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ABSTRACT

It is well known that control of nonlinear processes is difficult when compared to linear
processes. All the methods developed in the literature for control of nonlinear processes are
comparatively more complex when compared to Multi Model Approaches (MMA), and hence
MMA is preferred due to its simplicity and easy implementation. In MMA, the nonlinear process
is decomposed into multiple linear models based on partition strategies. These multiple linear
models are further reduced into minimal number of models using reduction techniques. These
reduction techniques are used to find out the optimized linear models to merge the sequential
operating ranges. The linear controllers are designed for these reduced models and combination

of these linear controllers forms the global controller.

Most of these methods in the literature are implemented in simulation. An experimental
investigation provides more understanding and also practical difficulties of nonlinear process
control. This work presents an experimental evaluation and comparison of gap metric based
weighting methods for design of multi model control schemes for control of levels in a spherical
tank and a conical tank process. Internal model control (IMC)-PI controllers are designed for the
corresponding linear models. A simulation study is first carried out to examine the performance
on these nonlinear systems, in which the weights for local controller’s combinations are
calculated by the weighting functions. The two weighting functions (1- 6 and 1/6, Where 6 is gap
metric function) based on the gap metric value of particular linear model are calculated and used
for constructing the global multi model controller. Level control in spherical and conical tank
systems is studied to show the experimental implementation of the considered multi model
control schemes.

Further, Multi Model Predictive Controller (MMPC) is developed in this research. In
MMPC, each MPC has weights determined from the gap metric and using these weights.
Comparative performance analysis of those weighing functions is carried out by simulations and

also by experiments.

Fractional controllers based MMA framework are developed for enhancing the control of
nonlinear systems. For the purpose of comparison, MMA framework with integer order

controllers are considered and it is observed that MMA framework with fractional controllers

Vi



provide improved closed loop performances. Experimental investigation is also carried out to
verify the applicability of the proposed method and it is observed that the proposed method

provide enhanced closed loop responses.

Cascade multi model control system using hard and soft switching for nonlinear process
is addressed. Multi model approach (MMA) in cascade control strategy by using hard and soft
switching for selection of the controller is developed. Simulation studies and experimental
implementation is carried out on a conical tank process. The performance of the cascade multi

model control strategy is superior when compared to the classical multi model control strategy.

Multi model smith predictor is designed and evaluated for long dead time nonlinear
process. The long dead time in nonlinear process creates stability issues and to overcome this,
smith predictor structure is integrated to multi model control structure. The multi model smith
predictor structure is examined on nonlinear processes such as conical tank process and iCSTR
and evaluated with Integral Absolute Error (IAE) and Total Variation (TV).

Vii
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Chapter 1

Introduction

1.1General

In process industries, many times, the process outputs do not respond proportionally to change in
the corresponding inputs and these type of processes are referred as nonlinear processes. Control
of such processes is difficult and challenging when compared to the linear processes.
Conventional PID controllers can be used to control the nonlinear processes but these controllers
must be tuned in such a way that they provide stable performance over the entire range of
operating conditions and hence the tuning of such controllers become conservative. Though
these controllers are tuned conservatively, still there is degradation in control system
performance. Researchers developed different nonlinear control strategies such as generic model
control, adaptive control, gain scheduling control, nonlinear model predictive control and multi-
model control to control nonlinear systems in which multi-model control approach (MMCA) is

one of the simplest approach. The systematic steps involved in MMCA are

1. Decomposition of the nonlinear system into multiple linear models.
2. Reducing the number of linear models.
3. Design of multi-model control scheme based on the reduced number of models.

This approach primarily focuses on decomposing a non-linear system into multiple linear models
based on the operating conditions. Based on the partition strategy, the multiple linear models are
formed and combination of all these models represents the dynamics of the process. For each
operating range, one linear model is used to represent the system behavior. Based on these local
linear models, the controllers are tuned and the combination of all such local linear controllers
forms the global controller. But too many models make the formation of global controller
complicated. To overcome this, model reduction is carried out using gap metric techniques. The
gap metric technique is useful to merge the ranges and select a single model, which is suitable
for many ranges with a minute difference in the performance. For every local linear model,
respective linear controller is designed and the corresponding conditional combination forms the

global controller. Conditional combination is carried out in two ways i.e. hard switching method



and soft switching method. In hard switching method, only one local controller acts as global
controller which is selected based on operating conditions and error. However, in soft switching
method, combination of all the controllers forms the global controller with determined weights

for all local controllers.

The representation of multi model control scheme is shown in Figure 1.1 in which r(t) and y(t)
are reference input and output at time t, e(t) is error at time t, u(t) is global controller output at

time t, Cy, C2 ... Cy are local controller and W1, Wo, ... Wy are local weights.

e » C; » Wy >
; | |
! : : ,
r(t) : e(t) ! i s u(t) Nonlinear y(t) R
5 i i ] Process
i- c. Ay -

Global Controller

Figure 1.1 Multi model control block diagram

1.1.1 Theoretical developments of gap metric:

The gap metric is a suitable tool to measure the distance between two linear systems than a
metric based on norms. The technique and its importance in control system is clearly explained
by El-Sakkary et al. (1985).

The gap between two subspaces K1 and Ky is defined as
8(Kq, Kp) = ||Mg, — M, || (3:3)
Where Ik, denotes the orthogonal projection onto subspace Ki.

A finite dimensional linear operator P; defined in the H2 space is considered which has a transfer

function P; that can have the normalized right co-prime factorization (Gi = [M‘D and left co-
1

prime factorization (G; = [-M;N;])given by b, = N;M; ™! = M, "N, (N;M; and M;N,are stable,

right and Left co-prime transfer functions (are the normalized co prime factorizations).

The gap metric is then computed as



Sg(Plr P,) = max (gg(Plf Pz),_gg(Pz» Py)) (3.4)

where
- - N N
HCUSES - |V R v (35)

The value of gap metric is between any two linear systems and can only take values in the range

[0,1] and has several useful properties:
(1) 0<84(P, P)< 1.

(2) The gap metric defines the possible distance between two linear systems from a control

perspective.

(3) If the metric value is close to 0, at least one controller can stabilize both systems; if the gap
metric is close to 1, it is difficult to design a controller or a single controller cannot stabilize both
the systems.

1.2 Model Predictive Control (MPC)

MPC is an advanced control strategy that is used in most of the process industries. It uses a
dynamical model of the process to predict its likely future response and then choosing the best
control action possible while satisfying set of constraints. Nowadays, it finds application in
aerospace, automotive, smart electricity grids, etc. Because of the advantage associated with
MPC over conventional control strategy, it has been employed. MPC inherently has feed forward
nature as it takes measured disturbances as input and it negates the effect of the disturbance
beforehand making it very popular in highly disturbed plants as well and is clearly explained by
Dougherty(2003). The future control signal is computed in such a way that minimizes the

quadratic objective cost function defined as, Minimize J

J=X"e 6 (y (K + UKD — 7 (K + D)||” + 30 1M (Au (K; + 1 — 1)I2(5.7)

The 1st term denotes the objective of minimization of error between predicted outputs and set-
point signal and the 2ndterm denotes the objective to find optimal Au values such that error is
reduced. 'y denotes the penalty on tracking error known as output weighting, I'’Au denotes the
penalty on the actuation known as input-rate weighting, y (Ki + I|Ki) represents the predicted

value of output at Ki +| instant given information up to Ki instant. Tuning parameters of the
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MPC are prediction horizon (NP), control horizon (NC), control interval (At), rate weight on
MVs (I'Au), weight on CV(I'y). Few distinguishing features of MPC from conventional control
strategy is, it has ability to forecast, optimize and good constraint handling capability. The
disadvantages are it requires simple linear state-space model, too many degrees of freedom

(horizons, weights, constraints, etc.), requires real time optimization, etc.
1.3 Fractional Order Controller

Implementation of Fractional calculus which is generalization of Integer order calculus is making
a noteworthy advancement. Its significance lies in the fact that practical systems can be better
identified as fractional order differential equations instead of integer order differential equations
David et al. (2011). Fractional Order PID Controller which is usually described as PI*D*
Controller was introduced by Podlubny (1999).

K;
C(S) = Kp +S_)L+Kd5“

where K, is Proportional Gain, K; is Integral Gain, Kq is Derivative Gain, A and p are integral

and derivative orders and can be varied between 0 to 2.
1.4 Cascade multi-model control system

Generalized Cascade control system figure shown in 1.2, Cascade control using multi-model
controller strategy uses two controllers for control of nonlinear primary process. The primary
controller consists of a multi-model controller designed for a primary process. And in the
secondary loop the secondary process is assumed to be linear and PI controller is designed as
secondary controller using linear controller design strategies. Controller in inner loop will serve
as slave controller which will act based on set point received form master controller. Primary
controller will act as master controller here and the output of primary controller will act as set

point for secondary controller.



y(t)
—

Figure 1.2 Generalized cascade control system.

1.5 Multi model Smith Predictor

To design a controller for nonlinear process is some difficult task and delay added to it and it
makes even more difficult. Multi model control scheme will overcome these issue for lesser
delay process and also some time system may move to unstable. If long dead process is present
in nonlinear process then design a controller is cumbersome task.

To deal with larger delay system already smith predictor structure is proved to control from last
few decades of researches. Otto smith as introduced the Smith Predictor control strategy in 1957.
This strategy is modified the feedback strategy to compensate the delay. In this strategy, it
consist of feedback loop with additionally inner loop where it’s have the two terms. The first
term of this inner loop represents process behavior without dead time. The second term
represents is simply a time delay. To overcome this issue a simplified smith predictor structure is

designed using multi model control scheme.
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Chapter 2

Literature Review

In this chapter, the literature is reviewed on application of multi model scheme to control the
nonlinear system. The review is given on the existing control algorithm other than multi model
scheme, formation of multi model structure, model reduction and multi model control scheme for

nonlinear systems are presented.
2.1 Control of nonlinear processes

Numerous researchers have been focusing on controlling the nonlinear behaviorial systems
and the major control algorithm in name of MMA, gain scheduling, adaptive control, optimal
control, fuzzy and sliding mode.

Few literature are presented on the list of control algorithm, all this methods are having
complicated calculations in designing the controller whereas MMA is simple as compared with
other control algorithm.

Yooet al. (1998) introduced the adaptive fuzzy sliding mode control of nonlinear system. Fuzzy
logic system is used to approximate the unknown function of the nonlinear system and adaptive
law is proposed to in order to reduce the approximation errors between the nonlinear functions.
Chai et al. (1999) introduced fuzzy direct adaptive control for control of nonlinear systems and
this method makes use of the fuzzy systems to provide an approximate optimal controller which
is synthesized based on the assumption that the dynamics in the system are known. They
developed fuzzy sliding controller to compensate for the plant uncertainties, smooth the control
signals and increase robustness.

Camacho et al. (2000) have proposed the sliding mode control approach to control nonlinear
processes. The approach is designed for first order plus dead time model of the process. This
approach has fixed controller with tuning equations as a function of the parameters of the model.
Chen et al. (2003) have introduced the predictive control approach and is used to design the

optimal controller for control of nonlinear system.



Igbal et al. (2017) have presented an overview of nonlinear control systems and described the
role of analytical concepts in design of nonlinear control systems and recent advancements are
examined.

From above control algorithm it is observed that, there are complicated calculations in controller
design and whereas multi model approach is simplest form with minor calculations in design. It
can easily implement the all advance linear controller methods in MMA to control the nonlinear

process. The approach is carried out in three steps that are

1. Decomposition of nonlinear process into multiple linear models.
2. Minimizing the multiple linear models.

3. Global controller formation

The researchers have suggested the simplest way of these approaches from last few decades and

the upgraded process has reviewed and as follows

El-Sakkary et al. (1985) introduced the gap metric and presented the robustness of feedback
systems. They concluded that any metric that preserves a relationship between open-loop

processes and the corresponding stable feedback loops must have the topology of the gap metric.

Johansen et al. (1993) have proposed the method for decomposition of nonlinear processes based
on state space model using operating regime and interpolation of local models are inherently

empirical.
Johansen et al. (1997) multiple model approaches to modelling and control, book CNC Press.

Rodriguez et al. (1998) have proposed a supervisory multi-model control scheme, in which the
supervisor layer identifies the appropriate local controller from a set of models. Multiple model
observer is utilized for the selection of the mechanism. Switching among local controllers is

carried out through a multi-model bump less transfer strategy.

Nystrom et al. (1999) have proposed a multi-model controller and evaluated on a strongly
nonlinear chemical process. The controller design problem is then stated as a multi-model mixed
Ho/Hiframework for achieving optimal quadratic (H.) performance subject to (Hi-type)
robustness bounds for the multi-model plant description. This method tested on a simulated pH

neutralization process and compared with that of a linear controller.
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Hannu et al. (2002) have proposed the velocity-based linearized models a modified internal
model control structure which eliminates the steady state error. Velocity-based linearization are
used to form linearized models set. The velocity-form linear parameter-varying system having
offset term. Based on velocity-based linearized models a modified internal model control
structure eliminates the offset and the structure is examined in simulation on pH neutralization

process.

Galan et al. (2003) have examined the performance of the experimental implementation of multi
model control strategies on a bench-scale pH neutralization reactor and compared with standard
PI controllers.

Toivonen et al (2003) have introduced the multi model control scheme based on Velocity-based
linearizations. Velocity-based linearizations are applied to construct a set of linearized models
and this combination provides the nonlinear system dynamics. To achieve a zero off-set when
using velocity-based linearized models a modified IMC structure is designed. This method is

tested on pH neutralization process.

Srinivasan et al. (2003) have designed the T—S Fuzzy multi-model based non-linear PI controller
for a Type 1 diabetic process, where the gap metric technique is used for finding the optimal

number of local models to satisfy the closed-loop performance of the blood glucose process.

Arslan et al (2004) have introduced the novel gap metric approach for global controller
formation. A global controller is formed from a weighted combination of all the local linear
controllers in which the weights are functions of closed-loop gap metric. These local weights are
updated at constant time intervals and this strategy is implemented on two simulated processes,

one of which exhibits output multiplicity and the other exhibits input multiplicity.

Tan et al. (2004) have designed the multi-model controller based on gap metric and this gap
metric is used for selecting operating points in multi-model control scheme. They identified a
drawback in which the distance between the local models is dependent on the compensators,
which is usually difficult to determine the operating points without having knowledge of the
achievable closed-loop performance.
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Arslan et al. (2004) have proposed the multi-model scheduling approach for controlling the
nonlinear processes using gap metric. In global controller, the weights are defined using gap

metric function. The strategy examined on two processes in simulation.

Tan et al. (2004) have proposed the gap metric based multi-model analysis and controller design
for nonlinear processes in which Heo loop-shaping approach integrates the procedure of selecting

operating points and the corresponding local controller design.

Xue et al. (2006) have introduced the local model networks modeling method using satisfying
fuzzy c-mean clustering algorithm. This satisfying fuzzy c-mean is used to define local models
and different predictive controllers are designed for different local models with different local
constraints. These modelling and controller procedure are examined on MIMO simulated pH

neutralization process.

Lucas et al. (2006) have introduced modified brain emotional learning based intelligent
controller (BELBIC) for controlling washing machine. The energy consumption of this controller
is compared with fuzzy controller and observed that improvement in energy savings is
achievable by using BELBIC.

Jamab et al. (2006) have proposed a predictive control based on modified locally linear model
tree (LOLIMOT) to control an electromagnetic suspension system. This algorithm is improved

the accuracy with fewer rules and reduced computational time.

Toscano et al. (2006) have developed the method for robustness analysis and synthesis of a
multi-PID controller for non-linear systems based on uncertain multi-model approach.

Simulation studies are demonstrated to examine the effectiveness of the method.

Hong et al(2007) have presented overview of model selection approaches and also described
problems in nonlinear system identification for decomposition strategy to get suitable models
from observational data. They outlined the developments on the convex optimization based

model constructional approaches which includes support vector regression algorithms.

Toscano et al. (2007) have developed a method to design multi-PID controller for nonlinear

systems where desirable robustness and performances can be maintained across a large range of
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operating conditions. Simulation studies are used to demonstrate the effectiveness of this

method.

Bilbao et al. (2007) have designed a multi-model scheme for a triggering tunnel diode circuit.
Here, it improves transient behavior and where switching from stable system equilibrium point to
another one is known as a triggering process. Each model is calculated by considering a possible
linearization near an equilibrium point so that the whole model is described by several transfer

functions around many equilibrium operating points.

Nandola et al. (2007) have designed the multiple model approach for controlling the nonlinear
hybrid systems using predictive controller. These multiple models are combined using Bayes
theorem to describe the nonlinear hybrid system. Simulations on a benchmark three spherical

tank system and a hydraulic process plant proved that their method is superior.

Jakubek et al. (2008) have introduced two concepts for the identification of neuro-fuzzy
networks in which first one is the tallest squares method used for parameter estimation of local
model parameters in the presence of input and output noise and second one is for the steady-state
accuracy of dynamic models. They applied this idea by simulation on a gas engine and
demonstrated the capabilities of the proposed concepts.

Nagy et al. (2009) have proposed a method where there is no loss in information from
transformation of nonlinear system into multiple models using premise variables in order to
design a multi-observer and reconstruct the state of this system. This method is examined on the

three-tank system.

Orjuela et al. (2009) have suggested a structure based on a decoupled multiple model
representation of a nonlinear system and the design of a multi integral unknown input observer.
The dimension of each sub model can be different and some flexibility can be expected in black

box modeling of complex system.

Sadati et al. (2010) have proposed the robust multiple model adaptive control strategy using
fuzzy fusion. It is integrated with a fuzzy robust controller, the fuzzy multiple model adaptive
estimation and a fuzzy switching to control the complex nonlinear systems. The proposed

method is examined on the two cart system in Simulation and has given the effective results.
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Cai et al. (2010) have proposed the velocity-based LPV modeling and control framework
combined with nonlinear gain-scheduling controller for an air-breathing hypersonic vehicle. The
effectiveness of the controller is examined on by simulation and implemented on anti-windup
control schemes, can be used in application where the input is constrained owing to actuator

saturation or rate limit.

Khezami et al. (2010) have proposed a multi-model optimal quadratic control for wind turbines
in order to integrate high levels of wind power to provide a primary reserve for frequency
control. Multi-model linear framework is determined for the wind turbine and is used for the
development of an optimal control law consisting of state feedback, an integral action and an
output reference model. This control scheme allows a rapid transition of the power of the wind
turbine between different desired set points. This electrical power tracking is ensured with a

high-performance behavior for all other state variables.

Zhang et al. (2010) have proposed an adaptive output feedback control scheme for a class of
non-affine system in the non-strict feedback form with unknown nonlinearities. The work is
examined on second order nonlinear process and also it can extend to n™ order non-affine
functions on linear discrete-time systems. Simulations has shown that the algorithm is effective

in controlling nonlinear dynamic systems.

ElFelly et al. (2010) have proposed the neural and fuzzy clustering algorithms for complex
systems modeling and control. The approach is made in three steps are determination of the
structure of the model base, parametric model identification and global control. The method is

examined on second order nonlinear system to test the efficiency.

Janghorbani et al. (2010) have designed a local linear neuro-fuzzy model to predict the mean
arterial blood pressure time. It can help the patients to prevent occurrence of hypertension or help

doctors to select appropriate treatment for the physiological disorders.

Gugaliya et al. (2010) have proposed gap metric based fuzzy decomposition of nonlinear
dynamics using multiple local linear models. The method showed the stable and parsimonious
model set which can be deployed for online control and simulation case study on nonlinear

polystyrene reactor is presented.
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Novak et al. (2011) have designed a nonlinear model-based predictive control strategy based on
a local model network. This is developed based on divide-and-conquer strategy process
operations. This set of locally linearized models were effectively combined into a global
description of a multivariable nonlinear plant. This strategy is examined experimentally to

control the pH and level in a pH neutralization process

Novak et al. (2011) have introduced the optimization of local model network structure using
Gustafson-Kessel and local least-squares method. The decomposed strategy done based on fuzzy
clustering and simple local models are developed for each regime via least-squares method. The
structure of the LMN is optimized using gap metric and prediction error. The method is

examined in simulation and successfully to control such nonlinear processes.

Bedoui et al. (2011) have designed the multi-model approach for the representation of non-
stationary time delay systems. This multi-model representation is validated by a generalized
minimum variance multi-model control scheme. This method compared with adaptive

generalized minimum variance control in simulation obtained the good response.

Skopec et al. (2011) have introduced an adaptive calibration technique with on-line growing
complexity, in which adaptive method of the kinematical calibration merges with the classical
calibration algorithm and LOLIMOT.

Du et al. (2012) have proposed the integrated multi-model control design procedure using gap
metric based dividing algorithm, which integrates the multi-model decomposition and the local
controller design through an improved gap metric algorithm and the Hoo loop-shaping technique.
The method is applied by simulation on two nonlinear chemical systems.

Martinez et al. (2012) have proposed local linear model tree algorithm and a recursive weighted
least square algorithm for training the artificial neural network to find the appropriate
parameters, number of model neurons and neural network learning factor and used them in

multi-model frame work.

Rafimanzelat et al. (2012) have introduced the Adaptive network based fuzzy inference system
and Locally Linear Neuro-Fuzzy models in automobile application for fuel consumption
prediction. LOLIMOT algorithm is used to tune the parameters for identifying the most
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appropriate input variables to find the suitable model for predicting the miles per gallon of

automobiles. The method is examined in simulation and defined the best performance.

loanas et al. (2012) have proposed the local linear Neuro-Fuzzy models for the identification of

Common Rail diesel high pressure dynamics.

Bedoui et al. (2012) have proposed a multi-model approach for time varying delay systems. The
method is based on the construction the number, the orders, the time delay and the parameters of
the local models automatically without any knowledge about the full operating range of the
system. Identification of the local models is carried out by a new recursive algorithm. The
proposed algorithm allows simultaneous estimation of time delay and parameters of the process

indiscrete-time.

Meskin et al. (2013) have proposed a real time fault detection and isolation scheme based on
multiple model approach and applied on a dual spool jet engine. It is shown that the method is
robust to the failure of pressure and temperature sensors and extensive levels of noise outliers.
Simulation results demonstrate that the multiple model FDI algorithm for both structural faults

and actuator faults performs well on the jet engine.

Hametner et al. (2013) have designed a PID controller for nonlinear systems based on the
corresponding local model networks. Closed-loop stability by means of a Lyapunov stability
criterion as well as closed-loop performance is studied. All the PID controller values are
determined by a multi-objective genetic algorithm method, in which trade-off between stability

and performance are handled.

Pourbabaee et al. (2013) have proposed an efficient sensor fault detection and isolation strategy
approach based on multiple-models. The scheme consists of hybrid Kalman filter by integrating
process model with a number of piecewise linear models to estimate sensor outputs. The
simulation results demonstrated the effectiveness of the proposed method and robustness with

respect to the process health parameters.

Du et al. (2013) have designed the multi linear model decomposition of MIMO nonlinear
systems with multiple scheduling variables and gap metric division algorithm has proposed. The
proposed method effectively decomposes a MIMO nonlinear system into a set of linear
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subsystems without linear model redundancy and designed multi linear MPC controllers and
these combination forms the global controller for setpoint tracking control. Two bench mark

nonlinear processes are studied to demonstrate the effectiveness of the proposed method.

Yubo et al. (2013) have proposed the stability robustness of the closed-loop system based on gap
metric and robust stability radius. Where robust stability radius is used to generate the weights
for multi model control scheme. This method is examined on simulation on typical nonlinear

process and proved the tracking the set point.

Kolyubin et al. (2013) have proposed multiple model black box identification for control of
nonlinear systems. Using a set of local NARX models combination representation the system
dynamics. The method is designed for the combined feed forward/feedback controller.

Du et al. (2014) have proposed a two integrated multi-model control design frameworks based
gap metric and stability margin criteria, where the multi-model decomposition and the multi-
model combinations are integrated. One method uses the maximum stability margin and the

other uses the actual stability margin.

Touzri et al. (2014) have introduced a internal multi-model controller design with a limited
variable time delay. The method is designed based on the combination of Multi-Model concepts
and Internal Model Control. The design method produced good results for a linear process with a

limited variable time delay and showed the robust behavior.

Du et al (2014) have proposed gap metric based soft switching for formation of global controller
to controller MIMO nonlinear system. A MIMO CSTR system is studied to demonstrate the

effectiveness of the proposed weighting method.

Arasu et al (2016) have proposed the simple non-linear model based control scheme for the
variable area tank process. The parameters of the nonlinear model have been determined using
empirical approach. The proposed control algorithm has been experimentally implemented on

conical tank and the performance is compared with gain scheduled P1 controller.

Zribi et al (2017) have proposed a self-organization map method for decomposition of nonlinear
process into multiple models and gap metric and the stability margin are used for reduction of

multiple models without redundancy of the initial multi-model bank. Simulations confirm the
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method for selecting the appropriate number of local models which should be used in the

controller design.

Li et al (2017) have introduced the Multi model control scheme for rehabilitation robotic
exoskeletons. Three control modes are smoothly integrated into the global controller, where the
robot-assisted mode allows the human to exert voluntary efforts within a desired region. The
development of the proposed controller follows the singular perturbation approach, and the

stability of the overall system is rigorously proved by using Tikhonov’s theorem.

Adeniran et al. (2017) have reviewed modeling and identification of different nonlinear systems.

A detailed survey has been presented about partitioning strategies.

Tan et al. (2017) have proposed the direct model reference adaptive control based on multiple-
model switching control scheme. Itis capable of ensuring desired system performance, avoiding
control singularity and possible persistent control switching. A control switching mechanism is

designed with performance indexes formed from estimation errors.

Shaghaghi et al. (2017) have proposed designing of multiple linear model set based on
nonlinearity measure and reduction of multiple models using H-gap metric. The designed model
predictive controllers to achieve the high performance and experimentally tested on a pH

neutralization process.

Sadati et al. (2018) have introduced the multi-model robust control scheme to control the depth
of hypnosis during intravenous administration of propofol. This method is implemented to
control the adequate drug administration regime for propofol to avoid overdosing and

underdosing of patients.

Shun et al. (2018) have proposed an improved particle swarm optimization algorithm for
identification of Takagi—Sugeno fuzzy model. Firstly, by using fuzzy c-means clustering
algorithm found the rule number of the Takagi—Sugeno fuzzy model and utilizing the particle
swarm optimization algorithm, the initial membership function and the consequent parameters of
the fuzzy model are obtained. In addition, through an improved fuzzy c-regression model and
orthogonal least-square method, the premise structure and consequent parameters can be

obtained to establish the Takagi—Sugeno fuzzy model.
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Zribi et al. (2019) have developed a method for decomposition and reduction of multiple models
using with integrating of gap metric, margin stability and multi-objective particle swarm
optimization algorithm (MOPSQO). Where gap metric and margin stability are used for distance
measuring tool and guidelines for selecting the model bank. MOPSO algorithm is used for tuning
optimal PID controllers which provided less rise time with a lower overshoot percentage and

good margin stability.
2.2 Design of Fractional Order Controller

From the literature it is found that fractional order controllers are not implemented in global
controller design.

Chen et al. (2009) have introduced the concept of fractional order system and control and
provided the review on numerical methods for simulating fractional order systems. Both digital
and analog realization methods of fractional order operators are introduced.

Li et al. (2015) have given a review on different tools for the computation of fractional
integration/differentiation and the simulation of different fractional order systems. They also
introduced their usage and algorithms, evaluates the accuracy, compared the performance and
provides informative comments for selection.

Ranganayakulu et al. (2016) have demonstrated the comparison of various tuning method of
fractional PI*D* controller based on Integral of Absolute Error (IAE), Total Variation (TV) and
Maximum Sensitivity (Ms).

Pritesh Shah et al. (2016) have given the review of the work done on the fractional PID
controller which is proposed by Podlubny in 1999 and presented the latest contributions in the
field of control systems. Highlighted the recent developments in the design and tuning of
fractional PID controllers and software tools associated to the design of fractional PID

controllers are also discussed.

The above authors have given a good contribution in developing the multi model approach for
controlling the nonlinear process and their proposed models are examined on mostly Reactor by
Arslan et al. (2004), Du et al [(2014), Tan et al. (2004), Tascano et al. (2007) Yubo et al.(2013),
Zribi et al.(2017), pH control by Galan et al (2004), Novak et al(2011), Nystrom et al (1999),
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Shaghaghi et al. (2017), Xue et al. (2006), Distillation column by Rodriguez et al. (1998),
Polystyrene by Gugaliya et al.(2010), Three tank system by Nagy et al.(2009), Inverted Conical
tankby Du et al [(2013), Three tank spherical system & Hydraulic process by Nandola et al.
(2008), Electrical nonlinear application by Bilbao et al.(2007), Jamab et al. (2006), Khezami et
al. (2010), Lucas et al.(2006), Meskin et al.(2011), and Biomedical nonlinear application by
Srinivas et al. (2011) and Sadati et al. (2018).

2.3 Pros and cons of different approaches, and research gaps

To control the nonlinear process, the different approaches are Adaptive PID Controller,
Nonlinear Model Predictive Control (NMPC), Sliding Mode Control, Fuzzy controller and Multi
Model Control Scheme.

Pros:

When the above methods are compared together, Multi Model Control Scheme approach is the
simplest and can be implemented easily.

Basically, the tuning procedure for the Controllers depends on the type of Industrial applications.
Pretty good number of Linear Controllers are already available to control the Industrial process.
In the same way for controlling the different nonlinear applications, the Linear Controllers can

be easily implemented in the Multi Model Scheme based on the Industrial Application.
Cons:

In case if the Nonlinearity of the system is very high, then identification of Linear Models will be
a tough job.
Based on literature survey the following important research problems are noted:

» Lack of experimental investigation.

» Design a multi model fractional order controller.

» Design a multi model cascade control strategy to minimize the effect of disturbance.

» Design a multi model smith predictor to control long deadtime nonlinear process.
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2.4 Motivation

To control nonlinear systems, there are different methods out of which model predictive
control, gain scheduling, multi model techniques (MMT) are treated as more promising
methodologies. MMT relies upon a problem decomposition strategy. In this approach, a global
system model is formed by a set of local models which are integrated with different degrees of
validity. Each local model represents the dynamics of the system in a specific region of the
operating space. Although the multi-model approach has been criticized for creating suboptimal
and input dependent models, the approach is simple, mathematically tractable, and like other
techniques, it allows direct incorporation of qualitative plant knowledge. Most importantly, a
well matured linear model and control analysis can be exploited when the local models are
assumed to be linear.

Most of the researchers have introduced the development of multi-model control schemes
and applied by simulation on different nonlinear processes, however, their application on
practical experiments provide more understanding. Further, gap metric based evaluation of the
multi-model control schemes and their experimental investigation is not carried out in the
literature.

As model predictive control is a promising control methodology, it can be utilized for control
of nonlinear systems but in a different form. Multi-model predictive control can be designed and
experimentally implemented. Also, there are no works reported on multi-model fractional control
strategies for control of nonlinear systems. Advanced regulatory control strategy such as cascade
control is widely in industries. For nonlinear systems also, cascade control can be integrated with
multi-model framework for improved control. Based on the gaps identified in the literature and
above motivating factors, the following objectives are framed.

2.5 Objectives

To evaluate gap-metric based multi model control schemes for nonlinear systems.
To design multi model predictive controllers for nonlinear systems.

To design multi-model fractional order control strategies for nonlinear systems.

W np e

To design multi-model cascade control strategy for nonlinear systems.
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5. To design multi-model Smith predictor based control strategy for nonlinear systems.
2.6 Organization of the thesis

The organization of the thesis is as follows:

Chapter 2 presents literature overview on different aspects of multi-model control schemes.
Chapter 3 presents multiple model identification for nonlinear systems.

Chapter 4 describes gap-metric based global controller of multi model control scheme for
nonlinear systems.

Chapter 5 provides the evaluation of gap-metric based global controller using multi model
predictive control for nonlinear systems with time delay.

Chapter 6 provides the design of multi-model fractional order controller for nonlinear systems.

Chapter 7 describes multi-model cascade control strategy design based on gap metric for
nonlinear processes.

Chapter 8 provides multi-model smith predictor based control strategy for long dead time
processes.

Chapter 9 provides summary and conclusions
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Chapter 3

Multiple model Identification for Nonlinear Systems

22



Chapter 3

Multiple model identification for nonlinear systems

In the multi model approach, decomposition of nonlinear system is the first procedure as
described in section 1.1. Using the partition strategy the decomposition of nonlinear system is
carried out and developed multiple linear models. Here three systems are taken which exhibits
nonlinear behavior and identified the multiple linear models based on sequential steady state
partition strategy.

Spherical tank, conical tank and isothermal CSTR processes are the examples for describing
nonlinear systems, the mathematical models of Spherical and conical tanks are developed by
considering (i) level (height) as the control variable and (ii) input flow to the tank as the
manipulated variable and the mathematical model of iICSTR is developed by considering (i)
concentration as the control variable and (ii) inlet flow to the process as the manipulated

variable. The detailed procedure is given below.

3.1 Case Study 1: Spherical Tank Process
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Figure 3.1 Spherical tank as a nonlinear process.




The spherical tank process is shown in Figure 3.1 in which level (h) is the controlled variable and
input flow rate (q;) is the manipulated variable. Applying mass balance, the mathematical model
is described by the first-order differential equation as:

dh
qi — 4o = m[2rh — h?] — (3.1)

dh ai avh
dt  m(2rh—h2) Rm(2rh—h2)

3.2)

where ‘r’ is radius of the spherical tank, ‘q,’ is the outlet flow rate and ‘a’ is a coefficient and is
assumed as one. Here, ‘R’ is the resistance and is found experimentally by considering different
steady state values for level.
After linearizing Eq. (3.1) by using Taylor series, state space representation of linearized model
is obtained as

1 a\/h_S

. 1
"= n(Zrhs - hsz)2 ~ais(r=hs) = R (1.5 = r)l e LT(Zrhs - hsz)l ¢

Y = [1]H

Where H and Q are the deviation variables and are H = h — hs, Q = gi — ;s in which hs and g;s are
the steady state values of the level and inlet flow rate respectively. The corresponding transfer
function model is derived and obtained as

H(s) _ (—K1/K3)
Q@) (-1/K)s +1

1 1 O!\/h—s
e e = o 20 = ho S sk =)

where as K; =

Figure 3.2 shows the photograph of the conical tank experimental setup. It consists of a spherical
tank of 250mm inner radius and 500 mm height; rotameter of 1000 LPH; reservoir tank capacity
of 100 liters, pump, air to open linear control valve, Electro-Pneumatic Positioner (4-20mA
converter to open the valve between 0-100%); Differential Pressure Transmitter (DPT) for
measurement of the level, and front panel display connection diagram. Data acquisition is carried
out and MATLAB is used for implementation of the control algorithms.

Two different sample values are taken by slightly changing the outlet resistance ‘R’. Based on
sample one the different steady state values for level are considered and derived the

corresponding multi-model transfer functions. Table 3.1 shows 9 different multi linear transfer
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function models at different steady states. Based on sample two the different steady state values
for level are considered and derived the corresponding multi-model transfer functions. Table 3.3

shows 9 different multi linear transfer function models at different steady states.

Figure 3.2 Spherical tank experimental test setup

According to multi-model control schemes, need to reduce the number of linear models for
design of controllers. From the literature found that gap metric is simplest technique which is

used for minimizing the multiple models to represent entire nonlinear system.

Based on the gap metric value of 0.04 for sample one, the multiple models of spherical tank are
minimized into only 3 models and as shown in Table 3.2. These models can be used to
understand the dynamic behavior in the ranges of 0 - 20 cm (M2), 20 — 35 cm (M6) and 35 — 50
cm (M9). Based on the gap metric value of 0.05 for sample two, the multiple models of spherical
tank are minimized into only 3 models and as shown in Table 3.4. These models can be used to
understand the dynamic behavior in the ranges of 0 - 20 cm (M2), 20 — 35 cm (M6) and 35 — 50
cm (M9). Based on reduced models the controllers are designed.
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Table 3.1 Multi linear transfer function models for spherical tank process at different steady
states for sample 1

Multiple Multi Linear Models
hsincm | Transfer function model | hs incm | Transfer function model

5 M. = 0.0382 30 M. = 0.1773

17 26.805s + 1 © 7334225+ 1
10 0.0735 35 0.1906

2792405 + 1 M7 = 3laazs + 1
15 0.1068 40 0.2058

* = 176285 + 1 Mo = 258575 + 1
20 0.1355 45 0.2232

+ T 255425 + 1 Mo =T5778s + 1
25 0.1553

Ms = 302895 + 1

Table 3.2 Reduced number of models for gap metric of 0.04 for sample 1

Operating Range | Transfer Function

0-15cm 0.0735
92.40s+ 1
15-40cm —0'1773
334.22s+ 1

2232
40 -50 cm —O 3
157.78s + 1
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Table 3.3 Multi linear transfer function models for spherical tank process at different steady
states for sample 2

Multiple Multi Linear Models
hsincm | Transfer function model | hsin cm | Transfer function model

5 0.06816 30 0.3166

1= 7848 + 1 M = So68s 1
10 0.1313 35 0.3404

2= T5s 1 1 M7= Se1ss 1

15 0.1908 40 0.3674

3731475+ 1 Ms = 46175 + 1
20 0.242 45 0.3986

+ = I561s 11 Mo= 2818511
25 0.2773

57 54445 + 1

Table 3.4 Reduced number of models for gap metric of 0.05 for sample 2

Operating Range | Transfer Function

0-15cm 0.1313
165s + 1
15-40cm —0'3166
596.8s + 1
40 -50 cm —0'3986
281.8s+1

3.2 Case Study 2: Conical Tank Process

The Conical tank process is shown in Figure 3.3 in which the level (h) is controlled by using the
input flow rate (gi). It is a nonlinear process whose mathematical model is obtained by writing

unsteady state mass balance and is given in Eq.3.6.
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Figure 3.3 Conical Tank process

dv

Pqi —pPdo =P, (3.6)

In which the volume is

_hndz_rth(Dh
T 12 12 \H

2
) = K "h3Substituting in Eq. 3.6,

" 3
q — CpVh=K d(ht)

d 3.7)

Where Cp = %valve coefficient. Here Cp, is used find out from experimental steady state

samples.

Linearizing the above equation using Taylor’s expansion, the state space representation of

linearized model is obtained as

2q;s Cp l l l
= - H+ |—
[3K"hs3 2h>/? 3K"hg> Q
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Y = [1]H

The corresponding transfer function model is obtained as

1
H(s) _ 3K 'hg?

- 2q; Cc
Q1(s) S++‘S3—%
3K"ns3 2ng%/

(3.8)

Figure 3.4 shows the photograph of the conical tank experimental setup. It consists of two
conical tanks of 700 mm height and 300 mm radius at the top; however, only one tank is used as
a single input single output (SISO) process. The setup consists of rotameter with capacity 440
LPH; reservoir tank of 150 Liters, pump, air to open linear control valve, Electro-Pneumatic
Positioner (4-20mA converter to open the control valve between 0 - 100%), Differential Pressure
Transmitter (DPT) for measurement of level, and front panel for the user. Data acquisition is

carried out and MATLAB is used for implementation of the control algorithms.

Figure 3.4 Conical tank experimental test setup

Two different sample values are taken by slightly changing the outlet valve coefficient ‘Cp’.
Based on sample one, the different steady state values for level are considered and derived the
corresponding multi-model transfer functions. Table 3.5 shows 12 different multi linear transfer

function models at different steady states. Based on sample two the different steady state values
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for level are considered and derived the corresponding multi-model transfer functions. Table 3.7

shows 12 different multi linear transfer function models at different steady states.

According to multi-model control schemes, need to reduce the number of linear models for
design of controllers. To do this, Gap metric value of 0.04 for sample one is considered and only
3 models are retained as shown in Table 3.6. These models can be used to understand the
dynamic behavior in the ranges of 0 - 25 cm (M3), 25 — 50 cm (M8) and 50 — 65 cm (M12). Gap
metric value of 0.05for sample two is considered and only 3 models are retained as shown in
Table 3.8. These models can be used to understand the dynamic behavior in the ranges of 0 - 25
cm (M3), 25 — 50 cm (M8) and 50 — 65 cm (M12). Based on reduced models the local controllers
are designed.

Table 3.5 Multi linear transfer function models for spherical tank process at different steady
states for sample 1

Multiple Linear Transfer Models
hs in cm Transfer function model hs in cm Transfer function model
5 0.02917 35 0.1089
Mi= 01388 + 1 M7 = s as+1
10 0.04861 40 0.1147
27092535+ 1 Mo = 32055+ 1
15 0.06441 45 0.1326
= 27595+ 1 Moo= Sii3s+ 1
20 0.07864 50 0.1442
*~75988s + 1 Mio = g 63s + 1
25 0.08558 55 0.1523
Ms = To18s +1 M= 57675+ 1
30 0.09948 60 0.1587
Mo = T70as 11 M2 = Tog8s + 1
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Table 3.6 Reduced number of models for gapmetricOf 0.04 for sample 1

Operating Range Transfer Models
0 - 20cm M. = 0.06441
3 7 2.759s+1
8 7 34.95s+1
50 - 62 cm My, = —
108.8s+1

Table 3.7 Multi linear transfer function models for spherical tank process at different steady
states for sample 2

Multiple Linear Transfer Models
hs in cm Transfer function model hs incm Transfer function model
5 M, = 0.4 35 M, = 1.4942
1.8379s + 1 336.41s + 1
10 M. — 0.667 40 M. 1.5737
27122535+ 1 8 462.785s + 1
15 0.8833 45 1.82
37 36.5288s + 1 Mo =%7702s+1
20 1.0785 50 1.978
Ms = 7928965 + 1 Mio = 5088565 + 1
25 1.1737 55 2.088
5 71348225 + 1 Mt = 160015 + 1
30 . — 1.3643 60 Moo — 2.177
© 7 2256835+ 1 1271440435 + 1

Table 3.8 Reduced number of models for gap metric of 0.05 for sample 2

Operating Range Transfer Models
0-20cm 0.667
12.253s+1
20 -50 cm 1.3643
225.683s+1
50 - 62 cm 2.088
1160.91s+1

31



3.3 Case Study 3: Isothermal CSTR

An isothermal CSTR, consider a first-order irreversible reaction takes place and figure as shown

in . The mass balance is

= —KCy+ (Ca = Cou (3.9)

Where reactant concentration (Ca(mol/L)) is controlled variable, input(u = g = V(min™)) is the
manipulated variable, g (I min?) is the inlet flow rate and Cai is the inlet feed concentration(1.0
mol/L) and constant rate k is 0.028 (min™). Linearizing the above equation using Taylor’s

expansion, the transfer function model is

Cals) _ 1-Cys
u(w)  s+(0.028+ug) (3.10)

Ca

Figure 3.5 Isothermal continuous stirred tank reactor

The iCSTR model is divided into multi linear model based sequential steady states (us;Cas) of
different operating ranges. Eighteen linear models are found and shown in Table 3.9, these are

minimized into three model by using gap metric value of approx. 0.1 and minimized models are
shown in Table 3.10, based on these controller parameters are tuned.
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Table 3.9 Multi linear models for isothermal CSTR at different steady states

Multiple Linear Transfer Models

Cai in mole/unit Transfer function Cai in mole/unit Transfer function
model model
0.2522 M 0.83583 0.164

25.14s + 1 59s+1

0.37166 m 0.850833 0'—15
21.84s + 1 532s+1

0.4975 —0'5 0.8675 —0'132
18.62s + 1 477s +1

0.616666 & 0.881666 &
13.614s + 1 7.17s + 1

0.68 __032 0.895833 01042
1146s + 1 3.66s+1

0.7408 _026 0.912333 _0.088
934s+1 3.22s+1

0.7725 _0.223 0.929166 _0.071
8.27s+1 257s+1
0.805833 & 0.95833 &
711s+ 1 1.474s + 1
0.82 ﬂ 0.990833 ﬂ
6.47s+ 1 0.356s +1

Table 3.10 Reduced number of models by using gap metric

Operating Range

Transfer Models

0-0.5 mole/L _0.62834
2721845+ 1
0.5-0.77 mole/L M. = 0.32
> 11.46s +1
0.77 - 1 mole/L 0.10417

My, =—7——"
736625+ 1
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Chapter 4

Evaluation of Gap-metric based Multi-model Control
Schemes for Nonlinear Systems: An Experimental
Study
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Chapter 4
Evaluation of gap-metric based multi-model control schemes

for nonlinear systems

There are number of methods proposed in the literature based on multi model approaches to
control the nonlinear systems. Many of these methods are by simulation. An experimental
investigation provides more understanding and also practical difficulties of nonlinear process
control. This chapter presents an experimental evaluation and comparison of gap metric based
weighting methods for design of multi-model control schemes for control of levels in a spherical
tank process and a conical tank process.

4.1 Introduction

Controlling the nonlinear processes is typical when compared to linear process. Conventional
PID controllers are used to control nonlinear process such that the controllers must be tuned to
provide a very stable behaviour over the entire range of operating conditions. As tuning of the
controllers is conservative, it results in degradation of the control system performance. In order
to stabilize nonlinear behaviour, multi model control approaches are found suitable for a system
as stated by Johansen et al. (1997).

Adeniran et al. (2017) provided a detailed review on Multi-model approaches. The approach
relies on a problem decomposition strategy where a nonlinear system is segregated into set of
many linear models based on their operating points. The local linear model represents the
dynamics of the process in a particular operating point. However, there can be many linear
models for a given nonlinear system but it might not be a wise practice to use all the linear
models to control. Hence proved in the literature that few models represents the whole non
linearity of the process which is required to control the process. In such context, Gap metric is
suggested by El-Sakkary et al. (1985) to reduce the number of models from highest to lowest
number. This approach based on Gap metric is simple and mathematically tractable as it can be
used to process behaviour incorporation. Multi-model controllers use linear control methods due
to their hassle free implementation; availability of more linear control methodologies. To start
with, a nonlinear process is divided into a group of local linear models by using the
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corresponding partition techniques. Then, the corresponding local controller C; is designed with
any good linear controller design method. Combination of these local controllers in a systematic
way forms the global controller. Formation of global controller can be carried out using two
different approaches, fusion methods and weighting methods.

In fusion method, only one local controller is fused at the sampling period based on the different
performance indices such as operating conditions developed by Banerjee(1998), output error
developed by Chen(2009), estimate error developed by Rodriguez(2003). This method might
cause output oscillations for processes having high nonlinearities, even though if the local linear
controller is designed well and kept in the closed loop. However, in weighting methods it varies,
the global controller is determined by a weighted sum of the local controllers’ outputs. There
existing number of weighting functions, such as gap metric weighting function developed by
Arslan(2004), Galan(2003) and Du(2014), Gaussian functions and trapezoidal functions
developed by Tan(2003), Bayesian weighting functions developed by Aufderheide(2004).

Gap metric weighting function method is more feasible, as it uses average weights of local
controllers which makes the system outputs smooth also reduces output oscillation. Gap metric
weighting function has an advantage of only one tuning parameter when compared to other
weighting methods (Gaussian and trapezoidal), reducing the complex tuning procedure. Based
on gap metric, two methods namely 1-6 and 1/8 weighting functions are defined by Arslan(2004)
and Du (2014) respectively. They applied these methods for temperature and concentration
control in reactors. Du et al. (2014) developed multi linear model predictive control (MLMPC)
algorithms for nonlinear chemical processes using gap-metric-based weighting method. They
applied the developed methodology on a continuous stirred tank reactor (CSTR) in both SISO
and MIMO mode. Du and Johansen (2014) also developed a multi-model control scheme with
1/6 gap-based weighting method to combine the local controllers and applied by simulation on a
CSTR process. Galan et al. (2003) explained the implications of gap metric concept for multi-
model control schemes with applications of CSTR and a pH process.

As it is well known that many people studied the development of multi-model control schemes
and applied by simulation on different nonlinear processes, their application on practical
experiments provide more understanding. Also, it may be appropriate for the control community
if these methods are evaluated experimentally. In the present chapter, the implementation of

these methods is carried out on different nonlinear systems both by simulation and experiment.
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The main contribution of the present chapter is to experimentally implement the gap metric
based weighting function multi-model control schemes with the combination of local controllers
to control the nonlinear systems. Level control in spherical and conical tanks is considered for
experimental investigation. The two weighting functions (1-6 and 1/6) based on gap metric are
applied first by simulation for level control in both these tanks. The corresponding multi model
controllers are evaluated by simulation. For this, a mathematical model of the process is
developed using the corresponding mass balance equations. Further, these two methods are
applied experimentally to control the level in spherical tank and conical tank for different
regions.

For clear illustration, the chapter is organized as follows. Section 4.2 briefly describes the
theoretical developments and construction of global controller using weighting methods based on
gap metric. In Section 4.3, weights of each region are explained for spherical and conical tank

systems. In Section 4, results are discussed followed by summary in Section 5.
4.2 Development of gap metric based weighting function:

Consider the following nonlinear system representation in state space format.

x=f(x,u)
b = g0 4

where x € R™ is the state vector, u € R™ is the control input vector, and y € R™ is the output
vector.f (-)andg (+) are nonlinear functions.

For Eq. (4.1), chosen a proper scheduling vector 6 which contains one or more control inputs, or
one or more outputs. In general, the scheduling variables may include a subset of inputs, states
and disturbances. The scheduling space of system (4.1) is ®, then 8 € ®. Where @ is the
variation range of 8 and also the operating range of system given in Eq. (4). The value of 0 is
denoted as 6tat time (t). The steady state corresponding to 6t is (Xst, Ust, Ys). After linearizing the
system around (Xst, Ust, Ys), the linear model is obtained as P(6)[12].

{65( = A;6x + Bdu

6y = C;6x + D Su (4.2)

Of (Xst/Ust) B, = Of (XstUst) C, = g (xst,Ust)
Dt — y “t —

Wheredx = 0x—Xst, Ou = du—Ust, 0y = 0y—VYst, A = ™ o Py

99 (xst
andD, = g(’i;;u“).
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Let us consider that the nonlinear process can be approximated and represented with Nm local
linear processes. The operating point of the i local linear process is denoted as (xg;, Us;, Vs;),
which is one possible steady state point of the nonlinear process i.e., f(xs, us)=0, y=g(Xs,us).
linearized Eq. (4.1) around (xsi,Usi, Ysi) to obtain the i local linear system Pi. The Nm local linear
models are reduced to minimum possible number of linear models using gap metric. Based on
the reduced local models the PI controllers are designed using IMC method. Once the local
controllers are designed, the global controller is determined using gap metric based weighting

function in two possible ways as explained below.

4.2.1 1-6 weighting method

The nonlinear process at time t is nPt. Then P(6) is the linearized model of nP:. The gap metric
between local linear model P; and P(0) isy;(68;) where
vi(8) = 8(P, P(6y)),i=1,...., Nm (4.3

The i local linear controller at time t of 1-5 weighting function is:

(1-yi(8)Kw
(8y) = 4.4
(pl( t) Zj_\/;rll(l_yj(gt))](w ( )

4.2.2 1/ weighting method

Then the i local linear controller at time t of 1/ weighting function is defined as:

() Kw
1 (4.4)

Nm K
Zj=1G e

©i(6,) =

where Kwis the tuning parameter which is usually selected as > 1. Also, (pisatisfieszyz"i p;(6,) =
1. In this work, kw= 1is considered. Therefore, the output of the multi-model controller is:

u(®) = L7 i (0)wi() (4.5)

whereu; (t)is the i local linear controller. According to (4.8), when the weighting function ¢; is
small, the corresponding gap metric value will be close to one and when the weighting function
@; 1S high, the corresponding gap metric value will be close to zero. The weighting functions
given in Eq.(4.7) and (4.8) are used in the corresponding 1/6 and 1-6 weighting methods.
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4.3 Case studies:

In this chapter, proposed method is examined on spherical and conical tank processes

4.3.1 Spherical Tank Process:

Weights for each controller are selected and their values are given in Table 4.1 for (1-9)
Weighting method. The corresponding representation is also shown in Figure. 4.1 and it can be
seen that the total weights in any region is close to 1. Similarly, weights for each controller are
selected and their values are given in Table 4.2 for (1/6) Weighting method. The corresponding
representation is also shown in Figure4.2 and it can be seen that the total weights in any region is

close tol.

Table 4.1 Weightings for each controller according to (1-8) weighting method

Operating Range | PI-1 P1-2 P1-3

0-20 cm 0.3623 | 0.3264 | 0.3104
20-35cm 0.3204 | 0.3567 | 0.3229
35-50cm 0.3096 | 0.3280 | 0.3623

Table 4.2 Weightings for each controller according to (1/8) Weighting method

Operating Range | PI-1 | PI-2 | PI-3
0-20cm 0.9841 | 0.0093 | 0.0066
20-35cm 0.0094 | 0.9807 | 0.0100
35-50cm 0.0066 | 0.0100 | 0.9834
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Figure 4.1 Weight values of particular operating point according to 1-6 method, solid: PI-1, dot:

Pl-2, dash: PI-3.
——Pl-1 ——PI-2 PI-3
le o A
0.9
0.8
0.7
~ 0.6
T
9 05
w
2 04
0.3
0.2
0.1
o’ A |
0 10 20 30 40 50
LEVEL (CM)

Figure 4.2 Weight values of particular operating point according to 1/6 method, solid: PI-1, dot:
P1-2, dash: PI-3.

4.3.2 Conical Tank Process:
Weights for each controller are selected and their values are given in Table 4.3 for (1-9)
Weighting method. The corresponding representation is also shown in Figure4.3 and it can be

seen that the total weights in any region is close to 1. Similarly, weights for each controller are
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selected and their values are given in Table 4.4 for (1/6) Weighting method. The corresponding
representation is also shown in Figure 4.4 and it can be seen that the total weights in any region

is close to 1.

Table 4.3 Weightings for each controller according to (1-3) Weighting method

Operating Range | PI 1 Pl 2 Pl 3
0-25cm 0.3503 | 0.3319 | 0.3178
25-50 cm 0.3272 | 0.3454 | 0.3275
50-60cm 0.3177 | 0.3321 | 0.3502
—4— Controllerl == controller2 controller3
0.355
0.35 ¢ S
0.345 il
E 0.34
9 0.335 |
= » —n
0.33
0.325 1 :
0.32
0.315
0 10 20 30 40 50 60

LEVEL

Figure 4.3 Weight values of particular operating point by using 1-6.

Table 4.4 Weightings for each controller according to (1/5) Weighting method

Operating Range | PI 1 Pl 2 Pl 3

0-25cm 0.9722 | 0.0177 | 0.0101
25-50 cm 0.0175 | 0.9646 | 0.0179
50-60cm 0.0101 | 0.018 | 0.9719
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Figure 4.4 Weight values of particular operating point by using 1/3.

4.4 Simulation and Experimental Results:

Simulation results for spherical tank and conical tank processes are carried out using sample one
of both and are given below. Experimental implementation is also carried out and the
corresponding results are also presented here.

4.4.1 Spherical Tank Process:

Both 1- and 1/8 weighting methods are implemented in simulation for tracking of different set
points of level and the corresponding responses are shown in Figure 4.5. It is observed that, if
compared 1-dweighing method, this method yields high values of level and 1/6 weighting
method provides good performance in lower values of level. Experimental implementation is
carried out to track the same set points for both the methods and the corresponding results for 1-6
weighing method are shown in Figure 4.6 and for 1/6 weighting method in Figure4.7. To
evaluate the closed loop performance quantitatively, IAE and ISE values are calculated and are
given in Table 4.5. From these values, it can be observed that 1-6 weighting method is

comparatively better.
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Figure 4.5 Comparison of simulation responses for spherical tank process.
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Figure 4.6 Experimentally obtained closed loop responses for 1-8 weighting method for
spherical tank process.
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Figure 4.7 Experimentally obtained closed loop responses for 1/6 weighting method for
spherical tank process.

Table 4.5 Experimental quantitative comparison of weighting methods for spherical tank

process.
Time Height 1-6 weighting 1/6 weighting
(Lunit=40sec) (cm) method method
0 0 IAE ISE IAE ISE
Value Value Value Value
- \2 34.84 345.12 32.09 344.25
7 15
J l 35.82 334.53 36.22 326.85
17 30
J l 18.74 91.94 20.87 102.86
27 40
2 \2 58.63 371.51 58.47 387.86
50 30
J \2 176.51 | 1687.90 | 182.11 | 1649.40
90 15
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4.4.2 Conical Tank Process:

Here also, both 1-6 and 1/6 weighting methods are implemented in simulation for tracking of
different set points of level and the corresponding responses are shown in Figure 4.8. Hence
noticed that 1-8 weighing method is comparatively better at all values of level. Experimental
implementation is carried out to track the same set points for both the methods and the
corresponding results for 1-6 weighing method are shown in Figure 4.9 and for 1/6 weighting
method in Figure 4.10. To evaluate the closed loop performance quantitatively, IAE and ISE
values are calculated and are given in Table 4.6. From these values, it can be observed that 1-6

weighting method is comparatively better.

80

1-86 Weighting method
==1/3 Weighting method
60 - ==== Set Point n

Level (cm)

1 | 1
0 500 1000 1500 2000 2500
Time (sec)

Figure 4.8 Comparison of simulation responses of 1-5 and 1/8 weighting methods for conical
tank process.
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Table 4.6 Experimental quantitative comparison of weighting methods for conical tank process.

Time Height

) 1-6 Weighting Method 1/6 Weighting Method
(100 unit=1sec) (cm)
0 0 IAE Value | ISE Value | IAE Value | ISE Value
(10% (10% (109 (10%)

\2 \2

15000 15 3.2048 1.8007 3.1635 1.912
\2 \2

35000 35 4.3358 5.2864 4.7601 3.8752
J J

60000 55 8.2875 10.216 9.7564 10.821
\2 \2

85000 40 9.2532 9.4199 13.454 14.46
\2 \2

105000 25 7.5034 7.4836 6.8508 4.9437

4.5 Summary:

Controlling the level of spherical tank and conical tank using the inlet flow rate is a typical
nonlinear process and a simple linear controller might fail in providing required closed loop
performances. Two different non-linear process control methods are evaluated in this work to
control the nonlinear processes. Multi model control scheme based on Gap metric is used to
control the nonlinear processes. In order to reduce the number of linear models Gap metric is
selected and then to design the corresponding controllers weights. These two weighting functions
(1-6 and 1/3) based on gap metric are applied first by simulation for level control in both these
tanks to observe that the level is controlled effectively. Experimental implementation is carried
out for controlling the level and Comparative analysis has also been done using IAE and ISE. On
comparing the 1- 6 weighting method with 1/8 weighing method, it is noticed that 1- & has shown

~ 10% improvement on performance.
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Chapter 5
Multi-model Predictive Control (MMPC) for Non-linear
Systems with Time Delay

Controlling nonlinear processes is a difficult task and the difficulty increases when there is time
delay in the process. Multi model technique is the simplest approach and is used to control the
nonlinear process from decades. In this chapter, model predictive control is developed in a multi
model framework (MMPC).

5.1 Introduction:

Control of nonlinear processes is challenging and this problem has been addressed by many
researchers by using different types of controllers such as linear controllers, nonlinear control
strategies, etc. When compared to single model control approach, multi-model control
approaches are found to be more effective for control of nonlinear systems.

Controlling nonlinear processes is a difficult task and the difficulty increases when there is time
delay in the process. The conventional PID multi model controller can control a low level
nonlinear system effectively, if the degree of nonlinearity is increased these controllers are
observed to give some degradation in performance. To address such problems an advanced
control strategy is required. Model predictive control (MPC) has been employed for better
performance over conventional control strategy is proved in Chi(2015). By using the each local
linear model, corresponding MPC has to be modeled known as a local controller. To form a
global controller weighting methods are used. In the weighting methods, finding proper
weighting functions is essential. There are many weighting methods available in the literature but
gap metric based weighting method of 1 — & (6 is gap metric function) and 1/6 is more popular.
These weighting functions are define the weights of each controller and combination forms the
global controller developed by Du(2014). Now the gap metric weighting method was employed
to find the weights of each local controller and the weighted sum of local controllers (MPC)
result to global controller. Hence the approach becomes multi-model predictive control
(MMPC). Gap metric based MMPC are very effecting in controlling complicated nonlinear

system is proved by Du(2014), in order to test the effectiveness of this method, a case-study on
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conical tank (level control) process is considered. The method was employed on MATLAB
simulation platform and was also validated experimentally. Comparison of both the weighting
methods on both the scenarios was done to justify the need of advanced control strategy. The
chapter is arranged as: In section 5.2 detailed explanation on theoretical development of
weighting function based on gap metric and global controller formation using respective weights.

In Section 5.3, simulation and experimental results are presented and followed by summary.
5.2 Theoretical development of Multi-Model Predictive Control (MMPC)

MPC is an advanced control strategy that is used in most of the process industries. It uses a
dynamical model of the process to predict its likely future response and then choosing the best
control action possible while satisfying set of constraints. Nowadays, it finds application in
aerospace, automotive, smart electricity grids, etc. Because of the advantage associated with
MPC over conventional control strategy, it has been employed. MPC inherently has feed forward
nature as it takes measured disturbances as input and it negates the effect of the disturbance
beforehand making it very popular in highly disturbed plants as well and is clearly explained by
Dougherty(2003). The future control signal is computed in such a way that minimizes the

quadratic objective cost function defined as, Minmize J

J=YVe 6 (y (K + UKD — 7 (K + D)||” + 3V 1M (Au (K; + 1 — 1)II?(5.7)

The 1st term denotes the objective of minimization of error between predicted outputs and set-
point signal and the 2"term denotes the objective to find optimal Au values such that error is
reduced. I'y denotes the penalty on tracking error known as output weighting, I'Au denotes the
penalty on the actuation known as input-rate weighting, y (Ki + I|Ki) represents the predicted
value of output at K; +I instant given information up to Kjinstant. Tuning parameters of the MPC
are prediction horizon (NP), control horizon (NC), control interval (At), rate weight on MVs
(TAu), weight on CV(I'y). Few distinguishing features of MPC from conventional control
strategy is, it has ability to forecast, optimize and good constraint handling capability. The
disadvantages are it requires simple linear state-space model, too many degrees of freedom
(horizons, weights, constraints, etc.), requires real time optimization, etc. If Nm number of local
linear models then need to design Nm numbers of local MPC controllers and the response of all
local controllers are merged together to form an exhaustive controller according to Du(2014).
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5.2.2 Controller design

Identified models are specified in chapter 3 additional delay 5 sec added to the process, MPC
controller has to be designed corresponding to each model. Three MPC Controller has been
designed and their parameters are shown in the Table 5.1. The prediction horizon is considered
based on the linear model obtained around the operating point. For three linear operating regions,
three different prediction horizons are considered. However, control horizon is not changed.
After designing the individual controllers, based on gap metric weighting approach weights for
each controller is selected for 1-6 and 1/6 weighting method respectively as explained in chapter

4 and the weights are shown in the Figure 4.3 and Figure 4.4 respectively.

Table 5.1 Multi-model MPC controller tuning parameters for different set-point ranges.

Operating Regional Control interval Prediction Control horizon
Range (cm) Controller (secs) horizon (interval)
(interval)
0-15 MPC-1 5 40 2
15-40 MPC-2 10 150 2
40-60 MPC-3 10 600 2

5.3 Simulation and Experimental Studies

In order to test the effectiveness of these methods on nonlinear system plus delay, a simulation
and experimental analysis was carried out on conical tank process and with sample one. The two
weighting function, 1/6 and 1 — & was implemented for multi set-point change to the level of the
process and the responses are presented below. For testing the controller performance, two

performance metrics were used namely Total Variation (TV) and Integral Absolute Error (I1AE).

From the simulation response i.e. Figure 5.1 and from Table 5.2, it can be deduced that in overall
sense 1 — & weighting function shows better performance as compared to 1/6 weighting function.
From the experimental response i.e. Figure 5.2 and from Table 5.3, it can be deduced that 1-6
weighting function shows better performance as compared to 1/6 weighting function at higher
level while 1 — 6 weighting function shows better performance as compared to 1/6 weighting

function at lower level.
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Figure 5.1 Closed loop response for different weighting methods to multi set point change

(Simulation result).

Table 5.2 Comparative analysis of controller performance for simulation case.

1-6 weighting | 1/0 weighting
method method
IAE Value (10% 1.0850 2.0991
TV Value (10%) 1.0618 1.1879
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Figure 5.2 Closed loop response for different weighting methods to multi set point change
(Experimental result).

Table 5.3 Comparative analysis of controller performance for experimental case.

1-8 weighting 1/6 weighting
method method
IAE Value (10% 23.999 25.602
TV Value 606.8786 863.0312

5.4 Summary:

The gap metric based weighting methods were evaluated for control of conical tank process with
delay using MMPC. The effectiveness of the method was justified using simulation and
experimental studies. On comparing the 1- 6 weighting method with 1/6 weighing method of
MMPC, it is noticed that 1- 6 has shown ~ 9% improvement on performance.
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Design of Multi Model Fractional Controllers for
Nonlinear Systems

54



Chapter 6
Design of multi-model fractional controllers for nonlinear

systems

In the literature, all the methods are proposed to design the local controllers in MMA framework
are integer order controllers. In this chapter, fractional controllers based MMA framework is
developed for enhanced control of nonlinear systems. Gap metric based weighting methods are

used with proper weighting functions to obtain the global controller.
6.1 Introduction

In process industries, behavior of most of the systems will be nonlinear and this type of systems
mostly have performance degradation by using conventional PID controller. In order to
overcome this degradation there are different types of techniques available and one of the most
popular techniques which has been consider by several researches is the multi model approach
(MMA) Adeniran and EI Ferik (2017). This approach divides nonlinear systems into multi linear
models sequentially based on the operating points. Controllers are designed by using this linear
model and over decades most of the researchers considered integer order controllers only. When
integer order controllers are implemented practically overshoot and resonance are observed and
in order to deal such effects fractional order controllers can be used which shows more
promising results Podlubny (1999). In this chapter an attempt has been made to apply fractional
order controllers in order to design a new system called Multi model fractional order controller.
This paper presents effectiveness of Multi model fractional order controller and Extensive

numerical studies on nonlinear system demonstrate its performance.
6.2 Multi Model Fractional controller

The MMA deals with decomposition of nonlinear system into multi linear models based on
sequentially steady states and mathematical model is developed for each of the operating range.
These models now as a set, can be used as a valid representation of the nonlinear process. These

models are further reduced into minimal set using gap metric.
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6.2.1 Fractional Order Controller

Implementation of Fractional calculus which is generalization of Integer order calculus is making
a noteworthy advancement. Its significance lies in the fact that practical systems can be better
identified as fractional order differential equations instead of integer order differential equations
David et al. (2011). Fractional Order PID Controller which is usually described as PI*D*
Controller was introduced by Podlubny (1999).

C(s) = Ky + 3 + Kgs* (6.1)

where Kp is Proportional Gain, K is Integral Gain, Kg is Derivative Gain, A and p are integral
and derivative orders and can be varied between 0 to 2. Non Integer Order Controllers offer more
degrees of freedom and by using these controllers for Integer Order plants, there is more
flexibility in adjusting the gain and phase characteristics than using Integer Order controllers.
Methods for design of fractional order controllers are discussed in Podlubny (1999); Monje et al.
(2008). One such tuning method for Fractional Order PI controllers was proposed by Gude and
Kahoraho (2009) in which a performance criteria (Jv) is minimized which is a measure of system
ability to handle low frequency load disturbances. Finally the normalized controller parameters

are designed based on normalized dead time .
6.3 Simulation and Experimental Results

Simulation results for spherical tank process, conical tank processes and CSTR are carried out
and are given below. Based on sample two for spherical and conical tank process the proposed
method is examined. Experimental implementation is also carried out for conical tank, the
corresponding results are presented here. Multi model local controller parameter values of level
control of spherical tank process are shown in Table 6.1, respectively for level control in conical

tank process are shown Table 6.3 and concentration control in CSTR are shown in Table 6.5.

6.3.1 Spherical Tank Process

Comparative results of Multi model integer and fractional order control are implemented in
simulation for tracking of different set points of level and the corresponding responses are shown
in Figure 6.1. Quantitative analysis of the spherical tank process has been done with integral

absolute error (IAE) values for different set points is shown in Table 6.2. It is observed that multi
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model fractional order control approach is efficiently reducing the overshoot and the response is

enhanced.

Table 6.1 Multi model local controller parameter values of level control of spherical tank
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Figure 6.1 Compared closed loop response of spherical tank process(a) Plant Output (b)

Manipulated Signal.
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Table 6.2 Quantitative analysis of the spherical tank process.

Different set points Multi model integer order Multi model fractional order
control IAE Value (10%) control IAE Value (10%)
10 32.695 0.12355
30 14.143 2.5699
45 8.940.5 2.1274
35 5.475.3 0.57944
15 16.853 5.5127

6.3.2 Conical Tank Process

In the same way, for conical tank also the comparative results of Multi model integer and
fractional order control is implemented in the simulation for tracking of different set points of
level and the corresponding responses are shown in Figure 6.2. Simulation quantitative analysis
of the conical tank process has been done with IAE values for different set points is shown in
Table 6.4. Experimental implementation is carried out for this process and response curves are
plotted. The Figure 6.3 shows closed loop response of multi-model integer order controller and
Figure 6.4 shows closed loop response of multi-model fractional order controller. The
oscillations observed in Figure 6.3 (Integer order response) are very low in amplitude and in the
case of fractional order controller, these oscillations become miniscule. Experimental
quantitative analysis of the conical tank process has been done with IAE values for different set

points is shown in Table 6.5.

Table 6.3 Multi model local controller parameter values of level control of conical tank process

Integer Order Fractional Order
Controller Controller

0.0458 0.1262

Controller 1 3.183 + 0.2731 + ——t
S S

ntroller 2 0.0873 0.1665

Controlle 6.25 + 123482 + ———
S S

0.2731 0.2996

Controller 119 1994 + 10.9762 +—m
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fractional order controller.

Table 6.4 Simulation quantitative analysis of the conical tank process.

Different set points

Multi model integer order
control IAE Value

Multi model fractional order
control IAE Value

15 1590.4 4.31
35 91.70 13.29
55 109.9 50.14
41 231.64 37.61
21 123.42 68.46

Table 6.5 Experime

ntal quantitative analysis of the conical tank process.

Different set points

Multi model integer order
control IAE Value (10°)

Multi model fractional order
control 1AE Value (10%)

15 70.995 0.86205
35 53.654 0.91157
55 178.050 4.4285
41 60.935 0.68081
21 91.032 0.89764
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6.3.3 Isothermal CSTR

Similarly, for CSTR also the comparative results of Multi model integer and fractional order

control is implemented in the simulation for tracking of different set points of concentration and

the corresponding responses are shown in Figure 6.5. Quantitative analysis of the CSTR process

has been done with IAE values for different set points is shown in Table 6.7.

Table 6.6 Multi model local controller parameter values of concentration control of iCSTR

Integer Order Fractional Order
Controller Controller

ntroller 1 0.146 0.571

Controlle 3.183 + —— 186.8 + —=
S S

0.545 0.697

Controller 2 6.25 + —— 17316 + ——-
S S

ntroller 5.24 1.032

Controfler 3 19.199 + 2= 142.31 + ——r
S S
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Table 6.7 Experimental quantitative analysis of the conical tank process.

Different set points

Multi model integer order
control IAE Value

Multi model fractional order
control IAE Value

0.4 2.71 0.096

0.55 0.0872 0.0464

0.85 0.408 0.2337

0.6 2.865 2.865

0.35 4.3766 4.3766
6.4 Summary:

Multi-model fractional order controller is evaluated for control of nonlinear processes and is

compared with multi-model integer order controller. Both the methods are evaluated first by the

simulation and then by performing experiments on conical tank process. On comparing the

multi-model fractional order controller with multi-model integer order controller, it is noticed

that multi-model fractional order controller has shown improvement on performance.
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Chapter 7

Multi-model Cascade Control Strategy Design based
on Gap Metric for Nonlinear Processes
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Chapter 7

Multi-model cascade control strategy design based on gap

metric for nonlinear processes

The major disadvantage of multi-model feedback control approach is that the compensation for

disturbances does not start until the output of process vary from the set point. To overcome this

issue a multi model cascade control strategy is designed in this chapter.

7.1 Introduction:

The major disadvantage of multi-model feedback control approach is that the compensation for

disturbances does not start until the output of process vary from the set point. Cascade control

strategy overcomes this drawback Ribi (2014) and takes the corrective action even before the

disturbance effects controlled variable. This leads to better and faster control. Here implemented

this control strategy on nonlinear system for effective control of the output and improved

disturbance rejection. The implementation of the cascade control strategy is widely increasing in

industries due to its effectiveness in controlling the slower primary nonlinear loops with the help

of the faster nested secondary linear loops Lee (1998). In this cascade multi model strategy, the

primary controller consists of a multi-model controller designed for a primary process. The

global controller formation is done using soft switching.

Global Controller

Linear
Process

u(t)

Nonlinear
Process

y(t)

Figure 7.1 Multi model cascade control schematic diagram.
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7.2 Development of Cascade multi-model control system

Cascade control using multi-model controller strategy uses two controllers for control of
nonlinear primary process. The primary controller consists of a multi-model controller designed
for a primary process. And in the secondary loop the secondary process is assumed to be linear
and PI controller is designed as secondary controller using linear controller design strategies.
Controller in inner loop will serve as slave controller which will act based on set point received
form master controller. Primary controller will act as master controller here and the output of

primary controller will act as set point for secondary controller.

7.2.1 Global controller

After reducing multiple linear models using gap metric, the PID values are calculated for
primary and secondary controllers using IMC technique. The global controller is formed by
combination of local controllers and these formation are done by using hard switching (only one
of multiple controllers are selected as per operating conditions) and soft switching using gap

metric weighting function (1-6 and 1/8) weighting function are illustrated by Du (2014).
7.3 Simulation and Experimental Results

The primary multiple linear models are defined in chapter 3 with sample two of spherical and
conical tank process and secondary linear for respective cases are presented in Table 7.1.
Simulation results for spherical, conical tank processes and CSTR are carried out and are given
below. Multi model primary local controller parameter values of level control of spherical tank
process are shown in Table 7.2, respectively for level control in conical tank process are shown
Table 7.4 and concentration control in CSTR are shown in Table 7.7.
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Table 7.1 Secondary linear models for respective example cases.

S.No Case Study Secondary Secondary loop
Process model Controller
: 2.7 !
1 Spherical Tank Process T 0.7404 (1 + 1—7S>
. 12 !
2 Conical Tank Process T 1.6667 (1 + m)
- 0.028
3 iCSTR 0033s 31 | /14286 (1 * 0.033s>

7.3.1 Spherical Tank Process

Simulation studies are carried out for both normal feedback multi-model and cascade multi
model control system. The performances are observed for various operating points of level
responses as shown in Figure 7.2 for hard switching, Figure 7.3 for 1-8 method and Figure 7.4
1/6 method and its quantitative analysis such as IAE and TV has been carried out as shown in
Table 7.3. Based on this, the cascade multi model control system effectively control the output

and improved the disturbance rejection for level control in spherical tank.

Table 7.2 Multi model primary local controller of level control of spherical tank process

Multi-model Normal Multi-model Cascade control

Feedback control
Controller® | ¢ cee 4 ————+ 168275 | 1531+ ———+ 0.8456s
Controfler2| - 267 + 5981.55 +1.6952s | 6.33+ 597%655 +0.8488s
Controller3 14 g2 4 28:31.55 +1.6898s | 5.033 + ﬁ +0.8474s
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Figure 7.4 Closed loop response of spherical tank using 1/6 method (a) Plant Output (b)
Manipulated Signal.

Table 7.3 Quantitative analysis of normal multi-model and cascade multi-model control system
for spherical tank process.

Hard Switching 1-6 Soft Switching 1/6 Soft Switching
Normal Cascade Normal Cascade Normal Cascade
IAE Value | 1.9982e+04 | 1.2442e+04 | 1.0212e+04 | 5.5867e+03 | 1.9873e+04 | 1.2169e+04
(10%)
TV Value | 995.8716 1.1361e+03 | 1.1661e+03 | 1.3540e+03 | 1.0022e+03 | 1.1377e+03

7.3.2 Conical Tank Process
Similarly, studies on conical tank are also carried out in simulation for both normal and cascade

multi model control system. The performance is observed for various operating points of level

responses as shown in Figure 7.5 for hard switching, Figure 7.6 for 1-8 method and Figure 7.7

1/6 method and its quantitative analysis such as IAE and TV are carried out as shown in Table

7.5. From the simulation response gap metric based cascade multi model system shows better

performance. These gap metric based weighing functions are experimentally investigated for
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comparative analysis and shown in Figure 7.8 and quantitative analysis such are also carried out
as shown in Table 7.6. Based on this, the cascade multi-model control system effectively
controls the output and improved the disturbance rejection of level control in conical tank
process.

Table 7.4 Multi model primary local controller parameter values of level control of conical tank

process
Multi-model Normal Multi-model Cascade control
Feedback control
Controller1 1) ga68 + e + 149285 | 3208 + ﬁ +0.7948s
Controller2 1 145 4 CTTRTT 2;3 o+ 16873s | 1369 + ﬁ +0.8468s
Controller3 | ., —11612.65 +1.6975s | 2.089 + ﬁ +0.8494s
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Figure 7.8 Experimental closed loop response of gap metric based cascade multi-model control
for conical tank for 1- and 1/6 method.

Table 7.5 Quantitative analysis of normal multi-model and cascade multi-model control system
for conical tank process.

Hard Switching 1-6 Soft Switching 1/6 Soft Switching
Normal Cascade Normal Cascade Normal Cascade
IAE Value 45.064 34.585 21.584 14.55 36.299 34.397
(10%
TV Value 275.34 290.498 300.74 274.37 329.64 313.19

Table 7.6 Experimental quantitative analysis of gap metric soft switching based cascade multi-
model control system for conical tank process.

15 1/

IAE Value 2.7027 5.849
(10°)

TV Value 1.0121 1.0284
(10°)
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7.3.3 Isothermal CSTR

Similarly, for ICSTR the comparative results are carried out of normal and cascade multi model
control system. The performance is observed for various operating points of level responses as
shown in Figure 7.9 for hard switching, Figure 7.10 for 1-6 method and Figure 7.11 1/6 method
and its quantitative analysis such as IAE and TV has been carried out as shown in Table 7.8.

Based on this, the cascade multi model control system effectively control the output and
improved the disturbance rejection for concentration control in CSTR.

Table 7.7 Multi model primary local controller parameter values of level control of spherical
tank process

Multi-model Normal Multi-model Cascade control
Feedback control
Controller 1
113.85 + 21875 + 0.033s 3.1854 + 21875 + 0.0165s
Controller 2
223.86 + 11.f9s + 0.0329s | 6.259 + 11.4585 + 0.0165s
Controller 3
688.37 + 36935 + 0.0327s | 19.188 + 3 e76s + 0.0164s
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Figure 7.9 Closed loop response for CSTR using hard switching (a) Plant Output (b)
Manipulated Signal.
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Figure 7.11 Closed loop response for CSTR using 1/6 method (a) Plant Output (b) Manipulated
Signal.
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Table 7.8 Quantitative analysis of normal multi-model and cascade multi-model control system

for CSTR.
Hard Switching 1-6 Soft Switching 1/6 Soft Switching
Normal Cascade Normal Cascade Normal Cascade
IAE Value | 80.2928 79.0444 78.1884 76.0404 79.3043 81.4813
TV Value | 10.8158 10.6549 10.3512 10.1723 10.8460 10.23
7.4 Summary:

Different switching based cascade multi-model control system is evaluated for control of

nonlinear processes and is compared with normal feedback multi model system. Both the

methods are evaluated by the simulation for three nonlinear processes. Gap metric based

weighing function cascade control system are evaluated in experimentally for conical tank

process. On comparing the cascade multi model control system of soft and hard switching

method, it is noticed that soft switching based cascade multi model control system has shown

improvement on performance.
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Chapter 8

Design and Evaluation of Multi Model Smith
Predictor for Nonlinear Processes with Long Dead
Time
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Chapter 8
Design and evaluation of multi-model Smith predictor for

nonlinear processes with long dead time

Multi model smith predictor is designed and evaluated for long dead time nonlinear process.
Multi model approach is simplest and finest control system to control the nonlinear process from
last decade of researches. The long dead time in nonlinear process creates unstable in controlling,

to overcome this smith predictor structure is modified according to multi model control structure.
8.1 Introduction:

In chemical process industries works on lot many number of processes combination and more
number of these processes behaves like nonlinear. The researchers are designing the controller to
satisfy the industrial requirement for the nonlinear process. From the decades of researches, the
researchers proved that Multi Model Approach (MMA) is one of the simplest and finest
approach to design a controller for nonlinear process and also using this approach easily can

implement latest linear controllers.

MMA works on by making piece of nonlinear process into multiple based on operating strategy
and the pieces becomes linear process for that operating constraints. Using these linear process, a
linear controller is designed and combination of all these forms global controller. The
combination can be formed by using hard and soft switching. Most of researches are suggested to

use soft switching for smooth response while set points move from one region to another.

To design a controller for nonlinear process is some difficult task and delay added to it and it
makes even more difficult. Multi model control scheme will overcome these issue for lesser
delay process and also some time system may move to unstable. If long dead process is present

in nonlinear process then design a controller is cumbersome task.

To deal with larger delay system already smith predictor structure is proved to control from last
few decades of researches. Otto smith as introduced the Smith Predictor control strategy in 1957.

This strategy is modified the feedback strategy to compensate the delay. In this strategy, it
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consist of feedback loop with additionally inner loop where it’s have the two terms. The first
term of this inner loop represents process behaviour without dead time. The second term
represents is simply a time delay. Most of researchers modified the smith predictor strategy to
control long dead time process and are complicated procedure. To overcome this issue a

simplified smith predictor structure is designed using multi model control scheme.

In this chapter, smith predictor strategy is modified according multi model control scheme to
control the nonlinear process. Here multi model smith predictor strategy inner loop generalized
model plays major role.

8.2 Development of Multi Model Smith Predictor (MMSP):

Generally smith predictor structure is used to compensate delay in control process and its
schematic diagram is shown in Figure 1. Multi model control scheme is used in controlling the
nonlinear process. Smith predictor structure is modified according MMA to compensate delay in
nonlinear process. In this development two parts are modified in smith predictor. One is
controller section, here multi model control scheme is implemented and another is generalized
model with multiple model. In generalized multiple model section switching is carried using hard
method based on operating condition. In multi-model control scheme, gap metric based soft

switching is used to form global control.

Multi Model > Nonlinear System >
Input Global Controller with Delay Output
) 4

Generalized
Delay
Multiple Models
‘4— Filter -

Figure 8.1 Schematic structure of multi model smith predictor.

\ 4
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Smith predictor is designed for long dead time nonlinear process and model block shown in

figure 8.2.

Gci
r(t) +,_ y(t)

v
)
4

v
D
3

Figure 8.2 Block diagram of multi model smith predictor.

The nonlinear process G, is
Gp = Gpie %
The transfer function is

G(s) =& GeiGp (8.4)

R(S)  14GmGei+GeiGpGr—GoiGmie 956G ¢

whereG,,; is a i™ number of generalized linearized models, 6 is dead time, G, is filter(used for
noise elimination) and G; is global controller. The structure compensates the delay and becomes

GciGp
1+GmiGei

G(s) = (8.5)

In two ways, it is designed and analyzed. In this two method, the global controller is designed by
using minimized models for both but combination has done using hard and 1-8 (soft) switching
methods. Whereas in generalized model, in first method used all the multiple models and second

one used only minimized models.
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8.3 Results and Summary

In this section, simulation analysis are presented. Multi model smith predictor is examined on
conical tank process to control level and iCSTR to control concentration on simulation using

MATLAB. Filter is used for noise elimination and it differs for process to process and here for

1
100s+1

conical tank chosen as

and iCSTR chosen asylﬂ. Simulation results are presented here and

Figure8.3 shows of response MMSP on conical tank process using all multiple linear models in
generalized section based hard switching method and Figure 8.4 shows of response MMSP on
conical tank process using minimized linear models in generalized section based hard switching
method and Figure 8.5 shows of comparison response MMSP on conical tank process using all
and minimized linear models in generalized section based hard switching method and Table 8.1
presents the quantitative analysis MMSP response using hard switching on conical tank process..
Figure 8.6 shows of response MMSP on conical tank process using all multiple linear models in
generalized section based 1-6 switching method and Figure 8.7 shows of response MMSP on
conical tank process using minimized linear models in generalized section based 1-6 switching
method and Table 8.2 presents the quantitative analysis MMSP response using hard switching on

conical tank process.

Figure 8.8 shows of comparison response MMSP on iCSTR process using all and minimized
linear models in generalized section based hard switching method and Table 8.3 presents the
quantitative analysis MMSP response using hard switching on iCSTR. Figure 8.9 shows of
comparison response MMSP on iCSTR process using all and minimized linear models in
generalized section based 1-6 switching method and Table 8.4 presents the quantitative analysis

MMSP response using 1-6 switching on iCSTR.
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Figure 8.3 Multi Model Smith Predictor Response using all Generalized Models
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Figure 8.4 Multi Model Smith Predictor Response using Minimized Models
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Figure 8.5 MMSP Response using Hard Switching

Table 8.1 Quantitative analysis MMSP response using hard switching on conical tank process.

All Multiple Models Minimized Models
IAE Value | 5.1597e+04 5.7484e+04
TV Value | 1.5597e+03 977.4883
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Figure 8.6 MMSP Response using 1-6 (All Generalized Modes)
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Figure 8.7 MMSP Response using 1-6 (Minimized Modes)

Table 8.2 Quantitative analysis MMSP response using 1-3 switching on conical tank process.

All Multiple Models Minimized Models
IAE Value | 4.0777e+04 2.5280e+05
TV Value 1.3366e+03 3.4028e+04
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Figure 8.8 MMSP Response using Hard Switching on iCSTR
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Table 8.3 Quantitative analysis MMSP response using hard switching on iCSTR.

Multiple Models Minimized Models
IAE Value | 58.6853 59.4595
TV Value | 2.0003 2.1298
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Figure 8.9 MMSP Response using 1-6 Switching on iCSTR

Table 8.4 Quantitative analysis MMSP response using 1-3 switching on iCSTR.

Multiple Models Minimized Models
IAE Value | 31.1026 33.9027
TV Value |2.8164 3.1161

8.4Summary:

Multi model smith predictor is designed for long dead time nonlinear process and examined on
conical tank and iCSTR process. Comparison has done with minimized models and all multiple
models. From the evaluation and results, it is concluded that multi model smith predictor
compensates the long delay on nonlinear process. While in comparison effective response has

got for using all multiple models. 1-5 Soft switching base global controller and generalized
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model with all multiple models gives minimal values of IAE and TV. It is concluded that multi

model smith predictor compensates the long delay on nonlinear process.
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Chapter 9

Summary and Conclusions
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Chapter 9

Summary and Conclusions

9.1 Summary

In this research, Evaluation of Gap-metric based Multi-model Control Schemes for Nonlinear
Systems is analysed experimentally,a Multi-model Predictive Control (MMPC) has designed for
time delay non-linear process, An enhanced designing of Multi Model Fractional Controllers and
Multi-model Cascade Control Strategy for Nonlinear Systems is studied and performed
experimentally, finally noticed the effects of Scan Time on the Controller Performance in
Computer based Process Control during ourexperimental investigation and modified PID
controller is designed based on scan time.The results obtained in each section are summarized

below.

9.1.1 Evaluation of Gap-metric based Multi-model Control Schemes for Nonlinear
Systems

Controlling the level of spherical tank and conical tank using the inlet flow rate is a typical
nonlinear process and a simple linear controller might fail in providing required closed loop
performances. Two different non-linear process control methods are evaluated in this work to
control the nonlinear processes. Multi model control scheme based on Gap metric is used to
control the nonlinear processes. In order to reduce the number of linear models Gap metric is
selected and then to design the corresponding controllers weights. These two weighting functions
(1-6 and 1/3) based on gap metric are applied first by simulation for level control in both these
tanks to observe that the level is controlled effectively. Experimental implementation is carried

out for controlling the level and Comparative analysis has also been done using IAE and ISE.

9.1.2 Multi-model Predictive Control (MMPC) for Non-linear Systems with Time Delay
The gap metric based weighting methods are evaluated in controlling of conical tank process
with delay using MMPC. The effectiveness of the method is justified using simulation and

experimental studies.

86



9.1.3 Design of Multi Model Fractional Controllers for Nonlinear Systems
Multi-model fractional order controller is evaluated for control of nonlinear processes and is
compared with multi-model integer order controller. Both the methods are evaluated first by the

simulation and then by performing experiments on conical tank process.

9.1.4 Design a Multi-model Cascade Control Strategy for Nonlinear Systems

Different switching based cascade multi-model control system is evaluated for control of
nonlinear processes and is compared with normal feedback multi model system. Both the
methods are evaluated by the simulation for three nonlinear processes. Gap metric based
weighing function cascade control system are evaluated in experimentally for conical tank

process.

9.1.5 Design and Evaluation of Multi Model Smith Predictor for Long Dead Time
Nonlinear Process

Multi model smith predictor is designed and evaluated for long dead time nonlinear process.
Comparison has done with minimized models and all multiple models. The multi model smith
predictor structure is examined on nonlinear processes such as conical tank process and iCSTR
and evaluated with IAE and TV.

9.2 Conclusions

9.2.1 Evaluation of Gap-metric based Multi-model Control Schemes for Nonlinear
Systems

Multi model control scheme based on Gap metric is used for controlling the nonlinear processes.
Gap metric is selected to reduce the number of linear models and then to design the
corresponding controllers weights. The two weighting functions (1-6 and 1/8) based on gap
metric are applied first by simulation experimental implementation is carried out and the

following conclusions are drawn.

(1) Whenever a positive step change is given around steady state operating point, 1/0
weighting method showed better performance when compared with 1-6 weighting
method.

(i)  Whenever a positive step change is given in a region other than the steady state, 1-6
weighting method showed better performance.
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(iii)  Irrespective of positive and negative step changes, it is observed that 1-6 weighting
method always shows better performance for higher values of level and 1/6 weighting
method showed better performance for lower levels.

(iv)  Based on all the evaluations made and on comparative analysis, 1- 6 weighting method is
recommended for control of level in a nonlinear process by using gap metric based

multi-model approach.

9.2.2 Multi-model Predictive Control (MMPC) for Non-linear Systems with Time Delay

Multi-model predictive control is designed and the effectiveness of the method was justified
using simulation and experimental case scenarios. It is concluded that 1-6 weighting function
provides better performance as compared to 1/ weighting function. In most of the practical
cases, 1-60 weighting function is recommended because it gives lower IAE value that leads to

good controller performance.

9.2.3 Design of Multi Model Fractional Controllers for Nonlinear Systems

Multi-model fractional order controller is evaluated for control of nonlinear processes and is
compared with multi-model integer order controller. Both the methods are evaluated first by the
simulation and then by performing experiments on conical tank process. It is observed that multi-
model fractional order controller provides better performance when compared to multi-model

integer order controller.

9.2.4 Design a Multi-model Cascade Control Strategy for Nonlinear Systems

An integrated framework of cascade control and multi-model control system is evaluated for
controlling the nonlinear process in the presence of disturbances and is compared with normal
multi-model control system. Both the methods are evaluated by the simulation on three nonlinear
process. Gap metric based weighing function cascade control system is evaluated experimentally
for conical tank process. The evaluation from the simulation and experimental response and
quantitative analysis indicated that 1-6 gap metric based weighing method of cascade multi
model control system effectively controls the output and improves the disturbance rejection of
nonlinear system. It is concluded that 1-8 gap metric based weighing method of cascade multi
model control system provides better performance when compared to hard and 1/6 gap metric

based weighing method of cascade multi model control system.
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9.25 Design and Evaluation of Multi Model Smith Predictor for Long Dead Time

Nonlinear Process

Multi model smith predictor is designed for long dead time nonlinear processes and examined on

conical tank and iCSTR process. Comparison is carried out with minimized models and all

multiple models. From the results, it is concluded that multi model smith predictor compensates

the long delay on nonlinear process and provided less values of IAE and TV.

9.3 Suggestions for Future Work

Based on the research carried out in this thesis, one can extend the ideas to solve different other

problems related to control nonlinear systems. The suggestions for future work include the

following.

One can carry the experimental implementation of multi model control scheme on MIMO
nonlinear systems and verify the applicability of the scheme. Also, any issues due to the
multivariable nature can be studied when the number of inputs and outputs are more (>3).
Different multi-model control schemes including PID controllers, fractional order PID
controllers, MPC controllers can be tested experimentally.

One more extension can be the design of multi-model fractional order controls MIMO
square and non-square systems. Typically, design of controllers for square systems is
straight forward whereas for MIMO non-square systems, it is not. Hence, the present
multi-model fractional controllers design may be extended to control of MIMO non-
sguare systems when there are more inputs than outputs.

One more extension is to study the effect of different types of disturbances such as ramp,
periodic and sine wave type while implementing multi-model control schemes.
Analyzing the effect of such disturbances both by simulation and experiment may be
carried out.

In this research, different multi-models are considered for the given process whose
dynamics are stable. However, some times, the linearized model nature may be unstable
in nature based on the operating point. Controlling processes involving unstable
dynamics may be studied with proper integration of controllers meant for unstable

systems.
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