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ABSTRACT 

It is well known that control of nonlinear processes is difficult when compared to linear 

processes. All the methods developed in the literature for control of nonlinear processes are 

comparatively more complex when compared to Multi Model Approaches (MMA), and hence 

MMA is preferred due to its simplicity and easy implementation. In MMA, the nonlinear process 

is decomposed into multiple linear models based on partition strategies. These multiple linear 

models are further reduced into minimal number of models using reduction techniques. These 

reduction techniques are used to find out the optimized linear models to merge the sequential 

operating ranges. The linear controllers are designed for these reduced models and combination 

of these linear controllers forms the global controller.  

Most of these methods in the literature are implemented in simulation. An experimental 

investigation provides more understanding and also practical difficulties of nonlinear process 

control. This work presents an experimental evaluation and comparison of gap metric based 

weighting methods for design of multi model control schemes for control of levels in a spherical 

tank and a conical tank process. Internal model control (IMC)-PI controllers are designed for the 

corresponding linear models. A simulation study is first carried out to examine the performance 

on these nonlinear systems, in which the weights for local controller’s combinations are 

calculated by the weighting functions. The two weighting functions (1- δ and 1/δ, Where δ is gap 

metric function) based on the gap metric value of particular linear model are calculated and used 

for constructing the global multi model controller. Level control in spherical and conical tank 

systems is studied to show the experimental implementation of the considered multi model 

control schemes. 

Further, Multi Model Predictive Controller (MMPC) is developed in this research. In 

MMPC, each MPC has weights determined from the gap metric and using these weights. 

Comparative performance analysis of those weighing functions is carried out by simulations and 

also by experiments.  

Fractional controllers based MMA framework are developed for enhancing the control of 

nonlinear systems. For the purpose of comparison, MMA framework with integer order 

controllers are considered and it is observed that MMA framework with fractional controllers 
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provide improved closed loop performances. Experimental investigation is also carried out to 

verify the applicability of the proposed method and it is observed that the proposed method 

provide enhanced closed loop responses. 

Cascade multi model control system using hard and soft switching for nonlinear process 

is addressed. Multi model approach (MMA) in cascade control strategy by using hard and soft 

switching for selection of the controller is developed. Simulation studies and experimental 

implementation is carried out on a conical tank process. The performance of the cascade multi 

model control strategy is superior when compared to the classical multi model control strategy. 

 Multi model smith predictor is designed and evaluated for long dead time nonlinear 

process. The long dead time in nonlinear process creates stability issues and to overcome this, 

smith predictor structure is integrated to multi model control structure. The multi model smith 

predictor structure is examined on nonlinear processes such as conical tank process and iCSTR 

and evaluated with Integral Absolute Error (IAE) and Total Variation (TV). 
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Chapter 1            

       Introduction 

1.1 General 

In process industries, many times, the process outputs do not respond proportionally to change in 

the corresponding inputs and these type of processes are referred as nonlinear processes. Control 

of such processes is difficult and challenging when compared to the linear processes. 

Conventional PID controllers can be used to control the nonlinear processes but these controllers 

must be tuned in such a way that they provide stable performance over the entire range of 

operating conditions and hence the tuning of such controllers become conservative. Though 

these controllers are tuned conservatively, still there is degradation in control system 

performance. Researchers developed different nonlinear control strategies such as generic model 

control, adaptive control, gain scheduling control, nonlinear model predictive control and multi-

model control to control nonlinear systems in which multi-model control approach (MMCA) is 

one of the simplest approach. The systematic steps involved in MMCA are 

1. Decomposition of the nonlinear system into multiple linear models. 

2. Reducing the number of linear models. 

3. Design of multi-model control scheme based on the reduced number of models. 

This approach primarily focuses on decomposing a non-linear system into multiple linear models 

based on the operating conditions. Based on the partition strategy, the multiple linear models are 

formed and combination of all these models represents the dynamics of the process.  For each 

operating range, one linear model is used to represent the system behavior. Based on these local 

linear models, the controllers are tuned and the combination of all such local linear controllers 

forms the global controller. But too many models make the formation of global controller 

complicated. To overcome this, model reduction is carried out using gap metric techniques. The 

gap metric technique is useful to merge the ranges and select a single model, which is suitable 

for many ranges with a minute difference in the performance. For every local linear model, 

respective linear controller is designed and the corresponding conditional combination forms the 

global controller. Conditional combination is carried out in two ways i.e. hard switching method 
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and soft switching method. In hard switching method, only one local controller acts as global 

controller which is selected based on operating conditions and error. However, in soft switching 

method, combination of all the controllers forms the global controller with determined weights 

for all local controllers. 

The representation of multi model control scheme is shown in Figure 1.1 in which r(t) and y(t) 

are reference input and output at time t, e(t) is error at time t, u(t) is global controller output at 

time t, C1, C2 … Cn are local controller and W1, W2, … Wn are local weights. 

 

Figure 1.1 Multi model control block diagram 

1.1.1 Theoretical developments of gap metric: 

 

The gap metric is a suitable tool to measure the distance between two linear systems than a 

metric based on norms. The technique and its importance in control system is clearly explained 

by El-Sakkary et al. (1985). 

The gap between two subspaces K1 and K2 is defined as 

δ(K1, K2) = ‖ΠK1
− ΠK2

‖        (3.3) 

Where ΠKi
 denotes the orthogonal projection onto subspace Ki.  

A finite dimensional linear operator Pi defined in the H2 space is considered which has a transfer 

function Pi that can have the normalized right co-prime factorization (Gi = [
Ni

Mi
]) and left co-

prime factorization (G̃i = [−M̃iÑi])given by Pi = NiMi
−1 = M̃i

−1
Ñi  (NiMi and M̃iÑiare stable, 

right and Left co-prime transfer functions (are the normalized co prime factorizations). 

The gap metric is then computed as 
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δg(P1, P2) = max⁡(δ⃗ g(P1, P2), δ⃗ g(P2, P1))      (3.4) 

where 

δ⃗ g(P1, P2) = ⁡QϵH∞

inf ‖[
N1

M1
] − [

N2

M2
] Q‖

∞

      (3.5) 

The value of gap metric is between any two linear systems and can only take values in the range 

[0,1] and has several useful properties: 

(1) 0 ≤ δg(P1, P2)≤ 1. 

(2) The gap metric defines the possible distance between two linear systems from a control 

perspective. 

(3) If the metric value is close to 0, at least one controller can stabilize both systems; if the gap 

metric is close to 1, it is difficult to design a controller or a single controller cannot stabilize both 

the systems. 

1.2 Model Predictive Control (MPC) 

MPC is an advanced control strategy that is used in most of the process industries. It uses a 

dynamical model of the process to predict its likely future response and then choosing the best 

control action possible while satisfying set of constraints. Nowadays, it finds application in 

aerospace, automotive, smart electricity grids, etc. Because of the advantage associated with 

MPC over conventional control strategy, it has been employed. MPC inherently has feed forward 

nature as it takes measured disturbances as input and it negates the effect of the disturbance 

beforehand making it very popular in highly disturbed plants as well and is clearly explained by 

Dougherty(2003). The future control signal is computed in such a way that minimizes the 

quadratic objective cost function defined as, Minimize J 

𝐽 = ∑ ‖𝛤𝑦(𝑦⁡(𝐾𝑖 ⁡+ ⁡𝑙|𝐾𝑖) − ⁡𝑟⁡(𝐾𝑖 ⁡+ ⁡𝑙))‖
2𝑁𝑃

𝑙=1 + ∑ ‖𝛤∆𝑢⁡(∆𝑢⁡(𝐾𝑖 ⁡+ ⁡𝑙⁡ − ⁡1))‖2𝑁𝐶
𝑙=1  (5.7) 

The 1st term denotes the objective of minimization of error between predicted outputs and set-

point signal and the 2ndterm denotes the objective to find optimal ∆u values such that error is 

reduced. Γy denotes the penalty on tracking error known as output weighting, Γ∆u denotes the 

penalty on the actuation known as input-rate weighting, y (Ki + l|Ki) represents the predicted 

value of output at Ki +l instant given information up to Ki instant. Tuning parameters of the 
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MPC are prediction horizon (NP), control horizon (NC), control interval (∆t), rate weight on 

MVs (Γ∆u), weight on CV(Γy). Few distinguishing features of MPC from conventional control 

strategy is, it has ability to forecast, optimize and good constraint handling capability. The 

disadvantages are it requires simple linear state-space model, too many degrees of freedom 

(horizons, weights, constraints, etc.), requires real time optimization, etc. 

1.3 Fractional Order Controller 

Implementation of Fractional calculus which is generalization of Integer order calculus is making 

a noteworthy advancement. Its significance lies in the fact that practical systems can be better 

identified as fractional order differential equations instead of integer order differential equations 

David et al. (2011). Fractional Order PID Controller which is usually described as PIλDμ 

Controller was introduced by Podlubny (1999).  

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠𝜆
+ 𝐾𝑑𝑠

𝜇 

where Kp is Proportional Gain, Ki is Integral Gain, Kd is Derivative Gain, λ and μ are integral 

and derivative orders and can be varied between 0 to 2. 

1.4 Cascade multi-model control system 

Generalized Cascade control system figure shown in 1.2, Cascade control using multi-model 

controller strategy uses two controllers for control of nonlinear primary process. The primary 

controller consists of a multi-model controller designed for a primary process. And in the 

secondary loop the secondary process is assumed to be linear and PI controller is designed as 

secondary controller using linear controller design strategies. Controller in inner loop will serve 

as slave controller which will act based on set point received form master controller. Primary 

controller will act as master controller here and the output of primary controller will act as set 

point for secondary controller. 
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Figure 1.2 Generalized cascade control system. 

1.5 Multi model Smith Predictor 

To design a controller for nonlinear process is some difficult task and delay added to it and it 

makes even more difficult. Multi model control scheme will overcome these issue for lesser 

delay process and also some time system may move to unstable. If long dead process is present 

in nonlinear process then design a controller is cumbersome task. 

To deal with larger delay system already smith predictor structure is proved to control from last 

few decades of researches. Otto smith as introduced the Smith Predictor control strategy in 1957. 

This strategy is modified the feedback strategy to compensate the delay. In this strategy, it 

consist of feedback loop with additionally inner loop where it’s have the two terms. The first 

term of this inner loop represents process behavior without dead time. The second term 

represents is simply a time delay. To overcome this issue a simplified smith predictor structure is 

designed using multi model control scheme. 
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Chapter 2            

        Literature Review 

In this chapter, the literature is reviewed on application of multi model scheme to control the 

nonlinear system. The review is given on the existing control algorithm other than multi model 

scheme, formation of multi model structure, model reduction and multi model control scheme for 

nonlinear systems are presented.  

2.1 Control of nonlinear processes 

Numerous researchers have been focusing on controlling the nonlinear behaviorial systems 

and the major control algorithm in name of MMA, gain scheduling, adaptive control, optimal 

control, fuzzy and sliding mode.  

Few literature are presented on the list of control algorithm, all this methods are having 

complicated calculations in designing the controller whereas MMA is simple as compared with 

other control algorithm. 

Yooet al. (1998) introduced the adaptive fuzzy sliding mode control of nonlinear system. Fuzzy 

logic system is used to approximate the unknown function of the nonlinear system and adaptive 

law is proposed to in order to reduce the approximation errors between the nonlinear functions. 

Chai et al. (1999) introduced fuzzy direct adaptive control for control of nonlinear systems and 

this method makes use of the fuzzy systems to provide an approximate optimal controller which 

is synthesized based on the assumption that the dynamics in the system are known. They 

developed fuzzy sliding controller to compensate for the plant uncertainties, smooth the control 

signals and increase robustness. 

Camacho et al. (2000) have proposed the sliding mode control approach to control nonlinear 

processes. The approach is designed for first order plus dead time model of the process. This 

approach has fixed controller with tuning equations as a function of the parameters of the model. 

Chen et al. (2003) have introduced the predictive control approach and is used to design the 

optimal controller for control of nonlinear system. 
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Iqbal et al. (2017) have presented an overview of nonlinear control systems and described the 

role of analytical concepts in design of nonlinear control systems and recent advancements are 

examined. 

From above control algorithm it is observed that, there are complicated calculations in controller 

design and whereas multi model approach is simplest form with minor calculations in design. It 

can easily implement the all advance linear controller methods in MMA to control the nonlinear 

process. The approach is carried out in three steps that are 

1. Decomposition of nonlinear process into multiple linear models. 

2. Minimizing the multiple linear models. 

3. Global controller formation 

The researchers have suggested the simplest way of these approaches from last few decades and 

the upgraded process has reviewed and as follows 

El-Sakkary et al. (1985) introduced the gap metric and presented the robustness of feedback 

systems. They concluded that any metric that preserves a relationship between open-loop 

processes and the corresponding stable feedback loops must have the topology of the gap metric. 

Johansen et al. (1993) have proposed the method for decomposition of nonlinear processes based 

on state space model using operating regime and interpolation of local models are inherently 

empirical. 

Johansen et al. (1997) multiple model approaches to modelling and control, book CNC Press. 

Rodriguez et al. (1998) have proposed a supervisory multi-model control scheme, in which the 

supervisor layer identifies the appropriate local controller from a set of models. Multiple model 

observer is utilized for the selection of the mechanism. Switching among local controllers is 

carried out through a multi-model bump less transfer strategy.  

Nystrom et al. (1999) have proposed a multi-model controller and evaluated on a strongly 

nonlinear chemical process. The controller design problem is then stated as a multi-model mixed 

H2/H1framework for achieving optimal quadratic (H2) performance subject to (H1-type) 

robustness bounds for the multi-model plant description. This method tested on a simulated pH 

neutralization process and compared with that of a linear controller. 
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Hannu et al. (2002) have proposed the velocity-based linearized models a modified internal 

model control structure which eliminates the steady state error. Velocity-based linearization are 

used to form linearized models set. The velocity-form linear parameter-varying system having 

offset term. Based on velocity-based linearized models a modified internal model control 

structure eliminates the offset and the structure is examined in simulation on pH neutralization 

process. 

Galan et al. (2003) have examined the performance of the experimental implementation of multi 

model control strategies on a bench-scale pH neutralization reactor and compared with standard 

PI controllers. 

Toivonen et al (2003) have introduced the multi model control scheme based on Velocity-based 

linearizations. Velocity-based linearizations are applied to construct a set of linearized models 

and this combination provides the nonlinear system dynamics. To achieve a zero off-set when 

using velocity-based linearized models a modified IMC structure is designed. This method is 

tested on pH neutralization process. 

Srinivasan et al. (2003) have designed the T–S Fuzzy multi-model based non-linear PI controller 

for a Type 1 diabetic process, where the gap metric technique is used for finding the optimal 

number of local models to satisfy the closed-loop performance of the blood glucose process. 

Arslan et al (2004) have introduced the novel gap metric approach for global controller 

formation. A global controller is formed from a weighted combination of all the local linear 

controllers in which the weights are functions of closed-loop gap metric. These local weights are 

updated at constant time intervals and this strategy is implemented on two simulated processes, 

one of which exhibits output multiplicity and the other exhibits input multiplicity. 

Tan et al. (2004) have designed the multi-model controller based on gap metric and this gap 

metric is used for selecting operating points in multi-model control scheme. They identified a 

drawback in which the distance between the local models is dependent on the compensators, 

which is usually difficult to determine the operating points without having knowledge of the 

achievable closed-loop performance. 
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Arslan et al. (2004) have proposed the multi-model scheduling approach for controlling the 

nonlinear processes using gap metric. In global controller, the weights are defined using gap 

metric function. The strategy examined on two processes in simulation. 

Tan et al. (2004) have proposed the gap metric based multi-model analysis and controller design 

for nonlinear processes in which H∞ loop-shaping approach integrates the procedure of selecting 

operating points and the corresponding local controller design.  

Xue et al. (2006) have introduced the local model networks modeling method using satisfying 

fuzzy c-mean clustering algorithm. This satisfying fuzzy c-mean is used to define local models 

and different predictive controllers are designed for different local models with different local 

constraints. These modelling and controller procedure are examined on MIMO simulated pH 

neutralization process. 

Lucas et al. (2006) have introduced modified brain emotional learning based intelligent 

controller (BELBIC) for controlling washing machine. The energy consumption of this controller 

is compared with fuzzy controller and observed that improvement in energy savings is 

achievable by using BELBIC. 

Jamab et al. (2006) have proposed a predictive control based on modified locally linear model 

tree (LOLIMOT) to control an electromagnetic suspension system. This algorithm is improved 

the accuracy with fewer rules and reduced computational time. 

Toscano et al. (2006) have developed the method for robustness analysis and synthesis of a 

multi-PID controller for non-linear systems based on uncertain multi-model approach. 

Simulation studies are demonstrated to examine the effectiveness of the method. 

Hong et al(2007) have presented overview of model selection approaches and also described 

problems in nonlinear system identification for decomposition strategy to get suitable models 

from observational data. They outlined the developments on the convex optimization based 

model constructional approaches which includes support vector regression algorithms. 

Toscano et al. (2007) have developed a method to design multi-PID controller for nonlinear 

systems where desirable robustness and performances can be maintained across a large range of 
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operating conditions. Simulation studies are used to demonstrate the effectiveness of this 

method. 

Bilbao et al. (2007) have designed a multi-model scheme for a triggering tunnel diode circuit. 

Here, it improves transient behavior and where switching from stable system equilibrium point to 

another one is known as a triggering process. Each model is calculated by considering a possible 

linearization near an equilibrium point so that the whole model is described by several transfer 

functions around many equilibrium operating points. 

Nandola et al. (2007) have designed the multiple model approach for controlling the nonlinear 

hybrid systems using predictive controller. These multiple models are combined using Bayes 

theorem to describe the nonlinear hybrid system. Simulations on a benchmark three spherical 

tank system and a hydraulic process plant proved that their method is superior. 

Jakubek et al. (2008) have introduced two concepts for the identification of neuro-fuzzy 

networks in which first one is the tallest squares method used for parameter estimation of local 

model parameters in the presence of input and output noise and second one is for the steady-state 

accuracy of dynamic models. They applied this idea by simulation on a gas engine and 

demonstrated the capabilities of the proposed concepts. 

Nagy et al. (2009) have proposed a method where there is no loss in information from 

transformation of nonlinear system into multiple models using premise variables in order to 

design a multi-observer and reconstruct the state of this system. This method is examined on the 

three-tank system. 

Orjuela et al. (2009) have suggested a structure based on a decoupled multiple model 

representation of a nonlinear system and the design of a multi integral unknown input observer. 

The dimension of each sub model can be different and some flexibility can be expected in black 

box modeling of complex system. 

Sadati et al. (2010) have proposed the robust multiple model adaptive control strategy using 

fuzzy fusion. It is integrated with a fuzzy robust controller, the fuzzy multiple model adaptive 

estimation and a fuzzy switching to control the complex nonlinear systems. The proposed 

method is examined on the two cart system in Simulation and has given the effective results. 
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Cai et al. (2010) have proposed the velocity-based LPV modeling and control framework 

combined with nonlinear gain-scheduling controller for an air-breathing hypersonic vehicle. The 

effectiveness of the controller is examined on by simulation and implemented on anti-windup 

control schemes, can be used in application where the input is constrained owing to actuator 

saturation or rate limit. 

Khezami et al. (2010) have proposed a multi-model optimal quadratic control for wind turbines 

in order to integrate high levels of wind power to provide a primary reserve for frequency 

control. Multi-model linear framework is determined for the wind turbine and is used for the 

development of an optimal control law consisting of state feedback, an integral action and an 

output reference model. This control scheme allows a rapid transition of the power of the wind 

turbine between different desired set points. This electrical power tracking is ensured with a 

high-performance behavior for all other state variables. 

Zhang et al. (2010) have proposed an adaptive output feedback control scheme for a class of 

non-affine system in the non-strict feedback form with unknown nonlinearities. The work is 

examined on second order nonlinear process and also it can extend to nth order non-affine 

functions on linear discrete-time systems. Simulations has shown that the algorithm is effective 

in controlling nonlinear dynamic systems. 

ElFelly et al. (2010) have proposed the neural and fuzzy clustering algorithms for complex 

systems modeling and control. The approach is made in three steps are determination of the 

structure of the model base, parametric model identification and global control. The method is 

examined on second order nonlinear system to test the efficiency. 

Janghorbani et al. (2010) have designed a local linear neuro-fuzzy model to predict the mean 

arterial blood pressure time. It can help the patients to prevent occurrence of hypertension or help 

doctors to select appropriate treatment for the physiological disorders. 

Gugaliya et al. (2010) have proposed gap metric based fuzzy decomposition of nonlinear 

dynamics using multiple local linear models. The method showed the stable and parsimonious 

model set which can be deployed for online control and simulation case study on nonlinear 

polystyrene reactor is presented. 
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Novák et al. (2011) have designed a nonlinear model-based predictive control strategy based on 

a local model network. This is developed based on divide-and-conquer strategy process 

operations. This set of locally linearized models were effectively combined into a global 

description of a multivariable nonlinear plant. This strategy is examined experimentally to 

control the pH and level in a pH neutralization process 

Novák et al. (2011) have introduced the optimization of local model network structure using 

Gustafson-Kessel and local least-squares method. The decomposed strategy done based on fuzzy 

clustering and simple local models are developed for each regime via least-squares method. The 

structure of the LMN is optimized using gap metric and prediction error. The method is 

examined in simulation and successfully to control such nonlinear processes. 

Bedoui et al. (2011) have designed the multi-model approach for the representation of non-

stationary time delay systems. This multi-model representation is validated by a generalized 

minimum variance multi-model control scheme. This method compared with adaptive 

generalized minimum variance control in simulation obtained the good response. 

Skopec et al. (2011) have introduced an adaptive calibration technique with on-line growing 

complexity, in which adaptive method of the kinematical calibration merges with the classical 

calibration algorithm and LOLIMOT. 

Du et al. (2012) have proposed the integrated multi-model control design procedure using gap 

metric based dividing algorithm, which integrates the multi-model decomposition and the local 

controller design through an improved gap metric algorithm and the H∞ loop-shaping technique. 

The method is applied by simulation on two nonlinear chemical systems. 

Martinez et al. (2012) have proposed local linear model tree algorithm and a recursive weighted 

least square algorithm for training the artificial neural network to find the appropriate 

parameters, number of model neurons and neural network learning factor and used them in 

multi-model frame work. 

Rafimanzelat et al. (2012) have introduced the Adaptive network based fuzzy inference system 

and Locally Linear Neuro-Fuzzy models in automobile application for fuel consumption 

prediction. LOLIMOT algorithm is used to tune the parameters for identifying the most 
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appropriate input variables to find the suitable model for predicting the miles per gallon of 

automobiles. The method is examined in simulation and defined the best performance. 

Ioanas et al. (2012) have proposed the local linear Neuro-Fuzzy models for the identification of 

Common Rail diesel high pressure dynamics. 

Bedoui et al. (2012) have proposed a multi-model approach for time varying delay systems. The 

method is based on the construction the number, the orders, the time delay and the parameters of 

the local models automatically without any knowledge about the full operating range of the 

system. Identification of the local models is carried out by a new recursive algorithm. The 

proposed algorithm allows simultaneous estimation of time delay and parameters of the process 

indiscrete-time. 

Meskin et al. (2013) have proposed a real time fault detection and isolation scheme based on 

multiple model approach and applied on a dual spool jet engine. It is shown that the method is 

robust to the failure of pressure and temperature sensors and extensive levels of noise outliers. 

Simulation results demonstrate that the multiple model FDI algorithm for both structural faults 

and actuator faults performs well on the jet engine. 

Hametner et al. (2013) have designed a PID controller for nonlinear systems based on the 

corresponding local model networks. Closed-loop stability by means of a Lyapunov stability 

criterion as well as closed-loop performance is studied. All the PID controller values are 

determined by a multi-objective genetic algorithm method, in which trade-off between stability 

and performance are handled.  

Pourbabaee et al. (2013) have proposed an efficient sensor fault detection and isolation strategy 

approach based on multiple-models. The scheme consists of hybrid Kalman filter by integrating 

process model with a number of piecewise linear models to estimate sensor outputs. The 

simulation results demonstrated the effectiveness of the proposed method and robustness with 

respect to the process health parameters. 

Du et al. (2013) have designed the multi linear model decomposition of MIMO nonlinear 

systems with multiple scheduling variables and gap metric division algorithm has proposed. The 

proposed method effectively decomposes a MIMO nonlinear system into a set of linear 
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subsystems without linear model redundancy and designed multi linear MPC controllers and 

these combination forms the global controller for setpoint tracking control. Two bench mark 

nonlinear processes are studied to demonstrate the effectiveness of the proposed method. 

Yubo et al. (2013) have proposed the stability robustness of the closed-loop system based on gap 

metric and robust stability radius. Where robust stability radius is used to generate the weights 

for multi model control scheme. This method is examined on simulation on typical nonlinear 

process and proved the tracking the set point. 

Kolyubin et al. (2013) have proposed multiple model black box identification for control of 

nonlinear systems. Using a set of local NARX models combination representation the system 

dynamics. The method is designed for the combined feed forward/feedback controller. 

Du et al. (2014) have proposed a two integrated multi-model control design frameworks based 

gap metric and stability margin criteria, where the multi-model decomposition and the multi-

model combinations are integrated. One method uses the maximum stability margin and the 

other uses the actual stability margin. 

Touzri et al. (2014) have introduced a internal multi-model controller design with a limited 

variable time delay. The method is designed based on the combination of Multi-Model concepts 

and Internal Model Control. The design method produced good results for a linear process with a 

limited variable time delay and showed the robust behavior. 

Du et al (2014) have proposed gap metric based soft switching for formation of global controller 

to controller MIMO nonlinear system.  A MIMO CSTR system is studied to demonstrate the 

effectiveness of the proposed weighting method. 

Arasu et al (2016) have proposed the simple non-linear model based control scheme for the 

variable area tank process. The parameters of the nonlinear model have been determined using 

empirical approach. The proposed control algorithm has been experimentally implemented on 

conical tank and the performance is compared with gain scheduled PI controller. 

Zribi et al (2017) have proposed a self-organization map method for decomposition of nonlinear 

process into multiple models and gap metric and the stability margin are used for reduction of 

multiple models without redundancy of the initial multi-model bank. Simulations confirm the 
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method for selecting the appropriate number of local models which should be used in the 

controller design. 

Li et al (2017) have introduced the Multi model control scheme for rehabilitation robotic 

exoskeletons. Three control modes are smoothly integrated into the global controller, where the 

robot-assisted mode allows the human to exert voluntary efforts within a desired region. The 

development of the proposed controller follows the singular perturbation approach, and the 

stability of the overall system is rigorously proved by using Tikhonov’s theorem. 

Adeniran et al. (2017) have reviewed modeling and identification of different nonlinear systems. 

A detailed survey has been presented about partitioning strategies. 

Tan et al. (2017) have proposed the direct model reference adaptive control based on multiple-

model switching control scheme. Itis capable of ensuring desired system performance, avoiding 

control singularity and possible persistent control switching. A control switching mechanism is 

designed with performance indexes formed from estimation errors. 

Shaghaghi et al. (2017) have proposed designing of multiple linear model set based on 

nonlinearity measure and reduction of multiple models using H-gap metric. The designed model 

predictive controllers to achieve the high performance and experimentally tested on a pH 

neutralization process. 

Sadati et al. (2018) have introduced the multi-model robust control scheme to control the depth 

of hypnosis during intravenous administration of propofol. This method is implemented to 

control the adequate drug administration regime for propofol to avoid overdosing and 

underdosing of patients.  

Shun et al. (2018) have proposed an improved particle swarm optimization algorithm for 

identification of Takagi–Sugeno fuzzy model. Firstly, by using fuzzy c-means clustering 

algorithm found the rule number of the Takagi–Sugeno fuzzy model and utilizing the particle 

swarm optimization algorithm, the initial membership function and the consequent parameters of 

the fuzzy model are obtained. In addition, through an improved fuzzy c-regression model and 

orthogonal least-square method, the premise structure and consequent parameters can be 

obtained to establish the Takagi–Sugeno fuzzy model. 



18 
 

Zribi et al. (2019) have developed a method for decomposition and reduction of multiple models 

using with integrating of gap metric, margin stability and multi-objective particle swarm 

optimization algorithm (MOPSO). Where gap metric and margin stability are used for distance 

measuring tool and guidelines for selecting the model bank. MOPSO algorithm is used for tuning 

optimal PID controllers which provided less rise time with a lower overshoot percentage and 

good margin stability. 

2.2 Design of Fractional Order Controller 

From the literature it is found that fractional order controllers are not implemented in global 

controller design.  

Chen et al. (2009) have introduced the concept of fractional order system and control and 

provided the review on numerical methods for simulating fractional order systems. Both digital 

and analog realization methods of fractional order operators are introduced.  

Li et al. (2015) have given a review on different tools for the computation of fractional 

integration/differentiation and the simulation of different fractional order systems. They also 

introduced their usage and algorithms, evaluates the accuracy, compared the performance and 

provides informative comments for selection. 

Ranganayakulu et al. (2016) have demonstrated the comparison of various tuning method of 

fractional PIλDμ controller based on Integral of Absolute Error (IAE), Total Variation (TV) and 

Maximum Sensitivity (Ms). 

Pritesh Shah et al. (2016) have given the review of the work done on the fractional PID 

controller which is proposed by Podlubny in 1999 and presented the latest contributions in the 

field of control systems. Highlighted the recent developments in the design and tuning of 

fractional PID controllers and software tools associated to the design of fractional PID 

controllers are also discussed. 

 

 

The above authors have given a good contribution in developing the multi model approach for 

controlling the nonlinear process and their proposed models are examined on mostly Reactor by 

Arslan et al. (2004), Du et al [(2014), Tan et al. (2004), Tascano et al. (2007) Yubo et al.(2013), 

Zribi et al.(2017), pH control by Galan et al (2004), Novak et al(2011), Nystrom et al (1999), 
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Shaghaghi et al. (2017), Xue et al. (2006), Distillation column by Rodriguez et al. (1998), 

Polystyrene by Gugaliya et al.(2010), Three tank system by Nagy et al.(2009), Inverted Conical 

tankby Du et al [(2013), Three tank spherical system & Hydraulic process by Nandola et al. 

(2008), Electrical nonlinear application by Bilbao et al.(2007), Jamab et al. (2006), Khezami et 

al. (2010), Lucas et al.(2006), Meskin et al.(2011), and Biomedical nonlinear application by 

Srinivas et al. (2011) and Sadati et al. (2018). 

2.3 Pros and cons of different approaches, and research gaps 

To control the nonlinear process, the different approaches are Adaptive PID Controller, 

Nonlinear Model Predictive Control (NMPC), Sliding Mode Control, Fuzzy controller and Multi 

Model Control Scheme. 

Pros: 

When the above methods are compared together, Multi Model Control Scheme approach is the 

simplest and can be implemented easily. 

Basically, the tuning procedure for the Controllers depends on the type of Industrial applications. 

Pretty good number of Linear Controllers are already available to control the Industrial process. 

In the same way for controlling the different nonlinear applications, the Linear Controllers can 

be easily implemented in the Multi Model Scheme based on the Industrial Application. 

Cons: 

In case if the Nonlinearity of the system is very high, then identification of Linear Models will be 

a tough job. 

Based on literature survey the following important research problems are noted: 

• Lack of experimental investigation. 

• Design a multi model fractional order controller. 

• Design a multi model cascade control strategy to minimize the effect of disturbance. 

• Design a multi model smith predictor to control long deadtime nonlinear process. 
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2.4 Motivation 

To control nonlinear systems, there are different methods out of which model predictive 

control, gain scheduling, multi model techniques (MMT) are treated as more promising 

methodologies. MMT relies upon a problem decomposition strategy. In this approach, a global 

system model is formed by a set of local models which are integrated with different degrees of 

validity. Each local model represents the dynamics of the system in a specific region of the 

operating space. Although the multi-model approach has been criticized for creating suboptimal 

and input dependent models, the approach is simple, mathematically tractable, and like other 

techniques, it allows direct incorporation of qualitative plant knowledge. Most importantly, a 

well matured linear model and control analysis can be exploited when the local models are 

assumed to be linear.  

Most of the researchers have introduced the development of multi-model control schemes 

and applied by simulation on different nonlinear processes, however, their application on 

practical experiments provide more understanding. Further, gap metric based evaluation of the 

multi-model control schemes and their experimental investigation is not carried out in the 

literature.  

As model predictive control is a promising control methodology, it can be utilized for control 

of nonlinear systems but in a different form. Multi-model predictive control can be designed and 

experimentally implemented. Also, there are no works reported on multi-model fractional control 

strategies for control of nonlinear systems. Advanced regulatory control strategy such as cascade 

control is widely in industries. For nonlinear systems also, cascade control can be integrated with 

multi-model framework for improved control. Based on the gaps identified in the literature and 

above motivating factors, the following objectives are framed. 

 

2.5 Objectives 

1. To evaluate gap-metric based multi model control schemes for nonlinear systems. 

2. To design multi model predictive controllers for nonlinear systems. 

3. To design multi-model fractional order control strategies for nonlinear systems. 

4. To design multi-model cascade control strategy for nonlinear systems. 
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5. To design multi-model Smith predictor based control strategy for nonlinear systems. 

2.6 Organization of the thesis 

The organization of the thesis is as follows: 

 

Chapter 2 presents literature overview on different aspects of multi-model control schemes. 

Chapter 3 presents multiple model identification for nonlinear systems. 

Chapter 4 describes gap-metric based global controller of multi model control scheme for 

nonlinear systems. 

Chapter 5 provides the evaluation of gap-metric based global controller using multi model 

predictive control for nonlinear systems with time delay. 

Chapter 6 provides the design of multi-model fractional order controller for nonlinear systems. 

Chapter 7 describes multi-model cascade control strategy design based on gap metric for 

nonlinear processes. 

Chapter 8 provides multi-model smith predictor based control strategy for long dead time 

processes. 

Chapter 9 provides summary and conclusions 
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Chapter 3            

  Multiple model identification for nonlinear systems 

In the multi model approach, decomposition of nonlinear system is the first procedure as 

described in section 1.1. Using the partition strategy the decomposition of nonlinear system is 

carried out and developed multiple linear models. Here three systems are taken which exhibits 

nonlinear behavior and identified the multiple linear models based on sequential steady state 

partition strategy. 

Spherical tank, conical tank and isothermal CSTR processes are the examples for describing 

nonlinear systems, the mathematical models of Spherical and conical tanks are developed by 

considering (i) level (height) as the control variable and (ii) input flow to the tank as the 

manipulated variable and the mathematical model of iCSTR is developed by considering (i) 

concentration as the control variable and (ii) inlet flow to the process as the manipulated 

variable. The detailed procedure is given below. 

3.1 Case Study 1: Spherical Tank Process 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Spherical tank as a nonlinear process. 
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The spherical tank process is shown in Figure 3.1 in which level (h) is the controlled variable and 

input flow rate (qi) is the manipulated variable. Applying mass balance, the mathematical model 

is described by the first-order differential equation as: 

𝑞𝑖 − 𝑞𝑜 = 𝜋[2𝑟ℎ − ℎ2]
𝑑ℎ

𝑑𝑡
        (3.1) 

𝑑ℎ

𝑑𝑡
=

𝑞𝑖

𝜋(2𝑟ℎ−ℎ2)
−

𝛼√ℎ

𝑅𝜋(2𝑟ℎ−ℎ2)
        (3.2) 

where ‘r’ is radius of the spherical tank, ‘𝑞𝑜’ is the outlet flow rate and ‘α’ is a coefficient and is 

assumed as one. Here, ‘R’ is the resistance and is found experimentally by considering different 

steady state values for level.  

After linearizing Eq. (3.1) by using Taylor series, state space representation of linearized model 

is obtained as 

Ḣ = [
1

𝜋(2𝑟ℎ𝑠 − ℎ𝑠
2)

2 [−2𝑞𝑖𝑠(𝑟 − ℎ𝑠) −
𝛼√ℎ𝑠

𝑅
(1.5ℎ𝑠 − 𝑟)]]H + [

1

𝜋(2𝑟ℎ𝑠 − ℎ𝑠
2)

] Q 

Y = [1]H 

Where H and Q are the deviation variables and are H = h – hs, Q = qi – qi,s in which hs and qis are 

the steady state values of the level and inlet flow rate respectively. The corresponding transfer 

function model is derived and obtained as 

𝐻(𝑠)

𝑄(𝑠)
=

(−𝐾1/𝐾2)

(−1/𝐾2)𝑠 + 1
 

where as 𝐾1 =
1

𝜋(2𝑟ℎ𝑠−ℎ𝑠
2)

 and 𝐾2 =
1

𝜋(2𝑟ℎ𝑠−ℎ𝑠
2)

2 [−2𝑞𝑖𝑠(𝑟 − ℎ𝑠) −
𝛼√ℎ𝑠

𝑅
(1.5ℎ𝑠 − 𝑟)] 

Figure 3.2 shows the photograph of the conical tank experimental setup. It consists of a spherical 

tank of 250mm inner radius and 500 mm height; rotameter of 1000 LPH; reservoir tank capacity 

of 100 liters, pump, air to open linear control valve, Electro-Pneumatic Positioner (4-20mA 

converter to open the valve between 0-100%); Differential Pressure Transmitter (DPT) for 

measurement of the level, and front panel display connection diagram. Data acquisition is carried 

out and MATLAB is used for implementation of the control algorithms. 

Two different sample values are taken by slightly changing the outlet resistance ‘R’. Based on 

sample one the different steady state values for level are considered and derived the 

corresponding multi-model transfer functions. Table 3.1 shows 9 different multi linear transfer 
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function models at different steady states. Based on sample two the different steady state values 

for level are considered and derived the corresponding multi-model transfer functions. Table 3.3 

shows 9 different multi linear transfer function models at different steady states. 

 

 

Figure 3.2 Spherical tank experimental test setup 

According to multi-model control schemes, need to reduce the number of linear models for 

design of controllers. From the literature found that gap metric is simplest technique which is 

used for minimizing the multiple models to represent entire nonlinear system. 

 

Based on the gap metric value of 0.04 for sample one, the multiple models of spherical tank are 

minimized into only 3 models and as shown in Table 3.2. These models can be used to 

understand the dynamic behavior in the ranges of 0 - 20 cm (M2), 20 – 35 cm (M6) and 35 – 50 

cm (M9). Based on the gap metric value of 0.05 for sample two, the multiple models of spherical 

tank are minimized into only 3 models and as shown in Table 3.4. These models can be used to 

understand the dynamic behavior in the ranges of 0 - 20 cm (M2), 20 – 35 cm (M6) and 35 – 50 

cm (M9). Based on reduced models the controllers are designed. 
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Table 3.1 Multi linear transfer function models for spherical tank process at different steady 

states for sample 1 

Multiple Multi Linear Models 

hs in cm Transfer function model hs in cm Transfer function model 

5 
M1 =

0.0382

26.805s + 1
 

30 
M6 =

0.1773

334.22s + 1
 

10 
M2 =

0.0735

92.40s + 1
 

35 
M7 =

0.1906

314.42s + 1
 

15 
M3 =

0.1068

176.28s + 1
 

40 
M8 =

0.2058

258.57s + 1
 

20 
M4 =

0.1355

255.42s + 1
 

45 
M9 =

0.2232

157.78s + 1
 

25 
M5 =

0.1553

304.89s + 1
 

  

 

 

Table 3.2 Reduced number of models for gap metric of 0.04 for sample 1 

Operating Range Transfer Function 

0 - 15 cm 
0.0735

92.40s + 1
 

15 - 40 cm 
0.1773

334.22s + 1
 

40 - 50 cm 
0.2232

157.78s + 1
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Table 3.3 Multi linear transfer function models for spherical tank process at different steady 

states for sample 2 

Multiple Multi Linear Models 

hs in cm Transfer function model hs in cm Transfer function model 

5 
M1 =

0.06816

48.48s + 1
 

30 
M6 =

0.3166

596.8s + 1
 

10 
M2 =

0.1313

165s + 1
 

35 
M7 =

0.3404

561.5s + 1
 

15 
M3 =

0.1908

314.7s + 1
 

40 
M8 =

0.3674

461.7s + 1
 

20 
M4 =

0.242

456.1s + 1
 

45 
M9 =

0.3986

281.8s + 1
 

25 
M5 =

0.2773

544.4s + 1
 

  

 

Table 3.4 Reduced number of models for gap metric of 0.05 for sample 2 

Operating Range Transfer Function 

0 - 15 cm 
0.1313

165s + 1
 

15 - 40 cm 
0.3166

596.8s + 1
 

40 - 50 cm 
0.3986

281.8s + 1
 

 

3.2 Case Study 2: Conical Tank Process 

The Conical tank process is shown in Figure 3.3 in which the level (h) is controlled by using the 

input flow rate (qi). It is a nonlinear process whose mathematical model is obtained by writing 

unsteady state mass balance and is given in Eq.3.6.  
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Figure 3.3 Conical Tank process 

 

𝜌𝑞𝑖 − 𝜌𝑞𝑂 = 𝜌
𝑑𝑣

𝑑𝑡
         (3.6) 

In which the volume is  

𝑣 =
ℎ𝜋𝑑2

12
=

𝜋ℎ

12
(
𝐷ℎ

𝐻
)
2

= 𝐾 ′′ℎ3Substituting in Eq. 3.6,  

𝑞𝐼 − 𝐶𝐷√ℎ = 𝐾 ′′ 𝑑(ℎ3)

𝑑𝑡
         (3.7) 

Where 𝐶𝐷 =
𝛼

𝑅
 valve coefficient. Here 𝐶𝐷 is used find out from experimental steady state 

samples. 

Linearizing the above equation using Taylor’s expansion, the state space representation of 

linearized model is obtained as 

Ḣ = [
2qis

3K′′hs
3 −

CD

2hs
5/2

] H + [
1

3K′′hs
2] Q 

 

D 
𝑞𝑖 

𝑞𝑂 = 𝐶𝐷√ℎ 

R 

H 

h 

d 
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Y` = [1]H 

The corresponding transfer function model is obtained as 

𝐻(𝑠)

𝑄𝐼(𝑠)
=

1

3𝐾′′ℎ𝑠
2

𝑠+
2𝑞𝑖𝑠

3𝐾′′ℎ𝑠
3−

𝐶𝐷

2ℎ𝑠
5/2

         (3.8) 

Figure 3.4 shows the photograph of the conical tank experimental setup. It consists of two 

conical tanks of 700 mm height and 300 mm radius at the top; however, only one tank is used as 

a single input single output (SISO) process. The setup consists of rotameter with capacity 440 

LPH; reservoir tank of 150 Liters, pump, air to open linear control valve, Electro-Pneumatic 

Positioner (4-20mA converter to open the control valve between 0 - 100%), Differential Pressure 

Transmitter (DPT) for measurement of level, and front panel for the user. Data acquisition is 

carried out and MATLAB is used for implementation of the control algorithms. 

 

Figure 3.4 Conical tank experimental test setup 

 

Two different sample values are taken by slightly changing the outlet valve coefficient ‘CD’. 

Based on sample one, the different steady state values for level are considered and derived the 

corresponding multi-model transfer functions. Table 3.5 shows 12 different multi linear transfer 

function models at different steady states. Based on sample two the different steady state values 
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for level are considered and derived the corresponding multi-model transfer functions. Table 3.7 

shows 12 different multi linear transfer function models at different steady states. 

 

According to multi-model control schemes, need to reduce the number of linear models for 

design of controllers. To do this, Gap metric value of 0.04 for sample one is considered and only 

3 models are retained as shown in Table 3.6. These models can be used to understand the 

dynamic behavior in the ranges of 0 - 25 cm (M3), 25 – 50 cm (M8) and 50 – 65 cm (M12). Gap 

metric value of 0.05for sample two is considered and only 3 models are retained as shown in 

Table 3.8. These models can be used to understand the dynamic behavior in the ranges of 0 - 25 

cm (M3), 25 – 50 cm (M8) and 50 – 65 cm (M12). Based on reduced models the local controllers 

are designed. 

 

 

Table 3.5 Multi linear transfer function models for spherical tank process at different steady 

states for sample 1 

Multiple Linear Transfer Models 

hs in cm Transfer function model hs in cm Transfer function model 

5 
M1 =

0.02917

0.1388s + 1
 

35 
M7 =

0.1089

25.4s + 1
 

10 
M2 =

0.04861

0.9253s + 1
 

40 
M8 =

0.1147

34.95s + 1
 

15 
M3 =

0.06441

2.759s + 1
 

45 
M9 =

0.1326

51.13s + 1
 

20 
M4 =

0.07864

5.988s + 1
 

50 
M10 =

0.1442

68.63s + 1
 

25 
M5 =

0.08558

10.18s + 1
 

55 
M11 =

0.1523

87.67s + 1
 

30 
M6 =

0.09948

17.04s + 1
 

60 
M12 =

0.1587

108.8s + 1
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Table 3.6 Reduced number of models for gapmetric0f 0.04 for sample 1 

Operating Range   Transfer Models 

0 - 20cm  M3 =
0.06441

2.759s+1
 

20 - 50 cm  M8 =
0.1147

34.95s+1
 

50 - 62 cm  M12 =
0.1587

108.8s+1
 

 

Table 3.7 Multi linear transfer function models for spherical tank process at different steady 

states for sample 2 

Multiple Linear Transfer Models 

hs in cm Transfer function model hs in cm Transfer function model 

5 
M1 =

0.4

1.8379s + 1
 

35 
M7 =

1.4942

336.41s + 1
 

10 
M2 =

0.667

12.253s + 1
 

40 
M8 =

1.5737

462.785s + 1
 

15 
M3 =

0.8833

36.5288s + 1
 

45 
M9 =

1.82

677.02s + 1
 

20 
M4 =

1.0785

79.2896s + 1
 

50 
M10 =

1.978

908.856s + 1
 

25 
M5 =

1.1737

134.822s + 1
 

55 
M11 =

2.088

1160.91s + 1
 

30 
M6 =

1.3643

225.683s + 1
 

60 
M12 =

2.177

1440.43s + 1
 

 

Table 3.8 Reduced number of models for gap metric of 0.05 for sample 2 

Operating Range  
 Transfer Models 

0 - 20cm 
 

0.667

12.253s+1
 

20 - 50 cm 
 

1.3643

225.683s+1
 

50 - 62 cm 
 

2.088

1160.91s+1
 



32 
 

 

3.3 Case Study 3: Isothermal CSTR 

An isothermal CSTR, consider a first-order irreversible reaction takes place and figure as shown 

in . The mass balance is 

𝑑𝐶𝐴

𝑑𝑡
= −𝐾𝐶𝐴 + (𝐶𝐴𝑖 − 𝐶𝐴)𝑢        (3.9) 

Where reactant concentration (CA(mol/L)) is controlled variable, input(u = q = V(min-1)) is the 

manipulated variable, q (l min-1) is the inlet flow rate and CAi is the inlet feed concentration(1.0 

mol/L) and constant rate k is 0.028 (min-1). Linearizing the above equation using Taylor’s 

expansion, the transfer function model is 

𝐶𝐴(𝑠)

𝑢(𝑢)
=

1−𝐶𝐴𝑠

𝑠+(0.028+𝑢𝑠)
          (3.10) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Isothermal continuous stirred tank reactor 

  

The iCSTR model is divided into multi linear model based sequential steady states (us;CAs) of 

different operating ranges. Eighteen linear models are found and shown in Table 3.9, these are 

minimized into three model by using gap metric value of approx. 0.1 and minimized models are 

shown in Table 3.10, based on these controller parameters are tuned. 

 

 

𝑞, 𝐶𝐴𝑖  

𝐶𝐴 𝐶𝐴 
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Table 3.9 Multi linear models for isothermal CSTR at different steady states 

Multiple Linear Transfer Models 

CAi in mole/unit Transfer function 

model 

CAi in mole/unit Transfer function 

model 

0.2522 
0.7478

25.14𝑠 + 1
 0.83583 

0.164

5.9𝑠 + 1
 

0.37166 
0.62834

21.84𝑠 + 1
 0.850833 

0.15

5.32𝑠 + 1
 

0.4975 
0.5

18.62𝑠 + 1
 0.8675 

0.132

4.77𝑠 + 1
 

0.616666 
0.38

13.614𝑠 + 1
 0.881666 

0.12

7.17𝑠 + 1
 

0.68 
0.32

11.46𝑠 + 1
 0.895833 

0.1042

3.66𝑠 + 1
 

0.7408 
0.26

9.34𝑠 + 1
 0.912333 

0.088

3.22𝑠 + 1
 

0.7725 
0.223

8.27𝑠 + 1
 0.929166 

0.071

2.57𝑠 + 1
 

0.805833 
0.194

7.11𝑠 + 1
 0.95833 

0.042

1.474𝑠 + 1
 

0.82 
0.18

6.47𝑠 + 1
 0.990833 

0.009

0.356𝑠 + 1
 

 

Table 3.10 Reduced number of models by using gap metric 

Operating Range  Transfer Models 

0-0.5 mole/L 
𝑀2 =

0.62834

21.84𝑠 + 1
 

0.5-0.77 mole/L 
𝑀5 =

0.32

11.46𝑠 + 1
 

0.77 - 1 mole/L 
𝑀14 =

0.10417

3.662𝑠 + 1
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Chapter 4           

 Evaluation of gap-metric based multi-model control schemes 

for nonlinear systems 

There are number of methods proposed in the literature based on multi model approaches to 

control the nonlinear systems. Many of these methods are by simulation. An experimental 

investigation provides more understanding and also practical difficulties of nonlinear process 

control. This chapter presents an experimental evaluation and comparison of gap metric based 

weighting methods for design of multi-model control schemes for control of levels in a spherical 

tank process and a conical tank process. 

4.1 Introduction 

Controlling the nonlinear processes is typical when compared to linear process. Conventional 

PID controllers are used to control nonlinear process such that the controllers must be tuned to 

provide a very stable behaviour over the entire range of operating conditions. As tuning of the 

controllers is conservative, it results in degradation of the control system performance. In order 

to stabilize nonlinear behaviour, multi model control approaches are found suitable for a system 

as stated by Johansen et al. (1997). 

Adeniran et al. (2017) provided a detailed review on Multi-model approaches. The approach 

relies on a problem decomposition strategy where a nonlinear system is segregated into set of 

many linear models based on their operating points. The local linear model represents the 

dynamics of the process in a particular operating point. However, there can be many linear 

models for a given nonlinear system but it might not be a wise practice to use all the linear 

models to control. Hence proved in the literature that few models represents the whole non 

linearity of the process which is required to control the process. In such context, Gap metric is 

suggested by El-Sakkary et al. (1985) to reduce the number of models from highest to lowest 

number. This approach based on Gap metric is simple and mathematically tractable as it can be 

used to process behaviour incorporation. Multi-model controllers use linear control methods due 

to their hassle free implementation; availability of more linear control methodologies. To start 

with, a nonlinear process is divided into a group of local linear models by using the 
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corresponding partition techniques. Then, the corresponding local controller Ci is designed with 

any good linear controller design method. Combination of these local controllers in a systematic 

way forms the global controller. Formation of global controller can be carried out using two 

different approaches, fusion methods and weighting methods. 

In fusion method, only one local controller is fused at the sampling period based on the different 

performance indices such as operating conditions developed by Banerjee(1998), output error 

developed by Chen(2009), estimate error developed by Rodriguez(2003). This method might 

cause output oscillations for processes having high nonlinearities, even though if the local linear 

controller is designed well and kept in the closed loop. However, in weighting methods it varies, 

the global controller is determined by a weighted sum of the local controllers’ outputs. There 

existing number of weighting functions, such as gap metric weighting function developed by 

Arslan(2004), Galan(2003) and Du(2014), Gaussian functions and trapezoidal functions 

developed by Tan(2003), Bayesian weighting functions developed by Aufderheide(2004). 

Gap metric weighting function method is more feasible, as it uses average weights of local 

controllers which makes the system outputs smooth also reduces output oscillation. Gap metric 

weighting function has an advantage of only one tuning parameter when compared to other 

weighting methods (Gaussian and trapezoidal), reducing the complex tuning procedure. Based 

on gap metric, two methods namely 1-δ and 1/δ weighting functions are defined by Arslan(2004) 

and Du (2014) respectively. They applied these methods for temperature and concentration 

control in reactors. Du et al. (2014) developed multi linear model predictive control (MLMPC) 

algorithms for nonlinear chemical processes using gap-metric-based weighting method. They 

applied the developed methodology on a continuous stirred tank reactor (CSTR) in both SISO 

and MIMO mode. Du and Johansen (2014) also developed a multi-model control scheme with 

1/δ gap-based weighting method to combine the local controllers and applied by simulation on a 

CSTR process. Galan et al. (2003) explained the implications of gap metric concept for multi-

model control schemes with applications of CSTR and a pH process. 

As it is well known that many people studied the development of multi-model control schemes 

and applied by simulation on different nonlinear processes, their application on practical 

experiments provide more understanding. Also, it may be appropriate for the control community 

if these methods are evaluated experimentally. In the present chapter, the implementation of 

these methods is carried out on different nonlinear systems both by simulation and experiment. 
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The main contribution of the present chapter is to experimentally implement the gap metric 

based weighting function multi-model control schemes with the combination of local controllers 

to control the nonlinear systems. Level control in spherical and conical tanks is considered for 

experimental investigation. The two weighting functions (1-δ and 1/δ) based on gap metric are 

applied first by simulation for level control in both these tanks. The corresponding multi model 

controllers are evaluated by simulation. For this, a mathematical model of the process is 

developed using the corresponding mass balance equations. Further, these two methods are 

applied experimentally to control the level in spherical tank and conical tank for different 

regions. 

For clear illustration, the chapter is organized as follows. Section 4.2 briefly describes the 

theoretical developments and construction of global controller using weighting methods based on 

gap metric. In Section 4.3, weights of each region are explained for spherical and conical tank 

systems. In Section 4, results are discussed followed by summary in Section 5. 

4.2 Development of gap metric based weighting function: 

Consider the following nonlinear system representation in state space format. 

{
𝑥̇ = 𝑓(𝑥, 𝑢)
𝑦 = 𝑔(𝑥, 𝑢)

          (4.1) 

where⁡𝑥 ∈ 𝑅𝑛 is the state vector, 𝑢 ∈ 𝑅𝑛 is the control input vector, and 𝑦 ∈ 𝑅𝑛  is the output 

vector.𝑓(∙)and𝑔(∙) are nonlinear functions.  

For Eq. (4.1), chosen a proper scheduling vector θ which contains one or more control inputs, or 

one or more outputs. In general, the scheduling variables may include a subset of inputs, states 

and disturbances. The scheduling space of system (4.1) is Φ, then 𝜃⁡𝜖⁡Φ . Where Φ is the 

variation range of⁡𝜃 and also the operating range of system given in Eq. (4). The value of θ is 

denoted as θt at time (t). The steady state corresponding to θt is (xst, ust, ys). After linearizing the 

system around (xst, ust, ys), the linear model is obtained as P(θt)[12]. 

{
𝛿𝑥̇ = 𝐴𝑡𝛿𝑥 + 𝐵𝑡𝛿𝑢
𝛿𝑦 = 𝐶𝑡𝛿𝑥 + 𝐷𝑡𝛿𝑢

         (4.2) 

Whereδx = δx–xst, δu = δu–ust, δy = δy–yst, 𝐴𝑡 =
𝜕𝑓⁡(𝑥𝑠𝑡,𝑢𝑠𝑡)

𝜕𝑥
,Bt =

𝜕𝑓⁡(𝑥𝑠𝑡,𝑢𝑠𝑡)

𝜕𝑢
,⁡Ct =

𝜕𝑔(𝑥𝑠𝑡,𝑢𝑠𝑡)

𝜕𝑥
, 

andDt =
𝜕𝑔(𝑥𝑠𝑡,𝑢𝑠𝑡)

𝜕𝑢
. 
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Let us consider that the nonlinear process can be approximated and represented with Nm local 

linear processes. The operating point of the ith local linear process is denoted as (𝑥𝑠𝑖, 𝑢𝑠𝑖 , 𝑦𝑠𝑖), 

which is one possible steady state point of the nonlinear process i.e., f(xs, us)=0, y=g(xs,us). 

linearized Eq. (4.1) around (xsi,usi, ysi) to obtain the ith local linear system Pi. The Nm local linear 

models are reduced to minimum possible number of linear models using gap metric. Based on 

the reduced local models the PI controllers are designed using IMC method. Once the local 

controllers are designed, the global controller is determined using gap metric based weighting 

function in two possible ways as explained below. 

 

4.2.1 1-δ weighting method 

 

The nonlinear process at time t is nPt. Then P(θt) is the linearized model of nPt. The gap metric 

between local linear model Pi and P(θt) is𝛾𝑖(𝜃𝑡) where 

𝛾𝑖(𝜃𝑡) = 𝛿(𝑃𝑖, 𝑃(𝜃𝑡)),⁡i=1,...., Nm       (4.3) 

The ith local linear controller at time t of 1-δ weighting function is: 

𝜑𝑖(𝜃𝑡) =
(1−𝛾𝑖(𝜃𝑡))

𝐾𝑤

∑ (1−𝛾𝑗(𝜃𝑡))𝐾𝑤
𝑁𝑚
𝑗=1

        (4.4) 

 

4.2.2 1/δ weighting method 

 

Then the ith local linear controller at time t of 1/δ weighting function is defined as: 

𝜑𝑖(𝜃𝑡) =
(

1

𝛾𝑖(𝜃𝑡)
)𝐾𝑤

∑ (
1

𝛾𝑗(𝜃𝑡)
)𝐾𝑤

𝑁𝑚
𝑗=1

        (4.4) 

where kwis the tuning parameter which is usually selected as ≥ 1. Also, 𝜑𝑖satisfies∑ 𝜑𝑖(𝜃𝑡) =
𝑁𝑚
𝑖=1

1. In this work, kw= 1is considered. Therefore, the output of the multi-model controller is: 

𝑢(𝑡) = ∑ 𝜑𝑖(𝜃𝑡)𝑢𝑖(𝑡)
𝑁𝑚
𝑖=1         (4.5) 

where𝑢𝑖(𝑡)is the ith local linear controller. According to (4.8), when the weighting function 𝜑𝑖 is 

small, the corresponding gap metric value will be close to one and when the weighting function 

𝜑𝑖 is high, the corresponding gap metric value will be close to zero. The weighting functions 

given in Eq.(4.7) and (4.8) are used in the corresponding 1/δ and 1-δ weighting methods. 
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4.3 Case studies: 

In this chapter, proposed method is examined on spherical and conical tank processes 

4.3.1 Spherical Tank Process: 

Weights for each controller are selected and their values are given in Table 4.1 for (1-δ) 

Weighting method. The corresponding representation is also shown in Figure. 4.1 and it can be 

seen that the total weights in any region is close to 1. Similarly, weights for each controller are 

selected and their values are given in Table 4.2 for (1/δ) Weighting method. The corresponding 

representation is also shown in Figure4.2 and it can be seen that the total weights in any region is 

close to1. 

Table 4.1 Weightings for each controller according to (1-δ) weighting method 

Operating Range PI-1 PI-2 PI-3 

0-20 cm 0.3623 0.3264 0.3104 

20-35 cm 0.3204 0.3567 0.3229 

35-50cm 0.3096 0.3280 0.3623 

 

Table 4.2 Weightings for each controller according to (1/δ) Weighting method 

Operating Range PI -1 PI - 2 PI – 3 

0-20 cm 0.9841 0.0093 0.0066 

20-35 cm 0.0094 0.9807 0.0100 

35-50cm 0.0066 0.0100 0.9834 
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Figure 4.1 Weight values of particular operating point according to 1-δ method, solid: PI-1, dot: 

PI-2, dash: PI-3. 

 

 

 

Figure 4.2 Weight values of particular operating point according to 1/δ method, solid: PI-1, dot: 

PI-2, dash: PI-3. 

4.3.2 Conical Tank Process: 

Weights for each controller are selected and their values are given in Table 4.3 for (1-δ) 

Weighting method. The corresponding representation is also shown in Figure4.3 and it can be 

seen that the total weights in any region is close to 1. Similarly, weights for each controller are 
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selected and their values are given in Table 4.4 for (1/δ) Weighting method. The corresponding 

representation is also shown in Figure 4.4 and it can be seen that the total weights in any region 

is close to 1. 

Table 4.3 Weightings for each controller according to (1-δ) Weighting method 

 

Operating Range PI 1 PI 2 PI 3 

0-25 cm 0.3503 0.3319 0.3178 

25-50 cm 0.3272 0.3454 0.3275 

50-60cm 0.3177 0.3321 0.3502 

 

 

Figure 4.3 Weight values of particular operating point by using 1-δ. 

 

Table 4.4 Weightings for each controller according to (1/δ) Weighting method 

 

Operating Range PI 1 PI 2 PI 3 

0-25 cm 0.9722 0.0177 0.0101 

25-50 cm 0.0175 0.9646 0.0179 

50-60cm 0.0101 0.018 0.9719 
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Figure 4.4 Weight values of particular operating point by using 1/δ. 

 

4.4 Simulation and Experimental Results: 

Simulation results for spherical tank and conical tank processes are carried out using sample one 

of both and are given below. Experimental implementation is also carried out and the 

corresponding results are also presented here. 

 

4.4.1 Spherical Tank Process: 

Both 1-δ and 1/δ weighting methods are implemented in simulation for tracking of different set 

points of level and the corresponding responses are shown in Figure 4.5. It is observed that, if 

compared 1-δweighing method, this method yields high values of level and 1/δ weighting 

method provides good performance in lower values of level. Experimental implementation is 

carried out to track the same set points for both the methods and the corresponding results for 1-δ 

weighing method are shown in Figure 4.6 and for 1/δ weighting method in Figure4.7. To 

evaluate the closed loop performance quantitatively, IAE and ISE values are calculated and are 

given in Table 4.5. From these values, it can be observed that 1-δ weighting method is 

comparatively better.  
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Figure 4.5 Comparison of simulation responses for spherical tank process. 

 

 

Figure 4.6 Experimentally obtained closed loop responses for 1-δ weighting method for 

spherical tank process. 
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Figure 4.7 Experimentally obtained closed loop responses for 1/δ weighting method for 

spherical tank process. 

Table 4.5 Experimental quantitative comparison of weighting methods for spherical tank 

process. 

Time 

(1unit=40sec) 

Height 

(cm) 

1-δ weighting 

method 

1/δ weighting 

method 

0 0 IAE 

Value 

ISE 

Value 

IAE 

Value 

ISE 

Value 

-  34.84 345.12 32.09 344.25 

7 15 

  35.82 334.53 36.22 326.85 

17 30 

  18.74 91.94 20.87 102.86 

27 40 

  58.63 371.51 58.47 387.86 

50 30 

  176.51 1687.90 182.11 1649.40 

90 15 
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4.4.2 Conical Tank Process: 

Here also, both 1-δ and 1/δ weighting methods are implemented in simulation for tracking of 

different set points of level and the corresponding responses are shown in Figure 4.8. Hence 

noticed that 1-δ weighing method is comparatively better at all values of level. Experimental 

implementation is carried out to track the same set points for both the methods and the 

corresponding results for 1-δ weighing method are shown in Figure 4.9 and for 1/δ weighting 

method in Figure 4.10. To evaluate the closed loop performance quantitatively, IAE and ISE 

values are calculated and are given in Table 4.6. From these values, it can be observed that 1-δ 

weighting method is comparatively better.  

 

 

Figure 4.8 Comparison of simulation responses of 1-δ and 1/δ weighting methods for conical 

tank process. 

 

 



46 
 

 

Figure 4.9 Experimentally obtained closed loop responses for 1-δ weighting method for conical 

tank process. 

 

 

Figure 4.10 Experimentally obtained closed loop responses for 1/δ weighting method for conical 

tank process. 
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Table 4.6 Experimental quantitative comparison of weighting methods for conical tank process. 

Time 

(100 unit=1sec) 

Height 

(cm) 
1-δ Weighting Method 1/δ Weighting Method 

0 0 
IAE Value 

(104) 

ISE Value 

(105) 

IAE Value 

(104) 

ISE Value 

(105) 

   

3.2048 

 

1.8007 

 

3.1635 

 

1.912 15000 15 

   

4.3358 

 

5.2864 

 

4.7601 

 

3.8752 35000 35 

   

8.2875 

 

10.216 

 

9.7564 

 

10.821 60000 55 

   

9.2532 

 

9.4199 

 

13.454 

 

14.46 85000 40 

   

7.5034 

 

7.4836 

 

6.8508 

 

4.9437 105000 25 

 

4.5 Summary: 

Controlling the level of spherical tank and conical tank using the inlet flow rate is a typical 

nonlinear process and a simple linear controller might fail in providing required closed loop 

performances. Two different non-linear process control methods are evaluated in this work to 

control the nonlinear processes. Multi model control scheme based on Gap metric is used to 

control the nonlinear processes. In order to reduce the number of linear models Gap metric is 

selected and then to design the corresponding controllers weights. These two weighting functions 

(1-δ and 1/δ) based on gap metric are applied first by simulation for level control in both these 

tanks to observe that the level is controlled effectively. Experimental implementation is carried 

out for controlling the level and Comparative analysis has also been done using IAE and ISE. On 

comparing the 1- δ weighting method with 1/δ weighing method, it is noticed that 1- δ has shown 

≈ 10% improvement on performance. 
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Chapter 5           

 Multi-model Predictive Control (MMPC) for Non-linear 

Systems with Time Delay 

Controlling nonlinear processes is a difficult task and the difficulty increases when there is time 

delay in the process. Multi model technique is the simplest approach and is used to control the 

nonlinear process from decades. In this chapter, model predictive control is developed in a multi 

model framework (MMPC). 

5.1 Introduction: 

Control of nonlinear processes is challenging and this problem has been addressed by many 

researchers by using different types of controllers such as linear controllers, nonlinear control 

strategies, etc. When compared to single model control approach, multi-model control 

approaches are found to be more effective for control of nonlinear systems.  

Controlling nonlinear processes is a difficult task and the difficulty increases when there is time 

delay in the process. The conventional PID multi model controller can control a low level 

nonlinear system effectively, if the degree of nonlinearity is increased these controllers are 

observed to give some degradation in performance. To address such problems an advanced 

control strategy is required. Model predictive control (MPC) has been employed for better 

performance over conventional control strategy is proved in Chi(2015). By using the each local 

linear model, corresponding MPC has to be modeled known as a local controller. To form a 

global controller weighting methods are used. In the weighting methods, finding proper 

weighting functions is essential. There are many weighting methods available in the literature but 

gap metric based weighting method of 1 − δ (δ is gap metric function) and 1/δ is more popular. 

These weighting functions are define the weights of each controller and combination forms the 

global controller developed by Du(2014). Now the gap metric weighting method was employed 

to find the weights of each local controller and the weighted sum of local controllers (MPC) 

result to global controller. Hence the approach becomes multi-model predictive control 

(MMPC). Gap metric based MMPC are very effecting in controlling complicated nonlinear 

system is proved by Du(2014), in order to test the effectiveness of this method, a case-study on 



50 
 

conical tank (level control) process is considered. The method was employed on MATLAB 

simulation platform and was also validated experimentally. Comparison of both the weighting 

methods on both the scenarios was done to justify the need of advanced control strategy. The 

chapter is arranged as: In section 5.2 detailed explanation on theoretical development of 

weighting function based on gap metric and global controller formation using respective weights. 

In Section 5.3, simulation and experimental results are presented and followed by summary. 

5.2 Theoretical development of Multi-Model Predictive Control (MMPC) 

MPC is an advanced control strategy that is used in most of the process industries. It uses a 

dynamical model of the process to predict its likely future response and then choosing the best 

control action possible while satisfying set of constraints. Nowadays, it finds application in 

aerospace, automotive, smart electricity grids, etc. Because of the advantage associated with 

MPC over conventional control strategy, it has been employed. MPC inherently has feed forward 

nature as it takes measured disturbances as input and it negates the effect of the disturbance 

beforehand making it very popular in highly disturbed plants as well and is clearly explained by 

Dougherty(2003). The future control signal is computed in such a way that minimizes the 

quadratic objective cost function defined as, Minmize J 

𝐽 = ∑ ‖𝛤𝑦(𝑦⁡(𝐾𝑖 ⁡+ ⁡𝑙|𝐾𝑖) − ⁡𝑟⁡(𝐾𝑖 ⁡+ ⁡𝑙))‖
2𝑁𝑃

𝑙=1 + ∑ ‖𝛤∆𝑢⁡(∆𝑢⁡(𝐾𝑖 ⁡+ ⁡𝑙⁡ − ⁡1))‖2𝑁𝐶
𝑙=1  (5.7) 

The 1st term denotes the objective of minimization of error between predicted outputs and set-

point signal and the 2ndterm denotes the objective to find optimal ∆u values such that error is 

reduced. Γy denotes the penalty on tracking error known as output weighting, Γ∆u denotes the 

penalty on the actuation known as input-rate weighting, y (Ki + l|Ki) represents the predicted 

value of output at Ki +l instant given information up to Ki instant. Tuning parameters of the MPC 

are prediction horizon (NP), control horizon (NC), control interval (∆t), rate weight on MVs 

(Γ∆u), weight on CV(Γy). Few distinguishing features of MPC from conventional control 

strategy is, it has ability to forecast, optimize and good constraint handling capability. The 

disadvantages are it requires simple linear state-space model, too many degrees of freedom 

(horizons, weights, constraints, etc.), requires real time optimization, etc. If Nm number of local 

linear models then need to design Nm numbers of local MPC controllers and the response of all 

local controllers are merged together to form an exhaustive controller according to Du(2014). 
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5.2.2 Controller design 

Identified models are specified in chapter 3 additional delay 5 sec added to the process, MPC 

controller has to be designed corresponding to each model. Three MPC Controller has been 

designed and their parameters are shown in the Table 5.1. The prediction horizon is considered 

based on the linear model obtained around the operating point. For three linear operating regions, 

three different prediction horizons are considered. However, control horizon is not changed. 

After designing the individual controllers, based on gap metric weighting approach weights for 

each controller is selected for 1−δ and 1/δ weighting method respectively as explained in chapter 

4 and the weights are shown in the Figure 4.3 and Figure 4.4 respectively. 

Table 5.1 Multi-model MPC controller tuning parameters for different set-point ranges. 

Operating 

Range (cm) 

Regional 

Controller 

Control interval 

(secs) 

Prediction 

horizon 

(interval) 

Control horizon 

(interval) 

0-15 MPC-1 5 40 2 

15-40 MPC-2 10 150 2 

40-60 MPC-3 10 600 2 

 

5.3 Simulation and Experimental Studies 

In order to test the effectiveness of these methods on nonlinear system plus delay, a simulation 

and experimental analysis was carried out on conical tank process and with sample one. The two 

weighting function, 1/δ and 1 − δ was implemented for multi set-point change to the level of the 

process and the responses are presented below. For testing the controller performance, two 

performance metrics were used namely Total Variation (TV) and Integral Absolute Error (IAE). 

From the simulation response i.e. Figure 5.1 and from Table 5.2, it can be deduced that in overall 

sense 1 − δ weighting function shows better performance as compared to 1/δ weighting function. 

From the experimental response i.e. Figure 5.2 and from Table 5.3, it can be deduced that 1−δ 

weighting function shows better performance as compared to 1/δ weighting function at higher 

level while 1 − δ weighting function shows better performance as compared to 1/δ weighting 

function at lower level. 
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Figure 5.1 Closed loop response for different weighting methods to multi set point change 

(Simulation result). 

 

Table 5.2 Comparative analysis of controller performance for simulation case. 

 1-δ weighting 

method 

1/δ weighting 

method 

IAE Value (103) 1.0850 2.0991 

TV Value (103) 1.0618 1.1879 
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Figure 5.2 Closed loop response for different weighting methods to multi set point change 

(Experimental result). 

Table 5.3 Comparative analysis of controller performance for experimental case. 

 1-δ weighting 

method 

1/δ weighting 

method 

IAE Value (103) 23.999 25.602 

TV Value 606.8786 863.0312 

 

5.4 Summary: 

The gap metric based weighting methods were evaluated for control of conical tank process with 

delay using MMPC. The effectiveness of the method was justified using simulation and 

experimental studies. On comparing the 1- δ weighting method with 1/δ weighing method of 

MMPC, it is noticed that 1- δ has shown ≈ 9% improvement on performance. 
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Chapter 6           

 Design of multi-model fractional controllers for nonlinear 

systems 

In the literature, all the methods are proposed to design the local controllers in MMA framework 

are integer order controllers. In this chapter, fractional controllers based MMA framework is 

developed for enhanced control of nonlinear systems. Gap metric based weighting methods are 

used with proper weighting functions to obtain the global controller.  

6.1  Introduction 

In process industries, behavior of most of the systems will be nonlinear and this type of systems 

mostly have performance degradation by using conventional PID controller. In order to 

overcome this degradation there are different types of techniques available and one of the most 

popular techniques which has been consider by several researches is the multi model approach 

(MMA) Adeniran and El Ferik (2017). This approach divides nonlinear systems into multi linear 

models sequentially based on the operating points. Controllers are designed by using this linear 

model and over decades most of the researchers considered integer order controllers only. When 

integer order controllers are implemented practically overshoot and resonance are observed and 

in order to deal such effects fractional order controllers can be used which shows more 

promising results Podlubny (1999). In this chapter an attempt has been made to apply fractional 

order controllers in order to design a new system called Multi model fractional order controller. 

This paper presents effectiveness of Multi model fractional order controller and Extensive 

numerical studies on nonlinear system demonstrate its performance. 

6.2  Multi Model Fractional controller 

The MMA deals with decomposition of nonlinear system into multi linear models based on 

sequentially steady states and mathematical model is developed for each of the operating range. 

These models now as a set, can be used as a valid representation of the nonlinear process. These 

models are further reduced into minimal set using gap metric. 
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6.2.1 Fractional Order Controller 

Implementation of Fractional calculus which is generalization of Integer order calculus is making 

a noteworthy advancement. Its significance lies in the fact that practical systems can be better 

identified as fractional order differential equations instead of integer order differential equations 

David et al. (2011). Fractional Order PID Controller which is usually described as PIλDμ 

Controller was introduced by Podlubny (1999).  

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠𝜆 + 𝐾𝑑𝑠
𝜇         (6.1) 

where Kp is Proportional Gain, Ki is Integral Gain, Kd is Derivative Gain, λ and μ are integral 

and derivative orders and can be varied between 0 to 2. Non Integer Order Controllers offer more 

degrees of freedom and by using these controllers for Integer Order plants, there is more 

flexibility in adjusting the gain and phase characteristics than using Integer Order controllers. 

Methods for design of fractional order controllers are discussed in Podlubny (1999); Monje et al. 

(2008). One such tuning method for Fractional Order PI controllers was proposed by Gude and 

Kahoraho (2009) in which a performance criteria (Jv) is minimized which is a measure of system 

ability to handle low frequency load disturbances. Finally the normalized controller parameters 

are designed based on normalized dead time τ. 

6.3  Simulation and Experimental Results 

Simulation results for spherical tank process, conical tank processes and CSTR are carried out 

and are given below. Based on sample two for spherical and conical tank process the proposed 

method is examined.  Experimental implementation is also carried out for conical tank, the 

corresponding results are presented here. Multi model local controller parameter values of level 

control of spherical tank process are shown in Table 6.1, respectively for level control in conical 

tank process are shown Table 6.3 and concentration control in CSTR are shown in Table 6.5. 

6.3.1 Spherical Tank Process 

Comparative results of Multi model integer and fractional order control are implemented in 

simulation for tracking of different set points of level and the corresponding responses are shown 

in Figure 6.1. Quantitative analysis of the spherical tank process has been done with integral 

absolute error (IAE) values for different set points is shown in Table 6.2. It is observed that multi 
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model fractional order control approach is efficiently reducing the overshoot and the response is 

enhanced. 

Table 6.1 Multi model local controller parameter values of level control of spherical tank 

process 

 Integer Order 

Controller 

Fractional Order 

Controller 

Controller 1 
0.2626 +

0.000795

𝑠
 7.633 +

0.00218

𝑠1.01
 

Controller 2 
3.1584 +

0.0026

𝑠
 3.164 +

0.0025

𝑠1.01
 

Controller 3 
2.5088 +

0.0045

𝑠
 2.51 +

0.0042

𝑠1.01
 

 

 

Figure 6.1 Compared closed loop response of spherical tank process(a) Plant Output (b) 

Manipulated Signal. 
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Table 6.2 Quantitative analysis of the spherical tank process. 

Different set points Multi model integer order 

control IAE Value (103) 

Multi model fractional order 

control IAE Value (103) 

10 32.695 0.12355 

30 14.143 2.5699 

45 8.940.5 2.1274 

35 5.475.3 0.57944 

15 16.853 5.5127 

 

6.3.2 Conical Tank Process 

In the same way, for conical tank also the comparative results of Multi model integer and 

fractional order control is implemented in the simulation for tracking of different set points of 

level and the corresponding responses are shown in Figure 6.2. Simulation quantitative analysis 

of the conical tank process has been done with IAE values for different set points is shown in 

Table 6.4. Experimental implementation is carried out for this process and response curves are 

plotted. The Figure 6.3 shows closed loop response of multi-model integer order controller and 

Figure 6.4 shows closed loop response of multi-model fractional order controller. The 

oscillations observed in Figure 6.3 (Integer order response) are very low in amplitude and in the 

case of fractional order controller, these oscillations become miniscule. Experimental 

quantitative analysis of the conical tank process has been done with IAE values for different set 

points is shown in Table 6.5. 

Table 6.3 Multi model local controller parameter values of level control of conical tank process 

 Integer Order 

Controller 

Fractional Order 

Controller 

Controller 1 
3.183 +

0.0458

𝑠
 0.2731 +

0.1262

𝑠1.12
 

Controller 2 
6.25 +

0.0873

𝑠
 12.3482 +

0.1665

𝑠1.12
 

Controller 3 
19.1994 +

0.2731

𝑠
 10.9762 +

0.2996

𝑠1.12
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Figure 6.2 Compared closed loop response of conical tank process(a) Plant Output (b) 

Manipulated Signal. 

 

 

Figure 6.3 Experimental closed loop response of conical tank process using multi model integer 

order controller. 
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Figure 6.4 Experimental closed loop response of conical tank process using multi model 

fractional order controller. 

Table 6.4 Simulation quantitative analysis of the conical tank process. 

Different set points Multi model integer order 

control IAE Value 

Multi model fractional order 

control IAE Value 

15 1590.4 4.31 

35 91.70 13.29 

55  109.9 50.14 

41 231.64  37.61 

21 123.42 68.46 

Table 6.5 Experimental quantitative analysis of the conical tank process. 

Different set points Multi model integer order 

control IAE Value (103) 

Multi model fractional order 

control IAE Value (103) 

15 70.995 0.86205 

35 53.654 0.91157 

55 178.050 4.4285 

41 60.935 0.68081 

21 91.032 0.89764 
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6.3.3 Isothermal CSTR 

Similarly, for CSTR also the comparative results of Multi model integer and fractional order 

control is implemented in the simulation for tracking of different set points of concentration and 

the corresponding responses are shown in Figure 6.5. Quantitative analysis of the CSTR process 

has been done with IAE values for different set points is shown in Table 6.7. 

Table 6.6 Multi model local controller parameter values of concentration control of iCSTR 

 Integer Order 

Controller 

Fractional Order 

Controller 

Controller 1 
3.183 +

0.146

𝑠
 186.8 +

0.571

𝑠1.12
 

Controller 2 
6.25 +

0.545

𝑠
 173.16 +

0.697

𝑠1.12
 

Controller 3 
19.199 +

5.24

𝑠
 142.31 +

1.032

𝑠1.12
 

 

 

Figure 6.5 Closed loop response of CSTR(a) Plant Output (b) Manipulated Signal. 
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Table 6.7 Experimental quantitative analysis of the conical tank process. 

Different set points Multi model integer order 

control IAE Value 

Multi model fractional order 

control IAE Value 

0.4 2.71 0.096 

0.55 0.0872 0.0464 

0.85 0.408 0.2337 

0.6 2.865 2.865 

0.35 4.3766 4.3766 

 

 

6.4  Summary: 

Multi-model fractional order controller is evaluated for control of nonlinear processes and is 

compared with multi-model integer order controller. Both the methods are evaluated first by the 

simulation and then by performing experiments on conical tank process. On comparing the 

multi-model fractional order controller with multi-model integer order controller, it is noticed 

that multi-model fractional order controller has shown improvement on performance. 
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Chapter 7           

 Multi-model cascade control strategy design based on gap 

metric for nonlinear processes 

The major disadvantage of multi-model feedback control approach is that the compensation for 

disturbances does not start until the output of process vary from the set point. To overcome this 

issue a multi model cascade control strategy is designed in this chapter. 

7.1  Introduction: 

The major disadvantage of multi-model feedback control approach is that the compensation for 

disturbances does not start until the output of process vary from the set point. Cascade control 

strategy overcomes this drawback Ribi (2014) and takes the corrective action even before the 

disturbance effects controlled variable. This leads to better and faster control. Here implemented 

this control strategy on nonlinear system for effective control of the output and improved 

disturbance rejection. The implementation of the cascade control strategy is widely increasing in 

industries due to its effectiveness in controlling the slower primary nonlinear loops with the help 

of the faster nested secondary linear loops Lee (1998). In this cascade multi model strategy, the 

primary controller consists of a multi-model controller designed for a primary process. The 

global controller formation is done using soft switching. 

 

Figure 7.1 Multi model cascade control schematic diagram. 
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7.2  Development of Cascade multi-model control system 

Cascade control using multi-model controller strategy uses two controllers for control of 

nonlinear primary process. The primary controller consists of a multi-model controller designed 

for a primary process. And in the secondary loop the secondary process is assumed to be linear 

and PI controller is designed as secondary controller using linear controller design strategies. 

Controller in inner loop will serve as slave controller which will act based on set point received 

form master controller. Primary controller will act as master controller here and the output of 

primary controller will act as set point for secondary controller. 

7.2.1 Global controller 

After reducing multiple linear models using gap metric, the PID values are calculated for 

primary and secondary controllers using IMC technique. The global controller is formed by 

combination of local controllers and these formation are done by using hard switching (only one 

of multiple controllers are selected as per operating conditions) and soft switching using gap 

metric weighting function (1-δ and 1/δ) weighting function are illustrated by Du (2014). 

7.3  Simulation and Experimental Results 

The primary multiple linear models are defined in chapter 3 with sample two of spherical and 

conical tank process and secondary linear for respective cases are presented in Table 7.1. 

Simulation results for spherical, conical tank processes and CSTR are carried out and are given 

below. Multi model primary local controller parameter values of level control of spherical tank 

process are shown in Table 7.2, respectively for level control in conical tank process are shown 

Table 7.4 and concentration control in CSTR are shown in Table 7.7. 
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Table 7.1 Secondary linear models for respective example cases. 

S.No Case Study Secondary 

Process model 

Secondary loop 

Controller 

1 Spherical Tank Process 2.7

1.7𝑠 + 1
 0.7404 (1 +

1

1.7𝑠
) 

2 Conical Tank Process 1.2

1.7𝑠 + 1
 1.6667 (1 +

1

1.7𝑠
) 

3 iCSTR 0.028

0.033𝑠 + 1
 71.4286 (1 +

1

0.033𝑠
) 

7.3.1 Spherical Tank Process 

Simulation studies are carried out for both normal feedback multi-model and cascade multi 

model control system. The performances are observed for various operating points of level 

responses as shown in Figure 7.2 for hard switching, Figure 7.3 for 1-δ method and Figure 7.4 

1/δ method and its quantitative analysis such as IAE and TV has been carried out as shown in 

Table 7.3. Based on this, the cascade multi model control system effectively control the output 

and improved the disturbance rejection for level control in spherical tank. 

Table 7.2 Multi model primary local controller of level control of spherical tank process 

 Multi-model Normal 

Feedback control 

Multi-model Cascade control 

Controller 1 
5.556 +

1

166.7𝑠
+ 1.6827s 15.31 +

1

168.85𝑠
+ 0.8456s 

Controller 2 
2.287 +

1

598.5𝑠
+ 1.6952s 6.33 +

1

597.65𝑠
+ 0.8488s 

Controller 3 
1.822 +

1

283.5𝑠
+ 1.6898s 5.033 +

1

282.65𝑠
+ 0.8474s 
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Figure 7.2 Closed loop response for spherical tank using hard switching (a) Plant Output (b) 

Manipulated Signal. 

 

Figure 7.3 Closed loop response of spherical tank using 1-δ method (a) Plant Output (b) 

Manipulated Signal. 
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Figure 7.4 Closed loop response of spherical tank using 1/δ method (a) Plant Output (b) 

Manipulated Signal. 

 

Table 7.3 Quantitative analysis of normal multi-model and cascade multi-model control system 

for spherical tank process. 

 Hard Switching 1-δ Soft Switching 1/δ Soft Switching 

 Normal Cascade Normal Cascade Normal Cascade 

IAE Value 

(103) 

1.9982e+04 1.2442e+04 1.0212e+04 5.5867e+03 1.9873e+04 1.2169e+04 

TV Value 995.8716 1.1361e+03 1.1661e+03 1.3540e+03 1.0022e+03 1.1377e+03 

 

7.3.2 Conical Tank Process 

Similarly, studies on conical tank are also carried out in simulation for both normal and cascade 

multi model control system. The performance is observed for various operating points of level 

responses as shown in Figure 7.5 for hard switching, Figure 7.6 for 1-δ method and Figure 7.7 

1/δ method and its quantitative analysis such as IAE and TV are carried out as shown in Table 

7.5. From the simulation response gap metric based cascade multi model system shows better 

performance. These gap metric based weighing functions are experimentally investigated for 
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comparative analysis and shown in Figure 7.8 and quantitative analysis such are also carried out 

as shown in Table 7.6. Based on this, the cascade multi-model control system effectively 

controls the output and improved the disturbance rejection of level control in conical tank 

process. 

Table 7.4 Multi model primary local controller parameter values of level control of conical tank 

process 

 Multi-model Normal 

Feedback control 

Multi-model Cascade control 

Controller 1 
2.8468 +

1

13.95𝑠
+ 1.4928s 3.208 +

1

13.1𝑠
+ 0.7948s 

Controller 2 
1.145 +

1

227.38𝑠
+ 1.6873s 1.369 +

1

226.53𝑠
+ 0.8468s 

Controller 3 
1.74 +

1

1162.6𝑠
+ 1.6975s 2.089 +

1

1161.8𝑠
+ 0.8494s 

 

 

 

Figure 7.5 Closed loop response for conical tank using hard switching (a) Plant Output (b) 

Manipulated Signal. 
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Figure 7.6 Closed loop response for conical tank using 1-δ method (a) Plant Output (b) 

Manipulated Signal. 

 

Figure 7.7 Closed loop response for conical tank using 1/δ method (a) Plant Output (b) 

Manipulated Signal. 
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Figure 7.8 Experimental closed loop response of gap metric based cascade multi-model control 

for conical tank for 1-δ and 1/δ method. 

 

Table 7.5 Quantitative analysis of normal multi-model and cascade multi-model control system 

for conical tank process. 

 Hard Switching 1-δ Soft Switching 1/δ Soft Switching 

 Normal Cascade Normal Cascade Normal Cascade 

IAE Value 

(103) 

45.064 34.585 21.584 14.55 36.299 34.397 

TV Value 275.34 290.498 300.74 274.37 329.64 313.19 

 

Table 7.6 Experimental quantitative analysis of gap metric soft switching based cascade multi-

model control system for conical tank process. 

 1-δ 1/δ 

IAE Value 

(103) 

2.7027 5.849 

TV Value 

(103) 

1.0121 1.0284 
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7.3.3 Isothermal CSTR 

Similarly, for iCSTR the comparative results are carried out of normal and cascade multi model 

control system. The performance is observed for various operating points of level responses as 

shown in Figure 7.9 for hard switching, Figure 7.10 for 1-δ method and Figure 7.11 1/δ method 

and its quantitative analysis such as IAE and TV has been carried out as shown in Table 7.8. 

Based on this, the cascade multi model control system effectively control the output and 

improved the disturbance rejection for concentration control in CSTR. 

Table 7.7 Multi model primary local controller parameter values of level control of spherical 

tank process 

 Multi-model Normal 

Feedback control 

Multi-model Cascade control 

Controller 1 
113.85 +

1

21.87𝑠
+ 0.033s 3.1854 +

1

21.87𝑠
+ 0.0165s 

Controller 2 
223.86 +

1

11.49𝑠
+ 0.0329s 6.259 +

1

11.48𝑠
+ 0.0165s 

Controller 3 
688.37 +

1

3.693𝑠
+ 0.0327s 19.188 +

1

3.676𝑠
+ 0.0164s 

 

 

Figure 7.9 Closed loop response for CSTR using hard switching (a) Plant Output (b) 

Manipulated Signal. 
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Figure 7.10 Closed loop response for CSTR using 1-δ method (a) Plant Output (b) Manipulated 

Signal. 

 

Figure 7.11 Closed loop response for CSTR using 1/δ method (a) Plant Output (b) Manipulated 

Signal. 
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Table 7.8 Quantitative analysis of normal multi-model and cascade multi-model control system 

for CSTR. 

 Hard Switching 1-δ Soft Switching 1/δ Soft Switching 

 Normal Cascade Normal Cascade Normal Cascade 

IAE Value 80.2928 79.0444 78.1884 76.0404 79.3043 81.4813 

TV Value 10.8158 10.6549 10.3512 10.1723 10.8460 10.23 

 

7.4  Summary: 

Different switching based cascade multi-model control system is evaluated for control of 

nonlinear processes and is compared with normal feedback multi model system. Both the 

methods are evaluated by the simulation for three nonlinear processes. Gap metric based 

weighing function cascade control system are evaluated in experimentally for conical tank 

process. On comparing the cascade multi model control system of soft and hard switching 

method, it is noticed that soft switching based cascade multi model control system has shown 

improvement on performance. 
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Chapter 8           

 Design and evaluation of multi-model Smith predictor for 

nonlinear processes with long dead time 

Multi model smith predictor is designed and evaluated for long dead time nonlinear process. 

Multi model approach is simplest and finest control system to control the nonlinear process from 

last decade of researches. The long dead time in nonlinear process creates unstable in controlling, 

to overcome this smith predictor structure is modified according to multi model control structure. 

8.1  Introduction: 

In chemical process industries works on lot many number of processes combination and more 

number of these processes behaves like nonlinear. The researchers are designing the controller to 

satisfy the industrial requirement for the nonlinear process. From the decades of researches, the 

researchers proved that Multi Model Approach (MMA) is one of the simplest and finest 

approach to design a controller for nonlinear process and also using this approach easily can 

implement latest linear controllers. 

MMA works on by making piece of nonlinear process into multiple based on operating strategy 

and the pieces becomes linear process for that operating constraints. Using these linear process, a 

linear controller is designed and combination of all these forms global controller. The 

combination can be formed by using hard and soft switching. Most of researches are suggested to 

use soft switching for smooth response while set points move from one region to another. 

To design a controller for nonlinear process is some difficult task and delay added to it and it 

makes even more difficult. Multi model control scheme will overcome these issue for lesser 

delay process and also some time system may move to unstable. If long dead process is present 

in nonlinear process then design a controller is cumbersome task. 

To deal with larger delay system already smith predictor structure is proved to control from last 

few decades of researches. Otto smith as introduced the Smith Predictor control strategy in 1957. 

This strategy is modified the feedback strategy to compensate the delay. In this strategy, it 
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consist of feedback loop with additionally inner loop where it’s have the two terms. The first 

term of this inner loop represents process behaviour without dead time. The second term 

represents is simply a time delay. Most of researchers modified the smith predictor strategy to 

control long dead time process and are complicated procedure. To overcome this issue a 

simplified smith predictor structure is designed using multi model control scheme. 

In this chapter, smith predictor strategy is modified according multi model control scheme to 

control the nonlinear process. Here multi model smith predictor strategy inner loop generalized 

model plays major role. 

8.2  Development of Multi Model Smith Predictor (MMSP): 

Generally smith predictor structure is used to compensate delay in control process and its 

schematic diagram is shown in Figure 1. Multi model control scheme is used in controlling the 

nonlinear process. Smith predictor structure is modified according MMA to compensate delay in 

nonlinear process. In this development two parts are modified in smith predictor. One is 

controller section, here multi model control scheme is implemented and another is generalized 

model with multiple model. In generalized multiple model section switching is carried using hard 

method based on operating condition. In multi-model control scheme, gap metric based soft 

switching is used to form global control.   

 

 

 

 

 

 

 

 

 

Figure 8.1 Schematic structure of multi model smith predictor. 
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Smith predictor is designed for long dead time nonlinear process and model block shown in 

figure 8.2. 

 

 

 

 

 

 

Figure 8.2 Block diagram of multi model smith predictor. 

The nonlinear process 𝐺𝑝is 

𝐺𝑝 = 𝐺𝑚𝑖𝑒
−𝜃𝑠 

The transfer function is 

𝐺(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=

𝐺𝑐𝑖𝐺𝑝

1+𝐺𝑚𝐺𝑐𝑖+𝐺𝑐𝑖𝐺𝑝𝐺𝑓−𝐺𝑐𝑖𝐺𝑚𝑖𝑒
−𝜃𝑠𝐺𝑓

       (8.4) 

where𝐺𝑚𝑖 is a ith number of generalized linearized models, 𝜃 is dead time, 𝐺𝑓 is filter(used for 

noise elimination) and 𝐺𝑐𝑖 is global controller. The structure compensates the delay and becomes 

𝐺(𝑠) =
𝐺𝑐𝑖𝐺𝑝

1+𝐺𝑚𝑖𝐺𝑐𝑖
          (8.5) 

In two ways, it is designed and analyzed. In this two method, the global controller is designed by 

using minimized models for both but combination has done using hard and 1- (soft) switching 

methods. Whereas in generalized model, in first method used all the multiple models and second 

one used only minimized models. 

𝑦(𝑡) 𝑟(𝑡) 

− 

+ 

+ + 

𝐺𝑝 

𝑒−𝜃𝑠 

𝐺𝑓  

𝐺𝑐𝑖 

𝐺𝑚𝑖  

−

+ 

+ 
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8.3  Results and Summary 

In this section, simulation analysis are presented. Multi model smith predictor is examined on 

conical tank process to control level and iCSTR to control concentration on simulation using 

MATLAB. Filter is used for noise elimination and it differs for process to process and here for 

conical tank chosen as 
1

100𝑠+1
and iCSTR chosen as

1

2𝑠+1
. Simulation results are presented here and 

Figure8.3 shows of response MMSP on conical tank process using all multiple linear models in 

generalized section based hard switching method and Figure 8.4 shows of response MMSP on 

conical tank process using minimized linear models in generalized section based hard switching 

method and Figure 8.5 shows of comparison response MMSP on conical tank process using all 

and minimized linear models in generalized section based hard switching method and Table 8.1 

presents the quantitative analysis MMSP response using hard switching on conical tank process.. 

Figure 8.6 shows of response MMSP on conical tank process using all multiple linear models in 

generalized section based 1- switching method and Figure 8.7 shows of response MMSP on 

conical tank process using minimized linear models in generalized section based 1- switching 

method and Table 8.2 presents the quantitative analysis MMSP response using hard switching on 

conical tank process. 

Figure 8.8 shows of comparison response MMSP on iCSTR process using all and minimized 

linear models in generalized section based hard switching method and Table 8.3 presents the 

quantitative analysis MMSP response using hard switching on iCSTR. Figure 8.9 shows of 

comparison response MMSP on iCSTR process using all and minimized linear models in 

generalized section based 1- switching method and Table 8.4 presents the quantitative analysis 

MMSP response using 1- switching on iCSTR. 
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Figure 8.3 Multi Model Smith Predictor Response using all Generalized Models 

 

 

Figure 8.4 Multi Model Smith Predictor Response using Minimized Models 
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Figure 8.5 MMSP Response using Hard Switching 

Table 8.1 Quantitative analysis MMSP response using hard switching on conical tank process. 

 All Multiple Models Minimized Models 

IAE Value 5.1597e+04 5.7484e+04 

TV Value 1.5597e+03 977.4883 

 

 

Figure 8.6 MMSP Response using 1- (All Generalized Modes) 
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Figure 8.7 MMSP Response using 1- (Minimized Modes) 

Table 8.2 Quantitative analysis MMSP response using 1- switching on conical tank process. 

 All Multiple Models Minimized Models 

IAE Value 4.0777e+04 2.5280e+05 

TV Value 1.3366e+03 3.4028e+04 

 

 

 

 

Figure 8.8 MMSP Response using Hard Switching on iCSTR 
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Table 8.3 Quantitative analysis MMSP response using hard switching on iCSTR. 

 Multiple Models Minimized Models 

IAE Value 58.6853 59.4595 

TV Value 2.0003 2.1298 

 

 

Figure 8.9 MMSP Response using 1- Switching on iCSTR 

Table 8.4 Quantitative analysis MMSP response using 1- switching on iCSTR. 

 Multiple Models Minimized Models 

IAE Value 31.1026 33.9027 

TV Value 2.8164 3.1161 

 

8.4 Summary: 

Multi model smith predictor is designed for long dead time nonlinear process and examined on 

conical tank and iCSTR process. Comparison has done with minimized models and all multiple 

models. From the evaluation and results, it is concluded that multi model smith predictor 

compensates the long delay on nonlinear process. While in comparison effective response has 

got for using all multiple models. 1- Soft switching base global controller and generalized 
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model with all multiple models gives minimal values of IAE and TV. It is concluded that multi 

model smith predictor compensates the long delay on nonlinear process. 
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Chapter 9            

   Summary and Conclusions 

 

9.1  Summary 

In this research, Evaluation of Gap-metric based Multi-model Control Schemes for Nonlinear 

Systems is analysed experimentally,a Multi-model Predictive Control (MMPC) has designed for 

time delay non-linear process, An enhanced designing of Multi Model Fractional Controllers and 

Multi-model Cascade Control Strategy for Nonlinear Systems is studied and performed 

experimentally, finally noticed the effects of Scan Time on the Controller Performance in 

Computer based Process Control during ourexperimental investigation and modified PID 

controller is designed based on scan time.The results obtained in each section are summarized 

below.  

9.1.1 Evaluation of Gap-metric based Multi-model Control Schemes for Nonlinear 

Systems 

Controlling the level of spherical tank and conical tank using the inlet flow rate is a typical 

nonlinear process and a simple linear controller might fail in providing required closed loop 

performances. Two different non-linear process control methods are evaluated in this work to 

control the nonlinear processes. Multi model control scheme based on Gap metric is used to 

control the nonlinear processes. In order to reduce the number of linear models Gap metric is 

selected and then to design the corresponding controllers weights. These two weighting functions 

(1-δ and 1/δ) based on gap metric are applied first by simulation for level control in both these 

tanks to observe that the level is controlled effectively. Experimental implementation is carried 

out for controlling the level and Comparative analysis has also been done using IAE and ISE. 

9.1.2 Multi-model Predictive Control (MMPC) for Non-linear Systems with Time Delay 

The gap metric based weighting methods are evaluated in controlling of conical tank process 

with delay using MMPC. The effectiveness of the method is justified using simulation and 

experimental studies. 
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9.1.3 Design of Multi Model Fractional Controllers for Nonlinear Systems 

Multi-model fractional order controller is evaluated for control of nonlinear processes and is 

compared with multi-model integer order controller. Both the methods are evaluated first by the 

simulation and then by performing experiments on conical tank process. 

9.1.4 Design a Multi-model Cascade Control Strategy for Nonlinear Systems 

Different switching based cascade multi-model control system is evaluated for control of 

nonlinear processes and is compared with normal feedback multi model system. Both the 

methods are evaluated by the simulation for three nonlinear processes. Gap metric based 

weighing function cascade control system are evaluated in experimentally for conical tank 

process. 

9.1.5 Design and Evaluation of Multi Model Smith Predictor for Long Dead Time 

Nonlinear Process 

Multi model smith predictor is designed and evaluated for long dead time nonlinear process. 

Comparison has done with minimized models and all multiple models. The multi model smith 

predictor structure is examined on nonlinear processes such as conical tank process and iCSTR 

and evaluated with IAE and TV. 

 

9.2  Conclusions 

9.2.1 Evaluation of Gap-metric based Multi-model Control Schemes for Nonlinear 

Systems 

Multi model control scheme based on Gap metric is used for controlling the nonlinear processes. 

Gap metric is selected to reduce the number of linear models and then to design the 

corresponding controllers weights. The two weighting functions (1-δ and 1/δ) based on gap 

metric are applied first by simulation experimental implementation is carried out and the 

following conclusions are drawn. 

(i) Whenever a positive step change is given around steady state operating point, 1/δ 

weighting method showed better performance when compared with 1-δ weighting 

method.  

(ii) Whenever a positive step change is given in a region other than the steady state, 1-δ 

weighting method showed better performance. 
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(iii) Irrespective of positive and negative step changes, it is observed that 1-δ weighting 

method always shows better performance for higher values of level and 1/δ weighting 

method showed better performance for lower levels. 

(iv) Based on all the evaluations made and on comparative analysis, 1- δ weighting method is 

recommended for control of level in a nonlinear process by using gap metric based 

multi-model approach. 

9.2.2 Multi-model Predictive Control (MMPC) for Non-linear Systems with Time Delay 

Multi-model predictive control is designed and the effectiveness of the method was justified 

using simulation and experimental case scenarios. It is concluded that 1-δ weighting function 

provides better performance as compared to 1/δ weighting function. In most of the practical 

cases, 1-δ weighting function is recommended because it gives lower IAE value that leads to 

good controller performance. 

9.2.3 Design of Multi Model Fractional Controllers for Nonlinear Systems 

Multi-model fractional order controller is evaluated for control of nonlinear processes and is 

compared with multi-model integer order controller. Both the methods are evaluated first by the 

simulation and then by performing experiments on conical tank process. It is observed that multi-

model fractional order controller provides better performance when compared to multi-model 

integer order controller. 

9.2.4 Design a Multi-model Cascade Control Strategy for Nonlinear Systems 

An integrated framework of cascade control and multi-model control system is evaluated for 

controlling the nonlinear process in the presence of disturbances and is compared with normal 

multi-model control system. Both the methods are evaluated by the simulation on three nonlinear 

process. Gap metric based weighing function cascade control system is evaluated experimentally 

for conical tank process. The evaluation from the simulation and experimental response and 

quantitative analysis indicated that 1-δ gap metric based weighing method of cascade multi 

model control system effectively controls the output and improves the disturbance rejection of 

nonlinear system. It is concluded that 1-δ gap metric based weighing method of cascade multi 

model control system provides better performance when compared to hard and 1/δ gap metric 

based weighing method of cascade multi model control system. 
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9.2.5 Design and Evaluation of Multi Model Smith Predictor for Long Dead Time 

Nonlinear Process 

Multi model smith predictor is designed for long dead time nonlinear processes and examined on 

conical tank and iCSTR process. Comparison is carried out with minimized models and all 

multiple models. From the results, it is concluded that multi model smith predictor compensates 

the long delay on nonlinear process and provided less values of IAE and TV. 

9.3  Suggestions for Future Work 

Based on the research carried out in this thesis, one can extend the ideas to solve different other 

problems related to control nonlinear systems. The suggestions for future work include the 

following. 

i. One can carry the experimental implementation of multi model control scheme on MIMO 

nonlinear systems and verify the applicability of the scheme. Also, any issues due to the 

multivariable nature can be studied when the number of inputs and outputs are more (>3). 

Different multi-model control schemes including PID controllers, fractional order PID 

controllers, MPC controllers can be tested experimentally. 

ii. One more extension can be the design of multi-model fractional order controls MIMO 

square and non-square systems. Typically, design of controllers for square systems is 

straight forward whereas for MIMO non-square systems, it is not. Hence, the present 

multi-model fractional controllers design may be extended to control of MIMO non-

square systems when there are more inputs than outputs. 

iii. One more extension is to study the effect of different types of disturbances such as ramp, 

periodic and sine wave type while implementing multi-model control schemes. 

Analyzing the effect of such disturbances both by simulation and experiment may be 

carried out.  

iv. In this research, different multi-models are considered for the given process whose 

dynamics are stable. However, some times, the linearized model nature may be unstable 

in nature based on the operating point. Controlling processes involving unstable 

dynamics may be studied with proper integration of controllers meant for unstable 

systems.  
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