A ⊆ B ⊆ N.

The submodular function g is monotone submodular function if it satisfies the following

properties. Suppose gB(j) = g(B + {j})− g(B) where gB(j) denotes the marginal value

of an element j ∈ N concerning a subset B ⊆ N .

gA(j) ≥ gB(j) ≥ 0, for all A⊆B⊆N and j∈N−B. (4.16)

The intuitive explanation of the monotone submodular function is that the gain of

adding a new element decreases when the set becomes large.

Definition 4.3.2 (Matroid). Suppose N is a finite ground set andM ⊆ 2N is a collection

of subsets of N and then a pair {N, I} is called a matroid if it satisfies the following

properties:

1. ϕ ∈ I, i.e., I is nonempty.

2. If B ∈ I and A ⊆ B then A ∈ I.(downward closed)

3. If A,B ∈ I and |A| ≤ |B|, then ∃ j ∈ B − A such that A ∪ {j} ∈ I.

Matroids induce the notion of linear independence observed in linear algebra to general

sets. The sets defined earlier are termed independent.

The ground set N is denoted as N = {yif | f ∈ F , i ∈ R} and Y ⊆ N is the

cache placement scheme. yif ⊆ Y denotes that content f is cached at MEC i. Suppose

94

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.3

N i = {yif |f = 1, 2, . . . , F} represents that overall configuration of content f is cached at

MEC i. The relationship between cache placement Y and xi is

xif = |Y ∩N i| (4.17)

The following is a lemma.

Lemma 4.3.0.1. The objective function in Eq. (4.11) is a monotone submodular function.

Proof. The monotonicity of the objective functions is clear because any new placement of a

file cannot decrease the objective function value. A new file f ∈ N \A, supposeA∪yif . It is

simple to demonstrate that g(A∪yif) > g(A). Therefore, g(A∪yif) is a monotonic function

A ⊆ N . Suppose B ⊆ N is another placement scheme and since g is a monotonic function

we have Eq. (4.16). Because the sum of submodular functions is submodular, it is sufficient

to establish that the set function g(A) = C − Du is submodular for a user u to verify the

specified goal functions submodularity. The marginal benefit gained by adding a content f

to a randomly chosen MEC node reduces while the placement set A grows big. The gain

obtained by including content to the placement set A increases the objective function g(A).

The submodularity of function g can be proved by satisfying the following condition Eq.

(4.16). Suppose two sets A and B are content placement sets where A ⊂ B ⊂ N . Suppose

adding an element yif ∈ N \B to the placement sets A and B for some i ∈| ηk(u) |. When

new content is added to the MEC node, it is not placed in either placement A or B. The

following scenarios exist, depending on the cached content and the size of the MECs.

1. As per placement B, user u receives content f from MEC j with j < i, i.e., yjf ∈ B.

From this it can be perceived that gu(B∪yif)−gu(B) = 0, i.e., there exist any MEC j

with less delay than the MEC i, hence the marginal gain of including i to the content

placement B is zero. As per the placement A, user u receives the content f form

MEC k with k ≥ j. If k < i meaning that there exist a MEC k in the placement

of A with less delay than i, so adding i to placement A gives marginal benefit zero.

However, if k > i the marginal gain is gu(A∪yif)−gu(A) = ψu(f)(du,ku−du,iu) > 0.

2. As per placementB, user u receives content f form MEC j with j > i. Therefore, the

95

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.3

marginal gain is gu(B∪yif)−gu(B) = ψu(f)(du,ju−du,iu). Since the user u receives

the content from k with k ≥ j in the content placement A, the marginal value is

gu(A∪yif)−gu(A) = ψu(f)(du,ku−du,iu) > 0. The difference between the marginal

gains is (gu(A ∪ yif)− gu(A))− (gu(B ∪ yif)− gu(B)) = ψu(f)(du,ku − du,ju) ≥ 0.

It can be seen that the difference between these two situations is always bigger than

zero, indicating that gu is a monotone submodular function in N .

Hence, the monotone submodularity of Eq. (4.11) is proved.

Lemma 4.3.0.2. Let N i, where i ∈ R represents the set of contents that may be cached at

MEC i, which is N i = {yif |f ∈ F}. Then, (4.12), (4.13) and (4.14) can be rewritten as

A ∈ I, where

I = {A ⊆ N
∣∣|A ∩N i| ≤ Si, |A ∩N i| ≤ 1} (4.18)

which is a matroid constraint.

Proof. The pair {N, I} be a member of partition matroid, which is typical matroid [166].

The submodularity of the objective function with a matroid constraint can be decided

from the above proofs.

4.3.1 Greedy algorithm for user preference prediction based coopera-

tive content caching

The greedy approach gives an efficient solution with an approximation of 1
2

to solve the

maximization of monotonically submodular function with matroid constrain problems [166].

First, the greedy approach commences with an empty set of cache placement Y. Later, for

each element, the marginal gain is calculated, and the element with a maximum marginal

gain while fulfilling the matroid constraint is added to Y. The algorithm adds the elements

till there are no more elements to be added or the MECs cache is full. Depending on the

results from the lemma 2, it can be shown that the objective function is submodular. Thus,

the marginal gain reduces as adding additional content to Y. The algorithm continues to

add elements and stops when the marginal gain turns out to be zero.

96

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

Algorithm 4.2 User Preference Prediction based Greedy Cooperative Content Placement
Algorithm

1: Initialize A = ∅ ; /*i.e., xi
f = 0 ∀i ∈ R and f ∈ F */

2: Nr = Set of all elements that may be added to A; /*i.e., Nr = N assigning the ground set */

3: repeat
4: yi∗f∗ = argmaxyif∈Nr

[gu(A ∪ {yif})− gu(A)] ;
5: A = A ∪ {yr∗f∗}; /*i.e., xi

f = 1 */

6: Nr = Nr − {yr∗f∗};
7: xi

∗

f∗ = 1
8: if j∗ is full then /*i.e., |A ∩N i| == Si */

9: Remove all the elements of N i from Nr;
10: end if
11: until |A| >

∑
i∈R Si

12: return xif = {A ∩N i | i ∈ R, f ∈ F};

The greedy algorithm is shown in Algorithm 4.2, where Nr represents the remaining

set, consists of the elements included to X . Line 4 shows the highest marginal gain com-

putation. Adding an element yr∗f∗ to the placement A is shown in line 5. The inclusion of

an element yr∗f∗ to A should be removed from Nr. If the MEC i is full and no vacancy to

store, then the corresponding content of the MEC i should be removed from the remaining

set Nr shown in lines 8 - 10. Further, following the inclusion of an element yr∗f∗ to A, based

on Eq. (4.16), the marginal gain needs be updated.

4.4 Performance Evaluation

In this section, the proposed clustered cooperative caching mechanism has been validated

using simulations. The real-world Lastfm 1K Dataset [38] has been used in the simu-

lations to investigate the user behaviour of requesting content. A song dataset has been

chosen to show the individual user request frequency for each content since songs may

be accessed multiple times. The Lastfm-1k dataset has been considered, consisting of

19,098,852 records such as user ID, timestamp, artist ID, artist name, track ID and track

name, comprising 107,295 artists and 1K users [38]. The top 500 popular content re-

quested by users and the 100 most active users have been considered to analyze the user

request statistics (that account for 90% of the requests are the Lastfm dataset).

97

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

(a) (b)

Figure 4.3: (a) Comparison of content popularity vs content rank (b) Comparison of user
activity level vs user activity rank of Lastfm dataset

Fig. 4.3a shows that the content popularity of Lastfm dataset can be fitted by Zipf

distribution with pif = f−α/
∑F

n=1 n
−α the skewness parameter α = 1.4. Similarly the

activity level of the users is shown in Fig. 4.3b. Activity level of the users can be fitted

by Zipf distribution with α = 0.8 for the Lastfm dataset as shown in Fig. 4.3b. The

user preferences specify the number of requests for content. The top 100 users have been

considered with their demands for content. The user preferences can be fitted by Zipf

distribution. In Fig. 4.4a, the comparison of three users with their preferences has been

shown.

4.4.1 Simulation Environment

In order to evaluate the performance of the proposed caching algorithm, the experiments

have been executed based on the following settings. A square region with an area of 500m×

500m is considered. The Poisson point process (PPP) has been considered for base stations

in the given simulation area. The users are distributed within each base station coverage

based on PPP shown in Fig. 4.4b. Five hundred contents with size determined uniformly at

random from the range of 10 MB to 100 MB, 15 BSs, and 90 users have been considered.

Each content has a deadline picked randomly from [10 to 30ms]. Each MEC can cache

10% of the total files. The latency to fetch content from the base station to the user is

98

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

(a) (b)

Figure 4.4: (a) Comparison of three user preferences (1st, 25th and 50th active users with
user ids 949, 685 and 882 respectively) (b) Voronoi cell diagram with size 500m × 500m
where blue circle indicates the BSs and red triangles are mobile users.

specified using uniform distribution ranges from [5 to 25ms]. The latency to fetch content

from the content server to BS is taken as the 80ms. The clusters are determined by the

predicted user preferences. The number of clusters is determined using Algorithm 4.1. The

simulations results presented are an average of 100 runs. The simulation parameters are

shown in Table 4.2.

Figure 4.5: Predicted value for user 945 and Content 54

The LSTM model is used to predict the user preferences using the user activity level.

The preferences predicted by the LSTM model for content 54 by user 945 are shown in

Fig. 4.5. Once the model predicts the user preferences, k-means clustering (Algorithm

2) has been performed on the predicted user preferences. Then by utilizing the predicted

99

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

Table 4.2: Simulation Parameters

Parameters Values
Simulation area 500/m× 500/m
BS 15
Users 90
Contents 500
Content size (10, 100] MB
Deadline of Contents (10, 30]ms
Latency from BS to user [5,25]ms
Latency between BSs 20ms
Latency from content server to the BS 80ms

user preferences, clustering, the content has been cached at each cluster using the proposed

algorithm.

4.4.2 Performance Metrics

To compare the performance of cache placement schemes, the following metrics have been

considered:

1. Cache Hit Ratio: The fraction of requests served over the total requests.

2. Acceleration ratio: The fraction of saved delay and overall delay (from the content

server).

3. Cache Utilization: The amount of content cached in BS that the users accessed, i.e.,

utilization of content cached by the base station.

4. Local Hit: The fraction of requests served within the cluster.

5. Neighbouring Hit: The fraction of requests served within the network and not within

the cluster.

4.4.3 Reference Algorithms

In this section, the proposed algorithm has been compared with the following caching algo-

rithms to show the superiority of the proposed mechanism: Globally most popular caching

(GMPC) [60], Locally most popular caching (LMPC) [52], Femtocaching (FC) [24], Coop-

erative prediction caching (CPC) [167] and Clustered cooperative caching (CL-CC) [18].

100

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

(a) (b)

(c)

Figure 4.6: Comparison of caching schemes using cache capacity vs (a) Cache Hit Ratio
(b) Acceleration Ratio (c) Local and Neighbour cluster Cache Hit Ratio.

The first two caching mechanisms cache the content without cooperation, whereas other al-

gorithms cooperatively cache the content at MEC till the cache is full. In the fifth caching

mechanism, clustering is considered, whereas the fourth algorithm employs popularity pre-

diction in caching decisions.

4.4.4 Impact of Cache Size

The impact of cache size on hit ratio and acceleration ratio is shown in Fig. 4.6. In this

simulation, the number of MECs is 15, MEC density is 0.8, user activity level is 0.4, user

preference similarity is 0.2, the number of clusters is three and the cache size varies from

101

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

4% to 14% total library size.

The effect of cache size on the cache hit rate is shown in Fig. 4.6a. The curves indicate

an upward trend as the cache size grows. The cooperative caching schemes are showing

superiority over non-cooperative caching schemes. It can also notice that LMPC-CC is

shown to maintain a higher hit rate compared to FC. The reason is that even though both

mechanisms follow a cooperative scheme, LMPC-CC caches content based on local popu-

larity, which enables caching user preferences. It can be seen that CPC is performing better

than FC and LMPC-CC due to the content popularity prediction. The proposed mechanism

outperforms the other algorithms since it utilizes the user preference prediction to cache

the more appropriate content at MECs.

The effect of cache size on the acceleration ratio is presented in Fig. 4.6b. The curves

indicate an upward trend as the cache capacity increases. The cooperative caching schemes

FC, LMPC-CC, CPC, and UPP-CL-CC, show superiority over non-cooperative caching

schemes LMPC-NC and GMPC. It can be observed that LMPC-NC is shown to maintain

a higher acceleration ratio than GMPC due to its local popularity. The proposed algorithm

performs well compared to other algorithms because the proposed mechanism caches the

predicted user preferences that permit content accessible to users with a minimal delay

compared to other mechanisms. In the FC and CPC, the content is cached farther to the

requested users. Even though FC and LMPC-CC mechanisms follow a cooperative scheme,

LMPC shows superiority because of the local popularity.

The effect of the cache size on the local and neighbouring cluster cache hit is shown in

Fig. 4.6c. The hit ratio between the clustering-based algorithms have been compared con-

cerning cache hit rate within-cluster and outside the cluster (within the network). LMPC-

CL is a clustered LMPC mechanism, WC denotes cache hit within the cluster, and OC

denotes cache hit outside the cluster. The proposed UPP-CL-CC-WC mechanism is show-

ing superiority over the other mechanisms. In the proposed mechanism, the content caches

based on the predicted user preferences allow the users to access the preferred content

within the cluster. It can also notice that the LMPC-CL mechanism has a higher hit rate

from outside clusters than the other schemes. LMPC-CL caches local popular content at

each cluster, which may differ from user preferences, leading to a lower hit rate within the

102

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

(a) (b)

Figure 4.7: Comparison of caching schemes using MEC density vs Hit ratio.

cluster and a higher hit rate outside the cluster. The CL-CC caches content based on global

popularity, so all the clusters have the same set of contents, leading to a higher cache hit

ratio outside the cluster. It is worth noting that the UPP-CL-CC mechanism has a higher hit

ratio within the cluster and a lower hit ratio outside the cluster compared to other schemes.

4.4.5 Impact of number of MECs

The impact of the cache hit ratio on MEC density has been shown in Fig. 4.7. In these sim-

ulations, user activity level is 0.4, user preference similarity is 0.2, the number of clusters

is three, the cache size varies is 10% total library size and MEC density varies from 0.5 to

1.0.

In Fig. 4.7a, the impact of the cache hit ratio is presented. The curves denoted an

upward trend as the MEC density increases. It can be observed that the cooperative mech-

anism performs well compared to the non-cooperative mechanism because, in traditional

non-cooperative mechanisms, all MECs caches the same content without cooperation. It

can be seen that the CPC shows superiority over LMPC-CC and FC because CPC caches

the content based on the popularity prediction. Both FC and LMPC-CC use cooperation

among the MEC FC to perform better due to the greedy policy. The proposed mechanism

shows superiority over other mechanisms since it uses the activity levels of users and pre-

103

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

dicted user preferences.

Fig. 4.7b shows the effect of cache size on cache hit rate for different MEC densi-

ties. Fig. 4.7b shows the comparison between the global content popularity based scheme

(CPC), where the same content popularity is assumed between all users and the content

preference predicted based scheme (UPP-CL-CC). It can be observed that the proposed

prediction-based clustering mechanism shows superiority over non-clustered globally pop-

ular mechanisms. The proposed mechanism with the MEC density of 0.8 MEC/m2, shows

an increase of 20.7% in hit ratio. As the MEC density rises, the cache size of all MECs also

increases allows to cache more appropriate content at MECs. Thus, the average delay in

fetching the content is reduced by using user clustering. The curves show an upward trend

with the growth in cache size. The benefit in hit ratio with MEC density of 1.3 MEC/m2,

shows an increase of 21.2%.

4.4.6 Impact of user preference similarity

The impact of user preference similarity on cache hit ratio and acceleration ratio have been

shown in Fig. 4.8. In this simulations, the number of MECs is 15, MEC density is 0.8,

user activity level is 0.4, the number of clusters is three, the cache capacity is 10% total

library size and user preference similarity is [0.0, 1.0] (0.0 is homogeneous and 1.0 is

heterogeneous preferences).

In Fig. 4.8a, the effect of the user preference similarity on the hit ratio has been shown.

The user preference heterogeneity does not affect the hit ratio for global popularity mech-

anisms (i.e., GMPC, FC, and CPC). Instead, the preference-based mechanisms show supe-

riority over the global popularity mechanisms because, in the preference base mechanisms,

the heterogeneity of user preferences allows the mechanisms to cache the appropriate con-

tent, leading to a higher cache hit ratio. The preference-based mechanisms show an upward

trend as the user preference similarity increases. Furthermore, it can notice that when user

preference similarity (heterogeneous content) is more, the proposed mechanism has better

performance than other preference-based mechanisms (i.e., LMPC-CC and LMPC-NC).

The effect of user preference similarity on cache utility is shown in Fig. 4.8b. It can

104

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

(a) (b)

(c)

Figure 4.8: Comparison of caching schemes using user preference similarity vs (a) Cache
Hit Ratio (b) Cache Utilization (c) Local and Neighbour cluster Cache Hit Ratio.

be seen that the preference-based mechanisms have better performance than the global

popularity based mechanism. As the heterogeneity of user preferences increases, global

popularity has more deviation, whereas the local popularity and predicted mechanism has

the user preferred content within the cluster. Further, it can notice that CL-CC has good

performance when the preference similarity is low and nearly flatten when the similarity

increases.

In Fig. 4.8c, the effect of the user preference similarity on the local and neighbour-

ing cluster cache hit is shown. The clustering-based algorithms concerning cache hit rate

within-cluster and outside the cluster (within the network) has been compared. LMPC-CL

105

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

is a clustered LMPC mechanism, WC denotes cache hit within the cluster, and OC denotes

cache hit outside the cluster. The proposed mechanism (i.e., UPP-CL-CC) has a higher

cache hit ratio within the cluster because of predicting the user preferences and caching the

appropriate at each MEC in the cluster. The CL-CC has the lowest among the clustered

caching mechanisms since caching the content based on global content popularity differs

from the user’s preferred content. Further, it can be noticed that the proposed mechanism

has the lowest hit rate in the outside cluster because most of the user demands are satisfied

by the MECs within the cluster. It can be observed that both the user preference based

caching mechanisms have a higher hit rate when the user preference similarity is low and

increases as the heterogeneity increases. CL-CC-WC has a lower hit rate when the prefer-

ence similarity is less and grows as the similarity rises. The reason is that MECs in CL-CC

cache the globally popular content that may not satisfy the user preferences.

4.4.7 Impact of User activity level skewness

(a) (b)

Figure 4.9: Comparison of caching schemes using User activity level skewness vs (a) Cache
Hit Ratio (b) Acceleration Ratio.

The impact of user activity level skewness on acceleration ratio cache hit ratio has been

shown in Fig. 4.9. In this simulation, the number of MECs is 15, MEC density is 0.8,

user preference similarity is 0.2, the number of clusters is three, the cache size is 10% total

library size and user activity level varies from 0 to 1 with step size 0.2.

106

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

The effect of the cache hit ratio with different user activity levels has been shown in

Fig. 4.9a. It can see that all the curves indicate an upward trend as the user activity level

skewness increases. The reason is that the more skewed user activity level means the users

are more actively requesting content. Since the users are highly active, the caching mecha-

nisms can cache those active users’ preferences, leading to an increase in the average rate of

these active users. The proposed mechanism is shown superiority over other mechanisms

since it considers users’ preference similarity and activity level.

In Fig. 4.9b, the impact of user activity level on acceleration ratio is presented. The

highly skewed user activity level allows the caching mechanisms to cache highly active user

preferences. Thus the saved delay is increased as the user activity level increases. It can be

seen that the FC is performing almost the same as CPC. LMPC-CC performs well as the

activity level increases compared to FC and CPC because of the local content popularity,

which captures the user preferences.

4.4.8 Impact of Zipf parameter

(a) (b)

Figure 4.10: Comparison of caching schemes using Zipf shape parameter vs (a) Cache Hit
Ratio (b) Acceleration Ratio.

The impact of content popularity on acceleration ratio and cache hit ratio over the differ-

ent caching mechanisms is shown in Fig. 4.10a and 4.10b. It can be seen that the increase

in the performance of the proposed mechanism as the Zipf shape parameter α increases.

107

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

The proposed caching mechanism always outperforms other caching mechanisms, and as

the α increases (means content requests are more concentrated), the gap between the pro-

posed and other algorithm decreases.

4.4.9 Impact of Number of clusters

(a) (b)

(c)

Figure 4.11: Comparison of caching schemes using Number of clusters vs (a) Cache Hit
Ratio (b) Acceleration Ratio (c) Cache Utilization.

The impact of the number of clusters on cache hit ratio, acceleration ratio, and cache

utilization has been shown in Fig. 4.11. In this simulation, the number of MECs is 15,

MEC density is 0.8, user preference similarity is 0.2, the cache size is 10% total library

108

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.4

size, user activity level varies is 0.4, and the number of clusters varies from 1 to 6 with step

size 1.

Fig. 4.11a shows the effect of the number of clusters on the cache hit rate. It can be

seen that the number of clusters has no effect on the cache hit rate of the non-clustered

mechanisms like GMPC, LMPC-NC, FC and CPC. The non-clustered cooperative caching

mechanisms FC and CPC are constant and better than CL-CC and UPP-CL-CC. The reason

is that the non-clustered mechanisms cooperatively cache the content at MECs, whereas the

clustered mechanisms cache the redundant content among different clusters. It can be seen

that the proposed mechanism starts decreasing as the number of clusters increasing and re-

mains constant, whereas the CL-CC (cluster only) declines as the number of clusters rises.

Since the cluster-only mechanism caches globally popular content redundantly among the

clusters, the proposed mechanism caches the predicted user preferences in different clus-

ters, leading to more hit rates than CL-CC. However, the proposed mechanism loses the hit

rate of 8% compared to CPC and FC.

In Fig. 4.11b, the impact of the number of clusters on the acceleration ratio is presented.

Three clustering mechanisms has been considered, namely CL-CC (clustered cooperative

caching with global popularity), LMPC-CL (clustered cooperative caching with local pop-

ularity) and UPP-CL-CC (user preference predicted clustered cooperative). It can be seen

that the acceleration ratio increase till it reaches an optimal number of clusters and also

notices a downward trend as the number of clusters rises after the optimal cluster size. It

can be observed from fig. 4.11b, with cluster size one, the acceleration ratio is low because

with one cluster, MEC density is more (i.e., more number of MECs present in each cluster),

thus fetching content from long distance MECs leads to more delay. As the number of clus-

ters increases, redundant content is cached among the clusters, leading to less diversity of

content. It can be observed that the LMPC-CL performs well compared to CL-CC because

LMPC-CL caches the content based on local popularity, whereas CL-CC caches based on

global popularity. Thus the LMPC-CL allows the clusters to cache relatively user-preferred

content. The proposed mechanism outperforms the other mechanisms since it caches the

predicted user preferences leading to cache appropriate content that reduces the likelihood

of obtaining content from the content server.

109

CHAPTER 4. USER PREFERENCE PREDICTION BASED CACHE PLACEMENT FOR MOBILE EDGE NETWORKS WITH ADAPTIVE USER CLUSTERING Section 4.5

The effect on cache utilization with a varying number of clusters has been shown in

Fig. 4.11c. The cache storage utilization of the proposed mechanism shows superiority

over the other two mechanisms. The reason is that each MEC in each cluster caches the

user preferred content leads to higher utilization of cache storage. CL-CC has less cache

utilization than LMPC-CL because it caches the same redundant content among the clusters

based on global popularity, differing from the user-preferred content. Even though the

proposed mechanism loses hit ratio, it can be noticed that it achieves a better acceleration

ratio and cache utilization from the above results.

4.5 Summary

In this chapter, a clustered cooperative cache placement has been analyzed in large-scale

mobile edge networks, aiming to maximize the saved delay by considering the heterogene-

ity of user preferences, activity level, and uneven user distribution. The LSTM model has

been considered to capture the dynamics of user activity and preferences. Content-based

clustering is used to group the MECs using K-means clustering and an efficient greedy

approach has been proposed to solve the cache placement problem. Simulation results il-

lustrate the relation between user preferences and local and global content popularity. It

has been observed that there is a significant performance gain in mobile edge network for

cache placement decision by exploiting the individual user behavior with the realistic set-

ting, such as higher user preference similarity, skewed user activity level distribution, and

unevenly distributed users. Simulation results show that the proposed content placement

mechanism improves up to 18, 21, and 23 percent on cache utilization, acceleration ratio,

and hit ratio over existing algorithms. The next chapter presents a contact duration-aware

cooperative cache placement strategy using a genetic algorithm by considering the user’s

mobility.

110

Chapter 5

Contact Duration-Aware Cooperative

Cache Placement with User Mobility

Across MECs using Genetic Algorithm

for Mobile Edge Networks

Most of the existing works [11, 60, 24] focus on caching content cooperatively at BS for

static networks. This assumption made by the existing works [11, 60, 24] is unrealistic in a

dense network. This chapter considers the cache placement problem in a realistic scenario

where the users with different speeds intermittently connect to the BSs at irregular intervals.

The users will frequently move between BSs and can download only parts of the requested

content from different encountered BSs along the moving path. If the user fails to download

the complete content from encountered BSs, then the requested content is downloaded from

a macro base station (MBS), this in turn increases the overall delay and affects the QoS.

Consider an example; customers move around a shopping mall with three BSs. If a user

wishes to download content, then the content should be replicated in all BSs. Replicating

the same content parts (segments) at three BSs is a wastage of resources, so disjoint content

parts should be cached at the BSs. Hence, the caching mechanism should consider the

user mobility pattern. Although [21, 22] assuming the user mobility, the randomness of

111

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.0

contact duration is not considered in content placement decision. According to [23], data

transmission is associated with contact duration (sojourn time). If the contact duration is

short, the user moves at high speed and if the contact duration is long, it means the user

moves at low speed. Thus, contact duration randomness caused by user mobility affects

the transmission of data and this in turn affects the content placement. Therefore, this

work aims to design caching methods by considering content popularity, the randomness

of contact duration (speed of the user) and user mobility along with content popularity and

resource limitation.

This chapter presents a content placement mechanism for dynamic networks where the

moving users intermittently connect to the BSs at irregular intervals of time. User mobil-

ity is modeled as a Markov renewal process to predict contact duration and user moving

paths. Then the contact duration aware content placement is designed by formulating the

maximum saved delay problem. For the contact duration aware content placement prob-

lem, a submodular function with matroid constraints can maximise saved download delay.

Further, a heuristic search mechanism has been designed based on a genetic algorithm to

efficiently obtain content placement solutions for large scale problems (the scenarios that

scale to large video library sizes).

The contributions of this chapter are as follows:

• Formulation of a mixed integer non linear programming problem for contact duration

aware content placement problem: maximization of saved download delay subject

to constraints, namely cache capacity and popularity of the content in mobile edge

networks.

• Modeling user mobility as a Markov renewal process to predict the user moving paths

and contact duration.

• Design of a greedy algorithm by adopting submodular optimization to solve the prob-

lem and development of a heuristic search mechanism based on a genetic algorithm

to solve the content placement problem for large scale problems efficiently.

• Extensive simulations have been performed to show the efficacy of proposed algo-

112

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

rithms with different parameters, including cache hit ratio and acceleration ratio us-

ing real-world data sets.

The rest of the chapter is organized as follows. In Section 5.1, system model, motivation

and formulation of the contact duration aware content placement problem are presented.

A greedy approximation algorithm for the proposed problem is presented in Section 5.2.

Then, a genetic algorithm-based heuristic caching algorithm is presented in Section 5.3.

Simulation environment and results are presented in Section 5.4. A summary of this chapter

is mentioned in Section 5.5.

5.1 MEC System Model and Problem Formulation

In this section, the network model, mobility model, content request model along with mo-

tivation and problem formulation are presented in detail.

1

2

SJ3

4
Sk

1 2
3

4
Si

BSi

BSk BSj

MBS

U1

U1

U2

U2

U2

Content

Server

1 2

3 4

f1
f2

f3 f4 fn

MEC
MEC

MEC

Core Network

NEF

Coverage

area of BSi

U
se

r
m

o
ve

m
e
n
t

Coverage

area of MBS

Cached

content at

BSi

Request

served by

the BSk

Macro-cell

Backhaul

Backhaul

Figure 5.1: Illustration of the proposed system model.

5.1.1 Network Model

Mobile edge computing improves users’ capabilities by providing cache capacity (i.e., stor-

age), network resources and computing power near to users. Consider a mobile edge net-

work containing a macro base station, a setR of R small base stations (BS) equipped with

113

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

MEC server, a set U of U mobile users, a content server and a central coordinator NEF

as shown in Fig 5.1. Each MEC r ∈ R has a limited cache Sr called local storage and

transmission capacity β (bandwidth). The storage of each MEC is used for content caching

and βr represents the amount of data transmitted between MEC r and a mobile user u at a

time slot. There is a set of locations (such as an educational hub, commercial area, sports

city, financial district and housing) in the macro cellular area. The MECs are connected and

also to the core network through backhaul links. The content server acts as an origin server

that stores all contents. Network Exposure Function (NEF) serves as a coordinator (it is a

crucial network element in 5G networks) [79, 151]. NEF maintains the indexes of the con-

tent cached at individual MECs and monitors users’ content requests at each MEC [151].

A user is directly connected to the base station, and the user may be in the communication

range of more than one BS at any point in time. However, any user can communicate with

only one BS at a particular time. Users may move across different base stations, so in a

different time, the user connects with different BSs.

5.1.2 Mobility Model

The requested content is transmitted successfully between the mobile user and BS when

the user is in communication range of BS. Time split into segments and each time slot

is denoted by T . The user moves from one BS to another in a time slot T , leading to

user content requests uncertainty. The mobility of user u is modeled as Markov renewal

process [84, 168] {(Xv, Tv) : v ≥ 0} to predict the user moving path and MEC contact

duration (sojourn time), where Xv ∈ R is vth transition state and Tv is the vth transitions

time instant. The base station sojourn time is defined as the time period a user served by a

specified BS, which influence the amount of data obtained from the BS. The sojourn time

is denoted as δru. The sojourn time is estimated using the user moving statistics. Pu is the

transition probability of Markov chain for user u. The distribution of time that the semi

Markov process of user u spend at BS r before making a transition is denoted as Hr
u.

114

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

5.1.3 Content Request Model

Consider a set F of F contents of length B bits in the content library located in content

server. Assume the demand for content is known already and content f is requested with

pf probability. Given limited contact duration, complete content cannot be transmitted.

The simple content fragmentation may considerably decrease data access efficiency [169].

To improve the cache efficiency and reduce the redundant storage of content at BS, the

Maximum Distance Separable (MDS) code is adopted [169, 170, 86]. In MEC server local

storage, the encoded segments of the contents are cached instead of original content. The

content splits into multiple encoded segments. The number of encoded segments (of each

content) that need to be cached at each MEC needs to be determined. User has to collect at

least B bits to get the original content.

Mobile users are attached to the base stations according to a cellular network protocol.

The connected base stations are accountable for serving user requests. Upon receiving a re-

quest from a user, the connected MEC server checks its local storage for the content. If the

requested content exists in the local storage, then the MEC serves the request immediately.

This improves the user QoE by reducing the download delay. Moreover, no extra burden is

added on backhaul links reducing network traffic. Otherwise, the content is fetched from

the MBS. If the user moves from one BS to others, the user continues downloading content

from the corresponding BS.

5.1.4 Motivation

To show the need for the contact duration aware content placement using user mobility,

consider the scenario depicted in Fig. 5.2a, 5.2b with a user U1, a file f and three MEC

servers with limited cache capacity.

In a system without mobility, the requested content is served by the corresponding BS.

In real-world, the user moves across different locations. Due to mobility, user pass through

different MECs and this affects the optimal content placement. User cannot be served

by only one base station because of movement. Different MECs serve the content to the

user based on the contact. To serve the user request the same content need to be stored

115

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

1 2
3

4

BS1
BS3 BS2

U1

U1

Cached

content at

BS1

Request

served by

the BS1

Coverage

area of BS1

S1

L
o
w

 u
s
e
r

m
o
v
e
m

e
n
tS2S3

(a)

BS3 BS2

12
3

4

BS1

U1

Cached

content at

BS1

Coverage

area of BS1

S1

S2

U1

U1

U1

S3
H

ig
h
 u

s
e
r

m
o
v
e
m

e
n
t

(b)

Figure 5.2: Illustration of user mobility speed (a) Low mobility movement (b) High mobil-
ity movement.

in different MECs, leads to inefficient use of MEC storage. Therefore, to utilize the MEC

storage efficiently code the content and store the encoded content instead of raw content.

Each content divided into different segments. Then, the encoded segments need to place at

different MECs based on the user trajectory. However, if the contact duration is taken into

consideration, then the optimal content placement changes. The number of contacts with

multiple MECs will be very small if the user moves slowly where as the contact duration

with the connected MEC will be larger. Consider Fig. 5.2a, user U1 requests a content

f of four segments. The user gets four segments from S1. In this case, the codes are

cached at MEC1. In Fig. 5.2b, user U1 requests a content f with four segments. The

user moves with high speed this time. Therefore, the user obtains only one segment from

MEC1, two segments from MEC2 and one segment from MEC3. In the second scenario,

the user obtains the content from three different MECs due to high movement. Therefore,

placing the content at different MECs becomes difficult because the three MECs provide

116

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

the requested encoded segments based on the user moving rate. Hence, the last two cases

indicate the importance of contact duration and user mobility in cache placement schemes.

5.1.5 Static and mobility aware caching scenarios

S2
S1

S3

1

1

2

2

2

2

2

2
2

2

2

1

1 1

1

(a)

S2
S1

S3

1

1

2

2

2

2

2

2
2

2

2

1

1 1

1

(b)

File 1

File 2

Segments of

File 1 and

File 2

Sj

MEC Server

Base Station j

User requesting

File k

S2
S1

S3

1

1

2

2

2

2

2

2
2

2

2

1

1 1

1

k

User movement

(c)

Figure 5.3: Illustration of caching scenarios for static and mobility cases (a) Static / MAUC
(case 1) (b) MAUC (case 2) and (c) MACC scenarios.

The most popular content (MPC) mechanism is a heuristic caching mechanism that

caches the content based only on global popularity distribution irrespective of user mobil-

ity [60]. A globally more popular content may not be popular among the users associated

with a specific BS. The variety (different types) of content is not cached in BSs at different

locations as each BS caches the globally popular content [21, 22, 34]. The proposed mech-

anism considers user demand, the information of user mobility pattern and places MDS

(maximum distance separable) encoded content segments at the BSs instead of the entire

content. The proposed mechanism makes informed caching decisions by considering user

mobility. In the worst case (all the users move across the BSs), the proposed mechanism

117

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

caches multiple encoded segments of the same content at all BSs, which differs from MPC.

The MPC caches the complete content, whereas the proposed mechanism caches the MDS

encoded content allows the BSs to cache different types of coded content.

To illustrate the efficacy of the proposed mechanism over MPC, consider an example

shown in Fig. 5.3. Users move around a shopping mall with three BSs and each BS is

provided with unit-sized storage. Within a deadline of 2-time slots, mobile user contacts

(users come into the coverage of BS) uniformly at random two base stations while moving.

During the contact time, at the most, half of the data file can be transmitted. There exist

four files (F1, F2, F3, F4) of size one unit each. Assume that the users, as indicated in Fig.

5.3, request content K from the corresponding BS (in Fig. 5.3 the user with k represents

user requesting kth content, i.e., a user with 1 requesting F1). Consider the content request

pattern {F1, F2, F2, F1, F2} at each BS is identical unless specified. The proposed mech-

anism’s efficacy over MPC is demonstrated using two metrics (Network overhead and Hit

rate). Table 5.1 shows a summary of the findings. Network overhead is defined as the total

transmission cost (in terms of hops and assumes the unit cost is 1 per hop) of all requested

content. The hit rate is expressed as the hit percentage of all the user requests on the BSs.

In this example, consider three cases to show the efficacy of the proposed mechanism over

MPC, as shown in Fig. 5.3.

Table 5.1: Hit ratio and network overhead for caching scenarios

Metric Static MAUC MACC
Network overhead 12 12 0
Hit ratio (%) 60 60 100

Static scenario: In a static scenario, the mobile users remain static within a BS where

the corresponding BSs can serve the users. Consider the case when users at a BS have

repeatedly requested two files (F1, F2). Therefore, either F1 or F2 will be cached at each

BS and the other file will be fetched from MBS (macro base station). In this case, each

BS caches the file F2 as shown in Fig. 5.3a, which is globally popular (MPC) (consider

the scenario shown in Fig. 5.3a without user mobility). Since each BS caches F2, all the

requests for file F1 will be fetched from MBS. Therefore, network overhead is computed as

the cost of the number of requests missed at each base station. By considering the number

118

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

of missed requests (F1) as 2, the number of hops as 2 and number of BSs as 3, the network

overhead is computed as 12, i.e., 2 ∗ 2 ∗ 3 = 12. Further, by considering the number of hit

requests as 9 and total requests as 15, the hit ratio is computed as 60%, i.e., 9/15 ∗ 100 =

60%.

Mobility aware uncoded caching scenario (MAUC): In the MAUC scenario, users

move across BSs; the caching decisions are based on user demand and mobility patterns.

Case 1: Assume that all the BSs cache popular file F2, as shown in Fig. 5.3a. On the

moving path, the user requested for file F2 can be download from the corresponding BSs

(i.e., a user gets half of the file from each BS as the user comes into contact with two BSs

at different time slots). Since each BS stores F2, all the requests for file F1 will be fetched

from MBS. By considering the number of missed requests (F1) as 2, the number of hops

as 2 and number of BSs as 3, the network overhead is computed as 12, i.e., 2 ∗ 2 ∗ 3 =

12. Further, by considering the number of hit requests as 9 and total requests as 15, the hit

ratio is computed as 60%, i.e., 9/15 ∗ 100 = 60%. Case 2: Assume that one of the three

BSs (BS1) caches F1 (F1 has more demand at BS1), and other BSs cache file F2 as shown

in Fig. 5.3b. The users moving across BS2, BS3 within the deadline of 2-time slots (by

considering the use mobility pattern) can download the file F2 successfully. All other user

requests will be forwarded to MBS since half of each file downloaded from the BSs that

came across.

Mobility aware coded caching scenario (MACC): In the MACC scenario, users move

across BSs; the caching decisions are based on user demand and mobility patterns. In

this scenario, each BS caches half of the files’ (F1, F2) encoded data, as shown in Fig.

5.3c. Therefore, users will get half of the files’ encoded data from each BS irrespective of

the files requested by the users. Users can recover the requested file by downloading the

encoded data at least equal to the requested file size. Since each BS stores F1, F2 encoded

segments, the requested file can be downloaded from BSs. By considering the number of

missed requests (F1) as 0, the number of hops as 1 and number of of BSs as 3, the network

overhead is computed as 0, i.e., 0 ∗ 1 ∗ 3 = 0. Further, by considering the number of hit

requests as 15 and total requests as 15, the hit ratio is computed as 100%, i.e., 15/15 ∗ 100

= 100%.

119

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

The three cases show that in the worst case (if each user path is independent and mul-

tiple users are requesting content), the mobility aware coded caching scheme caches the

encoded segments at each BS. This encoded caching scheme enables the BS to store differ-

ent types of content in the worst case. These scenarios show that the proposed mechanism

has a notable advantage over the reference algorithms in the worst-case scenario. List of

notations used in this chapter are presented in Table 5.2.

Table 5.2: List of Notations

Term Definition
R Set of base stations coupled with MEC servers
F Set of contents
U Set of mobile users
Sr, βr The cache, transmission capacity of r-th MEC
Bf The size of f -th content
t ∈ T Time slot
d Deadline
τ Delivery time of content
δru Contact duration of user u at MEC r
µr
u Average time user u stays at MEC r
Xv, Tv vth transition state and time
mv

u ∈Mu vth path of user u
T v,i
u ith transition of vth path of user u
Hr

u Probability density function of sojourn time
αr
u Number of appearances of MEC in v
pf Probability that content f is requested
P v
u Probability that user u taking path v
ψav
f The average amount of f downloaded by a user

dru, d
m
u The delay for transmitting unit of coded content

to mobile user u from BS, MBS
xrf Number of coded segments of f cached at MEC r

yr,lf Useful content f downloaded from MEC r in lth contact
P (n) Genetic population
nr
f,k kth segment of content f cached at MEC r
M Matroid with finite ground set N
cp,mp Crossover and mutation probabilities
Npop, gen Population size and number of iterations

120

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

5.1.6 Mobility and sojourn time prediction

Mobile user moves from one state (MEC) to another state over time T . The time duration

of a user resides in the state r is not known. The sojourn time of the user u resides in state

r is predicted using Markov renewal process [84, 168]. To predict the sojourn time of user,

average time is computed as

µr
u =

∫ ∞

0

xHr
u(x)dx (5.1)

whereHr
u(x) is the probability density function of sojourn time for user u at MEC (state) r.

i.e., the user u likely to move from one state to another state (transition) by staying average

time (µr
u) duration at state r.

User may move in multiple paths. The user u moving along a path in time T is defined

as Mu = {m1
u,m

2
u, . . .m

v
u} where v ≥ 1. The initial state of the path v is represented as

mv,0
u = mv

u. i.e., the initial state of path v is initial state for all paths of user u. Therefore,

the vth path of user u is denoted as {mv,0
u ,mv,1

u , . . . ,mv,d
u } where d ≥ 0. In a particular

path, a user may move to the same MEC multiple times, therefore the user path mv
u is

multi-set. The user resides in initial state for t0u and moves to 1st state. For all paths the 1st

transition is predicted to happen at time instant

T v,1
u =

∫ ∞

0

xHmv,0
u

u (x)dx (5.2)

where T v,0
u is 0 and T v,1

u is same between all the paths of a user u. From this, the vth path

ith transition is predicted as

T v,i
u = T v,i−1

u + µmv,i−1
u

u (5.3)

where i ≤ d. The last transition occur before the end of time instant T .

The sojourn time of vth path mv
u is represented as {δvu = δm

v,0
u

u , δm
v,1
u

u , . . . , δm
v,d
u

u }. The

sojourn time is δm
v,i
u

u = T v,i
u − T v,i−1

u and delivery time of content is considered as τ .

121

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

Therefore, the sojourn time is derived as

δm
v,i
u

u =


[T v,1

u − τ], i = 0,

[µr
mv,i

u
− τ], 1 ≤ i ≤ d− 1

[T −
∑d−1

j=0 δ
mv,j

u
u − τ], i = d

(5.4)

where x = [a] encloses the value x = 0 when a < 0 and x = a while a ≥ 0. The

probability that user u taking path mv
u in time T is denoted as

P v
u =

d−1∏
i=0

Pmv,i
u ,mv,i+1

u
(5.5)

The average sojourn time of user u at state r in time T is represented as

δru =
∑
v∈V

P v
u

d∑
j=0

δm
v,i
u

u 1(mv,j
u =r), r ∈ R (5.6)

5.1.7 Problem Formulation

The caching scheme of coded segments in MEC is denoted as Xr×f , xrf ∈ X indicates the

number of encoded segments of content f cached in MEC r. Due to user mobility, the user

may experience communication with the same MEC many times. Therefore, caching the

same content at different base stations in the user path is wastage of resources (storage).

The useful content downloaded by a user during the first contact with MEC r is denoted as

yr,1f = min
{
xrf , δ

r
u

βr
Bf

}
(5.7)

Downloading the useful content f by user during the lthcontact (l ∈ {2, 3, . . . , αr
u}) with

rth MEC is xr,lf = xrf −
∑l−1

t=1 y
r,t
f represented as

yr,lf = min
{
xr,lf , δ

r
u

βr
Bf

}
(5.8)

122

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.1

The successful download of a content means that the overall coded segments downloaded

by MEC must satisfy at least the size of the total number of encoded segments from the

requested content. i.e., overall segments downloaded ≤ total segments. A user proceeds

with path v by requesting content f , the overall content downloaded by the encountered

base stations is ψf =
∑

r∈R
∑

l∈αr
u
yr,lf . Then by considering contents and mobility paths,

ψf can be written as ψav
f =

∑
f∈F pf

∑
v∈V P

v
uψf (d

m
u − dru). ψav

f is the average amount of

coded data downloaded from the BS by a user. Therefore, the coded data downloaded from

MEC by average number of users is represented as

ψav
f =

1

U

∑
u∈U

∑
f∈F

pf
∑
v∈V

P v
uψf (d

m
u − dru) (5.9)

By changing the order of summation

ψav
f =

1

U

∑
r∈R

∑
u∈U

∑
f∈F

pf
∑
v∈V

P v
u (d

m
u − dru)

∑
k∈αr

u

yr,kf (5.10)

Definition 5.1.1 (Saved delay). The saved delay defined as the difference between the

download delay from the macro base station and the small base station (MEC servers).

Aim of this study is to find the caching scheme that maximizes the overall saved delay

of requested contents. The problem is modeled as follows:

max ψav
f (5.11)

s.t.

∑
f∈F

Bf · xrf ≤ Sr, ∀r∈R (5.12)

xrf ∈ {0, 1, . . . , B}, ∀r∈R,f∈F (5.13)

The objective (5.11) is the total saved delay caused by users of the overall network. The

constraints (5.12) provide the finite capacity of each base station. i.e., the total quantity

of content placed in the storage of MEC should not exceed the capacity of MEC. The

123

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.2

constraints (5.13) is the non-negativity constraint of the decision variables.

5.2 Greedy Algorithm for Contact duration Aware Coop-

erative Content Placement

The content placement problem presented in Eq. (5.11) is a mixed integer non-linear

programming (MINLP) problem and proved as NP-hard [21, 22]. To solve the problem

presented in (5.11), a sub-optimal greedy algorithm has been designed using submodular

optimization [166]. The greedy algorithm designed for the given constraints are matroid

constraints, and the objective function is monotone submodular. Greedy approximation

algorithm gives 1
2

approximation in the worst case [166]. A greedy algorithm has been pre-

sented by reformulating the problem presented in Eq. (5.11) into a monotone submodular

function with matroid constraints.

Definition 5.2.1 (Submodular function). Let N be a finite ground set and g : 2N → R+ is

submodular if the following properties are satisfied:

1. g(A) + g(B) ≥ g(A ∪B) + g(A ∩B), for all A,B ⊆ N .

2. g(A) ≤ g(B), for allA ⊆ B ⊆ N.

Equivalently, g is said to be a monotone submodular function if the following condition

satisfies. Let gA(j) = g(A + {j})− g(A). Here, gA(j) indicates the marginal value of an

element j ∈ N with respect to a subset A ⊆ N .

gA(j) ≥ gB(j) ≥ 0, for all A⊆B⊆N and j∈N−B. (5.14)

The intuition of monotone submodular function is that the benefit of adding a new

element decreases when the set becomes large.

Definition 5.2.2 (Matroid). A tuple {N, I} is called a matroidM, ifN is a finite ground set

andM is a nonempty collection of subsets of N which satisfies the following conditions:

1. ϕ ∈ I, i.e., I is nonempty.

124

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.2

2. If B ∈ I and A ⊆ B then A ∈ I.(downward closed)

3. If A,B ∈ I and |A| ≤ |B|, then ∃ j ∈ B − A such that A ∪ {j} ∈ I.

Define the ground setN = {nr
f,k | f ∈ F , r ∈ R, k = {1, 2, . . . , B}} andA ⊆ N is the

cache placement scheme. nr
f,k ⊆ A represents that the kth segment of content f is cached

at MEC r. Let N r
f = {nr

f,k|k = 1, 2, . . . , B} represents that all B segments of content f is

cached at MEC r. The relationship between cache placement A and xrf is

xrf = |A ∩N r
f | (5.15)

Then, the original objective function (5.11) can be rewritten as:

g(A) =
1

U

∑
u∈U

∑
f∈F

pf
∑
v∈V

P v
u

∑
r∈R

min
{
|A ∩N r

f |, δur
βr
Bf

}
(dmu − dru) (5.16)

If g(A) satisfies the property of monotone submodular function (5.14), then the function

g(A) is said to be monotone submodular function. To prove submodularity of function g(A)

we prove g(A ∪ nr
f,k) − g(A) ≥ g(B ∪ nr

f,k) − g(B) ≥ 0 where A ⊆ B ⊆ N and nr
f,k ∈

N − A.

Lemma 5.2.0.1. The function in (5.16) is a monotone submodular function.

Proof. See Appendix for proof of lemma 1.

Next, The constraints present in the problem (5.11) can be written as matroid constraints

on N .

Lemma 5.2.0.2. Let Nr, where r ∈ R represents the set of content segments that may be

cached at MEC r, which is Nr = {nr
f,k|f ∈ F and k = {1, 2, . . . , B}}. Then, (5.12) and

(5.13) can be rewritten as A ∈ I, where

I = {A ⊆ N
∣∣|A ∩Nr| ≤ Sr, γ ≤ |A ∩Nr|,∀r ∈ R} (5.17)

125

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.2

Algorithm 5.1 Greedy Cooperative Content Placement Algorithm
// F : set of contents
// U : set of users
// Sr: storage capacity of r ∈ R
// βr: data transmission rate r ∈ R
// pf : content popularity f ∈ F
// P v

u : mobile probability
Output: X: Content Placement.

1: Initialize A = ∅ ; /*i.e., xr
f = 0 ∀r ∈ R and f ∈ F */

2: Nrem = Set of all elements that may be add to X; /*i.e., Nrem = N assigning the ground set */

3: Sort Nrem in non-increasing order;
4: for all u ∈ U do
5: Compute user moving probability from Eq. (5.5);
6: Compute sojourn time from Eq. (5.6);
7: end for
8: repeat
9: nr′

f ′ ,k′
= argmaxnr

f,k∈Nrem [g(A+ {nr
f,k})− g(A)] ;

10: A = A+ nr′

f ′ ,k′
; /*i.e., xr

f = 1 */

11: Nrem = Nrem − nr′

f ′ ,k′
;

12: if j ′ is full then /*i.e., |A ∩Nr| == Sr */

13: Remove all the elements of Nr from Nrem;
14: end if
15: until |A| >

∑
r∈R Sr

16: return X = xrf ;

which is a matroid constraint.

Proof. The tuple (N, I) be a member of partition matroid, which is typical matroid.

Finally, the problem (5.11) can be rewritten as

max g(A) (5.18)

s.t.

A ⊆ I (5.19)

126

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.3

5.2.1 Greedy Algorithm for Contact duration Aware Cooperative Con-

tent Placement

The converted submodular optimization problem presented in Eq. (5.18) can be solved us-

ing a greedy algorithm with an approximation of 1
2

in the worst case. The contact duration

aware cooperative caching algorithm is presented in Algorithm 5.1. The greedy algorithm

initially starts with an empty set. The marginal value is then computed for each element,

then the maximum marginal value is added to the content placement. The function pre-

sented is a submodular function. Therefore, by adding more number of elements to X , the

marginal value decreases. The algorithm stops when the marginal value becomes zero.

In Algorithm 5.1, Nrem indicates the remaining set, which contains the elements that

are added to X . Line 9 computes the highest marginal value. After adding an item nr′

f ′ ,k′

to X as shown in line 10, it should be removed from the remaining set (Nrem) as shown

in line 11. Line 12-14 show that if the MEC i is full, then the segments stored at r′ are

removed. The process repeats until the cache capacity is full.

The proposed greedy algorithm achieves a polynomial time complexity; the complexity

grows with an increase in the number of contents. For real scenarios as the scale continues

to increase (large scale problems where hundreds of users, tens of BSs), the complexity can

be very high, making it impossible for implementation [24, 25]. Therefore, low complexity

sub-optimal algorithms are required due to cheapness and delay sensitive implementations

[25]. To address the system with a large number of nodes, contents and mobility paths, and

to simplify the computational complexity, a heuristic algorithm has been designed based

on the genetic algorithm (GA) and presented in the next section. GA gives a near optimal

and robust solution (video segment placement in content delivery networks [26] and base

station placement in heterogeneous network [27]) for NP-hard problems.

127

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.3

5.3 GA based Cooperative Content Placement for large

scale problems

Genetic Algorithm (GA) is a well known stochastic optimization technique which is in-

spired by the principle of natural evolution [171, 172]. It is observed that GA is fitted

for parallel optimization [172]. GA is an iterative approach; each iteration is known as a

generation. GA is a population (all possible individuals) based technique. From the given

population, GA generates individuals randomly, the generated individuals converted into

genetic form by encoding. The evolution of the encoded individuals is done by repeating

the following steps till termination criteria satisfies.

1. The fitness function determines the strongest individuals with high fitness values and

these strongest members are selected as parents for the next generation.

2. The genetic operators (crossover and mutations) carried out on the selected parents

to produce a new generation from the current.

This process continues where the individuals being adaptable to the environment. With this

idea of natural selection, a genetic algorithm has been proposed for contact duration aware

cooperative content placement.

The contact duration aware cooperative content placement based on a genetic algorithm

is presented as follows. The major steps involved in the genetic algorithm is presented

below:

1. Genetic coding generation: The first step in GA is to encode the genetic information

of population into a chromosome. In the proposed problem the decision variable xrf

is an integer variable, so an integer based encoding scheme is used. xrf indicates

that the number of segments of content f is cached at MEC r. The chromosome is

represented as xr = {xr1, xr2, . . . , xrf , . . . xrF} from this X = {x1, x2, . . . , xr, . . . xR}.

2. Initialization: Initialize the genetic parameters including the number of iterations,

crossover rate cp, mutation rate mp, population size and genetic population P (n)

composed of Npop chromosomes. Generate initial population randomly.

128

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.3

Algorithm 5.2 Genetic Algorithm for Cooperative Content Placement
// Npop: Population size
// cp: Crossover probability
// mp: Mutation probability
// gen: Number of iterations
Output: X: Content Placement.

1: t = 0;
2: Initialize P (n);
3: Repair P (n);
4: Evaluate P (n);
5: Store best solutions of P (n) in old B(m);
6: while t < gen do
7: Selection P (n);
8: Crossover P (n);
9: Mutation P (n);

10: Repair P (n);
11: Evaluate P (n);
12: Store the best fitness individuals of P (n) in new B(m);
13: if FIT(old B(m)) > FIT(new B(m)) then
14: new B(m) = old B(m);
15: end if
16: old B(m) = new B(m);
17: find the worst fitness value in P (n) and replace it with new B(m);
18: t = t + 1;
19: end while

3. Re-pairing: In the given content placement, each MEC should not cache more than

its capacity (
∑

f∈F Bf · xrf ≤ Sr). This condition satisfied by performing the repair

algorithm shown below (Algorithm 5.3).

4. Evaluation: The fitness of each individual is computed using Eq. (5.10). The pop-

ulation is evaluated based on the fitness calculated. The fitness values of an elite

individual in the current iteration and previous iteration are identified. This identi-

fied result is used to speed up the evaluation by replacing individual with the worst

fitness value.

5. Termination criteria: Once the iteration reaches the termination criteria, stop the

evaluation process and output the result otherwise continue the process.

6. Selection: The selection process chooses the elite individuals whose fitness value

129

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.3

Algorithm 5.3 Repairing Process
1: for r ∈ R do
2: while

∑
f∈F Bf · xrf > Sr do

3: Remove content from xrf in ascending order of popularity of contents at MEC
r;

4: Sr = Sr −Bf ;
5: end while
6: while

∑
f∈F Bf · xrf ≤ Sr do

7: Add content to xfr in descending order of popularity of contents at MEC r;
8: Sr = Sr +Bf ;
9: end while

10: end for

is useful to next-generation (placing them in the mating pool). The roulette wheel

method is used to select the elite individuals. The individuals are selected by selec-

tion probability corresponding to its fitness function. The probability of selecting

each individual is defined as

Ps =
FIT (j)∑

j∈Npop
FIT (j)

(5.20)

where FIT(j) represents fitness value of j.

Algorithm 5.4 Selection Process
1: Compute selection probability of each individual by Eq. (5.20);
2: for j ∈ Npop do
3: i = 0; /* chromosome index */

4: PN = 0; /* accumulation probability of individuals */

5: while PN < random(0, 1) do
6: i++;
7: PN = PN + Ps(i);
8: end while
9: Selected individual = i;

10: end for

7. Recombination: The crossover (recombination) is process blending genetic informa-

tion of the parent chromosomes to produce new solutions. Crossover is carried out as

per crossover probability. Each row from a parent forms a pair from two individual

matrices. Two-point crossover mechanism is adopted in this chapter, where the two

130

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

crossover points are picked randomly within the length of the chromosome. Here,

the fragment from the chromosome of the first parent between two crossover points

and the fragment from the second parent is switched. The mutation process randomly

alters the points based on the mutation probability.

Algorithm 5.5 Crossover Process
1: for pick two chromosomes (Ch1, Ch2) from the given population with step size 2 do
2: if cp > random[0,1] then
3: cp1 = random[0, F];
4: cp2 = random[p1, F];
5: Switch the string fragment between two crossover points cp1, cp2 in two indi-

viduals Ch1, Ch2;
6: end if
7: end for

5.4 Performance Evaluation

This section validates the performance of the proposed contact duration aware cooperative

content caching (Greedy) algorithm and genetic caching algorithm (GA) using simulations.

The proposed algorithms have been compared with the existing algorithms based on pub-

licly available real-world datasets available at WTD Project [36] and MovieLens [37].

5.4.1 Simulation Environment

A cellular network with 15 BSs associated with MEC servers and 90 mobile users has been

considered. In the given simulation area, MECs are randomly deployed and connected.

Assume that the mobile users’ initial locations are uniformly distributed over MECs at

the beginning of the simulations [24, 34, 35]. The content server holds a total of 3952

contents (MovieLens dataset) with a content size of 40 MB similar to [21] and each content

is encoded into two segments similar to [22]. Content request probability follows Zipf

distribution with γ = 0.6 [24]. The cache capacity of each MEC is 10 per cent of the

entire video library. The data transmission capacity of MEC is 8 Mbps. The deadlines

of each file are 600s. The values of the simulation parameters are present in Table 5.3.

131

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

The presented simulation results are obtained by taking average of 50 runs. In order to

evaluate the performance of the proposed caching algorithms, the proposed mechanisms

experimented using publicly available code in the Visual Studio environment [173, 21]. The

code in [173] provides the simulation area setup (i.e., distribution of MECs and users) and

the mobility prediction using Markov chain [168] by considering the contents’ deadline.

The proposed contact duration aware cooperative content caching (Greedy algorithm), and

Genetic algorithm as well as the existing MCFD (Mobility aware caching with fixed amount

data delivery) [22, 21, 34], Femto caching [57] and most popular content [49, 60] caching

mechanisms have been implemented.

Table 5.3: Simulation Parameters

Parameters Values
Simulation area 500/m× 500/m
Content size 40 MB
Capacity of base station 10 % of library
Communication range of BS 100 m

5.4.2 Performance Metrics

To compare the performance of cache placement schemes, two metrics have been consid-

ered:

(1) Cache Hit Ratio: The fraction of requests satisfied (hits) from the available caches over

the sum of cache hits and cache misses.

Cache hit ratio =
cache hits

cache hits + cache misses
(5.21)

(2) Acceleration ratio [75] : the fraction of saved transmission delay and original Internet

delay (from content server) can be formulated as:

Acceleration Ratio =
saved delay

original delay (from Internet)
(5.22)

132

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

5.4.3 Reference Algorithms

The proposed algorithms is compared with the following caching mechanisms: Most pop-

ular caching [49, 60], Femtocaching [57] and Mobility aware caching with fixed data de-

livery [22, 21, 34].

1. MPC (Popular Caching): In the most popular caching scheme, each base station

(MEC) caches the most popular content based on the user request statistics. Each

MEC caches the popular content until the cache is full.

2. FC (Femtocaching): Initially, all the caches are empty. In femtocaching, all the users

are distributed uniformly, and users remain static in the allocated cell, i.e., each user

is associated with the same MEC during the evaluation. The FC iteratively caches

the content into the MEC maximizing the saved delay. This process continues until

the cache is full.

3. MCFD (Mobility aware caching with fixed amount data can be delivered): In MCFD,

the mobility of users is considered, and each MEC delivers only fixed amount of data,

i.e., the contact duration of the user and MEC are not considered. So, a fixed amount

of content is cached at every MEC.

The first two caching mechanisms cache the content only based on user request rate,

whereas the third mechanism considers mobility of the user and coded segments are cached

at each MEC instead of the entire file. In the third caching mechanism contact duration is

not considered. So, a fixed amount of content is cached at each MEC.

5.4.4 Mobility Model

To demonstrate the efficacy of the proposed content placement mechanism, the real trace

of mobile users released by the Wireless Topology Discovery (WTD) project has been

used [36]. The trace comprises data from 275 personal digital assistant (PDA) users for 11

weeks period from 22/09/2002 to 8/12/2002. Each user holding the PDA device identifies

the WiFi access points encountered in its moving path for every 20 seconds. In the WTD

project, 400 access points (APs) are densely deployed and the locations of access points

133

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

are recorded by (x, y) values. Because of densely deployed access points user may be

under the coverage of multiple APs at a time. This simulation, considers a sub-area with

15 densely positioned access points, and replaces the MEC with APs [34, 21]. The busiest

day (16/10/2002) of the 11-week duration and four different one hour time intervals are

considered during simulation [34]. In this simulations, time is divided into slots of each 20

seconds (i.e., in the WTD project traces, the users record the MECs at each sampling point

(time interval between two sampling points is 20 seconds [36])). The locations of MECs

covered by the users during mobility are treated as users locations. These sets of locations

(as covered by a user) are called a walk of the user. Based on the traces, the value of Pi,j

is computed as the fraction of the number of sequential visits to MECs (locations) i and j

over the frequency of visits to i. The Pi,j value is increased if the user remains in the same

location (i.e., the user does not visit any of the MECs by the end of the time slot).

5.4.5 Demand Model

This simulation, uses the MovieLens 1M Dataset [37] to model user request demands.

Dataset has 6040 users with demographic information (age, gender, location and occupa-

tion) and 1000209 ratings of 3952 movies. The dataset consists of user ID, movie ID,

movie ratings and timestamp. The rating of users in timestamps has been assumed as the

content request of the user [129, 160, 158] (the assumption is that a user rates a movie after

watching it). It has been observed that more than 90% of the ratings existed within the first

year. Therefore, only the first year of the dataset has been used [129]. First, the timestamps

are divided as slots one hour each, later the user context information to the user requests is

assigned [158].

5.4.6 Impact of number of MECs

In this section, the influence of the number of MECs on acceleration ratio and cache hit

ratio is shown in Fig. 5.4a and 5.4b. In this simulations, cache capacity of MECs is 10%,

delay deadline is 3 slots, the data transmission rate is 8 Mbps, contact duration is 6 min,

and the number of MECs varies from 5 to 15 with step size 2.

134

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

5 7 9 11 13 15
0.2

0.3

0.4

0.5

Number of MECs

H
it

R
at

io
MPC
FC
MCFD
GA
Greedy

(a)

5 7 9 11 13 15
0

0.2

0.4

0.6

0.8

Number of MECs

A
cc

el
er

at
io

n
R

at
io

MPC
FC
MCFD
GA
Greedy

(b)

Figure 5.4: Comparison of caching schemes using number of MECs vs (a) cache hit ratio
(b) acceleration ratio. When C = 10 %, d = 3 slots and b = 8 Mbps.

The impact of the number of MECs on cache hit ratio is shown in Fig. 5.4a. It can be

observed from Fig. 5.4a that the cache hit ratio of all the algorithms is increasing with the

large number of MECs. It can be observe that, the mobility aware caching mechanisms are

outperformed the stationary caching mechanism because the users come across more MECs

in their mobility path within the deadline. The proposed algorithms perform better than the

MCFD because the proposed caching mechanisms consider the contact duration, which

provides the space for unpopular content by caching the more popular content based on

contact duration. The gain of contact duration aware cooperative content caching (Greedy

algorithm) has been shown over existing algorithms MPC, FC and MCFD by 8, 5 and 1.3

per cent respectively. GA outperforms the MPC, FC and MCFD by 9, 6.3 and 2.5 per cent

respectively.

The influence of the number of MECs on acceleration ratio is shown in Fig. 5.4b. The

acceleration ratio grows slower with a small number of MECs and then grows faster for the

large number of MECs. The reason is that the majority of the requests are intended for most

popular cached content. MPC caches global popular content. The mobile users move across

MECs. Therefore, the requests are forwarded to the content server. FC performs better

compare to MPC because FC caches the content cooperatively. MCFD and contact duration

aware algorithms perform relatively similar in case of a small number of MECs. The

135

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

proposed mechanisms show better performance when the number of MECs increases. The

reason is that even though both mechanisms consider mobility, the proposed mechanisms

which cache requested content use contact duration along with mobility. Therefore, the

proposed greedy and genetic algorithms outperform the other algorithms.

5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

Cache capacity (% of library)

H
it

R
at

io

MPC
FC
MCFD
GA
Greedy

(a)

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Cache capacity (% of library)
A

cc
el

er
at

io
n

R
at

io

MPC
FC
MCFD
GA
Greedy

(b)

Figure 5.5: Comparison of caching schemes using cache capacity vs (a) cache hit ratio (b)
acceleration ratio. When N = 10 %, d = 3 slots and b = 8 Mbps.

5.4.7 Impact of Cache Capacity

This section shows that the impact of cache capacity on acceleration ratio and cache hit

ratio shown in Fig. 5.5a and 5.5b. In this simulations, number of MECs is 10, delay

deadline is 3 slots, the data transmission rate is 8 Mbps, contact duration is 6 min, and the

cache capacity varies from 5% to 30% of the total library size.

In Fig. 5.5a, cache hit ratio for different mechanisms is shown for different cache ca-

pacities. It can be observed that the mobility aware caching mechanisms MCFD, GA and

Greedy outperform static caching mechanisms Femto caching and MPC. The reason is that

mobility aware algorithms take caching decisions based on user mobility. The proposed

greedy and GA algorithms outperform all other algorithms because the caching decisions

are taken using the contact duration of users in MEC. MCFD scheme considers the user

mobility in caching decision. However, MCFD Scheme does not consider the contact time.

Most popular content caching (MPC) takes caching decisions based on the global popu-

136

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

larity of the content which may not be popular locally. Here, when the cache capacity in-

creases, the cache hit ratio also increases because more content is available when the cache

size is large. The gain of the proposed Greedy algorithm has been shown over existing

algorithms MPC, FC and MCFD in terms of hit ratio by 10, 6.8 and 1 per cent respectively.

Further, the proposed GA outperforms the MPC, FC and MCFD in terms of hit ratio by 11,

8 and 2.4 per cent respectively.

In Fig. 5.5b, acceleration ratio is shown for various cache capacities. It can be observed

from Fig. 5.5b that the increase in cache capacity leads to increase in acceleration ratio.

The reason is that more content will be cached as the cache capacity increases and this leads

to the availability of different contents at MEC. MPC does not perform well as compared

to other mechanisms (as shown in Fig. 5.5b) because the content will be cached at MEC

based on global popularity. In contrast, Femto caching considers the distributed cache as a

single cache due to the cooperation of the MECs. The mobility aware caching mechanisms

outperform static caching mechanisms because the cache placement decision is made based

on the mobility, which allows informed caching. The proposed caching mechanisms show

superiority over the MCFD by allowing more content to be placed at MECs because it

considers contact duration and coding.

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

Data transmission rate (Mbps)

H
it

R
at

io

MPC
FC
MCFD
GA
Greedy

(a)

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

Data transmission rate (Mbps)

A
cc

el
er

at
io

n
R

at
io

MPC
FC
MCFD
GA
Greedy

(b)

Figure 5.6: Comparison of caching schemes using average data transmission rate vs (a)
cache hit ratio (b) acceleration ratio. When C = 10 %, d = 3 slots and N = 10.

137

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

5.4.8 Impact of data transmission rate

In this section, the effect of transmission rate on acceleration ratio and cache hit ratio is

shown in Fig. 5.6a and 5.6b. In this simulations, the number of MECs is 10, delay deadline

is 3 slots, contact duration is 6 minutes, cache capacity is 10% (of the library size), and

data transmission rate varies from 2mbps to 12mbps with step size 2.

The impact of the data transmission rate on the hit ratio is shown in Fig. 5.6a. The

hit ratio grows faster with low data transmission rate and then grows slowly for larger

transmission rates. The contact duration based mechanisms outperform MCFD because

the cache placement decision is made based on the contact duration and this allows MECs

to cache different content. The gain of the proposed Greedy algorithm has been shown

over existing algorithms MPC, FC and MCFD by 5.7, 6.2 and 1.6 per cent respectively.

Further, the proposed GA outperforms the MPC, FC and MCFD by 7.2, 7.7 and 3 per cent

respectively.

In Fig. 5.6b, acceleration ratio is shown for various data transmission rates. MPC

mechanism may not fulfill the user demands because MECs are cached with the globally

popular content. FC caches content cooperatively which allows different content to be

cached at MECs. MCFD considers a fixed data transmission rate. The contact duration

aware caching mechanisms performs well compared to MCFD because MCFD (delivers

the fixed amount of content even if contact time is more) does not consider users’ contact

duration.

5.4.9 Impact of contact duration

In this section, the effect of contact duration on cache hit ratio is shown in Fig. 5.7a and

5.7b. In this simulations, the number of MECs is 10, delay deadline is 3 slots, cache

capacity is 10% (of the library size), the data transmission rate is 8 Mbps, and contact

duration varies from 10 to 60 with step size 10.

The impact of the contact time on the hit ratio is shown in Fig. 5.7a. The hit ratio

increases with growth in the contact time. The contact duration aware caching strategies

outperform other caching mechanisms. The reason is that the MPC caches popular content

138

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.4

10 20 30 40 50 60
0.1

0.2

0.4

0.6

0.8

Contact time (Minutes)

H
it

R
at

io
MPC
FC
MCFD
GA
Greedy

(a)

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Contact time (Minutes)

H
it

R
at

io

Greedy C = 10
Greedy C = 20
Greedy C = 30
GA C = 10
GA C = 20
GA C = 30

(b)

Figure 5.7: Comparison of caching schemes using contact time vs (a) cache hit ratio, when
C = 10 %, d = 3 slots, b = 8 Mbps and N = 10. (b) hit ratio for mobile user with different
contact time, where d =3 slots, b = 8 Mbps and N = 10.

by not considering mobility. FC mechanism considers the cooperation among MECs, but

mobility is not considered. However, MCFD considers mobility, and it does not take a

coding scheme into consideration. Hence, the contact duration aware caching mechanisms

perform better than other schemes. Fig. 5.7a shows that with short contact time cache hit

ratio is low because users moving with high speed encounters more MECs. The hit ratio is

improved for slowly moving users because the contact time with a MEC increases. The gain

of the proposed Greedy algorithm has been shown over existing algorithms MPC, FC and

MCFD by 12.9, 10.3 and 4.5 per cent respectively. Further, the proposed GA outperforms

the MPC, FC and MCFD by 16, 13.4 and 8 per cent respectively.

The impact of the mobility speed (i.e., with variable contact time) on hit ratio is shown

in Fig. 5.7b. This simulation, considers the hit ratio of mobile users with different contact

time with MECs. The contact time is inversely proportional to user mobility. The hit ratio

decreases with high mobility of the user because the user cannot receive the requested

content fully when the user mobility is high. With the low mobility speed, the user can

collect the requested content successfully from MECs.

139

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.5

0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

Zipf parameter

H
it

R
at

io
MPC
FC
MCFD
GA
Greedy

(a)

0 500 1,000 1,500 2,000 2,500
3

3.5

4

4.5

5

5.5
·105

Number of generations

Fi
tn

es
s

va
lu

es

GA
OPT

(b)

Figure 5.8: (a) Comparison of different caching mechanisms with content popularity profile
(Zipf parameter) γ where C = 10%, d = 3 slots and b = 8 Mbps (b) Convergence behavior
of saved delay maximization with Npop = 150, cp = 0.95 and mp =0.05.

5.4.10 Impact of content popularity

The effect of content popularity on the cache hit ratio is shown in Fig. 5.8a. It can be

observed from Fig. 5.8a that the cache hit ratio increases as the Zipf parameter γ increases.

The reason is that as γ increases, fewer popular content attracts more user requests. The

contact duration aware caching strategies outperform over existing caching schemes. The

proposed algorithms perform better compared to other caching schemes because the pro-

posed algorithms use the contact information.

Fig. 5.8b shows that as the number of generations increases the gap between the optimal

solution (OPT) and genetic algorithm-based solution decreases. From Fig. 5.8b, it can be

noticed that the fitness value raises sharply with a few generations. It converges to an

suboptimal solution when the number of generations become approximately 1000.

5.5 Summary

This chapter analyses the influence of user mobility and contact duration on cache place-

ment in mobile edge networks, aiming to maximize the saved delay by considering the

capacity constraint. The user mobility has been considered as a Markov renewal process to

140

CHAPTER 5. CONTACT DURATION-AWARE COOPERATIVE CACHE PLACEMENT WITH USER MOBILITY ACROSS MECS USING GENETIC ALGORITHM FOR
MOBILE EDGE NETWORKS Section 5.5

predict the contact duration and the moving path in the problem formulation. An effective

greedy algorithm has been designed to solve the formulated problem. Further, a heuristic

search mechanism based on a genetic algorithm has been proposed to solve a large scale

problem. Simulation results based on real-world traces of user mobility and requests for

content demonstrate that the proposed contact duration aware caching mechanisms outper-

form three caching strategies (such as most popular caching, femto caching and mobility

aware caching). From the simulation results, it can be observed that the proposed greedy

and genetic algorithms provide improvement of up to 13 and 16 per cent on hit ratio com-

pared with MPC, FC and MCFD, respectively. The next chapter presents a cooperative

cache replacement mechanism using recurrent multi-agent deep reinforcement learning in

the obscene of content popularity information.

141

Chapter 6

Cooperative Cache Replacement using

Recurrent Multi-Agent Deep

Reinforcement Learning for Mobile

Edge Networks

The content needs to be fetched from the far distant content server in the peak time when

the requested content is not cached at the edge node and this leads to high delay, backhaul

load and congestion, which is known as reactive caching. In this chapter, a reactive caching

mechanism has been presented in a multi-cell scenario. Earlier works presented proactive

caching schemes by considering the content popularity which is known in advance [14]

or predicted [15, 16]. In some of the realistic scenarios, the content popularity is time-

varying, so the above assumption (known in advance) may not be feasible. Considering

the dynamic nature of the content popularity, high dimensional parameters, and for an in-

telligent caching decision, the conventional optimization methods will not be suitable [30].

The recent success in Reinforcement Learning (RL) [31], strong characteristic represen-

tation capability of Deep Reinforcement Learning (DRL) [16, 32] to tackle the changing

nature and complex systems has encouraged this research work to use these learning mech-

anisms to solve the above problem.

142

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.1

This chapter aims to maximize the saved delay by considering the dynamic nature of

content popularity along with the capacity and deadline constraints for accessing a large

volume of data. A DRL based cooperative caching mechanism has been proposed using

the actor-critic framework. Since each edge node observes its local state, the cooperative

cache replacement problem is modelled as a Partially Observable Markov Decision Process

(POMDP) [33]. The modelled multi-agent decision problem optimizes the latency of ob-

taining content from local MEC, neighbouring MEC and content server. To manage nodes

to coordinate the caching decisions, a multi-agent actor-critic framework has been adopted.

The contributions of this chapter are as follows:

• Design an integer linear programming problem for content caching problem: maxi-

mization of saved download delay in the absence of content popularity information

with deadline and capacity constraint.

• Formulating the cooperative cache update problem as a POMDP based on a multi-

agent decision problem to maximize the cumulative reward by ensuring the coordi-

nation of the MEC servers.

• Design a multi-agent recurrent deep reinforcement learning-based cooperative caching

algorithm by devising the multi-agent actor-critic framework to solve the given prob-

lem (i.e., MARDDPG algorithm).

• Extensive simulations have been performed to show the efficacy of the proposed re-

current multi-agent cooperative caching algorithm by considering acceleration ratio,

hit ratio and caching reward.

The rest of the chapter is organized as follows. In Section 6.1, system model and formu-

lation of the content replacement problem are presented. A multi-agent DRL model for the

proposed problem is presented in Section 6.2. Then, a multi agent actor-critic framework

is presented in 6.3.1 and the multi-agent recurrent DRL algorithm is presented in Section

6.3.2. Simulation environment and results are presented in Section 6.4. A summary of this

chapter is mentioned in section 6.5.

143

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.1

6.1 System Model and Problem Formulation

In this section, the network model and problem formulation are presented in detail.

6.1.1 Network Model

Backhaul

Core Network /

Internet

Content Server

NEF

Mobile User

Base Station

Requesting

Content

MEC Server

Content

MEC 1 MEC 2

MEC 3MEC 4

Cooperation

among MECs

Figure 6.1: Illustration of the proposed system model.

Mobile edge computing improves users’ capabilities by providing cache capacity (i.e.,

storage), network resources and computing near to the users. Consider a mobile edge

network containing a setM of M small base stations (BSs) equipped with a MEC server,

a set U of U mobile users, a content server and a central coordinator NEF as shown in

Fig. 6.1. Each MEC i ∈ M has a limited cache Si called local storage. The storage

of each MEC is used for content caching. The MECs are connected and also to the core

network through the backhaul link. The content server acts as an origin server that stores

all contents. Network Exposure Function (NEF) serves as a coordinator (and it is a crucial

network element in 5G networks) [151]. NEF has a global view and it maintains the content

cached at individual MECs and monitors users’ content requests at each MEC [151]. A user

directly connected to a base station (BS) and the user may be in the communication range

of more than one BS at any point in time. However, any user can communicate with only

one BS at a particular time. Mobile users are attached to the base stations according to

a cellular network protocol. The connected base stations are accountable for serving user

144

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.1

requests. Each BS receives content requests from multiple users in the communication

range without knowing its popularities. The MEC can serve the requests in three ways: 1)

local MEC, 2) neighbour MEC, and 3) content (central) server.

Consider a set F of F contents in the content library located in the content server.

Each content f is determined with two features Sf denotes the size of the content and dlf

denotes maximum allowed access latency to get content f . The time split into slots and

each time slot is denoted by t ∈ T . Assume that the content requests are independent.

The user can request only one content in time t and user location cannot change in any

given time slot. The requests generated by user u at time t is represented by a binary vector

W t
i,u = {wt

i,u,1, w
t
i,u,2, . . . , w

t
i,u,F}. wt

i,u,f = 1 means the user u requests content f in MEC

i at time t, wt
i,u,f = 0 otherwise. Assume that the content popularity is unknown. The

frequency of content is indicated as ρti,u = {ρti,u,1, ρti,u,2, . . . , ρti,u,F}, where ρti,u,f denotes

the cumulative requests for content f in MEC i at time t. Also, assume that in each time

slot, the MECs storage is filled with contents.

Table 6.1: List of Notations

Term Definition
M,F ,U Set of base stations, contents and users
Si The cache capacity of i-th MEC
Sf , dlf The size and deadline of f -th content
t ∈ T Time slot
W t

i,u Requests generated by user u in MEC i at t
ρti,u,f Cumulative requests for content f in MEC i at t
di,u, dj,u, dh,u Delay from local, neighbour and central server to user u
xtf,i The content f cached in MEC i at time t
Dt The expected saved delay
sti, a

t
i, R

t
i System state, action spaces and reward at MEC i in t

Kt
i , N

t
i , B

t
i Set of user requests, cache state and deadline of MEC i

ψt,l
f,i, ψ

t,a
f,i , ψ

t,h
f,i Low, average and high priority of f in MEC i at t

ci, ci,j, ci,h Cost of serving f from local, nearby and central server
rti,l, r

t
i,j, r

t
i,h l contents fetched from local, nearby and central server

αi, δ
t
f+,i Cost of replacement and number of contents replaced at i

hta, h
t
c Actor and critic network historical information

yti,j target network
∅, θ actor and critic network weight parameters

145

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.1

6.1.2 Problem Formulation

The cooperative content replacement problem formed as an optimization problem to max-

imize the saved download delay. A binary indicator X t ∈ {0, 1} denotes the cooperative

cache replacement scheme in MEC, xtf,i ∈ X t is 1 if the content f is stored in cache of

MEC i at time t, 0 otherwise. The download delay is a typical metric to evaluate the per-

formance in mobile edge networks. First, find the expected saved delay, then formulate the

maximizing the saved delay subjective to capacity and deadline constraints.

The delay for getting content f from MEC i to user u is denoted as di,u. The content

requested by the user retrieved from the local storage of the corresponding MEC, then the

delay is considered as 0. In case of the content is not available at corresponding MEC i

then i forward the request to neighbouring MECs as per the NEF direction. The delay is

considered as the number of hops between user u and MEC j (j is the neighbouring node

of MEC i) as dj,u. If the requested content is unavailable at any of the MECs, the user

fetches the content from the central server dh,u and di,u < dj,u < dh,u,∀j ̸= i, j ∈M.

Definition 6.1.1 (Saved delay). The difference in delay from the content server and MEC

node is defined as the saved delay.

The saved delay depends on the frequency of cached content requests. The saved delay

is split into two parts in the proposed model, intra MEC saved delay (local caching) and

inter MEC saved delay (cooperative caching). Intra MEC saved delay is attained by locally

cached contents.

Dt
i,0 =

F∑
f=1

U∑
u=1

wt
i,u,f · ρti,u,f · Sf · xtf,i · (dh,u − di,u) (6.1)

Inter MEC saved delay is attained by the neighbouring MECs sharing the cached contents.

Dt
i,1 =

F∑
f=1

U∑
u=1

wt
i,u,f · ρti,u,f · Sf · (1− xtf,i) · zti · (dh,u − dj,u) (6.2)

146

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.1

where zti = (1−
∏M

j=1,j ̸=i(1− xtf,j)). The expected saved delay is

Dt =
M∑
i=1

Dt
i,0 +Dt

i,1 (6.3)

Aim of this work is to maximize the saved delay by replacing the requested contents at each

MEC subjective on deadline and capacity constraints. Hence, the problem is formulated

as:

Max
1

T

T∑
t=1

Dt (6.4)

s. t.
F∑

f=1

Sf · xtf,i ≤ Si, ∀i∈M (6.5)

F∑
f=1

xtf,i ≤ 1, ∀i∈M (6.6)

V∑
i=1

xtf,i ≤M, ∀f∈F ,1≤i≤M (6.7)

Dt ≤ dlf , ∀f∈F ,∀i∈M (6.8)

xtf,i ∈ {0, 1}, ∀f∈F ,i∈M (6.9)

The objective (6.4) is the total saved delay of the overall network. Constraint (6.6) and

(6.7) guarantees that the MEC node is not allowed to cache duplicate content. Constraints

(6.5) provides the finite capacity of each BS. Constraints (6.8) is the deadline constraint,

which ensures that the maximum allowable delay for the response to a request. Thus, the

BS can satisfy the users’ QoS requirements. Finally, constraint (6.9) is the non-negativity

and integrality of the decision variables.

The cooperative content replacement problem presented in Eq. (6.4) is an integer lin-

ear programming (ILP) problem. The proposed problem can be shown as NP-hard by

transforming the knapsack problem (known as NP-hard) into our problem. The problem

presented in Eq. (6.4) can be addressed by finding the optimal decision variables {X t} in

the present time slot. Nevertheless, the decision variable present in Eq. (6.4) is a binary

variable and changing dynamically. Addressing the proposed problem requires to gather a

147

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.2

huge quantity of network state information. Besides, it is considered the practical scenario

with an unknown content request pattern in advance. The conventional optimisation meth-

ods cannot be adopted because of the changing nature of the content popularity and to take

an intelligent caching decision [30]. With the recent success in Reinforcement Learning

(RL) [31], strong characteristic representation capability of Deep Neural Network (DNN)

and Deep Learning (DL) [174] has encouraged the adoption of learning in wireless net-

works. The learning based mechanism allows an end-to-end solution from predicting the

content requests to cache decision. As a branch of AI, reinforcement learning is extensively

adapted in several fields (self-driving, robot control, etc.) to solve decision optimization

problems. The multi-agent DRL (MADRL) [175] for cooperative content replacement has

been adopted in mobile edge network.

The content placement is determined mainly based on the present state and the caching

decision, which does not depend on the previous states. Therefore, the system states evo-

lution can be modelled using a Markov process. The MEC has its cache state and current

request information while taking the caching decision at time t. In the multiple MEC sce-

nario, each MEC takes the caching decision based on its local cache state and each MEC

does not have the caching state information of other (neighbouring) MEC nodes. In reality,

MEC can not observe the complete system information regarding the caching states and

content request distribution to take the cache decisions, which motivates to represent the

problem as a partially observable Markov decision process (POMDP) [33]. Then a coop-

erative content replacement strategy has been developed using multi-agent reinforcement

learning.

6.2 Multi-Agent Deep Reinforcement Learning Model for

Cooperative Caching

In a multi-agent environment, individual agent can observe its local state, which is partial

information about the environment. Therefore, in multi agent decision problems are mod-

elled by POMDP. A POMDP is defined by a tuple {S,A, R, P,Ω,O}. S is a set of states,

148

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.2

A set of actions, R is the reward function and P is the transition probability from state s to

s′, which is defined in the MDP model. Ω is the set of observations andO is the observation

probabilities. The observation, state, action and reward are defined as follows.

6.2.1 Observation and State Space

Let S is the set of system state space where S = {si|si = (N t
i , K

t
i , B

t
i)}. In each time slot

t the state sti contains the set of user requests Kt
i , MEC i cache state N t

i and Bt
i content de-

livery deadline of MEC i. Where Kt
i = {kti,1, kti,2, . . . , kti,U}, kti,u is the contents requested

by user u at i in time t, Bt
i = {bti,1, bti,2, . . . , bti,F}, bti,f is the content delivery deadlines of

MEC i for accessing the requested content f in time t. Since the content popularity is not

available, the caching decisions are derived depend on the content already cached in MEC

and the currently requested content. Therefore, the priority of the content cached in MEC

in time t represented as ψt
i = {ψt,l

f,i, ψ
t,a
f,i , ψ

t,h
f,i}. Where ψt,l

f,i =
∑t

t−τl

∑U
u=1 ρ

t
i,u,f is low

priority, ψt,a
f,i =

∑t
t−τa

∑U
u=1 ρ

t
i,u,f is average priority and ψt,h

f,i =
∑t

t−τh

∑U
u=1 ρ

t
i,u,f is high

priority. The system state space is denoted as

sti = (N t
i , K

t
i , B

t
i , ψ

t
i) (6.10)

6.2.2 Action Space

Let A is the set of actions. Each MEC determines whether to keep or replace the content.

The challenge in the MADRL is that multiple contents need to be replaced in each time slot.

Since the system environment is multi-agent, each MEC serves multiple users. Therefore,

different MECs get a different number of content requests.

If some user requests are missing from corresponding MEC and neighbouring MECs,

then replace the missed content with appropriate content by fetching it from the content

server. Otherwise (all the user requests miss), MEC replaces contents comprises of newly

obtained content from the server with the suitable MECs and its cache. A =
⋃

t∈T a
t
i,∀si ∈

S represents the action space analogous to the state space S. Upon receiving the content

requests, MEC calculates each content’s priority and determines whether the content to

149

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.2

keep or replace based on priority by satisfying constraints (6.5) and (6.8).

6.2.3 Reward Function

MEC 1

MEC 2

Content Server

Local cache

Neighbouring

MECs cache

User

requestin
g

content

Request

Response

(a)

(b)

(c)

(a) Localc MEC

{b} Neighbour MEC

(C) Content server

Figure 6.2: Illustration of requests served by MEC.

This work aims to maximize the saved transmission delay by obtaining the desired con-

tent at a low transmission delay within the fetching deadline. Each MEC node replaces the

cached content at local storage cooperatively. In the multi-agent cooperative environment,

based on the availability of the content, either neighbouring MECs or the central server,

serves the local MECs requests. The MEC associated with the user called local MEC, the

nearby MECs, is called neighbouring MECs.

1. Suppose the content requested by user is available at the local MEC, the content can

be delivered immediately with low latency. The cost of delivering content from local

MEC is denoted as ci. Let’s consider that the MEC i fetches l contents from its local

storage in time t is indicated as rti,l. Therefore, the cost of the local MEC service is

represented as cirti,l.

2. Suppose some of the contents requested by the user are not served by the correspond-

ing MEC i. Consider that the content requested by user is available at neighbour

MEC j, and the content is served by j to the user via MEC i. The cost of fetching

content from j to i is denoted as ci,j . Let l contents are fetched from j to i in time t

is denoted as rti,j . Therefore, the cost of neighbouring MEC service is represented as∑
j∈M,j ̸=i ci,jr

t
i,j .

150

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.2

3. Suppose the content requested by the user is unavailable at any of the MECs. The

corresponding MEC obtains the content from the content server. Let’s consider the

cost to get the content from the content server to the user via MEC i denoted as

ci,h. Let l contents are fetched from content server h to i in time t is denoted as rti,h.

Therefore, the cost of content server service is represented as ci,hrti,h.

The overall cost of the service in time t is represented as

cir
t
i,l +

∑
j∈M,j ̸=i

ci,jr
t
i,j + ci,hr

t
i,h (6.11)

The content server serves the content miss at local MEC and neighbouring MEC. Hence,

the MEC replace the newly fetched content with less popular content. Therefore, the cost

should contain the replacement cost along with the delivery cost. Let the cost of replacing

content at MEC i is denoted by αi. The number of contents replaced by MEC i at time t

is indicated as δtf+,i = fi − (xtf,i ∩ xt−1
f,i) where xtf,i indicates content f cached in MEC i

in time t, xt−1
f,i indicates the content f cached in MEC i at time t − 1 and fi indicates the

content requests at MEC i. Therefore, the replacement cost is defined as

∑
f∈F

αiδ
t
f+,i (6.12)

The total cost is represented as sum of (6.11) and (6.12). That is

cir
t
i,l +

∑
j∈M,j ̸=i

di,jr
t
i,j + ci,hr

t
i,h +

∑
f∈F

αiδ
t
f+,i (6.13)

It is considered that each content should be satisfied within the specified deadline of the

content. If the content does not get within the deadline, the penalty cost should be included

in the reward. The penalty cost of the system is represented as ρti,fb
t
i,f , where bti,f is the

deadline of content f in MEC i and ρti,f is the content frequency.

The cost of utilizing the local MECs cache is higher than without the local cache. There-

fore, the saved cost need to be maximized for an effective caching scheme. The reward

151

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.2

function of MEC i is denoted as

Rt
i = (ci,h − ci)rti,l +

∑
j∈M,j ̸=i

(ci,h − ci,j)rti,j −
∑
f∈F

(αiδ
t
f+,i + ρti,fb

t
i,f) (6.14)

Maximizing the reward is maximizing the cost of saved delay. The term rti,j depends on the

local cache and neighbouring cache. The instant reward of the system is defined as

Rt =
∑
i∈M

Rt
i (6.15)

In a multi-agent system each MEC is considered as an agent. Based on the systems sates,

each agent determines its cache placement. π = {π1, π2, . . . , πM} indicate the set of all

caching strategies, π : S → A is a caching policy, which associates the current system

state s to a permissible action a. The optimal caching policy π∗ maximizes the long-term

reward in the multi-agent system. To maximize the system’s long-term reward, each agent

needs to work cooperatively because the immediate and long-term rewards impact agent

actions. Hence, the cooperative content replacement problem expressed to maximize the

cumulative discounted reward. The value function V π(S) : is defined as

E

[
∞∑
t=0

γtRt|s(0) = s, π

]
(6.16)

where 0 ≤ γ < 1 is the discount faction, γ decides the future reward’s effectiveness to the

present decision. Lower γ values give more weight to the immediate reward. Finding the

optimal caching policy π∗ needs to follows Bellman’s functions

V π∗
(s) = R(s, π∗(s)) + γ

∑
s′∈S

Ps′sV
π∗
(s′) (6.17)

where Ps′s is the state transition probability. Bellman’s functions usually solved by either

value or policy iteration methods. However, Bellman’s function presented in Eq. (6.17) is

challenging because of the following points.

1. The state transition probability Ps′s is not known in advance without any prior knowl-

152

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.3

edge. It is difficult to estimate Ps′s in real environment.

2. The time complexity is high with the traditional value or policy iteration methods

because of the vast state and action space, restricting practical cache systems’ appli-

cability.

3. Due to the cooperation among the MEC nodes, each MEC node should not cache

the cached content at neighbouring MEC nodes. Each MEC can only know its local

information and not aware of the full system sates and actions of the other MECs.

Hence, to address these issues, a MADRL based cooperative caching mechanism has been

presented. The following section presents a multi-agent DRL mechanism to handle the

proposed caching problem.

6.3 Multi-agent Recurrent DRL for cooperative Content

Caching

In real world, the environment has challenging conditions for multi-agent system that de-

mands the cooperation among agents, such as partial observable nature of agents and non-

stationary nature. Therefore, the multi-agent DRL framework has been presented for coop-

erative content replacement in MEN.

6.3.1 Multi-Agent Actor-Critic Framework

Usually, there are two approaches to develop caching decisions, namely decentralized and

centralized. In the centralized caching mechanism, the centralized server determines the

caching decisions depend on the caching states’ global view and assign them to edge nodes.

Each edge node is responsible for executing the caching decisions and data storage. In the

decentralized caching mechanism, the caching decisions determined by the edge nodes.

Each edge node determines its caching decision based on other nodes cache state informa-

tion received from the central server in this mechanism. The central server is responsible

for synchronization and cache state information interaction. However, both approaches

153

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.3

....

....

....

Actor 1

....

....

....

Actor 2

....

....

....

Actor M

....

....

....

....

Critic 1

....

....

....

Critic 2

....

....

....

Critic M

....

O1 a1 ha1 O2 a2 ha2 OM aM haM....

hc1 hc2 hcM

Agent (MEC) 1 Agent (MEC) 2 Agent (MEC) M

Replay

Memory

(Experience)

(S, a, r, Sl)

Mini-batch

(S', a', r', Sl')

Observation O(t)

Reward R(t)

Action a(t)

Environment

Distributed Execution

Figure 6.3: Multi-agent recurrent DRL framework for cooperative caching. Here Oi, ai
represents the observation and actions of agent i and ha, hc represents the history of actor
and critic.

induce new problems. A centralized mechanism causes additional delay since the central

server determines the cache decisions. Decentralized mechanism suffers from the cache

state information exchanging problem, and it has a severe effect on cooperation among

edge nodes.

A cooperative caching has been proposed by adopting centralized training with dis-

tributed execution framework to alleviate the problems mentioned earlier, providing the

policies to utilize additional knowledge to simplify the training. In general, Q-learning

cannot carry various information at the training and testing phase; therefore, making addi-

tional assumptions about the environment’s structure is unnatural. Hence, an Multi-Agent

Recurrent Deep Deterministic Policy Gradient (MARDDPG) algorithm has been proposed

to decide whether to evict or retain the requested content inspired by [176, 175]. The

154

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.3

MARDDPG is a simple addition of the DDPG mechanism for a multi-agent system, where

the actor can only obtain its local information and the critic augmented with additional in-

formation about other agents’ policies. An individual agent is unaware of the other agents’

policies in a multi-agent system, leading to a non-stationary problem. Each agent estimates

the other agent policies by leveraging the actions and global state through the training phase

to avoid the environment from the non-stationary problem. Hence, each agent attains the

global optimal strategy by altering its policy depending on the other agents’ estimated pol-

icy. Each agent consists of its own actor and critic networks in the proposed mechanism

considering agent independently learns a distinct policy because of different locations.

Actor network: The actor-network described as a function that learns a caching policy

π = {π1, π2, . . . , πM} that maps the state to a permissible action taken from the action

space A. The state comprises the global state g and local state si observed by agent i. The

agent i chooses an action ati depends on its state sti and policy π∅i
i throughout the testing

phase without critic.

ati = π∅i
i (s

t
i) (6.18)

Critic network: The critic network adopted for approximating the action-value function

V (S) provides the overall reward while taking action ati based on the state sti and the global

state g at time t in the training phase. Each agent executes the actions in the environment

and sends the present state information sti and response from the environment to the critic

network after the actor-network in time t chooses the actions at = {at1, at2, . . . , atM}. The

feedback consists of the next time instant state information gt+1 and reward Rt. Hence,

Q-function defined as Qθi
i (s

t
1, s

t
2, . . . , s

t
M , a

t
1, a

t
2, . . . , a

t
M) for each agent, which solves the

problem caused by a not-stationary environment. Consider M agents with policy of agent

i is πi, then

P (st+1
i |sti;Env) =P (st+1

i |sti; st1, st2, . . . , stM , at1, at2, . . . , atM ,

π1, π2, . . . , πM)

=P (st+1
i |sti; st1, st2, . . . , stM , at1, at2, . . . , atM ,

π′
1, π

′
2, . . . , π

′
M)

(6.19)

155

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.3

By minimizing the loss function L(θi), each critic updates its network and the loss function

L(θi) prarameterized by θ = {θ1, θ2, . . . , θM} defined as

L(θi) = Est,at

[(
Qθi

i (s
t, at)− yt

)2] (6.20)

where st = {st1, st2, . . . , stM}, at = {at1, at2, . . . , atM} and

yt = Rt + γQθi
i (g

t+1, at)|ati=π
∅′i
i

(st+1
i

) (6.21)

here 0 ≤ γ < 1 is the discount factor.

Update: Individual agent maximizes the reward by optimizing the policy directly where

the policy parameterized by ∅. Therefore, the objective is to maximize the cumulative

reward function.

J(∅i) = Est,at

[
Qθi

i (s
t, at)|atsi=π

∅i
i

(i)

]
(6.22)

In the MARDDPG algorithm, the recurrent neural network LSTM added to the actor-

network and critic network. Since the agents cannot communicate, the model takes a single

frame in each time slot. Adding the LSTM enables a way to remember the last communica-

tion (the effect of the actions on reward) received from other agents. The actor-network and

critic network historical information denoted by hta and htc. The individual agent chooses

the action based on previous state hti, i.e., ati = π∅i
i (h

t
i), then the Q-function turn into

Qθi
i (h

t
c, a

t) where htc = {htc,1, htc,2, . . . , htc,M}. Likewise, loss function L(θi) in the critic

network is

L(θi) = Eht
c,a

t

[(
Qθi

i (h
t
c, a

t)− yti
)2]

(6.23)

where

yti = rti + γQ
θ′i
i

(
ht+1
c , π

∅′1
1 (ht+1

a,1), . . . , π
∅′M
M (ht+1

a,M)
)

(6.24)

The objective function is denoted as

J(∅i) = Eht
c,a

t

[
Qθi

i

(
ht+1
c , π∅1

1 (ht+1
a,1), . . . , π

∅M
M (ht+1

a,M)
)

∣∣
ai=π

∅i
i

(hta,i)

] (6.25)

156

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.3

The replay buffer stores the experience information in the training phase. The critic and ac-

tor networks updated by randomly sampled episodes from the replay buffer in each training

step. The target critic and actor network parameters are denoted by θ′ and ∅′ respectively.

The target network is updated using soft updates.

6.3.2 Multi-Agent Recurrent DRL based Cooperative Caching Algo-

rithm

The MEC node receives the user requests and obtains their features. It supplies the current

request and caching state to the actor-network to get the caching actions. Following the

action executing based on the policy, each agent receives the reward and the next state.

Store the information received from the environment as history using LSTM.

ht+1
a = LSTM(hta, s

t+1)

ht+1
c = LSTM(htc, s

t+1, at)
(6.26)

Then actor and critic network stores the experience in replay memory. To train the critic

and actor-network, randomly select a mini-batch of the transitions from replay memory.

For an individual sample, set the target critic network

yti,j = rti,j + γQ
θ′i
i

(
ht+1,j
c,1 , . . . , ht+1,j

c,M , π
∅′1
1

(
ht+1,j
a,1

)
, . . . , π

∅′N
N

(
ht+1,j
a,N

))
(6.27)

and updates its parameter θ by reducing the loss function over mini batch

L(θi) =
1

S

∑
j∈S

(
Qθi

i

(
ht,jc,1, . . . , h

t,j
c,M , a

t
1,j, . . . , a

t
M,j

)
− yti,j

)2
(6.28)

Furthermore, the actor computes the policy gradient leveraging the loss function and the

parameter ∅ updated using the gradient over mini batch.

∇∅iJ(∅i) ≈
1

S

∑
j∈S

∇∅
i,π

∅i
i

(
ht,ja,i

)
,∇aiQ

θi
i

(
ht,jc,1, . . . , h

t,j
c,M , π

∅1
1(

ht,ja,1

)
, . . . , π∅N

N

(
ht,ja,N

)) (6.29)

157

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

Update the critic and actor parameters of the target network

θ′i ← τθi + (1− τ)θ′

∅′i ← τ∅i + (1− τ)∅′
(6.30)

Algorithm 1 summarizes the cooperative content caching mechanism based on MARD-

DPG. First, randomly initialize the critic network parameter θ and actor-network parameter

∅. Initialize the replay memory G and the target network with weights θ′ and ∅′. In each

episode, initialize the empty history hta,i, h
t
c,i and a random process for exploration. Lines

5 to 13 shows that MEC receives the requests and observe the state. The individual agent

selects an action at depend on the policy π∅i
i (h

t
a,i). After performing an action at, the agent

gets the following state st+1 information, and the reward Rt then stores the information

collected from the environment in history using the LSTM network. Save the individual

agent’s experiences (sti, a
t
i, r

t
i |t = {1, . . . , T}) in the replay memory G to train actor and

critic networks. Line 14 shows that each agent randomly samples a mini batch of S tran-

sitions {s1i,j, a1i,j, r1i,j, s2i,j, a2i,j, r2i,j, . . .} from the replay memory G to train the critic and

actor-network. Lines 15 to 19 show that for each agent, the critic network estimates the

Q-approximation for each sample j ∈ S, then compute the temporal difference-error and

update its weights by minimizing the loss function L(θi) over the target network. Further,

the actor network computes the policy gradient ∇∅iJ(∅i) leveraging the loss function and

update its weights by the average policy gradient over the target network. Then update the

target network weights, content properties and cache state in lines 21 and 22.

6.4 Performance Evaluation

This section, validates the performance of the proposed MARDDPG based cooperative

caching mechanism using simulations. Particularly, first, the simulation environment is

mentioned along with performance metrics and reference algorithms. Furthermore, the

performance of the MARDDPG mechanism is compared to the reference methods in terms

of system parameters, and the simulation results are analyzed in detail.

The real-world Dataset MovieLens 1M Dataset [37] has been used in these simulations

158

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

Algorithm 6.1 MARDDPG based Content Caching Algorithm
Initialize the actor network π

∅i
i (ht

a,i) with random weights ∅ and the critic network

Q
θi
i (ht

c, a
t)|ht

c = {ht
c,1, h

t
c,2, . . . , h

t
c,M}, at = {at1, at2, . . . , atM} with random weights θ

Initialize the target network π
∅′i
i Q

θ′i
i with weights ∅′ and θ′

Initialize the replay memory G of each agent to capacity F

Output: X: Content Placement.
1: for all episode do
2: Initialize t = 1;
3: Initialize a random processM for action exploration;
4: Initialize empty history h0a,i, h

0
c,i;

5: for t ∈ T and ot ̸= terminal do
6: The MEC receives user requests W t;
7: Observe the cache state sti of each agent i;
8: For each agent i select an action ati = π∅i

i (h
t
a,i) with respect to current policy and

exploration noise;
9: Execute action at, store the received reward rt and new state st+1 information in

history using Eq. (6.26);
10: t = t+ 1;
11: end for
12: Store episode (sti, a

t
i, r

t
i |t = {1, . . . , T}) for all agents;

13: for all i ∈M do
14: Randomly sample a mini batch of S episodes from replay memory

{s1i,j, a1i,j, r1i,j, s2i,j, a2i,j, r2i,j, . . .} episodes from replay memory G;
15: for t = Tto1 do
16: Set target network Eq. (6.27);
17: Minimizing the loss using Eq. (6.28) and update the critic network;
18: Update the actor network policy using the sampled policy gradient Eq. (6.29);
19: end for
20: end for
21: Update the target networks using Eq. (6.30);
22: Update the content properties ψi and cache state si ;
23: end for

to investigate for requesting content. The MovieLens dataset consists of 3952 movies,

1000209 user ratings that take integer values [1 (worst), 5 (best)] and 6040 users. Each row

of the dataset consists of userid, movieid, rating and timestamp. The rating information is

considered the content request since the user rates a movie followed by watching it [131].

The rating information is considered as the frequency of movies requested by a user. Also,

it is assumed that the number of requests for a movie within 10, 100 and 1000 requests

as the features. Therefore, the top 600 popular content requested by users and the 100

most active users have been selected to analyze the user request statistics. More than 90%

159

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

(a) (b)

Figure 6.4: (a) Comparison of content popularity vs content rank Content popularity of
Movielens dataset (b) Voronoi cell diagram with size 500m × 500m where blue circle
indicates the BSs and red triangles are mobile users.

of the ratings are from the first year in the dataset, so only the first year ratings has been

considered for simulation. The skewness parameter α = 0.8 is obtained by fitting the actual

data from the dataset with the Zipf distribution as shown in Fig 6.4a.

This section presents the system setting to evaluate the performance of the proposed

caching algorithm. A square region with an area of 500m × 500m is considered. In the

given simulation area, consider the Poisson point process (PPP) for base stations. The

users are distributed within each base station coverage based on PPP shown in Fig. 6.4b.

Six hundred contents with size determined uniformly at random from the range of [10MB

to 100MB], 15 BSs and 90 users has been considered. Each content has a deadline picked

randomly from [5 to 30s]. Each MEC can cache 10% of the total files. The latency to fetch

content from the base station to the user is specified using uniform distribution ranges from

[10 to 30s]. To obtain the file from the central server to MEC is taken as the 80s.

Python with the TensorFlow platform has been considered for implementing the pro-

posed MARDDPG caching mechanism and implemented it on the open-source R-MADDPG

package. The neural network model composes the evaluated actor and cretic network and

the target actor and critic network for each agent. The evaluated critic and actor networks

are similar to that of the target networks. The networks have three hidden layers with 64

160

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

neurons in each layer. The middle layer is an LSTM layer, and the other two layers are

fully connected, where the first layer has a ReLU activation function. The target network

is updated using the Adam optimizer, where the critic and actor networks learning rates are

0.001 and 0.0005, respectively, and the discount reward is 0.9. The capacity of the replay

memory and the mini-batch size is considered as 105 and 256, respectively.

Table 6.2: Simulation Parameters

Parameters Values
Simulation area 500/m× 500/m
Number of users 90
Number of contents 600
Number of base stations 15
Content size (10, 100] MB
The delay between BS and user (5,25]s
The delay between BSs 20s
The delay between content server and BS 80s
The deadline of the content (10,30] s
Actor and critic learning rate 0.001, 0.0005
Network update rate 0.01
Discount 0.9
Mini batch size 256
Replay memory capacity 105

Number of episodes 1500
Number of steps in each episode 100

6.4.1 Performance Metrics

To compare the performance of cache replacement schemes, the following metrics are con-

sidered:

1. Cache Hit Ratio: The fraction of requests served over the total requests.

2. Acceleration ratio: The fraction of saved delay and overall delay (from the controller)

3. Caching Reward: The reward measures the cumulative long-term reward collected

from caching (i.e., Sum of the intermediate reward of all MECs) using Eq. (6.15).

4. Local Hit: The fraction of requests served within the MEC.

161

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

5. Neighbouring Hit: The fraction of requests served within the network and not within

the MEC.

6.4.2 Reference Algorithms

In this section, the proposed algorithms is compared with the following caching mecha-

nisms: Least Recently Used (LRU) [177], First In First Out (FIFO) [178], Least Frequently

Used (LFU) [179], Multi-Agent Actor-Critic (MAC) [32] and Deep Reinforcement Learn-

ing (DRL) [16].

1. LRU (Least Recently Used): It is a recency based mechanism where the least recently

requested file is updated with the fetched file when the cache is already full.

2. LFU (Least Frequently Used): It is a frequency-based mechanism where the least

number of times requested file is updated with the fetched file when the cache is

already full.

3. FIFO (First In First Out): FIFO is an arrival based mechanism where the earliest

cached file is updated with the fetched file when the cache is already full.

4. DRL (Deep Reinforcement Learning): DRL is a cache replacement decision mech-

anism where individual MEC performs the caching decisions individually with the

help of local observations without considering the impact of other MECs.

5. MAC (Multi-Agent Actor-Critic): MAC is a cache replacement decision mechanism

where the actor takes caching decisions and critic evaluates the policy. In this mecha-

nism, communication between the agents is not considered; hence, there is no global

state to process for actor networks.

The first three cache replacement strategies update the content individually based on arrival,

frequency and recency, whereas the other strategies consider deep reinforcement learning

to place the contents. The fourth cache replacement strategy (DRL) is different from the

fifth strategy (MAC) because, in DRL, the individual node is not aware of the other nodes’

162

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

(a) (b)

(c)

Figure 6.5: Comparison of caching schemes using cache capacity vs (a) Cache Hit Ratio
(b) Acceleration Ratio (c) Local and Neighbour Cache Hit Ratio.

information, and the former is the value-based RL, and the latter is policy-based RL. More-

over, a multi agent deep deterministic policy gradient algorithm (i.e., MADDPG algorithm

[176]) has been considered for comparison.

6.4.3 Impact of Cache Size

The impact of cache size on acceleration ratio and cache hit ratio is shown in Figure 6.5.

In this simulations, the number of MECs is 15, skewness parameter is 0.8 and the cache

capacity varies from 4% to 20% total library size with step size 2.

In Fig. 6.5a, the impact of cache size on the cache hit ratio is presented. The curves

163

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

indicate an upward trend with the rise in cache size since the large cache size allows MECs

to cache more content, allowing them to satisfy more user requests from local or neighbour-

ing MECs. The learning-based mechanisms show superiority over conventional rule-based

replacement mechanisms since the learning-based mechanisms capture the user request

features from the historical data. MARDDPG has better performance than MAC and DRL.

The DRL mechanism does not consider the cooperation among the nodes where each node

tries to maximize its reward without concern about other nodes. MAC considers no coop-

eration between agents even though it considers the multi-agent framework. The proposed

MARDDPG mechanism provide improvement of up to 24, 19, 17, 9 and 4 % on hit ratio

compared with FIFO, LRU, LFU, DRL and MAC, respectively.

In Fig. 6.5b, the impact of cache size on the acceleration ratio is presented. The pro-

posed MARDDPG mechanism provide improvement of up to 20, 15, 13, 6 and 3 % on

acceleration ratio compared with FIFO, LRU, LFU, DRL and MAC, respectively.

In Fig. 6.5c, the impact of the cache size on the local and neighbouring cache hit is pre-

sented. The local hit rate is denoted with ‘L’ and the neighbouring hit rate denoted with ‘N’.

The local hit ratio of the learning-based algorithms has superiority over rule-based mech-

anisms. The reason is that the learning-based mechanisms perform the cache replacement

decision depend on the history of the data that enables the nodes to cache more popular

content locally to the MEC and moderately popular content cached at neighbouring nodes.

The upward trend indicates that the rise in cache size improves the local hit rate. It can

be noticed that the DRL has higher local hit ratio than MAC and MARDDPG and lower

neighbour hit ratio because each agent in DRL cache based on local cache information

leading to redundant content at each agent. It can also be noticed that MAC and the pro-

posed mechanisms have more neighbouring hit rate with less capacity and decreases as the

capacity increases. The reason is that both the MAC and proposed mechanisms considers

the cooperation among the agents leading to higher neighbour hit ratio. Overall, both MAC

and MARDDPG have a better cache hit ratio than DRL. Further, it can be observed that

the proposed mechanism may sacrifice the local hit rate, but it satisfies more user requests

with a small delay than all other baseline algorithms.

164

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

(a) (b)

Figure 6.6: Comparison of caching schemes using number of MECs vs (a) Cache Hit Ratio
(b) Acceleration Ratio.

6.4.4 Impact of Number of MECs

The impact of the number of MECs on the cache hit ratio and acceleration ratio is shown in

Figure 6.6. In this simulations, the cache capacity is 10%, skewness parameter is 0.8 and

the number of MECs varies from 5 to 15 with step size 2.

It can be seen the effect of the cache hit ratio with a varying number of MECs in Figure

6.6a. It can be noticed that the proposed mechanism shows clear superiority over other

baseline mechanisms since it uses the cooperative mechanism and learning the user request

pattern from the history data. The conventional rule-based mechanism is performing less

than the learning-based mechanisms. The proposed MARDDPG mechanism provide im-

provement of up to 22.5, 18, 15, 6 and 4.5 % on hit ratio compared with FIFO, LRU, LFU,

DRL and MAC, respectively. From Fig. 6.6b, the acceleration ratio grows slowly with less

number of MECs is less, and rapidly increases as MECs increases. The propose mechanism

outperforms other mechanisms. The proposed MARDDPG mechanism provide improve-

ment of up to 19, 13,10, 6 and 1 % on acceleration ratio compared with FIFO, LRU, LFU,

DRL and MAC, respectively.

165

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

(a) (b)

Figure 6.7: Comparison of caching schemes using number of contents vs (c) Cache Hit
Ratio (d) Acceleration Ratio.

(a) (b)

Figure 6.8: Comparison of caching schemes using Zipf shape parameter vs (a) Cache Hit
Ratio (b) Acceleration Ratio.

6.4.5 Impact of Number of Contents

The impact of contents on cache hit ratio and acceleration ratio is shown in Figure 6.7. In

this simulations, the number of MECs is 15, skewness parameter is 0.8, cache capacity is

10% total library size and number of contents varies from 0.2 to 1.0 with step size 0.2.

In Fig. 6.7a, the impact of number of contents on the cache hit ratio is presented. The

bars indicate an upward trend as contents rise. More popular content need to be cached at

166

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

MECs, leading to frequent cache replacement due to limited cache capacity. It can be seen

that MARDDPG has better performance than other reference algorithms. The DRL mecha-

nism does not consider the cooperation among the nodes where each node tries to maximize

its reward without concern about other nodes leading to less cache hit ratio than MAC and

MARDDPG. MAC considers no cooperation between agents even though it considers the

multi-agent framework. The proposed MARDDPG mechanism provide improvement of

up to 20, 17, 17, 11 and 2.2 per cent on hit ratio compared with FIFO, LRU, LFU, DRL

and MAC, respectively. It can be noticed from Fig. 6.7b, that the conventional replace-

ment mechanism grows slowly compared to the learning-based mechanisms. Because the

learning-based mechanism captures the content popularity, enabling the MEC to replace the

less popular content, leading to more saved delay. The proposed mechanism outperforms

other baseline algorithms. The proposed MARDDPG mechanism provide improvement of

up to 17, 13, 11, 6 and 3 % on acceleration ratio compared with FIFO, LRU, LFU, DRL

and MAC, respectively.

6.4.6 Impact of Zipf parameter

Them impact of Zipf parameter on cache hit ratio and accelerated ratio is presented in

Figure 6.8a and 6.8b respectively. The upward trend of all the algorithms indicates that

more requests are for few contents as the Zipf skewness parameter rises; this leads to an

increase in the hit ratio and allows access to the requested content within a smaller delay

improves the acceleration ratio.

6.4.7 Performance evaluation with training episode

In Fig. 6.9, the performance comparison of cache hit ratio, local and neighbour cache hit

ratio is presented. In this simulations, the number of MECs are 15, skeness parameter is

0.8, cache capacity is 10%.

From Fig. 6.9a, it can be seen that the rule-based cache replacement mechanism shows

a relatively stable hit ratio since they have not considered real-time continuous learning

from the environment. The learning-based algorithms curves indicate an upward trend and

167

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

(a) (b)

(c)

Figure 6.9: Comparison of caching schemes using training episode vs (a) Cache Hit Ratio
(b) Local Cache Hit Ratio (c) Neighbour Cache Hit Ratio.

stabilize after that. The DRL has a higher hit ratio than MAC and MARDDPG initially, but

as the episodes increase, it slowly diminishes. That is because the DRL is a non-cooperative

cache replacement mechanism where each agent performs the cache replacement based

on local information, not considering the other agents’ information in caching decision.

Therefore, each agent may cache content redundantly leads to obtain more content from

the content server. In MAC, the agents cache the content based on the central controller,

which cooperates with communication overhead. The proposed MARDDPG outperforms

the other mechanisms since it uses the LSTM to learn the better policy to cache more

popular content.

168

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

Fig. 6.9b and 6.9c show that the rule-based mechanisms have more local hit ratios and

fewer neighbour-hit ratios. The reason is that the rule-based mechanism not consider the

learning from the environment; therefore, each MEC caches the redundant content leads to

fetch and replace more content compared to other mechanisms. It can also noticed that the

DRL mechanism has a lower neighbour hit ratio and higher local cache hit ratio since each

agent in DRL caches based on the local cache state. The MAC and MARDDPG have lower

local hit rate than DRL, but both mechanisms have better neighbour hit ratio. Overall,

both the MAC and MARDDPG have a better cache hit ratio than DRL, even though they

sacrifice a little local cache hit ratio. It can be observed that the proposed MARDDPG has

an improved neighbour hit ratio than all baseline algorithms since it learns the better policy

by using LSTM leads to cache more popular content near users instead of fetching from

the distant content server.

6.4.8 The convergence performance

From Fig. 6.10a, it can be noticed that the rule-based replacement mechanisms like FIFO,

LRU and LFU fluctuate around 33, 42 and 46, respectively, and do not increase training

episodes. The reason is that the rule-based mechanism cannot learn from the environment.

It can be seen that the DRL has an upward trend in the first 600 episodes and fluctuates

around reward 62. In DRL, each agent learns from its local cache state, leading to more

difficulty learning optimal strategy. The MAC raise slowly till 400 episodes and constantly

fluctuates around reward 80 since the centralized controller simultaneously controls the

multiple agents in the environment leading to slow convergence. It can be noticed that

the proposed MARDDPG curve increases quickly and fluctuates around reward 87, which

outperforms all other references algorithms. Thus, the MARDDPG finds the best strategy

quickly compared to other reference mechanisms in maximizing saved delay. Compared

to DRL and MAC, MARDDPG has a 12 and 15 per cent increase in reward. From Fig.

6.10b, It can be observed that both the curves have a similar trend. Both the curves raise

quickly till episode 400 and then stabilizes slowly. It can be noticed that even though both

curves have a similar trend, the proposed MARDDPG mechanism has a higher reward and

169

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.4

(a) (b)

(c)

Figure 6.10: (a) Reward of all schemes vs Training episode (b) Reward of proposed and
MADDPG schemes during Training episodes (c) Training episode vs Acceleration Ratio.

more stability than the MADDPG. The reason is that the inclusion of LSTM enables the

agents in the MARDDPG algorithm to learn a better policy compared to MADDPG, where

the LSTM has not considered. Overall it can be noticed that the proposed MARDDPG

outperforms all other reference algorithms by considering the LSTM for learning a better

strategy to maximize the reward cooperatively among the agents.

In Fig. 6.10c, the impact of training episodes on the acceleration ratio is presented. It

can be seen that the rule-base mechanism does not increase as the training episode increase.

The proposed mechanism raises quickly and stabilizes after episode 1000. That indicates

that the MARDDPG learns a better policy quickly. That means the MARDDPG caches

170

CHAPTER 6. COOPERATIVE CACHE REPLACEMENT USING RECURRENT MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR MOBILE EDGE NETWORKSSection 6.5

the more popular content cooperatively with fewer replacements leads to more saved delay.

The DRL and MAC have less acceleration ratio since in DRL agent updates policy based

on local cache state without cooperation. As in MAC, a centralized coordinator updates the

agents’ policy simultaneously.

6.5 Summary

This chapter considers caching in the multi-cell scenario. Specifically, a MARDDPG al-

gorithm has been designed to maximize the saved delay in the cooperative mobile edge

networks. The LSTM model is integrated in MADDPG to design the cooperative caching

algorithm for multi-cell scenarios and discussed the network update in detail. Extensive

simulations are performed to determine the performance of the proposed algorithm over

existing algorithms. The proposed cooperative cache update algorithm outperforms the

existing algorithms by considering performance metrics such as the cache hit ratio, accel-

eration ratio and reward. The proposed mechanism is shown an improvement over other

learning-based and non-learning (rule-based) based algorithms.

171

Chapter 7

Conclusion and Future Directions

This thesis investigates the design and development of caching algorithms, which reduce

the load on backhaul links and congestion in the mobile edge networks by placing appro-

priate content near the users. Different caching mechanisms that maximize the saved delay

when placing the content at the edge nodes in MEN are presented. The proposed caching

mechanisms achieve better performance in terms of the cache hit ratio, acceleration ratio,

and cache utilization. Performance evaluations have been done to show the efficacy of the

proposed algorithms. A comparative study of the proposed protocols has been presented

and discussed through several experiments in order to demonstrate their merits and capa-

bilities.

This thesis addresses the main challenges of mobile edge networks (MENs), such as

uneven distribution of users, heterogeneity of user preferences, delay sensitivity, mobility,

randomness of contact duration, cache utilization improvement, and dynamic content pop-

ularity information. The rapid growth in time-critical and delay-sensitive applications like

video streaming, Internet of Things (IoT), and financial applications need a response within

a deadline. If a request is not served within the deadline, the quality of service would be af-

fected and this affects the user QoE. Hence, to improve the user QoE, the request deadlines

must be satisfied. Furthermore, the user mobility and dynamic content popularity imposed

additional challenges. In this thesis, contributions have been made by considering the main

challenges, such as the deadline of the content, heterogeneity of user preferences, user mo-

bility, and dynamic content popularity in making efficient caching decisions in MEN.

172

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS Section 7.2

7.1 The Major Contributions of the Thesis

A cache placement problem in mobile edge networks aiming to maximize saved delay by

considering the capacity and deadline constraints has been addressed in Chapter 3. The

proposed approach improves the acceleration ratio, cache hit ratio and cache utilization.

The echo state network is applied to predict content request distribution and a fuzzy caching

mechanism is designed based on the predicted content popularity, benefit and deadline.

The clustered cooperative cache placement has been analyzed in large-scale mobile

edge networks, aiming to maximize the saved delay by considering the heterogeneity of

user preferences, activity level, and uneven user distribution in Chapter 4. The dynamic

user behaviour is learned using LSTM model. The users are clustered based on the con-

tent based clustering mechanism to cache appropriate content near to users. An efficient

greedy mechanism is designed to solve the cache placement problem. The relation between

user preferences and local and global content popularity has been analyzed. The proposed

mechanism improves the cache hit ratio, acceleration ratio and cache utilization.

In Chapter 5, the impact of user mobility and contact duration on cache placement in

mobile edge networks aiming to maximize the saved delay by considering the capacity

constraint have been analyzed. The user mobility is modeled as a Markov renewal process

to predict the contact duration and the moving path. An effective greedy algorithm is

designed to solve the formulated problem. Further, a heuristic search mechanism based on

a genetic algorithm is proposed to solve a large scale problem. The proposed mechanism

shows improvement in terms of the cache hit ratio and acceleration ration in a mobility

based scenario.

In Chapter 6, an efficient deep reinforcement learning algorithm has been designed for

cooperative mobile edge networks in the absence of content popularity. In the proposed

mechanism LSTM is applied to remember the last communication received from other

agents. The proposed mechanism is shown an improvement over other learning-based

and non-learning (rule-based) based algorithms. The delay is minimized by replacing the

fetched content with the appropriate content at the base station.

173

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS Section 7.2

7.2 Future Directions

Although the proposed caching algorithms show promising performance improvements as

compared to the existing relevant mechanisms available in the literature, there are other

aspects and scenarios which could be considered. Some of the potential extensions of our

research work presented in this thesis are listed as follows:

Caching and computation offloading play a vital role in improving the user quality of

experience. However, providing an efficient method for joint caching and computation

offloading decisions to improve network resource utilization and performance for delay-

sensitive applications are challenging in large scale mobile edge networks. Further, design-

ing an efficient cache strategy by considering the user mobility into the joint caching and

computing in mobile edge networks is more practical.

Research can be extended to investigate the device-to-device communication based

incentive-based cooperative caching strategy in mobile edge networks. In Chapter 4, un-

even distribution of users and heterogeneous user preferences are considered in the static

network setting. However, users may move across the base stations at varying speeds.

Research may be extended to investigate caching strategy based on instant cell load in-

formation and varied channel conditions in large scale mobile edge networks. In Chapter

5, the contact duration aware cooperative caching mechanism is presented. The problem

presented in Chapter 5 can be further investigated by analyzing the mobility aware device-

to-device communication in hybrid mobile networks. The dynamic nature of the mobile

networks, content popularity, user position and user preferences play a vital role in deci-

sion making. Research can be extended by providing an efficient learning-based coopera-

tive caching scheme for big data-driven applications to improve the cache performance.

174

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS Section 7.2

Appendix

Proof of Lemma 1

Then the benefit of adding nr
f,k to A is

g(A ∪ nr
f,k) =

1

U

∑
u∈U

∑
v∈V

pfP
v
u

∑
f∈F

min{xrf + 1, δru
βr
Bf

}

+
∑

j∈R,j ̸=r

min{xjf , δ
j
u

βj
Bf

}(dmu − dru) (7.1)

Here, min{xrf + 1, δru
βr

Bf
} ≥ min{xrf , δru

βr

Bf
} shows that the marginal benefit gained by

adding an element nr
f,k to the caching scheme A is non-negative. The monotone submodu-

larity of function g(A) is proved by satisfying the submodular property (5.14). Therefore,

g(A ∪ nr
f,k) − g(A) ≥ g(B ∪ nr

f,k) − g(B) ≥ 0. We can obtain this xrf,k < (xrf,k + 1) ≤

brf,k < (xrf,k + 1) since A ⊂ B ⊂ N then xrf ⊂ brf . The difference of marginal values of

(g(A ∪ nr
f,k)− g(A)) − (g(B ∪ nr

f,k)− g(B)) is given as

g(A ∪ nr
f,k)− g(A) =

1

U

∑
u∈U

∑
v∈V

pfP
v
uD
∑
f∈F

×

[
min{xrf + 1, ω}+ ∆(A)−min{xrf , ω}+ ∆(A)

]
(7.2)

where ∆(A) =
∑

j∈R,j ̸=r min{xjf , δju
βj

Bf
}, D = (dmu − dru) and ω = δru

βr

Bf
. The difference

of marginal values of g(A ∪ nr
f,k)− g(A) − g(B ∪ nr

f,k)− g(B) is given as

1

U

∑
u∈U

∑
v∈V

pfP
v
uD
∑
f∈F

×

[
min{xrf + 1, ω}+ ∆(A)−min{xrf , ω}+ ∆(A)

]
−
[
min{brf + 1, ω}+ ∆(B) + min{brf , ω}+ ∆(B)

]
(7.3)

175

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS Section 7.2

this can be written as

1

U

∑
u∈U

∑
v∈V

pfP
v
uD
∑
f∈F

α (7.4)

where α =
[
min{xrf + 1, ω}+ ∆(A)−min{xrf , ω}+ ∆(A)

]
−
[
min{brf + 1, ω} + ∆(B) + min{brf , ω} + ∆(B)

]
Based on the content cached and

range of the MECs there exist five cases. Case I = (ω ≤ xrf,k), Case II = (xrf,k < ω ≤

xrf,k + 1), Case III = (xrf,k + 1 < ω ≤ brf,k), Case IV = (brf,k < ω ≤ brf,k + 1) and Case

V = (brf,k + 1 ≤ ω)



[
{ω +∆(A)} − {ω +∆(A)} − {ω +∆(B)}+ {ω +∆(B)}

]
= 0, I[

{ω +∆(A)} − {xrf,k +∆(A)} − {ω +∆(B)}+ {ω +∆(B)}
]
= ω − xrf,k, II[

{xrf,k + 1 +∆(A)} − {xrf,k +∆(A)} − {ω +∆(B)}+ {ω +∆(B)}
]

= xrf,k + 1 +∆(A)− (xrf,k +∆(A)) = 1, III[
{xrf,k + 1 +∆(A)} − {xrf,k +∆(A)} − {ω +∆(B)}+ {brf,k +∆(B)}

]
= ω − brf,k + 1, IV[
{xrf,k + 1 +∆(A)} − {xrf,k +∆(A)} − {brf,k + 1 +∆(B)}

+{brf,k +∆(B)}
]
= 0, V

(7.5)

From the all cases we can observe that the 1
U

∑
u∈U

∑
v∈V pfP

v
uD
∑

f∈F α ≥ 0 since

α ≥ 0. Therefore, g(A ∪ nr
f,k) − g(A) ≥ g(B ∪ nr

f,k) − g(B). with this the monotone

submodularity of (5.16) is proved.

176

Bibliography

[1] Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min Chen.
In-edge ai: Intelligentizing mobile edge computing, caching and communication by
federated learning. IEEE Network, 33(5):156–165, 2019.

[2] Cisco Systems Inc. Cisco visual networking index: Global mobile data traffic fore-
cast update, 2017-–2022. White Paper, Feb 2019.

[3] Jingjing Yao, Tao Han, and Nirwan Ansari. On mobile edge caching. IEEE Com-
munications Surveys & Tutorials, 21(3):2525–2553, 2019.

[4] Li Qiu and Guohong Cao. Popularity-aware caching increases the capacity of wire-
less networks. IEEE Transactions on Mobile Computing, 19(1):173–187, 2019.

[5] Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen, Pad-
manabhan Pillai, and Mahadev Satyanarayanan. Quantifying the impact of edge
computing on mobile applications. In Proceedings of the 7th ACM SIGOPS Asia-
Pacific Workshop on Systems, pages 1–8, 2016.

[6] Amardeep Mehta, William Tärneberg, Cristian Klein, Johan Tordsson, Maria Kihl,
and Erik Elmroth. How beneficial are intermediate layer data centers in mobile
edge networks? In 2016 IEEE 1st International Workshops on Foundations and
Applications of Self* Systems (FAS* W), pages 222–229. IEEE, 2016.

[7] Meng Zhang, Hongbin Luo, and Hongke Zhang. A survey of caching mechanisms
in information-centric networking. IEEE Communications Surveys & Tutorials,
17(3):1473–1499, 2015.

[8] Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S Tucker.
Fog computing may help to save energy in cloud computing. IEEE Journal on
Selected Areas in Communications, 34(5):1728–1739, 2016.

[9] Swaroop Nunna, Apostolos Kousaridas, Mohamed Ibrahim, Markus Dillinger,
Christoph Thuemmler, Hubertus Feussner, and Armin Schneider. Enabling real-
time context-aware collaboration through 5g and mobile edge computing. In 2015
12th International Conference on Information Technology-New Generations, pages
601–605. IEEE, 2015.

177

[10] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and
zipf-like distributions: Evidence and implications. In IEEE INFOCOM’99. Confer-
ence on Computer Communications. Proceedings. Eighteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. The Future is Now (Cat.
No. 99CH36320), volume 1, pages 126–134. IEEE, 1999.

[11] Tuyen X Tran, Duc V Le, Guosen Yue, and Dario Pompili. Cooperative hierarchical
caching and request scheduling in a cloud radio access network. IEEE Transactions
on Mobile Computing, 17(12):2729–2743, 2018.

[12] Sampa Sahoo, Bibhudatta Sahoo, and Ashok Kumar Turuk. A learning automata-
based scheduling for deadline sensitive task in the cloud. IEEE Transactions on
Services Computing, 2019.

[13] Surbhi Saraswat, Hari Prabhat Gupta, Tanima Dutta, and Sajal K Das. Energy ef-
ficient data forwarding scheme in fog based ubiquitous system with deadline con-
straints. IEEE Transactions on Network and Service Management, 2019.

[14] Mohammed S ElBamby, Mehdi Bennis, Walid Saad, and Matti Latva-Aho. Content-
aware user clustering and caching in wireless small cell networks. In 2014 11th In-
ternational Symposium on Wireless Communications Systems (ISWCS), pages 945–
949. IEEE, 2014.

[15] Mingzhe Chen, Walid Saad, Changchuan Yin, and Mérouane Debbah. Echo state
networks for proactive caching in cloud-based radio access networks with mobile
users. IEEE Transactions on Wireless Communications, 16(6):3520–3535, 2017.

[16] Hao Zhu, Yang Cao, Wei Wang, Tao Jiang, and Shi Jin. Deep reinforcement learning
for mobile edge caching: Review, new features, and open issues. IEEE Network,
32(6):50–57, 2018.

[17] David B Shmoys and Éva Tardos. An approximation algorithm for the generalized
assignment problem. Mathematical programming, 62(1-3):461–474, 1993.

[18] Zheng Chen, Jemin Lee, Tony QS Quek, and Marios Kountouris. Cooperative
caching and transmission design in cluster-centric small cell networks. IEEE Trans-
actions on Wireless Communications, 16(5):3401–3415, 2017.

[19] Ming-Chun Lee, Andreas F Molisch, Nishanth Sastry, and Aravindh Raman. In-
dividual preference probability modeling and parameterization for video content in
wireless caching networks. IEEE/ACM Transactions on Networking, 27(2):676–
690, 2019.

[20] Jie Yang, Yuanyuan Qiao, Xinyu Zhang, Haiyang He, Fang Liu, and Gang Cheng.
Characterizing user behavior in mobile internet. IEEE transactions on emerging
topics in computing, 3(1):95–106, 2014.

178

[21] Konstantinos Poularakis and Leandros Tassiulas. Code, cache and deliver on the
move: A novel caching paradigm in hyper-dense small-cell networks. IEEE Trans-
actions on Mobile Computing, 16(3):675–687, 2016.

[22] Rui Wang, Jun Zhang, SH Song, and Khaled B Letaief. Mobility-aware caching in
d2d networks. IEEE Transactions on Wireless Communications, 16(8):5001–5015,
2017.

[23] Zongqing Lu, Xiao Sun, and Thomas La Porta. Cooperative data offloading in op-
portunistic mobile networks. In IEEE INFOCOM 2016-The 35th Annual IEEE In-
ternational Conference on Computer Communications, pages 1–9. IEEE, 2016.

[24] Karthikeyan Shanmugam, Negin Golrezaei, Alexandros G Dimakis, Andreas F
Molisch, and Giuseppe Caire. Femtocaching: Wireless content delivery through dis-
tributed caching helpers. IEEE Transactions on Information Theory, 59(12):8402–
8413, 2013.

[25] Fengxian Guo, Heli Zhang, Hong Ji, Xi Li, and Victor CM Leung. An efficient com-
putation offloading management scheme in the densely deployed small cell networks
with mobile edge computing. IEEE/ACM Transactions on Networking, 26(6):2651–
2664, 2018.

[26] Seungseob Lee, SuKyoung Lee, Kyungsoo Kim, and Yoon Hyuk Kim. Base sta-
tion placement algorithm for large-scale lte heterogeneous networks. PloS one,
10(10):e0139190, 2015.

[27] Zhe Li and Gwendal Simon. In a telco-cdn, pushing content makes sense. IEEE
Transactions on Network and Service Management, 10(3):300–311, 2013.

[28] Ejder Baştuğ, Marios Kountouris, Mehdi Bennis, and Mérouane Debbah. On the
delay of geographical caching methods in two-tiered heterogeneous networks. In
2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), pages 1–5. IEEE, 2016.

[29] Shuo Wang, Xing Zhang, Yan Zhang, Lin Wang, Juwo Yang, and Wenbo Wang. A
survey on mobile edge networks: Convergence of computing, caching and commu-
nications. Ieee Access, 5:6757–6779, 2017.

[30] Wei Jiang, Gang Feng, and Shuang Qin. Optimal cooperative content caching and
delivery policy for heterogeneous cellular networks. IEEE Transactions on Mobile
Computing, 16(5):1382–1393, 2016.

[31] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[32] Chen Zhong, M Cenk Gursoy, and Senem Velipasalar. Deep reinforcement learning-
based edge caching in wireless networks. IEEE Transactions on Cognitive Commu-
nications and Networking, 6(1):48–61, 2020.

179

[33] Matthijs TJ Spaan. Partially observable markov decision processes. In Reinforce-
ment Learning, pages 387–414. Springer, 2012.

[34] Yang Guan, Yao Xiao, Hao Feng, Chien-Chung Shen, and Leonard J Cimini. Mo-
bicacher: Mobility-aware content caching in small-cell networks. In 2014 IEEE
Global Communications Conference, pages 4537–4542. IEEE, 2014.

[35] Tuyen X Tran, Fatemeh Kazemi, Esmaeil Karimi, and Dario Pompili. Mobee:
Mobility-aware energy-efficient coded caching in cloud radio access networks. In
2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems
(MASS), pages 461–465. IEEE, 2017.

[36] Marvin McNett and Geoffrey M Voelker. Access and mobility of wireless pda users.
ACM SIGMOBILE Mobile Computing and Communications Review, 9(2):40–55,
2005.

[37] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, December 2015.

[38] Brian McFee, Thierry Bertin-Mahieux, Daniel PW Ellis, and Gert RG Lanckriet.
The million song dataset challenge. In Proceedings of the 21st International Con-
ference on World Wide Web, pages 909–916, 2012.

[39] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next generation 5g wireless
networks: A comprehensive survey. IEEE Communications Surveys & Tutorials,
18(3):1617–1655, 2016.

[40] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and Borje
Ohlman. A survey of information-centric networking. IEEE Communications Mag-
azine, 50(7), 2012.

[41] Hamidreza Shariatmadari, Rapeepat Ratasuk, Sassan Iraji, Andrés Laya, Tarik
Taleb, Riku Jäntti, and Amitava Ghosh. Machine-type communications: current
status and future perspectives toward 5g systems. IEEE Communications Magazine,
53(9):10–17, 2015.

[42] Mahadev Satyanarayanan. Mobile computing: the next decade. ACM SIGMOBILE
Mobile Computing and Communications Review, 15(2):2–10, 2011.

[43] Ying Gao, Wenlu Hu, Kiryong Ha, Brandon Amos, Padmanabhan Pillai, and Ma-
hadev Satyanarayanan. Are cloudlets necessary? School Comput. Sci., Carnegie
Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-CS-15-139, page 8, 2015.

[44] Waleed Ali, Siti Mariyam Shamsuddin, Abdul Samad Ismail, et al. A survey of web
caching and prefetching. Int. J. Advance. Soft Comput. Appl, 3(1):18–44, 2011.

[45] Xuan Liu, Zhuo Li, Peng Yang, and Yongqiang Dong. Information-centric mobile ad
hoc networks and content routing: a survey. Ad Hoc Networks, 58:255–268, 2017.

180

[46] George Xylomenos, Christopher N Ververidis, Vasilios A Siris, Nikos Fotiou, Chris-
tos Tsilopoulos, Xenofon Vasilakos, Konstantinos V Katsaros, George C Polyzos,
et al. A survey of information-centric networking research. IEEE Communications
Surveys and Tutorials, 16(2):1024–1049, 2014.

[47] Stefan Podlipnig and Laszlo Böszörmenyi. A survey of web cache replacement
strategies. ACM Computing Surveys (CSUR), 35(4):374–398, 2003.

[48] Kai Jiang, Huan Zhou, Xin Chen, and Haijun Zhang. Mobile edge computing for
ultra-reliable and low latency communications. IEEE Communications Standards
Magazine, 2021.

[49] Xi Peng, Juei-Chin Shen, Jun Zhang, and Khaled B Letaief. Backhaul-aware caching
placement for wireless networks. In 2015 IEEE Global Communications Conference
(GLOBECOM), pages 1–6. IEEE, 2015.

[50] Xiaofei Wang, Min Chen, Tarik Taleb, Adlen Ksentini, and Victor CM Leung. Cache
in the air: Exploiting content caching and delivery techniques for 5g systems. IEEE
Communications Magazine, 52(2):131–139, 2014.

[51] Ejder Baştuğ, Mehdi Bennis, Engin Zeydan, Manhal Abdel Kader, Ilyas Alper
Karatepe, Ahmet Salih Er, and Mérouane Debbah. Big data meets telcos: A proac-
tive caching perspective. Journal of Communications and Networks, 17(6):549–557,
2015.

[52] Engin Zeydan, Ejder Bastug, Mehdi Bennis, Manhal Abdel Kader, Ilyas Alper
Karatepe, Ahmet Salih Er, and Mérouane Debbah. Big data caching for networking:
Moving from cloud to edge. IEEE Communications Magazine, 54(9):36–42, 2016.

[53] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B
Letaief. Mobile edge computing: Survey and research outlook. arXiv preprint
arXiv:1701.01090, 2017.

[54] Mingyue Ji, Giuseppe Caire, and Andreas F Molisch. Fundamental limits of caching
in wireless d2d networks. IEEE Transactions on Information Theory, 62(2):849–
869, 2015.

[55] Abdallah Khreishah and Jacob Chakareski. Collaborative caching for multicell-
coordinated systems. In 2015 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 257–262. IEEE, 2015.

[56] Mohammad Ali Maddah-Ali and Urs Niesen. Coding for caching: fundamental lim-
its and practical challenges. IEEE Communications Magazine, 54(8):23–29, 2016.

[57] Negin Golrezaei, Andreas F Molisch, Alexandros G Dimakis, and Giuseppe Caire.
Femtocaching and device-to-device collaboration: A new architecture for wireless
video distribution. IEEE Communications Magazine, 51(4):142–149, 2013.

181

[58] Dong Liu and Chenyang Yang. Energy efficiency of downlink networks with caching
at base stations. IEEE Journal on Selected Areas in Communications, 34(4):907–
922, 2016.

[59] Min Sheng, Weijia Han, Chuan Huang, Jiandong Li, and Shuguang Cui. Video
delivery in heterogenous crans: architectures and strategies. IEEE Wireless Commu-
nications, 22(3):14–21, 2015.

[60] Hasti Ahlehagh and Sujit Dey. Video-aware scheduling and caching in the radio
access network. IEEE/ACM Transactions on Networking (TON), 22(5):1444–1462,
2014.

[61] Jingxiong Gu, Wei Wang, Aiping Huang, and Hangguan Shan. Proactive storage
at caching-enable base stations in cellular networks. In 2013 IEEE 24th Annual
International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), pages 1543–1547. IEEE, 2013.

[62] Syed Ali Raza Zaidi, Mounir Ghogho, and Desmond C McLernon. Information
centric modeling for two-tier cache enabled cellular networks. In 2015 IEEE In-
ternational Conference on Communication Workshop (ICCW), pages 80–86. IEEE,
2015.

[63] Zheng Chang, Yunan Gu, Zhu Han, Xianfu Chen, and Tapani Ristaniemi. Context-
aware data caching for 5g heterogeneous small cells networks. In 2016 IEEE Inter-
national Conference on Communications (ICC), pages 1–6. IEEE, 2016.

[64] Pol Blasco and Deniz Gündüz. Learning-based optimization of cache content in a
small cell base station. In 2014 IEEE International Conference on Communications
(ICC), pages 1897–1903. IEEE, 2014.

[65] Konstantinos Poularakis, George Iosifidis, and Leandros Tassiulas. Approximation
algorithms for mobile data caching in small cell networks. IEEE Transactions on
Communications, 62(10):3665–3677, 2014.

[66] Maria Gregori, Jesús Gómez-Vilardebó, Javier Matamoros, and Deniz Gündüz.
Wireless content caching for small cell and d2d networks. IEEE Journal on Se-
lected Areas in Communications, 34(5):1222–1234, 2016.

[67] Tianyu Wang, Lingyang Song, and Zhu Han. Dynamic femtocaching for mobile
users. In 2015 IEEE wireless communications and networking conference (WCNC),
pages 861–865. IEEE, 2015.

[68] Xiuhua Li, Xiaofei Wang, and Victor CM Leung. Weighted network traffic offload-
ing in cache-enabled heterogeneous networks. In 2016 IEEE International Confer-
ence on Communications (ICC), pages 1–6. IEEE, 2016.

[69] Ying Cui and Dongdong Jiang. Analysis and optimization of caching and multicas-
ting in large-scale cache-enabled heterogeneous wireless networks. IEEE transac-
tions on Wireless Communications, 16(1):250–264, 2016.

182

[70] Bo Bai, Li Wang, Zhu Han, Wei Chen, and Tommy Svensson. Caching based
socially-aware d2d communications in wireless content delivery networks: A hy-
pergraph framework. IEEE Wireless Communications, 23(4):74–81, 2016.

[71] Yecheng Wu, Sha Yao, Yang Yang, Ting Zhou, Hua Qian, Honglin Hu, and Matti
Hamalainen. Challenges of mobile social device caching. IEEE Access, 4:8938–
8947, 2016.

[72] Binqiang Chen, Chenyang Yang, and Gang Wang. Cooperative device-to-device
communications with caching. In 2016 IEEE 83rd Vehicular Technology Conference
(VTC Spring), pages 1–5. IEEE, 2016.

[73] Constantinos Psomas, Gan Zheng, and Ioannis Krikidis. Cooperative wireless edge
caching with relay selection. In 2017 IEEE International Conference on Communi-
cations (ICC), pages 1–5. IEEE, 2017.

[74] Sladana Jošilo, Valentino Pacifici, and György Dán. Distributed algorithms for con-
tent placement in hierarchical cache networks. Computer Networks, 125:160–171,
2017.

[75] Yong Cui, Jian Song, Minming Li, Qingmei Ren, Yangjun Zhang, and Xuejun
Cai. Sdn-based big data caching in isp networks. IEEE Transactions on Big Data,
4(3):356–367, 2018.

[76] Shashwat Kumar and A Antony Franklin. Consolidated caching with cache splitting
and trans-rating in mobile edge computing networks. In 2017 IEEE International
Conference on Advanced Networks and Telecommunications Systems (ANTS), pages
1–6. IEEE, 2017.

[77] Shashwat Kumar, Doddala Sai Vineeth, et al. Edge assisted dash video caching
mechanism for multi-access edge computing. In 2018 IEEE International Confer-
ence on Advanced Networks and Telecommunications Systems (ANTS), pages 1–6.
IEEE, 2018.

[78] Tadege Mihretu Ayenew, Dionysis Xenakis, Nikos Passas, and Lazaros Merakos.
A novel content placement strategy for heterogeneous cellular networks with small
cells. IEEE Networking Letters, 2019.

[79] Dewang Ren, Xiaolin Gui, Kaiyuan Zhang, and Jie Wu. Hybrid collaborative
caching in mobile edge networks: An analytical approach. Computer Networks,
158:1–16, 2019.

[80] Lintao Yang, Yanqiu Chen, Luqi Li, and Hao Jiang. Cooperative caching and de-
livery algorithm based on content access patterns at network edge. In International
Conference on 5G for Future Wireless Networks, pages 99–123. Springer, 2019.

[81] Xinwei Liu, Jiaxin Zhang, Xing Zhang, and Wenbo Wang. Mobility-aware coded
probabilistic caching scheme for mec-enabled small cell networks. IEEE Access,
5:17824–17833, 2017.

183

[82] Tuo Liu, Sheng Zhou, and Zhisheng Niu Tsinghua. Mobility-aware coded-caching
scheme for small cell network. In 2017 IEEE International Conference on Commu-
nications (ICC), pages 1–6. IEEE, 2017.

[83] Min Chen, Yixue Hao, Long Hu, Kaibin Huang, and Vincent KN Lau. Green and
mobility-aware caching in 5g networks. IEEE Transactions on Wireless Communi-
cations, 16(12):8347–8361, 2017.

[84] Yu Ye, Ming Xiao, and Mikael Skoglund. Mobility-aware content preference learn-
ing in decentralized caching networks. IEEE Transactions on Cognitive Communi-
cations and Networking, 6(1):62–73, 2019.

[85] Emre Ozfatura and Deniz Gündüz. Mobility and popularity-aware coded small-cell
caching. IEEE Communications Letters, 22(2):288–291, 2017.

[86] Valerio Bioglio, Frederic Gabry, and Ingmar Land. Optimizing mds codes for
caching at the edge. In 2015 IEEE Global Communications Conference (GLOBE-
COM), pages 1–6. IEEE, 2015.

[87] Mohammad Ali Maddah-Ali and Urs Niesen. Fundamental limits of caching. IEEE
Transactions on Information Theory, 60(5):2856–2867, 2014.

[88] Mohammad Ali Maddah-Ali and Urs Niesen. Decentralized coded caching at-
tains order-optimal memory-rate tradeoff. IEEE/ACM Transactions On Networking,
23(4):1029–1040, 2014.

[89] Ramtin Pedarsani, Mohammad Ali Maddah-Ali, and Urs Niesen. Online coded
caching. IEEE/ACM Transactions on Networking, 24(2):836–845, 2015.

[90] Nikhil Karamchandani, Urs Niesen, Mohammad Ali Maddah-Ali, and Suhas N
Diggavi. Hierarchical coded caching. IEEE Transactions on Information Theory,
62(6):3212–3229, 2016.

[91] Urs Niesen and Mohammad Ali Maddah-Ali. Coded caching with nonuniform de-
mands. IEEE Transactions on Information Theory, 63(2):1146–1158, 2016.

[92] Jinbei Zhang, Xiaojun Lin, and Xinbing Wang. Coded caching under arbitrary pop-
ularity distributions. IEEE Transactions on Information Theory, 64(1):349–366,
2017.

[93] Ejder Baştuğ, Mehdi Bennis, and Mérouane Debbah. Social and spatial proactive
caching for mobile data offloading. In 2014 IEEE international conference on com-
munications workshops (ICC), pages 581–586. IEEE, 2014.

[94] Kyi Thar, Nguyen H Tran, Thant Zin Oo, and Choong Seon Hong. Deepmec: Mobile
edge caching using deep learning. IEEE Access, 6:78260–78275, 2018.

[95] Chenxi Zhang, Pinyi Ren, and Qinghe Du. Learning-to-rank based strategy for
caching in wireless small cell networks. In International Conference on Internet
of Things as a Service, pages 111–119. Springer, 2018.

184

[96] Michael D Ekstrand, John T Riedl, and Joseph A Konstan. Collaborative filtering
recommender systems. Now Publishers Inc, 2011.

[97] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Trans-
actions on Information Systems (TOIS), 22(1):89–115, 2004.

[98] Livia Elena Chatzieleftheriou, Merkouris Karaliopoulos, and Iordanis Koutsopoulos.
Caching-aware recommendations: Nudging user preferences towards better caching
performance. In IEEE INFOCOM 2017-IEEE Conference on Computer Communi-
cations, pages 1–9. IEEE, 2017.

[99] Gao Shen, Li Pei, Pan Zhiwen, Liu Nan, and You Xiaohu. Machine learning based
small cell cache strategy for ultra dense networks. In 2017 9th International Confer-
ence on Wireless Communications and Signal Processing (WCSP), pages 1–6. IEEE,
2017.

[100] Binqiang Chen and Chenyang Yang. Caching policy for cache-enabled d2d com-
munications by learning user preference. IEEE Transactions on Communications,
66(12):6586–6601, 2018.

[101] Yi Li, Chen Zhong, M Cenk Gursoy, and Senem Velipasalar. Learning-based delay-
aware caching in wireless d2d caching networks. IEEE Access, 6:77250–77264,
2018.

[102] Yuyang Wang, Yun Chen, Haibo Dai, Yongming Huang, and Luxi Yang. A learning-
based approach for proactive caching in wireless communication networks. In 2017
9th International Conference on Wireless Communications and Signal Processing
(WCSP), pages 1–6. IEEE, 2017.

[103] Lu Hou, Lei Lei, Kan Zheng, and Xianbin Wang. A q-learning-based proactive
caching strategy for non-safety related services in vehicular networks. IEEE Internet
of Things Journal, 6(3):4512–4520, 2018.

[104] Chenyang Wang, Shanjia Wang, Ding Li, Xiaofei Wang, Xiuhua Li, and Victor CM
Leung. Q-learning based edge caching optimization for d2d enabled hierarchical
wireless networks. In 2018 IEEE 15th International Conference on Mobile Ad Hoc
and Sensor Systems (MASS), pages 55–63. IEEE, 2018.

[105] Amal Feriani and Ekram Hossain. Single and multi-agent deep reinforcement learn-
ing for ai-enabled wireless networks: A tutorial. IEEE Communications Surveys &
Tutorials, 2021.

[106] Alireza Sadeghi, Fatemeh Sheikholeslami, and Georgios B Giannakis. Optimal
and scalable caching for 5g using reinforcement learning of space-time populari-
ties. IEEE Journal of Selected Topics in Signal Processing, 12(1):180–190, 2017.

[107] Samuel O Somuyiwa, András György, and Deniz Gündüz. A reinforcement-learning
approach to proactive caching in wireless networks. IEEE Journal on Selected Areas
in Communications, 36(6):1331–1344, 2018.

185

[108] Ying He, Zheng Zhang, F Richard Yu, Nan Zhao, Hongxi Yin, Victor CM Leung,
and Yanhua Zhang. Deep-reinforcement-learning-based optimization for cache-
enabled opportunistic interference alignment wireless networks. IEEE Transactions
on Vehicular Technology, 66(11):10433–10445, 2017.

[109] Hao Zhu, Yang Cao, Xiao Wei, Wei Wang, Tao Jiang, and Shi Jin. Caching transient
data for internet of things: A deep reinforcement learning approach. IEEE Internet
of Things Journal, 6(2):2074–2083, 2018.

[110] Wei Jiang, Gang Feng, Shuang Qin, Tak Shing Peter Yum, and Guohong Cao. Multi-
agent reinforcement learning for efficient content caching in mobile d2d networks.
IEEE Transactions on Wireless Communications, 18(3):1610–1622, 2019.

[111] Tong Wu, Pan Zhou, Kai Liu, Yali Yuan, Xiumin Wang, Huawei Huang, and
Dapeng Oliver Wu. Multi-agent deep reinforcement learning for urban traffic
light control in vehicular networks. IEEE Transactions on Vehicular Technology,
69(8):8243–8256, 2020.

[112] Jiongjiong Song, Min Sheng, Tony QS Quek, Chao Xu, and Xijun Wang. Learning-
based content caching and sharing for wireless networks. IEEE Transactions on
Communications, 65(10):4309–4324, 2017.

[113] Di Wu, Yuan Zhang, Juan Luo, and Renfa Li. Efficient data dissemination by crowd-
sensing in vehicular networks. In 2014 IEEE 22nd International Symposium of Qual-
ity of Service (IWQoS), pages 314–319. IEEE, 2014.

[114] David Applegate, Aaron Archer, Vijay Gopalakrishnan, Seungjoon Lee, and KK Ra-
makrishnan. Optimal content placement for a large-scale vod system. IEEE/ACM
Transactions on Networking, 24(4):2114–2127, 2016.

[115] Bin Cao, Long Zhang, Yun Li, Daquan Feng, and Wei Cao. Intelligent offloading
in multi-access edge computing: A state-of-the-art review and framework. IEEE
Communications Magazine, 57(3):56–62, 2019.

[116] Bartlomiej Blaszczyszyn and Anastasios Giovanidis. Optimal geographic caching
in cellular networks. In 2015 IEEE International Conference on Communications
(ICC), pages 3358–3363. IEEE, 2015.

[117] Jian Qiao, Yejun He, and Xuemin Sherman Shen. Proactive caching for mobile
video streaming in millimeter wave 5g networks. IEEE Transactions on Wireless
Communications, 15(10):7187–7198, 2016.

[118] J. Tadrous and A. Eryilmaz. On optimal proactive caching for mobile networks with
demand uncertainties. IEEE/ACM Transactions on Networking, 24(5):2715–2727,
October 2016.

[119] Fei Shen, Kenza Hamidouche, Ejder Bastug, and Mérouane Debbah. A stackelberg
game for incentive proactive caching mechanisms in wireless networks. In 2016
IEEE Global Communications Conference (GLOBECOM), pages 1–6. IEEE, 2016.

186

[120] Zhen Tong, Yuedong Xu, Tao Yang, and Bo Hu. Quality-driven proactive caching
of scalable videos over small cell networks. In 2016 12th International Conference
on Mobile Ad-Hoc and Sensor Networks (MSN), pages 90–96. IEEE, 2016.

[121] Xiaomin Li and Jiafu Wan. Proactive caching for edge computing-enabled industrial
mobile wireless networks. Future Generation Computer Systems, 89:89–97, 2018.

[122] Sara A Elsayed, Sherin Abdelhamid, and Hossam S Hassanein. Proactive caching
at parked vehicles for social networking. In 2018 IEEE International conference on
communications (ICC), pages 1–6. IEEE, 2018.

[123] Shashwat Kumar, Sai Vineeth Doddala, A Antony Franklin, and Jiong Jin. Ran-
aware adaptive video caching in multi-access edge computing networks. Journal of
Network and Computer Applications, 168:102737, 2020.

[124] Liying Li, Guodong Zhao, and Rick S Blum. A survey of caching techniques in
cellular networks: Research issues and challenges in content placement and delivery
strategies. IEEE Communications Surveys & Tutorials, 20(3):1710–1732, 2018.

[125] Tuyen X Tran, Mohammad-Parsa Hosseini, and Dario Pompili. Mobile edge com-
puting: Recent efforts and five key research directions. IEEE COMSOC MMTC
Commun.-Frontiers, 12(4):29–33, 2017.

[126] Yaping Sun, Zhiyong Chen, and Hui Liu. Delay analysis and optimization in cache-
enabled multi-cell cooperative networks. In 2016 IEEE Global Communications
Conference (GLOBECOM), pages 1–7. IEEE, 2016.

[127] Jingjing Yao and Nirwan Ansari. Joint content placement and storage allocation in
c-rans for iot sensing service. IEEE Internet of Things Journal, 6(1):1060–1067,
2018.

[128] BN Bharath, Kyatsandra G Nagananda, and H Vincent Poor. A learning-based ap-
proach to caching in heterogenous small cell networks. IEEE Transactions on Com-
munications, 64(4):1674–1686, 2016.

[129] Sabrina Müller, Onur Atan, Mihaela van der Schaar, and Anja Klein. Context-aware
proactive content caching with service differentiation in wireless networks. IEEE
Transactions on Wireless Communications, 16(2):1024–1036, 2016.

[130] BN Bharath, Kyatsandra G Nagananda, Deniz Gündüz, and H Vincent Poor. Caching
with time-varying popularity profiles: A learning-theoretic perspective. IEEE Trans-
actions on Communications, 66(9):3837–3847, 2018.

[131] Navneet Garg, Mathini Sellathurai, Vimal Bhatia, BN Bharath, and Tharmalingam
Ratnarajah. Online content popularity prediction and learning in wireless edge
caching. IEEE Transactions on Communications, 68(2):1087–1100, 2019.

187

[132] Peiyan Yuan, Yunyun Cai, Yihang Liu, Junna Zhang, Yali Wang, and Xiaoyan Zhao.
Prorec: a unified content caching and replacement framework for mobile edge com-
puting. Wireless Networks, pages 1–13, 2020.

[133] Ronghui Hou, Kaiwen Huang, Huilin Xie, King-Shan Lui, and Hongyan Li. Caching
and resource allocation in small cell networks. Computer Networks, page 107100,
2020.

[134] Ni Zhang, Songtao Guo, Yifan Dong, and Defang Liu. Joint task offloading and data
caching in mobile edge computing networks. Computer Networks, page 107446,
2020.

[135] Linpeng Tang, Qi Huang, Amit Puntambekar, Ymir Vigfusson, Wyatt Lloyd, and
Kai Li. Popularity prediction of facebook videos for higher quality streaming. In
2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17), pages 111–
123, 2017.

[136] Jun Li, Shuang Hong, Sha Xia, and Shengmei Luo. Neural network based popularity
prediction for iptv system. J. Networks, 7(12):2051–2056, 2012.

[137] Suoheng Li, Jie Xu, Mihaela Van Der Schaar, and Weiping Li. Popularity-driven
content caching. In IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9. IEEE, 2016.

[138] Emira Ben Abdelkrim, Mohammad A Salahuddin, Halima Elbiaze, and Roch Glitho.
A hybrid regression model for video popularity-based cache replacement in content
delivery networks. In 2016 IEEE Global Communications Conference (GLOBE-
COM), pages 1–7. IEEE, 2016.

[139] SM Shahrear Tanzil, William Hoiles, and Vikram Krishnamurthy. Adaptive scheme
for caching youtube content in a cellular network: Machine learning approach. Ieee
Access, 5:5870–5881, 2017.

[140] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine:
theory and applications. Neurocomputing, 70(1-3):489–501, 2006.

[141] Tingting Hou, Gang Feng, Shuang Qin, and Wei Jiang. Proactive content caching
by exploiting transfer learning for mobile edge computing. International Journal of
Communication Systems, 31(11):e3706, 2018.

[142] Shan Zhang, Peter He, Katsuya Suto, Peng Yang, Lian Zhao, and Xuemin Shen.
Cooperative edge caching in user-centric clustered mobile networks. IEEE Transac-
tions on Mobile Computing, 17(8):1791–1805, 2017.

[143] Noor Abani, Torsten Braun, and Mario Gerla. Proactive caching with mobility pre-
diction under uncertainty in information-centric networks. In Proceedings of the 4th
ACM Conference on Information-Centric Networking, pages 88–97, 2017.

188

[144] Lin Yao, Ailun Chen, Jing Deng, Jianbang Wang, and Guowei Wu. A cooperative
caching scheme based on mobility prediction in vehicular content centric networks.
IEEE Transactions on Vehicular Technology, 67(6):5435–5444, 2017.

[145] Hakima Khelifi, Senlin Luo, Boubakr Nour, Akrem Sellami, Hassine Moungla, and
Farid Naı̈t-Abdesselam. An optimized proactive caching scheme based on mobility
prediction for vehicular networks. In 2018 IEEE Global Communications Confer-
ence (GLOBECOM), pages 1–6. IEEE, 2018.

[146] Ejder Baştuğ, Jean-Louis Guénégo, and Mérouane Debbah. Proactive small cell
networks. In ICT 2013, pages 1–5. IEEE, 2013.

[147] Juan Liu, Bo Bai, Jun Zhang, and Khaled B Letaief. Cache placement in fog-rans:
From centralized to distributed algorithms. IEEE Transactions on Wireless Commu-
nications, 16(11):7039–7051, 2017.

[148] Dong Liu and Chenyang Yang. Caching at base stations with heterogeneous user
demands and spatial locality. IEEE Transactions on Communications, 67(2):1554–
1569, 2018.

[149] Naifu Zhang, Kaibin Zheng, and Meixia Tao. Using grouped linear prediction and
accelerated reinforcement learning for online content caching. In 2018 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops), pages 1–6.
IEEE, 2018.

[150] Yanxiang Jiang, Miaoli Ma, Mehdi Bennis, Fu-Chun Zheng, and Xiaohu You. User
preference learning-based edge caching for fog radio access network. IEEE Trans-
actions on Communications, 67(2):1268–1283, 2018.

[151] Sami Kekki, Walter Featherstone, Yonggang Fang, Pekka Kuure, Alice Li, Anurag
Ranjan, Debashish Purkayastha, Feng Jiangping, Danny Frydman, Gianluca Verin,
et al. Mec in 5g networks. ETSI white paper, 28:1–28, 2018.

[152] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages
302–311, 1984.

[153] Mantas Lukoševičius. A practical guide to applying echo state networks. In Neural
networks: Tricks of the trade, pages 659–686. Springer, 2012.

[154] Ion Iancu. A mamdani type fuzzy logic controller. In Fuzzy Logic-Controls, Con-
cepts, Theories and Applications. InTech, 2012.

[155] Jie Cui, Lu Wei, Hong Zhong, Jing Zhang, Yan Xu, and Lu Liu. Edge computing in
vanets-an efficient and privacy-preserving cooperative downloading scheme. IEEE
Journal on Selected Areas in Communications, 38(6):1191–1204, 2020.

[156] Nazmul Siddique and Hojjat Adeli. Computational intelligence: synergies of fuzzy
logic, neural networks and evolutionary computing. John Wiley & Sons, 2013.

189

[157] Jiaying Yin, Lixin Li, Huisheng Zhang, Xu Li, Ang Gao, and Zhu Han. A prediction-
based coordination caching scheme for content centric networking. In 2018 27th
Wireless and Optical Communication Conference (WOCC), pages 1–5. IEEE, 2018.

[158] Yang Du, Pengyu Gao, Xiaodong Wang, Binhong Dong, Zhi Chen, and Shaoqian
Li. Monte-carlo tree search aided contextual online learning approach for wireless
caching. In 2018 IEEE Globecom Workshops (GC Wkshps), pages 1–7. IEEE, 2018.

[159] Peng Yang, Ning Zhang, Shan Zhang, Li Yu, Junshan Zhang, and Xuemin Sherman
Shen. Content popularity prediction towards location-aware mobile edge caching.
IEEE Transactions on Multimedia, 21(4):915–929, 2018.

[160] Long Teng, Xiang Yu, Jianhua Tang, and Mingxia Liao. Proactive caching strategy
with content-aware weighted feature matrix learning in small cell network. IEEE
Communications Letters, 23(4):700–703, 2019.

[161] Teofilo F Gonzalez. Handbook of Approximation Algorithms and Metaheuristics:
Methologies and Traditional Applications, Volume 1. CRC Press, 2018.

[162] Xiuhua Li, Xiaofei Wang, Keqiu Li, Zhu Han, and Victor CM Leung. Collaborative
multi-tier caching in heterogeneous networks: Modeling, analysis, and design. IEEE
Transactions on Wireless Communications, 16(10):6926–6939, 2017.

[163] Yongxue Tian and Li Pan. Predicting short-term traffic flow by long short-term
memory recurrent neural network. In 2015 IEEE international conference on smart
city/SocialCom/SustainCom (SmartCity), pages 153–158. IEEE, 2015.

[164] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53–65,
1987.

[165] Tzay Y Young and Thomas W Calvert. Classification, estimation, and pattern recog-
nition. Elsevier Publishing Company, 1974.

[166] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of
approximations for maximizing submodular set functions—i. Mathematical pro-
gramming, 14(1):265–294, 1978.

[167] Manoj Kumar Somesula, Rashmi Ranjan Rout, and DVLN Somayajulu. Deadline-
aware caching using echo state network integrated fuzzy logic for mobile edge net-
works. Wireless Networks, pages 1–21, 2021.

[168] Jong-Kwon Lee and Jennifer C Hou. Modeling steady-state and transient behaviors
of user mobility: formulation, analysis, and application. In Proceedings of the 7th
ACM international symposium on Mobile ad hoc networking and computing, pages
85–96, 2006.

190

[169] Xuejun Zhuo, Qinghua Li, Wei Gao, Guohong Cao, and Yiqi Dai. Contact duration
aware data replication in delay tolerant networks. In 2011 19th IEEE International
Conference on Network Protocols, pages 236–245. IEEE, 2011.

[170] Derek Leong, Alexandros G Dimakis, and Tracey Ho. Distributed storage alloca-
tions. IEEE Transactions on Information Theory, 58(7):4733–4752, 2012.

[171] Peng Lin, Qingyang Song, and Abbas Jamalipour. Multidimensional cooperative
caching in comp-integrated ultra-dense cellular networks. IEEE Transactions on
Wireless Communications, 19(3):1977–1989, 2019.

[172] Kumara Sastry and Graham Goldberg, David E.and Kendall. Genetic Algorithms.
Springer, Boston, MA, 2014.

[173] Konstantinos Poularakis and Leandros Tassiulas. Publicly available code, 2016.

[174] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

[175] Rose E Wang, Michael Everett, and Jonathan P How. R-maddpg for partially observ-
able environments and limited communication. arXiv preprint arXiv:2002.06684,
2020.

[176] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. arXiv
preprint arXiv:1706.02275, 2017.

[177] Mohamed Ahmed, Stefano Traverso, Paolo Giaccone, Emilio Leonardi, and Saverio
Niccolini. Analyzing the performance of lru caches under non-stationary traffic
patterns. arXiv preprint arXiv:1301.4909, 2013.

[178] Dario Rossi and Giuseppe Rossini. Caching performance of content centric networks
under multi-path routing (and more). Relatório técnico, Telecom ParisTech, pages
1–6, 2011.

[179] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer. High per-
formance cache replacement using re-reference interval prediction (rrip). ACM
SIGARCH Computer Architecture News, 38(3):60–71, 2010.

191

List of Publications

1. Manoj Kumar Somesula and Rashmi Ranjan Rout and D. V. L. N. So-

mayajulu. “Deadline-aware caching using echo state network integrated fuzzy

logic for mobile edge networks.” Wireless Networks, Springer (2021): 1-21.

https://doi.org/10.1007/s11276-021-02578-2

2. Manoj Kumar Somesula and Rashmi Ranjan Rout and D. V. L. N. Somayajulu.

“Contact Duration-Aware Cooperative Cache Placement using Genetic Algorithm

for Mobile Edge Networks.” Computer Networks, Elsevier (2021): 108062.

3. Manoj Kumar Somesula and Rashmi Ranjan Rout and D. V. L. N. Somaya-

julu. “Cooperative Cache Update using Multi-Agent Recurrent Deep Reinforcement

Learning for Mobile Edge Networks.” Computer Networks, Elsevier. (Under Re-

view)

4. Manoj Kumar Somesula and Rashmi Ranjan Rout and D. V. L. N. Somayajulu.

“User Preference Learning based Cooperative Cache Placement for Mobile Edge

Networks with Adaptive User Clustering.” Future Generation Computer Systems,

Elsevier. (Submitted)

192

	ACKNOWLEDGMENTS
	ABSTRACT
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	1 Introduction
	1.1 Motivation and objectives
	1.2 Overview of the Contributions of this Thesis
	1.2.1 Deadline-aware Content Caching using Echo State Network Integrated Fuzzy Logic for Mobile Edge Networks
	1.2.2 User Preference based Cooperative Cache Placement for Mobile Edge Networks
	1.2.3 Contact Duration-Aware Cooperative Cache Placement with User Mobility Across MECs (i.e., BS) using Genetic Algorithm for Mobile Edge Networks
	1.2.4 Cooperative Cache Replacement using Recurrent Multi-Agent Deep Reinforcement Learning for Mobile Edge Networks

	1.3 Experimental Setup
	1.4 Organization of the Thesis

	2 Literature Survey
	2.1 Mobile Edge Networks Architecture
	2.2 Mobile Edge Caching
	2.3 Cooperative Caching
	2.4 Mobility based Caching
	2.5 Coded Caching
	2.6 Learning based Caching
	2.6.1 Supervised Learning based Caching
	2.6.2 Unsupervised Learning based Caching
	2.6.3 Reinforcement Learning based Caching

	2.7 Proactive and Reactive Caching
	2.8 User Preference and Prediction based Caching
	2.9 Summary

	3 Deadline-aware Content Cache Placement using Echo State Network Integrated Fuzzy Logic for Mobile Edge Networks
	3.1 Mobile Edge Computing (MEC) Model and Problem Formulation
	3.1.1 Popularity of Content and Content Types
	3.1.2 Cache Decision Variables
	3.1.3 Delay
	3.1.4 Deadline
	3.1.5 Problem Formulation

	3.2 Approximation Algorithm based on Relaxation and Rounding Technique
	3.2.1 Relaxation
	3.2.2 Rounding

	3.3 Fuzzy Caching Algorithm based on Content Request Prediction
	3.3.1 Popularity Prediction using Echo State Networks
	3.3.2 Fuzzy Inference System for cache node selection
	3.3.3 Fuzzy Caching Algorithm
	3.3.4 Replacement Strategy

	3.4 Performance Evaluation
	3.4.1 Description of Data Set
	3.4.2 Simulation Environment
	3.4.3 Performance Metrics
	3.4.4 Reference Algorithms
	3.4.5 Impact of Cache Capacity
	3.4.6 Impact of number of MECs
	3.4.7 Impact of Number of Requests
	3.4.8 Impact of Number of Contents
	3.4.9 Impact of Content popularity
	3.4.10 Impact of Cache Storage Utilization

	3.5 Summary

	4 User Preference Prediction based Cache Placement for Mobile Edge Networks with Adaptive User Clustering
	4.1 System Model
	4.2 User Preferences Prediction and Content based Clustering
	4.2.1 User Preference Prediction based on LSTM
	4.2.2 Content based User Clustering
	4.2.2.1 Clustering Algorithm

	4.2.3 Maximization of Saved Delay Optimization Problem

	4.3 User Preference based Content Placement Mechanism using Sub-modular Optimization
	4.3.1 Greedy algorithm for user preference prediction based cooperative content caching

	4.4 Performance Evaluation
	4.4.1 Simulation Environment
	4.4.2 Performance Metrics
	4.4.3 Reference Algorithms
	4.4.4 Impact of Cache Size
	4.4.5 Impact of number of MECs
	4.4.6 Impact of user preference similarity
	4.4.7 Impact of User activity level skewness
	4.4.8 Impact of Zipf parameter
	4.4.9 Impact of Number of clusters

	4.5 Summary

	5 Contact Duration-Aware Cooperative Cache Placement with User Mobility Across MECs using Genetic Algorithm for Mobile Edge Networks
	5.1 MEC System Model and Problem Formulation
	5.1.1 Network Model
	5.1.2 Mobility Model
	5.1.3 Content Request Model
	5.1.4 Motivation
	5.1.5 Static and mobility aware caching scenarios
	5.1.6 Mobility and sojourn time prediction
	5.1.7 Problem Formulation

	5.2 Greedy Algorithm for Contact duration Aware Cooperative Content Placement
	5.2.1 Greedy Algorithm for Contact duration Aware Cooperative Content Placement

	5.3 GA based Cooperative Content Placement for large scale problems
	5.4 Performance Evaluation
	5.4.1 Simulation Environment
	5.4.2 Performance Metrics
	5.4.3 Reference Algorithms
	5.4.4 Mobility Model
	5.4.5 Demand Model
	5.4.6 Impact of number of MECs
	5.4.7 Impact of Cache Capacity
	5.4.8 Impact of data transmission rate
	5.4.9 Impact of contact duration
	5.4.10 Impact of content popularity

	5.5 Summary

	6 Cooperative Cache Replacement using Recurrent Multi-Agent Deep Reinforcement Learning for Mobile Edge Networks
	6.1 System Model and Problem Formulation
	6.1.1 Network Model
	6.1.2 Problem Formulation

	6.2 Multi-Agent Deep Reinforcement Learning Model for Cooperative Caching
	6.2.1 Observation and State Space
	6.2.2 Action Space
	6.2.3 Reward Function

	6.3 Multi-agent Recurrent DRL for cooperative Content Caching
	6.3.1 Multi-Agent Actor-Critic Framework
	6.3.2 Multi-Agent Recurrent DRL based Cooperative Caching Algorithm

	6.4 Performance Evaluation
	6.4.1 Performance Metrics
	6.4.2 Reference Algorithms
	6.4.3 Impact of Cache Size
	6.4.4 Impact of Number of MECs
	6.4.5 Impact of Number of Contents
	6.4.6 Impact of Zipf parameter
	6.4.7 Performance evaluation with training episode
	6.4.8 The convergence performance

	6.5 Summary

	7 Conclusion and Future Directions
	7.1 The Major Contributions of the Thesis
	7.2 Future Directions

	Appendix
	Bibliography
	List of Publications

