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ABSTRACT

Let G = (V,E) be a simple, undirected and connected graph. In this thesis, we study

the algorithmic aspects of Roman domination and its variants, namely (i) Roman {2}-

domination, (ii) double Roman domination, (iii) perfect Roman domination, (iv) perfect

double Roman domination, (v) independent Roman domination, (vi) independent Roman

{2}-domination, (vii) independent double Roman domination, (viii) total Roman domina-

tion, (ix) total double Roman domination, (x) weakly connected Roman domination, (xi)

Roman {3}-domination, (xii) total Roman {2}-domination and (xiii) total Roman {3}-

domination.

For a simple, undirected graph G = (V,E), a Roman dominating function (RDF) f :

V → {0, 1, 2} has the property that, every vertex u with f(u) = 0 is adjacent to at least one

vertex v for which f(v) = 2. A Roman {2}-dominating function (R2DF) f : V → {0, 1, 2}

has the property that for every vertex v ∈ V with f(v) = 0, either there exists a vertex

u ∈ NG(v), with f(u) = 2, or at least two vertices x, y ∈ NG(v) with f(x) = f(y) = 1,

whereNG(v) is the set of vertices adjacent to v inG. A double Roman dominating function

(DRDF) on G is a function f : V → {0, 1, 2, 3} such that for every vertex v ∈ V if

f(v) = 0, then v has at least two neighbors x, y ∈ NG(v) with f(x) = f(y) = 2 or one

neighbor w with f(w) = 3, and if f(v) = 1, then v must have at least one neighbor w

with f(w) ≥ 2 A perfect Roman dominating function (PRDF) f : V → {0, 1, 2} has the

property that, every vertex u with f(u) = 0 is adjacent to exactly one vertex v for which

f(v) = 2. A function h : V (G)→ {0, 1, 2, 3} which satisfies the following two conditions

is called a perfect double Roman dominating function (PDRDF).

C1). For all q ∈ V with h(q) = 0, either there exist exactly two vertices r1, r2 such that

(q, r1) ∈ E, (q, r2) ∈ E, h(r1) = 2, h(r2) = 2 and ∀s, if h(s) = 3 then (q, s) /∈ E, or

there exists exactly one vertex t such that h(t) = 3, (q, t) ∈ E and ∀u, if h(u) = 2 then

(q, u) /∈ E.

C2). For all q ∈ V with h(q) = 1, there exists exactly one vertex t such that h(t) = 2,

(q, t) ∈ E and ∀u, if h(u) = 3 then (q, u) /∈ E.

A Roman {3}-dominating function (R3DF) is a function g : V (G) → {0, 1, 2, 3}

ii



having the property that
∑

v∈NG(u) g(v) ≥ 3, if g(u) = 0, and
∑

v∈NG(u) g(v) ≥ 2, if

g(u) = 1 for any vertex u ∈ G. An independent Roman dominating function (IRDF),

independent Roman {2}-dominating function (IR2DF) and independent double Roman

dominating function (IDRDF), respectively, is a RDF, R2DF and DRDF with additional

constraint that no two vertices assigned positive values are adjacent. A total Roman domi-

nating function (TRDF), total double Roman dominating function (TDRDF), total Roman

{2}-dominating function (TR2DF) and total Roman {3}-dominating function (TR3DF),

respectively, is a RDF, DRDF, R2DF and R3DF with an additional property that the sub-

graph induced by the set of vertices labeled positive weight has no isolated vertices. A

function h : V (G) → {0, 1, 2} which satisfies the following two conditions is called a

weakly connected Roman dominating function (WCRDF) of G. C1). for all q ∈ V with

h(q) = 0 there exists a vertex r such that (q, r) ∈ E and h(r) = 2 and

C2). the graph with vertex set V (G) and edge set {(p, z) : h(p) ≥ 1 or h(z) ≥ 1 or both }

is connected.

The weight of a RDF (R2DF, DRDF, PRDF, PDRDF, IRDF, IR2DF, IDRDF, TRDF,

TR3DF, WCRDF, TR2DF, R3DF, TDRDF) is the sum f(V ) =
∑

v∈V f(v). Given a graph

G and a positive integer k, the Roman domination problem (RDP), Roman {2}-domination

problem (R2DP), double Roman domination problem (DRDP), perfect Roman domination

problem (PRDP), perfect double Roman domination problem (PDRDP), independent Ro-

man domination problem (IRDP), independent Roman {2}-dominatin problem (IR2DP),

independent double Roman domination problem (IDRDP), total Roman domination prob-

lem (TRDP), total double Roman domination problem (TDRDP), Roman {3}-domination

problem (R3DP), total Roman {2}-domination problem (TR2DP) and total Roman {3}-

domination problem (TR3DP), respectively, is to check whether G has a RDF, R2DF,

DRDF, PRDF, PDRDF, IRDF, IR2DF, IDRDF, TRDF, TDRDF, R3DF, TR2DF and TR3DF

of weight at most k.

The minimum RDP (MRDP), minimum R2DP (MR2DP), minimum DRDP (MDRDP),

minimum PRDP (MPRDP), minimum PDRDP (MPDRDP), minimum IRDP (MIRDP),

minimum IR2DP (MIR2DP) and minimum IDRDP (MIDRDP), minimum TRDP

(MTRDP), minimum TDRDP (MTDRDP), minimum R3DP (MR3DP), minimum TR2DP
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(MTR2DP), minimum TR3DP (MTR3DP), minimum WCRDP (MWCRDP), respectively,

is to find an RDF, R2DF, DRDF, PRDF, PDRDF, IRDF, IR2DF, IDRDF, TRDF, TDRDF,

R3DF, TR2DF, TR3DF and WCRDF of minimum weight in the input graph.

In this thesis, we show that RDP, R2DP, DRDP, PRDP, IRDP, IR2DP, IDRDP and R3DP

are NP-complete for star convex and comb convex bipartite graphs, R2DP is NP-complete

for bisplit graphs, and PDRDP is NP-complete for bipartite graphs, and IR2DP, IDRDP,

R3DP, PDRDP and TR3DP are NP-complete for chordal graphs, and IRDP, IR2DP and

IDRDP are NP-complete for dually chordal graphs, and R3DP is NP-complete for planar

graphs. We show that MRDP, MR2DP, MDRDP, MPRDP, MPDRDP, MIRDP, MIR2DP,

MIDRDP, MTRDP, MTDRDP, MR3DP, MTR2DP, MTR3DP and MWCRDP are linear

time solvable for threshold graphs, chain graphs and bounded tree-width graphs.

We show that the MRDP for star convex bipartite graphs and comb convex bipartite

graphs cannot be approximated within (1 − ε) ln |V | for any ε > 0 unless P = NP and

show that MTRDP (MTDRDP, MR3DP, MTR2DP, MTR3DP, MWCRDP) cannot have

(1− δ) ln |V | ratio approximation algorithm for any δ > 0 unless P = NP .

We propose a, 2(1 + ln(∆ + 1))-approximation algorithm (APX-AL) for the MRDP,

2(1+ln(∆+1))-APX-AL for the MR2DP and 3(1+ln(∆+1))-APX-AL for the MDRDP,

2(ln(∆ − 0.5) + 1.5)-APX-AL for the MTRDP and the MTR2DP, 3(ln(∆ − 0.5) + 1.5)-

APX-AL for the MTDRDP and the MTR3DP, 3(1 + ln(∆− 1))-APX-AL for the MR3DP

and 2(1 + ε)(1 + ln(∆− 1))-APX-AL for the MWCRDP, where ∆ is the maximum degree

of G and ε > 0.

We show that the, MIRDP, MIR2DP and MIDRDP are APX-hard for graphs with ∆ =

4, and MRDP, MTRDP and MTDRDP are APX-complete for graphs with ∆ = 5, and

MR3DP, MTR2DP, MTR3DP and MWCRDP are APX-complete for graphs with ∆ = 4.

We show that domination problem and IRDP (PDRDP, IR2DP, IDRDP, R3DP, TR2DP,

TR3DP, WCRDP) are not equivalent in computational complexity aspects.

We adopt an Integer Linear Programming (ILP) approach towards computing the solu-

tions of MR3DP and MTR3DP.
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Chapter 1

Introduction

In this thesis, we mainly focus on determining algorithmic complexity aspects of Roman

domination and its variants. The theory of Roman domination has several real life ap-

plications, namely, facility location problems, planning of defence strategies, surveillance

related problems, ad hoc wireless networks, etc. We present results related to Roman domi-

nation and its variants namely, Roman {2}-domination, double Roman domination, perfect

Roman domination, perfect double Roman domination, independent Roman domination,

independent Roman {2}-domination, independent double Roman domination, total Ro-

man domination, total double Roman domination, weakly connected Roman domination,

Roman {3}-domination, total Roman {2}-domination and total Roman {3}-domination.

1.1 Preliminaries

Here, we present few definitions and results pertaining to graph theory and algorithms

which will be used throughout the thesis.

1.1.1 Graph Theoretic Terminology

We consider G(V, E) as an undirected, simple and connected graph. For a vertex u of G,

the (open) neighborhood denoted NG(u) is the set {v : (v, u) ∈ E(G)} and its degree is

|NG(u)|. NG[u] = {u} ∪ NG(u) is the closed neighborhood of u. Maximum degree of G

1
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denoted ∆ (or clearly ∆(G)) is maxu∈V (G)|NG(u)|. A vertex v is called isolated vertex if

|NG(v)| = 0. A vertex v of G is called universal vertex if |NG(v)| = |V (G)| − 1. If each

pair of vertices is connected by an edge then the graph is complete. An induced subgraph

of H denoted H[S] (or 〈S〉) is the graph formed with the vertex set S ⊆ V (H) and the

edge set {(u, v) : u, v ∈ S}. A set S ⊆ V forms a clique if the induced subgraph 〈S〉 is

complete. If no two vertices of a set S ⊆ V are adjacent then, S is said to be an independent

set. We refer to [20], for undefined notations and terminology.

1.1.2 Algorithmic Preliminaries

Here, we present few concepts and notations of complexity theory, used in this thesis.

Throughout this thesis, the O (Big ‘Oh’) notation is used to bound the running time of an

algorithm. Let g : N → R+ and f : N → R+. We say that f(n) = O(g(n)) if there exists

two constants c ∈ R and n0 ∈ N satisfying f(n) ≤ c.g(n), ∀n ≥ n0.

1.1.2.1 Complexity Classes

The most common complexity classes are P, NP, NP-hard, and NP-complete.

“The decision problems that can be solvable in polynomial time in worst-case be-

longs to the class P. In detail, a problem belongs to class P if there exists an algorithm

that solves the problem for any input size in O(nk), where n is input size and k is a

constant. The decision problems whose ‘yes’ instances can be verifiable in polyno-

mial time belongs to the class NP.”

A polynomial time solvable problem can be verified in polynomial time. Therefore,

any problem in class P belongs to NP.

“A problem is said to be NP-hard if every problem in NP class is polynomially

reducible to it. If a problem is in NP and NP-hard then it is said to be in NP-

complete.”

The problems in NP-complete are considered as hardest problems in NP.

2
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Let Iπ denote the set of all instances of a decision problem π. An instance x of π is

called an yes (no) instance if the answer to the problem π for the instance x is yes (no).

A decision problem π1 is said to be polynomially reducible to another decision problem

π2 if there exists a function f : Iπ1 → Iπ2 such that (i) f is computable deterministically

in polynomial time and (ii) x is an yes instance of π1 iff f(x) is an yes instance of π2.

A decision problem π is said to be NP-complete if (i) π ∈ NP , and (ii) for any problem

π′ ∈ NP, π′ is polynomially reducible to π. An optimization problem π is NP-hard if

a polynomial time algorithm for π would imply a polynomial time algorithm for every

problem in NP. In general, an optimization problem is NP-hard if its corresponding decision

problem is NP-complete.

1.1.2.2 Approximation Hardness

One of the ways to deal with problems which are NP-hard is to give approximation algo-

rithms for giving a feasible solution to an optimization version of the problem. An algo-

rithm A for a minimization problem π is called a ρ(n)-approximation algorithm, if the cost

C of the solution given by the algorithm A is within ρ(n) times the cost C∗ of an optimal

solution, for any input of size n, that is, C
C∗
≤ ρ(n). If ρ(n) = c for some constant c > 1,

then the algorithm A is called a constant approximation algorithm or a c-approximation

algorithm. The class of all NP optimization problems that have constant approximation

algorithms which run in polynomial time is called APX.

“An optimization problem π is APX-complete if:

1. π ∈ APX, and

2. π ∈ APX-hard, that is, there exists an L-reduction from known APX-complete

problem to π.”

L-reduction is one of the several approximation-preserving reductions available in the lit-

erature. This can be formally defined as follows.

3
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Definition 1.1.1. “(L-reduction) [16] An optimization problem π is L-reducible to

optimization problem π′ if there exists a function f : π → π′ and two constants

α, β ∈ Z+, which satisfy the following for every instance x of π:

1. optπ′(f(x)) ≤ α.optπ(x)

2. for every feasible solution y of f(x) with objective value mπ′(f(x), y) = c2 in

polynomial time one can find a solution y′ of x with mπ(x, y′) = c1 such that

|optπ(x)− c1| ≤ β|optπ′(f(x))− c2|

Here, optπ(x) represents the size of an optimal solution for an instance x of π.”

1.2 Graph Classes Studied in the Thesis

Although most of the graph optimization problems are algorithmically hard to solve (i.e.

NP-hard) in arbitrary graphs, these problems are proved to have polynomial time algo-

rithms when the input restricted to specific graph class. Here, we define the graph classes

considered in the rest of the thesis.

1.2.1 Bipartite Graphs

Definition 1.2.1. “A graph is bipartite if its vertex set V can be split into disjoint

independent sets P and Q such that every edge (p, q) is incident on a vertex in P

and other in Q.”

A bipartite graph with partition P and Q, we denote as G = (P,Q,E). Further, if each

vertex p ∈ P is adjacent to every q ∈ Q then G is a bi-clique or complete bipartite and

denoted as Km,n, here m = |P | and n = |Q|. Clearly, bipartite graphs can be properly

colorable with two colors (i.e., 2-colorable). Since sets X and Y are independent, bipar-

tite graph does not contain odd cycle. Bipartition is determined in polynomial time using

Breadth First Search algorithm [14].

4
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1.2.2 Bisplit Graphs

Definition 1.2.2. “A graph G = (V,E) is a bisplit graph if vertex set V can be split

into three disjoint independent sets X, Y , and Z such that X ∪ Y forms a complete

bipartite graph (or bi-clique) [2].”

In a bisplit graph, if one partition of bi-clique is empty then, it is a bipartite graph.

Hence, bipartite graphs is a proper subclass of bisplit graphs. Therefore, all bisplit graphs

are not 2-colorable.

•v

•u

•t

•s

•
y

•
x

•
w

•
r

•
q

•
p

Figure 1.1: Bisplit graph

The bisplit graph with partition X = {s, t, u, v}, Y = {w, x, y}, and Z = {p, q, r} is

illustrated in Figure 1.1. We can recognize in polynomial time that whether the graph is a

bisplit graph [2].

1.2.3 Star Convex Bipartite Graphs

Definition 1.2.3. “([70]) For a bipartite graph G = (P,Q,E) if there exists an

associated tree T = (P, F ), such that for each vertex q ∈ Q, its neighborhood N(q)

induces a subtree of T then, it is a tree convex bipartite graph.”

G is called a star convex bipartite graph if T is a star in the Definition 1.2.1. Figure

1.2 depicts a star convex bipartite graph with associated star.
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•l

•k

•j

• s

• r

• q

• p

•r

•p •s

•q

Figure 1.2: Star convex bipartite graph

1.2.4 Comb Convex Bipartite Graphs

A bipartite graph is comb convex if T is a comb in the Definition 1.2.1.

•e

•d

•c

•b

•a

• 5

• 4

• 3

• 2

• 1

• 6

•
1

•
2

•
5

•
3

•
4

•
6

Figure 1.3: Comb convex bipartite graph

An example comb convex bipartite graph along with its corresponding comb is depicted

in Figure 1.3. Given a bipartite graph, we can construct comb convex bipartite graph as

follows.

Theorem 1.2.1 (Canonical transformation). ([29]) “Given a bipartite graph G =

(L,M,E), where L = {l1, l2, . . . , l|L|}, M = {m1,m2, . . . ,m|M |}, we can con-

struct a comb convex bipartite graph G′ = (L′,M,E ′), where L′ = L ∪

{l|L|+1, l|L|+2, . . . , l2|L|} and E ′ = E ∪ {(li,m′) : |L|+ 1 ≤ i ≤ 2|L|,m′ ∈M}.”
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1.2.5 Chordal Graphs

In a graph, if any cycle with length at least 3 has a chord, then it is chordal. Alternately, if

a graph does not contain a simple cycle having length greater than 3 then it is chordal (or

triangulated graph). Since chordal graphs is a proper subclass of perfect graphs, where the

chromatic and clique numbers of a graph are equal, the study of the graph problems in this

graph class and in its subclasses is quite interesting. The important subclasses of chordal

graphs considered in this thesis include split graphs, block graphs, threshold graphs, undi-

rected path graphs, and doubly chordal graphs.

A vertex v is simplicial if its closed neighborhood N [v] induces a complete subgraph

of G. It is known that there exists at least one simplicial vertex in a chordal graph and if it

is not complete then it has at least two simplicial vertices which are not adjacent [25]. The

perfect elimination ordering (PEO) is an ordering of vertices say, (v1, . . . , vn), if vi is the

simplicial vertex of G[{vi, vi+1, . . . , vn}] for every i, 1 ≤ i ≤ n. From hereditary nature of

chordality, all the vertices of the graph can be removed successively removing simplicial

vertices one after the other. This leads to the following characterization for chordal graphs

due to Fulkerson et al [21].

Theorem 1.2.2. ([21]) “A graph G is chordal iff G admits a PEO.”

For example, the graph depicted in Figure 1.4 admits a PEO (p1, p2, p3, p5, p4, p6, p7), hence

it is a chordal graph. A PEO of a chordal graph can be obtained in linear time [11].

•
p4

•
p7

•
p3

•
p5

•
p6

•p1

•p2

Figure 1.4: Chordal graph
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1.2.6 Chain Graphs

A chain graph G = (X, Y,E) is a bipartite graph such that a chain can be formed with

sets of open neighborhood of X , i.e., NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(xp). If a bipartite

graph G = (X, Y,E) is a chain graph, then there is a chain with open neighborhoods of

the vertices of Y as well. An ordering α = (x1, x2, . . . , xp, y1, y2, . . . , yq) of X ∪ Y is

referred as chain ordering if NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(xp) and NG(y1) ⊇ NG(y2) ⊇

. . . ⊇ NG(yq). Chain ordering exists for every chain graph [37]. Figure 1.5 illustrates some

examples of chain graphs.

•p1
•p2

•p3

•q1 •q2 •q3

(a)

•p1
•p2

•p3
•p4

•q1 •q2 •q3 •q4

(b)

Figure 1.5: Chain graphs

1.2.7 Dually Chordal Graphs

A vertex u ∈ NG[v] is a maximum neighbour of v in G if NG[w] ⊆ NG[u] holds for each

w ∈ NG[v]. A vertex ordering (v1, v2, . . . , vn) is a maximum neighbourhood ordering

(MNO) if for each i < n, vi has a maximum neighbour in 〈{vi, vi+1, . . . , vn}〉.

Theorem 1.2.3. ([67]) “A graph G is dually chordal iff G admits a MNO.”

A MNO of a dually chordal graph is determined in linear time [3]. Figure 1.6 depicts a

dually chordal graph with a MNO (v4, v8, v3, v7, v6, v2, v1, v5).

1.2.8 Split Graphs

A graph is a split graph if the vertex set can be split into an independent set I and a clique

C. It can be observed that this partition may not be unique. Since every split graph admits a

8
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•
v8

•
v7

•
v6

•
v5

•
v4

•
v3

•
v2

•
v1

Figure 1.6: Dually chordal graph

perfect elimination ordering with independent set vertices followed by clique vertices, split

graphs is one of the chordal subclasses. It can be noted that complement of a split graph is

also a split graph. In a split graph G = (C, I), if every vertex in I is adjacent to all vertices

of C then G is called complete split graph.

1.2.9 Threshold Graphs

A graph is threshold graph if there exists a real number w(v), ∀v ∈ V and a real number t

such that a set S ⊆ V is independent iff
∑

v∈S w(v) ≤ t.

•
2

•
3

•
3

•
2

•
1

Figure 1.7: Threshold graph

The graph illustrated in Figure 1.7 is a threshold graph with threshold t = 3. The following

characterizations are defined for threshold graphs in [56].

• Threshold graph G can be generated by adding an isolated vertex or a dominating

vertex repeatedly, starting with single vertex.

• A graph is a threshold graph iff for a split partition (C, I) of V , there is an ordering

(x1, x2, . . . , xp) of C satisfying NG[x1] ⊆ . . . ⊆ NG[xp], and there is an ordering

(y1, y2, . . . , yq) of I satisfying NG(y1) ⊇ . . . ⊇ NG(yq).

9
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1.3 Organization of the Thesis

The rest of the thesis is organized as follows.

In chapter 2, we discuss the Roman domination problem and its thirteen variants namely

(i) Roman {2}-domination, (ii) double Roman domination, (iii) perfect Roman domina-

tion, (iv) perfect double Roman domination, (v) independent Roman domination, (vi) inde-

pendent Roman {2}-domination, (vii) independent double Roman domination, (viii) total

Roman domination, (ix) total double Roman domination, (x) weakly connected Roman

domination, (xi) Roman {3}-domination, (xii) total Roman {2}-domination and (xiii) to-

tal Roman {3}-domination. We give the importance of studying these variants of Roman

domination. We also present the survey of the results related to some well studied variants

of domination problems like connected domination, total domination, that are present in

the literature. The algorithmic complexity of Roman domination, Roman {2}-domination

and double Roman domination problems are investigated in chapter 3. In chapter 4, we

investigate the perfect Roman domination, perfect double Roman domination, total Roman

domination and total double Roman domination problems complexity. Finally, we study

the complexity difference between domination and perfect double Roman domination prob-

lems. In chapter 5, we investigate the independent Roman domination, independent Roman

{2}-domination and independent double Roman domination and investigate its complexity

in threshold graphs, chain graphs and bounded-tree width graphs. We study the complex-

ity difference between domination and these variants of independent Roman domination

problems. In chapter 6, we investigate the weakly connected Roman domination, Roman

{3}-domination, total Roman {2}-domination and total Roman {3}-domination problems

complexity. In chapter 7, we present approximation results related to all the above said Ro-

man domination problems. Finally, chapter 8 summarizes the work presented in this thesis

and mentions future directions of research related to these problems.

10



Chapter 2

Problems Studied in the Thesis and

Related Work

2.1 Problems Studied in the Thesis

Due to wide variety of applications in several fields, many varieties of Roman domina-

tion problem have been emerged and studied in terms of exact values, lower and upper

bounds, computational complexity, and approximation point of views. By identifying the

importance of variants of Roman domination problem, we studied the following Roman

domination and its variants in the thesis. Throughout the thesis P refers to polynomial time

solvable and NPC refers to NP-complete.

Figure 2.1: Example graph G

11



CHAPTER 2. PROBLEMS STUDIED IN THE THESIS AND RELATED WORK Section 2.1

2.1.1 Roman Domination

In 2004, Cockayne et al. in [23] introduced the concept Roman domination (RDOM).

Definition 2.1.1. “A Roman Dominating Function (RDF) f : V → {0, 1, 2} on G is

a function such that ∀u ∈ V where f(u) = 0 has a neighbour v such that f(v) = 2.

The weight of a RDF is the value f(V ) =
∑

v∈V f(v). The Roman domination

number is the minimum weight of a RDF on G and is denoted by γR(G).”

Let p : V (G)→ {0, 1, 2} be a function defined, on the graph G depicted in Figure 2.1,

as follows.

p(v) =

2, if v ∈ {d, g}

0, otherwise
(2.1)

Clearly, p is a RDF of G and p(V ) =
∑

u∈V p(u) = 4. We refer to [17, 23, 31, 42, 43, 44,

57, 58, 60] for the liturature on RDOM in graphs.

2.1.2 Roman {2}-domination

In 2016, Roman {2}-domination (R2DOM) was introduced by Chellali et al. in [36].

Definition 2.1.2. “A Roman {2}-dominating function (R2DF) is a RDF with an

additional property that every vertex with weight zero may also adjacent to at least

two vertices such that each with weight one. The weight of a R2DF is the value

f(V ) =
∑

v∈V f(v). The minimum weight of a R2DF is called the Roman {2}-

domination number and is denoted by γ{R2}(G).”

Let q : V (G)→ {0, 1, 2} be a function defined, on the graph G depicted in Figure 2.1,

as follows.

q(v) =


2, if v = g

1, if v ∈ {a, b, c, e}

0, otherwise

(2.2)

12
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Clearly, q and the function p defined in section 2.1.1 are R2DFs.

2.1.3 Double Roman domination

Double Roman domination (DRDOM) was initiated in 2016 by Robert et al. in [7].

Definition 2.1.3. “A double Roman dominating function (DRDF) on G is a function

f : V → {0, 1, 2, 3} such that every vertex with weight zero should have at least ei-

ther two neighbors such that each with weight two or one neighbor with weight three,

and every vertex with weight one should have at least one neighbor with weight one.

The weight of a DRDF is the value f(V ) =
∑

v∈V f(v). The double Roman domi-

nation number equals the minimum weight of a DRDF on G, denoted by γdR(G).”

Let p : V (G) → {0, 1, 2, 3} and q : V (G) → {0, 1, 2, 3} are functions defined, on the

graph G depicted in Figure 2.1, as follows.

p(v) =

3, if v ∈ {d, g}

0, otherwise
(2.3)

q(v) =


3, if v = g

2, if v ∈ {a, b, c, e}

0, otherwise

(2.4)

Clearly, p and q are DRDFs.

2.1.4 Perfect Roman Domination

In 2018, the concept of perfect Roman domination (PRDOM) was introduced by Henning

et al. in [38].

13
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Definition 2.1.4. “A function f : V → {0, 1, 2} is a perfect Roman Dominating

Function (PRDF) on G, if every vertex with weight zero is adjacent to exactly one

vertex with weight two. The weight of a PRDF is the value f(V ) =
∑

u∈V f(u). The

perfect Roman domination number is the minimum weight of a PRDF on G and is

denoted by γPR(G).”

Clearly, the function p defined in section 2.1.1 is a PRDF. The PRDOM has been studied

in [40, 65].

2.1.5 Perfect Double Roman Domination

In 2020, the concept of perfect double Roman domination (PDRDOM) was introduced by

Egunjobi et al. in [9].

Definition 2.1.5. “A function h : V (G) → {0, 1, 2, 3} which satisfies the following

conditions is called a perfect double Roman dominating function (PDRDF).

C1). For all q ∈ V with h(q) = 0, either there exist exactly two vertices r1, r2 such

that (q, r1) ∈ E, (q, r2) ∈ E, h(r1) = 2, h(r2) = 2 and ∀s, if h(s) = 3 then

(q, s) /∈ E, or there exists exactly one vertex t such that h(t) = 3, (q, t) ∈ E and ∀u,

if h(u) = 2 then (q, u) /∈ E.

C2). For all q ∈ V with h(q) = 1, there exists exactly one vertex t such that h(t) = 2,

(q, t) ∈ E and ∀u, if h(u) = 3 then (q, u) /∈ E.

The weight of a PDRDF is the value f(V ) =
∑

u∈V f(u). The perfect double Roman

domination number is the minimum weight of a PDRDF on G and is denoted by

γPdR(G).”

Clearly, the function p defined in section 2.1.3 is a PDRDF.

2.1.6 Independent Roman Domination

In 2004, Independent Roman domination (IRDOM) was introduced by Cockayne et al. in

[23].

14
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Definition 2.1.6. “An independent Roman dominating function (IRDF) on G is a

RDF f with the additional property that the subgraph of G induced by the set {v ∈

V : f(v) ≥ 1} contains only isolated vertices. The weight of an IRDF f is the

value f(V ) =
∑

v∈V f(v). The independent Roman domination number equals the

minimum weight of an IRDF on G, denoted by iR(G).”

Clearly, the function p defined in section 2.1.1 is a IRDF. The concept of IRDOM has

been studied in [48, 49].

2.1.7 Independent Roman {2}-domination

In 2018, Independent Roman {2}-domination (IR2DOM) was introduced by Rahmouni et

al. in [8].

Definition 2.1.7. “An independent Roman {2}-dominating function (IR2DF) on G

is a R2DF f with the additional property that the subgraph of G induced by the set

{v ∈ V : f(v) ≥ 1} contains only isolated vertices. The weight of an IR2DF f

is the value f(V ) =
∑

v∈V f(v). The independent Roman {2}-domination number

equals the minimum weight of an IR2DF on G, denoted by i{R2}(G).”

Let q : V (G)→ {0, 1, 2} be a function defined, on the graph G depicted in Figure 2.1,

as follows.

q(v) =


2, if v = e

1, if v ∈ {a, b, c, h, i, j}

0, otherwise

(2.5)

Clearly, q and the function p defined in section 2.1.1 are IR2DFs. The literature on IR2DOM

in graphs has been surveyed in [59].

15



CHAPTER 2. PROBLEMS STUDIED IN THE THESIS AND RELATED WORK Section 2.1

2.1.8 Independent Double Roman Domination

In 2019, Independent double Roman domination (IDRDOM) was introduced by Maimani

et al. in [30].

Definition 2.1.8. “An independent double Roman dominating function (IDRDF) is

a DRDF g with the additional property that the subgraph of G induced by the set

{v ∈ V : g(v) ≥ 1} contains only isolated vertices. The weight of an IDRDF f is

the value f(V ) =
∑

v∈V f(v). The independent double Roman domination number

equals the minimum weight of an IDRDF on G, denoted by idR(G).”

Clearly, the functions p and q defined in section 2.1.3, for the graph G depicted in

Figure 2.1, are IDRDFs.

2.1.9 Weakly Connected Roman Domination

In 2019, Raczek et al. in [34] initiated the study of weakly connected Roman domination

(WCRDOM).

Definition 2.1.9. “A function h : V (G) → {0, 1, 2} which satisfies the following

conditions is called a weakly connected Roman dominating function (WCRDF) of G

with weight w(h) = h(V ) =
∑

p∈V h(p).

C1). for all z ∈ V with h(z) = 0 there exists a vertex y such that (y, z) ∈ E and

h(y) = 2 and

C2). the graph with vertex set V (G) and edge set {(w, z) : h(w) ≥ 1 or h(z) ≥ 1

or both } is connected.

The weakly connected Roman domination number equals the minimum weight of

WCRDF on G, denoted by γwcR (G).”

Let p : V (G)→ {0, 1, 2} be a function defined, on the graph G depicted in Figure 2.1,
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as follows.

p(v) =


2, if v ∈ {d, g}

1, if v = e

0, otherwise

(2.6)

Clearly, p is a WCRDF.

2.1.10 Roman {3}-domination

In 2020, Mojdeh et al. in [18] initiated the study of Roman {3}-domination (R3DOM).

Definition 2.1.10. “A function g : V → {0, 1, 2, 3} having the property that∑
v∈NG(u) g(v) ≥ 3, if g(u) = 0, and

∑
v∈NG(u) g(v) ≥ 2, if g(u) = 1 for any vertex

u ∈ G is called a Roman {3}-Dominating Function (R3DF) of G. The weight of a

R3DF g is the sum g(V ) =
∑

v∈V g(v). The minimum weight of a R3DF is called

the Roman {3}-domination number, denoted by γ{R3}(G).”

Let p : V (G) → {0, 1, 2, 3} be a function defined, on the graph G depicted in Figure

2.1, as follows.

p(v) =

3, if v ∈ {d, g}

0, otherwise
(2.7)

Clearly, p is a R3DF.

2.1.11 Total Roman Domination

In 2013, The notion of total Roman domination (TRDOM) was introduced by Liu et al. in

[15].
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Definition 2.1.11. “A total Roman dominating function (TRDF) is a RDF f with the

additional property that the subgraph of G induced by the set {v ∈ V : f(v) ≥ 1}

is isolated-free. The weight of a TRDF g is the value g(V ) =
∑

v∈V g(v). The

total Roman domination number equals the minimum weight of a TRDF, denoted by

γtR(G).”

Let p : V (G) → {0, 1, 2} and q : V (G) → {0, 1, 2} are two functions defined, on the

graph G depicted in Figure 2.1, as follows.

p(v) =


2, if v ∈ {d, g}

1, if v ∈ {a, h}

0, otherwise

(2.8)

q(v) =


2, if v ∈ {f, g}

1, if v ∈ {a, b, c, d}

0, otherwise

(2.9)

Clearly, p and q are TRDFs. The concept of TRDOM has been studied in [6, 26, 33, 55].

2.1.12 Total Double Roman Domination

In 2019, Total double Roman domination (TDRDOM) was introduced by Shao et al. in

[71], which is a variant of double Roman domination.

Definition 2.1.12. “A total double Roman dominating function (TDRDF) is a

DRDF g with the additional property that the subgraph of G induced by the set

{v ∈ V : g(v) ≥ 1} is isolated-free. The weight of a TDRDF g is the value

g(V ) =
∑

v∈V g(v). The total double Roman domination number equals the mini-

mum weight of a TDRDF, denoted by γtdR(G).”

let p : V (G) → {0, 1, 2} and q : V (G) → {0, 1, 2} are two functions defined, for the
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graph G depicted in Figure 2.1, as follows.

p(v) =


3, if v ∈ {d, g}

1, if v ∈ {e, f}

0, otherwise

(2.10)

q(v) =



3, if v = g

2, if v = d

1, if v ∈ {a, b, c, e, f}

0, otherwise

(2.11)

Clearly, p and q are TDRDFs. The concept TDRDOM has been studied in [24, 71].

2.1.13 Total Roman {2}-domination

Recently, Ahangar et al. in [28] initiated the study of total Roman {2}-domination (TR2DOM).

Definition 2.1.13. “A total Roman {2}-dominating function (TR2DF) g is a R2DF

on G with the added property that 〈{v ∈ V : g(v) ≥ 1}〉 is isolated-free. The weight

of a TR2DF g is the value g(V ) =
∑

v∈V f(v). The total Roman {2}-domination

number is the minimum weight of a TR2DF, denoted by γtR2(G).”

Let p : V (G)→ {0, 1, 2} be a function defined, for the graph G depicted in Figure 2.1,

as follows.

p(v) =


2, if v ∈ {d, g}

1, if v ∈ {a, h}

0, otherwise

(2.12)

Clearly, p is a TR2DF.
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2.1.14 Total Roman {3}-domination

Recently, Shao et al. in [72] initiated the study of total Roman {3}-domination (TR3DOM).

Definition 2.1.14. “A total Roman {3}-dominating function (TR3DF) g is a R3DF

on G with the added property that 〈{v ∈ V : g(v) ≥ 1}〉 is isolated-free. The weight

of a TR3DF g is the value g(V ) =
∑

v∈V f(v). The total Roman {3}-domination

number is the minimum weight of a TR3DF, denoted by γt{R3}(G).”

Let p : V (G) → {0, 1, 2, 3} be a function defined, for the graph G depicted in Figure

2.1, as follows.

p(v) =


3, if v ∈ {d, g}

1, if v ∈ {a, h}

0, otherwise

(2.13)

Clearly, p is a TR3DF.

Given a graph G and a positive integer k, the RDOM problem (RDP), R2DOM prob-

lem (R2DP), DRDOM problem (DRDP), PRDOM problem (PRDP), PDRDOM prob-

lem (PDRDP), IR2DOM problem (IR2DP), IRDOM problem (IRDP), IDRDOM problem

(IDRDP), TRDOM problem (TRDP), TDRDOM problem (TDRDP), R3DOM problem

(R3DP), TR2DOM problem (TR2DP) and TR3DOM problem (TR3DP), respectively, is to

check whether G has a RDF, R2DF, DRDF, PRDF, PDRDF, IRDF, IR2DF, IDRDF, TRDF,

TDRDF, R3DF, TR2DF and TR3DF of weight at most k. It is known that the RDP is

NPC for bipartite graphs, planar graphs and split graphs [42], R2DP is NPC for bipartite

graphs [36], DRDP is NPC for bipartite and chordal graphs [27], PRDP is NPC for bi-

partite graphs, planar graphs and chordal graphs [65], IR2DP is NPC for bipartite graphs

[8], IDRDP is NPC for bipartite graphs [30], WCRDP is NPC for split and bipartite graphs

[34], R3DP is NPC for bipartite graphs [18], TRDP is NPC for bipartite and chordal graphs

[15], TDRDP is NPC for bipartite and chordal graphs [71], TR2DP is NPC for bipartite and

chordal graphs [28] and TR3DP is NPC for bipartite graphs [72]. In this thesis, we study

the complexity of these problems in other graph classes.
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The minimum RDP (MRDP), minimum R2DP (MR2DP), minimum DRDP (MDRDP),

minimum PRDP (MPRDP), minimum PDRDP (MPDRDP), minimum IRDP (MIRDP),

minimum IR2DP (MIR2DP), minimum IDRDP (MIDRDP), minimum TRDP (MTRDP),

minimum TDRDP (MTDRDP), minimum R3DP (MR3DP), minimum TR2DP (MTR2DP),

minimum TR3DP (MTR3DP), minimum WCRDP (MWCRDP), respectively, is to find

an RDF, R2DF, DRDF, PRDF, PDRDF, IRDF, IR2DF, IDRDF, TRDF, TDRDF, R3DF,

TR2DF, TR3DF and WCRDF of minimum weight in the input graph.

2.2 Related Work

In a graph G = (V,E), a dominating set (DS) of a graph G is a set D such that D ⊆ V (G)

and ∪w∈DNG[w] = V (G). The domination number of G denoted by γ(G) is min{|T | : T

is a DS of G}. The problem of finding a DS of smallest cardinality in a graph is called the

MINIMUM DOMINATION problem or minimum dominating set (MDS) problem. Given

a graph H and a positive integer l, the domination decision problem (DDP) is to check

whether H has a DS of size at most l. We refer to [66, 67] for the literature on the concept

of domination. The DOMINATION problem has been proved as NPC for general graphs

[54]. This problem has also been proved as NPC for bipartite graphs [1]. Further, this

problem complexity has been investigated in bipartite subclasses. Consequently, it has

been proved as NPC for comb convex and star convex bipartite graphs.

“The optimization version of DOMINATION problem is given below.

MINIMUM DOMINATION Problem

Instance: A simple, undirected graph G = (V,E).

Solution: Minimum cardinality dominating set D of G.

Measure: Cardinality of D.”

In approximation perspective, it has been proved that for the MINIMUM DOMINATION

problem with ratio 1+ln(∆(G)+1) [14]. The MINIMUM DOMINATION problem cannot

be approximated within (1− ε) lnn for any ε > 0 unless NP⊆ DTIME(nO(log logn)), where
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n = |V | [39]. The APX-completeness of this problem in graphs with ∆ = 3 has been

proved in [14].

A connected dominating set (CDS) S is a DS andG[S] is connected. The minimum size

of a connected dominating set of G denoted by γc(G), is called the connected domination

number of G. The Connected Domination Decision (CDM) problem is to check if an input

graph G has a CDS S, with |S| ≤ k, where k ∈ Z+. The MINIMUM CONNECTED

DOMINATING SET (MCDS) problem is to find a CDS of minimum size in the input

graph. It has been proved that one can give an approximation algorithm for the MINIMUM

CONNECTED DOMINATING SET problem with ratio of (1 + ε)(1 + ln(∆ − 1)) [19].

This problem cannot be approximated within (1 − ε) lnn for any ε > 0 unless NP ⊆

DTIME(nO(log logn)), where n = |V | [39]. The APX-completeness of this problem in

graphs with ∆ = 3 has been proved in [14].

A DS S is called an independent dominating set (IDS) of G if S is an independent

set. The independent domination number is the minimum cardinality of an IDS in G and

is denoted by i(G). The MINIMUM INDEPENDENT DOMINATING SET problem is to

find an IDS of minimum cardinality [66]. The Independent Domination Decision (IDOM)

problem is to check if an input graph G has an IDS S, with |S| ≤ k, where k ∈ Z+. The

complexity of IDOM problem has been studied in several graph classes including bipartite

graphs, split graphs, etc. in [22, 41]. The literature on various domination parameters in

several graph classes has been surveyed in [66, 67].

A DS S is called a total dominating set (TDS) of G if G[S] is isolated free. The (total)

domination number of G denoted by γt(G) is min{|T | : T is a TDS of G}. The prob-

lem of finding a TDS of smallest cardinality in a graph is called the MINIMUM TOTAL

DOMINATING SET (MTDS) problem. It has been proved that one can give an approxi-

mation algorithm for the MINIMUM TOTAL DOMINATING SET problem with ratio of

ln(∆ − 0.5) + 1.5 [32]. Literature on various results in several graph classes has been

surveyed in [15, 35, 63].
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“Linear programming (LP) is a technique for optimizing a linear objective function,

subject to a set of linear equality and linear inequality constraints. Mathematically,

it is represented as below

maximize c1x1 + c2x2 + . . .+ cnxn

Subject to:

a11x1 + a12x2 + . . .+ a1nxn ≤ b1

a21x1 + a22x2 + . . .+ a2nxn ≤ b2

.

.

am1x1 + am2x2 + . . .+ amnxn ≤ bm

xi ≥ 0 for all i = 1, 2, . . . , n.”

Each variable in the feasible region of the LP model is restricted to over a continuous

interval. It becomes an integer LP (ILP) model if variables are further restricted to integer

values. For the Roman domination problem, ILP formulations have been proposed in [17,

50]. For the weak Roman domination problem, ILP formulations have been proposed in

[51], and for the double Roman domination problem, ILP formulations have been proposed

in [62].
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Chapter 3

Algorithmic Complexity of Roman

Domination, Roman {2}-domination

and Double Roman Domination

In this chapter, we show that RDP, R2DP and DRDP are NP-complete for star convex

bipartite graphs and comb convex bipartite graphs, and R2DP is NP-complete for bisplit

graphs, by proposing a polynomial reduction from a well-known NP-complete problem,

Exact Three Set Cover (X3SC)[54], which is defined as follows.

“ Exact Three Set Cover (X3SC)

INSTANCE : A set X = {x1, x2, . . ., x3q}, where q ≥ 1 and another set C =

{c1, c2, . . ., ct}, where ci is a subset of X with | ci | = 3.

QUESTION : Does C have a subset C ′ such that ∪ci∈C′ci = X and 1 ≤ i, j(6= i) ≤

t, ci ∩ cj = ∅?”

Next, we show that MRDP, MR2DP and MDRDP are linear time solvable for threshold

graphs, chain graphs and bounded tree-width graphs.
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3.1 Algorithmic Complexity of Roman Domination

In this section, we present complexity results for Roman domination.

3.1.1 Complexity in Subclasses of Bipartite Graphs

In this subsection, complexity results for RDP in subclasses of bipartite is proved.

3.1.1.1 Star Convex Bipartite Graphs

Here, NP-completeness of RDP in star convex bipartite graphs is proved.

Theorem 3.1.1. “RDP is NP-complete for star convex bipartite graphs.”

Proof. Given a graph G and a function f , whether f is a RDF of size at most k can be

checked in polynomial time. Hence RDP is a member of NP. Now we show that RDP is

NP-hard by transforming an instance 〈X,C〉 of X3SC, where X = { x1, x2, . . ., x3q } and

C = { c1, c2, . . ., ct }, to an instance 〈G, k〉 of RDP as follows.

Create vertices xi for each xi ∈ X , ci for each ci ∈ C and also create vertices a, a1,

a2 and a3. Add edges (ai, a) for each ai and (ci, a) for each ci. Also add edges (cj, xi) if

xi ∈ cj . The graph constructed is shown in the Figure 3.2. LetA = {a}∪{xi : 1 ≤ i ≤ 3q},

B = {ci : 1 ≤ i ≤ t} ∪ {a1, a2, a3}. The set A induces a star with vertex a as central

vertex, as shown in the Figure 3.1, and the neighbors of each element in B induce a subtree

of star. Therefore G is a star convex bipartite graph and can be constructed from the given

instance 〈X,C〉 of X3SC in polynomial time. Next, we show that X3SC has a solution if

and only if G has a RDF with weight at most 2q + 2.

Suppose C ′ is a solution for X3SC with |C ′| = q. We define a function f : V →

{0, 1, 2} as follows.

f(v) =

2, if v ∈ C ′ or v = a

0, otherwise
(3.1)

Clearly, f is a RDF and f(V ) = 2q + 2. Let k = 2q + 2.
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Figure 3.1: Star graph
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Figure 3.2: Construction of a star convex bipartite
graph from an instance of X3SC

Conversely, suppose that G has a Roman dominating function g with weight at most k.

Clearly, g(a) + g(a1) + g(a2) + g(a3) ≥ 2. Without loss of generality, let g(a) = 2 and

g(a1) = g(a2) = g(a3) = 0. Since (a, cj) ∈ E, it follows that each vertex cj may be assigned

the value 0. We have the following claim.

Claim 3.1.1. “If g(V ) ≤ k then for each xi ∈ X , g(xi) = 0.”

Proof. (Proof by contradiction) Assume g(V ) ≤ k and there exist some xi’s such that

g(xi) 6= 0. Let m = |{xi : g(xi) 6= 0}|. The number of xi’s with g(xi) = 0 is 3q − m.

Since g is a RDF, each xi with g(xi) = 0 should have a neighbor cj with g(cj) = 2. So the

number of cj’s required with g(cj) = 2 is d3q−m
3
e. Hence g(V ) = 2 +m+ 2d3q−m

3
e, which

is greater than k, a contradiction. Therefore for each xi ∈ X , g(xi) = 0.

Since each ci has exactly three neighbors inX , clearly, there exist q number of ci’s with

weight 2 such that
(⋃

g(ci)=2 NG(ci)
)
∩X = X . Consequently, C ′ = {ci : g(ci) = 2} is an

exact cover for C.

3.1.1.2 Comb Convex Bipartite Graphs

Here NP-completeness of RDP in comb convex bipartite graphs is proved.

Theorem 3.1.2. “RDP is NP-complete for comb convex bipartite graphs.”
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Figure 3.4: Construction of a comb convex bipartite
graph from an instance of X3SC

Proof. Clearly, RDP is a member of NP. We transform an instance 〈X,C〉 ofX3SC, where

X = { x1, x2, . . ., x3q } and C = { c1, c2, . . ., ct }, to an instance 〈G, k〉 of RDP as follows.

Create vertices xi, x′i for each xi ∈ X , ci for each ci ∈ C and also create vertices a,

a′, a1, a2 and a3. Add edges (ai, a) for each ai and (cj, xi) if xi ∈ cj . Next add edges

(cj, a) and (cj, a
′) for each cj . Also add edges by joining each cj to every x′i. The graph

constructed is shown in the Figure 4.2. Let A = {a, a′} ∪ {xi, x′i : 1 ≤ i ≤ 3q} and B =

V \ A. The set A induces a comb with elements {x′i : 1 ≤ i ≤ 3q } ∪ {a′} as backbone

and {xi : 1 ≤ i ≤ 3q } ∪ {a} as teeth, as shown in Figure 4.1, and the neighbors of each

element in B induce a subtree of the comb. Therefore G is a comb convex bipartite graph

and can be constructed from the given instance 〈X,C〉 of X3SC in polynomial time. Next

we show that X3SC has a solution if and only if G has a RDF with weight at most 2q + 2.

Suppose C ′ is a solution for X3SC with |C ′| = q. We define a RDF f , on G, same as

in equation 3.1. Clearly, f(V ) = 2q + 2 = k.

Conversely, suppose that G has a RDF g with weight k. This proof is obtained with

similar arguments as in the converse proof of Theorem 3.1.1 and by using the assignment

g(v) = 0 if v ∈ {x′i : 1 ≤ i ≤ 3q} ∪ {a′}.

From Theorems 3.1.1 and 3.1.2, the result below follows.

Theorem 3.1.3. “RDP is NP-complete for tree convex bipartite graphs.”
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3.1.1.3 Chain Graphs

Here, MRDP is proved to be linear time solvable for chain graphs. The following proposi-

tion is stated in [23].

Proposition 3.1.1. “Let G = Km1,...,mn be the complete n-partite graph with m1 ≤

m2 ≤ ... ≤ mn.

(a) If m1 ≥ 3 then γR(G) = 4.

(b) If m1 = 2 then γR(G) = 3.

(c) If m1 = 1 then γR(G) = 2.”

IfG(X, Y,E) is a complete bipartite graph then γR(G) is obtained directly from Propo-

sition 3.1.1. Otherwise, the following theorem holds.

Theorem 3.1.4. “Let G(X, Y,E)(� Kr,s) be a chain graph. Then,

γR(G) =

3, if |X| = 2 or |Y | = 2

4, otherwise”

(3.2)

Proof. If G ∼= K1 then γR(G) = 1. Otherwise, let G(X, Y,E) be a connected chain graph

with |X| = p and |Y | = q. Now, define a function f : V → {0, 1, 2} as follows.

Case (1) : |X| ≥ 2 and |Y | = 2 then f(v) =


2, if v = y1

1, if v = y2

0, otherwise

Case (2) : |X| = 2 and |Y | 6= 2 then f(v) =


2, if v = x2

1, if v = x1

0, otherwise

Clearly, f is a RDF and γR(G) ≤ 3. From the definition of RDF, it follows that γR(G) ≥ 3.

Therefore γR(G) = 3.
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Case (3) : |X| 6= 2 and |Y | 6= 2 then f(v) =

2, if v ∈ {xp, y1}

0, otherwise
Clearly, f is a RDF and γR(G) ≤ 4. Since p ≥ 2 and q ≥ 2, in any RDF of G,

f(X) ≥ 2 and f(Y ) ≥ 2. Therefore γR(G) ≥ 4. Hence γR(G) = 4.

If the chain graphG is disconnected with k connected componentsG1, G2, . . . , Gk then

it is easy to verify that γR(G) =
∑k

i=1 γR(Gi). Now, the following result is immediate from

Theorem 3.1.4.

Theorem 3.1.5. “MRDP can be solvable in linear time for chain graphs.”

Proof. Since the chain ordering and the connected components can be computed in linear

time [14, 64], the result follows.

3.1.2 Complexity in Threshold Graphs

Here, MRDP is proved to be linear time solvable for threshold graphs.

Theorem 3.1.6. “Let G be a threshold graph. Then γR(G) = k + 1, where k is the

number of connected components in G.”

Proof. Let G be a threshold graph with n clique vertices such that NG[x1] ⊆ NG[x2] ⊆

NG[x3] ⊆ . . . ⊆ NG[xp]. Now, define a function f : V → {0, 1, 2} as follows.

f(v) =


1, if deg(v) = 0

2, if v = xp

0, otherwise

(3.3)

Clearly, f is a RDF and γR(G) ≤ k + 1. From the definition of RDF, it follows that

γR(G) ≥ k + 1. Therefore γR(G) = k + 1.

From Theorem 3.1.6, the result below follows.
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Theorem 3.1.7. “MRDP can be solvable in linear time for threshold graphs.”

Proof. Since the ordering of the vertices of the clique and the number of connected compo-

nents in a threshold graph can be determined in linear time [14, 56], the result follows.

3.1.3 Complexity in Bounded Tree-width Graphs

A graph problem for bounded tree-width graphs, is linear time solvable if there exists a

counting monadic second-order logic (CMSOL) formula for it [10]. We show that RDP

can be expressed in CMSOL.

Theorem 3.1.8 (Courcelle’s Theorem). ([10]) “Let P be a graph property express-

ible in CMSOL and k be a constant. Then, for any graph G of tree-width at most k,

it can be checked in linear-time whether G has property P .”

Theorem 3.1.9. “Given a graph G and a positive integer k, RDP can be expressed

in CMSOL.”

Proof. Let f : V → {0, 1, 2} be a function on a graph G, where Vi = {v|f(v) = i} for

i ∈ {0, 1, 2}. The CMSOL formula for the RDP is expressed as follows.

Rom Dom(V ) = (f(V ) ≤ k) ∧ ∃V0, V1, V2,∀p(p ∈ V1 ∨ p ∈ V2 ∨ (p ∈ V0 ∧ ∃q ∈

V2 ∧ adj(p, q))),

where adj(p, q) is the binary adjacency relation which holds iff, p, q are two adjacent ver-

tices of G.

From Theorems 3.1.8 and 3.1.9, the following result is immediate.

Theorem 3.1.10. “MRDP can be solvable in linear time for bounded tree-width

graphs.”
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3.2 Algorithmic Complexity of Roman {2}-Domination and

the Double Roman Domination in Graphs

In this section, we present complexity results for Roman {2}-domination and the double

Roman domination in graphs.

3.2.1 Complexity in Subclasses of Bipartite Graphs

In this subsection, complexity results for R2DP and DRDP in subclasses of bipartite is

proved.

3.2.1.1 Star Convex Bipartite Graphs

Here NP-completeness of R2DP and DRDP in star convex bipartite graphs is proved.

Theorem 3.2.1. “R2DP is NP-complete for star convex bipartite graphs.”

Proof. Given a graph G and a function f , whether f is a R2DF of size at most k can be

checked in polynomial time. Hence R2DP is a member of NP. Now we show that R2DP is

NP-hard by transforming an instance 〈X,C〉 of X3SC, where X = { x1, x2, . . ., x3q } and

C = { c1, c2, . . ., ct }, to an instance 〈G, k〉 of R2DP as follows.

Create vertices xi, yi for each xi ∈ X , ci for each ci ∈ C and also create vertices

a, a1, a2 and a3. Add edges (xi, yi) for each xi ∈ X , (ai, a) for each ai and (ci, a) for

each ci. Also add edges (cj, xi) if xi ∈ cj . Let A = {a} ∪ {xi : 1 ≤ i ≤ 3q} and

B = {yi : 1 ≤ i ≤ 3q} ∪ {ci : 1 ≤ i ≤ t} ∪ {a1, a2, a3}. The subgraph induced by A is a

star with vertex a as central vertex and the neighbors of each element of B induce a subtree

of star. Therefore G is a star convex bipartite graph and can be constructed from the given

instance 〈X,C〉 of X3SC in polynomial time.

Next we show that, X3SC has a solution if and only if G has a R2DF with weight at

most 4q+ 2. Let k = 4q+ 2. Suppose C ′ is a solution for X3SC with |C ′| = q. We define
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a function f : V → {0, 1, 2} as follows.

f(v) =


1, if v ∈ {yi : 1 ≤ i ≤ 3q} ∪ {ci : ci ∈ C ′}

2, if v = a

0, otherwise

(3.4)

It can be easily verified that f is a R2DF of G and f(V ) = 4q + 2 = k.

Conversely, suppose that G has a R2DF g with weight k. Let M = {a, a1, a2, a3}.

Clearly,
∑

u∈M g(u) ≥ 2, and so we may assume, without loss of generality, g(a) = 2 and

g(a1) = g(a2) = g(a3) = 0. Since (a, cj) ∈ E, it follows that each vertex cj may be assigned

the value 0. Clearly, g(xi) = 0 and g(yi) = 0 case doesn’t occur.

Claim 3.2.1. “If g(V ) = k then for each pair of vertices (xi, yi), g(xi) = 0 and

g(yi) = 1.”

Proof. (Proof by contradiction) Assume g(V ) = k and there exist some pairs (xi, yi) such

that g(xi)+g(yi) > 1. Let m be the number of pairs of (xi, yi) with g(xi)+g(yi) = 2. The

number of pairs of (xi, yi) with g(xi) = 0 and g(yi) = 1 is 3q−m. Since g is R2DF, each xi

with g(xi) = 0, where g(yi) = 1, should have neighbor cj with g(cj) = 1. Then minimum

number of cj’s required with g(cj) = 1 is d3q−m
3
e. Hence g(V ) = 3q + 2 + m + d3q−m

3
e,

which is greater than k. Our assumption leads to a contradiction. Therefore for each pair

(xi, yi), g(xi) = 0 and g(yi) = 1. Hence the claim.

Since each ci has exactly three neighbors in X , clearly, there exist at least q number of

ci’s with weight at least 1 such that
(⋃

g(ci)≥1N(ci)
)
∩X = X . Consequently, C ′ = {ci :

g(ci) = 1} is an exact cover for C.

Theorem 3.2.2. “DRDP is NP-complete for star convex bipartite graphs.”

Proof. The proof is obtained with similar arguments as in Theorem 3.2.1, in which replace

the assigned values 1 with 2 and 2 with 3.
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3.2.1.2 Comb Convex Bipartite Graphs

Here NP-completeness of R2DP and DRDP in comb convex bipartite graphs is proved.

Theorem 3.2.3. “R2DP is NP-complete for comb convex bipartite graphs.”

Proof. Clearly, R2DP for comb convex bipartite graphs is a member of NP. We transform

an instance 〈X,C〉 of X3SC, where X = { x1, x2, . . ., x3q } and C = { c1, c2, . . ., ct }, to

an instance 〈G, k〉 of R2DP as follows.

Create vertices xi, x′i and yi for each xi ∈ X , ci for each ci ∈ C and also create vertices

a, a′, a1, a2 and a3. Add edges (xi, yi) for each xi ∈ X , (ai, a) for each ai and (cj, xi) if

xi ∈ cj . Next add edges (cj, a) and (cj, a
′) for each cj . Also add edges by joining each

cj to every x′i. Let A = {a, a′} ∪ {xi, x′i : 1 ≤ i ≤ 3q} and B = V \ A. The subgraph

induced by A is a comb with the elements {x′i : 1 ≤ i ≤ 3q } ∪ {a′} as backbone and {xi :

1 ≤ i ≤ 3q } ∪ {a} as teeth and the neighbors of each element of B induce a subtree of the

comb. Therefore G is a comb convex bipartite graph and can be constructed from the given

instance 〈X,C〉 of X3SC in polynomial time. Next, we show that, X3SC has a solution if

and only if G has a R2DF with weight at most 4q + 2.

Suppose C ′ is a solution for X3SC with |C ′| = q. We construct a R2DF f , on G,

same as in Theorem 3.2.1. Clearly, f(V ) = 4q + 2 = k.

The proof of the converse is similar to the proof given in Theorem 3.2.1.

Theorem 3.2.4. “DRDP is NP-complete for comb convex bipartite graphs.”

Proof. The proof is obtained by replacing the values 1 with 2 and 2 with 3 in Theorem

3.2.3.

From Theorems 3.2.1 and 3.2.3, the result below follows.

Theorem 3.2.5. “RD2P and DRDP are NP-complete for tree convex bipartite

graphs.”
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3.2.1.3 Chain Graphs

In this subsection, we show that R2DOM and DRDOM problems can be solvable in linear

time for chain graphs. The following is a proposition without proof.

Proposition 3.2.1. “Let G = Kr,s be a complete bipartite graph with r ≤ s.

(a) If r = 1 then γ{R2}(G) = 2.

(b) If r = 2 then γ{R2}(G) = 3.

(c) If r ≥ 3 then γ{R2}(G) = 4.”

If chain graph G is a complete bipartite graph then γ{R2}(G) is obtained directly from

Proposition 3.2.1. Otherwise, the following theorem holds.

Theorem 3.2.6. “Let G ( 6= Kr,s) be a connected chain graph. Then,

γ{R2}(G) =

3, if |X| = 2 or |Y | = 2

4, otherwise”

(3.5)

Proof. Let G(X, Y,E) be a connected chain graph with |X| = p and |Y | = q where

p, q ≥ 2. Now, define a function f : V → {0, 1, 2} as follows.

Case (1) : |X| = 2 and |Y | = 2 then f(v) =


2, if v = y1

1, if v = y2

0, otherwise

Case (2) : |X| = 2 and |Y | 6= 2 then f(v) =


2, if v = x2

1, if v = x1

0, otherwise

Case (3) : |X| 6= 2 and |Y | = 2 then same condition holds as in case (1).

Clearly, f is a R2DF and γ{R2}(G) ≤ 3. From the definition of R2DF, it follows that

γ{R2}(G) ≥ 3. Therefore γ{R2}(G) = 3.
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Case (4) : |X| 6= 2 and |Y | 6= 2 then f(v) =

2, if v ∈ {xp, y1}

0, otherwise
Clearly, f is a R2DF and γ{R2}(G) ≤ 4. By contradiction, it can be easily verified that

γ{R2}(G) ≥ 4. Therefore γ{R2}(G) = 4.

If the chain graph G is disconnected then weight of the R2DF is increased by k, where

k is the number of isolated vertices in G.

The following propositions are proved in [69] and [7].

Proposition 3.2.2. [69] “For any complete bipartite graph Kp,q, with p, q ≥ 3,

γdR(Kp,q) = 6.”

Proposition 3.2.3. [7] “For any complete bipartite graph Kp,q with p ≤ q,

γdR(K1,q) = 3 and γdR(K2,q) = 4.”

If G is a complete bipartite graph then γdR(G) is obtained directly from Propositions

3.2.2 and 3.2.3. Otherwise, the following theorem holds.

Theorem 3.2.7. “Let G ( 6= Kr,s) be a connected chain graph. Then,

γdR(G) =

5, if |X| = 2 or |Y | = 2

6, otherwise”

(3.6)

Proof. The proof is obtained by replacing the values 1 with 2 and 2 with 3 in Theorem

3.2.6.

If the chain graphG is disconnected then weight of the DRDF is increased by 2k, where

k is the number of isolated vertices in G. From Theorems 3.2.6 and 3.2.7, the result below

follows.

Theorem 3.2.8. “MR2DP and MDRDP can be solvable in linear time for chain

graphs.”
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3.2.2 Complexity in Bisplit Graphs

Here NP-completeness of R2DP in bisplit graphs is proved.

Theorem 3.2.9. “R2DP is NP-complete for bisplit graphs.”

Proof. It is clear that R2DP for bisplit graphs is in NP. We transform an instance ofX3SC,

where X = { x1, x2, . . ., x3q } and C = { c1, c2, . . ., ct }, to an instance 〈G, k〉 of R2DP as

follows.

Create vertices xi for each xi ∈ X , ci for each ci ∈ C and also create vertices a, a1,

a2 and a3. Add edges (ai, a) for each ai and (ci, a) for each ci. Also add edges (cj, xi) if

xi ∈ cj . Let P = {xi : 1 ≤ i ≤ 3q}, Q = {ci : 1 ≤ i ≤ t} ∪ {a1, a2, a3} and R = {a}.

In the constructed graph G, P forms an independent set and Q ∪ R is a complete bipartite

graph. Hence, making G a bisplit graph can be constructed from the given instance 〈X,C〉

of X3SC in polynomial time. Next we show that, X3SC has a solution if and only if G has

a R2DF with weight at most 2q + 2. Let k = 2q + 2.

Suppose C ′ is a solution for X3SC with | C ′ | = q. We define a function f : V →

{0, 1, 2} as follows.

f(v) =

2, if v ∈ {a} ∪ {ci : ci ∈ C ′}

0, otherwise
(3.7)

It can be easily verified that f is a R2DF of G and f(V ) = 2q + 2 = k.

Conversely, suppose that G has a R2DF g with weight k. Clearly, as in Theorem 3.2.1,

g(a) = 2 and ∀ai, g(ai) = 0. Since (a, cj) ∈ E, it follows that each vertex cj may be

assigned the value 0.

Claim 3.2.2. “If g(V ) = k then for each xi ∈ X , g(xi) = 0.”

Proof. (Proof by contradiction) Assume g(V ) = k and there exist some xi’s such that

g(xi) 6= 0. Let m = |{xi : g(xi) 6= 0}|. The number of xi’s with g(xi) = 0 is 3q − m.

Since g is a R2DF, each xi with g(xi) = 0 should have a neighbor cj with g(cj) = 2. So the
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number of cj’s required with g(cj) = 2 is d3q−m
3
e. Hence g(V ) = 2 +m+ 2d3q−m

3
e, which

is greater than k. Our assumption leads to a contradiction. Therefore for each xi ∈ X ,

g(xi) = 0. Hence the claim.

Since each ci has exactly three neighbors inX , clearly, there exist q number of ci’s with

weight 2 such that
(⋃

g(ci)=2N(ci)
)
∩X = X . Consequently, C ′ = {ci : g(ci) = 2} is an

exact cover for C.

3.2.3 Complexity in Threshold Graphs

In this subsection, we determine the Roman {2}-domination number and double Roman

domination number of threshold graphs. For a threshold graph G(V,E), if |V | = 1 then,

clearly, γ{R2}(G) = 1 and γdR(G) = 2. Otherwise, the following theorem holds.

Theorem 3.2.10. “Let G be a threshold graph. Then γ{R2}(G) = k + 1 and

γdR(G) = 2k + 1, where k is the number of connected components in G.”

Proof. Let G be a threshold graph with n clique vertices such that NG[x1] ⊆ NG[x2] ⊆

NG[x3] ⊆ . . . ⊆ NG[xp]. Now, define a function f : V → {0, 1, 2} as follows.

f(v) =


1, if deg(v) = 0

2, if v = xp

0, otherwise

(3.8)

Clearly, f is a R2DF and γ{R2}(G) ≤ k + 1. From the definition of R2DF, it follows that

γ{R2}(G) ≥ k + 1. Therefore γ{R2}(G) = k + 1.

Similarly, let g : V → {0, 1, 2, 3} be a function on G as follows.

g(v) =


2, if deg(v) = 0

3, if v = xp

0, otherwise

(3.9)
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Clearly, g is a DRDF and γdR(G) ≤ 2k + 1. From the definition of DRDF, it follows that

γdR(G) ≥ 2k + 1. Therefore γdR(G) = 2k + 1.

Now, the following result is immediate from Theorem 3.2.10.

Theorem 3.2.11. “MR2DP and MDRDP can be solvable in linear time for threshold

graphs.”

3.2.4 Complexity in Bounded Tree-width Graphs

Here, we show that for bounded tree-width graphs, MR2DP and MDRDP can be solvable

in linear time.

Theorem 3.2.12. “Given a graph G and a positive integer k, MR2DP can be ex-

pressed in CMSOL.”

Proof. Let f = (V0, V1, V2) be a function f : V → {0, 1, 2} on a graph G, where Vi =

{v|f(v) = i} for i ∈ {0, 1, 2}. The CMSOL formula for the R2DP is expressed as follows.

Rom {2} Dom(V ) = (f(V ) ≤ k)∧∃V0, V1, V2,∀p((p ∈ V0∧ ((∃q ∈ V2∧adj(p, q))∨

(∃r, s ∈ V1 ∧ adj(p, r) ∧ adj(p, s)))) ∨ (p ∈ V1) ∨ (p ∈ V2))

From Theorems 3.1.8 and 3.2.12, the following result is immediate.

Theorem 3.2.13. “MR2DP problem can be solvable in linear time for bounded tree-

width graphs.”

Theorem 3.2.14. “Given a graph G and a positive integer k, MDRDP can be ex-

pressed in CMSOL.”

Proof. Let g = (V0, V1, V2, V3) be a function g : V → {0, 1, 2, 3} on a graph G, where

Vi = {v|g(v) = i} for i ∈ {0, 1, 2, 3}. The CMSOL formula for the DRDP is expressed as

follows.
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Double Rom Dom(V ) = (g(V ) ≤ k) ∧ ∃V0, V1, V2, V3,∀p((p ∈ V0 ∧ ((∃q, r ∈ V2 ∧

adj(p, q) ∧ adj(p, r)) ∨ (∃s ∈ V3 ∧ adj(p, s))) ∨ (p ∈ V1 ∧ (∃t ∈ V2 ∧ adj(p, t) ∨ (∃u ∈

V3 ∧ adj(p, u))))) ∨ (p ∈ V2) ∨ (p ∈ V3))

From Theorems 3.1.8 and 3.2.14, the following result is immediate.

Theorem 3.2.15. “MDRDP problem can be solvable in linear time for bounded

tree-width graphs.”

3.3 Summary

In this chapter, the RDP, R2DP and DRDP complexity has been investigated in various

graph classes and the obtained results are tabulated below.

Graph Class RDP R2DP DRDP

Bisplit graphs NPC - -

Star convex bipartite graphs NPC NPC NPC

Comb convex bipartite graphs NPC NPC NPC

Chain graphs P P P

Threshold graphs P P P

Bounded tree-width graphs P P P

Table 3.1: Complexity status of RDP, R2DP and DRDP
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Chapter 4

Algorithmic Complexity of Perfect

Roman Domination, Perfect Double

Roman Domination, Total Roman

Domination and Total Double Roman

Domination

In this chapter, first we show that PRDP is NP-complete for star convex and comb convex

bipartite graphs and PDRDP is NP-complete for chordal and bipartite graphs by proposing

a polynomial reduction from NP-complete problem, Exact Three Set Cover (X3SC)[54].

Next, we show that MPRDP, MPDRDP, MTRDP and MTDRDP are linear time solvable

for threshold graphs, chain graphs and bounded tree-width graphs. Finally, we study the

complexity difference of PDRDP with DOMINATION problem.

4.1 Algorithmic Complexity of Perfect Roman Domina-

tion

In this section, we present complexity results for perfect Roman domination.
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4.1.1 Complexity in Subclasses of Bipartite Graphs

In this subsection, complexity results for PRDP in subclasses of bipartite is proved.

4.1.1.1 Star Convex Bipartite Graphs

In this section, NP-completeness of PRDP in star convex bipartite graphs is proved.

Theorem 4.1.1. “PRDP is NP-complete for star convex bipartite graphs.”

Proof. The proof is obtained with similar arguments as in the proof of the Theorem 3.1.1.

4.1.1.2 Comb Convex Bipartite Graphs

In this section, NP-completeness of PRDP in comb convex bipartite graphs is proved.

Theorem 4.1.2. “PRDP is NP-complete for comb convex bipartite graphs.”

Proof. Clearly, PRDP is a member of NP. We transform an instance of X3SC, where

X = { x1, x2, . . ., x3q } and C = { c1, c2, . . ., ct }, to an instance of PRDP as follows.

Create vertices xi for each xi ∈ X , ci, ai, c′i for each ci ∈ C and also create vertices

a, a′ and b. Add edges (ai, ci) for each ci and (cj, xi) if xi ∈ cj . Next add edges (c′j, b)

for each c′j , (b, a) and (b, a′). Also add edges by joining each c′j to every xi. Let A =

{a, a′} ∪ {ci, c′i : 1 ≤ i ≤ t} and B = V \ A. The set A induces a comb with elements

{c′i : 1 ≤ i ≤ t } ∪ {a′} as backbone and {ci : 1 ≤ i ≤ t } ∪ {a} as teeth as shown in

the Figure 4.1. From the Figure 4.2, it is clear that the graph constructed is a comb convex

bipartite graph since the neighbors of each element in B induce a subtree of the comb,

where |V | = 3t+ 3q+ 3 and |E| = 3qt+ 5t+ 2. Next we show that, X3SC has a solution

iff G has a PRDF with weight at most 2t+ 2.

Suppose C ′ is a solution for X3SC with |C ′| = q. We construct a PRDF f on G as
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Figure 4.1: Comb graph
Figure 4.2: Construction of a comb convex
bipartite graph from an instance of X3SC

follows.

f(v) =

2, if v ∈ {ci : ci ∈ C ′} ∪ {ai : ci /∈ C ′} or v = b

0, otherwise
(4.1)

Clearly, f(V ) ≤ 2t+ 2.

Conversely, suppose that G has a PRDF g with weight at most 2t + k. Clearly, for

each i, g(ai) + g(ci) ≥ 2, these make the size at least 2t, and g(b) + g(a) + g(a′) ≥ 2.

Without loss of generality, g(b) = 2, g(a) = 0, g(a′) = 0, g(xi) = 0 where 1 ≤ i ≤ 3q

and g(c′j) = 0 where 1 ≤ j ≤ t. Since g is a PRDF with weight 2t + k or less, the ci

vertices with g(ci) = 2 should be Roman dominating over all the xj vertices in G. Then

C ′ = {ci : g(ci) = 2} is an exact cover for C; because if some vertex xi is not covered

exactly once in C ′, the vertex xi would not be Roman dominated exactly once in G and g

would not be a PRDF.

The result below follows from Theorems 4.1.1 and 4.1.2.

Theorem 4.1.3. “PRDP is NP-complete for tree convex bipartite graphs.”
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4.1.1.3 Chain Graphs

Here, we show that MPRDP can be solvable in linear time for chain graphs. If G(X, Y,E)

is a complete bipartite graph then γPR(G) is obtained directly from Proposition 6.4.1. Oth-

erwise, the following theorem holds.

Theorem 4.1.4. “MPRDP can be solvable in linear time for chain graphs.”

Proof. The proof is obtained with similar arguments from the Theorems 3.1.4 and 3.1.5.

4.1.2 Complexity in Threshold Graphs

Here, we determine the perfect Roman domination number of threshold graph.

Theorem 4.1.5. “MPRDP can be solvable in linear time for chain graphs.”

Proof. The proof is obtained with similar arguments from the theorems in Section 3.1.2.

4.1.3 Complexity in Bounded Tree-width Graphs

Here, we prove that MPRDP for bounded tree-width graphs is linear time solvable.

Theorem 4.1.6. “Given a graph G and a positive integer k, MPRDP can be ex-

pressed in CMSOL.”

Proof. Let f = (V0, V1, V2) be a function f : V → {0, 1, 2} on a graph G, where Vi =

{v|f(v) = i} for i ∈ {0, 1, 2}. The CMSOL formula for the PRDP is expressed as follows.

Perfect Rom Dom(V ) = (f(V ) ≤ k) ∧ ∃V0, V1, V2, ∀p((p ∈ V1) ∨ (p ∈ V2) ∨ (p ∈

V0 ∧ ∃r(r ∈ V2 ∧ adj(p, r)) ∧ ¬(∃s, s ∈ V2 ∧ s 6= r ∧ adj(p, s))).

The result below follows from Theorems 3.1.8 and 4.1.6.
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Figure 4.3: Chordal graph construction from an instance of X3SC

Theorem 4.1.7. “MPRDP problem can be solvable in linear time for bounded tree-

width graphs.”

4.2 Algorithmic Complexity of Perfect Double Roman Dom-

ination

In this section, we present complexity results for perfect double Roman domination in

graphs.

4.2.1 Complexity in Chordal Graphs

Here, NP-completeness of PDRDP in chordal graphs is proved.

Theorem 4.2.1. “PDRDP is NP-complete for chordal graphs.”

Proof. Given a function f of a graph G and an integer l, if f is a PDRDF of G with∑
v∈V (G) f(v) ≤ l can be determined inO(|V (G)|c) time, where c > 0. Hence PDRDP ∈

NP . Now we show that PDRDP is NP-hard by transforming an instance 〈X,C〉 of X3SC

to an instance 〈G, l〉 of PDRDP as follows.

Create vertices xi, yi for each xi ∈ X , ci for each ci ∈ C. Add edges (xi, yi) for each

xi and (cj, xi) if xi ∈ cj . Also add edges (ci, cj), ∀ci, cj ∈ C, where i 6= j. The graph

constructed is shown in the Figure 4.3. Next we show that, X3SC has a solution iff G has

a PDRDF f with f(V ) ≤ 8q.
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Suppose C ′ is a solution for X3SC with |C ′| = q. A function f on G defined below is

clearly a PDRDF of G with f(V ) = 8q.

f(v) =

2, if v ∈ C ′ ∪ {yi : 1 ≤ i ≤ 3q}

0, otherwise
(4.2)

Conversely, let g be a PDRDF of G with g(V ) = 8q.

Claim 4.2.1. “If g(V ) = 8q then ∀xi, g(xi) = 0.”

Proof. (Proof by contradiction) Assume g(V ) = l and A = {xi : g(xi) > 0}. Clearly,

∀xa ∈ A, g(xa) + g(ya) ≥ 3. This makes the weight at least 3|A|. The number of xi’s with

g(xi) = 0 is 3q − |A|. Clearly, for each xi /∈ A, g(yi) ≥ 2. Since g is a PDRDF, each xi

with g(xi) = 0 should have a neighbor cj with g(cj) = 2. So the number of cj’s required

with g(cj) = 2 is at least d3q−|A|
3
e. Therefore g(V ) ≥ 3|A| + 2(3q − |A|) + 2d3q−|A|

3
e,

which is greater than 8q, a contradiction. Hence the claim.

Therefore, the set {ci : g(ci) = 2} is a solution for X3SC.

4.2.2 Complexity in Bipartite Graphs

Here, NP-completeness of PDRDP in bipartite graphs is proved.

Theorem 4.2.2. “PDRDP is NP-complete for bipartite graphs.”

Proof. The proof is similar to the proof given in Theorem 4.2.1, in which make the set

{c1, c2, . . . , ct} as an independent set.

4.2.3 Complexity in Threshold Graphs

Here, we prove that MPDRDP is linear time solvable for threshold graphs. For a threshold

graph G with split partition (C, I), where C is clique and I is independent set, if |C| = 0
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then weight 2 is assigned for each vertex. then γpdR(G) = 2|V |. Otherwise, the following

theorem holds.

Theorem 4.2.3. “Let G be a threshold graph with m connected components. Then

γpdR(G) = 2m+ 1.”

Proof. The proof is similar to the proof given for double Roman domination number in

Theorem 3.2.10.

The result below follows from Theorem 4.2.3.

Theorem 4.2.4. “MPDRDP is linear time solvable for threshold graphs.”

4.2.4 Complexity in Chain Graphs

Here, we determine the perfect double Roman number for chain graphs in linear time. The

proposition below is from [9].

Proposition 4.2.1. “For the paths Pn,

γpdR(G) =

n, if n ≡ 0 mod 3

n+ 1, otherwise”

(4.3)

Theorem 4.2.5. “For a chain graph G(X, Y,E),

γpdR(G) =



3, if G ∼= K1,s, where s ≥ 1

4, if G ∼= Kr,s, where r = 2 or s = 2

5, if G ∼= P4

6, otherwise”

(4.4)

Proof. If G ∼= K1 then γpdR(G) = 2. Otherwise, let G(X, Y,E) be a chain graph with
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|X| = p and |Y | = q. Now, define a function h : V → {0, 1, 2, 3} as follows.

Case (1) : If G ∼= K1,s(≥1) i.e., G has a universal vertex then, clearly, γpdR(G) = 3.

Case (2) : If G ∼= Kr,s(r=2 or s=2), the following are possible subcases. Let r = |X| and

s = |Y |.

Case (2.1) : If r = s = 2 then h(v) =

2, if v ∈ {x1, x2}

0, otherwise

Case (2.2) : If r 6= 2, s = 2 then h(v) =

2, if v ∈ {y1, y2}

0, otherwise

Case (2.3) : If r = 2, s 6= 2 then h(v) =

2, if v ∈ {x1, x2}

0, otherwise
Clearly, h is a PDRDF and γpdR(G) ≤ 4. Since G has no universal vertex, from the PDRDF

definition, it follows that γpdR(G) ≥ 4. Hence γpdR(G) = 4.

Case (3) : If G ∼= P4 then, from Proposition 4.2.1, γpdR(G) = 5.

Case (4) : Otherwise, h(v) =

3, if v ∈ {xp, y1}

0, otherwise
Clearly, h is a PDRDF and γpdR(G) ≤ 6. By contradiction, it is easy to show that γpdR(G) ≥

6. Therefore γpdR(G) = 6.

If the chain graphG is disconnected with k connected componentsG1, G2, . . . , Gk then

γpdR(G) =
∑k

i=1 γ
p
dR(Gi). The result below follows from Theorem 4.2.5.

Theorem 4.2.6. “MPDRDP for chain graphs is solvable in linear time.”

4.2.5 Complexity in Bounded Tree-width Graphs

Here, we show that MPDRDP for bounded tree-width graphs can be solvable in linear time.

Theorem 4.2.7. “Let H(V,E) be a graph and k be a positive integer. Then MP-

DRDP is expressible in CMSOL.”

Proof. Let g : V (H) → {0, 1, 2, 3} defined on H . Also, let Vi = {v|g(v) = i} for
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i ∈ {0, 1, 2, 3}. We make use of the following two conditions in order to express PDRDP

in CMSOL.

Condition 0 = ∃V0, V1, V2, V3,∀p((p ∈ V2) ∨ (p ∈ V3) ∨ (p ∈ V0 ∧ ((∃r1, r2(r1, r2 ∈

V2 ∧ r1 6= r2 ∧ adj(p, r1) ∧ adj(p, r2)) ∧ ¬(∃s, s ∈ V3 ∧ adj(p, s))) ∨ (∃r(r ∈ V3 ∧

adj(p, r)) ∧ ¬(∃s, s ∈ V2 ∧ adj(p, s)))))).

Condition 1 = ∃V0, V1, V2, V3,∀p((p ∈ V1 ∧ (∃r(r ∈ V2 ∧ adj(p, r)) ∧ ¬(∃s, s ∈ V3 ∧

adj(p, s))))).

Here, the binary adjacency relation adj(p, q) holds iff (p, q) ∈ E(H). Now, the CMSOL

formula for the MPDRDP is given below.

PDRDOM(V ) = (g(V ) ≤ k) ∧ Condition 0 ∧ Condition 1

Now, from Theorem 4.2.7 and the Courcelle’s result in [10], the theorem below follows.

Theorem 4.2.8. “MPDRDP for graphs with treewidth at most a constant is solvable

in linear time.”

4.2.6 Complexity Difference between Perfect Double Roman Domina-

tion and Domination Problems

Perfect double Roman domination and domination problems vary in computational com-

plexity aspects. Specifically, there exist graphs for which the domination problem is NP-

complete whereas PDRDP is polynomial time solvable and vice versa. We refer to [12, 13,

52] for similar kind of study. We design a new graph class called GI graph, in which DDP

∈ NPC, whereas the PDRDP ∈ P.

Let G = (V,E) where V = {v1, v2, . . . , vn} be a connected graph. Then GI graph is

constructed from G by adding additional vertices and edges to G in the following way :

1. Create four copies of P2 graphs such as bi− ci, di− ei, gi− hi and ii− ji, for each i.

2. Consider 2n additional vertices {a1, a2, . . . , an, f1, f2, . . . , fn}.

3. Add edges {(vi, ai), (ai, bi), (ai, di), (vi, fi), (fi, gi), (fi, ii) : 1 ≤ i ≤ n}.
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Figure 4.4: Construction of GI graph from G

General GI graph construction is shown in Figure 4.4.

Theorem 4.2.9. “If G′ is a GI graph constructed from G, then γpdR(G′) = 12n.”

Proof. Let G′ = (V ′, E ′) is a GI graph constructed from G. Let f : V ′(G′)→ {0, 1, 2, 3}

be a function defined as below

f(v) =

2, if v ∈ {ai, ci, ei, fi, hi, ji : 1 ≤ i ≤ n}

0, otherwise
(4.5)

Clearly, f is a PDRDF and γpdR(G′) ≤ 12n.

Next, we show that γpdR(G′) ≥ 12n. Let g be a PDRDF on graph G′. Then following

claim holds.

Claim 4.2.2. “If g(V ) ≥ 12n then ∀vi ∈ V , g(vi) = 0.”

Proof. (Proof by contradiction) Assume g(V ) < 12n and there existm (≥ 1) vi’s such that

g(vi) 6= 0. Clearly, g(ai) + g(bi) + g(ci) + g(di) + g(ei) ≥ 6 and g(fi) + g(gi) + g(hi) +

g(ii) + g(ji) ≥ 6, where 1 ≤ i ≤ n. Therefore g(V ) ≥ m + 12n > 12n, a contradiction.

Hence the claim.

Clearly, each 〈{vi, ai, bi, ci, di, ei, fi, gi, hi, ii, ji}〉 requires a weight of at lease 12. Hence

g(V ) ≥ 12n. Therefore γpdR(G) = 12n.
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Lemma 4.2.9.1. “G has a DS of size at most k iff GI has a DS of size at most

k + 4n.”

Proof. Suppose D be a DS of G such that |D| ≤ k. Then, clearly, D′ = D ∪ {bi, di, gi, ii :

1 ≤ i ≤ n} is a DS of GI such that |D′| ≤ k + 4n.

Conversely, suppose D′ is a DS of GI such that |D′| ≤ k + 4n. Then, D′ should

contain at least one vertex from each pair {bi, ci}, {di, ei}, {gi, hi} and {ii, ji}. Let D′′ be

a set formed from D′ by replacing all ai’s (fi’s) with the corresponding vi’s. Clearly, D′′ is

a DS of G such that |D′′| ≤ k. Hence the lemma.

From the fact DDP is NP-complete [54] and above lemma, the following theorem is

immediate.

Theorem 4.2.10. “The DDP for GI graphs is NP-complete.”

4.3 Algorithmic Complexity of Total Roman Domination

and Total Double Roman Domination in Graphs

In this section, we present complexity results for TRDOM and the TDRDOM in graphs.

4.3.1 Complexity in Threshold Graphs

Here, we solve MTRDP and MTDRDP for connected threshold graphs in linear time.
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Theorem 4.3.1. “Let G be a connected threshold graph. Then,

γtR(G) =

2, if G ∼= K2

3, otherwise

(4.6)

and

γtdR(G) =

3, if G ∼= K2

4, otherwise”

(4.7)

Proof. Let G be a connected threshold graph with p clique vertices and q independent

vertices as described above. Since, xp is a universal vertex of G, clearly, this implies that

γtR(G) = 3 and γtdR(G) = 4, except when G ∼= K2 where γtR(G) = 2 and γtdR(G) =

3.

Now, the following result is immediate from Theorem 4.3.1.

Theorem 4.3.2. “MTRDP and MTDRDP for threshold graphs are linear time solv-

able.”

If threshold graph G is disconnected i.e., G contains isolated vertices, then TRDF and

TDRDF can not be defined on G.

4.3.2 Complexity in Chain Graphs

Here, we solve MTRDP and MTDRDP for chain graphs in linear time.
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Theorem 4.3.3. “Let G(X, Y,E) be a connected chain graph. Then,

γtR(G) =


2, if G is K2

3, if G is K1,s, where s ≥ 2

4, otherwise

(4.8)

and

γtdR(G) =


3, if G is K2

4, if G is K1,s, where s ≥ 2

6, otherwise”

(4.9)

Proof. Let G(X, Y,E) be a connected chain graph with |X| = p and |Y | = q where

p, q ≥ 1. If G ∼= K2 or G ∼= K1,s, where s ≥ 2, then γtR(G) and γtdR(G) can be

determined directly from Theorem 4.3.1. Otherwise, define functions f : V → {0, 1, 2}

and g : V → {0, 1, 2, 3} as follows.

f(v) =

2, if v ∈ {xp, y1}

0, otherwise
(4.10)

g(v) =

3, if v ∈ {xp, y1}

0, otherwise
(4.11)

Clearly, f(g) is a TRDF (TDRDF) and γtR(G) ≤ 4 (γtdR(G) ≤ 6). By contradiction, it

can be easily verified that γtR(G) ≥ 4 (γtdR(G) ≥ 6). Therefore γtR(G) = 4 (γtdR(G) =

6).

Now, from Theorem 4.3.3, the theorem below follows.

Theorem 4.3.4. “MTRDP and MTDRDP for chain graphs are solvable in linear

time.”
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If chain graph G is disconnected i.e., G contains isolated vertices, then TRDF and TDRDF

can not be defined on G.

4.3.3 Complexity in Bounded Tree-width Graphs

Here, we show that MTRDP and MTDRDP can be solvable in linear time for bounded

tree-width graphs.

Theorem 4.3.5. “Given a graph G and a positive integer k, MTRDP can be ex-

pressed in CMSOL.”

Proof. Let f : V → {0, 1, 2} be a function on a graph G, where Vi = {v|f(v) = i}

for i ∈ {0, 1, 2}. We make use of a property called, Total Rom(V ), to express TRDP

in CMSOL. The CMSOL formula for the Total Rom(V ), which says that every vertex

p ∈ V1 ∪ V2 is adjacent to some vertex q in V1 ∪ V2, is expressed as follows.

Total Rom(V ) = ∃V0, V1, V2,∀p,∃q(p ∈ (V1 ∪ V2) ∧ q ∈ (V1 ∪ V2) ∧ adj(p, q)).

Now, The CMSOL formula for the TRDP is expressed, by using Rom Dom(V ) from

Section 3.1.3, as follows.

Total Rom Dom(V ) = (f(V ) ≤ k) ∧Rom Dom(V ) ∧ Total Rom(V ).

Now, from Theorem 4.3.5 and Courcelle’s result in [10], the theorem below follows.

Theorem 4.3.6. “MTRDP for graphs with treewidth at most a constant is solvable

in linear time.”

Theorem 4.3.7. “Given a graph G and a positive integer k, MTDRDP can be ex-

pressed in CMSOL.”

Proof. Let g : V → {0, 1, 2, 3} be a function on a graph G, where Vi = {v|g(v) = i}

for i ∈ {0, 1, 2, 3}. We make use of a property called, Total Double Rom(V ), to express

TDRDP in CMSOL. The CMSOL formula for the Total Double Rom(V ), which says

that every vertex p ∈ V1 ∪V2 ∪V3 is adjacent to some vertex q in V1 ∪V2 ∪V3, is expressed
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as follows.

Total Double Rom(V ) = ∃V0, V1, V2, V3,∀p,∃q(p ∈ (V1 ∪ V2 ∪ V3) ∧ q ∈ (V1 ∪ V2 ∪

V3) ∧ adj(p, q)).

Now, the CMSOL formula for the TDRDP is expressed, by using Double Rom Dom(V )

from Section 3.2.4, as follows.

Total Double Rom Dom(V ) = (g(V ) ≤ k) ∧Double Rom Dom(V ) ∧

Total Double Rom(V ).

Now, from Theorem 4.3.7 and Courcelle’s result in [10], the theorem below follows.

Theorem 4.3.8. “MTDRDP for graphs with treewidth at most a constant is solvable

in linear time.”

4.4 Summary

In this chapter, the PRDP, PDRDP, TRDP and TDRDP complexity has been investigated in

various graph classes.

Graph Class PRDP PDRDP TRDP TDRDP

Bipartite graphs NPC [65] NPC NPC [15] NPC [71]

Chordal graphs NPC [65] NPC NPC [15] NPC [71]

Star convex bipartite graphs NPC - - -

Comb convex bipartite graphs NPC - - -

Chain graphs P P P P

Threshold graphs P P P P

Bounded tree-width graphs P P P P

Table 4.1: Complexity status of PRDP, PDRDP, TRDP and TDRDP
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Chapter 5

Algorithmic Complexity of Independent

Roman Domination, Independent

Roman {2}-domination and

Independent Double Roman Domination

In this chapter, we show that IRDP, IR2DP and IDRDP are NP-complete for, dually chordal

graphs, star convex bipartite graphs and comb convex bipartite graphs, and IR2DP and

IDRDP are NP-complete for chordal graphs. Next, we show that MIRDP, MIR2DP and

MIDRDP are linear time solvable for bounded tree-width graphs, chain graphs and thresh-

old graphs. Finally, we study the complexity difference of IRDP (IR2DP, IDRDP) with

DOMINATION problem.

5.1 Algorithmic Complexity of Independent Roman Dom-

ination

In this section, we present complexity results for independent Roman domination.
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Figure 5.1: An illustration to the construction of star graph from an instance of X3SC

5.1.1 Complexity in Subclasses of Bipartite Graphs

In this subsection, complexity results for IRDP in subclasses of bipartite is proved.

5.1.1.1 Star Convex Bipartite Graphs

Here, NP-completeness of IRDP in star convex bipartite graphs is proved.

Theorem 5.1.1. “IRDP is NP-complete for star convex bipartite graphs.”

Proof. Given a graph G and a function f , whether f is an IRDF of size at most k can be

checked in polynomial time. Hence IRDP is a member of NP. Now we show that IRDP is

NP-hard by transforming an instance 〈X,C〉 of X3SC, where X = {x1, x2, . . ., x3q} and

C = {c1, c2, . . ., ct}, to an instance 〈G, k〉 of IRDP as follows.

Create vertices xi for each xi ∈ X , ai, bi, ci for each ci ∈ C and v0. Add edges

(ci, bi), (ai, bi), (ci, v0) for each ci. Also add edges (cj, xi) if xi ∈ cj . Let A = {v0} ∪ {xi :

1 ≤ i ≤ 3q} ∪ {bi : 1 ≤ i ≤ t}, B = V \ A. The subgraph induced by A is a star with

vertex v0 as central vertex and the neighbors of each element of B induce a subtree of star.

Therefore G is a star convex bipartite graph and can be constructed from the given instance

〈X,C〉 of X3SC in polynomial time. The graph constructed and associated star is shown

in the Figure 5.1. Next we show that, X3SC has a solution if and only if G has an IRDF

with weight at most 2t+ q.

Suppose C ′ is a solution for X3SC with |C ′| = q. We define a function f : V →
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{0, 1, 2} as follows.

f(v) =


2, if v ∈ C ′ ∪ {bi : ci /∈ C ′}

1, if v ∈ {ai : ci ∈ C ′}

0, otherwise

(5.1)

It can be easily verified that f is an IRDF of G and f(V ) = 2t+ q.

Conversely, suppose that G has an IRDF g with weight 2t + q. Clearly, each path

ai − bi − ci requires a weight of at least 2. This makes the weight at least 2t.

Claim 5.1.1. “If g(V ) = 2t+ q, then g(v0) = 0.”

Proof. Assume g(V ) = 2t + q and g(v0) > 0. Then, ∀ci, g(ci) = 0. Clearly, each path

ai − bi requires a weight of at least 2 and ∀xi, g(xi) > 0. This leads to the total weight at

least 2t+g(v0)+3q, which is greater than 2t+q, a contradiction. Therefore g(v0) = 0.

Claim 5.1.2. “If g(V ) = 2t+ q, then for each xi ∈ X , g(xi) = 0.”

Proof. Assume g(V ) = 2t+q and there existm (≥1) xi’s such that g(xi) 6= 0. The number

of xi’s with g(xi) = 0 is 3q−m. Since g is an IRDF, each xi with g(xi) = 0 should have a

neighbor cj with g(cj) = 2. So the number of cj’s required with g(cj) = 2 is d3q−m
3
e. Also

each ai−bi path requires a weight of at least 2. Hence g(V ) ≥ 2t+m+2d3q−m
3
e > 2t+q,

a contradiction. Therefore for each xi ∈ X , g(xi) = 0.

Since each ci has exactly three neighbors inX , clearly, there exist q number of ci’s with

weight 2 such that
(⋃

g(ci)=2 NG(ci)
)
∩X = X . Consequently, C ′ = {ci : g(ci) = 2} is an

exact cover for C.

5.1.1.2 Comb Convex Bipartite Graphs

Here NP-completeness of IRDP in comb convex bipartite graphs is proved.

Theorem 5.1.2. “IRDP is NP-complete for comb convex bipartite graphs.”
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Figure 5.2: An illustration to the construction of comb graph from an instance of X3SC

Proof. Clearly, IRDP for comb convex bipartite graphs is a member of NP. We transform

an instance 〈X,C〉 of X3SC, where X = {x1, x2, . . ., x3q} and C = {c1, c2, . . ., ct}, to

an instance 〈G, k〉 of IRDP as follows.

Create vertices xi, x′i for each xi ∈ X and ai, bi, ci, b′i for each ci ∈ C. Add edges

(ci, bi), (ai, bi) for each ci and (cj, xi) if xi ∈ cj . Next add edges by joining each cj to every

b′i and x′i. Let A = {xi, x′i : 1 ≤ i ≤ 3q} ∪ {bi, b′i : 1 ≤ i ≤ t} and B = V \ A. The

subgraph induced by A is a comb with the elements {x′i : 1 ≤ i ≤ 3q } ∪ {b′i : 1 ≤ i ≤ t}

as backbone and {xi : 1 ≤ i ≤ 3q } ∪ {bi : 1 ≤ i ≤ t} as teeth and the neighbors of

each element of B induce a subtree of the comb. Therefore G is a comb convex bipartite

graph and can be constructed from the given instance 〈X,C〉 of X3SC in polynomial time.

The graph constructed and associated comb is shown in the Figure 5.2. Next we show that,

X3SC has a solution if and only if G has an IRDF with weight at most 2t+ q.

The forward and converse proofs are similar to the proof given in Theorem 5.1.1.

From Theorems 5.1.1 and 5.1.2, the result below follows.

Theorem 5.1.3. “IRDP is NP-complete for tree convex bipartite graphs.”

5.1.1.3 Chain Graphs

Here, we propose a method to compute the independent Roman domination number of

chain graphs.
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Theorem 5.1.4. “Let G(X, Y,E) be a connected chain graph. Then,

iR(G) =


2, if G ∼= K1,s, where s ≥ 1

1 + |X|, if |X| ≤ |Y |

1 + |Y |, otherwise”

(5.2)

Proof. If G ∼= K1 then iR(G) = 1 and if G ∼= K1,s, where s ≥ 1 i.e., G has a universal

vertex then, clearly, iR(G) = 2. Otherwise, let G(X, Y,E) be a chain graph with |X| = p

and |Y | = q, where p, q ≥ 1. Now, define a function f : V → {0, 1, 2} as follows.

Case 1 : If |X| ≤ |Y |, then

f(v) =


2, if v = xp

1, if v ∈ {xi : 1 ≤ i < p}

0, otherwise

(5.3)

Clearly, f is an IRDF and iR(G) ≤ 1 + |X|. From the definition of independent Roman

domination, it follows that iR(G) ≥ 1 + |X|. Therefore iR(G) = 1 + |X|.

Case 2 : Otherwise,

f(v) =


2, if v = y1

1, if v ∈ {yi : 2 ≤ i ≤ q}

0, otherwise

(5.4)

Clearly, f is an IRDF and iR(G) ≤ 1 + |Y |. From the definition of independent Roman

domination, it follows that iR(G) ≥ 1 + |Y |. Therefore iR(G) = 1 + |Y |.

If the chain graph G is disconnected with k connected components G1, G2, . . . , Gk

then it is easy to verify that iR(G) =
∑k

i=1 iR(Gi). Now, from Theorem 5.1.4, the theorem

below follows.

Theorem 5.1.5. “MIRDP can be solvable in linear time for chain graphs.”

59



CHAPTER 5. ALGORITHMIC COMPLEXITY OF INDEPENDENT ROMAN DOMINATION, INDEPENDENT ROMAN {2}-DOMINATION AND INDEPENDENT
DOUBLE ROMAN DOMINATION Section 5.1

�2
�3 �5

�4�1

�1 �2 �5�4�3

�

�1

�

�1 �5

�

�2
�2 �5

Figure 5.3: An example construction of G′ from G

5.1.2 Complexity in Dually Chordal Graphs

In this section, we show that IRDP is NP-complete for dually chordal graphs by giving

a polynomial time reduction from the independent domination problem, which has been

proved as NP-hard for dually chordal graphs [4]. The decision version of independent

domination problem is defined as follows.

“INDEPENDENT DOMINATION (IDOM)

INSTANCE : A simple, undirected graph G and a positive integer p.

QUESTION : Does G have an IDS of size at most p?”

Theorem 5.1.6. “IRDP is NP-complete for dually chordal graphs.”

Proof. Clearly, IRDP is a member of NP. Given an instance G = (V,E) of IDOM, where

V = {v1, v2, . . . , vn}, we construct an instance G′ = (V ′, E ′) of IRDP such that V ′ =

V ∪ {ai, xi, yi : 1 ≤ i ≤ n} ∪ {p, q} and E ′ = E ∪ {(vi, ai), (vi, p) : 1 ≤ i ≤ n} ∪

{(p, q)} ∪ {(q, xi), (q, yi) : 1 ≤ i ≤ n}. An example construction of G′, when G is a

path on five vertices, is shown in Figure 5.3. Since G′ admits a maximum neighbourhood

ordering (a1, a2, . . . , an, x1, y1, x2, y2, . . . , xn, yn, v1, v2, . . . , vn, p, q), it is a dually chordal

graph. Next we show that, G has an IDS of size k iff G′ has an IRDF with weight at most

n+ k + 2.

Suppose G has an IDS D of size k. We define a function f : V ′ → {0, 1, 2} on G′ as
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follows.

f(v) =


2, if v ∈ D ∪ {q}

1, if v ∈ {ai : vi /∈ D}

0, otherwise

(5.5)

Clearly, f is an IRDF of G′ and f(V ′) ≤ n+ k + 2.

Conversely, suppose thatG′ has an IRDF g with weight n+k+2, where V ′i = {v|g(v) =

i} for i ∈ {0, 1, 2}. Clearly, g(p) + g(q) + g(xi) + g(yi) ≥ 2. Then, D = {vi : g(vi) = 2

or g(ai) = 2} is an IDS of G. The following claim holds.

Claim 5.1.3. “|D| ≤ k.”

Proof. Assume g(V ) = n + k + 2 and |D| = l, where l > k. Clearly, there exist n − l

number of ai’s, where g(vi) = 0, such that each such ai needs a weight of at least 1.

Therefore g(V ) ≥ n+ l + 2 > n+ k + 2, a contradiction. Hence the claim.

D is an IDS of G; because if D is not an IDS, a vertex vi ∈ V ′2 would be adjacent to

vj ∈ V ′2 and g would not be an IRDF.

5.1.3 Complexity in Threshold Graphs

Here, we show that MIRDP for threshold graph can be solvable in linear time.

Theorem 5.1.7. “Let G(V,E) be a threshold graph with split partition (C, I). Then

iR(G) = k + 1, where k is the number of connected components in G.”

Proof. Let G be a threshold graph with n clique vertices such that NG[x1] ⊆ NG[x2] ⊆

NG[x3] ⊆ . . . ⊆ NG[xp]. Now, define a function f : V → {0, 1, 2} as follows.

f(v) =


1, if deg(v) = 0

2, if v = xp

0, otherwise

(5.6)
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Clearly, f is an IRDF and iR(G) ≤ k + 1. From the definition of IRDF, it follows that

iR(G) ≥ k + 1. Therefore iR(G) = k + 1.

The following result is immediate from Theorem 5.1.7.

Theorem 5.1.8. “MIRDP can be solvable in linear time for threshold graphs.”

5.1.4 Complexity in Bounded Tree-width Graphs

Here, we show that MIRDP for bounded tree-width graphs can be solvable in linear time.

Theorem 5.1.9. “Given a graph G and a positive integer k, IRDP can be expressed

in CMSOL.”

Proof. Let f : V → {0, 1, 2} be a function on a graph G, where Vi = {v|f(v) = i} for

i ∈ {0, 1, 2}. The CMSOL formula for the IRDP is expressed, by using Rom Dom(V )

defined in Theorem 3.1.9, as follows.

Independent Rom Dom(V ) = (f(V ) ≤ k) ∧Rom Dom(V ) ∧

Independent(V1 ∪ V2).

The result below follows from Theorems 3.1.8 and 5.1.9.

Theorem 5.1.10. “MIRDP can be solvable in linear time for bounded tree-width

graphs.”

5.1.5 Complexity Difference with Domination

Here, we show that domination problem and IRDP differ in computational complexity as-

pects by creating a new class of graphs. We build a new class of graphs in which the DDP

is NP-complete, whereas the MIRDP can be solved trivially.
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Figure 5.4: An illustration to the construction of GP graph from G

”Definition 1. (GP graph). A graph is GP graph if it can be constructed from a

connected graph G = (V,E) where |V | = n and V = {v1, v2, . . . , vn}, in the

following way :

1. Create n copies of P5 graphs with vertices ai, bi, ci, di, ei in the order

ai, bi, ci, di and ei.

2. Add edges {(ci, vi) : 1 ≤ i ≤ n}.”

General GP graph construction is shown in Figure 5.4.

Theorem 5.1.11. “IfG′ is a GP graph obtained from a graphG = (V,E) (|V | = n),

then iR(G′) = 4n.”

Proof. Let G′ = (V ′, E ′) is a GP graph constructed from G. Let f : V ′ → {0, 1, 2} be a

function on graph G′, which is defined as follows

f(v) =


2, if v ∈ {ci : 1 ≤ i ≤ n}

1, if v ∈ {ai, ei : 1 ≤ i ≤ n}

0, otherwise

(5.7)

Clearly, f is an IRDF and iR(G′) ≤ 4n.

Next, we show that iR(G′) ≥ 4n. Let g be an IRDF on graphG′. Clearly, ∀i, 1 ≤ i ≤ n,

g(ai)+g(bi)+g(ci)+g(di)+g(ei) ≥ 4. Therefore iR(G′) ≥ 4n. Hence iR(G′) = 4n.
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Lemma 5.1.11.1. “Let G′ be a GP graph constructed from a graph G = (V,E).

Then G has a dominating set of size at most k if and only if G′ has a dominating set

of size at most k + 2n.”

Proof. SupposeD be DS ofG of size at most k, then it is clear thatD∪{bi, di : 1 ≤ i ≤ n}

is a DS of G′ of size at most k + 2n.

Conversely, let D′ be a DS of G′ of size at most k + 2n. Then, from each pair of the

vertices {ai, bi}, {ei, di}, at least one vertex must be included in D′. Let D′′ be the set

formed by replacing all ci’s in D′ by the corresponding vi’s. Clearly, D′′ is a DS of G of

size at most k. Hence the lemma.

From the fact DDP is NP-complete [54] and Lemma 5.1.11.1, the following theorem is

immediate.

Theorem 5.1.12. “The DDP is NP-complete for GP graphs.”

5.2 Algorithmic Complexity of Independent Roman {2}-

Domination

In this section, we present complexity results for independent Roman {2}-domination.

5.2.1 Complexity in Subclasses of Bipartite Graphs

In this subsection, complexity results for IR2DP in subclasses of bipartite is proved.

5.2.1.1 Star Convex Bipartite Graphs

Here, NP-completeness of IR2DP in star convex bipartite graphs is proved.

Theorem 5.2.1. “IR2DP is NP-complete for star convex bipartite graphs.”
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Proof. Given a graph G and a function f , whether f is an IR2DF of size at most k can be

checked in polynomial time. Hence IR2DP is a member of NP. Now we show that IR2DP

is NP-hard by transforming an instance 〈X,C〉 of X3SC, where X = {x1, x2, . . ., x3q} and

C = {c1, c2, . . ., ct}, to an instance 〈G, k〉 of IR2DP given as in Theorem 3.1.1. Next we

show that, X3SC has a solution if and only if G has an IR2DF with weight at most 2t+ q.

Suppose C ′ is a solution for X3SC with |C ′| = q. We define a function f : V →

{0, 1, 2} as follows.

f(v) =


2, if v ∈ C ′

1, if v ∈ {ai : 1 ≤ i ≤ t} ∪ {ci : ci /∈ C ′}

0, otherwise

(5.8)

It can be easily verified that f is an IR2DF of G and f(V ) = 2t+ q.

The proof of the converse is similar to the proof given in Theorem 5.1.1.

5.2.1.2 Comb Convex Bipartite Graphs

Here NP-completeness of IR2DP in comb convex bipartite graphs is proved.

Theorem 5.2.2. “IR2DP is NP-complete for comb convex bipartite graphs.”

Proof. Clearly, IR2DP for comb convex bipartite graphs is a member of NP. We transform

an instance 〈X,C〉 of X3SC, where X = {x1, x2, . . ., x3q} and C = {c1, c2, . . ., ct}, to

an instance 〈G, k〉 of IR2DP given as in Theorem 3.1.2. Next we show that, X3SC has a

solution if and only if G has an IR2DF with weight at most 2t+ q.

The forward and converse proofs are similar to the proof given in Theorem 5.2.1.

From Theorems 5.2.1 and 5.2.2, the result below follows.

Theorem 5.2.3. “IR2DP is NP-complete for tree convex bipartite graphs.”
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5.2.1.3 Chain Graphs

Theorem 5.1.4 also produces independent Roman {2}-domination number of chain graph.

Therefore the following result follows.

Theorem 5.2.4. “MIR2DP can be solvable in linear time for chain graphs.”

5.2.2 Complexity in Chordal Graphs

Here NP-completeness of IR2DP in chordal graphs is proved.

Theorem 5.2.5. “IR2DP is NP-complete for chordal graphs.”

Proof. Clearly, IR2DP for chordal graphs is a member of NP. We transform an instance

〈X,C〉 of X3SC, where X = {x1, x2, . . ., x3q} and C = {c1, c2, . . ., ct}, to an instance

〈G, k〉 of IR2DP as follows.

Create vertices xi, yi for each xi ∈ X , pi, ri, si, ci for each ci ∈ C and yikl , where

1 ≤ i, k ≤ 3q and 1 ≤ l ≤ 2. Add edges (ci, si), (si, pi), (si, ri), (pi, ri) for each ci and

(cj, xi) if xi ∈ cj . Next add edges (xi, yi), (yi, yikl), where 1 ≤ i, k ≤ 3q and 1 ≤ l ≤ 2.

Also add edges (xi, xj), ∀xi, xj ∈ X , where i 6= j. The graph constructed is shown in the

Figure 6.6. Since G admits a PEO {yik2 : 1 ≤ i, k ≤ 3q} ∪ {yik1 : 1 ≤ i, k ≤ 3q} ∪ {yi :

1 ≤ i ≤ 3q} ∪ {pi : 1 ≤ i ≤ t} ∪ {ri : 1 ≤ i ≤ t} ∪ {si : 1 ≤ i ≤ t} ∪ {ci : 1 ≤ i ≤

t} ∪ {xi : 1 ≤ i ≤ 3q}, it is a chordal graph. Next we show that, X3SC has a solution if

and only if G has an IR2DF with weight at most 2t+ 9q2 + 4q.

Suppose C ′ is a solution for X3SC with |C ′| = q. We define a function f : V →

{0, 1, 2} as follows.

f(v) =


2, if v ∈ {si : ci /∈ C ′} ∪ {ri : ci ∈ C ′}

1, if v ∈ C ′ ∪ {yi, yik2 : 1 ≤ i, k ≤ 3q}

0, otherwise

(5.9)

It can be easily verified that f is an IR2DF of G and f(V ) = 2t+ 9q2 + 4q.
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Figure 5.5: An illustration to the construction of chordal graph from an instance of X3SC

Conversely, suppose that G has an IR2DF g with weight 2t + 9q2 + 4q. The following

claim holds.

Claim 5.2.1. “If g(V ) = 2t+ 9q2 + 4q then for each xi ∈ X , g(xi) = 0.”

Proof. Assume g(V ) = 2t + 9q2 + 4q and there exists an xi such that g(xi) 6= 0. Let xa

be a vertex such that g(xa) ≥ 1. Then g(ya) = 0, each yak1 − yak2 , where 1 ≤ k ≤ 3q,

path requires a weight of at least 2 and each 〈{yi, yik1 , yik2}〉, where 1 ≤ i, k ≤ 3q and

yi 6= ya, requires a weight of at least 3q + 1. And also each 〈{pi, ri, si}〉, where 1 ≤ i ≤ t,

requires a weight of at least 2. Hence g(V ) ≥ 2t+ 9q2 + 6q − 1 + g(xa) > 2t+ 9q2 + 4q,

a contradiction. Therefore for each xi ∈ X , g(xi) = 0.

Clearly, g(yi) + g(yik1) + g(yik2) ≥ 3q + 1, where 1 ≤ i, k ≤ 3q and g(pi) + g(ri) +

g(si) ≥ 2, where 1 ≤ i ≤ t. Since each ci has exactly three neighbors in X , clearly, there

exist q number of ci’s with weight 1 such that
(⋃

g(ci)=1 NG(ci)
)
∩X = X . Consequently,

C ′ = {ci : g(ci) = 1} is an exact cover for C.

5.2.3 Complexity in Dually Chordal Graphs

Here NP-completeness of IR2DP in dually chordal graphs is proved.
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Theorem 5.2.6. “IR2DP is NP-complete for dually chordal graphs.”

Proof. The proof is similar to the proof given in Theorem 5.1.6.

5.2.4 Complexity in Threshold Graphs

Theorem 5.1.7 also determines the independent Roman {2}-domination number of thresh-

old graph. Hence, the following result is immediate.

Theorem 5.2.7. “MIR2DP can be solvable in linear time for threshold graphs.”

5.2.5 Complexity in Bounded Tree-width Graphs

Here, we show that for bounded tree-width graphs, MIR2DP can be solvable in linear time.

Theorem 5.2.8. “Given a graphG and a positive integer k, IR2DP can be expressed

in CMSOL.”

Proof. Let f : V → {0, 1, 2} be a function on a graph G, where Vi = {v|f(v) = i} for i ∈

{0, 1, 2}. The CMSOL formula for the IR2DP is expressed, by using Rom {2} Dom(V )

from Theorem 3.2.12, as follows.

Independent Rom Dom(V ) = (f(V ) ≤ k) ∧Rom {2} Dom(V ) ∧

Independent(V1 ∪ V2).

Now, the following result is immediate from Theorems 3.1.8 and 5.2.8.

Theorem 5.2.9. “MIR2DP can be solvable in linear time for bounded tree-width

graphs.”

68



CHAPTER 5. ALGORITHMIC COMPLEXITY OF INDEPENDENT ROMAN DOMINATION, INDEPENDENT ROMAN {2}-DOMINATION AND INDEPENDENT
DOUBLE ROMAN DOMINATION Section 5.2

�1

�2

�4

�3

�1

�2

�4

�3

�1

�4

�2

�3

�1

�2 �3

�4

�

Figure 5.6: An illustration to the construction of GS graph from G

5.2.6 Complexity Difference in Domination and Independent Roman

{2}-Domination

Here, we show the complexity difference between domination problem and IR2DP by con-

structing a new class of graphs.

“Definition 2. (GS graph). A graph is GS graph if it can be constructed from a

connected graph G = (V,E) where |V | = n and V = {v1, v2, . . . , vn}, in the

following way :

1. Create n copies of P3 graphs with vertices ai, bi, ci with bi as the middle vertex.

2. Add edges {(ai, vi), (ci, vi) : 1 ≤ i ≤ n}.”

General GS graph construction is shown in Figure 5.6.

Theorem 5.2.10. “IfG′ is a GS graph obtained from a graphG = (V,E) (|V | = n),

then i{R2}(G
′) = 2n.”

Proof. Let G′ = (V ′, E ′) is a GS graph constructed from G. Let f : V ′ → {0, 1, 2} be a

function on graph G′, which is defined as below

f(v) =

1, if v ∈ {ai, ci : 1 ≤ i ≤ n}

0, otherwise
(5.10)

Clearly, f is an IR2DF and i{R2}(G
′) ≤ 2n.

Next, we show that i{R2}(G
′) ≥ 2n. Let g be an IR2DF of G′. Clearly, ∀i, 1 ≤ i ≤ n,
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g(ai) + g(bi) + g(ci) ≥ 2. Hence g(V ′) ≥ 2n. Therefore i{R2}(G
′) = 2n.

Lemma 5.2.10.1. “Let G′ be a GS graph constructed from a graph G = (V,E).

Then G has a dominating set of size at most k if and only if G′ has a dominating set

of size at most k + n.”

Proof. Suppose D be DS of G, where |D| ≤ k, then it is clear that D ∪ {bi : 1 ≤ i ≤ n}

is a DS of G′ of size at most k + n.

Conversely, suppose D′ is a DS of G′ of size at most k + n. Then, from each of the

vertices ai, bi, ci, at least one vertex must be included in D′. Let D′′ be the set formed by

replacing all ai’s (ci’s) in D′ by the corresponding vi’s. Clearly, D′′ is a DS of G such that

|D′′| ≤ k. Hence the lemma.

From the fact DDP is NP-complete [54] and Lemma 5.2.10.1, the following theorem is

immediate.

Theorem 5.2.11. “The DDP is NP-complete for GS graphs.”

5.3 Algorithmic Complexity of Independent Double Ro-

man Domination

Here, we present complexity results for independent double Roman domination.

5.3.1 Complexity in Subclasses of Bipartite Graphs

In this subsection, complexity results for IRDP in subclasses of bipartite is proved.

5.3.1.1 Star Convex Bipartite Graphs

Here, NP-completeness of IDRDP in star convex bipartite graphs is proved.

Theorem 5.3.1. “IDRDP is NP-complete for star convex bipartite graphs.”

70



CHAPTER 5. ALGORITHMIC COMPLEXITY OF INDEPENDENT ROMAN DOMINATION, INDEPENDENT ROMAN {2}-DOMINATION AND INDEPENDENT
DOUBLE ROMAN DOMINATION Section 5.3

Proof. The proof is similar to the proof given in Theorem 5.1.1, in which replace the as-

signed values, for the vertices, 1 with 2 and 2 with 3.

5.3.1.2 Comb Convex Bipartite Graphs

Here, NP-completeness of IDRDP in comb convex bipartite graphs is proved.

Theorem 5.3.2. “IDRDP is NP-complete for comb convex bipartite graphs.”

Proof. The proof is similar to the proof given in Theorem 5.1.2, in which replace the as-

signed values, for the vertices, 1 with 2 and 2 with 3.

From Theorems 5.3.1 and 5.3.2, the result below follows.

Theorem 5.3.3. “IDRDP is NP-complete for tree convex bipartite graphs.”

5.3.1.3 Chain Graphs

Here, we propose a method to compute the independent double Roman domination number

of chain graphs.

Theorem 5.3.4. “Let G(X, Y,E) be a chain graph. Then,

idR(G) =


3, if G ∼= K1,s, where s ≥ 1

1 + 2|X|, if |X| ≤ |Y |

1 + 2|Y |, otherwise”

(5.11)

Proof. The proof is obtained with similar arguments as in Theorem 5.1.4, in which replace

the assigned values, for the vertices, 1 with 2 and 2 with 3.

The following result is immediate from Theorem 5.3.4.

Theorem 5.3.5. “MIDRDP can be solvable in linear time for chain graphs.”
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5.3.2 Complexity in Chordal Graphs

Here NP-completeness of IDRDP in chordal graphs is proved.

Theorem 5.3.6. “IDRDP is NP-complete for chordal graphs.”

Proof. The proof is similar to the proof given in Theorem 5.2.5, in which replace the as-

signed values, for the vertices, 1 with 2 and 2 with 3.

5.3.3 Complexity in Dually Chordal Graphs

Here NP-completeness of IDRDP in dually chordal graphs is proved.

Theorem 5.3.7. “IDRDP is NP-complete for dually chordal graphs.”

Proof. The proof is similar to the proof given in Theorem 5.1.6, in which replace the as-

signed values, for the vertices, 1 with 2 and 2 with 3.

5.3.4 Complexity in Threshold Graphs

Here, we solve the MIDRDP of threshold graph.

Theorem 5.3.8. “Let G(V,E) be a threshold graph with split partition (C, I). Then

idR(G) = 2k + 1, where k is the number of connected components in G.”

Proof. Let G be a threshold graph with n clique vertices such that NG[x1] ⊆ NG[x2] ⊆

NG[x3] ⊆ . . . ⊆ NG[xp]. Let g : V → {0, 1, 2, 3} be a function defined on G as follows.

g(v) =


2, if deg(v) = 0

3, if v = xp

0, otherwise

(5.12)

Clearly, g is an IDRDF and idR(G) ≤ 2k+1. From the definition of IDRDF, it follows that
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idR(G) ≥ 2k + 1. Therefore idR(G) = 2k + 1.

The following result is immediate from Theorem 5.3.8.

Theorem 5.3.9. “MIDRDP can be solvable in linear time for threshold graphs.”

5.3.5 Complexity in Bounded Tree-width Graphs

Here, we show that MIDRDP can be solvable in linear time for bounded tree-width graphs.

Theorem 5.3.10. “Given a graph G and a positive integer k, IDRDP can be ex-

pressed in CMSOL.”

Proof. Let g : V → {0, 1, 2, 3} be a function on a graph G, where Vi = {v|g(v) = i} for

i ∈ {0, 1, 2, 3}. The CMSOL formula for the IDRDP is expressed, by using

Double Rom Dom(V ) defined in Theorem 3.2.14, as follows.

Independent Double Rom Dom(V ) = (g(V ) ≤ k) ∧Double Rom Dom(V ) ∧

Independent(V1 ∪ V2 ∪ V3).

Now, the following result is immediate from Theorems 3.1.8 and 5.3.10.

Theorem 5.3.11. “MIDRDP can be solvable in linear time for bounded tree-width

graphs.”

5.3.6 Complexity Difference in Domination and Independent Double

Roman Domination

Here, we show the complexity difference between domination problem and IDRDP by

constructing a new class of graphs.
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Figure 5.7: An illustration to the construction of GI graph from G

“Definition 3. (GI graph). A graph is GI graph if it can be constructed from a

connected graph G = (V,E) where |V | = n and V = {v1, v2, . . . , vn}, in the

following way :

1. Create six copies of P2 graphs such as bi − ci, di − ei, fi − gi, ii − ji, ki − li
and mi − ni, for each i.

2. Consider 2n additional vertices {a1, a2, . . . , an, h1, h2, . . . , hn}.

3. Add edges {(vi, ai), (ai, bi), (ai, di), (ai, fi), (vi, hi), (hi, ii), (hi, ki), (hi,mi) :

1 ≤ i ≤ n}.”

General GI graph construction is shown in Figure 6.5.

Theorem 5.3.12. “IfG′ is a GI graph obtained from a graphG = (V,E) (|V | = n),

then idR(G′) = 16n.”

Proof. Let G′ = (V ′, E ′) is a GI graph constructed from G. Let f : V ′ → {0, 1, 2} be a

function on graph G′, which is defined as below

f(v) =

2, if v ∈ {ai, hi, ci, ei, gi, ji, li, ni : 1 ≤ i ≤ n}

0, otherwise
(5.13)

Clearly, f is an IDRDF and idR(G′) ≤ 16n.
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Next, we show that idR(G′) ≥ 16n. Let g be an IDRDF on graph G′. Then following

claim holds.

Claim 5.3.1. “If g(V ) = 16n then for each vi ∈ V , g(vi) = 0.”

Proof. Assume g(V ) = 16n and there exist some vi’s such that g(vi) 6= 0. Let vp be

a vertex such that g(vp) ≥ 1. Then g(ap) = g(hp) = 0, each of the six p2’s bp −

cp, dp − ep, fp − gp, ip − jp, kp − lp,mp − np requires a weight of at least 3 and each

〈{ai, bi, ci, di, ei, fi, gi, hi, ii, ji, ki, li,mi, ni : 1 ≤ i ≤ n, i 6= p}〉, requires a weight of at

least 16. Hence g(V ) ≥ 16n+2+g(vp) > 16n, a contradiction. Therefore for each vi ∈ V ,

g(vi) = 0.

Clearly, g(ai)+g(bi)+g(ci)+g(di)+g(ei)+g(fi)+g(gi) ≥ 8, g(hi)+g(ii)+g(ji)+

g(ki) + g(li) + g(mi) + g(ni) ≥ 8, where 1 ≤ i ≤ n. Hence g(V ) ≥ 16n. Therefore

g(V ) = 16n.

Lemma 5.3.12.1. “Let G′ be a GI graph constructed from a graph G = (V,E).

Then G has a dominating set of size at most k if and only if G′ has a dominating set

of size at most k + 6n.”

Proof. SupposeD be DS ofG, where |D| ≤ k, then it is clear thatD∪{bi, di, fi, ii, ki,mi :

1 ≤ i ≤ n} is a DS of G′ of size at most k + 6n.

Conversely, suppose D′ is a DS of G′ such that |D′| ≤ (k + 6n). Then, from each

pair of the vertices {bi, ci}, {di, ei}, {fi, gi}, {ii, ji}, {ki, li}, {mi, ni}, at least one vertex

must be included in D′. Let D′′ be the set formed by replacing all ai’s (hi’s) in D′ by the

corresponding vi’s. Clearly, D′′ is a DS of G such that |D′′| ≤ k. Hence the lemma.

From the fact DDP is NP-complete [54] and Lemma 5.3.12.1, the following theorem is

immediate.

Theorem 5.3.13. “The DDP is NP-complete for GI graphs.”
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5.4 Summary

In this chapter, the IRDP, IR2DP and IDRDP complexity has been investigated in various

graph classes.

Graph Class IRDP IR2DP IDRDP

Dually chordal graphs NPC NPC NPC

Chordal graphs - NPC NPC

Star convex bipartite graphs NPC NPC NPC

Comb convex bipartite graphs NPC NPC NPC

Chain graphs P P P

Threshold graphs P P P

Bounded tree-width graphs P P P

Table 5.1: Complexity status of IRDP, IR2DP and IDRDP
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Chapter 6

Algorithmic Complexity of Weakly

Connected Roman Domination, Roman

{3}-domination, Total Roman

{2}-domination and Total Roman

{3}-domination

In this chapter, we show that the R3DP is NP-complete for chordal graphs, planar graphs

and for two subclasses of bipartite graphs namely, star convex bipartite graphs and comb

convex bipartite graphs and the TR3DP is NP-complete for chordal graphs by giving a

polynomial time reduction from Exact-3-SET-Cover (X3SC) [54]. Next, we show that

MWCRDP, MR3DP, MTR2DP and MTR3DP are linear time solvable for bounded tree-

width graphs, chain graphs and threshold graphs. Next, we study the complexity difference

of WCRDP (R3DP, TR3DP, TR3DP) with DOMINATION problem. Finally we propose

ILP formulations for M(T)R3DP.
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6.1 Algorithmic Complexity of Weakly Connected Roman

Domination

In this section, we present complexity results for weakly connected Roman domination.

6.1.1 Complexity in Threshold Graphs

Here, we solve MWCRDP for connected threshold graphs in linear time.

Theorem 6.1.1. “If G is a connected threshold graph then γwcR (G) = 2.”

Proof. Let G be a connected threshold graph with p (≥ 1) clique vertices and q (≥ 1)

independent vertices as described above. Clearly, γwcR (G) ≥ 2.

Next, a labeling f on G is defined as: f(v) = 2, if v = xp and 0 otherwise. It is easy to

verify that f is a WCRDF and γwcR (G) ≤ 2. Therefore, γwcR (G) = 2.

The result below follows from 6.1.1.

Theorem 6.1.2. “MWCRDP for threshold graphs is linear time solvable.”

If threshold graphG is disconnected i.e., G contains isolated vertices, then WCRDF cannot

be defined on G.

6.1.2 Complexity in Chain Graphs

Here, we solve MWCRDP for chain graphs in linear time.

Theorem 6.1.3. “For a chain graph G(X, Y,E),

γwcR (G) =


2, if G is a star

3, if |X| = 2 or |Y | = 2

4, otherwise”

(6.1)
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Proof. Let G(Y, Z,E) be a chain graph with |X| = p (≥ 1) and |Y | = q (≥ 1). Next, a

labeling g on G is defined as below.

Case (1) : If G is a star i.e., G has a universal vertex then γwcR (G) can be determined same

as in Theorem 3.1.6 .

Case (2) : If |X| = 2 or |Y | = 2. We consider the following subcases.

Case (2.1) : If |X| = 2 and |Y | ≥ 2 then g(v) =


2, if v = x2

1, if v = x1

0, otherwise

Case (2.2) : Otherwise, g(v) =


2, if v = y1

1, if v = y2

0, otherwise

Clearly, g is a WCRDF and γwcR (G) ≤ 3. Since G has no universal vertex, from the

definition of WCRDF, it follows that γwcR (G) ≥ 3. Therefore γwcR (G) = 3.

Case (3) : Otherwise, g(v) =

2, if v ∈ {y1, xp}

0, otherwise
Clearly, g is a WCRDF and γwcR (G) ≤ 4. By contradiction, it is easy to show that γwcR (G) ≥

4. Therefore γwcR (G) = 4.

Now, the result below follows from Theorem 6.1.3.

Theorem 6.1.4. “MWCRDP for chain graphs is solvable in linear time.”

If chain graph G is disconnected i.e., G contains isolated vertices, then WCRDF cannot be

defined on G.

6.1.3 Complexity in Bounded Treewidth Graphs

Here, we show that MWCRDP for bounded tree-width graphs can be solvable in linear

time.
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Figure 6.1: Construction of GS graph from G

Theorem 6.1.5. “Let H be a graph and k a positive integer. Then WCRDP is ex-

pressible in CMSOL.”

Proof. Let g : V (G) → {0, 1, 2} defined on G. Also, let Vi = {v|g(v) = i} for i ∈

{0, 1, 2}. We make use of property called,Weakly Connected and propertyRom Dom(V )

defined in Theorem 3.1.9 to express WCRDP in CMSOL. Let V12 = V1 ∪ V2.

Weakly Connected(V ) = (∀(t, q) ∈ E(t ∈ V12 ∨ q ∈ V12),

which guarantees that for each edge (t, q) ∈ E(G), either t ∈ V12 or q ∈ V12.

Now, the CMSOL formula for the WCRDP is given below.

Weakly Connected Rom Dom(V ) = (f(V ) ≤ k) ∧Rom Dom(V )∧

Weakly Connected(V ).

Now, from Theorem 6.1.5 and Courcelle’s result in [10], the theorem below follows.

Theorem 6.1.6. “MWCRDP for graphs with treewidth at most a constant is solvable

in linear time.”

6.1.4 Computational Complexity Contrast between WCRDOM and

Domination Problems

Here, we show that WCRDOM and Domination problems vary in computational complex-

ity aspects.
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We design a new graph class in which DDP ∈ NP-complete, whereas the WCRDP ∈ P.

“Definition 1. (GS graph). A graph is a GS graph if it is obtained from an n vertex

labeled graph with vertices {v1, v2, . . . , vn}, in the following way:

1. Create n copies of K1,3 star graphs whose four vertices are labeled as

ai, bi, ci, di with di being the central vertex.

2. Add edges {(ai, vi), (bi, vi) : 1 ≤ i ≤ n}.”

General GS graph construction is shown in Figure 6.1.

Theorem 6.1.7. “If H is a GS graph obtained from a graph G(V,E) (|V | = n),

then γwcR (H) = 3n.”

Proof. Let H be a GS graph constructed from G and f be a function defined on H as

f(v) = 2, if v ∈ {d1, d2, . . . , dn}; f(v) = 1, if v ∈ {v1, v2, . . . , vn} and 0 otherwise.

Clearly, f is a WCRDF and γwcR (H) ≤ 3n.

Next, we show that γwcR (H) ≥ 3n. Let g be a WCRDF on graph H . Clearly, g(ai) +

g(bi) + g(ci) + g(di) ≥ 2, where 1 ≤ i ≤ n. Since (vi, ai), (vi, bi) ∈ E(H), from the

definition of weaky connected Roman domination, it follows that f(vi) should be at least

1. Therefore γwcR (H) ≥ 3n. Hence γwcR (H) = 3n.

Lemma 6.1.7.1. “For a GS graph H obtained fromG, γ(G) ≤ k iff γ(H) ≤ k+n.”

Proof. Suppose T be DS of G such that |T | ≤ k. Then, clearly, T ′ = T ∪{di : 1 ≤ i ≤ n}

such that |T ′| ≤ k + n.

Conversely, suppose T ′ is a DS of H such that |T ′| ≤ k + n. Let T ′′ be a set which is

formed by replacing all ci’s in T ′ by the corresponding di’s, and all ai’s or bi’s in T ′ by the

corresponding vi’s. Clearly, T ′′ is a DS of G such that |T ′| ≤ k. Hence the lemma.

From the fact DDP is NP-complete [54] and Lemma 6.1.7.1, the following theorem is

81



CHAPTER 6. ALGORITHMIC COMPLEXITY OF WEAKLY CONNECTED ROMAN DOMINATION, ROMAN {3}-DOMINATION, TOTAL ROMAN {2}-DOMINATION
AND TOTAL ROMAN {3}-DOMINATION Section 6.2

immediate.

Theorem 6.1.8. “The DDP for GS graphs is NP-complete.”

6.2 Algorithmic Complexity of Roman {3}-Domination

In this section, we present complexity results for Roman {3}-domination.

6.2.1 Complexity in Subclasses of Bipartite Graphs

In this subsection, complexity results for R3DP in subclasses of bipartite is proved.

6.2.1.1 Star Convex Bipartite Graphs

In this section, NP-completeness of R3DP in star convex bipartite graphs is proved.

Theorem 6.2.1. “R3DP is NP-complete for star convex bipartite graphs.”

Proof. Given a graph G and a function f , whether f is a R3DF of size at most k can be

checked in polynomial time. Hence R3DP is a member of NP. Now we show that R3DP is

NP-hard by transforming an instance 〈X,C〉 of X3SC, where X = {x1, x2, . . ., x3q} and

C = {c1, c2, . . ., ct}, to an instance 〈G, k〉 of R3DP as in Theorem 3.1.1.

We show that, X3SC has a solution if and only if G has a R3DF with weight at most

7q + 3. Let k = 7q + 3. Suppose C ′ is a solution for X3SC with |C ′| = q. We define a

function f : V → {0, 1, 2, 3} as follows.

f(v) =



3, if v = a

2, if v ∈ {yi : 1 ≤ i ≤ 3q}

1, if v ∈ C ′

0, otherwise

(6.2)

It can be easily verified that f is a R3DF of G and f(V ) = 7q + 3 = k.
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Conversely, suppose that G has a R3DF g with weight k. Let M = {a, a1, a2, a3}.

Clearly,
∑

u∈M g(u) ≥ 3. The following claim holds.

Claim 6.2.1. “If g(V ) = k then for each pair of vertices {xi, yi}, g(xi) = 0 and

g(yi) = 2.”

Proof. (Proof by contradiction) Assume g(V ) = k and there exist some pairs {xi, yi} such

that g(xi)+g(yi) > 2. Letm (≥ 1) be the number of pairs of {xi, yi}with g(xi)+g(yi) ≥ 3.

The number of pairs of {xi, yi} with g(xi) = 0 and g(yi) = 2 is 3q − m. Since g is a

R3DF of G, each xi with g(xi) = 0, where g(yi) = 2, should have a neighbor cj with

g(cj) = 1. Then minimum number of cj’s required with g(cj) = 1 is d3q−m
3
e. Also,

g(a) + g(a1) + g(a2) + g(a3) ≥ 3. Hence g(V ) ≥ 3 + 6q +m+ d3q−m
3
e, which is greater

than k. Our assumption leads to a contradiction. Therefore for each pair {xi, yi}, g(xi) = 0

and g(yi) = 2. Hence the claim.

Since each ci has exactly three neighbors in X , clearly, there exist at least q number of

ci’s with weight exactly 1 such that
(⋃

g(ci)≥1NG(ci)
)
∩X = X . Consequently, C ′ = {ci :

g(ci) = 1} is an exact cover for C.

6.2.1.2 Comb Convex Bipartite Graphs

In this section, NP-completeness of R3DP in comb convex bipartite graphs is proved.

Theorem 6.2.2. “R3DP is NP-complete for comb convex bipartite graphs.”

Proof. Clearly, R3DP for comb convex bipartite graphs is a member of NP. We transform

an instance 〈X,C〉 of X3SC, where X = {x1, x2, . . ., x3q} and C = {c1, c2, . . ., ct}, to

an instance 〈G, k〉 of R3DP as follows.

Create vertices xi, x′i and yi for each xi ∈ X , ci for each ci ∈ C and also create vertices

a, a′, a1, a2, a3 and b. Add edges (xi, yi) for each xi ∈ X , (ai, a) for each ai, (x′i, b) for

each x′i, (cj, xi) if xi ∈ cj and (b, a′). Next add edges (cj, a) and (cj, a
′) for each cj . Also

add edges by joining each cj to every x′i. The graph constructed is shown in the Figure 6.3.

Let A = {a, a′} ∪ {xi, x′i : 1 ≤ i ≤ 3q} and B = V \A. Assume, the set A induces a comb
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Figure 6.3: Construction of a comb convex bipartite
graph from an instance of X3SC

with elements {x′i : 1 ≤ i ≤ 3q } ∪ {a′} as backbone and {xi : 1 ≤ i ≤ 3q } ∪ {a} as

teeth, as shown in the Figure 6.2, and the neighbors of each element in B induce a subtree

of the comb. Therefore G is a comb convex bipartite graph and can be constructed from

the given instance 〈X,C〉 of X3SC in polynomial time. Next, we show that, X3SC has a

solution if and only if G has a R3DF with weight at most 7q + 5.

Suppose C ′ is a solution for X3SC with |C ′| = q. We define a function f : V →

{0, 1, 2, 3} as follows.

f(v) =



3, if v = a

2, if v ∈ {yi : 1 ≤ i ≤ 3q} ∪ {b}

1, if v ∈ C ′

0, otherwise

(6.3)

It can be easily verified that f is a R3DF of G and f(V ) = 7q + 5 = k.

Conversely, suppose that G has a R3DF g with weight k. By contradiction, it can be

easily shown that g(b) ≥ 2 and g(x′i) = 0, for 1 ≤ i ≤ 3q. The rest of the proof is obtained

with similar arguments as in the converse proof of the Theorem 6.2.1.

From Theorems 6.2.1 and 6.2.2, the following corollary is immediate.

Corollary 6.2.1. “R3DP is NP-complete for tree convex bipartite graphs.”
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6.2.1.3 Chain Graphs

Here, MR3DP is proved to be linear time solvable for chain graphs. The following propo-

sition has been proved in [18].

Proposition 6.2.1 ([18]). “For any complete bipartite graph we have

1. γ{R3}(K1,n) = γdR(K1,n) = 3,

2. γ{R3}(K2,n) = γdR(K2,n) = 4,

3. γ{R3}(K3,n) = 5 and γdR(K3,n) = 6, for n ≥ 3,

4. γ{R3}(Km,n) = γdR(Km,n) = 6, for m,n ≥ 4.”

If G is a complete bipartite graph then γ{R3}(G) is obtained directly from Proposition

6.2.1. Otherwise, the following theorem holds.

Theorem 6.2.3. “Let G ( 6= Kr,s) be a connected chain graph. Then,

γ{R3}(G) =

5, if |X| = 2 or |Y | = 2

6, otherwise”

(6.4)

Proof. If G ∼= K1 then γ{R3}(G) = 2. Otherwise, let G(X, Y,E) be a connected chain

graph with |X| = p and |Y | = q where p, q ≥ 2. Now, define a function f : V →

{0, 1, 2, 3} as follows.

Case (1) : |X| ≥ 2 and |Y | = 2 then f(v) =


3, if v = y1

2, if v = y2

0, otherwise

Case (2) : |X| = 2 and |Y | > 2 then f(v) =


3, if v = x2

2, if v = x1

0, otherwise

Clearly, f is a R3DF and γ{R3}(G) ≤ 5. From the definition of R3DF, it follows that

γ{R3}(G) ≥ 5. Therefore γ{R3}(G) = 5.

85



CHAPTER 6. ALGORITHMIC COMPLEXITY OF WEAKLY CONNECTED ROMAN DOMINATION, ROMAN {3}-DOMINATION, TOTAL ROMAN {2}-DOMINATION
AND TOTAL ROMAN {3}-DOMINATION Section 6.2

Case (3) : |X| > 2 and |Y | > 2 then f(v) =

3, if v ∈ {xp, y1}

0, otherwise
Clearly, f is a R3DF and γ{R3}(G) ≤ 6. By contradiction, it can be easily verified that

γ{R3}(G) ≥ 6. Therefore γ{R3}(G) = 6.

If the chain graphG is disconnected with k connected componentsG1, G2, . . . , Gk then

it is easy to verify that γ{R3}(G) =
∑k

i=1 γ{R3}(Gi). from Theorem 6.2.3, the result below

follows.

Theorem 6.2.4. “MR3DP can be solvable in linear time for chain graphs.”

6.2.2 Complexity in Chordal Graphs

Here, complexity results for R3DP in chordal graphs is proved.

Theorem 6.2.5. “R3DP is NP-complete for chordal graphs.”

Proof. Clearly, R3DP is a member of NP. Now we show that R3DP is NP-hard for chordal

graphs by transforming an instance 〈X,C〉 of X3SC, where X = {x1, x2, . . ., x3q} and

C = {c1, c2, . . ., ct}, to an instance 〈G, k〉 of R3DP as follows.

Create vertices xi, yi for each xi ∈ X , ci, bi, pi, qi and ri for each ci ∈ C. Add edges

(xi, yi) for each xi ∈ X , (bi, ci), (bi, pi), (bi, qi), (bi, ri) for each bi and (cj, xi) if xi ∈ cj .

Also add edges (ci, cj), ∀ci, cj ∈ C, where i 6= j. The graph constructed is shown in the

Figure 6.4. Since G admits a PEO (y1, y2, . . . , y3q, x1, x2, . . . , x3q, p1, p2, . . . , pt, q1, q2,

. . . , qt, r1, r2, . . . , rt, b1, b2, . . . , bt, c1, c2, . . . , ct), it is a chordal graph.

Next we show that, X3SC has a solution if and only if G has a R3DF with weight at

most 7q + 3t. Let k = 7q + 3t. Suppose C ′ is a solution for X3SC with |C ′| = q. We
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Figure 6.4: An illustration to the construction of chordal graph from an instance of X3SC

define a function f : V → {0, 1, 2, 3} as follows.

f(v) =



3, if v ∈ {bi : 1 ≤ i ≤ t}

2, if v ∈ {yi : 1 ≤ i ≤ 3q}

1, if v ∈ C ′

0, otherwise

(6.5)

It can be easily verified that f is a R3DF of G and f(V ) = 7q + 3t = k.

Conversely, suppose that G has a R3DF g with weight k. Clearly, ∀i, 1 ≤ i ≤ t, g(pi)+

g(qi) + g(ri) + g(bi) ≥ 3. Hence g(V ) ≥ 3t. The following claim holds.

Claim 6.2.2. “If g(V ) = k then for each pair of vertices {xi, yi}, g(xi) = 0 and

g(yi) = 2.”

Proof. The proof is obtained with similar arguments as in the proof of Claim 6.2.1.

Since each ci has exactly three neighbors in X , clearly, there exist at least q number of

ci’s with weight at least 1 such that
(⋃

g(ci)≥1NG(ci)
)
∩X = X . Consequently, C ′ = {ci :

g(ci) = 1} is an exact cover for C.
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6.2.3 Complexity in Planar Graphs

Here, we show that R3DP is NP-complete for planar graphs by giving a polynomial time

reduction from Planar Exact Cover by 3-Sets (Planar X3SC) [5], which is a NP-complete

problem and is defined as follows.

“Planar Exact Cover by 3 Sets (Planar X3SC)

INSTANCE : A finite set X = {x1, x2, . . ., x3q} and a collection C = {c1, c2, . .

., ct} of 3-element subsets of X such that (i) every element of X occurs in at most

three subsets and (ii) the induced graph is planar. (This induced graph H(V,E) is

defined as the graph such that V = X ∪ C and E = {(xi, cj) if xi ∈ cj}).

QUESTION : Is there a subcollection C ′ of C such that every element of X appears

in exactly one member of C ′ ?”

Theorem 6.2.6. “R3DP is NP-complete for planar graphs.”

Proof. Clearly, R3DP is a member of NP. We transform an instance 〈X,C〉 of Planar

X3SC, where X = {x1, x2, . . ., x3q} and C = {c1, c2, . . ., ct}, to an instance 〈G, k〉 of

R3DP same as in Theorem 6.2.5.

Clearly, G is a planar graph and can be constructed from the given instance 〈X,C〉 of

Planar X3SC in polynomial time. Next we show that, Planar X3SC has a solution if and

only if G has a R3DF with weight at most 7q + 3t.

Suppose C ′ is a solution for Planar X3SC with |C ′| = q. We construct a R3DF f , on

G, same as in Equation 6.5. Clearly, f(V ) = 7q + 3t = k.

The proof of the converse is similar to the proof given in Theorem 6.2.5.

6.2.4 Complexity in Threshold Graphs

In this section, we determine the Roman {3}-domination number of threshold graphG(V,E).

If |V | = 1 then, clearly, γ{R3}(G) = 2. Otherwise, the following theorem holds.
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Theorem 6.2.7. “Let G be a threshold graph. Then,

γ{R3}(G) =

2k, if |E(G)| = 0

2k + 1, otherwise,

(6.6)

where k is the number of connected components in G.”

Proof. If a threshold graph G has k connected components but no edges, it implies G has k

isolated vertices and the result follows. Otherwise, let G be a threshold graph with p clique

vertices such that NG[c1] ⊆ NG[c2] ⊆ NG[c3] ⊆ . . . ⊆ NG[cp]. Now, define a function

g : V → {0, 1, 2, 3} on G as follows.

g(v) =


2, if deg(v) = 0

3, if v = cp

0, otherwise

(6.7)

Clearly, g is a R3DF and γ{R3}(G) ≤ 2k + 1.

Let G1, G2, . . . , Gk be the k components of G. Let G1 be the component with at least

one edge. From the definition of threshold graphs, it follows that each Gi for 2 ≤ i ≤ k is

a single vertex graph. Clearly, γ{R3}(G1) ≥ 3 and γ{R3}(Gi) = 2 for 2 ≤ i ≤ k. Hence

γ{R3}(G) ≥ 3 + 2(k − 1) = 2k + 1.

From Theorem 6.2.7, the result below follows.

Theorem 6.2.8. “MR3DP can be solvable in linear time for threshold graphs.”

6.2.5 Complexity in Bounded Tree-width Graphs

Here, we show that MR3DP for bounded tree-width graphs can be solvable in linear time.

Theorem 6.2.9. “Given a graph G and a positive integer k, R3DP can be expressed

in CMSOL.”
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Proof. Let g : V → {0, 1, 2, 3} be a function on a graph G(V,E), where Vi = {v|f(v) =

i} for i ∈ {0, 1, 2, 3}. The CMSOL formula for the R3DP is expressed as follows.

Rom 3 Dom(V ) = (g(V ) ≤ k) ∧ ∃V0, V1, V2, V3,∀p((p ∈ V0 ∧ ((∃q, r, s ∈ V1 ∧

adj(p, q)∧ adj(p, r)∧ adj(p, s))∨ ((∃t ∈ V1 ∧ ∃u ∈ V2 ∧ adj(p, t)∧ adj(p, u))∨ (∃q, r ∈

V2∧adj(p, q)∧adj(p, r))∨ (∃v ∈ V3∧adj(p, v)))))∨ (p ∈ V1∧ (∃w, x ∈ V1∧adj(p, w)∧

adj(p, x)) ∨ (∃y ∈ (V2 ∪ V3) ∧ adj(p, y))) ∨ (p ∈ V2) ∨ (p ∈ V3)),

ROM 3 Dom(V ) ensures that for every vertex p ∈ V , either (i) p ∈ V2 or (ii) p ∈ V3,

or (iii) if p ∈ V0 then either there exist three vertices q, r, s ∈ V1 such that p is adjacent to

q, r and s, or there exists two vertives t ∈ V1, u ∈ V2 such that p is adjacent to both t and u,

or there exist two vertices q, r ∈ V2 such that p is adjacent to both q and r, or there exist a

vertex v ∈ V3 such that p is adjacent to v (iv) if p ∈ V1 then either there exists two vertices

w, x ∈ V1 such that p is adjacent to both w and x or there exists a vertex y ∈ V2 ∪ V3 such

that p is adjacent to y.

From Theorems 3.1.8 and 6.2.9, the result below follows.

Theorem 6.2.10. “MR3DP can be solvable in linear time for bounded tree-width

graphs.”

6.2.6 Complexity Contrast between Domination and

Roman {3}-domination Problems

Here, we show the complexity difference between domination problem and R3DP by con-

structing a new class of graphs.

We construct a new class of graphs, called GI graph same as in Section 5.3.6, in which

the MR3DP can be solved trivially, whereas the DDP is NP-complete.

Theorem 6.2.11. “IfG′ is a GP graph obtained from a graphG = (V,E) (|V | = n),

then γ{R3}(G
′) = 16n.”

Proof. Let G′ = (V ′, E ′) is a GP graph constructed from G. Let f : V ′ → {0, 1, 2, 3} be a
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function on graph G′, which is defined as below

f(v) =

2, if v ∈ {ai, hi, ci, ei, gi, ji, li, ni : 1 ≤ i ≤ n}

0, otherwise
(6.8)

Clearly, f is an R3DF and γ{R3}(G
′) ≤ 16n.

Next, we show that γ{R3}(G
′) ≥ 16n. Let g be a R3DF on graph G′. Then following

claim holds.

Claim 6.2.3. “If g(V ) = 16n then for each vi ∈ V , g(vi) = 0.”

Proof. (Proof by contradiction) Assume g(V ) = 16n and there exist m (≥ 1) vi’s such

that g(vi) 6= 0. Clearly, each 〈{ai, bi, ci, di, ei, fi, gi, hi, ii, ji, ki, li,mi, ni : 1 ≤ i ≤ n}〉,

requires a weight of at least 16. Hence g(V ) ≥ 16n+m > 16n, a contradiction. Therefore

for each vi ∈ V , g(vi) = 0.

Clearly, g(ai) + g(bi) + g(ci) + g(di) + g(ei) + g(fi) + g(gi) ≥ 8 and g(hi) + g(ii) +

g(ji)+g(ki)+g(li)+g(mi)+g(ni) ≥ 8, where 1 ≤ i ≤ n. Hence g(V ) ≥ 16n. Therefore

g(V ) = 16n.

Lemma 6.2.11.1. “Let G′ be a GP graph constructed from a graph G = (V,E).

Then G has a dominating set of size at most k if and only if G′ has a dominating set

of size at most k + 6n.”

Proof. SupposeD be DS ofG of size at most k, then it is clear thatD∪{bi, di, fi, ii, ki,mi :

1 ≤ i ≤ n} is a DS of G′ of size at most k + 6n.

Conversely, suppose D′ is a DS of G′ such that |D′| ≤ k + 6n. Then, from each pair

of the vertices {bi, ci}, {di, ei}, {fi, gi}, {ii, ji}, {ki, li}, {mi, ni} at least one vertex must

be included in D′. Let D′′ be the set formed by replacing all ai’s or hi’s in D′ by the

corresponding vi’s. Clearly, D′′ is a DS of G such that |D′′| ≤ k. Hence the lemma.

From the fact DDP is NP-complete [54] and above Lemma 6.2.11.1, the following

theorem is immediate.
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Theorem 6.2.12. “The DOMINATION DECISION problem is NP-complete for GP

graphs.”

6.2.7 Integer Linear Programming

In this section, we study the ILP formulations for MR3DP. Let G be a graph with V (G) =

{1, 2, . . . , n} and f be a R3DF on G. The MR3DP can now be modeled as an Integer Lin-

ear Program (ILP). The variables for this ILP are

av =

1, if f(v) = 0

0, otherwise

bv =

1, if f(v) = 1

0, otherwise

cv =

1, if f(v) = 2

0, otherwise

dv =

1, if f(v) = 3

0, otherwise

The only constant in the ILP is n.

The ILP model of the MR3DP can now be formulated as

Determine : min(
∑

v∈V bv + 2
∑

v∈V cv + 3
∑

v∈V dv) (1)

subject to

1− (av + bv) +
∑

u∈NG[v] bu + 2cu + 3du ≥ 3, ∀ v ∈ V (2)

av + bv + cv + dv = 1,∀ v ∈ V (3)

av, bv, cv, dv ∈ {0, 1},∀ v ∈ V (4)

In the above ILP formulation, the objective function (1) minimizes the weight of a R3DF.

The constraint in (2), guarantees that the sum of labels of vertices in the closed neighborood

of a vertex with label zero or one is at least three. The condition in (3), guarantees that

exactly one label is assigned to a vertex. The condition in (4) ensures that the decision

variables are binary in nature. The number of variables in the ILP formulated for a graph

with n vertices are 4n and and the number of constraints are 2n.
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6.3 Algorithmic Complexity of Total Roman {2}-Domination

In this section, we present complexity results for Total Roman {2}-domination.

6.3.1 Complexity in Threshold Graphs

Total Roman {2}-domination number for connected threshold graphs can be determined in

linear time, by using the same arguments as in Theorem 4.3.1.

6.3.2 Complexity in Chain Graphs

MTR2DP for chain graphs can be solved in linear time, by using the same arguments as in

Theorem 4.3.3

6.3.3 Complexity in Bounded Tree-width Graphs

Here, we show that MTR2DP for bounded tree-width graphs can be solvable in linear time.

Theorem 6.3.1. “TR2DP can be expressed in CMSOL.”

Proof. Let G(V,E) be a graph and g : V → {0, 1, 2} be a function defined on G, where

Vi = {v|g(v) = i} for i ∈ {0, 1, 2}. Then CMSOL for the TR2DP is specified as below.

Tot Rom 2 Dom(V ) = (g(V ) ≤ k) ∧ ∃V0, V1, V2,∀p((p ∈ V0 ∧ ((∃q, r ∈ V1 ∧

adj(p, q) ∧ adj(p, r)) ∨ (∃t ∈ V2 ∧ adj(p, t)))) ∨ (p ∈ (V1 ∪ V2)) ∧ ((p ∈ V1 ∧ ∃q ∈

(V1 ∪ V2) ∧ adj(p, q)) ∨ (p ∈ V2) ∧ ∃q ∈ (V1 ∪ V2) ∧ adj(p, q))).

Tot Rom 2 Dom(V ) ensures that 1). ∀p ∈ V , either (i) p ∈ V1 or (ii) p ∈ V2, or (iii)

if p ∈ V0 then ∃q, r ∈ V1 such that p is adjacent to q and r, and 2). every vertex p ∈ V1∪V2

is adjacent to some vertex q in V1 ∪ V2.

From Theorems 3.1.8 and 6.3.1, the result below follows.

Theorem 6.3.2. “MTR2DP can be solvable in linear time for bounded tree-width

graphs.”
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Figure 6.5: An illustration to the construction of GT graph from G

6.3.4 Computational Complexity Contrast between Total

Roman {2}-domination and Domination Problems

In this section, we show the complexity difference between domination problem and TR2DP

by constructing a new class of graphs.

We build a new graph class in which the DDP is NP-complete, whereas the MTR2DP

can be solved trivially.

“Definition. (GT graph). Let G = (V,E), where |V | = n and V = {v1, v2, . . . , vn}

be a connected graph. A GT graph can be constructed from graphG in the following

way :

1. Create two copies of P2 graphs such as ai − bi and fi − gi, for each i.

2. Consider six additional vertices {ci, di, ei, hi, ii, ji}, for each i.

3. Add edges {(vi, ai), (vi, fi), (bi, ci), (bi, di), (bi, ei), (gi, hi), (gi, ii), (gi, ji) :

1 ≤ i ≤ n}.”

General GT graph construction is shown in Figure 6.5.

Theorem 6.3.3. “γtR2(G′) = 6n.”
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Proof. Let G′ = (V ′, E ′) is a GT graph constructed from G. Let g be a function defined

on G′ as follows.

g(x) =


1, if x ∈ {ai, fi : 1 ≤ i ≤ n}

2, if x ∈ {bi, gi : 1 ≤ i ≤ n}

0, otherwise

(6.9)

Clearly, g is a TR2DF, γtR2(G′) ≤ 6n.

Next, we show that γtR2(G′) ≥ 6n. Let h be a TR2DF defined on G′. It can be

easily verified that, the sum of the weights of the vertices in each set {ai, bi, ci, di, ei},

{fi, gi, hi, ii, ji}, where 1 ≤ i ≤ n is greater than 2. Hence h(V ) ≥ 6n. Therefore

h(V ) = 6n.

Lemma 6.3.3.1. “G has a DS D such that |D| ≤ k iff G′ has a DS D′ such that

|D′| ≤ k + 2n.”

Proof. Suppose D be DS of G with |D| ≤ k, then, clearly, D′ = D ∪ {bi, gi : 1 ≤ i ≤ n}

is a DS of G′, where |D′| ≤ k + 2n.

Let D′ is a DS of G′ with |D′| ≤ k + 2n Clearly, D′ should contain at least one vertex

from each set {bi, ci, di, ei} and {gi, hi, ii, ji}. Let D′′ be the set formed by replacing all

ai’s (fi’s) in D′ by the corresponding vi’s. Clearly, D′′ is a DS of G, where |D| ≤ k. Hence

the lemma.

The following theorem follows from the fact DDP is NP-complete for general graphs [54]

and above lemma.

Theorem 6.3.4. “The DDP for GT graphs is NP-complete.”

6.4 Algorithmic Complexity of Total

Roman {3}-Domination

In this section, we present complexity results for total Roman {3}-domination.
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6.4.1 Complexity in Chain Graphs

Here, we solve MTR3DP for connected chain graphs in linear time. Let G = (X, Y,E) be

a chain graph, where the vertices ofX = {x1, x2, . . . , xp} form a chain such thatNG(x1) ⊆

NG(x2) ⊆ ... ⊆ NG(xp) and the vertices of Y = {y1, y2, . . . , yp} form a chain such that

NG(y1) ⊇ NG(y2) ⊇ ... ⊇ NG(yq).

Theorem 6.4.1. “Let G(X, Y,E)(6= Km,n) be a connected chain graph. Then

γt{R3}(G) = 6.”

Proof. Let G(X, Y,E) be a connected chain graph with |X| = p and |Y | = q where

p, q ≥ 1. Let g be a function on G defined as below.

g(v) =

3, if v ∈ {xp, y1}

0, otherwise
(6.10)

Clearly, g is a TR3DF and γt{R3}(G) ≤ 6. Since NG(xp) = Y and NG(y1) = X , from the

definition of TR3DF, clearly, γt{R3}(G) ≥ 6. Therefore γt{R3}(G) = 6.

The theorem below follows from 6.4.1.

Theorem 6.4.2. “MTR3DP for chain graphs is solvable in linear time.”

If chain graph G is disconnected i.e., G contains isolated vertices, then TR3DF can not be

defined on G.

6.4.2 Complexity in Chordal Graphs

Here, complexity results for TR3DP in chordal graphs is proved.

Theorem 6.4.3. “TR3DP is NP-complete for chordal graphs.”

Proof. Given a function f : V → {0, 1, 2, 3} on a chordal graph and an integer s(s > 0),

whether the function f is a TR3DF of graph G of weight at most s can be verified in
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Figure 6.6: Construction of chordal graph from X3SC instance

polynomial time. Hence TR3DP is a member of NP. To show that the problem is NP-hard,

we transform an instance of X3SC to TR3DP instance. Assume that we have an arbitrary

instance of X3SC as X = {x1, x2, . . . , x3q} and C = {c1, c2, . . . , ct}. From the given

instance of X3SC, we construct an instance of chordal graph G(V,E), in polynimial time,

as follows.

Create vertices xi, yi, zi for each xi ∈ X , ci for each ci ∈ C. Also create three new

vertices w1, w2 and w3. Add edges (cj, xi) if xi ∈ cj , (xi, yi), (yi, zi) for all i, 1 ≤ i ≤ n,

(w1, w2) and (w2, w3). Also add edges (w1, ci) for each ci and (ci, cj), ∀ci, cj ∈ C, where

i 6= j. The graph constructed is shown in the Figure 6.6. Graph G is chordal since it admits

a PEO (z1, z2, . . . , z3q, y1, y2, . . . , y3q, x1, x2, . . . , x3q, w3, w2, w1, c1, c2, . . . , ct). Next we

show that, X3SC has a solution iff G has a TR3DF with weight 10q + 4 or less.

Assume C ′ is a solution for X3SC and S be the set of vertices in G which corresponds

to the elements of C ′. A function h on G defined below is clearly a TR3DF with weight

10q + 4. .

h(v) =



3, if v = w2

2, if v ∈ {yi : 1 ≤ i ≤ 3q}

1, if v ∈ S ∪ {zi : 1 ≤ i ≤ 3q} ∪ {w1}

0, otherwise

(6.11)
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Conversely, assume that G has a TR3DF g such that g(V ) ≤ 10q + 4. Clearly, each

path yi − zi requires a weight of at least 3 and the path w1 − w2 − w3 requires a weight of

at least 4. These make the size at least 9q + 4.

Claim 6.4.1. “If g(V ) ≤ 10q + 4 then ∀xi, g(xi) = 0.”

Proof. (Proof by contradiction) Assume g(V ) ≤ 10q + 4 and ∃n (≥ 1) such that |{xi :

g(xi) 6= 0}| = n. Then |{xi : g(xi) = 0}| = 3q − n. Clearly, number of cj’s required with

g(cj) ≥ 1 is d3q−n
3
e. Also g(w1)+g(w2)+g(w3) ≥ 4 and ∀i, 1 ≤ i ≤ 3q, g(yi)+g(zi) ≥ 3.

Therefore g(V ) ≥ 4 + 9q + n+ d3q−n
3
e > 10q + 4, a contradiction. Hence the claim.

Therefore, the set {ci : g(ci) = 1} is a solution for X3SC.

6.4.3 Complexity in Threshold Graphs

In this section, we determine the total Roman {3}-domination number of threshold graph

G(V,E). The following results are obtained in [72].

Proposition 6.4.1. ([72]) “For any complete bipartite graph, we have

1. γt{R3}(K1,n) = 4, where n ≥ 2.

2. γt{R3}(Km,n) = 5 for m ∈ {2, 3} and n ≥ 3.

3. γt{R3}(Km,n) = 6 for m,n ≥ 4.”

Observation 6.4.1. ([72]) “Let m ≥ 2. Then

γt{R3}(Pm) =

m+ 2, if m ≡ 1(mod 3),

m+ 1, otherwise”

Observation 6.4.2. ([72]) “γt{R3}(Cn) = n.”

For integers m,n ≥ 1 if G = Km,n then γt{R3}(G) is obtained directly from Proposition

6.4.1 or Observation 6.4.1 or Observation 6.4.2. Otherwise, the following theorem holds.
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Theorem 6.4.4. “Let G be a connected threshold graph with clique vertex ordering

such that NG[q1] ⊆ NG[q2] ⊆ . . . NG[qp]. Then

γt{R3}(G) =

3, if NG[qp] = NG[qp−1]

4, otherwise”

(6.12)

Proof. Let G be a connected threshold graph with i independent vertices and p clique

vertices as described above. Now, define h : V → {0, 1, 2, 3} function as below.

Case 1 : If NG[qp] = NG[qp−1] then

h(v) =


2, if v = qp

1, if v = qp−1

0, otherwise

(6.13)

Obviously, h is a TR3DF and γt{R3}(G) ≤ 3. From TR3DF definition, γt{R3}(G) ≥ 3.

Hence γt{R3}(G) = 3.

Case 2 : Otherwise,

h(v) =


3, if v = qp

1, if v = qa, where qa is any one element in V \ {qp}

0, otherwise

(6.14)

Obviously, h is a TR3DF and γt{R3}(G) ≤ 4.

If NG[qp] 6= NG[qp−1] then G contains at least one pendant vertex and by the definition of

TR3DF it follows that γt{R3}(G) ≥ 4. Therefore γt{R3}(G) = 4.

If a threshold graph G is disconnected then it contains an isolated vertex and TR3DF can

not be defined on G. Now, result below is immediate from Theorem 3.1.6.

Theorem 6.4.5. “MTR3DP for threshold graphs is linear time solvable.”
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6.4.4 Complexity in Bounded Tree-width Graphs

Here, we show that MTR3DP for bounded tree-width graphs can be solvable in linear time.

Theorem 6.4.6. “Let G be a graph and k be any positive integer. Then CMSOL

representation exists for TR3DP.”

Proof. Let h : V → {0, 1, 2, 3} defined on G. Also, let Vi = {v|h(v) = i} for i ∈

{0, 1, 2, 3}. A CMSOL formula for the TR3DP is specified as below.

Tot Rom 3 Dom(V ) = (h(V ) ≤ k) ∧ ∃V0, V1, V2, V3,∀p((p ∈ V0 ∧ ((∃q, r, s ∈ V1 ∧

adj(p, q)∧ adj(p, r)∧ adj(p, s))∨ ((∃t ∈ V1 ∧ ∃u ∈ V2 ∧ adj(p, t)∧ adj(p, u))∨ (∃q, r ∈

V2∧adj(p, q)∧adj(p, r))∨ (∃v ∈ V3∧adj(p, v)))))∨ (p ∈ V1∧ (∃w, x ∈ V1∧adj(p, w)∧

adj(p, x))∨(∃y ∈ (V2∪V3)∧adj(p, y)))∨(p ∈ V2∧∃q ∈ (V1∪V2∪V3)∧adj(p, q))∨(p ∈

V3) ∧ ∃q ∈ (V1 ∪ V2 ∪ V3) ∧ adj(p, q)).

Tot Rom 3 Dom(V ) ensures that 1). for every vertex p ∈ V , either (i) p ∈ V3 or (ii)

p ∈ V2, or (iii) if p ∈ V0 then either there exist three vertices q, r, s ∈ V1 such that p is

adjacent to q, r and s, or there exists two vertives t ∈ V1, u ∈ V2 such that p is adjacent to

both t and u, or there exist two vertices q, r ∈ V2 such that p is adjacent to both q and r, or

there exist a vertex v ∈ V3 such that p is adjacent to v, or (iv) if p ∈ V1 then either there

exists two vertices w, x ∈ V1 such that p is adjacent to both w and x or there exists a vertex

y ∈ V2 ∪ V3 such that p is adjacent to y, which also ensures that always vertex with label

one is adjacent to a vertex with label in (V1 ∪ V2 ∪ V3), and 2). every vertex p ∈ V2 ∪ V3 is

adjacent to some vertex q in V1 ∪ V2 ∪ V3.

Now, the result below follows from Theorems 3.1.8 and 6.4.6.

Theorem 6.4.7. “MTR3DP can be solvable in linear time for bounded tree-width

graphs.”
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Figure 6.7: Construction of GT graph from G

6.4.5 Contrast between Domination and Total

Roman {3}-domination Problems

Here, we show the complexity difference between domination problem and TR3DP by

constructing a new class of graphs.

We build a new class of graphs in which the DDP is NP-complete, whereas the MTR3DP

can be solved trivially.

“Definition . (GT graph). A graph is GT graph if it can be constructed from a

connected graph G = (V,E) where V = {v1, v2, . . . , vn}, in the following way :

1. Create three copies of P2 graphs such as ai − bi, fi − gi and ki − li, for each i.

2. Consider nine additional vertices {hi, ii, ji,mi, ni, ci, di, ei, oi}, for each i.

3. Add edges {(vi, ai), (vi, fi), (vi, ki), (bi, di), (bi, ci), (bi, ei), (gi, ii), (gi, hi),

(gi, ji), (li, ni), (li,mi), (li, oi) : 1 ≤ i ≤ n}.”

General GT graph construction is shown in Figure 6.7.

Theorem 6.4.8. “If G′ is a GT graph obtained from a graph G = (V,E) (|V | = n),

then γt{R3}(G
′) = 12n.”

Proof. Let G′ = (V ′, E ′) be a GT graph constructed from G. Let f : V ′ → {0, 1, 2, 3} be
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a function on graph G′, which is defined as below

f(v) =


3, if v ∈ {bi, gi, li : 1 ≤ i ≤ n}

1, if v ∈ {ai, fi, ki : 1 ≤ i ≤ n}

0, otherwise

(6.15)

Clearly, f is a TR3DF and γt{R3}(G
′) ≤ 12n.

Next, we show that γt{R3}(G
′) ≥ 12n. Let g be a TR3DF on graph G′. Clearly, from

Proposition 6.4.1, g(ai) + g(bi) + g(ci) + g(di) + g(ei) ≥ 4, g(fi) + g(gi) + g(hi) + g(ii) +

g(ji) ≥ 4, g(ki)+g(li)+g(mi)+g(ni)+g(oi) ≥ 4, where 1 ≤ i ≤ n. Hence g(V ) ≥ 12n.

Therefore g(V ) = 12n.

Lemma 6.4.8.1. “Let G′ be a GT graph built from a graph G = (V,E). Then G has

a DS T such that |T | ≤ k iff G′ has a DS T ′ such that |T ′| ≤ k + 3n.”

Proof. Suppose T be DS of G such that |T | ≤ k, then, clearly, T ′ = T ∪ {bi, gi, li : 1 ≤

i ≤ n} is a DS of G′ such that |T ′| ≤ k + 3n.

Conversely, suppose T ′ is a DS ofG′ such that |T ′| ≤ k+3n. Then, from each subgraph

〈li,mi, ni, oi〉, 〈gi, hi, ii, ji〉 and 〈bi, ci, di, ei〉 at least one vertex must be included in T ′. Let

T ′′ be a set which is formed by replacing all ai’s (fi’s or ki’s) in T ′ by the corresponding

vi’s. Clearly, T ′′ is a DS of G such that |T ′′| ≤ k. Hence the lemma.

From the fact DDP is NP-complete for general graphs [54] and above lemma, the fol-

lowing theorem is immediate.

Theorem 6.4.9. “The DDP for GT graphs is NP-complete.”

6.4.6 Integer Linear Programming

In this section, we study the ILP formulations for MTR3DP. Let G = (V,E) be an undi-

rected graph, with |V | = n, |E| = m and f : V → {0, 1, 2, 3} be a TR3DF on G. The

MTR3DP can now be modeled as Integer Linear Program (ILP).
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Here we present an ILP model for MTR3DP. This model uses four sets of binary variables.

Specifically, for each vertex v ∈ V , we define

av =

1, f(v) = 0

0, otherwise
bv =

1, f(v) = 1

0, otherwise

cv =

1, f(v) = 2

0, otherwise
dv =

1, f(v) = 3

0, otherwise

An ILP model of the MTR3DP can now be formulated as

Determine : min(
∑

v∈V (bv + 2cv + 3dv)) (1a)

subject to

3(1− av) +
∑

u∈N(v)(bu + 2cu + 3dv) ≥ 3, v ∈ V (2a)

2(1− bv) +
∑

u∈N(v)(bu + 2cu + 3dv) ≥ 2, v ∈ V (3a)

av +
∑

u∈N(v)(bu + cu + du) ≥ 1, v ∈ V (4a)

av + bv + cv + dv = 1, v ∈ V (5a)

av, bv, cv, dv ∈ {0, 1}, v ∈ V (6a)

The objective function (1a) minimizes the weight of a TR3DF. The condition in (2a), guar-

antees that for every vertex labeled zero, the sum of labels in its open neighborhood is

three or more. The condition in (3a), guarantees that for every vertex labeled one, the sum

of labels in its open neighborhood is at least two. The condition in (4a), ensures that every

vertex with label greater than zero has at least one neighbor with non-zero label. The con-

dition in (5a), guarantees that exactly one label is assigned to every vertex and the condition

in (6a) ensures that the variables are binary in nature.

The number of variables and the constraints in the proposed ILP model is 4n.

6.5 Summary

In this chapter, the WCRDP, R3DP, TR2DP and TR3DP complexity has been investigated

in various graph classes and the results obtained are tabulated.
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Graph Class WCRDP R3DP TR2DP TR3DP

Chordal graphs - NPC - NPC

Star convex bipartite graphs - NPC - -

Comb convex bipartite graphs - NPC - -

Chain graphs P P P P

Threshold graphs P P P P

Bounded tree-width graphs P P P P

Table 6.1: Complexity status of WCRDP, R3DP, TR2DP and TR3DP
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Chapter 7

Approximation Algorithms and

Hardness Results

In this chapter, we study the optimization version of these variants of Roman domination

problems in approximation point of view.

7.1 Roman Domination

In approximation point of view, we deal the MRDP and give bounds on the approximation

ratio in this section. Further, in graphs with ∆ = 5, we prove the APX-completeness of

MRDP.

7.1.1 Lower Bound on the Approximation Ratio of MRDP in Star

Convex and Comb Convex Bipartite Graphs

In Section 3.1.1, it has been shown that the RDP is NPC for the star convex and the comb

convex bipartite graphs. In this section, we prove an approximation hardness result for the

MRDP in star convex and comb convex bipartite graphs. To show the hardness result for

the MRDP, we provide an approximation preserving reduction from the MIN SET COVER

problem which is stated below.
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“Min Set Cover problem : Let X be any non-empty set and C be a family of

subsets of X . For the set system (X,C), a set C ′ ⊆ C is called a cover of X , if

every element of X belongs to at least one element of C ′.”

The MIN SET COVER problem is to find a minimum cardinality cover ofX for a given

set system (X,C). The following result is proved in [68].

Theorem 7.1.1 ([68]). “The MIN SET COVER problem for the input instance (X,C)

does not admit a (1 − ε) ln |X|-approximation algorithm for any ε > 0 unless P =

NP . Furthermore, this inapproximability result holds for the case when the size of

the input collection C is no more than the size of the set X .”

Now we are ready to prove the following result:

Theorem 7.1.2. “MRDP for a star convex bipartite graph G with n vertices does

not admit a (1− ε) lnn-approximation algorithm for any ε > 0 unless P = NP .”

Proof. Let X = {x1, x2, . . . , xp} and C = {c1, c2, . . . , cq} be an instance of the MIN SET

COVER problem. From this, with similar arguments as in Theorem 3.1.1, we construct

an instance G = (V,E) of MRDP for star convex bipartite graphs. Next, we state the

following claim.

Claim 7.1.1. “MIN SET COVER instance (X,C) has a cover of cardinalitym if and

only if G has a RDF of size 2m+ 2.”

Proof. The proof is obtained with similar arguments as in Theorem 3.1.1.

If f is a minimum RDF of G and C∗ is a minimum set cover of X for the set system

(X,C), then f(V ) = 2|C∗|+2. Suppose that the MRDP can be approximated within a ratio

of α, where α = (1−ε) lnn for some fixed ε > 0, by using some approximation algorithm,

say Algorithm A, that runs in polynomial time. Let k be a fixed positive integer. Then the

algorithm SET-COVER-APPROX constructs solution for MIN SET COVER problem.
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Algorithm 7.1 SET-COVER-APPROX(X,C)
Require: A set X and a collection C of subsets of X .
Ensure: A cover of X .

1: if there exists a cover C ′ of X of cardinality ≤ k then
2: Cx = C ′;
3: else
4: Build the graph G;
5: Compute a RDF g on G by using algorithm A;
6: Construct a cover C ′ of X from RDF g (as illustrated in the proof of

the Claim 7.1.1);
7: Cx = C ′;
8: end if
9: return Cx;

Clearly, SET-COVER-APPROX runs in polynomial time. If the cardinality of a mini-

mum cover ofX is at most k, then it can be computed in polynomial time. Next, we analyze

the case, where the cardinality of a minimum cover of X is greater than k. Let C∗ denotes

a minimum cover of X and f be a minimum RDF of G. So, |C∗| > k. If Cx is a cover of

X computed by the algorithm SET-COVER-APPROX, then, |Cx| < g(V ) ≤ α(f(V )) ≤

α(2 + 2|C∗|) ≤ α(2 + 2
|C∗|)|C

∗|. Therefore, SET-COVER-APPROX approximates a cover

of X within a ratio of α(2 + 2
|C∗|). If 1

|C∗| < ε/2, then the approximation ratio becomes

α(2 + 2
|C∗|) < (1− ε)(2 + 2(ε/2)) lnn = (1− ε)(2 + ε) lnn = (1− ε′) lnn ≈ (1− ε′) ln p

(since lnn ≈ ln p for sufficiently large values of p), where ε′ = ε2 + ε− 1.

This proves that the algorithm APPROX-SET-COVER approximates set cover of X

within ratio (1− ε′) ln p for some fixed ε′ > 0. By Theorem 7.1.1, if the MIN SET COVER

problem can be approximated within a ratio of (1− ε′) ln p, then P = NP . It follows that,

if MRDP can be approximated within a ratio of (1− ε) lnn for any ε > 0, then P = NP .

Hence, for a star convex bipartite graph G = (V,E), the MRDP cannot be approximated

within a ratio of (1− ε) lnn for any ε > 0 unless P = NP .

Theorem 7.1.3. “MRDP for a comb convex bipartite graph G with n vertices does

not admit a (1− ε) lnn-approximation algorithm for any ε > 0 unless P = NP .”

Proof. The proof is obtained with similar arguments as in Theorem 7.1.2, in which replace

the Theorem 3.1.1 by Theorem 3.1.2.
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7.1.2 Upper Bound on Approximation Ratio

Here, we design an approximation algorithm for MRDP based on the well known optimiza-

tion problem called MINIMUM DOMINATION problem. The following theorem has been

proved in [14].

Theorem 7.1.4 ([14]). “The MINIMUM DOMINATION problem in a graph with

maximum degree ∆ can be approximated with an approximation ratio of 1 + ln(∆ +

1).”

Let APPROX-DOM-SET be an approximation algorithm that gives a dominating set D of

a graph G such that |D| ≤ (1 + ln(∆ + 1))γ(G), where ∆ is the maximum degree of a

graph G.

Next, we propose an algorithm APPROX-RDF to compute an approximate solution of

MRDP. In our algorithm, first we compute a dominating set D of the input graph G using

the approximation algorithm APPROX-DOM-SET. Next, we construct a triple Tr in which

every vertex inD will be assigned with weight 2 and the remaining vertices will be assigned

with weight 0.

Now, let Tr = (D′, ∅, D) be the triple obtained by using the APPROX-RDF algorithm.

It can be easily seen that every vertex v ∈ V is assigned with weight either 0 or 2. Since

D is a dominating set of G, every vertex v ∈ D′ having weight 0 is adjacent to a vertex

u ∈ D having weight 2. Thus, Tr gives a Roman dominating function of G. We note that

Algorithm 7.2 APPROX-RDF(G)
Input: A simple, undirected graph G.
Output: A Roman dominating triple (V0, V1, V2) of vertices of G.

1: D ← APPROX-DOM-SET(G)
2: Tr ← (V \D, ∅, D)
3: return Tr.

the algorithm APPROX-RDF computes a Roman dominating triple Tr of a given graph G

in polynomial time. Hence, we have the following result.
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Theorem 7.1.5. “MRDP in a graph with maximum degree ∆ can be approximated

with an approximation ratio of 2(1 + ln(∆ + 1)).”

Proof. Let D be the dominating set produced by the algorithm APPROX-DOM-SET, Tr

be the Roman dominating triple produced by the algorithm APPROX-RDF and Wr be the

weight of Tr.

It can be observed thatWr = 2|D|. It is known that |D| ≤ (1+ln(∆+1))γ(G). Therefore,

Wr ≤ 2(1+ln(∆+1))γ(G). Since γ(G) ≤ γR(G) [23], it follows thatWr ≤ 2(1+ln(∆+

1))γR(G). Hence the result.

From Theorem 7.1.5, the corollary below is immediate.

Corollary 7.1.1. “MRDP is in the class of APX when the maximum degree ∆ is

fixed.”

7.1.3 APX-completeness for Bounded Degree Graphs

Here, we show that the MRDP is APX-complete for graphs with maximum degree 5 by

giving an L-reduction from MINIMUM DOMINATING SET problem in graphs with max-

imum degree 3 (DOM-3) which has been proved as APX-complete [61]. Clearly, from

Corollary 7.1.1, MRDP ∈ APX.

Theorem 7.1.6. “MRDP is APX-complete for graphs with maximum degree 5.”

Proof. It is known that MRDP is in APX. We construct an instanceG′ = (V ′, E ′) of MRDP

from a given instance G = (V,E) of DOM-3, where V = {v1, v2, . . . , vn}, as follows.

Create n copies of P3 with bi as the central vertex and ai, ci as terminal vertices. Add

the edges {(vi, ai), (vi, ci) : 1 ≤ i ≤ n}. Example construction of G′ from G is shown in

Figure 7.6. Note that G′ is a graph with maximum degree 5. First we prove the following

claim.
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Figure 7.1: An illustration to the construction of G′ from G

Claim 7.1.2. “If D∗ is a minimum dominating set of G then γR(G′) = 2n + |D∗|,

where n = |V (G)|.”

Proof. Let G = (V,E), where V = {v1, v2, . . . , vn} be a graph and G′ = (V ′, E ′) is a

graph constructed from G.

Let D∗ be a minimum DS of G and f : V → {0, 1, 2} be a function on graph G′, which

is defined as below.

f(v) =


2, if v ∈ {vi : vi ∈ D∗} or v ∈ {bi : vi /∈ D∗}

1, if v ∈ {bi : vi ∈ D∗}

0, otherwise

(7.1)

Clearly, f is a RDF and γR(G′) ≤ 2n+ |D∗|.

Next, we show that γR(G′) ≥ 2n+|D∗|. Let g be a RDF on graphG′. Clearly if g(vi) =

0 then g(ai) + g(bi) + g(ci) ≥ 2 and if g(vi) ≥ 1 then g(vi) + g(ai) + g(bi) + g(ci) ≥ 3.

Therefore γR(G′) ≥ 2n + |D∗|, where D∗ = {vi : g(vi) ≥ 1} is a minimum dominating

set of G. Hence γR(G′) = 2n+ |D∗|.

Let D∗ be a minimum dominating set of G and f : V ′ → {0, 1, 2} be a minimum RDF

of G′. It is known that for any graph G = (V,E) with maximum degree ∆, γ(G) ≥ n
∆+1

,

where n = |V |. Thus, |D∗| ≥ n
4
. From the above claim it is evident that f(V ′) =

|D∗|+ 2n ≤ |D∗|+ 8|D∗| = 9|D∗|.

Now consider a RDF g : V ′ → {0, 1, 2} of G′. Clearly, the set D = {vi : g(vi) ≥ 1 or

g(ai) ≥ 1 or g(ci) ≥ 1} is a dominating set of G. Therefore, |D| ≤ g(V ′) − 2n. Hence,

110



CHAPTER 7. APPROXIMATION ALGORITHMS AND HARDNESS RESULTS Section 7.3

|D| − |D∗| ≤ g(V ′) − 2n − |D∗| ≤ g(V ′) − f(V ′). This implies that there exists an

L-reduction with α = 9 and β = 1.

7.2 Roman {2}-Domination

In this section, we present upper bound on the approximation ratio of MR2DP based on the

approximation result known for MINIMUM DOMINATION problem which is defined in

Theorem 7.1.4.

7.2.1 Upper Bound on Approximation Ratio

Here, similar to Algorithm 7.2, we propose an approximation algorithm namely, APPROX-

R2D, which produces a Roman {2}-dominating triple as follows.

Algorithm 7.3 APPROX-R2D(G)
Input: A simple, undirected graph G.

Output: A Roman 2-dominating triple Tr of G.

1: D ← APPROX-DOM-SET(G)

2: Tr ← (V \D, ∅, D)

3: return Tr.

We note that the algorithm APPROX-R2D computes a Roman {2}-dominating triple Tr of

the given graph G in polynomial time. Hence, we have the following result.

Theorem 7.2.1. “MR2DP in a graph with maximum degree ∆ can be approximated

with an approximation ratio of 2(1 + ln(∆ + 1)).”

Proof. The proof is obtained with similar arguments as in Theorem 7.1.5.

7.3 Double Roman Dominaton

Here, we present an upper bound on the approximation ratio of MDRDP based on the

approximation result known for MINIMUM DOMINATION problem which is defined in
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Theorem 7.1.4.

7.3.1 Upper Bound on Approximation Ratio

Here, similar to Algorithm 7.2, we propose an approximation algorithm namely, APPROX-

DRD, which produces a double Roman dominating quadruple as follows. We also note

Algorithm 7.4 APPROX-DRD(G)
Input: A simple, undirected graph G.
Output: A Double Roman Dominating Quadruple Qr of G.

1: D ← APPROX-DOM-SET(G)
2: Qr ← (V \D, ∅, ∅, D)
3: return Qr.

that the algorithm APPROX-DRD computes a double Roman dominating quadruple Qr of

a given graph G in polynomial time. Hence, the following theorem holds.

Theorem 7.3.1. “MDRDP in a graph with maximum degree ∆ can be approximated

with an approximation ratio of 3(1 + ln(∆ + 1)).”

Proof. The proof is obtained with similar arguments as in Theorem 7.2.1.

We have the following corollaries of Theorem 7.2.1 and Theorem 7.3.1, respectively.

Corollary 7.3.1. “MR2DP for bounded degree graphs is in APX.”

Corollary 7.3.2. “MDRDP for bounded degree graphs is in APX.”

7.4 Total Roman Dominaton and Total Double Roman Dom-

inaton

Here, results related to obtaining approximate solutions to MTRDP and MTDRDP are

presented.
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Figure 7.2: Construction of H ′ from H

7.4.1 Lower Bound on Approximation Ratio

In this section, we prove an approximation hardness result for the MTRDP and MTDRDP.

To show the hardness result for the MTRDP and MTDRDP, we provide an approximation

preserving reduction from the MDS problem. An existing result obtained on lower bound

of approximation ratio of MDS is given below.

Theorem 7.4.1. ([39]) “For a graph G = (V,E), unless P = NP , the MDS prob-

lem cannot have a solution with approximation ratio (1− δ) ln |V | for any δ > 0.”

Theorem below provides a lower bound on approximation ratio of MTRDP.

Theorem 7.4.2. “For a graph H , unless P = NP , the MTRDP cannot have a

solution with approximation ratio (1− δ) ln |V | for any δ > 0.”

Proof. We propose a reduction which preserves the approximation. Let H(V,E), where

V = {v1, v2, . . . , vn} be an instance of the MDS problem. From H , an instance H ′ of

MTRDP is constructed as follows.

Create n copies of P3 with bi as the central vertex and ai, ci as terminal vertices. Add

the edges {(vi, ai), (vi, ci) : 1 ≤ i ≤ n}. An example construction of H ′ from H is shown

in Figure 7.2. Next, we prove a claim.

Claim 7.4.1. “γtR(H ′) = 3n+ γ(H).”

Proof. Let H(V,E), where V = {v1, v2, . . . , vn} be a graph and H ′ = (V ′, E ′) is a graph
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constructed from H .

Let T ∗ be a MDS of H i.e., |T ∗| = γ(H) and f be a function on H ′, defined as

f(v) =


2, if v ∈ {vi, ai : vi ∈ T ∗} or v ∈ {bi : vi /∈ T ∗}

1, if v ∈ {ai : vi /∈ T ∗}

0, otherwise

(7.2)

Clearly, f is a TRDF and γtR(H ′) ≤ 3n+ |T ∗|.

Next, we show that γtR(H ′) ≥ 3n + |T ∗|. Let g be a TRDF on graph H ′. Clearly if

g(vi) = 0 then g(ai)+g(bi)+g(ci) ≥ 3 and if g(vi) ≥ 1 then g(vi)+g(ai)+g(bi)+g(ci) ≥

4. Therefore γtR(H ′) ≥ 3n+ |T ∗|. Hence γtR(H ′) = 3n+ γ(H).

Suppose that the MTRDP has an approximation algorithm A which runs in polynomial

time with approximation ratio β, where β = (1 − δ) ln |V | for some fixed δ > 0. Let l

be a fixed positive integer. Next, we design an approximation algorithm, say DOM-SET-

APPROX which runs in polynomial time to find a DS of a given graph H

Algorithm 7.5 DOM-SET-APPROX(G)
Input: A simple and undirected graph H .
Output: A DS T of H .

1: if there exists a DS T ′ of size at most l then
2: T ← T ′

3: else
4: Build the graph H ′

5: Calculate a TRDF f on H ′ by using algorithm A
6: Find a DS T of H from TRDF f (as
7: illustrated in the proof of Claim 7.4.1)
8: end if
9: return T.

It can be noted that if T is a DS with |T | ≤ l, then it is optimal. Otherwise, let T ∗

be a DS of H with minimum cardinality and g be a TRDF of H ′ with g(V ′) = γtR(H ′).

Clearly g(V ) ≥ l. If T is a DS of H obtained by the algorithm DOM-SET-APPROX, then

|T | ≤ f(V ) ≤ β(g(V )) ≤ β(3n+|T ∗|) = β(1+ 3n
|T ∗|)|T

∗|. Therefore, DOM-SET-APPROX

approximates a MDS within a ratio β(1 + 3n
|T ∗|). If 1

|T ∗| < δ/2, then the approximation ratio
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becomes β(1 + 3n
|T ∗|) < (1− δ)(1 + 3nδ

2
) lnn = (1− δ′) lnn, where δ′ = 3nδ2

2
− 3nδ

2
+ δ.

By Theorem 7.4.1, if there exists an approximation algorithm for MDS problem with

approximation ratio (1−δ) ln |V | then P = NP . Similarly, if there exists an approximation

algorithm for MTRDP with approximation ratio (1 − δ) ln |V | then P = NP . For large

values of n, lnn ≈ ln(4n). Hence, in a graph H ′(V ′, E ′), where |V ′| = 4|V |, the MTRDP

cannot have an approximation algorithm with a ratio of (1−δ) ln |V ′| unless P = NP .

Theorem 7.4.3. “For a graph H , unless P = NP , the MTDRDP cannot have a

solution with approximation ratio (1− δ) ln |V | for any δ > 0.”

Proof. The proof is obtained with similar arguments as in Theorem 7.8.1, in which replace

the assigned value, for the vertices, 2 with 3.

7.4.2 Upper Bound on Approximation Ratio

Here, an approximation algorithm for MT(D)RDP is designed based on the approximation

result known for MTDS problem below.

Theorem 7.4.4 ([32]). “The MTDS problem can be approximated with an approxi-

mation ratio of ln(∆− 0.5) + 1.5.”

Here, similar to Algorithm 7.2, we propose an approximation algorithm namely, APP-

TRDF, which produces a total Roman dominating triple (TRDT) as follows.

Algorithm 7.6 APP-TRDF(G)
Input: A simple, undirected graph G.
Output: A TRDT Tr of G.

1: D ← APP-TD-SET(G)
2: Tr ← (V \D, ∅, D)
3: return Tr.

We note that the algorithm APP-TRDF computes a total Roman dominating triple Tr of the

given graph G in polynomial time. Hence, we have the following result.
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Theorem 7.4.5. “MTRDP in a graph can be approximated with an approximation

ratio of 2(ln(∆− 0.5) + 1.5).”

Proof. The proof is obtained with similar arguments as in Theorem 7.1.5.

Similar to the Algorithm 7.6, we propose an approximation algorithm APP-TDRDF which

produces a total double Roman dominating quadruple (TDRDQ). We also note that the

Algorithm 7.7 APP-TDRDF(G)
Input: A simple, undirected graph G.
Output: A TDRDQ Qr of G.

1: D ← APP-TD-SET(G)
2: Qr ← (V \D, ∅, ∅, D)
3: return Qr.

algorithm APP-TDRDF computes a TDRDQ Qr of a given graph G in polynomial time

and the following theorem holds.

Theorem 7.4.6. “MTDRDP in a graph can be approximated with an approximation

ratio of 3(ln(∆− 0.5) + 1.5).”

Proof. The proof is obtained with similar arguments as in Theorem 7.1.5.

The following corollary is from Theorems 7.4.5 and 7.4.6.

Corollary 7.4.1. “MT (D)RDP ∈ APX for graphs with ∆ = O(1).”

7.4.3 APX-completeness for Bounded Degree Graphs

Here, we prove that MTRDP and MTDRDP are APX-complete for graphs with ∆ = 5 by

providing an L-reduction from DOM-3 problem.

Theorem 7.4.7. “MTRDP is APX-complete for graphs with ∆ = 5.”

Proof. From Corollary 7.4.1, it is clear that MTRDP is in APX. Given an instance G =

(V,E) of DOM-3, where V = {v1, v2, . . . , vn}, we construct an instance G′ = (V ′, E ′) of
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MTRDP same as in Section 7.4.1. Note that G′ is a graph with ∆ = 5. First we prove the

following claim.

Claim 7.4.2. “γtR(G′) = 3n+ γ(G), where n = |V |.”

Proof. The proof is similar to the proof in claim 7.4.1.

Let D∗ be a minimum DS of G and f : V ′ → {0, 1, 2} be a minimum TRDF of G′. It

is known that for any graph G = (V,E), γ(G) ≥ n
∆+1

, where n = |V |. Thus, |D∗| ≥ n
4
.

From the above claim it is evident that f(V ′) = |D∗|+ 3n ≤ |D∗|+ 12|D∗| = 13|D∗|.

Now consider a TRDF g : V ′ → {0, 1, 2} of G′. Clearly, the set D = {vi : g(vi) ≥ 1 or

g(ai) ≥ 1 or g(ci) ≥ 1} is a DS of G. Therefore, |D| ≤ g(V ′)− 3n. Hence, |D| − |D∗| ≤

g(V ′) − 3n − |D∗| ≤ g(V ′) − f(V ′). This implies that there exists an L-reduction with

α = 13 and β = 1.

Theorem 7.4.8. “MTDRDP is APX-complete for graphs with ∆ = 5.”

Proof. The proof is obtained with similar arguments as in Theorem 7.4.7, in which replace

the assigned value 2 with 3. We get an L-reduction with α = 18 and β = 1.

7.5 Independent Roman Domination, Independent Roman

{2}-Domination, Independent Double Roman Domi-

nation

Here, results related to obtaining approximate solutions to MIRDP, MIR2DP and MIDRDP

are presented.

7.5.1 APX-hardness for Bounded Degree Graphs

In this section, we prove that MIRDP, MIR2DP and MIDRDP are APX-hard for graphs

with maximum degree 4 by providing an L-reduction from MINIMUM INDEPENDENT
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Figure 7.3: An illustration to the construction of G′

DOMINATING SET-3 (MIDS-3) problem which has been proved as APX-complete [47].

The MIDS-3 problem is to find a minimum independent dominating set of a graph with

maximum degree 3.

Theorem 7.5.1. “MIRDP is APX-hard for graphs with maximum degree 4.”

Proof. Given an instance G = (V,E) of MIDS-3, where V = {v1, v2, . . . , vn}, we con-

struct an instance G′ = (V ′, E ′) of MIRDP as follows.

LetA = {a1, a2, . . . , an},B = {b1, b2, . . . , bn},C = {c1, c2, . . . , cn},D = {d1, d2, . . . , dn},

E = {e1, e2, . . . , en} and F = {f1, f2, . . . , fn}. In the graphG′, V ′ = V ∪A∪B∪C∪D∪F

and E ′ = E ∪ {(vi, ai), (ai, bi), (bi, ci), (ci, di), (ci, ei), (ci, fi) : 1 ≤ i ≤ n}. An example

construction of G′ is shown in Figure 7.3. First we prove the following claim.

Claim 7.5.1. “If G′ is the graph obtained from a graph G = (V,E) (|V | = n) then

iR(G′) = 3n+ i(G).”

Proof. Suppose D∗ be a minimum independent dominating set of G i.e., |D∗| = i(G) and

f : V ′ → {0, 1, 2} be a function on graph G′, which is defined as below

f(v) =


2, if v ∈ C ∪D∗

1, if v ∈ {ai : vi /∈ D∗}

0, otherwise

(7.3)

Clearly, f is an IRDF and iR(G′) ≤ 3n+ |D∗|.
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Next, we show that iR(G′) ≥ 3n + |D∗|. Let g be an IRDF on graph G′. Clearly,

g(bi)+g(ci)+g(di)+g(ei)+g(fi) ≥ 2, g(ai)+g(vi) ≥ 1 and if g(vi) = 0 then g(ai) ≥ 1.

Therefore iR(G′) ≥ 3n+ |D∗|. Hence iR(G′) = 3n+ i(G).

Let D∗ be a minimum independent dominating set of G and f : V ′ → {0, 1, 2} be a

minimum IRDF of G′. It is known that for any graph G = (V,E) with maximum degree

∆, γ(G) ≥ n
∆+1

, where n = |V |. From [66], we know that γ(G) ≤ i(G). Thus, |D∗| ≥ n
4
.

From the above claim it is evident that f(V ′) = |D∗|+ 3n ≤ |D∗|+ 12|D∗| = 13|D∗|.

Now consider an IRDF g : V ′ → {0, 1, 2} of G′. Clearly, the set D = {vi : g(vi) = 2

or g(ai) = 2} is an IDS of G. Therefore, |D| ≤ g(V ′) − 3n. Hence, |D| − |D∗| ≤

g(V ′) − 3n − |D∗| ≤ g(V ′) − f(V ′). This implies that there exists an L-reduction with

α = 13 and β = 1.

Theorem 7.5.2. “MIR2DP is APX-hard for graphs with maximum degree 4.”

The proof is similar to the proof given in Theorem 7.5.1.

Theorem 7.5.3. “MIDRDP is APX-hard for graphs with maximum degree 4.”

Proof. The proof is obtained with similar arguments as in Theorem 7.5.1, in which replace

the assigned values, for the vertices, 1 with 2 and 2 with 3. We get an L-reduction with

α = 21 and β = 1.

7.6 Weakly Connected Roman Dominaton

Here, results related to obtaining approximate solutions to MWCRDP are presented.

7.6.1 Lower Bound on Approximation Ratio

In this section, we prove an approximation hardness result for the MWCRDP. To show the

hardness result for the MWCRDP, we provide an approximation preserving reduction from
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Figure 7.4: Construction of H ′ from H

the MDS problem given in Theorem 7.4.1. Theorem below provides a lower bound on

approximation ratio of MWCRDP.

Theorem 7.6.1. “For a graph H , unless P = NP , the MWCRDP cannot have a

solution with approximation ratio (1− δ) ln |V | for any δ > 0.”

Proof. We propose a reduction which preserves the approximation. Let H(V,E), where

V = {v1, v2, . . . , vn} be an instance of the MDS problem. From H , an instance H ′ of

MWCRDP with the following vertex and edge sets is constructed.

V (H ′) = {a1, a2, . . . , an} ∪ {b1, b2, . . . , bn} ∪ V (H) and

E(H ′) = {(vi, ai), (ai, bi) : 1 ≤ i ≤ n} ∪ E(H).

Figure 7.4 shows a construction of H ′ from H . Next, we prove a claim.

Claim 7.6.1. “γwcR (H ′) = 2n+ γ(H).”

Proof. Let H ′(V ′, E ′) is a graph constructed from H(V,E).

Let T ∗ be a MDS of H i.e., |T ∗| = γ(H) and h be a function on H ′, defined as

h(v) =


2, if v ∈ {ai : 1 ≤ i ≤ n}

1, if v ∈ T ∗

0, otherwise

(7.4)
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Clearly, h is a WCRDF and γwcR (H ′) ≤ 2n+ |T ∗|.

Next, we show that γwcR (H ′) ≥ 2n + |T ∗|. Let g be a WCRDF on graph H ′. Clearly,

g(ai) + g(bi) ≥ 2. These make the size at least 2n. Therefore γwcR (H ′) ≥ 2n+ |T ∗|. Hence

γwcR (H ′) = 2n+ γ(H).

Suppose that the MWCRDP has an approximation algorithm A which runs in P with

approximation ratio β, where β = (1− δ) ln |V | for some fixed δ > 0. Next, we design an

approximation algorithm, say DS-APX which runs in P to find a DS of a given graph H .

Let l (≥ 0) be an integer.

Algorithm 7.8 DS-APX(H)
Input: A simple, undirected graph H .
Output: A DS of H .

1: if there exists a DS T ′ such that |T ′| ≤ l then
2: T ← T ′

3: else
4: Build the graph H ′

5: Calculate a WCRDF f on H ′ by using algorithm A
6: Let T = {vi : f(vi) + f(ai) ≥ 2}. (As illustrated in the Claim 7.6.1)
7: end if
8: return T.

It can be noted that if T is a DS with |T | ≤ l, then it is optimal. Otherwise, let T ∗ be

a DS of H with minimum cardinality and g be a WCRDF of H ′ with w(g) = γwcR (H ′).

Clearly g(V ) ≥ l. If T is a DS of H obtained by the algorithm DS-APX, then |T | ≤

f(V ) ≤ β(g(V )) ≤ β(2n + |T ∗|) = β(1 + 2n
|T ∗|)|T

∗|. Therefore, DS-APX approximates

a MDS within a ratio β(1 + 2n
|T ∗|). If 1

|T ∗| < δ/2, then the approximation ratio becomes

β(1 + 2n
|T ∗|) < (1− δ)(1 + 2nδ

2
) lnn = (1− δ′) lnn, where δ′ = nδ2 + δ − nδ.

By Theorem 7.4.1, if there exists an approximation algorithm for MDS problem with

approximation ratio (1−δ) ln |V | then P = NP . Similarly, if there exists an approximation

algorithm for MWCRDP with approximation ratio (1 − δ) ln |V | then P = NP . For

large values of n, lnn ≈ ln(2n). Hence, in a graph H ′(V ′, E ′), where |V ′| = 2|V |, the

MWCRDP problem cannot have an approximation algorithm with a ratio of (1− δ) ln |V ′|

unless P = NP .
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7.6.2 Upper Bound on Approximation Ratio

Here, an approximation algorithm for MWCRDP is designed based on the approximation

result known known for MCDS problem and the proposition below.

Theorem 7.6.2. ([19]) “The MCDS problem can be approximated with an approxi-

mation ratio of (1 + ε)(1 + ln(∆− 1)) in a graph for any ε > 0.”

Proposition 7.6.1. “If H is a connected graph then γwcR (H) ≤ 2γc(H).”

Proof. Let C be a CDS of H such that |C| = γc(H). Then the function h defined as

h(v) =

2, if v ∈ C

0, otherwise
(7.5)

is a WCRDF of H . Thus γwcR (H) ≤ w(h) = 2|C| = 2γc(H). Hence the proposition.

Let ACDSET be an approximation algorithm that produces a CDS C of a graph H such

that |C| ≤ (1 + ε)(1 + ln(∆− 1))γc(H), where ε is any positive constant.

Next, we design AWCRDF algorithm to determine an approximate solution of MWCRDP.

In this algorithm, we first determine a CDS C of H using the ACDSET algorithm. Next,

we build a weakly connected Roman dominating triple (WCRDT) Tr such that weight 2 is

assigned for all vertices in C and weight 0 is assigned for the remaining vertices.

Now, let Tr = (V \ C, ∅, C) be the WCRDT obtained from the AWCRDF algorithm.

Clearly, Tr gives a WCRDF of G and AWCRDF algorithm determines the WCRDT Tr of

H in P. Hence, the result follows.

Algorithm 7.9 AWCRDF(H)
Input: A simple, undirected graph H .
Output: A WCRDT Tr of H .

1: C ← ACDSET(H)
2: Tr ← (V \ C, ∅, C)
3: return Tr.
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Theorem 7.6.3. “MWCRDP can be approximated with an approximation ratio of

2(1 + ε)(1 + ln(∆− 1)) in a graph for any ε > 0.”

Proof. Let C be the CDS obtained from the ACDSET algorithm, Tr be the WCRDT pro-

duced by the AWCRDF algorithm and Wr = |Qr|. Clearly, Wr = 2|C|. It is known that

|C| ≤ (1 + ε)(1 + ln(∆ − 1))γc(H). Therefore, Wr ≤ 2(1 + ε)(1 + ln(∆ − 1))γc(H).

Since γc(H) ≤ γwcR (H), it follows that Wr ≤ 2(1 + ε)(1 + ln(∆− 1))γwcR (H). Hence the

result.

From Theorem 7.6.3, the corollary below follows.

Corollary 7.6.1. “MWCRDP ∈ APX for graphs with ∆ = O(1).”

7.6.3 APX-completeness for Bounded Degree Graphs

Here, we prove that MWCRDP is APX-complete for graphs with ∆ = 4 by providing an

L-reduction from DOM-3 problem.

Theorem 7.6.4. “MWCRDP is APX-complete for graphs with ∆ = 4.”

Proof. From Corollary 7.6.1, it follows that MWCRDP ∈ APX for graphs with ∆ = 4.

From the given instance H = (V,E) of DOM-3, we construct an instance H ′ = (V ′, E ′)

of MWCRDP same as in Theorem 7.6.1. Clearly, ∆(H ′) = 4. We make use of the Claim

7.6.1 to complete the proof.

Let f : V ′ → {0, 1, 2} be a WCRDF of H ′, where f(V ′) = γwcR (H ′) and T ∗ be a MDS

of H . It is known that for any graph H = (V,E), γ(G) ≥ |V |
∆+1

. Thus, |T ∗| ≥ n
4
. From the

Claim 7.6.1, clearly, f(V ′) = 2n+ |T ∗| ≤ 8|T ∗|+ |T ∗| = 9|T ∗|.

Now consider a WCRDF h : V ′ → {0, 1, 2} of H ′. Clearly, T = {vi : h(vi) + h(ai) ≥

1} is a DS of H . Therefore, |T | ≤ h(V ′)− 2n. Hence, |T | − |T ∗| ≤ h(V ′)− 2n− |T ∗| ≤

h(V ′)− f(V ′). This infers there exists an L-reduction with α = 9 and β = 1.
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Figure 7.5: An illustration to the construction of G′ from G

7.7 Roman {3}-Dominaton

Here, results related to obtaining approximate solutions to MR3DP are presented.

7.7.1 Lower Bound on Approximation Ratio

In this section, we prove an approximation hardness result for the MR3DP. To show the

hardness result for the MR3DP, we provide an approximation preserving reduction from

the MDS problem given in Theorem 7.4.1. The following theorem provides a lower bound

for approximation ratio of MR3DP.

Theorem 7.7.1. “For a graph G = (V,E), the MR3DP cannot be approximated

within a factor of (1− ε) ln |V | for any ε > 0 unless P = NP .”

Proof. Let G = (V,E), where V = {v1, v2, . . . , vn} be an instance of the MINIMUM

DOMINATING SET problem. From this, we construct an instance G′ = (V ′, E ′) of

MR3DP as follows.

Create a vertex set {a1, a2, . . . , an}. Add the edges {(vi, ai) : 1 ≤ i ≤ n}. Example

construction of G′ from G is shown in Figure 7.5. First we need to prove the following

claim.

Claim 7.7.1. “If G′ is the graph obtained from a graph G = (V,E) (|V | = n) then

γ{R3}(G
′) = 2n+ γ(G).”

Proof. Let G = (V,E), where V = {v1, v2, . . . , vn} be a graph and G′ = (V ′, E ′) is a
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graph constructed from G.

Let D∗ be a MDS of G i.e., |D∗| = γ(G) and f : V → {0, 1, 2, 3} be a function on

graph G′, defined as

f(v) =


3, if v ∈ D∗

2, if v ∈ {ai : vi /∈ D∗}

0, otherwise

(7.6)

Clearly, f is a R3DF and γ{R3}(G
′) ≤ 2n+ |D∗|.

Next, we show that γ{R3}(G
′) ≥ 2n + |D∗|. Let g be a R3DF on graph G′. Clearly,

g(vi) + g(ai) ≥ 2, if g(vi) = 0 then g(ai) ≥ 2, if g(ai) = 0 then g(vi) = 3 and if

|E(G′)| = 1 then g(ai)+g(vi) ≥ 3. Therefore γ{R3}(G
′) ≥ 2n+ |D∗|. Hence γ{R3}(G

′) =

2n+ γ(G).

Suppose that the MR3DP has an approximation algorithm A which runs in polynomial

time with approximation ratio α, where α = (1 − ε) ln |V | for some fixed ε > 0. Let k

be a fixed positive integer. Next, we design an approximation algorithm, say DOM-SET-

APPROX which runs in polynomial time to find a DS of a given graph G.

Algorithm 7.10 DOM-SET-APPROX(G)
Input: A simple and undirected graph G.
Output: A DS D of G.

1: if there exists a DS D′ of size at most k then
2: D ← D′

3: else
4: Build the graph G′

5: Find a R3DF g on G′ by using algorithm A
6: Let D = {vi : g(vi) + g(ai) ≥ 3}. (from Claim 7.7.1)
7: end if
8: return D.

Clearly, DOM-SET-APPROX runs in polynomial time. It can be noted that if D is a

MDS of size at most k, then it is optimal. Otherwise, let D∗ be a MDS of G and f be a

R3DF of G′ with f(V ′) = γ{R3}(G
′). Clearly f(V ′) ≥ k. If D is a DS of G produced

by the algorithm DOM-SET-APPROX, then |D| ≤ g(V ′) ≤ α(f(V ′)) ≤ α(2n + |D∗|)

= α(1 + 2n
|D∗|)|D

∗|. Therefore, DOM-SET-APPROX approximates a DS within a ratio
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α(1+ 2n
|D∗|). If 1

|D∗| < ε/2, then the approximation ratio becomes α(1+ 2n
|D∗|) < (1− ε)(1+

nε) lnn = (1−ε′) lnn, where ε′ = nε2 +ε−nε. Hence DOM-SET-APPROX approximates

minimum dominating set within (1 − ε′) ln |V |. So by Theorem 7.4.1 and the fact that

ln(2|V |) ≈ ln |V ′| for |V | → ∞, unless P = NP , MR3DP cannot be approximated within

a ratio of (1− ε) ln |V | for any ε > 0.

7.7.2 Upper Bound on Approximation Ratio

Here, similar to Algorithm 7.2, we propose an approximation algorithm namely, APP-R3D,

which produces a Roman {3}-dominating quadruple as follows.

Algorithm 7.11 APP-R3D(G)
Input: A simple, undirected graph G.

Output: A Roman {3}-dominating quadruple Qr of G.

1: D ← APP-DOM-SET(G)

2: Qr ← (V \D, ∅, ∅, D)

3: return Qr.

We note that the algorithm APP-R3D computes a Roman {3}-dominating quadruple Qr of

the given graph G in polynomial time. Hence, we have the following result.

Theorem 7.7.2. “MR3DP in a graph with maximum degree ∆ can be approximated

with an approximation ratio of 3(1 + ln(∆ + 1)).”

Proof. The proof is obtained with similar arguments as in Theorem 7.1.5.

From Theorem 7.7.2, the corollary below follows.

Corollary 7.7.1. “MR3DP ∈ APX for graphs with ∆ = O(1).”

7.7.3 APX-completeness for Bounded Degree Graphs

Here, we prove that MR3DP is APX-complete for graphs with ∆ = 4 using the L-reduction

[16]. By providing an L-reduction from MDS problem with ∆ = 3 i.e., DOM-3 which
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is known to be APX-complete [61], we show that MR3DP ∈ APX-hard for graphs with

∆ = 4.

Theorem 7.7.3. “MR3DP is APX-complete for graphs with maximum degree 4.”

Proof. By using Corollary 7.7.1, we can say that MR3DP is in APX for graphs with maxi-

mum degree 4. Given an instance G = (V,E) of DOM-3, where V = {v1, v2, . . . , vn}, we

construct an instance G′ = (V ′, E ′) of MR3DP same as in Section 7.7.1. Note that G′ is a

graph with maximum degree 4. We make use of the Claim 7.7.1 to complete the proof.

Let D∗ be a MDS of G and f : V ′ → {0, 1, 2, 3} be a minimum R3DF of G′. It is

known that for any graph G = (V,E), γ(G) ≥ n
∆+1

, where n = |V |. Thus, |D∗| ≥ n
4
.

From Claim 7.7.1, it is evident that f(V ′) = 2n+ |D∗| ≤ 8|D∗|+ |D∗| = 9|D∗|.

Now consider a R3DF g : V ′ → {0, 1, 2, 3} of G′. Clearly, the set D = {vi : g(vi) +

g(ai) ≥ 3} is a DS of G. Therefore, |D| ≤ g(V ′) − 2n. Hence, |D| − |D∗| ≤ g(V ′) −

2n− |D∗| ≤ g(V ′)− f(V ′). This implies that there exists an L-reduction with α = 9 and

β = 1.

7.8 Total Roman {2}-Dominaton

Here, results related to obtaining approximate solutions to MTR2DP are presented.

7.8.1 Lower Bound on Approximation Ratio

In this section, we prove an approximation hardness result for the MTR2DP. To show the

hardness result for the MTR2DP, we provide an approximation preserving reduction from

the MDS problem given in Theorem 7.4.1. Theorem below provides a lower bound on

approximation ratio of MTR2DP.

Theorem 7.8.1. “For a graph H , unless P = NP , the MTR2DP cannot have a

solution with approximation ratio (1− δ) ln |V | for any δ > 0.”

Proof. We propose a reduction which preserves the approximation. Let H(V,E), where
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Figure 7.6: Construction of H ′ from H

V = {v1, v2, . . . , vn} be a MDS problem instance. From H , an instance H ′ of MTR2DP is

constructed as below.

Create n copies of star graphs with bi as the central vertex and ai, ci, di and ei as

terminal vertices. Add the edges {(v1, a1), (v2, a2), . . . , (vn, an)}. Figure 7.6, shows an

example construction of H ′ from H . Next, we prove a claim.

Claim 7.8.1. “γtR2(H ′) = 3n+ γ(H).”

Proof. Let H(V,E) be a graph, where V = {v1, v2, . . . , vn} and H ′ = (V ′, E ′) be a graph

constructed from H .

Let T ∗ be a MDS of H i.e., |T ∗| = γ(H) and h be a function on H ′, defined as

h(v) =


1, if v ∈ {ai : 1 ≤ i ≤ n} ∪ T ∗

2, if v ∈ {bi : 1 ≤ i ≤ n}

0, otherwise

(7.7)

Clearly, h is a TR2DF and γtR2(H ′) ≤ 3n+ |T ∗|.

Next, we show that γtR2(H ′) ≥ 3n + |T ∗|. Let g be a TR2DF on graph H ′. Clearly,

irrespective of vi’s, g(ai)+g(bi)+g(ci)+g(di)+g(ei) ≥ 3. Therefore γtR2(H ′) ≥ 3n+|T ∗|.

Hence γtR2(H ′) = 3n+ γ(H).

Suppose that the MTR2DP has an approximation algorithm Lwhich runs in polynomial

time with approximation ratio β, where β = (1 − δ) ln |V | for some fixed δ > 0. Let l be

a fixed positive integer. Next, we design an approximation algorithm, say DSA which runs
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in polynomial time to find a DS of a given graph H .

Algorithm 7.12 DSA(G)
Input: A simple and undirected graph H .
Output: A DS T of H .

1: if there exists a DS T ′ of size at most l then
2: T ← T ′

3: else
4: Build the graph H ′

5: Calculate a TR2DF f on H ′ by using algorithm L
6: Find a DS T of H from TR2DF f (from Claim 7.8.1) end if
7: return T.

It can be noted that if T is a DS with |T | ≤ l, then it is optimal. Otherwise, let T ∗ be

a DS of H with minimum cardinality and g be a TR2DF of H ′ with g(V ′) = γtR2(H ′).

Clearly g(V ) ≥ l. If T is a DS of H obtained by the algorithm DSA, then |T | ≤ f(V ) ≤

β(g(V )) ≤ β(3n + |T ∗|) = β(1 + 3n
|T ∗|)|T

∗|. Therefore, DSA approximates a MDS within

a ratio β(1 + 3n
|T ∗|). If 1

|T ∗| < δ/2, then the approximation ratio becomes β(1 + 3n
|T ∗|) <

(1− δ)(1 + 3nδ
2

) lnn = (1− δ′) lnn, where δ′ = 3nδ2

2
− 3nδ

2
+ δ.

By Theorem 7.4.1, if there exists an approximation algorithm for MDS problem with

approximation ratio (1−δ) ln |V | then P = NP . Similarly, if there exists an approximation

algorithm for MTR2DP with approximation ratio (1 − δ) ln |V | then P = NP . For large

values of n, lnn ≈ ln(5n). Hence, in a graph H ′(V ′, E ′), where |V ′| = 5|V |, unless

P = NP , the MTR2DP cannot have an approximation algorithm with a ratio of (1 −

δ) ln |V ′|.

7.8.2 Upper Bound on Approximation Ratio

Here, an approximation algorithm for MTR2DP is designed based on the approximation

result known for MTDS problem given in Theorem 7.4.4. Let APP-TD-SET be an approx-

imation algorithm that produces a TDS D of a graph G such that |D| ≤ (ln(∆ − 0.5) +

1.5)γt(G). Similar to Algorithm 7.2, we propose an approximation algorithm namely,

APP-TR2DF, which produces a total Roman {2}-dominating triple (Tr) as follows.

We note that the algorithm APP-TR2DF computes a total Roman {2}-dominating triple Tr

of the given graph G in polynomial time. Hence, we have the following result.
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Algorithm 7.13 APP-TR2DF(G)
Input: A simple, undirected graph G.
Output: A TR2DT Tr of G.

1: D ← APP-TD-SET(G)
2: Tr ← (V \D, ∅, D)
3: return Tr.

Theorem 7.8.2. “MTR2DP in a graph can be approximated with an approximation

ratio of 2(ln(∆− 0.5) + 1.5).”

Proof. The proof is obtained with similar arguments as in Theorem 7.1.5.

From Theorem 7.8.2, the corollary below follows.

Corollary 7.8.1. “MTR2DP ∈ APX for graphs with ∆ = O(1).”

7.8.3 APX-completeness for Bounded Degree Graphs

Here, we prove that MTR2DP is APX-complete for graphs with ∆ = 4 using the L-

reduction [16]. By providing an L-reduction from MDS problem with ∆ = 3 i.e., DOM-3

which is known to be APX-complete [61], we show that MTR3DP ∈ APX-hard for graphs

with ∆ = 4.

Theorem 7.8.3. “MTR2DP is APX-complete for graphs with ∆ = 4.”

Proof. From Corollary 7.4.1, clearly, MTR2DP∈APX. From the given instanceG = (V,E)

of DOM-3, where V = {v1, v2, . . . , vn}, we construct a MTR2DP instance G′ = (V ′, E ′)

same as in Section 7.8.1. Clearly, ∆(G′) = 4.

Claim 7.8.2. “γtR2(G′) = 3n+ γ(G), where n = |V |.”

Proof. The proof is same as in Claim 7.8.1.

Assume g be a TR2DF on G′, where g(V ′) = γtR2(G′) and D∗ be a MDS of G. For

any graph G, it is known that γ(G) ≥ n
∆+1

. Clearly, |D∗| ≥ n
4
. From the claim 7.8.2,
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g(V ′) = |D∗|+ 3n ≤ |D∗|+ 12|D∗| = 13|D∗|.

Let h : V ′ → {0, 1, 2} be a TR2DF of G′. Then, clearly, D = {vi : h(vi) ≥ 1

or h(ai) ≥ 1} is a DS of G. Hence, |D| ≤ h(V ′) − 3n. Therefore, |D| − |D∗| ≤

h(V ′) − 3n − |D∗| ≤ h(V ′) − g(V ′). This infers that there exists an L-reduction with

β = 1 and α = 13.

7.9 Total Roman {3}-Dominaton

Here, results related to obtaining approximate solutions to MTR3DP are presented.

7.9.1 Lower Bound on Approximation Ratio

In this section, we prove an approximation hardness result for the MTR3DP. To show the

hardness result for the MTR3DP, we provide an approximation preserving reduction from

the MDS problem given in Theorem 7.4.1. Theorem below provides a lower bound on

approximation ratio of MTR3DP.

Theorem 7.9.1. “MTR3DP for a graph H cannot have an approximation algorithm

with approximation ratio (1− δ) ln |V | for any δ > 0 unless P = NP .”

Proof. We propose a reduction which preserves the approximation. Let H(V,E), where

V = {v1, v2, . . . , vn} be an instance of the MDS problem. From H , an instance H ′ of

MTR3DP with the following vertex and edge sets is constructed.

V (H ′) = {a1, a2, . . . , an, b1, b2, . . . , bn, } ∪ V (H) and

E(H ′) = {(vi, ai), (ai, bi) : 1 ≤ i ≤ n} ∪ E(H).

Next, we prove a claim.

Claim 7.9.1. “γt{R3}(H
′) = 3n+ γ(H).”

Proof. Let H ′(V ′, E ′) is a graph constructed from H(V,E) as described above.
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Let T ∗ be a MDS of H i.e., |T ∗| = γ(H) and f be a function on H ′, defined as

f(v) =


2, if v ∈ {ai : 1 ≤ i ≤ n}

1, if v ∈ {bi : 1 ≤ i ≤ n} or v ∈ {vi : vi ∈ T ∗}

0, otherwise

(7.8)

Clearly, f is a TR3DF and γt{R3}(H
′) ≤ 3n+ |T ∗|.

Next, we show that γt{R3}(H
′) ≥ 3n+ |T ∗|. Let g be a TR3DF on graph H ′. Clearly if

g(vi) = 0 then g(ai) + g(bi) ≥ 3 and if g(vi) ≥ 1 then g(vi) + g(ai) + g(bi) ≥ 4. Therefore

γt{R3}(H
′) ≥ 3n+ |T ∗|. Hence γt{R3}(H

′) = 3n+ γ(H).

Suppose that the MTR3DP has an approximation algorithmAwhich runs in polynomial

time with approximation ratio β, where β = (1 − δ) ln |V | for some fixed δ > 0. Let l

(> 1) be an integer. Next, we design an approximation algorithm, say DS-APP which runs

in polynomial time to determine a DS of a H .

Algorithm 7.14 DS-APP(H)
Input: A simple, undirected graph H .
Output: A DS T of H .

1: if there exists a DS T ′ such that |T ′| ≤ l then
2: T ← T ′

3: else
4: Build the graph T ′

5: Calculate a TR3DF g on T ′ by using algorithm A
6: Find a DS T of H from TR3DF g (as illustrated in the proof of Claim 7.9.1)
7: end if
8: return T.

It can be noted that if T is a DS with |T | ≤ l, then it is optimal. Otherwise, let T ∗

be a DS of H with minimum cardinality and f be a TR3DF of H ′ with f(V (H ′)) =

γt{R3}(H
′). Clearly f(V ) ≥ l. If T is a DS of H obtained by the algorithm DS-APP,

then |T | ≤ g(V ) ≤ β(f(V )) ≤ β(3n + |T ∗|) = β(1 + 3n
|T ∗|)|T

∗|. Therefore, DS-APP

approximates a MDS within a ratio β(1 + 3n
|T ∗|). If 1

|T ∗| < δ/2, then the approximation ratio

becomes β(1 + 3n
|T ∗|) < (1 − δ)(1 + 3nδ

2
) lnn = (1 − δ′) lnn, where δ′ = 3nδ2

2
− 3nδ

2
+ δ.

Hence DOM-SET-APP approximates MDS within (1 − δ′) ln |V |. So by Theorem 7.4.1
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and the fact that ln(3|V |) ≈ ln |V | for |V | → ∞, unless P = NP , MTR3DP cannot be

approximated within a ratio of (1− δ) ln |V | for any δ > 0.

7.9.2 Upper Bound on Approximation Ratio

Here, an approximation algorithm for MTR3DP is designed based on the approximation

result known for MTDS problem given in Theorem 7.4.4. Similar to Algorithm 7.2, we

propose an approximation algorithm namely, APP-TR3DF, which produces a total Roman

{3}-dominating quadruple as follows.

Algorithm 7.15 APP-TR3DF(G)
Input: A simple, undirected graph G.
Output: A TR3DQ Qr of G.

1: D ← APP-TDOM-SET(G)
2: Qr ← (V \D, ∅, ∅, D)
3: return Qr.

We note that the algorithm APP-TR3DF computes a total Roman {3}-dominating quadru-

ple Qr of the given graph G in polynomial time. Hence, we have the following result.

Theorem 7.9.2. “MTR3DP in a graph can be approximated with an approximation

ratio of 3(ln(∆− 0.5) + 1.5).”

Proof. The proof is obtained with similar arguments as in Theorem 7.1.5.

From Theorem 7.9.2, the corollary below follows.

Corollary 7.9.1. “MTR3DP ∈ APX for graphs with ∆ = O(1).”

7.9.3 APX-completeness for Bounded Degree Graphs

Here, we prove that MTR3DP is APX-complete for graphs with ∆ = 4 using the L-

reduction [16]. By providing an L-reduction from MDS problem with ∆ = 3 i.e., DOM-3

which is known to be APX-complete [61], we show that MTR3DP ∈ APX-hard for graphs

with ∆ = 4.
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Theorem 7.9.3. “MTR3DP is APX-complete for graphs with ∆ = 4.”

Proof. From Corollary 7.9.1, it is clear that MTR3DP ∈ APX. From the given instance

G = (V,E) of DOM-3, we construct an instance G′ = (V ′, E ′) of MTR3DP same as in

Section 7.9.1. Clearly, G′ is a graph with ∆ = 4. The following claim holds.

Claim 7.9.2. “γt{R3}(G
′) = 3n+ γ(G), where n = |V |.”

Proof. The proof is same as in Claim 7.9.1.

Let f : V ′ → {0, 1, 2, 3} be a TR3DF of G′, where f(V ′) = γt{R3}(G
′) and T ∗ be a

MDS of G. It is known that for any graph G = (V,E), γ(G) ≥ |V |
∆+1

. Thus, |T ∗| ≥ n
4
.

From the above claim, clearly, f(V ′) = |T ∗|+ 3n ≤ |T ∗|+ 12|T ∗| = 13|T ∗|.

Now consider a TR3DF h : V ′ → {0, 1, 2, 3} of G′. Clearly, h(bi) + h(ci) ≥ 3 and

T = {vi : h(vi) + h(ai) + h(ci) ≥ 4} is a DS of G. Therefore, |T | ≤ h(V ′)− 3n. Hence,

|T | − |T ∗| ≤ h(V ′)− 3n− |T ∗| ≤ h(V ′)− f(V ′). This infers there exists an L-reduction

with α = 13 and β = 1.

7.10 Summary

In this chapter, ∆+1-approximation algorithms for the MRDP, MR2DP, MDRDP, MTRDP,

MTR2DP, MTDRDP, MR3DP, MTR3DP and MWCRDP have been proposed. Lower

bounds on approximation ratio for the MRDP, MTRDP, MTDRDP, MR3DP, MTR2DP,

MTR3DP and MWCRDP have been obtained. APX-hardness of MIRDP, MIR2DP and

MIDRDP have been proved for graphs with ∆ = 4. Finally, it has been proved that MRDP,

MTRDP and MTDRDP are APX-complete for graphs with ∆ = 5, and MR3DP, MTR2DP,

MTR3DP and MWCRDP are APX-complete for graphs with ∆ = 4.
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Chapter 8

Conclusion and Future Research

Here, we present the summary of contributions made in this thesis and mention the open

problems triggered out of the study.

8.1 Conclusions

We have studied the algorithmic aspects of the Roman domination and its variants, namely

Roman {2}-domination, double Roman domination, perfect Roman domination, perfect

double Roman domination, independent Roman domination, independent Roman {2}-

domination, independent double Roman domination, total Roman domination, total double

Roman domination, weakly connected Roman domination, Roman {3}-domination, total

Roman {2}-domination and total Roman {3}-domination.

In chapter 3, we have proved that the RDP, R2DP and DRDP are NPC for star convex

bipartite graphs and comb convex bipartite graphs, and R2DP is NPC for bisplit graphs. We

have shown that theses problems are linear time solvable for bounded tree-width graphs,

chain graphs and threshold graphs. In chapter 4, we have proved that the PRDP is NPC

for star convex and comb convex bipartite graphs and PDRDP is NPC for chordal and

bipartite graphs. We have proved that MPRDP, MPDRDP, MTRDP and MTDRDP are

linear time solvable for bounded tree-width graphs, chain graphs and threshold graphs.

We have exhibited the case where the complexity of DOMINATION problem and PDRDP

differ, that is, when the input graph is GI graph.
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In chapter 5, algorithmic aspects of independent Roman domination, independent Ro-

man {2}-domination and independent double Roman domination are studied. We have

proved that IRDP, IR2DP and IDRDP are NPC for, dually chordal graphs, star convex

bipartite graphs and comb convex bipartite graphs, and IR2DP and IDRDP are NPC for

chordal graphs and are linear time solvable for bounded tree-width graphs, chain graphs

and threshold graphs, a subclass of split graphs. We have studied the complexity difference

of IRDP (IR2DP, IDRDP) with DOMINATION problem.

In chapter 6, algorithmic aspects of WCRDP, R3DP, TR2DP and TR3DP are stud-

ied. We have proved that these problems are linear time solvable for bounded tree-width

graphs, chain graphs and threshold graphs. We have proved that R3DP and TR3DP are NP-

complete for chordal graphs and R3DP is NP-complete for planar graphs. We have studied

the complexity difference of WCRDP (R3DP, TR2DP, TR3DP) with DOMINATION prob-

lem.

It has been proved that decision versions of variant Roman domination problems are

NP-complete in the previous chapters. In chapter 7, we have presented some approximation

results of these domination parameters. We have proposed 2(1+ln(∆+1))-approximation

algorithm for the MRDP and MR2DP, and 3(1 + ln(∆ + 1))-approximation algorithm for

the MDRDP, 2(ln(∆ − 0.5) + 1.5)-approximation algorithm for MTRDP and MTR2DP,

3(ln(∆−0.5)+1.5)-approximation algorithm for the MTDRDP and MTR3DP, 3(1+ln(∆−

1))-approximation algorithm for the MR3DP and 2(1 + ε)(1 + ln(∆− 1))-approximation

algorithm for the MWCRDP, where ∆ is the maximum degree of G. We also have proved

that these problems cannot be approximated within (1 − ε) ln(|V |) for any ε > 0 unless

P = NP . We have shown that MRDP, MTRDP and MTDRDP are APX-complete for

graphs with ∆ = 5, and MR3DP, MTR2DP, MTR3DP and MWCRDP are APX-complete

for graphs with ∆ = 4. Finally, MIRDP, MIR2DP and MIDRDP have been proved as

APX-hard for graphs with ∆ = 4.
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8.2 Some Open Problems

Some of the open problems triggered from the study of Roman domination and its thirteen

variants in this thesis are mentioned below.

• In chapter 3, RDP, R2DP and DRDP are proved as NPC for star convex bipartite

graphs and comb convex bipartite graphs and polynomial time solvable in subclasses

of chordal graphs namely threshold graphs. Investigating the algorithmic complexity

of these problems for other subclasses of bipartite graphs like bipartite permutation

graphs, chordal bipartite, bipartite chain graphs and subclasses of chordal graphs like

block graphs, strongly chordal graphs and directed path graphs remains open.

• In chapter 4, it is proved that PRDP is NPC for star convex and comb convex bipartite

graphs. Investigating the complexity status of it in bipartite subclasses is an open

problem.

• PDRDP is proved as NPC for chordal and bipartite graphs. Investigating the algo-

rithmic complexity of PDRDP in subclasses of bipartite graphs and chordal graphs

is interesting.

• In chapter 5, it is proved that IRDP, IR2DP and IDRDP are NPC for dually chordal

graphs, star convex bipartite graphs and comb convex bipartite graphs, and IR2DP

and IDRDP are NPC for chordal graphs. Investigating the complexity of these prob-

lems in other graph classes is interesting.

• In chapter 6, complexity aspects of WCRDP, R3DP, TR2DP and TR3DP are studied

in subclasses of bipartite and chordal graphs. Investigating the complexity of these

problems in other graph classes is interesting.

• In chapter 7, lower and upper bounds of approximation ratio of MTRDP, MTDRDP,

MR3DP, MTR2DP, MTR3DP and MWCRDP are obtained. Similarly, it is interesting

to investigate lower and upper bounds for MIRDP, MIR2DP and MIDRDP, for which

the decision version, IRDP, IR2DP and IDRDP, have been proved as NP-complete.
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• It is proved that MRDP, MTRDP, MTDRDP are APX-complete for graphs with ∆ =

5. The complexity status of these problems are still open for graphs with ∆ = 4.

• It is proved that MR3DP, MTR2DP, MTR3DP and MWCRDP are APX-complete for

graphs with ∆ = 4. The complexity status of these problems are still open for graphs

with maximum degree other than 4.
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