
Optimization of Support Vector Machines for balancing the trade-off between
generalization performance and computational complexity

Submitted in partial fulfillment of the requirements

for the award of the degree of

DOCTOR OF PHILOSOPHY

Submitted by

Lavanya Madhuri Bollipo

(Roll No. 701433)

Under the supervision of

Dr. Kadambari K. V.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL

TELANGANA - 506004, INDIA
August 2021

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL

TELANGANA - 506004, INDIA

THESIS APPROVAL FOR Ph.D.

This is to certify that the thesis entitled, Optimization of Support vector machines for

balancing the trade-off between generalization performance and computational com-

plexity, submitted by Ms. Lavanya Madhuri Bollipo [Roll No. 701433] is approved

for the degree of DOCTOR OF PHILOSOPHY at National Institute of Technology

Warangal.

Examiners

Research Supervisor Chairman
Dr. Kadambari K. V. Prof. P. Radha Krishna
Dept. of Computer Science and Engg. Dept. of Computer Science and Engg.
NIT Warangal NIT Warangal
India India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL

TELANGANA - 506004, INDIA

CERTIFICATE

This is to certify that the thesis entitled, Optimization of Support Vector Machines

for balancing the trade-off between generalization performance and computational

complexity, submitted in partial fulfillment of requirement for the award of degree

of DOCTOR OF PHILOSOPHY to National Institute of Technology Warangal, is a

bonafide research work done by Ms. Lavanya Madhuri Bollipo [Roll No. 701433]

under my supervision. The contents of the thesis have not been submitted elsewhere

for the award of any degree.

Research Supervisor
Dr. Kadambari K. V.
Dept. of Computer Science and Engg.
NIT Warangal
India

Place: Warangal

Date: 03-08-2021

DECLARATION

This is to certify that the work presented in the thesis entitled “Optimization of

Support Vector Machines for balancing the trade-off between generalization per-

formance and computational complexity” is a bonafide work done by me under the

supervision of Dr. Kadambari. K V. The work was not submitted elsewhere for the

award of any degree.

I declare that this written submission represents my ideas in my own words

and where others ideas or words have been included, I have adequately cited and

referenced the original sources. I also declare that I have adhered to all principles of

academic honesty and integrity and have not misrepresented or fabricated or falsified

any idea/date/fact/source in my submission. I understand that any violation of the

above will be cause for disciplinary action by the institute and can also evoke penal

action from the sources which have thus not been properly cited or from whom proper

permission has not been taken when needed.

Lavanya Madhuri Bollipo

(Roll No. 701433)

Date: 03-08-2021

ACKNOWLEDGMENTS

First and foremost, praises and thanks to the GOD, the Almighty, for HIS showers of

blessings throughout my research work to complete it successfully.

It is an immense pleasure to express my sincere thanks and deep sense of gratitude

to my supervisor Dr. Kadambari K V, Assistant Professor, Department of Computer Sci-

ence and Engineering, National Institute of Technology (NIT) - Warangal for giving me

the opportunity to do research under her and providing valuable guidance throughout this

research. Her dynamism, vision, sincerity, love and motivation have deeply inspired me

to work hard to carry out this research successfully. It is a great privilege and honor to

me to have her as my research supervisor. I extend my gratitude to the Doctoral Scrutiny

Committee (DSC) members comprising of Prof. P. Radha Krishna, Prof. S. G. Sanjeevi,

Prof. D. Srinivasacharya and Dr. Ch. Sudhakar for their insightful comments and sugges-

tions during oral presentations. I am extending my sincere gratitude to (late)Dr. Jagannath

Sardar, Scientist-C (R&S), TTL, Varanasi,CSTRI, Central Silk Board, Govt. of India, IIHT

Campus, Chowkaghat, Varanasi-221002 for his valuable suggestions which helped in pa-

per publications. I am also thankful to the office and technical staff for helping me out

throughout my PhD in providing valuable support and technical help.

I am extremely grateful to my parents Mr. B. Nageswara Rao and Mrs. Santhosham for

their love, prayers, caring and sacrifices throughout my life. I am very much thankful to

my husband, Mr. K. Sandeep for his sacrifice and constant encouragement throughout this

research. May GOD bless my chidlren Anshi and Teddy for being so understanding while

I was doing my PhD work. Also, I express my thanks to my sisters Ms. Jyothi and Ms.

Bindu for their support and prayers.

Lavanya Madhuri Bollipo

i

Dedicated to
My Family

ABSTRACT

The ever growing volumes of data, availability, and its complexity demands for devel-

opment and adoption of better data analytic technologies to uncover hidden patterns and

correlations in it. The better way to handle this process is through machine learning (ML).

ML is a collection of data analysis techniques based on artificial intelligence (AI) that al-

lows to design more accurate algorithms in predicting new data trends from historical data.

The most widely used ML paradigms are supervised and unsupervised learning strategies.

Among the various existing ML algorithms, Support vector machine (SVM) for prediction

problems gained profound interest due to its special abilities. SVM always tries to achieve

unique global minima and also scales linearly to high dimensional data. There is even

less risk of overfitting and has good generalization performance in practice. Yet, the scal-

ability and performance of nonlinear SVM classifiers on continuous heterogeneous data is

challenging. Nonlinear SVM mitigates with issues like data piling, outliers, overfitting and

imbalanced data. Besides this, computational complexity of nonlinear SVM can reach upto

O(n3) when the number of iterations scales up with the number of training samples.

To reduce the computational overheads, batch learning of SVM can be replaced with

incremental learning that can lead to cheaper iteration cost. However, the drawback of

incremental learning is its slow convergence rate and long training time. To enhance the

generalization performance, several iterative optimization techniques are proposed. The

optimization techniques chosen can improve the generalization ability and also reduce the

computational complexity.

The thesis proposes to optimize some of the variants of SVM to balance the trade-

off between generalization performance and computational complexity when applied to

incremental data used in classification and regression applications. The first work of the

thesis focuses on optimizing SVM using modified Frank-Wolfe algorithm (SVM-MFW).

The proposed model is applied on classification and prediction of Parkinson’s disease in

its early stages. SVM-MFW makes use of an away-step technique which in a way only

increases the weights of the vectors corresponding to the optimal solution and also discards

iii

the spurious points. The proposed method converges to the optimal solution in less number

of iterations thereby producing sparser representation of support vectors. Consequently,

SVM-MFW algorithm learns incrementally by providing computationally simpler updates

to train, and accelerates the convergence rate as well. The accuracy achieved by the algo-

rithm is 98.3%, and prediction accuracy is evaluated using cross-entropy, which is 0.134

and CPU time: 2.32 sec.

In the second work, ε-Support vector regression algorithm is optimized with Large mar-

gin distribution (LDM) technique to enhance the performance of the ε-SVR (ε-MDSVR).

To evaluate the model, experiments are performed on four benchmark datasets taken from

UCI repository. The proposed model reduces the scattering of data in ε-tube by utilizing

the whole training dataset to avoid over-fitting. The proposed method achieves a better gen-

eralization performance by optimizing the margin distribution which is done by employing

modified Dual coordinate descent method (DCD). The modified DCD selects one variable

in the solution space to update at each iteration which possibly generates the maximum

optimization in the objective function. The learning speed and generalization performance

can be improved by integrating LDM and DCD techniques. Experimental results are val-

idated on popular matrices of Mean square error (MSE) and Correlation coefficient (R2).

It is observed that the proposed algorithm significantly achieves good predictive accuracy

with low error rate and high correlations when compared to the classical SVR and other

regression techniques.

The third work optimizes ϑ - Support vector regression using bounded functions on

noisy datasets (ϑ-PSVR). The proposed work brings a balance between the number of sup-

port vectors and errors which is trained over Parkinson’s dataset obtained from PPMI. The

algorithm addresses the key issues of data piling and overfitting effect on noisy data which

effects the generalization performance and computational complexity in case of classical

ϑ-SVR. The proposed method takes all data into consideration having direct impact on

weight vector w and uses two bounded functions on the data which is perturbed by noise.

The weight vector w is used to find the position of training points to the fitting curve with

iv

respect to its functional margin. This algorithm tries to generate a more smoother regres-

sion curve and achieves better prediction accuracy with MSE=0.131 and R2=0.758 in less

computation time of 2.26 sec compared to classical ϑ-SVR.

The fourth work details the acceleration of incremental learning and decremental un-

learning of support vector machines used on imbalanced datasets. The proposed model

combines weak SVM classifiers with asymmetric misclassification cost to modify the train-

ing datasets. This modified dataset is used to boost the prediction accuracy of weak SVMs

at each iteration during learning. Later, the outcomes of these boosted SVMs are integrated

by a weighted majority vote to generate final class label. The proposed algorithm increases

the learning rate and raises the predictive accuracy of incremental and decremental SVM.

Keywords: Support vector machines, Incremental Learning, Computational Complexity,

Frank-Wolfe algorithm, Noisy data, Large margin distribution, Coordinate descent, Boost-

ing.

v

Contents

ACKNOWLEDGMENTS i

ABSTRACT iii

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Machine Learning . 1

1.2 A breif about SVM . 3

1.2.1 Soft-margin SVM . 6

1.2.2 SVM for Regression . 9

1.2.3 SVM kernels . 11

1.3 Incremental/Decremental SVM . 13

1.4 Frank-Wolfe Algorithm . 15

1.5 Large Margin Distribution (LDM) . 16

1.6 Distance Weighted Discrimination (DWD) 18

1.7 Research direction . 21

1.7.1 Problem statement . 21

1.7.2 Aim . 23

1.7.3 Problem formulation . 24

1.8 Proposed Objectives . 25

1.9 Thesis Organization . 25

1.10 Summary . 28

vi

2 Literature Survey 29

2.1 SVM: Learning theory . 29

2.2 Incremental learning of SVM . 30

2.3 Active sets in SVM Learning . 31

2.4 Frank-Wolfe optimization technique 33

2.5 Distance weighted SVM . 34

2.6 Large Margin Distribution . 35

2.7 Summary . 36

3 Incremental support vector machines optimized with modified Frank-Wolfe

algorithm (SVM-MFW) 37

3.1 Introduction . 38

3.2 Preliminaries . 39

3.2.1 Classical SVM . 40

3.2.2 Frank-Wolfe Algorithm . 41

3.3 Proposed SVM-MFW . 44

3.3.1 Modified SVM for class imbalance data 44

3.3.2 Incremental SVM . 45

3.3.2.1 Find suitable ∆αc 47

3.3.2.2 R matrix updation 48

3.3.3 Modified Frank-Wolfe algorithm 49

3.4 Data used for experiments . 52

3.5 Experiments and Results . 52

3.6 Summary . 59

4 ε-Support vector regression optimized with Large Margin Distribution us-

ing modified dual coordinate descent strategy ε-MDSVR) 61

4.1 Introduction . 62

4.2 Preliminaries . 64

4.2.1 Large margin distribution SVM 64

4.2.2 Dual coordinate descent technique 65

vii

4.3 Proposed ε-MDSVR . 66

4.3.1 Large margin distribution SVR 67

4.3.2 Modified DCD . 70

4.4 Experiments and Results . 71

4.4.1 Experimental setup . 72

4.4.2 Performance evaluation . 72

4.5 Summary . 76

5 Incremental ϑ-Support vector regression optimized with bounded estima-

tion functions to handle noisy datasets 78

5.1 Introduction . 79

5.2 Preliminaries . 80

5.2.1 ϑ-SVR formulations . 80

5.2.2 DWD learning . 81

5.3 Proposed ϑ-PSVR . 83

5.3.1 ϑ-SVR on perturbed data . 83

5.3.2 Incremental learning . 84

5.3.3 Optimization of ϑ-PSVR . 86

5.4 Experimental Results . 90

5.5 Summary . 96

6 Acceleration of incremental learning and decremental unlearning of Sup-

port vector machines 97

6.1 Introduction . 98

6.2 Preliminaries . 100

6.2.1 Incremental/decremental learning of SVM 101

6.3 Proposed Model . 102

6.3.1 Incremental/decremental SVM 102

6.3.2 SVM for class imbalanced data 103

6.3.3 Boosting SVM . 103

6.4 Experiments and Results . 104

viii

6.5 Summary . 107

7 Conclusion and Future Scope 109

7.1 Conclusions . 109

7.2 Future Scope . 111

Author’s Publications 112

Bibliography 113

ix

List of Figures

1.1 Machine Learning Phases . 2

1.2 SVM Optimal Margin . 4

1.3 Soft margin SVM . 6

1.4 Effect of C on soft margin SVM . 8

1.5 Kernel trick in SVM . 12

1.6 Conceptional model of Incremental SVM 14

1.7 Minimum Enclosing Ball (MEB) . 16

1.8 Margin Distribution theory in SVM . 17

1.9 Distribution of data vectors on Unit simplex 19

1.10 Data piling in SVM . 20

1.11 Over-fitting issue in DWD . 20

3.1 Unit simplex ∆ vectors . 42

3.2 Frank-Wolfe approximations in K-dimensional space of ∆ 43

3.3 Contour plots showing the class separation of data using proposed SVM-

MFW model in Figure(a) and classical SVM in Figure(b) along with pre-

dicted regions using Linear kernel. SV=support vectors and EV=error vectors. 54

3.4 Contour plots showing the class separation of data using proposed SVM-

MFW model in Figure(a) and classical SVM in Figure(b) along with pre-

dicted regions using polynomial kernel with degree 4. SV=support vectors

and EV=error vectors. 54

3.5 Contour plots showing the class separation of data using proposed SVM-

MFW model in Figure(a) and classical SVM in Figure(b) along with pre-

dicted regions using RBF kernel. SV=support vectors and EV=error vectors. 55

x

3.6 Contour plots showing the class separation of data using proposed SVM-

MFW model in Figure(a) and classical SVM in Figure(b) along with pre-

dicted regions using sigmoid kernel. SV=support vectors and EV=error

vectors. 55

3.7 Contour plots showing the class separation of data using proposed SVM-

MFW model in Figure(a) and classical SVM in Figure(b) along with pre-

dicted regions using logistic kernel. SV=support vectors and EV=error vec-

tors. 56

3.8 The binary cross-entropy of SVM-MFW and SVM algorithms with dif-

ferent kernels were compared. The line plot comparison is shown in Fig-

ure(a,b,c,d,e). 57

3.9 CPU time comparison of SVM-MFW and classical SVM with various ker-

nels used in the model building . 58

4.1 Line plots showing the MSE versus Number of iterations of four datasets

evaluated using proposed ϵ-MDLSVR compared with ϵ-SVR using Linear

and RBF kernels and also with Linear Regression and Logistic Regression.

Figure 2(a): Auto MPG, Figure 2(b): Forest Fires, Figure 2(c): Energy

effciency, Figure 2(d): Concrete compressive strength. 74

4.2 Line plots showing the R2 versus Number of iterations of four datasets

evaluated using proposed ϵ-MDLSVR compared with ϵ-SVR using Linear

and RBF kernels and also with Linear Regression and Logistic Regression.

Figure 4.2(a): Auto MPG, Figure 4.2(b): Forest Fires, Figure 4.2(c): En-

ergy effciency, Figure 4.2(d): Concrete compressive strength. 75

4.3 CPU time comparison between ε-MDSVR with ϵ-SVR and other Regres-

sion techniques with Linear and RBF kernels used in the model 76

5.1 Contour plots showing the class separation of data using classical ϑ-SVR

model with Linear Kernel in Figure 5.1(a) and RBF kernel in Figure 5.1(c),

and proposed ϑ-PSVR with Linear Kernel in Figure 5.1(b) and RBF Kernel

in Figure 5.1(d). SV=support vectors and EV=error vectors. 91

xi

5.2 Contour plots showing the class separation of data using classical ϑ-SVR

model with sigmoid Kernel in Figure 5.2(a) and polynomial4 in Figure 5.2(c),

and proposed ϑ-PSVR with sigmoid Kernel in Figure 5.2(b) and polynomial4

in Figure 5.2(d). SV=support vectors and EV=error vectors. 92

5.3 Contour plots showing the class separation of data using classical ϑ-SVR

model in Figure 5.3(a) and proposed ϑ-PSVR in Figure 5.3(b) with logistic

Kernel. SV=support vectors and EV=error vectors. 93

5.4 Line plots showing the MSE versus Number of iterations of PD dataset

evaluated using proposed ϑ-PSVR in Figure 5.4(a) compared with ϑ-SVR

in Figure 5.4(b) using Linear, RBF, Ploynomial of order four, Logistic and

sigmoid Kernels. 94

5.5 Line plots showing the R2 versus Number of iterations of PD datasetset

evaluated using proposed ϑ-PSVR in Figure 5.5(a) compared with ϑ-SVR

in Figure 5.5(b) using Linear, RBF, Ploynomial of order four, Logistic and

sigmoid Kernels. 94

6.1 Index sets formed by KKT conditions . 101

6.2 SVM with asymmetric misclassification cost 104

6.3 Incremental Learning/Decremental unlearning of classical SVM with Lin-

ear kernel . 105

6.4 Incremental Learning/Decremental unlearning of classical SVM with RBF

kernel . 106

6.5 Incremental Learning/Decremental unlearning of proposed SVM with Lin-

ear kernel . 107

6.6 Incremental Learning/Decremental unlearning of proposed SVM with RBF

kernel . 108

xii

List of Tables

3.1 Demographic data of study participants . 52

3.2 Mean and standard deviation of discriminative features of Age, MDS-UPDRS,

MoCA, TD score, PIGD score, SBR values for left caudate(LtCd.SBR) and

right caudate(RtCd.SBR), SBR values for left putamen(LtPt.SBR) and right

putamen(RtPt.SBR). 52

3.3 Confusion matrix values and performance measures for the SVM-MFW

and classical SVM with different kernels 56

3.4 Results of classification accuracy and CPU time for the SVM-MFW and

existing classical ML techniques . 58

3.5 Confusion matrix of SVM-MFW with RBF kernel 59

4.1 Benchmark datasets used in the present study 72

4.2 Validation of proposed ε-MDSVR using MSE values and compared with

existing techniques such as ϵ-SVR, Linear and logistic regression. 76

4.3 Validation of proposed ε-MDSVR over linear and RBF kernel using R2

values and compared with existing techniques such as ϵ-SVR, Linear and

logistic regression. 77

4.4 Validation of proposed ε-MDSVR over linear and RBF kernel using com-

putation time in seconds and compared with existing techniques such as

ϵ-SVR, Linear and logistic regression. 77

5.1 Confusion matrix values and performance measures for the ϑ-PSVR and

classical ϑ-SVR with different kernels . 95

5.2 Confusion matrix of ϑ-PSVR with RBF kernel 95

xiii

xiv

Chapter 1

Introduction

This Chapter introduces the popular support vector machines among data analysis tech-

niques and discusses some of SVM variants. The chapter also provides motivations behind

the work documented in the thesis. The aims and contributions of the thesis are outlined,

and also, the contents of each chapter are briefly described.

1.1 Machine Learning

The availability of large volumes of heterogeneous data, cheaper and powerful computa-

tional processing, and affordable data storage nowadays demands to develop automatic data

analysis models that can handle complex data and produce accurate results quickly [1]. Ma-

chine learning (ML) is a collection data analysis tools based on Artificial Intelligence (AI).

ML is developed to make computers automatically learn from data to generate its structure

and relationships among it even if the information of data trends are not available [2, 3].

Working of ML algorithms involves training over a input data to create a model, test it

with a new sample to make a prediction, and evaluate its performance. If the performance

is not anticipated, the model trains continuously until the expected outcome is obtained.

This process makes the ML algorithm to train automatically until an optimal prediction is

generated that will fairly improve accuracy of the model overtime. ML algorithms often

use an iterative approach to implement its training process where passes are run through

the data until a vigorous pattern is found. The test for a ML model is a validation error on

1

CHAPTER 1. INTRODUCTION

new data from historical data [4]. After a training phase, ML can derive associative mean-

ing to the data, and therefore distinguish samples from another as shown in Figure 1.1.

Therefore, ML techniques provides smart alternatives to analyze vast data and gives the

system the ability to learn from data without being explicitly programmed. By developing

fast and efficient algorithms and data-driven models for real-time data processing, it can

produce accurate results and analysis at faster rates [5]. ML utilizes a variety of techniques

to handle such complex data to make predictions better [3, 6]. Nowadays, machine learning

powers many applications in every side of our lives [7].

Figure 1.1: Machine Learning Phases

The most extensively popular machine learning methods is supervised and unsuper-

vised learning [8]. Supervised learning models are mostly used in practice [9]. Supervised

learning attempts to train from given historical data and its relationship among themselves.

unsupervised learning attempts to produce the patterns from the given data without know-

ing its structure. Mathematically, in supervised learning, input and output/target variables

(x, y) are given and algorithm has to derive the mapping function y = f(x) from the input

to the output. Supervised learning can be further divided into classification and regression

problems [10, 11]. Classification treats the output variable as a category label, where as

regression treats the output variable as a real value. In this study, we limit our focus to the

popular supervised machine learning algorithm called as Support vector machines (SVM)

[12]. SVM always tries to achieve unique global minima and also scales linearly to high

dimensional data. There is even less risk of over-fitting and has good generalization per-

formance in practice. Over the past several years, SVM is used extensively for the analysis

of classification and prediction problems of many practical applications [13, 14].

2

CHAPTER 1. INTRODUCTION

1.2 A breif about SVM

The SVM was developed by V. Vapnik in the 90’s [12]. It is an optimization algorithm

based on the separating hyperplane. SVM is originally designed for classification of data.

This classification process consists of two phases: Learning: Training SVM algorithm with

data samples at its disposition. Classification: New data samples for which the result is

not known is used to test the algorithm’s performance. SVM analyzes the data to produce

results which are more correlated to those trained data samples used in the learning phase.

Each data sample is represented as a pair of (input, output), where input is the given dataset

and output is generally denoted as a class label which tells the trends and relationship of

data. If the data has high dimensionality, the different classes, which constitute different

clusters, are linearly separable by the hyperplanes. The kernel trick permits to deal with

linearly inseparable surfaces. Kernel trick transposes non-linear data into higher dimen-

sional space (called the feature space) to find the linearly separating hyperplane. In simple

words, SVM is an algorithm that takes the data and its labels as an input and outputs a

line that can separate data based on corresponding labels. SVM’s key idea is to produce a

best decision surface that can distinguish data as far as possible. The Figure 1.2 shows the

datasets with two class labels Red and Blue, SVM finds the data samples which are nearer

to the separating line from both the classes (also called support vectors). SVM measures

the distance between the separating line and the support vectors. This distance is known as

the margin. SVM’s goal is to maximize the minimum margin of data vectors and produces

a optimal hyperplane with highest margin between these data points. If the data is linearly

separable, a linear SVM is implemented, if data is not linearly separable then Non-Linear

SVM is used.

Let T be the training data with n sample points. Each data point is denoted by {(xi, yi)},

i = 1 to n, where xi ∈ Rm is the input vector of n × m dimensions and yi ∈ R is

the corresponding output vector of n × 1 dimensions. SVM generates a decision surface

which distinguishes the input space with respect to its target values. Assume that training

samples are (xi, yi) where xi ∈ Rm and for each sample, a label yi ∈ (+1,−1) represents

3

CHAPTER 1. INTRODUCTION

Figure 1.2: SVM Optimal Margin

to which of the two classes the sample belongs. Consider the Figure 1.2, where SVM tries

to separate two classes of data i.e., Red and Blue. Learning SVM can be formulated as

an optimization, which tries to obtain maximum separation among the classes of data. The

distance between the upper margin (Red line) to lower margin (Blue line) is the length of the

ε-tube. The black line is the optimal hyperplane which distinguishes two data classes. SVM

is an optimization problem which outputs optimal hyperplane equation. The line equations

of both upper and lower margin can be stated as: wi.xi + b = −1, wi.xi + b = +1.

wi is a weight vector, 2
∥w∥ is the separation among two classes, called as the width of the

and decision curve and SVM seeks to increase this witdh, which is same as minimising its

norm:

max
w

2
∥w∥ subject to wxi + b ≥ +1 if yi = +1;∀i = 1 . . . n.

wxi + b ≤ −1 if yi = −1;∀i = 1 . . . n.

These two constraints can be represented in one inequality: yi
(
wTxi + b

)
≥ 1

SVM seeks to maximize this objective function, which is equivalent to minimising its norm:

min
w

∥w∥2 s.t. yi (wxi + b) ≥ 1 ∀i = 1 . . . n. (1.1)

4

CHAPTER 1. INTRODUCTION

The Equation (1.1) is a primal form of quadratic optimization problem subject to linear

parameters and there is a unique global optimum value. The classification function is:

ynew = sign(wxnew + b) (1.2)

In primal form, there will be high computation burden due to high-dimensionality and

many parameters are to be solved. These constraints can be easily solved in dual form of

SVM. Dual formulations assigns parameters to samples only, but not to features. Apply

Lagrangian function to SVM according to [15],we get:

L(w, α) =
1

2
∥w∥2−

n∑
i=1

αi [(w · xi + b) yi − 1] s.t. αi ≥ 0,∀i (1.3)

To find the w and b values, take the derivative of each constraint.
∂L
∂w

= w −
n∑
i

αiyixi

w =
n∑
i

αiyixj; αi ≥ 0.

∂L
∂b

= −
n∑
i

αiyi

n∑
i

αiyi = 0

Substituting these values back in Equation (1.1) (and simplifying), we obtain:

max
α

∑
i

αi −
1

2

∑
i,j

αiαjyiyjxi.xj (1.4)

where,
∑
i

αiyi = 0 αi ≥ 0

The classification equation is:

ynew = sign

(∑
i

αiyixixnew + b

)
(1.5)

5

CHAPTER 1. INTRODUCTION

1.2.1 Soft-margin SVM

The soft-margin SVM allows some misclassification of data points deviated from decision

curve to certain region. This region is called ε-insensitivity zone and the allowed deviation

is called ε-insensitivity tube. Soft-margin SVM introduces a error cost parameter ξi in the

objective function f(x) to measure the classification error for the data points that lie within

the ε-insensitivity tube. Therefore, instances that lie within certain margin (denoted by ε)

around the curve do not incur any cost. Intuitively, this means that some errors are also

allowed as long as they are within an ε-deviation of f (x) and is known as ε-insensitive

loss function. SVM tries to find a function f (x) to fit all training samples such that its

divergence is not exceeding ε. The use of kernel mapping on input space allows f(x) to

dependent on number of support vectors instead of its dimensions.

Figure 1.3: Soft margin SVM

Consider the Figure 1.3, to get soft margin, use the slack variable, (ξ) to approximate

the number of misclassified points.

1. For 0 < ξ ≤ 1 point lies within ε-tube leads to margin violation.

2. For ξ > 1 point is misclassified.

6

CHAPTER 1. INTRODUCTION

3. For ξ = 0 point is support vector

ξ is the limit of misclassification permitted in SVM. Thus, the objective function of SVM

can be further optimized by granting only ξi possible errors. Now, soft-margin SVM will

be a bounded optimization objective over w and ξ and is given in eq. (1.6) as:

f(x) = w · xi + b (1.6)

the constraint yi (w · xi + b) ≥ 1 − ξ − i can be written more concisely as yif(xi) ≥

1− ξ − i, together with ξi ≥ 0, is equivalent to Equation (1.7):

ξi = max (0, 1− yif (xi)) (1.7)

The optimization function can be given in Equation (1.8) as:

min
w

||w∥2︸ ︷︷ ︸
regularization

+C
n∑

i=1

max(0, 1− yif(xi))︸ ︷︷ ︸
loss function

(1.8)

Based on Equation (1.8), data points can be distinguished as:

1. If yif(xi) > 1, point is on the correct side of the margin and no penalty for error.

2. If yif(xi) = 1, point is on the decision boundary.

3. If yif(xi) < 1, point is exceeding the margin criterion and incurs penalty for errors.

The hole data can be fitted in decision surface if ξi is chosen to be maximum. However

maximum value of ξi leads to pay high cost for errors. Here C is the regularization term

which balances among error and margin. The hyper parameters of ξ and C sets the limit

on maximal tolerance of error in SVM. Thus, the performance of SVM can be defined by

finding the optimal value for these parameters.

1. low value of C enables variables to be easily ignored, leading to large margin.

2. high value of C makes variables hard to ignore, leading to narrow margin.

3. C =∞ enforces all variables leading to hard margin.

How do different values of C will effect the SVM classification margin, is shown Fig-

ure 1.4. If the value of C is too high, there will be high error cost for misclassified points

7

CHAPTER 1. INTRODUCTION

Figure 1.4: Effect of C on soft margin SVM

and required to store more number of support vectors, which may lead to over-fitting. If it

is too low leads to model under-fit. Then, the objective function f (x) represented in given

Equation (1.9):

min
w

1

2
wT ·w + C

n∑
i=1

ξi s.t. yi
(
wT · xi + b

)
≥ 1− ξ, ξi ≥ 0, i = 1 . . . n. (1.9)

Equation (1.9) is the primal form of soft-margin SVM, the constraints can be easily solved

in Dual form of SVM. According to [15], apply Lagrangian function to SVM.

L(w, ξ, b, α) = 1

2
wTw + C

n∑
i=1

ξi +
n∑

i=1

αi [1− ξi − yi (wxi + b)] +
n∑

i=1

αj (−ξi) (1.10)

8

CHAPTER 1. INTRODUCTION

Substituting the derivatives in Equation (1.10), we get:

=1
2

∑
i

∑
j αiαjyiyj(xi · xj) + C

∑
i ξi

+
∑

i αi −
∑

i αiξi −
∑

i

∑
j αiαjyiyj(xi · xj)− b

∑
i αiyi -C

∑
i ξi +

∑
i αiξi

=
∑

i αi − 1
2

∑
i

∑
j αiαjyiyj(xi · xj)

The dual form of soft-margin SVM is:

max
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj(xi · xj) s.t. 0 ≤ αi ≤ C,

n∑
i=1

αiyi = 0 (1.11)

After applying Lagrangian multipliers, the final objective function f (x) will be the decision

function for classification as given in Equation (1.12):

sgnf (x) = sgn

(
n∑

i=1

αiyiK (xi, x) + b

)
(1.12)

Training points which are having αi values greater than equal to zero are said to be support

vectors.

1.2.2 SVM for Regression

SVM is used for both classification as well as regression problems with minor differences

in their formulations. Nevertheless, the difference lies in the cost function modelling. The

ε-insensitive loss function extended the use of SVM in regression estimation tasks and the

technique is known as support vector regression (SVR) [16, 17]. Bothe SVM and SVR

utilizes the same theory of optimization but with minor variations in their formulations. In

SVR, the dependent variable is having continuous values that allows to produce a curve

that can tolerate some error to fit the training data. SVR key idea is to find a curve that

minimizes the deviation of the points to the separating hyper-plane. The variants of SVR

differ in the way the objective function is formulated and their hyper-parameters are chosen.

The regression curve can be constructed based on the number of support vectors produced

with respect to the value of ε. High values of ε leads to the selection of few support

vectors which indirectly affects the prediction approximation. ε-SVR is the default SVR

technique and the other one is ϑ-SVR [15, 18–20]. In ϑ-SVR, a parameter ϑ is added to

9

CHAPTER 1. INTRODUCTION

the original ε-SVR. Unlike in ε-SVR, rather than controlling the maximum allowable ε-

deviation, ϑ controls the number of classification errors and the number of support vectors

by producing an automatic estimate of ε in the data. ϑ ∈ (0, 1], ϑ gives maximum limit

on number of classification errors and minimum limit on number of support vectors. ϑ-

SVR improves upon ε-SVR by tuning the width of ε-tube automatically to the data and

by obtaining bounds on the generalization error [21]. Hence, both C and ε-values will

contribute the model complexity. The objective function for SVR is in Equation (1.13):

f (x) = w · ϕ (x) + b (1.13)

The quadratic optimization problem of SVR is given in Equation (1.14):

min
w

1

2
wTw s.t.

 yi − (w · ϕ(xi) + b) ≤ ε

(w · ϕ(xi) + b)− yi ≤ ε
(1.14)

w is the weight vector and ϕ(xi) is the dot product of kernel matrix, K (xi, xj) = ϕ (xi) ·

ϕ (xj). f (x) is an optimization problem that uses one slack variable ξi in classification

to approximate the number of misclassified samples and a pair of slack variables ξi and

ξ∗i in regression to approximate the variation among the estimated output and actual out-

put. The optimization function f(x) is solvable by assuming that each data sample (xi, yi)

of training data T is fitted in the input feature space with an ε-accuracy. Therefore, the

objective function f (x) is expressed as a minimization function over w and is given in

Equation (1.15):

min
w,ξ,ξ∗

1

2
wTw + C

n∑
i=1

(ξi + ξ∗i) (1.15)

s.t. yi − (w · ϕ (xi) + b) ≤ ε+ ξi,

(w · ϕ (xi) + b)− yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, 2, · · · , n.

Here C is the regularization parameter which balances the classification error and width

10

CHAPTER 1. INTRODUCTION

of the ε-tube. The objective function incurs a cost to the sample whose estimated value is

significantly deviated from f(x) by a maximum of ε. The final objective function f (x)

will be the following decision function for regression as in Equation (1.16).

f (x) =
n∑

i=1

(αi − α∗
i)K (xi, x) + b (1.16)

αi and α∗
i are lagrange variables and the training points which are having αi values grater

than equal to zero are called the support vectors.

1.2.3 SVM kernels

A kernel is a special kind of similarity function expressed in terms of a dot product. It

takes two points as input, and returns their similarity as output. Kernel functions play an

important role in SVM and is used to analyze some non-linear patterns in the given dataset

by using a linear classifier. SVM algorithm uses kernel-trick for projecting non-linear data

and transforming it to linearly separable to create an optimal decision boundary. Kernel

SVM handles high dimensional data in a very efficient manner. Thus, SVM extends the

class of decision functions to the non-linear case by using kernel trick. With the help of

mapping function ϕ, the data X from the input space is transformed to high dimensional

feature space, say χ and solves the linear learning problem in χ. Mapping function ϕ :

X → χ; ϕ(xi)
T ·ϕ(xj). While working in higher dimensions is beneficial, it also increases

the running time of SVM because of the dot product computation. The mapping function

ϕ is induced by a kernel K which calculates the inner product between two points in the

feature space, K (xi, xj) = ϕ (xi) · ϕ (xj) can reduce the running time. kernel function

can be interpreted as a measure of resemblence among data samples (xi, xj). Popular

SVM Kernel functions are Linear, Polynomial, Sigmoid, Radial Basis function (RBF) and

Logistic Kernels. How input data is projected into higher dimensions using Kernel trick in

SVM is shown in Figure 1.5.

SVM using linear kernel is the basic and faster learning model used when data is lin-

early separable. Linear Kernel : K(xi, xj) = (xi · xj), where xi and xj are the data

11

CHAPTER 1. INTRODUCTION

Figure 1.5: Kernel trick in SVM

points to classify. Polynomial Kernel defines the coincidence of original vectors in a input

space to the polynomials of vectors used in kernel space. Polynomial Kernel: K(xi, xj) =

((xi · xj) + 1)d, here d is the degree of polynomial. Sigmoid Kernel takes the form of

K(xi, xj) = tanh(α(xi · xj) + c). There are two adjustable parameters in this kernel, the

slope value α and the biased constant c, for some k > 0 and c < 0. A common value

for alpha is 1
m

, where m is the data dimension. RBF kernel is used when there is no prior

knowledge on data and the similarity of two samples is judged by their euclidean distance.

RBF Kernel: K(xi, xj) = exp(−∥xi−xj∥2
2σ2). Where ∥xi − xj∥2 is the squared Euclidean

distance between two feature vectors (xi, xj). σ is a scalar quantity that tells the influence

of a data sample in the kernel space. High values of σ typically produce highly flexible

decision boundaries, and low values of σ results more linear decision boundary. Logis-

tic kernel is modelled as: p(y = 1 | x) = 1

1+exp(−w⊤ϕ(x))
now, the SVM form of w is:

p(y = 1 | x) = 1
1+exp((−

∑n
i=1 αiyiK(xi,xj)

. p is the posterior probability returned by model.

This gives SVM with kernelized logistic model.

A linear SVM works well when data can be linearly separable and considered to be

efficient technique in terms of generalization ability and computation time. SVM works

fine for low sample and high dimensional data as it uses a portion of training data in the

objective optimization (called support vectors), and training time count on number of sam-

ples in training data.

12

CHAPTER 1. INTRODUCTION

However, non-linear SVM classifier is not suitable for time- series datasets as the the

number of iterations scales up with the number of training samples that causes slow conver-

gence rate and longer training time (i.e expensive computational complexity). SVM does

not perform very well when the datasets has more noise i.e., target classes are overlapping,

having uncertain data or outliers. The case where the number of attributes are excessive

for each data samples than the number of training samples, data piling arises and SVM

will give poor generalization. SVM does not directly provide probability estimates, i.e.,

probabilistic explanation for the classification of data points is missing.

1.3 Incremental/Decremental SVM

Most of the ML algorithms including SVM, implement batch learning procedures. Batch

learning algorithms trains input data which is priory available, and can not handle the sheer

volume of continuous data in given time stamp. Batch learning models do not continu-

ously integrate new data into already constructed models. Instead, regularly reconstruct

new models from scratch by keeping the system weights constant while computing the er-

ror associated with each input sample. This process takes long training time and also leads

to potentially intensive computational models. The conventional SVM algorithm does not

scale well enough in accordance with time series datasets as the learning system update

time will multiply non-linearly along with the length of dataset [22, 23]. Thus, a learning

paradigm is required that can effectively process sequential data in a streaming fashion.

The search for SVM involves selecting kernel k and penalty parameter c repeatedly to

solve optimization objective. Generally, the search involves tuning of hyper parameters

(c, σ) that maximizes its classification ability. The solution of SVM classifier is produced

by optimizing the quadratic programming problem (QPP) at each training step. This QPP

is an optimization function comprised of number of approximations with respect to the

size of training data. SVM performance is tend to deteriorate while processing continuous

time-series data as the updations are costly in the context of space and time. The memory

13

CHAPTER 1. INTRODUCTION

requirements and training time makes SVM infeasible and computationally prohibited as

the computational complexity can reach upto O(n3). Thus the application of kernel SVM

to continuous time-series data is challenging. Hence, batch learning can be replaced with

incremental learning and can make each iteration very cheap.

Incremental and decremental training of SVM continues with the migration of vectors

in and out of the support set along side modifying the associated thresholds. In general, in-

cremental learning of SVM searches for a solution of the (n+1) new training data from an

approximate solution of n previous training data and new sample c. To minimize the com-

putational overheads, when new sample point c is available, SVM integrates this new sam-

ple into the objective function and modifies the regularization term C and σ accordingly.

This incremental approach can also be adjustable for decremental strategy. The decremen-

tal unlearning approach uses a leave-one-out (LOO) procedure to estimate the accuracy for

each unlearned data sample in the training set. The analysis with the same procedures and

with very slight variations, can be used for both the incremental and decremental learning

as shown in Figure 1.6. Incremental training of SVM learns new data sample (xc, yc) one

at time by adiabatically adding to the solution and checking whether KKT conditions are

satisfied on all previously learned data. It implements leave-one-out procedure to construct

the solution recursively while neglecting the already learnt data leaving the support vectors

behind.

Figure 1.6: Conceptional model of Incremental SVM

However, the performance of incremental/decremental training of SVM can deteriorate

by computational overheads and inaccurate results, mainly for a non-linear SVM classifiers

14

CHAPTER 1. INTRODUCTION

with continuous arrival of data samples. The drawback of incremental learning is its slow

convergence rate. The convergence rate of SVM can be accelerated by iterative procedures

such as Frank-Wolfe (FW) method [24–26].

1.4 Frank-Wolfe Algorithm

SVM solution is generally formulated as a complex quadratic optimization problem (QP)

which takes the order of O(n2) memory complexity and O(n3) time complexity for naive

implementation on the training size of n [12, 15, 18]. Further research studies on SVM

mainly focused towards the enhancement of SVM for continuous time-series data [27, 28].

Efficient methods are devised gradually to improve the rate of convergence of SVM algo-

rithm. One such method is learning classifier by adopting the concept of transforming data

to the solution of processing a minimal enclosing ball (MEB) as shown in Figure 1.7. MEB

solution gives a slightly different penalty parameter and lower constraints on the objective

function of SVM [29]. Thus efficient algorithms have been devised under the concept of

Core Vector Machines (CVMs) to train SVMs. These algorithms are capable of approx-

imating O(1
ε
) iterations with any degree of accuracy ε that is insensitive to the size and

dimensions of training data in which the ball is constructed. There are several iterative al-

gorithms are proposed for CVMs further to approximate the optimization of MEB problem

[30–32]. SVMs are sparser in terms of training patterns and the model is characterized

by a subsample of the original training dataset only. Lately, there has been an interest

towards the development of sparse greedy approximation algorithm in ML research is re-

sumed. The recent visit of the solution of MEB problem is termed to be Frank–Wolfe (FW)

method [25, 32, 33].

FW algorithm is a first order iterative optimization algorithm developed for solving

quadratic programming problems with linear constraints [34]. Recently, it is revisited and

modified such that it can be applicable to nonlinear problems with constrained convex opti-

mization functions such as SVM [24, 25, 32, 33, 35]. The naı̈ve strategies of FW algorithm

brings the solution in the direction of increase in Optimization objective at each iteration

15

CHAPTER 1. INTRODUCTION

Figure 1.7: Minimum Enclosing Ball (MEB)

(Towards step) [32, 34]. The convergence rate of algorithm is pretty slow using only this

Towards step. Later, it was modified by introducing an Away-step to boost the convergence

rate where the solution moves against to the direction of decrease in optimization objective

at each iteration (Away-step) [32]. The choice between these two steps are made at each

iteration based on the optimistic path of the possible feature space. The concept of FW

algorithm can be integrated with SVM to describe the sparsity and the convergence nature

of objective function of SVM [32, 33, 35, 36].

However, the procedure of using Toward step or Away-step of FW algorithm for non-

linear SVMs sometimes tend to influence the weight vectors which are not contributing

to the optimal solution. This causes considerable deviation of the current approximation

solution that results in performance degradation.

1.5 Large Margin Distribution (LDM)

Maximum margin is a fundamental issue of SVMs. SVM considers a single point margin

optimization. The function f(x) will not change by adding a new sample (xi, yi) as long

16

CHAPTER 1. INTRODUCTION

as f(xi) does not deviate more than ε margin from yi, moreover, deviations are penalized.

If the scattering of the data in ε -insensitivity zone is drifted utmost from the orientation of

support vectors, then the resulting decision boundary will not be effective. ε-SVR and ϑ-

SVR are not extremely resistant to outliers. The training points which resides inside of the

ε -insensitivity zone completely ignored by the fitting curve of SVR. This concept causes

the sparsity nature for SVM but does not force to lower the spread of data samples inside

the ε-insensitivity zone. The performance of SVR can be improved by imposing sparsity

and minimum disperse of training data simultaneously within ε-insensitivity zone.

Figure 1.8: Margin Distribution theory in SVM

The modern research disclosed that defining a margin by considering the whole data

distribution can improve the performance of SVR. This type of margin, based on data

distribution instead of margin which is based on single data sample offers a promising way

to address outliers and there by improving the generalization performance of SVR as shown

in Figure 1.8. Thus, the margin distribution results good performance in SVR by increasing

the mean of the margin and decreasing its residual errors simultaneously [37, 38]. Thus,

large margin distribution (LDM) strategy proposed recently can improve the generalization

17

CHAPTER 1. INTRODUCTION

performance of SVM. The learning rate of kernel SVM which uses LDM concept can be

speed up by employing coordinate descent (CD) technique [37].

1.6 Distance Weighted Discrimination (DWD)

Incremental learning of kernelized SVM suffers with the curse of kernelization [39]. When

data is projected to high dimensional space, it is often that the data is densely distributed

on the boundary. Support vector machines used for regression (SVR) is also sensitive to

the distribution of boundary data. In terms of data on decision curves (Support vectors),

both the variants of SVR, ε-SVR and ϑ-SVR are vulnerable. These countless data vectors

in high dimensional space tend to pile up at the decision boundary and treated as Support

vectors. If the size of support vectors increases, consequently there will be outgrowth in

update time at each iteration of the model [40].

During learning, the optimization function critically depends on width of the margin

and this influences the final estimation objective count on the number of the support vec-

tors. SVM can be defined as a optimization approach trying to increase the smallest dis-

tance from the samples to the classification boundary over training data. The margin the-

ory i.e., maximizing the minimum margin gives a good encouragement to the accuracy of

SVM. Recent advancement in SVM theory, however, revealed that aiming to maximize

the minimum distance between instances to the boundary does not always lead to reduced

generalized error. But increasing the average distance of the data samples to the decision

boundary can improve the generalization performance effectively. [41, 42].

An optimization method called Distance-weighted Discrimination (DWD) technique

is proposed as an alternative to address data piling at the margin in SVM [41, 43]. DWD

strategy uses an interior point method, which tries to improve the margin mean with respect

to whole data and defines a decision curve [44]. DWD takes all data into consideration

but gives more significance to those closer to the hyperplane. while DWD overcomes

the data-piling and mitigates the overfitting effect, it is sensitive to class imbalance [45].

When the sample size of one class is much greater than the other one, the classification

18

CHAPTER 1. INTRODUCTION

boundary would be pushed towards the minority class and consequently, all future data

vectors will be classified into the majority class [46]. Distance-weighted Support Vector

Machine method possesses the merits of both SVM and the DWD and can alleviate the

data-piling and overfitting problems and also allows faster training approach for large scale

datasets [42, 47, 48].

The key idea behind SVM is to find a linear discriminant function f(x) = w.x+ b = 0

with a direction weight vector w and bias b. Where the data x is assigned to the class +1

when f(x) > 0 and assigned to −1 when f(x) < 0 and also keeps x possibly far away

from the decision surface f(x) = 0. This is an optimization problem characterised by

points nearer to decision boundary. This decision boundary separates the input data space

into different regions whose orientation is determined by using coefficient direction vector

w and position is identified by intercept b. Data piling happens when plenty of training

samples have same projections in the direction of w and all stack up at the same direction

of decision boundary. Consider a unit simplex, where two classes of high dimensional low

sample size datasets are projected as shown in Figure 1.9. Since there are many zeros in

the class -1 vectors(green), they are locate diverse at the vertices of this simplex while class

+1(red) are nearer to the center.

Figure 1.9: Distribution of data vectors on Unit simplex

A classic linear discriminator such as SVM struggles to capture the differentiation be-

tween these two classes as it encounters data piling issue. Data-piling occurs when projec-

tions of weight vector w generated by a classifier have identical directions and incident on

to points as shown in Figure 1.10. Data-piling reflects severe overfitting in the SVM and

19

CHAPTER 1. INTRODUCTION

is an indicator that the direction is driven by noise in the data, and hence the direction as

well as the classification performance can be stochastically volatile. DWD was originally

proposed to control the data-piling effect but diminishes at overfitting issue as it is subtle

to skewed data [49]. In particular, when the sample size of one class is much greater than

the other one, the classification boundary would be pushed towards the minority class and

consequently, all future data vectors will be classified into the majority class as shown in

Figure 1.11.

Figure 1.10: Data piling in SVM

Figure 1.11: Over-fitting issue in DWD

The formulations of SVM objective function which is based on weighted distance will

try to reduce the DWD loss and finds the optimal orientation of hyperplane [42, 47].. SVM

is evaluated using a minmax optimization formulation, focusing mainly on number of sup-

port vectors i.e., samples that resides right on the separating hyper-plane. Where as DWD

20

CHAPTER 1. INTRODUCTION

allows more number of training samples to have direct influence on weight vector w and

gives high priority to the training instances that are close to hyper-plane. Distance-weighted

Support Vector Machine method possesses the merits of both SVM and the DWD and leads

to faster training approach for large scale datasets [42, 47, 48].

1.7 Research direction

Research direction seeking for the possible improvements to the existing optimization tech-

niques which can further improve the performance of SVM is discussed further in following

sections.

1.7.1 Problem statement

• For the analysis of continuous time-series data, it is generally anticipated to induce a

balance among computational complexity and generalization performance of approx-

imate techniques such as SVM. Non-linear SVMs are computationally prohibitive

when used with continuous time-series data as it requires high space and time com-

plexities. The classical SVM is not adjusted to process large training set as the

computational complexity can reach O(n3). Therefore, non-linear SVM classifier

deteriorates to continuous time-series data Thus, the application of nonlinear SVM

classifiers to continuous time-series data is challenging. Hence, batch learning can be

replaced with incremental learning and can make each iteration very cheap. However,

the drawback of incremental learning is its slow convergence rate. The convergence

rate of SVM can be accelerated by iterative procedures such as FW method [24–26].

FW algorithm is a first order iterative optimization algorithm developed for solving

quadratic programming problems with linear constraints [34]. Recently, it is revis-

ited and modified such that it can be applicable to nonlinear programming problems

with constrained convex optimization functions such as SVM [24, 25, 32, 33, 35].

The basic idea behind FW algorithm is, it considers a linear approximation of the

objective function and each iteration moves the solution towards a minimizer of this

linear function.

21

CHAPTER 1. INTRODUCTION

• Maximum margin is a fundamental issue of SVMs. SVM considers a single point

margin optimization. The function f(x) will not change by adding a new sample

(xi, yi) as long as f(xi) does not deviate more than ε margin from yi, moreover,

deviations are penalized. If the scattering of data in ε-insensitivity zone is drifted

utmost from the orientation of the support vectors, then the resulting decision bound-

ary will not be effective. ε-SVR is not very robust to the outliers. The training points

which resides inside of the ε -insensitivity zone completely ignored by the fitting

curve of SVR. This concept causes the sparsity nature for SVM but does not force to

lower the spread of data samples inside the ε-insensitivity zone. The performance of

SVR can be improved by imposing sparsity and minimum disperse of training data

simultaneously within ε-insensitivity zone. Therefore, the proposed work will have a

balance among sparsity and minimum distribution of training data in ε-insensitivity

zone. To do so, the proposed model utilizes the whole training dataset and avoids

overfitting. The modern research disclosed that defining a margin by considering the

whole data distribution can improve the performance of SVR. Margin distribution is

optimized by increasing the mean of the margin and decreasing its residual errors

simultaneously. Thus, the LDM is proved to be essential to boost the generalization

performance. The learning rate of kernel SVM which uses LDM concept can be

speed up by employing coordinate descent technique.

• Incremental learning of kernelized SVR suffers with the curse of kernelization and

cannot handle uncertain data. When data is projected to high dimensional space, it is

often that data is densely distributed on the boundary. When it comes to data on deci-

sion curves, both SVR variations ε-SVR and ϑ-SVR are susceptible. These countless

data vectors in high dimensional space tend to pile up at the decision boundary and

treated as Support vectors. When training sets with mismatched sizes are used, the

resulting decision boundary unfavourably skewed towards the majority class. If the

size of support vectors increases, consequently there will be outgrowth in update

time at each iteration of the model [40]. During learning, the optimization function

critically depends on width of the margin and this influences the final estimation

22

CHAPTER 1. INTRODUCTION

function count on the scattering of the support vectors. Inspired by the idea of dis-

tance weighted strategy, we can adjust the bounds on support vectors of ϑ-SVR that

allows the flexibility of specifying errors for uncertain data, thus improving the per-

formance of ϑ-SVR on uncertain data.

• In general, incremental learning and decremental unlearning algorithm of SVM searches

for a solution of (n + 1)th new training data from an approximate solution of nth

previous data and new sample c. This incremental approach is also adjustable for

decremental learning strategy. The decremental unlearning approach uses a leave-

one-out (LOO) procedure to evaluate the accuracy for each unlearned data sample

in the training set. However, the performance of incremental/decremental training of

SVM deteriorate by intensive iteration overhead and inaccurate results mainly for a

non-linear SVMs with imbalanced datasets. Over the years, several techniques were

introduced to boost the performance of SVM to solve skewed vector space problem

[50, 51]. These boosting techniques are either classifier independent data driven ap-

proach or classifier based cost sensitive approache or combination of these two. The

recent literature suggests incremental SVM can be optimized by several boosting

techniques to improve the overall performance [52].

The above mentioned challenges and literature motivate the present research work towards

enhancing the performance of Support vector machines for generalization and prediction

estimation problems using new optimization techniques.

1.7.2 Aim

The classical SVM formulation is limited by the problems that are listed above. The aim of

this research is to improve the performance of classical SVMs by introducing new optimiza-

tion strategies that minimise computational complexity while also improving generalisation

ability. We introduce a modified frank-Wolfe algorithm in each iteration of SVM training

to speed up the convergence rate on incremental learning. A margin distribution strategy

is applied to the SVR problems to address outliers issue. LDM is implemented by mod-

ified DCD technique to generate more smoother curve to fit all training data. To address

23

CHAPTER 1. INTRODUCTION

overfitting issue of imbalanced datasets in SVM, we allowed the flexibilities of providing

a limit on support vectors for each class labels. This flexibility allows to specify variations

in error rate for different class labels, there by improving the performance. To boost up the

learning rate of incremental/decremental SVM, we combined weak SVMs with asymmet-

ric misclassification cost to modify the training datasets. This modified dataset is used to

boost the prediction accuracy of weak SVMs at each iteration. Later, the accuracies from

all of these classifiers are integrated by a weighted majority vote to produce the final class

label.

The results show that the new formulations and algorithms meet the aims of this re-

search, and improve the generalization performance with reduced computational complex-

ity upon the classical SVM algorithms. Therefore, we state that the thesis details the in-

vestigation of novel techniques to optimize Support vector machines by maintaining the

trade-off between generalization performance and computational complexity.

1.7.3 Problem formulation

The research work can be formulated as:

• Get insight into the state-of-the-art Support vector machines and its variants.

• We understand the existing optimization techniques which can improve the perfor-

mance of support vector machines for classification and regression problems.

• We propose Support vector machines which is optimized with iterative procedure

like modified Frank-Wolfe algorithm to increase the convergence rate on incremental

learning along with Accuracy.

• We propose ε-Support vector regression which is optimized with large margin distri-

bution technique using modified coordinate descent strategy to improve the general-

ization performance.

• We propose fast and robust ϑ-Support vector regression on incremental learning

24

CHAPTER 1. INTRODUCTION

which is optimized to handle uncertain data by adjusting bounds on support vec-

tors and errors.

• We propose Incremental learning and Decremental unlearning of Support vector ma-

chines by speeding up its training process.

• Find the future directions in the field of optimization of Support vector machines

which can applied to real world problems.

1.8 Proposed Objectives

The proposed objectives of the Research work are stated as follows:

1. Incremental support vector machines optimized with modified Frank-Wolfe algo-

rithm (SVM-MFW).

2. ε-Support vector regression optimized with Large Margin Distribution using modi-

fied coordinate descent strategy (ε-MDSVR).

3. Incremental ϑ-Support vector regression optimized with bounded estimation function

to handle noisy datasets.

4. Acceleration of incremental and decremental training of Support vector machines.

1.9 Thesis Organization

Thesis is proposed to have 7 chapters, including an introduction and a concluding chapters.

The content of each of these chapters is discussed as follows.

The Introduction chapter provided the necessary background and motivation for the

work reported in this thesis. The chapter introduced Machine Learning algorithm and Sup-

port vector machines. The advantages of SVM and issues related to SVM which degrades

its performance is discussed. Some of the existing optimization techniques are discussed

25

CHAPTER 1. INTRODUCTION

which are used to improve the performance of SVM. At last, research direction seeking for

the possible improvements to the existing techniques which can further improve the perfor-

mance of SVM are proposed.

Chapter-2 reports the recent state-of-the-art techniques to enhance the performance of

SVM and discussed the observations and motivations for the research work is to be carried

out. Research problem of how SVM can be optimized to improve its performance is also

discussed in this chapter.

Chapter-3 presents a novel Support Vector machines optimized with modified Frank-

Wolfe algorithm called as SVM-MFW trained by an Incremental learning. When new

samples arriving in a streaming pattern, the proposed model learns new sample one by

one while maintaining an equilibrium on Karush-Kuhn-Tucker (KKT) conditions. Con-

vergence rate of proposed algorithm is speed up by incorporating modified Frank-Wolfe

method (MFW). Modified FW method uses a new “away step” methodology that can boost

the convergence rate of algorithm and can quickly reach an acceptable accuracies in the

very early iterations. Thus, proposed algorithm is computationally cheaper since it re-

quires simple updations at each iteration to converge to an acceptable accuracy. The model

produce sparser representation of support vectors and is more stable with respect to the

selection of hyper parameters. Experiments on Parkinson’s disease dataset show that the

proposed model (SVM-MFW) gives better results in comparison to the existing algorithms.

Chapter-4 explains about proposed ε-Support vector regression algorithm (ε-MDSVR),

that is optimized with the LDM technique by employing modified dual coordinate descen-

dent technique to enhance the performance. The proposed ε-MDSVR model uses the whole

training data to define hyperplane to handle over-fitting issue. The model considers the mar-

gin based on the whole data distribution to reduce the scattering of data in ε-insensitivity

zone to handle outliers. The margin distribution is characterized by mean and its residual

error. To achieve better generalization performance, the proposed model maximizes the

mean and minimizes the residual error of functional margin. Besides, to increase the learn-

26

CHAPTER 1. INTRODUCTION

ing rate, the proposed model is integrated with modified Dual coordinate descent (DCD)

strategy. The modified DCD method orderly updates one variable at a time. The variable is

selected for updation such that if it possibly derives the maximum optimization in objective

function value. This strategy can increase the learning speed and improve the generaliza-

tion performance. The proposed method is implemented using some popular datasets taken

from the UCI machine learning repository. The proposed algorithm tries to generate more

smoother regression curve and achieves better prediction accuracy in less computation time

compared to classical SVR.

Chapter-5 details the proposed ϑ-Support vector regression algorithm (ϑ-PSVR), that

is used to handle uncertain data and distribution of data on boundary by applying bounded

functions to adjust the number of support vectors and errors. The proposed method formu-

lates maximum and minimum limit functions on perturbed data. Two special adjustments

to the support vectors and penalty parameters are used to enable the model to learn incre-

mentally. The projections of data points to the fitting surface are generated once the value

of w is computed. The proposed method uses ϑ-SVR trained over incremental learning and

optimized to handle noisy data to enhance the performance. Experiments on Parkinson’s

disease data taken from PPMI repository show that the algorithm tries to generate a more

smoother regression curve and achieves better prediction accuracy compared to classical

ϑ-SVR.

Chapter-6 explains about boosting algorithm to enhance the performance of incremen-

tal learning and decremental unlearning of support vector machines used on imbalanced

datasets. In case of imbalanced data, combining weak SVM classifiers can make a pre-

diction better. The proposed boosting algorithm combines weak SVMs with asymmetric

misclassification cost to modify the training datasets. This modified dataset is used to boost

the prediction accuracy of weak SVMs at each iteration during training. Later, the predic-

tions from all of these classifiers are then combined by a weighted majority vote to produce

the final class label. The proposed method is applied on some synthetic dataset. The algo-

rithm is validated on number of support vectors, error vectors, trajectory of coefficients αi,

27

CHAPTER 1. INTRODUCTION

trajectory of LOO margin gi, iterations and training time.

The conclusions of the dissertation and future directions are outlined in chapter 7. SVM

is a margin-based supervised machine learning technique which can be applied on classi-

fication and regression estimation tasks. However, non-linear SVM for continuous/large

datasets suffer from computational overheads and poor generalization performance. The

proposed research work addresses some of the issues like slow convergence rate, data pil-

ing, outliers, long training time and poor performance present in SVM when used nonlinear

datasets of various shapes, configurations, and distributions. The work proposes optimiza-

tion techniques to improve the performance of SVM trained over incremental learning that

can be used for both classification and regression tasks. As future work, these optimized

SVM techniques can be applied to more real world practical datasets.

1.10 Summary

This chapter provided the necessary introduction and back ground formulations for the

work reported in this thesis. The advantages of SVM and issues related to SVM which

degrades its performance is discussed. Some of the existing optimization techniques are

discussed which can improve the performance of SVM. At last, research direction seek-

ing for the possible improvements to the existing techniques which can further improve

the performance of SVM is discussed further. The proposed research address some of the

issues like slow convergence rate, data piling, outliers, long training time and poor perfor-

mance present in SVM when used with continuous heterogeneous datasets. The proposed

optimization techniques discussed in chapter 3, 4, 5 and 6 can improve the performance of

SVM trained over incremental learning and used for classification and prediction problems.

28

Chapter 2

Literature Survey

In this chapter, a brief survey of the literature related to the contributions made in this thesis

is detailed. The chapter is organized as follows: Section 2.1 covers some studies related

to SVM and the development of its variants to address some of the issues which effect

its performance. Section 2.2 discuss some works related to incremental learning of SVM.

Also review the problems encountered while learning non linear SVM over time series

data sets and high dimensional low sample datasets. Section 2.3 lists the literature of SVM

techniques to scale up with the time series data and also discussed the boosting techniques

for fast convergence of SVM. Section 2.4 gives the details of Frank-Wolfe method that

can be used to speed up the training of SVM. Section 2.5 and Section 2.6 describes the

optimization techniques that can address datapiling, overfitting issues for skewed datasets

in SVR. Finally, the summary of this chapter is provided in Section Section 2.7.

2.1 SVM: Learning theory

SVM was first introduced by Cortes and Vapnik (1995) [12] based on statistical learning

theory. Scholkopf et al. (1996) [53] represented the SVM decision boundary in terms

of a small subset of training data called the support vectors. The authors devised the ε-

insensitive loss function, to achieve high generalization ability by minimizing a bound on

the expected test error. Burges (1998) [54] described linear SVMs for separable, non-

separable datasets and Kernel mapping technique for non-linear SVMs in detail. Also dis-

29

CHAPTER 2. LITERATURE SURVEY

cussed the unique and global solutions of SVM through practical implementation. Joachims

(1998,1999) [27, 55] explored the use of SVMs for text classification tasks as well as for

large scale datasets. The author showed that SVMs are robust and achieve substantial im-

provements over the other ML methods, also discussed advances in Kernel SVM. At first

SVMs are developed for the pattern classification problems, but later it was extended to

solve regression estimation problems as well. Scholkopf et al. (1996) [53] introduced ε-

insensitive loss function for the sparseness of SVM to carry over to the case of Regression

problems, thus lead to the variant of SVM called ε-SVR. Scholkopf et al. (2000) [15] pro-

posed a new class of SVM for classification and regression by introducing a ϑ which lets to

control the number of support vectors. The work of Cortes and Vapnik (1995) [12] revealed

that, by maximising the smallest distance between the training samples from the separating

hyperplane, the SVM classifier seeks to minimise generalisation error. SVM works on the

principle of Margin based theory. Also, The works of Scholkopf (2000) and Hofmann et

al. (2008) [15, 16, 56], studied that SVMs are defined by optimizing a regularized risk

on the training data, that can give good generalization performance. However, the authors

also mentioned that the optimization problem in SVM is usually formulated as complex

quadratic optimization problem (QP), for which a basic implementation requires O(n2)

space and O(n3) time complexities when the number of data samples n are large enough,

and that are computationally prohibitive. Therefore, using basic numerical approaches to

solve QP problem of SVM for datasets with huge volumes and dimensions has been infea-

sible and computationally prohibitive.

2.2 Incremental learning of SVM

Bradley and Mangasarian (2000) [57] discussed the ability of SVM to handle very large

classification problems by dividing the problem into chunks of small linear problems. Au-

thors proved that SVM terminates in a finite number of steps at an exact solution by giving

an optimal separating plane for large datasets with huge dimensions. The existing meth-

ods for dealing with huge datasets [57] divide the solution space into sub-problems and

apply iterative component-wise objective function optimization to these small areas of the

30

CHAPTER 2. LITERATURE SURVEY

original datasets. However, these approaches produce only approximate findings and re-

quire numerous scans of the given dataset to get a satisfactory convergence. Besides, SVM

quadratic programming solution suffer from high memory requirement and more CPU time

when trained in a batch mode on large datasets. Gauwenberghs & Poggio, (2001) [58]

stated that the conventional SVM algorithm do not scale well enough in accordance with

large datasets as they use batch learning approaches. The learning system update time will

multiply non-linearly along with the length of dataset. Incremental training procedures

seem to be more powerful in this case as they use gradient estimation of weights to train

a learning model when a newsample is added to training data. Diehl and Gauwenberghs,

(2003) [59], Liu et al. [60], proposed a combined incremental learning and decremental

unlearning approach to train an SVM classifier. The authors supplied the exact solution

for the n + 1 training data point as a function of the solution of n data and a new data

point c. Shilton et al. (2005) [61] discussed that when adding new data to the already

trained SVM, batch SVM must be re-trained from scratch. also, adding small set of data

to a large training set does not always effect the decision surface. Resolving the problem

from scratch seems computationally wasteful. Authors proposed that using the solution of

already trained SVM as a starting point to find a new solution. This approach is the heart

of active set optimization methods, in fact, an extension to incremental learning. Despite

their slower rate of convergence than batch approaches, incremental methods can make

each iteration quite inexpensive. However, for a non-linear SVM on big datasets, the incre-

mental/decremental training technique has high computational cost and erroneous outputs.

Non linear SVMs suffer with slow convergence rate and long training time also gives poor

classification performance.

2.3 Active sets in SVM Learning

Tsang et al. (2005,2006) and Scheinberg et al. (2006) [29, 62, 63] discussed that as the

typical dense structure of hessain and constraint matrix of QP involved in optimization ob-

jective of SVM, traditional optimization methods seem to be impractical to train an SVM

on large scale time series data. This problem is well addressed by an active set method. Ac-

31

CHAPTER 2. LITERATURE SURVEY

tive set strategies allows limited number of variables to be updated at each iteration. Fan et

al. (2005) [64] stated that for non-linear SVMs, the subset of training examples which are

allowed to change are called a working set and proposed the popular Sequential Minimal

Optimization (SMO) algorithm that utilizes this concept. However, the works of Platt et al.

(1999), Fan et al. (2005), Lee and Huang (2007) [64–66] discussed that At each iteration

of SMO, only two variables are chosen for updating. This process generally exhibit a slow

convergence rate and poor performance results. Thus, require more efficient methods that

can improve the rate of convergence of SVM algorithm.

The common techniques to handle large datasets by SVM is basically to build a solution

by solving a sequence of small scale subproblems. But still SVM suffers with low perfor-

mance issue. Fine and Scheinberg (2001) [67] attempted to scale up SVM methods to large

datasets by adapting interior point methods to some classes of the SVM QP problem. Their

work is based on the rank of the kernel matrix as a source for further enhancement of SVM

and showed that better interior point method can be designed by using a low rank kernel

matrix in terms of storage requirements as well as computational complexity. In large-scale

SVM problem, however the resulting rank of the kernel matrix can still be too high to be

handled efficiently in interior point method. The reformulation of the SVM objective func-

tion, the use of sampling methods to reduce the number of variables in objective function

of SVM and the combination of small SVMs using ensemble methods have also been ex-

plored recently.

Looking for more efficient methods, Tsang et al. (2005) [29] proposed a new approach

by adopting the concept of transforming data to the solution of processing a minimal en-

closing ball (MEB). SVM can be resembled to this MEB solution such that it gives a

slightly different penalty parameter and lower constraints on the objective function of SVM.

Yildirim et al. (2008) [31] proposed two iterative algorithms for the task of approximating

and optimizing the solution of MEB. Recent advances in computational geometry such as

the works of Zhang et al. (2006)[68] have demonstrated that there are algorithms capable

of approximating a MEB with any degree of accuracy ε in O(1
ε
) iterations independently

32

CHAPTER 2. LITERATURE SURVEY

of the number of points and the dimensionality of the input space in which the ball is built.

Adopting one of these algorithms, Tsang et al. (2006), Lee et al. (2007) and gartner et

al. (2009) [36, 63, 66] devised the Core Vector Machine (CVM), and discussed that the

model recursively solves the optimization objective by selecting small portion of data for

updation. The algorithm seeks for a point outside the approximation of the MEB achieved

so far at each iteration. If the point exists, it is combined with the prior subset of data

to form an optimization problem for solving the new MEB approximation. The method

is repeated until no points outside of the current approximating ball are located within a

specified tolerance. CVMs hence require the use of an external numerical solver to tackle

a series of increasingly complicated optimization problems.

2.4 Frank-Wolfe optimization technique

Bottou et al. (2004)[69] stated that, it is to be desired to make trade-off between com-

putational complexity and accuracy of SVM for large-scale problems. Inspired by CVMs

and greedy approximate solutions, Ouyang et al. (2010) [32, 70] proposed new first order

iterative algorithm framework called Frank-Wolfe optimization technique which can be ap-

plied to SVM. Frank–Wolfe algorithm (FW) is a first order iterative optimization algorithm

developed for solving quadratic programming problems with linear constraints proposed

by Frank et al. (1956) [34] It is recently studied in the works of [31, 32]. The MEB and

other convex optimization problems, such as SVM, can be approximated using FW. The

main concept of FW method is to solve the optimization issue by linearizing the objec-

tive function at the current feasible solution and doing an exact line search in the direction

acquired from the linearization at each iteration. As a result, each iteration becomes rela-

tively inexpensive and does not necessitate the use of an external numerical solution. This

approach finds the best set of weights by incrementally discovering the samples that be-

come support vectors in the SVM model. In addition, the algorithm’s rate of convergence

is asymptotically linear. Recently, The works of Jaggi et al. (2012,2013), locaste et al.

(2013) and Frandi et al. (2013) [24, 25, 33, 35], revisited this FW algorithm and modified

such that it can be applicable to nonlinear programming problems with constrained convex

33

CHAPTER 2. LITERATURE SURVEY

optimization functions such as SVM. The naı̈ve strategies of FW algorithm brings the so-

lution in the direction of increase in Optimization objective at each iteration (Towards step)

[32, 34]. The convergence rate of algorithm is pretty slow using only this Towards step.

Later, it was modified by introducing an Away-step to boost the convergence rate where

the solution moves against to the direction of decrease in optimization objective at each

iteration (Away-step) [32]. [32, 33, 35, 36].

As stated by the work of Nanculef et al. (2014) [26], the choice between these two steps

are made at each iteration based on the optimistic path of the possible feature space. The

concept of FW algorithm can be integrated with SVM to describe the sparsity and the con-

vergence nature of objective function of SVM.

2.5 Distance weighted SVM

Wang et al. (2012) [39] discussed that incremental learning of kernelized SVM suffers with

the curse of kernelization. Marron et al. (2007) [41] proved that When data is projected

to high dimensional space, it is often that the data is densely distributed on the boundary.

The authors revealed that there is a substantial data piling of SVM in high dimensional

and low sample data contexts. In the works of Xie et al. (2019) [40], authors also dis-

cussed the same point as in [41] that support vectors are tend to be very numerous in high

dimensional space and all pile up at boundaries of the margin. If the number of support

vectors (SVs) increases in each iteration of the optimization, there will be a non-linear

growth of model update time and prediction time with data size. To address this issue,

Marron et al (2007) [41] proposed a novel discrimination method called Distance weighted

discrimination (DWD) as an alternative to SVM. DWD allows more data points to have a

direct impact on the objective function and increases the average distance of the functional

margin of all data by allowing these distances to influence the separating hyperplane that

can optimize the performance. Qiao et al. (2010) [45] developed an optimal weighting

scheme of DWD and discussed its advntages and disadvantages. Qiao et al. (2013) [49]

investigated two popular large margin classification methods, SVM and DWD under high

dimensional low sample size data and the imbalanced data. [42] revealed that aiming to

34

CHAPTER 2. LITERATURE SURVEY

maximize the minimum distance between instances to the boundary does not always lead

to reduced generalized error. But increasing the average distance of the functional margin

of whole data can improve the generalization performance effectively. Qiao et al. (2015)

[46] discussed that when the sample size of one class is much greater than the other one,

the classification boundary would be pushed towards the minority class and consequently,

all future data vectors will be classified into the majority class. The authors Qiao et al.

(2013), Wang et al. (2018) and Lam et al (2018) [42, 47, 48], The algorithm calculates

the classification direction by minimising the DWD loss and using SVM to determine the

intercept term. As a result, SVM’s data-piling and over-fitting issues are no longer an issue.

The authors also said that this method is not affected by data imbalance, which was one of

SVM’s key advantages over DWD. We can improve the original optimization target for our

support vector regression issues by incorporating the concept of the average width of the

functional margin that characterises margin distribution.

2.6 Large Margin Distribution

SVM is widely recognised as a margin-based learning strategy that aims to optimize the

shortest distance between examples and the classification hyperplane. As a result, the mar-

gin theory lends support to SVM’s generalization performance. Specifically, [71] first sug-

gested margin theory to resist overfitting in some boosting algorithm. After [72] indicated

that the minimum margin is crucial and tried to maximize the minimum margin but lead

to poor generalization performance. Later, [73] found that although the works of [72] pro-

duced larger minimum margin, but suffered from a poor margin distribution. Thus, the

authors revealed that apart from minimum margin, margin distribution also plays important

role in achieving good generalization performance. Above proposition has been theoret-

ically studied in the work of [74] and proven by [75], Moreover, the works of [37, 38]

revealed that, rather than focusing solely on a single point margin, both the margin mean

and variance are crucial in acheiving margin distribution. However, all of these theoretical

research focused on boosting-style algorithms, while the impact of the margin distribution

on SVMs has not been fully explored in practise. Inspired by the idea of Large margin

35

CHAPTER 2. LITERATURE SURVEY

Distribution Machine, we can optimize the margin distribution by maximizing mean and

minimizing variance together with maximum margin to achieve strong generalization per-

formance in SVM.

2.7 Summary

Chapter 2 reports the recent state-of-the-art works on enhancing the performance of SVM.

This chapter discussed the observations and motivations towards the present proposed

work. The objectives of the present work that is derived from the literature and the ob-

servations are also discussed. Research problem of how SVM can be optimized to improve

its performance that balances the trade-off between accuracy and computational complex-

ity is also mentioned.

36

Chapter 3

Incremental support vector machines

optimized with modified Frank-Wolfe

algorithm (SVM-MFW)

This Chapter describes the novel technique of ensemble SVM trained with incremental

learning and optimized with modified Frank-Wolfe algorithm. The chapter introduces the

SVM methodology in brief and describes incremental learning by adopting weights as-

sociated to each class of the data samples. The issue of slow convergence rate in SVM is

solved by incorporating modified Frank-Wolfe algorithm. The effectiveness of SVM-MFW

is shown through experiment on Parkinson’s disease dataset and the results are summarised.

The main contributions of this chapter are given as follows:

• A fast and robust support vector machines trained with incremental learning and

incorporated modified Frank-Wolfe algorithm is proposed.

• The algorithm is used for both classification and prediction estimation problems.

• The proposed method uses low iteration complexity and converges to a better solution

by producing sparser representation of support vectors.

• The model handles the optimization problem by using a modified form of AWAY-

step of Frank-Wolfe algorithm to speed up the training process and converges faster

37

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

to acceptable accuracies, thereby reducing the computation time as well.

• The model is experimented on Parkinson’s dataset and is evaluated using several

SVM kernels. The results are compared to the classical SVM and other ML ap-

proaches in terms of accuracy and computation time.

• It is found that the results are much better when compared with existing methods.

Thus, the proposed model can be used as a fast and robust classification, prediction

tool for PD diagnosis.

3.1 Introduction

For non-linear SVM situations, it is often anticipated to make a trade-off between com-

putational complexity and the accuracy of underlying optimization algorithms. However,

SVMs are not able to handle heterogeneous data effectively because they are costly in terms

of memory and computing time. The classical SVM is not adjusted to process online data

as the computational complexity can reach O(n3). Thus, the scalability of nonlinear SVM

classifiers to time series problems is challenging. Hence, batch learning can be replaced

with incremental learning and can make each iteration very cheap. However, the drawback

of incremental learning is its slow convergence rate. The convergence rate of SVM can be

accelerated by iterative procedures such as Frank-Wolfe (FW) method [24–26].

The naı̈ve strategies of FW algorithm brings the solution in the direction of increase

in Optimization objective at each iteration (Towards step). The convergence rate of algo-

rithm is pretty slow using only this Towards step. Later, it was modified by introducing

an Away-step to boost the convergence rate where the solution moves against to the di-

rection of decrease in optimization objective at each iteration (Away-step). The choice

between these two steps are made at each iteration based on the optimistic path of the pos-

sible feature space. The concept of FW algorithm can be integrated with SVM to describe

the sparsity and the convergence nature of objective function of SVM. However, the pro-

cedure of using Toward step or Away step of Frank-Wolfe algorithm for non-linear SVM

38

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

can increase the weights of vectors which do not correspond to optimal solution, causing

considerable deviation of the current approximation solution that results in performance

degradation. Proposed modified version of FW uses a new ”away-step” technique, which

only increases the weights of the vectors corresponding to optimal solution and also elimi-

nates the spurious points. This is achieved by computing the optimal step-size analytically

at each iteration. As a result, the computational complexity per iteration is reduced and the

number of iterations are independent of the size of the dataset and their attributes.

This chapter presents a novel technique of incremental SVM assimilated with MFW al-

gorithm resulting in a new approach called SVM-MFW. SVM-MFW does not involve any

additional feature reduction techniques to speed up the training. Instead, it uses modified

FW method to accelerate the convergence rate of algorithm. Thus, making the system more

robust to (unseen) data and also resulting in a faster training approach for incremental data.

Consequently, SVM-MFW algorithm learns incrementally and is computationally cheaper

since it requires fewer iterations to train, and accelerated convergence rate reduces the com-

putational complexity as well. Experimental results show that the proposed SVM-MFW is

a fast and stable classification and prediction technique that can improve the generalization

performance and speed up the training process.

The rest of the content of this chapter is organized as follows. Section 3.2 presents the

basic equations used to derive the proposed model. Formulations to derive the proposed

algorithm is described in Section 3.3. Datasets used for the implementation of model is

given in Section 3.4. Experimental results and evaluation of the proposed model and the

behaviour of the proposed model against other recent existing research is discussed in Sec-

tion 3.5. The Summary of the chapter is given in Section 3.6.

3.2 Preliminaries

This section explains the basic equations of SVM and Frank-Wolfe algorithms used to

derive the proposed model.

39

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

3.2.1 Classical SVM

SVM is used for both classification as well as prediction problems with minor differences

in their formulations. Nevertheless, the difference lies in the cost function modelling. The

objective function for SVM is:

f (x) = w · ϕ (x) + b (3.1)

where w ∈ Rm is the weight vector and ϕ is the mapping function induced by a kernel

matrix, K (xi, xj) = ϕ (xi) · ϕ (xj). The function f (x) is an optimization problem that

uses one slack variable ξi in classification to approximate the number of misclassified sam-

ples and two slack variables ξi and ξ∗i in regression to approximate the variation between

the estimated output and the target output. The optimization function f(x) is solvable

by assuming that each data sample (xi, yi) of training data T is fitted in the input feature

space with an acceptable ε accuracy. Then, the objective function f (x) is a constrained

minimization problem given for classification in Equation (3.2) and for regression in Equa-

tion (3.3):

min
w,ξ

1

2
∥ w ∥2 +C

n∑
i=1

ξi (3.2)

s.t. yi(w · ϕ (x) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, · · · , n.

min
w,ξ,ξ∗

1

2
∥ w ∥2 +C

n∑
i=1

(ξi + ξ∗i) (3.3)

s.t. yi − w · ϕ (xi)− b ≤ ε+ ξi,

w · ϕ (xi) + b− yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, 2, · · · , n.

Here C is the regularization parameter which balances the classification error and width of

the ε-tube. The objective function incurs a cost to the sample whose estimated value is sig-

nificantly deviated from f(x) by a maximum of ε. After applying Lagrangian multipliers,

the final objective function f (x) is given as follows:

40

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

The decision function for classification:

sgnf (x) = sgn

(
n∑

i=1

αiyiK (xi, x) + b

)
(3.4)

The regressive function:

f (x) =
n∑

i=1

(αi − α∗
i)K (xi, x) + b (3.5)

αi and α∗
i are Lagrange variables and the samples hich are having αi and α∗

i greater than or

equal to zero are called the support vectors (SVs).

3.2.2 Frank-Wolfe Algorithm

Frank–Wolfe algorithm (FW) is a first order iterative optimization algorithm developed

for solving quadratic programming problems with linear constraints [34]. The problem of

maximizing a concave function f(x) in the unit simplex ∆ can be solved by approximating

the solutions x(k), ∀k = 0 · · ·∞ for given K-dimensional face of ∆ and the vertices of ∆

are the points e(i), i = 1 · · ·n where e(i) has coordinate e
(i)
i = 1, and all other coordinates

are zero such that f(x(k)) ≥ f(x∗) − O(1
k
). f(x∗) is the maximum value of f in ∆. Let

x∗ be the vertex of ∆ with maximum value of f . Approximate solutions x(0), x(1), · · ·x(k).

∀k = 0 to∞ are obtained by finding the index i∗ of the largest coordinate of the gradient

▽f(x(k). Let x(k+1) is the point on the segment from x(k) to the e(i∗) that maximizes f(x) as

shown in Figure 3.1. Then FW finds (α∗ ∈ [0, 1]) that maximizes f(x(k) +α(e(i∗)− x(k))),

where x(k+1) = x(k) + α(e(i∗) − x(k)). The procedure optimizes the function by selecting

only largest component of the gradient rather than optimizing in the direction of the gradi-

ent, so that x(k) has at most k + 1 nonzero entries. Also, the search direction e(i∗) − x(k) is

used, from x(k) toward e(i∗), but not the direction e(i∗); this keeps the search within ∆.

The Frank-Wolfe approach is intended for large-scale datasets of the Equation (3.6),

41

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

which involves optimizing a linear function f(x) across a working set S.

max
x

f(x) s.t. x ∈ S = {x ∈ Rm :
∑
i

xi = 1, xi ≥ 0}. (3.6)

Figure 3.1: Unit simplex ∆ vectors

It generates a sequence of approximations {x0, x1, · · · · , xk} to a solution of above prob-

lem at every iteration k by finding a feasible search direction with an optimal step-size.

Thus, the xk has a sparse representation, which makes the algorithm suitable even for high

dimensional data. This problem can also be represented by popular ML algorithm such as

SVM [26]. The SVM optimization that matches the FW approach in Equation (3.6) is as

follows:

max
x

f(x) = −xTKx s.t
∑
i

xi = 1, xi ≥ 0,∀i = 1, · · · , k. (3.7)

Where K is the same kernel function used in SVM. The algorithm generates {x(k)} at each

iteration k by computing optimal step-size (α ∈ [0, 1]) analytically until it converges to an

acceptable accuracy ε. At each iteration t, FW performs a search for finding a vertex e(i∗)

such that it maximizes the f(x) at xt. Let x(k+1) be the point on the segment from x(k) to

the e(i∗) that maximizes f(x) as shown in Figure 3.2, it finds a step size (α∗ ∈ [0, 1]) that

maximizes f(x(k) + α(e(i∗) − x(k))) and moves the function in same direction.By using a

step size (α∗ ∈ [0, 1]) it computes x(k+1) = x(k) + α(e(i∗) − x(k)).

The main drawback of using only this Toward step is its poor convergence rate, which

is pretty slow when the descent directions (e(i∗) − x(k))) are not adequate. So the use of

42

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

Figure 3.2: Frank-Wolfe approximations in K-dimensional space of ∆

Away-step in FW algorithm has been introduced [32]. To boost the convergence rate of

FW, each iteration can move the solution away from the direction in which the objective

function decreases (Away step) [32]. At each iteration t, FW performs a search for finding

a vertex e(j∗) such that it minimizes the f(x) at xt.

Let x(k+1) be the point on the segment from x(k) to the e(j∗) that minimizes f(x) as

shown in Figure 3.2. Away-step finds a step size (α∗ ∈ [0, 1]) that minimizes f(x(k) +

α(x(k) − e(j∗))) and moves the function in that direction. By using a step size (α∗ ∈ [0, 1])

it computes x(k+1) = x(k) + α(x(k)) − e(j∗). The choice between these two steps are made

at each iteration based on the promising direction of the feasible vector space. This method

has been successfully used to train non-linear Support Vector Machines on a large-scale

datasets. Specializing FW to SVM training has allowed to obtain efficient algorithm, and

also important theoretical results, including convergence analysis of training algorithms

and new characterizations of model sparsity.

43

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

3.3 Proposed SVM-MFW

This section first devises modified form of SVM to address class imbalance problem and

gives the formulations for incremental learning and then explains the integration of mod-

ified Frank-Wolfe algorithm. The terminology used in proposed work is: Let T be the

training set of n samples of (xi, yi) with xi input values and the binary class label of

yi ∈ (−1,+1).

3.3.1 Modified SVM for class imbalance data

To avoid increased risk of overfitting for class imbalance issue in SVM, we give equal

weight to both the positive and the negative classes. In case of classification, a penalty

parameter (Cyi) value for each class of data is used as given in Equation (3.8).

min
w,ξ

1

2
∥ w ∥22 + C(−1)

∑
yi=−1

ξi + C(+1)
∑
yi=+1

ξi (3.8)

s.t yi (w · ϕ (x) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, · · · , n.

After applying Lagrangian multiplier and bias b, the final f(x) is

f (x) =
n∑

i=1

αiyiK (xi, x) + b (3.9)

In case of regression, a penalty parameter value (Ci) for each sample of unbalanced

data is used as given in Equation (3.10).

min
w,ξ,ξ∗

1

2
∥w∥2 + Ci

n∑
i=1

(ξi + ξ∗i) (3.10)

s.t. yi − w · ϕ (xi)− b ≤ ε+ ξi,

w · ϕ (xi) + b− yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, 2, · · · , n.

44

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

corresponding dual is

max
αi

− 1

2

n∑
i,j=1

αiαjK(xi, xj)− ε

n∑
i=1

|αi|+
n∑

i=1

yiαi (3.11)

s.t.
n∑

i=1

αi = 0, 0 ≤ αi ≤ Ci, i = 1, · · · , n.

The final decisive function f (x) is given by

f (x) =
n∑

i=1

αiK (x, xi) + b (3.12)

KKT conditions that are to be satisfied are given as

|yi − f(xi)|≤ ε, if αi = 0,

|yi − f(xi)|= ε, if 0 < |αi|< Ci,

|yi − f(xi)|≥ ε, if |αi|= Ci,
n∑

i=1

αi = 0.

3.3.2 Incremental SVM

Proposed approach for classification and prediction is trained over individual samples and

learning is done incrementally by satisfying KKT conditions on all added samples to the

training vector T [58]. The algorithm partitions training data T into three index sets as

SupportSet(S), ErrorSet(E) and ReserveSet(R).

E represents Error vectors: E = {i : |αi|= Ci}

S represent Support vectors: S = {i : 0 < |αi|< Ci}

R represents Reserve vectors: R = {i : |αi|= 0}

During the learning phase, algorithm continuously checks for whether a new sample

(xc, yc) added to the training data T can be inserted to reserve set R. If it is not possible

to add new sample (xc, yc) in R, it tries to add this new sample in either support set S or

45

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

error set E by maintaining equilibrium of the model on KKT conditions. Each update of

the model migrates samples across index sets by passing them through the support set s,

resulting in a change in the correlated R matrix accordingly. This method is repeated when

all of the KKT constraints for the samples in T are met.

The margin function g(xi) for xi is given by g(xi) = yi − f(xi). Let xc be a new

training point added to T , next initialize αc = 0 and progressively adjust the value of αc to

satisfy KKT criteria. The incremental relation between ∆g(xi),∆αi and ∆b in accordance

with [58] viz., :

∆g(xi) = Qic∆αc +
∑
j∈S

Qij∆αj +∆b, ∀i ∈ T ∪ {c} (3.13)

According to Equation (3.11),

αc +
n∑

i=1

αi = 0, (3.14)

Integrating Equation (3.13), Equation (3.14) and KKT equations above, we obtain:

−Qic∆αc =
∑
j∈S

Qij∆αj +∆b, (3.15)

∑
j∈S

∆αj = −∆αc. (3.16)

αc is the coefficient being incremented. Let S = {s1, s2, · · · , sn}, thus Equation (3.16) can

be represented in matrix form as:
0 1 . . . 1

1 Qs1s1 . . . Qs1sn

...
...

1 Qsns1 . . . Qsnsn




∆b

∆αs1

...

∆αsn

 = −


1

Qs1c

...

Qsnc

∆αc ,

46

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

i.e.


∆b

∆αs1

...

∆αsn

 = β∆αc , β =


β

βs1

...

βsn

 = -R


1

Qs1c

...

Qsnc

 (3.17)

Defining a non-S set, Š: Š = E ∪ R = {š1, š2, · · · , šn}. Combining Equation (3.15) and

Equation (3.17), we get 
∆g(xš1)

∆g(xš2)
...

∆g(xšn)

 = γ∆αc ; (3.18)

γ =


Qš1c

Qš2c

...

Qšnc

+ β


1 Qš1s1 . . . Qš1sn

1 Qš2s1 . . . Qš2sn

...
...

1 Qšns1 . . . Qšnsn

 (3.19)

when S = NULL, Equation (3.16), Equation (3.17) and Equation (3.19) simplifies to:

∆g(xš) = ∆b, ∀š ∈ E∪R. The matrices above show the formula for moving samples from

one index set to the next until the new data sample is correctly placed. An elaboration on

how ∆αc value is generated and R matrix is updated is given in the following subsections.

3.3.2.1 Find suitable ∆αc

Equation (3.17) and Equation (3.19) holds only when samples belonging to S remain un-

changed. As a result, ∆αc is adjusted to a potentially huge number, either keeping S

unchanged or terminating the algorithm. It is crucial to identify the direction in which

the sample is moving before assessing all of the possible motions. The sample is an-

ticipated to advance in the opposite direction of g(xc) until it reaches the margin |ε|:

sign(∆αc) = sign(−g(xc)) for learning purposes. To determine a bound on ∆αc im-

posed by each sample ∈ T , we consider different directions of the movement of samples

Lc1, Lc2, LiS, LiE and LiR.

1. Lc1: Determines the distance between xc and |ε|, then adds xc to S and terminates

47

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

the algorithm.

2. Lc2: Determines the distance between xc and C, xc, then adds xc to E and terminates

the algorithm.

3. LiS: Determines the distance between each xi ∈ S to E or to R. The direction of

xi is based on the value of betai incurred by the direction of xc. If the distance is

negative, the sample will move in the opposite direction.

4. LiE: Determines the distance between each xi ∈ E to S. The direction of xi is

based on the value of γi incurred by the direction of xc. If the distance is negative,

the sample will move in the opposite direction.

5. LiR: determines the distance between each xi ∈ R to S.

The permitted ∆αc for each sample can be found using Equation (3.17) and Equation (3.18),

with the final ∆αc being the smallest absolute value among all possible ∆αc.

3.3.2.2 R matrix updation

R matrx used in Equation (3.17) is defined as :

R =


0 1 . . . 1

1 Qs1s1 . . . Qs1sn

...
...

1 Qsns1 . . . Qsnsn



−1

(3.20)

By adopting the approach suggested by [76], the correlated matrix R can be updated effi-

ciently. By initializing the R matrix as given in Equation (3.21), the first sample xc can be

readily inserted to S.

R =

0 1

1 Qcc

−1

=

−Qcc 1

1 0

 (3.21)

48

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

When a new sample xi is added to S, R can be updated as

R =


0

R
...

0 · · · 0

+
1

γi

β
1

[βT 1
]

(3.22)

β = -R


1

Qs1i

...

Qsni

 ; γi = Kii +


1

Qs1i

...

Qsni

 β (3.23)

When a sample k ∈ S is removed from S, R can be obtained as: Rij = Rij −R−1
kk RikRkj;

∀j; i ̸= k ∈ [0, · · · , n]

3.3.3 Modified Frank-Wolfe algorithm

Proposed modified FW algorithm generates a sequence of approximations {αk} at each

iteration k by computing optimal step-size analytically until it converges to an acceptable

accuracy ε.

It does this using following steps:

(1) A linear approximation of g(.) at current iteration αk is performed to find the largest

coordinate i∗ and smallest coordinate j∗ of the gradient g(αk).

Let vi denote the ith vector of coordinate space. Then, vi∗ is the ascent vertex and vj∗ is the

descent vertex.

Toward direction: (vi∗ − αk); Away direction: (αk − vj∗)

(2) Each iteration αk moves the current solution in the direction (Towards or Away) seek-

ing for the best feasible improvement of the objective function.

(3) Use a search direction to update the next iteration (αk+1) which is obtained by super-

imposing the above two steps.

αk+1 =
1

2
(αk + λ(vi∗ − αk)) +

1

2
(αk + λ(αk − vj∗)) (3.24)

49

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

Where λ is the step-size determined by line-search. The term λαk vanishes in the sum

and only i∗ and j∗ components are updated.

αk+1 =
1
2
αk +

1
2
λvi∗ −�

��1
2
λαk + 1

2
αk +�

��1
2
λαk − 1

2
λvj∗

Simplifying the equation, the positive and negative term of λαk will be vanished.

αk+1 =
1
2
αk +

1
2
λvi∗ +

1
2
αk − 1

2
λvj∗

The sum of 1
2
αk and 1

2
αk is equal to αk

αk+1 = αk +
1
2
λvi∗ − 1

2
λvj∗

By taking out the common term 1
2
λ, we get

αk+1 = αk +
1
2
λ(vi∗ − vj∗)

Thus, the final update equation is:

αk+1 = αk + λ(vi∗ − vj∗) (3.25)

This away step not only moves the solution away from the descent vertex vj∗ , but also

moves closer to the ascent vertex vi∗ in the same iteration αk. The proposed away step

perturbs the current solution αk only locally, results in change of weights of only vi∗ and

vj∗ vertices by preserving weights all other active vertices same. Thus, away step does not

increase the weights of the vectors corresponding to descent vertices vj∗ . These vectors

may be spurious points that do not belong to the optimal solution and are eliminated from

solution space.

Within the k iterations MFW solves the Equation (3.7). When the sample size k is in-

creased, the updated approximation problem undergoes a number of additional steps. k

can be increased in online learning as long as new samples are available. If the new train-

ing sample (xc, yc) can offer a better feasible direction than any of the previous samples

in S(k) in the following kth iteration, it is chosen to be included in the new working set

S(k + 1). Otherwise, for updating α and g(α), the best old sample within S(k) will be

chosen, and S(k + 1) will remain the same as S(k). As a result, the working set’s num-

ber of indices is |S(k)|≤ k, and α(k) has at most k nonzero items. The search direction

dk = (vi∗ − vj∗) begins at the current solution α(k) and points to one of the unit simplex

vertices. We can calculate the step-size analytically once the optimal vertex has been de-

50

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

termined as: αk+1 = αk + λ(vi∗ − vj∗). As a result, the number of iterations required to

achieve the necessary convergence is limited by O(1
ε
), which is independent of the number

of training samples.

A step by step procedure of above proposed method for classification and prediction

estimation problems is given in Algorithm 5.1, which is a variant of classical SVM trained

by incremental learning and optimized with modified FW method.

Algorithm 3.1 : Kernel SVM-MFW
Input: Dataset X , ε, C, K(xi, x), R
Output: αi, b,R
Initialization: b = 0, S = 0, E = 0, R = 0, αc = 0

1: f(xc)←− αcK(xi, x) + b
2: g(xj)←− f(xj)− yi
3: if g(xj) ≤ |ε| then
4: R←− (xj , yj);
5: end if
6: repeat
7: ∆β = −R ·Qic Q is a positive definite Kernel matrix
8: ∆γ = Qšc+Qši·β Š is a non S set; Š ∈ E ∪R; Š = {š1, š2, · · · , šn}
9: ∆αc = min(Lc1, Lc2, LiS,LiE,LiR)

10: if ∆αc == Lc1 then
11: S ←− (xc, yc)
12: R = R + 1

γi
ββT

13: else if ∆αc == Lc2 then
14: E ←− (xc, yc)
15: else if ∆αc == LiS then
16: if αi == 0 then
17: R←− (xi, yi) ∈ S
18: Rij = Rij − R−1

kk RikRkj ; k ∈ S
19: else if αi == C then
20: E ←− (xi, yi) ∈ S
21: Rij = Rij − R−1

kk RikRkj ; k ∈ S
22: end if
23: else if |g(xi)|== ε then
24: S ←− (xi, yi) ∈ E
25: R = R + 1

γi
ββT

26: else if |g(xi)|== ε then
27: S ←− (xi, yi) ∈ R
28: R = R + 1

γi
ββT

29: end if
30: until (xc, yc) satisfies KKT condition

51

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

3.4 Data used for experiments

Experiments were conducted on Parkinson’s disease dataset which was taken from the

PPMI repository (http://www.ppmi-info.org/data). dataset contains n =600

subjects of 195 healthy controls (HC) and 405 early PD subjects. A total of eleven discrim-

inative features were used, out of which two predictors’ description is given in Table 3.1

and Table 3.2 describes remaining nine predictors.

Table 3.1: Demographic data of study participants

Case(n=600)
Gender Family History

Female Male Yes No
Healthy Control (195) 65 130 10 185
Early PD (405) 141 264 98 307

Table 3.2: Mean and standard deviation of discriminative features of Age, MDS-UPDRS,
MoCA, TD score, PIGD score, SBR values for left caudate(LtCd.SBR) and right cau-
date(RtCd.SBR), SBR values for left putamen(LtPt.SBR) and right putamen(RtPt.SBR).

Case(n = 600) Age MDS-UPDRS MoCA TD score PIGD score LtCd.SBR RtCd.SBR LtPt.SBR RtPt.SBR
HC 60.8±11.2 4.6±4.4 28.0±1.3 0±0 0±0 2.96± 0.6 2.93±0.5 2.12±0.5 2.12±0.5
Early PD 61.6±9.7 31.9±13.0 27.1±2.3 0.47±0.4 0.25±0.2 1.98±0.5 1.98±0.5 0.80±0.3 0.84±0.3

3.5 Experiments and Results

Data samples of n=600 with eleven predictors were used in the implementation of pro-

posed SVM-MFW method. The dataset is divided into training and testing portions and is

standardised to balance the influence of each feature. The model’s hyper-parameters are

optimized using a 10-fold grid search cross validation procedure. Leave-one-out cross val-

idation (LOOCV) is used to assess the model’s generalization performance. LOOCV takes

a single sample of data for testing analysis and the rest is used for training. This procedure

is carried out for each sample in the data set. Finally, the classification measures like ac-

curacy, sensitivity and specificity, are estimated for the model. We also calculated a binary

cross-entropy as a measure for predictive accuracy. Cross-entropy is a loss function used as

measure for classification, whereas MSE and R2 used for regression problems generally. As

52

(http://www.ppmi-info.org/data)

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

the proposed algorithm follows binomial distribution, it is good idea to use cross-entropy

rather than MSE and R2. Binary cross-entropy is given by E=−y(log(p)+(1−y)log(1−p))

where y is class label, y ∈ (EarlyPD = −1, Healthy = +1) and p is the predicted prob-

ability of sample being early PD. For each sample being early PD (y=-1), it adds log(p(y))

to the loss (log(p(y)) is the log probability of sample being early PD. Conversely, for each

sample being Healthy (y=+1), it adds log(1-p(y)) (log(1-p(y)) is the log probability of sam-

ple being Healthy. For implementation of proposed algorithm, we set optimal hyper param-

eter values as ε = 2e−5, C = 10 and Te(tolerance-error) = 1e−6. All runs of the proposed

and existing models were performed on a computer with 3.40 GHz Intel i7 2600 CPU and

8 GB RAM using MATLAB 2017a.

The developed SVM-MFW is used with various kernels such as linear, polynomial, sig-

moid, radial basis (RBF), and logistic functions to exhibit margin variations in classifying

the data. We compared our work with the classical SVM over the same data with the above-

mentioned kernels to validate the model’s efficacy. The contour plots from Figure 3.3 to

Figure 3.7 shows the comparison between the classical and proposed SVM-MFW. To ex-

plain further, the proposed algorithm minimizes the classification error by maximizing the

ε-insensitivity zone and produces sparser representation of support vectors. The proposed

model also provides class posterior probabilities for the early PD outcome and the con-

tour divides the feature space into disjoint prediction regions which can assess the stage

of pathology as shown in the Figure 3.3 to Figure 3.7. When compared to classical SVM,

the SVM-MFW model has achieved significant margin distance (dotted lines) between two

classes of data for different kernels, as well as a drastic reduction in the number of error

vectors (black). At the same time, when compared to other kernels, the SVM-MFW with

RBF kernel has shown a broad margin distribution with low error as given in Figure 3.3,

Figure 3.4, Figure 3.6 and Figure 3.7. Despite the fact that the sigmoid kernel produces

a huge margin distribution, the number of error vectors is much higher, as shown in Fig-

ure 3.6. As a result of the foregoing discussion, it can be concluded that the proposed

models’ performance in classifying the dataset is much superior and improves generalisa-

tion capabilities when compared to classical SVM.

53

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

SVM-MFWLinear SVM Linear

Figure 3.3: Contour plots showing the class separation of data using proposed SVM-MFW
model in Figure(a) and classical SVM in Figure(b) along with predicted regions using
Linear kernel. SV=support vectors and EV=error vectors.

SVM-MFW Polynomial 4 SVM Polynomial 4

 (a) (b)

Figure 3.4: Contour plots showing the class separation of data using proposed SVM-MFW
model in Figure(a) and classical SVM in Figure(b) along with predicted regions using
polynomial kernel with degree 4. SV=support vectors and EV=error vectors.

54

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

SVM-MFW RBF SVM RBF

 (a) (b)

Figure 3.5: Contour plots showing the class separation of data using proposed SVM-MFW
model in Figure(a) and classical SVM in Figure(b) along with predicted regions using RBF
kernel. SV=support vectors and EV=error vectors.

SVM-MFWSigmoid SVM Sigmoid

 (a) (b)

Figure 3.6: Contour plots showing the class separation of data using proposed SVM-MFW
model in Figure(a) and classical SVM in Figure(b) along with predicted regions using
sigmoid kernel. SV=support vectors and EV=error vectors.

55

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

SVM-MFWLogistic SVM Logistic

 (a) (b)

Figure 3.7: Contour plots showing the class separation of data using proposed SVM-MFW
model in Figure(a) and classical SVM in Figure(b) along with predicted regions using
logistic kernel. SV=support vectors and EV=error vectors.

The line plot of cross-entropy values versus number of iterations for different kernels to

validate the prediction accuracy has shown in the Figure 3.8, which exhibits the line plot of

cross-entropy values versus number of iterations for different kernels. When compared to

classical SVM, the proposed technique achieves low cross-entropy values for each kernel.

Thus, we may deduce from Figure 3.8 that our algorithm has a greater goodness of fit.

Table 3.3: Confusion matrix values and performance measures for the SVM-MFW and
classical SVM with different kernels

Kernal Model Accu(%) Sensi(%) Speci(%) CPUtime(s) Cross− entropy
Linear SVM-MFW 98.00 98.89 96.01 1.78 0.106

SVM 93.67 94.69 91.68 2.12 0.162
Polynomial4 SVM-MFW 98.10 98.29 96.90 4.27 0.178

SVM 92.70 94.20 90.40 5.61 0.231
Sigmoid SVM-MFW 98.28 98.71 96.95 3.68 0.321

SVM 94.70 95.02 93.92 3.92 0.420
RBF SVM-MFW 98.30 98.51 97.90 2.32 0.134

SVM 94.48 95.02 92.88 2.56 0.230
Logistic SVM-MFW 98.10 98.52 97.33 3.43 0.183

SVM 94.31 96.37 91.76 3.71 0.272

To show the effectiveness of the proposed algorithm in terms of computation time,

56

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

(a)

(c)

(e)

(b)

(d)

Figure 3.8: The binary cross-entropy of SVM-MFW and SVM algorithms with different
kernels were compared. The line plot comparison is shown in Figure(a,b,c,d,e).

57

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

Table 3.4: Results of classification accuracy and CPU time for the SVM-MFW and existing
classical ML techniques

Method Accu (%) Sensi (%) Speci (%) CPUtime(s)
MLR 94.03 96.01 91.52 2.13
NN 96.09 97.90 95.08 3.68
K-NN 95.81 96.95 92.68 3.71
SVM 94.56 95.32 92.81 2.57
proposed SVM-MFW 98.30 98.51 97.90 2.32

we perform experiments on same dataset using proposed model and classical SVM and

provide the comparison of the two algorithms based on CPU time given in Figure 3.9.

The proposed model with incremental learning and accelerated convergence using MFW

technique significantly reduced the computation time when compared with non incremental

classical SVM. From Figure 3.9, it is observed that SVM-MFW consumes less iteration

time when compared to classical SVM in each of the kernels used.

CPU time comparison

X 10 3

Figure 3.9: CPU time comparison of SVM-MFW and classical SVM with various kernels
used in the model building

The confusion matrix values and performance measures for the proposed SVM-MFW

and classical SVM algorithms with linear, polynomial of order 4, sigmoid, RBF, and Logis-

tic kernels are summarised in Table 3.3. According to the Table 3.3, SVM-MFW has a high

58

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

classification accuracy of 98.3%, compared to 94.4% for classical SVM using RBF kernel.

The validation of proposed algorithm with RBF kernel is shown in Table 5.2. The model

correctly classified 191 healthy controls out of 195 and 399 early PD patients out of 405,

while it misclassified 4 healthy controls as early PD group and 6 early PD group as healthy

controls. The optimal classification accuracy of 98.3% is achieved using RBF kernel. From

above analysis, we can find that the proposed model with selected discriminative features

has improved the performance of PD diagnosis in terms of accuracy and computation time.

Table 3.5: Confusion matrix of SVM-MFW with RBF kernel

Actual group
Predicted group

Healthy PD % Accuracy
Healthy 191 4 97.9
Early PD 6 399 98.5
Overall % 98.3

The present work is also compared with other classical ML algorithms like basic NN,

K-NN and LR in terms of classification accuracy and computation time. We apply these

techniques on the same dataset and results are presented in Table 3.4. We applied Wilcoxon

Signed-Rank Test [77] to assess the statistical significance of the accuracies obtained by

these algorithms against accuracy of the proposed work. The obtained accuracies are sim-

ilar to some extent but are statistically significant with ρ < 0.05. It can be observed from

Table 3.4 that the proposed algorithm gives better results in comparison with the classical

ML techniques.

3.6 Summary

In the present work, we proposed a new technique called SVM-MFW using incremental

version of SVM incorporated with modified Frank-Wolfe method. The proposed model

used the away step methodology to speed up the training process with less number of it-

erations and converges faster to an acceptable accuracy, thereby reducing the overall com-

putation time of algorithm. The present work is also validated on classification accura-

cies and computational time against other state-of-the-art techniques. It is shown that the

59

CHAPTER 3. INCREMENTAL SUPPORT VECTOR MACHINES OPTIMIZED WITH MODIFIED FRANK-WOLFE ALGORITHM (SVM-MFW)

SVM-MFW algorithm comparatively achieves better performance (98.3% accuracy) in less

amount of time than its counterparts. Therefore, we state that our model can solve classifi-

cation and prediction problems in less computational time over incremental datasets.

60

Chapter 4

ε-Support vector regression optimized

with Large Margin Distribution using

modified dual coordinate descent

strategy ε-MDSVR)

This chapter discusses the proposed ε-Support vector regression algorithm that is optimized

with the Large margin distribution (LDM) machine by employing modified dual coordinate

descent (DCD) technique to enhance the performance. The chapter introduces the support

vector regression (SVR) in brief and describes the concept of optimization of margin dis-

tribution to address the issue of outliers. Margin distribution is implemented by modified

DCD technique to increase the learning speed of algorithm. Experimental results on four

benchmark UCI datasets revealed the effectiveness of the proposed model against the clas-

sical SVR.

The main contributions of this chapter are described below:

• The proposed ε-MDSVR model attempts to make full use of the training set to avoid

over-fitting while also minimizing scattering of the data in ε-tube simultaneously.

• By improving the margin distribution, the model obtains higher generalization per-

formance..

61

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

• This margin distribution is characterized by the mean and variance.

• Proposed algorithm maximizes the mean by considering the distance between the

data points nearer to the margin and later attempts to minimize the margin variance.

This can be done by employing Dual coordinate descent method (DCD).

• The modified DCD method orderly updates one variable at a time. The variable is

selected for updation such that if it possibly derives the maximum optimization in

objective function value. This strategy can increase the learning speed and improve

the generalization performance.

• The model is experimented on four popular UCI datasets and validated in terms of

Mean square error (MSE), coefficient of regression (R2) and CPU time using Linear

and RBF kernels.

4.1 Introduction

SVM is popular in classification problems and can be used for regression estimation as

well. The soft margin SVM enabled its use in estimating the relationships between data

values, this technique is known as ε-SVR. Maximum margin is the fundamental issue of

SVMs. SVM considers a single point margin optimization. The function f(x) will not

change by adding a new sample (xi, yi) as long as f(xi) does not deviate more than ε

margin from yi, moreover, deviations are penalized. ε-SVR are harmed by the amount of

data in the hyper plane, they are weak for non-significant deviants. If the data distribution

within the ε-tube differs significantly from the direction of the support vectors (outliers),

the final fitting function may be inconsistent with the real data distribution and ineffective.

ε-SVR is not very robust to the outliers, For determining the predictive curve, SVR model

completely disregards all data points that fall within the ε-tube. This method sparsifies the

SVR model but does not reduce scatter inside the ε-tube. Aside from sparsity, we also need

to reduce the scatter of data points within the ε-tube.

62

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

According to recent theoretical findings, the margin distribution, rather than a single

point margin, is a viable technique to address outliers and hence improve SVR generali-

sation performance. Thus, the Large margin distribution (LDM) is proved to be essential

to boost the generalization performance of SVR. [37, 38]. By concurrently increasing the

margin mean and lowering the margin variance, the margin distribution can be optimized.

The learning speed of Margin distribution can be increased by employing the dual coor-

dinate descent (DCD) technique for kernel SVM [37]. The DCD algorithm can solve the

QP of SVM by sequentially optimizing one variable in sub-problems of SVM. It primarily

comprises of outer and inner iterations, with each outer iteration including n samples of

inner iteration. At each inner iteration, the DCD algorithm updates all SVM variables in

a systematic manner. By tackling the sub-problems in a random order at each outer itera-

tion, the DCD can enhance the SVM learning speed. However, because this fundamental

random update technique of variables one by one frequently fails to achieve an effective

decrease in the SVM’s objective value, learning pace is slowed.

To address the issue of blindfolded update of variables in the basic DCD, we proposed a

modified DCD algorithm to increase the learning speed of SVR further. The modified DCD

technique updates one variable in a sub-problem in an orderly manner, with this variable be-

ing chosen if it is likely to result in the greatest decrease in the objective value. That is, for

each iteration, a variable is chosen that may result in the greatest drop in the objective value,

thereby getting the solution closer to its optimum. In comparison to the standard DCD al-

gorithm, this modified DCD technique not only effectively addresses the issue of tedious

update in iterations, but also provides a simpler formulation. This proposed ε-MDSVR al-

gorithm technique can concurrently boost learning speed and generalization performance.

Experimental results show that the proposed ε-MDSVR approach achieves greater fitting

quality and numerical convergence than the classical ε-SVR algorithm. Therefore, the

proposed work can have a trade-off between computational complexity and generalization

performance.

The rest of the content of this chapter is organized as follows. Section 4.2 presents the

63

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

basic equations used to derive the proposed model. Implementation details of the proposed

algorithm are described in Section 4.3. Experiment results and validation of the proposed

model and its behaviour against other recent existing research is discussed in Section 4.4.

Chapter is summarised in section 4.5.

4.2 Preliminaries

This section gives the basic equations of Large margin distribution machines and its opti-

mization. We also describe the dual coordinate descent strategy.

4.2.1 Large margin distribution SVM

SVM works on the principle of increasing the minimum width of the margin i.e., minimum

distance from the training points to the separating hyperplane. SVM tries to minimize the

residual of the ith data point. The LDM model proposed by [37, 38] revealed that margin

distribution, rather than a single-point margin, is more important for SVM generalization

performance. The goal function of SVM may be tuned for margin distribution by increasing

the margin mean and decreasing the margin variance. Let X be the matrix with column

vectors X = [ϕ(xi), · · · , ϕ(xn)] and let y = [yi, · · · , yn]T , then the objective function of

SVM is f(x) = w.ϕ(x). The geometric margin is the minimum width between instances

to the separating hyperplane. For classification it is given as: yi(w·ϕ(xi)+b)
∥w∥ . For Regression

it is given as: |w·ϕ(xi)−yi|
∥w∥ . The functional margin for the ith data point in classification is:

ui = yi(w · ϕ(xi) + b); In regression, γ = (w.ϕ(xi)− yi);

In SVM, the margin of a training instance (xi, yi) is given by

γi = yiw
Tϕ(xi), i = 1, · · · , n. (4.1)

According to Equation (4.1), the margin mean is

γ̄ =
1

n

n∑
i=1

yiw
Tϕ(xi) =

1

n
(Xy)Tw, (4.2)

64

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

and the margin variance is

γ̃ =
1

n2

n∑
i,j=1

(yiw
Tϕ(xi)− yjw

Tϕ(xj))
2 =

2

n2
(nwTXXTw − wTXyyTXTw) (4.3)

The linear LDM model discoveres the separating hyperplane f(x) = 0 by solving the

following optimization problem:

min
w,ξ

1

2
wTw + λ1γ̄ − λ2γ̃ + C

n∑
i=1

ξi

subject to,

yi
(
wTxi

)
≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , n.

(4.4)

The parameter λi is used to achieve a trade-off between the mean of functional margin and

model complexity. The positive parameters λ1 and λ2 are used to trade off the margin mean

and variance. When λ1 and λ2 are equal to zero, the LDM formulation becomes SVM.

4.2.2 Dual coordinate descent technique

The dual coordinate descent (DCD) technique resolves the dual issue of SVR by minimis-

ing chunks of sub-problems in a random order of inner iterations. At each iteration l, the

DCD algorithm starts with an initial approximation, let α(0) ∈ Rn, and generates a succes-

sion of approximations
{
α(l), l ⩾ 0

}
. It consists of outer and inner iterations, and updates

α(l) to α(l+1) at each outer iteration which simultaneously updates α1, . . . , αn at each inner

iterations of n. Thus, the following vectors are generated at each outer iteration.

α(l),i ∈ Rn, i = 1, . . . , n+ 1, s.t

α(l),1 = αl, α(l),n+1 = α(l+1),

α(l)i =
[
α
(l+1)
1 ; . . . ;α

(l+1)
i−1 ;α

(l)
i , . . . ;α

(l)
n

]
, i = 1, · · · , n.

For updating α(l),1 to α(l),i+1, the DCD algorithm solves the following one variable sub-

problem as:

min
λ

f
(
α(l),i + λεi

)
s.t. 0 ⩽ α

(l)
i + λ ⩽ C, εi = [0; . . . ; 1; . . . ; 0] (4.5)

65

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

The objective function of Equation (4.5) is a simple quadratic function of λ :

f
(
α(l),i + λεi

)
=

1

2
Qi̇iλ

2 +∇if
(
α(l),i

)
λ+ constant (4.6)

where∇if is the ith component of the gradient∇f , which is defined as:

∇if(α) = (Qα)i − ei = α⊤Qi − ei =
∑n

j=1Qijαj − ei.

Qi is the ith column of Q. It can be seen that Equation (4.5) has an optimum at λ = 0, i.e.,

αi is not required to update if ∇p
i f
(
α(l),i

)
= 0, where ∇p

i f(α) is the projected gradient.

The same can be represented in following Equation (4.7)

∇p
i f(α) =


min (∇if(α), 0) , if αi = 0

max (∇if(α), 0) , if αi = C

∇if(α), otherwise

(4.7)

If ∇p
1f
(
α(l),i

)
= 0 holds, we move to the next index of (i + 1) without updating α(l).

Otherwise, the solution of Equation (4.5) can be given in Equation (4.8).

α
(l),i+1
i = min

(
max

(
α
(l),i
i −

∇if
(
α(l),i

)
Qii

, 0

)
, C

)
(4.8)

4.3 Proposed ε-MDSVR

The ε-SVR tries to reduce the ε-insensitive loss function, which overlooks error points up

to ε. Support vectors are locations on the fitting boundary curves of f(x) + ε, f(x) − ε,

and outside the ε-insensitive zone that will be used to create the final regressor. To achieve

sparsity, sample points inside the boundary curve were omitted, however this also leads

ε-SVR to lose the information contained in the training set. Outliers that are meant to

be beyond the ε-insensitive zone have an effect on the regressor curve’s orientation and

position, leading to over-fitting. As a result, the ε-SVR model performs poorly on noisy

datasets. Rather than only maximizing the minimal margin, the proposed ε-MDSVR model

optimizes the margin mean while minimising the margin variance. In the building of the

66

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

regressor curve, the suggested model assigns certain weights to the points that are inside

the ε-insensitive zone. As a result of this method, the proposed model is insensitive to noisy

data samples (outliers) and so avoids the problem of over-fitting.

4.3.1 Large margin distribution SVR

ε-SVR formulation:

min
w,ξ,ξ∗

1

2
∥w∥2+C

n∑
i=1

(ξi + ξ∗i)

s.t. yi − w · ϕ (xi)− b ≤ ε+ ξi,

w · ϕ (xi) + b− yi ≤ ε+ ξ∗i , ξi, ξ
∗
i ≥ 0, i = 1, 2, . . . , n

(4.9)

To measure the empirical risk, it uses the ε-insensitive loss function.

Rε
emp = 1

n

n∑
i=1

|yi − f (xi)|ε, where |yi − f (xi)|ε = max (0, |yi − f (xi)| − ε).

ε-SVR model minimizes the ε-insensitive loss function with a regularization term 1
2
∥w∥2

in its optimization problem.

The functional margin in Support vector regression can be described as a difference

between the real values and estimated values of objective function. The mean of functional

margin in regression is: γ̌ = 1
n
(w.ϕ(xi)− yi)

2

γ̌ =
1

n

n∑
i=1

(w.ϕ (xi)− yi)
2 =

1

n

(
wTϕ(X)ϕ(X)Tw − 2(ϕ(X)Y)Tw + Y Y T

)
(4.10)

where ϕ(X) = [ϕ (x1) , . . . , ϕ (xn)] and ϕ(X)ϕ(X)T =
∑n

i=1 ϕ (xi)ϕ (xi)

Let f(x) = wTx+ b, where w ∈ Rn, the proposed LDM minimizes the following generalized

loss function of SVR along with the regularization term, k > 0 and C > 0.

min Rf
emp =

k

2

n∑
i=1

(yi − f (xi))
2 + C ·

n∑
i=1

|yi − f (xi)|ϵ (4.11)

By introducing the regularization term 1
2∥w∥

2 and slack variables ξi and ξ∗i , the primal form of

67

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

above equation is:

min
wb,ξ1,ξ2

c

2
∥w∥2+k

2

n∑
i=1

(yi − (w · ϕ(xi) + b))2 + C
n∑

i=1

(ξi + ξ∗i) (4.12)

s.t. yi − (w · ϕ(xi) + b) ≤ ϵ+ ξi; (w · ϕ(xi) + b)− yi ≤ ϵ+ ξ∗i ; ξi, ξ
∗
i ≥ 0.

where C, k, ϵ and c are user-defined parameters with positive values. The proposed ε-MDSVR

model minimizes three terms in its optimization problem:

1. 1
2w

Tw makes the regressor as flat as possible.

2.
∑l

i=1(yi − f(xi))
2 minimizes the scattering of the data points.

3.
∑l

i=1|yi − f (xi) | produces required sparsity.

These three elements in the objective function are suitably traded off to make full use of the training

set while avoiding model over-fitting at the same time.

When k = 0, the primal problem of proposed ε-MDSVR model in Equation (4.12) simplifies to

primal problem of ε-SVR as in Equation (4.9). Also, when C becomes zero in the primal problem

of the proposed ε-MDSVR formulation in Equation (4.12), the variables ξi, ξ
∗
i ≥ 0 are no more

minimized in Equation (4.12) and hence can take any values. As a result, the optimization prob-

lem’s constraints are meaningless because they are always satisfied for any choice of (w, b). So

with C = 0, the proposed model only minimizes c
2∥w∥

2+k
2

∑n
i=1(yi − (w · ϕ(xi) + b))2 in its

optimization problem. By deriving the equivalent dual problem, the answer to the primal problem

in Equation (4.12) can be discovered. The primal form of Equation (4.12) can be turned into a dual

formulation with Lagrange multipliers using the suggestions of [16] and the optimal solution of w

in [37] as follows:

L(α, α∗, β, β∗) =
c

2
vI0v +

k

2
(Y −Hv)T(Y −Hv)

+ C

n∑
i=1

(ξi + ξ∗i)−
n∑

i=1

(βiξi + β∗
i ξ

∗
i)

−
n∑

i=1

αi(ϵ+ ξi − yi +Hv)−
n∑

i=1

α∗
i (ϵ+ ξ∗i + yi −Hv)

(4.13)

where H = ϕ(X)Tϕ(X) and v =

 w

b

, then ∥w∥2 can be written as ∥w∥2= vTI0v, where I0 = I 0

0 0

 and I is n× n identity matrix.

68

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

The KKT optimality conditions are given as follows:

∂L

∂v
=
(
cI0 + kHTH

)
v −HTY −HTαi +HTα∗

i = 0

∂L

∂ξi
= C − αi − βi = 0

∂L

∂ξ∗i
= C − α∗

i − βi∗ = 0

Y −Hv ≤ ϵ+ ξi, ξi ≥ 0

Hv − Y ≤ ϵ+ ξ∗i , ξ∗i ≥ 0

αi(ϵ+ ξi − yi +Hv) = 0

α∗
i (ϵ+ ξ∗i + yi −Hv) = 0,

βiξi = 0, β∗
i ξ

∗
i = 0

αi ≥ 0, α∗
i ≥ 0, βi ≥ 0, β∗

i ≥ 0.

(4.14)

Using the above KKT conditions, Equation (4.12) can be obtained as

min
αi,α∗

i

1

2
(αi − α∗

i)H
(
cI0 + kHTH

)−1
HT (αi − α∗

i)

+ Y TH
(
cI0 + kHTH

)−1
HT (αi − α∗

i)

− Y T (αi − α∗
i) + ϵ (αi + α∗

i)

subject to,

0 ≤ αi ≤ C

0 ≤ α∗
i ≤ C.

(4.15)

After obtaining the optimal value of the α and α∗ from Equation (4.15), we can obtain v using

Equation (4.14) as:

v =

 w

b

 =
(
cI0 + kHTH

)−1
HT (α− α∗ + Y).

Thus, for the given x ∈ Rn, the estimated regressor is obtained as in Equation (4.16)

f(x) =
n∑

i=1

(αi − α∗
i)K (xi, x) (4.16)

By establishing a fair trade-off between the insensitive loss function and the quadratic loss

function via the user-defined parameters c, k, and C, the Proposed ε-MDSVR model achieves higher

69

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

generalisation ability. To solve Equation (4.15), we use a modified DCD approach. As explained

in the following section, the proposed DCD technique constantly selects one variable for reduction

and keeps the others as constants at each iteration.

4.3.2 Modified DCD

The modified DCD method orderly updates one variable at each iteration from a set of sub-problems.

The variable is chosen if it has the greatest potential for lowering the objective value. That is, for

each iteration, a variable is chosen that may result in the greatest drop in the objective value, thereby

getting the solution closer to its optimum. This strategy not only effectively overcomes the issue of

possible spurious update in the iterations but also gives simpler formulation compared to the basic

DCD algorithm. This proposed ε-MDSVR algorithm strategy can increase the learning speed and

improve the generalization performance.

Let the dual form of SVR can be represented as:

min
α

f(α) =
1

2
α⊤Qα− eTα s.t. 0 ⩽ αi ⩽ C, i = 1, . . . , n. (4.17)

where Q is a matrix with Qij = yiyjx
T
i xj , and e is a n dimensional vector. e = [1; . . . ; 1].

Let the initial solution be represented as:

f(0) = 1
2 αTQα − eTα. The improved DCD analyses only one component of α that needs to be

updated at each iteration, rather than any outer or inner iteration. The index αL → αL + λ, L ∈

{1, . . . , n} is to be updated at each iteration.

f(λ) =
1

2
(αL + λ)2QLL +

1

2
αT
NQNNαN + (αL + λ)α⊤

NQNL − eL (αL + λ)− eTNαN

= f(0) +
1

2
λ2QLL − λ

(
eL − α⊤

NQNL −QLLαL

)
= f(0) +

1

2
λ2QLL − λ

(
eL − α⊤Q.,L

)
(4.18)

where N is the index set {1, . . . , n}\{L} and Q.,L is the Lth column of Q.

The derivation of λ can be given as:

df(λ)

dλ
= 0⇒ λ =

eL − αTQ.,L

QLL
, (4.19)

70

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

f(λ) = f(0)−
(
eL − αTQ.,L

)2
2QLL

(4.20)

The objective decrease will now be approximately largest if we maximize
(
eL − αTQ.,L

)2
/QLL,

which chooses the L index as:

L = arg max
1≤i≤n

{(
ei −αTQ.,i

)2
Qii

}
. (4.21)

Therefore, we have a simple update αnew
L = αL + λ with maximum possible decrease in objective

function. To reduce the λ value such that 0 ⩽ αnew
L ⩽ C, we adjust the L index as:

L = argmax
i∈A

{(
ei −αTQ.,i

)2
Qii

}
, (4.22)

where the index set A is:

A =

{
i : αi > 0 if

ei −αTQ.,i

Qii
< 0 or αi < C if

ei −αTQ.,i

Qii
> 0

}
(4.23)

Finally, the above formulations demonstrate that there exists not only maximization in minimum

margin but also an optimization in the margin distribution concurrently to obtain a superior trade-

off between the distribution of the entire training data and the distribution of support vectors. To

validate the performance of this algorithm we used popular matrices of MSE and R2. Experimental

results on benchmark datasets show that the proposed ε-MDSVR algorithm obtains better prediction

accuracy with faster numerical convergence than the ε-SVR algorithm. Therefore, the proposed

work can have a trade-off between sparsity and scatter minimization.

4.4 Experiments and Results

This section gives the detailed experimental study of the proposed method to show the effectiveness

in terms of popular regression metrics and computation time over four benchmark datasets. The

results are compared with other standard regression techniques to assess the fit quality.

71

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

4.4.1 Experimental setup

To evaluate the model, experiments are performed on four benchmark datasets taken from UCI

repository [78]. Table 4.1 presents the number of samples and their attributes for each dataset used

in the present work. The moderate size of datasets varies from 392 to 1030 samples. To balance the

influence of each characteristic, all training and target set features are normalised. We divide the data

into training and testing sets by 5−fold cross-validation during the regression model development,

and the experiments are repeated from 100 to 1000 times. To validate the proposed ε-MDSVR, the

widely used performance metrics are evaluated along with computation time using Linear and RBF

kernel . The same results are compared and tested with the ϵ-SVR, Linear regression (LinReg) and

Logistic Regression (LogReg) techniques also. The parameter, ϵ of the strict restoration adjustment

is fixed at 0.1. The value C is fixed at 100, in all the experiments. The proposed algorithm is run on

a 3.4 GHz Intel Core i7 2600 CPU with 8 GB RAM using MATLAB 9.2 platform.

Table 4.1: Benchmark datasets used in the present study

Dataset Samples Attributes
Auto MPG 392 7
Forest Fires 517 12
Energy Efficiency 768 8
Concrete Compressive Strength 1030 8

4.4.2 Performance evaluation

Mean square error (MSE) and the coefficient of determination (R2) are the two popular metrics

used for evaluating regression models. MSE in Equation (4.24) is defined as the average of squares

of the errors that is used to check how close estimate values are to the actual values. The lower the

MSE value, the better the model’s forecasting performance. The R2 in Equation (4.25) is calculated

by dividing the sum of squares of residuals from the regression model by the total sum of squares

of errors from the average model and then subtracting it from 1. The R2, which ranges from 0 to 1,

is a metric that can be used to assess the accuracy of predictions based on real data. The higher the

R2 value, the better the fit of the observations.

MSE =
1

n

n∑
i=1

(
X̂i −Xi

)2
(4.24)

72

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

R2 =

n

n∑
i=1

X̂iXi −
n∑

i=1

X̂i

n∑
i=1

Xi√√√√√
n

n∑
i=1

X̂i
2 −

(
n∑

i=1

X̂i

)2
n

n∑
i=1

Xi
2 −

(
n∑

i=1

Xi

)2


(4.25)

X̂i is the vector denoting values of n number of predictions and Xi is a vector representing n num-

ber of true values.

Figure 4.1 shows the line plot of MSE values versus number of iterations of proposed ε-MDSVR

when compared with classical techniques such as ϵ-SVR over linear and RBF kernel functions, also

with Linear and Logistic regression techniques. One can see that the proposed method has achieved

reduced error rate when compared with given techniques on four datasets. This indicates that the

ε-MDSVR works better than its counter parts. The same can be proved using Table 4.2, which sum-

marizes the average MSE values of proposed and existing algorithms on four datasets. Dataset(n/m)

indicates that dataset is having n samples and m attributes. It is observed that ε-MDSVR has given

better results on the four datasets when compared with other methods.

The coefficient of determination, R2 is used to validate the regression efficiency of algorithm.

The low value of R2 represents the weak relationship between the response y and the predictor x and

high R2 represents the strong relationship between the response y and the predictor x. Figure 4.2 de-

picts the line plot of R2 values versus number of iterations of proposed ϑ-DWLSVR when compared

with classical techniques such as ϵ-SVR over linear and RBF kernel functions, also with Linear and

Logistic regression techniques. It can be seen that the proposed ε-MDSVR comparatively achieves

higher values of R2 than other techniques, which indicates better goodness of fit. Table 4.3 lists the

average R2 values of proposed and existing algorithms on four datasets. The results prove our point

mentioned above. The average CPU time (seconds) of proposed and existing algorithms on each

data set is also compared in Figure 4.3. It can be verified that ε-MDSVR costs less time than ϵ-SVR

on most datasets and it is only slightly slower than other techniques on given datasets which can be

verified in Table 4.4. We applied Wilcoxon Signed-Rank test to assess the statistical significance

of the results obtained by proposed and existing algorithms against MSE, R2 and CPU time. The

obtained results are statistically significant with ρ < 0.05. Finally, the fitting quality of ε-MDSVR

is much better and is more competitive when compared with existing techniques.

73

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

Figure 4.1: Line plots showing the MSE versus Number of iterations of four datasets evalu-
ated using proposed ϵ-MDLSVR compared with ϵ-SVR using Linear and RBF kernels and
also with Linear Regression and Logistic Regression. Figure 2(a): Auto MPG, Figure 2(b):
Forest Fires, Figure 2(c): Energy effciency, Figure 2(d): Concrete compressive strength.

74

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

Figure 4.2: Line plots showing the R2 versus Number of iterations of four datasets eval-
uated using proposed ϵ-MDLSVR compared with ϵ-SVR using Linear and RBF kernels
and also with Linear Regression and Logistic Regression. Figure 4.2(a): Auto MPG, Fig-
ure 4.2(b): Forest Fires, Figure 4.2(c): Energy effciency, Figure 4.2(d): Concrete compres-
sive strength.

75

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

Figure 4.3: CPU time comparison between ε-MDSVR with ϵ-SVR and other Regression
techniques with Linear and RBF kernels used in the model

Table 4.2: Validation of proposed ε-MDSVR using MSE values and compared with existing
techniques such as ϵ-SVR, Linear and logistic regression.

Datasets/Algorithms
Linear Kernel RBF kernel

ε-MDSVR ε-SVR ε-MDSVR ε-SVR LinReg LogReg
Auto MPG (392/7) 0.0068 0.0103 0.0057 0.0081 0.0131 0.0116
Forest Fires (517/12) 0.0078 0.0123 0.0061 0.0101 0.0162 0.0145
Energy Efficiency (768/8) 0.0080 0.0122 0.0068 0.0107 0.0151 0.0133
Concrete compressive strength (1030/8) 0.0087 0.0133 0.0074 0.0117 0.0157 0.0145

4.5 Summary

This chapter proposed ε-MDSVR algorithm that utilizes the user-defined parameters c, k, and C,

and improves the generalisation ability by finding a fair trade-off between the insensitive loss func-

tion and the quadratic loss function. To solve the optimization problem, we use a modified DCD

approach. At each iteration, the proposed DCD technique constantly picks one variable for min-

imization while keeping the rest as constants. It chooses possibly the most effective variable to

optimize at each iteration according to the possible decrease in values of the objective function of

large margin distribution. To validate the proposed ε-MDSVR, UCI datasets are used and the per-

formance metrics are evaluated along with computation time using Linear and RBF kernel. The

76

CHAPTER 4. ε-SUPPORT VECTOR REGRESSION OPTIMIZED WITH LARGE MARGIN DISTRIBUTION USING MODIFIED DUAL COORDINATE DESCENT
STRATEGY ε-MDSVR)

Table 4.3: Validation of proposed ε-MDSVR over linear and RBF kernel using R2 values
and compared with existing techniques such as ϵ-SVR, Linear and logistic regression.

Datasets/Algorithms
Linear Kernel RBF kernel

ε-MDSVR ε-SVR ε-MDSVR ε-SVR LinReg LogReg
Auto MPG (392/7) 0.733 0.652 0.766 0.694 0.576 0.618
Forest Fires (517/12) 0.680 0.585 0.715 0.618 0.502 0.551
Energy Efficiency (768/8) 0.639 0.552 0.669 0.594 0.476 0.513
Concrete compressive strength (1030/8) 0.577 0.486 0.631 0.566 0.391 0.420

Table 4.4: Validation of proposed ε-MDSVR over linear and RBF kernel using computation
time in seconds and compared with existing techniques such as ϵ-SVR, Linear and logistic
regression.

Datasets/Algorithms
Linear Kernel RBF kernel

ε-MDSVR ε-SVR ε-MDSVR ε-SVR LinReg LogReg
Auto MPG (392/7) 1.30 1.54 1.21 1.53 1.54 1.58
Forest Fires (517/12) 1.31 1.75 1.27 1.64 1.98 1.93
Energy Efficiency (768/8) 1.44 1.88 1.38 1.76 1.99 1.97
Concrete compressive strength (1030/8) 1.90 2.38 1.91 2.41 2.32 2.24

same results are compared and tested with the ϵ-SVR, Linear regression (LinReg) and Logistic Re-

gression (LogReg) techniques also. The proposed algorithm with RBF kernel significantly achieves

better prediction accuracy with MSE=0.0074, R2=0.631 and performs well when compared to the

classical SVR and other regression techniques. The results show that the proposed model gives good

prediction accuracy and has a faster learning speed with low computational cost when compared to

classic strategies. Thus, the algorithm is suitable for large-scale problems.

77

Chapter 5

Incremental ϑ-Support vector regression

optimized with bounded estimation

functions to handle noisy datasets

The chapter details the proposed ϑ-Support vector regression algorithm (optϑ-SVR) that is used

to handle uncertain data along with distribution of data on decision curve by applying bounded

functions to adjust the number of support vectors and errors. The proposed method formulates

upper bound and lower bound functions on perturbed data. Two special adjustments to the support

vectors and penalty parameters are used to enable the model to learn incrementally. The proposed

method is implemented using Parkinson’s disease dataset taken from PPMI repository. The results

shows that the algorithm generates a more smoother regression curve and achieves better prediction

accuracy compared to classic ϑ-SVR technique.

The main contributions of Proposed work are as follows:

• ϑ-Support vector regression algorithm optimized with distance weighted strategy (DWD) to

define lower and upper bounds on perturbed data, is proposed.

• The proposed method formulates upper bound and lower bound functions on perturbed data.

• Two special adjustments to the support vectors and penalty parameters are used to enable the

model to learn incrementally.

• The model is evaluated on Parkinson’s disease dataset from PPMI repository.

78

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

• The performance measures of Mean square error (MSE), Regression Coefficient (R2) and

computation time are validated with the classical SVR.

• The results show that the proposed algorithm works better than the classical ϑ-SVR which

affects the generalization performance and computational overheads.

5.1 Introduction

Incremental learning of kernelized SVR suffers with the curse of kernelization and cannot handle

uncertain data [39]. When data is projected to high dimensional space, it is often that data is densely

distributed on the boundary. Both ε-SVR and ϑ-SVR are vulnerable to the distribution of boundary

data (support vectors). These support vectors are numerous in high dimensional space and all pile

up at boundaries of the margin. when training sets with uneven sizes are used, the resulting function

undesirably gets biased towards the majority class. Also, if the number of support vectors (SVs)

increases in each iteration of the optimization, there will be a non-linear growth of model update

time and prediction time with data size [40]. During learning, the optimization function critically

depends on width of the margin and this influences the final estimation function count on the distri-

bution of the support vectors. Recent advancement in SVM theory, however, revealed that aiming to

maximize the minimum distance between instances to the boundary does not always lead to reduced

generalisation error. But maximising the mean of the functional margin of whole data can improve

the performance effectively by employing DWD strategy [41, 42]. By maximising the mean of the

functional margin of all data, and making use of its distances to define the regression curve can

improve the performance. Inspired by the idea of distance weighted strategy (DWD), we can adjust

the bounds on support vectors of ϑ-SVR that allows the flexibility of specifying errors for uncertain

data, thus improving the performance of ϑ-SVR on uncertain data.

The proposed method formulates upper bound and lower bound functions on perturbed data

by making adjustments to the support vectors and penalty parameters which are used to enable the

model to learn incrementally. If the value of w is determined, the ranking of all data points to the

fitting surface with respect to the margin can be decided by functional margin. The proposed method

uses distance weighted discrimination to reduce the distribution of data and defines the regression

curve. To evaluate generalization performance, 10-fold cross validation is used and is implemented

79

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

using Parkinson’s disease data taken from PPMI repository. The model is evaluated on Mean square

error (MSE), Regression Coefficient (R2) and computation time using different kernels like linear,

polynomial, sigmoid, radial basis function (RBF), Logistic kernel and the results are validated with

the classical SVR. The algorithm generates a more smoother regression curve and achieves better

prediction accuracy with MSE=0.131 and R2=0.758 in less computation time of 2.26 sec, compared

to classical ϑ-SVR.

The rest of the content of this chapter is organized as follows. Section 5.2 presents the basic

equations used to derive the proposed model. Implementation details of the proposed algorithm are

described in Section 5.3. Experiment results and validation of the proposed model and its behaviour

against other recent existing research is discussed in Section 5.4. The summary of the Chapter is

given in section 5.5.

5.2 Preliminaries

The task of ML is to design a system that gives good generalization performance. This involves

searching for a required classification model over a given dataset by optimizing its objective function

on the model’s parameter space [59]. This classical search can be computationally intensive when

training data is continuously coming, as the model needs to tune hyper-parameters of the objective

function at each iteration [58]. Thus, one requires a learning paradigm that can process sequential

data in a streaming fashion. Due to the inadequate efficacy of standard easy to implement linear

algorithms, advanced non-linear time-series prediction techniques such as neural networks (NN)

and support vector machines (SVM) are introduced gradually in machine learning communities.

Amongst these, SVM gained profound attention for several reasons [79, 80]. The next section gives

the basic formulation of SVR and consequently shows how it is used to handle continuous data.

5.2.1 ϑ-SVR formulations

SVM solves regression problems using ε-insensitive loss function (ε : error deviation) generally

referred to as ε-SVR [18]. ε-SVR aims to find a function whose deviation is not more than ε,

thus forming the ε-tube, to fit all the training data. Let T = {(x1, y1), (x2, y2), · · · , (xn, yn)} be

a training set of n samples, where xi ∈ Rm are the input values and corresponding target values,

80

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

yi ∈ R. The objective function is:

f (x) = w · ϕ (x) + b (5.1)

The premise that there exists a function that approximates each data pair (xi, yi) with a suitable ε

accuracy makes this convex optimization problem viable. To regulate the number of support vectors

and errors, a parameter ϑ, (0 ≤ ϑ ≤ 1) is added to the original ε-SVR. The fraction of margin errors

and support vectors are bound by maximum and minimum value of ϑ. The objective function f (x)

of ϑ-SVR is represented by the following constrained minimization problem in Equation (5.2).

min
w,ε,ξ∗i

1

2
∥ w ∥2 +C ·

(
ϑε+

1

n

n∑
i=1

(ξi + ξ∗i)

)
(5.2)

s.t (w · ϕ (xi) + b)− yi ≤ ε+ ξi,

yi − (w · ϕ (xi) + b) ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, ε ≥ 0, i = 1, 2, · · · , n.

The penalty factor C reflects the trade-off between error and margin i.e., the optimization crite-

rion penalizes data points whose y-value differs from f(x) by more than ε. Lagrangian multipliers

with positive and non-zero of αi and α∗
i are called the support vectors (SVs). After applying La-

grangian multipliers, the final objective function f (x) is given in the following Equation (5.3).

f (x) =
n∑

i=1

(αi − α∗
i)K (xi, x) + b (5.3)

The decision functions obtained by two methods are identical if the values of parameter C are same,

and the parameter ε has a relationship with the parameter ϑ.

5.2.2 DWD learning

SVM is evaluated using a minmax optimization formulation, focusing mainly on number of SVs

i.e., samples that resides right on the separating hyperplane. However, these SVs tend to pile up

at the boundaries of margin when data is projected into higher dimensions, which diminishes the

generalization performance of SVM. Data piling and over-fitting issues in SVM can be solved by

using DWD technique [42, 47]. DWD permits a larger number of data points to have a direct

81

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

impact on the weight vector w, and it emphasises training instances that are close to the hyperplane.

DWD replaces the SVM criterion of maximising the lowest margin with one that maximises the

mean of the functional margin. By maximising the minimal margin between the training points and

the classification boundary, the SVM classifier seeks to minimise generalisation error. In an SVM

classification problem, minimizing of margin is equivalent to minimising an upper constraint on the

Vapnik–Chervonenkis (VC) dimension of the classifying hyperplane. DWD aims to maximise the

distance of every observation to the separating hyperplane by minimizing the sum of the inverse of

every residual. The functional margin in SVR can be described as a difference/adjusted distance

between the real values and estimated values of objective function.

DWD denotes the functional margin ui for the ith data point from separating hyperplane and is

given as:

ui = yi(w · ϕ(xi) + b) (5.4)

Let ri be the adjusted distance of the ith data point to the separating hyperplane by allowing some

error vector ζi which is given as

ri = yi(w · ϕ(xi) + b) + ξi (5.5)

Therefore, the solution of DWD will be

min
w,b,ξi

n∑
i=1

(
1

ri
+ Cξi) (5.6)

s.t ri ≥ 0, ξi ≥ 0, ∥ w ∥2≤ 1, i = 1, · · · , n.

When ξi = 0 and yi(w · ϕ(xi) + b) > 0, ri = yi(w · ϕ(xi) + b), is the positive distance from each

data vector to the separating hyperplane due to Equation (5.4) and Equation (5.5). Thus,
n∑
i

1

ri

defines a different notion of gap between classes from that of SVM (2
∥w∥). If a positive distance

yi(w · ϕ(xi) + b) is not achievable for a data vector, then a positive slack variable ξi is added to

make ri positive. However, the value of ξi corresponds to the amount of misclassification for the ith

vector, and hence in order to minimize the misclassification, we must control
n∑
i

ξi in the objective

function. Using this formulation of DWD and combining it with the SVM method, the underlying

DWD loss can be obtained as follows: For each i, the term (1
ri
+ Cξi) in the objective function of

Equation (5.6) can be minimized over ξix. the optimization problem of SVM over w and b is given

82

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

as:

min
w,b

n∑
i

Vc(yi(w · ϕ(xi) + b)) s.t ∥w∥2≤ 1 (5.7)

where, DWD loss function is defined as:

VC(u) =

 2
√
C − Cu if u ≤ 1√

C

1/u otherwise.
(5.8)

The two key observations in naive SVM classification is: 1) The sum of inverse distance, (
∑

i r
−1
i)

is to be maximised to distinguish between two classes. 2) A measure of misclassification,
∑

i ξi

that is to be minimized. Distance-weighted Support Vector Machine method possesses the merits of

both SVM and the DWD and can overcome the datapiling and over-fitting issues of SVM and DWD

and it also follows faster training approach for large scale datasets [42, 47, 48].

5.3 Proposed ϑ-PSVR

ϑ-SVR uses the same SVM theory to the regression problems. As in SVM, the fitting curve is also

affected by the distribution of boundary data i.e., data piling and over-fitting issues. The proposed

method uses ϑ-SVR trained over incremental learning and optimized to handle noisy data to enhance

the performance. The proposed incremental ϑ-PSVR is designed to deal with the noisy sample

regression problems. To evaluate generalization performance, 10-fold cross validation is used.

5.3.1 ϑ-SVR on perturbed data

The proposed algorithm addresses the key issues of data piling and over-fitting effect, due to uncer-

tain data present in classical ϑ-SVR. This effects the generalization performance and computational

overheads. The proposed method formulates upper bound and lower bound functions on perturbed

data. Two special adjustments to the support vectors and penalty parameters are used to enable the

model to learn incrementally. If the value of w is determined, the ranking of all data points to the

fitting surface with respect to the margin can be decided by functional margin. To handle the input

data with noise, two bounded estimation functions f1(x) = w1.x + b1 and f2(x) = w2.x + b2 are

defined. Thus, the Regression curve is given as f(x) = 1
2 [f1(x) + f2(x)].

Let the data point be (xi, yi), where xi and yi are perturbed by noise of δi, δ̌i. Then the perturbed

data is represented as:

83

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

xi + δi, (∥δi∥≤ τ |τ > 0); yi + δ̌i = [u, v], (∥δ̌i∥≤ τ̌ |τ̌ > 0).

We get, w.ϕ(xi + δ) = (w.ϕ(xi) + w.ϕ(δ)); |w.ϕ(δ)|≤ ∥w∥.∥δ∥≤ τ∥w∥. Hence, According to

eq. (5.2), modified ϑ-SVR bounded functions are:

min
w1,b1,ξ1i

n

2
∥w1∥2 + C1

(
ϑ1b1n+

n∑
i=1

ξ1i

)
(5.9)

s.t. (w1 · ϕ (xi) + b1) + τ∥w1∥≥ u− ξ1i, ξ1i ≥ 0.

min
w2,b2,ξ2i

n

2
∥w2∥2 + C2

(
ϑ2b2n+

n∑
i=1

ξ2i

)
(5.10)

s.t. (w1 · ϕ (xi) + b2) + τ∥w2∥≥ v + ξ2i, ξ2i ≥ 0. i = 1, 2, · · · , n.

C1, C2 are penalty factors and ξ1i, ξ2i are the slack variables to measure the amount of difference

between the estimated and the target value. ϑ ∈ (0, 1) controls minimization of b1, b2 and the errors.

let Qij = 1
nK(xi, xj)= 1

n(ϕ(xi)+τ) · (ϕ(xj)+τ); then, the dual problem of eq. (5.9) can be written:

min
α

1

2

n∑
i,j=1

α1iα1j , Qij −
n∑

i=1

y1iα1i (5.11)

s.t.
n∑

i=1

α1i = C1ϑ1n, 0 ≤ α1i ≤ C1, i = 1, . . . , n.

5.3.2 Incremental learning

If a new sample (xk, yk) arrives in the training data set T, there exists an increment in the extended

training sample set say S, which can be defined as:

S = S− ∪ S+, S− = {x1i, y1i, z1i = −1}ni=1, S+ = {x1i, y1i, z1i = +1}ni=1,

zi be the label of training sample (x1i, y1i) Initially, the weights of each data point in S are set to

zero before adding new sample. If this initialization violates the KKT conditions after adding new

sample, weight adjustments will become mandatory. The incremental ϑ-SVR algorithm continu-

ously updates the weights when KKT conditions are not held for any new sample added to the T.

Thus, the dual form of the ϑ-SVR in Equation (5.11) can be further represented as:

min
α

1

2

2n∑
i,j=1

α1iα1j , Qij (5.12)

84

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

s.t.
2n∑
i=1

z1iα1i = 0,

2n∑
i=1

α1i = 2C1ϑ1n, 0 ≤ α1i ≤ C1, i = 1, . . . , 2n

Apply Lagrangian multipliers µ, ρ;

min
0≤α1i≤C1

w =
1

2

2n∑
i,j=1

α1iα1jQij + µ

(
2n∑
i=1

z1iα1i

)
+ ρ

(
2n∑
i=1

α1i − 2C1ϑ1n

)
(5.13)

first order derivative of w leads to following KKT conditions

∂w
∂µ =

2n∑
i=1

z1iα1i = 0; ∂w
∂ρ =

2n∑
i=1

α1i = 2C1ϑ1n

∀i ∈ S : h(x1i) =
∂

∂α1i
=

2n∑
j=1

(Qijα1i + z1iµ+ ρ) ;


≥ 0 if α1i = 0

= 0 if 0 < α1i < C1

≤ 0 if α1i = C1.

(5.14)

Based on h(x1i), T is partitioned into three independent sets.

SS = {i : h(x1i) = 0, 0 < αi1 < C1} vectors on the curve

SE = {i : h(x1i) ≤ 0, αi1 = C1} vectors deviated from the curve

SR = {i : h(x1i) ≥ 0, αi1 = 0} vectors covered by bounded error

The weights of new sample (xc, yc) are set to 0; αc = 0, and then αc value gradually changes at

each iteration by migrating samples from one set to another until all KKT conditions are satisfied.

The incremental relation between ∆h(x1i),∆α1i, ∆µ and ∆ρ is :

∆h(x1i) = ∑
j∈DS

Qij∆α1j −Qic∆αc + z1i∆µ+∆ρ = 0 (5.15)

∑
j∈DS

z1j∆α1j + z1c∆α1c = 0, αc is the coefficient being incremented.

The linear relationship between ∆h(x1i) and ∆αc is:

∆h(x1i) =

∑
j∈DS

βc
jQij + z1iβ

c
µ + βc

ρ +Qic

∆α1c ≡ γc1i∆α1c,∀i ∈ SS (5.16)

where, βc
j stands for dimensions corresponding to Ss matrix, βc

µ are the vectors corresponding to

SE matrix, βc
ρ are the vectors corresponding to SR matrix.

85

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

5.3.3 Optimization of ϑ-PSVR

Optimal solution of the dual minimization problem in Equation (5.12) is resolved when Q = n
n+1Q.

min
α

1

2(n+ 1)

2n∑
i,j=1

α1iα1jQij (5.17)

s.t
2n∑
i=1

α1i = 0,
2n∑
i=1

α1i = C1ϑ1n, 0 ≤ α1i ≤ C1, i = 1, · · · , 2n

The primal of the Equation (5.17) can be represented as

min
w,b,ε,ξi,ξ∗i

n+ 1

2
∥ w ∥2 +C.

(
ϑεn+

n∑
i=1

(ξi + ξ∗i)

)
(5.18)

s.t (w · ϕ (xi) + b)− yi ≤ ε+ ξi,

yi − (w · ϕ (xi) + b) ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, 2, · · · , n.

According to KKT conditions,

w =
1

n+ 1

2n∑
i=1

α1iϕ(xi) (5.19)

The functional margin of ϑ-SVR

γ = (yi − (w.ϕ(xi) + b))2, i = 1, · · · , n. (5.20)

The optimal solution w in Equation (5.19) can be rewritten by considering mean of the functional

margin is given in Equation (5.21).

w =
1

n+ 1

2n∑
i=1

(αi − α∗
i)Xi + u (5.21)

XTw = XT (X(αi − α∗
i) + u)

XTw = XTX(αi − α∗
i) i.e.,X.u = 0

XTw = G(αi − α∗
i)

wTw = (αi − α∗
i)

TXT (αi − α∗
i)X

wTw = (αi − α∗
i)

TG(αi − α∗
i)

86

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

Where, G is the kernel matrix, written in Equation (5.22)

G = XTX (5.22)

The adjusted distance between the sample point and the fitting curve is the functional margin.

After determining the value of w, the functional margin can be used to rank all sample points in

relation to the fitting surface in terms of distance.

Applying optimization technique to the minimization problem in Equation (5.18) leads to the

following solution such as,

min
w,ξ,ξ∗

1

2
∥ w ∥2 +λ1

l
(wT ·XTw − 2(XY)Tw) + Cϑεn

n∑
i=1

(ξi + ξ∗i) (5.23)

The above equation can be further represented as

min
α,ξ,ξ∗

1

2
(α− α∗)TQ(α− α∗) + P T (α− α∗) + C

n∑
i=1

(ξi + ξ∗i) (5.24)

s. t yi − (α− α∗)TGi ≤ ε+ ξi, ξi, ξ
∗
i ≥ 0, i = 1, · · · , n.

Where, Q = Qλ1, G
T G

l +G P = −2λ1G
Y
l

The Equation (5.24) can be transformed to dual form using the Lagrange multipliers β′, η′. To hold

the KKT conditions, partial derivatives w.r.to αi and ξ are set to zero.

min
β′

f(β′) =
1

2
(β′)T +

(
λ1

n
He − e

)T

β′ (5.25)

s.t 0 ≤ β′ ≤ C, i = 1, · · · , n β′ = [β, β∗]

where, H = GQ−1G Q−1 refers to the inverse matrix of Q and e stands for all-one vector. Mini-

mize βi by keeping the other βi ̸=j as constants, one needs to solve the following sub-problem,

min
t

f(β′ + tei)s.t 0 ≤ (β′ + t) ≤ C (5.26)

where ei denotes the vector with 1 in the ith coordinate and 0’s elsewhere. By considering the

f(β′ + tei) as a simple quadratic function of t and 0 ≤ (αi−α∗
i) ≤ C, the Equation (5.25) leads to

87

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

a closed-form solution, 

[▽f(β′)]k ← ϑϵk + (G(α− α∗)− yk),

if k = 1, · · · , n.

[▽f(β′)]k ← ϑϵk − (G(α− α∗)− yk−n),

if k = n+ 1, · · · , 2n.

(5.27)

β′
k ← min(max

(
β′
k −

[▽f(β′)]k
hkk

, 0

)
, Cϑk); (5.28)

According to Equation (5.28), the prediction coefficients (α−α∗) from the optimal β′
k are obtained

as:

(α− α∗) = Q−1G

(
λ1

n
+ (β − β∗)

)
(5.29)

Therefore, final fitting function can be calculated by:

f(x) =
|W · ϕ(xi)− yi |

∥ w ∥
; (5.30)

After updating the variables, re-compute the inverse matrix Ř for the next round of initial adjust-

ments.

Ř←

Ř 0

0 0

+
1

γ̄


βb′

βϵ′

βSS

1

 ·

βb′

βϵ′

βSS

1



T

(5.31)

To obtain a better trade-off between the distribution of the complete data and the distribution

of support vectors, we maximise the lowest margin while simultaneously maximising the margin

distribution. The proposed ϑ-PSVR takes into account the influence of all data on the fitting surface,

as this is more representative of the internal data distribution. A step by step procedure of above

proposed method is given in Algorithm 5.1.

88

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

Algorithm 5.1 : Kernel ϑ-PSVR
Input: Dataset X , y , λ1 , C , ε, ϑ
Output: SS , SE , SR, f(x)
Initialization: β′ = 0 , u = 0 ; (α − α∗) = 2λ1

n Q−1Gy ,A = Q−1G, hkk = eTkGQ−1Gek ,g =
n

n+1g,b′ = n
n+1b

′, ϵ′ = n
n+1ϵ

′ ,η = n
n+1η

1: for iter = 1, · · · ,MaxIter do
2: for k = 1, · · · , 2n do

3:

{
[▽f(β′)]k ← ϑϵk + (G(α− α∗)− yk); if k = 1, · · ·n.
[▽f(β′)]k ← ϑϵk − (G(α− α∗)− yk); if k = n+ 1, · · · , 2n.

4: β
′old
k ← β′

k

5: β′
k ← min(max

(
β′
k −

[▽f(β′)]k
hkk

, 0

)
, Cϑk)

6: for i = 1, · · · , n do
7: while η ̸= 1 do

8:

{
(α− α∗)← (α− α∗) + (β′

k − β
′old
k)AeK ; if k = 1, · · · , n.

(α− α∗)← (α− α∗)− (β′
k − β

′old
k)AeK ; if k = n+ 1, · · · , 2n.

9: Weight updation
10: wi = Xi(αi − α∗

i) + u
11: margin function γ
12: γ = (wi · ϕ(Xi) + b′)− yi)

2

13: fitting curve f(x)
14: f(x) = |(w · ϕ(xi)− yi)|/∥ w ∥
15: update η, g, α, b′, ε′, SS , SE , SR, Ř
16: end while
17: end for
18: end for
19: if β′ converges then break
20: end if
21: end for

89

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

5.4 Experimental Results

The proposed ϑ-PSVR method is implemented using Parkinson’s disease dataset (PD) taken from

PPMI repository (http://www.ppmi-info.org/data). Further details of data used in the

experiment are described in Section 3.4. The number of samples used in this analysis are n=600

with eleven predictors. The experiments are conducted for classification as well as for Regression.

The classification is done by using class labels as (y+1=PD, y−1=Healthy), Regression estimation is

done by considering UPDRS values of PD dataset as in Section 3.4. The optimal hyper parameters

values of the model are obtained through 10-fold grid search cross validation and the experiments

are repeated from 100 to 1000 times. For implementation of proposed algorithm, we set optimal

hyper parameter values as ε = 2e−5, C = 10 and Te(tolerance-error) = 1e−6. To evaluate gener-

alization performance of the model, LOOCV is implemented. LOOCV utilizes a single sample of

dataset for testing and rest are used for training. This process is repeated for every sample in the

data. The model is evaluated on Mean square error (MSE), Regression Coefficient (R2) and com-

putation time using different kernels like linear, polynomial, sigmoid, radial basis function (RBF),

Logistic functions and the results are validated with the classical ϑ-SVR. The proposed algorithm

is run on a 3.4 GHz Intel Core i7 2600 CPU with 8 GB RAM using MATLAB 9.2 platform.

The proposed algorithm minimizes the classification error by maximising the ε-insensitivity

zone and produces sparser representation of support vectors. The contour plots from Figure 5.1 to

Figure 5.3 shows the the class posterior probabilities of classical ϑ-SVR and proposed ϑ-PSVR. The

contour plots display the separating hyperplane (black solid line) with ε-insensitivity zone (dashed

lines). It is observed that some of the data points are placed in common space of both the margin

planes, which represent the error rate of regression depicted as ’x’ marker shape. In summary, the

hyperplane defined by w and β is an auxiliary one, useful for finding the best direction towards the

objective function with the intercept b which leads to good performance. When compared to the ϑ-

SVR model, the ϑ-PSVR model has achieved considerable margin distance (dotted lines) between

two classes of data for different kernels, and the number of error vectors (denoted by x) is drasti-

cally reduced. At the same time, when compared to other kernels, the proposed model with RBF

kernel has shown a high margin distribution with low error as given in Figure 5.1, Figure 5.2 and

Figure 5.3. As a result of the foregoing discussion, it can be concluded that the proposed ϑ-PSVR

model outperforms and improves the generalisation power of the standard ϑ-SVR in classifying the

90

(http://www.ppmi-info.org/data)

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

dataset.

Figure 5.1: Contour plots showing the class separation of data using classical ϑ-SVR model
with Linear Kernel in Figure 5.1(a) and RBF kernel in Figure 5.1(c), and proposed ϑ-PSVR
with Linear Kernel in Figure 5.1(b) and RBF Kernel in Figure 5.1(d). SV=support vectors
and EV=error vectors.

To show the effectiveness of the proposed algorithm in terms of computation time, we perform

experiments on same dataset using proposed model and classical ϑ-SVR for each of the kernel

functions and provided the comparison of the two algorithms based on CPU time (seconds). The

proposed model with incremental learning with gradient descent estimation of weights significantly

reduces the computation time when compared with non incremental classical ϑ-SVR.

91

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

Figure 5.2: Contour plots showing the class separation of data using classical ϑ-SVR model
with sigmoid Kernel in Figure 5.2(a) and polynomial4 in Figure 5.2(c), and proposed ϑ-
PSVR with sigmoid Kernel in Figure 5.2(b) and polynomial4 in Figure 5.2(d). SV=support
vectors and EV=error vectors.

92

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

Figure 5.3: Contour plots showing the class separation of data using classical ϑ-SVR model
in Figure 5.3(a) and proposed ϑ-PSVR in Figure 5.3(b) with logistic Kernel. SV=support
vectors and EV=error vectors.

MSE values are used to check how close estimated values are to actual values and a smaller

value of MSE leads to a better forecasting performance of the system. Figure 5.4 shows the line

plot of MSE values versus number of iterations of proposed ϑ-PSVR over linear, RBF, polynomial,

sigmoid and Logistic functions and compared with classical ϑ-SVR. One can see that the proposed

method has achieved reduced error rate for most of the kernels when compared with classical ϑ-

SVR on PD datasetset indicating that the ϑ-PSVR works better.

The coefficient of determination, R2 is used to validate the regression efficiency of algorithm.

The low value of R2 represents the weak relationship between the response y and the predictor x and

high R2 represents the strong relationship between the response y and the predictor x. Figure 5.5

depicts the line plot of R2 values versus number of iterations of proposed ϑ-PSVR and compared

with classical ϑ-SVR over linear, RBF, polynomial, sigmoid and Logistic functions. It can be seen

that the proposed ϑ-PSVR comparatively achieves higher values of R2 than ϑ-SVR over almost all

kernels indicating that proposed model gives better goodness of fit.

Table 5.1 summarizes the results based on confusion matrix values and performance measures

for the proposed ϑ-PSVR and classical ϑ-SVR algorithms with linear, RBF, Polynomial of order

4, , Logistic and sigmoid kernels. Table 5.1 gives the f-score values to asses the generalization

93

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

Figure 5.4: Line plots showing the MSE versus Number of iterations of PD dataset evalu-
ated using proposed ϑ-PSVR in Figure 5.4(a) compared with ϑ-SVR in Figure 5.4(b) using
Linear, RBF, Ploynomial of order four, Logistic and sigmoid Kernels.

Figure 5.5: Line plots showing the R2 versus Number of iterations of PD datasetset evalu-
ated using proposed ϑ-PSVR in Figure 5.5(a) compared with ϑ-SVR in Figure 5.5(b) using
Linear, RBF, Ploynomial of order four, Logistic and sigmoid Kernels.

94

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

performance and the effectiveness of the proposed algorithm which is given by predictive metrices

such as MSE and R2 values. The iteration time of proposed algorithm is represented in CPU time

in seconds. The results given in Table 5.1 verified that ϑ-PSVR gives better accuracy with f-score

value of 97.74 with MSE=0.131 and R2=0.758 using RBF kernel. It also costs less time than ϑ-SVR

on most of the kernels as given in Table 5.1. Finally, the fitting quality of ε-PSVR is much better

and is more competitive when compared with existing techniques.

Table 5.1: Confusion matrix values and performance measures for the ϑ-PSVR and classi-
cal ϑ-SVR with different kernels

Kernal Model Fscore(%) CPU time(sec) MSE R2

Linear ϑ-PSVR 97.71 1.72 0.148 0.741
ϑ-SVR 97.30 1.98 0.213 0.708

RBF ϑ-PSVR 97.74 2.26 0.131 0.758
ϑ-SVR 97.48 2.67 0.198 0.726

Polynomial4 ϑ-PSVR 96.80 4.30 0.178 0.724
ϑ-SVR 95.54 5.40 0.226 0.613

Logistic ϑ-PSVR 95.90 4.10 0.218 0.698
ϑ-SVR 94.54 5.20 0.278 0.562

Sigmoid ϑ-PSVR 97.00 3.50 0.258 0.623
ϑ-SVR 96.20 3.82 0.292 0.564

The validation of proposed algorithm with RBF kernel is also shown in Table 5.2. The model

correctly classified 188 healthy controls out of 195 and 393 early PD patients out of 405, while

misclassified 7 healthy controls as early PD group and 12 early PD group as healthy controls. The

optimal classification accuracy of 96.73% is achieved using RBF kernel. From above analysis,

we can state that the proposed model has improved the performance of PD diagnosis in terms of

accuracy and computation time.

Table 5.2: Confusion matrix of ϑ-PSVR with RBF kernel

Observed group Predicted Group
Healthy PD % Accuracy

Healthy 188 7 96.40
Early PD 12 393 97.03
Overall % 96.73

The algorithm tries to generate a more smoother regression curve and achieves better prediction

accuracy with MSE=0.131 and R2=0.758 in less computation time of 2.26 sec. compared to classi-

cal ϑ-SVR.

95

CHAPTER 5. INCREMENTAL ϑ-SUPPORT VECTOR REGRESSION OPTIMIZED WITH BOUNDED ESTIMATION FUNCTIONS TO HANDLE NOISY DATASETS

5.5 Summary

In this work, we proposed optimized ϑ-PSVR using incremental version of the ϑ-SVR, incorporated

with distance weighted discrimination to address the issue of noise in present techniques. The model

is simple and robust as it controls the number of support vectors during training. The proposed

model is evaluated on Linear and RBF kernels to test the performance against classical ϑ-SVR. The

model is validated on MSE, R2 and computation time against other standard ML techniques. It is

shown that the proposed algorithm achieved better performance in less amount of time comparative

to its counterparts. Therefore, we conclude that the proposed system has the ability to have great

application potential in various ML problems, including complex dataset interpretation.

96

Chapter 6

Acceleration of incremental learning and

decremental unlearning of Support

vector machines

The chapter presents a boosting algorithm to improve the performance of incremental learning and

decremental unlearning of support vector machines used on imbalanced datasets. In case of imbal-

anced datasets, the naive SVM learning strategy will not be an effective tool to give satisfactory

prediction accuracy since it may be a weak classifier. The proposed boosting algorithm uses asym-

metric misclassification cost to modify the training datasets. This modified dataset is used to boost

the prediction accuracy of weak SVMs at each training step and a weighted majority vote is used to

aggregate the predictions from all of these weak SVM classifiers to get the final class label. Exper-

imental Results on synthetic datasets show that the proposed algorithm enhances the performance

of the incremental and decremental SVM.

The main contributions of the proposed work are described as follows:

• A boosting approach based on incremental learning and decremental unlearning is presented

to improve the generalization performance of weak non-linear SVM classifiers.

• A boosting dataset of a subsample of original dataset that contains data samples with highest

weight values are used to increase the predictive accuracy of weak SVMs.

• The proposed boosting algorithm combines these weak SVMs with asymmetric misclassifi-

cation cost to modify the training datasets.

97

CHAPTER 6. ACCELERATION OF INCREMENTAL LEARNING AND DECREMENTAL UNLEARNING OF SUPPORT VECTOR MACHINES

• Weak SVMs are then trained by this modified dataset at each iteration.

• The accuracies of these classifiers are then integrated by a weighted majority vote to produce

the final class label.

• The proposed method is applied on some synthetic dataset and the algorithm is validated

on number of support vectors, error vectors, trajectory of coefficients αi, trajectory of LOO

margin gi, iterations and training time.

6.1 Introduction

The representation of a time dependent observation xt at some time points t as tuples (t, xt), are

generally said to be time series data. In time-series prediction ML problems, although training data

D is not readily available, however, the samples are usually supplied in a streaming fashion. The task

here is to infer a consistent model Mt after every time step based on the present example (xt, yt) and

the previous model Mt−1 only [81]. In such scenario, batch SVM algorithms seem computationally

not effective as they need to recalculate and retrain a model every time when training data D is

updated [82]. Batch SVM algorithm trains input data which is priory available, and can not handle

the sheer volume of data which is continuously available in given time stamp. Batch SVM does not

continuously integrate new data into already constructed models but instead regularly reconstructs

new models from scratch. This is not only very time consuming but also leads to potential intensive

computational models. Batch SVM keeps the system weights constant while computing the error

associated with each sample in the input and does not scale well enough in accordance with large

datasets as they are costly in terms of computational complexity. [22, 23].

Besides, Incremental SVM algorithm is more capable in this case as it uses gradient estimation

of weights to train a learning model when a new sample is added to training data D [69, 83, 84].

In addition, the online learning weights are updated on a regular basis using an error com-

putation that is performed for various weights of each input sample. This means that throughout

adaptation, the two algorithms explore separate sets of points, but they both converge to the same

minimum. It’s worth noting that the number of weight adjustments for the same number of data

presents differs dramatically between the two strategies. The online method does an update on each

sample, while batch does an update on each epoch.

98

CHAPTER 6. ACCELERATION OF INCREMENTAL LEARNING AND DECREMENTAL UNLEARNING OF SUPPORT VECTOR MACHINES

However, the incremental/decremental training of SVM still suffer from computational bur-

den and poor generalization performance mainly for a non-linear SVM classifier when applied to

imbalanced datasets or uncertain datasets. Over the years, several techniques were introduced to

boost the performance of SVM to solve skewed vector space problem [50, 51, 85]. These boosting

techniques are either classifier independent data-driven approaches or classifier based cost-sensitive

approaches or combination of both. The recent literature suggests incremental learning and decre-

mental unlearning of SVM by proposing many different approaches to improve overall performance

of model [52, 86].

We propose a boosting algorithm to improve the performance of a weak set of non-linear SVM

classifiers when used with imbalanced datasets. Weak SVMs are those which underperform when

the data set has more noise (target classes are overlapping). Also, when the number of features for

each data point exceeds the number of training data samples, it performs poorly. Strong SVMs can

achieve a generalization error arbitrarily close to the Bayes error with a sufficiently large training

set. Boosting is a way to take several weak SVMs and combine them into a stronger one to elim-

inate bias, improve model accuracy, and boost performance. Thus the excessive bias encountered

due to the skewed vector space problem is handled by a boosted dataset. The proposed algorithm

uses a boosted dataset which is a sub sample of the original dataset that are previously misclas-

sified. This boosting algorithm first trains weak SVM classifiers with the notion of incremental

learning/decremental unlearning at each iteration using asymmetric misclassification cost. The pre-

dictions from all trained algorithms are combined by a weighted majority vote to generate the final

prediction. Thus, the final ensemble SVM classifier will have low classification error and also lead

to faster training.

The rest of the content of this chapter is organized as follows. Section 6.2 presents the basic

equations used to derive the proposed model. Implementation details of the proposed algorithm are

described in Section 6.3. Experimental results and validation of the proposed model are discussed

in Section 6.4. Chapter is summarised in Section 6.5.

99

CHAPTER 6. ACCELERATION OF INCREMENTAL LEARNING AND DECREMENTAL UNLEARNING OF SUPPORT VECTOR MACHINES

6.2 Preliminaries

SVM classifier of the form f(x) = w · ϕ(x) + b learned from the data (xi, yj) where xi ∈ Rm and

yi ∈ {+1,−1} ∀i = 1 · · ·n by minimizing the objective function is:

min
w,b,ξ

1

2
∥w∥2+C

n∑
i=1

ξi s.t. yi(w · ϕ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1 . . . n. (6.1)

This quadratic problem is typically expressed in its dual form after applying Lagrangian function.

min
α

w =
1

2

n∑
i,j=1

αiαjyiyj(ϕ(xi) · ϕ(xj))−
n∑

i=1

αi + b
n∑

i=1

αiyi s.t. 0 ≤ αi ≤ C, (6.2)

Let Qij be the positive semi-definitive kernel matrix with Qij = yiyjK(xi, xj) where K(xi, xj) =

ϕ(xi) · ϕ(xj) and the lagrangian α and the bias b, the resulting SVM in dual form is:

f(x) =
n∑

i=1

αiyiK(xi, x) + b (6.3)

The first-order conditions on w reduce to the KKT conditions, which defines the solution of dual

parameters α and b by minimizing the Equation (6.2).

gi =
∂w

∂αi
=

n∑
j=1

Qijαj + yib− 1 = yif(xi)− 1 :


> 0 αi = 0

= 0 0 ≤ αi ≤ C

< 0 αi = C

(6.4)

hi =
∂w

∂b
=

n∑
j=1

yjαj = 0 (6.5)

SVM initialization and vector migration through learning / unlearning is done by training over

individual samples and incrementally/decrementally learns/unlearns by retaining KKT conditions

on all previously seen data and adiabatically adds/drops new/old sample to the training vector. KKT

conditions partition the training data T and corresponding coefficients αi, b into three index sets:

the set S of margin support vectors strictly on the margin yif(xi) = 1, gi = 0. The set E of error

support vectors violating the margin gi < 0 (not necessarily misclassified), and the remaining set of

reserve vectors exceeding the margin gi > 0, which is shown in Figure 6.1.

The set E : Error vectors: E = {i : |αi|= Ci}

100

CHAPTER 6. ACCELERATION OF INCREMENTAL LEARNING AND DECREMENTAL UNLEARNING OF SUPPORT VECTOR MACHINES

The set S : Support vectors: S = {i : 0 < |αi|< Ci}

The set R : Reserve vectors: R = {i : |αi|= 0}

Figure 6.1: Index sets formed by KKT conditions

6.2.1 Incremental/decremental learning of SVM

During the learning phase, algorithm continuously checks for whether a new sample (xc, yc) added

to the training data T can be inserted to reserve set R as shown in Figure 6.1. If it is not possible

to add new sample (xc, yc) in R, it tries to add this new sample in either support set S or error set

E by maintaining equilibrium of the model on KKT conditions. Each update of the model migrates

samples from one index set to another by passing through the support set s such that the R matrix

(correlated to support vectors) changes accordingly. This method is repeated until all KKT condi-

tions for the samples in T are met.

Decremental unlearning utilizes the concept of Leave-one-out procedure to implement the adi-

abatic reversal strategy of incremental learning approach. The algorithm unlearns samples decre-

mentally by retaining KKT conditions on all previously used samples and adiabatically forgets old

sample from the training vector. Similarly, a list of possible migrations of vectors through the three

sets S, E, and R are applied. The solution of n = n− 1 is generated by removing a point c (whether

it is a margin/error vector) from the training set T. Thus, the solution αi is given as a function of

the coefficients αi,b and the removed point (xc, yc). The solution decides on leaving c out of the

101

CHAPTER 6. ACCELERATION OF INCREMENTAL LEARNING AND DECREMENTAL UNLEARNING OF SUPPORT VECTOR MACHINES

given training dataset T that would obtain a misclassification error less than -1. In the decremental

unlearning procedure, we assume that the value of αc approaches to 0; this assumption is only for

approximating a classification performance on the training data.

6.3 Proposed Model

The proposed method is a boosting algorithm to enhance the performance of incremental learning

and decremental unlearning of support vector machines used on imbalanced datasets. The proposed

algorithm first trains a set of weak SVM classifiers with the incremental learning/decremental un-

learning strategy at each iteration using gradient estimation of weights with classification error on

each input sample. The class probability of these trained weak SVM algorithms are combined by a

weighted majority vote to generate the final prediction. Thus the final ensemble SVM classifier will

have low classification error and also lead to faster training. further sections details the formulations

of proposed model.

6.3.1 Incremental/decremental SVM

The incremental learning procedure is summarised as follows: Let the number of data samples

be (n) and a new data sample point be {c}. If this new data point {c} is added to the training

set T , then (n) becomes (n → n + 1), and Tn+1 becomes Tn ∪ {c}. Thus the given solution{
αn+1
i , bn+1

}
, i = 1, . . . , n+1 is given as a function of the present solution {αn

i , b
n}, the present

Inverse matrix of R, and the data sample of (xc, yc). Decremental unlearning is the adiabatic reversal

of the incremental learning approach for each data point in the training dataset and is employed

by the Leave-one-out procedure The Decremental unlearning procedure is summarised as follows:

(n → n − 1) is generated by removing a point c (whether it is a margin/error vector) from the

training set T such that T = T\c. In this case, the solution {αi\c,b\c} is given as a function of the

coefficients {αi, b} ,R, and the removed point (xc, yc). According to Equation (6.5), the solution for

hc \c obtains a misclassification error (hc\c) less than−1. In the decremental unlearning procedure,

we assume that the value of αc approaches 0; Further details on Incremental and decremental SVM

formulations can be referred on Section 3.3.

102

CHAPTER 6. ACCELERATION OF INCREMENTAL LEARNING AND DECREMENTAL UNLEARNING OF SUPPORT VECTOR MACHINES

6.3.2 SVM for class imbalanced data

The modified SVM objective function by using the cost factors and adjusting the cost of false

positives and false negatives vectors are defined using regularization parameters. The objective

function of SVM therefore can be expressed in the Lagrangian form with two loss functions. Given

a set of labeled instances {xi, yi}ni=1, the class prediction function of SVM classifier is formulated

in terms of the kernel function K as:

f(x) = sign

(
n∑

i=1

yiαiK (x, xi) + b

)
(6.6)

where b is the bias and the optimal coefficients are found by maximizing the primal Lagrangian as:

Lp =
∥w∥2

2
+ C+

n+∑
{i|yi=+1}

ξ2i + C−
n−∑

{j|yj=−1}

ξ2j

−
n∑

i=1

αi [yi (w · xi + b)− 1 + ξi]−
n∑

i=1

µiξi

(6.7)

C+ ≥ αi ≥ 0, C− ≥ αi ≥ 0 C+

C− = n−

n+ and µi ≥ 0. The points labeled ξ∗i , ξ∗i = ξi
∥β∥ are wrong

side of the margin. The values of ξ∗i are calculated as:

ξi = max
(
0, 1− yi

(∑n
j=1 yjαjK (xj , xi) + b

))

6.3.3 Boosting SVM

Incremental/Decremental SVM is boosted by modifying the weights wi of the training observations

xi in the input space with asymmetric classification error value labelled as ξ∗. Thus, a modified

version of the training data which can improve the class prediction is generated. The predictions

from weak classifiers are combined now by a weighted majority vote to produce final decision

function. The final decision function is:

G(x) = sign(

K∑
i=1

αkGk(x)). (6.8)

αk is the weight of the classifier with error rate ε computed by its geometric mean as: αk =

λ log(1 − ε)/ε, where λ is the empirical parameter to tune the magnitude of the penalty for each

103

CHAPTER 6. ACCELERATION OF INCREMENTAL LEARNING AND DECREMENTAL UNLEARNING OF SUPPORT VECTOR MACHINES

iteration. The proposed model with boosted asymmetric classification error and ensemble weighted

majority vote is presented in Figure 6.2.

Figure 6.2: SVM with asymmetric misclassification cost

The proposed model generates chunks of classification algorithm and applies the modified data

sequentially, thereby producing a sequence of SVM classifiers as: Gk(x), k = 1, 2, . . . ,K, where

K is the numbers of SvMs. Once the predictions from all of the weak classifiers are computed with

the modified dataset, they are combined by a weighted majority vote to produce the final prediction

G(x) as shown in Equation (6.8). Here the values for α1, α2, . . . , αK are computed by the boosting

algorithm and are used to weight the contribution of each respective Gk(x). This strategy will select

the most accurate classifier among all.

6.4 Experiments and Results

To evaluate the model, experiments are performed on some linearly separable high-dimensional

dataset X of 2-class classification problem generated from Gaussian distribution. We simulate our

proposed algorithm on a 3.4 GHz Intel Core i7 2600 CPU with 8 GB RAM using MATLAB 9.2

platform. The parameter, ϵ of the strict restoration adjustment is fixed at 0.1 and C is fixed at 100,

respectively in all the experiments.

104

CHAPTER 6. ACCELERATION OF INCREMENTAL LEARNING AND DECREMENTAL UNLEARNING OF SUPPORT VECTOR MACHINES

Figure 6.3 and Figure 6.4 shows the trajectory of the coefficients αi and gi and decision surface

of the classical SVM using Linear and RBF Kernel for each sample point after adding a new sample

in the incremental learning process. The support vectors are denoted by circles. Data-Class1 is

denoted by red color and data-class2 is with blue color. Figure 6.3: (a) shows the trajectory of LOO

margin gc as a function of Leave-one-out coefficient αc. Figure 6.3: (b&c) indicates the incremental

learning of coefficients αi and gi respectively. Figure 6.3: (d) shows the contour data plot show-

ing the data sequence with the corresponding support vectors(circles) and error vectors (crosses).

Figure 6.4: (a) shows the trajectory of LOO margin gc as a function of Leave-one-out coefficient

αc. Figure 6.4: (b&c) indicates the incremental learning of coefficients αi and gi respectively. Fig-

ure 6.4: (d) shows the contour data plot showing the data sequence with the corresponding support

vectors(circles) and error vectors (crosses).

(a) (b)

© (d)

Figure 6.3: Incremental Learning/Decremental unlearning of classical SVM with Linear
kernel

105

CHAPTER 6. ACCELERATION OF INCREMENTAL LEARNING AND DECREMENTAL UNLEARNING OF SUPPORT VECTOR MACHINES

(a) (b)

(c)
(d)

Figure 6.4: Incremental Learning/Decremental unlearning of classical SVM with RBF ker-
nel

Figure 6.5 and Figure 6.6 shows the trajectory of the coefficients αi and gi and decision surface

of the proposed SVM using Linear and RBF Kernel for each sample point after adding a new

sample in the incremental learning process. Figure 6.5 and Figure 6.6: (a-c) gives the incremental

learning of the αc, coefficient αi and coefficient gi, respectively and also the iterative updation

of the support vectors and error vectors after each iteration for the proposed SVM on Linear and

RBF kernels. Figure 6.5 and Figure 6.6: (d) depicts the classification contour plots for incremental

learning and decremental unlearning of Proposed SVM over Linear and RBF kernels. In Figure 6.5

and Figure 6.6, the number of error vectors is reduced with faster increments in the alphac and

gc values, demonstrating the effectiveness of the proposed SVM algorithm over traditional SVM

classifiers. The average values of ten independent runs are computed to produce the results. The

results show that learning of the proposed boosted SVM classifier takes less time than learning the

standard SVM classifier since the number of iterations is lower with the higher performance.

106

CHAPTER 6. ACCELERATION OF INCREMENTAL LEARNING AND DECREMENTAL UNLEARNING OF SUPPORT VECTOR MACHINES

(a) (b)

© (d)

Figure 6.5: Incremental Learning/Decremental unlearning of proposed SVM with Linear
kernel

6.5 Summary

This chapter presented a boosting strategy to improve the performance of support vector machines’

incremental learning and decremental unlearning on unbalanced datasets. The high-dimensional

data, the availability of heterogeneous datasets, particularly for imbalanced datasets, causes the

SVM classifier to deteriorate with low convergence and high memory requirements. Boosting is an

efficient and simple methodology to enhance the computational and accuracy performance of the

weak SVM classifiers. The boosting algorithm proposed here uses a asymetric misclassification

cost to define boosted dataset and this boosted dataset is used to train weak SVM classifiers and

then the accuracy of these weak SVMs are combined by a weighted majority vote to produce the

final classifier. The proposed model is implemented on synthetic datasets and results have shown

that the Boosting algorithm speeds up the training time and boosting the performance of the weak

SVM classifiers.

107

CHAPTER 6. ACCELERATION OF INCREMENTAL LEARNING AND DECREMENTAL UNLEARNING OF SUPPORT VECTOR MACHINES

(a) (b)

© (d)

Figure 6.6: Incremental Learning/Decremental unlearning of proposed SVM with RBF
kernel

108

Chapter 7

Conclusion and Future Scope

7.1 Conclusions

This thesis investigates the optimization techniques for most widely used machine learning algo-

rithms called as the Support vector machines for balancing the trade-off between computational

complexity and generalization performance.

Chapter 3 describes the fast and robust ensemble SVM which is incrementally trained and con-

verges at faster rates by integrating modified Frank-Wolfe algorithm. The proposed SVM-MFW

model allows to learn samples incrementally by maintaining equilibrium with respect to KKT con-

ditions when a new sample is added to the training vector. Convergence rate of proposed algorithm

is accelerated by modified Frank-Wolfe method (MFW). The modified FW method uses a new

“away step” methodology that can boost the convergence rate of algorithm and can quickly reach

acceptable accuracies in the very early iterations. The proposed model is implemented on Parkin-

son’s data taken from PPMI repository and is evaluated on classification accuracy, cross-entropy

and computation time using different kernels like linear, polynomial, sigmoid, radial basis function

(RBF), Logistic kernel and the results are validated with the classical SVM along with other popular

supervised ML algorithms. The accuracy achieved by SVM-MFW using RBF kernel is 98.3%, and

prediction accuracy is evaluated using cross-entropy, which is 0.134 and CPU time is 2.32 sec. It

can be seen that the proposed model (SVM-MFW) gives better results in comparison to the existing

algorithms.

109

CHAPTER 7. CONCLUSION AND FUTURE SCOPE

Chapter 4 explains about proposed ε-Support vector regression algorithm that is optimized with

the Large margin distribution (LDM) technique by employing modified DCD to enhance the perfor-

mance. The proposed ε-MDSVR model attempts to make full use of the training set to avoid over-

fitting and minimizes scattering of the data in ε-tube simultaneously. The proposed method tries

to achieve a better generalization performance by optimizing the margin distribution. This margin

distribution is characterized by the mean and variance. Proposed algorithm maximizes the mean by

considering the distance between the data points nearer to the margin and later attempts to minimize

the margin variance. This can be done effectively by employing modified Dual coordinate descent

method (DCD). The modified DCD method orderly updates one variable by a single-variable sub-

problem, where, this variable is selected if it possibly derives the largest decrease in the objective

value. This strategy can increase the learning speed and improve the generalization performance.

The proposed method is implemented using some popular datasets taken from the UCI machine

learning repository. The model is evaluated on Mean square error (MSE) and Regression Coeffi-

cient (R2) using kernels like linear and radial basis function (RBF) and the results are validated with

the classical SVR. The proposed algorithm with RBF kernel significantly achieved better prediction

accuracy with MSE=0.0074, R2=0.631 and performs well when compared to the classical SVR and

other regression techniques. The proposed algorithm tries to generate more smoother regression

curve and achieves better prediction accuracy in less computation time compared to classical SVR.

Chapter 5 details the proposed ϑ-Support vector regression algorithm that is used to handle

uncertain data and distribution of data on boundary by applying bounded functions to adjust the

number of support vectors and errors. The proposed ϑ-PSVR algorithm addresses the key issues of

data piling and overfitting effect due to uncertain data present in classical ϑ-SVR which affects the

generalization performance and computational overheads. The proposed method formulates upper

bound and lower bound functions on perturbed data. Two special adjustments to the support vectors

and penalty parameters are made to enable the model to learn incrementally. The functional margin

is optimized by distance weighted discrimination to reduce the distribution of data that defines the

regression curve. To evaluate generalization performance, 10-fold cross validation is used. The

proposed method is implemented using Parkinson’s data taken from PPMI repository. The model

is evaluated on Mean square error (MSE), Regression Coefficient (R2) and computation time using

different kernels like linear, polynomial, sigmoid, radial basis function (RBF), Logistic kernel and

the results are validated with the classical ϑ-SVR. The algorithm tries to generate a more smoother

110

CHAPTER 7. CONCLUSION AND FUTURE SCOPE

regression curve and achieves better prediction accuracy with MSE=0.131 and R2=0.758 in less

computation time of 2.26 sec. compared to classical ϑ-SVR.

Chapter 6 presents proposed boosting algorithm to enhance the performance of incremental

learning and decremental unlearning of support vector machines used on imbalanced datasets. The

proposed boosting algorithm combines the weak SVM classifiers with asymmetric classification

error to modify the training data sets. This modified data set is used to train the weak SVMs at

each iteration. Later, the predictions from all of these classifiers are then combined by a weighted

majority vote to produce the final class label. The proposed method is applied on some synthatic

datasets with different sizes and dimensionality. The proposed algorithm is validated on number of

support vectors, error vectors, trajectory of coefficients αi, trajectory of LOO margin gi, iterations

and training time that is compared with classical SVM. The results show that the proposed algorithm

boosted the performance of the incremental and decremental SVM.

7.2 Future Scope

• The future work of proposed SVM-MFW can be implemented using the stochastic sub-

gradient descent algorithm over some low-sample high dimensional datasets to test the per-

formance.

• The proposed ϑ-PSVR can be applied to solve some real-world data applications to test its

generalization.

• A more effective boosting method on our algorithms can tested over different kernel functions

to evaluate the performance.

111

Author’s Publications

Journals:

1. Lavanya Madhuri Bollipo and Kadambari KV. “Fast and robust supervised machine learning

approach for classification and prediction of parkinson’s disease onset”.Computer Methods

in Biomechanics and Biomedical Engineering: Imaging & Visualization, pages 1-17, 2021

[in press].

2. Lavanya Madhuri Bollipo and Kadambari KV.“A novel supervised machine learning

algorithm to detect parkinson’s disease on its early stages”.Turkish Journal of Computer and

Mathematics Education (TURCOMAT), vol. 12(10), pp. 5257–5276,2021.

3. Lavanya Madhuri Bollipo and Kadambari KV.“Optimization of ϑ-Support Vector Regression

Algorithm with Distance Weighted Discrimination and Large Margin Distribution”. Journal

of Ambient Intelligence & Humanized Computing (AIHC). [Under Review]

Patent:

1. Kadambari KV and Bollipo Lavanya Madhuri,”Acceleration of incremental learning and

decremental unlearning of Support vector machines”. Australia Patent No.: 2021101567

112

Bibliography

[1] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile networks and applica-
tions, 19(2):171–209, 2014.

[2] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and prospects.
Science, 349(6245):255–260, 2015.

[3] Junfei Qiu, Qihui Wu, Guoru Ding, Yuhua Xu, and Shuo Feng. A survey of machine learning
for big data processing. EURASIP Journal on Advances in Signal Processing, 2016(1):1–16,
2016.

[4] Alexandra L’heureux, Katarina Grolinger, Hany F Elyamany, and Miriam AM Capretz. Ma-
chine learning with big data: Challenges and approaches. Ieee Access, 5:7776–7797, 2017.

[5] Omar Y Al-Jarrah, Paul D Yoo, Sami Muhaidat, George K Karagiannidis, and Kamal Taha.
Efficient machine learning for big data: A review. Big Data Research, 2(3):87–93, 2015.

[6] Roheet Bhatnagar. Machine learning and big data processing: a technological perspective
and review. In International Conference on Advanced Machine Learning Technologies and
Applications, pages 468–478. Springer, 2018.

[7] Sheena Angra and Sachin Ahuja. Machine learning and its applications: A review. In 2017
International Conference on Big Data Analytics and Computational Intelligence (ICBDAC),
pages 57–60. IEEE, 2017.

[8] Taiwo Oladipupo Ayodele. Types of machine learning algorithms. New advances in machine
learning, 3:19–48, 2010.

[9] Amanpreet Singh, Narina Thakur, and Aakanksha Sharma. A review of supervised machine
learning algorithms. In 2016 3rd International Conference on Computing for Sustainable
Global Development (INDIACom), pages 1310–1315. Ieee, 2016.

[10] Pratap Chandra Sen, Mahimarnab Hajra, and Mitadru Ghosh. Supervised classification algo-
rithms in machine learning: A survey and review. In Emerging technology in modelling and
graphics, pages 99–111. Springer, 2020.

[11] Tammy Jiang, Jaimie L Gradus, and Anthony J Rosellini. Supervised machine learning: a
brief primer. Behavior Therapy, 51(5):675–687, 2020.

[12] Corinna Cortes and Vladimir Vapnik. Support vector machine. Machine learning, 20(3):273–
297, 1995.

113

[13] Lei Wang, Jinhai Sun, and Tuojian Li. Intelligent sports feature recognition system based on
texture feature extraction and svm parameter selection. Journal of Intelligent & Fuzzy Systems,
(Preprint):1–12, 2020.

[14] Lane Maria Rabelo Baccarini, Valceres Vieira Rocha e Silva, Benjamim Rodrigues
de Menezes, and Walmir Matos Caminhas. Svm practical industrial application for mechani-
cal faults diagnostic. Expert Systems with Applications, 38(6):6980–6984, 2011.

[15] Bernhard Schölkopf, Alex J Smola, Robert C Williamson, and Peter L Bartlett. New support
vector algorithms. Neural computation, 12(5):1207–1245, 2000.

[16] Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press, 2002.

[17] Junshui Ma, James Theiler, and Simon Perkins. Accurate on-line support vector regression.
Neural computation, 15(11):2683–2703, 2003.

[18] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics and
computing, 14(3):199–222, 2004.

[19] Begüm Demir and Lorenzo Bruzzone. A multiple criteria active learning method for support
vector regression. Pattern recognition, 47(7):2558–2567, 2014.

[20] Bin Gu, Jian-Dong Wang, Yue-Cheng Yu, Guan-Sheng Zheng, Yu-Fan Huang, and Tao Xu.
Accurate on-line ν-support vector learning. Neural Networks, 27:51–59, 2012.

[21] Bin Gu, Victor S Sheng, Zhijie Wang, Derek Ho, Said Osman, and Shuo Li. Incremental
learning for ν-support vector regression. Neural Networks, 67:140–150, 2015.

[22] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In 12th {USENIX} symposium on operating systems
design and implementation ({OSDI} 16), pages 265–283, 2016.

[23] Ziqiao Weng. From conventional machine learning to automl. In Journal of Physics: Confer-
ence Series, volume 1207, page 012015. IOP Publishing, 2019.

[24] Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-coordinate
frank-wolfe optimization for structural svms. In International Conference on Machine Learn-
ing, pages 53–61. PMLR, 2013.

[25] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Interna-
tional Conference on Machine Learning, pages 427–435. PMLR, 2013.

[26] Ricardo Ñanculef, Emanuele Frandi, Claudio Sartori, and Héctor Allende. A novel frank–
wolfe algorithm. analysis and applications to large-scale svm training. Information Sciences,
285:66–99, 2014.

[27] Thorsten Joachims. Making large-scale support vector machine learning practical, advances
in kernel methods. Support vector learning, 1999.

114

[28] Piyush Kumar, Joseph SB Mitchell, and E Alper Yildirim. Approximate minimum enclosing
balls in high dimensions using core-sets. Journal of Experimental Algorithmics (JEA), 8:1–1,
2003.

[29] Ivor W Tsang, James T Kwok, Pak-Ming Cheung, and Nello Cristianini. Core vector ma-
chines: Fast svm training on very large data sets. Journal of Machine Learning Research,
6(4), 2005.

[30] Tong Zhang. Sequential greedy approximation for certain convex optimization problems.
IEEE Transactions on Information Theory, 49(3):682–691, 2003.

[31] E Alper Yildirim. Two algorithms for the minimum enclosing ball problem. SIAM Journal on
Optimization, 19(3):1368–1391, 2008.

[32] Kenneth L Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm.
ACM Transactions on Algorithms (TALG), 6(4):1–30, 2010.

[33] Martin Jaggi, Simon Lacoste-Julien, Mark Schmidt, and Patrick Pletscher. Block-coordinate
frank–wolfe for structural svms. In NIPS Workshop on Optimization for Machine Learning,
Lake Tahoe, NV, USA, 2012.

[34] Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval re-
search logistics quarterly, 3(1-2):95–110, 1956.

[35] Emanuele Frandi, Ricardo Nanculef, Maria Grazia Gasparo, Stefano Lodi, and Claudio Sar-
tori. Training support vector machines using frank–wolfe optimization methods. International
Journal of Pattern Recognition and Artificial Intelligence, 27(03):1360003, 2013.

[36] Bernd Gärtner and Martin Jaggi. Coresets for polytope distance. In Proceedings of the twenty-
fifth annual symposium on Computational geometry, pages 33–42, 2009.

[37] Teng Zhang and Zhi-Hua Zhou. Large margin distribution machine. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
313–322. ACM, 2014.

[38] Zhi-Hua Zhou. Large margin distribution learning. In IAPR Workshop on Artificial Neural
Networks in Pattern Recognition, pages 1–11. Springer, 2014.

[39] Zhuang Wang, Koby Crammer, and Slobodan Vucetic. Breaking the curse of kernelization:
Budgeted stochastic gradient descent for large-scale svm training. The Journal of Machine
Learning Research, 13(1):3103–3131, 2012.

[40] Zongxia Xie and Yingda Li. Large-scale support vector regression with budgeted stochastic
gradient descent. International Journal of Machine Learning and Cybernetics, 10(6):1529–
1541, 2019.

[41] James Stephen Marron, Michael J Todd, and Jeongyoun Ahn. Distance-weighted discrimina-
tion. Journal of the American Statistical Association, 102(480):1267–1271, 2007.

[42] Xingye Qiao and Lingsong Zhang. Distance-weighted support vector machine. arXiv preprint
arXiv:1310.3003, 2013.

115

[43] Yan Wang, Ge Ou, Wei Pang, Lan Huang, and George Macleod Coghill. e-distance weighted
support vector regression. arXiv preprint arXiv:1607.06657, 2016.

[44] Farid Alizadeh and Donald Goldfarb. Second-order cone programming. Mathematical pro-
gramming, 95(1):3–51, 2003.

[45] Xingye Qiao, Hao Helen Zhang, Yufeng Liu, Michael J Todd, and James Stephen Marron.
Weighted distance weighted discrimination and its asymptotic properties. Journal of the Amer-
ican Statistical Association, 105(489):401–414, 2010.

[46] Xingye Qiao and Lingsong Zhang. Flexible high-dimensional classification machines and
their asymptotic properties. The Journal of Machine Learning Research, 16(1):1547–1572,
2015.

[47] Boxiang Wang and Hui Zou. Another look at distance-weighted discrimination. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 80(1):177–198, 2018.

[48] Xin Yee Lam, JS Marron, Defeng Sun, and Kim-Chuan Toh. Fast algorithms for large-scale
generalized distance weighted discrimination. Journal of Computational and Graphical Statis-
tics, 27(2):368–379, 2018.

[49] Xingye Qiao and Lingsong Zhang. Flexible high-dimensional classification machines and
their asymptotic properties. arXiv preprint arXiv:1310.3004, 2013.

[50] Benjamin X Wang and Nathalie Japkowicz. Boosting support vector machines for imbalanced
data sets. Knowledge and information systems, 25(1):1–20, 2010.

[51] R Sundar and M Punniyamoorthy. Performance enhanced boosted svm for imbalanced
datasets. Applied Soft Computing, 83:105601, 2019.

[52] Honorius Gâlmeanu, Lucian Mircea Sasu, and Razvan Andonie. Incremental and decre-
mental svm for regression. International Journal of Computers Communications & Control,
11(6):755–775, 2016.

[53] Bernhard Schölkopf, Chris Burges, and Vladimir Vapnik. Incorporating invariances in support
vector learning machines. In International Conference on Artificial Neural Networks, pages
47–52. Springer, 1996.

[54] Christopher JC Burges. A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery, 2(2):121–167, 1998.

[55] Thorsten Joachims. Text categorization with support vector machines: Learning with many
relevant features. In European conference on machine learning, pages 137–142. Springer,
1998.

[56] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine
learning. The annals of statistics, pages 1171–1220, 2008.

[57] PS Bradley and OL Mangasarian. Massive data discrimination via linear support vector ma-
chines. Optimization methods and software, 13(1):1–10, 2000.

116

[58] Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine
learning. Advances in neural information processing systems, pages 409–415, 2001.

[59] Christopher P Diehl and Gert Cauwenberghs. Svm incremental learning, adaptation and op-
timization. In Proceedings of the International Joint Conference on Neural Networks, 2003.,
volume 4, pages 2685–2690. IEEE, 2003.

[60] Yangguang Liu, Qinming He, and Qi Chen. Incremental batch learning with support vector
machines. In Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.
04EX788), volume 2, pages 1857–1861. IEEE, 2004.

[61] Alistair Shilton, Marimuthu Palaniswami, Daniel Ralph, and Ah Chung Tsoi. Incremental
training of support vector machines. IEEE transactions on neural networks, 16(1):114–131,
2005.

[62] Katya Scheinberg, Kristin P Bennett, and Emilio Parrado-Hernández. An efficient implemen-
tation of an active set method for svms. Journal of Machine Learning Research, 7(10), 2006.

[63] IW-H Tsang, JT-Y Kwok, and Jacek M Zurada. Generalized core vector machines. IEEE
Transactions on Neural Networks, 17(5):1126–1140, 2006.

[64] Rong-En Fan, Pai-Hsuen Chen, Chih-Jen Lin, and Thorsten Joachims. Working set selection
using second order information for training support vector machines. Journal of machine
learning research, 6(12), 2005.

[65] John Platt et al. Probabilistic outputs for support vector machines and comparisons to regular-
ized likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

[66] Yuh-Jye Lee and Su-Yun Huang. Reduced support vector machines: A statistical theory. IEEE
Transactions on neural networks, 18(1):1–13, 2007.

[67] Shai Fine and Katya Scheinberg. Efficient svm training using low-rank kernel representations.
Journal of Machine Learning Research, 2(Dec):243–264, 2001.

[68] Tong Zhang. Sequential greedy approximation for certain convex optimization problems.
IEEE Transactions on Information Theory, 49(3):682–691, 2006.

[69] Léon Bottou and Yann LeCun. Large scale online learning. Advances in neural information
processing systems, 16:217–224, 2004.

[70] Hua Ouyang and Alexander Gray. Fast stochastic frank-wolfe algorithms for nonlinear svms.
In Proceedings of the 2010 SIAM International Conference on Data Mining, pages 245–256.
SIAM, 2010.

[71] Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E Schapire. Boosting the margin: A
new explanation for the effectiveness of voting methods. The annals of statistics, 26(5):1651–
1686, 1998.

[72] Leo Breiman. Prediction games and arcing algorithms. Neural computation, 11(7):1493–
1517, 1999.

117

[73] Lev Reyzin and Robert E Schapire. How boosting the margin can also boost classifier com-
plexity. In Proceedings of the 23rd international conference on Machine learning, pages
753–760, 2006.

[74] Liwei Wang, Masashi Sugiyama, Cheng Yang, Zhi-Hua Zhou, and Jufu Feng. On the margin
explanation of boosting algorithms. In COLT, pages 479–490, 2008.

[75] Wei Gao and Zhi-Hua Zhou. On the doubt about margin explanation of boosting. Artificial
Intelligence, 203:1–18, 2013.

[76] Mario Martin. On-line support vector machine regression. In European Conference on Ma-
chine Learning, pages 282–294. Springer, 2002.

[77] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics,
pages 196–202. Springer, 1992.

[78] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[79] Chao Luo, Chenhao Tan, Xingyuan Wang, and Yuanjie Zheng. An evolving recurrent interval
type-2 intuitionistic fuzzy neural network for online learning and time series prediction. Ap-
plied Soft Computing, 78:150–163, 2019.

[80] Dongdong Zhang, Wenguo Xiang, Qiwei Cao, and Shiyi Chen. Application of incremental
support vector regression based on optimal training subset and improved particle swarm opti-
mization algorithm in real-time sensor fault diagnosis. Applied Intelligence, pages 1–16, 2020.

[81] Chi-Jie Lu, Tian-Shyug Lee, and Chih-Chou Chiu. Financial time series forecasting using
independent component analysis and support vector regression. Decision Support Systems,
47(2):115–125, 2009.

[82] Dun Liu, Tianrui Li, and Decui Liang. Incorporating logistic regression to decision-theoretic
rough sets for classifications. International Journal of Approximate Reasoning, 55(1):197–
210, 2014.

[83] Pavel Laskov, Christian Gehl, Stefan Krüger, and Klaus-Robert Müller. Incremental support
vector learning: Analysis, implementation and applications. Journal of machine learning
research, 7(Sep):1909–1936, 2006.

[84] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale ma-
chine learning. Siam Review, 60(2):223–311, 2018.

[85] Yang Liu, Aijun An, and Xiangji Huang. Boosting prediction accuracy on imbalanced datasets
with svm ensembles. In Pacific-Asia conference on knowledge discovery and data mining,
pages 107–118. Springer, 2006.

[86] Rasha Kashef. A boosted svm classifier trained by incremental learning and decremental
unlearning approach. Expert Systems with Applications, page 114154, 2020.

118

	ACKNOWLEDGMENTS
	ABSTRACT
	List of Figures
	List of Tables
	1 Introduction
	1.1 Machine Learning
	1.2 A breif about SVM
	1.2.1 Soft-margin SVM
	1.2.2 SVM for Regression
	1.2.3 SVM kernels

	1.3 Incremental/Decremental SVM
	1.4 Frank-Wolfe Algorithm
	1.5 Large Margin Distribution (LDM)
	1.6 Distance Weighted Discrimination (DWD)
	1.7 Research direction
	1.7.1 Problem statement
	1.7.2 Aim
	1.7.3 Problem formulation

	1.8 Proposed Objectives
	1.9 Thesis Organization
	1.10 Summary

	2 Literature Survey
	2.1 SVM: Learning theory
	2.2 Incremental learning of SVM
	2.3 Active sets in SVM Learning
	2.4 Frank-Wolfe optimization technique
	2.5 Distance weighted SVM
	2.6 Large Margin Distribution
	2.7 Summary

	3 Incremental support vector machines optimized with modified Frank-Wolfe algorithm (SVM-MFW)
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Classical SVM
	3.2.2 Frank-Wolfe Algorithm

	3.3 Proposed SVM-MFW
	3.3.1 Modified SVM for class imbalance data
	3.3.2 Incremental SVM
	3.3.2.1 Find suitable _c
	3.3.2.2 R matrix updation

	3.3.3 Modified Frank-Wolfe algorithm

	3.4 Data used for experiments
	3.5 Experiments and Results
	3.6 Summary

	4 -Support vector regression optimized with Large Margin Distribution using modified dual coordinate descent strategy -MDSVR)
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Large margin distribution SVM
	4.2.2 Dual coordinate descent technique

	4.3 Proposed -MDSVR
	4.3.1 Large margin distribution SVR
	4.3.2 Modified DCD

	4.4 Experiments and Results
	4.4.1 Experimental setup
	4.4.2 Performance evaluation

	4.5 Summary

	5 Incremental -Support vector regression optimized with bounded estimation functions to handle noisy datasets
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 -SVR formulations
	5.2.2 DWD learning

	5.3 Proposed -PSVR
	5.3.1 -SVR on perturbed data
	5.3.2 Incremental learning
	5.3.3 Optimization of -PSVR

	5.4 Experimental Results
	5.5 Summary

	6 Acceleration of incremental learning and decremental unlearning of Support vector machines
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Incremental/decremental learning of SVM

	6.3 Proposed Model
	6.3.1 Incremental/decremental SVM
	6.3.2 SVM for class imbalanced data
	6.3.3 Boosting SVM

	6.4 Experiments and Results
	6.5 Summary

	7 Conclusion and Future Scope
	7.1 Conclusions
	7.2 Future Scope

	Author's Publications
	Bibliography

