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Abstract 
 

In the modern industrialized countries every year millions of people die due to cardiac disorders. India has 

highest incidence of heart related diseases in the world. According to world health organization statistics 

an estimated 17.9 million people died from cardio vascular diseases in 2016, representing 31% of all global 

deaths. The life expectancy in India was reduced to 68.3 years. If no initiative is taken to check this most 

predictable and preventable among all chronic diseases, life expectancy may further decrease. Most of 

the cardiac disorders can be preventable by taking healthy diet, doing physical activity, avoiding 

alcohol & tobacco.  

Manual analysis of cardiac arrhythmias and disorders is very difficult, computer based analysis 

is important for early detection of cardiac problem which enable the doctor to save the heart 

patient. For this purpose, various feature schemes have been proposed by various researchers for 

classification of cardiac arrhythmias and disorders. There is a large variation in number of 

features, number of cardiac signals and classification accuracy. However, selecting better signal 

processing technique for feature extraction, selecting optimum set of features, choosing proper 

neural network classifier to improve the classification accuracy remains an open problem. This 

aspect is motivation to take up the issue of automatic classification of cardiac arrhythmias. This 

research work will enable the clinical doctors and cardiologists to diagnose type of cardiac 

disorder to initiate proper treatment to save the life of heart patients.  

In this thesis, four signal processing techniques (time domain, spectral domain, higher order 

spectral domain and wavelet domain) and three supervised classifiers (Random Forest, Multilayer 

perceptron and Radial Basis Function) have been proposed for analysis and classification of 

cardiac signals to improve the performance of a baseline system.  

In the first approach, temporal features extraction has been proposed. Using this feature scheme, 

the average classification accuracy of two types of cardiac signals has been improved from 96.5% 

(existing morphological feature scheme) to 100% for temporal features (proposed). For 

classification of NSR, VT and VF (three types) the average classification accuracy has been 84%. 

For classification of NSR, SVT, VT, VF, AF, SCA and CI (seven types) the average classification 

accuracy has been 78.09%. 
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In the second approach, spectral features are proposed. Using only four spectral features for 

normal and abnormal (two types) average classification accuracy obtained as 96.6%. This has 

been improved to 100% by using hybridization of temporal and spectral features. Further 

classified  7 types of cardiac signals normal(NSR) , cardiac arrhythmias(SVT, VT, VF, AF) and 

cardiac disorders(SCA and CI) .The average classification accuracy has been obtained as 78.09% 

using this hybridization feature scheme. 

 In the third approach, to get the advantage of non-linearity and non-gaussianity, hybridization of 

temporal, spectral and higher order spectra (HOS) based features have been proposed. Using this 

feature scheme, 4-types of cardiac signals such as Normal Sinus Rhythm (NSR), Ventricular 

Arrhythmias (VT and VF) and Atrial Arrhythmia (AF) classified and the obtained sensitivity has 

been improved from 89.2% (existing) to 90% (proposed) and average specificity enhanced from 

93.55% (existing) to 96.62% (proposed). Using this proposed feature scheme, average 

classification accuracy and specificity of 7-types has been obtained as 74.2% and 95.70%. 

In the fourth approach, Wavelet (db4)-6 level decomposition technique is used for feature 

extraction. This multi resolution analysis has been proposed as a non-stationary, non-linear and 

quasi periodic signal.  Wavelet based features are proposed to classify NSR,VT and VF(3 types)  

obtained sensitivity has been  increased from 90.97%(existing)  to 97.77%( proposed) , specificity 

increased  from 97.86% to 98.88 % and classification accuracy from 97.02%(existing) to 

97.77%(proposed). In this proposed work equal values of sensitivity and accuracy are obtained. 

Later, the proposed wavelet based feature scheme has been extended to classify 7 types of cardiac 

signals and obtained classification accuracy as 95.24%, sensitivity as 95.2% and specificity as 

99.20%. The specificity is more important than the sensitivity, since no patient should be 

defibrillated except SCA patient due to an error of analysis which might cause cardiac arrest. The 

main objective of this research work is to enhance classification accuracy of cardiac signals, to 

improve specificity to enable doctors for early diagnose the type of cardiac problem to save the 

life of heart patients. 

Further, performance comparison has been done with the existing works. All the four methods 

developed in this thesis are novel and better compared to traditional features reported earlier. 

However, the wavelet based feature scheme proposed in the fourth method is superior in terms of 
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classification accuracy and specificity. With this efficient wavelet based feature scheme a cardiac 

alert system has been developed for remote monitoring of cardiac patients. This research work 

may be further extended to identify and classify few more cardiac disorders. 

The feasibility of above proposed methods have been tested using benchmarked MIT-BIH 

database, European ST_T database, Ventricular Tachyarrhythmia data base, SCD holter data 

base. 

Keywords: Cardiac arrhythmias classification, Feature extraction, Feature Selection, MLP, 

Random Forest and RBF. 

 

 

 

 

 

 

 

 

 



v 
 

Contents 

Acknowledgement i 

Abstract ii 

List of Figures ix 

List of Tables xiv 

List of Abbreviations xvii 

Chapter 1  Introduction 1 

1.1  Anatomy and electrical functioning of the heart 1 

1.2  Need of arrhythmias analysis and classification 10 

1.3  Motivation 11 

1.4  Objectives of the proposed research work 12 

1.5  Overview of the research work 12 

1.6  Database details 15 

1.7  Tools used for ECG analysis and classification 16 

1.8  Thesis Organization 17 

Chapter 2  Literature Review 19 

2.1  Introduction 19 

2.2  Cardiac arrhythmias analysis and classification in time domain 19 

2.3  Cardiac arrhythmias analysis and classification in spectral domain 22 

2.4  Cardiac arrhythmias analysis and classification in higher order spectral              

domain 
23 

2.5  Cardiac arrhythmias analysis and classification in Wavelet Domain 24 

2.6  Concluding remarks 31 

Chapter 3  Cardiac arrhythmias analysis and classification in time domain 32 

3.1  Introduction 32 



vi 
 

3.2  Overview of existing works 32 

3.3  Cardiac arrhythmia analysis using temporal features 33 

3.4  Introduction to Artificial Intelligence Algorithms 
53 

3.4.1  Introduction  
54 

3.4.2  Random Forest (RF) Classifier  
54 

3.4.3  Multilayer perceptron (MLP) Classifier  
55 

3.4.4  Radial Basis Function (RBF) Classifier  
57 

3.4.5  Choice of a classifier 
58 

3.4.6  Medical statistics 
59 

3.5  Results and Discussion 
60 

3.5.1 MLP classifier  results 
60 

3.5.2  RBF classifier results 
64 

3.5.3 RF classifier results 
66 

3.6  Performance comparison of cardiac arrhythmias classification  
71 

3.7  Conclusion 
72 

Chapter 4  Cardiac Arrhythmias Analysis and Classification in Spectral Domain 73 

4.1  Introduction 73 

4.2  Overview of existing works 74 

4.3  Methodology for Spectral Domain Analysis 74 

4.4  Classification of Arrhythmias using Neural Networks and Machine 

Learning Algorithms 
77 

4.5  Results and Discussion 96 

4.5.1 MLP classifier results 96 

4.5.2 RBF classifier results 101 

4.5.3 RF classifier results 104 

4.6  Performance comparison of cardiac arrhythmias classification  107 

4.7  Conclusion 
108 



vii 
 

Chapter 5  Cardiac arrhythmias analysis and classification in HOS domain 
110 

5.1  Introduction 
110 

5.2  Overview of existing works 
110 

5.3  Methodology for Higher Order Spectral Analysis 
111 

5.3.1  Bispectrum 
114 

5.3.2  Bicoherence 
115 

5.3.3 Quadrature Phase Coupling 
115 

5.3.4  Higher Order Statistics 
117 

5.4  Classification of Arrhythmias using Neural Networks and Machine 

Learning Algorithms 118 

5.5  Results and Discussion 
134 

5.5.1 MLP classifier results 
134 

5.5.2 RBF classifier results 
138 

5.5.3  RF classifier results 
140 

5.6  Performance comparison of cardiac arrhythmias classification 
142 

5.7  Conclusion 
144 

Chapter 6  Cardiac arrhythmias analysis and classification in wavelet domain 
145 

6.1  Introduction 
145 

6.2  Overview of existing works 
145 

6.3  Methodology for wavelet analysis 
147 

6.3.1 Pre-processing 
147 

6.3.2 Discrete Wavelet Transform 
147 

6.3.3 Wavelet based feature extraction using  Wavelet  decomposition 
149 

6.4  Classification of Arrhythmias using Artificial Intelligence Algorithms 
151 

6.5  Results and Discussion 
158 

6.5.1  MLP classifier  results 
158 

6.5.2  RBF classifier results 
163 



viii 
 

6.5.3  RF classifier results 
166 

6.5.4  Medical statistics 
169 

6.6  Performance comparison of cardiac arrhythmias classification 
171 

6.7  Conclusion 
173 

Chapter 7  Conclusion and Future Scope 174 

7.1  Conclusion 174 

7.2  Future scope 180 

7.3  Limitations 180 

Appendix A  Cardiac Alert System 181 

A.1  Introduction 181 

A.2  Cardiac Alert System 181 

A.3  Arduino Code for cardiac alert system 184 

A.4  Matlab Code for Cardiac Alert System 190 

A.4  Results and Conclusion 191 

References 193 

Publications   203 

Journal publications 203 

Conference Publications 203 



ix 
 

List of Figures 

Fig. No. Description Page No. 

1.1 Anatomy of the heart 1 

1.2 Electrical conduction system of the heart 2 

1.3 Blood circulation in human body 3 

1.4 Twelve Lead ECG recording 3 

1.5 Normal ECG Signal 4 

1.6 NSR 6 

1.7 SVT 6 

1.8 VT 6 

1.9 VF 7 

1.10 AF 7 

1.11 SCA 8 

1.12 CI 8 

1.13 Angioplasty (stents) 9 

1.14 Medication (heparin) 9 

1.15 Bypass Surgery                         9 

1.16 Ablation Catheter 9 

1.17 Automated external defrbrillator 10 

1.18  Implantable CD 10 

1.19 Block diagram for Arrhythmia Classification  13 

1.20 Cardiac signal analysis using signal processing techniques for 

feature extraction 

14 

3.1 Pan Tompkins Algorithm 34 

3.2 Base line wander removal 34 

3.3 QRS detection 35 



x 
 

3.4 Normal ECG signal (record no 16420) with base line wander noise. 37 

3.5 Normal ECG signal (record no 16420) after removal of base line 

wander noise  

37 

3.6 Normal ECG signal (record no 16420) after band pass filter 37 

3.7 Normal ECG signal (record no 16420) after differentiation. 38 

3.8 Normal ECG signal (record no 16420) after squaring operation 38 

3.9 Normal ECG signal (record no 16420) after moving integration 38 

3.10 Simulation results of NSR records [16265, 16273 and 16773] 39 

3.11 Simulation results of SVT records [820,823 and 800] 40 

3.12 Simulation results of VT records[cu01, cu15 and cu12] 41 

3.13 Simulation results of VF records [602,609 and 430] 42 

3.14 Simulation results of CI records [e0104, e0105 and e0107] 43 

3.15 Simulation results of SCA records [42, 43 and 41] 44 

3.16 Simulation results of AF records [04043, 08215 and  08434] 45 

3.17 R-peak amplitude variation of different cardiac signals 50 

3.18 R-R Interval variation of different cardiac signals 50 

3.19 Average number of R-Peaks/minute in different cardiac signals 51 

3.20 Standard Deviation for R-R intervals for different cardiac signals 52 

3.21 Heart beat rate variation of cardiac signals 53 

3.22 Random Forest Classifier  54 

3.23 MLP general neural network structure  56 

3.24 RBF general neural network structure 58 

3.25 ANN Structure for classification of NSR and VF using temporal 

features 

61 

3.26 Simulation Results for Classification of NSR and VF using MLP 62 

3.27 Simulation Results for Classification of NSR and SCA using MLP 62 

3.28 Simulation Results for Classification of NSR, SCA and CI using 

MLP 

63 



xi 
 

3.29 ANN Structure for classification of 7 types using temporal features 64 

3.30 Simulation Results for Classification of 7 types of signals using 

MLP 

64 

3.31 Simulation Results for Classification of NSR and VF using RBF 65 

3.32 Simulation Results for Classification of NSR and SCA using RBF 65 

3.33 Simulation Results for Classification of NSR, SCA and CI using 

RBF 

66 

3.34 Simulation Results for Classification of 7 types of signals using 

RBF 

67 

3.35 Simulation Results for Classification of NSR and VF using RF 68 

3.36 Simulation Results for Classification of NSR and SCA using RF 68 

3.37 Simulation Results for Classification of NSR, SCA and CI using RF 69 

3.38 Simulation Results for Classification of 7 types of signals using RF 70 

4.1 Spectral Analysis of ECG 76 

4.2 Energy at different regions of SCA Records (30, 31, 36, 41) 92 

4.3 Energy at different regions of VF Records (418,419,421,425) 92 

4.4 Energy at different regions of SVT Records (801, 802, 803, 822) 92 

4.5 Energy at different regions of AF Records (04746, 04748, 

06426,07162) 

93 

4.6 Energy at different region of NSR Records(16265, 16272, 

16184,16539) 

93 

4.7 Energy at different regions of CI Records (e0105, e0106, e0112, 

e0119) 

94 

4.8 Energy at different regions of VT Records (cu12, cu14, cu06, cu08) 94 

4.9 ANN Structure for classification of NSR and SCA using spectral 

features 

98 

4.10 MLP Simulation Results for classification of NSR and VF using 

spectral features 

99 

4.11 MLP Simulation Results for classification of NSR and SCA using 

temporal and spectral features 

99 



xii 
 

4.12 MLP Simulation Results for classification of NSR, VT and VF 

using temporal and spectral features 

100 

4.13 ANN Structure for classification of 7 types using temporal and 

spectral features 

101 

4.14 MLP Simulation Results for classification of 7 Types using 

temporal and spectral features 

102 

4.15 RBF Simulation Results for classification of NSR and SCA using 

Spectral features 

103 

4.16 RBF Simulation Results for classification of NSR and SCA using 

temporal and spectral features 

104 

4.17 RBF Simulation Results for classification of NSR, VT and VF using 

temporal and spectral features 

105 

4.18 RBF Simulation Results for classification of 7 Types using temporal 

and spectral features 

106 

4.19 RF Simulation Results for classification of NSR and SCA using 

Spectral features 

107 

4.20 RF Simulation Results for classification of NSR and SCA using 

temporal and spectral features 

107 

4.21 RF Simulation Results for classification of NSR, VT and VF using 

temporal and spectral features 

108 

4.22 RF Simulation Results for classification of 7 Types using temporal 

and spectral features 

109 

5.1 Processing steps of Higher order spectral analysis 114 

5.2 Bispectrum and Bicoherence plots of NSR records (16265, 16420 

and 16539) 

121 

5.3 QPC plot of NSR record 16539 121 

5.4 Bispectrum and Bicoherence plots of SCA records (30, 32 and 37) 122 

5.5 QPC plot of SCA record (30) 122 

5.6 Bispectrum and Bicoherence plots of VT records (cu06, cu13 and 

cu15) 

123 

5.7 QPC plot of VT records (cu06) 123 



xiii 
 

5.8 Bispectrum and Bicoherence plots of AF records (04746, 07910 and 

04048) 

125 

5.9 QPC plot of AF record (04048) 125 

5.10 Bispectrum and Bicoherence plots of CI records (e0112, e0123 and 

e0125) 

126 

5.11 QPC plots of CI record (e0123) 126 

5.12 Bispectrum and Bicoherence plots of VF records (418, 419 and 609) 127 

5.13 QPC plot of VF record (418) 127 

5.14 Bispectrum and Bicoherence plots of SVT records (811, 812 and 

824) 

128 

5.15 QPC plots of SVT record (812) 128 

5.16 Kurtosis Variation in different signals 129 

5.17 Skewness variation in different signals 130 

5.18 Variance variation in different signals 130 

5.19 Bicoherence variation in different cardiac signals 131 

5.20 ANN structure for NSR, VT, VF and AF using temporal, spectral 

and bispectral features 

136 

5.21 Simulation results of   NSR,VT,VF and AF using MLP Classifier 137 

5.22 Simulation results of   NSR,SVT,VT,VF and AF using MLP 

Classifier 

137 

5.23 ANN structure for 7 types using temporal, spectral and bispectral 

features 

138 

5.24 Simulation results of  7 types using MLP Classifier 139 

5.25 Simulation results of   NSR,VT,VF and AF using RBF Classifier 140 

5.26 Simulation results of   NSR,SVT,VT,VF and AF using RBF 

Classifier 

140 

5.27 Simulation results of  7 types using RBF Classifier 141 

5.28 Simulation results of   NSR,VT,VF and AF using RBF Classifier 142 

5.29 Simulation results of   NSR,SVT,VT,VF and AF using RF Classifier 142 



xiv 
 

5.30 Simulation results of  7 types using RF Classifier 143 

6.1 Automatic classification of cardiac arrhythmias using wavelet based 

features 

149 

6.2 Types of Daubechies wavelets 151 

6.3 Wavelet decomposition  153 

6.4 Six level Wavelet decomposition of NSR Signal (165272) 154 

6.5 Detailed and approximation statistics of NSR signal 155 

6.6 Retained energy of NSR Signal 155 

6.7 ANN structure for NSR, VT and VF (3 types) using wavelet 

features 

160 

6.8 Simulation results of   NSR, VT and VF using MLP Classifier 161 

6.9 Simulation results of   NSR, SVT, VT and VF using MLP Classifier 162 

6.10 Simulation results of 7 types using MLP Classifier 163 

6.11 ANN structure for 7 types using wavelet features 164 

6.12 Simulation results of   NSR, VT and VF using RBF Classifier 165 

6.13 Simulation results of   NSR, SVT, VT and VF using RBF Classifier 166 

6.14 Simulation results of 7 types using RBF Classifier 167 

6.15 Simulation results of   NSR, VT and VF using RF Classifier 168 

6.16 Simulation results of   NSR, SVT, VT and VF using RF Classifier 169 

6.17 Simulation results of 7 types using Random Forest Classifier 170 

A.1 Block Diagram of Cardiac Alert System 184 

A.2 Experimental set-up of Cardiac Alert System 184 

A.3 Interfacing of Arduino with GSM 185 

A.4 SMS alert to cardiologist 193 

A.5  Tele Cardiology for remote monitoring of heart patient 194 

 



xv 
 

 

List of Tables 

 

1.1 Normal ECG Features 5 

1.2 ECG data records 16 

2.1 Summary of literature review using time and spectral analysis 28 

2.2 Summary of literature review using HOSA and wavelet analysis  29 

3.1 Temporal features of different cardiac signals 46 

3.2 Average values of temporal features of cardiac signals 49 

3.3 Standard Deviation (SD) of R-R intervals of cardiac signals 51 

3.4 Classification of cardiac arrhythmias and disorders in time domain 71 

3.5 Summary of performance analysis  of cardiac signals 72 

4.1 Spectral features in different regions of NSR records 78 

4.2 Spectral features in different regions of SCA records 80 

4.3 Spectral features in different regions of VF records 82 

4.4 Spectral features in different regions of VT records 84 

4.5 Spectral features in different regions of CI records 86 

4.6 Spectral features in different regions of AF records 88 

4.7 Spectral features in different regions of SVT records 90 

4.8 Spectral and Temporal features (hybrid features) of different 

cardiac Signals 

95 

4.9 Summary of performance comparison of cardiac arrhythmias 

classification 

110 

5.1 QPC 118 

5.2 Higher order spectral features of 7 types of cardiac signals 129 

5.3 HOSA features for different records of VF and VT signals 132 

5.4 HOSA features for different records of NSR and AF signals  133 



xvi 
 

5.5 HOSA features for different records of SVT and SCA signals  134 

5.6 HOSA features for different records of CI signals  135 

5.7 Medical Statistics of MLP using confusion matrix for 7 types of 

signals 

139 

5.8 Medical Statistics of RBF using confusion matrix for 7 types of 

signals 

141 

5.9 Medical Statistics of Random Forest using confusion matrix for 7 

types of signals 

144 

5.10 Summary of performance comparison of cardiac arrhythmias 

classification 

145 

6.1 Wavelet based features - CI, VT  156 

6.2 Wavelet based features – AF, SCA  157 

6.3 Wavelet based features – NSR, AF  158 

6.4 Wavelet based feature - SVT  159 

6.5 Performance comparison of MLP, RF and RBF Classifiers 171 

6.6 Medical Statistics of MLP using confusion matrix 172 

6.7 Medical Statistics of RF using confusion matrix 172 

6.8 Medical Statistics of RBF using confusion matrix 173 

6.9 Summary of performance comparison of cardiac arrhythmias 

classification 

174 

7.1 Performance comparison with the existing work in time domain  177 

7.2 Performance comparison with the existing work in spectral domain  178 

7.3 Performance comparison with the existing work in higher order 

spectral domain  

179 

7.4 Performance comparison of cardiac arrhythmias classification in 

wavelet domain  

180 

7.5 Comparison of cardiac arrhythmias classification in different 

domains  

181 

 

 

 



xvii 
 

 

List of Abbreviations 

AF Atrial Fibrillation 

ANN Artificial Neural Networks 

BPF Band Pass Filter 

BPM Beats per minute 

BPNN Back-Propagation Neural Networks 

CI Cardiac Ischemia 

CPR Cardio Pulmonary Resuscitation 

db4 Daubechies 4 wavelet 

DFT Discrete Fourier Transform 

ECG Electrocardiogram 

EMG Electromyogram  

FFT Fast Fourier Transform 

HOS Higher Order Spectra 

HOSA Higher Order Spectral Analysis 

LPF Low Pass Filter 

MIT-BIH Massachusetts Institute of Technology-Beth Israel Hospital 

mV Millivolts 

MLP Multi- Layer Perceptron 

NSR Normal Sinus Rhythm 

PNN Probabilistic Neural Network 



xviii 
 

Pp Positive Predictivity 

PLI Power Line Interference 

QPC Quadrature Phase Coupling 

RBF Radial Basis Function 

S Sensitivity 

SA Sinoatrial node 

SCA Sudden Cardiac Arrest 

Sp Specificity 

SVM Support Vector Machine 

SVT Supra Ventricular Tachycardia 

VF Ventricular Fibrillation 

VT Ventricular Tachycardia 

WEKA Waikato Environment for Knowledge Analysis 

WSS Wide Sense Stationary 

2D Two Dimensional 

 

 



 
 

Chapter 1  

Introduction 

The aim of this first chapter of introduction is to present anatomy and electrical functioning of 

the heart, need of arrhythmias analysis and classification, motivation for the work, objectives 

of the proposed research work, overview of research work, ECG database details, tools used 

for analysis & classification and thesis organization 

1.1 Anatomy and electrical functioning of the heart 

Heart is an important muscular organ which pumps oxygenated rich blood to each and every 

cell of human body and carries deoxygenated blood back to the lungs for oxygen as shown in 

Fig 1.1. Heart consists of four chambers which are divided into two atria and two ventricles.  

 

Fig 1.1 Anatomy of the heart [11] 
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Fig 1.2 Electrical conduction system of the heart [60] 

The electrical functioning of heart is shown in Fig.1.2. In the heart, Sinoatrial (SA) node acts 

as a natural pacemaker of the heart which generates electrical impulses at regular intervals of 

time under normal conditions that can simulate the atria to contract or depolarise. Due to the 

depolarisation of atria blood enters from right atrium to the right ventricle through tricuspid 

valve. During this period, “P” wave is generated on the ECG signal. Later, the electrical 

impulse travels from SA node to AV node. There will be a pause in the electrical activity in 

this period which will be referred as the “PR interval” on the ECG. This “pause” allows the 

atria to contract fully, emptying blood from atria before the ventricles begin to contract. Then 

electrical signal continue down its conduction path to the ventricles through the “bundle of his”. 

Later, this electrical impulse passes to the right and left bundle branches and to the right and 

left ventricles, respectively. This causes the ventricles to contract or depolarise and pump 

oxygen poor blood to the lungs through the pulmonary arteries for re-oxygenation. During this 

period ventricular depolarization takes place, due to this “QRS complex” is generated on the 

ECG. Similarly, due to ventricular repolarisation T-wave is generated on the Electrocardiogram 

(ECG).  

Blood circulation in the human body is shown in Fig 1.3. The left atrium receives the 

oxygenated rich blood from the lungs via the pulmonary veins. Then blood flows to the left 

ventricle through the mitral valve and finally, it is pumped out this oxygenated blood to all the 

cells of the human body through the aorta. Willem Einthoven invented the first ECG machine 

to monitor heart condition and received Nobel Prize for the same in the year 1924 [34].The 

standard 12-lead ECG recording provides spatial information about the heart's electrical 

activity in 3 orthogonal directions is shown in Fig 1.4.   
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Fig 1.3 Blood circulation in the human body 

 

 

Fig 1.4 Twelve Lead ECG recording [69] 
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Twelve lead ECG provides 12 different views of the heart’s electrical activity. The 12 leads 

include three bipolar limb leads (I, II and III), three unipolar augmented limb leads and six 

precordial chest leads. They are aVR, aVL and aVF where aVR means augmented Vector 

Right, the positive electrode is on the right shoulder; aVL means augmented Vector Left, the 

positive electrode is on the left shoulder and aVF means augmented Vector Foot, the positive 

electrode is on the foot and six precordial chest leads  are V1, V2, V3, V4, V5 and V6. 

 

Fig 1.5 Normal ECG Signal [19] 

ECG represents electrical activity of the heart [36]. It’s not a trace of single action potential but 

it is an amalgam of various action potentials. Every cardiac cycle of ECG consists of three 

waves: P, QRS and T waves. The R-R interval plays a significant role in identifying heart beat 

rate of cardiac signals is shown in Fig 1.5. In ECG strips, horizontal axis represents time in 

terms of seconds. Each small block equals 0.04s and five small blocks form a large block which 

equals 0.2 seconds. In ECG strips, vertical axis represents amplitude in terms of mV. Each 

small block represents 0.1mV. Each five small blocks form a large block which represents 0.5 

mV.  

Normal ECG features are shown in Table 1.1. The frequency range of normal ECG signal is 

0.05–100 Hz and its dynamic amplitude range is 1–10 mV.   
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Table 1.1 Normal ECG Features 

 

  

 

 

 

 

 

 

 

 

 

 

Irregular electrical activity of the heart represents cardiac arrhythmia (abnormal rhythm). 

Smoking, physical inactivity, high blood pressure, high blood cholesterol and overweight cause 

cardiac arrhythmias. 

In the proposed work, Normal Sinus rhythm (NSR), 4 types of tachyarrhythmias-Ventricular 

Tachycardia (VT), Supra Ventricular Tachycardia (SVT), Ventricular Fibrillation (VF) and 

Atrial Fibrillation (AF) and two cardiac disorders- Sudden Cardiac Arrest (SCA) and Cardiac 

Ischemia (CI) are considered for arrhythmias classification.  

Different types of cardiac signals of 1minute duration are shown below in Fig 1.6 to Fig 1.12. 

On X-axis of these signals represented as number of samples and on Y- axis, amplitude is 

represented in mV. 

 

Normal Sinus Rhythm (NSR) is a healthy person’s cardiac signal of 1-minute duration is 

shown in Fig 1.6. Normal person heart beat rate range is 60-100bpm. NSR consists of regular 

R-R intervals. It is not uncommon to encounter instances of SCA in healthy persons also. Even 

healthy person may be detected to have a serious heart condition like a hypertrophic 

cardiomyopathy or dilated cardiomyopathy or an abnormal ECG or echo during routine 

physician consultation. 

S. No. Features Amplitude(mV) Duration (ms) 

1 P-Wave 0.1 - 0.2 60 – 80 

2 PR-Segment - 50 – 120 

3 PR-Interval - 120 – 200 

4 QRS-Complex 1 – 10 80 – 120 

5 ST-Segment - 100 – 120 

6 T-Wave 0.1 – 0.3 120 – 160 

7 ST-Interval - 320 

8 RR-Interval - 400 – 1200 
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Fig 1.6 NSR 

 

Supraventricular tachycardia (SVT) shown in Fig 1.7 is an abnormal fast heart rhythm due 

to improper electrical activity in the upper portion of the heart (atria). Most SVTs are unpleasant 

rather than life-threatening arrhythmias like VT [103]. SVT becomes a problem when it occurs 

frequently. Its heart beat rate is above 100 bpm. 

 

Fig 1.7 SVT 

Ventricular tachycardia (VT) shown in Fig 1.8 is an abnormal heart rhythm which causes 

heart to beat too fast due to wide QRS complex (120ms) [35]. Normally, VT starts in the heart's 

lower chambers. Most patients who have VT have a heartbeat rate is 170 bpm or more. VT may 

eventually lead to VF, which is characterized as severe cardiac arrhythmia. If the VT terminates 

within 30 seconds, it is considered a non-sustained VT. If VT lasts more than 30 seconds, it is 

known as a sustained VT.  

 

Fig 1.8 VT 
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Ventricular fibrillation (VF) is life threatening arrhythmia as shown in Fig 1.9. It is existing 

due to disorganized electrical activity in the ventricles and also heart quivers or fibrillate 

instead of beating normally. This prohibits the heart from pumping blood. No P- waves are 

present in VF, only QRS and T waves can be seen. VF can cause sudden cardiac arrest (SCA), 

which requires immediate medical attention. These patients may die if the rhythm is not 

restored.  
 

 

Fig 1.9 VF 

 

Atrial Fibrillation (AF) is an atrial arrhythmia is shown in Fig 1.10, which occurs as action 

potential triggers at atria instead of at SA node. AF heart beat rate may sometimes exceeds 

350bpm. Because of this high heart beat rate, uncoordinated contraction exists which leads to 

ineffective pumping of blood into the ventricles. In AF, the abnormal heart rhythm affects R-

R interval sequence in ECG. Atrial fibrillation (AF) is the most common sustained cardiac 

arrhythmia. It is associated with a nearly doubled risk of death and an almost 5-fold increase in 

the risk of stroke. 

Fig 1.10 AF 

Sudden Cardiac Arrest (SCA) is shown in Fig 1.11, occurs when heart suddenly or 

unexpectedly stops beating due to lack of oxygen supply to the brain cells. If severe ventricular 

arrhythmias (VT and VF) are not treated in time, lead to sudden cardiac arrest. If SCA patient 

is not treated, within few minutes, sudden cardiac death may happen. It is a serious health 
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problem and is responsible for almost half of all sudden cardiac deaths [19]. Its heart beat rate 

is less than 50bpm [86]. 

 

Fig 1.11 SCA 

Cardiac Ischemia (CI) is shown in Fig 1.12, it’s a heart disease caused by narrowing of the 

arteries which makes less oxygenated blood to reach the heart muscle. Total occlusion of a 

coronary artery leads to myocardial infarction or cardiac ischemia and acute myocardial 

infarction may present as SCA. If timely intervention is not provided as per international 

guidelines the victim is likely to die. Apart from ischemic causes, other nonischemic causes -

cardiomyopathies like hypertrophic cardiomyopathies, genetic causes like LONG QT 

syndrome, brugada syndrome etc. may lead to serious and life threatening arrhythmias.  

 

Fig 1.12 CI 

 

Apart from routine ECG, 2D-Echo, 24 hours Holter monitoring, cardiac MRI, 

electrophysiological studies are useful in risk prediction and management. Apart from 

antiarrhythmic agents, radio frequency ablation, ICD implantation are management options in 

such patients. 
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Fig 1.13 Angioplasty (stents) [115]                            Fig 1.14 Medication (heparin)       

 

CI patient will be treated with Angioplasty / Medications (heparin /aspirin) is shown in Fig 1.13 

and Fig 1.14 and bypass surgery is shown in Fig 1.15. AF patient heart beat rate is more than 

300 bpm. This disorder will be treated with medications (Beta blockers, Calcium channel 

blockers) to bring heart beat rate to normal. For AF treatment when long-term medications were 

not effective, Ablation catheter (thin, flexible tube) is inserted into the patient’s blood vessels 

and is gently guided to the heart as shown in Fig 1.16. The physician carefully destroys 

malfunctioning tissue using the catheter to deliver energy by using radiofrequency/laser to scar 

the problematic areas. 

 

                 

                 Fig 1.15 Bypass Surgery [117]                                 Fig 1.16 Ablation Catheter [114] 

 

https://www.heart.org/en/health-topics/arrhythmia/prevention--treatment-of-arrhythmia/ablation-for-arrhythmias
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Fig1.17 Automated external defibrillator [93]                   Fig 1.18 Implantable CD [116]                      

 

SCA patient will be treated with automated external defibrillators as shown in Fig 1.17, or 

treated with Implantable Cardioverter Defibrillator (ICD) [93] as shown in Fig 1.18 depending 

on the emergency. Most of new ICDs can act as both a pacemaker and a defibrillator. A 

pacemaker may be used if the heart's natural pacemaker of the heart (the SA node) is not 

working properly causing bradycardia (heart beat rate is less than 60bpm). Ventricular 

fibrillation and ventricular tachycardia are known as shockable rhythms. The shock can 

potentially stop arrhythmia by using automated external defibrillator (AED) [17] as shown in 

Fig 1.18. 

1.2 Need of arrhythmias analysis and classification 

As the most common cause of sudden cardiac death (SCD) is a ventricular tachycardia (VT) 

that degenerates into ventricular fibrillation (VF), loss of consciousness and sudden cardiac 

arrest. Sustained ventricular tachycardia often requires urgent medical treatment, as this 

condition may sometimes lead to sudden cardiac death. Total occlusion of a coronary artery 

leads to myocardial infarction or CI, an acute myocardial infarction may present as sudden 

cardiac arrest. If timely, immediately an intervention is provided as per international guidelines 

the victim of SCA is likely to survive. 

 In many instances, the cause of SCA is known, however in certain instances where the cause 

is difficult to diagnose, other modalities of investigation might be helpful in further 

management. Apart from ischemic causes, other conditions such as non-ischemic causes-
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cardiomyopathies like Hypertrophic cardiomyopathies, genetic causes like LONG QT 

syndrome, brugada syndrome etc., may lead to serious and life threatening arrhythmias. It is 

not uncommon to encounter instances of sudden cardiac arrest in an otherwise healthy persons. 

Also an otherwise healthy person normal sinus rhythm (NSR) may be detected to have a serious 

heart condition like a hypertrophic cardiomyopathy or dilated cardiomyopathy or an abnormal 

ECG or echo during routine physician consult. Hence, it is essential from a practical point of 

view to predict whether such persons are likely to have SCA or not. This helps in early 

intervention, so that SCA can be prevented and survival rate can be improved.  

In this context, translating the knowledge of signal processing and artificial intelligence 

algorithms to classify 7 types of signals-NSR, 4-tachyarrhythmias and 2-severe cardiac 

disorders for immediate recognition of serious and life threatening arrhythmias is essential. 

Prediction of risk of morbid and life threatening situations in subjects with prone conditions is 

of clinical utility. 

1.3 Motivation 

The contributions of various researchers have been given in detail in the second chapter. 

Various signal processing techniques have been proposed by various researchers for 

identification and classification of cardiac arrhythmias [2]-[5], [19]- [21], [25], [29], [42], [44], 

[45] and [46]. It is observed that there is a large variation in the feature extraction methods, 

variation in number of features, variation in different types of cardiac signals and their 

classification accuracy.  

 

However, there were certain limitations regarding classification accuracy, sensitivity and 

specificity. In real time applications of automated external defibrillators , the specificity is more 

important than the sensitivity.  Selection of an efficient feature extraction scheme and choosing 

proper neural network classifier are important for efficient classification of cardiac arrhythmias.  

Most of the existing works distinguished normal and abnormal signals.  

 

But, there is a necessity to classify abnormal categories also for proper medication and 

treatment. Early detection of cardiac arrhythmia is of paramount importance for saving the life 

of a patient as each arrhythmia needs to be treated in a specific manner such as ventricular 

arrhythmias are treated by using automated external defibrillator or with medications, sudden 

cardiac arrest is treated by using ICD, atrial arrhythmia is treated with medications or by using 
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ablation catheter and cardiac ischemia is treated with angioplasty or medications or bypass 

surgery. Thus, there is a need to classify severe cardiac arrhythmias, cardiac disorders and 

normal signals which can enable the doctor to give proper attention to save the life of heart 

patients. This aspect is the motivation for taking up this research work.  

1.4 Objectives of the proposed research work 

The research work aims at analysis and classification of seven types of cardiac signals (4 types 

of cardiac arrhythmias, 2- types of disorders and 1- normal sinus rhythm).  Objectives of the 

research work are 

• Cardiac arrhythmias analysis and classification in time domain. 

• Cardiac arrhythmias analysis in spectral domain and classification using  temporal and 

spectral features 

• Cardiac arrhythmias analysis in HOS domain and classification using temporal, spectral 

and bispectral features. 

• Cardiac arrhythmias analysis in wavelet domain and classification using wavelet 

features 

• To develop an experimental setup for cardiac alert system using wavelet feature scheme 

for remote monitoring of heart patients.  

1.5 Overview of the research work 

Overview of the research work has been given in a block diagram of automatic arrhythmias 

classification as shown in Fig 1.19. This shows different signal processing techniques used for 

feature extraction and different supervised classifiers (RF, MLP & RBF).  

ECG data of different cardiac signals has been collected from standard ECG data bases. 66% 

of ECG data has been used for training purpose and 34% of data is used for testing purpose. 

https://www.heart.org/en/health-topics/arrhythmia/prevention--treatment-of-arrhythmia/ablation-for-arrhythmias
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Fig 1.19 Block diagram for Arrhythmias Classification 

Artifacts (unwanted noise signals) are present in ECG signals. Presence of these artifacts make 

the cardiac arrhythmias and disorders diagnosis is very difficult as they corrupt ECG signals. 

So, it is required to use filters in pre-processing stage to filter artifacts. There are mainly four 

types of artifacts encountered in ECG signals they are baseline wander, EMG noise and power 

line interference. Baseline wander is a low-frequency noise of around 0.6 Hz. To remove it, a 

high-pass filter of cut-off frequency 0.6 Hz can be used. EMG noise is due to muscle movement 

of patient while ECG recording. It is a high frequency noise of above 100 Hz and hence, it may 

be removed by using low-pass filter of an appropriate cut-off frequency. The power line 

interference (PLI) is centered at 50 Hz or 60 Hz with a bandwidth of less than 1 Hz. Notch filter 

is used to remove PLI. However, the baseline wander and other wideband noises are easy to be 

suppressed by using the software scheme instead of using analog circuits. Thus, de-noising of 

ECG signals is very important for further processing. 
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Fig 1.20 Cardiac signal analysis using signal processing techniques for feature extraction 

 In ECG signal processing stage, four different signal processing techniques have been used for 

cardiac signal analysis for feature extraction as shown in Fig 1.20. In time domain, temporal 

features are extracted using Pan Tompkins’s algorithm. Temporal features are number of R-

peaks, R-R intervals, amplitude of R-peaks and heartbeat rate. In spectral domain, spectral 

features are extracted using FFT algorithm. Frequency spectrum is divided into five regions 

i.e., Region R1: 0-2 Hz, Region R2: 2-8 Hz, Region R3: 8-16 Hz, Region R4: 16-22 Hz and 

Region R5: 22-32 Hz. In each region, spectral features such as mean, median, standard 

deviation and energy are computed. In higher order spectral domain, higher order spectral 

features such as skewness, variance and kurtosis are computed and in wavelet domain, using 6 

level wavelet decomposition technique wavelet features are extracted. Wavelet based features 

are high frequency detailed coefficients (min and max) and standard deviation from 1 to 5 levels 

and low frequency approximation coefficients (min and max) & standard deviation from 6th 

level. Later, the proposed work aims at classification of 7 types of cardiac signals using these 

selected features. These features are fed to different supervised classifiers such as Multi-Layer 
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Perceptron (MLP), Random Basis Function (RBF) and Random Forest (RF). In this work, 66% 

of ECG data is used for training purpose and 34% of data is used for testing purpose.  The 

training to testing dataset split ratio is selected based on prediction and accuracy. Specific ratio 

approximately 2:1 is selected to overcome the problem of data under fit and over fit.  

 All the four signal processing methods and classifiers used in this work are better compared to 

the existing methods. However, the wavelet based feature scheme with MLP classifier proposed 

in the last approach is superior in terms of number of cardiac arrhythmias classification and 

enhancement of classification accuracy, sensitivity and specificity. This efficient wavelet based 

feature scheme is used to develop an experimental set up for a cardiac alert system. 

1.6 Database details 

The MIT-BIH Arrhythmia Database [1] was the first generally available set of standard test 

material for evaluation of arrhythmia detectors and it has been used for that purpose as well as 

for basic research into cardiac dynamics at about 500 sites worldwide since 1980. Together 

with the American Heart Association (AHA) Database, it played an interesting role in 

stimulating manufacturers of arrhythmia analysers to compete on the basis of objectively 

measurable performance and much of the current appreciation of the value of common 

databases, both for basic research and for medical device development and evaluation. In this 

research work, annotated databases of ECG are used [1]. NSR data has been collected from 

MIT-BIH Normal Sinus Rhythm data base (nsrdb), SVT has been collected from MIT-BIH 

Supraventricular arrhythmia data base (svdb) and AF data has been collected from MIT-BIH 

atrial fibrillation data base (afdb),VT data has been collected from Ventricular 

Tachyarrhythmia Database (CUDB) [40], VF data has been collected from Malignant 

Ventricular Ectopy Database (VFDB) [55], CI data has been collected from European ST_T 

database [39] and SCA data has been collected from sudden cardiac death holter data base [55].  

ECG data of 1-minute duration and a sampling frequency of 250 Hz has been collected and 

used directly except NSR and SVT data. These two data bases have been resampled with 250 

Hz as their available sampling frequency is 128 Hz. For each one minute data 15000 discrete 

samples are available. 

The following Table1.2 shows, ECG data types and their record numbers used in the proposed 

research work. 
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Table 1.2 ECG data records 

S.No 
ECG 

signal 
Record Numbers 

No. of 

records 

1.  CI 
 e0104, e0105 e0106,e0107,e0108 , e0110, e0111, e0112,e0113,  

e0114 ,e0118, e0119, e0121, e0123, e0125 
15 

2.  SCA   30,31,32,33,34,36,37,38,39,41,42,43,44,45,46 15 

3.  AF 
04043,04048,04126,04746,04936,05091,06426,06453,07162, 

07859, 7879,07910,08215,08219,08434 
15 

4.  VF 
418,419,421,425,427,428,429,430,602,605,607,609,610,611,  

612 
15 

5.  VT 
cu01, cu03, cu05, cu06, cu07, cu08, cu09, cu11, cu12, cu13, 

cu14, cu15, cu16, cu18, cu19 
15 

6.  SVT 
801,802,803,807,808,809,810,811,812,820,821,822,823,824, 

825 
15 

7.  NSR 
16265,16272,16273,16420,16483,16539,16773,16786,16795, 

17052, 17453,18177,18184,19093,19830 
15 

  Total no. of records 105 

 

1.7 Tools used for ECG analysis and classification 

In this research work, Matlab R2017a tool box is used Cardiac Signal Analysis. MATLAB, the 

language of technical computing, is a programming environment for algorithm development, 

data analysis, visualization, and numeric computation. Engineers and scientists worldwide rely 

on these product families to accelerate the pace of discovery, innovation, and development in 

automotive, aerospace, electronics, financial services, biotech-pharmaceutical, and other 

industries. It is the leading developer of mathematical computing software Millions of 

engineers and scientists worldwide use MATLAB to analyse and design the systems and 

products transforming our world. The matrix-based MATLAB language is the world’s most 
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natural way to express computational mathematics. Built-in graphics make it easy to visualize 

and gain insights from data. The desktop environment invites experimentation, exploration, and 

discovery.  

In this research work, Waikato Environment for Knowledge Analysis (Weka) tool is used for 

Cardiac signals classification, Weka tool is developed at the University of Waikato, New 

Zealand, is free software licensed under the GNU General Public License, and the companion 

software to the book “Data Mining: Practical Machine Learning Tools and Techniques”. [59] 

WEKA is a collection of different machine learning and neural network algorithms which are 

used for data mining tasks. The machine learning algorithms such as Random Forest (RF) and 

neural network algorithms such as Multi-Layer Perceptron (MLP) and Random Basis Function 

(RBF) can be applied directly to a given dataset. It contains tools for data processing, 

classification, regression, clustering, association rules and visualization.  

1.8 Thesis Organization 

The research work carried out in this thesis is organized in to seven chapters. The chapter wise 

description of the thesis is outlined below. 

First chapter: This first chapter introduces anatomy and electrical functioning of heart, need 

of arrhythmias analysis and classification, motivation, objectives, overview of the research 

work, data base details, tools used for feature extraction and classification and thesis 

organisation. 

Second chapter: In this chapter, the literature is reviewed in detail. Various researchers’ 

contributions have been understood and presented briefly. The remarks and limitations on their 

contributions are highlighted and motivation for the proposed research work has been 

concluded. 

Third chapter discusses cardiac arrhythmias analysis and classification in time domain. For 

that purpose temporal features are extracted using Pan Tompkin’s algorithm for different 

cardiac arrhythmias. The machine learning algorithms such as Random Forest (RF) and neural 

network algorithms such as Multi-Layer Perceptron (MLP) and Random Basis Function (RBF). 

Performance comparison of cardiac arrhythmias classification and conclusion are given. 

Fourth chapter describes cardiac arrhythmias analysis and classification in spectral domain. 
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For that purpose spectral features are extracted using FFT algorithm for different cardiac 

arrhythmias. The machine learning algorithms such as Random Forest (RF) and neural network 

algorithms such as Multi-Layer Perceptron (MLP) and Random Basis Function (RBF). 

Performance comparison of cardiac arrhythmias classification and conclusion are given. 

Fifth chapter discusses cardiac arrhythmias analysis and classification in higher order spectral 

domain. For that purpose, bispectral features are extracted from bispectrum, bicoherence and 

quadrature phase coupling plots for different cardiac arrhythmias. The machine learning 

algorithms such as Random Forest (RF) and neural network algorithms such as Multi-Layer 

Perceptron (MLP) and Random Basis Function (RBF). Performance comparison of cardiac 

arrhythmias classification and conclusion are given. 

Sixth chapter narrates cardiac arrhythmias classification in wavelet domain. For that purpose, 

wavelet features are extracted using discrete wavelet transform for different cardiac 

arrhythmias. The machine learning algorithms such as Random Forest (RF) and neural network 

algorithms such as Multi-Layer Perceptron (MLP) and Random Basis Function (RBF). 

Performance comparison of cardiac arrhythmias classification and conclusion are given. 

Seventh chapter presents the conclusion of the research work done and future scope for the 

research work. 

Appendix presents an experimental setup of cardiac alert system for remote monitoring of 

cardiac patients which has been application of wavelet based feature scheme. 
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Chapter 2  

Literature Review 

 

This chapter presents a literature review on the work done by various researchers for 

identification and classification of normal and cardiac arrhythmias. Different signal processing 

techniques have been used by different researchers for feature extraction and classification. 

Some existing contributions that have been made by researchers are explained and their 

limitations are given in this chapter. Some improvements are aimed in the proposed work for 

overcoming these limitations. Further, few more cardiac arrhythmias and disorders are 

considered for analysis and classification in the proposed work. 

 

2.1 Introduction 

In the last two decades, this field of cardiac arrhythmias classification has attracted the attention 

of researchers because of its importance in early diagnosis of severe cardiac problems. The 

different research areas in this field include cardiac signal (normal, arrhythmias and disorders) 

analysis, identification and classification. The need for the automatic classification of cardiac 

arrhythmia arises in different contexts. Identifying cardiac disorders belonging to a different 

ventricular arrhythmias and atrial arrhythmias. Classification of cardiac arrhythmias in time 

domain [2], [3], [4], [5], [6], [7] ,[8] and [9]; spectral domain [18] and [19]; higher order spectral 

domain [21], [25], [27], [30], [33], [74] and [89] and wavelet domain [20], [29], [42], [43], 

[44], [45], [46], [70] and [72].The cardiac arrhythmias classification field attracted the attention 

of researchers to enhance classification accuracy and for accurate detection of severe cardiac 

arrhythmias and disorders to save the life of heart patients. Since, last two decades this field 

has attracted the attention of investigators to use artificial intelligence application in biomedical 

field. A review of literature related to cardiac arrhythmias and disorders identification and 

classification is solely focused in this chapter. 

2.2 Cardiac arrhythmias analysis and classification in time domain 

A review of literature related to cardiac arrhythmias and disorders identification and 

classification in time domain is focused in this literature. 
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Pan-Tompkins et al [2] have developed a real time QRS detection algorithm based on slope, 

amplitude, and width of the QRS complex. This method used band pass filter to reduce the 

influence of muscle noise, 60 Hz power line interference. QRS detection algorithm correctly 

detected 99.3% of the QRS complexes.  

Limitations/remarks:  Many researchers extracted morphological features using this QRS 

detection and classified normal and cardiac arrhythmias. This method may not be sufficient to 

describe the complex changes that take place in ECG as heart beat rate increases or decreases. 

These dynamics are important to be explored further to identify different types of cardiac 

arrhythmias. 

 

M. Vijayavanan et al. [5] used an efficient technique for automatic classification of normal 

and cardiac arrhythmia signals on MIT-BIH arrhythmia database. Sampling rate has been used 

as 360 Hertz .Wavelet analysis to extract morphological features such as P, Q, R, S, T peak 

points, QRS complex duration, PR interval, ST interval, QT interval, RR interval, ST segment 

and PR segment and these 12 features were fed to Probabilistic Neural Network (PNN) 

classifier for classification Normal Sinus Rhythm and cardiac arrhythmia (which is abnormal). 

So, in this work, normal and abnormal categories only were considered. About 150 records of 

each category were given for training and 50 untrained records were given for testing by using 

the Probabilistic Neural Network (PNN). They used data durations of 5, 10, 15 and 20 minutes 

for observing classification accuracy. Classification accuracy varied with changing data 

duration of the ECG signal. For 20 minutes data duration, 96.5% classification accuracy was 

obtained. 

Limitations/remarks:  Only normal and arrhythmia categories were classified. The type of 

arrhythmia was not known. Some more dynamics are to be explored further to classify different 

arrhythmias. 

Mujeeb Rahman et al. [6] extracted potential biomarkers of arrhythmia using two algorithms 

i.e, Pan-Tompkins Algorithm and Wavelet based algorithm. ECG signals used in in this work 

were downloaded from the MIT-BIH arrhythmia database. These signals were then imported 

to MATLAB tool and pre-processed for noise removal, four temporal features such as QRS 

duration, RR interval and PR interval were extracted. Heartbeat rate was calculated. Based on 
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these features performance of the two algorithms was compared and it was proven that the Pan-

Tompkins algorithm was more accurate than the wavelet transform based algorithm. 

Limitations/remarks: This work shows the importance of certain temporal features such as 

QRS complex, R-R interval, P-R interval and heart beat rate. This work did not classify 

different types of cardiac arrhythmias. 

. 

 V. Vijaya et al. [4] used modified Pan Tompkins algorithm to extract two temporal features 

(number of R-peaks and R-R interval). These two temporal features are used to distinguish 

sudden cardiac arrest and normal sinus rhythm. For this work, NSR data for records (16265, 

16273, 16539, 16773 and  16775) has been collected from MIT BIH Normal Sinus Rhythm 

data base (nsrdb) and SCA data for records (30, 31, 32, 33, 34, 36 and 38) has been collected 

from Sudden cardiac death holter data base[55]. The duration of signal was selected as 4 

seconds only. Sampling frequency (fs) of cardiac signal has been selected as 200 samples/sec 

and window size is considered as 30 samples. They computed No. of R-peaks and R-R interval 

using Pan Tompkins algorithm for NSR and SCA using 1000 samples. They found out that No. 

of R-peaks for SCA is found to be less compared to NSR and R-R interval for SCA is found to 

be compared to NSR.  

Limitations/remarks: Only normal and sudden cardiac arrest (cardiac disorder) signals were 

analysed based on two temporal features. These two features may not be sufficient to describe 

the other types of arrhythmias.  

Rathnakara et al. [37] used an efficient algorithm to differentiate normal and arrhythmia ECG 

signals. The arrhythmia signals are classified with variation in heartbeat rate. Heartbeat rate 

below 60bpm is considered as bradycardia and Heartbeat rate above 80bpm is considered as 

tachycardia. The steps used by the algorithm are QRS peak detection by Pan-Tompkins 

algorithm, Baseline wandering noise removal and differentiating ECG signal into NSR and 

arrhythmia. Compared the obtained values with threshold values and classified into normal and 

arrhythmia signals. 

Limitations/remarks:  The analysis of the signal is done based on hear beat rate variabaility. 

Further, it can also be deeply implemented using various temporal features like RR intervals, 

No. of R peaks/sample, R peak amplitude, etc. and classification can be done using various 

machine learning techniques.  
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2.3 Cardiac arrhythmias analysis and classification in spectral 

domain 

A review of literature related to cardiac arrhythmias & disorders identification and 

classification in spectral domain is focused in this literature. 

Usman Rashed et al. [19] In this work, 4 to 5 min of ECG data was used instead of 24 hours 

to detect the possibility of Sudden Cardiac Arrest. For this work, NSR data for records (16272, 

16273, 16539, 16773, 16483, 16795, 16786 and 16420) and SCA data for records (30, 31, 33, 

35, 39, 41, 46 and 52) has been collected from MIT BIH database. In the data base, NSR signals 

were originally sampled at 128Hz and SCA signals at 256Hz. Before spectral analysis, each 

signal was pre-processed. In order to apply the signal processing techniques equally to each 

record signal and preserve most of the information, each signal was re-sampled to 500Hz. After 

re-sampling, the mean was removed from each ECG signal and then signals were passed 

through a 3rd order low-pass Butterworth filter by setting cut of frequency 32 Hz for 

preprocessing. For spectral analysis, Fast Fourier Transform (FFT) model using the Discrete 

Fourier Transform was considered and implemented it using Matlab. Fast Fourier Transform 

(FFT) on QRS complex was used to extract time and frequency information from the ECG 

signals. 

The obtained frequency spectrum was divided into five regions (R1 to R5): 

Region R1: 0-2 Hz 

Region R2: 2-8 Hz 

Region R3: 8-16 Hz 

Region R4: 16-22 Hz 

Region R5: 22-32 Hz 

 

Spectra in the above regions were plotted to gain the information regarding the variation and 

energy localization. Then spectral parameters including mean, median, standard deviation, 

energy and power were selected to represent the spectra in the respective region. Hence, they 

discovered that the normal ECG rhythm of patient suffering from Sudden Cardiac Death has: 

1) Lower spectral energy. 

2) Low frequency range of first lobe. 

3) Negligible energy in region 4 (16-22 Hz). 
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Classification can be done on basis of these above three findings. Further authors concluded 

that less than 5-minutes ECG data will be sufficient to detect possibility of SCA in spectral 

domain. 

Limitations/remarks: From their work, it is noticed that ECG data of 24 hours may not be 

required for identification of sudden cardiac arrest in spectral domain as spectrum of ECG data 

of 24 hours or 1hour or 1min was same. Only normal and sudden cardiac arrest (cardiac 

disorder) signals were distinguished based on 5 spectral features analysis. In this work, energy 

difference of both signals observed in Region4 (16-22 Hz) region, instead of Region3 (8-16 

Hz) region. This work distinguished two signals only. They did not use these spectral 

parameters for cardiac arrhythmias classification. 

Glenn A. Myers et al. [18] described a method of power spectrum analysis on 24 hours 

ambulatory ECG’s. This method was used to segregate three groups of people of normal, heart 

patients with history of SCD and without history of SCD. In this work, compared power 

spectrum results with non-power spectrum results. 

Limitations/remarks: This work distinguished only three groups of cardiac signals (NSR, 

SCD and Non SCD) based on heart rate variability using power spectral method and non-power 

spectral method. In their work, arrhythmias classification was not addressed. 

2.4 Cardiac arrhythmias analysis and classification in higher order 

spectral domain 

A review of literature related to cardiac arrhythmias and disorders identification and 

classification in higher order spectral domain is focused in this literature. 

L. Khadra et al. [21] used high order spectral analysis technique for quantitative analysis and 

classification of cardiac arrhythmias. They classified four types of cardiac signals such as AF, 

VT, VF and NSR. A total of 8 -NSR, 12- AF, 11 -VT and 12 -VF (total 43 records) were 

considered for this work. Using bispectral analysis, bispectrum and bicoherence plots of above 

signals were evaluated with different bicoherence values. The classification results revealed the 

importance of higher order spectral analysis in identifying the life threatening arrhythmia which 
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is an important tool in ICU that enables online monitoring of the cardiac activities. The results 

showed a significant difference in parameter values for different arrhythmias. 

Limitations/remarks: The medical statistics obtained by using HOSA technique were 

Sensitivity(S) as 89.2% and Specificity (Sp) as 93.55%. The sensitivity and specificity obtained 

can be enhanced further by using different classifiers. 

I. A. Karaye et al. [26] analysed cardiac signals such as NSR, RBBB, LBBB, paced beat and 

atrial premature beats using higher order spectral analysis to reveal the complex dynamics of 

ECG signals. General characteristics for each of these classes in the bispectrum and 

bicoherence plot for visual observation have been presented and also extracted higher order 

statistical parameters (skewness, kurtosis and variance) using HOSA and temporal features (RR 

interval) using Pan Tompkins algorithm were used for classification of five different types of 

signals and obtained average classification accuracy as 94.9%.   

Limitations/remarks: Authors used both morphological and higher order statistical 

parameters (hybrid) to classify 5 types of cardiac signals and obtained an average classification 

accuracy as 94.9% and this work can be extended to identify other types of cardiac arrhythmias. 

K. Sharmila et al. [25] used higher order statistics (HOS) analysis to identify sudden cardiac 

arrest. Estimation of higher order spectra on the basis of cumulants is more useful for the 

analysis of stochastic signals whereas estimation of higher order spectra on the basis of 

moments is more useful for the analysis of deterministic signals. 

Limitations/remarks: Authors have used both spectral and higher order statistical parameters 

to distinguish two types of cardiac signals (NSR and SCA). This work can be extended to 

identify other types of cardiac arrhythmias and disorders. 

2.5 Cardiac arrhythmias analysis and classification in Wavelet 

Domain 

A review of literature related to cardiac arrhythmias and disorders classification in wavelet 

domain is focused in this literature. 

H.M. Rai et al. [44] used DWT based feature extraction scheme and BPNN Classifier to 

classify normal and abnormal signals. Normal class 25 files and abnormal class 20 files of 
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1minute duration were collected from MIT-BIH arrhythmia database (out of 48 files, 45 files 

have been considered).  

The extracted DWT based features are shown below 

1. Mean of the absolute values of the details and approximation coefficients at each level.  

2. Standard deviation of the details and approximation coefficients in each sub band.  

3. Variance values of the details and approximation coefficients at each level. 

 

48 wavelet features and 16 statistical and morphological features such as standard deviation of 

RR interval, PR interval, PT interval, ST interval, TT interval, QT interval, maximum values 

of P, Q, R, S, T peaks and number of R peaks count are used. Total 64 hybrid features are 

considered and fed to the Back Propagation Neural Network (BPNN) classifier and the system 

performance was measured on the basis of accuracy. The average classification accuracy 

obtained as 97.8 %. 

Limitations/remarks: The limitation of this work is that it has used 64 features and for 

classification of two types of signals. The classification can be performed for different number 

of ECG signals.  

Maedeh Kiani Sarkaleh et al. [45] used discrete wavelet transform for processing ECG 

recordings. They classified both normal and two types of cardiac disorders using 10 files of 

ECG records. It produced results with classification accuracy of 96.5%. Extracted 24 wavelet 

features using 8 level wavelet decomposition and these features were fed to MLP classifier and 

produced results with 24 input neurons and 2 linear output neurons. The performance of this 

MLP neural network was tested using the Mean Squared Error (MSE) parameter. This error is 

computed using the differences between the actual outputs and the outputs obtained by the 

trained NN. 

Limitation: The limitation of this work is that it has only used 10 records out of 48 available 

records in the ECG Arrhythmia database. So, the training set obtained after extracting features 

from the samples those records suffers from lack of diversity. Also, this work classified only 

three types of cardiac signals, while it ignores the other classes of severe arrhythmias. This 

work results are showing 24 input neurons 2 output neurons but aimed to classify three types 

of cardiac signals 
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N. K. Dewangan et al. [106] Used four morphological features i.e. R peak amplitude, QRS 

duration, RR interval and PR interval along with eight wavelet based features i.e. variance of 

detail coefficients obtained after eight level wavelet decomposition of each ECG beats. LM 

Back propagation algorithm was used to train the multilayer feed-forward back propagation 

networks. 5 types of arrhythmias were detected by this system.  

Limitations/remarks: This existing neural network based global classifier obtained sensitivity 

as 65%, specificity as 92%, positive predictive value as 63% and classification accuracy as 

87%. 

E. D. Ubeyli et al. [50] classified four types of cardiac disorders and NSR using Mixture of 

expert algorithm and produced results with an accuracy of 96.88%. The ECG signals were 

decomposed into time–frequency representations using discrete wavelet transforms (DWT) and 

statistical features were calculated to depict their distribution. The ME network structure was 

implemented for cardiac disorders classification using the statistical features as inputs. To 

improve classification accuracy, the outputs of expert networks were combined by a gating 

network simultaneously trained in order to stochastically select the expert that is performing 

the best at solving the problem. Five types of ECG beats (normal beat, congestive heart failure 

beat, ventricular tachyarrhythmia beat, atrial fibrillation beat and partial epilepsy beat) obtained 

from the Physio bank database were classified with an accuracy of 96.89% by the ME network 

structure.  

Limitations/remarks: Five types of ECG signals were classified with an accuracy of 96.89%. 

 

Ali Sadr et.al [51] distinguished performance of MLP and RBF algorithms based on available 

training data set. RBF algorithm is giving more accuracy when the size of training data set is 

relatively small whereas MLP algorithm is giving more accuracy when the size of training data 

set size is relatively large. Further, in literature survey, it has been reported that finding 

optimum and efficient feature set is a major challenge for arrhythmias classification. Selection 

of a suitable classifier also plays a significant role in improving the classification accuracy [94], 

[95]. The classification accuracy obtained using RBF classifier as 94% and MLP classifier as 

92% for 50 number records. 
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Limitations/remarks: In this work, they compared of performance of MLP and RBF based on 

number records. MLP algorithm is being more accurate than RBF when the size of training 

data set size is relatively large. 

Monalisa Mohanty et al. [47] used multi-domain features and supervised classifiers to classify 

VF, VT and NSR. The ventricular arrhythmia detection algorithm that combines ECG features 

with C4.5 classifier has been used in this work. The Ventricular Tachyarrhythmia Database 

(cudb) and MIT-BIH Malignant Ventricular Ectopy Database (vfdb) are used from physionet 

database. A total combination of 13 temporal, spectral and statistical features were considered. 

Further, the extracted features have been ranked in Gain Ratio Attribute Evaluation in order to 

improve the classification accuracy. Classification of selected features for VF, VT and normal 

sinus rhythm (NSR) was done by using two classifiers namely cubic support vector machine 

(SVM) and the C4.5 classifier .The obtained medical statistics were sensitivity as 90.97%, 

specificity as 97.86% and accuracy as 97.02% using C4.5 classifier. The obtained medical 

statistics were sensitivity as 79.43%, specificity as 81% and accuracy as 92.23% using SVM 

classifier.  

Limitations/remarks: This work compared the classification results of SVM and C4.5 

classifiers and proved that C4.5 was the better classifier. But the sensitivity of this classifier 

was very low to classify three types of signals. Sensitivity of the classification can be enhanced 

by using efficient feature schemes. 

Pooja Bhardwaj et al. [49] successfully classified NSR and 4 types of cardiac disorders by 

using support vector machine (SVM) algorithm and obtained results with a total performance 

accuracy of 95.21%. The wavelet based temporal features were obtained by using Acq 

Knowledge software.  This software is used for pre-processing and feature extraction. 18 

wavelet based temporal features were extracted from ECGs and fed to SVM classifier. This 

method used 3,003 beats from the MIT-BIH Arrhythmia database. In this study, 70% data has 

been taken for training purpose and 30% data has been taken for testing purpose and achieved 

total average accuracy as 95.21% and average sensitivity as 85.43% for 5 types of cardiac 

signals (one normal and four arrhythmic beats). 

Limitations/remarks: They might have taken unequal records of ECG signals and classified 

the ECG beats of 5 categories. Their sensitivity is very low which can be enhanced further 

using different classifiers and more number of features. 
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A summary of literature review has been presented in Table 2.1 and Table 2.2. It gives the 

summary of features, the classifiers, number of diseases and the classification accuracy 

obtained. 

Table 2.1 Summary of literature review using time and spectral analysis 

Time domain and Spectral domain Analysis 

Study by Records and Features Algorithm 
Cardiac Arrhythmia 

Analysis 

Pan and Tompkin 

[2] 

(1985) 

Morphological 

features(slope, amplitude and 

width of the QRS complex) 

Pan-Tompkins 

Algorithm 

QRS detection has 

been done with 99.3% 

accuracy 

V. Vijaya et al. 

(2012) 

[4] 

Features-2 Temporal features 

(No. of R-peaks/1000 

samples and R-R interval) 

Pan-Tompkins 

Algorithm 

Distinguished NSR and 

SCA 

M. Vijayavanan et 

al. (2014) 

[5] 

300 Records 

12 -Morphological 

features 

PNN classifier 

Distinguished Normal 

and Arrhythmia with 

accuracy of 96.5% 

Mujeeb Rahman K 

et al. (2019) 

[6] 

8 records 

Features-4 temporal features 

( R-R interval, P-R interval, 

Q-T interval and QRS 

complex duration) 

Pan-Tompkins 

Algorithm 

(PTA) 

and 

Wavelet based 

Algorithm 

(WBA) 

PTA accuracy (99.95% 

) more than 

WBA (97.75%) 

accuracy. 

Rathnakara et al. 

(2018) 

[37] 

Temporal Features (RR 

intervals, No. of R peaks and 

R peak amplitude) 

Modified Pan-

Tompkins 

Algorithm 

Distinguished Normal 

and Arrhythmia 

Pooja Bhardwaj et 

al. (2012) 

[49] 

Features-18 Morphological 

Features 
SVM using  

LibSVM3 

NSR, 4 types of 

Arrhythmias 

(5-Types) 

Usman Rashed et 

al.(2008) [19] 

8 Records, 

Features -5 Spectral features 
FFT Algorithm 

NSR and SCA(two 

types) 
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Table 2.2 Summary of literature review using HOSA and wavelet analysis has been presented 

Higher Order Spectral domain Analysis 

Study by 
Records and 

Features 
Classifier 

Cardiac 

Arrhythmias 

Classification 

Performance 

Ibrahim 

Abdullahi 

Karaye et al. 

(2012) 

 [26] 

47 records, 

Temporal and 

HOSA features 

Feed forward 

ANN 

NSR, 

LBBB,RBBB,

PB and APB 

(5 types) 

Sensitivity-88.4% 

Specificity-96.2% 

Accuracy- 94.9%. 

L. Khadra et 

al. (2012) 

 [21] 

43-records (AF-12, 

VT-11, VF-12 and 

NSR-08) 

HOSA features 

Bispectral 

contour 

analysis 

NSR, VT, VF 

and AF (4 

types) 

Sensitivity - 89.2% 

Specificity - 93.55% 

Wavelet Analysis 

Study by 
Records and 

Features 
Classifier 

Cardiac 

Arrhythmia 

Classification 

Performance 

Ayad Mousa 

(2012) 

[42] 

38 records 

(17-NSR and 21-

VT) 

Features-wavelet, 

morphological and 

both wavelet and 

morphological 

BPNN 

NSR and VT 

(2-Types of 

signals) 

Using wavelet features-

84.21%, 

Using Morphological  

features-76.32%, 

Using  both Wavelet 

and Morphological 

features -100% 

H.M.Rai et al. 

(2012) 

 

[44] 

45 Records 

(25 arrhythmia and 

20 normal) 

Features-16 

morphological and 

48 wavelet features 

(Total: 64 features) 

BPNN 

Normal and 

Arrhythmia 

class (2-Types 

of signals) 

Accuracy- 97.8% 

 

Maedeh Kiani 

Sarkaleh et al. 

(2012) 

[45] 

10 Records 

Features- wavelet 

features 

MLP 

Normal and 2-

Arrhythmias 

(3-Types of 

signals) 

Accuracy-96.5% 

 

Mangesh 

Singh Tomar 

et al. [46] 

62 Records ,25 

features 

(14-NSR and 

48-Arrhythmia) 

(20- wavelet and 5 

statistical features) 

BPNN 

Normal and 

Arrhythmia 

classes (2-

Types of 

signals) 

Accuracy-98.4% 
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Jose Antonio 

Gutierrez-

Gnecch el al. 

[109] 

Features-wavelet 

and morphological 

features 

PNN classifier 
5 Arrhythmia 

types 

AF-91.5%, 

Avg : 84.54% 

Naser 

Safdarian et 

al. (2012) 

[24] 

57 records      

Features-2 

Temporal features 

Fuzzy classifier 

using Genetic 

algorithm 

NSR, VT and 

VF 

Sensitivity - 95.22% 

Specificity - 96.0% 

Accuracy - 93.33% 

Monalisa 

Mohanty et al. 

(2018) 

 [47] 

57 Records 

Features-13 

Temporal and 

Statistical features 

 

SVM  and C4.5 

classifier 

NSR, VT and 

VF 

(3-Types) 

SVM classifier: 

Sensitivity - 79.43%, 

Specificity - 81.44%, 

Accuracy - 92.23% 

C4.5 classifier: 

Sensitivity - 90.97%, 

Specificity - 97.86%, 

Accuracy - 97.02% 

E. D. Ubeyli et 

al. (2009) 

[50] 

Statistical 

parameters and 

ROC curves 

 

Recurrent 

Neural 

Networks 

(RNN) 

NSR and 4 

diseases 

Accuracy - 96.89% 

 

Ali Sadr et 

al.(2011)  

[51] 

50 records 

Wavelet features 

 

Compared MLP 

and RBF 

classifiers 

Normal and 

Arrhythmia 

(2types) 

Average Accuracy 

using MLP classifier -

94% and 

Average Accuracy 

using RBF classifier -

96% 
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2.6 Concluding remarks 

Due to wide variation in the number of cardiac signals and variation in number of features, it 

is difficult to draw the meaningful conclusions about the merits of any one approach over 

another. Some of studies have used recordings from clinical data collections, some of them 

used MIT-BIH database, European ST data base, SCD Holter database and some others have 

used AHA database. Further, it has been observed that, experiments were performed on 

different databases of different records and different classifiers. Therefore without applying 

each of these approaches to the same training and testing data, there appears to be no metric 

that can be applied to equate their results.  

There is a lack of standardization of cardiac signal features. Feature extraction method 

temporally selects ECG features. So, the accuracy of any classifier depends on these selected 

features. A small variations in these selected features may cause a misclassification. Heart beat 

rate of the individuals is changing due to physiological conditions and the mental condition 

such as stress, excitement and other working activities. For ECG classification, no optimal 

classification rules exist which can help in the classification process. [53] 

It has been found that classification accuracy depends on many parameters such as type of 

cardiac arrhythmia, diversity in arrhythmia, type of cardiac disorder, selected arrhythmia 

database, selected number of records, selected feature extraction technique and selected neural 

network classifier etc., It has been consistently observed that finding efficient feature scheme 

and classifier are very important for cardiac arrhythmias classification and has enormous scope 

for research work. 

From the literature review it is identified that novel feature scheme and improving the 

classification accuracy are active research topics in this area which have been taken up in this 

proposed research work. 
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Chapter 3 

Cardiac arrhythmias analysis and classification in time 

domain 

3.1 Introduction 

From the literature review, it has been consistently observed that temporal features have proved 

their significance in cardiac signal analysis. Most of the works distinguished normal and cardiac 

arrhythmias. In this work, a novel approach is proposed to analyse and classify 7 types of 

cardiac signals (4-arrhythmias, 2-cardiac disorders and 1-normal) using Pan Tomkins algorithm 

and artificial intelligence algorithms.  

This chapter has been organized as follows. Section 3.2 describes briefly the overview of 

existing works. Cardiac arrhythmia analysis using temporal features is explained in section 3.3, 

different classification algorithms has been explained in section 3.4, cardiac arrhythmias 

classification based on proposed temporal features is explained in section 3.5, conclusions 

based on classification results have mentioned in section 3.6 and performance comparison has 

been done with the existing works is given in section 3.7. 

3.2   Overview of existing works 

In this section, the work done by some researchers was presented briefly. Pan-Tompkins et al. 

[2] peak detection algorithm correctly detected 99.3% of QRS complexes accurately. V. Vijaya 

et al. [4] used Pan Tompkins Algorithm to extract two temporal features (number of R-peaks 

and R-R interval) to distinguish sudden cardiac arrest from normal sinus rhythm. But, 

classification of arrhythmias was not done. M. Vijayavanan et al. [5] used 8 level wavelet 

decomposition for extraction of 12 morphological features (P, Q, R, S, T peak points, QRS 

complex duration, PR interval, QT interval, ST interval, ST segment, RR interval and PR 

segment). Only normal (NSR) and arrhythmia (abnormal) signals were distinguished by using 

Probabilistic Neural Network (PNN) classifier with a classification accuracy of 96.5%. Mujeeb 

Rahman et al. [6] used Pan-Tompkins Algorithm and Wavelet based algorithm for extraction 

of four temporal features (QRS duration, RR interval, heartbeat rate and PR interval). In this 

work, it has been proven that Pan-Tompkins algorithm is more accurate than wavelet transform 

based algorithm. In this work, classification of arrhythmias has not been addressed.  
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Rathnakara et al. [37] used a modified Pan Tompkins algorithm to extract temporal features 

such as RR intervals, No. of R peaks and R peak amplitude. This work used Turning point knot 

algorithm to remove base line wander noise. The analysis of ECG signal was done based on 

heartbeat rate variability. In this work, heartbeat rate below 60bpm was considered as 

bradycardia and heartbeat rate above 80bpm is considered as tachycardia. In this work, only 

normal (NSR) and arrhythmia signals were distinguished based on heartbeat rate. 

 

3.3 Cardiac arrhythmia analysis using temporal features 

In this work, existing Pan Tompkins algorithm has been used for feature extraction. Pan 

Tompkins algorithm identifies the QRS complexes based upon digital analysis of slope, 

amplitude, and width of the ECG data. The algorithm implements a special digital band pass 

filter. It can reduce false detection caused by the various types of interferences present in the 

ECG signal. The algorithm automatically adjusts the thresholds and parameters periodically to 

adapt the changes in QRS morphology and heart rate. 

 

The processing steps in the Pan Tompkins algorithm as shown in Fig 3.1 are as follows, 

1.  In the first stage, ECG data of seven types of cardiac signals has been collected from standard 

ECG data bases. 

 2. In the second stage of pre-processing, the noise is eliminated from input ECG signals.  

Base line wander (BW) noise (0.5Hz-2Hz) is observed in ECG signals, though it’s filtered 

standard base. BW noise is present in the ECG signal during recording due to movement and 

respiration of the patients. So, BW removal is an important step in ECG signal processing. 

Otherwise important diagnostic information present in the ECG may be corrupted 
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Fig 3.1 Pan Tompkins algorithm 

 

 So, a 3rd order Butterworth low pass filter is used to remove baseline wander noise from ECG 

signal by selecting cut off frequency 2Hz. The block diagram of Base line wander removal 

from the ECG signal is shown in Fig 3.2. 

 

Fig 3.2 Base line wander removal 
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3. After removal of baseline wander noise from the main ECG signal, the signal is passed 

through band pass filter (BPF) for the extraction of QRS complex (5-15Hz). The QRS complex 

detection from the ECG signal is shown in Fig 3.3 

 

Fig 3.3 QRS detection 

4. The next processing step is differentiation, it is a standard technique for finding the high 

slopes that normally distinguish the QRS complexes in ECG waves. ECG signal is 

differentiated by using 4th order high pass Butterworth filter with cut-off frequency of 30 HZ. 

The derivative procedure suppresses, the low frequency components of P and T waves and 

provides a large gain to the high-frequency components arising from the high slopes of the 

QRS Complex. 

5. Next squaring operation makes the result positive and emphasizes large differences resulting 

from QRS complexes. The small differences arising from P and T waves are suppressed. The 

high frequency components in the signal related to the QRS complex are further enhanced. This 

is a nonlinear transformation that consists of point by point squaring of the signal samples.  

6. Next squared waveform passes through a moving window integrator. This integrator sums 

the area under the squared waveform over a suitable interval, advances one sample interval, and 

integrates the new predefined interval window.  

After differentiation and squaring operation, multiple peaks appear within the duration of a 

single QRS complex. Smoothing of the output of the preceding operation is done by using 

moving-window integration filter. Moving window integration is performed by the following 

equation. 

                                                                             (3.1)   
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The choice of the window width N is to be made with the following considerations: too large a 

value will result in the outputs due to the QRS and T waves being merged, whereas too small 

a value could yield several peaks for a single QRS complex. The choice of the duration of the 

sliding window results in a trade-off between false and missed detections. The ability to detect 

the presence of disorder of concern and percentage of detection peaks that are actually present. 

A window width of N = 50 was found to be suitable for fs = 250 Hz.  

7. After moving window integration, R-peak detection is done by using fixed thresholding. 

Threshold is set as mean of the data. 

8. Later R-R interval is computed from these results. With R-R intervals heartbeat rate has been 

calculated using the following expression 

Heartbeat rate =
60

RR Interval
                                            (3.2) 

 

7 types of ECG signals (four types arrhythmias- SVT, VT, VF and AF, two types of cardiac 

disorders-SCA & CI and normal signal-NSR) are analysed in time domain by using Pan 

Tomkins Algorithm. Ventricular Arrhythmias lead to serious disorder SCA. If neglected, it 

leads to sudden cardiac death. CI is also a serious disorder if neglected, it leads to heart attack 

will arise. Both disorders treatment is different. Similarly, different cardiac arrhythmias need 

different treatment. Early diagnosis is also important to save life of heart patients. Therefore, 

there is a need to classify these different cardiac signals. Using time domain analysis, the 

following four temporal features are extracted and used for classification purpose. 

• R-Peak Amplitude 

• No.of R-Peaks 

• R-R Interval 

• Heartbeat rate 

 

The Simulation results of Pan Tompkins algorithm are shown below step wise from Fig 3.4 to 

Fig 3.9. 
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Fig 3.4 Normal ECG signal (record no 16420) with base line wander noise. 

 

Fig 3.5 Normal ECG signal (record no 16420) after removal of base line wander noise 

 

Fig 3.6 Normal ECG signal (record no 16420) after band pass filter 
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Fig 3.7 Normal ECG signal (record no 16420) after differentiation 

 

Fig 3.8 Normal ECG signal (record no 16420) after squaring operation 

 

Fig 3.9 Normal ECG signal (record no 16420) after moving integration 
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The simulation results of a few records of Normal ECG signal (16265, 16273 and 16773) after 

implementing Pan Tompkins algorithm for 1minute (15000 samples) is shown in fig 3.10. From 

these simulation results, computed temporal features of NSR records. 

 

 

 

 

Fig 3.10 Simulation results of NSR records [16265, 16273 and 16773] 
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The simulation results of a few records of SVT (820, 823 and 800) for after implementing Pan 

Tompkins algorithm for 1 minute (15000 samples) is shown in Fig 3.11. From these simulation 

results, computed temporal features of SVT records. 

 

 

 

Fig 3.11 Simulation results of SVT records [820,823 and 800] 
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The simulation results of a few records (cu01, cu15 and cu12) for Ventricular Tachycardia ECG 

signal after implementing Pan Tompkins algorithm for 1minute (15000 samples) is shown in 

Fig 3.12. From these simulation results, computed temporal features of VT records. 

 

 

 

 

Fig 3.12 Simulation results of VT records [cu01, cu15 and cu12] 
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The simulation results of a few records (602, 609 and 430) for Ventricular Fibrillation ECG 

signal after implementing Pan Tompkins algorithm for 1minute (15000 samples) is shown in 

Fig 3.13. From these simulation results, computed temporal features of VF records. 

 

 

 

Fig 3.13 Simulation results of VF records [602,609 and 430] 

 



43 
 

The simulation results of a few records (e0104, e0105 and e01017) for Cardiac Ischemia (CI) 

signal after implementing Pan Tompkins algorithm for 1minute (15000 samples) is shown in Fig 

3.14. From these simulation results, computed temporal features of CI records. 

 

 

 

 

Fig 3.14 Simulation results of CI records [e0104, e0105 and e0107] 
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The simulation results of a few records (42, 43 and 41) for sudden cardiac arrest signal after 

implementing Pan Tompkins algorithm for 1minute (15000 samples) is shown in Fig 3.15. 

From these simulation results, computed temporal features of SCA records. The simulation 

results of a few AF  records (04043, 08215 and 08434) is shown in Fig 3.16.  

 

 

 

                                  Fig 3.15 Simulation results of SCA records [42, 43 and 41] 
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                                   Fig 3.16 Simulation results of AF records [04043, 08215 and 08434] 

Temporal features such as No. of R-peaks, R peak amplitude, R-R interval and heartbeat rate 

of 7 types of cardiac signals (NSR, Cardiac Arrhythmias-SVT, VT, VF and AF and cardiac 

disorders-SCA and CI) of each 15 records. Temporal features of total 105 records are shown in 

Table 3.1  
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Table 3.1 Temporal features of different cardiac signals 

No. of R- 

peaks/minute 

R peak 

Amplitude (mV) 

R-R interval  

(secs) 

Heartbeat 

rate(bpm) 
Signal? 

41 0.195675 0.7827 76.65772327 VF 

63 0.127919355 0.511677419 117.2613794 VF 

40 0.202846154 0.811384615 73.9476678 VF 

53 0.151153846 0.604615385 99.23664122 VF 

22 0.368095238 1.472380952 40.75032342 VF 

44 0.18227907 0.729116279 82.29140087 VF 

55 0.145537037 0.582148148 103.0665479 VF 

43 0.186404762 0.745619048 80.47004726 VF 

24 0.332913043 1.331652174 45.05681076 VF 

57 0.141589286 0.566357143 105.9402194 VF 

36 0.223428571 0.893714286 67.13554987 VF 

25 0.315625 1.2625 47.52475248 VF 

34 0.237060606 0.948242424 63.27495846 VF 

25 0.323541667 1.294166667 46.36188023 VF 

56 0.141945455 0.567781818 105.6743948 VF 

32 0.159901472 0.974580645 61.56494108 VT 

73 0.972875472 0.604461538 99.2618987 VT 

75 0.031811855 0.417567568 143.6893204 VT 

24 0.0005856 1.368347826 43.84850025 VT 

76 0.031955662 0.414293333 144.8249228 VT 

36 0.143324647 0.8792 61.56494108 VT 

46 0.000695974 0.706133333 144.5396146 VT 

42 0.000455776 0.773560976 143.6893204 VT 

47 0.058796857 0.668782609 89.71525159 VT 

47 0.121282677 0.69173913 144.8249228 VT 

29 0.246977028 1.106428571 68.24385805 VT 

38 0.137871937 0.830918919 84.96978852 VT 

23 0.001140161 1.354363636 77.56337495 VT 

38 0.0029195 0.844216216 48.6886523 VT 
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23 0.001505313 1.390909091 86.73790069 VT 

52 0.854975 0.617960784 54.22853454 SVT 

32 1.955584375 1.962580645 72.20921155 SVT 

44 0.958168182 0.723348837 71.07184018 SVT 

40 1.49194 0.801025641 74.90396927 SVT 

32 1.656490625 0.997677419 60.13967926 SVT 

43 1.7546 0.728761905 82.33141662 SVT 

35 1.625905714 0.933529412 64.27221172 SVT 

25 0.6304737 1.295166667 46.32608416 SVT 

28 1.298521429 1.151703704 52.0967327 SVT 

40 0.21319754 0.797230769 75.26051717 SVT 

54 0.142973048 0.587698113 102.0932323 SVT 

41 0.27527253 0.7825 76.67731629 SVT 

54 1.245340741 0.590188679 101.6624041 SVT 

41 1.010692683 0.7675 78.17589577 SVT 

50 0.558014608 0.649877551 92.32508479 SVT 

23 0.149586735 1.367636364 43.87131082 SCA 

29 0.101811814 1.071 56.02240896 SCA 

23 0.235015752 1.425636364 42.08646856 SCA 

24 0.042966113 1.370782609 43.77061659 SCA 

24 0.003038279 1.342086957 44.70649216 SCA 

18 0.08510885 1.837411765 32.65462927 SCA 

8 0.085488825 4.554857143 13.17275122 SCA 

32 0.0917072 1.006580645 59.6077426 SCA 

31 0.098433552 1.0532 56.96923661 SCA 

26 0.000126904 1.27568 47.03373887 SCA 

30 0.00067424 1.06937931 56.1073133 SCA 

25 0.063374748 1.328833333 45.15238931 SCA 

22 0.001336595 1.467619048 40.8825438 SCA 

26 0.00075585 1.26384 47.47436384 SCA 

22 0.417294723 1.505142857 39.86332574 SCA 

31 1.150783871 0.149586735 60.3378922 NSR 
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49 5.529473469 0.101811814 93.0833872 NSR 

50 5.507928 0.235015752 92.7327782 NSR 

49 1.891016327 0.042966113 92.69988413 NSR 

50 1.758144 0.003038279 93.34518669 NSR 

40 1.79936 0.372409457 75.99376461 NSR 

38 5.969310526 0.08510885 71.42857143 NSR 

37 4.3836 0.085488825 70.07526603 NSR 

34 1.267570588 0.091707288 63.43713956 NSR 

36 0.992038889 0.098433552 66.66666667 NSR 

43 3.451974419 0.000711936 81.29032258 NSR 

58 0.610459962 0.000126904 74.57479285 NSR 

43 2.0547 0.00067424 80.66581306 NSR 

57 0.609691228 0.00075585 109.517601 NSR 

60 0.112759242 0.198319587 111.7424242 NSR 

20 0.001611579 1.611578947 37.23056826 CI 

15 0.002124857 2.124857143 28.23719242 CI 

16 0.002090667 2.090666667 28.69897959 CI 

15 0.002114857 2.114857143 28.37071062 CI 

14 0.002198462 2.198461538 27.29181246 CI 

18 0.001763529 1.763529412 34.02268179 CI 

17 0.00193125 1.93125 31.06796117 CI 

10 0.002975111 2.975111111 20.16731401 CI 

18 0.001869882 1.869882353 32.08758022 CI 

13 0.002682667 2.682666667 22.36580517 CI 

18 0.001818824 1.818823529 32.98835705 CI 

16 0.002013067 2.013066667 29.80527222 CI 

21 0.0015494 1.5494 38.72466761 CI 

21 0.0015456 1.5456 38.81987578 CI 

24 0.0013434 1.343478 44.66019 CI 

28 0.336032521 1.344130086 44.63853658 AF 

19 0.1203049 0.4812196 124.6832008 AF 

20 0.11645225 0.465809 128.8081596 AF 
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19 0.028093468 0.112373874 533.9319366 AF 

19 0.269214163 1.076856653 55.71772237 AF 

16 0.298580794 1.194323175 50.23765866 AF 

19 0.243727268 0.974909074 61.54420101 AF 

33 0.125365379 0.501461515 119.6502587 AF 

22 0.026578409 0.106313636 564.3678652 AF 

19 0.005267116 0.021068463 2847.85841 AF 

62 0.062670811 0.250683245 239.3458724 AF 

18 0.047963394 0.191853578 312.7384993 AF 

15 0.279369273 1.117477093 53.69237576 AF 

21 0.227674081 0.910696324 65.88365236 AF 

30 0.11149009 0.44596036 134.5411059 AF 

 

Table 3.2 Average values of temporal features of cardiac signals 

Cardiac 

Signal 

R peak average 

amplitude (mV)  

Average no. of  

R- peaks 

Average R-R 

interval (secs) 

Average heart-

beat rate (bpm) 

NSR 2.4726 90 0.09774 82.5060 

CI 0.00198 34.1 1.97554 31.6359 

AF 0.15325 48 0.61300 355.843 

SVT 1.04481 81.4 0.89245 73.5850 

VT 0.12747 86.4 0.86836 96.2485 

VF 0.21840 82.4 0.87360 76.9767 

SCA 0.09178 48.4 1.52931 44.6250 

 

Average values of temporal features such as R-peak amplitude, number of R-peaks, R-R 

intervals and heartbeat rate of 7 types of cardiac signals are shown in Table 3.2. There is a 

variation in number of R-Peaks, amplitude of R peaks, R-R intervals and heartbeat rate of 

different cardiac signals. These temporal features will determine the functioning of heart [61].  

 



50 
 

 

Fig 3.17 R-peak amplitude variation of different cardiac signals 

As shown in Fig 3.17, NSR and SVT signals amplitudes are very high.  Severe ventricular 

arrhythmias such as VT and VF, the average amplitudes are 0.1 mV to 0.2 mV respectively. 

For cardiac disorders such as SCA and CI, the amplitudes are almost reaching to zero (0.09 mV 

and 0.001 mV). 

 

Fig 3.18 R-R Interval variation of different cardiac signals 

R-R interval variation in NSR is very less (0.09s) whereas it is very high (1.5s to 1.9s) in cardiac 

disorders (CI and SCA) and in all ventricular arrhythmias it is 0.8s and in AF, the R-R interval 

is 0.6s. The R-R interval variation of different cardiac signals is shown in Fig 3.18 

0

0.5

1

1.5

2

2.5

NSR CI AF SVT VT VF SCA

A
m

p
lit

u
d

e 
A

ve
ra

ge
(m

V
)

Cardiac Signal

R Peak Amplitude Average Variation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

NSR CI AF SVT VT VF SCA

R
-R

 in
te

rv
al

Cardiac signal

R-R Interval variation



51 
 

 

Fig 3.19 Average number of R-Peaks/minute in different cardiac signals 

Number of R-Peaks/minute variation in NSR is very high (90) whereas it is very low (34.13 to 

48.4) in cardiac disorders (CI and SCA) and in all ventricular arrhythmias (VT and VF) it is 

86.4 and 82.4 respectively and in AF, it is 48. The number of R-Peaks variation of different 

cardiac signals is shown in Fig 3.19 

Table 3.3 Standard Deviation (SD) of R-R intervals of cardiac signals 

Cardiac Signal SD for R-R intervals (milliseconds) 

CI 429.8072 

SCA 863.8298 

NSR 105.9631 

VF 319.3791 

VT 317.8802 

SVT 359.1926 

AF 447.8123 

 

The standard deviation (σ) gives information about the spread of data values from the mean 

value. If σ is small, the data values are close to the mean value. Standard Deviation (SD) of R-

R intervals of cardiac signals is shown in Table 3.3. R-R standard deviation varitation is shown 

in Fig 3.20. If σ is high, the data values are widely spread out from the mean value. R-R interval 
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standard deviation of less than 105.9ms for NSR had a relative risk 4 times higher than those 

with R-R interval standard deviation of 429.8ms for CI and relative risk 8.5 times higher than 

those with R-R interval standard deviation of 863.8ms for SCA.  R-R interval standard 

deviation of Ventricular arrhythmias (VT, SVT and VF) is approximately 319ms to 359ms 

having a relative risk of 3.5 times higher compared to NSR. R-R interval standard deviation of 

atrial fibrillation (AF) is approximately 447ms having a relative risk of 4.5 times higher 

compared to NSR. 

 

Fig 3.20 Standard Deviation of R-R intervals of cardiac signals 

 

Heartbeat rates of various signals are calculated from R-R intervals and the variation of 

heartbeat rate of cardiac signals is shown in Fig 3.21.The heartbeat rate of 4 signals (NSR, CI, 

AF and SCA) out of 7 signals are found to be accurate with reference to existing works [56]. 
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Fig 3.21 Heartbeat rate variation of cardiac signals 

Atrial Fibrillation Heartbeat Rate: 355 bpm, Irregular R-R interval; SCA Heartbeat Rate: 20-

50bpm, Irregular R-R interval; CI Heartbeat Rate: 20-40bpm, NSR Heartbeat Rate; 60-

100bpm, Regular R-R interval; SVT Heartbeat Rate: Above 100bpm; VT Heartbeat Rate: 

170bpm (wide QRS complex (120ms)); VF Heartbeat Rate: above 400bpm (narrow QRS 

complex (80ms)). 

3.4 Introduction to Artificial Intelligence Algorithms 

3.4.1 Introduction  

Artificial neural networks are computational models that work similarly to the functioning of a 

human nervous system. Neural Networks are organized in layers made up of interconnected 

nodes which contain an activation function that computes the output of the network. Both 

Neural networks and Random Forest are different techniques that learn differently but can be 

used in similar domains. Neural Networks are exclusive to Deep Learning while Random Forest 

is a technique of Machine Learning.  

Machine learning based classifier (RF) and Artificial neural networks (MLP and RBF) are 

implemented based on the mathematical operations and a set of features is required as input to 

determine the output. The literature survey shows that selection of a suitable classifier plays an 

important role in any classification problem [59], [66].  
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3.4.2 Random Forest (RF) Classifier 

The random forest is a classification algorithm consisting of many decisions trees. Decision 

trees are a popular method for various machine learning tasks. Both the Random Forest and 

Neural Networks are different techniques that learn differently but can be used in similar 

domains.  Random forests is an ensemble learning method for classification, regression and 

other tasks, in which a number of decision tress are created at the training time and a class is 

given as output which is the mode of the classes[20]. In order to create number of decision 

trees, data and variables are selected randomly from the available set of data and variables. To 

build a tree during training time a finite set of thresholds is used. While constructing a tree 

separation of classes is being done and probability of data point to be of any class is different 

for each node. The newly arrived data point go down in tree and it ends at leaf and the class 

with highest probability for that node shows the actual class of data point in that tree. Single 

random tree is not a good classifier but if we combine a number of random trees then it becomes 

a very good classifier.  

Let a dataset of N data points be X = x1, x2, x3 ..., xn with responses C= c1, c2, c3 ..., cn. Every 

input has some features. The algorithm of random forest classifier is shown in Fig 3.22 

 

Fig 3.22 Random Forest Classifier [110] 

 In order to create more randomness among these data points every time some data points are 

selected and from these data inputs some features are selected randomly in order to make a 

decision tree. If one or few features are very strong predictors for the target output, these 

features will be selected in many of the decision trees. Typically, for a classification problem 

with f features,  √𝑓  features are used in each split. 
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• Sample, with replacement, n training examples from X, C; call these Xt, Ct. 

• Train a decision or regression tree ft on Xt, Ct. 

In the forest with T trees where t ∈ {1, 2, 3, . . , T}. All the decision trees are trained 

independently. During testing case, each test point V is simultaneously pushed through all the 

trees starting at root node until it reaches to corresponding leaves. For different trees, the data 

point will follow different path when it goes to leaf. The class probabilities for that point V is 

different in each tree. For the output prediction, bagging method is used which leads to better 

model performance because it decreases the variance of the model, without increasing the bias. 

It can be made by averaging the predictions from all individual decision trees given by the 

following equation 3.4. 

𝑝(𝑐|𝑣) =
1

𝑇
∑ 𝑝𝑡

𝑇
𝑡=1 (𝑐|𝑣)                                 (3.4) 

Where c represents the class of V. 

3.4.3 Multilayer perceptron (MLP) Classifier 

Multilayer perceptron is a feed-forward neural network model that takes feature vectors from 

the given dataset as input and map them onto outputs or appropriate classes[14][20]. In MLP 

there are several layers such as input layer, an output layer and one or more hidden layers. The 

weighted sum of the inputs produces the activation signal that is passed to the activation 

function to obtain one output from the neuron. The commonly used activation functions are 

linear, step, sigmoid, tanh and rectified linear unit (ReLu) functions. The MLP neural network 

structure is shown below in Fig 3.23. 

 

Fig 3.23 MLP general neural network structure [66] 
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All other nodes expect the input nodes have an activation function (E.g., sigmoid function). 

The input layer consists of the same number of nodes as the size of the input feature vector. 

The output layer has the same number of nodes that the input data should be classified. Each 

node in one layer is connected to all other nodes in the next layer through different weights 

[20]. Weights are initialized randomly at the beginning of training phase. MLP performs the 

gradient descent search to reduce the mean square error between the actual output and the 

desired output through the adjustment of the weights. It is highly accurate for most 

classification problems because of the property of the generalized data rule. In MLP training, 

the weights are adapted using a recursive algorithm starting at the output nodes and working 

back to the first hidden layer.  

The entire process of classification consists of two phases. 

• MLP is used to learn the behavior of the input data using back-propagation. This step 

is called the training phase.  

• Trained MLP is used to test using unknown input data. The back propagation algorithm 

compares the result that is obtained in this step with the result that was expected. This 

kind of classification is called supervised classification.  

The MLP computes the error signal using the obtained output and desired output. The computed 

signal error is then fed back to the neural network and used to adjust the weights such that with 

each iteration the error decreases and the neural model gets closer and closer to produce the 

desired output. During the training phase, the perceptron first processes the given data through 

feed forward propagation. The error in output node j in the nth data point is represented in 

equation 3.5.  

 𝐸𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑦𝑗(𝑛)                (3.5) 

Where 𝑑𝑗 is the desired output of node j and 𝑦𝑗 is the actual output produced by the perceptron.  

Using gradient descent weights will be adjusted to minimize error in the entire output, given 

by E (n) = 1, 

𝐸(𝑛) =
1

2
∑ 𝑒𝑗

2
𝑗 (𝑛)                 (3.6) 
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The change in each weight will be given by, 

 ∆𝑤𝑡 = −η
𝜕𝐸(𝑤)𝑇

𝜕𝑤
|

𝑤𝑡

                 (3.7) 

Where η is the learning rate which should be chosen carefully so that the cost function 

converges to a global minimum. If the learning rate is too large, then the algorithm may never 

converge and if it is very low, the algorithm may take a long time to converge. Generally 

learning rate is kept between 0 and 1[20]. 

3.4.4 Radial Basis Function (RBF) Classifier 

RBF neural networks are also a type of feed-forward network trained using a supervised 

training algorithm. The main advantage of RBF network is that it has only one hidden layer 

and it uses radial basis function as the activation function. These functions are very powerful 

in approximation. The training of the RBF model is terminated once the calculated error 

reached the desired values or number of training iterations. An RBF network with a specific 

number of nodes in its hidden layer is formed. It is typically observed that the RBF network 

required less time to reach the end of training compared to MLP. The fig 3.24 shows the RBF 

neural network structure. 

 

Fig 3.24 RBF general neural network structure [66] 

The procedure in training the RBF is faster than that we use in MLP. This can be given by 

internal representation formed by the hidden units, and leads to a two stage training procedure.  
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• In first stage, the parameters governing the basis function are determined using 

relatively fast, unsupervised learning methods.  

• The second stage of training then involves the determination of the final layer 

weights, which requires the solution of a linear problem, and which is therefore 

also faster.  

 If it is considered the Gaussian function as basis function. The Gaussian radial basis function 

will be considered as follows 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:  𝐻𝑗(𝑥) = exp (
‖𝑥−𝑐𝑗‖

2

𝜎2
 )                               (3.8) 

It is remarked that MLP NNs perform global matching to the input–output data, whereas in 

RBF NNs, this is done only locally, of course with better accuracy. The above two neural 

network algorithms, MLP and RBF networks, have different structures and characteristics, so 

they have different performances in classification tasks depending on the available training data 

sets. Experiments using the two real world data sets with the above two neural network 

algorithms show that multilayer perceptrons have relatively better performance for larger 

number of data sets and radial basis function networks have relatively better performance for 

smaller number of data sets. [52] 

3.4.5 Choice of a classifier 

The choice of a classifier is a crucial step in any classification problem. The classifier’s 

evaluation is mostly based on prediction accuracy (the percentage of correct prediction divided 

by the total number of predictions), sensitivity, specificity and precision. Classifier’s accuracy 

is examined by splitting the data set in to two-thirds for training and one third for testing. 

Tenfold cross-validation is used to improve classification accuracy. To decrease error rate, the 

following points are to be considered, 

• Relevant features  

• Training and testing of data 

• 10 fold cross validation 

• Appropriate classifier 

 

A common method for comparing supervised algorithms is to perform statistical comparisons 

of the accuracies of trained classifiers on specific features. Training of ANN is very time-
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consuming and computationally intensive. In addition to the learning process itself, a large 

amount of preparatory work is also necessary to bring the inputs into the required form. The 

inputs must be in number format and normalized. RF classifier can be trained with a relative 

small amount of data. MLP and RBF Neural Networks need more data to achieve the same 

level of accuracy. Random Forests require much less input preparation. They can handle binary 

features, categorical features as well as numerical features and there is no need for feature 

normalization. Random Forests are quick to train and to optimize according to their hyper 

parameters. Thus, the computational cost and time of training a Random Forest are 

comparatively low. 

3.4.6 Medical statistics  

RF, MLP and RBF classifiers classification performance can be evaluated using medical 

statistics such as sensitivity, specificity, classification accuracy, mean squared error (MSE) and 

receiver operating characteristics (ROC).  

Sensitivity (S) measures how often a test correctly generates a positive result for people who 

have the condition that are being tested. It is also known as the true positive rate (TPR). It is 

the percentage of persons with the disease who are identified correctly by the medical test. ‘S’ 

can be calculated by using the equation 3.9, 

S =
TP

TP+FN
                  (3.9) 

Specificity (Sp) measures a test’s ability to correctly generate a negative result for people who 

don’t have the condition that are being tested. It is also known as the true negative rate (TNR). 

It is the percentage of persons without the disease who are correctly excluded by the test. ‘Sp’ 

can be calculated by using the equation 3.10, 

Sp =
TN

TN+FP
                                (3.10) 

Precision (P) is the proportion of the predicted positive cases that are correct. It is also known 

as the Positive Predictivity (Pp). It is given in the following equation 3.11, 

Pp =
TP

TP+FP
                       (3.11) 
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Accuracy (Acc) is the ability to differentiate all cases correctly. To estimate the accuracy of 

the test, we should calculate the proportion of true positive and true negative in all evaluated 

cases. It is given in the following equation 3.12, 

Acc =
TP+TN

TP+TN+FP+FN
                                    (3.12) 

Where; TP is True positive, FP is False positive, TN is True negative and FN is False negative. 

 

3.5 Results and Discussion 

3.5.1 MLP classifier results 

 

Fig 3.25 ANN Structure for classification of NSR and VF using temporal features 

The above Fig 3.25 shows neural network architecture of MLP results obtained for 2 types of 

signals (NSR and VF). It has one input layer, one output layer and one hidden layer. Input layer 

has four neurons represented as Number of R-Peaks, Amplitude of R-Peaks, R-R interval and 

Heartbeat rate are used in this work. The output layer has two neurons represented as NSR and 

VF. The error per epoch obtained as 0.0003521 and Learning rate obtained as 0.3. 
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Fig 3.26 Simulation Results for Classification of NSR and VF using MLP  

The above Fig 3.26 shows the simulation results for classification of NSR and Ventricular 

fibrillation using MLP classifier. Time to build the model is 0.11 Seconds. Correctly classified 

instances are 30 out of 30 instances. RMSE value is 0.0887. The classification accuracy for 

classifying NSR and VF is obtained as 100%. 

 

Fig 3.27 Simulation Results for Classification of NSR and SCA using MLP 

The above Fig 3.27 shows the simulation results for classification of NSR and SCA using MLP 

classifier. Time to build the model is 0.44 Seconds. Correctly classified instances are 29 out of 
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30 instances.   RMSE value is 0.1754. The classification accuracy for classifying NSR and SCA 

is obtained as 96.67%. 

 

Fig 3.28 Simulation Results for Classification of NSR, SCA and CI using MLP 

The above Fig 3.28 shows the simulation results for classification of NSR, SCA and CI using 

MLP classifier. Time to build the model is 0.13 Seconds. Correctly classified instances are 41 

out of 45 instances.   RMSE value is 0.2421. The classification accuracy for classifying NSR, 

SCA and CI is obtained as 91.11%. 
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Fig 3.29 ANN Structure for classification of 7 types using temporal features 

The above Fig 3.29 shows neural network architecture of MLP results obtained for 7 types of 

signals (NSR, SVT, VT, VF, AF, CI and SCA). It has one input layer, one output layer and one 

hidden layer. Input layer has four temporal features(Number of R-Peaks, Amplitude of R-

Peaks, R-R interval and Heartbeat rate ) used in this work. The output layer has 7 neurons 

represented as NSR, VT, VF, SVT, AF, CI and SCA. The error per epoch obtained as 

0.0489755 and Learning rate obtained as 0.3. 

 

Fig 3.30 Simulation Results for Classification of 7 types of signals using MLP  
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The above Fig 3.30 shows the simulation results for classification of 7 types of signals using 

MLP classifier. Time to build the model is 0.26 Seconds. Correctly classified instances are 74 

out of 105 instances.   RMSE value is 0.2423. The classification accuracy for classifying 7 

types is obtained as 70.47%.  

3.5.2 RBF classifier results 

 

Fig 3.31 Simulation Results for Classification of NSR and VF using RBF 

The above Fig 3.31 shows the simulation results for classification of NSR and VF using RBF 

classifier. Time to build the model is 0.02 Seconds. Correctly classified instances are 30 out of 

30 instances.   RMSE value is 0.0868. The classification accuracy for classifying NSR and VF 

is obtained as 100%. 

 

Fig 3.32 Simulation Results for Classification of NSR and SCA using RBF 
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The above Fig 3.32 shows the simulation results for classification of NSR and SCA using RBF 

classifier. Time to build the model is 0.03 Seconds. Correctly classified instances are 29 out of 

30 instances. RMSE value is 0.1826. The classification accuracy for classifying NSR and SCA 

is obtained as 96.67%. 

Fig 3.33 Simulation Results for Classification of NSR, SCA and CI using RBF 

The above Fig 3.33 shows the simulation results for classification of NSR, SCA and CI using 

RBF classifier. Time to build the model is 0.05 Seconds. Correctly classified instances are 38 

out of 45 instances. RMSE value is 0.2632.  The classification accuracy for classifying NSR, 

SCA and CI is obtained as 84.4%. 
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Fig 3.34 Simulation Results for Classification of 7 types of signals using RBF 

The above Fig 3.34 shows the simulation results for classification of 7 types using RBF 

classifier. Time to build the model is 7.07 Seconds. Correctly classified instances are 74 out of 

105 instances. RMSE value is 0.2825. The classification accuracy for classifying NSR and VF 

is obtained as 70.47%.  

3.5.3 RF classifier results 

The above Fig 3.35 shows the simulation results for classification of NSR and VF using RF 

classifier. Time to build the model is 0.06 Seconds. Correctly classified instances are 29 out of 

30 instances. RMSE value is 0.1389.  The classification accuracy for classifying NSR and VF 

is obtained as 96.67%. 
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Fig 3.35 Simulation results for classification of VF and NSR using RF Classifier 

 

Fig 3.36 Simulation results for classification of NSR and SCA using RF Classifier 

The Fig 3.36 shows the simulation results for classification of NSR and SCA using RF 

classifier. Time to build the model is 0.05 Seconds. Correctly classified instances are 28 out of 

30 instances. RMSE value is 0.2743. The classification accuracy for classifying NSR and SCA 

is obtained as 93.33%. 



68 
 

 

Fig 3.37 Simulation results for classification of NSR, SCA and CI using RF Classifier 

The above Fig 3.37 shows the simulation results for classification of NSR, SCA and CI using 

RF classifier. Time to build this model is 0.01 Seconds. Correctly classified instances are 42 

out of 45 instances. RMSE value is 0.2284.  The classification accuracy for classifying NSR, 

SCA and CI is obtained as 86.67%. 
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The following Fig 3.38 shows Classification results of 7 types of cardiac signals using RF 

classifier.  It’s built by using random forest of 10 trees, each constructed while considering 3 

random features. Out of bag error is 0.2952 and time taken to build the model is 0.02sec. RMSE 

value is 0.2303. The classification accuracy for 7 types of cardiac signals is obtained as 78.09%.  

 

Fig 3.38 Simulation results for classification of 7 types of cardiac signals using RF Classifier  
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The following Table 3.4, shows classification results of different cardiac signals in time 

domain. It has been observed that classification accuracy of NSR and VF is 100%. NSR and 

SCA is 96.67%; NSR, SCA and CI is 91.11% and NSR, VT, VF, SVT, AF, CI and SCA is 

70.47% using MLP classifier. As, less number of features (4 temporal) are used machine 

learning algorithm, RF has produced better accuracy for classification of three and seven types 

as 93.33% and 78.09% respectively.  

Table 3.4 Classification of cardiac arrhythmias and disorders in time domain 

Features used Cardiac Signals 
Classifier Accuracy 

No. of R peaks, R 

peak amplitude, R-R 

interval & Heartbeat 

rate     

(4 temporal features) 

 

NSR and Ventricular 

Arrhythmia(VF) 

MLP 100% 

RBF 100% 

RF 96.67% 

NSR and SCA (2 types) 

MLP 96.67% 

RBF 96.67% 

RF 93.33% 

NSR, SCA and CI  

(3 types) 

MLP 91.11% 

RBF 84.44% 

RF 93.33% 

NSR,SVT,VT,VF,AF,CI 

and SCA (7 types) 

MLP 70.47% 

RBF 70.05% 

RF 78.09% 
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3.6 Performance comparison of cardiac arrhythmias analysis and   

Classification 

Summary of performance analysis and classification of cardiac signals is shown in Table 3.5 

 

Table 3.5 Summary of performance analysis of cardiac signals 

Study by Records and Features Algorithm 
Cardiac Arrhythmia 

Analysis 

Pan and 

Tompkin[2] 

Morphological features(slope, 

amplitude and width of the QRS 

complex) 

Real time QRS 

detection 

algorithm 

QRS detection has been 

done with 99.3% 

accuracy 

M. 

Vijayavanan 

et al. [5] 

300 Records 

12 -Morphological 

features 

PNN classifier 

Distinguished Normal 

and Arrhythmia with 

accuracy of 96.5% 

Rathnakara 

et al. [37] 

Temporal Features (RR intervals, 

No. of R peaks and R peak 

amplitude) 

Modified Pan-

Tompkins 

Algorithm 

Distinguished Normal 

and Arrhythmia 

V. Vijaya et 

al.[4] 

Features-2 Temporal features (No. 

of R-peaks/1000 samples and R-R 

interval) 

Pan-Tompkins 

Algorithm 

Distinguished NSR and 

SCA 

Mujeeb 

Rahman K 

et al. [6] 

8 records 

Features-4 temporal features ( R-R 

interval, P-R interval, Q-T interval 

and QRS complex duration) 

Pan-Tompkins 

Algorithm 

(PTA) 

and 

Wavelet based 

Algorithm 

(WBA) 

PTA accuracy 

(99.95%) more than 

WBA (97.75%) 

accuracy. 

Proposed 

30 Records (NSR-15 and VF-15), 

4 temporal  features 

Pan-Tompkins 

Algorithm 

Distinguished and 

classified Normal and 

Arrhythmia with 100% 

accuracy. 

105 records, Each cardiac signal 

15 records, 

4-temporal  features 

Pan-Tompkins 

Algorithm, 

RF classifier 

Classified 7 types of 

cardiac signals with 

classification accuracy 

of 78.09% 
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3.7 Conclusion  

Cardiac arrhythmias analysis has been done using PTA, temporal features have been extracted 

and analysed 7 types of cardiac signals. For two types of cardiac signals (Normal and 

Ventricular Arrhythmia) obtained classification accuracy as 100% using MLP classifier.  

V. Vijaya et al. [4] analysed and compared only two types of cardiac signals - normal and SCA 

based on the two temporal features (No. of R- peaks and R-R interval) on 10sec data of 1000 

samples. Whereas, in proposed work classified NSR and SCA using four temporal features - 

No. of R-Peaks, R-R Interval, R-Peak Amplitude and Heartbeat rate on 1minute data for 15000 

samples and obtained 96.6% accuracy using MLP classifier, Later, extended the work to 

classify three types of ECG signals (NSR, SCA and CI) and obtained classification accuracy 

as 91.11% using MLP and also evaluated the results with other classifiers as shown in Table 

3.4, Fig 3.28, Fig 3.33 and Fig 3.37. The reason to classify is treatment for SCA is different 

from CI. The temporal features extracted was on 1min data of 15000 samples. The proposed 

work also classified 7 types of cardiac signals (1- normal, 4- arrhythmias and 2- cardiac 

disorders) and obtained an accuracy of 78.09% using Random Forest classifier and also 

evaluated the results with other classifiers (MLP and RBF) as shown in Table 3.4 The 

performance of RBF networks are good when the size of training data set is relatively small, 

but the performance of MLPs are good when the size of training data set size is relatively large 

[52].  

Whereas Random Forest classifier performance is not depending on data size and also less 

computationally expensive.  Use of Pan-Tompkins algorithm to extract temporal features may 

not be sufficient to describe complex changes that take place in ECG signal due to heartbeat 

rate variation. These dynamics are to be explored to improve classification accuracy. So, 

spectral analysis is preferred to get more information about different cardiac signals to improve 

classification accuracy. 
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Chapter 4 

Cardiac Arrhythmias Analysis and Classification in 

Spectral Domain  

In the previous chapter, it has been observed that the proposed temporal features improved the 

discriminating capability of the cardiac arrhythmias and the overall classification accuracy of 

seven types of cardiac signals. In this chapter, hybridization of temporal and spectral features 

have been proposed and compared with the existing works. 

4.1 Introduction 

In this chapter, spectral analysis and classification of cardiac signals have been described. 

Significant work has been done in time domain analysis; however, the spectral analysis gives 

frequency information. In time domain, detection of a condition would involve monitoring the 

ECG for over 24 hours which is not at all feasible. Therefore, in this work spectral features are 

extracted and analysed. This concept provided the motivation to perform this work in frequency 

domain to help enable physicians in future to identify diseases. Time-domain analysis 

represents how a signal varies with time, while spectral analysis shows how the signal's energy 

is distributed over the range of frequency components. To extract ECG spectral features, 

Fourier transform analysis is used to convert a signal from time domain to frequency domain.  

The spectral parameters give a unique representation of signal that helps to understand the 

activity of the heart [36]. FFT algorithm has been proposed to extract spectral features (Mean, 

Median, Standard Deviation and Energy in Regions R1 to R5) to distinguish seven types of 

cardiac signals. In this research work, total number of 105 data records (7 types of cardiac 

signals, 15 records of each type, one minute duration and sampling frequency of 250 Hz) are 

considered. The spectral features (Mean, Median, Standard Deviation and Energy in only 

Region R3) along with temporal features (No. of R peaks, R peak amplitude, R-R interval and 

Heart beat rate) are fed to three types of supervised classifiers and medical statistics are 

computed. Further, performance comparison has been done with the existing works [19] 
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4.2 Overview of existing works 

In this section, the work done by some researchers has been presented briefly.  

Glenn A. Myers et al. [18] describes a method of power spectrum analysis of HRV applied to 

24 hours ambulatory ECGs. In this method, two groups of patients with known heart disease: 

one with and one without a history of SCD have been analysed. The power spectral method 

provides excellent separation between the two groups of cardiac patients. The separation 

appears to be superior to that afforded by other indexes of heart rate variability.  

Usman Rashed et al. [19] used spectral analysis to identify NSR and SCA. Further he 

mentioned time-domain analysis may not be sufficient when the signal changes over time and 

added spectral analysis gives how the ECG signal's energy distributed over a wide range of 

frequencies.  

K. Minami et al. [15] developed a method to discriminate life-threatening ventricular 

arrhythmias by observing the QRS complex of the electrocardiogram (ECG) in each heartbeat. 

Changes in QRS complexes due to rhythm origination and conduction path were observed with 

the Fourier transform and classified three types of rhythms using neural networks. The method 

achieved high sensitivity as 98%. 

Fast Fourier Transform on the ECG has been providing the basis with which a signal suggesting 

predisposition of the patient to suffer a cardiac arrest can be differentiated from a normal signal. 

In this way, it is proposed that instead of waiting for over 24 hours, few minutes of any cardiac 

patient ECG data is enough to detect possibility of sudden cardiac arrest.   

4.3 Methodology for Spectral Domain Analysis                

The main aim of spectral analysis on ECG is to diagnose the type of cardiac arrhythmias and 

disorders to enable doctors for proper treatment.  

Fast Fourier Transform (FFT) algorithm shown in Fig 4.1 has been used to extract ECG signal 

information.  

One ECG data record is taken for a duration of 1 minute using sampling frequency of 250Hz 

(250 samples /sec, no. of samples are 15000 in single data record). 15 data records are 

considered for each category (i.e., NSR, VT, SVT, VF, AF, CI, SCA and CI) resulting in total 

of 105 records. The processing steps of spectral analysis of ECG are shown below in Fig 4.1.  
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Fig 4.1 Spectral Analysis of ECG 

For pre-processing, mean is removed from ECG data, so that DC noise can be removed. 

Frequency spectrum appeared up to 32 Hz. So, there is no effect on ECG due to power line 

interference 50Hz/60Hz.  

Fourier transform decomposes a function into the sum of different frequency components. The 

inverse fourier transform converts the signal from frequency domain to time domain.  

Fourier Transform decomposes the signal to complex exponential functions of different 

frequencies. This Transformation can be given by below equations, 

The Fourier transform of time domain signal x (t) is given as 

                                X(𝑓) = ∫ x(t)e−2jπftdt
∞

−∞
                   (4.1) 

The Inverse Fourier transform of X (f) is given as 

    x(t) = ∫ X(f)e2πft∞

−∞
df               (4.2) 

Discrete Fourier Transform (DFT), is a special kind of discrete transform that converts the time 

domain signal into frequency domain. The input to the DFT is a finite sequence of real or 

complex numbers making the DFT ideal for processing information stored in computers. In 

particular, the DFT is widely employed in signal processing and related fields to analyse the 

frequencies contained in a sampled signal. A DFT decomposes a sequence of values into 

ECG Data

Preprocessing(DC noise removal)

Fast Fourier Transform

Frequency Segmentation

Compute Spectral Features



76 
 

components of different frequencies. This operation is useful in many fields but computing it 

directly from the definition is often too slow to be practical. Fast Fourier Transform, (FFT) is 

a way to compute the same result more quickly [67].  

A sequence of N complex numbers X0, XN−1 can be transformed into a sequence of N complex 

numbers by the DFT according to the following equation (3.5).The DFT of 𝑥𝑛 is given by 𝑋𝑘 

as  

𝑋𝑘 = ∑ 𝑥𝑛𝑒−
2𝜋𝑖𝑘𝑛

𝑁𝑁−1
𝑛=0     𝑤ℎ𝑒𝑟𝑒 𝑘 = 0,1,2 … … . . , 𝑁 − 1                     (4.3) 

The difference in speed can be substantial, especially for long data sets where N may be in the 

thousands or millions in practice, the computation time can be reduced by several orders of 

magnitude in such cases, and the improvement is roughly proportional to N /log (N). This huge 

improvement made many DFT-based algorithms practical. FFT technique (RADIX 2 FFT) is 

applied to distinguish NSR, 4 types of cardiac arrhythmias and 2 cardiac disorders. 

The obtained frequency spectrum is divided into five regions (R1 to R5): 

Region R1: 0-2 Hz 

Region R 2: 2-8 Hz 

Region R 3: 8-16 Hz 

Region R 4: 16-22 Hz 

Region R 5: 22-32 Hz 

Absolute values of DFT is used to compute spectral features such as Mean (𝜇), Median, 

Standard deviation (σ) and Energy (𝜖𝑥) can be calculated in each region by using the following 

equations 4.4, 4.5, 4.6 and 4.7 respectively. 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁−1
𝑖=0                                                            (4.4) 

   𝑀𝑒𝑑𝑖𝑎𝑛 = {

(𝑁+1)𝑡ℎ 𝑡𝑒𝑟𝑚

2
,                    𝑤ℎ𝑒𝑛 𝑁 𝑖𝑠 𝑜𝑑𝑑

𝑁

2
𝑡ℎ 𝑡𝑒𝑟𝑚+(

𝑁

2
+1)𝑡ℎ 𝑡𝑒𝑟𝑚

2
, 𝑤ℎ𝑒𝑛 𝑁 𝑖𝑠 even

                        (4.5) 

𝜎 = √
1

𝑁−1
∑ (𝑥𝑖 − 𝜇)2𝑁−1

𝑖=0                                                    (4.6) 

                                            𝜖𝑥 ≜ ∑ |𝑥𝑛|2𝑁−1
𝑛=0                                                        (4.7) 

 



77 
 

4.4 Classification of Arrhythmias using Neural Networks and 

Machine Learning Algorithms 

Frequency-domain analysis shows how the signal's energy is distributed over a range of 

frequencies. The spectrum of frequency components is the frequency domain representation of 

the signal. For each segment, applied FFT to extract spectral parameters such as Mean, Median, 

Standard deviation and Energy as shown in Table 4.1 to Table 4.7.  

Table 4.1 Spectral features in different regions of NSR records 

NSR 

Record 

Number 

Regions Mean Median 
Standard 

Deviation 
Energy(µJ) 

16265 

R1 2.271759999 0.798958935 4.228627392 1502.902796 

R2 4.62274717 2.197159464 5.059316499 9226.79886 

R3 3.069773132 2.273440434 2.36611201 3930.163713 

R4 0.679883614 0.59315605 0.450642343 130.1996903 

R5 0.121916507 0.091916047 0.101290169 4.939036918 

16272 

R1 5.892062306 2.92664164 6.639619605 5156.777935 

R2 4.679667747 4.122259314 3.141053869 6247.939179 

R3 2.587070164 1.996687945 2.035269876 2834.694617 

R4 0.260691612 0.172579399 0.218597018 22.63819078 

R5 0.030916149 0.024670065 0.022866737 0.290780214 

16273 

R1 3.082669328 1.80496069 3.460109316 1405.391283 

R2 4.634336637 3.313052952 3.472296536 6594.125258 

R3 2.943485958 2.281973785 2.098412458 3419.267106 

R4 0.644597202 0.516006507 0.459748398 122.6559633 

R5 0.133046688 0.103076814 0.101299729 5.498460467 

16420 

R1 1.859126363 1.044979552 2.725868698 711.0925653 

R2 4.723454518 3.377616127 4.094499651 7681.197218 

R3 3.328344126 2.723233865 2.417013475 4427.153182 

R4 0.413316452 0.324554894 0.329465442 54.64953399 

R5 0.085645731 0.073374042 0.04991913 1.933448886 

16483 

R1 5.595256276 2.360897158 9.924433408 8468.389525 

R2 3.805035101 1.177835958 7.295562554 13284.36921 

R3 2.462858069 1.175585063 3.070945134 4050.619254 

R4 0.989137537 0.744574874 0.985107593 381.0002502 

R5 0.326572392 0.222626935 0.280916704 36.477139 

16539 

R1 4.47882866 3.442214475 3.581039445 2157.503635 

R2 5.087040628 4.68472902 2.679169591 6504.840665 

R3 2.673598757 1.902471844 2.258605822 3204.24951 

R4 0.190420789 0.132504538 0.164638922 12.39264015 

R5 0.032109078 0.025631529 0.023572073 0.312011551 
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16773 

R1 5.041315759 2.993751431 5.828602024 3885.600164 

R2 4.061962893 3.47885802 2.972347855 4982.040828 

R3 2.872988556 2.326710561 2.149705053 3368.706073 

R4 0.630875989 0.486812081 0.468974855 120.8966807 

R5 0.112963599 0.083479945 0.090345932 4.113700551 

16786 

R1 4.212371593 1.944382934 5.127796401 2880.238148 

R2 6.021601694 5.396827209 3.673486364 9788.080736 

R3 2.034667443 1.303892172 2.000554421 2129.225256 

R4 0.086485695 0.073952701 0.050357576 1.960533638 

R5 0.044364864 0.039302891 0.023712194 0.497948067 

16795 

R1 6.984080504 5.374971381 5.329401055 5065.470626 

R2 4.101522086 3.331237243 3.285756487 5430.083589 

R3 2.427299927 2.096758724 1.597049591 2209.345743 

R4 0.565528878 0.443734418 0.410541707 95.55146684 

R5 0.129880741 0.098860429 0.100217045 5.291711759 

17052 

R1 4.248374873 2.718428658 4.185850897 2330.10108 

R2 5.416539104 5.162773335 3.227715988 7821.719984 

R3 2.481611082 1.942629148 1.992187334 2649.358621 

R4 0.181172588 0.116329153 0.183849612 13.02453985 

R5 0.025204438 0.022331925 0.014537053 0.166566823 

17453 

R1 2.710424748 1.67579378 3.05833702 1092.835199 

R2 4.350176918 4.114782016 2.64597176 5100.264371 

R3 3.187020376 2.706260704 2.146591435 3863.810006 

R4 0.700644459 0.550838999 0.487632795 142.5851409 

R5 0.153721283 0.12634524 0.11385552 7.195919442 

18177 

R1 8.568895593 3.383656129 13.5702569 16815.98584 

R2 4.06120458 2.162014352 5.730714853 9686.050554 

R3 2.314183825 1.19072864 3.47979221 4563.564005 

R4 0.147768018 0.092115798 0.149939799 8.663714833 

R5 0.063532091 0.061769325 0.015856451 0.844436024 

18184 

R1 4.642562393 3.796132519 3.80397542 2363.088332 

R2 4.356981367 3.883999051 3.016144075 5522.743982 

R3 2.681022387 2.250020583 1.898995544 2824.438877 

R4 0.696126712 0.586660555 0.439403484 132.6298173 

R5 0.164625127 0.134312912 0.120482324 8.184116357 

19093 

R1 11.71653499 1.453846151 63.0632295 267563.4042 

R2 2.972286828 1.31234217 9.935013458 21086.47484 

R3 1.334766437 0.929448988 2.538321717 2148.42271 

R4 0.505930254 0.416572589 0.479034544 94.91667108 

R5 0.290309391 0.275624291 0.095746749 18.39988806 

19830 

R1 17.50244296 8.411157094 20.3037016 47013.76304 

R2 2.919917015 2.004995906 3.77474681 4472.353171 

R3 0.991418041 0.666821428 1.184211206 623.537313 

R4 0.195516503 0.146287257 0.175609314 13.50596686 

R5 0.054762108 0.039684968 0.053698625 1.155955311 
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 Table 4.2 Spectral features in different regions of SCA records 

SCA 

Record 

Number  

Regions Mean(µ) Median 
Standard 

Deviation 
Energy(µJ) 

 SCA          

30m 

R1 16.1703691 12.21735374 17.70543813 37634.1003 

R2 3.746058567 3.162439612 2.558040516 4047.032065 

R3 0.626090103 0.382938423 0.619019828 202.7124979 

R4 0.093221863 0.088711695 0.026808491 1.843447457 

R5 0.068001971 0.066929536 0.006024733 0.918095099 

 SCA          

31m 

R1 15.19551187 12.3731859 12.55670601 25488.24263 

R2 4.688224808 3.093082561 4.762720315 8775.918956 

R3 0.425739357 0.224785701 0.448520318 99.99404215 

R4 0.038553069 0.03376915 0.019262649 0.363677142 

R5 0.026901324 0.026572077 0.004991049 0.147447677 

 SCA          

32m 

R1 11.62489197 6.783394671 13.68061617 21084.46729 

R2 5.162139058 3.375418898 5.920794168 12120.53039 

R3 0.88234104 0.709683089 0.733048154 344.2245905 

R4 0.091871731 0.069755038 0.074351862 2.732320215 

R5 0.019941755 0.018527899 0.007866617 0.090470894 

 SCA          

33m 

R1 20.79393389 12.97355374 29.36933162 84603.83389 

R2 3.549181322 1.326285873 4.570716445 6576.271515 

R3 0.229368956 0.184770073 0.156002167 20.13572344 

R4 0.056531619 0.052945814 0.01922596 0.698460823 

R5 0.026475339 0.026440288 0.005254445 0.143497289 

 SCA          

34m 

R1 11.54275773 6.209648512 18.52704132 31104.8588 

R2 4.341932582 3.664368885 2.884840035 5345.089772 

R3 1.224409378 0.767286603 1.207169171 773.1289045 

R4 0.127390264 0.110996735 0.065299846 4.012236378 

R5 0.092611117 0.090601537 0.007533197 1.700756138 

 SCA          

36m 

R1 12.38812578 9.799323191 12.07105023 19599.90007 

R2 5.082829784 4.196997196 3.451066793 7423.859202 

R3 0.572979712 0.358887522 0.557918739 167.258443 

R4 0.126614191 0.114447204 0.070129019 4.101131522 

R5 0.063115618 0.059598346 0.015867005 0.834110816 

 SCA          

37m 

R1 26.98089565 16.60674423 50.39186962 213103.0702 

R2 1.454921923 0.886127605 1.656954738 955.1269718 

R3 0.250137685 0.198120695 0.145294739 21.90289818 

R4 0.129064511 0.124817069 0.016327827 3.316885611 

R5 0.099075846 0.098829795 0.006857323 1.94297305 

 SCA          

38m 

R1 11.99031595 4.917130197 19.74903711 34840.25698 

R2 5.173977729 3.126707366 6.438263335 13398.14099 

R3 0.650384431 0.275602946 0.765030377 263.5818316 
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R4 0.093993835 0.089377376 0.02854338 1.890500126 

R5 0.059593836 0.057910632 0.006915488 0.709004271 

 SCA          

39m 

R1 15.36695901 12.10168776 12.50537448 25750.45173 

R2 4.00454862 2.977799755 3.900568434 6141.201787 

R3 0.869937054 0.554571729 0.80373526 366.8825913 

R4 0.090753733 0.068947583 0.073936647 2.680295478 

R5 0.027606516 0.025615662 0.009214411 0.166779038 

 SCA          

41m 

R1 16.32727585 9.80208581 20.71343231 45482.28391 

R2 4.155438844 2.212914226 6.563688962 11845.80589 

R3 0.49597694 0.372989878 0.346165426 95.7259598 

R4 0.083281284 0.076211673 0.031466877 1.552493411 

R5 0.030722008 0.029904444 0.00844642 0.19991987 

 SCA          

43m 

R1 10.45411892 4.164355242 17.56094034 27258.17842 

R2 4.417565634 2.301328041 5.665379661 10135.3518 

R3 1.553610053 1.178256733 1.429477971 1165.719797 

R4 0.122133331 0.099833767 0.075010566 4.020827973 

R5 0.062345877 0.060602304 0.008326913 0.779330789 

 SCA          

44m 

R1 13.47484363 10.34722644 8.670549012 16870.31043 

R2 3.46965355 2.303458894 3.121247637 4281.052279 

R3 0.582272431 0.517254859 0.203343926 99.62081449 

R4 0.348334047 0.345135659 0.03201942 23.98189764 

R5 0.26911952 0.268425416 0.016588018 14.32171907 

 SCA          

45m 

R1 13.24140417 6.153349547 29.16757857 66870.69233 

R2 4.435085656 3.535302183 3.061452067 5711.994797 

R3 1.297025899 0.778638331 1.357418518 921.6710534 

R4 0.090931589 0.079725459 0.05617475 2.23597905 

R5 0.045244275 0.044329154 0.012941767 0.436095667 

 SCA          

46m 

R1 12.96235939 8.219017681 12.46762654 21193.21348 

R2 4.687005488 2.599705747 5.716800272 10733.33388 

R3 0.662703922 0.403043553 0.673264233 233.3715538 

R4 0.132908087 0.126957066 0.024696525 3.581187777 

R5 0.088955192 0.088146987 0.008864894 1.574269082 

 

 

 

 

 

 

 



81 
 

 

Table 4.3 Spectral features in different regions of VF records 

VF 

Record 

Number  

Regions Mean Median 
Standard 

Deviation 
Energy(µJ) 

418 

R1 21.6421982 17.3682233 12.75305666 41485.02256 

R2 2.657841326 1.671900979 3.171434387 3362.998972 

R3 0.343176495 0.193789448 0.365996093 65.81753739 

R4 0.039058856 0.035647286 0.019316011 0.371772583 

R5 0.031017737 0.030591979 0.006419558 0.197611007 

419 

R1 25.29862888 14.98218592 28.14687518 93737.389 

R2 1.532244392 0.949186749 1.695739581 1026.115671 

R3 0.188104717 0.126906742 0.163526924 16.24986212 

R4 0.04740008 0.045306999 0.024490342 0.557322931 

R5 0.0403885 0.040433307 0.009638768 0.339562048 

421 

R1 12.46081469 7.332522515 13.80471665 22635.00869 

R2 5.237752847 3.671006568 5.225500769 10756.45704 

R3 0.590171121 0.327730482 0.601270162 185.6133474 

R4 0.058108623 0.05516179 0.020580371 0.744408543 

R5 0.042752917 0.042813759 0.005629346 0.366290088 

425 

R1 16.46240456 6.49111613 40.22589318 123064.6718 

R2 3.838136747 3.13202819 2.4423628 4071.231522 

R3 0.64813082 0.52953411 0.445384347 161.833116 

R4 0.179176651 0.166746071 0.073303778 7.340258942 

R5 0.134737483 0.132364071 0.012413704 3.606578887 

427 

R1 19.53849955 3.969056208 90.74892069 560494.5251 

R2 2.703663306 2.272004347 1.752023598 2041.668659 

R3 0.891079244 0.695898754 0.51789543 278.0381127 

R4 0.394678498 0.380011834 0.061664173 31.27262061 

R5 0.28679114 0.284049456 0.02118902 16.29108309 

428 

R1 27.17923013 3.301971466 164.3733349 1804963.455 

R2 1.913272813 1.489124461 1.685193477 1277.756636 

R3 0.800647123 0.75161153 0.262899141 185.9906486 

R4 0.396364474 0.386293835 0.060751653 31.51223885 

R5 0.279680148 0.278691095 0.023830219 15.52083843 

429 

R1 14.81694734 9.304580153 20.12280883 40810.05055 

R2 4.622811979 3.588443351 4.645714263 8440.168506 

R3 0.823908052 0.521058458 0.953832261 415.3087647 

R4 0.060140258 0.052046447 0.039259362 1.009455736 

R5 0.01757476 0.014970599 0.011862279 0.088427697 

430 

R1 20.97574716 13.39638217 24.72592168 68777.93813 

R2 3.275228276 1.95707469 3.712156415 4814.143321 

R3 0.299906974 0.216334948 0.252590171 40.21764699 

R4 0.065603257 0.061559332 0.034609005 1.077110055 
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R5 0.02654114 0.023472394 0.016136954 0.189811774 

602 

R1 11.69758294 9.245687317 8.302292924 13511.33188 

R2 5.456304414 4.610219388 4.055289077 9088.23022 

R3 0.651541569 0.399401455 0.634269402 216.2203742 

R4 0.059647886 0.046720102 0.047522402 1.137726421 

R5 0.023066789 0.022446488 0.010275423 0.125513652 

605 

R1 14.76248149 12.29173152 10.14855284 21077.98985 

R2 4.139842243 3.161534639 3.621358916 5946.634997 

R3 0.821253876 0.530039829 0.755675688 325.7509168 

R4 0.108134008 0.0737037 0.093926102 4.012132855 

R5 0.043747989 0.041964778 0.016005211 0.427244339 

607 

R1 14.93094213 8.832009292 18.86044321 37835.14085 

R2 4.214002565 2.368749011 6.078040266 10739.03447 

R3 0.616601174 0.421790914 0.659471153 213.1210906 

R4 0.091828314 0.083656124 0.042688154 2.00810241 

R5 0.063698666 0.061520028 0.014635722 0.841315507 

609 

R1 23.75976707 17.48949524 20.89761552 65644.92279 

R2 1.956294254 1.077010545 2.447313574 1927.847551 

R3 0.230681085 0.180910845 0.172279574 21.68855155 

R4 0.05227533 0.041263594 0.038640449 0.826762619 

R5 0.026398017 0.025530118 0.006852379 0.146483693 

610 

R1 13.98241565 14.43435674 7.512833621 16572.29801 

R2 4.951727948 4.111135572 3.669706075 7469.84467 

R3 0.451626015 0.309122598 0.44615283 105.3917698 

R4 0.0543282 0.044371407 0.03565577 0.826414555 

R5 0.02350978 0.023185306 0.010501775 0.130500126 

611 

R1 10.17293981 5.548994231 13.07439042 17941.334 

R2 4.708764258 2.255272238 6.711476674 13196.58294 

R3 0.622177989 0.524727448 0.374499102 138.0267676 

R4 0.308509311 0.301598607 0.048631143 19.11605966 

R5 0.236761107 0.235282895 0.016928898 11.0991681 

612 

R1 10.73748135 6.497433432 16.32652733 24935.47852 

R2 4.785607329 4.099542729 3.07525231 6365.308037 

R3 1.334080198 0.981739164 1.135449522 802.7928393 

R4 0.182035592 0.146697144 0.130635195 9.822626571 

R5 0.049913612 0.044006714 0.03261872 0.699339895 
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Table 4.4 Spectral features in different regions of VT records 

VT Record 

Number  
Regions Mean Median 

Standard 

Deviation 
Energy(µJ) 

cu01 

R1 8.936889 4.599143 11.12743934 13319.58087 

R2 5.428527 4.641444 3.750013288 8561.643145 

R3 1.344726 0.861307 1.496466881 1058.258574 

R4 0.062318 0.04963 0.049738739 1.243592034 

R5 0.02678 0.026181 0.006078761 0.148524781 

cu03 

R1 19.65029 8.125646 29.53443922 82183.2383 

R2 2.991765 1.429753 5.222057886 7108.177744 

R3 0.573815 0.508414 0.436440222 135.9822574 

R4 0.107755 0.100314 0.041513458 2.611849749 

R5 0.063727 0.061417 0.011495404 0.825940411 

cu05 

R1 9.836789 9.198354 7.459985348 10003.65988 

R2 5.527864 4.706349 3.59317076 8550.315626 

R3 0.935075 0.549974 1.013270139 497.0568659 

R4 0.079075 0.068316 0.033100839 1.439220385 

R5 0.051576 0.050303 0.005112007 0.529148433 

cu06 

R1 22.16736 11.12872 36.66617514 119818.3976 

R2 1.979216 0.989676 2.924808899 2448.390976 

R3 0.263549 0.187291 0.228463873 31.82114939 

R4 0.136695 0.13573 0.012221412 3.691500706 

R5 0.109426 0.108667 0.00660933 2.367466886 

cu07 

R1 9.407328 4.140272 19.69806585 31061.75283 

R2 5.785841 2.915512 9.427121472 24013.40421 

R3 0.758157 0.398361 1.130145647 483.9549854 

R4 0.107779 0.097003 0.06340265 3.060666198 

R5 0.072942 0.070989 0.014419194 1.088886601 

cu08 

R1 16.2912 7.665769 20.71946336 45420.86435 

R2 3.967017 3.167332 3.210610584 5120.604716 

R3 0.309582 0.227301 0.206630672 36.25399969 

R4 0.132359 0.126899 0.020102045 3.512481711 

R5 0.094101 0.0937 0.007300861 1.75486676 

cu09 

R1 12.9903 10.76637 9.927517795 17543.47967 

R2 5.07379 3.613214 4.678606082 9361.751644 

R3 0.627606 0.42699 0.623114374 204.5377588 

R4 0.070653 0.05833 0.050097859 1.467813785 

R5 0.014692 0.012348 0.009511457 0.060254514 

cu11 

R1 14.81571 5.017268 28.06204025 65673.41468 

R2 4.897827 1.966762 8.013240199 17311.33102 

R3 0.324433 0.250492 0.279963158 48.03429504 

R4 0.03037 0.024845 0.018486709 0.2474213 

R5 0.016 0.015468 0.003300277 0.052566243 

cu12 
R1 22.81135 9.589894 34.66012292 112429.6794 

R2 2.39268 1.408434 3.384660369 3373.170535 
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R3 0.234756 0.138707 0.27098823 33.60530409 

R4 0.026754 0.023973 0.011192288 0.16471684 

R5 0.017467 0.016988 0.002784975 0.061621322 

cu13 

R1 8.168212 4.737276 10.68695027 11827.20854 

R2 5.689958 4.143276 4.727758636 10758.93212 

R3 0.767574 0.433227 0.724567901 291.3870252 

R4 0.207597 0.196776 0.0441103 8.826365398 

R5 0.155328 0.153566 0.011850521 4.780523246 

cu14 

R1 18.01342 14.96994 14.81328478 35679.073 

R2 4.079908 1.576585 6.139701502 10667.59681 

R3 0.17004 0.09864 0.183271033 16.34192485 

R4 0.018945 0.018948 0.007647649 0.081751634 

R5 0.019402 0.01925 0.001974868 0.07492071 

cu15 

R1 9.699953 6.694202 9.914310009 12598.96017 

R2 5.25086 3.970961 4.324193297 9096.526648 

R3 1.248266 0.718208 1.304581805 852.4445921 

R4 0.131913 0.110532 0.089826248 4.983998026 

R5 0.031449 0.026353 0.019798956 0.271671704 

cu16 

R1 13.33278 8.575741 14.87798209 26120.39631 

R2 4.481799 2.430601 5.572065831 10042.43696 

R3 0.761745 0.445096 0.84894489 340.1317386 

R4 0.106052 0.094937 0.046278385 2.622062846 

R5 0.069931 0.067706 0.007446334 0.974257194 

cu18 

R1 7.216714 5.529683 6.677489101 6335.619357 

R2 6.355227 4.751198 5.157453358 13170.08232 

R3 1.18689 0.729922 1.23232208 765.4405948 

R4 0.035332 0.029382 0.025117143 0.367696482 

R5 0.007569 0.004772 0.00708484 0.021125245 

cu19 

R1 14.71691 6.295317 20.77634195 42352.4339 

R2 4.285156 3.364854 4.498307966 7583.440695 

R3 0.800514 0.52684 0.788647374 330.2283074 

R4 0.084955 0.077173 0.050480514 1.911505172 

R5 0.043108 0.041777 0.009395592 0.383394218 
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Table 4.5 Spectral features in different regions of CI records 

CI 

Record 

Number 

Regions Mean Median 
Standard 

Deviation 
Energy(µJ) 

e0104 

R1 6.224571347 4.3316303 6.179685401 5039.442296 

R2 4.036887254 3.452007739 2.569577437 4504.537092 

R3 2.885351525 2.414558603 2.136657282 3372.76083 

R4 0.244424598 0.172574149 0.20118409 19.60233568 

R5 0.063205395 0.058501208 0.038371822 1.075589383 

e0105 

R1 13.11656921 7.634283379 16.33761145 28704.57022 

R2 5.14786454 4.014827822 4.179175615 8643.840065 

R3 0.504295612 0.441304021 0.362612291 100.9485676 

R4 0.064113071 0.057967327 0.03673315 1.06877347 

R5 0.041184558 0.039371025 0.016461207 0.387255442 

e0106 

R1 11.71943395 6.375735447 14.09490526 21978.09175 

R2 4.106738354 2.83141927 4.025564601 6498.677472 

R3 1.640080089 1.471114307 1.027970657 980.5489049 

R4 0.236965406 0.166771672 0.215507098 20.06235566 

R5 0.033732784 0.03106635 0.019493198 0.298643462 

e0107 

R1 11.57106471 7.840111988 12.43629546 18889.70346 

R2 4.992893248 4.235382276 3.122353579 6821.831655 

R3 0.790575858 0.571629937 0.678642681 283.957756 

R4 0.124721473 0.110385024 0.05995315 3.749771541 

R5 0.086432025 0.085004498 0.012789236 1.503746171 

e0108 

R1 7.52696724 4.424436168 9.317855812 9382.703965 

R2 5.356180145 5.206140241 2.956701427 7365.115484 

R3 1.752235477 1.342213559 1.573688331 1450.791427 

R4 0.091210229 0.072191177 0.068534967 2.54650707 

R5 0.026248225 0.023291977 0.014013022 0.174214451 

e0110 

R1 12.26217992 8.29023474 11.89540111 19121.36663 

R2 5.409103687 4.772016766 3.74559937 8513.690201 

R3 0.650119562 0.541112444 0.500344999 176.0758024 

R4 0.083586773 0.072722622 0.052451423 1.905877343 

R5 0.022016772 0.019604628 0.014092671 0.134419693 

e0111 

R1 11.21412732 4.462179115 14.82540749 22586.46497 

R2 4.043657503 3.199515612 3.465822036 5575.51649 

R3 1.622444209 1.109021431 1.489856059 1269.003356 

R4 0.308368149 0.299933756 0.148077736 22.91358754 

R5 0.179903822 0.159686899 0.114121083 8.928610735 

e0112 

R1 15.83414366 7.656411502 22.57310018 49667.94232 

R2 3.930439347 3.670043714 1.885249415 3739.942041 

R3 0.711171017 0.524868524 0.676697859 252.0273427 

R4 0.134981301 0.103984546 0.100598923 5.544538446 

R5 0.047380054 0.045473993 0.016767895 0.49734711 
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e0113 

R1 4.663794092 1.768583241 5.783190343 3609.508257 

R2 5.309471829 4.816027066 3.20888639 7571.729312 

R3 2.462965807 1.902764283 1.982871285 2615.538745 

R4 0.205410385 0.142152478 0.18576066 14.99878098 

R5 0.034871837 0.032133848 0.019355449 0.312989007 

e0114 

R1 11.11198238 9.394851666 7.406155187 11714.74982 

R2 5.852932914 5.227536261 3.859770576 9668.568732 

R3 0.579076971 0.319004892 0.607764454 184.2640583 

R4 0.058178888 0.049352487 0.038325741 0.949845645 

R5 0.02353672 0.019630909 0.016698726 0.163787607 

e0118 

R1 6.687339414 4.550802716 8.010843051 7122.837972 

R2 4.932756694 4.354062595 3.278516636 6900.161037 

R3 2.23089934 1.919574945 1.572481619 1949.325202 

R4 0.182815001 0.112954884 0.172344389 12.34258437 

R5 0.031697209 0.02921854 0.010498439 0.219531051 

e0119 

R1 8.973698745 5.217432953 10.23013272 12117.41478 

R2 5.509519195 4.996418253 3.110615986 7876.378582 

R3 0.618181032 0.353900962 0.633388037 204.8308064 

R4 0.234160155 0.229735352 0.028714528 10.90765396 

R5 0.179506494 0.176812176 0.013122936 6.381601992 

e0121 

R1 4.75555293 1.924499825 6.748927216 4453.229929 

R2 5.202203206 3.765187218 4.310552766 8973.244453 

R3 2.517190337 1.942987187 1.932972115 2635.292257 

R4 0.176042341 0.106011034 0.168665366 11.62157863 

R5 0.016223375 0.015109309 0.006445473 0.059992633 

e0123 

R1 3.878976268 1.835117708 5.138191746 2709.132092 

R2 5.045328115 2.8165154 6.910202999 14373.87863 

R3 2.809716005 1.790503023 3.306812445 4922.397286 

R4 0.250148511 0.17450113 0.232285457 22.78608245 

R5 0.028288698 0.02165188 0.022788946 0.259439196 

e0125 

R1 3.753819783 2.485846196 3.856937926 1896.954816 

R2 5.562471631 4.087958476 5.193219991 11381.4235 

R3 2.484130986 1.639679739 2.447887724 3180.729845 

R4 0.187049072 0.141903884 0.160262952 11.86594328 

R5 0.022577633 0.019548755 0.013840011 0.137963652 
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Table 4.6 Spectral features in different regions of AF records 

AF Record 

Number  
Regions Mean Median 

Standard 

Deviation 
Energy(µJ) 

4043 

R1 8.791477075 3.434375906 13.68072753 17266.69443 

R2 4.600405675 2.546918516 7.576096647 15419.1144 

R3 1.863173759 1.28318622 1.840807063 1793.92805 

R4 0.269090615 0.208446708 0.219873538 23.61946551 

R5 0.057709668 0.051494637 0.029943137 0.831821858 

4048 

R1 12.04343788 5.311591809 27.65047717 59268.60783 

R2 5.786380531 4.46653026 5.128309157 11750.70607 

R3 0.599683797 0.366050522 0.729848186 233.2496678 

R4 0.091615496 0.082162441 0.048692148 2.107436643 

R5 0.054054261 0.053090707 0.014474455 0.616670965 

4126 

R1 6.738400269 3.703377694 7.902242774 7055.752176 

R2 4.997457725 4.222352695 3.211711608 6941.750917 

R3 2.096010931 1.438612462 1.872814443 2066.474856 

R4 0.13926702 0.113006507 0.108443398 6.094673644 

R5 0.055889558 0.05520152 0.015632401 0.663254523 

4746 

R1 13.99838492 8.236119204 21.10094687 41874.26283 

R2 4.61450111 4.009152341 3.056206915 6025.561776 

R3 0.707721786 0.499259719 0.635160898 236.5230379 

R4 0.099388919 0.081346016 0.065400867 2.77018714 

R5 0.039797772 0.036881091 0.020684773 0.395881478 

4936 

R1 9.764157776 7.614398013 8.989275196 11544.81874 

R2 4.938602729 3.962142729 3.722119149 7520.207501 

R3 0.618950913 0.52011311 0.380995904 138.2584672 

R4 0.289086343 0.282942859 0.037111321 16.64846285 

R5 0.224727186 0.222921227 0.015964474 9.998908091 

5091 

R1 4.172207711 2.514492993 4.520641034 2477.235632 

R2 5.682646971 4.389743356 4.65574529 10610.10687 

R3 2.406674155 1.659720539 2.510528576 3162.543812 

R4 0.1074084 0.074768722 0.105568357 4.434378817 

R5 0.021183413 0.020256655 0.010823141 0.1113607 

6426 

R1 14.99431678 12.07274347 10.29632565 21729.68028 

R2 4.383250736 3.650715073 3.114824693 5686.556785 

R3 0.714531254 0.481163044 0.634622491 238.8820166 

R4 0.045504005 0.031415691 0.043035144 0.766985042 

R5 0.009397078 0.008864684 0.005540495 0.023412729 

6453 

R1 19.63547728 15.76326161 14.65703368 39410.29126 

R2 3.329484908 2.568548525 2.921495375 3856.724045 

R3 0.214499143 0.138294331 0.221297233 24.8364027 

R4 0.055335395 0.051700676 0.019688442 0.675741946 

R5 0.039545982 0.038479317 0.006009032 0.315162541 

7162 
R1 7.179106082 5.73420745 6.005103371 5745.593556 

R2 6.148699962 5.494669425 3.746141887 10198.4642 
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R3 0.782883734 0.440018326 0.833499873 341.9040705 

R4 0.199524728 0.194121372 0.033752191 8.024928998 

R5 0.147509108 0.145070636 0.013597255 4.322748096 

7859 

R1 8.607069128 7.310383075 6.92923297 8010.315693 

R2 4.401817859 4.278234203 2.207220925 4771.949636 

R3 1.952965786 1.689704062 1.216979953 1385.839239 

R4 0.431898325 0.362222146 0.293115046 53.31479176 

R5 0.117732854 0.093045639 0.088111874 4.252307558 

7879 

R1 7.748171924 5.7355769 8.413222528 8563.105463 

R2 4.632338029 3.672807115 3.482241949 6604.033218 

R3 2.191718167 1.470137734 1.867326042 2168.633282 

R4 0.213191329 0.158599169 0.177276386 15.03655523 

R5 0.041328084 0.034018823 0.027989689 0.490028924 

7910 

R1 10.2639232 6.233147975 10.75435893 14470.63122 

R2 6.156414806 4.416361626 6.760017942 16423.36147 

R3 0.538266317 0.33006051 0.578316339 163.2008191 

R4 0.058985846 0.053255795 0.030450301 0.862756737 

R5 0.029265873 0.028205161 0.009819391 0.1876272 

8215 

R1 13.28129618 5.3343696 24.43005376 50435.71589 

R2 3.27653426 2.482733927 3.263796952 4202.792947 

R3 1.676378761 1.096473412 1.861163403 1640.369911 

R4 0.206518977 0.176682392 0.125014051 11.40697726 

R5 0.121274423 0.117105787 0.021075319 2.984431825 

8219 

R1 11.76724608 8.978260064 11.26153721 17382.33761 

R2 5.935758169 4.70372603 4.284149285 10538.31661 

R3 0.468749739 0.279027042 0.475990614 116.702299 

R4 0.05815897 0.04847598 0.04191533 1.005557793 

R5 0.016851483 0.015329665 0.0095356 0.0737644 

8434 

R1 10.17033428 4.637813454 17.50851915 26752.39194 

R2 5.84087899 4.359842797 4.673143824 11001.12742 

R3 0.807342739 0.572978123 0.707357661 301.3648207 

R4 0.110443025 0.104523805 0.06043918 3.103056163 

R5 0.058340657 0.056256507 0.018026601 0.734207387 
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Table 4.7 Spectral features in different regions of SVT records 

SVT Record 

Number  
Regions Mean Median 

Standard 

Deviation 
Energy(µJ) 

801 

R1 8.548464447 6.662520703 6.548879552 7610.740651 

R2 5.347888337 3.449964847 5.61237839 11807.94528 

R3 1.284755984 0.954643589 1.3706721 922.8083234 

R4 0.184270958 0.158597776 0.122125083 9.563668506 

R5 0.065352686 0.061775346 0.024677491 0.960741606 

802 

R1 5.875767562 3.691352863 6.167206382 4750.864779 

R2 6.332293465 5.54393566 3.897586073 10876.76501 

R3 1.406694075 0.76059695 1.684764015 1259.272688 

R4 0.152534959 0.103532333 0.137321225 8.237453261 

R5 0.037195869 0.032207299 0.023613357 0.381843699 

803 

R1 5.93457559 5.322307519 3.85404847 3289.956195 

R2 5.004416108 4.068369277 3.457823821 7277.186507 

R3 2.041766299 1.686428025 1.42496883 1622.19806 

R4 0.536940574 0.451173847 0.345468436 79.78076115 

R5 0.133087175 0.108558029 0.09226893 5.157959528 

807 

R1 3.637518276 2.295342805 3.39927554 1624.361411 

R2 5.393814232 3.078747919 6.157956801 13163.77136 

R3 2.415489951 1.633947547 2.360666606 2983.149948 

R4 0.273533798 0.170012126 0.256551492 27.49950508 

R5 0.063392292 0.061454095 0.01906618 0.862910548 

808 

R1 9.320557706 4.595154358 12.57266445 16008.27748 

R2 6.190045648 5.261460306 4.789875781 12045.19339 

R3 0.695216425 0.267691965 0.952971949 363.6599748 

R4 0.107306737 0.090750825 0.073948562 3.323224265 

R5 0.024630816 0.023171753 0.013498948 0.15523082 

R2 4.183626279 2.853144322 3.865862056 6377.235911 

R3 3.14531286 2.382033112 2.658553969 4436.688465 

R4 0.536514424 0.40968903 0.452833643 96.4045247 

R5 0.099588094 0.090450376 0.04243225 2.30670151 

810 

R1 6.130120523 3.367850741 6.843267115 5524.142736 

R2 5.755825369 4.82964631 4.11598402 9847.016152 

R3 1.745578657 0.854327858 1.876596541 1717.467155 

R4 0.170337925 0.116829047 0.157336987 10.51415258 

R5 0.036283181 0.033475034 0.01935863 0.332796731 

811 

R1 5.255009955 3.294793103 6.224990469 4341.381468 

R2 5.239298586 4.354250244 3.66041097 8033.826446 

R3 2.163124373 1.96362805 1.475519858 1794.164507 

R4 0.414684035 0.34829802 0.28799777 49.8785479 

R5 0.08032323 0.066984962 0.05827641 1.936652207 

812 

R1 9.930117707 7.726080286 6.997423103 9690.733142 

R2 6.147904466 5.851210819 3.796131552 10270.43617 

R3 0.589033374 0.259593173 0.748515428 237.1354681 
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R4 0.075919626 0.070626714 0.042500358 1.481927444 

R5 0.025070501 0.022180314 0.015075438 0.168365105 

820 

R1 3.570503786 2.45898661 5.310073043 2674.197743 

R2 5.30348675 3.753226052 5.026153075 10492.40751 

R3 2.575538813 1.868117067 2.20042468 3001.678597 

R4 0.400918606 0.279075038 0.36007227 56.78635062 

R5 0.047505238 0.038968727 0.034443871 0.67710982 

821 

R1 8.979605089 6.483835074 9.822648962 11593.28642 

R2 4.265512717 3.182940472 4.040310364 6783.861087 

R3 2.009598095 1.373932641 1.859384776 1960.441306 

R4 0.157159664 0.116469585 0.13462801 8.375352063 

R5 0.071890397 0.067340831 0.037568008 1.294766775 

822 

R1 5.715663405 4.505362985 4.161820901 3281.990298 

R2 5.810570139 5.159302934 3.440221549 8970.941255 

R3 1.600992447 0.970112797 1.514160317 1269.942188 

R4 0.147990932 0.133168721 0.078682792 5.499899385 

R5 0.088274225 0.087271087 0.030024405 1.711777867 

823 

R1 3.573375035 1.932115644 5.582048134 2868.106592 

R2 4.626262631 2.505673395 6.5178309 12542.74972 

R3 2.766229348 1.453469546 3.786006217 5745.963541 

R4 0.642936907 0.514274813 0.522531504 134.2627404 

R5 0.178710129 0.130899303 0.14634182 10.48917209 

824 

R1 5.715663405 4.505362985 4.161820901 3281.990298 

R2 5.810570139 5.159302934 3.440221549 8970.941255 

R3 1.600992447 0.970112797 1.514160317 1269.942188 

R4 0.147990932 0.133168721 0.078682792 5.499899385 

R5 0.088274225 0.087271087 0.030024405 1.711777867 

825 

R1 6.388175318 3.793541512 9.141787578 8125.577945 

R2 5.311253474 3.949137426 5.26799017 10996.59166 

R3 1.918725628 1.404131456 1.698144487 1717.199421 

R4 0.265046304 0.219998211 0.208228708 22.2239535 

R5 0.066126476 0.057029828 0.038203491 1.147487358 
 

 

In spectral analysis of spectral features in all 5-regions, energy in R3 region appeared as 

significant parameter to distinguish all 7 types of cardiac signals (1- normal, 4- arrhythmias 

and 2- cardiac disorders) as shown in Fig 4.2 to Fig 4.8, 
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Fig 4.2 Energy at different regions of SCA Records (30, 31, 36 and 41) 

 

Fig 4.3 Energy at different of VF Records (418, 419, 421 and 425) 

 

Fig 4.4 Energy at different regions of SVT Records (801, 802, 803 and 822) 
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Fig 4.5 Energy at different regions of AF Records (04746, 04748, 06426 and 07162) 

 

 

 

 

Fig 4.6 Energy at different regions of NSR Records (16265, 16272, 16184 and 16539) 
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  Fig 4.7 Energy at different regions of CI Records (e0105, e0106, e0112 and e0119) 

 

 

Fig 4.8 Energy at different regions of VT Records (cu12, cu14, cu06 and cu08) 

 

Spectral and Temporal features (hybrid features) of 7 types of cardiac Signals for each record 

are shown in Table 4.8  
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Table 4.8 Spectral and Temporal features (hybrid features) of different cardiac Signals 

Mean 

R3 

Median 

R3 

SD 

R3 

Energy 

R3 

No. of 

R- 

peaks 

Amplitude 

average 

(mv) 

R-R interval  

(secs) 

HBR 

(bpm) 
Signal 

1.284756 0.9546436 1.370672 922.80832 52 0.854975 0.617960784 54.2285345 SVT 

1.4066941 0.760597 1.684764 1259.2727 32 1.955584 1.962580645 72.2092116 SVT 

2.0837691 1.4072656 2.002424 2184.1606 44 0.958168 0.723348837 71.0718402 SVT 

2.41549 1.6339475 2.360667 2983.1499 40 1.49194 0.801025641 74.9039693 SVT 

0.6952164 0.267692 0.952972 363.65997 32 1.656491 0.997677419 60.1396793 SVT 

3.1453129 2.3820331 2.658554 4436.6885 43 1.7546 0.728761905 82.3314166 SVT 

1.7455787 0.8543279 1.876597 1717.4672 35 1.625906 0.933529412 64.2722117 SVT 

2.1631244 1.9636281 1.47552 1794.1645 25 0.630474 1.295166667 46.3260842 SVT 

0.5890334 0.2595932 0.748515 237.13547 28 1.298521 1.151703704 52.0967327 SVT 

2.5755388 1.8681171 2.200425 3001.6786 40 0.213198 0.797230769 75.2605172 SVT 

2.0095981 1.3739326 1.859385 1960.4413 54 0.142973 0.587698113 102.093232 SVT 

2.7662293 1.4534695 3.786006 5745.9635 41 0.275273 0.7825 76.6773163 SVT 

2.7662293 1.4534695 3.786006 5745.9635 54 1.245341 0.590188679 101.662404 SVT 

1.6009924 0.9701128 1.51416 1269.9422 41 1.010693 0.7675 78.1758958 SVT 

1.9187256 1.4041315 1.698144 1717.1994 50 0.558015 0.649877551 92.3250848 SVT 

0.3431765 0.1937894 0.365996 65.817537 41 0.195675 0.7827 76.6577233 VF 

0.1881047 0.1269067 0.163527 16.249862 63 0.127919 0.511677419 117.261379 VF 

0.5901711 0.3277305 0.60127 185.61335 40 0.202846 0.811384615 73.9476678 VF 

0.6481308 0.5295341 0.445384 161.83312 53 0.151154 0.604615385 99.2366412 VF 

0.8910792 0.6958988 0.517895 278.03811 22 0.368095 1.472380952 40.7503234 VF 

0.8006471 0.7516115 0.262899 185.99065 44 0.182279 0.729116279 82.2914009 VF 

0.8239081 0.5210585 0.953832 415.30876 55 0.145537 0.582148148 103.066548 VF 

0.299907 0.2163349 0.25259 40.217647 43 0.186405 0.745619048 80.4700473 VF 

0.6515416 0.3994015 0.634269 216.22037 24 0.332913 1.331652174 45.0568108 VF 

0.8212539 0.5300398 0.755676 325.75092 57 0.141589 0.566357143 105.940219 VF 

1.8631738 1.2831862 1.840807 1793.9281 28 0.336033 1.344130086 44.6385366 AF 

0.5996838 0.3660505 0.729848 233.24967 19 0.120305 0.4812196 124.683201 AF 

2.0960109 1.4386125 1.872814 2066.4749 20 0.116452 0.465809 128.80816 AF 

0.7077218 0.4992597 0.635161 236.52304 19 0.028093 0.112373874 533.931937 AF 

0.6189509 0.5201131 0.380996 138.25847 19 0.269214 1.076856653 55.7177224 AF 

2.4066742 1.6597205 2.510529 3162.5438 16 0.298581 1.194323175 50.2376587 AF 

2.1917182 1.4701377 1.867326 2168.6333 19 0.243727 0.974909074 61.544201 AF 

0.5382663 0.3300605 0.578316 163.20082 33 0.125365 0.501461515 119.650259 AF 

0.7828837 0.4400183 0.8335 341.90407 22 0.026578 0.106313636 564.367865 AF 

0.2144991 0.1382943 0.221297 24.836403 19 0.005267 0.021068463 2847.85841 AF 

0.7145313 0.481163 0.634622 238.88202 62 0.062671 0.250683245 239.345872 AF 

0.8073427 0.5729781 0.707358 301.36482 18 0.047963 0.191853578 312.738499 AF 

2.1155531 1.5827104 1.991601 2207.8479 15 0.279369 1.117477093 53.6923758 AF 

0.6540064 0.4870057 0.536112 187.07937 21 0.227674 0.910696324 65.8836524 AF 

1.604149 1.1548549 1.371871 1165.4131 30 0.11149 0.44596036 134.541106 AF 

0.5042956 0.441304 0.362612 100.94857 20 0.001612 1.611578947 37.2305683 CI 
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1.6400801 1.4711143 1.027971 980.5489 15 0.002125 2.124857143 28.2371924 CI 

0.7905759 0.5716299 0.678643 283.95776 16 0.002091 2.090666667 28.6989796 CI 

0.7905759 0.5716299 0.678643 283.95776 15 0.002115 2.114857143 28.3707106 CI 

1.7522355 1.3422136 1.573688 1450.7914 14 0.002198 2.198461538 27.2918125 CI 

0.6501196 0.5411124 0.500345 176.0758 18 0.001764 1.763529412 34.0226818 CI 

1.6224442 1.1090214 1.489856 1269.0034 17 0.001931 1.93125 31.0679612 CI 

0.711171 0.5248685 0.676698 252.02734 10 0.002975 2.975111111 20.167314 CI 

2.4629658 1.9027643 1.982871 2615.5387 18 0.00187 1.869882353 32.0875802 CI 

0.579077 0.3190049 0.607764 184.26406 13 0.002683 2.682666667 22.3658052 CI 

2.2308993 1.9195749 1.572482 1949.3252 18 0.001819 1.818823529 32.9883571 CI 

0.618181 0.353901 0.633388 204.83081 16 0.002013 2.013066667 29.8052722 CI 

2.5171903 1.9429872 1.932972 2635.2923 21 0.001549 1.5494 38.7246676 CI 

2.809716 1.790503 3.306812 4922.3973 21 0.001546 1.5456 38.8198758 CI 

2.484131 1.6396797 2.447888 3180.7298 24 0.001343 1.343478 44.66019 CI 

0.6166012 0.4217909 0.659471 213.12109 36 0.223429 0.893714286 67.1355499 VF 

0.2306811 0.1809108 0.17228 21.688552 25 0.315625 1.2625 47.5247525 VF 

0.451626 0.3091226 0.446153 105.39177 34 0.237061 0.948242424 63.2749585 VF 

0.6166012 0.4217909 0.659471 213.12109 25 0.323542 1.294166667 46.3618802 VF 

1.3340802 0.9817392 1.13545 802.79284 56 0.141945 0.567781818 105.674395 VF 

0.6260901 0.3829384 0.61902 202.7125 23 0.149587 1.367636364 43.8713108 SCA 

0.4257394 0.2247857 0.44852 99.994042 29 0.101812 1.071 56.022409 SCA 

0.882341 0.7096831 0.733048 344.22459 23 0.235016 1.425636364 42.0864686 SCA 

0.229369 0.1847701 0.156002 20.135723 24 0.042966 1.370782609 43.7706166 SCA 

0.4600767 0.346358 0.366678 90.549786 24 0.003038 1.342086957 44.7064922 SCA 

0.5729797 0.3588875 0.557919 167.25844 18 0.085109 1.837411765 32.6546293 SCA 

0.2501377 0.1981207 0.145295 21.902898 8 0.085489 4.554857143 13.1727512 SCA 

0.6503844 0.2756029 0.76503 263.58183 32 0.091707 1.006580645 59.6077426 SCA 

0.8699371 0.5545717 0.803735 366.88259 31 0.098434 1.0532 56.9692366 SCA 

0.4959769 0.3729899 0.346165 95.72596 26 0.000127 1.27568 47.0337389 SCA 

0.7749418 0.5252367 0.659912 271.00142 30 0.000674 1.06937931 56.1073133 SCA 

0.2610245 0.1190362 0.379342 55.409041 25 0.063375 1.328833333 45.1523893 SCA 

0.5822724 0.5172549 0.203344 99.620814 22 0.001337 1.467619048 40.8825438 SCA 

1.2970259 0.7786383 1.357419 921.67105 26 0.000756 1.26384 47.4743638 SCA 

0.9416736 0.7225081 0.798269 398.64632 22 0.417295 1.505142857 39.8633257 SCA 

1.3447264 0.8613069 1.496467 1058.2586 32 0.159901 0.974580645 61.5649411 VT 

0.5738146 0.5084143 0.43644 135.98226 73 0.972875 0.604461538 99.2618987 VT 

0.9350754 0.5499737 1.01327 497.05687 75 0.031812 0.417567568 143.68932 VT 

0.2635493 0.1872905 0.228464 31.821149 24 0.000586 1.368347826 43.8485003 VT 

0.7581571 0.3983612 1.130146 483.95499 76 0.031956 0.414293333 144.824923 VT 

0.3095816 0.2273011 0.206631 36.254 36 0.143325 0.8792 61.5649411 VT 

0.6276057 0.4269904 0.623114 204.53776 46 0.000696 0.706133333 144.539615 VT 

0.324433 0.2504925 0.279963 48.034295 42 0.000456 0.773560976 143.68932 VT 

0.2347556 0.1387072 0.270988 33.605304 47 0.058797 0.668782609 89.7152516 VT 

0.7675737 0.4332266 0.724568 291.38703 47 0.121283 0.69173913 144.824923 VT 

0.1700403 0.0986396 0.183271 16.341925 29 0.246977 1.106428571 68.2438581 VT 

1.2482658 0.7182084 1.304582 852.44459 38 0.137872 0.830918919 84.9697885 VT 
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0.7617454 0.4450964 0.848945 340.13174 23 0.00114 1.354363636 77.563375 VT 

0.345285 0.3049168 0.133518 35.888929 38 0.00292 0.844216216 48.6886523 VT 

1.4167591 1.1481852 1.088397 835.07078 23 0.001505 1.390909091 86.7379007 VT 

3.0697731 2.2734404 2.366112 3930.1637 31 1.150784 0.149586735 60.3378922 NSR 

2.5870702 1.9966879 2.03527 2834.6946 49 5.529473 0.101811814 93.0833872 NSR 

2.943486 2.2819738 2.098412 3419.2671 50 5.507928 0.235015752 92.7327782 NSR 

3.3283441 2.7232339 2.417013 4427.1532 49 1.891016 0.042966113 92.6998841 NSR 

2.4628581 1.1755851 3.070945 4050.6193 50 1.758144 0.003038279 93.3451867 NSR 

2.6735988 1.9024718 2.258606 3204.2495 40 1.79936 0.372409457 75.9937646 NSR 

2.8729886 2.3267106 2.149705 3368.7061 38 5.969311 0.08510885 71.4285714 NSR 

2.0346674 1.3038922 2.000554 2129.2253 37 4.3836 0.085488825 70.075266 NSR 

2.4272999 2.0967587 1.59705 2209.3457 34 1.267571 0.091707288 63.4371396 NSR 

2.4816111 1.9426291 1.992187 2649.3586 36 0.992039 0.098433552 66.6666667 NSR 

3.1870204 2.7062607 2.146591 3863.81 43 3.451974 0.000711936 81.2903226 NSR 

2.3141838 1.1907286 3.479792 4563.564 58 0.61046 0.000126904 74.5747929 NSR 

2.6810224 2.2500206 1.898996 2824.4389 43 2.0547 0.00067424 80.6658131 NSR 

1.4178385 1.1669999 1.49963 1113.65 57 0.609691 0.00075585 109.517601 NSR 

1.1935218 0.7480308 2.465748 1960.0749 60 0.112759 0.198319587 111.742424 NSR 
 

4.5  Results and Discussion 

4.5.1 MLP classifier 

 

Fig 4.9 ANN Structure for classification of NSR and SCA using spectral features 
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The Fig 4.9 shows neural network architecture of MLP results obtained for 2 types of signals 

(NSR and SCA). It has one input layer, one output layer and one hidden layer. Input layer has 

16 neurons represented as mean, median, standard deviation and energy for each region 

(4features*4regions) are used in this work. The output layer has two neurons represented as 

NSR and SCA. The error per epoch obtained as 0.0001631 and Learning rate obtained as 0.3 

 

Fig 4.10 MLP Simulation Results for classification of NSR and VF using spectral features 

The Fig 4.10 shows the simulation results for classification of NSR and VF using MLP 

classifier. Time to build the model is 0.04 Seconds.  Correctly classified instances are 30. 

RMSE value is 0.0433. The classification accuracy for classifying NSR and VF is obtained as 

100%.  
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Fig 4.11 MLP Simulation Results for classification of NSR and SCA using temporal and 

spectral features 

The Fig 4.11 shows the simulation results for classification of NSR and SCA using MLP 

classifier. Time to build the model is 0.03 Seconds.  Correctly classified instances are 28 out 

of 30 instances. RMSE value is 0.1858. The classification accuracy for classifying NSR and 

SCA is obtained as 100%.  

 

Fig 4.12 MLP Simulation Results for classification of NSR, VT and VF using temporal and 

spectral features 
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The Fig 4.12 shows the simulation results for classification of NSR, VT and VF using MLP 

classifier. Time to build the model is 0.06 Seconds. Correctly classified instances are 32 out of 

45 instances.   RMSE value is 0.3718. The classification accuracy for classifying NSR, VT and 

VF is obtained as 71.11%. 

 

Fig 4.13 ANN Structure for classification of 7 types using temporal and spectral features 

The Fig 4.13 shows neural network architecture of MLP results obtained for 7 types of signals 

(NSR, SVT, VT, VF, AF, CI and SCA). It has one input layer, one output layer and one hidden 

layer. Input layer has hybrid features (temporal and spectral features) represented as mean, 

median, standard deviation and energy for R3 region from spectral features; Number of R-

Peaks, Amplitude of R-Peaks, R-R interval and Heart beat rate from temporal features are used 

in this work The output layer has 7 neurons represented as NSR, VT, VF, SVT, AF, CI and 

SCA. The error per epoch obtained as 0.035002 and Learning rate obtained as 0.3. 
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Fig 4.14 MLP Simulation Results for classification of 7 Types using temporal and spectral 

features. 

The Fig 4.14 shows the simulation results for classification of 7 types of signals using MLP 

classifier. Time taken to build the model is 0.22 Seconds. Correctly classified instances are 75 

out of 105 instances.  RMSE value is 0.2404. The classification accuracy for classifying 7 types 

is obtained as 71.42%. 
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4.5.2 RBF classifier 

 

Fig 4.15 RBF Simulation Results for classification of NSR and SCA using Spectral features 

The Fig 4.15 shows the simulation results for classification of NSR and SCA using RBF 

classifier. Time taken to build the model is 0.02 Seconds. Correctly classified instances are 27 

out of 30 instances.  RMSE value is 0.3162. The classification accuracy for classifying NSR 

and SCA is obtained as 90%. 
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Fig 4.16 RBF Simulation Results for classification of NSR and SCA using temporal and 

spectral features. 

The Fig 4.16 shows the simulation results for classification of NSR and SCA using hybrid 

features using RBF classifier. Time taken to build the model is 0.08 Seconds. Correctly 

classified instances are 30 out of 30 instances.  RMSE value is 0.00.  The classification 

accuracy for classifying NSR and SCA is obtained as 100%. 
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Fig 4.17 RBF Simulation Results for classification of NSR, VT and VF using temporal and 

spectral features 

The Fig 4.17 shows the simulation results for classification of NSR, VT and VF using RBF 

classifier. Time taken to build the model is 0.03 Seconds. Correctly classified instances are 34 

out of 45 instances. RMSE value is 0.3915. The classification accuracy for classifying NSR, 

VT and VF is obtained as 75.55%. 

The Fig 4.18 shows the simulation results for classification of 7 types of signals using RBF 

classifier. Time taken to build the model is 2.97 Seconds. Correctly classified instances are 70 

out of 105 instances. RMSE value is 0.2868. The classification accuracy for classifying 7 types 

is obtained as 66.66%. 

The Fig 4.19 shows the simulation results for classification of NSR and SCA using RF 

classifier. Time taken to build the model is 0.01 Seconds. Correctly classified instances are 28 

out of 30 instances. RMSE value is 0.177. The classification accuracy for classifying NSR and 

SCA is obtained as 93.33%. 
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Fig 4.18 RBF Simulation Results for classification of 7 Types using temporal and spectral 

features. 

4.5.3 RF classifier results 

 

Fig 4.19 RF Simulation Results for classification of NSR and SCA using Spectral features 
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Fig 4.20 RF Simulation Results for classification of NSR and SCA using temporal and 

spectral features 

The Fig 4.20 shows the simulation results for classification of NSR and SCA using RF 

classifier. Time taken to build the model is 0.01 Seconds. Correctly classified instances are 28 

out of 30 instances. RMSE value is 0.1889. The classification accuracy for classifying NSR 

and SCA is obtained as 93.33%. 

The following  Fig 4.21 shows the simulation results for classification of NSR, VT and VF 

using RF classifier. Time taken to build the model is 0.01 Seconds. Correctly classified 

instances are 36 out of 45 instances. RMSE value is 0.3188. The classification accuracy for 

classifying NSR, VT and VF is obtained as 80%. 
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Fig 4.21 RF Simulation Results for classification of NSR, VT and VF using temporal and 

spectral features 

 

Fig 4.22 RF Simulation Results for classification of 7 Types using temporal and spectral 

features 
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The Fig 4.22 shows the simulation results for classification of 7 types of signals using RF 

classifier. It is built by using random forest of 10 trees, each constructed while considering 4 

random features. Out of bag error is 0.3429. Time taken to build the model is 0.17 Seconds. 

Correctly classified instances are 82 out of 105 instances.  RMSE value is 0.2198.   The 

classification accuracy for classifying 7 types is obtained as 78.09%. 

4.6 Performance comparison of cardiac arrhythmias classification 

The performance of cardiac signals classification in terms of number of ECG records, the 

number of features, type of neural network classifier, classification accuracy and number of 

arrhythmias/disorders/normal signals classification reported in the literature have been 

compared with the proposed classification system as shown in Table 4.9 

Usman Rashed et al. [19] used FFT algorithm to distinguish SCA and NSR using spectral 

features. In the proposed work, classified 7 types of cardiac signals (normal, cardiac 

arrhythmias and disorders) using Machine learning RF classifier and ANN based MLP and 

RBF classifiers. These two techniques are different that they can learn differently but can be 

used in similar domains for classification. 

From the results it’s identified that RF classifier gives more accuracy irrespective of data size. 

MLP classifier works better when data size is more. RBF works better when data size is less. 

with less computation time.  
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4.7 Conclusion 

In this chapter, a spectral feature extraction scheme has been proposed for analysis of seven 

types of cardiac signals based on the spectral features. A significant change in Energy was 

observed in 3rd segment, (QRS complex duration 5Hz to 15Hz). It was found from the Fig 4.2, 

4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 the energy of NSR in Region3 region is more than that of other 

cardiac signals. Cardiac arrhythmias such as VT, VF and AF except SVT, energy is very less. 

Cardiac disorders such as CI and SCA, energy is also very less. 

Table 4.9 Summary of performance comparison of cardiac arrhythmias classification 

Study by 
Records and 

Features 
Classifier Cardiac Signals 

Classification 

Accuracy 

Usman Rashed 

et al. [19] 

8 Records, Features -

5 Spectral features 
- 

NSR and SCA (2 

types) 

Distinguished 

NSR and SCA 

using spectral 

parameters 

Proposed 

[FDA] 

30 Records (NSR-15 

and SCA-15),  

16- Spectral 

features(R1-R4) 

MLP,RF 

and RBF 
NSR and SCA 

MLP-93.33% 

RF-93.33% 

RBF-90% 

30 Records, 

4- Spectral 

features(R3) 

MLP,RF 

and RBF 

 

NSR and SCA 

MLP-93.33% 

RF-93.33% 

RBF-96.6% 

Proposed 

[TDA+FDA] 

Temporal and 

Spectral  

Features (Hybrid) 

 

MLP,RF 

and RBF 

 

NSR and SCA 

MLP-100% 

RBF-100% 

RF-93.33% 

NSR and VF 

MLP-100% 

RF-90% 

RBF-100% 

NSR,VT and VF 

MLP-73.33% 

RBF-71.11% 

RF-75.55% 

NSR, SVT, VT, VF, 

AF, CI and SCA ( 

seven types) 

MLP–71.4% 

RBF-66.6% 

RF-78.09% 
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In existing works, Usman Rashed et al. [19] used spectral analysis to classify normal and 

sudden cardiac arrest signals (two types) based on energy in region R4 of different signals. But 

in the proposed work obtained Energy difference of 7 types in R3 region as QRS complex 

frequency lies in this R3 (8Hz-16Hz) region. 

Using the regions (R1 to R4) spectral features classified NSR and SCA and obtained 93.3% 

and using only R3 features classified NSR and SCA obtained same classification accuracy as 

93.3% and these results are evaluated with other classifiers as shown in Table 4.9. To improve 

classification accuracy this work used temporal features along with spectral using hybrid 

approach and obtained 100% accuracy.  Similarly classified NSR and VF and obtained 

accuracy as 100% using MLP classifier and these results are evaluated with other classifiers as 

shown in Table 4.9. Later, the work extended to classify three types of signals NSR, VT and 

VF and obtained an accuracy as 77.77% using Random Forest Classifier and these results are 

evaluated with other classifiers as shown in Table 4.9   

The proposed work also classified 7 types of cardiac signals (1- normal, 4- arrhythmias and 2- 

cardiac disorders) and obtained an accuracy of 74.2% using Random Forest classifier and also 

evaluated the results with other classifiers as shown in Table 4.9. It is observed that normal 

spectral analysis of ECG provides only energy within frequency components but does not 

provide any phase coupled information. ECG signal is characterised by time varying random 

process (Non Gaussian/Non stationary). This may be the reason to get a less classification 

accuracy. Hence, higher order spectral analysis (HOSA) proposed to provide supplementary 

information about non gaussianity and non-linearity of the ECG signal. 
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Chapter 5 

Cardiac Arrhythmias Analysis and Classification in HOS 

Domain 

5.1 Introduction 

In the previous chapters, time domain and spectral domain analysis of ECG have been proposed 

to identify and classify cardiac arrhythmias and disorders. Spectral analysis is a good tool for 

the analysis of power distribution of linear and stationary signals. Whereas, this analysis may 

not be adequate to detect phase correlations among different frequency components of ECG 

signal as it is non-linear, non-stationary and quasi periodic in nature [22], [30], [97].  Hence, 

there is a need for phase related characteristics in identifying cardiac arrhythmias with better 

accuracy.  

Bispectrum, Bicoherence and Quadratic phase coupling plots are used for analysis of ECG to 

distinguish different types of cardiac signals. Higher order spectral features (skewness, 

variance, kurtosis and bicoherence) are extracted using bispectral analysis. The bispectrum is 

estimated using an autoregressive model, and the frequency support of the bispectrum is 

extracted as a quantitative measure to classify atrial & ventricular arrhythmias.  The 

bicoherence spectrum shows different bicoherence values for normal and arrhythmia signals. 

In general, the bicoherence indicates that the phase coupling decreases as arrhythmia kicks in. 

In this chapter, higher order spectral domain analysis of cardiac signals and their classification 

have been described. 

5.2 Overview of existing works 

Lot of research work has been done in the past to identify cardiac arrhythmias in higher order 

spectral domain. In this section, the work done by some of the researchers has been presented 

briefly. 

L.Khadra et al.[21] used a higher order spectral analysis to distinguish cardiac arrhythmias (VT, 

VF and AF) and NSR. In this work, phase coupling information of ECG signals was found 

from bispectrum. This bispectral analysis is used to discriminate different types of arrhythmias. 

To quantify the differences between the various arrhythmias, a simple classification parameter 
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that was proportional to the area of the frequency support of the bispectrum was used. 

(a=f1*f2). In order to quantify the degree of phase coupling for arrhythmia cases, computed 

the bicoherence spectrum. It was identified that spectral estimation depends on signal energies 

in the bifrequency plane. The variance of the estimate will be high at high frequencies.  Medical 

statistics were computed as Sensitivity(S) as 89.2% and Specificity (Sp) as 93.55%. 

K. Sharmila et al. [25] used higher order spectral analysis to distinguish sudden cardiac arrest 

and normal sinus rhythm. Specifically, quadratic phase coupling techniques were applied on 

ECG to extract information. Higher order spectral parameter such as energy was computed and 

compared normal portion of QRS complex of SCD- ECG and are compared with that of the 

healthy person ECG. In this work, on the basis of cumulants, estimated higher order spectra for 

the analysis of non-stationary ECG signals. HOS are “resistant” to gaussian noise in the sense 

that all cumulants of order greater than two have value zero for a gaussian signal. 

I. A. Karaye [26] used higher order spectral analysis to classify 5 types of cardiac signals (NSR, 

RBBB, paced beat, atrial premature beats and LBBB). In this work, bispectrum and 

bicoherence plots were used for identification of cardiac arrhythmias. This work extracted 

higher order spectral features (skewness, kurtosis and variance) and morphological features 

(no.of R-Peaks and R-R intervals) and these features were fed to back propagation neural 

network classifier. In this work, 70% of the data was used for training purpose and 30% of the 

data was used for testing purpose and obtained classification accuracy as 94.9%, Sensitivity as 

88.4%, Specificity as 96.2% and positive prediction as 87.3%.  

5.3 Methodology for Higher Order Spectral Analysis 

From the literature survey, it is identified that ECG signals are non-linear and non-stationary in 

nature. Normal spectral analysis of ECG provides only power within the frequency components 

but does not provide any phase coupled information of different frequency components. Higher 

Order Spectral Analysis (HOSA) possesses the ability to suppress gaussian noise and preserves 

the true phase characteristics of the signal, from which signal reconstruction is possible. Phase 

correlations among rhythmic events at different frequencies are introduced only by non-linear 

interactions [99]. Thus, non-linear analysis methods have to be applied for the detection of non-

linear correlations. One such method for the study of such non-linear effects is to quantify the 

deviation of the measured ECG signal from gaussianity by utilizing the bispectrum. This 

approach often detects important quadratic phase correlations present among the other higher 
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order correlations. So, higher order spectral (HOS) analysis is more suitable to identify different 

types of cardiac arrhythmias and disorders. Higher Order Spectral Analysis (HOSA) on ECG 

signal processing steps are shown in Fig 5.1  

                                 

                     Fig 5.1 Processing steps of Higher order spectral analysis 

For pre-processing, 3rd order Butterworth low pass filter is used to remove baseline wander 

noise from ECG signal by selecting cut off frequency 2Hz.  HOS measures are extensions of 

second-order measures (such as autocorrelation function and the power spectrum) to higher 

orders. The second-order measures are good, if the signal  has  a  gaussian probability  density  

function,  but  cardiac  signals  are  non-gaussian in nature. The gaussian function can be 

completely characterized by its mean and variance. Higher order measures are related to higher-

order moments of the signal.  For nonlinear signals such as ECG signal, second order statistics 

may not be sufficient for ECG analysis. Hence, third order and fourth order statistics are used 

in this analysis. Higher  order  spectra  are  defined  to  be  spectral  representations  of  higher  

order cumulants  of  a  random  process[26], [48], [62], [74], [98].  

Let x(k) be a real, discrete time and nth-order stationary random process. We use non-linear 

features such as higher order Cumulants(c) because they make efficient features as input to the 

classifier and provide higher discrimination to higher accuracy in classification of arrhythmias 

[22], [48]. 

ECG Data from MIT-BIH Database

Preprocessing

Higher order spectral Analysis

Higher Order Statistics
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The nth order moment can be calculated by taking an expectation over the process multiplied 

by n-1 lagged versions of itself. 

                                               𝑚1
𝑥 = 𝐸[𝑥(𝑘)]                                                           (5.1) 

                                            𝑚2
𝑥(𝑡) = 𝐸[𝑥(𝑘)𝑥(𝑘 + 𝑡)]                                                 (5.2) 

𝑚3
𝑥(𝑡1, 𝑡2) = 𝐸[𝑥(𝑘)𝑥(𝑘 + 𝑡1)𝑥(𝑘 + 𝑡2]                 (5.3) 

               𝑚4
𝑥(𝑡1, 𝑡2, 𝑡3) = 𝐸[𝑥(𝑘)𝑥(𝑘 + 𝑡1)𝑥(𝑘 + 𝑡2)𝑥(𝑘 + 𝑡3)]                (5.4) 

Where E denotes expectation function, 𝑥(𝑘) denotes zero mean process. 

Using the moments, the cumulants can be computed. The second-order, third-order and fourth-

order cumulants are represented by following equations 5.6 to 5.8. 

                                                          𝑐1
𝑥 = 𝑚1

𝑥             (5.5) 

                                               𝑐2
𝑥(𝑡) =  𝑚1

𝑥(𝑡) − 𝑚1
𝑥(𝑡)2 = 𝑚2

𝑥            (5.6) 

     𝑐3
𝑥(𝑡1, 𝑡2) =  𝑚3

𝑥(𝑡1, 𝑡2)                                   (5.7) 

𝑐4
𝑥(𝑡1, 𝑡2) =  𝑚3

𝑥(𝑡1, 𝑡2) − 𝑚2
𝑥(𝑡1)𝑚3

𝑥(𝑡2 − 𝑡3) − 𝑚2
𝑥(𝑡3 − 𝑡1) 

−𝑚2
𝑥(𝑡3)𝑚2

𝑥(𝑡1 − 𝑡2)   (5.8) 

Where 𝑚1, 𝑚2, 𝑚3 𝑎𝑛𝑑 𝑚4   are corresponding first, second, third and fourth order moments of 

 x(k) and 𝑐1, 𝑐2, 𝑐3 𝑎𝑛𝑑 𝑐4  are the first four order cumulants. The second order cumulant is 

called the variance. The third order cumulant is called the skewness and the fourth order 

cumulant is called the kurtosis.  

 

 

The Fourier transform of second order cumulants is the traditional power spectrum. The power 

spectrum is the frequency domain representation of second order moment. It can be calculated 

in two ways: 
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1. By taking Discrete Fourier Transform (DFT) of the autocorrelation function as 

shown in equation 5.1 

                                               P (k) = DFT[R (m)]                                            (5.9) 

2. Multiply together the signal Fourier Transform X (k) with its complex conjugate 

as shown in equation 5.2,  

                                                     P (k) = X (k) X*(k)                                             (5.10) 

The Fourier transform of third order cumulants is called bispectrum or bispectral density. 

Features related to third-order statistics namely, Bispectrum B (k, l) can be calculated in a 

similar way using Discrete Fourier Transform (DFT) as shown below, 

Double Discrete Fourier Transform (DDFT) of the third-order cumulants is shown below in 

equation 5.3,  

                                                      B (k, l) = DDFT [C3]                                        (5.11) 

Where ‘C3’ is third order cumulants.  

To perform the work, 1-minute ECG data of 7-types has been collected from MIT-BIH 

database. The verification of results is done by using HOSA tool box. A set of higher order 

spectral features are obtained based on the existence of peaks in bi-frequency plane and the 

statistical parameters.  Higher order statistics such as variance, skewness and kurtosis are 

computed.  

5.3.1 Bispectrum 

Bispectrum of a signal is defined as the second order Fourier transform of the third order 

cumulants of a signal [65]. The prefix bi- in bispectrum refers to two frequencies of a single 

signal. The bispectrum equation (5.12) shows that bispectrum is a function of two frequency 

variables (𝑓1 and 𝑓2). Where ƒ denotes frequency. The bispectrum (B) of a signal is given by 

the following equation 5.12 

 

𝐵 (𝑓1, 𝑓2) = lim
𝑇→∞

𝐸[𝑋(𝑓1) 𝑋(𝑓2) 𝑋∗(𝑓1 + 𝑓2)]                            (5.12) 
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In this work, the bispectrum is computed by using direct FFT method. It is a function of two-

frequency variables (f1 and f2) and carries information about phase [38], [108]. Bispectrum is 

a complex quantity having both magnitude and phase. The bispectrum analyses the frequency 

components at 𝑓1,𝑓2, 𝑓1+𝑓2 , (𝑓1-𝑓2).  

Bispectrum can be plotted against two independent frequency variables (𝑓1 and  𝑓2 ) in three-

dimensional plots. Bispectrum plots of NSR, cardiac arrhythmias and cardiac disorders are 

shown in Fig 5.2, 5.4, 5.6, 5.8, 5.10, 5.12, and 5.14 which provide additional information about 

the signal to classify cardiac arrhythmias.  

5.3.2 Bicoherence  

In statistical analysis, bicoherence is a squared normalised version of the bispectrum. The 

bicoherence takes values bounded between 0 and 1, which make it a convenient measure for 

quantifying the extent of phase coupling in a signal. It is also known as bispectral coherency. 

The prefix bicoherence refers two frequencies of a single signal. Bicoherence is given by the 

following equation 5.13, 

Bnorm(𝑓1, 𝑓2) =
E[X(𝑓1)X(𝑓2)X∗(𝑓1+𝑓2)]

√P(𝑓1)P(𝑓2)P(𝑓1+𝑓2)
   (5.13) 

Where P (f) is the power spectrum. Theoretically, if the Fourier components at the 

frequencies𝑓1, 𝑓2  and 𝑓1+𝑓2  are perfectly phase coupled, and the bicoherence will be 1. Due 

to the finite data length of processes, peaks may appear in the bispectrum at locations where 

there are no significant phase coupling. Bicoherence (or normalized bispectrum) is used to 

avoid incorrect interpretations. The magnitude of bicoherence quantifies the strength of phase 

correlation. Chaudhary et al. [23], calculated the value of bicoherence which is used to find 

linearity of a signal.  

Using the above equation 5.13, bicoherence values are derived which are further used to know 

the linearity of signals. Bicoherence plots of NSR and cardiac disorders are shown in Fig 5.2, 

5.4, 5.6, 5.8, 5.10, 5.12, and 5.14 which provide additional information about the signal to 

classify cardiac signals.  

5.3.3 Quadratic phase coupling 
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Quadratic phase coupling occurs when two waves interact non-linearly and generate a third 

wave with a frequency equal to the sum or difference of the first two waves [101]. In a non-

linear system, an interaction between two harmonic components causes contribution to the 

power as their sum or difference of frequencies. Since the power spectrum suppresses all phase 

information, it cannot be utilized to detect phase coupling. The bispectrum is capable of 

detecting and characterizing quadratic phase coupling. Harmonically related peaks in the power 

spectrum are necessary conditions for the presence of quadratic non-linearities in the data. The 

bispectrum preserves phase and is used to extract phase information quantitatively. 

If a signal of frequency 𝑓1, and phase φ1 is passed through a nonlinear system results in a 

frequency component of 2𝑓1 along with phase component 2φ1. This phenomenon of phases 

adding or subtracting along with frequencies can only be observed in a second order nonlinear 

systems. Such a phase relationship is termed as quadratic phase coupling (QPC). 

Table 5.1 QPC 

𝑓1, 𝑓2, 2𝑓1 𝜑1, 𝜑2, 2𝜑1 

𝑓1, 𝑓2, 𝑓1 + 𝑓2 𝜑1, 𝜑2, 𝜑1 + 𝜑2 

𝑓1, 𝑓2, 𝑓1 − 𝑓2 𝜑1, 𝜑2, 𝜑1 − 𝜑2 

  

Quadratic phase coupling occurs when two waves interact non-linearly and generate a third 

wave with a frequency equal to the sum/difference of the first two waves as shown in Table 5.1  

The bispectrum is capable of detecting and characterizing quadratic phase coupling [65], [102]. 

Harmonically related peaks in the power spectrum are necessary conditions for the presence of 

quadratic non-linearities in the data. As ECG is a nonlinear signal, QPC can be used to give 

phase coupling information present in the ECG signal 
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5.3.4 Higher Order Statistics 

The variance, skewness and kurtosis are three higher order statistics considered for analysis of 

ECG signal.  

 

Variance:  It is a measurement of the spread between numbers in a dataset from the mean. It 

is used to determine the measure of dispersion and the uncertainty in the given data set values. 

If a random variable (x) has the expected value or mean, μ = E[x], then the variance of the 

random variable(x) is given by the equation 5.14, 

 

Var(x) = E[(𝑥 − 𝜇)]2              (5.14) 

 

Skewness: Skewness is a measure of the asymmetry of the data around the sample mean. If the 

skewness is negative, the data are spread out more to the left of the mean. If skewness is 

positive, then the data are spread out more to the right of the mean. The skewness of the any 

perfectly symmetric distribution is zero.  

The skewness (S) of a distribution is given by the following equation 5.15 

                                    𝑆 = E 
(𝑥−𝜇)3

𝜎3                            (5.15) 

Where μ is the mean of random variable(x), σ is the standard deviation of random variable(x) 

and E (t) represents the expected value of the quantity t. 

 

Kurtosis: Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the 

normal distribution is 3. Distributions that are more outlier-prone than the normal distribution 

have kurtosis greater than 3, distributions that are less outlier-prone have kurtosis less than 3. 

The kurtosis (K) of a distribution is given by the following equation 5.16 

                          K = E
(𝑥−𝜇)4

𝜎4                                                       (5.16) 

 

From using above equations 5.14, 5.15 and 5.16, HOSA features have been computed and listed 

in Table 5.3 to Table 5.6.  
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5.4 Classification of Arrhythmias using Neural Networks and 

Machine Learning Algorithms 

 

This work has been done using HOSA tool box. HOSA plots are used as visual aids to 

distinguish normal and different types of cardiac arrhythmias. HOSA features are used to 

categorise different types of cardiac signals. Bispectrum and Bicoherence plots of NSR records 

(16786, 16420  and 16539) are as shown in Fig 5.2, NSR record 16539 exhibit peaks around 

+0.3 to -0.3 in bi-frequency plane, obtained 15 normal records average skewness value as 

2.75789.  

The bicoherence values appear to be scattered throughout the bifrequency plane in a random 

manner. Average Bicoherence value of NSR of 15 records is 5.125613 which indicates the 

strength of phase correlation as shown in Table 5.2. It can be further identified that bicoherence 

indicates the non-linearity present in cardiac signals. The corresponding QPC plot of NSR 

record 16539 is shown in Fig 5.3. 

Bispectrum and Bicoherence plots of SCA records (30, 32 and 37) are shown in Fig 5.4 which 

exhibit peaks around -0.2 to +0.2 in bi-frequency plane, average skewness value is 0.19142. 

The bicoherence values appear to be scattered throughout the bifrequency plane in a random 

manner. Average Bicoherence value of SCA of 15 records is 5.2879 which indicates the 

strength of phase correlation and indicates the non-linearity present in cardiac signals as shown 

in Table 5.2. The corresponding QPC plot of SCA record 30 is shown in Fig 5.5. 

 

Bispectrum and Bicoherence plots of VT records (cu06, cu13 and cu15) are as shown in Fig 

5.6 exhibit peaks around -0.15 to +0.15 in bi-frequency plane, average skewness value is 

0.92956. The bicoherence values appear to be scattered throughout the bifrequency plane in a 

random manner. Average Bicoherence value of VT of 15 records is 5.8385 which indicates the 

strength of phase correlation as shown in Table 5.2. The corresponding QPC plot of VT record 

cu06is shown in Fig 5.7. 
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Fig 5.2 Bispectrum and Bicoherence plots of NSR records (16265, 16420 and 16539) 

 

 

Fig 5.3 QPC plot of NSR record 16539 
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Fig 5.4 Bispectrum and Bicoherence plots of SCA records (30, 32 and 37) 
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Fig 5.5 QPC plot of SCA (record 30) 

 

  

 

  

Fig 5.6 Bispectrum and Bicoherence plots of VT records (cu06, cu13 and cu15) 

 

Fig 5.7 QPC plot of VT records (cu06) 
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Bispectrum and Bicoherence plots of AF records (04746, 07910 and 04048) are as shown in 

Fig 5.8 which exhibit peaks around -0.25 to +0.25 in bi-frequency plane, average skewness 

value is 0.3. The bicoherence values appear to be scattered throughout the bifrequency plane in 

a random manner. Average Bicoherence value of AF of 15 records is 7.4163 which indicates 

the strength of phase correlation as shown in Table 5.2. The corresponding QPC plot of AF 

record 04048 is shown in Fig 5.9. 

 

Bispectrum and Bicoherence plots of CI records (e0112, e0123 and e0125)) are as shown in 

Fig 5.10 exhibit peaks around -0.3 to +0.3 in bi-frequency plane, average skewness value is 

2.75. The bicoherence values appear to be scattered throughout the bifrequency plane in a 

random manner. Average Bicoherence value of CI of 15 records is 10.2520 which indicates the 

strength of phase correlation as shown in Table 5.2. The corresponding QPC plot of CI record 

e0123 is shown in Fig 5.11 

 

Bispectrum and Bicoherence plots of VF records (418, 419 and 609) are as shown in Fig 5.12 

exhibit peaks around -0.2 to +0.2 in bi-frequency plane, average skewness value is 0.63982. 

The bicoherence values appear to be scattered throughout the bifrequency plane in a random 

manner. Average Bicoherence value of VF of 15 records is 4.0090 which indicates the strength 

of phase correlation as shown in Table 5.2. The corresponding QPC plot of VF record 418 is 

shown in Fig 5.13. 

 

Bispectrum and Bicoherence plots of SVT records (811, 812 and 824) are as shown in Fig 5.14 

exhibit peaks around -0.2 to +0.2 in bi-frequency plane, average skewness value is 2.19287. The 

bicoherence values appear to be scattered throughout the bifrequency plane in a random 

manner. Average Bicoherence value of SVT of 15 records is 4.7224 which indicates the 

strength of phase correlation as shown in Table 5.2. The corresponding QPC plot of SVT record 

812 is shown in Fig 5.15 
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Fig 5. 8 Bispectrum and Bicoherence plots of AF records (04746, 07910 and 04048) 

 

Fig 5.9 QPC plot of AF record (04048)  
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Fig 5. 10 Bispectrum and Bicoherence plots of CI records (e0112, e0123 and e0125) 

 

Fig 5.11 QPC plots of CI record (e0123) 
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Fig 5.12 Bispectrum and Bicoherence plots of VF records (418, 419 and 609) 

 

Fig 5. 13 QPC plot of VF record (418)  
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Fig 5.14 Bispectrum and Bicoherence plots of SVT records (811, 812 and 824) 

   

Fig 5. 15 QPC plots of SVT record (812) 

Higher order spectral features such as skewness, kurtosis, variance and bicoherence are 

extracted using bispectrum and bicoherence plots. Average values of 15 records for different 

cardiac signals are shown in Table 5.2. 
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Table 5.2 Higher order spectral features of 7 types of cardiac signals 

Cardiac 

Signal 
Kurtosis 

(Avg) 
Skewness 

(Avg) 
Variance 

(Avg) 
Bicoherence 

(Avg) 

CI 18.6481 2.75664 2.06E+03 10.2520 

AF 11.0441 -0.33311 2.48E+03 7.4163 

NSR 16.8971 2.75789 5.86E+03 5.1256 

SVT 16.7308 2.19287 6438.8 4.7224 

VT 8.0496 0.92956 8.52E+04 5.8385 

VF 6.5149 0.63982 2.47E+04 4.0090 

SCA 6.7753 0.19142 93926 5.2879 

 

 

Fig 5.16 Kurtosis Variation in different signals 

Higher values of kurtosis is the result of infrequent extreme deviations. The highest value of 

Kurtosis 18.6481 is observed in Cardiac Ischemia and the lowest value of kurtosis 6.5149 is 

observed in Ventricular fibrillation. The kurtosis variation (average value) of different cardiac 

signals is shown in Fig 5.16. 
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Fig 5.17 Skewness variation in different signals 

The skewness variation of different cardiac signals is shown in Fig 5.17. Zero value of 

skewness indicates normal symmetric distribution. Skewness can be positive or negative. Here, 

it is observed that AF signal has average skewness value as -0.33311.  

 

 

Fig 5.18 Variance variation in different signals 
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The average variance of 15 records of each category of 7 types of cardiac signals variation is 

shown in Fig 5.18. Highest variance value is observed in VT and SCA. Lowest variance is 

observed in AF and CI. Medium value of variance is observed in NSR, SVT and VF variance 

value is in between VT and SCA.  

 

Fig 5.19 Bicoherence variation in different cardiac signals 

Bicoherence indicates the strength of phase correlation. From the Fig 5.19, it is observed that 

bicoherence value is relatively less in NSR and VT. Bicoherence value is more in CI and AF. 

This result proves that high degree of phase correlation is existing in arrhythmia signals than 

NSR.  

Spectral, Bispectral and Temporal features (hybrid features) of 7 types of cardiac signals for 

each record are shown in Table 5.3 Table 5.6 to  are used for classification purpose using three 

supervised classifiers. 
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5.5  Results and Discussion 

5.5.1  MLP classifier results 

 

Fig 5.20 ANN structure for classification of NSR, VT, VF and AF using temporal, spectral 

and bispectral features 

The Fig 5.20 shows MLP neural network architecture obtained for 4 types of signals (NSR, 

VT, AF and VF). It has one input layer, one output layer and one hidden layer. Input layer has 

nine neurons using temporal, spectral and bispectral features represented as number of R-peaks, 

amplitude of R-peaks, R-R interval, heart beat rate, kurtosis, skewness, variance, bicoherence 

and energy are used in this work. The output layer has four neurons represented as NSR, VT, 

AF and VF. The error per epoch obtained as 0.0158509 and Learning rate obtained as 0.3 
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Fig 5.21 Simulation results of   NSR,VT,VF and AF using MLP Classifier 

 

The Fig 5.21 shows the simulation results for classification of NSR, VT, AF and VF using MLP 

classifier. Time taken to build the model is 0.09 seconds. Correctly classified instances are 50 

out of 60 instances.  RMSE value is 0.25. The classification accuracy for classifying NSR, and 

VF is obtained as 83.33% 

 

Fig 5.22 Simulation results of   NSR,SVT,VT,VF and AF using MLP Classifier 
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The Fig 5.22 shows MLP neural network architecture for classification of NSR, SVT, VT, AF 

and VF using MLP classifier. Time taken to build the model is 0.01 seconds. Correctly 

classified instances are 63 out of 75 instances.  RMSE value is 0.2371. The classification 

accuracy for classifying NSR, SVT, VT, AF and VF is obtained as 84%. 

 

Fig 5.23 ANN structure for classification of 7 types using temporal, spectral and bispectral 

features 

The Fig 5.23 shows neural network architecture of MLP results obtained for 7 types of signals 

(NSR, SVT, VT, VF, AF, CI and SCA). It has one input layer, one output layer and one hidden 

layer. Input layer has 9 features using temporal, spectral and bispectral features represented as 

Number of R-Peaks, Amplitude of R-Peaks, R-R interval, Heart beat rate, kurtosis, skewness, 

variance, bicoherence and energy are used in this work. The output layer has 7 neurons 

represented as NSR, VT, VF, SVT, AF, CI and SCA. The error per epoch obtained as 

0.0105064 and Learning rate obtained as 0.3. 
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Fig 5.24 Simulation results of  7 types using MLP Classifier 

The Fig 5.24 shows the classification results of 7 types cardiac signals using MLP classifier. 

Time taken to build the model is 0.25 seconds. Correctly classified instances are 78 out of 105 

instances.  RMSE value is 0.2328. The classification accuracy for classifying 7 types of ECG 

signals is obtained as 74.28%. The medical statistics of 7 types of signals are sensitivity as 

74.3%, specificity as 95.71% and precision as 75.25% are shown in Table 5.7. 

Table 5.7 Medical Statistics of MLP using confusion matrix for 7 types of signals 

ECG TP FP FN TN Sensitivity(S) Specificity(S) Precision(Pp) 

VF  08 6 7 84 53.33% 93.33% 57.14% 

VT 09 8 6 82 60.00% 91.11% 52.94% 

NSR 13 0 2 90 86.66% 100% 100%  

AF 12 3 3 87 80.00% 96.66%  82.00% 

SVT 14 1 1 89 93.33% 98.88% 93.33% 

SCA 08 8 7 82 53.33% 91.11%  50.00% 

CI 14 1 1 89 93.33% 98.88% 93.33% 

Average 74.28% 95.71% 75.25% 
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5.5.2  RBF classifier results r

         

Fig 5.25 Simulation results of   NSR,VT,VF and AF using RBF Classifier 

The Fig 5.25 shows the simulation results for classification of NSR, VT, AF and VF using RBF 

classifier. Time taken to build the model is 0.02 seconds. Correctly classified instances are 48 

out of 60 instances.  RMSE value is 0.314. The classification accuracy for classifying NSR, 

VT, AF and VF is obtained as 80%.  

 

Fig 5.26 Simulation results of   NSR,SVT,VT,VF and AF using RBF Classifier 
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The Fig 5.26 shows the simulation results for classification of NSR, SVT, VT, AF and VF 

using RBF classifier. Time taken to build the model is 0.03 seconds. Correctly classified 

instances are 55 out of 75 instances.  RMSE value is 0.3151. The classification accuracy for 

classifying NSR, SVT, VT, AF and VF is obtained as 73.33% 

 

Fig 5.27 Simulation results of  7 types using RBF Classifier 

The Fig 5.27 shows the simulation results for classification of 7 types using RBF classifier. 

Time taken to build the model is 0.8 seconds. Correctly classified instances are 78 out of 105 

instances.  RMSE value is 0.2621. The classification accuracy for classifying 7 types of ECG 

signals is obtained as 74.28% The medical statistics obtained using the confusion matrix of 

RBF for 7 types of signals are sensitivity as 74.28%, specificity as 95.71% and precision as 

75.55% are shown in Table 5.8. 

Table 5.8 Medical Statistics of RBF using confusion matrix for 7 types of signals 

ECG TP FP FN TN Sensitivity(S) Specificity(S) Precision(Pp) 

VF 08 7 7 83 53.33% 92.22% 53.33% 

VT 08 8 7 82 53.33% 91.11% 53.33% 

NSR 13 0 2 90 86.66% 100% 100% 

AF 13 4 2 86 86.66% 95.55% 76.47% 

SVT 15 2 0 88 100% 97.77% 88.23% 

SCA 08 6 7 84 53.33% 93.33% 57.14% 

CI 13 0 2 90 86.66% 100% 100% 

Average 74.28% 95.71% 75.55% 
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5.5.3  RF classifier results 

 

 

Fig 5.28 Simulation results of NSR,VT,VF and AF using RF Classifier 

The Fig 5.28 shows the simulation results for classification of NSR, VT, AF and VF using RF 

classifier. Time taken to build the model is 0.01 seconds. Correctly classified instances are 54 

out of 60 instances.  RMSE value is 0.2306.The classification accuracy for classifying NSR, 

VT, AF and VF is obtained as 90%  

 

Fig 5.29 Simulation results of NSR, SVT, VT, VF and AF using RF Classifier 
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The Fig 5.29 shows the simulation results for classification of NSR, SVT, VT, AF and VF 

using RF classifier. Time taken to build the model is 0.02 seconds. Correctly classified 

instances are 64 out of 75 instances. RMSE value is 0.217. The classification accuracy for 

classifying NSR, SVT, VT, AF and VF is obtained as 85.33%. 

 

Fig 5.30 Simulation results of  7 types using Random Forest Classifier 

 

The Fig 5.30 shows the simulation results for classification of 7 types using RF classifier. It’s 

built by using random forest of 10 trees, each constructed while considering 4 random features. 

Out of bag error is 0.381. Time taken to build the model is 0.02 Seconds. Correctly classified 

instances are 78 out of 105 instances.  RMSE value is 0.213. The classification accuracy for 

classifying 7 types is obtained as 74.28%. The medical statistics obtained using the confusion 

matrix for 7 types of signals are sensitivity as 74.3%, specificity as 95.71% and precision as 

75.02% are shown in Table 5.9.  
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Table 5.9 Medical Statistics of RF using confusion matrix for 7 types of signals 

ECG TP FP FN TN Sensitivity(S) Specificity(S) Precision(Pp) 

VF  08 7 7 83 73.33% 85.55% 53.33% 

VT 08 8 7 82 46.7% 96.66% 50% 

NSR 13 0 2 90 93.33% 100% 100%  

AF 13 4 2 86 73.33% 95.55%  76.4% 

SVT 15 2 0 88 93.33% 97.77% 88.23% 

SCA 08 6 7 84 53.33% 95.55%  57.14% 

CI 13 0 2 90 86.7% 98.88% 100% 

Average 74.3% 95.71% 75.02% 

 

5.6  Performance comparison of arrhythmias classification 

The performance of cardiac signals classification in terms of number of ECG records, the 

number of features, type of neural network classifier, classification accuracy and number of  

cardiac signals reported in the literature have been compared with the proposed classification 

system is shown in Table 5.10. 

 L. Khadra et al. [21] used higher order spectral analysis on 43-records of different cardiac 

signals (AF-12, VT-11, VF-12 and NSR-08 records). HOSA features are extracted using 

bispectral contour analysis and classified these four types of cardiac signals and obtained 

sensitivity as 89.2% and specificity as 93.55%.  

Sharmila et al. [25] analysed two types of cardiac signals (NSR and SCA) using higher order 

spectral features. This work did not use classifiers to represent classification accuracy. 

Compared to the existing work of I. A. Karaye et al. [26] and Sharmila et al. [25] the proposed 

research work has given more clarity in identifying important cardiac arrhythmias, cardiac 

disorders and normal signals using bispectral, spectral and temporal features( hybrid features) 

and using RF , MLP and RBF neural network classifiers. 
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Table 5.10 Summary of performance comparison of cardiac arrhythmias classification 

Study by 
Number of records 

and Features 
Classifier Diseases Accuracy 

Ibrahim 

Abdullahi 

Karaye et al. 

[26] 

Higher order spectral 

features and Temporal 

features  

MLP NSR and 4 

diseases        

(5 types) 

Sensitivity-88.4% 

Accuracy-94.9%. 

Specificity-96.2% 

L. Khadra et 

al. [21] 

43-records             

(AF-12, VT-11, VF-

12 and NSR-08) 

HOSA features 

Bispectral

contour 

analysis 

NSR ,VT, VF 

and AF (4 

types) 

Sensitivity-89.2% 

Specificity-93.55% 

Proposed 

[HOSA] 

Spectral, Bispectral 

and Temporal features 

RF NSR ,VT, VF 

and AF (4 

types) 

Sensitivity-90 % 

Accuracy-90% 

Specificity-96.62% 

Spectral, Bispectral 

and Temporal features 

RF NSR,SVT,VT, 

VF and AF (5 

types) 

Sensitivity-85.33%  

Accuracy-85.33% 

Specificity-96.33% 

Spectral ,Bispectral 

and Temporal features 

105-Records (AF-15, 

VT-15, VF-15, SVT-

15, SCA-15, CI-15 

and NSR-15) 

 

RF NSR,SVT,VT, 

VF, AF,  CI 

and SCA 

Sensitivity-74.28%  

Accuracy-74.2% 

Specificity-95.70% 

Precision-75.02% 

RBF NSR,SVT,VT, 

VF, AF, CI 

and SCA 

Sensitivity-74.28%  

Accuracy-74.2% 

Specificity-95.71% 

Precision-75.55% 

MLP NSR,SVT,VT, 

VF, AF, CI 

and SCA 

Sensitivity -74.2%  

Accuracy-74.2% 

Specificity-95.71% 

Precision-75.25% 
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5.7 Conclusion 

HOSA presents bispectrum, bicoherence, quadratic phase coupling plots for visual 

interpretation to classify normal, cardiac arrhythmias and cardiac disorders. HOS based 

features (such as skewness, variance, kurtosis and bicoherence) along with spectral features 

and temporal features (hybrid) are fed to three classifiers. Random forest (RF) classifier has 

produced better results compared to MLP and RBF classifiers. The proposed work classified 

NSR, VT, VF and AF (4 types) using RF classifier and obtained classification accuracy as 90%, 

sensitivity as 90% and specificity as 96.62%. It is a novel approach to enhance classification 

accuracy, sensitivity and specificity with the existing work.  

Later, the same work has been extended to classify 5 types of cardiac signals (NSR, SVT, VT, 

VF and AF) and obtained an accuracy as 85.33%, sensitivity as 85.33% and specificity as 

96.33%. Later, work has been extended to classify 7 types of cardiac signals (1- normal, 4- 

arrhythmias and 2- cardiac disorders) using RF, MLP and RBF classifiers. RF and ANN 

learning techniques are different even though got same results as shown in Table 5.10. Finally, 

obtained an average classification accuracy as 74.2%, sensitivity as 74.2%, precision as 75% 

and specificity as 95.70%.  It has been observed that specificity is higher than sensitivity.  

In real time applications, the specificity is more important than the sensitivity, as no normal 

person should be defibrillated except sudden cardiac arrest. Otherwise it might cause cardiac 

arrest to normal healthy person due to error analysis. 

It is observed that spectral estimation depends on the signal energies in the bi-frequency plane. 

This causes serious problem in the estimation. The variance of the estimate is high at high 

frequencies. This unsatisfactory property should be resolved by making variance independent 

against the frequency variation. When number of cardiac disorders increased, classification 

accuracy and sensitivity are decreased. So, multi resolution analysis (using discrete wavelet 

transform) is preferred to enhance classification accuracy in the next chapter. 
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Chapter 6 

Cardiac Arrhythmias Classification in Wavelet domain 

6.1 Introduction 

In the previous chapters; time domain, spectral analysis and higher order spectral analysis of 

ECG have been proposed to analyse and classify cardiac arrhythmias and disorders. As ECG 

is a quasi-periodic, nonlinear and non-stationary signal, multiresolution analysis is required to 

enhance the classification accuracy of different cardiac signals. Further in the literature review, 

it has been reported that finding an efficient feature scheme and suitable neural network 

classifiers are important to enhance the classification accuracy of different cardiac arrhythmias 

[17],[44-45],[47], [50,51], [67]-[72], [9], [82], [83], [72] and [110]. So, it is proposed to use 

wavelet transform decomposition technique to extract wavelet features.  

In this chapter, wavelet based feature extraction scheme and classification of cardiac 

arrhythmias & disorders have been described. With reference to medical statistics such as 

classification accuracy, sensitivity and specificity. Further, performance comparison with the 

existing works has been given. 

6.2 Overview of existing works 

In this section, the work done by some researchers has been presented briefly. 

Nguyen et al. [17] used a novel shock advice algorithm (SAA) to classify Normal, Shockable 

rhythms (SH) and Non shockable rhythms (NSH) of ECG signal. In this work, ventricular 

fibrillation (VF) and ventricular tachycardia (VT) were considered as shockable (SH) rhythms 

which lead to sudden cardiac arrests (SCA). In SAA algorithm, convolutional neural network 

(CNN) was used for feature extraction and a Boosting (BS) was used for classification. 5-fold 

cross validation was used in CNN. The medical statistics obtained as classification accuracy of 

99.26%, sensitivity of 97.07%, and specificity of 99.44%. This work obtained different values 

of sensitivity and accuracy as unequal number of data records are used to classify three types 

of cardiac signals. 
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H.M Rai et al. [44] employed wavelet (db4) based feature extraction scheme and back 

propagation neural network algorithm to classify normal and abnormal signals. In this work 25 

NSR records and 20 abnormal records of 1minute duration are considered, 48 wavelet based 

features, 16 statistical and morphological features, total 64 hybrid features were extracted and 

fed to the neural network classifier and obtained classification accuracy as 97.8% 

Maedeh Kiani Sarkaleh et al. [45] used 8-level wavelet decomposition technique on 10 ECG 

records and extracted 24 wavelet features. Three types of cardiac signals (normal and two types 

of arrhythmias) classified using MLP neural network classifier and obtained classification 

accuracy of 96.5%.  It produced results with 24 input neurons and 2 linear output neurons. 

These two output neurons indicate that they have classified only two types of cardiac signals. 

Sukanta & Mohanty et al. [47]   classified three types of signals NSR, VT and VF (total 57 

records).Time -frequency based hybrid features (13 features) are extracted and fed to the SVM 

classifier and C4.5 classifier . Obtained average classification accuracy - 92.23%, sensitivity -

79.43 % and specificity -81.44% with SVM classifier. Obtained average classification accuracy 

- 97.02%, sensitivity -90.97% and specificity -97.86% with C4.5 classifier. In this work, 

classified only3-types of cardiac signals. This work obtained different values of sensitivity and 

accuracy as it is used unequal number of data records.  

E. D. Ubeyli et al. [50] classified five types of cardiac signals (NSR, CHF, VT, AF, Partial 

epilepsy). In this work, they extracted wavelet based features, statistical parameters and ROC 

curves and fed to Mixture of Expert (ME) network classifier and enhanced the classification 

accuracy to 96.89%.   

Ali Sadr et al. [51] compared the performance of MLP and RBF neural network classifiers. In 

this work RBF algorithm produced more accuracy when training data size was relatively small, 

MLP algorithm produced more accuracy when the size of training data was relatively large. 

From this work, it is identified that selection of data set and selection of a suitable classifier 

play a crucial role in improving classification accuracy.  

Sumathi et al.[110] used hybrid approach of Adaptive Neuro-Fuzzy Inference System 

(ANFIS) model for classification of  6 types of arrhythmias including normal signals(Normal 

Sinus Rhythm (NSR), Atrial Fibrillation (AF), Pre-Ventricular Contraction (PVC), Ventricular 

Fibrillation (VF), and Ventricular Flutter (VFLU) Myocardial Ischemia(MI)). Feature 
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extraction is done by using Symlet wavelet transform. The classification accuracy was obtained 

as 98.24 %  

6.3 Methodology for wavelet analysis 

Several signal processing algorithms have been proposed to classify ECG arrhythmias and 

disorders. Existing feature extraction methods may not be sufficient to detect the possibility of 

more number of cardiac arrhythmias and disorders with high accuracy as ECG is a quasi-

periodic, nonlinear and non-stationary signal. Hence, in this work, it is proposed to use 

Daubechies wavelet transform (db4). Six-level wavelet decomposition technique is used to 

extract wavelet features and are fed to three different supervised classifiers to classify 7 types 

of cardiac signals (normal, 4 types of cardiac arrhythmias and 2 types of cardiac disorders). 

This automatic classification of cardiac arrhythmias and disorders will enable the doctors for 

early diagnosis of cardiac problem. The block diagram of automatic classification of cardiac 

signals using wavelet features is shown in Fig 6.1 

 

Fig 6.1 Automatic classification of cardiac signals using wavelet features 

6.3.1 Pre-processing 

Baseline wander or DC noise is usually occurs during the recording of the ECG signal. It is due 

to improper bias and chest movement while breathing.  This DC noise frequency will be below 

2Hz. This DC noise has been removed from ECG data in pre-processing stage through mean 

correction code. The statistical mean of the signal vector is computed and subtracted from each 

sample so that the distribution of the samples is along the axis.  

6.3.2 Discrete Wavelet Transform  

Fourier transform deals with transforming the time domain components to frequency domain  
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components and the wavelet transform deals with scale analysis, that is, by creating 

mathematical structures that provide varying time/frequency/amplitude slices for analysis.  

This transform is a portion of a complete waveform, hence the term wavelet. Wavelet is a fast 

decaying oscillating waveform, with average value is zero. Generally, the continuous wavelet 

transform can be expressed by the following equation (6.3), 

𝑪𝑾𝑻𝒙
𝜓

(𝑻, 𝑺) = 𝛙𝒙
𝜓(𝑻, 𝑺) =  

𝟏

√|𝒔|
∫ 𝒙(𝒕) 𝜓∗ (

𝒕−𝑻

𝒔
) 𝒅𝒕                 (6.1) 

Where x (t) represents signal, ψ is the basis function, s is scaling factor, t is time and * is 

symbol for complex conjugate. 

The wavelet transform has the ability to identify frequency (or scale) components, 

simultaneously with their location(s) in time.  Additionally, computations are directly 

proportional to the length of the input signal.  They require only N multiplications (times a 

small constant) to convert the waveform. 

In wavelet analysis, the scale that one uses in looking at data plays a special role. Wavelet 

algorithms process data at different scales or resolutions. If we look at a signal with a large 

"window," we would notice gross features. Similarly, if we look at a signal with a small 

"window," we would notice small discontinuities as shown in Figure. The result in wavelet 

analysis is to "see the forest and the trees."  A way to achieve this is to have short high-

frequency fine scale functions and long low-frequency ones.  This approach is known as multi-

resolution analysis. 

Wavelets are a family of basis functions Symlet, Coiflet, Daubechies, Biorthogonal and 

Reverse biorthogonal wavelets are different types of the wavelet families are shown in Fig 6.2. 

One of the key advantages of wavelets is their ability to spatially adapt to features of a function 

such as discontinuities and varying frequency behaviour. They vary in various properties of 

wavelets like compactness, smoothness, fast implementation and orthonormality. 
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Fig 6.2  Types of Daubechies wavelets [100]  

The compactness means the localization of wavelets i.e. a region of the data can be processed 

without affecting the data outside this region. Discrete Wavelet Transforms (DWT) are widely 

used for feature extraction which transforms a discrete time signal to a discrete wavelet 

representation. The DWT is also used for de-noising the signals. Daubechies wavelets are the 

most popular wavelets[85] and  db4 wavelet has been chosen as the mother wavelets as it 

resembles the shape of ECG waveform. 

The DWT utilizes two set of functions Φ (t) and Ψ (t), each associated with the low pass and 

the high pass filters respectively. These functions have a property that they can be obtained as 

the weighted sum of the scaled (dilated) and shifted version of the scaling function itself. 

DWT is given by the following equations (5.2) and (5.3) 

𝜑(𝑡) = ∑ ℎ[𝑛]𝜑(2𝑡 − 𝑛)
∞

𝑛=1
                                               (6.2) 

Ψ(𝑡) = ∑ 𝑔[𝑛]𝜑(2t − n)
∞

𝑛=1
                                               (6.3) 

Here, h[n] and g[n] is the half band low pass filter and high pass filter respectively.  

6.3.3 Wavelet based Feature Extraction using Wavelet Decomposition 

Wavelet analysis consists of decomposing a signal into a hierarchical set of low frequency 

(approximation) and high frequency (detailed) coefficients. Wavelets are the essentially filter 

banks. Each filter splits a given signal into two non-overlapping independent high frequency 

and low frequency sub-bands such that it can then be reconstructed by the means of an inverse 

transform. When such filters are applied continually, you get a tree of filters with output of one 

fed into the next. 
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The  wavelet  representation  of  a discrete signal, X consisting of N samples can be computed 

by convolving the discrete signal, X with the Low-Pass Filters (LPF) and High-Pass Filters 

(HPF) and down-sampling the output signal by 2, so that the two frequency bands each contains 

N/2 samples. This technique is based on the use of wavelets as the basis functions for 

representing other functions. These basis functions have a finite support in time and frequency 

domain. Multi-resolution analysis is achieved by using the mother wavelet and a family of 

wavelets generated by translations and dilations of it. The convolutional algorithms apply 

filtering by multiplying the filter coefficients with the input samples and accumulating the 

results. These algorithms are implemented by using finite impulse response filter banks. The 

lifting scheme has been proposed for the efficient implementation of the wavelet transform. 

This approach has three phases namely: split, predict, and update. In 1D-DWT, at each 

decomposition level, the HPF associated with scaling function produces detail coefficients(DC) 

while the LPF associated with scaling function produces approximation coefficients(AC) of  

the signal. The approximation part can be iteratively decomposed. Wavelet transform 

decomposes a signal into a set of basis functions using 6 level decomposition technique as 

shown in Fig 6.3 to extract wavelet features. 

• High frequency detailed coefficients (minimum and maximum) and standard deviation 

in 1-5 levels.  

• Low frequency approximation coefficients (minimum and maximum) and standard 

deviation in the 6th level.  

• Energy retained for each record, 

Total 19 wavelet features are provided as inputs to RF, MLP and RBF and classifiers.  

 

Fig 6.3 Wavelet decomposition [88] 
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The statistical features extracted using wavelet transform techniques are given below  

• Maximum value of coefficient: It is the extreme of largest value of all the given 

samples. 

• Minimum value of coefficient: It is the extreme of smallest value of all the given 

samples. 

• Energy ( 𝜺𝒙): The energy of the signal is sum of squared moduli of samples and is given 

by the equation 6.4, 

                                                       𝜺𝒙 ≜ ∑ |𝒙𝒏|𝟐𝑵−𝟏
𝒏=𝟎                                                                              

(6.4) 

• Standard deviation(𝝈): It is a measure of dispersion of set of samples from its mean. It 

can be calculated by the equation 6.5, 

                                               𝝈 = √
𝟏

𝑵−𝟏
∑ (𝒙𝒊 − 𝝁)𝟐𝑵−𝟏

𝒊=𝟎
                                                                 (6.5)         

        

6.4 Classification of Arrhythmias using Artificial Intelligence 

Algorithms  

In the proposed work, db4 6-level wavelet decomposition technique is used to extract wavelet 

features so 19 extracted wavelet features are provided as inputs to neural network classifiers. 

Simulation Results of wavelet analysis are shown in Fig 6.4, Fig 6.5 and Fig 6.6.  
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                         Fig 6.4 Six level wavelet decomposition of NSR Signal (165272) 

As shown in Fig 6.4, six level wavelet decomposition on NSR signal is provided detailed and 

approximation information of the signal. Detailed and approximation statistics of normal signal 

are shown in Fig 6.5.  Retained energy of NSR Signal is shown in Fig 6.6. Extracted wavelet 

features of 7 types of cardiac signals are shown in Table 6.1 to Table 6.4. 
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Fig 6.5 Detailed and approximation statistics of NSR signal 

 

Fig 6.6 Retained energy of NSR Signal  
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6.5 Results and Discussion 

6.5.1 MLP classifier results 

 

Fig 6.7 ANN structure for NSR, VT and VF (3 types) using wavelet features 

The above Fig 6.7 shows neural network architecture of MLP results obtained for NSR, VT 

and VF. It has one input layer, one output layer and one hidden layer. Input layer has 19 features 

represented as minimum, maximum and standard deviation values of detailed coefficients in 1 

to 5 levels; minimum, maximum and standard deviation values of approximation coefficients 

in 6th level and the retained energy of each record. The output layer represented as NSR, VT 

and VF. It has 3 output neurons and 11 hidden neurons. The error per epoch is obtained as 

0.000229 and Learning rate obtained as 0.3. 
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Fig 6.8 Simulation results of   NSR, VT and VF using MLP Classifier 

The above Fig 6.8 shows the simulation results for classification of NSR, VT and VF using 

MLP classifier. Time taken to build the model is 0.13 Seconds. Correctly classified instances 

are 44 out of 45 instances.  RMSE value is 0.1305.The classification accuracy for classifying 

NSR, VT and VF is obtained as 97.77% and confusion matrix is shown for VT,VF and NSR. 
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Fig 6.9 Simulation results of   NSR, SVT, VT and VF using MLP Classifier 

 

The above Fig 6.9 shows the simulation results for classification of NSR, SVT, VT and VF 

using MLP classifier. Time taken to build the model is 0.25 Seconds. Correctly classified 

instances are 56 out of 60 instances.  RMSE value is 0.1566.The classification accuracy for 

classifying NSR, SVT, VT and VF is obtained as 93.33%. 
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Fig 6.10 Simulation results of 7 types using MLP Classifier 

The above Fig 6.10 shows the simulation results for classification of 7 types using MLP 

classifier. Time taken to build the model is 0.45 Seconds. Correctly classified instances are 100 

out of 105 instances.  RMSE value is 0.1167. The classification accuracy for classifying 7 types 

of ECG signals is obtained as 95.231%. 
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Fig 6.11 ANN structure for 7 types using wavelet features 

The above Fig 6.11 shows neural network architecture of MLP results obtained for 7 types of 

signals.  It   has one input layer, one output layer and one hidden layer. Input layer  19 features 

represented as minimum, maximum and standard deviation values  of detailed coefficients in 1 

to 5 levels; minimum, maximum and standard deviation values of approximation coefficients 

in 6th level and the retained energy of each record. The output layer represented as NSR, SVT, 

VT, AF, SCA, CI, AF and VF. It has 7 output neurons and 13 hidden neurons. The error per 

epoch obtained as 0.005233 and Learning rate obtained as 0.3 
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6.5.2 RBF classifier results 

 

 

Fig 6.12 Simulation results of   NSR, VT and VF using RBF Classifier 

 

The above Fig 6.12 shows the simulation results for classification of NSR, VT and VF using 

RBF classifier. Time taken to build the model is 0.02 Seconds. Correctly classified instances 

are 43 out of 45 instances.  RMSE value is 0.1721. The classification accuracy for classifying 

NSR, VT and VF is obtained as 95.55% and confusion matrix is shown for VT,VF and NSR. 
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Fig 6.13 Simulation results of   NSR, SVT, VT and VF using RBF Classifier 

 

The above Fig 6.13 shows the simulation results for classification of NSR, SVT, VT and VF 

using RBF classifier. Time taken to build the model is 0.02 Seconds. Correctly classified 

instances are 56 out of 60 instances.  RMSE value is 0.1826. The classification accuracy for 

classifying NSR, SVT, VT and VF is obtained as 93.33%  
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Fig 6.14 Simulation results of 7 types using RBF Classifier 

 

The above Fig 6.14 shows the simulation results for classification of 7 types using RBF 

classifier. Time taken to build the model is 0.06 Seconds. Correctly classified instances are 97 

out of 105 instances.  RMSE value is 0.1351.The classification accuracy for classifying 7 types 

of ECG signals is obtained as 92.381% and confusion matrix is shown for 

NSR,VT,VF,SVT,CI,AF and SCA. 
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6.5.3 RF classifier results 

 

Fig 6.15 Simulation results of   NSR, VT and VF using RF Classifier 

 

The above Fig 6.15 shows the simulation results for classification of NSR,VT and VF using 

RF classifier. Time taken to build the model is 0.03 Seconds. Correctly classified instances are 

43 out of 45 instances.  RMSE value is 0.1582.The classification accuracy for classifying 

NSR,VT and VF is obtained as 95.55% and confusion matrix is shown for VT,VF and NSR. 
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Fig 6.16 Simulation results of   NSR, SVT, VT and VF using RF Classifier 

 

The above Fig 6.16 shows the simulation results for classification of NSR, VT, SVT and VF 

using RF classifier. Time taken to build the model is 0.01 Seconds. Correctly classified 

instances are 57 out of 60 instances.  RMSE value is 0.1713. The classification accuracy for 

classifying NSR, VT, SVT and VF is obtained as 95% and confusion matrix is shown for 

NSR,SVT,VT and VF. 
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Fig 6.17 Simulation results of 7 types using Random Forest Classifier 

 

The Fig 6.17 shows the simulation results for classification of 7 types using RF classifier. It’s 

built by using random forest of 10 trees, each constructed while considering 5 random features. 

Out of bag error is 0.181. Time taken to build the model is 0.01 Seconds. RF of 10 trees have 

been used each constructed while considering 5 random features of 19 wavelet features. Correctly 

classified instances are 99 out of 105 instances.  RMSE value is 0.1104. The classification 

accuracy for classifying 7 types of ECG signals is obtained as 94.28% 

In the proposed work, the above wavelet features (from Table 6.1 to Table 6.4)  have been 

given to MLP, RBF and RF neural network classifiers for automatic classification of 7 types of 

cardiac signals (normal, 4 types of arrhythmias and 2 cardiac disorders).  
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Further, compared the performance of all these classifiers is shown in Table 6.5. MLP classifier 

classification accuracy obtained as 95.23% and the computational time to build the model was 

0.45seconds, RBF classifier classification accuracy obtained as 92.381% and the computational 

time to build the model is 0.06seconds. RF classifier classification accuracy obtained as 

94.285% and the computational time to build the model is 0.2seconds. 

 

Table 6.5 Performance comparison of 3-classifiers  

 MLP RF RBF 

Computational time to 

build the model (Sec) 
0.45 0.2 0.06 

Classification Accuracy 95.238% 94.285% 92.381% 

Kappa Statistic(K) 0.9444 0.9333 0.9111 

Mean Absolute Error 0.0336 0.0414 0.0215 

Root Mean Square 

Error 
0.1167 0.1129 0.1351 

Correctly classified 

instances 
100 99 97 

Total Number of 

instances 
105 105 105 

 

It is observed that wavelet transform technique with MLP classifier produced better accuracy 

than RBF classifier but computational time to build the model is more in MLP compare to RBF.  

 

6.5.4 Medical statistics 

The performance of MLP algorithm of medical statistics are evaluated such as Sensitivity (S)-

95.21%, Specificity (Sp) -99.15% and Precision (P) – 95.34% are shown in Table 6.6. The 

performance of RF algorithm evaluated with the medical statistics are shown in Table 6.7. The 

performance of RBF algorithms evaluated with the medical statistics are shown in Table 6.8 
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Table 6.6 Medical Statistics of MLP using confusion matrix  

ECG TP FP FN TN Sensitivity(S) Specificity(Sp) Precision(P) 

NSR 14 2 1 88 93.3% 97.7% 95% 

AF 13 1 2 89 86.6% 98.8% 92.85% 

CI 15 1 0 89 100% 98.8% 93.75% 

VT 14 0 1 90 93.3% 98.8% 100% 

SVT 15 0 0 90 100% 100% 100% 

VF 15 0 0 90 100% 100% 100% 

SCA 14 1 1 89 93.3% 98.8% 93.33% 

Average  95.21% 99.15% 95.34% 

 

 

 

Table 6.7 Medical Statistics of RF using confusion matrix  

ECG TP FP FN TN Sensitivity(S) Specificity(S) Precision(Pp) 

NSR 14 1 1 89 93.33% 98.88% 93.33% 

AF 14 1 1 89 93.33% 98.88% 93.33% 

CI 14 0 1 90 93.33% 100% 100% 

VT 15 1 0 89 100% 98.88% 93.75% 

SVT 15 2 0 88 100% 97.77% 88.23% 

VF 13 0 2 90 86.66% 100% 100% 

SCA 14 1 1 89 93.33% 98.88% 93.33% 

Average  94.28% 99.04% 94.56% 
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Table 6.8 Medical Statistics of RBF using confusion matrix  

ECG TP FP FN TN Sensitivity(S) Specificity(S) Precision(Pp) 

CI 15 1 0 89 100% 98.88% 93.75% 

VT 15 0 0 90 100% 100% 100% 

AF 13 2 2 87 86.66% 97.75% 86.66% 

SCA 13 2 2 87 86.66% 97.75% 86.66% 

NSR 13 2 2 87 86.66% 97.75% 86.66% 

VF 14 1 1 89 93.33% 98.88% 93.33% 

SVT 14 0 1 90 93.33% 100% 100% 

Average 92.38% 98.71% 92.44% 

 

 

6.6 Performance comparison of cardiac arrhythmias classification 

The performance of cardiac signals classification depends on number of cardiac signal records, 

number of features, type of classifier and number of arrhythmias/disorders/normal signals. 

Classification reported in the literature have been compared with the proposed classification 

system is shown in Table 6.9. In the existing work of H. M. Rai et al. [44] used 64 hybrid of 

features and obtained classification accuracy of two types of signals as 97.8%.  

Maedeh Kiani Sarkaleh et al. [45] has classified three types of cardiac signals and produced 

classification accuracy as 96.5% using MLP classifier. Proposed work classified 2 types of 

cardiac signals (NSR and VT) and obtained an accuracy as 100% using MLP, RBF and RF 

classifiers.  

Later classified three types of signals-NSR, VT and VF and obtained classification accuracy as 

97.77% and specificity is 98.88%. Compare to the existing work of Monalisa Mohanty et al. 

[47], the proposed work average classification accuracy, sensitivity and specificity are more. 

Pooja Bhardwaj et al. [49] classified 5 types of cardiac signals with accuracy 95.21% and 

sensitivity 85.44%. The proposed work classified 7 types of cardiac signals and obtained 

Precision-95.3%, Accuracy-95.24%, Sensitivity-95.2% and Sensitivity-95.2% 
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Table 6.9 Summary of performance comparison of cardiac arrhythmias classification 

Study by Records and Features Classifier Diseases Accuracy 

H.M.Rai et al. 

[44] 

45 Records 

(25 arrhythmia and 20 

normal) 

16 morphological and 

48 wavelet features 

Total : 64 features 

BPNN Normal and 

Arrhythmia 

class(2-

Types ) 

97.8% 

 

Maedeh Kiani 

Sarkaleh et al. 

[45] 

 

10 Records 

Features- 24 wavelet 

features 

MLP Normal and 

Arrhythmias 

types 

(3-Types) 

96.5% 

 

Mangesh Singh 

Tomar et al. [46] 

62 Records 

14-NSR,48-Arrhythmia 

Features-20 wavelet  

features 

5 statistical features 

Total :25 features 

BPNN Normal and 

Arrhythmia 

class(2-

Types) 

98.4% 

Proposed 

30 Records 

(NSR-15 and VT-15) 

Features-19 Wavelet 

features 

MLP, RF 

and RBF 

NSR and VT 

(2-Types) 

MLP-100% 

RF-100% 

RBF-100% 

Monalisa 

Mohanty et al. 

[47] 

57 Records 

Features-13Temporal and 

Statistical features 

 

SVM  and 

C4.5 

classifier 

 

 

 

NSR,VT and 

VF (3-

Types) 

 

 

[SVM] Se-79.43 % 

Sp-81.44% 

Acc-92.23% 

[C4.5] Se-90.97% 

Sp-97.86% 

Acc-97.02% 

Proposed 

45 Records (NSR-15, VT-

15 and VF-15) 

Total: 19 Wavelet 

features 

MLP 

classifier 

NSR,VT and 

VF (3-

Types) 

Sensitivity-97.77% 

Specificity- 98.88% 

Accuracy-97.77% 

 

Proposed 

105 records 

Only 19 Wavelet based 

features(db4) 

RF NSR,SVT,V

T,VF,AF, 

SCA, CI 

(7-Types) 

Accuracy-94.21% 

Sensitivity-94.21% 

Specificity-99.04% 

RBF NSR,SVT,V

T,VF,AF, 

SCA, CI 

(7-Types) 

Accuracy-92.38% 

Sensitivity-92.38%  

Specificity-98.72% 

MLP 

 

NSR,SVT,V

T,VF,AF, 

SCA, CI 

(7-Types) 

Accuracy-95.24% 

Sensitivity-95.2% 

Specificity-99.20% 

Precision-95.3% 
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6.7 Conclusion 

It has been observed that wavelet based feature scheme played an important role in 

distinguishing different cardiac arrhythmias and cardiac disorders. It is identified that Neural 

Network Algorithms are getting better when the complexity of the data set increases. 

Significant improvement has been observed in terms of classification accuracy of 7 types of 

cardiac signals compared with the existing works as shown in Table 6.9 which has been the 

objective of this research work. The proposed work classified 7 types of cardiac signals with 

95.21% accuracy, sensitivity 95.2% and specificity 99.20% using MLP algorithm, using RF 

algorithm obtained accuracy as 94.28% and using RBF algorithm obtained accuracy as 92.38%. 

From the above results shown in Table 6.9, it is concluded that wavelet transform technique 

with MLP classifier produced better results than RBF and RF classifier.  

In most of the existing works used different number of records and got different values of 

sensitivity and accuracy. Where as in the proposed work, equal number of records of each 

category of cardiac signals are used for classification purpose and obtained equal values of 

sensitivity and accuracy. In the proposed work obtained more specificity than sensitivity. In 

real time applications it is required to have more specificity than the sensitivity. No patient 

should be defibrillated except SCA patient, otherwise it causes cardiac arrest to normal persons.  

The MLP classifier used for this work has 3 layers (1- input layer, 1- output and 1- hidden 

layer). The input layer contains 19 nodes, the output layer has 7 nodes.  Finally, obtained 13-

hidden neurons and 7 output neurons. Further, this efficient wavelet based feature scheme can 

be extended to classify other types of cardiac arrhythmias and disorders.  

The main objective of this research work is to enhance classification accuracy of cardiac signals 

and improve specificity to enable doctors for early diagnose the type of cardiac disorder to save 

life of heart patients. The proposed research work has been extended to develop cardiac alert 

system using wavelet based feature scheme.  
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Chapter 7 

Conclusion and Future Scope 

This chapter describes the results and conclusion in a brief and comprehensive manner. Further 

future scope of the research work has been given.  

7.1 Conclusion 

Finding efficient feature scheme is an important challenge for automatic classification of 

cardiac signals. In this research work, four different feature extraction techniques have been 

proposed for analysis and classification of cardiac signals (cardiac arrhythmias, cardiac 

disorders and normal). 

• Time domain analysis and classification of cardiac signals using artificial intelligence 

algorithms. 

• Spectral analysis and classification of cardiac signals using hybrid (temporal and 

spectral) features. 

• Higher order spectral analysis and classification of cardiac signals using hybrid 

(temporal, spectral and bispectral) features. 

• Wavelet analysis and classification of cardiac signals using wavelet features  

In the first approach, Pan Tompkins algorithm is used to extract temporal features such as 

number of R peaks, amplitude of R peaks, R-R intervals and heart beat rate.  It is observed that 

there is a variation in temporal features of various cardiac signals. Based on this variation, 

initially proposed to classify two types of cardiac signals. Classification accuracy has been 

improved from 96.5% existing work to 100% for temporal features. Later proposed to classify 

7 types of cardiac signals (1- normal, 4-arrhythmias and 2-cardiac disorders) and obtained an 

accuracy as 78.09% using Random Forest classifier and also evaluated the results with other 

neural network classifiers. Performance comparison with the existing work  in time domain is 

shown in Table 7.1 
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In the second approach, spectral features have been proposed to get more details of the ECG 

signal in frequency domain. This spectral analysis has given how the ECG signal’s energy is 

distributed over a wide range of frequencies. In the existing work, Usman Rashed et al. [19] 

used FFT algorithm on 4 minutes ECG data to detect sudden cardiac arrest compared to normal 

signal. For the proposed work, FFT algorithm is applied on 1 minute ECG data to extract 

spectral features (mean, median, standard deviation and energy). Spectral features (R1 to R5 

regions) are extracted. R1-R4 regions spectral features are used for classifying NSR and SCA 

and obtained average classification accuracy of 93.3%. Later, using only R3 region spectral 

features are used to classify NSR & SCA and obtained same classification accuracy as 93.3% 

and the results are also evaluated with other classifiers. Hence, it is identified that R3 region 

play a significant role in distinguishing NSR and SCA as R3 frequency range is matching to 

the QRS complex frequency range. To enhance classification accuracy, hybrid (temporal and 

spectral features) approach is proposed and obtained classification accuracy as 100% for NSR 

and SCA signals using MLP and RBF classifiers.  Later, the work has been extended to classify 

7 types of cardiac signals (1- normal, 4-cardiac arrhythmias and 2- cardiac disorders) and 

obtained classification accuracy as 78.09% using RF classifier and also evaluated the results 

with other classifiers. When complexity is less, RF classifier gives better performance compare 

to MLP and RBF classifiers as shown in Table 7.2. 

Table 7.1 Performance comparison with the existing work in time domain 

Study 
Records and 

Features 
Classifier Cardiac Signals 

Classification 

Accuracy 

M. 

Vijayavanan 

et al. [5] 

300 Records, 

12 -

Morphological 

features 

PNN 
NSR and  Cardiac 

Arrhythmia  (2 types) 
96.5% 

Proposed 

30 Records , 

4 temporal  

features 

RF, MLP 

and  RBF 

 

 [NSR,Ventricular 

Arrhythmia(VF)](2 types) 

 

    100%  

105 records,  

4-temporal  

features 

RF 

[NSR, 

SVT,VT,VF,AF,SCA,CI]  

(7 types) 

 

    78.09% 
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The accuracy did not increase even in hybrid approach also. It is observed that normal spectral 

analysis of a signal does not give any phase coupled information of the signal. ECG signals are 

basically non-linear, quasi periodic and non-stationary in nature. There is a need of phase 

coupled information for identification and classification of cardiac arrhythmias. So, higher 

order spectral analysis is proposed in the third approach. 

In the third approach, hybrid features have been proposed to provide supplementary 

information about non-gaussianity and non-linearity of the ECG signal for cardiac arrhythmias 

identification.  In the HOSA domain, the bispectrum, bicoherence and QPC plots are used to 

analyse 7 types of cardiac signals. It is observed that HOSA plots are potential visual aids to 

distinguish normal, four types of cardiac arrhythmias and two cardiac disorders. In particular 

the bicoherence indicates that phase coupling decreases as arrhythmia kicks in. In the existing 

work of L. Khadra et al.[21] classified only 4 types (NSR ,VT, VF and AF) of cardiac signals 

with sensitivity 89.2%and specificity 93.55%. In the existing work of   I. A. Karaye et al. [26] 

classified 5 types (NSR and 4 diseases) of cardiac signals with sensitivity 88.4% and specificity 

96.2%. In the proposed work classified 4 types (NSR, VT, VF and AF) of cardiac signals with 

improved accuracy of 90% using RF classifier and also evaluated the results with other 

Table 7.2 Performance comparison with the existing work in spectral domain 

Study Records and Features Classifier 
Cardiac 

Signals 

Classification 

Accuracy 

Usman 

Rashed et 

al. [19] 

8 Records,  

5 Spectral features 

Distinguished 

based on spectral 

parameters 

NSR and SCA 

(2 types) 
- 

Proposed 
30 Records,  

4 Spectral features(R3) 

RF, MLP and 

RBF 

NSR and 

SCA(2 types) 

RF-93.33% 

MLP-93.33% 

RBF-96.6% 

Proposed 
Hybrid features 

(Temporal& Spectral) 

RF, MLP and 

RBF 

NSR and SCA 

RF-93.33% 

MLP-100% 

RBF-100% 

NSR, SVT, 

VT, VF, AF, 

CI & SCA  (7 

types) 

MLP–71.4% 

RBF-66.6% 

RF-78.09% 
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classifiers. Later, proposed to classify 7 types of cardiac signals (1- normal, 4- arrhythmias and 

2- cardiac disorders) and obtained classification accuracy as 74.2%, sensitivity as 74.2% and 

specificity as 95.02% using RF, MLP and RBF classifiers. The performance comparison is 

shown in  Table 7.3. There is a need to find time and frequency information at a time using 

multi resolution analysis. So, wavelet based feature extraction is proposed in the fourth 

approach to enhance classification accuracy. 

 

 

In fourth approach, the wavelet based feature scheme is proposed to classify seven types of 

cardiac signals. A 6-level wavelet (db4) decomposition technique is used to obtain 19-features 

and these features provided supplementary information about time and frequency of ECG 

signals. Existing works classified 2, 3 or 5 types of cardiac signals with less classification 

accuracy is as shown in Table 7.4. Whereas the proposed technique classified 7 types of cardiac 

signals (normal, 4 types of cardiac arrhythmias and 2 types of cardiac disorders). The proposed 

work enhance classification accuracy to 95.21% using 19 wavelet features. Medical statistics 

  Table 7.3 Performance comparison with the existing work in higher order spectral domain 

Study by 
Number of records 

and Features 
Classifier Diseases Accuracy 

L. Khadra et 

al. [21] 

43-records 

(AF-12, VT-11, VF-

12 and NSR-08) 

HOSA features-3 

Bispectral 

contour 

analysis 

NSR ,VT, VF 

and AF 

(4 types) 

Sensitivity-89.2% 

Specificity-93.55% 

I. A. Karaye 

et al. [26] 

47-records 

Temporal features-1 

HOSA features-3 

Feed 

forward 

ANN  

NSR, 

LBBB,RBBB,

PB and APB 

(5 types) 

Sensitivity-88.4% 

Specificity-96.2% 

Accuracy- 94.9%. 

Proposed 

 

60 Records (AF-15, 

VT-15 , VF-15 and 

NSR-15) 

Spectral-1, 

Bispectral-4 and 

Temporal features-4 

RF   NSR ,VT, VF 

and AF(4 

types) 

Sensitivity-90 %  

Accuracy- 90% 

Specificity-96.62% 

105 Records,(7 types 

each 15 records) 

Spectral ,Bispectral 

and Temporal 

features(9 features) 

 

MLP   NSR,SVT,VT, 

VF, AF,  CI 

and SCA 

Sensitivity-74.28%  

Accuracy-74.2% 

Specificity-95.70% 

Precision-75.02% 
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obtained as Sensitivity 95.21%, Specificity 99.15% and Positive Predictivity 95.34% using 

MLP classifier. The specificity is more important than the sensitivity. Since, no patient should 

be defibrillated except SCA patient .Otherwise, this error may cause to sudden cardiac arrest 

[16] for normal persons. 

 

 

Table 7.4   Performance comparison of  cardiac arrhythmias classification in wavelet domain 

Study by Records and Features Classifier Diseases Accuracy 

 

Monalisa 

Mohanty et al. 

[47]  

57 Records 

VT-35, VF-11, NSR-11 

Features-13 

Temporal &Statistical 

features(hybrid) 

 

SVM   

 

 

C4.5  

 

 

 

NSR,VT and 

VF (3-Types) 

 

 

[SVM] Se-79.43 % 

           Sp-81.44% 

        Acc-92.23% 

[C4.5] Se-90.97% 

           Sp-97.86% 

        Acc-97.02% 

Proposed  

 

45 Records (NSR-15, 

VT-15 and VF-15) 

19 Wavelet features  

MLP   NSR,VT and 

VF (3-Types) 

Sensitivity-97.77% 

Specificity- 98.88% 

Accuracy-97.77% 

 

105 records 

19 Wavelet based 

features 

MLP 

 

NSR,SVT,VT, 

VF, AF,  CI 

and SCA 

Accuracy-95.24% 

Sensitivity-95.2% 

Specificity-99.20% 

Precision-95.3% 
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All the four methods developed in this thesis are novel, however third and fourth methods are  

efficient feature schemes and are superior in terms of classification accuracy when compared 

to the existing work. Comparison of  7 types of cardiac signals classification in different 

domains is shown Table 7.5. For temporal and spectral features (less than 10 features) RF 

classifier is giving better accuracy. In HOSA using hybrid features all three classifiers produced 

same performance, though their learning mechanism is different. In wavelet domain, MLP 

produced better performance compare to MLP and RF classifiers. 

 

 

 

 

Table 7.5   Comparison of  cardiac arrhythmias classification in different domains  

Features 

Scheme 
Features used 

Cardiac 

Signals 
Classifier Accuracy 

Temporal No. of R peaks, R peak amplitude, 

R-R interval and Heart beat rate   

[4 features] 

7 types of 

cardiac signals 

(105 records) 

MLP 70.47% 

RBF 70.05% 

RF 78.09% 

Temporal 

& spectral 

4-Temporal features (No. of R 

peaks, R peak amplitude, R-R 

interval and Heart beat rate) and 4-

Spectral features (Mean, Median , 

SD and Energy in R3)- [8-features] 

7 types of 

cardiac signals 

(105 records) 

MLP 71.4% 

RBF 66.6% 

RF 78.09% 

Temporal, 

Spectral 

and 

Bispectral  

Total Features-10; Bispectral 

features ( Kurtosis, skewness, 

variance and bicoherence); Spectral 

features (energy) and Temporal 

features ( No. of R peaks, R peak 

amplitude, R-R interval and Heart 

beat rate) 

[10-features] 

7 types of 

cardiac signals 

(105 records) 

MLP 74.28% 

RBF 74.2% 

RF 74.2% 

Wavelet 

based 

features 

(db4) 

Detailed coefficients of maximum, 

minimum and standard deviation of 

1-5 levels; Approximation 

coefficients of maximum, minimum 

and standard deviation of 6th level 

and the energy retained of each 

record.[19- features] 

7 types of 

cardiac signals 

(105 records) 

MLP 95.24% 

RBF 92.38% 

RF 94.21% 



180 
 

7.2 Future scope  

In this research work, 7 types of cardiac signals (NSR, 4 types of cardiac arrhythmias-

VT,VF,SVT,AF and 2 types of cardiac disorders-SCA,CI) have been analyzed in time domain, 

spectral domain, higher order spectral domain and wavelet domain and classified using three 

supervised classifiers(RF, MLP and RBF). An experimental setup of cardiac alert system has 

been developed using efficient wavelet based feature scheme for remote monitoring of cardiac 

patients. This application has been included in Appendix. 

 

This research work may be further extended to identify and classify few more cardiac disorders 

such as Right Bundle Branch Block (RBBB), Paced Beat (PB), Left Bundle Block Branch 

(LBBB), Atrial Premature Beats (APB) and Premature Ventricular Contraction (PVC). Deep 

neural networks such as Convolutional neural networks (CNN) and Recurrent Neural Networks 

(RNN) do not require any other signal processing techniques for feature extraction purpose. 

Directly CNN or RNN can be used to classify different types of cardiac arrhythmias and 

disorders. Further a proto type cardiac alert system can be developed by using wavelet based 

feature scheme for tele cardiology application. 

 

7.3 Limitations 

Number of records can be increased in order to make the results statistically more sound and 

improve the research into a biomedical application. There are several issues with application 

of Artificial Intelligence. Reading the data at real time and classifying is a requirement to use 

this technology in clinical setting. In order to extend this application to into a version where a 

person can wear a smart watch at all times, the use of highly sensitive sensors are needed which 

produce signals that can match the level of a standard ECG.  

Application of this classification to be used in clinical settings is not possible at this stage as 

the consequences are various such as bioethical issue of liability in case of misdiagnosis; should 

the onus be on researcher who is the owner of the patent or the company which bought it and 

capitalized it or the doctor that depended on this algorithm.  
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Appendix 

Cardiac Alert System  

A.1 Introduction 

Significant improvement has been observed in terms of classification accuracy with the present 

work shown in Chapter 6. Further, this efficient wavelet feature scheme is used to develop a 

Cardiac Alert System with the help of Arduino Uno and GSM SIM 900A. For wireless real 

time transmission of signal, GSM module is being used. With this remote monitoring of heart 

patients is possible which is important to save the life of heart patients. An Arduino Uno board 

takes the signal directly from a computer and is connected to a GSM board. This GSM board 

sends an SMS text message with the results of the classification. For example when cardiologist 

receives the message alert of sudden cardiac arrest with patient details from intensive care unit 

of hospital, he can alert the clinical staff members to take care of cardiac patients according to 

cardiac pulmonary resuscitation (CPR) guidelines, till he reaches the hospital. High-quality 

CPR at a rate of 100-120 chest compressions per minute must be started immediately to keep 

oxygenated blood flowing to their brain. CPR must be used in tandem with an Automated 

External Defibrillators (AED) to improve chances of survival exponentially.  

Objective of this research work application is to alert cardiologist for remote monitoring 

of heart patients and to diagnose the type of cardiac disorder/arrhythmia for immediate 

treatment to save life of heart patients. This research will be suitable for tele cardiology 

application of telemedicine as it has unique capacity to improve the health care service to 

millions of rural people. 

A.2 Cardiac Alert System 

The Block diagram of Cardiac Alert System is shown below in Fig A.1. ECG data will be given 

to computer for feature extraction using wavelet analysis. These wavelet features are used to 

develop matlab code to identify the type of cardiac problem.  
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Fig A.1 Block Diagram of Cardiac Alert System 

 

                     Fig A.2 Experimental set-up of Cardiac Alert System 

The Arduino UNO board (ATmega328P) has been connected to the computer using a USB 

cable to establish a serial communication at a baud rate of 9600.  Arduino board is usually 

powered using USB cable connecting the computer. The experimental set-up of Cardiac Alert 

System has been shown in Fig A.2. The voltage provided to Arduino is controlled by the voltage 

regulator and stabilizes the DC voltage which is used by processor. Arduino UNO board has 

14 digital I/O pins (of which 6 can be used as Pulse Width Modulation outputs), 6 analog inputs, 

a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP header and a reset 

button. On top of crystal, printed number is 16.000H9H, which indicates that the frequency 

used is 16 MHz. Arduino board can be reset when program is initiated. Many ground pins are 

present on board which can be used to ground the circuitry. Voltage input provides supply to 

the board. When Arduino is plugged to power, LED glows indicating that the board is powered 

up correctly. If LED doesn’t glow, it states that connection is wrong. TX and RX LEDs are 

used for representing the pins which are accountable for communicating serially. While 
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transmitting data serially, TX LED does flashing with various speeds which is based on baud 

rate and while receiving the data, RX LED flashes. GSM/GPRS-compatible Quad-band mobile 

phone functions on a frequency related to 850/900 and also be used for communication not 

only for accessing the net. Module got managed through AMR926EJ-S processor that controls 

data and mobile communication through the integrated TCP/IP stack.  

The following steps are required to operate GSM module: 

1. Insert SIM card to GSM module and lock it. 

2. GSM module should be operated by providing 12V supply. 

3. Initially blinking rate of network LED will be high. Once the connection is established 

successfully, the LED will blink continuously for every 3 seconds. 

 

Fig A.3 Interfacing of Arduino with GSM 

GSM module has been connected to Arduino UNO using the digital pins as shown in Fig A.3 

TX pin of GSM Module is connected to Arduino Uno RX pin.  RX pin-9 of GSM module is 

connected to Arduino Uno TX pin. GND pin of GSM module is connected to Arduino Uno 

GND pin. The Arduino UNO was interfaced with GSM module at a baud rate of 9600. 

Interfaced the Computer, Arduino and GSM. An Arduino UNO board was used for the 

processing. GSM SIM900A was used to transmit the SMS and make phone calls to the 

respective doctor when a cardiac abnormality was detected. The phone calls lasts for 10 seconds 

and hang up automatically. MATLAB code is written based on the wavelet feature scheme to 

identify the type of cardiac arrhythmias and disorders. The control program is supplemented in 

Arduino code with patient details and doctor mobile number is given in Section A.3. 
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A.3 Arduino Code for Cardiac Alert System  

#include <SoftwareSerial.h> 

Software Serial my Serial(9, 10); 

int a; 

void setup() 

 {mySerial.begin (9600);   // Setting the baud rate of GSM Module 

Serial.begin(9600);} 

void loop() 

{  //Serial.println("check"); 

while (!Serial.available()) {} 

int a = Serial.parseInt(); 

Serial.println(a); 

if (a == 10) 

{  sca();   } 

else if( a == 20) 

  {    ci();} 

  else if(a == 30) 

  {    nsr(); } 

    else if(a == 40) 

  {    vf(); } 

    else if(a == 50) 

  {    vt(); } 

    else if(a == 60) 

  {    svt(); } 

    else if(a == 70) 

  {    af(); }} 

void sca() 
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{   MakeCall(); 

  mySerial.println("AT+CMGF=1");    //Sets the GSM Module in Text Mode 

  delay(1000);  // Delay of 1000 milli seconds or 1 second 

  mySerial.println("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number 

  delay(1000); 

  mySerial.println("WARNING: CODE BLUE"); 

  mySerial.println("PATIENT ID= ######"); 

  mySerial.println("BED NUMBER= #####"); 

  mySerial.println("PATIENT NAME= #####"); 

  mySerial.println("CASE OF SUDDEN CARDIAC ARREST"); 

  //mySerial.print(""); 

  //mySerial.println(BPM); 

  //mySerial.println("CASE OF BRADYCARDIA"); 

  delay(100); 

  mySerial.println((char)26);// ASCII code of CTRL+Z 

  delay(1000); 

  MakeCall();} 

void ci() 

{   MakeCall(); 

  mySerial.println("AT+CMGF=1");    //Sets the GSM Module in Text Mode 

  delay(1000);  // Delay of 1000 milli seconds or 1 second 

  mySerial.println("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number 

  delay(1000); 

  mySerial.println("WARNING: CODE BLUE"); 

  mySerial.println ("PATIENT ID= ######"); 

  mySerial.println("BED NUMBER= #####"); 

  mySerial.println("PATIENT NAME= #####"); 
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  mySerial.println("CASE OF CARDIAC ISCHEMIA"); 

  //mySerial.print(""); 

  //mySerial.println(BPM); 

  //mySerial.println("CASE OF BRADYCARDIA"); 

  delay(100); 

  mySerial.println ((char) 26);// ASCII code of CTRL+Z 

  delay(1000); 

  MakeCall(); 

} 

void snr() 

{ MakeCall(); 

  mySerial.println("AT+CMGF=1");    //Sets the GSM Module in Text Mode 

  delay(1000);  // Delay of 1000 milli seconds or 1 second 

  mySerial.println("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number 

  delay(1000); 

  mySerial.println("WARNING: CODE BLUE"); 

  mySerial.println("PATIENT ID= ######"); 

  mySerial.println("BED NUMBER= #####"); 

  mySerial.println("PATIENT NAME= #####"); 

  mySerial.println("CASE OF NORMAL SINUS RYTHM"); 

  delay(100); 

  mySerial.println((char)26);// ASCII code of CTRL+Z 

  delay(1000); 

  MakeCall(); 

} 

void vf() 

{  MakeCall(); 
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  mySerial.println("AT+CMGF=1");    //Sets the GSM Module in Text Mode 

  delay(1000);  // Delay of 1000 milli seconds or 1 second 

  mySerial.println("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number 

  delay(1000); 

  mySerial.println("WARNING: CODE BLUE"); 

  mySerial.println("PATIENT ID= ######"); 

  mySerial.println("BED NUMBER= #####"); 

  mySerial.println("PATIENT NAME= #####"); 

  mySerial.println("CASE OF Ventricular Fibrillation"); 

  delay(100); 

  mySerial.println((char)26);// ASCII code of CTRL+Z 

  delay(1000); 

  MakeCall(); 

} 

void vt() 

{   MakeCall(); 

  mySerial.println("AT+CMGF=1");    //Sets the GSM Module in Text Mode 

  delay(1000);  // Delay of 1000 milli seconds or 1 second 

  mySerial.println("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number 

  delay(1000); 

  mySerial.println("WARNING: CODE BLUE"); 

  mySerial.println("PATIENT ID= ######"); 

  mySerial.println("BED NUMBER= #####"); 

  mySerial.println("PATIENT NAME= #####"); 

  mySerial.println("CASE OF Ventricular tachycardia"); 

  delay(100); 

  mySerial.println((char)26);// ASCII code of CTRL+Z 
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  delay(1000); 

  MakeCall(); 

} 

void svt() 

{   MakeCall(); 

  mySerial.println("AT+CMGF=1");    //Sets the GSM Module in Text Mode 

  delay(1000);  // Delay of 1000 milli seconds or 1 second 

  mySerial.println("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number 

  delay(1000); 

  mySerial.println("WARNING: CODE BLUE"); 

  mySerial.println("PATIENT ID= ######"); 

  mySerial.println ("BED NUMBER= #####"); 

  mySerial.println("PATIENT NAME= #####"); 

  mySerial.println("CASE OF  Supra Ventricular tachycardia"); 

  delay(100); 

  mySerial.println((char)26);// ASCII code of CTRL+Z 

  delay(1000); 

  MakeCall(); 

} 

void af() 

{   MakeCall(); 

  mySerial.println("AT+CMGF=1");    //Sets the GSM Module in Text Mode 

  delay(1000);  // Delay of 1000 milli seconds or 1 second 

  mySerial.println("AT+CMGS=\"+919440762744\"\r"); // Replace x with mobile number 

  delay(1000); 

  mySerial.println("WARNING: CODE BLUE"); 

  mySerial.println("PATIENT ID= ######"); 
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  mySerial.println("BED NUMBER= #####"); 

  mySerial.println("PATIENT NAME= #####"); 

  mySerial.println("CASE OF Atrial fibrillation"); 

  delay(100); 

  mySerial.println((char)26);// ASCII code of CTRL+Z 

  delay(1000); 

  MakeCall(); 

} 

void MakeCall() 

{  mySerial.println("ATD+919440762744;"); // ATDxxxxxxxxxx; -- watch out here for 

semicolon at the end!! 

  Serial.println("Calling  "); // print response over serial port 

  delay(1000); 

  delay(20000); 

  HangupCall(); 

} 

void HangupCall() 

{  mySerial.println("ATH"); 

  Serial.println("Hangup Call"); 

  delay(1000);} 
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A.4 Matlab Code for Cardiac Alert System  

A = xlsread ('pro.xlsx') 

%sudden cardiac arrest (1 to 15 rows) 

%cardiac ischemia (17 to 39 rows) 

%normal sinus rythm (41 to 50 rows) 

data = A(60 ,:) 

if(data(3) < 5 && data(19) < 97 && data(18) < 752 && data(2) < -10  && 2 < data(3) &&  

data(17) < -61 && data(16) < 880 && data(5) < -28 &&  92 < data(19) &&  39 < data(18) 

&&  -38 < data(2) &&  -1578 < data(17) &&  50 < data(16) &&  -200 < data(5)) 

     disp('atrial fibrillation')     

    a=70 

elseif(data(3) < 16 && data(19) < 94 && data(18) < 457 && data(2) < -34 && data(1) < 71  

&& 5 < data(3) &&  90 < data(19) &&  84 < data(18) &&  -94 < data(2) &&  44 < data(1)) 

     disp('super ventricular tachycardia')     

    a=60 

elseif(data(3) < 3 && data(19) < 101 && data(18) < 439 && data(2) < -3  && 1 < data(3) 

&&  99 < data(19) &&  19 < data(18) &&  -9 < data(2)) 

     disp('Ventricular tachycardia')     

    a=50 

elseif(data(3) < 6 && data(19) < 99.8 && data(18) < 2802 && data(2) < -6 && data(17) < -

300 && data(16) < 5131 && data(5) < -10 && 1 < data(3) &&  93 < data(19) &&  131 < 

data(18) &&  -39 < data(2) &&  -5002 < data(17) &&  345 < data(16) && -164 < data(5)) 

     disp('Ventricular fibrillation')     

    a=40  

elseif( data(3) < 5  &&  data(19) < 90 && 0 < data(3) && 74 < data(19)) 

    disp('sudden cardiac arrest') 

    a=10 

elseif( data(3) < 200 && data(19) < 98 && 30 < data(3) &&  92 < data(19)) 

  disp('cardiac ischemia')  

    a=20 

elseif(data(3) < 25 && data(19) < 92 && data(5) < -259 && 10 < data(3) &&  86 < data(19) 

&& -565 < data(5)) 

  disp('normal sinus rythm')     

    a=30 

end 

arduino=serial('COM3','BaudRate',9600); 

% create serial communication object on port COM4 

disp('stage1') 

fopen(arduino); % initiate arduino communication 

disp('serial communication initiated') 

pause(2); 

 fprintf(arduino,'%d',a); 

 val =  fscanf(arduino); 

disp(val); 

pause(0.1); 

disp('serial communication successful') 

fclose(arduino);  
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A.5 Results and Conclusion 

The simulation results have been verified by using Arduino and matlab codes. An alert system 

alerts the cardiologist /clinical doctors by making a call and sending an SMS alert to indicate 

the type of cardiac disorder. The text SMS which has been sent to doctor consisted of various 

fields like Patient ID, Patient Name, Patient Bed Number and type of cardiac disease is 

displayed as shown in Fig A.4. 

 

Fig A.4 SMS alert to cardiologist 

The main objective of the cardiac alert system is to monitor the patients remotely with the help 

of GSM technology to alert the clinical staff/cardiologist to take care of the heart patient. This 

type of Cardiac Alert System is very much useful in early detection of cardiac disorder in Tele- 

Cardiology application.  
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Fig A.5 Tele Cardiology for remote monitoring of heart patient [13] 

Tele cardiology enhances the telemedicine application to deliver cardiac care to the remote 

patient as shown in Fig A.5. This Tele cardiology application has tremendous potential to 

improve basic health care facility in both rural and urban populated areas. 
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