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Abstract

In the modern industrialized countries every year millions of people die due to cardiac disorders. India has
highest incidence of heart related diseases in the world. According to world health organization statistics
an estimated 17.9 million people died from cardio vascular diseases in 2016, representing 31% of all global
deaths. The life expectancy in India was reduced to 68.3 years. If no initiative is taken to check this most
predictable and preventable among all chronic diseases, life expectancy may further decrease. Most of
the cardiac disorders can be preventable by taking healthy diet, doing physical activity, avoiding

alcohol & tobacco.

Manual analysis of cardiac arrhythmias and disorders is very difficult, computer based analysis
is important for early detection of cardiac problem which enable the doctor to save the heart
patient. For this purpose, various feature schemes have been proposed by various researchers for
classification of cardiac arrhythmias and disorders. There is a large variation in number of
features, number of cardiac signals and classification accuracy. However, selecting better signal
processing technique for feature extraction, selecting optimum set of features, choosing proper
neural network classifier to improve the classification accuracy remains an open problem. This
aspect is motivation to take up the issue of automatic classification of cardiac arrhythmias. This
research work will enable the clinical doctors and cardiologists to diagnose type of cardiac

disorder to initiate proper treatment to save the life of heart patients.

In this thesis, four signal processing techniques (time domain, spectral domain, higher order
spectral domain and wavelet domain) and three supervised classifiers (Random Forest, Multilayer
perceptron and Radial Basis Function) have been proposed for analysis and classification of

cardiac signals to improve the performance of a baseline system.

In the first approach, temporal features extraction has been proposed. Using this feature scheme,
the average classification accuracy of two types of cardiac signals has been improved from 96.5%
(existing morphological feature scheme) to 100% for temporal features (proposed). For
classification of NSR, VT and VF (three types) the average classification accuracy has been 84%.
For classification of NSR, SVT, VT, VF, AF, SCA and ClI (seven types) the average classification

accuracy has been 78.09%.



In the second approach, spectral features are proposed. Using only four spectral features for
normal and abnormal (two types) average classification accuracy obtained as 96.6%. This has
been improved to 100% by using hybridization of temporal and spectral features. Further
classified 7 types of cardiac signals normal(NSR) , cardiac arrhythmias(SVT, VT, VF, AF) and
cardiac disorders(SCA and CI) .The average classification accuracy has been obtained as 78.09%
using this hybridization feature scheme.

In the third approach, to get the advantage of non-linearity and non-gaussianity, hybridization of
temporal, spectral and higher order spectra (HOS) based features have been proposed. Using this
feature scheme, 4-types of cardiac signals such as Normal Sinus Rhythm (NSR), Ventricular
Arrhythmias (VT and VF) and Atrial Arrhythmia (AF) classified and the obtained sensitivity has
been improved from 89.2% (existing) to 90% (proposed) and average specificity enhanced from
93.55% (existing) to 96.62% (proposed). Using this proposed feature scheme, average
classification accuracy and specificity of 7-types has been obtained as 74.2% and 95.70%.

In the fourth approach, Wavelet (db4)-6 level decomposition technique is used for feature
extraction. This multi resolution analysis has been proposed as a non-stationary, non-linear and
quasi periodic signal. Wavelet based features are proposed to classify NSR,VT and VF(3 types)
obtained sensitivity has been increased from 90.97%(existing) to 97.77%( proposed) , specificity
increased from 97.86% to 98.88 % and classification accuracy from 97.02%(existing) to
97.77%(proposed). In this proposed work equal values of sensitivity and accuracy are obtained.
Later, the proposed wavelet based feature scheme has been extended to classify 7 types of cardiac
signals and obtained classification accuracy as 95.24%, sensitivity as 95.2% and specificity as
99.20%. The specificity is more important than the sensitivity, since no patient should be
defibrillated except SCA patient due to an error of analysis which might cause cardiac arrest. The
main objective of this research work is to enhance classification accuracy of cardiac signals, to
improve specificity to enable doctors for early diagnose the type of cardiac problem to save the

life of heart patients.

Further, performance comparison has been done with the existing works. All the four methods
developed in this thesis are novel and better compared to traditional features reported earlier.

However, the wavelet based feature scheme proposed in the fourth method is superior in terms of



classification accuracy and specificity. With this efficient wavelet based feature scheme a cardiac
alert system has been developed for remote monitoring of cardiac patients. This research work

may be further extended to identify and classify few more cardiac disorders.

The feasibility of above proposed methods have been tested using benchmarked MIT-BIH
database, European ST_T database, Ventricular Tachyarrhythmia data base, SCD holter data
base.

Keywords: Cardiac arrhythmias classification, Feature extraction, Feature Selection, MLP,
Random Forest and RBF.
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Chapter 1

Introduction

The aim of this first chapter of introduction is to present anatomy and electrical functioning of
the heart, need of arrhythmias analysis and classification, motivation for the work, objectives
of the proposed research work, overview of research work, ECG database details, tools used
for analysis & classification and thesis organization

1.1 Anatomy and electrical functioning of the heart

Heart is an important muscular organ which pumps oxygenated rich blood to each and every
cell of human body and carries deoxygenated blood back to the lungs for oxygen as shown in

Fig 1.1. Heart consists of four chambers which are divided into two atria and two ventricles.

to Lungs to Lungs
Pulmonary Veins

Pulmonary
from Lungs

Veins from
Lungs

Superior
Vena Cava

Mitral Valve

Aortic Valve
Atrial Septum

Tricuspid
Valve
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AO = Aorta

PA = Pulmonary Artery

Il Oxygen-rich Biood LA = Left Atrium

= =y RA = Right Atrium
Oxygen-poor Blood LV = Left Ventricle

RV = Right Ventricle

Pulmonary Valve

Fig 1.1 Anatomy of the heart [11]
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Fig 1.2 Electrical conduction system of the heart [60]

The electrical functioning of heart is shown in Fig.1.2. In the heart, Sinoatrial (SA) node acts
as a natural pacemaker of the heart which generates electrical impulses at regular intervals of
time under normal conditions that can simulate the atria to contract or depolarise. Due to the
depolarisation of atria blood enters from right atrium to the right ventricle through tricuspid
valve. During this period, “P” wave is generated on the ECG signal. Later, the electrical
impulse travels from SA node to AV node. There will be a pause in the electrical activity in
this period which will be referred as the “PR interval” on the ECG. This “pause” allows the
atria to contract fully, emptying blood from atria before the ventricles begin to contract. Then
electrical signal continue down its conduction path to the ventricles through the “bundle of his”.
Later, this electrical impulse passes to the right and left bundle branches and to the right and
left ventricles, respectively. This causes the ventricles to contract or depolarise and pump
oxygen poor blood to the lungs through the pulmonary arteries for re-oxygenation. During this
period ventricular depolarization takes place, due to this “QRS complex™ is generated on the
ECG. Similarly, due to ventricular repolarisation T-wave is generated on the Electrocardiogram
(ECG).

Blood circulation in the human body is shown in Fig 1.3. The left atrium receives the
oxygenated rich blood from the lungs via the pulmonary veins. Then blood flows to the left
ventricle through the mitral valve and finally, it is pumped out this oxygenated blood to all the
cells of the human body through the aorta. Willem Einthoven invented the first ECG machine
to monitor heart condition and received Nobel Prize for the same in the year 1924 [34].The
standard 12-lead ECG recording provides spatial information about the heart's electrical

activity in 3 orthogonal directions is shown in Fig 1.4.
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Fig 1.3 Blood circulation in the human body

Fig 1.4 Twelve Lead ECG recording [69]



Twelve lead ECG provides 12 different views of the heart’s electrical activity. The 12 leads
include three bipolar limb leads (I, Il and IlI), three unipolar augmented limb leads and six
precordial chest leads. They are aVR, aVL and aVF where aVR means augmented Vector
Right, the positive electrode is on the right shoulder; aVL means augmented Vector Left, the
positive electrode is on the left shoulder and aVF means augmented Vector Foot, the positive
electrode is on the foot and six precordial chest leads are V1, V2, V3, V4, V5 and V6.
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Fig 1.5 Normal ECG Signal [19]

ECG represents electrical activity of the heart [36]. It’s not a trace of single action potential but
it is an amalgam of various action potentials. Every cardiac cycle of ECG consists of three
waves: P, QRS and T waves. The R-R interval plays a significant role in identifying heart beat
rate of cardiac signals is shown in Fig 1.5. In ECG strips, horizontal axis represents time in
terms of seconds. Each small block equals 0.04s and five small blocks form a large block which
equals 0.2 seconds. In ECG strips, vertical axis represents amplitude in terms of mV. Each
small block represents 0.1mV. Each five small blocks form a large block which represents 0.5
mV.

Normal ECG features are shown in Table 1.1. The frequency range of normal ECG signal is

0.05-100 Hz and its dynamic amplitude range is 1-10 mV.



Table 1.1 Normal ECG Features

S. No. Features Amplitude(mV) Duration (ms)

1 P-Wave 0.1-0.2 60 — 80

2 PR-Segment - 50—-120

3 PR-Interval - 120 - 200

4 QRS-Complex 1-10 80—-120

5 ST-Segment - 100 —-120

6 T-Wave 0.1-0.3 120 - 160

7 ST-Interval - 320

8 RR-Interval - 400 — 1200

Irregular electrical activity of the heart represents cardiac arrhythmia (abnormal rhythm).
Smoking, physical inactivity, high blood pressure, high blood cholesterol and overweight cause

cardiac arrhythmias.

In the proposed work, Normal Sinus rhythm (NSR), 4 types of tachyarrhythmias-Ventricular
Tachycardia (VT), Supra Ventricular Tachycardia (SVT), Ventricular Fibrillation (VF) and
Atrial Fibrillation (AF) and two cardiac disorders- Sudden Cardiac Arrest (SCA) and Cardiac

Ischemia (CI) are considered for arrhythmias classification.

Different types of cardiac signals of 1minute duration are shown below in Fig 1.6 to Fig 1.12.
On X-axis of these signals represented as number of samples and on Y- axis, amplitude is

represented in mV.

Normal Sinus Rhythm (NSR) is a healthy person’s cardiac signal of 1-minute duration is
shown in Fig 1.6. Normal person heart beat rate range is 60-100bpm. NSR consists of regular
R-R intervals. It is not uncommon to encounter instances of SCA in healthy persons also. Even
healthy person may be detected to have a serious heart condition like a hypertrophic
cardiomyopathy or dilated cardiomyopathy or an abnormal ECG or echo during routine

physician consultation.
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Fig 1.6 NSR

Supraventricular tachycardia (SVT) shown in Fig 1.7 is an abnormal fast heart rhythm due
to improper electrical activity in the upper portion of the heart (atria). Most SVTs are unpleasant
rather than life-threatening arrhythmias like VT [103]. SVT becomes a problem when it occurs
frequently. Its heart beat rate is above 100 bpm.
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Fig 1.7 SVT

Ventricular tachycardia (VT) shown in Fig 1.8 is an abnormal heart rhythm which causes
heart to beat too fast due to wide QRS complex (120ms) [35]. Normally, VT starts in the heart's
lower chambers. Most patients who have VT have a heartbeat rate is 170 bpm or more. VT may
eventually lead to VVF, which is characterized as severe cardiac arrhythmia. If the VT terminates
within 30 seconds, it is considered a non-sustained VT. If VT lasts more than 30 seconds, it is

known as a sustained VT.
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Fig 1.8 VT



Ventricular fibrillation (VF) is life threatening arrhythmia as shown in Fig 1.9. It is existing
due to disorganized electrical activity in the ventricles and also heart quivers or fibrillate
instead of beating normally. This prohibits the heart from pumping blood. No P- waves are
present in VF, only QRS and T waves can be seen. VF can cause sudden cardiac arrest (SCA),

which requires immediate medical attention. These patients may die if the rhythm is not
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Fig 1.9 VF

Atrial Fibrillation (AF) is an atrial arrhythmia is shown in Fig 1.10, which occurs as action
potential triggers at atria instead of at SA node. AF heart beat rate may sometimes exceeds
350bpm. Because of this high heart beat rate, uncoordinated contraction exists which leads to
ineffective pumping of blood into the ventricles. In AF, the abnormal heart rhythm affects R-
R interval sequence in ECG. Atrial fibrillation (AF) is the most common sustained cardiac
arrhythmia. It is associated with a nearly doubled risk of death and an almost 5-fold increase in
the risk of stroke.
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Fig 1.10 AF

Sudden Cardiac Arrest (SCA) is shown in Fig 1.11, occurs when heart suddenly or
unexpectedly stops beating due to lack of oxygen supply to the brain cells. If severe ventricular
arrhythmias (VT and VF) are not treated in time, lead to sudden cardiac arrest. If SCA patient

is not treated, within few minutes, sudden cardiac death may happen. It is a serious health



problem and is responsible for almost half of all sudden cardiac deaths [19]. Its heart beat rate
is less than 50bpm [86].
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Fig 1.11 SCA

Cardiac Ischemia (ClI) is shown in Fig 1.12, it’s a heart disease caused by narrowing of the
arteries which makes less oxygenated blood to reach the heart muscle. Total occlusion of a
coronary artery leads to myocardial infarction or cardiac ischemia and acute myocardial
infarction may present as SCA. If timely intervention is not provided as per international
guidelines the victim is likely to die. Apart from ischemic causes, other nonischemic causes -
cardiomyopathies like hypertrophic cardiomyopathies, genetic causes like LONG QT

syndrome, brugada syndrome etc. may lead to serious and life threatening arrhythmias.
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Fig 1.12 CI

Apart from routine ECG, 2D-Echo, 24 hours Holter monitoring, cardiac MRI,
electrophysiological studies are useful in risk prediction and management. Apart from
antiarrhythmic agents, radio frequency ablation, ICD implantation are management options in

such patients.



Fig 1.13 Angioplasty (stents) [115] Fig 1.14 Medication (heparin)

Cl patient will be treated with Angioplasty / Medications (heparin /aspirin) is shown in Fig 1.13
and Fig 1.14 and bypass surgery is shown in Fig 1.15. AF patient heart beat rate is more than
300 bpm. This disorder will be treated with medications (Beta blockers, Calcium channel
blockers) to bring heart beat rate to normal. For AF treatment when long-term medications were

not effective, Ablation catheter (thin, flexible tube) is inserted into the patient’s blood vessels

and is gently guided to the heart as shown in Fig 1.16. The physician carefully destroys
malfunctioning tissue using the catheter to deliver energy by using radiofrequency/laser to scar

the problematic areas.

Radiofrequency
Current Generator

Fig 1.15 Bypass Surgery [117] Fig 1.16 Ablation Catheter [114]
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Implantable cardioverter defibrillator (ICD)

Figl.17 Automated external defibrillator [93] Fig 1.18 Implantable CD [116]

SCA patient will be treated with automated external defibrillators as shown in Fig 1.17, or
treated with Implantable Cardioverter Defibrillator (ICD) [93] as shown in Fig 1.18 depending
on the emergency. Most of new ICDs can act as both a pacemaker and a defibrillator. A
pacemaker may be used if the heart's natural pacemaker of the heart (the SA node) is not
working properly causing bradycardia (heart beat rate is less than 60bpm). Ventricular
fibrillation and ventricular tachycardia are known as shockable rhythms. The shock can
potentially stop arrhythmia by using automated external defibrillator (AED) [17] as shown in
Fig 1.18.

1.2 Need of arrhythmias analysis and classification

As the most common cause of sudden cardiac death (SCD) is a ventricular tachycardia (VT)
that degenerates into ventricular fibrillation (VF), loss of consciousness and sudden cardiac
arrest. Sustained ventricular tachycardia often requires urgent medical treatment, as this
condition may sometimes lead to sudden cardiac death. Total occlusion of a coronary artery
leads to myocardial infarction or Cl, an acute myocardial infarction may present as sudden
cardiac arrest. If timely, immediately an intervention is provided as per international guidelines

the victim of SCA is likely to survive.

In many instances, the cause of SCA is known, however in certain instances where the cause
is difficult to diagnose, other modalities of investigation might be helpful in further

management. Apart from ischemic causes, other conditions such as non-ischemic causes-
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cardiomyopathies like Hypertrophic cardiomyopathies, genetic causes like LONG QT
syndrome, brugada syndrome etc., may lead to serious and life threatening arrhythmias. It is
not uncommon to encounter instances of sudden cardiac arrest in an otherwise healthy persons.
Also an otherwise healthy person normal sinus rhythm (NSR) may be detected to have a serious
heart condition like a hypertrophic cardiomyopathy or dilated cardiomyopathy or an abnormal
ECG or echo during routine physician consult. Hence, it is essential from a practical point of
view to predict whether such persons are likely to have SCA or not. This helps in early

intervention, so that SCA can be prevented and survival rate can be improved.

In this context, translating the knowledge of signal processing and artificial intelligence
algorithms to classify 7 types of signals-NSR, 4-tachyarrhythmias and 2-severe cardiac
disorders for immediate recognition of serious and life threatening arrhythmias is essential.
Prediction of risk of morbid and life threatening situations in subjects with prone conditions is

of clinical utility.

1.3 Motivation

The contributions of various researchers have been given in detail in the second chapter.
Various signal processing techniques have been proposed by various researchers for
identification and classification of cardiac arrhythmias [2]-[5], [19]- [21], [25], [29], [42], [44],
[45] and [46]. It is observed that there is a large variation in the feature extraction methods,
variation in number of features, variation in different types of cardiac signals and their

classification accuracy.

However, there were certain limitations regarding classification accuracy, sensitivity and
specificity. In real time applications of automated external defibrillators , the specificity is more
important than the sensitivity. Selection of an efficient feature extraction scheme and choosing
proper neural network classifier are important for efficient classification of cardiac arrhythmias.

Most of the existing works distinguished normal and abnormal signals.

But, there is a necessity to classify abnormal categories also for proper medication and
treatment. Early detection of cardiac arrhythmia is of paramount importance for saving the life
of a patient as each arrhythmia needs to be treated in a specific manner such as ventricular
arrhythmias are treated by using automated external defibrillator or with medications, sudden

cardiac arrest is treated by using ICD, atrial arrhythmia is treated with medications or by using

11



ablation catheter and cardiac ischemia is treated with angioplasty or medications or bypass
surgery. Thus, there is a need to classify severe cardiac arrhythmias, cardiac disorders and
normal signals which can enable the doctor to give proper attention to save the life of heart

patients. This aspect is the motivation for taking up this research work.

1.4 Objectives of the proposed research work

The research work aims at analysis and classification of seven types of cardiac signals (4 types
of cardiac arrhythmias, 2- types of disorders and 1- normal sinus rhythm). Objectives of the
research work are
e Cardiac arrhythmias analysis and classification in time domain.
e Cardiac arrhythmias analysis in spectral domain and classification using temporal and
spectral features
e Cardiac arrhythmias analysis in HOS domain and classification using temporal, spectral
and bispectral features.
e Cardiac arrhythmias analysis in wavelet domain and classification using wavelet
features
e Todevelop an experimental setup for cardiac alert system using wavelet feature scheme

for remote monitoring of heart patients.
1.5 Overview of the research work

Overview of the research work has been given in a block diagram of automatic arrhythmias
classification as shown in Fig 1.19. This shows different signal processing techniques used for
feature extraction and different supervised classifiers (RF, MLP & RBF).

ECG data of different cardiac signals has been collected from standard ECG data bases. 66%

of ECG data has been used for training purpose and 34% of data is used for testing purpose.
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Fig 1.19 Block diagram for Arrhythmias Classification

Artifacts (unwanted noise signals) are present in ECG signals. Presence of these artifacts make
the cardiac arrhythmias and disorders diagnosis is very difficult as they corrupt ECG signals.
So, it is required to use filters in pre-processing stage to filter artifacts. There are mainly four
types of artifacts encountered in ECG signals they are baseline wander, EMG noise and power
line interference. Baseline wander is a low-frequency noise of around 0.6 Hz. To remove it, a
high-pass filter of cut-off frequency 0.6 Hz can be used. EMG noise is due to muscle movement
of patient while ECG recording. It is a high frequency noise of above 100 Hz and hence, it may
be removed by using low-pass filter of an appropriate cut-off frequency. The power line
interference (PLI) is centered at 50 Hz or 60 Hz with a bandwidth of less than 1 Hz. Notch filter
is used to remove PLI. However, the baseline wander and other wideband noises are easy to be
suppressed by using the software scheme instead of using analog circuits. Thus, de-noising of

ECG signals is very important for further processing.
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Cardiac Signal Analysis (Arthythmia, Disorder and Normal signals) Using Different Signal Processing Techniques
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Fig 1.20 Cardiac signal analysis using signal processing techniques for feature extraction

In ECG signal processing stage, four different signal processing techniques have been used for
cardiac signal analysis for feature extraction as shown in Fig 1.20. In time domain, temporal
features are extracted using Pan Tompkins’s algorithm. Temporal features are number of R-
peaks, R-R intervals, amplitude of R-peaks and heartbeat rate. In spectral domain, spectral
features are extracted using FFT algorithm. Frequency spectrum is divided into five regions
i.e., Region R1: 0-2 Hz, Region R2: 2-8 Hz, Region R3: 8-16 Hz, Region R4: 16-22 Hz and
Region R5: 22-32 Hz. In each region, spectral features such as mean, median, standard
deviation and energy are computed. In higher order spectral domain, higher order spectral
features such as skewness, variance and kurtosis are computed and in wavelet domain, using 6
level wavelet decomposition technique wavelet features are extracted. Wavelet based features
are high frequency detailed coefficients (min and max) and standard deviation from 1 to 5 levels
and low frequency approximation coefficients (min and max) & standard deviation from 6%
level. Later, the proposed work aims at classification of 7 types of cardiac signals using these

selected features. These features are fed to different supervised classifiers such as Multi-Layer
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Perceptron (MLP), Random Basis Function (RBF) and Random Forest (RF). In this work, 66%
of ECG data is used for training purpose and 34% of data is used for testing purpose. The
training to testing dataset split ratio is selected based on prediction and accuracy. Specific ratio

approximately 2:1 is selected to overcome the problem of data under fit and over fit.

All the four signal processing methods and classifiers used in this work are better compared to
the existing methods. However, the wavelet based feature scheme with MLP classifier proposed
in the last approach is superior in terms of number of cardiac arrhythmias classification and
enhancement of classification accuracy, sensitivity and specificity. This efficient wavelet based

feature scheme is used to develop an experimental set up for a cardiac alert system.

1.6 Database details

The MIT-BIH Arrhythmia Database [1] was the first generally available set of standard test
material for evaluation of arrhythmia detectors and it has been used for that purpose as well as
for basic research into cardiac dynamics at about 500 sites worldwide since 1980. Together
with the American Heart Association (AHA) Database, it played an interesting role in
stimulating manufacturers of arrhythmia analysers to compete on the basis of objectively
measurable performance and much of the current appreciation of the value of common
databases, both for basic research and for medical device development and evaluation. In this
research work, annotated databases of ECG are used [1]. NSR data has been collected from
MIT-BIH Normal Sinus Rhythm data base (nsrdb), SVT has been collected from MIT-BIH
Supraventricular arrhythmia data base (svdb) and AF data has been collected from MIT-BIH
atrial fibrillation data base (afdb),VT data has been collected from Ventricular
Tachyarrhythmia Database (CUDB) [40], VF data has been collected from Malignant
Ventricular Ectopy Database (VFDB) [55], CI data has been collected from European ST_T
database [39] and SCA data has been collected from sudden cardiac death holter data base [55].
ECG data of 1-minute duration and a sampling frequency of 250 Hz has been collected and
used directly except NSR and SVT data. These two data bases have been resampled with 250
Hz as their available sampling frequency is 128 Hz. For each one minute data 15000 discrete
samples are available.

The following Tablel.2 shows, ECG data types and their record numbers used in the proposed

research work.
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Table 1.2 ECG data records

S.No I.ECG Record Numbers No. of
signal records
Cl e0104, e0105 e0106,e0107,e0108 , e0110, e0111, e0112,e0113, 15
1. e0114 ,e0118, 0119, 0121, 0123, 0125
2. SCA 30,31,32,33,34,36,37,38,39,41,42,43,44,45,46 15
AF 04043,04048,04126,04746,04936,05091,06426,06453,07162, 15
3. 07859, 7879,07910,08215,08219,08434
418,419,421,425,427,428,429,430,602,605,607,609,610,611,
4 VF 15
. 612
VT cu01, cu03, cu05, cu06, cud7, cu08, cu09, cull, cul?, cul3, 15
5. culd, culs, cul6, cul8, cul9
801,802,803,807,808,3809,810,811,812,820,821,822,823,824,
6. SVT 85 15
NSR 16265,16272,16273,16420,16483,16539,16773,16786,16795, 15
7. 17052, 17453,18177,18184,19093,19830
Total no. of records 105

1.7 Tools used for ECG analysis and classification

In this research work, Matlab R2017a tool box is used Cardiac Signal Analysis. MATLAB, the

language of technical computing, is a programming environment for algorithm development,

data analysis, visualization, and numeric computation. Engineers and scientists worldwide rely

on these product families to accelerate the pace of discovery, innovation, and development in

automotive, aerospace, electronics, financial services, biotech-pharmaceutical, and other

industries. It is the leading developer of mathematical computing software Millions of

engineers and scientists worldwide use MATLAB to analyse and design the systems and

products transforming our world. The matrix-based MATLAB language is the world’s most
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natural way to express computational mathematics. Built-in graphics make it easy to visualize
and gain insights from data. The desktop environment invites experimentation, exploration, and

discovery.

In this research work, Waikato Environment for Knowledge Analysis (Weka) tool is used for
Cardiac signals classification, Weka tool is developed at the University of Waikato, New
Zealand, is free software licensed under the GNU General Public License, and the companion
software to the book “Data Mining: Practical Machine Learning Tools and Techniques”. [59]
WEKA is a collection of different machine learning and neural network algorithms which are
used for data mining tasks. The machine learning algorithms such as Random Forest (RF) and
neural network algorithms such as Multi-Layer Perceptron (MLP) and Random Basis Function
(RBF) can be applied directly to a given dataset. It contains tools for data processing,

classification, regression, clustering, association rules and visualization.
1.8 Thesis Organization

The research work carried out in this thesis is organized in to seven chapters. The chapter wise
description of the thesis is outlined below.

First chapter: This first chapter introduces anatomy and electrical functioning of heart, need
of arrhythmias analysis and classification, motivation, objectives, overview of the research
work, data base details, tools used for feature extraction and classification and thesis

organisation.

Second chapter: In this chapter, the literature is reviewed in detail. Various researchers’
contributions have been understood and presented briefly. The remarks and limitations on their
contributions are highlighted and motivation for the proposed research work has been

concluded.

Third chapter discusses cardiac arrhythmias analysis and classification in time domain. For
that purpose temporal features are extracted using Pan Tompkin’s algorithm for different
cardiac arrhythmias. The machine learning algorithms such as Random Forest (RF) and neural
network algorithms such as Multi-Layer Perceptron (MLP) and Random Basis Function (RBF).

Performance comparison of cardiac arrhythmias classification and conclusion are given.

Fourth chapter describes cardiac arrhythmias analysis and classification in spectral domain.
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For that purpose spectral features are extracted using FFT algorithm for different cardiac
arrhythmias. The machine learning algorithms such as Random Forest (RF) and neural network
algorithms such as Multi-Layer Perceptron (MLP) and Random Basis Function (RBF).

Performance comparison of cardiac arrhythmias classification and conclusion are given.

Fifth chapter discusses cardiac arrhythmias analysis and classification in higher order spectral
domain. For that purpose, bispectral features are extracted from bispectrum, bicoherence and
quadrature phase coupling plots for different cardiac arrhythmias. The machine learning
algorithms such as Random Forest (RF) and neural network algorithms such as Multi-Layer
Perceptron (MLP) and Random Basis Function (RBF). Performance comparison of cardiac

arrhythmias classification and conclusion are given.

Sixth chapter narrates cardiac arrhythmias classification in wavelet domain. For that purpose,
wavelet features are extracted using discrete wavelet transform for different cardiac
arrhythmias. The machine learning algorithms such as Random Forest (RF) and neural network
algorithms such as Multi-Layer Perceptron (MLP) and Random Basis Function (RBF).

Performance comparison of cardiac arrhythmias classification and conclusion are given.

Seventh chapter presents the conclusion of the research work done and future scope for the

research work.

Appendix presents an experimental setup of cardiac alert system for remote monitoring of

cardiac patients which has been application of wavelet based feature scheme.
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Chapter 2

Literature Review

This chapter presents a literature review on the work done by various researchers for
identification and classification of normal and cardiac arrhythmias. Different signal processing
techniques have been used by different researchers for feature extraction and classification.
Some existing contributions that have been made by researchers are explained and their
limitations are given in this chapter. Some improvements are aimed in the proposed work for
overcoming these limitations. Further, few more cardiac arrhythmias and disorders are

considered for analysis and classification in the proposed work.

2.1 Introduction

In the last two decades, this field of cardiac arrhythmias classification has attracted the attention
of researchers because of its importance in early diagnosis of severe cardiac problems. The
different research areas in this field include cardiac signal (normal, arrhythmias and disorders)
analysis, identification and classification. The need for the automatic classification of cardiac
arrhythmia arises in different contexts. Identifying cardiac disorders belonging to a different
ventricular arrhythmias and atrial arrhythmias. Classification of cardiac arrhythmias in time
domain [2], [3], [4], [5], [6], [7] ,[8] and [9]; spectral domain [18] and [19]; higher order spectral
domain [21], [25], [27], [30], [33], [74] and [89] and wavelet domain [20], [29], [42], [43],
[44], [45], [46], [70] and [72].The cardiac arrhythmias classification field attracted the attention
of researchers to enhance classification accuracy and for accurate detection of severe cardiac
arrhythmias and disorders to save the life of heart patients. Since, last two decades this field
has attracted the attention of investigators to use artificial intelligence application in biomedical
field. A review of literature related to cardiac arrhythmias and disorders identification and

classification is solely focused in this chapter.
2.2 Cardiac arrhythmias analysis and classification in time domain

A review of literature related to cardiac arrhythmias and disorders identification and

classification in time domain is focused in this literature.
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Pan-Tompkins et al [2] have developed a real time QRS detection algorithm based on slope,
amplitude, and width of the QRS complex. This method used band pass filter to reduce the
influence of muscle noise, 60 Hz power line interference. QRS detection algorithm correctly
detected 99.3% of the QRS complexes.

Limitations/remarks: Many researchers extracted morphological features using this QRS
detection and classified normal and cardiac arrhythmias. This method may not be sufficient to
describe the complex changes that take place in ECG as heart beat rate increases or decreases.
These dynamics are important to be explored further to identify different types of cardiac

arrhythmias.

M. Vijayavanan et al. [5] used an efficient technique for automatic classification of normal
and cardiac arrhythmia signals on MIT-BIH arrhythmia database. Sampling rate has been used
as 360 Hertz .Wavelet analysis to extract morphological features such as P, Q, R, S, T peak
points, QRS complex duration, PR interval, ST interval, QT interval, RR interval, ST segment
and PR segment and these 12 features were fed to Probabilistic Neural Network (PNN)
classifier for classification Normal Sinus Rhythm and cardiac arrhythmia (which is abnormal).
So, in this work, normal and abnormal categories only were considered. About 150 records of
each category were given for training and 50 untrained records were given for testing by using
the Probabilistic Neural Network (PNN). They used data durations of 5, 10, 15 and 20 minutes
for observing classification accuracy. Classification accuracy varied with changing data
duration of the ECG signal. For 20 minutes data duration, 96.5% classification accuracy was

obtained.

Limitations/remarks: Only normal and arrhythmia categories were classified. The type of
arrhythmia was not known. Some more dynamics are to be explored further to classify different
arrhythmias.

Mujeeb Rahman et al. [6] extracted potential biomarkers of arrhythmia using two algorithms
i.e, Pan-Tompkins Algorithm and Wavelet based algorithm. ECG signals used in in this work
were downloaded from the MIT-BIH arrhythmia database. These signals were then imported
to MATLAB tool and pre-processed for noise removal, four temporal features such as QRS

duration, RR interval and PR interval were extracted. Heartbeat rate was calculated. Based on
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these features performance of the two algorithms was compared and it was proven that the Pan-
Tompkins algorithm was more accurate than the wavelet transform based algorithm.

Limitations/remarks: This work shows the importance of certain temporal features such as
QRS complex, R-R interval, P-R interval and heart beat rate. This work did not classify

different types of cardiac arrhythmias.

V. Vijaya et al. [4] used modified Pan Tompkins algorithm to extract two temporal features
(number of R-peaks and R-R interval). These two temporal features are used to distinguish
sudden cardiac arrest and normal sinus rhythm. For this work, NSR data for records (16265,
16273, 16539, 16773 and 16775) has been collected from MIT BIH Normal Sinus Rhythm
data base (nsrdb) and SCA data for records (30, 31, 32, 33, 34, 36 and 38) has been collected
from Sudden cardiac death holter data base[55]. The duration of signal was selected as 4
seconds only. Sampling frequency (fs) of cardiac signal has been selected as 200 samples/sec
and window size is considered as 30 samples. They computed No. of R-peaks and R-R interval
using Pan Tompkins algorithm for NSR and SCA using 1000 samples. They found out that No.
of R-peaks for SCA is found to be less compared to NSR and R-R interval for SCA is found to
be compared to NSR.

Limitations/remarks: Only normal and sudden cardiac arrest (cardiac disorder) signals were
analysed based on two temporal features. These two features may not be sufficient to describe
the other types of arrhythmias.

Rathnakara et al. [37] used an efficient algorithm to differentiate normal and arrhythmia ECG
signals. The arrhythmia signals are classified with variation in heartbeat rate. Heartbeat rate
below 60bpm is considered as bradycardia and Heartbeat rate above 80bpm is considered as
tachycardia. The steps used by the algorithm are QRS peak detection by Pan-Tompkins
algorithm, Baseline wandering noise removal and differentiating ECG signal into NSR and
arrhythmia. Compared the obtained values with threshold values and classified into normal and

arrhythmia signals.

Limitations/remarks: The analysis of the signal is done based on hear beat rate variabaility.
Further, it can also be deeply implemented using various temporal features like RR intervals,
No. of R peaks/sample, R peak amplitude, etc. and classification can be done using various

machine learning techniques.
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2.3 Cardiac arrhythmias analysis and classification in spectral
domain

A review of literature related to cardiac arrhythmias & disorders identification and

classification in spectral domain is focused in this literature.

Usman Rashed et al. [19] In this work, 4 to 5 min of ECG data was used instead of 24 hours
to detect the possibility of Sudden Cardiac Arrest. For this work, NSR data for records (16272,
16273, 16539, 16773, 16483, 16795, 16786 and 16420) and SCA data for records (30, 31, 33,
35, 39, 41, 46 and 52) has been collected from MIT BIH database. In the data base, NSR signals
were originally sampled at 128Hz and SCA signals at 256Hz. Before spectral analysis, each
signal was pre-processed. In order to apply the signal processing techniques equally to each
record signal and preserve most of the information, each signal was re-sampled to 500Hz. After
re-sampling, the mean was removed from each ECG signal and then signals were passed
through a 3 order low-pass Butterworth filter by setting cut of frequency 32 Hz for
preprocessing. For spectral analysis, Fast Fourier Transform (FFT) model using the Discrete
Fourier Transform was considered and implemented it using Matlab. Fast Fourier Transform
(FFT) on QRS complex was used to extract time and frequency information from the ECG

signals.

The obtained frequency spectrum was divided into five regions (R1 to R5):
Region R1: 0-2 Hz
Region R2: 2-8 Hz
Region R3: 8-16 Hz
Region R4: 16-22 Hz
Region R5: 22-32 Hz

Spectra in the above regions were plotted to gain the information regarding the variation and
energy localization. Then spectral parameters including mean, median, standard deviation,
energy and power were selected to represent the spectra in the respective region. Hence, they
discovered that the normal ECG rhythm of patient suffering from Sudden Cardiac Death has:
1) Lower spectral energy.
2) Low frequency range of first lobe.

3) Negligible energy in region 4 (16-22 Hz).
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Classification can be done on basis of these above three findings. Further authors concluded
that less than 5-minutes ECG data will be sufficient to detect possibility of SCA in spectral

domain.

Limitations/remarks: From their work, it is noticed that ECG data of 24 hours may not be
required for identification of sudden cardiac arrest in spectral domain as spectrum of ECG data
of 24 hours or lhour or 1min was same. Only normal and sudden cardiac arrest (cardiac
disorder) signals were distinguished based on 5 spectral features analysis. In this work, energy
difference of both signals observed in Region4 (16-22 Hz) region, instead of Region3 (8-16
Hz) region. This work distinguished two signals only. They did not use these spectral

parameters for cardiac arrhythmias classification.

Glenn A. Myers et al. [18] described a method of power spectrum analysis on 24 hours
ambulatory ECG’s. This method was used to segregate three groups of people of normal, heart
patients with history of SCD and without history of SCD. In this work, compared power

spectrum results with non-power spectrum results.

Limitations/remarks: This work distinguished only three groups of cardiac signals (NSR,
SCD and Non SCD) based on heart rate variability using power spectral method and non-power

spectral method. In their work, arrhythmias classification was not addressed.

2.4 Cardiac arrhythmias analysis and classification in higher order

spectral domain

A review of literature related to cardiac arrhythmias and disorders identification and
classification in higher order spectral domain is focused in this literature.

L. Khadra et al. [21] used high order spectral analysis technique for quantitative analysis and
classification of cardiac arrhythmias. They classified four types of cardiac signals such as AF,
VT, VF and NSR. A total of 8 -NSR, 12- AF, 11 -VT and 12 -VF (total 43 records) were
considered for this work. Using bispectral analysis, bispectrum and bicoherence plots of above
signals were evaluated with different bicoherence values. The classification results revealed the

importance of higher order spectral analysis in identifying the life threatening arrhythmia which
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Is an important tool in ICU that enables online monitoring of the cardiac activities. The results
showed a significant difference in parameter values for different arrhythmias.

Limitations/remarks: The medical statistics obtained by using HOSA technique were
Sensitivity(S) as 89.2% and Specificity (Sp) as 93.55%. The sensitivity and specificity obtained
can be enhanced further by using different classifiers.

I. A. Karaye et al. [26] analysed cardiac signals such as NSR, RBBB, LBBB, paced beat and
atrial premature beats using higher order spectral analysis to reveal the complex dynamics of
ECG signals. General characteristics for each of these classes in the bispectrum and
bicoherence plot for visual observation have been presented and also extracted higher order
statistical parameters (skewness, kurtosis and variance) using HOSA and temporal features (RR
interval) using Pan Tompkins algorithm were used for classification of five different types of
signals and obtained average classification accuracy as 94.9%.

Limitations/remarks: Authors used both morphological and higher order statistical
parameters (hybrid) to classify 5 types of cardiac signals and obtained an average classification

accuracy as 94.9% and this work can be extended to identify other types of cardiac arrhythmias.

K. Sharmila et al. [25] used higher order statistics (HOS) analysis to identify sudden cardiac
arrest. Estimation of higher order spectra on the basis of cumulants is more useful for the
analysis of stochastic signals whereas estimation of higher order spectra on the basis of

moments is more useful for the analysis of deterministic signals.

Limitations/remarks: Authors have used both spectral and higher order statistical parameters
to distinguish two types of cardiac signals (NSR and SCA). This work can be extended to
identify other types of cardiac arrhythmias and disorders.

2.5 Cardiac arrhythmias analysis and classification in Wavelet
Domain

A review of literature related to cardiac arrhythmias and disorders classification in wavelet

domain is focused in this literature.

H.M. Rai et al. [44] used DWT based feature extraction scheme and BPNN Classifier to

classify normal and abnormal signals. Normal class 25 files and abnormal class 20 files of
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I1minute duration were collected from MIT-BIH arrhythmia database (out of 48 files, 45 files

have been considered).
The extracted DWT based features are shown below

1. Mean of the absolute values of the details and approximation coefficients at each level.
2. Standard deviation of the details and approximation coefficients in each sub band.

3. Variance values of the details and approximation coefficients at each level.

48 wavelet features and 16 statistical and morphological features such as standard deviation of
RR interval, PR interval, PT interval, ST interval, TT interval, QT interval, maximum values
of P, Q, R, S, T peaks and number of R peaks count are used. Total 64 hybrid features are
considered and fed to the Back Propagation Neural Network (BPNN) classifier and the system
performance was measured on the basis of accuracy. The average classification accuracy
obtained as 97.8 %.

Limitations/remarks: The limitation of this work is that it has used 64 features and for
classification of two types of signals. The classification can be performed for different number
of ECG signals.

Maedeh Kiani Sarkaleh et al. [45] used discrete wavelet transform for processing ECG
recordings. They classified both normal and two types of cardiac disorders using 10 files of
ECG records. It produced results with classification accuracy of 96.5%. Extracted 24 wavelet
features using 8 level wavelet decomposition and these features were fed to MLP classifier and
produced results with 24 input neurons and 2 linear output neurons. The performance of this
MLP neural network was tested using the Mean Squared Error (MSE) parameter. This error is
computed using the differences between the actual outputs and the outputs obtained by the
trained NN.

Limitation: The limitation of this work is that it has only used 10 records out of 48 available
records in the ECG Arrhythmia database. So, the training set obtained after extracting features
from the samples those records suffers from lack of diversity. Also, this work classified only
three types of cardiac signals, while it ignores the other classes of severe arrhythmias. This
work results are showing 24 input neurons 2 output neurons but aimed to classify three types

of cardiac signals
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N. K. Dewangan et al. [106] Used four morphological features i.e. R peak amplitude, QRS
duration, RR interval and PR interval along with eight wavelet based features i.e. variance of
detail coefficients obtained after eight level wavelet decomposition of each ECG beats. LM
Back propagation algorithm was used to train the multilayer feed-forward back propagation

networks. 5 types of arrhythmias were detected by this system.

Limitations/remarks: This existing neural network based global classifier obtained sensitivity
as 65%, specificity as 92%, positive predictive value as 63% and classification accuracy as
87%.

E. D. Ubeyli et al. [50] classified four types of cardiac disorders and NSR using Mixture of
expert algorithm and produced results with an accuracy of 96.88%. The ECG signals were
decomposed into time—frequency representations using discrete wavelet transforms (DWT) and
statistical features were calculated to depict their distribution. The ME network structure was
implemented for cardiac disorders classification using the statistical features as inputs. To
improve classification accuracy, the outputs of expert networks were combined by a gating
network simultaneously trained in order to stochastically select the expert that is performing
the best at solving the problem. Five types of ECG beats (normal beat, congestive heart failure
beat, ventricular tachyarrhythmia beat, atrial fibrillation beat and partial epilepsy beat) obtained
from the Physio bank database were classified with an accuracy of 96.89% by the ME network

structure.

Limitations/remarks: Five types of ECG signals were classified with an accuracy of 96.89%.

Ali Sadr et.al [51] distinguished performance of MLP and RBF algorithms based on available
training data set. RBF algorithm is giving more accuracy when the size of training data set is
relatively small whereas MLP algorithm is giving more accuracy when the size of training data
set size is relatively large. Further, in literature survey, it has been reported that finding
optimum and efficient feature set is a major challenge for arrhythmias classification. Selection
of a suitable classifier also plays a significant role in improving the classification accuracy [94],
[95]. The classification accuracy obtained using RBF classifier as 94% and MLP classifier as
92% for 50 number records.
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Limitations/remarks: In this work, they compared of performance of MLP and RBF based on
number records. MLP algorithm is being more accurate than RBF when the size of training

data set size is relatively large.

Monalisa Mohanty et al. [47] used multi-domain features and supervised classifiers to classify
VF, VT and NSR. The ventricular arrhythmia detection algorithm that combines ECG features
with C4.5 classifier has been used in this work. The Ventricular Tachyarrhythmia Database
(cudb) and MIT-BIH Malignant Ventricular Ectopy Database (vfdb) are used from physionet
database. A total combination of 13 temporal, spectral and statistical features were considered.
Further, the extracted features have been ranked in Gain Ratio Attribute Evaluation in order to
improve the classification accuracy. Classification of selected features for VF, VT and normal
sinus rhythm (NSR) was done by using two classifiers namely cubic support vector machine
(SVM) and the C4.5 classifier .The obtained medical statistics were sensitivity as 90.97%,
specificity as 97.86% and accuracy as 97.02% using C4.5 classifier. The obtained medical
statistics were sensitivity as 79.43%, specificity as 81% and accuracy as 92.23% using SVM

classifier.

Limitations/remarks: This work compared the classification results of SVM and C4.5
classifiers and proved that C4.5 was the better classifier. But the sensitivity of this classifier
was very low to classify three types of signals. Sensitivity of the classification can be enhanced

by using efficient feature schemes.

Pooja Bhardwaj et al. [49] successfully classified NSR and 4 types of cardiac disorders by
using support vector machine (SVM) algorithm and obtained results with a total performance
accuracy of 95.21%. The wavelet based temporal features were obtained by using Acq
Knowledge software. This software is used for pre-processing and feature extraction. 18
wavelet based temporal features were extracted from ECGs and fed to SVM classifier. This
method used 3,003 beats from the MIT-BIH Arrhythmia database. In this study, 70% data has
been taken for training purpose and 30% data has been taken for testing purpose and achieved
total average accuracy as 95.21% and average sensitivity as 85.43% for 5 types of cardiac
signals (one normal and four arrhythmic beats).

Limitations/remarks: They might have taken unequal records of ECG signals and classified
the ECG beats of 5 categories. Their sensitivity is very low which can be enhanced further

using different classifiers and more number of features.
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A summary of literature review has been presented in Table 2.1 and Table 2.2. It gives the

summary of features, the classifiers, number of diseases and the classification accuracy

obtained.
Table 2.1 Summary of literature review using time and spectral analysis
Time domain and Spectral domain Analysis
Study by Records and Features Algorithm CElrelEle ATl

Analysis

Pan and Tompkin

Morphological

Pan-Tompkins

QRS detection has

[2] features(slope, amplitude and Algorithm been done with 99.3%
width of the QRS complex) g accuracy
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V. Vijaya et al. Feat T | feat
eatures-2 Temporal features ] : L
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} Algorithm  |SCA
(4] samples and R-R interval)

M. Vijayavanan et
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Distinguished Normal

al.(2008) [19]

Features -5 Spectral features

al. (2014) 12 -Morphological PNN classifier |and Arrhythmia with
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Pan-Tompkins
Mujeeb Rahman K 8 records Algorithm PTA accuracy (99.95%
et al. (2019) Features-4 temporal features |(PTA) ) more than
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[6] Q-T interval and QRS Wavelet based Z\C/;Bu'?agsz %)
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(WBA)
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Usman Rashed et |8 Records, FFT Algorithm NSR and SCA(two

types)
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Table 2.2 Summary of literature review using HOSA and wavelet analysis has been presented

Higher Order Spectral domain Analysis

Records and e Cardiac Classification
SRy 1537 Features ClEREiEr Arrhythmias Performance
Ibrahim NSR, o
Abdullahi |47 records, Foed forward | CBBB.RBBB, Sensitivity-88.4%
Karaye etal. |Temporal and ANN PB and APB SpeC|f|C|ty-96.20A)
(2012) HOSA features (5 types) Accuracy- 94.9%.
[26]
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, ) e o
[21] HgFé ,B\?‘zaatures analysis types) Specificity - 93.55%
Wavelet Analysis
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(17-NSR and 21- 84.21%,
Ayad Mousa | VT) NSR and VT |Using Morphological
(2012) Features-wavelet, BPNN (2-Types of | features-76.32%,
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both wavelet and and Morphological
morphological features -100%
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Jose Antonio

Features-wavelet
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2.6 Concluding remarks

Due to wide variation in the number of cardiac signals and variation in number of features, it
is difficult to draw the meaningful conclusions about the merits of any one approach over
another. Some of studies have used recordings from clinical data collections, some of them
used MIT-BIH database, European ST data base, SCD Holter database and some others have
used AHA database. Further, it has been observed that, experiments were performed on
different databases of different records and different classifiers. Therefore without applying
each of these approaches to the same training and testing data, there appears to be no metric

that can be applied to equate their results.

There is a lack of standardization of cardiac signal features. Feature extraction method
temporally selects ECG features. So, the accuracy of any classifier depends on these selected
features. A small variations in these selected features may cause a misclassification. Heart beat
rate of the individuals is changing due to physiological conditions and the mental condition
such as stress, excitement and other working activities. For ECG classification, no optimal
classification rules exist which can help in the classification process. [53]

It has been found that classification accuracy depends on many parameters such as type of
cardiac arrhythmia, diversity in arrhythmia, type of cardiac disorder, selected arrhythmia
database, selected number of records, selected feature extraction technique and selected neural
network classifier etc., It has been consistently observed that finding efficient feature scheme
and classifier are very important for cardiac arrhythmias classification and has enormous scope

for research work.

From the literature review it is identified that novel feature scheme and improving the
classification accuracy are active research topics in this area which have been taken up in this

proposed research work.
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Chapter 3

Cardiac arrnythmias analysis and classification in time

domain
3.1 Introduction

From the literature review, it has been consistently observed that temporal features have proved
their significance in cardiac signal analysis. Most of the works distinguished normal and cardiac
arrhythmias. In this work, a novel approach is proposed to analyse and classify 7 types of
cardiac signals (4-arrhythmias, 2-cardiac disorders and 1-normal) using Pan Tomkins algorithm

and artificial intelligence algorithms.

This chapter has been organized as follows. Section 3.2 describes briefly the overview of
existing works. Cardiac arrhythmia analysis using temporal features is explained in section 3.3,
different classification algorithms has been explained in section 3.4, cardiac arrhythmias
classification based on proposed temporal features is explained in section 3.5, conclusions
based on classification results have mentioned in section 3.6 and performance comparison has

been done with the existing works is given in section 3.7.

3.2 Overview of existing works

In this section, the work done by some researchers was presented briefly. Pan-Tompkins et al.
[2] peak detection algorithm correctly detected 99.3% of QRS complexes accurately. V. Vijaya
et al. [4] used Pan Tompkins Algorithm to extract two temporal features (number of R-peaks
and R-R interval) to distinguish sudden cardiac arrest from normal sinus rhythm. But,
classification of arrhythmias was not done. M. Vijayavanan et al. [5] used 8 level wavelet
decomposition for extraction of 12 morphological features (P, Q, R, S, T peak points, QRS
complex duration, PR interval, QT interval, ST interval, ST segment, RR interval and PR
segment). Only normal (NSR) and arrhythmia (abnormal) signals were distinguished by using
Probabilistic Neural Network (PNN) classifier with a classification accuracy of 96.5%. Mujeeb
Rahman et al. [6] used Pan-Tompkins Algorithm and Wavelet based algorithm for extraction
of four temporal features (QRS duration, RR interval, heartbeat rate and PR interval). In this
work, it has been proven that Pan-Tompkins algorithm is more accurate than wavelet transform

based algorithm. In this work, classification of arrhythmias has not been addressed.
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Rathnakara et al. [37] used a modified Pan Tompkins algorithm to extract temporal features
such as RR intervals, No. of R peaks and R peak amplitude. This work used Turning point knot
algorithm to remove base line wander noise. The analysis of ECG signal was done based on
heartbeat rate variability. In this work, heartbeat rate below 60bpm was considered as
bradycardia and heartbeat rate above 80bpm is considered as tachycardia. In this work, only
normal (NSR) and arrhythmia signals were distinguished based on heartbeat rate.

3.3 Cardiac arrhythmia analysis using temporal features

In this work, existing Pan Tompkins algorithm has been used for feature extraction. Pan
Tompkins algorithm identifies the QRS complexes based upon digital analysis of slope,
amplitude, and width of the ECG data. The algorithm implements a special digital band pass
filter. It can reduce false detection caused by the various types of interferences present in the
ECG signal. The algorithm automatically adjusts the thresholds and parameters periodically to
adapt the changes in QRS morphology and heart rate.

The processing steps in the Pan Tompkins algorithm as shown in Fig 3.1 are as follows,

1. In the first stage, ECG data of seven types of cardiac signals has been collected from standard
ECG data bases.

2. In the second stage of pre-processing, the noise is eliminated from input ECG signals.

Base line wander (BW) noise (0.5Hz-2Hz) is observed in ECG signals, though it’s filtered
standard base. BW noise is present in the ECG signal during recording due to movement and
respiration of the patients. So, BW removal is an important step in ECG signal processing.
Otherwise important diagnostic information present in the ECG may be corrupted
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Fig 3.1 Pan Tompkins algorithm

So, a 3" order Butterworth low pass filter is used to remove baseline wander noise from ECG
signal by selecting cut off frequency 2Hz. The block diagram of Base line wander removal

from the ECG signal is shown in Fig 3.2.

ECG Sigaal(MIT-BIH 3 order Batter
data base (0.5Hz- worth LPF(fe-2Hz)
100Hz)
Base lime
wander nolse

. -

, ECGsignal after base
- 4 line wander removal

+

Fig 3.2 Base line wander removal
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3. After removal of baseline wander noise from the main ECG signal, the signal is passed
through band pass filter (BPF) for the extraction of QRS complex (5-15Hz). The QRS complex
detection from the ECG signal is shown in Fig 3.3

ECG signal after base Band Pass Filter A QRS
line wander removal (5Hz-15Hz) detection
Fig 3.3 QRS detection

4. The next processing step is differentiation, it is a standard technique for finding the high
slopes that normally distinguish the QRS complexes in ECG waves. ECG signal is
differentiated by using 4th order high pass Butterworth filter with cut-off frequency of 30 HZ.
The derivative procedure suppresses, the low frequency components of P and T waves and
provides a large gain to the high-frequency components arising from the high slopes of the
QRS Complex.

5. Next squaring operation makes the result positive and emphasizes large differences resulting
from QRS complexes. The small differences arising from P and T waves are suppressed. The
high frequency components in the signal related to the QRS complex are further enhanced. This
is a nonlinear transformation that consists of point by point squaring of the signal samples.

6. Next squared waveform passes through a moving window integrator. This integrator sums
the area under the squared waveform over a suitable interval, advances one sample interval, and

integrates the new predefined interval window.

After differentiation and squaring operation, multiple peaks appear within the duration of a
single QRS complex. Smoothing of the output of the preceding operation is done by using
moving-window integration filter. Moving window integration is performed by the following

equation.

) =  feln = (V= 1) +2(n = (N ~2)) 4 -+ 2{n) o
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The choice of the window width N is to be made with the following considerations: too large a
value will result in the outputs due to the QRS and T waves being merged, whereas too small
a value could yield several peaks for a single QRS complex. The choice of the duration of the
sliding window results in a trade-off between false and missed detections. The ability to detect
the presence of disorder of concern and percentage of detection peaks that are actually present.
A window width of N = 50 was found to be suitable for fs = 250 Hz.

7. After moving window integration, R-peak detection is done by using fixed thresholding.
Threshold is set as mean of the data.

8. Later R-R interval is computed from these results. With R-R intervals heartbeat rate has been

calculated using the following expression

60
RR Interval

Heartbeat rate = (3.2)

7 types of ECG signals (four types arrhythmias- SVT, VT, VF and AF, two types of cardiac
disorders-SCA & CI and normal signal-NSR) are analysed in time domain by using Pan
Tomkins Algorithm. Ventricular Arrhythmias lead to serious disorder SCA. If neglected, it
leads to sudden cardiac death. Cl is also a serious disorder if neglected, it leads to heart attack
will arise. Both disorders treatment is different. Similarly, different cardiac arrhythmias need
different treatment. Early diagnosis is also important to save life of heart patients. Therefore,
there is a need to classify these different cardiac signals. Using time domain analysis, the

following four temporal features are extracted and used for classification purpose.

e R-Peak Amplitude
e No.of R-Peaks
e R-R Interval

e Heartbeat rate

The Simulation results of Pan Tompkins algorithm are shown below step wise from Fig 3.4 to
Fig 3.9.
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Fig 3.6 Normal ECG signal (record no 16420) after band pass filter
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38




The simulation results of a few records of Normal ECG signal (16265, 16273 and 16773) after
implementing Pan Tompkins algorithm for 1minute (15000 samples) is shown in fig 3.10. From

these simulation results, computed temporal features of NSR records.
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Fig 3.10 Simulation results of NSR records [16265, 16273 and 16773]
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The simulation results of a few records of SVT (820, 823 and 800) for after implementing Pan
Tompkins algorithm for 1 minute (15000 samples) is shown in Fig 3.11. From these simulation
results, computed temporal features of SVT records.
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Fig 3.11 Simulation results of SVT records [820,823 and 800]
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The simulation results of a few records (cu01, cul5 and cul2) for Ventricular Tachycardia ECG
signal after implementing Pan Tompkins algorithm for 1minute (15000 samples) is shown in

Fig 3.12. From these simulation results, computed temporal features of VT records.
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Fig 3.12 Simulation results of VT records [cu01, cul5 and cul2]
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The simulation results of a few records (602, 609 and 430) for Ventricular Fibrillation ECG

signal after implementing Pan Tompkins algorithm for 1minute (15000 samples) is shown in

Fig 3.13. From these simulation results, computed temporal features of VVF records.
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Fig 3.13 Simulation results of VVF records [602,609 and 430]
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The simulation results of a few records (e0104, e0105 and e01017) for Cardiac Ischemia (ClI)
signal after implementing Pan Tompkins algorithm for 1minute (15000 samples) is shown in Fig

3.14. From these simulation results, computed temporal features of CI records.
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Fig 3.14 Simulation results of Cl records [e0104, e0105 and €0107]
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The simulation results of a few records (42, 43 and 41) for sudden cardiac arrest signal after
implementing Pan Tompkins algorithm for 1minute (15000 samples) is shown in Fig 3.15.
From these simulation results, computed temporal features of SCA records. The simulation
results of a few AF records (04043, 08215 and 08434) is shown in Fig 3.16.
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Fig 3.15 Simulation results of SCA records [42, 43 and 41]
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Fig 3.16 Simulation results of AF records [04043, 08215 and 08434]

Temporal features such as No. of R-peaks, R peak amplitude, R-R interval and heartbeat rate
of 7 types of cardiac signals (NSR, Cardiac Arrhythmias-SVT, VT, VF and AF and cardiac
disorders-SCA and ClI) of each 15 records. Temporal features of total 105 records are shown in
Table 3.1

45




Table 3.1 Temporal features of different cardiac signals

No. of R-

R peak

R-R interval

Heartbeat

peaks/minute | Amplitude (mV) (secs) rate(bpm) Signal?
41 0.195675 0.7827 76.65772327 VF
63 0.127919355 0.511677419 117.2613794 VF
40 0.202846154 0.811384615 73.9476678 VF
53 0.151153846 0.604615385 99.23664122 VF
22 0.368095238 1.472380952 40.75032342 VF
44 0.18227907 0.729116279 82.29140087 VF
55 0.145537037 0.582148148 103.0665479 VF
43 0.186404762 0.745619048 80.47004726 VF
24 0.332913043 1.331652174 45.05681076 VF
57 0.141589286 0.566357143 105.9402194 VF
36 0.223428571 0.893714286 67.13554987 VF
25 0.315625 1.2625 47.52475248 VF
34 0.237060606 0.948242424 63.27495846 VF
25 0.323541667 1.294166667 46.36188023 VF
56 0.141945455 0.567781818 105.6743948 VF
32 0.159901472 0.974580645 61.56494108 VT
73 0.972875472 0.604461538 99.2618987 VT
75 0.031811855 0.417567568 143.6893204 VT
24 0.0005856 1.368347826 43.84850025 VT
76 0.031955662 0.414293333 144.8249228 VT
36 0.143324647 0.8792 61.56494108 VT
46 0.000695974 0.706133333 144.5396146 VT
42 0.000455776 0.773560976 143.6893204 VT
47 0.058796857 0.668782609 89.71525159 VT
47 0.121282677 0.69173913 144.8249228 VT
29 0.246977028 1.106428571 68.24385805 VT
38 0.137871937 0.830918919 84.96978852 VT
23 0.001140161 1.354363636 77.56337495 \A)
38 0.0029195 0.844216216 48.6886523 VT
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23 0.001505313 1.390909091 86.73790069 VT
52 0.854975 0.617960784 54.22853454 SVT
32 1.955584375 1.962580645 72.20921155 SVT
44 0.958168182 0.723348837 71.07184018 SVT
40 1.49194 0.801025641 74.90396927 SVT
32 1.656490625 0.997677419 60.13967926 SVT
43 1.7546 0.728761905 82.33141662 SVT
35 1.625905714 0.933529412 64.27221172 SVT
25 0.6304737 1.295166667 46.32608416 SVT
28 1.298521429 1.151703704 52.0967327 SVT
40 0.21319754 0.797230769 75.26051717 SVT
54 0.142973048 0.587698113 102.0932323 SVT
41 0.27527253 0.7825 76.67731629 SVT
54 1.245340741 0.590188679 101.6624041 SVT
41 1.010692683 0.7675 78.17589577 SVT
50 0.558014608 0.649877551 92.32508479 SVT
23 0.149586735 1.367636364 43.87131082 SCA
29 0.101811814 1.071 56.02240896 SCA
23 0.235015752 1.425636364 42.08646856 SCA
24 0.042966113 1.370782609 43.77061659 SCA
24 0.003038279 1.342086957 44.70649216 SCA
18 0.08510885 1.837411765 32.65462927 SCA
8 0.085488825 4.554857143 13.17275122 SCA
32 0.0917072 1.006580645 59.6077426 SCA
31 0.098433552 1.0532 56.96923661 SCA
26 0.000126904 1.27568 47.03373887 SCA
30 0.00067424 1.06937931 56.1073133 SCA
25 0.063374748 1.328833333 45.15238931 SCA
22 0.001336595 1.467619048 40.8825438 SCA
26 0.00075585 1.26384 47.47436384 SCA
22 0.417294723 1.505142857 39.86332574 SCA
31 1.150783871 0.149586735 60.3378922 NSR
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49 5.529473469 0.101811814 93.0833872 NSR
50 5.507928 0.235015752 92.7327782 NSR
49 1.891016327 0.042966113 92.69988413 NSR
50 1.758144 0.003038279 93.34518669 NSR
40 1.79936 0.372409457 75.99376461 NSR
38 5.969310526 0.08510885 71.42857143 NSR
37 4.3836 0.085488825 70.07526603 NSR
34 1.267570588 0.091707288 63.43713956 NSR
36 0.992038889 0.098433552 66.66666667 NSR
43 3.451974419 0.000711936 81.29032258 NSR
58 0.610459962 0.000126904 74.57479285 NSR
43 2.0547 0.00067424 80.66581306 NSR
57 0.609691228 0.00075585 109.517601 NSR
60 0.112759242 0.198319587 111.7424242 NSR
20 0.001611579 1.611578947 37.23056826 Cl
15 0.002124857 2.124857143 28.23719242 Cl
16 0.002090667 2.090666667 28.69897959 Cl
15 0.002114857 2.114857143 28.37071062 Cl
14 0.002198462 2.198461538 27.29181246 Cl
18 0.001763529 1.763529412 34.02268179 Cl
17 0.00193125 1.93125 31.06796117 Cl
10 0.002975111 2.975111111 20.16731401 Cl
18 0.001869882 1.869882353 32.08758022 Cl
13 0.002682667 2.682666667 22.36580517 Cl
18 0.001818824 1.818823529 32.98835705 Cl
16 0.002013067 2.013066667 29.80527222 Cl
21 0.0015494 1.5494 38.72466761 Cl
21 0.0015456 1.5456 38.81987578 Cl
24 0.0013434 1.343478 44.66019 Cl
28 0.336032521 1.344130086 4463853658 AF
19 0.1203049 0.4812196 124.6832008 AF
20 0.11645225 0.465809 128.8081596 AF
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19 0.028093468 0.112373874 533.9319366 AF
19 0.269214163 1.076856653 55.71772237 AF
16 0.298580794 1.194323175 50.23765866 AF
19 0.243727268 0.974909074 61.54420101 AF
33 0.125365379 0.501461515 119.6502587 AF
22 0.026578409 0.106313636 564.3678652 AF
19 0.005267116 0.021068463 2847.85841 AF
62 0.062670811 0.250683245 239.3458724 AF
18 0.047963394 0.191853578 312.7384993 AF
15 0.279369273 1.117477093 53.69237576 AF
21 0.227674081 0.910696324 65.88365236 AF
30 0.11149009 0.44596036 134.5411059 AF
Table 3.2 Average values of temporal features of cardiac signals

Cardiac | R peak average | Average no. of Average R-R Average heart-

Signal amplitude (mV) | R- peaks interval (secs) | beat rate (bpm)

NSR 2.4726 90 0.09774 82.5060

Cl 0.00198 34.1 1.97554 31.6359

AF 0.15325 48 0.61300 355.843

SVT 1.04481 81.4 0.89245 73.5850

VT 0.12747 86.4 0.86836 96.2485

VF 0.21840 82.4 0.87360 76.9767

SCA 0.09178 48.4 1.52931 44.6250

Average values of temporal features such as R-peak amplitude, number of R-peaks, R-R
intervals and heartbeat rate of 7 types of cardiac signals are shown in Table 3.2. There is a
variation in number of R-Peaks, amplitude of R peaks, R-R intervals and heartbeat rate of

different cardiac signals. These temporal features will determine the functioning of heart [61].
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Fig 3.17 R-peak amplitude variation of different cardiac signals

As shown in Fig 3.17, NSR and SVT signals amplitudes are very high. Severe ventricular
arrhythmias such as VT and VF, the average amplitudes are 0.1 mV to 0.2 mV respectively.
For cardiac disorders such as SCA and ClI, the amplitudes are almost reaching to zero (0.09 mV
and 0.001 mV).

R-R Interval variation
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Fig 3.18 R-R Interval variation of different cardiac signals

R-R interval variation in NSR is very less (0.09s) whereas it is very high (1.5s to 1.9s) in cardiac
disorders (Cl and SCA) and in all ventricular arrhythmias it is 0.8s and in AF, the R-R interval

is 0.6s. The R-R interval variation of different cardiac signals is shown in Fig 3.18
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Fig 3.19 Average number of R-Peaks/minute in different cardiac signals

Number of R-Peaks/minute variation in NSR is very high (90) whereas it is very low (34.13 to
48.4) in cardiac disorders (Cl and SCA) and in all ventricular arrhythmias (VT and VF) it is
86.4 and 82.4 respectively and in AF, it is 48. The number of R-Peaks variation of different

cardiac signals is shown in Fig 3.19

Table 3.3 Standard Deviation (SD) of R-R intervals of cardiac signals

Cardiac Signal SD for R-R intervals (milliseconds)
Cl 429.8072
SCA 863.8298
NSR 105.9631
VF 319.3791
VT 317.8802
SVT 359.1926
AF 447.8123

The standard deviation (o) gives information about the spread of data values from the mean
value. If 6 is small, the data values are close to the mean value. Standard Deviation (SD) of R-
R intervals of cardiac signals is shown in Table 3.3. R-R standard deviation varitation is shown

in Fig 3.20. If 6 is high, the data values are widely spread out from the mean value. R-R interval
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standard deviation of less than 105.9ms for NSR had a relative risk 4 times higher than those
with R-R interval standard deviation of 429.8ms for ClI and relative risk 8.5 times higher than
those with R-R interval standard deviation of 863.8ms for SCA. R-R interval standard
deviation of Ventricular arrhythmias (VT, SVT and VF) is approximately 319ms to 359ms
having a relative risk of 3.5 times higher compared to NSR. R-R interval standard deviation of
atrial fibrillation (AF) is approximately 447ms having a relative risk of 4.5 times higher

compared to NSR.
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Fig 3.20 Standard Deviation of R-R intervals of cardiac signals

Heartbeat rates of various signals are calculated from R-R intervals and the variation of
heartbeat rate of cardiac signals is shown in Fig 3.21.The heartbeat rate of 4 signals (NSR, ClI,

AF and SCA) out of 7 signals are found to be accurate with reference to existing works [56].
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Fig 3.21 Heartbeat rate variation of cardiac signals

Atrial Fibrillation Heartbeat Rate: 355 bpm, Irregular R-R interval; SCA Heartbeat Rate: 20-
50bpm, Irregular R-R interval; Cl Heartbeat Rate: 20-40bpm, NSR Heartbeat Rate; 60-
100bpm, Regular R-R interval; SVT Heartbeat Rate: Above 100bpm; VT Heartbeat Rate:
170bpm (wide QRS complex (120ms)); VF Heartbeat Rate: above 400bpm (narrow QRS

complex (80ms)).
3.4 Introduction to Artificial Intelligence Algorithms

3.4.1 Introduction

Artificial neural networks are computational models that work similarly to the functioning of a
human nervous system. Neural Networks are organized in layers made up of interconnected
nodes which contain an activation function that computes the output of the network. Both
Neural networks and Random Forest are different techniques that learn differently but can be
used in similar domains. Neural Networks are exclusive to Deep Learning while Random Forest

is a technique of Machine Learning.

Machine learning based classifier (RF) and Artificial neural networks (MLP and RBF) are
implemented based on the mathematical operations and a set of features is required as input to
determine the output. The literature survey shows that selection of a suitable classifier plays an

important role in any classification problem [59], [66].
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3.4.2 Random Forest (RF) Classifier

The random forest is a classification algorithm consisting of many decisions trees. Decision
trees are a popular method for various machine learning tasks. Both the Random Forest and
Neural Networks are different techniques that learn differently but can be used in similar
domains. Random forests is an ensemble learning method for classification, regression and
other tasks, in which a number of decision tress are created at the training time and a class is
given as output which is the mode of the classes[20]. In order to create number of decision
trees, data and variables are selected randomly from the available set of data and variables. To
build a tree during training time a finite set of thresholds is used. While constructing a tree
separation of classes is being done and probability of data point to be of any class is different
for each node. The newly arrived data point go down in tree and it ends at leaf and the class
with highest probability for that node shows the actual class of data point in that tree. Single
random tree is not a good classifier but if we combine a number of random trees then it becomes

a very good classifier.

Let a dataset of N data points be X = x1, X2, X3 ..., Xn With responses C= c, C, C3 ..., Cn. Every

input has some features. The algorithm of random forest classifier is shown in Fig 3.22

Fig 3.22 Random Forest Classifier [110]

In order to create more randomness among these data points every time some data points are
selected and from these data inputs some features are selected randomly in order to make a
decision tree. If one or few features are very strong predictors for the target output, these

features will be selected in many of the decision trees. Typically, for a classification problem

with f features, \/f features are used in each split.
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e Sample, with replacement, n training examples from X, C; call these Xt, Ct.

e Train a decision or regression tree ft on Xt, Ct.

In the forest with T trees where t € {1, 2, 3, . ., T}. All the decision trees are trained
independently. During testing case, each test point V is simultaneously pushed through all the
trees starting at root node until it reaches to corresponding leaves. For different trees, the data
point will follow different path when it goes to leaf. The class probabilities for that point V is
different in each tree. For the output prediction, bagging method is used which leads to better
model performance because it decreases the variance of the model, without increasing the bias.
It can be made by averaging the predictions from all individual decision trees given by the

following equation 3.4.

p(clv) = =31, p. (clv) (34)

Where c represents the class of V.
3.4.3 Multilayer perceptron (MLP) Classifier

Multilayer perceptron is a feed-forward neural network model that takes feature vectors from
the given dataset as input and map them onto outputs or appropriate classes[14][20]. In MLP
there are several layers such as input layer, an output layer and one or more hidden layers. The
weighted sum of the inputs produces the activation signal that is passed to the activation
function to obtain one output from the neuron. The commonly used activation functions are
linear, step, sigmoid, tanh and rectified linear unit (ReLu) functions. The MLP neural network

structure is shown below in Fig 3.23.

@— yl (Actual output)

dj (Desired output)

Input layer Hidden layer Output layer

hl_ hn{hidden neurons) o—{output neuron)

Fig 3.23 MLP general neural network structure [66]
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All other nodes expect the input nodes have an activation function (E.g., sigmoid function).
The input layer consists of the same number of nodes as the size of the input feature vector.
The output layer has the same number of nodes that the input data should be classified. Each
node in one layer is connected to all other nodes in the next layer through different weights
[20]. Weights are initialized randomly at the beginning of training phase. MLP performs the
gradient descent search to reduce the mean square error between the actual output and the
desired output through the adjustment of the weights. It is highly accurate for most
classification problems because of the property of the generalized data rule. In MLP training,
the weights are adapted using a recursive algorithm starting at the output nodes and working
back to the first hidden layer.

The entire process of classification consists of two phases.

e MLP is used to learn the behavior of the input data using back-propagation. This step
is called the training phase.

e Trained MLP is used to test using unknown input data. The back propagation algorithm
compares the result that is obtained in this step with the result that was expected. This
kind of classification is called supervised classification.

The MLP computes the error signal using the obtained output and desired output. The computed
signal error is then fed back to the neural network and used to adjust the weights such that with
each iteration the error decreases and the neural model gets closer and closer to produce the
desired output. During the training phase, the perceptron first processes the given data through
feed forward propagation. The error in output node j in the nth data point is represented in

equation 3.5.

E;(n) = d;(n) - y;(n) (35)

Where d; is the desired output of node j and y; is the actual output produced by the perceptron.

Using gradient descent weights will be adjusted to minimize error in the entire output, given
by E (n) =1,

E(n) = % Yje? (n) (3.6)
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The change in each weight will be given by,

dEwW)T

ow ly,

Aw; = — (3.7)
Where n is the learning rate which should be chosen carefully so that the cost function
converges to a global minimum. If the learning rate is too large, then the algorithm may never
converge and if it is very low, the algorithm may take a long time to converge. Generally
learning rate is kept between 0 and 1[20].

3.4.4 Radial Basis Function (RBF) Classifier

RBF neural networks are also a type of feed-forward network trained using a supervised
training algorithm. The main advantage of RBF network is that it has only one hidden layer
and it uses radial basis function as the activation function. These functions are very powerful
in approximation. The training of the RBF model is terminated once the calculated error
reached the desired values or number of training iterations. An RBF network with a specific
number of nodes in its hidden layer is formed. It is typically observed that the RBF network
required less time to reach the end of training compared to MLP. The fig 3.24 shows the RBF

neural network structure.

Input Hidden (RBF) Output
layer layer layer

Fig 3.24 RBF general neural network structure [66]

The procedure in training the RBF is faster than that we use in MLP. This can be given by

internal representation formed by the hidden units, and leads to a two stage training procedure.
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e In first stage, the parameters governing the basis function are determined using
relatively fast, unsupervised learning methods.

e The second stage of training then involves the determination of the final layer
weights, which requires the solution of a linear problem, and which is therefore

also faster.

If it is considered the Gaussian function as basis function. The Gaussian radial basis function

will be considered as follows

2
Gaussian function: Hjy = exp (@) (3.8)

It is remarked that MLP NNs perform global matching to the input—output data, whereas in
RBF NNs, this is done only locally, of course with better accuracy. The above two neural
network algorithms, MLP and RBF networks, have different structures and characteristics, so
they have different performances in classification tasks depending on the available training data
sets. Experiments using the two real world data sets with the above two neural network
algorithms show that multilayer perceptrons have relatively better performance for larger
number of data sets and radial basis function networks have relatively better performance for

smaller number of data sets. [52]
3.4.5 Choice of a classifier

The choice of a classifier is a crucial step in any classification problem. The classifier’s
evaluation is mostly based on prediction accuracy (the percentage of correct prediction divided
by the total number of predictions), sensitivity, specificity and precision. Classifier’s accuracy
is examined by splitting the data set in to two-thirds for training and one third for testing.
Tenfold cross-validation is used to improve classification accuracy. To decrease error rate, the
following points are to be considered,

e Relevant features

e Training and testing of data

e 10 fold cross validation

e Appropriate classifier

A common method for comparing supervised algorithms is to perform statistical comparisons

of the accuracies of trained classifiers on specific features. Training of ANN is very time-
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consuming and computationally intensive. In addition to the learning process itself, a large
amount of preparatory work is also necessary to bring the inputs into the required form. The
inputs must be in number format and normalized. RF classifier can be trained with a relative
small amount of data. MLP and RBF Neural Networks need more data to achieve the same
level of accuracy. Random Forests require much less input preparation. They can handle binary
features, categorical features as well as numerical features and there is no need for feature
normalization. Random Forests are quick to train and to optimize according to their hyper
parameters. Thus, the computational cost and time of training a Random Forest are

comparatively low.

3.4.6 Medical statistics

RF, MLP and RBF classifiers classification performance can be evaluated using medical
statistics such as sensitivity, specificity, classification accuracy, mean squared error (MSE) and

receiver operating characteristics (ROC).

Sensitivity (S) measures how often a test correctly generates a positive result for people who
have the condition that are being tested. It is also known as the true positive rate (TPR). It is
the percentage of persons with the disease who are identified correctly by the medical test. ‘S’

can be calculated by using the equation 3.9,

TP
S =
TP+FN

3.9)

Specificity (Sp) measures a test’s ability to correctly generate a negative result for people who
don’t have the condition that are being tested. It is also known as the true negative rate (TNR).
It is the percentage of persons without the disease who are correctly excluded by the test. ‘Sp’

can be calculated by using the equation 3.10,

=_ (3.10)

Sp = TN+FP

Precision (P) is the proportion of the predicted positive cases that are correct. It is also known
as the Positive Predictivity (Pp). It is given in the following equation 3.11,

TP
Pp =
p TP+FP

(3.11)
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Accuracy (Acc) is the ability to differentiate all cases correctly. To estimate the accuracy of
the test, we should calculate the proportion of true positive and true negative in all evaluated

cases. It is given in the following equation 3.12,

TP+TN
Acc = ——— 12
CC = TPTTN+FP+EN (3.12)

Where; TP is True positive, FP is False positive, TN is True negative and FN is False negative.

3.5 Results and Discussion

3.5.1 MLP classifier results

VE|

NSR

Controls

Epoch 500 LearningRate= 03
Num Of Epochs 500

AccePt | Errar per Epoch = 0.0003521

Momentum = [0 2

Fig 3.25 ANN Structure for classification of NSR and VF using temporal features

The above Fig 3.25 shows neural network architecture of MLP results obtained for 2 types of
signals (NSR and VF). It has one input layer, one output layer and one hidden layer. Input layer
has four neurons represented as Number of R-Peaks, Amplitude of R-Peaks, R-R interval and
Heartbeat rate are used in this work. The output layer has two neurons represented as NSR and
VF. The error per epoch obtained as 0.0003521 and Learning rate obtained as 0.3.
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Time taken to build mocdel: 0.11 seconds

= Stratified cross-validation ===

== Summary =—=

Correctly Classified Instances 30 100 £

Incorrectly Classified Instances o} Q £

Kappa statistic 1

Yean absolute error 0.0306

Root mean squared error 0.0887

Relative absolute error €.0465 3

Root relative sguared error 17.522 %

Total Number of Instances 30

=== Detailed Accuracy By Class =—=
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area
1.000 0.000 1.000 1.000 1.000 1.000 1.000
1.000 0.000 1.000 1.000 1.000 1.000 1.000

Weighted Avg. 1.000 0.000 1.000 1.000 1.000 1.000 1.000

=== Confusion Matrix =——

a b <—— classified as
15 o | a = VF
0 15 | b = NSR

PRC Area Class

1.000 VE
1.000 NSR
1.000

Fig 3.26 Simulation Results for Classification of NSR and VF using

MLP

The above Fig 3.26 shows the simulation results for classification of NSR and Ventricular

fibrillation using MLP classifier. Time to build the model is 0.11 Seconds. Correctly classified

instances are 30 out of 30 instances. RMSE value is 0.0887. The classification accuracy for

classifying NSR and VF is obtained as 100%.

Time taken to build model: 0.44 seconds

=== Stratified cross-—validation ===

=== Summary ===

Correctly Classified Instances 29 96.6667 $
Incorrectly Classified Instances aZ 33333 %
Kappa statistic 0.9333

Mean absoclute error 0.087

Root mean sguared error 0.1754

Relative absolute error 17.2087 %

Root relative sguared error 34.659 s

Total Number of Instances 30

Ignored Class Unknown Instances 1

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area
1 0.087 0.938 1 0o.9&8 1
0.933 o & 0.933 0.966 0.3983
Weighted Avg. 0.967 0.033 0.969 0.967 0.987 0.992

=== Confusion Matrix ===

a b <—— classified as
1s o 1 a = SCA
1 14 | b = NSR

Class
SCa
NSR

Fig 3.27 Simulation Results for Classification of NSR and SCA using MLP

The above Fig 3.27 shows the simulation results for classification of NSR and SCA using MLP

classifier. Time to build the model is 0.44 Seconds. Correctly classified instances are 29 out of
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30 instances. RMSE value is 0.1754. The classification accuracy for classifying NSR and SCA
Is obtained as 96.67%.

| Time taken to build model: 0.13 seconds

| === Stratified cross-validation ===

=== Summary ===

| Correctly Classified Instances 41 91.1111 %
Incorrectly Classified Instances 4 5.8889 %
| Kappa statistic 0.8667

:Mean absolute error 0.1061
fRoot mean sSguared error 0.2421
| Relative absolute error 23.7623 ©
| Root relative sgquared error 51.0843 s
| Total Number of Instances 45

Ignored Class Unknown Instances 15

| === Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.800 0.033 0.923 0.800 0.857 0.797 0.818 0.703 SCA
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 NSR
0.933 0.100 0.324 0.933 0.875 0.810 0.945 0.734 CI

| Weighted Avg. 0.911 0.044 0.916 0.911 0.911 0.869 0.921 0.812

| === Confusion Matrix ===

a: b ¢ <-- classified as
12 0 3 | a SCA
015 0 | b NSR

1 014 | c

CI

Fig 3.28 Simulation Results for Classification of NSR, SCA and CI using MLP

The above Fig 3.28 shows the simulation results for classification of NSR, SCA and CI using
MLP classifier. Time to build the model is 0.13 Seconds. Correctly classified instances are 41
out of 45 instances. RMSE value is 0.2421. The classification accuracy for classifying NSR,
SCA and Cl is obtained as 91.11%.
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Fig 3.29 ANN Structure for classification of 7 types using temporal features

The above Fig 3.29 shows neural network architecture of MLP results obtained for 7 types of
signals (NSR, SVT, VT, VF, AF, Cl and SCA). It has one input layer, one output layer and one

hidden layer. Input layer has four temporal features(Number of R-Peaks, Amplitude of R-

Peaks, R-R interval and Heartbeat rate ) used in this work. The output layer has 7 neurons
represented as NSR, VT, VF, SVT, AF, Cl and SCA. The error per epoch obtained as

0.0489755 and Learning rate obtained as 0.3.

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absoclute error

Root mean sguared error
Relative absclute error

Root relative sguared error
Total Number of Instances

=== Detailed Accuracy By Class ===

TP Rate FP Rate
0.533 0.111
0.200 0.067
0.800 0.011
0.733 0.111
0.933 0.000
0.8867 0.044
0.867 0.000
Weighted Avg. 0.705 0.049

Precision
0.
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.524
.000
.765
.000
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Fig 3.30 Simulation Results for Classification of 7 types of signals using MLP
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The above Fig 3.30 shows the simulation results for classification of 7 types of signals using
MLP classifier. Time to build the model is 0.26 Seconds. Correctly classified instances are 74
out of 105 instances. RMSE value is 0.2423. The classification accuracy for classifying 7

types is obtained as 70.47%.

3.5.2 RBF classifier results

Time taken to build model: 0.02 seconds

=== Stratified cross—validation ===

=== Summary ===

Correctly Classified Instances 30 100 s
Incorrectly Classified Instances [a] o s
Kappa statistic 1

Mean absolute error 0.0158

Root mean sSguared error 0.0s8&8

Relative absolute error 3.1331 s

Root relative sguared error 17.151%9 s

Total Number of Instances 30

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
1 o 2 § E 1 1 VE
1 o 1 1 1 a2 NSR
Weighted Avg. 1 fa] 1 1 1 1

=== Confusion Matrix ===

a j=3 <—— classified as
1S5 o | a = VFE
C-IS5=1 b = NSR

Fig 3.31 Simulation Results for Classification of NSR and VF using RBF

The above Fig 3.31 shows the simulation results for classification of NSR and VF using RBF
classifier. Time to build the model is 0.02 Seconds. Correctly classified instances are 30 out of
30 instances. RMSE value is 0.0868. The classification accuracy for classifying NSR and VF
is obtained as 100%.

Time taken to build model: 0.03 seconds
=== Stratified cross—validation ==
=== Summary =—=—=

Correctly Classified Instances 29 S6€6.6667 =

Incorrectly Classified Instances 1 3-3333-'%

Kappa statistic 0.9333

Mean absclute error 0.0333

Root mean sguared error o.1826

Relative absoclute error €.5909 =

Root relative sguared error 3€.02813 =

Total Number of Instances 30

Ignored Class Unknown Instances 1

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F—Measure ROC Area CTlass

0.933 o 1 0.933 0.9&6¢6 0o.9&63 SCa
1 0.0&87 o.932 1 0.9&63 o.9sss NSR

Weighted Avg. 0.967 0.033 0o.9€9 0.967 0.9&7 0.975

=== Confusion Matrix =—=

a p=3 <—— classified as
14 XS | a = SCA
o 1S5 | > = NSR

Fig 3.32 Simulation Results for Classification of NSR and SCA using RBF
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The above Fig 3.32 shows the simulation results for classification of NSR and SCA using RBF

classifier. Time to build the model is 0.03 Seconds. Correctly classified instances are 29 out of

30 instances. RMSE value is 0.1826. The classification accuracy for classifying NSR and SCA

is obtained as 96.67%.

Time taken to build model: 0.05 seconds
=== Stratified cross—validation ===
=—= Summary =—=
Correctly Classified Instances 3s
Incorrectly Classified Instances o
Kappa statistic 0O.76&687
Mean absolute error 0.1077
Root mean sguared error 0.2&32
Relative absolute error 24.1075
Root relative sguared rror 55.5331
Total Number of Instances 45
Ignored Class Unknown Instances
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision
0.733 o.1 0.73886
1 o E
o.3 0.133 0.75
Weighted Avg. 0.3544 0.078 0.3845
=== Confusion Matrix ===
a b c <—— classified as
1 o 4 | a = SCA
o 15 o 1 b = NSR
3 o 12 1 c = CI

3

s

1s
Recall

0.733

iE

o.8
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0.759
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Fig 3.33 Simulation Results for Classification of NSR, SCA and CI using RBF

The above Fig 3.33 shows the simulation results for classification of NSR, SCA and CI using

RBF classifier. Time to build the model is 0.05 Seconds. Correctly classified instances are 38

out of 45 instances. RMSE value is 0.2632. The classification accuracy for classifying NSR,

SCA and Cl is obtained as 84.4%.
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Time taken te build model: 7.07 sec

== Stratified cross-validation ===

Summary ===

Correctly Classified Instances
Inceorrectly Classified Instances
Kappa statistic

Mean absolute error

Root mean sguared error
Relative absolute error

Root relative sgquared error
Total Number of Instances

=== Detailed Accuracy By Class ===

TP Rate FP Rate
0.667 0.089
0.4 0.044
0.8 0.078
0.667 0.078
0.867 a]
0.8 0.022
0.733 0.033
Weighted Avg. 0.705 0.049
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Fig 3.34 Simulation Results for Classification of 7 types of signals using RBF

The above Fig 3.34 shows the simulation results for classification of 7 types using RBF
classifier. Time to build the model is 7.07 Seconds. Correctly classified instances are 74 out of

105 instances. RMSE value is 0.2825. The classification accuracy for classifying NSR and VF

is obtained as 70.47%.

3.5.3 RF classifier results

The above Fig 3.35 shows the simulation results for classification of NSR and VF using RF
classifier. Time to build the model is 0.06 Seconds. Correctly classified instances are 29 out of

30 instances. RMSE value is 0.1389. The classification accuracy for classifying NSR and VF

is obtained as 96.67%.
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Time taken to build model: 0.06 seconds

=== Stratified cross—-validation ===

=== Summary ===

Correctly Classified Instances 29 96.6667 =

Incorrectly Classified Instances 1 3.3333 %

Kappa statistic 0.9333

Mean absolute error 0.0487

Root mean sguared error 0.1389

Relative absolute error 9.2273 %

Root relative sguared error 27.455 3

Total Number of Instances 30

=== Detailed Accuracy By Class =—=

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 0.067 0.938 1 0.9&38 1 VE
0.933 o 1 0.933 0.966 & NSR

wWeighted Avg. 0.967 0.033 0.989 0.9867 0.9867 1

=== Confusiocon Matrix ===

a b <—— classified as
15 © | a = VE
1 14 | b = NSR

Fig 3.35 Simulation results for classification of VF and NSR using RF Classifier

Time taken to build model: 0.0S5S seconds

=== Stratified cross—validation =—=
=== Summary =—=

Correctly Classified Instances 2
Incorrectly Classified Instances
Kappa statistic

S3.3333 =
€6.6667 S

oooN®
[(]
4]
L]
B

Mean absolute error 2295
Root mean sguared error 2743
Relative absclute error 45.3772 %
Root relative sguared error 54.2126 S
Total Number of Instances 30

Ignored Class Unknown Instances 1

=== Detailed Accuracy By Class ===

TP Ratse FP Rate Precision Recall F—Measurs ROC Aresea Class
1 0o.133 o.ss82 1 o.93s O.94as6 sSCh
0.8€67 (o] 1 0o.367 o.929 0o.93s8 NSR
Weighted Avg-. 0.933 0o.0&7 o.941 0.933 o.933 o.942

=== Confusion Matrix =—=

a i< <—— classified as
is o 1 a = SCA
2 13 1 P = NSR

Fig 3.36 Simulation results for classification of NSR and SCA using RF Classifier

The Fig 3.36 shows the simulation results for classification of NSR and SCA using RF
classifier. Time to build the model is 0.05 Seconds. Correctly classified instances are 28 out of
30 instances. RMSE value is 0.2743. The classification accuracy for classifying NSR and SCA
IS obtained as 93.33%.
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=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 42 93.3333 %
Incorrectly Classified Instances 3 €.6667 §
Kappa statistic 0.9

Mean absolute error 0.0943

Rocot mean sguared error 0.2284

Relative absolute error 21.2249 %

Root relative sguared error 48.1841 %

Total Number of Instances 45

Ignored Class Unknown Instances 15

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.933 0.0867 0.875 0.933 0.903 0.941 SCA

0.933 0 i} 0.933 0.966 0.97¢6 NSR

0.933 0.033 0.933 0.933 0.933 0.945 CI
Weighted Avg. 0.933 0.033 0.936 0.933 0.934 0.954

=== Confusion Matrix ===

a b c <-- classified as

14 0 1| a=SCa
114 0] bk =NSR
1 014 | c=CI

Fig 3.37 Simulation results for classification of NSR, SCA and ClI using RF Classifier

The above Fig 3.37 shows the simulation results for classification of NSR, SCA and CI using
RF classifier. Time to build this model is 0.01 Seconds. Correctly classified instances are 42
out of 45 instances. RMSE value is 0.2284. The classification accuracy for classifying NSR,
SCA and Cl is obtained as 86.67%.
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The following Fig 3.38 shows Classification results of 7 types of cardiac signals using RF
classifier. It’s built by using random forest of 10 trees, each constructed while considering 3
random features. Out of bag error is 0.2952 and time taken to build the model is 0.02sec. RMSE

value is 0.2303. The classification accuracy for 7 types of cardiac signals is obtained as 78.09%.

Time taken to build model: 0.02 seconds

=== Stratified cross-validation ===

Summary ===
Correctly Classified Instances 82 78.0952 %
Incorrectly Classified Instances 23 21.9048 s
Kappa statistic 0.7444
Mean absclute error 0.0883
Root mean squared error 0.2303
Relative absclute error 36.3762 %
Root relative sguared error 65.6817 %
Total Number of Instances 105

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.8 0.1 0.571 0.8 0.667 0.909 VE
0.533 0.033 0.727 0.533 0.815 0.828 VT
0.8 0.022 0.857 0.8 0.828 0.91 SVT
0.667 0.044 0.714 0.667 0.69 0.916 SCa
0.933 Q E 0.933 0.96¢6 0.999 NSR
0.933 0.033 0.824 0.933 0.87S 0.9¢61 CI
0.8 0.022 0.857 0.8 0.828 0.9186 AF

Weighted Avg. 0.781 0.037 0.793 0.781 0.781 0.92

=== Confusion Matrix ===

a b c d e £ g <-- classified as
¥2 20: 2 T 0 0 X | a = VF

4 8 1 2 0 0 01| b=VT

3 012 0 0 0 0| c = SVT

T -k #0020 O 38 @ | d = SCA

0 0 0 014 0 1| e =NSR

0O 0 0 1 014 0 | £f=CI

I 220 00 0 28 0 X2 | g = AF

Fig 3.38 Simulation results for classification of 7 types of cardiac signals using RF Classifier
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The following Table 3.4, shows classification results of different cardiac signals in time
domain. It has been observed that classification accuracy of NSR and VF is 100%. NSR and
SCA is 96.67%; NSR, SCA and Cl is 91.11% and NSR, VT, VF, SVT, AF, Cl and SCA is
70.47% using MLP classifier. As, less number of features (4 temporal) are used machine
learning algorithm, RF has produced better accuracy for classification of three and seven types
as 93.33% and 78.09% respectively.

Table 3.4 Classification of cardiac arrhythmias and disorders in time domain

Features used Cardiac Signals Classifier | Accuracy
MLP 100%
No. of R peaks, R
peak amplitude, R-R NSR and Ventricular RBE 100%
interval & Heartbeat Arrhythmia(VF)
RF 96.67%
rate
MLP 96.67%
(4 temporal features)
NSR and SCA (2 types) RBF 96.67%
RF 93.33%
MLP 91.11%
NSR, SCA and ClI
RBF 84.44%
3 types
(3 types) RF 93.33%
MLP 70.47%
NSR,SVT VT,VFAFCI RBF 70.05%
and SCA (7 types)
RF 78.09%
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3.6 Performance comparison of cardiac arrhythmias analysis and

Classification

Summary of performance analysis and classification of cardiac signals is shown in Table 3.5

Table 3.5 Summary of performance analysis of cardiac signals

Cardiac Arrhythmia

Study by Records and Features Algorithm Analysis
Pan and Morphological features(slope, Real time QRS | QRS detection has been
. amplitude and width of the QRS | detection done with 99.3%
Tompkin[2] .
complex) algorithm accuracy
M. 300 Records Distinguished Normal
Vijayavanan | 12 -Morphological PNN classifier | and Arrhythmia with
etal. [5] features accuracy of 96.5%
Temporal Features (RR intervals, | Modified Pan- | . .. .
i{ta;?ng%ra No. of R peaks and R peak Tompkins elil)nlztlggrl#s{]he:“l;lormal
' amplitude) Algorithm y
. Features-2 Temporal features (No. i . o
V. Vijaya et of R-peaks/1000 samples and R-R Pan T_ompklns Distinguished NSR and
al.[4] . Algorithm SCA
interval)
Pan-Tompkins
Muieeh 8 records é}lgg\r)lthm PTA accuracy
Rlﬁ K Features-4 temporal features ( R-R and (99.95%) more than
ahman interval, P-R interval, Q-T interval WBA (97.75%)
ctal. [6] and QRS complex duration) Wavelet based accurac
P Algorithm y
(WBA)
Distinguished and
30 Records (NSR-15 and VF-15), | Pan-Tompkins | classified Normal and
4 temporal features Algorithm Arrhythmia with 100%
accuracy.
Proposed

105 records, Each cardiac signal
15 records,
4-temporal features

Pan-Tompkins
Algorithm,
RF classifier

Classified 7 types of
cardiac signals with
classification accuracy
of 78.09%
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3.7 Conclusion

Cardiac arrhythmias analysis has been done using PTA, temporal features have been extracted
and analysed 7 types of cardiac signals. For two types of cardiac signals (Normal and
Ventricular Arrhythmia) obtained classification accuracy as 100% using MLP classifier.

V. Vijaya et al. [4] analysed and compared only two types of cardiac signals - normal and SCA
based on the two temporal features (No. of R- peaks and R-R interval) on 10sec data of 1000
samples. Whereas, in proposed work classified NSR and SCA using four temporal features -
No. of R-Peaks, R-R Interval, R-Peak Amplitude and Heartbeat rate on 1minute data for 15000
samples and obtained 96.6% accuracy using MLP classifier, Later, extended the work to
classify three types of ECG signals (NSR, SCA and CI) and obtained classification accuracy
as 91.11% using MLP and also evaluated the results with other classifiers as shown in Table
3.4, Fig 3.28, Fig 3.33 and Fig 3.37. The reason to classify is treatment for SCA is different
from CI. The temporal features extracted was on 1min data of 15000 samples. The proposed
work also classified 7 types of cardiac signals (1- normal, 4- arrhythmias and 2- cardiac
disorders) and obtained an accuracy of 78.09% using Random Forest classifier and also
evaluated the results with other classifiers (MLP and RBF) as shown in Table 3.4 The
performance of RBF networks are good when the size of training data set is relatively small,
but the performance of MLPs are good when the size of training data set size is relatively large
[52].

Whereas Random Forest classifier performance is not depending on data size and also less
computationally expensive. Use of Pan-Tompkins algorithm to extract temporal features may
not be sufficient to describe complex changes that take place in ECG signal due to heartbeat
rate variation. These dynamics are to be explored to improve classification accuracy. So,
spectral analysis is preferred to get more information about different cardiac signals to improve

classification accuracy.
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Chapter 4

Cardiac Arrhythmias Analysis and Classification in

Spectral Domain

In the previous chapter, it has been observed that the proposed temporal features improved the
discriminating capability of the cardiac arrhythmias and the overall classification accuracy of
seven types of cardiac signals. In this chapter, hybridization of temporal and spectral features

have been proposed and compared with the existing works.
4.1 Introduction

In this chapter, spectral analysis and classification of cardiac signals have been described.
Significant work has been done in time domain analysis; however, the spectral analysis gives
frequency information. In time domain, detection of a condition would involve monitoring the
ECG for over 24 hours which is not at all feasible. Therefore, in this work spectral features are
extracted and analysed. This concept provided the motivation to perform this work in frequency
domain to help enable physicians in future to identify diseases. Time-domain analysis
represents how a signal varies with time, while spectral analysis shows how the signal's energy
is distributed over the range of frequency components. To extract ECG spectral features,

Fourier transform analysis is used to convert a signal from time domain to frequency domain.

The spectral parameters give a unique representation of signal that helps to understand the
activity of the heart [36]. FFT algorithm has been proposed to extract spectral features (Mean,
Median, Standard Deviation and Energy in Regions R1 to R5) to distinguish seven types of
cardiac signals. In this research work, total number of 105 data records (7 types of cardiac
signals, 15 records of each type, one minute duration and sampling frequency of 250 Hz) are
considered. The spectral features (Mean, Median, Standard Deviation and Energy in only
Region R3) along with temporal features (No. of R peaks, R peak amplitude, R-R interval and
Heart beat rate) are fed to three types of supervised classifiers and medical statistics are

computed. Further, performance comparison has been done with the existing works [19]
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4.2 Overview of existing works

In this section, the work done by some researchers has been presented briefly.

Glenn A. Myers et al. [18] describes a method of power spectrum analysis of HRV applied to
24 hours ambulatory ECGs. In this method, two groups of patients with known heart disease:
one with and one without a history of SCD have been analysed. The power spectral method
provides excellent separation between the two groups of cardiac patients. The separation
appears to be superior to that afforded by other indexes of heart rate variability.

Usman Rashed et al. [19] used spectral analysis to identify NSR and SCA. Further he
mentioned time-domain analysis may not be sufficient when the signal changes over time and
added spectral analysis gives how the ECG signal's energy distributed over a wide range of

frequencies.

K. Minami et al. [15] developed a method to discriminate life-threatening ventricular
arrhythmias by observing the QRS complex of the electrocardiogram (ECG) in each heartbeat.
Changes in QRS complexes due to rhythm origination and conduction path were observed with
the Fourier transform and classified three types of rhythms using neural networks. The method

achieved high sensitivity as 98%.

Fast Fourier Transform on the ECG has been providing the basis with which a signal suggesting
predisposition of the patient to suffer a cardiac arrest can be differentiated from a normal signal.
In this way, it is proposed that instead of waiting for over 24 hours, few minutes of any cardiac
patient ECG data is enough to detect possibility of sudden cardiac arrest.

4.3 Methodology for Spectral Domain Analysis

The main aim of spectral analysis on ECG is to diagnose the type of cardiac arrhythmias and

disorders to enable doctors for proper treatment.

Fast Fourier Transform (FFT) algorithm shown in Fig 4.1 has been used to extract ECG signal

information.

One ECG data record is taken for a duration of 1 minute using sampling frequency of 250Hz
(250 samples /sec, no. of samples are 15000 in single data record). 15 data records are
considered for each category (i.e., NSR, VT, SVT, VF, AF, CI, SCA and ClI) resulting in total
of 105 records. The processing steps of spectral analysis of ECG are shown below in Fig 4.1.
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ECG Data

Preprocessing(DC noise removal)

Fast Fourier Transform

Frequency Segmentation

Compute Spectral Features

Fig 4.1 Spectral Analysis of ECG

For pre-processing, mean is removed from ECG data, so that DC noise can be removed.
Frequency spectrum appeared up to 32 Hz. So, there is no effect on ECG due to power line
interference 50Hz/60Hz.

Fourier transform decomposes a function into the sum of different frequency components. The

inverse fourier transform converts the signal from frequency domain to time domain.

Fourier Transform decomposes the signal to complex exponential functions of different

frequencies. This Transformation can be given by below equations,

The Fourier transform of time domain signal x (t) is given as

X(F) = [°_x(t)e It (4.1)
The Inverse Fourier transform of X (f) is given as

x(©) = [ X(He?™tdf (4.2)

Discrete Fourier Transform (DFT), is a special kind of discrete transform that converts the time
domain signal into frequency domain. The input to the DFT is a finite sequence of real or
complex numbers making the DFT ideal for processing information stored in computers. In
particular, the DFT is widely employed in signal processing and related fields to analyse the

frequencies contained in a sampled signal. A DFT decomposes a sequence of values into
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components of different frequencies. This operation is useful in many fields but computing it
directly from the definition is often too slow to be practical. Fast Fourier Transform, (FFT) is

a way to compute the same result more quickly [67].

A sequence of N complex numbers Xo, X~-1 can be transformed into a sequence of N complex
numbers by the DFT according to the following equation (3.5).The DFT of x,, is given by X,

as

2mikn

Xe=YN_xpe N wherek =0,1,2........,N —1 (4.3)

The difference in speed can be substantial, especially for long data sets where N may be in the
thousands or millions in practice, the computation time can be reduced by several orders of
magnitude in such cases, and the improvement is roughly proportional to N /log (N). This huge
improvement made many DFT-based algorithms practical. FFT technique (RADIX 2 FFT) is
applied to distinguish NSR, 4 types of cardiac arrhythmias and 2 cardiac disorders.

The obtained frequency spectrum is divided into five regions (R1 to R5):
Region R1: 0-2 Hz
Region R 2: 2-8 Hz
Region R 3: 8-16 Hz
Region R 4: 16-22 Hz
Region R 5: 22-32 Hz

Absolute values of DFT is used to compute spectral features such as Mean (i), Median,

Standard deviation (c) and Energy (€,.) can be calculated in each region by using the following

equations 4.4, 4.5, 4.6 and 4.7 respectively.

1 -
p=-Xiso X (4.4)

(N+1)th term

. , when N is odd

Median = gth term+(g+1)thterm ; “9
: , when N is even
1 _
5= EZ?’:ol(xi — u)? (4.6)
€x 2= Y23 xnl? 4.7
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4.4 Classification of Arrhythmias using Neural Networks and
Machine Learning Algorithms

Frequency-domain analysis shows how the signal's energy is distributed over a range of
frequencies. The spectrum of frequency components is the frequency domain representation of

the signal. For each segment, applied FFT to extract spectral parameters such as Mean, Median,

Standard deviation and Energy as shown in Table 4.1 to Table 4.7.

Table 4.1 Spectral features in different regions of NSR records

AL . . Standard
Record Regions Mean Median o Energy(uJ)
Number Deviation
R1 2.271759999 0.798958935 | 4.228627392 | 1502.902796
R2 4.62274717 2.197159464 | 5.059316499 | 9226.79886
16265 R3 3.069773132 2.273440434 | 2.36611201 3930.163713
R4 0.679883614 0.59315605 | 0.450642343 | 130.1996903
R5 0.121916507 0.091916047 | 0.101290169 | 4.939036918
R1 5.892062306 2.92664164 | 6.639619605 | 5156.777935
R2 4.679667747 4,122259314 | 3.141053869 | 6247.939179
16272 R3 2.587070164 1.996687945 | 2.035269876 | 2834.694617
R4 0.260691612 0.172579399 | 0.218597018 | 22.63819078
R5 0.030916149 0.024670065 | 0.022866737 | 0.290780214
R1 3.082669328 1.80496069 | 3.460109316 | 1405.391283
R2 4.634336637 3.313052952 | 3.472296536 | 6594.125258
16273 R3 2.943485958 2.281973785 | 2.098412458 | 3419.267106
R4 0.644597202 0.516006507 | 0.459748398 | 122.6559633
R5 0.133046688 0.103076814 | 0.101299729 | 5.498460467
R1 1.859126363 1.044979552 | 2.725868698 | 711.0925653
R2 4.723454518 3.377616127 | 4.094499651 | 7681.197218
16420 R3 3.328344126 2.723233865 | 2.417013475 | 4427.153182
R4 0.413316452 0.324554894 | 0.329465442 | 54.64953399
R5 0.085645731 0.073374042 | 0.04991913 1.933448886
R1 5.595256276 2.360897158 | 9.924433408 | 8468.389525
R2 3.805035101 1.177835958 | 7.295562554 | 13284.36921
16483 R3 2.462858069 1.175585063 | 3.070945134 | 4050.619254
R4 0.989137537 0.744574874 | 0.985107593 | 381.0002502
R5 0.326572392 0.222626935 | 0.280916704 | 36.477139
R1 4.47882866 3.442214475 | 3.581039445 | 2157.503635
R2 5.087040628 4.68472902 | 2.679169591 | 6504.840665
16539 R3 2.673598757 1.902471844 | 2.258605822 | 3204.24951
R4 0.190420789 0.132504538 | 0.164638922 | 12.39264015
R5 0.032109078 0.025631529 | 0.023572073 | 0.312011551
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R1

5.041315759

2.993751431

5.828602024

3885.600164

R2 4.061962893 3.47885802 | 2.972347855 | 4982.040828
16773 R3 2.872988556 2.326710561 | 2.149705053 | 3368.706073
R4 0.630875989 0.486812081 | 0.468974855 | 120.8966807
R5 0.112963599 0.083479945 | 0.090345932 | 4.113700551
R1 4.212371593 1.944382934 | 5.127796401 | 2880.238148
R2 6.021601694 5.396827209 | 3.673486364 | 9788.080736
16786 R3 2.034667443 1.303892172 | 2.000554421 | 2129.225256
R4 0.086485695 0.073952701 | 0.050357576 | 1.960533638
R5 0.044364864 0.039302891 | 0.023712194 | 0.497948067
R1 6.984080504 5.374971381 | 5.329401055 | 5065.470626
R2 4.101522086 3.331237243 | 3.285756487 | 5430.083589
16795 R3 2.427299927 2.096758724 | 1.597049591 | 2209.345743
R4 0.565528878 0.443734418 | 0.410541707 | 95.55146684
R5 0.129880741 0.098860429 | 0.100217045 | 5.291711759
R1 4.248374873 2.718428658 | 4.185850897 | 2330.10108
R2 5.416539104 5.162773335 | 3.227715988 | 7821.719984
17052 R3 2.481611082 1.942629148 | 1.992187334 | 2649.358621
R4 0.181172588 0.116329153 | 0.183849612 | 13.02453985
R5 0.025204438 0.022331925 | 0.014537053 | 0.166566823
R1 2.710424748 1.67579378 | 3.05833702 1092.835199
R2 4.350176918 4.114782016 | 2.64597176 5100.264371
17453 R3 3.187020376 2.706260704 | 2.146591435 | 3863.810006
R4 0.700644459 0.550838999 | 0.487632795 | 142.5851409
R5 0.153721283 0.12634524 | 0.11385552 7.195919442
R1 8.568895593 3.383656129 | 13.5702569 16815.98584
R2 4.06120458 2.162014352 | 5.730714853 | 9686.050554
18177 R3 2.314183825 1.19072864 | 3.47979221 4563.564005
R4 0.147768018 0.092115798 | 0.149939799 | 8.663714833
R5 0.063532091 0.061769325 | 0.015856451 | 0.844436024
R1 4.642562393 3.796132519 | 3.80397542 2363.088332
R2 4.356981367 3.883999051 | 3.016144075 | 5522.743982
18184 R3 2.681022387 2.250020583 | 1.898995544 | 2824.438877
R4 0.696126712 0.586660555 | 0.439403484 | 132.6298173
R5 0.164625127 0.134312912 | 0.120482324 | 8.184116357
R1 11.71653499 1.453846151 | 63.0632295 267563.4042
R2 2.972286828 1.31234217 | 9.935013458 | 21086.47484
19093 R3 1.334766437 0.929448988 | 2.538321717 | 2148.42271
R4 0.505930254 0.416572589 | 0.479034544 | 94.91667108
R5 0.290309391 0.275624291 | 0.095746749 | 18.39988806
R1 17.50244296 8.411157094 | 20.3037016 | 47013.76304
R2 2.919917015 2.004995906 | 3.77474681 4472.353171
19830 R3 0.991418041 0.666821428 | 1.184211206 | 623.537313
R4 0.195516503 0.146287257 | 0.175609314 | 13.50596686
R5 0.054762108 0.039684968 | 0.053698625 | 1.155955311
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Table 4.2 Spectral features in different regions of SCA records

SCA
Record Regions Mean(l) Median gtar_]da_lrd Energy ()
NUMmber eviation
R1 16.1703691 | 12.21735374 | 17.70543813 | 37634.1003
SCA R2 3.746058567 | 3.162439612 | 2.558040516 | 4047.032065
30m R3 0.626090103 | 0.382938423 | 0.619019828 | 202.7124979
R4 0.093221863 | 0.088711695 | 0.026808491 | 1.843447457
R5 0.068001971 | 0.066929536 | 0.006024733 | 0.918095099
R1 15.19551187 | 12.3731859 | 12.55670601 | 25488.24263
SCA R2 4.688224808 | 3.093082561 | 4.762720315 | 8775.918956
31m R3 0.425739357 | 0.224785701 | 0.448520318 | 99.99404215
R4 0.038553069 | 0.03376915 | 0.019262649 | 0.363677142
R5 0.026901324 | 0.026572077 | 0.004991049 | 0.147447677
R1 11.62489197 | 6.783394671 | 13.68061617 | 21084.46729
SCA R2 5.162139058 | 3.375418898 | 5.920794168 | 12120.53039
32m R3 0.88234104 | 0.709683089 | 0.733048154 | 344.2245905
R4 0.091871731 | 0.069755038 | 0.074351862 | 2.732320215
R5 0.019941755 | 0.018527899 | 0.007866617 | 0.090470894
R1 20.79393389 | 12.97355374 | 29.36933162 | 84603.83389
SCA R2 3.549181322 | 1.326285873 | 4.570716445 | 6576.271515
33m R3 0.229368956 | 0.184770073 | 0.156002167 | 20.13572344
R4 0.056531619 | 0.052945814 | 0.01922596 0.698460823
R5 0.026475339 | 0.026440288 | 0.005254445 | 0.143497289
R1 11.54275773 | 6.209648512 | 18.52704132 | 31104.8588
SCA R2 4.341932582 | 3.664368885 | 2.884840035 | 5345.089772
34m R3 1.224409378 | 0.767286603 | 1.207169171 | 773.1289045
R4 0.127390264 | 0.110996735 | 0.065299846 | 4.012236378
R5 0.092611117 | 0.090601537 | 0.007533197 | 1.700756138
R1 12.38812578 | 9.799323191 | 12.07105023 | 19599.90007
SCA R2 5.082829784 | 4.196997196 | 3.451066793 | 7423.859202
36m R3 0.572979712 | 0.358887522 | 0.557918739 | 167.258443
R4 0.126614191 | 0.114447204 | 0.070129019 | 4.101131522
R5 0.063115618 | 0.059598346 | 0.015867005 | 0.834110816
R1 26.98089565 | 16.60674423 | 50.39186962 | 213103.0702
SCA R2 1.454921923 | 0.886127605 | 1.656954738 | 955.1269718
37m R3 0.250137685 | 0.198120695 | 0.145294739 | 21.90289818
R4 0.129064511 | 0.124817069 | 0.016327827 | 3.316885611
R5 0.099075846 | 0.098829795 | 0.006857323 | 1.94297305
R1 11.99031595 | 4.917130197 | 19.74903711 | 34840.25698
?S)é:n? R2 5.173977729 | 3.126707366 | 6.438263335 | 13398.14099
R3 0.650384431 | 0.275602946 | 0.765030377 | 263.5818316
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R4 0.093993835 | 0.089377376 | 0.02854338 1.890500126
RS 0.059593836 | 0.057910632 | 0.006915488 | 0.709004271
R1 15.36695901 | 12.10168776 | 12.50537448 | 25750.45173
SCA R2 4.00454862 | 2.977799755 | 3.900568434 | 6141.201787
39m R3 0.869937054 | 0.554571729 | 0.80373526 366.8825913
R4 0.090753733 | 0.068947583 | 0.073936647 | 2.680295478
RS 0.027606516 0.025615662 0.009214411 0.166779038
R1 16.32727585 | 9.80208581 | 20.71343231 | 45482.28391
SCA R2 4.155438844 | 2.212914226 | 6.563688962 | 11845.80589
41m R3 0.49597694 | 0.372989878 | 0.346165426 | 95.7259598
R4 0.083281284 | 0.076211673 | 0.031466877 | 1.552493411
R5 0.030722008 | 0.029904444 | 0.00844642 0.19991987
R1 10.45411892 | 4.164355242 | 17.56094034 | 27258.17842
SCA R2 4417565634 | 2.301328041 | 5.665379661 | 10135.3518
43m R3 1.553610053 | 1.178256733 | 1.429477971 | 1165.719797
R4 0.122133331 | 0.099833767 | 0.075010566 | 4.020827973
R5 0.062345877 | 0.060602304 | 0.008326913 | 0.779330789
R1 13.47484363 | 10.34722644 | 8.670549012 | 16870.31043
SCA R2 3.46965355 | 2.303458894 | 3.121247637 | 4281.052279
44m R3 0.582272431 | 0.517254859 | 0.203343926 | 99.62081449
R4 0.348334047 | 0.345135659 | 0.03201942 23.98189764
R5 0.26911952 | 0.268425416 | 0.016588018 | 14.32171907
R1 13.24140417 | 6.153349547 | 29.16757857 | 66870.69233
SCA R2 4.435085656 | 3.535302183 | 3.061452067 | 5711.994797
45m R3 1.297025899 | 0.778638331 | 1.357418518 | 921.6710534
R4 0.090931589 | 0.079725459 | 0.05617475 2.23597905
RS 0.045244275 | 0.044329154 | 0.012941767 | 0.436095667
R1 12.96235939 | 8.219017681 | 12.46762654 | 21193.21348
SCA R2 4.687005488 | 2.599705747 | 5.716800272 | 10733.33388
46m R3 0.662703922 | 0.403043553 | 0.673264233 | 233.3715538
R4 0.132908087 | 0.126957066 | 0.024696525 | 3.581187777
RS 0.088955192 | 0.088146987 | 0.008864894 | 1.574269082
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Table 4.3 Spectral features in different regions of VVF records

Ve : . Standard
Record Regions Mean Median Deviation Energy(J)
Number
R1 21.6421982 | 17.3682233 | 12.75305666 | 41485.02256
R2 2.657841326 | 1.671900979 | 3.171434387 | 3362.998972
418 R3 0.343176495 | 0.193789448 | 0.365996093 | 65.81753739
R4 0.039058856 | 0.035647286 | 0.019316011 | 0.371772583
R5 0.031017737 | 0.030591979 | 0.006419558 | 0.197611007
R1 25.29862888 | 14.98218592 | 28.14687518 | 93737.389
R2 1.532244392 | 0.949186749 | 1.695739581 | 1026.115671
419 R3 0.188104717 | 0.126906742 | 0.163526924 | 16.24986212
R4 0.04740008 | 0.045306999 | 0.024490342 | 0.557322931
R5 0.0403885 0.040433307 | 0.009638768 | 0.339562048
R1 12.46081469 | 7.332522515 | 13.80471665 | 22635.00869
R2 5.237752847 | 3.671006568 | 5.225500769 | 10756.45704
421 R3 0.590171121 | 0.327730482 | 0.601270162 | 185.6133474
R4 0.058108623 | 0.05516179 | 0.020580371 | 0.744408543
R5 0.042752917 | 0.042813759 | 0.005629346 | 0.366290088
R1 16.46240456 | 6.49111613 | 40.22589318 | 123064.6718
R2 3.838136747 | 3.13202819 | 2.4423628 4071.231522
425 R3 0.64813082 | 0.52953411 | 0.445384347 | 161.833116
R4 0.179176651 | 0.166746071 | 0.073303778 | 7.340258942
R5 0.134737483 | 0.132364071 | 0.012413704 | 3.606578887
R1 19.53849955 | 3.969056208 | 90.74892069 | 560494.5251
R2 2.703663306 | 2.272004347 | 1.752023598 | 2041.668659
427 R3 0.891079244 | 0.695898754 | 0.51789543 278.0381127
R4 0.394678498 | 0.380011834 | 0.061664173 | 31.27262061
R5 0.28679114 | 0.284049456 | 0.02118902 16.29108309
R1 27.17923013 | 3.301971466 | 164.3733349 | 1804963.455
R2 1.913272813 | 1.489124461 | 1.685193477 | 1277.756636
428 R3 0.800647123 | 0.75161153 | 0.262899141 | 185.9906486
R4 0.396364474 | 0.386293835 | 0.060751653 | 31.51223885
R5 0.279680148 | 0.278691095 | 0.023830219 | 15.52083843
R1 14.81694734 | 9.304580153 | 20.12280883 | 40810.05055
R2 4.622811979 | 3.588443351 | 4.645714263 | 8440.168506
429 R3 0.823908052 | 0.521058458 | 0.953832261 | 415.3087647
R4 0.060140258 | 0.052046447 | 0.039259362 | 1.009455736
R5 0.01757476 | 0.014970599 | 0.011862279 | 0.088427697
R1 20.97574716 | 13.39638217 | 24.72592168 | 68777.93813
430 R2 3.275228276 | 1.95707469 | 3.712156415 | 4814.143321
R3 0.299906974 | 0.216334948 | 0.252590171 | 40.21764699
R4 0.065603257 | 0.061559332 | 0.034609005 | 1.077110055
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RS 0.02654114 | 0.023472394 | 0.016136954 | 0.189811774
R1 11.69758294 | 9.245687317 | 8.302292924 | 13511.33188
R2 5.456304414 | 4.610219388 | 4.055289077 | 9088.23022
602 R3 0.651541569 | 0.399401455 | 0.634269402 | 216.2203742
R4 0.059647886 | 0.046720102 | 0.047522402 | 1.137726421
RS 0.023066789 | 0.022446488 | 0.010275423 | 0.125513652
R1 14.76248149 | 12.29173152 | 10.14855284 | 21077.98985
R2 4.139842243 | 3.161534639 | 3.621358916 | 5946.634997
605 R3 0.821253876 | 0.530039829 | 0.755675688 | 325.7509168
R4 0.108134008 | 0.0737037 0.093926102 | 4.012132855
R5 0.043747989 | 0.041964778 | 0.016005211 | 0.427244339
R1 1493094213 | 8.832009292 | 18.86044321 | 37835.14085
R2 4.214002565 | 2.368749011 | 6.078040266 | 10739.03447
607 R3 0.616601174 | 0.421790914 | 0.659471153 | 213.1210906
R4 0.091828314 | 0.083656124 | 0.042688154 | 2.00810241
RS 0.063698666 | 0.061520028 | 0.014635722 | 0.841315507
R1 23.75976707 | 17.48949524 | 20.89761552 | 65644.92279
R2 1.956294254 | 1.077010545 | 2.447313574 | 1927.847551
609 R3 0.230681085 | 0.180910845 | 0.172279574 | 21.68855155
R4 0.05227533 | 0.041263594 | 0.038640449 | 0.826762619
R5 0.026398017 | 0.025530118 | 0.006852379 | 0.146483693
R1 13.98241565 | 14.43435674 | 7.512833621 | 16572.29801
R2 4.951727948 | 4.111135572 | 3.669706075 | 7469.84467
610 R3 0.451626015 | 0.309122598 | 0.44615283 105.3917698
R4 0.0543282 0.044371407 | 0.03565577 0.826414555
RS 0.02350978 | 0.023185306 | 0.010501775 | 0.130500126
R1 10.17293981 | 5.548994231 | 13.07439042 | 17941.334
R2 4.708764258 | 2.255272238 | 6.711476674 | 13196.58294
611 R3 0.622177989 | 0.524727448 | 0.374499102 | 138.0267676
R4 0.308509311 | 0.301598607 | 0.048631143 | 19.11605966
R5 0.236761107 | 0.235282895 | 0.016928898 | 11.0991681
R1 10.73748135 | 6.497433432 | 16.32652733 | 24935.47852
R2 4.785607329 | 4.099542729 | 3.07525231 6365.308037
612 R3 1.334080198 | 0.981739164 | 1.135449522 | 802.7928393
R4 0.182035592 | 0.146697144 | 0.130635195 | 9.822626571
RS 0.049913612 | 0.044006714 | 0.03261872 0.699339895
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Table 4.4 Spectral features in different regions of VT records

VT Record

Standard

Number Regions Mean Median Deviation Energy(uJ)
R1 8.936889 4.599143 11.12743934 | 13319.58087
R2 5.428527 4.641444 3.750013288 | 8561.643145
cu01 R3 1.344726 0.861307 1.496466881 | 1058.258574
R4 0.062318 0.04963 0.049738739 | 1.243592034
R5 0.02678 0.026181 0.006078761 | 0.148524781
R1 19.65029 8.125646 29.53443922 | 82183.2383
R2 2.991765 1.429753 5.222057886 | 7108.177744
cu03 R3 0.573815 0.508414 0.436440222 | 135.9822574
R4 0.107755 0.100314 0.041513458 | 2.611849749
R5 0.063727 0.061417 0.011495404 | 0.825940411
R1 9.836789 9.198354 7.459985348 | 10003.65988
R2 5.527864 4.706349 3.59317076 | 8550.315626
cu05 R3 0.935075 0.549974 1.013270139 | 497.0568659
R4 0.079075 0.068316 0.033100839 | 1.439220385
R5 0.051576 0.050303 0.005112007 | 0.529148433
R1 22.16736 11.12872 36.66617514 | 119818.3976
R2 1.979216 0.989676 2.924808899 | 2448.390976
cu06 R3 0.263549 0.187291 0.228463873 | 31.82114939
R4 0.136695 0.13573 0.012221412 | 3.691500706
R5 0.109426 0.108667 0.00660933 | 2.367466886
R1 9.407328 4.140272 19.69806585 | 31061.75283
R2 5.785841 2.915512 9.427121472 | 24013.40421
cuQ7 R3 0.758157 0.398361 1.130145647 | 483.9549854
R4 0.107779 0.097003 0.06340265 | 3.060666198
R5 0.072942 0.070989 0.014419194 | 1.088886601
R1 16.2912 7.665769 20.71946336 | 45420.86435
R2 3.967017 3.167332 3.210610584 | 5120.604716
cu08 R3 0.309582 0.227301 0.206630672 | 36.25399969
R4 0.132359 0.126899 0.020102045 | 3.512481711
R5 0.094101 0.0937 0.007300861 | 1.75486676
R1 12.9903 10.76637 9.927517795 | 17543.47967
R2 5.07379 3.613214 4.678606082 | 9361.751644
cu09 R3 0.627606 0.42699 0.623114374 | 204.5377588
R4 0.070653 0.05833 0.050097859 | 1.467813785
R5 0.014692 0.012348 0.009511457 | 0.060254514
R1 14.81571 5.017268 28.06204025 | 65673.41468
R2 4.897827 1.966762 8.013240199 | 17311.33102
cull R3 0.324433 0.250492 0.279963158 | 48.03429504
R4 0.03037 0.024845 0.018486709 | 0.2474213
R5 0.016 0.015468 0.003300277 | 0.052566243
cul2 R1 22.81135 9.589894 34.66012292 | 112429.6794
R2 2.39268 1.408434 3.384660369 | 3373.170535
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R3 0.234756 0.138707 0.27098823 | 33.60530409
R4 0.026754 0.023973 0.011192288 | 0.16471684
RS 0.017467 0.016988 0.002784975 | 0.061621322
R1 8.168212 4.737276 10.68695027 | 11827.20854
R2 5.689958 4.143276 4.727758636 | 10758.93212
cul3 R3 0.767574 0.433227 0.724567901 | 291.3870252
R4 0.207597 0.196776 0.0441103 8.826365398
R5 0.155328 0.153566 0.011850521 | 4.780523246
R1 18.01342 14.96994 14.81328478 | 35679.073
R2 4.079908 1.576585 6.139701502 | 10667.59681
culd R3 0.17004 0.09864 0.183271033 | 16.34192485
R4 0.018945 0.018948 0.007647649 | 0.081751634
RS 0.019402 0.01925 0.001974868 | 0.07492071
R1 9.699953 6.694202 9.914310009 | 12598.96017
R2 5.25086 3.970961 4.324193297 | 9096.526648
culs R3 1.248266 0.718208 1.304581805 | 852.4445921
R4 0.131913 0.110532 0.089826248 | 4.983998026
R5 0.031449 0.026353 0.019798956 0.271671704
R1 13.33278 8.575741 14.87798209 | 26120.39631
R2 4.481799 2.430601 5.572065831 | 10042.43696
cule R3 0.761745 0.445096 0.84894489 | 340.1317386
R4 0.106052 0.094937 0.046278385 | 2.622062846
RS 0.069931 0.067706 0.007446334 | 0.974257194
R1 7.216714 5.529683 6.677489101 | 6335.619357
R2 6.355227 4.751198 5.157453358 | 13170.08232
culs R3 1.18689 0.729922 1.23232208 | 765.4405948
R4 0.035332 0.029382 0.025117143 | 0.367696482
RS 0.007569 0.004772 0.00708484 | 0.021125245
R1 14.71691 6.295317 20.77634195 | 42352.4339
R2 4.285156 3.364854 4.498307966 | 7583.440695
cul9 R3 0.800514 0.52684 0.788647374 | 330.2283074
R4 0.084955 0.077173 0.050480514 | 1.911505172
R5 0.043108 0.041777 0.009395592 | 0.383394218
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Table 4.5 Spectral features in different regions of ClI records

Cl

Record Regions Mean Median gtar_\da_lrd Energy(J)
NUmber eviation
R1 6.224571347 | 4.3316303 6.179685401 | 5039.442296
R2 4.036887254 | 3.452007739 | 2.569577437 | 4504.537092
e0104 R3 2.885351525 | 2.414558603 | 2.136657282 | 3372.76083
R4 0.244424598 | 0.172574149 | 0.20118409 | 19.60233568
R5 0.063205395 | 0.058501208 | 0.038371822 | 1.075589383
R1 13.11656921 | 7.634283379 | 16.33761145 | 28704.57022
R2 5.14786454 | 4.014827822 | 4.179175615 | 8643.840065
e0105 R3 0.504295612 | 0.441304021 | 0.362612291 | 100.9485676
R4 0.064113071 | 0.057967327 | 0.03673315 | 1.06877347
R5 0.041184558 | 0.039371025 | 0.016461207 | 0.387255442
R1 11.71943395 | 6.375735447 | 14.09490526 | 21978.09175
R2 4.106738354 | 2.83141927 | 4.025564601 | 6498.677472
e0106 R3 1.640080089 | 1.471114307 | 1.027970657 | 980.5489049
R4 0.236965406 | 0.166771672 | 0.215507098 | 20.06235566
R5 0.033732784 | 0.03106635 | 0.019493198 | 0.298643462
R1 11.57106471 | 7.840111988 | 12.43629546 | 18889.70346
R2 4,992893248 | 4.235382276 | 3.122353579 | 6821.831655
e0107 R3 0.790575858 | 0.571629937 | 0.678642681 | 283.957756
R4 0.124721473 | 0.110385024 | 0.05995315 | 3.749771541
R5 0.086432025 | 0.085004498 | 0.012789236 | 1.503746171
R1 7.52696724 | 4.424436168 | 9.317855812 | 9382.703965
R2 5.356180145 | 5.206140241 | 2.956701427 | 7365.115484
e0108 R3 1.752235477 | 1.342213559 | 1.573688331 | 1450.791427
R4 0.091210229 | 0.072191177 | 0.068534967 | 2.54650707
R5 0.026248225 | 0.023291977 | 0.014013022 | 0.174214451
R1 12.26217992 | 8.29023474 | 11.89540111 | 19121.36663
R2 5.409103687 | 4.772016766 | 3.74559937 | 8513.690201
e0110 R3 0.650119562 | 0.541112444 | 0.500344999 | 176.0758024
R4 0.083586773 | 0.072722622 | 0.052451423 | 1.905877343
R5 0.022016772 | 0.019604628 | 0.014092671 | 0.134419693
R1 11.21412732 | 4.462179115 | 14.82540749 | 22586.46497
R2 4.043657503 | 3.199515612 | 3.465822036 | 5575.51649
e0111 R3 1.622444209 | 1.109021431 | 1.489856059 | 1269.003356
R4 0.308368149 | 0.299933756 | 0.148077736 | 22.91358754
R5 0.179903822 | 0.159686899 | 0.114121083 | 8.928610735
R1 15.83414366 | 7.656411502 | 22.57310018 | 49667.94232
R2 3.930439347 | 3.670043714 | 1.885249415 | 3739.942041
e0112 R3 0.711171017 | 0.524868524 | 0.676697859 | 252.0273427
R4 0.134981301 | 0.103984546 | 0.100598923 | 5.544538446
R5 0.047380054 | 0.045473993 | 0.016767895 | 0.49734711
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R1 4.663794092 | 1.768583241 | 5.783190343 | 3609.508257
R2 5.309471829 | 4.816027066 | 3.20888639 | 7571.729312
e0113 R3 2.462965807 | 1.902764283 | 1.982871285 | 2615.538745
R4 0.205410385 | 0.142152478 | 0.18576066 | 14.99878098
RS 0.034871837 | 0.032133848 | 0.019355449 | 0.312989007
R1 11.11198238 | 9.394851666 | 7.406155187 | 11714.74982
R2 5.852932914 | 5.227536261 | 3.859770576 | 9668.568732
e0114 R3 0.579076971 | 0.319004892 | 0.607764454 | 184.2640583
R4 0.058178888 | 0.049352487 | 0.038325741 | 0.949845645
RS 0.02353672 | 0.019630909 | 0.016698726 | 0.163787607
R1 6.687339414 | 4.550802716 | 8.010843051 | 7122.837972
R2 4.932756694 | 4.354062595 | 3.278516636 | 6900.161037
e0118 R3 2.23089934 | 1.919574945 | 1.572481619 | 1949.325202
R4 0.182815001 | 0.112954884 | 0.172344389 | 12.34258437
R5 0.031697209 | 0.02921854 | 0.010498439 | 0.219531051
R1 8.973698745 | 5.217432953 | 10.23013272 | 12117.41478
R2 5.509519195 | 4.996418253 | 3.110615986 | 7876.378582
e0119 R3 0.618181032 | 0.353900962 | 0.633388037 | 204.8308064
R4 0.234160155 | 0.229735352 | 0.028714528 | 10.90765396
R5 0.179506494 | 0.176812176 | 0.013122936 | 6.381601992
R1 4.75555293 | 1.924499825 | 6.748927216 | 4453.229929
R2 5.202203206 | 3.765187218 | 4.310552766 | 8973.244453
e0121 R3 2.517190337 | 1.942987187 | 1.932972115 | 2635.292257
R4 0.176042341 | 0.106011034 | 0.168665366 | 11.62157863
R5 0.016223375 | 0.015109309 | 0.006445473 | 0.059992633
R1 3.878976268 | 1.835117708 | 5.138191746 | 2709.132092
R2 5.045328115 | 2.8165154 6.910202999 | 14373.87863
e0123 R3 2.809716005 | 1.790503023 | 3.306812445 | 4922.397286
R4 0.250148511 | 0.17450113 | 0.232285457 | 22.78608245
RS 0.028288698 | 0.02165188 | 0.022788946 | 0.259439196
R1 3.753819783 | 2.485846196 | 3.856937926 | 1896.954816
R2 5.562471631 | 4.087958476 | 5.193219991 | 11381.4235
e0125 R3 2.484130986 | 1.639679739 | 2.447887724 | 3180.729845
R4 0.187049072 | 0.141903884 | 0.160262952 | 11.86594328
R5 0.022577633 | 0.019548755 | 0.013840011 | 0.137963652
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Table 4.6 Spectral features in different regions of AF records

ﬁlﬁn?gg? it Regions | Mean Median gt:vr;gg;?‘ Energy ()
R1 8.791477075 | 3.434375906 | 13.68072753 | 17266.69443
R2 4.600405675 | 2.546918516 | 7.576096647 | 15419.1144
4043 R3 1.863173759 | 1.28318622 | 1.840807063 | 1793.92805
R4 0.269090615 | 0.208446708 | 0.219873538 | 23.61946551
R5 0.057709668 | 0.051494637 | 0.029943137 | 0.831821858
R1 12.04343788 | 5.311591809 | 27.65047717 | 59268.60783
R2 5.786380531 | 4.46653026 | 5.128309157 | 11750.70607
4048 R3 0.599683797 | 0.366050522 | 0.729848186 | 233.2496678
R4 0.091615496 | 0.082162441 | 0.048692148 | 2.107436643
R5 0.054054261 | 0.053090707 | 0.014474455 | 0.616670965
R1 6.738400269 | 3.703377694 | 7.902242774 | 7055.752176
R2 4997457725 | 4.222352695 | 3.211711608 | 6941.750917
4126 R3 2.096010931 | 1.438612462 | 1.872814443 | 2066.474856
R4 0.13926702 | 0.113006507 | 0.108443398 | 6.094673644
R5 0.055889558 | 0.05520152 | 0.015632401 | 0.663254523
R1 13.99838492 | 8.236119204 | 21.10094687 | 41874.26283
R2 461450111 | 4.009152341 | 3.056206915 | 6025.561776
4746 R3 0.707721786 | 0.499259719 | 0.635160898 | 236.5230379
R4 0.099388919 | 0.081346016 | 0.065400867 | 2.77018714
R5 0.039797772 | 0.036881091 | 0.020684773 | 0.395881478
R1 9.764157776 | 7.614398013 | 8.989275196 | 11544.81874
R2 4938602729 | 3.962142729 | 3.722119149 | 7520.207501
4936 R3 0.618950913 | 0.52011311 | 0.380995904 | 138.2584672
R4 0.289086343 | 0.282942859 | 0.037111321 | 16.64846285
R5 0.224727186 | 0.222921227 | 0.015964474 | 9.998908091
R1 4172207711 | 2.514492993 | 4.520641034 | 2477.235632
R2 5.682646971 | 4.389743356 | 4.65574529 10610.10687
5091 R3 2.406674155 | 1.659720539 | 2.510528576 | 3162.543812
R4 0.1074084 0.074768722 | 0.105568357 | 4.434378817
R5 0.021183413 | 0.020256655 | 0.010823141 | 0.1113607
R1 14.99431678 | 12.07274347 | 10.29632565 | 21729.68028
R2 4.383250736 | 3.650715073 | 3.114824693 | 5686.556785
6426 R3 0.714531254 | 0.481163044 | 0.634622491 | 238.8820166
R4 0.045504005 | 0.031415691 | 0.043035144 | 0.766985042
R5 0.009397078 | 0.008864684 | 0.005540495 | 0.023412729
R1 19.63547728 | 15.76326161 | 14.65703368 | 39410.29126
R2 3.329484908 | 2.568548525 | 2.921495375 | 3856.724045
6453 R3 0.214499143 | 0.138294331 | 0.221297233 | 24.8364027
R4 0.055335395 | 0.051700676 | 0.019688442 | 0.675741946
R5 0.039545982 | 0.038479317 | 0.006009032 | 0.315162541
7162 R1 7.179106082 | 5.73420745 | 6.005103371 | 5745.593556
R2 6.148699962 | 5.494669425 | 3.746141887 | 10198.4642
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R3 0.782883734 | 0.440018326 | 0.833499873 | 341.9040705
R4 0.199524728 | 0.194121372 | 0.033752191 | 8.024928998
RS 0.147509108 | 0.145070636 | 0.013597255 | 4.322748096
R1 8.607069128 | 7.310383075 | 6.92923297 8010.315693
R2 4401817859 | 4.278234203 | 2.207220925 | 4771.949636
7859 R3 1.952965786 | 1.689704062 | 1.216979953 | 1385.839239
R4 0.431898325 | 0.362222146 | 0.293115046 | 53.31479176
R5 0.117732854 | 0.093045639 | 0.088111874 | 4.252307558
R1 7.748171924 | 5.7355769 8.413222528 | 8563.105463
R2 4.632338029 | 3.672807115 | 3.482241949 | 6604.033218
7879 R3 2.191718167 | 1.470137734 | 1.867326042 | 2168.633282
R4 0.213191329 | 0.158599169 | 0.177276386 | 15.03655523
RS 0.041328084 | 0.034018823 | 0.027989689 | 0.490028924
R1 10.2639232 | 6.233147975 | 10.75435893 | 14470.63122
R2 6.156414806 | 4.416361626 | 6.760017942 | 16423.36147
7910 R3 0.538266317 | 0.33006051 | 0.578316339 | 163.2008191
R4 0.058985846 | 0.053255795 | 0.030450301 | 0.862756737
RS 0.029265873 | 0.028205161 | 0.009819391 | 0.1876272
R1 13.28129618 | 5.3343696 24.43005376 | 50435.71589
R2 3.27653426 | 2.482733927 | 3.263796952 | 4202.792947
8215 R3 1.676378761 | 1.096473412 | 1.861163403 | 1640.369911
R4 0.206518977 | 0.176682392 | 0.125014051 | 11.40697726
RS 0.121274423 | 0.117105787 | 0.021075319 | 2.984431825
R1 11.76724608 | 8.978260064 | 11.26153721 | 17382.33761
R2 5.935758169 | 4.70372603 | 4.284149285 | 10538.31661
8219 R3 0.468749739 | 0.279027042 | 0.475990614 | 116.702299
R4 0.05815897 | 0.04847598 | 0.04191533 1.005557793
RS 0.016851483 | 0.015329665 | 0.0095356 0.0737644
R1 10.17033428 | 4.637813454 | 17.50851915 | 26752.39194
R2 5.84087899 | 4.359842797 | 4.673143824 | 11001.12742
8434 R3 0.807342739 | 0.572978123 | 0.707357661 | 301.3648207
R4 0.110443025 | 0.104523805 | 0.06043918 3.103056163
RS 0.058340657 | 0.056256507 | 0.018026601 | 0.734207387
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Table 4.7 Spectral features in different regions of SVT records

ﬁl\lﬁqgeercord Regions | Mean Median gt:vr;gg;?‘ Energy(uJ)
R1 8.548464447 6.662520703 | 6.548879552 | 7610.740651
R2 5.347888337 3.449964847 | 5.61237839 | 11807.94528
801 R3 1.284755984 0.954643589 | 1.3706721 922.8083234
R4 0.184270958 0.158597776 | 0.122125083 | 9.563668506
R5 0.065352686 0.061775346 | 0.024677491 | 0.960741606
R1 5.875767562 3.691352863 | 6.167206382 | 4750.864779
R2 6.332293465 5.54393566 | 3.897586073 | 10876.76501
802 R3 1.406694075 0.76059695 | 1.684764015 | 1259.272688
R4 0.152534959 0.103532333 | 0.137321225 | 8.237453261
R5 0.037195869 0.032207299 | 0.023613357 | 0.381843699
R1 5.93457559 5.322307519 | 3.85404847 | 3289.956195
R2 5.004416108 | 4.068369277 | 3.457823821 | 7277.186507
803 R3 2.041766299 1.686428025 | 1.42496883 | 1622.19806
R4 0.536940574 0.451173847 | 0.345468436 | 79.78076115
R5 0.133087175 0.108558029 | 0.09226893 | 5.157959528
R1 3.637518276 2.295342805 | 3.39927554 | 1624.361411
R2 5.393814232 3.078747919 | 6.157956801 | 13163.77136
807 R3 2415489951 1.633947547 | 2.360666606 | 2983.149948
R4 0.273533798 0.170012126 | 0.256551492 | 27.49950508
R5 0.063392292 0.061454095 | 0.01906618 | 0.862910548
R1 9.320557706 | 4.595154358 | 12.57266445 | 16008.27748
R2 6.190045648 5.261460306 | 4.789875781 | 12045.19339
R3 0.695216425 0.267691965 | 0.952971949 | 363.6599748
R4 0.107306737 0.090750825 | 0.073948562 | 3.323224265
808 R5 0.024630816 0.023171753 | 0.013498948 | 0.15523082
R2 4.183626279 2.853144322 | 3.865862056 | 6377.235911
R3 3.14531286 2.382033112 | 2.658553969 | 4436.688465
R4 0.536514424 0.40968903 | 0.452833643 | 96.4045247
R5 0.099588094 0.090450376 | 0.04243225 | 2.30670151
R1 6.130120523 3.367850741 | 6.843267115 | 5524.142736
R2 5.755825369 | 4.82964631 | 4.11598402 | 9847.016152
810 R3 1.745578657 0.854327858 | 1.876596541 | 1717.467155
R4 0.170337925 0.116829047 | 0.157336987 | 10.51415258
R5 0.036283181 0.033475034 | 0.01935863 | 0.332796731
R1 5.255009955 3.294793103 | 6.224990469 | 4341.381468
R2 5.239298586 | 4.354250244 | 3.66041097 | 8033.826446
811 R3 2.163124373 1.96362805 | 1.475519858 | 1794.164507
R4 0.414684035 0.34829802 | 0.28799777 | 49.8785479
R5 0.08032323 0.066984962 | 0.05827641 | 1.936652207
R1 9.930117707 7.726080286 | 6.997423103 | 9690.733142
812 R2 6.147904466 5.851210819 | 3.796131552 | 10270.43617
R3 0.589033374 0.259593173 | 0.748515428 | 237.1354681
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R4 0.075919626 0.070626714 | 0.042500358 | 1.481927444
RS 0.025070501 0.022180314 | 0.015075438 | 0.168365105
R1 3.570503786 2.45898661 | 5.310073043 | 2674.197743
R2 5.30348675 3.753226052 | 5.026153075 | 10492.40751
820 R3 2.575538813 1.868117067 | 2.20042468 | 3001.678597
R4 0.400918606 0.279075038 | 0.36007227 | 56.78635062
RS 0.047505238 0.038968727 | 0.034443871 | 0.67710982
R1 8.979605089 6.483835074 | 9.822648962 | 11593.28642
R2 4.265512717 3.182940472 | 4.040310364 | 6783.861087
821 R3 2.009598095 1.373932641 | 1.859384776 | 1960.441306
R4 0.157159664 0.116469585 | 0.13462801 | 8.375352063
RS 0.071890397 0.067340831 | 0.037568008 | 1.294766775
R1 5.715663405 4.505362985 | 4.161820901 | 3281.990298
R2 5.810570139 5.159302934 | 3.440221549 | 8970.941255
822 R3 1.600992447 0.970112797 | 1.514160317 | 1269.942188
R4 0.147990932 0.133168721 | 0.078682792 | 5.499899385
RS 0.088274225 0.087271087 | 0.030024405 | 1.711777867
R1 3.573375035 1.932115644 | 5.582048134 | 2868.106592
R2 4.626262631 2.505673395 | 6.5178309 12542.74972
823 R3 2.766229348 1.453469546 | 3.786006217 | 5745.963541
R4 0.642936907 0.514274813 | 0.522531504 | 134.2627404
R5 0.178710129 0.130899303 | 0.14634182 | 10.48917209
R1 5.715663405 4.505362985 | 4.161820901 | 3281.990298
R2 5.810570139 5.159302934 | 3.440221549 | 8970.941255
824 R3 1.600992447 0.970112797 | 1.514160317 | 1269.942188
R4 0.147990932 0.133168721 | 0.078682792 | 5.499899385
RS 0.088274225 0.087271087 | 0.030024405 | 1.711777867
R1 6.388175318 3.793541512 | 9.141787578 | 8125.577945
R2 5.311253474 3.949137426 | 5.26799017 | 10996.59166
825 R3 1.918725628 1.404131456 | 1.698144487 | 1717.199421
R4 0.265046304 0.219998211 | 0.208228708 | 22.2239535
RS 0.066126476 0.057029828 | 0.038203491 | 1.147487358

In spectral analysis of spectral features in all 5-regions, energy in R3 region appeared as

significant parameter to distinguish all 7 types of cardiac signals (1- normal, 4- arrhythmias

and 2- cardiac disorders) as shown in Fig 4.2 to Fig 4.8,
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Fig 4.5 Energy at different regions of AF Records (04746, 04748, 06426 and 07162)
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Fig 4.6 Energy at different regions of NSR Records (16265, 16272, 16184 and 16539)
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Fig 4.7 Energy at different regions of Cl Records (e0105, e0106, e0112 and e0119)

10* 10* 4 4
8 % 10 210 5 210
7 35 9 45
8 4

6 3 =
3 3 37 335
S S S ]
= 5 525 =S =y
24 g 2 g5 825
] fii] w [}
5 3 5 15 £ 4 = 0
N < © @
- - S =]
3 3 gid gl

2 1

2 1
! 0 1 0.5
0 0 0 0
1 2 3 4 5 10 R g s 1 2 3 4 5 1 2 3 4 5
Regions Regions Regions Regions

Fig 4.8 Energy at different regions of VT Records (cul2, cul4, cu06 and cu08)

Spectral and Temporal features (hybrid features) of 7 types of cardiac Signals for each record

are shown in Table 4.8
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Table 4.8 Spectral and Temporal features (hybrid features) of different cardiac Signals

Mean Median SD Energy N%‘_Of A;?/[glrgu;je R-R interval HBR Signal
R3 R3 R3 R3 peaks (mv)g (secs) (bpm) g
1.284756 | 0.9546436 |1.370672|922.80832| 52 | 0.854975 |0.617960784 |54.2285345| SVT
1.4066941| 0.760597 |1.684764|1259.2727| 32 | 1.955584 |1.962580645 |72.2092116| SVT
2.0837691| 1.4072656 |2.002424|2184.1606| 44 | 0.958168 |0.723348837 |71.0718402| SVT
2.41549 | 1.6339475 [2.360667|2983.1499| 40 | 1.49194 |0.801025641 |74.9039693 | SVT
0.6952164| 0.267692 |0.952972|363.65997| 32 | 1.656491 |0.997677419 |60.1396793| SVT
3.1453129| 2.3820331 |2.658554|4436.6885| 43 1.7546 |0.728761905 |82.3314166| SVT
1.7455787| 0.8543279 [1.876597|1717.4672| 35 | 1.625906 |0.933529412 |64.2722117 | SVT
2.1631244| 1.9636281 | 1.47552 |1794.1645| 25 | 0.630474 |1.295166667 |46.3260842 | SVT
0.5890334 | 0.2595932 |0.748515|237.13547| 28 | 1.298521 |1.151703704 |52.0967327 | SVT
2.5755388| 1.8681171 |2.200425|3001.6786| 40 | 0.213198 |0.797230769 |75.2605172 | SVT
2.0095981| 1.3739326 |1.859385|1960.4413| 54 | 0.142973 |0.587698113 |102.093232| SVT
2.7662293| 1.4534695 |3.786006|5745.9635| 41 | 0.275273 0.7825 |76.6773163| SVT
2.7662293| 1.4534695 |3.786006|5745.9635| 54 | 1.245341 |0.590188679 |101.662404 | SVT
1.6009924 | 0.9701128 | 1.51416 [1269.9422| 41 | 1.010693 0.7675 |78.1758958 | SVT
1.9187256| 1.4041315 |1.698144|1717.1994| 50 | 0.558015 |0.649877551 |92.3250848 | SVT
0.3431765| 0.1937894 |0.365996|65.817537| 41 | 0.195675 0.7827 |76.6577233| VF
0.1881047| 0.1269067 |0.163527|16.249862| 63 | 0.127919 | 0.511677419|117.261379| VF
0.5901711]| 0.3277305 | 0.60127 |185.61335| 40 | 0.202846 |0.811384615 |73.9476678| VF
0.6481308| 0.5295341 |0.445384|161.83312| 53 | 0.151154 |0.604615385 |99.2366412| VF
0.8910792| 0.6958988 |0.517895|278.03811| 22 | 0.368095 |1.472380952 |40.7503234| VF
0.8006471| 0.7516115 |0.262899|185.99065| 44 | 0.182279 |0.729116279 |82.2914009| VF
0.8239081| 0.5210585 |0.953832|415.30876| 55 | 0.145537 |0.582148148 |103.066548| VF
0.299907 | 0.2163349 | 0.25259 [40.217647| 43 | 0.186405 |0.745619048 |80.4700473 | VF
0.6515416| 0.3994015 |0.634269|216.22037| 24 | 0.332913 |1.331652174 |45.0568108 | VF
0.8212539| 0.5300398 |0.755676|325.75092| 57 | 0.141589 |0.566357143|105.940219| VF
1.8631738| 1.2831862 [1.840807|1793.9281| 28 | 0.336033 |1.344130086 |44.6385366 | AF
0.5996838| 0.3660505 |0.729848|233.24967| 19 | 0.120305 | 0.4812196 |124.683201| AF
2.0960109| 1.4386125 |1.872814|2066.4749| 20 | 0.116452 | 0.465809 | 128.80816 | AF
0.7077218| 0.4992597 |0.635161|236.52304| 19 | 0.028093 |0.112373874 |533.931937| AF
0.6189509| 0.5201131 |0.380996|138.25847| 19 | 0.269214 |1.076856653 |55.7177224| AF
2.4066742| 1.6597205 |2.510529|3162.5438| 16 | 0.298581 |1.194323175 |50.2376587 | AF
2.1917182| 1.4701377 |1.867326|2168.6333| 19 | 0.243727 |0.974909074 | 61.544201 | AF
0.5382663| 0.3300605 |0.578316|163.20082| 33 | 0.125365 |0.501461515|119.650259| AF
0.7828837| 0.4400183 | 0.8335 |341.90407| 22 | 0.026578 |0.106313636 |564.367865| AF
0.2144991| 0.1382943 |0.221297|24.836403| 19 | 0.005267 |0.021068463 |2847.85841| AF
0.7145313| 0.481163 |0.634622|238.88202| 62 | 0.062671 |0.250683245 |239.345872| AF
0.8073427| 0.5729781 |0.707358|301.36482| 18 | 0.047963 |0.191853578 |312.738499| AF
2.1155531| 1.5827104 |1.991601|2207.8479| 15 | 0.279369 |1.117477093 |53.6923758 | AF
0.6540064 | 0.4870057 |0.536112|187.07937| 21 | 0.227674 |0.910696324 |65.8836524 | AF
1.604149 | 1.1548549 |1.371871|1165.4131| 30 | 0.11149 | 0.44596036 |134.541106| AF
0.5042956| 0.441304 |0.362612|100.94857| 20 | 0.001612 |1.611578947 |37.2305683| CI
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1.6400801| 1.4711143 |1.027971] 980.5489 | 15 | 0.002125 |2.124857143|28.2371924| CI
0.7905759| 0.5716299 |0.678643|283.95776| 16 | 0.002091 |2.090666667 |28.6989796| CI
0.7905759| 0.5716299 |0.678643|283.95776| 15 | 0.002115 |2.114857143|28.3707106| CI
1.7522355| 1.3422136 |1.573688|1450.7914| 14 | 0.002198 |2.198461538 |27.2918125| CI
0.6501196| 0.5411124 |0.500345| 176.07/58 | 18 | 0.001764 |1.763529412 |34.0226818| ClI
1.6224442| 1.1090214 |1.489856(1269.0034| 17 | 0.001931 1.93125 |31.0679612| CI
0.711171 | 0.5248685 |0.676698|252.02734| 10 | 0.002975 |2.975111111| 20.167314 | CI
2.4629658 | 1.9027643 |1.982871|2615.5387| 18 | 0.00187 |1.869882353 |32.0875802| CI
0.579077 | 0.3190049 |0.607764|184.26406| 13 | 0.002683 | 2.682666667 |22.3658052 | CI
2.2308993| 1.9195749 |1.572482|1949.3252| 18 | 0.001819 |1.818823529 |32.9883571| CI
0.618181 | 0.353901 |0.633388|204.83081| 16 | 0.002013 |2.013066667 |29.8052722| CI
2.5171903| 1.9429872 |1.932972|2635.2923| 21 | 0.001549 1.5494 38.7246676 | CI
2.809716 | 1.790503 |3.306812|4922.3973| 21 | 0.001546 1.5456 38.8198758 | CI
2.484131 | 1.6396797 |2.447888|3180.7298| 24 | 0.001343 | 1.343478 44.66019 | CI
0.6166012| 0.4217909 |0.659471|213.12109| 36 | 0.223429 |0.893714286 |67.1355499 | VF
0.2306811| 0.1809108 | 0.17228 |21.688552| 25 | 0.315625 1.2625 47.5247525| VF
0.451626 | 0.3091226 |0.446153|105.39177| 34 | 0.237061 |0.948242424 |63.2749585| VF
0.6166012| 0.4217909 |0.659471|213.12109| 25 | 0.323542 |1.294166667 |46.3618802| VF
1.3340802| 0.9817392 | 1.13545 [802.79284| 56 | 0.141945 |0.567781818 |105.674395| VF
0.6260901| 0.3829384 | 0.61902 | 202.7125 | 23 | 0.149587 |1.367636364 |43.8713108 | SCA
0.4257394| 0.2247857 | 0.44852 199.994042| 29 | 0.101812 1.071 56.022409 | SCA
0.882341 | 0.7096831 |0.733048|344.22459| 23 | 0.235016 |1.425636364 |42.0864686 | SCA
0.229369 | 0.1847701 |0.156002|20.135723| 24 | 0.042966 |1.370782609 |43.7706166 | SCA
0.4600767| 0.346358 |0.366678|90.549786| 24 | 0.003038 |1.342086957 |44.7064922 | SCA
0.5729797]| 0.3588875 |0.557919|167.25844| 18 | 0.085109 |1.837411765 |32.6546293 | SCA
0.2501377] 0.1981207 |0.145295|21.902898| 8 | 0.085489 |4.554857143|13.1727512 | SCA
0.6503844 | 0.2756029 | 0.76503 |263.58183| 32 | 0.091707 |1.006580645 [59.6077426 | SCA
0.8699371| 0.5545717 |0.803735|366.88259| 31 | 0.098434 1.0532 56.9692366 | SCA
0.4959769| 0.3729899 |0.346165| 95.72596 | 26 | 0.000127 1.27568 |47.0337389 | SCA
0.7749418| 0.5252367 |0.659912|271.00142| 30 | 0.000674 | 1.06937931 |56.1073133 | SCA
0.2610245| 0.1190362 |0.379342|55.409041| 25 | 0.063375 |1.328833333 [45.1523893 | SCA
0.5822724| 0.5172549 |0.203344199.620814| 22 | 0.001337 |1.467619048 |40.8825438 | SCA
1.2970259| 0.7786383 |1.357419|921.67105| 26 | 0.000756 1.26384 |47.4743638 | SCA
0.9416736| 0.7225081 |0.798269|398.64632| 22 | 0.417295 |1.505142857 |39.8633257 | SCA
1.3447264 | 0.8613069 |1.496467|1058.2586| 32 | 0.159901 | 0.974580645 |61.5649411| VT
0.5738146| 0.5084143 | 0.43644 |135.98226| 73 | 0.972875 | 0.604461538 |99.2618987 | VT
0.9350754| 0.5499737 | 1.01327 |497.05687| 75 | 0.031812 |0.417567568 | 143.68932 | VT
0.2635493| 0.1872905 |0.228464|31.821149| 24 | 0.000586 |1.368347826 |43.8485003| VT
0.7581571| 0.3983612 |1.130146|483.95499| 76 | 0.031956 |0.414293333 |144.824923| VT
0.3095816| 0.2273011 |0.206631| 36.254 36 | 0.143325 0.8792 61.5649411| VT
0.6276057 | 0.4269904 |0.623114|204.53776| 46 | 0.000696 |0.706133333 |144.539615| VT
0.324433 | 0.2504925 [0.279963|48.034295| 42 | 0.000456 |0.773560976 | 143.68932 | VT
0.2347556| 0.1387072 |0.270988|33.605304| 47 | 0.058797 |0.668782609 |89.7152516| VT
0.7675737| 0.4332266 |0.724568|291.38703| 47 | 0.121283 | 0.69173913 |144.824923 | VT
0.1700403| 0.0986396 |0.183271|16.341925| 29 | 0.246977 |1.106428571 |68.2438581| VT
1.2482658 | 0.7182084 |1.304582|852.44459| 38 | 0.137872 |0.830918919 |84.9697885| VT
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0.7617454| 0.4450964 |0.848945|340.13174| 23 | 0.00114 [1.354363636 | 77.563375 | VT
0.345285 | 0.3049168 |0.133518|35.888929| 38 | 0.00292 |0.844216216 |48.6886523 | VT
1.4167591| 1.1481852 |1.088397|835.0707/8| 23 | 0.001505 |1.390909091 |86.7379007| VT
3.0697731| 2.2734404 |2.366112|3930.1637| 31 | 1.150784 |0.149586735 |60.3378922 | NSR
2.5870702| 1.9966879 | 2.03527 |2834.6946| 49 | 5.529473 |0.101811814 [93.0833872 | NSR
2.943486 | 2.2819738 |2.098412|3419.2671| 50 | 5.507928 |0.235015752 |92.7327782 | NSR
3.3283441| 2.7232339 |2.417013]4427.1532| 49 | 1.891016 |0.042966113 |92.6998841 | NSR
2.4628581| 1.1755851 |3.070945]4050.6193| 50 | 1.758144 |0.003038279 |93.3451867 | NSR
2.6735988| 1.9024718 |2.258606|3204.2495| 40 | 1.79936 |0.372409457 |75.9937646 | NSR
2.8729886| 2.3267106 |2.149705|3368.7061| 38 | 5.969311 | 0.08510885 |71.4285714 | NSR
2.0346674 | 1.3038922 |2.000554|2129.2253| 37 4.3836 |0.085488825 | 70.075266 | NSR
2.4272999| 2.0967587 | 1.59705 |2209.3457| 34 | 1.267571 |0.091707288 |63.4371396 | NSR
24816111 1.9426291 |1.992187|2649.3586| 36 | 0.992039 |0.098433552 |66.6666667 | NSR
3.1870204 | 2.7062607 |2.146591| 3863.81 | 43 | 3.451974 |0.000711936 |81.2903226 | NSR
2.3141838| 1.1907286 |3.479792| 4563.564 | 58 | 0.61046 |0.000126904 |74.5747929 | NSR
2.6810224 | 2.2500206 [1.898996|2824.4389| 43 2.0547 | 0.00067424 |80.6658131 | NSR
1.4178385| 1.1669999 | 1.49963 | 1113.65 | 57 | 0.609691 | 0.00075585 |109.517601 | NSR
1.1935218| 0.7480308 |2.465748|1960.0749| 60 | 0.112759 |0.198319587 |111.742424 | NSR

4.5 Results and Discussion
4.5.1 MLP classifier

[

Fig 4.9 ANN Structure for classification of NSR and SCA using spectral features
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The Fig 4.9 shows neural network architecture of MLP results obtained for 2 types of signals
(NSR and SCA). It has one input layer, one output layer and one hidden layer. Input layer has
16 neurons represented as mean, median, standard deviation and energy for each region
(4features*4regions) are used in this work. The output layer has two neurons represented as
NSR and SCA. The error per epoch obtained as 0.0001631 and Learning rate obtained as 0.3

Time taken to build model: 0.04 seconds

= Stratified cross-validation ===
= Summary ===

Correctly Classified Instances 30 100 s

Incorrectly Classified Instances u] 0 3

Kappa statistic 1

Mean absoclute error 0.017

Root mean sguared error 0.0433

Relative absclute error 3.367¢6 %

Root relative sguared error 8.549¢6 =

Total Number of Instances 30

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

A & u] 1 1 1 1 VFE
1 ] 1 1 1 1 £ NSR

Weighted Avg. 1 ] 1 1 1 1

== Confusion Matrix ===

a b x——ociassitired -as
1 SR 1 280 a = VF
0 15 | b = NSR

Fig 4.10 MLP Simulation Results for classification of NSR and VF using spectral features

The Fig 4.10 shows the simulation results for classification of NSR and VF using MLP
classifier. Time to build the model is 0.04 Seconds. Correctly classified instances are 30.
RMSE value is 0.0433. The classification accuracy for classifying NSR and VF is obtained as
100%.
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Time taken to build medel: 0.03 seconds

Stratified cross—-validation ===

== Summary =—=

Correctly Classified Instances 28 a3 333 3

Incorrectly Classified Instances 2 ©6.6667

Kappa sStatistic 0.85667

Mean absclute error 0.0583

Root mean sguared error 0.185sS

Relative absclute error 11.1289 s

Root relative sguared error 36.7109 s

Total Number of Instances 30

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure RCOC Area Class

0.933 0.087 0.933 0.933 0.933 0.9%96 SCx
0.933 0.087 0.933 0.933 0.933 0.996 NSR

Weighted Avg. 0.933 0.087 0.933 0.933 0.933 0.99¢

=== Confiusion Matrix ===

a o3 <—— classified as
14 1 2R a = SCA
1 14 | = NSR

Fig 4.11 MLP Simulation Results for classification of NSR and SCA using temporal and
spectral features

The Fig 4.11 shows the simulation results for classification of NSR and SCA using MLP
classifier. Time to build the model is 0.03 Seconds. Correctly classified instances are 28 out
of 30 instances. RMSE value is 0.1858. The classification accuracy for classifying NSR and
SCA is obtained as 100%.

Time taken to build mcdel: 0.06 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 32 i % P A B i S
Incorrectly Classified Instances 13 28.8889 s
Kappa statistic 0.5687
Mean absolute error 0:2E77
Root mean sguared error 0.3718
Relative absolute error 42.7431 £
Root relative sguared error 78.449%9
Total Number of Instances 45
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.733 0.2867 0.579 0.733 0.647 0.78 VE
0.533 0.167 0.815 0.533 0.571 0.798 VT
0.887 4] 1 0.8¢€7 0.929 1 NSR
Weighted Avg. 0.711 0.144 0.731 0.711 0.71¢6 0.859
=== Confusion Matrix ===
a b c <—— classified as
11 4 o | a = VF
7 8 o | b = VT
1 2R3 c = NSR

Fig 4.12 MLP Simulation Results for classification of NSR, VT and VF using temporal and
spectral features

98



The Fig 4.12 shows the simulation results for classification of NSR, VT and VF using MLP
classifier. Time to build the model is 0.06 Seconds. Correctly classified instances are 32 out of

45 instances. RMSE value is 0.3718. The classification accuracy for classifying NSR, VT and
VF is obtained as 71.11%.

Eul

=

lontrols

Epoch 500 Learning Rate = 0.3
- Num Of Epochs |500

i Enror per Epoch = 0,035002 Momentum = 2.2

Fig 4.13 ANN Structure for classification of 7 types using temporal and spectral features

The Fig 4.13 shows neural network architecture of MLP results obtained for 7 types of signals
(NSR, SVT, VT, VF, AF, Cl and SCA). It has one input layer, one output layer and one hidden
layer. Input layer has hybrid features (temporal and spectral features) represented as mean,
median, standard deviation and energy for R3 region from spectral features; Number of R-
Peaks, Amplitude of R-Peaks, R-R interval and Heart beat rate from temporal features are used
in this work The output layer has 7 neurons represented as NSR, VT, VF, SVT, AF, Cl and
SCA. The error per epoch obtained as 0.035002 and Learning rate obtained as 0.3.
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Time taken to build model: 0.22 seconds

=== Stratified cross-—-validation ===

=== Summary ===

Correctly Classified Instances 75 71.4286 S
Incorrectly Classified Instances 30 28.5714
Kappa statistic 0.68667

Mean absolute error 0.1108

Root mean sguared error 0.2404

Relative absoclute error 45.1671 s

Root relative sguared error 68.575 3

Total Number of Instances 105

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.8 a] 1 0.8 0.889 0.954 SVT
0.6 0.111 0.474 0.6 0.529 0.87 VE
0.733 (8] 1 0.733 0.848 0.943 AF
0.8867 0.056 0.722 0.867 0.788 0.9s82 CI
0.8667 [ $5 3 L a.5 0.867 0.571 0.3888 SCa
0.333 0.056 0.5 0.333 0.4 0.303 VT
1 o 1 1 1 1 NSR

Weighted Avg. 0.714 0.04s3 0.742 0.714 0.718 0.924

=== Confusion Matrix ===

a b c d e £ g <—— classified as
12 2 a} 1 a} [u} o | a = 3SVIT

o =} ] o} 3 3 o | b = VFE

Q 2 11 1 o 1 o | c = AF

a] 0 0 13 2 (a] o 1 d = CI

a} 2 o 2 10 1 o | e = SCA

o 4 o 1 5 =) o | £ = VT

0 o 0 (8] o o 15 | g = NSR

Fig 4.14 MLP Simulation Results for classification of 7 Types using temporal and spectral

features.

The Fig 4.14 shows the simulation results for classification of 7 types of signals using MLP
classifier. Time taken to build the model is 0.22 Seconds. Correctly classified instances are 75
out of 105 instances. RMSE value is 0.2404. The classification accuracy for classifying 7 types
is obtained as 71.42%.
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4.5.2 RBF classifier

Time taken to build meodel: 0.02 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 27 g0 %

Incorrectly Classified Instances 3 10 E

Kappa statistic 0.8

Mean absoclute error 0.1

Root mean sgquared error 0.3162

Relative absolute error 19.7727 %

Root relative squared error £2.4%944 s

Total Number of Instances 30

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure OC Area Class

0.867 0.087 0.929 0.867 0.897 0.987 SCA
0.933 0.133 0.875 0.933 0.903 0.987 NSR

Weighted Avg. 0.9 0.1 0.%02 0.9 0.9 0.987

=== Confusion Matrix ===

a b <-- classified as
2 a = SCA
b = NSR

Fig 4.15 RBF Simulation Results for classification of NSR and SCA using Spectral features

The Fig 4.15 shows the simulation results for classification of NSR and SCA using RBF
classifier. Time taken to build the model is 0.02 Seconds. Correctly classified instances are 27
out of 30 instances. RMSE value is 0.3162. The classification accuracy for classifying NSR
and SCA is obtained as 90%.
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Time taken to build model: 0.08 seconds

=== Stratified cress-validaticon ===

=== Summary ===

Correctly Classified Instances 30 100 5
Incorrectly Classified Instances 0 0 55
Kappa statistic 1

Mean absolute error Q

Root mean squared error 0

Relative absolute error Q 3

Root relative squared error 0.0001 %

Total Number of Instances 30

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure RO

1 0 1 1 1 1 SCR
1 0 1 I 1 1 NSR
Weighted Avg. 1 0 1 1 1 1

=== Confusion Matrix ===

a b <-- classified as
15 0| a = SCa
015 | b = NSR

Fig 4.16 RBF Simulation Results for classification of NSR and SCA using temporal and
spectral features.

The Fig 4.16 shows the simulation results for classification of NSR and SCA using hybrid
features using RBF classifier. Time taken to build the model is 0.08 Seconds. Correctly
classified instances are 30 out of 30 instances. RMSE value is 0.00. The classification

accuracy for classifying NSR and SCA is obtained as 100%.
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Time taken tc build medel: 0.03 seconds

== Stratified cross—-validation ===

Summary ===
Correctly Classified Instances 34 75.555¢6 %
Incorrectly Classified Instances 11 24.4444 3
Kappa statistic 0.6333
Mean absclute error 0.190%9
Root mean sgquared error 0.3915
Relative absolute error 42.7276 %
Root relative sguared error 82.605¢ %
Total Number of Instances 45

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure RCOC Area Class
0.68€7 0.133 0.714 0.687 0.89 0.838 VFE
0.733 0.233 0.811 0.733 0.687 0.778 VT
0.8867 0 1 0.8&7 0.929 0.9¢ NSR
Weighted Avg. 0.7586 0.122 0.775 0.75¢6 0.7862 0.859

=== Confusiocon Matrix ===

a b C <—— classified as
0 5 /0 a = VF

4 11 0O | b = VT

0 22733 | c = NSR

Fig 4.17 RBF Simulation Results for classification of NSR, VT and VF using temporal and
spectral features

The Fig 4.17 shows the simulation results for classification of NSR, VT and VF using RBF
classifier. Time taken to build the model is 0.03 Seconds. Correctly classified instances are 34
out of 45 instances. RMSE value is 0.3915. The classification accuracy for classifying NSR,
VT and VF is obtained as 75.55%.

The Fig 4.18 shows the simulation results for classification of 7 types of signals using RBF
classifier. Time taken to build the model is 2.97 Seconds. Correctly classified instances are 70
out of 105 instances. RMSE value is 0.2868. The classification accuracy for classifying 7 types
is obtained as 66.66%.

The Fig 4.19 shows the simulation results for classification of NSR and SCA using RF
classifier. Time taken to build the model is 0.01 Seconds. Correctly classified instances are 28
out of 30 instances. RMSE value is 0.177. The classification accuracy for classifying NSR and
SCA is obtained as 93.33%.
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ITime taken to build model: 2.97 seconds

Stratified cross—validation ===

Summary ===
C_orrectly Classified Instances 70 €6.6€667 %
Incorrectly Classified Instances 35 33.3333 ©
Xappa statistic 0.6111
Yean absclute error 0.0%924
Root mean sguared error 0.2868
Relative absolute error 37.6454
Root relative sguared error 81.7925 $
Total Number of Instances 105

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.933 0.033 0.3824 0.933 0.875 0.9¢ SVT
0.4€7 0.033 0.7 0.4867 0.56 0.95 VE
0533 0.087 0.571 0.533 0.552 0.776 AF
0.8867 0.1 0.591 0.887 0.703 0.936 CcI
0.4 0.087 0.5 0.4 0.444 0.824 SCA
0.533 0.089 0.5 0.533 0.516 0.77 VT
0.933 0 1 0.933 0.9686 0.947 NSR
Weighted Avg. 0.667 0.05¢ 0.6869 0.667 0.659 0.88

Fig 4.18 RBF Simulation Results for classification of 7 Types using temporal and spectral

features.
4.5.3 RF classifier results
Time taken to build medel: 0.01 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 28 93.3333 §
Incorrectly Classified Instances 2 6.6667 %
Kappa statistic 0.86€7
Mean absolute error 0.0667
Root mean squared error 0.177
Relative absolute error 13.1818 %
Root relative squared error 34.9821 %
Total Number of Instances 30

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure RCC Area Class

0.933 0.067 0.933 0.933 0.933 0.991 SCa
0.933 0.067 0.933 0.933 0.933 0.991 NSR
Weighted Avg. 0.933 0.087 0.933 0.933 0.933 0.991

=== Confusion Matrix ===

a b <-- classified as
14 1| a = S5CA
114 | b =DNSR

Fig 4.19 RF Simulation Results for classification of NSR and SCA using Spectral features
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=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absoclute error

Root mean squared error

Relative absolute error

Root relative sguared error
Total Number of Instances

=== Detailed Accuracy By Class ===

TP Rate FP Rate

0.933 0.087
0.933 0.087
Weighted Avg. 0.933 0.087

=== Confusicn Matrix ===

a b <-- classified as
14 1| a = SCA
114 | b = NSR
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Fig 4.20 RF Simulation Results for classification of NSR and SCA using temporal and
spectral features

The Fig 4.20 shows the simulation results for classification of NSR and SCA using RF
classifier. Time taken to build the model is 0.01 Seconds. Correctly classified instances are 28
out of 30 instances. RMSE value is 0.1889. The classification accuracy for classifying NSR

and SCA is obtained as 93.33%.

The following Fig 4.21 shows the simulation results for classification of NSR, VT and VF
using RF classifier. Time taken to build the model is 0.01 Seconds. Correctly classified
instances are 36 out of 45 instances. RMSE value is 0.3188. The classification accuracy for

classifying NSR, VT and VF is obtaine

d as 80%.
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Correctly Classified Instances
Inceorrectly Classified Instances
Kappa statistic

Mean absolute error

Root mean sguared error
Relative absoclute error

Root relative sguared error
Total Number of Instances

=== Detailed Accuracy By Class ===

TP Rate FP Rate

0.867 0.1e7

0.667 4 0 £

0.8867 0.033
Weighted Avg. 0.8 0.1

=== Confusion Matrix ===

a b c <-- classified as
13 2 0| a=VF

410 1| b=VT

1 113 | c = N5R

36
9
0.7
0.16€3
0.3188
36.4803 %
67.2659 %
45
Precision Recall
0.722 0.867
0.7€%9 0.667
0.929 0.8867
0.807 0.8

F-Measure
0.788
0.714
0.897

0.8

3
3
ROC Area
0.904
0.853
0.993
0.917

Class

NSR

Fig 4.21 RF Simulation Results for classification of NSR, VT and VF using temporal and
spectral features

Iime taken to build mocdel: 0.17 seconds

=== Stratified cross-validation ===

Summary ===

_orrectly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Yean absolute error

Root mean squared error

Relative absolute error

Root relative sguared error
Iotal Number of Instances

=== Detailed Accuracy By Class ===

TP Rate FP Rate
0.933 0.022
0.887 0.1
0.733 0.011
0.8 0.011
0.667 0.087
0.533 0.044
0.933 0
Neighted Avg. 0.781 0.037

82
23
0.7444
0.1092
0.2198
44.5165
©2.683
105

Precision
0.875
0.591
0.917
0.923
0.625
0.667
1

0.8

3
3

Recall
0.933
0.887
0.733
0.8
0.687
0.533
0.933
0.781

78.0952
21.9048 3

F-Measure
0.903
0.703
0.815
0.857
0.645
0.593
0.96¢6
0.783

ROC

0.
0
0
0.
0
0
1
0.

Area Class

932

.943
.974

993

.948
.544

95¢

SvVT
VFE
AF
CI
SCA
VT
NSR

Fig 4.22 RF Simulation Results for classification of 7 Types using temporal and spectral

features
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The Fig 4.22 shows the simulation results for classification of 7 types of signals using RF
classifier. It is built by using random forest of 10 trees, each constructed while considering 4
random features. Out of bag error is 0.3429. Time taken to build the model is 0.17 Seconds.
Correctly classified instances are 82 out of 105 instances. RMSE value is 0.2198. The

classification accuracy for classifying 7 types is obtained as 78.09%.

4.6 Performance comparison of cardiac arrhythmias classification

The performance of cardiac signals classification in terms of number of ECG records, the
number of features, type of neural network classifier, classification accuracy and number of
arrhythmias/disorders/normal signals classification reported in the literature have been

compared with the proposed classification system as shown in Table 4.9

Usman Rashed et al. [19] used FFT algorithm to distinguish SCA and NSR using spectral
features. In the proposed work, classified 7 types of cardiac signals (normal, cardiac
arrhythmias and disorders) using Machine learning RF classifier and ANN based MLP and
RBF classifiers. These two techniques are different that they can learn differently but can be

used in similar domains for classification.

From the results it’s identified that RF classifier gives more accuracy irrespective of data size.
MLP classifier works better when data size is more. RBF works better when data size is less.

with less computation time.
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Table 4.9 Summary of performance comparison of cardiac arrhythmias classification

Study by Recordsand | cjaqsifier | Cardiac Signals | Clasification
Features Accuracy

Distinguished

Usman Rashed |8 Records, Features - i NSR and SCA (2 NSR and SCA
etal. [19] 5 Spectral features types) using spectral
parameters
Z’r?dRsecC:(ijfs()NSR{S MLP,RF MLP-93.33%
’ ’ NSR and SCA RF-93.33%
16- Spectral and RBF 0
Proposed features(R1-R4) RBF-90%
[FDA]
30 Records, MLP,RF MLP-93.33%
4- Spectral and RBF  |NSR and SCA RF-93.33%
features(R3) RBF-96.6%
MLP-100%
NSR and SCA RBF-100%
RF-93.33%
MLP-100%
Proposed Spectral mbggi RBF-100%
[TDA+FDA] Features (Hybrid) MLP-73.33%
NSR,VT and VF RBF-71.11%
RF-75.55%

NSR, SVT, VT, VF, |MLP-71.4%
AF, Cl and SCA ( RBF-66.6%
seven types) RF-78.09%

4.7 Conclusion

In this chapter, a spectral feature extraction scheme has been proposed for analysis of seven
types of cardiac signals based on the spectral features. A significant change in Energy was
observed in 3rd segment, (QRS complex duration 5Hz to 15Hz). It was found from the Fig 4.2,
4.3,4.4,45, 4.6, 4.7 and 4.8 the energy of NSR in Region3 region is more than that of other
cardiac signals. Cardiac arrhythmias such as VT, VF and AF except SVT, energy is very less.

Cardiac disorders such as Cl and SCA, energy is also very less.
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In existing works, Usman Rashed et al. [19] used spectral analysis to classify normal and
sudden cardiac arrest signals (two types) based on energy in region R4 of different signals. But
in the proposed work obtained Energy difference of 7 types in R3 region as QRS complex

frequency lies in this R3 (8Hz-16Hz) region.

Using the regions (R1 to R4) spectral features classified NSR and SCA and obtained 93.3%
and using only R3 features classified NSR and SCA obtained same classification accuracy as
93.3% and these results are evaluated with other classifiers as shown in Table 4.9. To improve
classification accuracy this work used temporal features along with spectral using hybrid
approach and obtained 100% accuracy. Similarly classified NSR and VF and obtained
accuracy as 100% using MLP classifier and these results are evaluated with other classifiers as
shown in Table 4.9. Later, the work extended to classify three types of signals NSR, VT and
VF and obtained an accuracy as 77.77% using Random Forest Classifier and these results are

evaluated with other classifiers as shown in Table 4.9

The proposed work also classified 7 types of cardiac signals (1- normal, 4- arrhythmias and 2-
cardiac disorders) and obtained an accuracy of 74.2% using Random Forest classifier and also
evaluated the results with other classifiers as shown in Table 4.9. It is observed that normal
spectral analysis of ECG provides only energy within frequency components but does not
provide any phase coupled information. ECG signal is characterised by time varying random
process (Non Gaussian/Non stationary). This may be the reason to get a less classification
accuracy. Hence, higher order spectral analysis (HOSA) proposed to provide supplementary

information about non gaussianity and non-linearity of the ECG signal.
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Chapter 5

Cardiac Arrhythmias Analysis and Classification in HOS

Domain

5.1 Introduction

In the previous chapters, time domain and spectral domain analysis of ECG have been proposed
to identify and classify cardiac arrhythmias and disorders. Spectral analysis is a good tool for
the analysis of power distribution of linear and stationary signals. Whereas, this analysis may
not be adequate to detect phase correlations among different frequency components of ECG
signal as it is non-linear, non-stationary and quasi periodic in nature [22], [30], [97]. Hence,
there is a need for phase related characteristics in identifying cardiac arrhythmias with better

accuracy.

Bispectrum, Bicoherence and Quadratic phase coupling plots are used for analysis of ECG to
distinguish different types of cardiac signals. Higher order spectral features (skewness,
variance, kurtosis and bicoherence) are extracted using bispectral analysis. The bispectrum is
estimated using an autoregressive model, and the frequency support of the bispectrum is
extracted as a quantitative measure to classify atrial & ventricular arrhythmias. The
bicoherence spectrum shows different bicoherence values for normal and arrhythmia signals.
In general, the bicoherence indicates that the phase coupling decreases as arrhythmia kicks in.
In this chapter, higher order spectral domain analysis of cardiac signals and their classification

have been described.

5.2 Overview of existing works

Lot of research work has been done in the past to identify cardiac arrhythmias in higher order
spectral domain. In this section, the work done by some of the researchers has been presented

briefly.

L.Khadra et al.[21] used a higher order spectral analysis to distinguish cardiac arrhythmias (VT,

VF and AF) and NSR. In this work, phase coupling information of ECG signals was found

from bispectrum. This bispectral analysis is used to discriminate different types of arrhythmias.

To quantify the differences between the various arrhythmias, a simple classification parameter
110



that was proportional to the area of the frequency support of the bispectrum was used.
(a=f1*f2). In order to quantify the degree of phase coupling for arrhythmia cases, computed
the bicoherence spectrum. It was identified that spectral estimation depends on signal energies
in the bifrequency plane. The variance of the estimate will be high at high frequencies. Medical

statistics were computed as Sensitivity(S) as 89.2% and Specificity (Sp) as 93.55%.

K. Sharmila et al. [25] used higher order spectral analysis to distinguish sudden cardiac arrest
and normal sinus rhythm. Specifically, quadratic phase coupling techniques were applied on
ECG to extract information. Higher order spectral parameter such as energy was computed and
compared normal portion of QRS complex of SCD- ECG and are compared with that of the
healthy person ECG. In this work, on the basis of cumulants, estimated higher order spectra for
the analysis of non-stationary ECG signals. HOS are “resistant” to gaussian noise in the sense

that all cumulants of order greater than two have value zero for a gaussian signal.

I. A. Karaye [26] used higher order spectral analysis to classify 5 types of cardiac signals (NSR,
RBBB, paced beat, atrial premature beats and LBBB). In this work, bispectrum and
bicoherence plots were used for identification of cardiac arrhythmias. This work extracted
higher order spectral features (skewness, kurtosis and variance) and morphological features
(no.of R-Peaks and R-R intervals) and these features were fed to back propagation neural
network classifier. In this work, 70% of the data was used for training purpose and 30% of the
data was used for testing purpose and obtained classification accuracy as 94.9%, Sensitivity as
88.4%, Specificity as 96.2% and positive prediction as 87.3%.

5.3 Methodology for Higher Order Spectral Analysis

From the literature survey, it is identified that ECG signals are non-linear and non-stationary in
nature. Normal spectral analysis of ECG provides only power within the frequency components
but does not provide any phase coupled information of different frequency components. Higher
Order Spectral Analysis (HOSA) possesses the ability to suppress gaussian noise and preserves
the true phase characteristics of the signal, from which signal reconstruction is possible. Phase
correlations among rhythmic events at different frequencies are introduced only by non-linear
interactions [99]. Thus, non-linear analysis methods have to be applied for the detection of non-
linear correlations. One such method for the study of such non-linear effects is to quantify the
deviation of the measured ECG signal from gaussianity by utilizing the bispectrum. This
approach often detects important quadratic phase correlations present among the other higher

111



order correlations. So, higher order spectral (HOS) analysis is more suitable to identify different
types of cardiac arrhythmias and disorders. Higher Order Spectral Analysis (HOSA) on ECG

signal processing steps are shown in Fig 5.1

ECG Data from MIT-BIH Database

Preprocessing

ﬂ

Higher order spectral Analysis

I

Higher Order Statistics

Fig 5.1 Processing steps of Higher order spectral analysis

For pre-processing, 3rd order Butterworth low pass filter is used to remove baseline wander
noise from ECG signal by selecting cut off frequency 2Hz. HOS measures are extensions of
second-order measures (such as autocorrelation function and the power spectrum) to higher
orders. The second-order measures are good, if the signal has a gaussian probability density
function, but cardiac signals are non-gaussian in nature. The gaussian function can be
completely characterized by its mean and variance. Higher order measures are related to higher-
order moments of the signal. For nonlinear signals such as ECG signal, second order statistics
may not be sufficient for ECG analysis. Hence, third order and fourth order statistics are used
in this analysis. Higher order spectra are defined to be spectral representations of higher
order cumulants of a random process[26], [48], [62], [74], [98].

Let x(k) be a real, discrete time and n"-order stationary random process. We use non-linear
features such as higher order Cumulants(c) because they make efficient features as input to the
classifier and provide higher discrimination to higher accuracy in classification of arrhythmias
[22], [48].
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The n'™® order moment can be calculated by taking an expectation over the process multiplied

by n-1 lagged versions of itself.

my = E[x(k)] (5.1)

m3 (t) = E[x(k)x(k + t)] (5.2)
m3(ty,t;) = E[x(k)x(k + t)x(k + t;] (5.3)
my(ty, ty, t3) = E[x(k)x(k + t1)x(k + ty)x(k + t3)] (5.4)

Where E denotes expectation function, x(k) denotes zero mean process.

Using the moments, the cumulants can be computed. The second-order, third-order and fourth-

order cumulants are represented by following equations 5.6 to 5.8.

cf =mf (5.5)
c; () = mi(t) —m{(t)> =m3 (5.6)
c3 (ty,tz) = m3(ty, tz) (5.7)

ci(ty, ty) = m3(ty, ty) —my(ty)m3(t, — t3) — my(t3 — tq)
—m; (t3)m; (t; — t3) (5.8)

Where m,, m,, m; and m, are corresponding first, second, third and fourth order moments of
x(k) and ¢4, ¢y, c3 and ¢, are the first four order cumulants. The second order cumulant is
called the variance. The third order cumulant is called the skewness and the fourth order
cumulant is called the kurtosis.

The Fourier transform of second order cumulants is the traditional power spectrum. The power
spectrum is the frequency domain representation of second order moment. It can be calculated

in two ways:

113



1. By taking Discrete Fourier Transform (DFT) of the autocorrelation function as

shown in equation 5.1

P (k) = DFT[R (m)] (5.9)

2. Multiply together the signal Fourier Transform X (k) with its complex conjugate

as shown in equation 5.2,

P (K) = X (K) X*(K) (5.10)

The Fourier transform of third order cumulants is called bispectrum or bispectral density.
Features related to third-order statistics namely, Bispectrum B (k, I) can be calculated in a
similar way using Discrete Fourier Transform (DFT) as shown below,

Double Discrete Fourier Transform (DDFT) of the third-order cumulants is shown below in

equation 5.3,
B (k, I) = DDFT [C3] (5.11)
Where ‘C3’ is third order cumulants.

To perform the work, 1-minute ECG data of 7-types has been collected from MIT-BIH
database. The verification of results is done by using HOSA tool box. A set of higher order
spectral features are obtained based on the existence of peaks in bi-frequency plane and the
statistical parameters. Higher order statistics such as variance, skewness and kurtosis are

computed.

5.3.1 Bispectrum

Bispectrum of a signal is defined as the second order Fourier transform of the third order
cumulants of a signal [65]. The prefix bi- in bispectrum refers to two frequencies of a single
signal. The bispectrum equation (5.12) shows that bispectrum is a function of two frequency
variables (f; and f£,). Where f denotes frequency. The bispectrum (B) of a signal is given by

the following equation 5.12

B (fi,f) = Th_)rg)E[X(ﬁ) X(f2) X (fi + f2)] (5.12)
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In this work, the bispectrum is computed by using direct FFT method. It is a function of two-
frequency variables (f1 and f2) and carries information about phase [38], [108]. Bispectrum is

a complex quantity having both magnitude and phase. The bispectrum analyses the frequency
components at f1,f, fi+f , (fi-f2).

Bispectrum can be plotted against two independent frequency variables (f; and £, ) in three-
dimensional plots. Bispectrum plots of NSR, cardiac arrhythmias and cardiac disorders are
shown in Fig 5.2, 5.4, 5.6, 5.8, 5.10, 5.12, and 5.14 which provide additional information about
the signal to classify cardiac arrhythmias.

5.3.2 Bicoherence

In statistical analysis, bicoherence is a squared normalised version of the bispectrum. The
bicoherence takes values bounded between 0 and 1, which make it a convenient measure for
quantifying the extent of phase coupling in a signal. It is also known as bispectral coherency.
The prefix bicoherence refers two frequencies of a single signal. Bicoherence is given by the

following equation 5.13,

_ EXGDX(R)X (f1+12)]
Buorm (1, f2) = JPEDP(R)P(fit1fa) 6.13)

Where P (f) is the power spectrum. Theoretically, if the Fourier components at the
frequenciesf;, f, and f;+f, are perfectly phase coupled, and the bicoherence will be 1. Due
to the finite data length of processes, peaks may appear in the bispectrum at locations where
there are no significant phase coupling. Bicoherence (or normalized bispectrum) is used to

avoid incorrect interpretations. The magnitude of bicoherence quantifies the strength of phase
correlation. Chaudhary et al. [23], calculated the value of bicoherence which is used to find

linearity of a signal.

Using the above equation 5.13, bicoherence values are derived which are further used to know
the linearity of signals. Bicoherence plots of NSR and cardiac disorders are shown in Fig 5.2,
5.4, 5.6, 5.8, 5.10, 5.12, and 5.14 which provide additional information about the signal to

classify cardiac signals.

5.3.3 Quadratic phase coupling
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Quadratic phase coupling occurs when two waves interact non-linearly and generate a third
wave with a frequency equal to the sum or difference of the first two waves [101]. In a non-
linear system, an interaction between two harmonic components causes contribution to the
power as their sum or difference of frequencies. Since the power spectrum suppresses all phase
information, it cannot be utilized to detect phase coupling. The bispectrum is capable of
detecting and characterizing quadratic phase coupling. Harmonically related peaks in the power
spectrum are necessary conditions for the presence of quadratic non-linearities in the data. The

bispectrum preserves phase and is used to extract phase information quantitatively.

If a signal of frequency f;, and phase @1 is passed through a nonlinear system results in a
frequency component of 2f; along with phase component 2¢1. This phenomenon of phases
adding or subtracting along with frequencies can only be observed in a second order nonlinear

systems. Such a phase relationship is termed as quadratic phase coupling (QPC).

Table 5.1 QPC
fi,f22fa 01,92, 291
fufafitfa 1, P2, 01 T @2
fufafi—fa P1, P2, P1 — P2

Quadratic phase coupling occurs when two waves interact non-linearly and generate a third

wave with a frequency equal to the sum/difference of the first two waves as shown in Table 5.1

The bispectrum is capable of detecting and characterizing quadratic phase coupling [65], [102].
Harmonically related peaks in the power spectrum are necessary conditions for the presence of
quadratic non-linearities in the data. As ECG is a nonlinear signal, QPC can be used to give

phase coupling information present in the ECG signal
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5.3.4 Higher Order Statistics

The variance, skewness and kurtosis are three higher order statistics considered for analysis of
ECG signal.

Variance: It is a measurement of the spread between numbers in a dataset from the mean. It
is used to determine the measure of dispersion and the uncertainty in the given data set values.
If a random variable (x) has the expected value or mean, p = E[x], then the variance of the

random variable(x) is given by the equation 5.14,
Var(x) = E[(x — w)]? (5.14)

Skewness: Skewness is a measure of the asymmetry of the data around the sample mean. If the
skewness is negative, the data are spread out more to the left of the mean. If skewness is
positive, then the data are spread out more to the right of the mean. The skewness of the any
perfectly symmetric distribution is zero.

The skewness (S) of a distribution is given by the following equation 5.15

s=f % (5.15)

o3
Where p is the mean of random variable(x), o is the standard deviation of random variable(x)

and E (t) represents the expected value of the quantity t.

Kurtosis: Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the
normal distribution is 3. Distributions that are more outlier-prone than the normal distribution
have kurtosis greater than 3, distributions that are less outlier-prone have kurtosis less than 3.
The kurtosis (K) of a distribution is given by the following equation 5.16

(x—p)*
0-4-

K=E

(5.16)

From using above equations 5.14, 5.15 and 5.16, HOSA features have been computed and listed
in Table 5.3 to Table 5.6.
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5.4 Classification of Arrhythmias using Neural Networks and
Machine Learning Algorithms

This work has been done using HOSA tool box. HOSA plots are used as visual aids to
distinguish normal and different types of cardiac arrhythmias. HOSA features are used to
categorise different types of cardiac signals. Bispectrum and Bicoherence plots of NSR records
(16786, 16420 and 16539) are as shown in Fig 5.2, NSR record 16539 exhibit peaks around
+0.3 to -0.3 in bi-frequency plane, obtained 15 normal records average skewness value as
2.75789.

The bicoherence values appear to be scattered throughout the bifrequency plane in a random
manner. Average Bicoherence value of NSR of 15 records is 5.125613 which indicates the
strength of phase correlation as shown in Table 5.2. It can be further identified that bicoherence
indicates the non-linearity present in cardiac signals. The corresponding QPC plot of NSR
record 16539 is shown in Fig 5.3.

Bispectrum and Bicoherence plots of SCA records (30, 32 and 37) are shown in Fig 5.4 which
exhibit peaks around -0.2 to +0.2 in bi-frequency plane, average skewness value is 0.19142.
The bicoherence values appear to be scattered throughout the bifrequency plane in a random
manner. Average Bicoherence value of SCA of 15 records is 5.2879 which indicates the
strength of phase correlation and indicates the non-linearity present in cardiac signals as shown
in Table 5.2. The corresponding QPC plot of SCA record 30 is shown in Fig 5.5.

Bispectrum and Bicoherence plots of VT records (cu06, cul3 and culb) are as shown in Fig
5.6 exhibit peaks around -0.15 to +0.15 in bi-frequency plane, average skewness value is
0.92956. The bicoherence values appear to be scattered throughout the bifrequency plane in a
random manner. Average Bicoherence value of VT of 15 records is 5.8385 which indicates the
strength of phase correlation as shown in Table 5.2. The corresponding QPC plot of VT record

cu06is shown in Fig 5.7.
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Fig 5.2 Bispectrum and Bicoherence plots of NSR records (16265, 16420 and 16539)
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Fig 5.5 QPC plot of SCA (record 30)
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Bispectrum and Bicoherence plots of AF records (04746, 07910 and 04048) are as shown in
Fig 5.8 which exhibit peaks around -0.25 to +0.25 in bi-frequency plane, average skewness
value is 0.3. The bicoherence values appear to be scattered throughout the bifrequency plane in
a random manner. Average Bicoherence value of AF of 15 records is 7.4163 which indicates
the strength of phase correlation as shown in Table 5.2. The corresponding QPC plot of AF
record 04048 is shown in Fig 5.9.

Bispectrum and Bicoherence plots of CI records (e0112, e0123 and €0125)) are as shown in
Fig 5.10 exhibit peaks around -0.3 to +0.3 in bi-frequency plane, average skewness value is
2.75. The bicoherence values appear to be scattered throughout the bifrequency plane in a
random manner. Average Bicoherence value of ClI of 15 records is 10.2520 which indicates the
strength of phase correlation as shown in Table 5.2. The corresponding QPC plot of CI record
e0123 is shown in Fig 5.11

Bispectrum and Bicoherence plots of VF records (418, 419 and 609) are as shown in Fig 5.12
exhibit peaks around -0.2 to +0.2 in bi-frequency plane, average skewness value is 0.63982.
The bicoherence values appear to be scattered throughout the bifrequency plane in a random
manner. Average Bicoherence value of VVF of 15 records is 4.0090 which indicates the strength
of phase correlation as shown in Table 5.2. The corresponding QPC plot of VVF record 418 is

shown in Fig 5.13.

Bispectrum and Bicoherence plots of SVT records (811, 812 and 824) are as shown in Fig 5.14
exhibit peaks around -0.2 to +0.2 in bi-frequency plane, average skewness value is 2.19287. The
bicoherence values appear to be scattered throughout the bifrequency plane in a random
manner. Average Bicoherence value of SVT of 15 records is 4.7224 which indicates the
strength of phase correlation as shown in Table 5.2. The corresponding QPC plot of SVT record
812 is shown in Fig 5.15
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Fig 5. 8 Bispectrum and Bicoherence plots of AF records (04746, 07910 and 04048)
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Fig 5.12 Bispectrum and Bicoherence plots of VF records (418, 419 and 609)
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Bispectrum estimated via the direct (FFT) method = Bicoherence estimated via the direct (FFT) method
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Fig 5.14 Bispectrum and Bicoherence plots of SVT records (811, 812 and 824)
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Fig 5. 15 QPC plots of SVT record (812)

Higher order spectral features such as skewness, kurtosis, variance and bicoherence are
extracted using bispectrum and bicoherence plots. Average values of 15 records for different

cardiac signals are shown in Table 5.2.
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Table 5.2 Higher order spectral features of 7 types of cardiac signals

Cardiac Kurtosis Skewness Variance Bicoherence
Signal (Avg) (Avg) (Avg) (Avg)
Cl 18.6481 2.75664 2.06E+03 10.2520
AF 11.0441 -0.33311 2.48E+03 7.4163
NSR 16.8971 2.75789 5.86E+03 5.1256
SVT 16.7308 2.19287 6438.8 4.7224
VT 8.0496 0.92956 8.52E+04 5.8385
VF 6.5149 0.63982 2.47E+04 4.0090
SCA 6.7753 0.19142 93926 5.2879
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Fig 5.16 Kurtosis Variation in different signals

Higher values of kurtosis is the result of infrequent extreme deviations. The highest value of
Kurtosis 18.6481 is observed in Cardiac Ischemia and the lowest value of kurtosis 6.5149 is
observed in Ventricular fibrillation. The kurtosis variation (average value) of different cardiac

signals is shown in Fig 5.16.
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Skewness variation
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Fig 5.17 Skewness variation in different signals

The skewness variation of different cardiac signals is shown in Fig 5.17. Zero value of
skewness indicates normal symmetric distribution. Skewness can be positive or negative. Here,

it is observed that AF signal has average skewness value as -0.33311.
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Fig 5.18 Variance variation in different signals
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The average variance of 15 records of each category of 7 types of cardiac signals variation is
shown in Fig 5.18. Highest variance value is observed in VT and SCA. Lowest variance is
observed in AF and CIl. Medium value of variance is observed in NSR, SVT and VF variance
value is in between VT and SCA.
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Fig 5.19 Bicoherence variation in different cardiac signals

Bicoherence indicates the strength of phase correlation. From the Fig 5.19, it is observed that
bicoherence value is relatively less in NSR and VT. Bicoherence value is more in Cl and AF.
This result proves that high degree of phase correlation is existing in arrhythmia signals than
NSR.

Spectral, Bispectral and Temporal features (hybrid features) of 7 types of cardiac signals for
each record are shown in Table 5.3 Table 5.6 to are used for classification purpose using three
supervised classifiers.
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5.5 Results and Discussion

5.5.1 MLP classifier results
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Fig 5.20 ANN structure for classification of NSR, VT, VF and AF using temporal, spectral

and bispectral features

The Fig 5.20 shows MLP neural network architecture obtained for 4 types of signals (NSR,
VT, AF and VF). It has one input layer, one output layer and one hidden layer. Input layer has

nine neurons using temporal, spectral and bispectral features represented as number of R-peaks,

amplitude of R-peaks, R-R interval, heart beat rate, kurtosis, skewness, variance, bicoherence

and energy are used in this work. The output layer has four neurons represented as NSR, VT,

AF and VF. The error per epoch obtained as 0.0158509 and Learning rate obtained as 0.3
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Time taken to build model: 0.09 seconds

= Stratified cross-—validation ===

=== Confusiocon Matrix ===

a o3 c da <—— classified as
iz 3 o 3 S | a = VFE

332 o 3 S| b = VT

1 o 13 53 | c = NSR

2 o o 13 | d = AF

== Summary ===
ICorrectly Classified Instances 50
Incorrectly Classified Instances 10
[Kappa sStatistic 0.7778
Mean absolute error 0.1038
[Root mean sSguared error 0.25
[Relative absolute error 27.5804 s
[Root relative sguared error 57.5085 s
[Total Number of Instances €0
=== Detailed Accuracy By Class ===
TP Racte FP Rate Precision Recall
o.s 0.133 0.667 0.8
0.8 0.0&87 0.8 0.8
0.867 o 1 0.8867
0.867 0o.022 0.92%9 0.867
Weighted Avg. 0.833 0.0586 0.849 0.833

83.3333 ©
l6.6667 $
F-Measure ROC Area
0.727 0.907
0.8 0.96
0.3929 0.99¢6
0.897 0.933
0.838 0.949

Class
VE
VT
NSR
AF

Fig 5.21 Simulation results of NSR,VT,VF and AF using MLP Classifier

The Fig 5.21 shows the simulation results for classification of NSR, VT, AF and VF using MLP

classifier. Time taken to build the model is 0.09 seconds. Correctly classified instances are 50

out of 60 instances. RMSE value is 0.25. The classification accuracy for classifying NSR, and

VF is obtained as 83.33%

[Time taken to build model: 0.13 seconds

== Stratified cross—validation ===

=—— Confusion Matrix =——=—

<—— classified as
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vT

NSR

AF

SVT

=
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== Summary ===
Correctly Classified Instances €3
Incorrectly Classified Instances T2
[ Kappa statistic o.=
pMean absclute error 0.0932
JRoot mean sguared error 0.2371
[Relative absolute error 29.0335
[Root relative sguared error SS.107sS
[Total Number of Instances 7S
=== Detailed Accuracy By Class ===
TP Racte FP Rate Precision
0.733 0.0S3 o.€s88
0O.733 0.05 o.786
o.933 o 1
o.867 0.033 0.867
0.933 o.033 0.875S
Weighted Avg. c.=4 .04 o.s43

=
=
Recall
O0=F33
0o.733
0.933
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Fig 5.22 Simulation results of NSR,SVT,VT,VF and AF using MLP Classifier
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The Fig 5.22 shows MLP neural network architecture for classification of NSR, SVT, VT, AF
and VF using MLP classifier. Time taken to build the model is 0.01 seconds. Correctly
classified instances are 63 out of 75 instances. RMSE value is 0.2371. The classification
accuracy for classifying NSR, SVT, VT, AF and VF is obtained as 84%.
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Fig 5.23 ANN structure for classification of 7 types using temporal, spectral and bispectral
features

The Fig 5.23 shows neural network architecture of MLP results obtained for 7 types of signals
(NSR, SVT, VT, VF, AF, Cl and SCA). It has one input layer, one output layer and one hidden
layer. Input layer has 9 features using temporal, spectral and bispectral features represented as
Number of R-Peaks, Amplitude of R-Peaks, R-R interval, Heart beat rate, kurtosis, skewness,
variance, bicoherence and energy are used in this work. The output layer has 7 neurons
represented as NSR, VT, VF, SVT, AF, Cl and SCA. The error per epoch obtained as
0.0105064 and Learning rate obtained as 0.3.
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Time taken to build model: 0.25 seconds

tratified cross—validation ===

== S
== S

ummary ===
Correctly Classified Instances 78 74.2857
Incorrectly Classified Instances 27 25.7143 =
Kappa statistic .7
Mean absoclute error 0.0977
Root mean sguared error o.2328
Relative absoclute error 39.8302
Root relative sguared error £€€.4041 s
Total Number of Instances 105

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F—-Measure ROC Area Class
0.533 0.0&87 0.571 0.533 0.552 0.893 VE
o.8 0.038¢9 0.529 0.6 0.5&3 0.3902 VT
867 O 1 0.3887 0.929 996 NSR
o.3 0.033 o.3 o.3 o.8 -907 AF
0.933 0.011 0.933 0.933 0.933 0.997 SV
0.533 0.0329 o.5 0.533 0.51¢ 0.3542 SCR
0.933 0.011 0.933 0.933 0.933 0.991 CI
Weighted Avg. o.743 0.04a3 0.7S3 o.743 0.747 0.933

=== Confusiocon Matrix ===

a j =3 c d = £ g <—— classified as
E=3 4 o o (s} 3 o 1 a = VFE
2 S o o o 4 LU | b = VT
‘R o 13 1 o o o 1 c = NSR
a ¥ 1 o 12 1 o o 1 d = AF
o o [a] 1 14 o o | e = SVT
2 3 o 1 o =3 11 £ = SCAa
o o o 0 T S N | g = CI

Fig 5.24 Simulation results of 7 types using MLP Classifier

The Fig 5.24 shows the classification results of 7 types cardiac signals using MLP classifier.
Time taken to build the model is 0.25 seconds. Correctly classified instances are 78 out of 105
instances. RMSE value is 0.2328. The classification accuracy for classifying 7 types of ECG
signals is obtained as 74.28%. The medical statistics of 7 types of signals are sensitivity as

74.3%, specificity as 95.71% and precision as 75.25% are shown in Table 5.7.

Table 5.7 Medical Statistics of MLP using confusion matrix for 7 types of signals

ECG | TP |FP | FN | TN | Sensitivity(S) | Specificity(S) | Precision(Pp)
VF |08 |6 7 84 53.33% 93.33% 57.14%
VT (09 |8 6 82 60.00% 91.11% 52.94%

NSR (13 |0 2 90 86.66% 100% 100%

AF (12 |3 |3 87 80.00% 96.66% 82.00%
SVT |14 |1 |1 89 93.33% 98.88% 93.33%
SCA |08 |8 |7 82 53.33% 91.11% 50.00%

Cl |14 |1 1 89 93.33% 98.88% 93.33%

Average 74.28% 95.71% 75.25%
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5.5.2 RBF classifier results

Time taken to build model: 0.02 seconds

=== Stratified cross-—-validation ===
= 35

== ummary ===
Correctly Classified Instances 43 S0 s
Incorrectly Classified Instances 12 20 s
Kappa statistic 0.7333

Mean absclute error 0.1045

Root mean sguared error 0.314

Relative absoclute error 27.748¢6 $

Root relative sguared error 72.2247 $

Total Number of Instances €0

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.6 0.089 0.8692 0.6 0.643 0.311 VE
0.733 0.15¢6 0.611 0.733 0.6867 0.857 VT
0.933 o 1 0.933 0.966 0.959 NSR
0.933 0.022 0.933 0.933 0.933 0.945 AF
Weighted Avg. 0.8 0.067 0.809 0.8 0.3802 0.893

=== Confusiocon Matrix ===

a b = d <—— classified as
S 5 o 3 S | a = VF

4 11 o o | b = VT

o 1 14 o | c = NSR

u] 1 0 14 | d = AF

Fig 5.25 Simulation results of NSR,VT,VF and AF using RBF Classifier

The Fig 5.25 shows the simulation results for classification of NSR, VT, AF and VF using RBF
classifier. Time taken to build the model is 0.02 seconds. Correctly classified instances are 48
out of 60 instances. RMSE value is 0.314. The classification accuracy for classifying NSR,
VT, AF and VF is obtained as 80%.

Time taken to build model: 0.03 seconds

=== Stratified cross-—-validation ===
=== Summary ===

Correctly Classified Instances S5 O ERE R SR
Incorrectly Classified Instances 20 26.6667 S
Kappa sStatistic 0.&6667

Mean absolute error 0.1047

Root mean sguared rror Bs3IESL

Relative absolute error 32.6213 ©

Root relative sguared error 78.5458 s

Total Number of Instances 75

=== Detailed Accuracy By Class =—=

TP Rate FP Rate Precision Recall F—Measure ROC Area Class
0.533 o.1 0.571 0.533 0.552 0.231 VE
0o.& 0.133 o.52%9 o.& 0.5&3 o.ss81 VT
0.733 0.017 0.217 0.733 0.315 0.913 NSR
o.8 0.033 0.357 0.3 0.3528 0.887 AF
x 0.0S 0.3833 1 0.%909 0.991 SVT
Weighted Avg. 0.733 0.0&67 o.742 0.733 0.733 0.297

=== Confusion Matrix

I

a =] c a e <—— classified as
=3 € 1 o o 1 a = VFE

L5 = o o o | b = VT

o o 11 2 21 c = NSR

o 2 o 12 A B d = AF

o o o 0o 15 | e = SVI

Fig 5.26 Simulation results of NSR,SVT,VT,VF and AF using RBF Classifier
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The Fig 5.26 shows the simulation results for classification of NSR, SVT, VT, AF and VF

using RBF classifier. Time taken to build the model is 0.03 seconds. Correctly classified

instances are 55 out of 75 instances. RMSE value is 0.3151. The classification accuracy for
classifying NSR, SVT, VT, AF and VF is obtained as 73.33%

=== Dectailed

Weighted Avg-

TP Rate

o.

DO0OKODOO

sS33

Relative absclutes errox
Root relative sguared
Total Number of Instances

mlwunvw'f

Time taken to build model: 0.S seconds

erroxr

Accuracy By Cla

sca

SAE

classified as
vE
VT
NSR
aF
svT

Fig 5.27 Simulation results of 7 types using RBF Classifier

The Fig 5.27 shows the simulation results for classification of 7 types using RBF classifier.

Time taken to build the model is 0.8 seconds. Correctly classified instances are 78 out of 105

instances. RMSE value is 0.2621. The classification accuracy for classifying 7 types of ECG

signals is obtained as 74.28% The medical statistics obtained using the confusion matrix of

RBF for 7 types of signals are sensitivity as 74.28%, specificity as 95.71% and precision as
75.55% are shown in Table 5.8.

Table 5.8 Medical Statistics of RBF using confusion matrix for 7 types of signals

ECG | TP | FP | FN | TN | Sensitivity(S) | Specificity(S) | Precision(Pp)
VF (08 | 7 7 83 53.33% 92.22% 53.33%
VT (08| 8 | 7 82 53.33% 91.11% 53.33%

NSR | 13 | 0 | 2 90 86.66% 100% 100%

AF |13 | 4 2 86 86.66% 95.55% 76.47%
SVT [ 15 | 2 0 88 100% 97.771% 88.23%
SCA |08 | 6 7 84 53.33% 93.33% 57.14%

Cl [13]|0 | 2 90 86.66% 100% 100%

Average 74.28% 95.71% 75.55%
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5.5.3 RF classifier results

Time taken to build model: 0.01 seconds
=== Stratified cross—validation ===
=== Summary ===
Correctly Classified Instances 54 SO
Incorrectly Classified Instances € 10
Kappa sStatistic 0.28687
Mean absoclute error 0.1267
Root mean sguared error 0.230%
Relative abscoclute error 33.€43859 S
Root relative sguared error S53.0366 =
Total Number of Instances €0
=== Detailed ARccuracy By Class =—=
TP Rate FP Rate Precision Recall F—Measure ROC Area Class
1 0.111 0.75 1 0.857 0.981 VE
o.8 o 1 o.3s o.ss9 0.95s8 v
0.887 o 1 0.288687 0o.929 o.3959 NSR
0.933 o.022 0.933 0.933 0.933 0.9%93 AF
wWeighted Avg. o.9 0.033 0.921 o.9 0.502 0o.9&6s
=== Confusiocon Matrix ===
a i = c 4 <—— classified as
15 o o o 1 a = VFE
3 12 la] o | b = VT
1 o 13 1 1 c = NSR
1 o 0o 14 | d = AF

Fig 5.28 Simulation results of NSR,VT,VF and AF using RF Classifier

The Fig 5.28 shows the simulation results for classification of NSR, VT, AF and VF using RF
classifier. Time taken to build the model is 0.01 seconds. Correctly classified instances are 54
out of 60 instances. RMSE value is 0.2306.The classification accuracy for classifying NSR,

VT, AF and VF is obtained as 90%

Time taken to build model: 0.02 sec

Stratified cross-—-validation
== Summary ===
Correctly Classified Instances
Incorrectly Classified Instances
Kappa sStatistic

Mean absolute error

Rcocot mean sguared srror
Relative absclute error

Root relative sguared error
Total Number of Instances

Detailed Accuracy By Class ===

TP Rate FP Rate
o.3 0.05
0.8 0.033
0.5€7 0.017
0.867 0.033
0.933 0.05
wWeighted Avg. 0.853 0.037
=== Confusiocon Matrix ===
a b c d e <—— classified as
iz 2 o 1 o 1 a = VFE
22 o o 11 b = VT
1 0o 13 o 1 i c = NSR
o o 1 13 11 d = AF
o o s} 1 14 | e = SVT

onds
c4 85.3333 =
11 l4.6667 =
0.38167
0.1152
0.217
35.901 =
54.0958 s
75
Precision Recall F—-Measure ROC Area Class
o.3 0.8 o.8 0.972 VE
0.857 0.2 0.828 0.941 VT
0.929 0.8867 0.2897 0.986 NSR
0.867 0.887 0.867 0.988 AF
o.s524 0.933 0.875 0.991 SVT
0.855 0.3853 0.853 0.975

Fig 5.29 Simulation results of NSR, SVT, VT, VF and AF using RF Classifier
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The Fig 5.29 shows the simulation results for classification of NSR, SVT, VT, AF and VF
using RF classifier. Time taken to build the model is 0.02 seconds. Correctly classified
instances are 64 out of 75 instances. RMSE value is 0.217. The classification accuracy for
classifying NSR, SVT, VT, AF and VF is obtained as 85.33%.

Time taken to build model: 0.02 seconds

=== Stratified cross—validation ===

=== Summary ===

Correctly Classified Instances 78 74.2857 $

Incorrectly Classified Instances 27 25.7143 s

Kappa sStatistic o.7

Mean absolute error 0.1001

Root mean sguared error o.213

Relative absoclute error 40.8123 S

Root relative sguared error €0.7444 =

Total Number of Instances 105

=== Detailed RAccuracy By Class =—=

TP Rate FP Rate Precision Recall F—Measure ROC Area Class

0.733 o.144 0.458 o.733 0o.5¢€4 0.954 VE
0.487 0.033 0.7 0.4867 0.58& o.902 v
0.933 o 1 0.933 0.9€6 0o.594 NSR
0.733 O.044 0.733 0.733 0.733 0.9382 AF
0.933 o.022 0.S75 0.933 0.903 0.993 SVT
0.533 c.044 0.667 0.533 ). 593 3. 951 SCa
o.8867 0.011 o.929 o.86e7 o.897 0.9&€1 CI

Weighted Avg. 0.743 0.043 0O.7&6¢6 0.743 0.745 ). 9682
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Fig 5.30 Simulation results of 7 types using Random Forest Classifier

The Fig 5.30 shows the simulation results for classification of 7 types using RF classifier. It’s
built by using random forest of 10 trees, each constructed while considering 4 random features.
Out of bag error is 0.381. Time taken to build the model is 0.02 Seconds. Correctly classified
instances are 78 out of 105 instances. RMSE value is 0.213. The classification accuracy for
classifying 7 types is obtained as 74.28%. The medical statistics obtained using the confusion
matrix for 7 types of signals are sensitivity as 74.3%, specificity as 95.71% and precision as
75.02% are shown in Table 5.9.
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Table 5.9 Medical Statistics of RF using confusion matrix for 7 types of signals

ECG | TP |FP | FN | TN | Sensitivity(S) | Specificity(S) |Precision(Pp)
VF |08 |7 |7 83 73.33% 85.55% 53.33%
VT (08 (8 |7 82 46.7% 96.66% 50%

NSR (13 [0 |2 90 93.33% 100% 100%

AF |13 |4 |2 86 73.33% 95.55% 76.4%
SVT (15 |2 0 88 93.33% 97.771% 88.23%
SCA |08 |6 7 84 53.33% 95.55% 57.14%

Cl (13 |0 2 90 86.7% 98.88% 100%

Average 74.3% 95.71% 75.02%

5.6 Performance comparison of arrhythmias classification

The performance of cardiac signals classification in terms of number of ECG records, the
number of features, type of neural network classifier, classification accuracy and number of
cardiac signals reported in the literature have been compared with the proposed classification

system is shown in Table 5.10.

L. Khadra et al. [21] used higher order spectral analysis on 43-records of different cardiac
signals (AF-12, VT-11, VF-12 and NSR-08 records). HOSA features are extracted using
bispectral contour analysis and classified these four types of cardiac signals and obtained
sensitivity as 89.2% and specificity as 93.55%.

Sharmila et al. [25] analysed two types of cardiac signals (NSR and SCA) using higher order

spectral features. This work did not use classifiers to represent classification accuracy.

Compared to the existing work of I. A. Karaye et al. [26] and Sharmila et al. [25] the proposed
research work has given more clarity in identifying important cardiac arrhythmias, cardiac
disorders and normal signals using bispectral, spectral and temporal features( hybrid features)

and using RF , MLP and RBF neural network classifiers.
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Table 5.10 Summary of performance comparison of cardiac arrhythmias classification

Number of records

Study by and Features Classifier Diseases Accuracy
Ibrahim Higher order spectral | MLP NSR and 4 Sensitivity-88.4%
Abdullahi features and Temporal diseases Accuracy-94.9%.
Karaye et al. | features (5 types) Specificity-96.2%
[26]

L. Khadra et | 43-records Bispectral | NSR ,VT, VF | Sensitivity-89.2%
al. [21] (AF-12, VT-11, VF- | contour and AF (4 Specificity-93.55%
12 and NSR-08) analysis types)
HOSA features
Spectral, Bispectral RF NSR ,VT, VF | Sensitivity-90 %
and Temporal features and AF (4 Accuracy-90%
types) Specificity-96.62%
Spectral, Bispectral RF NSR,SVT, VT, | Sensitivity-85.33%
and Temporal features VFand AF (5 | Accuracy-85.33%
types) Specificity-96.33%
Spectral ,Bispectral RF NSR,SVT, VT, | Sensitivity-74.28%
and Temporal features VF, AF, CI Accuracy-74.2%
Proposed | 105-Records (AF-15, and SCA Specificity-95.70%
[HOSA] VT-15, VF-15, SVT- Precision-75.02%
15, SCA-15, CI-15 .
and NSR-15) RBF NSR,SVT,VT, | Sensitivity-74.28%
VF, AF, CI Accuracy-74.2%
and SCA Specificity-95.71%
Precision-75.55%
MLP NSR,SVT,VT, | Sensitivity -74.2%
VF, AF, CI Accuracy-74.2%
and SCA Specificity-95.71%

Precision-75.25%
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5.7 Conclusion

HOSA presents bispectrum, bicoherence, quadratic phase coupling plots for visual
interpretation to classify normal, cardiac arrhythmias and cardiac disorders. HOS based
features (such as skewness, variance, kurtosis and bicoherence) along with spectral features
and temporal features (hybrid) are fed to three classifiers. Random forest (RF) classifier has
produced better results compared to MLP and RBF classifiers. The proposed work classified
NSR, VT, VF and AF (4 types) using RF classifier and obtained classification accuracy as 90%,
sensitivity as 90% and specificity as 96.62%. It is a novel approach to enhance classification

accuracy, sensitivity and specificity with the existing work.

Later, the same work has been extended to classify 5 types of cardiac signals (NSR, SVT, VT,
VF and AF) and obtained an accuracy as 85.33%, sensitivity as 85.33% and specificity as
96.33%. Later, work has been extended to classify 7 types of cardiac signals (1- normal, 4-
arrhythmias and 2- cardiac disorders) using RF, MLP and RBF classifiers. RF and ANN
learning techniques are different even though got same results as shown in Table 5.10. Finally,
obtained an average classification accuracy as 74.2%, sensitivity as 74.2%, precision as 75%

and specificity as 95.70%. It has been observed that specificity is higher than sensitivity.

In real time applications, the specificity is more important than the sensitivity, as no normal
person should be defibrillated except sudden cardiac arrest. Otherwise it might cause cardiac

arrest to normal healthy person due to error analysis.

It is observed that spectral estimation depends on the signal energies in the bi-frequency plane.
This causes serious problem in the estimation. The variance of the estimate is high at high
frequencies. This unsatisfactory property should be resolved by making variance independent
against the frequency variation. When number of cardiac disorders increased, classification
accuracy and sensitivity are decreased. So, multi resolution analysis (using discrete wavelet
transform) is preferred to enhance classification accuracy in the next chapter.
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Chapter 6

Cardiac Arrhythmias Classification in Wavelet domain

6.1 Introduction

In the previous chapters; time domain, spectral analysis and higher order spectral analysis of
ECG have been proposed to analyse and classify cardiac arrhythmias and disorders. As ECG
IS a quasi-periodic, nonlinear and non-stationary signal, multiresolution analysis is required to
enhance the classification accuracy of different cardiac signals. Further in the literature review,
it has been reported that finding an efficient feature scheme and suitable neural network
classifiers are important to enhance the classification accuracy of different cardiac arrhythmias
[17],[44-45],[47], [50,51], [67]-[72], [9], [82], [83], [72] and [110]. So, it is proposed to use

wavelet transform decomposition technique to extract wavelet features.

In this chapter, wavelet based feature extraction scheme and classification of cardiac
arrhythmias & disorders have been described. With reference to medical statistics such as
classification accuracy, sensitivity and specificity. Further, performance comparison with the

existing works has been given.

6.2 Overview of existing works

In this section, the work done by some researchers has been presented briefly.

Nguyen et al. [17] used a novel shock advice algorithm (SAA) to classify Normal, Shockable
rhythms (SH) and Non shockable rhythms (NSH) of ECG signal. In this work, ventricular
fibrillation (VF) and ventricular tachycardia (VT) were considered as shockable (SH) rhythms
which lead to sudden cardiac arrests (SCA). In SAA algorithm, convolutional neural network
(CNN) was used for feature extraction and a Boosting (BS) was used for classification. 5-fold
cross validation was used in CNN. The medical statistics obtained as classification accuracy of
99.26%, sensitivity of 97.07%, and specificity of 99.44%. This work obtained different values
of sensitivity and accuracy as unequal number of data records are used to classify three types

of cardiac signals.
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H.M Rai et al. [44] employed wavelet (db4) based feature extraction scheme and back
propagation neural network algorithm to classify normal and abnormal signals. In this work 25
NSR records and 20 abnormal records of 1minute duration are considered, 48 wavelet based
features, 16 statistical and morphological features, total 64 hybrid features were extracted and

fed to the neural network classifier and obtained classification accuracy as 97.8%

Maedeh Kiani Sarkaleh et al. [45] used 8-level wavelet decomposition technique on 10 ECG
records and extracted 24 wavelet features. Three types of cardiac signals (normal and two types
of arrhythmias) classified using MLP neural network classifier and obtained classification
accuracy of 96.5%. It produced results with 24 input neurons and 2 linear output neurons.

These two output neurons indicate that they have classified only two types of cardiac signals.

Sukanta & Mohanty et al. [47] classified three types of signals NSR, VT and VF (total 57
records).Time -frequency based hybrid features (13 features) are extracted and fed to the SVM
classifier and C4.5 classifier . Obtained average classification accuracy - 92.23%, sensitivity -
79.43 % and specificity -81.44% with SVM classifier. Obtained average classification accuracy
- 97.02%, sensitivity -90.97% and specificity -97.86% with C4.5 classifier. In this work,
classified only3-types of cardiac signals. This work obtained different values of sensitivity and
accuracy as it is used unequal number of data records.

E. D. Ubeyli et al. [50] classified five types of cardiac signals (NSR, CHF, VT, AF, Partial
epilepsy). In this work, they extracted wavelet based features, statistical parameters and ROC
curves and fed to Mixture of Expert (ME) network classifier and enhanced the classification

accuracy to 96.89%.

Ali Sadr et al. [51] compared the performance of MLP and RBF neural network classifiers. In
this work RBF algorithm produced more accuracy when training data size was relatively small,
MLP algorithm produced more accuracy when the size of training data was relatively large.
From this work, it is identified that selection of data set and selection of a suitable classifier

play a crucial role in improving classification accuracy.

Sumathi et al.[110] used hybrid approach of Adaptive Neuro-Fuzzy Inference System
(ANFIS) model for classification of 6 types of arrhythmias including normal signals(Normal
Sinus Rhythm (NSR), Atrial Fibrillation (AF), Pre-Ventricular Contraction (PVC), Ventricular
Fibrillation (VF), and Ventricular Flutter (VFLU) Myocardial Ischemia(MI)). Feature
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extraction is done by using Symlet wavelet transform. The classification accuracy was obtained
as 98.24 %

6.3 Methodology for wavelet analysis

Several signal processing algorithms have been proposed to classify ECG arrhythmias and
disorders. Existing feature extraction methods may not be sufficient to detect the possibility of
more number of cardiac arrhythmias and disorders with high accuracy as ECG is a quasi-
periodic, nonlinear and non-stationary signal. Hence, in this work, it is proposed to use
Daubechies wavelet transform (db4). Six-level wavelet decomposition technique is used to
extract wavelet features and are fed to three different supervised classifiers to classify 7 types
of cardiac signals (normal, 4 types of cardiac arrhythmias and 2 types of cardiac disorders).
This automatic classification of cardiac arrhythmias and disorders will enable the doctors for
early diagnosis of cardiac problem. The block diagram of automatic classification of cardiac

signals using wavelet features is shown in Fig 6.1

66%ECG Data --TRAINING

ECG ! Wavelet based
i feature extraction

Classifier
MLP/RBF/RF

ECG! . |k
—. Preprocessing Wavelet based L [Feature Selectlon--:—I Classification
1 - Il results of
i feature extraction ! e AR,
| CLSCA and
NSR

Fig 6.1 Automatic classification of cardiac signals using wavelet features

6.3.1 Pre-processing

Baseline wander or DC noise is usually occurs during the recording of the ECG signal. It is due
to improper bias and chest movement while breathing. This DC noise frequency will be below
2Hz. This DC noise has been removed from ECG data in pre-processing stage through mean
correction code. The statistical mean of the signal vector is computed and subtracted from each
sample so that the distribution of the samples is along the axis.

6.3.2 Discrete Wavelet Transform
Fourier transform deals with transforming the time domain components to frequency domain
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components and the wavelet transform deals with scale analysis, that is, by creating
mathematical structures that provide varying time/frequency/amplitude slices for analysis.
This transform is a portion of a complete waveform, hence the term wavelet. Wavelet is a fast
decaying oscillating waveform, with average value is zero. Generally, the continuous wavelet

transform can be expressed by the following equation (6.3),
WP — ¥ _ 1 « (=T
CWTY(T,S) = WY(T,S) = = [ x() v (55)at (6.1)

Where x (t) represents signal, y is the basis function, s is scaling factor, t is time and * is

symbol for complex conjugate.

The wavelet transform has the ability to identify frequency (or scale) components,
simultaneously with their location(s) in time. Additionally, computations are directly
proportional to the length of the input signal. They require only N multiplications (times a

small constant) to convert the waveform.

In wavelet analysis, the scale that one uses in looking at data plays a special role. Wavelet
algorithms process data at different scales or resolutions. If we look at a signal with a large
"window," we would notice gross features. Similarly, if we look at a signal with a small
"window," we would notice small discontinuities as shown in Figure. The result in wavelet
analysis is to "see the forest and the trees.” A way to achieve this is to have short high-
frequency fine scale functions and long low-frequency ones. This approach is known as multi-

resolution analysis.

Wavelets are a family of basis functions Symlet, Coiflet, Daubechies, Biorthogonal and

Reverse biorthogonal wavelets are different types of the wavelet families are shown in Fig 6.2.

One of the key advantages of wavelets is their ability to spatially adapt to features of a function
such as discontinuities and varying frequency behaviour. They vary in various properties of

wavelets like compactness, smoothness, fast implementation and orthonormality.
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Fig 6.2 Types of Daubechies wavelets [100]

The compactness means the localization of wavelets i.e. a region of the data can be processed
without affecting the data outside this region. Discrete Wavelet Transforms (DWT) are widely
used for feature extraction which transforms a discrete time signal to a discrete wavelet
representation. The DWT is also used for de-noising the signals. Daubechies wavelets are the
most popular wavelets[85] and db4 wavelet has been chosen as the mother wavelets as it
resembles the shape of ECG waveform.

The DWT utilizes two set of functions @ (t) and ¥ (t), each associated with the low pass and
the high pass filters respectively. These functions have a property that they can be obtained as

the weighted sum of the scaled (dilated) and shifted version of the scaling function itself.

DWT is given by the following equations (5.2) and (5.3)
p(®) = X, _ hinlp2t —n) (6.2)

W) =Y glnlpt—n) (6.3)

Here, h[n] and g[n] is the half band low pass filter and high pass filter respectively.

6.3.3 Wavelet based Feature Extraction using Wavelet Decomposition

Wavelet analysis consists of decomposing a signal into a hierarchical set of low frequency
(approximation) and high frequency (detailed) coefficients. Wavelets are the essentially filter
banks. Each filter splits a given signal into two non-overlapping independent high frequency
and low frequency sub-bands such that it can then be reconstructed by the means of an inverse
transform. When such filters are applied continually, you get a tree of filters with output of one

fed into the next.
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The wavelet representation of a discrete signal, X consisting of N samples can be computed
by convolving the discrete signal, X with the Low-Pass Filters (LPF) and High-Pass Filters
(HPF) and down-sampling the output signal by 2, so that the two frequency bands each contains
N/2 samples. This technique is based on the use of wavelets as the basis functions for
representing other functions. These basis functions have a finite support in time and frequency
domain. Multi-resolution analysis is achieved by using the mother wavelet and a family of
wavelets generated by translations and dilations of it. The convolutional algorithms apply
filtering by multiplying the filter coefficients with the input samples and accumulating the
results. These algorithms are implemented by using finite impulse response filter banks. The
lifting scheme has been proposed for the efficient implementation of the wavelet transform.
This approach has three phases namely: split, predict, and update. In 1D-DWT, at each
decomposition level, the HPF associated with scaling function produces detail coefficients(DC)
while the LPF associated with scaling function produces approximation coefficients(AC) of
the signal. The approximation part can be iteratively decomposed. Wavelet transform
decomposes a signal into a set of basis functions using 6 level decomposition technique as

shown in Fig 6.3 to extract wavelet features.

e High frequency detailed coefficients (minimum and maximum) and standard deviation
in 1-5 levels.

e Low frequency approximation coefficients (minimum and maximum) and standard
deviation in the 6th level.

e Energy retained for each record,

Total 19 wavelet features are provided as inputs to RF, MLP and RBF and classifiers.

s
Level 3
coefficients
ofn] hfn)] —@—.
hln .,( :) > Level 2
g[n] [ ] coefficients
b .( ) . Level |
x[n] [n] coefficients

Fig 6.3 Wavelet decomposition [88]
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The statistical features extracted using wavelet transform techniques are given below
e Maximum value of coefficient: It is the extreme of largest value of all the given
samples.
e Minimum value of coefficient: It is the extreme of smallest value of all the given
samples.
e Energy ( &,): The energy of the signal is sum of squared moduli of samples and is given
by the equation 6.4,
&x 2 YnZolxal?
(6.4)
e Standard deviation(a): It is a measure of dispersion of set of samples from its mean. It

can be calculated by the equation 6.5,

0= |y S~ wy? ©9)

6.4 Classification of Arrhythmias using Artificial Intelligence
Algorithms

In the proposed work, db4 6-level wavelet decomposition technique is used to extract wavelet
features so 19 extracted wavelet features are provided as inputs to neural network classifiers.

Simulation Results of wavelet analysis are shown in Fig 6.4, Fig 6.5 and Fig 6.6.
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Fig 6.4 Six level wavelet decomposition of NSR Signal (165272)

As shown in Fig 6.4, six level wavelet decomposition on NSR signal is provided detailed and
approximation information of the signal. Detailed and approximation statistics of normal signal
are shown in Fig 6.5. Retained energy of NSR Signal is shown in Fig 6.6. Extracted wavelet

features of 7 types of cardiac signals are shown in Table 6.1 to Table 6.4.
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6.5 Results and Discussion

6.5.1 MLP classifier results

7

e
=N

— 1 VE|

v

Controls

Epoch 500
S £t S LearningRate = 03
-~ NumOfEpochs [500

Accept | Enorper Epoch = 0.000229 Momentum =02

Fig 6.7 ANN structure for NSR, VT and VF (3 types) using wavelet features

The above Fig 6.7 shows neural network architecture of MLP results obtained for NSR, VT
and VF. It has one input layer, one output layer and one hidden layer. Input layer has 19 features
represented as minimum, maximum and standard deviation values of detailed coefficients in 1
to 5 levels; minimum, maximum and standard deviation values of approximation coefficients
in 61 level and the retained energy of each record. The output layer represented as NSR, VT
and VF. It has 3 output neurons and 11 hidden neurons. The error per epoch is obtained as
0.000229 and Learning rate obtained as 0.3.
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Time taken to build model: 0.13 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 44 97.7778 %
Incorrectly Classified Instances 1 2.2222 %
Kappa statistic 0.9667

Mean absolute error 0.0364

Root mean squared error 0.1305

Relative absolute error 8.1533 %

Root relative squared error 27.5277 %

Total Number of Instances 45

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 VI

1.000 0.033 0.938 1.000 0.968 0.952 0.998 0.996 VF

0.933 0.000 1.000 0.933 0.966 0.950 1.000 1.000 NSR
Weighted Avg. 0.978 0.011 0.979 0.978 0.978 0.967 0.999 0.999

=== (Confusion Matrix ===

a b ¢ <-- classified as
15 0 0| a=VI

015 0] b=VF

0 114] c=NSR

Fig 6.8 Simulation results of NSR, VT and VF using MLP Classifier

The above Fig 6.8 shows the simulation results for classification of NSR, VT and VF using
MLP classifier. Time taken to build the model is 0.13 Seconds. Correctly classified instances
are 44 out of 45 instances. RMSE value is 0.1305.The classification accuracy for classifying
NSR, VT and VF is obtained as 97.77% and confusion matrix is shown for VT,VF and NSR.
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Time taken to build model: 0.25 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 56 93.3333 %

Incorrectly Classified Instances 4 6.6667 %

Kappa statistic 0.9111

Mean absoclute error 0.0452

Rocot mean sguared error 0.15¢¢€

Relative absclute error 11.9955 §

Root relative sguared error 36.0192 %

Total Number of Instances 60

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 0 1 1 1 1 VT
0.8 0.022 0.923 0.8 0.857 0.926 NSR
1 0.044 0.88 1 0.938 0.99¢6 VFE
0.933 0.022 0.933 0.933 0.933 0.981 svt

Weighted Avg. 0.933 0.022 0.935 0.933 0.932 0.97¢6

=== Confusion Matrix ===

a b c d <-—- classified as
1S 0 0 0| a=VT

012 2 1| b = NSR

0 015 0| c=VF

0 1 0 14 | d=-svt

Fig 6.9 Simulation results of NSR, SVT, VT and VF using MLP Classifier

The above Fig 6.9 shows the simulation results for classification of NSR, SVT, VT and VF
using MLP classifier. Time taken to build the model is 0.25 Seconds. Correctly classified
instances are 56 out of 60 instances. RMSE value is 0.1566.The classification accuracy for
classifying NSR, SVT, VT and VF is obtained as 93.33%.
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Time taken to build model: 0.45 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 100 95.2381 %
Incorrectly Classified Instances 5 4.7619 %
Kappa statistic 0.9444

Mean absolute error 0.033¢

Root mean squared error 0.1167

Relative absolute error 13.6925 %

Root relative squared error 33.2845 %

Total Number of Instances 105

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area C(Class
1.000 0.011 0.938 1.000 0.968 0.963 0.999 0.99¢6 CI
0.933 0.000 1.000 0.933 0.9¢¢ 0.9¢1 0.998 0.989 VT
0.867 0.011 0.929 0.867 0.897 0.881 0.924 0.892 AF
0.933 0.011 0.933 0.933 0.933 0.922 0.998 0.937 sca
0.933 0.011 0.933 0.933 0.933 0.922 0.997 0.984 nsr
1.000 0.011 0.938 1.000 0.9868 0.963 0.997 0.981 VF
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 SVT
Weighted Avg. 0.952 0.008 0.953 0.952 0.952 0.945 0.988 0.97¢

Fig 6.10 Simulation results of 7 types using MLP Classifier

The above Fig 6.10 shows the simulation results for classification of 7 types using MLP
classifier. Time taken to build the model is 0.45 Seconds. Correctly classified instances are 100
out of 105 instances. RMSE value is 0.1167. The classification accuracy for classifying 7 types
of ECG signals is obtained as 95.231%.

161



- o ol
iz ° v
s
= e u
o3 s
=
o L sca
e 22
5 *E
r L nsv‘
i ] W
»
r . o)
Controls
h =
Epoch 500 - LearningRate= 03
s Num Of Epochs 500
Accept | Eor per Epoch = 0.005233 Momentum = 02

Fig 6.11 ANN structure for 7 types using wavelet features

The above Fig 6.11 shows neural network architecture of MLP results obtained for 7 types of
signals. It has one input layer, one output layer and one hidden layer. Input layer 19 features
represented as minimum, maximum and standard deviation values of detailed coefficients in 1
to 5 levels; minimum, maximum and standard deviation values of approximation coefficients
in 6th level and the retained energy of each record. The output layer represented as NSR, SVT,
VT, AF, SCA, CI, AF and VF. It has 7 output neurons and 13 hidden neurons. The error per
epoch obtained as 0.005233 and Learning rate obtained as 0.3
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6.5.2 RBF classifier results

Time taken to build model: 0.02 seconds

=== Stratified cross-validation ===

=== (Confusion Matrix ===

a b c <-- classified as
14 0 1| a=VT

015 0| b =VF

0 114 | c = N5R

=== Summary ===

Correctly Classified Instances 43 95.555¢ %

Incorrectly Classified Instances 2 4.4444 %

Kappa statistic 0.9333

Mean absolute error 0.029%¢

Root mean squared error 0.1721

Relative absolute error 6.6328 %

Root relative squared error 36.3202 %

Total Number of Instances 45

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area

0.933 0 1 0.933 0.966 0.973
1 0.033 0.938 1 0.968 0.968
0.933 0.033 0.933 0.933 0.933 0.906

Weighted Avyg. 0.95¢6 0.022 0.957 0.95¢ 0.956 0.949

Class
VT
VF
NSR

Fig 6.12 Simulation results of NSR, VT and VF using RBF Classifier

The above Fig 6.12 shows the simulation results for classification of NSR, VT and VF using

RBF classifier. Time taken to build the model is 0.02 Seconds. Correctly classified instances

are 43 out of 45 instances. RMSE value is 0.1721. The classification accuracy for classifying
NSR, VT and VF is obtained as 95.55% and confusion matrix is shown for VT,VF and NSR.
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Time taken to build model: 0.02 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 5¢ 93.3333 %
Incorrectly Classified Instances = 6.6667 %
Kappa statistic 0.9111

Mean absclute error 0.0333

Root mean squared error 0.182¢6

Relative absolute error 8.855 %

Root relative sguared error 41.9948 %

Total Number of Instances 60

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 0 1 1 1 1 VI
0.933 0.087 0.824 0.933 0.875 0.98 NSR
1 0.022 0.938 1 0.968 1 VFE
0.8 0 1 0.8 0.88 0.993 svt
Weighted Avg. 0.933 0.022 0.94 0.933 0.933 0.993

=== Confusion Matrix ===

a ‘b e @ <-- classified as
1S 0 0 0| a=VT

014 1 0| b =NSR

€& 0035 0] e=VE

0 3 012 | 4d = svt

Fig 6.13 Simulation results of NSR, SVT, VT and VVF using RBF Classifier

The above Fig 6.13 shows the simulation results for classification of NSR, SVT, VT and VF
using RBF classifier. Time taken to build the model is 0.02 Seconds. Correctly classified
instances are 56 out of 60 instances. RMSE value is 0.1826. The classification accuracy for
classifying NSR, SVT, VT and VF is obtained as 93.33%
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Time taken to build model: 0.0& seconds

=== Stratified cross-validation ===

=== Summary ===
Correctly Classified Instances a7 92.381 %
Incorrectly Classified Instances 8 7.619 %
Kappa statistic 0.9111
Mean absolute error 0.0215
Root mean sguared error 0.1351
Relative absolute error 2.7493 s
Root relative sguared error 38.5408 s
Total Number of Instances 105
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precisiocn Recall F-Measure ROC Area Class
1 0.011 0.938 13 0.9€68 0.9%94 CI
1 Q E 1 A 3 & VT
0.8867 0.022 0.8867 0.8867 0.8867 0.97 AF
0.867 0.022 0.38867 0.3867 0.8867 0.88¢6 sca
0.8867 0.022 0.8867 0.867 0.867 0.924 nsr
0.933 0.011 0.933 0.933 0.933 0.9%99 VF
0.933 o 12 0.933 0.9¢€¢6 0.973 SVT
Weighted Avg. 0.924 0.013 0.924 0.924 0.924 0.964
=== Confusion Matrix ===
a 3 oerd & F g <—— classified as
19 0 0 € 307 B .05 a =CI
015 0 0o o o0 0 | b =VT
r Y0-¥E3 O B E O c = AF
g 0 0 13 2= O 0] d = sca
g B 0 2313 8 0] e = nsr
6 “0: & 0 -0:34 :0:] £ = VF
o 0o F © :0: 0 T4 | g = SVT

Fig 6.14 Simulation results of 7 types using RBF Classifier

The above Fig 6.14 shows the simulation results for classification of 7 types using RBF
classifier. Time taken to build the model is 0.06 Seconds. Correctly classified instances are 97
out of 105 instances. RMSE value is 0.1351.The classification accuracy for classifying 7 types
of ECG signals is obtained as 92.381% and confusion matrix is shown for
NSR,VT,VF,SVT,CI,AF and SCA.
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6.5.3 RF classifier results

Time taken to build meodel: 0.03 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 43 95.555¢6 %

Incorrectly Classified Instances 2 4.4444 3%

Kappa statistic 0.9333

Mean absolute error 0.0843

Root mean squared error 0.1582

Relative absolute error 18.8703 %

Root relative squared error 33.3839 %

Total Number of Instances 45

=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.933 0.033 0.933 0.933 0.933 0.900 0.992 0.996 VT
0.933 0.033 0.933 0.933 0.933 0.900 0.998 0.996 VF
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 NSR

Weighted Avg. 0.956 0.022 0.956 0.956 0.95¢ 0.933 0.999 0.997

=== Confusion Matrix ===

a b ¢ <-- classified as
14 1 0] a=VI

114 0| b=VF

0 015 ] c=NSR

Fig 6.15 Simulation results of NSR, VT and VF using RF Classifier

The above Fig 6.15 shows the simulation results for classification of NSR,VT and VF using
RF classifier. Time taken to build the model is 0.03 Seconds. Correctly classified instances are
43 out of 45 instances. RMSE value is 0.1582.The classification accuracy for classifying
NSR,VT and VF is obtained as 95.55% and confusion matrix is shown for VT,VF and NSR.
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=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 57 95 $
Incorrectly Classified Instances 3 5 %
Kappa statistic 0.9333

Mean absolute error 0.0842

Root mean squared error 0.1713

Relative absolute error 22.3588

Root relative squared error 39.403 %

Total Number of Instances 60

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area C(Class

1.000 0.022 0.938 1.000 0.968 0.957 1.000 1.000 VT

0.867 0.000 1.000 0.867 0.929 0.911 0.976 0.965 NSR

0.933 0.000 1.000 0.933 0.966 0.95¢ 0.999 0.996 VF

1.000 0.044 0.882 1.000 0.938 0.918 0.984 0.930 sVt
Weighted Avg. 0.950 0.017 0.955 0.950 0.950 0.93¢ 0.990 0.973

=== Confusion Matrix ===

a b ¢ d <-- classified as
15 0 0 0| a=VI
013 0 2| = NSR

1 014 0| c=VF
0 0 015 d=svt

Fig 6.16 Simulation results of NSR, SVT, VT and VVF using RF Classifier

The above Fig 6.16 shows the simulation results for classification of NSR, VT, SVT and VF
using RF classifier. Time taken to build the model is 0.01 Seconds. Correctly classified
instances are 57 out of 60 instances. RMSE value is 0.1713. The classification accuracy for
classifying NSR, VT, SVT and VF is obtained as 95% and confusion matrix is shown for
NSR,SVT,VT and VF.
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Time taken to kbuild model: 0.01 seconds

=== Stratified cross-wvalidation ===

Summary =——
Correctly Classified Instances a9 94, 22857 %
Incorrectly Classified Instances a 5.7143 %
Eappa statistic 0.9333
Mean absolute Srror 0.0337
Root meEan sgquarsed error 0.1104
Belative absolute error 13.752 %
Root relatiwve sguared error 31.45903 %
Total Number of Instances 105

=== Detailed Accuracy By Class =—=

TP Rate FP Rate Precision EBescall F-Measure ROC RArea Class
0.933 Ju] 1 0.933 0.966 1 CI
1 0.011 0.938 1 0.963 0.999 VT
0.933 0.011 0.933 0.933 0.933 0.9549 AF
1 0.022 0.882 1 0.938 0.999 sca
0.267 Ju] 1 0.267 0.929 0.59599 nsr
0.267 Ju] 1 0.867 0.929 0.999 VE
1 0.022 0.582 1 0.933 1 SVT

Weighted Mwg. 0.943 0.01 0.5943 0.5943 0.943 0.59594

=== Confusion Matrix =—=

a b o d e £ o <—— classified as
14 o o o o 0o 11 a = CI

15 a9 a 0 o 0O ] = VT

g o014 a o0 o 1] o = AF

g o o015 0 o O | d = =sca

a a a 2 13 a a 2 = nsr

o 1 1 a 013 0O | f =VF

g o 9o a 0 015 | g = SWVT

Fig 6.17 Simulation results of 7 types using Random Forest Classifier

The Fig 6.17 shows the simulation results for classification of 7 types using RF classifier. It’s
built by using random forest of 10 trees, each constructed while considering 5 random features.
Out of bag error is 0.181. Time taken to build the model is 0.01 Seconds. RF of 10 trees have
been used each constructed while considering 5 random features of 19 wavelet features. Correctly
classified instances are 99 out of 105 instances. RMSE value is 0.1104. The classification

accuracy for classifying 7 types of ECG signals is obtained as 94.28%

In the proposed work, the above wavelet features (from Table 6.1 to Table 6.4) have been
given to MLP, RBF and RF neural network classifiers for automatic classification of 7 types of

cardiac signals (normal, 4 types of arrhythmias and 2 cardiac disorders).
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Further, compared the performance of all these classifiers is shown in Table 6.5. MLP classifier
classification accuracy obtained as 95.23% and the computational time to build the model was
0.45seconds, RBF classifier classification accuracy obtained as 92.381% and the computational
time to build the model is 0.06seconds. RF classifier classification accuracy obtained as
94.285% and the computational time to build the model is 0.2seconds.

Table 6.5 Performance comparison of 3-classifiers

MLP RF RBF

Computational time to
build the model (Sec)

Classification Accuracy | 95.238% 94.285% 92.381%

0.45 0.2 0.06

Kappa Statistic(K) 0.9444 0.9333 0.9111
Mean Absolute Error 0.0336 0.0414 0.0215
Root Mean Square 0.1167 0.1129 0.1351
Error

_Correctly classified 100 99 97
instances

Total Number of 105 105 105

instances

It is observed that wavelet transform technique with MLP classifier produced better accuracy
than RBF classifier but computational time to build the model is more in MLP compare to RBF.

6.5.4 Medical statistics

The performance of MLP algorithm of medical statistics are evaluated such as Sensitivity (S)-
95.21%, Specificity (Sp) -99.15% and Precision (P) — 95.34% are shown in Table 6.6. The
performance of RF algorithm evaluated with the medical statistics are shown in Table 6.7. The
performance of RBF algorithms evaluated with the medical statistics are shown in Table 6.8
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Table 6.6 Medical Statistics of MLP using confusion matrix

ECG | TP | FP | FN | TN | Sensitivity(S) | Specificity(Sp) | Precision(P)
NSR | 14 | 2 1 | 88 93.3% 97.7% 95%
AF |13 | 1 2 | 89 86.6% 98.8% 92.85%
Cl |15 1 | 0 |89 100% 98.8% 93.75%
VT |14 | O 1 |90 93.3% 98.8% 100%
SVT |15 | O 0 | 90 100% 100% 100%
VF |15 | 0 0 | 90 100% 100% 100%
SCA |14 | 1 | 1 |89 93.3% 98.8% 93.33%
Average 95.21% 99.15% 95.34%
Table 6.7 Medical Statistics of RF using confusion matrix
ECG | TP |FP | FN | TN | Sensitivity(S) | Specificity(S) | Precision(Pp)
NSR |14 | 1 | 1 89 93.33% 98.88% 93.33%
AF |14 | 1 1 89 93.33% 98.88% 93.33%
Cl 14 | 0 1 90 93.33% 100% 100%
VT |15 | 1 0 89 100% 98.88% 93.75%
SVT (15| 2 | O 88 100% 97.77% 88.23%
VF |13 |0 | 2 90 86.66% 100% 100%
SCA |14 | 1 1 89 93.33% 98.88% 93.33%
Average 94.28% 99.04% 94.56%
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Table 6.8 Medical Statistics of RBF using confusion matrix

ECG | TP | FP | FN | TN | Sensitivity(S) | Specificity(S) | Precision(Pp)

Cl |15 |1 |0 |89 100% 98.88% 93.75%

VT |15 | 0 0 |90 100% 100% 100%

AF |13 | 2 2 | 87 86.66% 97.75% 86.66%
SCA |13 | 2 | 2 |87 86.66% 97.75% 86.66%
NSR | 13 | 2 2 | 87 86.66% 97.75% 86.66%

VF |14 | 1 1 |89 93.33% 98.88% 93.33%
SVT |14 |0 | 1 |90 93.33% 100% 100%

Average 92.38% 98.71% 92.44%

6.6 Performance comparison of cardiac arrhythmias classification

The performance of cardiac signals classification depends on number of cardiac signal records,
number of features, type of classifier and number of arrhythmias/disorders/normal signals.
Classification reported in the literature have been compared with the proposed classification
system is shown in Table 6.9. In the existing work of H. M. Rai et al. [44] used 64 hybrid of
features and obtained classification accuracy of two types of signals as 97.8%.

Maedeh Kiani Sarkaleh et al. [45] has classified three types of cardiac signals and produced
classification accuracy as 96.5% using MLP classifier. Proposed work classified 2 types of
cardiac signals (NSR and VT) and obtained an accuracy as 100% using MLP, RBF and RF

classifiers.

Later classified three types of signals-NSR, VT and VF and obtained classification accuracy as
97.77% and specificity is 98.88%. Compare to the existing work of Monalisa Mohanty et al.
[47], the proposed work average classification accuracy, sensitivity and specificity are more.
Pooja Bhardwaj et al. [49] classified 5 types of cardiac signals with accuracy 95.21% and
sensitivity 85.44%. The proposed work classified 7 types of cardiac signals and obtained
Precision-95.3%, Accuracy-95.24%, Sensitivity-95.2% and Sensitivity-95.2%
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Table 6.9 Summary of performance comparison of cardiac arrhythmias classification

Study by Records and Features | Classifier Diseases Accuracy
H.M.Rai et al. 45 Records BPNN Normal and [97.8%
[44] (25 arrhythmia and 20 Arrhythmia
normal) class(2-
16 morphological and Types)
48 wavelet features
Total : 64 features
Maedeh Kiani 10 Records MLP Normal and |96.5%
Sarkaleh et al. Features- 24 wavelet Arrhythmias
[45] features types
(3-Types)
Mangesh Singh |62 Records BPNN Normal and [98.4%
Tomar et al. [46] |14-NSR,48-Arrhythmia Arrhythmia
Features-20 wavelet class(2-
features Types)
5 statistical features
Total :25 features
30 Records MLP, RF |NSR and VT |MLP-100%
Proposed (NSR-15 and VT-15) and RBF  |(2-Types) RF-100%
Features-19 Wavelet RBF-100%
features
Monalisa 57 Records SVM and [NSR,VT and |[SVM] Se-79.43 %
Mohanty etal.  |Features-13Temporal and | C4.5 VF (3- Sp-81.44%
[47] Statistical features classifier | Types) Acc-92.23%
[C4.5] Se-90.97%
Sp-97.86%
Acc-97.02%
45 Records (NSR-15, VT- [MLP NSR,VT and |Sensitivity-97.77%
Proposed 15 and VF-15) classifier | VF (3- Specificity- 98.88%
Total: 19 Wavelet Types) Accuracy-97.77%
features
105 records RF NSR,SVT,V |Accuracy-94.21%
Only 19 Wavelet based T,VF,AF, Sensitivity-94.21%
features(db4) SCA, CI Specificity-99.04%
(7-Types)
RBF NSR,SVT,V |Accuracy-92.38%
Proposed T,VF,AF, Sensitivity-92.38%
SCA, ClI Specificity-98.72%
(7-Types)
MLP NSR,SVT,V |Accuracy-95.24%
T,VF,AF, Sensitivity-95.2%
SCA, CI Specificity-99.20%
(7-Types) Precision-95.3%
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6.7 Conclusion

It has been observed that wavelet based feature scheme played an important role in
distinguishing different cardiac arrhythmias and cardiac disorders. It is identified that Neural
Network Algorithms are getting better when the complexity of the data set increases.
Significant improvement has been observed in terms of classification accuracy of 7 types of
cardiac signals compared with the existing works as shown in Table 6.9 which has been the
objective of this research work. The proposed work classified 7 types of cardiac signals with
95.21% accuracy, sensitivity 95.2% and specificity 99.20% using MLP algorithm, using RF
algorithm obtained accuracy as 94.28% and using RBF algorithm obtained accuracy as 92.38%.
From the above results shown in Table 6.9, it is concluded that wavelet transform technique
with MLP classifier produced better results than RBF and RF classifier.

In most of the existing works used different number of records and got different values of
sensitivity and accuracy. Where as in the proposed work, equal number of records of each
category of cardiac signals are used for classification purpose and obtained equal values of
sensitivity and accuracy. In the proposed work obtained more specificity than sensitivity. In
real time applications it is required to have more specificity than the sensitivity. No patient

should be defibrillated except SCA patient, otherwise it causes cardiac arrest to normal persons.

The MLP classifier used for this work has 3 layers (1- input layer, 1- output and 1- hidden
layer). The input layer contains 19 nodes, the output layer has 7 nodes. Finally, obtained 13-
hidden neurons and 7 output neurons. Further, this efficient wavelet based feature scheme can

be extended to classify other types of cardiac arrhythmias and disorders.

The main objective of this research work is to enhance classification accuracy of cardiac signals
and improve specificity to enable doctors for early diagnose the type of cardiac disorder to save
life of heart patients. The proposed research work has been extended to develop cardiac alert

system using wavelet based feature scheme.
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Chapter 7

Conclusion and Future Scope

This chapter describes the results and conclusion in a brief and comprehensive manner. Further

future scope of the research work has been given.
7.1 Conclusion

Finding efficient feature scheme is an important challenge for automatic classification of
cardiac signals. In this research work, four different feature extraction techniques have been
proposed for analysis and classification of cardiac signals (cardiac arrhythmias, cardiac

disorders and normal).

e Time domain analysis and classification of cardiac signals using artificial intelligence

algorithms.

e Spectral analysis and classification of cardiac signals using hybrid (temporal and

spectral) features.

e Higher order spectral analysis and classification of cardiac signals using hybrid

(temporal, spectral and bispectral) features.
e Wavelet analysis and classification of cardiac signals using wavelet features

In the first approach, Pan Tompkins algorithm is used to extract temporal features such as
number of R peaks, amplitude of R peaks, R-R intervals and heart beat rate. It is observed that
there is a variation in temporal features of various cardiac signals. Based on this variation,
initially proposed to classify two types of cardiac signals. Classification accuracy has been
improved from 96.5% existing work to 100% for temporal features. Later proposed to classify
7 types of cardiac signals (1- normal, 4-arrhythmias and 2-cardiac disorders) and obtained an
accuracy as 78.09% using Random Forest classifier and also evaluated the results with other
neural network classifiers. Performance comparison with the existing work in time domain is

shown in Table 7.1
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Table 7.1 Performance comparison with the existing work in time domain

Study R?:cords 2, Classifier Cardiac Signals CESEE T
eatures Accuracy
M 300 Records,

12 - NSR and Cardiac 0
Vijayavanan Morphological PNN Arrhythmia (2 types) 96.5%
etal. [5] f

eatures
30 Records , RF, MLP | [NSR,Ventricular
4 temporal and RBF | Arrhythmia(VF)](2 types) 100%
features
Proposed
alced s gil/STR\’/T VF,AF,SCA,CI]
4-temporal RF T ' 78.09%
f (7 types)
eatures

In the second approach, spectral features have been proposed to get more details of the ECG
signal in frequency domain. This spectral analysis has given how the ECG signal’s energy is
distributed over a wide range of frequencies. In the existing work, Usman Rashed et al. [19]
used FFT algorithm on 4 minutes ECG data to detect sudden cardiac arrest compared to normal
signal. For the proposed work, FFT algorithm is applied on 1 minute ECG data to extract
spectral features (mean, median, standard deviation and energy). Spectral features (R1 to R5
regions) are extracted. R1-R4 regions spectral features are used for classifying NSR and SCA
and obtained average classification accuracy of 93.3%. Later, using only R3 region spectral
features are used to classify NSR & SCA and obtained same classification accuracy as 93.3%
and the results are also evaluated with other classifiers. Hence, it is identified that R3 region
play a significant role in distinguishing NSR and SCA as R3 frequency range is matching to
the QRS complex frequency range. To enhance classification accuracy, hybrid (temporal and
spectral features) approach is proposed and obtained classification accuracy as 100% for NSR
and SCA signals using MLP and RBF classifiers. Later, the work has been extended to classify
7 types of cardiac signals (1- normal, 4-cardiac arrhythmias and 2- cardiac disorders) and
obtained classification accuracy as 78.09% using RF classifier and also evaluated the results
with other classifiers. When complexity is less, RF classifier gives better performance compare
to MLP and RBF classifiers as shown in Table 7.2.
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Table 7.2 Performance comparison with the existing work in spectral domain

Study Records and Features Classifier Cstgrdiac Classification
ignals Accuracy
Usman 8 Records, Distinguished NSR and SCA
Rashed et 5 Spectral features based on spectral (2 types) -
al. [19] P parameters yp
RF-93.33%
FIEEEEE zosgsggg?sf,eatures(R@ SEFMLP e gcsli(;ng/pes) MIEP S
RBF-96.6%
RF-93.33%
NSR and SCA | MLP-100%
RBF-100%
Pronosed Hybrid features RF, MLP and
P (Temporal& Spectral) | RBF NSR, SVT, MLP-71.4%
VT, VF, AF, ~o
Cl&SCA (7 | RBF-66:6%
RF-78.09%
types)

The accuracy did not increase even in hybrid approach also. It is observed that normal spectral
analysis of a signal does not give any phase coupled information of the signal. ECG signals are
basically non-linear, quasi periodic and non-stationary in nature. There is a need of phase
coupled information for identification and classification of cardiac arrhythmias. So, higher
order spectral analysis is proposed in the third approach.

In the third approach, hybrid features have been proposed to provide supplementary
information about non-gaussianity and non-linearity of the ECG signal for cardiac arrhythmias
identification. In the HOSA domain, the bispectrum, bicoherence and QPC plots are used to
analyse 7 types of cardiac signals. It is observed that HOSA plots are potential visual aids to
distinguish normal, four types of cardiac arrhythmias and two cardiac disorders. In particular
the bicoherence indicates that phase coupling decreases as arrhythmia kicks in. In the existing
work of L. Khadra et al.[21] classified only 4 types (NSR ,VT, VF and AF) of cardiac signals
with sensitivity 89.2%and specificity 93.55%. In the existing work of . A. Karaye et al. [26]
classified 5 types (NSR and 4 diseases) of cardiac signals with sensitivity 88.4% and specificity
96.2%. In the proposed work classified 4 types (NSR, VT, VF and AF) of cardiac signals with

improved accuracy of 90% using RF classifier and also evaluated the results with other
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classifiers. Later, proposed to classify 7 types of cardiac signals (1- normal, 4- arrhythmias and
2- cardiac disorders) and obtained classification accuracy as 74.2%, sensitivity as 74.2% and
specificity as 95.02% using RF, MLP and RBF classifiers. The performance comparison is
shown in Table 7.3. There is a need to find time and frequency information at a time using

multi resolution analysis. So, wavelet based feature extraction is proposed in the fourth

approach to enhance classification accuracy.

Table 7.3 Performance comparison with the existing work in higher order spectral domain

Study by Nu;%e;g;tze:ec;rds Classifier Diseases Accuracy

L. Khadra et |43-records Bispectral NSR VT, VF | Sensitivity-89.2%

al. [21] (AF-12, VT-11, VF- | contour and AF Specificity-93.55%
12 and NSR-08) analysis (4 types)
HOSA features-3

I. A. Karaye |47-records Feed NSR, Sensitivity-88.4%

et al. [26] Temporal features-1 | forward LBBB,RBBB, | Specificity-96.2%
HOSA features-3 ANN PB and APB Accuracy- 94.9%.

(5 types)

60 Records (AF-15, |RF NSR ,VT, VF | Sensitivity-90 %
VT-15, VF-15 and and AF(4 Accuracy- 90%
NSR-15) types) Specificity-96.62%
Spectral-1,
Bispectral-4 and

Proposed Temporal features-4
105 Records,(7 types | MLP NSR,SVT,VT, | Sensitivity-74.28%
each 15 records) VF, AF, CI Accuracy-74.2%
Spectral ,Bispectral and SCA Specificity-95.70%
and Temporal Precision-75.02%
features(9 features)

In fourth approach, the wavelet based feature scheme is proposed to classify seven types of
cardiac signals. A 6-level wavelet (db4) decomposition technique is used to obtain 19-features
and these features provided supplementary information about time and frequency of ECG
signals. Existing works classified 2, 3 or 5 types of cardiac signals with less classification
accuracy is as shown in Table 7.4. Whereas the proposed technique classified 7 types of cardiac
signals (normal, 4 types of cardiac arrhythmias and 2 types of cardiac disorders). The proposed

work enhance classification accuracy to 95.21% using 19 wavelet features. Medical statistics
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obtained as Sensitivity 95.21%, Specificity 99.15% and Positive Predictivity 95.34% using

MLP classifier. The specificity is more important than the sensitivity. Since, no patient should

be defibrillated except SCA patient .Otherwise, this error may cause to sudden cardiac arrest

[16] for normal persons.

Table 7.4 Performance comparison of cardiac arrhythmias classification in wavelet domain

Study by Records and Features |Classifier |Diseases Accuracy
Monalisa 57 Records SVM NSR,VT and | [SVM] Se-79.43 %
Mohanty etal.  |VT-35, VF-11, NSR-11 VF (3-Types) Sp-81.44%
[47] Features-13 Acc-92.23%
Temporal &Statistical |C4.5 [C4.5] Se-90.97%
features(hybrid) Sp-97.86%
Acc-97.02%
45 Records (NSR-15, MLP NSR,VT and |Sensitivity-97.77%
VT-15 and VF-15) VF (3-Types) |Specificity- 98.88%
19 Wavelet features Accuracy-97.77%
Proposed
105 records MLP NSR,SVT,VT, |Accuracy-95.24%
19 Wavelet based VF, AF, ClI  |Sensitivity-95.2%
features and SCA Specificity-99.20%

Precision-95.3%
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Table 7.5 Comparison of cardiac arrhythmias classification in different domains

record.[19- features]

eI Features used Cgrdlac Classifier | Accuracy
Scheme Signals
Temporal [No. of R peaks, R peak amplitude, |7 types of MLP 70.47%
R-R interval and Heart beat rate cardiac signals 7
[4 features] (105 records) RBF 70.05%
RF 78.09%
Temporal [4-Temporal features (No. of R 7 types of MLP 71.4%
& spectral | peaks, R peak amplitude, R-R cardiac signals
interval and Heart beat rate) and 4- | (105 records) |RBF 66.6%
Spectral feature§ (Mean, Median , RE 78.09%
SD and Energy in R3)- [8-features]
Temporal, |Total Features-10; Bispectral 7 types of MLP 74.28%
Spectral features ( Kurtosis, skewness, cardiac signals
and variance and bicoherence); Spectral | (105 records) RBE 2420
Bispectral |features (energy) and Temporal e70
features ( No. of R peaks, R peak
amplitude, R-R interval and Heart .
beat rate) RF 74.2%
[10-features]
Wavelet Detailed coefficients of maximum, |7 types of MLP 95.24%
based minimum and standard deviation of |cardiac signals
features 1-5 Ie_vgls; Approxi mation (205 records) RBE 92.38%
(db4) coefficients of maximum, minimum
and standard deviation of 6th level
and the energy retained of each RF 94.21%

All the four methods developed in this thesis are novel, however third and fourth methods are

efficient feature schemes and are superior in terms of classification accuracy when compared

to the existing work. Comparison of 7 types of cardiac signals classification in different

domains is shown Table 7.5. For temporal and spectral features (less than 10 features) RF

classifier is giving better accuracy. In HOSA using hybrid features all three classifiers produced

same performance, though their learning mechanism is different. In wavelet domain, MLP

produced better performance compare to MLP and RF classifiers.
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7.2 Future scope

In this research work, 7 types of cardiac signals (NSR, 4 types of cardiac arrhythmias-
VT,VF,SVT,AF and 2 types of cardiac disorders-SCA,CI) have been analyzed in time domain,
spectral domain, higher order spectral domain and wavelet domain and classified using three
supervised classifiers(RF, MLP and RBF). An experimental setup of cardiac alert system has
been developed using efficient wavelet based feature scheme for remote monitoring of cardiac
patients. This application has been included in Appendix.

This research work may be further extended to identify and classify few more cardiac disorders
such as Right Bundle Branch Block (RBBB), Paced Beat (PB), Left Bundle Block Branch
(LBBB), Atrial Premature Beats (APB) and Premature Ventricular Contraction (PVC). Deep
neural networks such as Convolutional neural networks (CNN) and Recurrent Neural Networks
(RNN) do not require any other signal processing techniques for feature extraction purpose.
Directly CNN or RNN can be used to classify different types of cardiac arrhythmias and
disorders. Further a proto type cardiac alert system can be developed by using wavelet based

feature scheme for tele cardiology application.

7.3 Limitations

Number of records can be increased in order to make the results statistically more sound and
improve the research into a biomedical application. There are several issues with application
of Artificial Intelligence. Reading the data at real time and classifying is a requirement to use
this technology in clinical setting. In order to extend this application to into a version where a
person can wear a smart watch at all times, the use of highly sensitive sensors are needed which
produce signals that can match the level of a standard ECG.

Application of this classification to be used in clinical settings is not possible at this stage as
the consequences are various such as bioethical issue of liability in case of misdiagnosis; should
the onus be on researcher who is the owner of the patent or the company which bought it and

capitalized it or the doctor that depended on this algorithm.
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Appendix
Cardiac Alert System

A.l Introduction

Significant improvement has been observed in terms of classification accuracy with the present
work shown in Chapter 6. Further, this efficient wavelet feature scheme is used to develop a
Cardiac Alert System with the help of Arduino Uno and GSM SIM 900A. For wireless real
time transmission of signal, GSM module is being used. With this remote monitoring of heart
patients is possible which is important to save the life of heart patients. An Arduino Uno board
takes the signal directly from a computer and is connected to a GSM board. This GSM board
sends an SMS text message with the results of the classification. For example when cardiologist
receives the message alert of sudden cardiac arrest with patient details from intensive care unit
of hospital, he can alert the clinical staff members to take care of cardiac patients according to
cardiac pulmonary resuscitation (CPR) guidelines, till he reaches the hospital. High-quality
CPR at a rate of 100-120 chest compressions per minute must be started immediately to keep
oxygenated blood flowing to their brain. CPR must be used in tandem with an Automated
External Defibrillators (AED) to improve chances of survival exponentially.

Obijective of this research work application is to alert cardiologist for remote monitoring
of heart patients and to diagnose the type of cardiac disorder/arrhythmia for immediate
treatment to save life of heart patients. This research will be suitable for tele cardiology
application of telemedicine as it has unique capacity to improve the health care service to

millions of rural people.
A.2 Cardiac Alert System

The Block diagram of Cardiac Alert System is shown below in Fig A.1. ECG data will be given
to computer for feature extraction using wavelet analysis. These wavelet features are used to

develop matlab code to identify the type of cardiac problem.
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(or) .
ECG signal = Laptop __ Arduino  |—j»| GSM
from patient Uno 900A

Cardiologist
mobile

Fig A.1 Block Diagram of Cardiac Alert System

Fig A.2 Experimental set-up of Cardiac Alert System

The Arduino UNO board (ATmega328P) has been connected to the computer using a USB
cable to establish a serial communication at a baud rate of 9600. Arduino board is usually
powered using USB cable connecting the computer. The experimental set-up of Cardiac Alert
System has been shown in Fig A.2. The voltage provided to Arduino is controlled by the voltage
regulator and stabilizes the DC voltage which is used by processor. Arduino UNO board has
14 digital 1/0 pins (of which 6 can be used as Pulse Width Modulation outputs), 6 analog inputs,
a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP header and a reset
button. On top of crystal, printed number is 16.000H9H, which indicates that the frequency
used is 16 MHz. Arduino board can be reset when program is initiated. Many ground pins are
present on board which can be used to ground the circuitry. Voltage input provides supply to
the board. When Arduino is plugged to power, LED glows indicating that the board is powered
up correctly. If LED doesn’t glow, it states that connection is wrong. TX and RX LEDs are

used for representing the pins which are accountable for communicating serially. While
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transmitting data serially, TX LED does flashing with various speeds which is based on baud
rate and while receiving the data, RX LED flashes. GSM/GPRS-compatible Quad-band mobile
phone functions on a frequency related to 850/900 and also be used for communication not
only for accessing the net. Module got managed through AMR926EJ-S processor that controls
data and mobile communication through the integrated TCP/IP stack.

The following steps are required to operate GSM module:
1. Insert SIM card to GSM module and lock it.
2. GSM module should be operated by providing 12V supply.
3. Initially blinking rate of network LED will be high. Once the connection is established

successfully, the LED will blink continuously for every 3 seconds.

TXD - RXD
GND = GND
RXD «— TXD

12V 2Amp DC Adapter 12V 2Amp DC Adapter

Fig A.3 Interfacing of Arduino with GSM

GSM module has been connected to Arduino UNO using the digital pins as shown in Fig A.3
TX pin of GSM Module is connected to Arduino Uno RX pin. RX pin-9 of GSM module is
connected to Arduino Uno TX pin. GND pin of GSM module is connected to Arduino Uno
GND pin. The Arduino UNO was interfaced with GSM module at a baud rate of 9600.
Interfaced the Computer, Arduino and GSM. An Arduino UNO board was used for the
processing. GSM SIM900A was used to transmit the SMS and make phone calls to the
respective doctor when a cardiac abnormality was detected. The phone calls lasts for 10 seconds
and hang up automatically. MATLAB code is written based on the wavelet feature scheme to
identify the type of cardiac arrhythmias and disorders. The control program is supplemented in
Arduino code with patient details and doctor mobile number is given in Section A.3.
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A.3 Arduino Code for Cardiac Alert System

#include <SoftwareSerial.h>

Software Serial my Serial(9, 10);

int a;

void setup()

{mySerial.begin (9600); // Setting the baud rate of GSM Module
Serial.begin(9600);}

void loop()

{ //Serial.printIn("check");

while (!Serial.available()) {}

int a = Serial.parselnt();

Serial.printin(a);

if (a == 10)
{ sca(); }
else if( a == 20)
{ ci()}
else if(a == 30)
{ nsr();}
else if(a == 40)
{ vi();}
else if(a == 50)
{ vt();}
else if(a == 60)
{ svt();}
else if(a == 70)
{ af(); }}
void sca()
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{ MakecCall();
mySerial.printin("AT+CMGF=1"); //Sets the GSM Module in Text Mode
delay(1000); // Delay of 1000 milli seconds or 1 second
mySerial.printIn("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number
delay(1000);
mySerial.printIn("WARNING: CODE BLUE");
mySerial.printin("PATIENT ID= ######");
mySerial.printin("BED NUMBER= #####");
mySerial.printIn("PATIENT NAME= #####");
mySerial.printIn("CASE OF SUDDEN CARDIAC ARREST");
//mySerial.print("");
//mySerial.printin(BPM);
//mySerial.printin("CASE OF BRADYCARDIA");
delay(100);
mySerial.printIn((char)26);// ASCIl code of CTRL+Z
delay(1000);
MakeCall();}

void ci()

{ MakecCall();
mySerial.printin("AT+CMGF=1"); //Sets the GSM Module in Text Mode
delay(1000); // Delay of 1000 milli seconds or 1 second
mySerial.printin("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number
delay(1000);
mySerial.printIn("WARNING: CODE BLUE");
mySerial.printin ("PATIENT |D= ######");
mySerial.printin("BED NUMBER= ##t##");

mySerial.printIn("PATIENT NAME= #####");
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mySerial.printIn("CASE OF CARDIAC ISCHEMIA");
//mySerial.print("");
//mySerial.printin(BPM);
//mySerial.printin("CASE OF BRADYCARDIA");
delay(100);
mySerial.println ((char) 26);// ASCll code of CTRL+Z
delay(1000);
MakeCall();

}

void snr()

{ MakecCall();
mySerial.printIn("AT+CMGF=1"); //Sets the GSM Module in Text Mode
delay(1000); // Delay of 1000 milli seconds or 1 second
mySerial.printIn("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number
delay(1000);
mySerial.printIn("WARNING: CODE BLUE");
mySerial.printin("PATIENT ID= ####i#");
mySerial.printin("BED NUMBER= #it###");
mySerial.printin("PATIENT NAME= ####");
mySerial.printIn("CASE OF NORMAL SINUS RYTHM");
delay(100);
mySerial.printin((char)26);// ASCII code of CTRL+Z
delay(1000);
MakeCall();

}

void vf()

{ MakeCall();
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mySerial.printIn("AT+CMGF=1"); //Sets the GSM Module in Text Mode

delay(1000); // Delay of 1000 milli seconds or 1 second

mySerial.printIn("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number

delay(1000);
mySerial.printin("WARNING: CODE BLUE");
mySerial.printin("PATIENT ID= ######");
mySerial.printin("BED NUMBER= ##t#");
mySerial.printin("PATIENT NAME= #####");
mySerial.printin("CASE OF Ventricular Fibrillation");
delay(100);
mySerial.printIn((char)26);// ASCIl code of CTRL+Z
delay(1000);
MakeCall();

}

void vt()

{ MakecCall();

mySerial.printin("AT+CMGF=1"); //Sets the GSM Module in Text Mode

delay(1000); // Delay of 1000 milli seconds or 1 second

mySerial.printIn("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number

delay(1000);

mySerial.printin("WARNING: CODE BLUE");
mySerial.printin("PATIENT ID= ####i#");
mySerial.printin("BED NUMBER= ##t###");
mySerial.printIn("PATIENT NAME= #####");
mySerial.printin("CASE OF Ventricular tachycardia");
delay(100);

mySerial.printin((char)26);// ASCII code of CTRL+Z
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delay(1000);
MakeCall();
}
void svt()
{ MakecCall();
mySerial.printin("AT+CMGF=1"); //Sets the GSM Module in Text Mode
delay(1000); // Delay of 1000 milli seconds or 1 second
mySerial.printIn("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number
delay(1000);
mySerial.printIn("WARNING: CODE BLUE");
mySerial.printin("PATIENT ID= ######");
mySerial.printin ("BED NUMBER= #####");
mySerial.printIn("PATIENT NAME= #####");
mySerial.printin("CASE OF Supra Ventricular tachycardia");
delay(100);
mySerial.printin((char)26);// ASCII code of CTRL+Z
delay(1000);
MakeCall();
}
void af()
{ MakecCall();
mySerial.printin("AT+CMGF=1"); //Sets the GSM Module in Text Mode
delay(1000); // Delay of 1000 milli seconds or 1 second
mySerial.printin("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number
delay(1000);
mySerial.printIn("WARNING: CODE BLUE");

mySerial.printin("PATIENT ID= ######");
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mySerial.printin("BED NUMBER= #i##");
mySerial.printin("PATIENT NAME= ####");
mySerial.printIin("CASE OF Atrial fibrillation");
delay(100);
mySerial.printin((char)26);// ASCIl code of CTRL+Z
delay(1000);
MakeCall();

}

void MakeCall()

{ mySerial.printin("ATD+919440762744;"); // ATDxxxxxxxxxx; -- watch out here for
semicolon at the end!!

Serial.printIin("Calling "); // print response over serial port
delay(1000);
delay(20000);
HangupcCall();
}
void HangupCall()
{ mySerial.printin("ATH");
Serial.printin("Hangup Call");

delay(1000);}
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A.4 Matlab Code for Cardiac Alert System

A = xlsread (‘pro.xlsx’)
%sudden cardiac arrest (1 to 15 rows)
%cardiac ischemia (17 to 39 rows)
%normal sinus rythm (41 to 50 rows)
data = A(60 ,:)
if(data(3) <5 && data(19) < 97 && data(18) < 752 && data(2) < -10 && 2 < data(3) &&
data(17) < -61 && data(16) < 880 && data(5) < -28 && 92 < data(19) && 39 < data(18)
&& -38 < data(2) && -1578 < data(17) && 50 < data(16) && -200 < data(b))
disp(‘atrial fibrillation")
a=70
elseif(data(3) < 16 && data(19) < 94 && data(18) < 457 && data(2) < -34 && data(l) <71
&& 5 < data(3) && 90 < data(19) && 84 < data(18) && -94 < data(2) && 44 < data(1))
disp(‘'super ventricular tachycardia’)
a=60
elseif(data(3) < 3 && data(19) < 101 && data(18) < 439 && data(2) < -3 && 1 < data(3)
&& 99 < data(19) && 19 < data(18) && -9 < data(2))
disp("Ventricular tachycardia’)
a=50
elseif(data(3) < 6 && data(19) < 99.8 && data(18) < 2802 && data(2) < -6 && data(17) < -
300 && data(16) < 5131 && data(5) < -10 && 1 < data(3) && 93 < data(19) && 131 <
data(18) && -39 < data(2) && -5002 < data(17) && 345 < data(16) && -164 < data(5))
disp('Ventricular fibrillation")
a=40
elseif( data(3) <5 && data(19) <90 && 0 < data(3) && 74 < data(19))
disp(‘'sudden cardiac arrest’)
a=10
elseif( data(3) < 200 && data(19) < 98 && 30 < data(3) && 92 < data(19))
disp(‘cardiac ischemia’)
a=20
elseif(data(3) < 25 && data(19) < 92 && data(5) < -259 && 10 < data(3) && 86 < data(19)
&& -565 < data(s))
disp(‘'normal sinus rythm’)
a=30
end
arduino=serial(COM3','BaudRate’',9600);
% create serial communication object on port COM4
disp('stagel’)
fopen(arduino); % initiate arduino communication
disp(‘'serial communication initiated')
pause(2);
fprintf(arduino,'%d',a);
val = fscanf(arduino);
disp(val);
pause(0.1);
disp('serial communication successful')
fclose(arduino);
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A.5 Results and Conclusion

The simulation results have been verified by using Arduino and matlab codes. An alert system
alerts the cardiologist /clinical doctors by making a call and sending an SMS alert to indicate
the type of cardiac disorder. The text SMS which has been sent to doctor consisted of various
fields like Patient ID, Patient Name, Patient Bed Number and type of cardiac disease is

displayed as shown in Fig A.4.

7 D Ll .l 59% @ 10:23 a.m.

WARNING: CODE BLUE
PATIENT ID= ######
BED NUMBER= #####
PATIENT NAME= ###3##
CASE OF Ventricular
Fibrillation

914p.m. B

WARNING: CODE BLUE
PATIENT ID= ######

BED NUMBER= #####
PATIENT NAME= #####
CASE OF CARDIAC ISCHEMIA

9:33p.m. B

? Enter message (3

Fig A.4 SMS alert to cardiologist

The main objective of the cardiac alert system is to monitor the patients remotely with the help
of GSM technology to alert the clinical staff/cardiologist to take care of the heart patient. This
type of Cardiac Alert System is very much useful in early detection of cardiac disorder in Tele-

Cardiology application.
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Fig A.5 Tele Cardiology for remote monitoring of heart patient [13]

Tele cardiology enhances the telemedicine application to deliver cardiac care to the remote
patient as shown in Fig A.5. This Tele cardiology application has tremendous potential to

improve basic health care facility in both rural and urban populated areas.
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