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ABSTRACT

Earth Observation (EO) from space has been recognized as an invaluable way of
monitoring the Earth. Today the necessity of Earth Observation Missions has increased rapidly
due to its wide applications in many fields. Using EO systems, one can monitor Earth’s climate
change, ocean surfaces, disaster management, mapping, land usage (such as agriculture, urban,
and forestry). Particularly, Earth Observation using Synthetic Aperture Radar (SAR) is gaining
importance due to its all-weather capability and day-night acquisitions. For continuous
monitoring, SAR systems require a huge amount of storage, higher transmission power, and
larger swath width. SEASAT, the first-ever civilian space-borne radar remote sensing system,
was launched by NASA/JPL, in the year 1978. Depending on the type of polarization of signals
these radars use for transmission and reception, they are known to be operating in full
polarimetry, single polarimetry, dual polarimetry, and compact polarimetry modes. From the
earlier studies, it is known that the performance of fully polarimetric SAR systems is the
highest in the SAR application due to its complete radar target information content. However,
Fully Polarimetric SAR systems have half the swath width, requires double the transmitting

power, and complex architecture when compared to single and dual-polarized SAR systems.

Compact Polarimetry (Hybrid Polarimetry) has gained significant importance in recent
years among other earth observation missions due to its low power consumption, simple
architecture, and larger swath width. For Space-based SAR systems, these parameters are vital
to monitor the earth's surface continuously for various applications. Therefore, many
International Space Agencies such as Canada Space Agency (CSA), Japan Aerospace
Exploration Agency (JAXA), National Aeronautics and Space Administration (NASA),
European Space Agency (ESA) and Indian Space Research Organization (ISRO) are interested
to implement Hybrid polarimetry modes in their upcoming missions. Compact polarimetry
offers a tradeoff with fully polarimetric systems in terms of swath width, power, architecture,
budget, and information content. Initially, Compact polarimetry data was used for Lunar and
Planetary explorations such as Mini SAR (Chandrayaan-1) mission and Mini-RF (Lunar
Reconnaissance Orbiter) mission. RISAT-1 was the first space-borne EO mission with Hybrid
Polarimetry and was launched by ISRO in 2012. The main difference of Hybrid polarimetry
from fully polarimetric systems is transmitting a circularly polarized signal towards the target

and receiving the linearly polarized returns.
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In this research, the performance assessment of Compact Polarimetry (Hybrid
Polarimetry) over dual-pol and quad-pol data for land cover classification, urban land cover,
and crop classification has been attempted. Evaluation of hybrid polarimetry was done on
various ground targets such as agriculture land, forest land, urban land, and semi-urban land,
over dual polarimetry, and quad polarimetry data. Speckle filtering is performed over the
datasets using various polarimetric speckle filters. A comparative study of different
polarimetric speckle filters with variable window size and the impact of their selection from
the point of view of edge preservation, information content, and classification has been done.
To understand the scattering mechanism of the targets, target decomposition theorems such as
three-component Freeman-Durden, four-component Yamaguchi decomposition, Raney
decomposition, Pseudo Three-Component decomposition, m-delta, and m-chi decompositions
were performed on the SAR datasets. The m-chi decomposition has proven to be robust when
the transmitting component is not perfectly circularly polarized. A comparative study among
the different modes of compact polarimetry was performed, hybrid-pol mode gave good results
for various ground targets. The C-band hybrid polarimetry data and dual polarimetry linear
data are also compared to study the response of circular transmission over a linear transmission
from the target. It is observed that the transmitted circular component interaction with targets
gave more detailed information than transmitting a linear component. The penetration
capability of microwave frequencies using C-band, and L-band into the targets has also been
studied, and it was observed L-band hybrid polarimetry gave more accuracy than C-band

hybrid polarimetry data.

Support Vector Machine (SVM) classifier, and Wishart classifier, and other machine
learning algorithms were used to classify the datasets. SVM classifier gave good results when
compared to Wishart classifier on Hybrid pol data. The datasets were compared using three
different SVM Kkernel parameters, i.e., Radial Basis Function (RBF), Polynomial with degree
'2', and Linear. It is observed that SVM with RBF kernel parameter gave the highest Overall
Accuracy (OA) of 92.34% for hybrid-Pol RISAT-1 data. Similarly, SVM with RBF kernel
parameter gave an Overall Accuracy (OA) of 76.83% for dual-Pol RISAT-1 data. The results
obtained from a comparative study of dual-pol vs hybrid pol RISAT-1 are very promising. The
OA of Hybrid-pol data was 83.03% and for dual-pol, data was 54.75%. A wide variety of
datasets with different areas of interest have opted for this study to evaluate the hybrid pol data
over dual and quad pol data. Using SVM classifier the OA of Hybrid pol data on an urban area,

was the best recorded to OA 84.10 %. To compare the information content and target

xiii



penetration capability, C-band RISAT-1(Hybrid-pol) data and L-band Alos Palsar-2 (quad-pol)
have opted in this study. It is observed that Hybrid-pol data gave almost similar accuracy to
that of quad pol data. The evaluation of data was performed using the confusion matrix for
accuracy assessment. For validating the results, after the classification, the images are
compared with the optical imagery, Google Earth, and In-situ information that was collected

synchronously to the satellite pass.

This study was initiated to compare the information content of Compact-pol (Hybrid-
pol) over dual-pol, pseudo-quad-pol, and quad-pol datasets and also to improve the overall
accuracy using machine learning algorithms for accuracy assessment. From the overall study,
it was recorded that hybrid pol data gave very good results when compared to linear dual-pol
data and almost the same to that of quad- pol data. Few studies in the literature exclusively on
Hybrid-pol data were reported only to (80-85) % accuracy. The SVM classifier was not used
for classification in the literature. The majority of the work carried on Hybrid-pol were
simulated from quad pol data. In this study, original hybrid pol data from RISAT-1 has been
used.

For this research, six SAR datasets viz., RISAT-1, Alos Palsar-1, Alos Palsar-2,
Radarsat-2, Sentinel-1A, Sentinel-1B and three optical datasets (Resourcesat-2, Landsat-8, and
Sentinel-2) and In-situ data are used. Quad-pol, Compact-pol, and Dual-pol datasets are also
used in this study. RISAT-1 Hybrid-pol data, RISAT-1 Dual-pol data, RISAT-1 Quad-pol, and
Resourcesat-2 datasets have been purchased from NRSC/ ISRO, Hyderabad and other datasets
are obtained from (ESA) and (JAXA). A combination of SAR missions and polarimetry were
selected upon the study requirement. Optical datasets were used as a reference and also

compared for the evaluation of SAR datasets.

The research outcome has been published in the journal related to the subject of research.
Very few studies with results have been reported in the literature on the performance of
Compact polarimetry data over dual and quad pol data. These results will fill the gap in the

literature to some extent.

Keywords: Earth Observation, Synthetic Aperture Radar, Compact Polarimetry, Hybrid

polarimetry, Circular transmission, Land cover classification, SVM classifier.
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Chapter 1

Introduction



1.1 Earth Observation

Earth observation missions are designed to continuously monitor the earth to monitor the environment,
land surface, biosphere, solid Earth, atmosphere, and oceans. The first earth observing satellite (Sputnik-
1) was launched on October 4, 1957, by the Soviet Union [1]. Explorer-1 was the first American satellite
launched by NASA on January 31, 1958 [2]. Indian Space Research Organization (ISRO) has launched
many Earth-observing (EO) satellites since 1979, beginning with Bhaskara - 1, as it was the first
experimental remote sensing satellite built by ISRO [3]. Indian Remote Sensing Satellite (IRS-1A) was
the first series of indigenous remote sensing satellites launched into orbit on March 15, 1988. As of today,
ISRO has launched 30 (27 optical and 3 Radar) Earth Observation missions and also has the largest
constellation of remote sensing satellites in operation [4]-[5]. Earth-observing satellites are mainly used
for remote sensing purposes to monitor the earth continuously. Satellites with optical sensors were

providing the data from the past three decades with limitations.
1.1.1 Microwave Remote Sensing

Remote Sensing is the art and science of acquiring information without any physical contact. EO
missions use remote sensing techniques to capture and analyze the Earth's terrain continuously using
Space-borne satellites. Remote Sensing is categorized into two parts: 1) Passive Remote Sensing, 2)
Active Remote Sensing. Passive Remote Sensing uses the sun as the source of illumination and captures
the return radiance response onboard. Active remote sensing uses its source of illumination without
depending on the sun as a source of energy [6]. Passive remote sensing uses optical cameras and scanners
for imaging. Common passive sensors are Landsat-7, Geo Eye, Quick Bird, Ikonos, and IRS. Active
remote sensing uses RADAR, SONAR, and LIDAR to capture the earth's surface. Alos palsar-2,
Radarsat-2, Sentinel-1 are the commonly used Active sensors. Remote sensing can be performed on
various platforms such as spacecraft, aircraft. In remote sensing, the resolution depends on the sensor's
height; the higher the height lower the resolution [7].
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Fig 1.1 Hlustration of Optical Remote Sensing ©CRISP2001



In Optical remote sensing, the sun is the source of illumination. The sensors on the satellite make use
of visible, near-infrared, and short wave infrared rays to form the images of the earth’s surface by detecting
the reflected solar radiation from the targets (water, forest, grass, building, and bare soil) on the ground
as shown in Fig 1.1. The sensors mounted on the satellite can image only in daylight and in perfect weather

conditions with limitations.

In Microwave Remote sensing, sensors use the microwave region of the electromagnetic spectrum.
The sensor in microwave remote sensing is called an antenna. RADAR is an acronym for RAdio Detection
and Ranging. RADAR is a type of antenna which can transmit and receive the electromagnetic signal
from the targets. RADAR uses the microwave region of the electromagnetic spectrum from P-band (0.3
GHz) to Ka-band (40 GHz) to transmit and receive, as shown in Figure 1.2. The Development of RADAR
took place during World War 11 for navigation and target location. Imaging radars are operated in the
range of 1mm to 1-meter wavelength, as longer wavelengths improve signal penetration through the
atmosphere and clouds [9]. In the microwave, remote sensing resolution is independent of the sensor
mounted altitude but dependent on the length of the antenna. The longer the antenna length, the greater

the resolution, but practically it is difficult to deploy a longer antenna into space [7].
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1.1.2 Why Microwaves for Remote Sensing

Microwaves can penetrate through clouds and, to an extent, rain. Microwaves do not rely on sunlight
as a source of illumination. These attributes allow sensing the earth's surface independently of the day
and almost in all weather conditions [8]. Microwaves can penetrate through vegetation, soil, ice than

optical waves. Longer microwave penetrates much better than shorter wavelengths, as shown in Figure



1.3, the most crucial reason for the use of microwaves is the information content available is different

from visible and infrared regions of the electromagnetic spectrum.

1 cm wavelength 1 m wavelength
Radar signal Signal from Signal from
from tree crown crown, trunks, crown, trunks
ground

Signal from Signal from  Signal from Signal from
wheat and wheat soil and wheat and
soil subsoil soil

Fig 1.3 Radar signal penetration for different wavelengths

1.1.3 Advantages and disadvantages of Microwaves Remote Sensing over Optical Remote Sensing

Advantages Disadvantages

Nearly all-weather capability The Information content is different from
Optical

Day or Night capability Difficult to interpret the information

Penetration through vegetation Canopy Speckle effects

Penetration through soil Topographic effects

Minimal Atmospheric effects

Sensitivity to dielectric properties of the

target

Sensitivity to structure of the targets

Unique Sensitivity to moisture content of the

target

Unique Sensitivity towards the orientation of

the target

Table 1.1- Advantage and disadvantages of Microwave Remote sensing



1.2 Overview and History of Microwave Remote Sensing

P-band, L-band, S-band, C-band, and X-band are the frequently used microwave bands for imaging.
Active microwave sensors are categorized into imaging and non-imaging sensors. Altimeters and scatter
meters are the non-imaging sensors. Imaging Radar is operated in two platforms a) Airborne platform b)
Space-borne platform. From these platforms, RADAR can be used in nadir looking, Side looking. Real
Aperture Radar (RAR) is an example of nadir looking sensors. Side Looking Airborne Radar (SLAR) and

Synthetic Aperture Radar (SAR) are examples of side-looking sensors.
1.2.1 Imaging Radar

James clerk Maxwell (1831-1879) provided the fundamental mathematical descriptions of the
magnetic and electric fields associated with electromagnetic radiation. In the year 1886, Hertz
demonstrated the transmission of Radio microwaves and reflections from various objects. Hertz also
studied the interaction of radio waves with a metallic surface. Based on the fundamental physics principles
discovered by Maxwell and Hertz, M. Marconi (1874 -1937) constructed an antenna that transmitted and
received radio signals. A.H Taylor and L.C investigated RADAR. Young in the year 1922. RADAR was
initially used to detect targets such as ships and aircraft, both friendly and enemy. In 1935, Young and
Taylor and Sir Robert Watson-Watt independently combined antenna transmitter and receiver in the same
instrument. These advancements in RADAR laid the ground-work for the development of RADAR in
World War [9].

The imaging radar's origin came from the first airborne scanning radar system, H2S, developed by the
Royal Air force Bomber Command during World War II. It helped to identify the targets on the ground
surface in all weather and even through clouds. The critical development was to use high frequencies long
antennas capable of producing narrow beams projecting sideways from the aircraft. This resulted in
extensive coverage by scanning along the flight path known as Side Looking Airborne Radar (SLAR). In
1952, the critical development of the technique "Doppler beam sharpening” took place in the Goodyear
Aircraft Corporation by Carl Wiley. In the mid-1960s, there are two types of SLAR: Real Aperture Radar
and Synthetic Aperture Radar.
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1.2.2 Radar Image construction

The Radar instrument is placed on a spacecraft/aircraft and pointing the antenna sideways, i.e. tilting
the antenna with a viewing angle as shown in Fig 1.5. The basic idea was to introduce to make spatial
measurement of the backscattered signal from the target using a scatterometer. The distance on the ground
is related to the time delay of the backscatter. Thus the construction of a two dimensional image is
generated by utilizing the motion of the radar antenna to scan the earth surface along with the motion of

the sensor.

Flight path

e Slant range

Range direction

Azimuth direction

Fig 1.5 Radar Imaging Geometry © NASA



Azimuth Direction: The direction in which Flight is travelling.

Near Range: Minimum distance between target and antenna.

Far Range: Maximum distance between target and antenna.

Range Direction: Antenna beam direction from near range to far range
Nadir: Perpendicular direction to the flight path

Swath: Distance between near range and far range

Incidence angle: Angle to nadir.

Radars are classified depending upon their look direction

a) Nadir Looking
b) Side Looking

In Nadir looking, the antenna is placed perpendicular to the flight path, as the footprint is circular the
range between near range and far range will be the same. But in side looking, the antenna is tilted towards

the flight direction shown in Figure 1.6.
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Fig 1.6 Nadir looking Radar and Side looking Radar
1.3 Synthetic Aperture Radar (SAR)

Synthetic aperture radar (SAR) is one of the most advanced engineering inventions in the twentieth
century. SAR is a powerful remote sensing tool. The idea of SAR was initially mentioned in a Good year
Aircraft report by Carl.A.Wiley in the year 1951 and was put into operation in early 1952 [10]. A SAR is
an active sensor that first transmits a microwave signal and returns the backscattered signal from the
earth's surface. In general, the larger the antenna's size, the unique information can be obtained by the

SAR scientist. The more information, the better the image resolution. The space-borne or the airborne



platform should deploy the larger antenna (10 m) to obtain better resolution. But, practically deploying
such a larger antenna is infeasible. The scientist, therefore, used the motion of the spacecraft, along with
the advanced signal processing techniques they simulated a larger antenna. Microwave imaging
(Microwave Remote Sensing) 's motivation came from its unique features such as weather independent,
day and night imaging capability, geometric resolution independent of the distance, penetration of radar
waves through atmosphere, clouds, vegetation, and even though the soil. SEASAT was the first-ever
civilian spaceborne radar remote sensing system launched by NASA/JPL in 1978. Later, few SAR
missions such as ERS-1, 2 from Europe, JERS-1 from Japan, and Radarsat-1 from Canada were launched

in the '90s and proved the potential of SAR Remote Sensing [11].
1.3.1 SAR Principle

SAR transmits a radar pulse towards the target and reflects back the pulse towards the transmitter,
which depends on the type of scattering. Suppose the scatter, the surface is smooth. In that case, the
incident energy will be reflected away from the sensor. If the scattering surface is rough, then the incident
energy will be diffused in all directions, and the sensor will receive only a part of the reflected power.

The amount of backscattered energy depends on the properties of ground targets.

Along-track resolution
Real-aperture r, = AR/I
Synthetic-aperture r, = I/2

Example: 4 cm wavelength
spacecraft radar

Length of |

synthetic aperture Rf?SC']ltlLiDtr_l
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aperture
4m

e
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Length of
real aperture

2 km
Resolution of
real aperture

Fig. 1.7- Aperture Synthesis
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Fig 1.8 SAR principle © CRISP
1.3.2 Resolution

The capability of a sensor to discriminate the smallest object on the ground. In SAR, there are two

types of resolution. 1) Range Resolution 2) Azimuth Resolution [12].
1.3.2.1 Range Resolution

To determine the spatial resolution at any point is a radar image, it is necessary to compute the
resolution in two dimensions. Range and Azmimuth resolution. Radar is a ranging device that measures
the distance to objects in the terrain using sending out and receiving pulses of active microwave energy.
The range resolution in the across-track direction is proportional to the length of the microwave pulse.
The shorter the pulse length, the finer the range resolution. Pulse length is a function of the speed of light
multiplied by the duration of the transmissionz . The length of time that the microwave energy is
transmitted is measured in microseconds and typically ranges from 0.4 -1.0microseconds and translates
into a pulse length ranging from 8 — 210m. The pulse length must travel to the target and back to the

sensor. Therefore it is necessary to divide by 2 to measure the slant-rang resolution. And to scale it to

ground-range, it is multiplied by the cosine of the depression angle(y).

Thus the equation for computing the range resolution is:

R = T-C
2cosy

(1.1)
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1.3.2.2 Azimuth Resolution

Thus far, we have only identified the length in meters of an active microwave resolution element at
a specific depression angle and pulse length in the range direction. To know both the resolution element's
length and width, we must also compute the width of the resolution element in the craft flying direction.

Azimuth resolution (R,) is determined by computing the terrain strip's width that is illuminated by the

radar beam. Real aperture active microwave radars produce a lob-shaped beam.

H |4
e o

1.4 Radar Polarimetry

It is a science of acquiring, processing, and analyzing the polarization state of an electromagnetic field.
The polarization information contained in the backscattered wave from a given medium is related to its
geometrical structure, reflectivity, shape, and orientation. There are four types of polarization 1) Single
polarization, 2) Dual polarization, 3) Quad polarization 4) Compact polarization. In general, a single pol
system transmits and receives only one polarization, viz. horizontal (H) or vertical (V). Similarly, a dual-
pol SAR transmits one polarization and receives the backscatter in a pair of orthogonal polarization viz.
transmit (H) and receives (H, V) vice versa. In quad-pol SAR, two orthogonal polarizations H and V, are

coherently transmitted and received. In compact polarization, one linear polarization is transmitted, and
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two mutually coherent circular polarization is received. Complete polarimetric scattering information can
be obtained from the target from quad-pol SAR, and hence, better analysis and classification can be

performed.
1.5 Scattering mechanism

They are four types of scattering mechanisms 1) Specular 2) Surface 3) Double bounce 4) Volume

scattering.
Specular

When a radar signal is transmitted on flat terrain, the reflection angle is the same as the incidence
angle; it is called specular reflection. These areas in the radar image appear very dark, e.g., smooth water

body or tarmac.
Surface scattering

When a radar signal hits on a rough surface, some energy will be backscattered to the sensor. Example:

vegetation, bare soil.
Double Bounce

When the radar pulse hits to smooth surface that is perpendicular to each other, the returned signal will
be strong and appears brighter in a SAR image. Example: Buildings and manmade structures.

Volume Scattering

When a man's radar pulse hits a three-dimensional body, the energy gets reflected multiple times in

multiple directions. Examples are dense snow, forests.
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Fig 1.10 Scattering Mechanism © esa
1.6 Motivation

Earth Observation (EO) Missions are meant for continuous monitoring, and thus the SAR systems
require a huge amount of storage, higher transmission power, and larger swath width. SAR systems can
image the Earth during rainy seasons and in the absence of sunlight, which is an advantage over traditional
optical imaging systems. Therefore the data can be well utilized in disaster management. Generally, dual-
pol SAR and quad-pol SAR are used for EO Missions. The dual-pol SAR cannot give more information
than the quad-pol SAR, and the quad-pol SAR consumes a huge amount of energy with less swath width
and complex architecture. Compact polarimetry offers a tradeoff with fully polarimetric systems in terms
of swath width, power, architecture, budget, and information content [13]. Compact polarimetry (Hybrid-
pol) 's main difference from fully polarimetric systems is transmitting a circularly polarized signal towards
the target and receiving linearly polarized returns [14]. While transmitting a circular component,

ionosphere interaction will be reduced. RISAT-1 was the first EO mission built on Hybrid-pol
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Architecture; therefore, original Hybrid-pol RISAT-1 data was used in this study [15]. It was compared
to dual-pol and quad-pol data in the literature to explore the performance of simulated Compact-Pol data.
All the studies so far performed on Hybrid-pol were simulated from quad-pol data [16]. This motivated
us to investigate the performance of original Hybrid-pol data over dual-pol and quad-pol data. In the
literature, a Comparison of Dual-pol and Hybrid-pol has been made using the data from different
missions. The availability of Dual-pol and Hybrid-pol data from the same RISAT-1 mission with the
exact resolution made us work on this topic. To compare the penetration capability, Alos palsar-2 (L-
band) data and RISAT-1 (C-band) data have opted on the standard test site Sanfransico city.

Parameter Launch Country | Wavelength, | Incident Polarization | Azimuth Range Swath | Altitude
date cm Angle resolution | resolution | width, | km
km
SEASAT June 26, USA L-(23.5) [239 HH 25 25 100 800
1978
SIR-A Nov 12, USA L-(23.5) [507] HH 40 40 50 260
1981
SIR-B Oct 5, USA L-(23.5) [159-64] | HH 17-58 25 10-60 | 225and
1984 350
SIR-C/X-SIR April USA X-(3.0) C- [1509-559] | HH, HV, 30 10-30 15-90 | 225
1994 (5.8) L- VV,VH
Oct 1994 (23.5)
ALMAZ-1 March 31, | Soviet S-(9.6) [30%-60% | HH 15 15-30 20-45 | 300
1991 Union
ERS-1,2 1991 Europe | C-(5.6) [237] \AY 30 26 100 785
1995
JERS-1 Feb 11, Japan L-(23.5) [399 HH 18 18 75 568
1992
RADARSAT-1 | November | Canada | C-(5.6) [10%-60° | HH 8-100 8-100 50- 798
1995 500
ALOS May 2014 | Japan L-(22.9) [8-707] HH, HV, 43 5.1 70km | 691
PALSAR-2 VV,VH
RADARSAT-2 | Dec 2007 | Canada | C-(5.6) [20-459] HH, HV, 3-80 1-100 18- 798
VV,VH 500
RISAT-1 April India C-(5.6) [26.35°] RH, RV 2.34 3.33 540
2012 HH-HV

Table 1.2 Earth Observing (EO) SAR Missions
1.7 Literature Survey

This chapter presents a detailed literature survey on the Speckle filtering, the target decomposition
theorems and classification algorithms, compact polarimetry with existing state-of-art methods for
processing and analyzing SAR images. We also discuss the literature around partial polarimetry. The

author has collected ten base research articles

The concept of dual partial polarimetric mode was proposed by Je Souyris et al., the authors have
assessed the performance of SAR compact Polarimetry architectures based on mixed basis measurement,
i.e., transmitting polarization is either circular or oriented at an angle of 45°, and the receiver is at
horizontal or vertical polarization. The performance is assessed in two folds: the first is concerned about

the information content preserved with comparing to FP SAR, and the second is to address the space
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implementation complexity in terms of swath width, power budget, calibration, and ionospheric effects.
Because of the mismatch between transmitter and receiver bias, the power budget is deteriorated by a
factor of 3dB [17].

Raney was the first person to build the Hybrid-Polarity SAR architecture on a space-borne platform.
In this, SAR transmits only one circular polarization and receives two mutually orthogonal linear
polarizations. The author has introduced the m-delta decomposition technique in this paper. This paper's
objective is full characterization and exploitation of backscattered response with a monostatic radar that
transmits in one polarization is invariant to geometrical orientations in the scene. The Stokes parameters
require measuring the relative phase, and the amplitudes of the received backscattered signal. The Hybrid-
pol architecture minimizes sensitivity to relative errors, crosstalk, and optimizes relative phase and
amplitude calibration. This architecture requires less RF hardware, less weight with fewer losses. The
Hybrid-pol architecture systems will be an alternative for Earth Observations missions and a prime
architecture for extraterrestrial missions. The study has demonstrated that hybrid-pol systems provide

double swath width and less transmission power with simple architecture over quad-pol systems [13].

Michael E Nord, Thomas I, Ainsworth et al., (2009), the authors have compared the three compact
polarimetric modes. The authors have studied different transmit/receive configuration to determine which
configuration allows for superior construction of full polarimetric data. The authors have noted that DCP
and CLTR modes are related via bias change on the received signal. The authors have opted for L-band
E-SAR data and simulated compact polarimetric modes. The single linear transmit will not excite returns
from linear oriented structures, causing loss of polarimetric information. While transmitting a circular

component misses some helical structure, which is less compared to a linear structure [18].

T.L Ainsworth, J.P.Kelly, J.S.Lee (2009), et al. Presented a study of the polarimetric information
content of dual-pol imaging modes and dual-pol imaging extended by polarimetric scattering models. The
authors have compared with Wishart classification on both partial polarimetric and full quad-pol datasets.
In this study, NASA/JPL AIRSAR L-band airborne SAR data was used for the Flevoland region and L
band E-SAR imagery of Oberpfaffenhofen. The authors have concluded that quad-pol data gave the most
accurate results while performing Wishart classification and dual-pol data gave the most unsatisfactory
results. The compact-pol data and pseudo-quad-pol data are the intermediates between dual-pol and quad-
pol data. From the results on the Flevoland image, quad-pol data gave 81.8% accuracy, dual-pol data gave
59.1% accuracy, compact-pol (Pi/4) data gave 80.9%, CLTR mode gave 81.8% accuracy, Pseudo quad-
pol data (Pi/4) and CLTR gave 80.1%, and 73.5% accuracy respectively. From the results on
Oberpfaffenhofen image, quad-pol data gave 97.5% accuracy, dual-pol data gave 96.1% accuracy,
compact-pol (Pi/4) data gave 97.3%, CLTR mode gave 96.8% accuracy, Pseudo quad-pol data (Pi/4) and
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CLTR gave 97.2% and 95.1% accuracy respectively. The Hybrid dual-pol modes (Pi/4 and CLTR) not

always perform better for image classification than standard linear dual-pol transmission [19].

A SAR system with Compact-pol architecture transmits a circular component and receives two
mutually orthogonal coherent linear components, which is one manifestation of Compact polarimetry.
The authors have utilized Radarsat-2 full polarimetric data to simulate Compact polarimetry. A research
team composed of various departments of the Government of Canada evaluated compact- pol mode for
various applications. Besides, the study has demonstrated the potential of Compact-pol for ship detection,
soil moisture estimation, crop identification, and sea ice classification. The Compact-pol system provided

a wider swath than a quad-pol system with simple architecture [20].

Rajib Kumar Panigrahi & Amit Kumar Mishra have compared hybrid-pol data with quad-pol
schemes on the airborne GTRI dataset. This paper describes the benefits of using a hybrid-pol scheme.
The comparison was made based on the information content, and it was concluded that the information
of hybrid-pol is found to be comparable to that of the quad-pol airborne SAR system. However, hybrid-

pol is the optimum choice when there is a requirement of wide swath cover, low transmission power [16].

Rajib Kumar Panigrahi & Amit Kumar Mishra have presented a comparison of Hybrid-pol and
quad pol synthetic Aperture data (SAR) data for information content. First, the Hybrid-pol data was
converted to pseudo quad pol data using compact polarimetric scattering models. The scattering
mechanism was evaluated using Freeman and Durden decomposition techniques. In this study,
NASA/JPL AIRSAR L-band airborne SAR data was used for the Flevoland region. The authors have
evaluated and compared the scattering contribution for clusters of the pixels in SAR images. The authors
have concluded that the information content in pseudo quad pol is found to be comparable to quad pol
data. Hybrid-pol data is the optimum choice when wider swath coverage and average transmitted power

are the constraints [21].

Haldar, D., Das, A., Mohan, S., Pal, O., Hooda, R.S., and Chakraborty, M have evaluated L-band
SAR data different polarization combinations, i.e., linear, circular, and Hybrid-polarimetric modes. The
authors have opted for Alos-palsar full polarimetric data and simulated pi/4 mode and circular mode. The
authors performed supervised classification using the maximum likelihood classifier on various
polarimetric combinations. It has been observed linear full polarimetric mode gave an OA of (92%)
followed by circular —full (89%), dual-circular (87%), hybrid-pol (7-75%), and linear dual-pol with (63-
71%).The Hybrid-pol data with different modes found to be good for crop classification apart from fully

polarimetric data [22].

Lardeux, C., Frison, P.L., Tison, C., Souyris, J.C, have addressed the potential of the SVM
algorithm for classifying the polarimetric SAR data. The authors have used L-band, P-band, and C-band
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data in this study and have obtained an OA of 87%, 82%, and 99%, respectively. SVM classifier has

recorded a great improvement of about 20% compared to Wishart classification [23].

Yekkehkhany, B., A. Safari, S. Homayouni, and M. Hasanlou have presented a comparative study
on the classification of multi-temporal L-band SAR data using different SVM kernels. In this study, the
authors have opted for kernel functions such as RBF, Linear, and Polynomial. RBF Kernel performed
better than the other two kernels. They have concluded that using two data OA increased by 14%, and by
using three multi-temporal data, OA increased by 5%. Moreover, the effect of multi-temporal data is

expensive and time-consuming [24].
1.8 Research Objectives

The thesis deals with the three main applications of Microwave Remote sensing Viz. Land Use Land

Cover, Urban Land Cover, and Crop Discrimination.

(i) The first objective is to draw the Importance of Speckle filtering and the impact of speckle filter
window size on speckle reduction in SAR images.

(ii) The second objective is to characterize the ground targets of Compact polarimetry data using
robust m-chi and m-delta decomposition.

(i) The third objective is to improve the overall classification accuracy of Hybrid-pol data using
various machine learning algorithms.

(iv) The fourth objective of this study is to explore the potential of compact polarimetry and compare
it with other compact polarimetry modes.

(v) The fifth objective is to record, compare, and analyze the response of circular transmission over
linear transmission and its interaction with the targets.

(vi) The sixth objective is to compare the penetration capability and information content of L-band
Alos Palsar-2 and C-band RISAT-1 data.

1.9 Thesis Organization

The thesis is organized into seven chapters. The first chapter presents the introduction, background,
motivation for the research work, problem statement, and literature survey. The second, third, and fourth
chapters and fifth provide the contributions of the research work. The sixth chapter provides the

conclusions of the research work. The summary of each chapter is given below.

e Chapter 1: The First chapter deals with the introduction to Microwave Remote Sensing, and Radar
Polarimetry. The motivation for the research is explained and the corresponding problem

statement is derived. A literature survey is carried out for the problem statement identified.
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e Chapter 2: The Second Chapter deals with the importance of speckle filtering and the effect of
speckle window size on speckle reduction. Polarimetric Speckle filters preserve the information
without a smoothing effect. Dual-pol, Hybrid-pol, Quad-pol, and Psuedo Quad pol data were used
for speckle filtering for various land targets [25-38].

e Chapter 3: The Third Chapter deals with the Target Decomposition theorems which characterizes
the targets. In this chapter, a Four-component decomposition along with the robust m-delta and
m-chi decomposition are explained in detail [39-56].

e Chapter 4: The Fourth Chapter deals with improving the classification accuracy on Hybrid-pol
data using Supervised clasifier. In this chapter, an SVM parameterization effect on classification
accuracy will be discussed in detail. A comparison of SVM classifier with Wishart classifier and
other machine learning algorithms will be analyzed [57-70].

e Chapter 5: The Fifth Chapter deals with Exploring the Capability of Compact Polarimetry over
other modes [71-92].

e Chapter 6: The sixth chapter deals with a comparison of Hybrid-Pol, C band RISAT-1 data over
dual-pol and quad-pol for Land Cover Classification and Crop Identification [92-95].

e Chapter 7: A summary of the contributions and the conclusions drawn from the earlier chapters

were discussed. The future extension of the proposed work is also discussed.

1.10 Imaging modes

SAR Images in three different modes depending on the application and the user requirement as shown
in Fig 1.11 and Table 1.3.

Stripmap SAR: In this mode, the antenna pointing direction is constant as the radar platform moves. The
beam sweeps along the ground at an approximately uniform rate, and a contiguous image is formed. A
strip ground is imaged, and the length of the strip is only limited by how far the sensor moves or how

long the radar is left on. The azimuth resolution is governed by the antenna length.

Scansar: This mode is a variation of stripmap SAR, whereby the antenna is scanned in range several
times during a synthetic aperture. In this way, a much wide swath is obtained, but the azimuth resolution
is degraded (or the number of looks is reduced). The best azimuth resolution can be obtained in that of

the stripmap mode multiplied by the number of swaths scanned.

Spotlight: The resolution of the stripmap mode can be improved by increasing the angular extent of the
illumination on the area of interest (a spot on the ground). This can be done by steering the beam gradually
backwards as the sensor passes the scene. The beam steering has the transient effect of simulating a wider

antenna beam (i.e., a shorter antenna). However, the antenna must ultimately be steered forward again,
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and a part of the ground is missed. This means that the coverage is not contiguous; only one spot on the

ground is imaged at a time.

Fig 1.11 RISAT-1 Imaging Modes © ISRO

Mode HRS FRS-1 FRS-2 MRS CRS
swath 10m 25km 25km 115km 223
Pol Single, Dual, | Single, Dual, | Quad circular | Single, Dual, | Single,
Circular Circular Circular Dual,
Circular
Resolution 1*1(m) 3*2(m) 9*4 (m) 21-23*8 (m) | 41-55*8
(m)
spotlight stripmap stripmap scansar scansar
mode

The datasets and study area used in this work is shown in Table 1.4.

Table 1.3 Acquisition Modes of RISAT-1
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1.11 Datasets and Study Area

(Chennai), India

Dataset Band Date of | Acquisition Resolution
Acquisition mode

RISAT-1 C 5-07-2016 FRS-1 3 meters

(Ghanpur Vil, Warangal Dst, C 5-12-2015 FRS-1

Telangana, India.

Compact pol

Dual-pol

RISAT-1 (Hyderabad),India C 29-09-2016 FRS-1 3 meters

Hybrid 26-09-2014 FRS-1

Quad FRS-2

Alos Palsar -1 (Hyderabad) L 23-08-2010 Dual-pol Better  than

. 1

Alos Palsar-2 (Sanfransico, Mt Quad-pol meter

Fuji, Tokyo)

Sentinel 1A, 1B C 18-12-16 Dual-pol

1.12 Land Use and Land Cover (LULC)

Table 1.4 Datasets and Study Area

Land cover: physical and biological cover of earth surface including artificial surfaces, agriculture areas,

forests, wetlands, water bodies.

Land use: territory characterized according to its current and feature planned dimensions or socio-

economic purpose (residential, commercial industrial, agriculture, forestry).

1.13 Scientific tool used for processing

e Envi SARscape [103]
e PoISARpro [104]
e SNAP [105]
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Chapter 2

Importance of Speckle Filtering in Image
Classification of SAR Data

Contributions and citations of this chapter
Publication: 4

Citations: 9
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2.1 Introduction

In this chapter, the research was performed on dual-pol, Hybrid-pol, and quad-pol SAR datasets.
Furthermore, the selection of polarization channels and the selection of amplitude and intensity images
in SAR images are discussed in this chapter. This study specifies data selection in terms of the filter size,
polarization, and amplitude or intensity for a SAR image. This chapter deals with the importance of
speckle filtering in SAR images for classification. This chapter describes the effect of speckle window
sizing with respect to speckle reduction. In this chapter, speckle filter analysis was performed on urban
targets, i.e., Tokyo City, Japan, Quebec City, Vegetation target, i.e., Amazon forest, Heterogeneous target,
i.e., Mt Fuji, Japan. We presented a comparative study between several speckle filters that are widely
used in the radar imaging community. Speckle evaluation is done by Speckle Suppression Index (SSI)
ENL, SMPI. Based on the SSI values for a filter, image classification was performed using K Mean cluster

analysis.
2.2 Speckle

Speckle is a grainy salt and pepper pattern in the image due to the interference of the backscattered
signal from the target. SAR images suffer from Speckle, and it is a general phenomenon in all imaging
systems [25]. Therefore, the presence of speckles in the data reduces its capability for advanced analysis,
e.g. image segmentation, image classification, image fusion with optical data etc., and makes it difficult
for the analyst to interpret [26]. The Speckle can be reduced by processing separate portions of an aperture

and recombining them so that the interference does not occur. This process is called Multilooking.
2.2.1 Speckle Filtering

The reduction of Speckle is made using Speckle Suppression Techniques in two approaches. The first
technique involves an average process, generally known as Multilook. The Multilook reduces speckle-
noise at the cost of spatial resolution. There is a trade-off between the reduction of speckle noise and the
loss of the SAR image's spatial properties. The second technique involves smoothing the image using
digital image processing techniques, and it can be performed after the image is obtained [27]. When a
filter is selected for speckle reduction, it should smooth homogenous area while preserving linear features,
edges, point targets. A filter should remove speckles without sacrificing image structure such as edges,

linear features. The most commonly used filters are:

Mean Filter

This filter calculates the mean value of the pixels of the neighbor window. The mean value will replace

the center pixel value window. This filter cannot preserve information and resolution.
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Median Filter

This filter calculates the median value of the pixels of the neighbor window. The median value will
replace the center pixel value window. The common problems of this filter, its cause's edge blurring, and

the thin linear features will disappear, and object shape distortion takes place.
Frost filter

This filter calculates exponentially weighted averaging based on the coefficient of variation, which is

the local standard deviation ratio to the local mean.

This filter preserves sharp features by retaining its original pixel value while at low coefficient

variation.
Lee Filter

The Lee filters compute a linear combination of the center pixel intensity in a filter window with an
average intensity of the window. This filter is based on the minimum mean square error (MMSE)

2.2.2 Polarimetric Filters
Refined Lee Filter

The Minimum Mean Square Error (MMSE) filter cannot remove the Speckle near the edges
effectively. To overcome this problem, the refined lee filter uses a no square window to match the edges'
direction. Pixels that are in the non-edge area are used for computation. Refined lee filter follows three
processing steps, 1) selection of edge aligned window, 2) Computation of filtering weight (b) from the
span image, 3) Filtering each element in the covariance matrix [Y] with the weight (b). The filtered matrix
IS given by

Y* =Y +b(Y-Y) (1.2)

Where Y is the local mean of matrices computed with pixels in the same edge directed window. We
have opted for a 3x3 window size kernel for speckle filtering.

Boxcar filter:

It is a spatial averaging filter; it averages the pixels in the neighborhood of the pixel mask. It replaces
the value of every pixel with the average of neighborhood pixels. It improves the radiometric resolution

at the expense of spatial resolution.
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Intensity-driven adaptive-neighborhood (IDAN):

Instead of employing edged aligned windows, a set of stationary pixels surrounding the pixel under
analysis, adapting to the data's local morphology. The filtering process considers only the information
provided by the diagonal elements of the covariance or coherency matrices to determine stationary pixels.
The stationary neighborhood's search process is started by a seed pixel derived from the 3x3 median
values of the diagonal elements. The covariance or coherency matrix's estimated value is obtained through

the mean value of the pixels within the adaptive neighborhood.

2.2.3 Study Area and SAR Dataset
The study area used in this paper is of Mt Fuji, Japan. The Geo-coordinates of the study area are 35

°27'30"N and 138 °.446"E, and also Amazon forest in the state of Roraima, South America. The Geo-
coordinates of the study area are 0°.5344"N center latitude and 59 °.1925"W, center longitude.

SAR Dataset: The SAR dataset used in this work is ALOSPALSAR-2 of Level 1.5 CEOS (Committee
on Earth Observing Sensors) format and was provided by JAXA, Japan.
ALOS-PALSAR-2

Advanced Land Observation Satellite Phased Array type L-band Synthetic Aperture Radar was
launched on 24 May 2014 by JAXA. Alos was the first L band spaceborne SAR mission, launched by
ALQOS-2 satellite with PALSAR-2 sensor. The satellite has SAR with dual-polarization modes (HH-HV).

Fig 2.1 is the flow chart of the proposed work in this chapter.

[ SAR Data ]
\ 4 v l

Mean,

i Boxcar IDAN
Median, Refined Lee

Lee, Frost

Speckle Filter

v
A

Evaluation

A

Unsupervised

classification

Fig 2.1 Flowchart of the proposed work
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2.3. Importance and Impact of Speckle Filter Window Size in Speckle Reduction
2.3.1 Methodology

The process of removal of Speckle in a SAR image is essential for the analyst to interpret. A filter
should remove speckle noise without sacrificing image structure such as edges, linear features. The
performance can be verified with the commonly available commercial image processing software such as
PolSARpro [104], ENVI [103], and NEST [105]. Fig 2.1 shows the pre-processing procedure of the
proposed work.

NEST (Next ESA SAR Toolbox) 5.0 B is developed by Array systems computing Inc. of Toronto,
Canada, under ESA (European Space Agency). It is an open-source toolbox for reading, post-processing,
analyzing, and visualizing an extensive archive of data of level 1 from ESA and also includes SAR
missions like ERS-1, 2, ENVISAT, Sentinel-1. NEST 5.0 f has six speckle filters, Mean, Median, Frost,
Lee, Refined Lee, and Gamma-Map. Multilooking, radiometric correction, and conversion of slant range
to the ground range can also be performed. In this work, the speckle filters of NEST 5.0 p have been used
on SAR datasets of ALOSPALSAR-2.

Fig. 2.2 shows the step by step procedure for the proposed work. Level 1.5 format is preferred because
it is already slanted range to ground range converted data. As the level 1.5 format data consists of Speckle,
it isn't easy to interpret the data and classify it. Using the speckle filters in NEST, data has to be filtered.
The ALOS PALSAR-2 operates with dual-polarization, i.e., HH, HV polarizations. For example, HV
means transmit in horizontal (H) polarization and receive in vertical (V) polarization. Each polarized data
consists of amplitude and intensity images. Selection of images can be done using indices and visually.

We opted 3x3, 5x5, 7x7, 9x9, 11x11 filter window size for speckle filtering in this study. As the
window size of the speckle filter increases, Speckle in the image reduces, as window size increases, we
may lose the image's details [27]. Filter evaluation is done using three indices, ENL (Equivalent Number
of Looks), SSI (Speckle suppression index) [28], and SMPI (Speckle Suppression and Mean Preservation
Index) [29]. Finally, the best filter is selected based on these indices values. Speckle Filter Assessment
Indices.

2.3.2 Filter Evaluation

Speckle Filter Assessment Indices
Generally, evaluation of speckle reduction in SAR images is done using indices and visually. These
indices help us to evaluate different speckle filters using their values.

1) Speckle suppression index (SSI):

SSI is defined as

variance(lf)* mean(1,)

8= mean(ly)  Jvariance(l,)

(1.2)

Where 1, = Filtered image, 1, = Noisy image.
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The SSI value should always be less than one and hence can be considered that filter is efficient in
reducing the speckle noise. Lower values indicate better performance of the speckle filter.

2) Equivalent Number of Looks (ENL):

NL ( mean )2 (1.3)

standard deviation
For a speckle-free image, the value must be high.

3) Speckle Suppression and Mean Preservation Index (SMPI):

var iance( I )

SMPI =Q* (1.4)

variance(l, )
Q =1+|mean(l,)—mean(l )| , Where 1 = Filtered image, 1, = Noisy image

Lower values of SMPI indicates better performance in terms of speckle reduction and mean
preservation.

Selection of Level 1.5 Data

Importing SAR Data 5.0

T
¥

Speckle Filtering on Amplitude/Intensity and other pol data

Selection of filter size for a selected data for speckle filtering

Filter Evaluation using SSI,ENL,SMPI

.|‘|‘

Selection of Less SSI, SMPI values and high ENL value for best speckle
reduced image

Verifying visually the linear features, edges for less smoothed image

d

Further classification , segmentation for application based

Fig. 2.2 preprocessing procedure.

25



2.4. Results and Discussions:

Fig 2.3 shows ALOS PALSAR-2 dual-pol data with amplitude and intensity (HH and HV) for level
1.5 of Mt Fuji, Japan, with a median filter (3x3). For better visual clarity, median filtered images are

shown instead of original images (level 1), containing Speckle.

(@) (b)

(©) (d)

Fig. 2.3 lllustration of amplitude and intensity images in Alos Palsar-2

The images in Fig 2.4 show the impact of speckle filter size on speckle reduction. Fig 2.4(a) is the
study area shown in Google Maps, Figure 2.4(b) is the original image with Speckle. Table 2.1 shows the
values of SSI, ENL, SMPI for Amplitude (AHH, AHV), and Intensity (IHH, IHV) images for various
speckle filters. As the filter window size increases, SSI values decreases, ENL values increases, and SMPI

value decreases.

26



27



(a): Google Maps

(b): Original Image

(c): Med 3x3, (d) Med 5x5, (e): Med 7x7,

(f): Med 9x9, (g):11x11

(9)

Fig. 2.4. Effect of filter window size and edge smoothing during speckle filtering on I HH image.

Fig 2.4(c) — 2.4 (g) of the median filter indicates the reduction in Speckle. However, as the filter
size increases, smoothing of the image occurs, and the linear features like edges disappear. Selection of
best speckle filter with good preservation can be done using indices value. When an image is classified
with Speckle, the classification will not be accurate, and it will be difficult for the analyst to understand
an image. We can easily find out the impact of filter window size in classification [30-32]. From Table
2.1, I HH image shows less SSI value for the 7x7 median filter, followed by a mean filter and Lee filter.
Filter window size 7x7 shows good results than 5x5 and 3x3; similarly, ENL value increases with an

increase in filter window size. The ENL values of amplitude images are more than an intensity image.

Similarly, I HV median filter with a 7x7 filter size shows a high ENL value. Even though 11x11 size
shows a value higher than 7x7, 7x7 is selected because it has a less smoothing effect. SMPI value in both
images decreases with an increase in filter size. | HH median 7x7 shows less SMPI value, indicating better

performance in terms of speckle reduction and mean preservation [33].

Fig 2.5 shows the graphical representation of the values given in Table 2.1. It is a graphical
representation of ENL, SSI, and SMPI values for amplitude and intensity images for various filters with
various filter window sizes. Frost filter has high SSI values due to the damping factor (2, 4); the SSI
values are very high, different from other filters. So, for a Frost filter, a less damping factor is preferred.
The Gamma filter with filter size 11x11 is not preferred because its SSI value is more. The median filter

shows less SMPI value indicating mean preservation.
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Amplitude HH Intensity HH Amplitude HV Intensity HV
Mean  Std Ssi SMPI ENL Mean  std Ssi SMPI ENL Mean  Std SSI SMPI ENL Mean  Std SsI SMPI ENL
without filter ~ 1264.239 424,015 850627.5 1491674 974.5534 305.2594 720301 713887.1

Mean 3x3  1277.966 264.5318 0.617172 8563914 2333902 1434215 1008771 0401092 0256414 2.02136 981.0814 178.6604 058138 3.825864 30.15450 894440 429254.2 0.484226 1047084 4341835
55 1284175 234.3926 0544212 11.02037 30.01652 1651378 8602233 0.29705 0.218655 3.685282 984.0589 157.4331 0510754 4.906903 39.0706 960562.1 3707121 03894 1247645 6.713938
X1 1285.228 220.0674 0510533 10.89707 34.10742 1733499 7937011 0.261095 0.201746 4770162 9867103 148.1998 0479507 5906343 44.32861 1004117 343837.3 0.345504 136697.7 8.52831
9X9  1285.06 210.7822 0.489056 10.35401 37.16886 1740767 7501042 0.245723 0.190665 5385653 988.2468 142.5407 0.460479 6.398274 48.06767 1028782 326340.6 0.320061 141016.7 9.938126
1IX11 1286.615 203.8148 0472319 10.7588 39.84974 1756741 717062.9 0232764 0.182266 6.002069 989.3329 1384356 0446727 6.706556 51.07276 1043197 314309.7 0.304002 1421645 11.01583

Median 3x3 ~ 1282.783 273.5801 0.635886 11.96503 21.98556 1370427 9452013 0.393309 0.171638 2.102147 9865348 187.9933 0.608368 7.382378 27.53849 838140.9 426975.1 0.514008 70480.05 3.853265
55 128686 234.4138 0543125 12.50609 30.13675 1597355 7628748 0.272344 0138529 4384258 9913305 160.5914 0517178 8.829257 38.10591 966528.7 342486.1 0.35753 1181274 7.964226
Tx1 1284946 217.2604 0504131 1061239 3497911 1600837 6961535 0.247984 0.126413 5287914 9919229 149.4209 0480917 8.50508 44.06899 984310.4 3133515 0321206 115883.6 9.867351
9X9  1282.894 206.9259 0.480919 9.105984 38.4372 1592339 655348.1 0.234694 0.119004 5903737 9918152 142.7733 0459571 8076324 482578 990789.6 2975484 0303013 112739.8 11.08786
1IX11 1281537 199611 0.46441 8145116 4121858 1587710 6231231 0.223804 0113152 6.49224 990.898 138.468 0446126 7.416735 5121051 988144.6 286788.8 0.292837 1076005 11.8718

Frost2 3x3  1277.232 2649786 0.61857 8.122188 23.23366 1270469 1055929 0.473954 0454704 1447635 980.7654 178.9272 0.582435 3.643054 30.04537 870488.9 4376529 0.507284 92073.75 3.956096
55 1280.246 235.7297 0.5489% 8.899149 29.49567 808372 1201138 0.84732 0517235 0452935 9831872 158.0486 0513205 4471847 3869823 839697.4 403417.9 0.484749 6747107 4332468
X1 1278858 222.3979 0518509 7.669746 33.0661 731784.6 1219668 0.950438 0525214 0359984 983.5295 149.2307 0484404 4389691 4343686 761147.9 420585 0.557531 2406501 3.275145
9X9  1275.699 214273 0.500803 5.793621 35.44556 726368.2 1227726 0.963851 0528684 0350034 982.6208 144.0044 0467871 3.807282 4656079 713395.8 431636.2 0.610481 4175.193 2.731652
1IX11 127502 2084711 0487502 5.302762 37.40609 724072.9 1232368 0.970562 0530683 0.34521 982.0099 140.3235 0456196 3.429142 489746 702974 430899.1 0.618473 10458.65 2.661506

Frostd 3x3 1275155 265.9824 0.621925 6.850203 22.98371 949508.1 1222028 0.733919 0206474 0.603719 9803377 179.5452 0584702 3.404447 29.81287 832703.2 462580 0.560507 72833.76 3.24046
55 1272724 2381032 05578 476504 28.57184 737450.6 1272274 0983814 0214963 0335973 9804831 159.1444 0518189 3.09342 37.95749 7351705 469960.7 0.644998 9788.892 2447107
X7 1269.006 226.3219 0531754 2.548235 31.4394 735335.5 1281026 0.993431 0216442 03295 979.1982 150.9122 0492029 2.298183 4210101 710082.1 471336.8 0.669742 6747.065 2.269627
9X9  1266.694 219.6054 0516915 1.274925 33.27033 735121.8 1286497 0.997964 0.217366 0326513 977.7248 1462307 0.477484 1521075 44705 7070447 469169.4 0669526 8712.218 227109
1IX11 1266.396 215.0934 0506414 1.097764 34.66449 7356519 1291153 1.000854 0218153 0.32463 977.1018 143.0487 0467391 119603 46.65646 795950.3 468596.8 0.594016 49656.48 2.885182

Gamma Map
33 1277.536 264.5308 0.617378 8.299878 2332349 1432705 9904288 0.394214 1304733 2.092508 980.7082 178.6691 0.581629 3.606643 30.12872 874714.3 445196.7 0.513535 9629635 3.860368
5x5  1284.045 234.3784 0544234 1094796 30.01400 1527439 893304 0.333504 1176786 2.923677 983.6938 157.4204 0510902 4.717371 39.04791 939514.7 3882836 0.416994 119231 5854759
Tx7 1284.823 2200486 051065 106858 34.09174 1454790 861780.8 0.337802 1135259 2.849751 9863316 148.1797 0.479626 5720906 44.3066 941100.2 375077 0.402132 116008.6 6.295509
9X9 1285163 210.7634 0.488973 1040415 37.18143 1453865 853817.8 0.334893 1124769 2.899463 9873415 142.5327 0460876 5974434 4798503 936766 365220 0.393376 1107426 6578898
11X11 128616 203.7949 0.472439 1053949 39.82939 706352.7 1148642 0927317 1513153 0378159 9854858 138.4769 0448604 4.962615 50.64611 898852.8 375839.5 0.421889 9400247 5.719687

Lee
33 1277.787 264.5305 0.617256 8.456766 23.33273 1445958 1000973 0.394759 0.627966 2.086732 980.9529 178.6645 0.581469 3.750476 30.14531 8889643 440218 0.499652 104006.2 4.077867
55 1284.173 234.3938 0544215 11.01966 30.01615 1647344 8817095 0.305215 0553145 3.490741 9840575 157.4342 0510758 4.905981 39.06994 960348.3 3831789 0.402585 1288454 6.281371
7 1285226 220.0692 0510538 10.89604 34.10674 1594279 8446493 0.302119 0529895 3.562672 986.7086 148.2053 0479525 5905516 44.32516 968754.8 363732.3 0.378837 126589.6 7.093557
9X9 1285602 210.7888 0.488865 10.62342 37.19784 1400541 8463475 0.344602 0530961 2.738384 988.2455 142.5512 0460514 6397926 48.06046 9543525 353440.1 0373673 1158772 7.29098
11X11 1286.613 203.8264 0.472346 10.75876 39.84511 1269887 8689124 (039019 0545117 2.135886 988.762 138.4545 0.447046 6.448326 50.99991 894462.1 363267.7 0.409779 8862347 6.062758

Table 2.1: SSI, ENL, SMPI values for various filters with different window size
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Fig 2.5 Graphical representation of ENL, SSI and SMPI values for various filters

Fig 2.6 (a - f) shows the comparison of various filters of size 7x7 filter size. Images of Figure 2.6
(c-d) are of frost filter with 2 and 4 as damping factors. Using indices, the best filter is preferred for further
classification. Table 2.1 shows that the median filter | HH has less SSI value, less SMPI value, and a high

ENL value. So median filter 7x7 is used to perform K- mean classification. The classified image is shown
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in Fig 2.6. Fallow land, vegetation, wetland /water, and buildings are represented in a different color, as
shown in the legend.

(€) (f)

(@): Mean filter, (b): Median Filter, (c): Frost Filter (Df=2), (d): Frost Filter (Df=4), (e): Gamma Map
Filter, (f): Lee Filter

Fig. 2.6. lllustration of Intensity images of 7x7 filter window size of various filters.
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2.5 Importance of speckle filtering in SAR image classification

2.5.1 Unsupervised classification

In this approach, the identities of land cover types specified as classes within a scene are generally not
known prior. When the ground information/surface features are lacking, the unsupervised approach has
opted. The computer groups pixels with similar spectral characteristics into unique clusters with
statistically determined criteria. Later, the analyst then combines and re-labels the spectral clusters into

information classes.

2.5.2 K-Mean Clustering
K-means classification is an unsupervised classifier, where training sites is not required. Clustering

algorithm is a cluster analysis method that aims to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean. The K-means clustering algorithm is also known
as C-means clustering and has been applied to various areas, including image and speech data

compression. The objective function is defined as

w=xM, 3N, [EY - v)?| (L.5)

Where(Ei(j) —V;)? is a distance measured between a data pointEi(j) and the cluster Vjis an indicator of

the n data points' distance from their respective cluster centers.

The below Figure 2.7 (a - €) shows the subset of Amazon Forest, Fig 2.7 (a) is an optical image
acquired from Google Maps, 2.7 (b) is a Microwave image with Speckle, 2.7 (c) is the Mean filter 3*3
window size image, 2.7 (d) is the Mean Filter 5*5 window size image, 2.7 (e) is the Mean Filter 7*7
window size image. We opted for Intensity HH pol data because of its less SSI value compared to Intensity
HV pol data. We observe that as window size increases, speckle value decreased from 3*3 window size
to 7*7 window size (0.686337 to 0.535655) as shown in Fig [2.9, 2.10]. Similarly, we opted for 7*7
window size and Mean filter, based on SSI values. For classification, less Speckle free data is preferred,

so a mean filter image is selected for K mean classification [34].

Optical Google Map

Google

(a) Optical image (b) Microwave image with speckle
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(e) Mean Filter I HH 3*3

Fig. 2.7 Speckle Filtering with different window sizes for Mean filter Intensity HH pol data.

The below Figure 2.8 (a) is the classified image without speckle filtering, due to the presence of
speckle analyst cannot classify the image. Figure 2.8 (b, c, d) represents k mean classified images for the
Mean filter for 3*3, 5*5, 7*7 window size. We can observe the difference in 3*3, 5*5, and 7*7 window
sizes, i.e., red ellipse part is not classified correctly because of speckle presence. As window size
increases, classification can be done more accurately due to reducing the Speckle in it. Mean filter 7*7
classified image gave the right information in classifying the image such as light green indicates
deforested part, light blue indicates water, red shows forest, respectively. Hence window size plays a vital
role in the classification of an image. As the window size increases, smoothing of the image can happen;
even edges and linear features may disappear [35]. So the selection of window size plays a crucial role in
classification. The classified image results are verified with Google maps.

32



o
LR

(a) Microwave image with Speckle (b) K Mean Classified | HH 3*3

(c) K Mean Classified | HH 5*5 (d) K Mean Classified | HH 7*7
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Fig. 2.8 K Mean Classified image.
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Fig. 2.9. Graphs for various filter with different window size with SSI values.

Intensity HH Intensity HV
Mean Median std ENL Mean Median Std SSl ENL

without filter 688833.3 634580.1 330459.9 384026.9 365197.1 195124.5
Mean 3x3 694144.2 689291.7 228555.6 9.223924 385208.5 394475.4 145009.8 0.740886 7.056621
5x5 696864.6 697770.2 195069.3 12.76201 385676.5 404548.9 129773.3 0.662235 8.832332
7 698329.9 710996.6 179452.9 15.14329 385817.3 409410.7 122958.5 0.62723 9.84569
Median 3x3 672419.5 662973.1 233052.1 8.324812 374400.5 381837.9 145773.7 0.766289 6.596514
5x5 666141.1 665979.8 195686.2 11.5881 369949.9 384714.7 127414.7 0.677839 8.430367
7x7 663274.4 672729 179705.3 13.62275 368043.5 389106.5 119658.7 0.639875 9.460409
Frostl  3x3 693857.5 690547 229247.4 9.160761 385082.8 391639.2 145269.1 0.742453 7.026864
5x5 695346 704370 196534.7 12.51767 385568 402276 130252.1 0.664865 8.762592
7x7 694106.9 697002.2 181534.5 14.61956 385709.9 409043.8 123492.7 0.63013 9.755263
Gamma M 3x3 683096.9 678912.5 232775.8 8.611698 382212.1 387952.2 146037.3 0.751985 6.849856
5x5 684076.3 685371.4 203795.4 11.26731 382485.7 402180.6 130989.2 0.674016 8.526276
7x7 684627 685371.4 189594.6 13.03936 382721.6 4074.361 124177.2 0.638571 9.499089
Lee 3x3 690447.4 676925.7 231816.8 8.870973 384129.5 392940.1 146009 0.748087 6.921435
5x5 689383.6 693526.5 200354.3 11.83926 384824.2 403480.4 131080.5 0.670387 8.61883
7x7 689539.9 699439.1 185537.9 13.8119 384990.3 408001.9 124283.5 0.635351 9.595615

Fig. 2.10. Tabulation for IHH and IHV Data with SSI values.
2.6 Conclusion
This chapter presents a comparative study between different speckle filters with different filter
window size and their impact on speckle reduction. Amplitude/Intensity) images with different
polarizations have been used for speckle reduction.

For the best speckle free image, K means the classification is applied. Fig 2.9 and Fig 2.10 show
that the mean filter with window size 7*7 Intensity HH images shows the lowest SSI value. From this
work, we can make out the importance of Speckle filtering for image classification [36-38]. The selection
of the best speckle reduced image is mainly based on values like speckle suppression index (SSI), an
equivalent number of looks (ENL), Speckle Suppression, and Mean Preservation Index (SMPI). The

classified image is verified using Google maps. The following conclusions can be drawn from this study

» As speckle filter window size increases, Speckle in an image decreases. Similarly, as the

filter window increases, smoothing of the edges and point target takes place.
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The selection of polarization data (HH-HV) can be made using SSI, ENL values, and
visual interpretation.

Selection of Amplitude or Intensity Image can be made using the above mentioned Indices.
Selection for a Frost filter with less damping factor is preferred as the damping factor
increases with filter window size SSI values. The low value of SSI indicates an effective
filter.

Intensity HH image for Median filter with 7*7 window has less SSI, SMPI, and high ENL
value. Low SMPI value indicates better speckle reduction with mean preservation.
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3.1 Introduction

This chapter deals with the different types of polarimetric decomposition techniques. Various
decomposition techniques are applied to the datasets to understand the polarized wave's scattering
mechanism with each target in the scene. Quad pol Radarsat-2 data and Hybrid-pol RISAT-1 were opted
for this study. Robust m chi, m delta decomposition, and pseudo three-component decomposition on
Hybrid-pol data were utilized.

3.2 Polarimetric Decomposition

The process of extracting information about the scattering process using various techniques from
full polarimetric SAR data is known as target decompositions. The first objective of decomposition theory
is to express the scattering mechanism in the resolution cell is a sum of independent elements aiming to
associate a physical mechanism to each type of scattering [39]. The main aim of target decompositions
theorems is to interpret based on physical constraints, which are changed based on wave polarization. The
average scattering is expressed as the sum of independent elements with each component.

There are two methods for model-based decomposition theorems: coherent and incoherent target
decomposition. Coherent is suitable for coherent local target characterization, incoherent is for distributed
target characterization.

3.2.1 Coherent Decomposition
This theorem was developed to characterize polarized scattered wave in which the information is
contained in the scattering matrix. The scattering matrix is expressed as a sum of the elemental scattering
matrix by using coherent averaging. Coherent averaging results in the generation of Speckle [40].
Krogager (1990) and Boerner (1996) contributed major work on coherent decomposition. Later, Corr and
Rodrigues (2002) and Touzi and Charbonneau (2002) published many other decomposition methods.
3.2.2 Incoherent Decomposition
Most of the targets on the earth's surface are disturbed heterogeneously scattered. Therefore
incoherent decomposition provides good results. Incoherent decomposition is further categorized into
Eigen value/Eigen vector decomposition, model-based decomposition, and Hybrid Eigen value/Model-
Based Decompositions. Polarimetric decomposition can be classified into four main types [41-46].
o Coherent decomposition based on scattering matrix S (Pauli, Touzi, Cameron).
o Model-based decomposition of coherency and covariance matrix (Yamaguchi, Freeman,
and Durden).
o Decomposition based on Eigen value or Eigen vector of coherency and covariance
(H/A/Alpha, Vanzyl).
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3.3 Study area and SAR Datasets

Vancouver is a Canadian province of British Columbia with latitude 49°28'27” N and longitude
123°12'07" W in the country of Canada and Que

The data used for this study is RADARSAT- 2 fine-beam polarimetric SAR (PolSAR) data, which
contains HH, HV, VH, and VV polarizations. The center frequency at this beam mode is 5.4GHz, i.e., C-

band, and the spatial resolution is 8 meters.

3.4 Methodology

Fig.3.1 shows the implementation of flowchart for generating polarimetric decomposed images of
RADARSAT-2 full polarimetric data. RADARSAT-2 data are recorded in the form of a Scattering
matrix(S) from which the coherency matrix T3 was extracted using Sentinel tool box software. The
coherency matrix T3 contains all the polarimetric information. Most of the decomposition parameters
were derived from coherency matrix T3, or covariance C3, which contains similar information, but in
different form. Initially datasets are calibrated and the T3 matrix is generated for polarimetric speckle
filtering and polarimetric decomposition. Polarimetric speckle filtering is performed using a refined lee
filter. Filtered datasets are decomposed using several polarimetric decomposition operators. Using
Speckle filtered T3 product as input, unsupervised polarimetric classification is performed to similar
group pixels into classes. A detailed explanation of polarimetric decomposition, along with a related
equation, is provided in subsequent sections.

3.4.1 Coherent Decomposition: Pauli Decomposition

Initially, the Hermitian coherency matrix is extracted for all the raw polarimetric SAR data and then
filtered by the Refined Lee filter. The Pauli parameters are directly obtained as the diagonal elements of
the coherency matrix T3. The three elements of Pauli decomposition corresponds to a primary scattering

mechanism. Snh + Sw represents single bounce scattering [41].

Shh - Sw represents double-bounce scattering, and Sny + Svh represents volume scattering. In comparison
to other coherent decomposition methods, the Pauli decomposition is excellent for exposing natural
targets but not ideal for highlighting man-made targets. Since the targets' total power is equal to that of
the backscattering matrix, it is often used for preliminary representation. The Pauli parameters could
present the most contrast between the land-cover/land-use classes representing single bounce is from bare

soil, the double bounce is from buildings, and volume scattering is from forests, respectively.
10 10 01
[S]:a{o 1}/{0 —J”L o} 3-1)

Where a = (S + SW)/\/E B = (Shn = SW)/\/E and y = +/2sy,,,are the complex quantities
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The a, B, y components are represented as blue, red, green color after decomposition in the RGB image
plane.

Radarsat-2

Quad Pol (HH, HV, VH, W)

!

Calibration

Polarimetric

MatrixGenerationT3

Polarimetric Speckle

Filtering (Refined Lee) pauli
e Pauli

e Freeman -Durden

y e Yamaguchi
Decomposition e H-A-Alpha

Unsupervised Polarimetric

Classification

Fig. 3.1. Flowchart of the proposed work.

3.4.2 Model based Decomposition: Freeman- Durden Decomposition

The Freeman-Durden decomposition is a method for fitting a physically based, three component
scattering mechanism model to polarimetric SAR observations. The three component scattering
mechanism include surface scattering from a rough surface, double-bounce scattering from orthogonal
surface, and volume scattering mechanisms from randomly oriented dipoles. The Freeman decomposition
possesses similar characteristics to the Pauli-based decomposition, but Freeman decomposition provides
a more realistic representation because it uses scattering models with dielectric surfaces. Since the
Freeman-Durden method was intended to model the backscattering from forests, it might be invalid for
other surface scatterings because of correlation coefficients [42-45].
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T =PsTgyrface + Pd Tdouble + R/Tvolume (3.2)

1 B 0 1 a 0 2 0 0

T 1 ,B*|,B|20,Tdb| ! a*|a|20T| o1 o0
surrface = ouble = volume ==

WP 0O 0 0 A 0 0 0 20 01

3.4.3 Yamaguchi Decomposition

Yamaguchi, in the year 2005, proposed a new technique which is an addition to Freeman Durden
decomposition. Yamaguchi added the fourth component as helix scattering corresponding to non-

reflection symmetric cases <SHH Siv > # <SHVS\’,‘V > = 0. This condition appears in heterogeneous (manmade

structures). The concept of helix mechanism was developed by krogager in coherent decomposition [46].

Representation of Yamaguchi decomposition in coherency matrix is

T=PsTsurface + Fd Tdouble T R/Tvolume * FeThelix (33)

3.4.4 Eigen value-Eigen vector based Decomposition: H/« / A Decomposition

H/o/A decomposition was proposed by Cloude and Pottier for extracting average parameters from
experimental data using a smoothing algorithm?®. From the coherency matrix, T3 matrix decomposition
parameters are generated from an eigenvector analysis. The eigenvectors describe different scattering
processes, and the eigenvalues indicate their relative magnitudes. Among all the parameters, the averaged
Alpha angle (a) relates directly to the underlying average physical scattering mechanisms. The value of
Alpha ranges from 0° to 90°, which indicates the dominant scattering varies from surface scattering
mechanism (0°), moving into single scattering (45°) by a cloud of anisotropic particles, and finally
reaching dihedral scattering (90°). The Entropy (H) describes the randomness of the scatter. The
anisotropy (A) corresponds to the relative power of the second and third Eigen vectors. The elements of

the scattering matrix are defined as

Shh Shv
[S]{sh s } (3.4)

The_coherency matrix is defined as
<|SHH +va|2> <(SHH +Syv ) (Shn = Sw )*> <28*HV (St +Sw )>
M= (S S0 ) +s))  Sw-Swl) (257 (S -Sw)

et (asesd) ] -
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(3.6)
Let A1, A2, A3 be the Eigen values of the coherency matrix and Uz Us are the corresponding Eigen
vectors.
uiz[cosm singjcos feld sing cos/fiejﬂlT, (3.7)
3 3 Ao — 3
H=- 3 pigy(p). =4/ T AA=— P P (3.8)
i=1 k=1 Atk =1

3.5. Results and Discussions

The polarimetric decomposition methods discussed in the previous section are used over
RADARSAT-2data, Quebec, and Vancouver city, Canada. All the polarimetric decomposition has their
own pro and cons as related to its methodology implemented on the scattering matrix of a quad pol data.
As the quad pol data is full polarimetric data retaining coherency between the channels, it is highly
essential to apply polarimetric speckle filters preserving the phase information in the signal. Each
component in all decomposition signifies the scattering mechanism pertaining to the target properties.
However, the attempt of applying decomposition technique to exploit the utilization of full polarimetric

data is appreciable as the conception of a smart city in developing countries has initiated its journey.

Fig.3.2 and Fig.3.3 represent the outputs of the images of Quebec and Vancouver city, respectively
considered for the study. Google Earth images are shown in Fig.3.2 (a), 3.3(a) as a reference for the
images considered. Fig.3.2 (b), 3.3(b) corresponds to Pauli decomposition images, where blue color
indicates the single bounce scattering mechanism from targets like water bodies, green indicates volume
scattering from vegetation, forest, etc., and red indicates double bounce from building manmade. Fig. 3.2
(c) and 3.3(c) are related to Freeman Durden decomposition images, where red indicates the power
scattered by the double-bounce component of the covariance matrix, green indicates the power scattered
by the volume scattering component and blue indicates the power scattered by the surface-like scattering
component. This study has shown that the coherent decomposition parameters such as helix scattering,
which operates on the individual pixels on a coherent basis, can also provide useful information for the
land cover classification. Fig. 3.2 (d) and 3.3 (d) are the Yamaguchi decomposition images, which clearly

show the helix scattering mechanism in urban areas compared to Freeman Durden decomposition because

41



the urban areas are brighter due to the double bounce effect, which is represented in red color. Fig. 3.2
(e), 3.3(e) corresponds to H-« -A decomposition images, where red color indicates Entropy, green color
indicates Anisotropy, and blue color indicates Alpha. As discussed in section 3, the value of a will
determine the dominant scattering mechanism for every pixel. The Polarimetric unsupervised H-«
Wishart classified images along with H-Alpha Plane plot with 9 classes are depicted in Fig. 2(f), (g) and
3(f), (g). The various classes are divided based on entropy and scattering angles into different targets like
bare soil, wetland, water bodies, buildings, vegetation, etc. It is suggested that supervised classification,
along with ground truth samples, will improve the classification accuracy. The ocean and the urban area,
where much of the land surface is covered by roads and buildings, have a high degree of polarization
values because the single scattering and double bounce scattering are dominant in these areas. This type

of classification gives comprehensive information on existing resources to develop a better proposal in

the establishment of a smart city.

Navigati... | Colour ... | World V...[H-AL.. % [uncerta...[

H-Alpha Plane Plot «
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Fig. 3.2: (a) Google Earth image of Quebec city ,(b) Pauli Decomposition, (c) Freeman Durden Decomposition, (d) Yamaguchi
Decomposition, (e) H-A-a Decomposition, (f) ) H-a Wishart Classification, (g) ) H-a Plane.

Fig 3.2 output images of Quebec City
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Fig. 3.3: (a) Google Earth image of Vancouver city ,(b) Pauli Decomposition, (c) Freeman Durden Decomposition, (d) Yamaguchi
Decomposition, (e) H-A-a Decomposition, (f) ) H-a Wishart Classification, (g) ) H-a Plane.

Fig 3.3 Output images of VVancouver city

3.5.1 Robust Hybrid Decomposition

Target Decomposition is only possible for a polarimetric image. Target decomposition cannot be
performed for Dual-pol data. As RISAT-1 is a Hybrid polarimetric data, with the help of stokes

parameters
Raney Decomposition

Raney decomposition was proposed by Raney. From Raney decomposition, six Raney derived
parameters were obtained, i.e., i) Raney odd bounce, ii) Raney double bounce, iii) Raney random, iv)
Raney-m, v) Raney-delta, vi) Raney-chi. From these derived parameters, along with the first stokes
parameter (S1), m-delta and m- chi decomposition were performed. Raney decomposition utilizes the first
three parameters to construct an RGB composite image. Whereas m-chi decomposition utilizes 'm' and
chi parameters from Raney decomposition and (S1) from the first stokes parameter. Similarly, M-delta
decomposition utilizes 'and delta parameters from Raney decomposition and (S1) from the first stokes

parameter.
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m-delta(s) Decomposition:

M delta is one of the child parameters derived from the stokes vector and was also found to be an
important tool for polarimetric analysis. This technique was proposed and developed by Raney [47-51]
using the principle as the relative phase difference between horizontal and vertical polarized backscatter
signal gets the effect of each scattering. In this technique, the total intensity is segmented into polarized
and unpolarized using a degree of polarization (m). The polarized part is subdivided into the even bounce
and odd bounce by using the relative phase information. The unpolarized part is considered as volume
component. In this decomposition from the color-coded image, red indicates single bounce, green

represents volume component, and blue represents the double bounce.

R=[s,m (1-sino)
G =4S, (1-m) (3.9
B = [sm (1+52in S)

M Chi (y) Decomposition

M Chi decomposition was proposed/developed by Raney [52-56]. The parameters degree of
polarization 'm' and degree of circularity's.' [Circular polarization ratio and degree of linear polarization
are the two-child parameters derived from stokes parameters. General decomposition techniques used for
quad-pol data do not apply to hybrid polarimetric and dual-pol data because compact pol data and dual-
pol data consist of the 2x2 covariance matrix. The degree of polarization' is a natural choice for the first
decomposition variable for hybrid dual-pol data. The Poincare elasticity parameter y is the best choice for
the second decomposition variable. M Chi decomposition was tested on lunar orbiter mission, and this
method was proven to be an excellent tool for hybrid polarimetric data. M and degree of circularity are
the key inputs for m chi decomposition. In hybrid polarimetry for every scattering, the electric field loses
its circularity and hence it is a principle of this technique. The unpolarized part is considered as volume
component, and polarized part is categorized into odd and even bounce using y. Blue color indicates single

bounce (Bragg scatters), red indicates double bounce and green indicates randomly polarized constitute.

Sin(zg):—%*sl (3.10)

M chi decomposition can be expressed in a color-coded image where
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B Slm(l—sin;g)

2
G=5m) (3.11)
R= slm—(lﬂzinl)

Pseudo Three Component decomposition

Three- component compact decomposition was proposed by S.R Cloude, Py is the volume component,
Ps is the surface component and Pp is the dihedral component. Using the geometrical factor (1+sino)
single component is split into two components i.e. dihedral and surface component. The split can be
represented in the form of decomposition parameters as shown in eq. 3.12. A pseudo three component
decomposition using a geometrical factor is shown in Egn. 3.13. Where Sy is the first stokes vector.

tan(S:i:% (3.12)
S;  sin2ggsing

%Slm(l—cos 2a,)

I:’D
R |= S11-m) (3.13)
RS %Slm(l+ cos 2a)

3.5.2 Results

Fig 3.4 (a), is the Raney derived RGB image on Hybrid-pol data, where red color indicates urban
settlements, black color indicates water body, green color indicates vegetation, and white color indicates
bare soil. Fig 3.4 (a) is the Raney derived RGB image on Dual-pol data, where green color indicates

vegetation, black color indicates water bodies and red color indicates urban settlements and paddy fields.

2 Urban
. WaterBody !

Paddy Fields |
Bare Soil |

() (b)

Fig 3.4 Raney derived RGB image of Hybrid-pol and Dual-pol data
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Fig 3.5(a), is the Pseudo compact decomposition performed on Hybrid-pol data. From this
decomposition we obtain volume scattering, double bounce scattering and surface scattering. Where green
color corresponds to the volume scattering from thick vegetation, red color Corresponds to the surface
scattering from crop fields and water bodies, blue color corresponds to the double bounce scattering from
urban settlements. Fig. 3.5 (b) and Fig. 3.5 (c) are the m-delta and m-chi decomposed images,
respectively. From m-delta and m-chi decompositions, yellow color Corresponds to the double bounce
from urban structures, i.e. buildings, green color Corresponds to the volume scattering from vegetation's.
The magenta color Corresponds to the surface scattering from crop fields, bare soil and dark blue
corresponds to water bodies. It was observed visually that m-delta and m-chi decomposition results were

almost similar.

Vegetati ll vegetation
Water body 4 Water body
Bare Soil : ] f Bare Soil

2 B Re ( S

(@) (b) (©)

Fig 3.5 Pseudo compact-Pol, m-delta and m-chi decomposed images of RISAT-1 data
3.6 Conclusions

From this chapter, different polarimetric decomposition methods emphasize their excellence in
determining the unique scattering properties pertaining to various terrain features. It was also observed
that some polarimetric parameters have a more significant influence in distinguishing between natural
and man-made objects. Yamaguchi decomposition performed good results, mainly in urban settlements
due to the helix scattering components, followed by Freeman Durden decomposition. The H-a Wishart
is used for polarimetric unsupervised classification based on the target scattering properties of land use/
land cover helps in the assessment of available and depleted resources(natural and man-made) for a better
livelihood.

The hybrid Robust decomposition techniques were excellent in discriminating various land covers and
various crops on hybrid-pol data. Raney RGB, m-delta, m-chi, discriminated cotton field from paddy
fields very well.
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4.1 Introduction

In this chapter, various Supervised and unsupervised algorithms are explained in detail. In this chapter,
SVM linear case, nonlinear, multi-class case are described in detail. SVM classifier was applied on
Hybrid-pol and dual-pol RISAT-1 data. To validate the performance of SVM classifier on hybrid-pol
data, SVM classifier was also applied on optical LISS 1V data. The results obtained are almost similar.
Further, SVM classifier was applied on dual-pol sentinel- 1B data for land cover, water body mapping
and oil spill discrimination. For dual-pol Alos-Palsar-2 data SVM classifier was compared to the Wishart

classifier the results obtained were almost similar.

In pixel based image classification- pixels are smaller than targets. Pixel is homogeneous in a target.
In Image object based image segmentation: the pixel is smaller than the targets. Objects/classes are not
homogeneous. In Sub-pixel classification- Pixel is larger than targets- pixel value is an area weighted
combination of the targets. In pixel based classifier, there are different possibilities, and there are various
algorithms that can be classified based on the type of learning like supervised and unsupervised.
Classification is the task of assigning a given set of data (pixels) to a given class such that the cost of
assigning is minimum [57]. The significant steps involved in image classification include feature
extraction, selection of training samples, and finally, classifying the data using a suitable classifier. There

are two types of classification techniques: parametric and non-parametric.

Furthermore, parametric classification can be performed in two approaches, i.e., supervised and
unsupervised classification. In an unsupervised approach, an image is classified automatically by finding
the clusters based on specific criteria. In a supervised approach, the analyst has to identify location and
land cover type using field data (ground truth). Further, the analyst has to locate these areas on the remote
sensing data, and these areas are known as training sites. In supervised technique, selection of training
sets without ground truth data makes the analyst difficult and leads to poor classification. The
classification procedure usually involves separating the data into training sets and testing sets. Fig 4.1.

represents the types of classifier.
4.2 Parametric classifier

In this case, we assume a Gaussian distribution. The parameters, such as mean vector and covariance
matrix, are generated from training samples. The size of the training sample does not matter to estimate
parameters; as the dimensionality increases for fixed sample size, the accuracy of the parameters

decreases. It cannot work effectively in hyper spectral data.
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4.3 Non Parametric classifier

Assumption of the data is not required (Gaussian distribution). In this case, the classifier will not employ
any statistical parameter to calculate class separation. This approach is suitable for incorporation ancillary

data for improving the classification.

4

different
possibilities to
categorize
classifiers
A A
Tvoe of learnin Assumptions on
yp g data distributions
I I
4d 4d 4d A
Supervised Unsupervised Parametric Non parametric

Fig 4.1 Types of Classifiers
4.3.1 Neural networks

Neural Networks' advantage is High computation rates and faster processing of huge volumes of data
and better accuracy than conventional classifiers [57-60]. Hence, it's non-parametric; therefore, the
assumption is not required for the data's statistical distribution. Unlike in the case of MLC, NN's
performance depends on how well you train the data. NN can construct a nonlinear decision boundary; in
MLC.

4.3.2 Parallelepiped classification algorithm

In the Parallelepiped decision rule, the candidate pixel's data file values are compared to the upper and
lower limit. The limit can either be minimum and maximum data file values of each band in the signature.
The mean of each band, plus and minus a number if standard deviation. Any limit that analysts specify or

based on the knowledge of data and signatures.

Generally, in every band, there are high and low limits for every signature. Based on the pixels value

limit, pixel will be assigned to a signature class. The high and low decision boundaries are defined as
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I-ck = Hy — Sck
and (4.1)

H = 4y + Sy

L, and H, are the lower and higher limit of class ‘C’ in band K.

U 1s the mean of the class ‘C’ in band K

S« 1s the standard deviation of the class ‘C’ in band K

Therefore, we obtain the lower limit by subtracting z, and S, and higher limit by adding x, and S, .

The parallelepiped algorithms becomes

L, <BV, <Hg (4.2)

ijk =
Where BV, is the brightness value of the I'"" column and j™ row in band K.

Advantages

Fast and simple and by giving broad classification, thus narrows down the number of possible classes
to which each pixel can be assigned before more time-consuming calculations are made. It’s not

dependent on a normal distribution.
Disadvantages

Since Parallelepiped has corners pixels that are far, spectrally from the mean of the signature may be

classified.
4.3.3 Minimum Distance to Means Classification Algorithm

This algorithm is commonly used and is computationally simple. It requires mean vectors for each

class in each band g, from the training data. Euclidean distance is calculated for all the pixels with all

the signature means

2 2
D= \/( BVi _/Uck) +(Bvijl _:ucl) (4.3)
Where u, and u, represents the mean vectors for the class ¢ measured in bands k and I. Any unknown
pixel will be assigned to one of many types; thus there will be no unclassified pixel.

Advantages

Since every pixel is spectrally closer to either one sample mean or other, so there are no unclassified

pixels. The computational requires is fast.
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Disadvantages
Pixels which should be unclassified will be classified and it does not consider class variability.
4.3.4 Mahalanobis Decision rule

Mahalanobis distance is similar to the minimum distance, except for the covariance matrix used in the
equation. Variance and covariance are figured in such a way that clusters that are highly varied to similarly

varied classes.
D=(X-M,) (Cov,*)(X -M,) (4.4)

Where D is the Mahalanobis distance
C isthe particular class
X is the measurement vector of the candidate pixel

M is the mean vector of the signature of the class ¢
Cov, is the covariance matrix of the pixel in the signature of the class C

Cov, ™ is the inverse of Cov,

T is the transposition function
Advantages

The algorithm takes variability of classes into account, unlike minimum distance or parallelepiped. It

is more useful than minimum distance in cases where statistical criteria must be taken into account.
Disadvantages

The algorithm tends to over classify signatures with relatively large values in the covariance matrix. It
is slower when compared to a minimum distance or parallelepiped. As the Mahalanobis distance is

parametric, it relies on a normal distribution of the data in each band.
4.3.5 Maximum Likelihood/Bayesian Decision Rule

The maximum likelihood decision rule is based on the probability that a pixel belongs to a particular
class [65]. The basic equation assumes that these probabilities are equal for all classes, and the input bands
have a normal distribution. If the analyst have a prior knowledge, that the probabilities are not equal for
all classes then we can specify weight factor for a particular class. The variation of the maximum

likelihood decision rule is known as Bayesian decision rule (Hord, 1982)
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0, ()= p(w)=3 [ |3 (x-m)" Y (x-m) “5)

Where
i= class
X=n- dimensional data (n is number of bands)

p(w; )= probability that class (w;)occurs in the image
> i|=determinant of the covariance matrix of the data in class (w;)

m, = mean vector

4.3.6 Support Vector Machine

SVM is a supervised non-parametric classification approach derived from statistical learning theory
that often yields good classification results from the complex and noisy data [61-64]. As SVM classifiers
fall under non-parametric classification, estimation of statistical parameters is not involved before
classification, and therefore they are more appropriate for classifying Remote Sensing data. [66] The non-
parametric approach's advantage is that they do not require one specific statistical distribution model;
hence, they are versatile enough to be implemented in various data sets with minimal training sets. [67].
the main objective of SVM is to produce a model based on the training sets which can predict target
values of the test sets. SVM classifier is well suited to handle linear non-separable cases using Kernel
theory; therefore, SVM classifier was used effectively to hyper-spectral remote sensing data and SAR
data.

A brief discussion regarding the SVM classifier can be found in [68-70]. SVM can be performed using
either of the three approaches; 1) linear case, 2) Non-linear case 3) Multi-class case. SAR images can be
classified into two stages: extraction of appropriate features and labeling the features based on a set of

decision rules.
4.3.6.1 Linear Case

Let us consider a two-class classification with N-vectors of a training set from “d'-dimensional feature
space for separating two classes. From the Fig. 4.2 (a ,b), two classes (vectors) are represented in red and
blue color, the green color line which separates the two classes are called hyperplanes. The vectors which
are close to the hyperplane are called as support vectors. The distance between support vectors and the
hyperplane is called margin and is equal to 1/\omega whereas w refers to norm of vector. The objective

of SVM is to compute optimum hyperplane by maximum margin and y finding minimum
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f(X)=wx;+b
sgn[f(x;)1=, (4.6)
Y, (wXx;+b) >0

The membership decision rule is based on the function sgn| f ()]
Newline in finding optimum hyperplane, we have to estimate Y, where Y, (coxi +b) >0
The optimization is performed using Lagrangian formalism

f(x)= iYiai (xx)+b (4.7)

Where o denotes Lagrange multiplier.

(a) (b)

Fig 4.2 a) linear b) non linear

SV M classifies the data into different classes by determining the set of support vectors that summarizes
a hyperplane. SVM has a robust feature which ignores the outliners and finds the best hyperplane with

maximum margin.
4.3.6.2 Non-Linear Case

The two classes are represented in red and blue color, the green color line which separates the two
cassesbare called hyperline. In this case, the first step is to make a soft margin that adapts noisy data. The

second step is the utility of kernel. Kernel is the function that simulates the projection of initial data in a

feature space with higher dimensions¢ = K" — H . In this new space the data is consider as linearly

separable by replacing the dot product (X, X; )with(#(x), #(x,))

The new function to classify the data are

f(x)=sign(iyiaiK<Xi,Xj>+bj (4.8)

i=0
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Generally three kernel are used in this approach i) polynomial kernel, 2) sigmoid kernel, 3) RBF kernel.

The polynomial kernel is represented as

K(X, X)) =((X.X;)+1)" (4.9)
The sigmoid kernel and RBF Kernal are represented as

K(X,X;)=tanh((X.X;)+1)

XXt (4.10)
K(X.X,)=exp 2

4.3.6.3 Multiclass case

The SVM classifier was designed for binary classification. To handle more than two problems or multi
problems, there are different algorithms such as One against All (OAA) and One against One (OAOQ).
OAA algorithm constructs K number of hyperplanes for K classes and separates K-1 classes. OAO

k(

. k-1 :
algorithms constructs T) hyper planes to separate each pair of classes.

4.4 Unsupervised classification

In this approach, the identities of land cover types to be specified as classes within a scene are generally
not know prior. When the ground information/surface features are lacking the unsupervised approach is
opted. The computer groups pixels with similar spectral characteristics into unique clusters with
statistically determined criteria. Later, the analyst then combines and re-labels the spectral clusters into

information classes.
4.4.1 ISODATA Clustering

Iterative Self Organizing Data Analysis Technique (ISODATA) represents a comprehensive set of
heuristic procedures that have been incorporated into an iterative classification algorithm. This algorithm
is a modification of the K means clustering algorithm, which includes rules for merging and splitting

clusters.

ISODATA is iterative because it makes a large number of passes through the remote sensing dataset until
specified results are obtained, instead of two passes. Isodata does not allocate its initial mean vectors
based on the analysis of the pixels rather, an initial arbitrary assignment of all Comic clusters takes place

along ab n dimensional vector that runs between very specific in the feature space.

4.4.2 K-Mean Clustering
K-means classification is an unsupervised classifier, where training sites is not required. Clustering

algorithm is a method of cluster analysis which aims to partition of n observations into k clusters in which
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each observation belongs to the cluster with the nearest mean. K-means clustering algorithm also known
as C-means clustering and has been applied to variety of areas including image and speech data

compression. The objective function is defined as

w=xM e |ED - V)2 (4.11)

Where(Ei(j) —V;)? is a distance measured between a data pointEi(j) and the cluster Vjis an indicator of

the distance of the n data points from their respective cluster centres.

4.5 Results and Discussions

4.5.1 SVM classifier for RISAT-1 Hybrid-Pol and dual-pol data

Fig. 4.3 (a) and Fig. 4.3 (b) are the SVM classified images on Hybrid-pol RISAT-1 data and Dual-pol
RISAT-1 data. Fig. 4.3 (a), 4.3 (b) are the SVM classifier image classified in 4 classes viz. urban, water
bodies, vegetation and bare soil. Where red color corresponds to urban, green color corresponds to water
body, blue color corresponds to vegetation and yellow color corresponds to bare soil. Fig. 4.4 a) is the
optical LISS-IV image and Fig. 4.4 b) is SVM classified image on optical LISS-1V data, where blue color
corresponds to water body, green color corresponds to vegetation, red color corresponds to bare soil,

yellow color corresponds to urban.

® Urban
B water Body &
Vegetation

a) SVM classified images on Hybrid-pol RISAT-1 data b) SVM classified images Dual-pol RISAT-1 data

Fig 4.3 Hybrid-pol, Dual-pol RISAT-1 SVM classified images

TaTAY
Erar i1

a) Optical LISS-IV b) SVM classified LISS-1V

Fig 4.4 LISS IV image and SVM classified LISS IV image
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Table 4.1 represents the confusion matrix obtained for RISAT-1 Hybrid pol data, RISAT-1 Dual-pol
data, and LISS -1V data using SVM classifier with RBF kernel parameter. We observe that (OA) 91.58
% for Hybrid pol data is more when compared to Dual-pol data 76.83 %. We also observe that RISAT-1
hybrid pol result and Optical LISS-4 results are almost similar.

RISAT-1 RISAT-1 LISS-IV
Hybrid Pol Dual Pol
U WB | V BS U WB \Y% BS U WB \Y% BS

U 80.70 | 0.00 | 18.83 | 0.47 56.66 | 0.00 35.32 | 8.02 86.69 | 0.01 00.00 | 45.08
W | 0.00 100 | 0.00 0.00 0.00 96.60 | 0.00 0.40 0.00 99.99 | 0.00 0.00
B
\% 515 | 0.14 | 85.89 | 8.81 | 42.02 | 0.00 | 57.61 | 0.37 | 897 | 0.00 | 96.90 | 0.64
B 0.00 |[0.17 | 0.09 |99.74 | 289 | 258 | 1.07 | 9346 | 434 | 0.17 | 0.06 | 54.28
S
OA 91.58% 76.83% 93.59%

Table 4.1 comparison of Hybrid-pol, dual-pol and LISS-IV data for accuracy assessment using
SVM classifier (RBF)

4.5.2 SVM classifier on dual-pol data

SVM classifier for Land cover classification, Water body mapping and Oil Spill Detection on Sentinel1-
B data

Results of SVM

Fig 4.5 (a) and Fig 4.5 (b) are the VH and VVV sigma naught images. From both figures, we can observe
that cross-pol channel VVH can be used for land applications, and co-pol channel VV can be used for ocean
applications. From Fig 4.5 (b), we can easily identify the ships passage and oil spill. Fig 4.5 (c) and Fig
4.5 (d) are the histograms of VH and VV channels. Fig 4.5 (c) We can clearly observe that we have two
peaks in the VH channel histogram, the large peak corresponds to the pixels on the land, and a smaller
peak corresponds to the pixel over water surfaces. Fig 4.5 (d) shows three peaks for VV channel, which
corresponds to water, land, and oil spill. From the Fig 4.5 (e) magenta color corresponds to V'V backscatter
and green color corresponds to VH backscatter these areas are likely to be vegetation because of volume
scattering. The water bodies appears to have dark response, this is because of specular reflection in VV
and VH channels. Magenta color represents crop fields (paddy fields), green color represents thick
vegetation (forest), and the black color corresponds to the oil spill on oceans and water bodies on land.
The bright response is from the urban area. Fig 4.5 (f) is the water body mapping image, where the white
color represents the water bodies and the black color represents the land. As we have opted a VH cross-
pol channel oil spill is not visible. Fig 4.5 (g) is the oil spill image, the white color represents oil spill and
the black color is the masked area. Fig 4.5 (h) is the SVM classified image, the blue (aqua) color represents
the water body, red color represents urban class, pink color represents oil spill, green color represents
forest and the dark blue represents crop fields (paddy fields).
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Waterbody mapping was performed after radiometric calibration, speckle filtering and terrain
correction. From the backscattering values, we observe that the values are different for different classes.
From the Fig 4.5 (c) histogram of VVH the water body has a sigma naught values of -23 dB to -30 dB, and
the land has a sigma naught values between -10 dB to -21 dB. To mask the water bodies, we have to find
a suitable threshold value. Therefore by selecting sigma naught values less than -23 dB as threshold water

body mapping can be performed.

Oil spill detection was performed after radiometric calibration, speckle filtering, and terrain correction.
From the Fig 4.5 (d) histogram of VV channel, we have three peaks that correspond to land, water, and
oil spill. The sigma naught values for land are -2 dB to -14 dB, for water, the values are between -16 dB
to -24 dB, and for oil spill, the values are between -25 dB to -29 dB. Therefore selecting sigma naught

value less than -26 dB as threshold oil spill detection can be performed.

Water | Oil Spill | Forest | Crop field | Urban | PA
Water 98.67 | 1.33 0.00 |0.00 0.00 |98.67
Oil Spill | 2.20 |96.62 0.00 |0.31 0.87 |96.62
Forest 0.00 |4.24 57.45 | 7.66 30.64 | 57.45
Crop field | 0.00 | 0.29 201 |86.51 11.19 | 86.51
Urban 0.00 |1.66 9.21 13.21 75.95 | 75.95
OA 83.03

OA: Overall Accuracy, PA: Producer Accuracy
Table 4.2 Confusion matrix

(a) Lee filtered VH Image (b) Lee filtered VV Image
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Histogram for Sigma0_VH_db
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(c) Histogram of VVH channel

Frequency in &pixels

Histogram for Sigma0_VV_db
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(d) Histogram of VVV channel

(e) GB (FCC) Image

(9) Oil Spill Image

58

(h) SVM Classified Image

Fig 4.5 Results of filtered, waterbody mapping, oil spill detection and SVM classified Images.



Table 4.2 is the confusion matrix obtained from the classification output for accuracy
assessment. SVM classified the class water to 98.67% and the remaining 1.33% was classified
as oil spill. Oil spill was classified to 96.62% and the remaining 2.20%, 0.3%, 0.87% were
classified as water, crop field and urban. Forest was classified to 57.45% and the remaining
4.24%, 7.66%, 30.64% were classified as oil spill, crop fields and urban respectively. The
classifier has misclassified urban to forest because of its vertical orientation. The Crop field
was classified to 86.51% and the remaining 0.29%, 2.01% and 11.19% as oil spill, forest and
urban respectively. The urban class was classified to 75.95% and the remaining 1.66%, 9.21%
and 13.21% was classified as oil spill, crop field and forest. The Producer Accuracy (PA) for
water, oil spill, forest, crop field and urban are 98.62%, 96.62%, 57.45%, 86.51% and 75.95%.
The overall accuracy for SVM classifier was 83.03%. For validation the classified results were
compared to the optical Sentinel 2A and Google Earth.

4.5.3 Comparison of SVM vs Wishart classifiers

Results

Fig 4.6 () is the SLC image of level 1.1 without multilooking, Fig 4.6 (b) is the multilooked
image, 5 looks in range and 1 look in azimuth direction. Fig 4.6 (c) is the refined lee filtered
image with window size 3x3. Fig 4.6 (a-c), magenta color corresponds to urban class, green
color corresponds vegetation class, blue color corresponds crop fields, and black color
corresponds to water body. Fig 4.6 (d) is the SVM classified image, where red color
corresponds to urban class, green color corresponds water body class, blue color corresponds
crop fields, and yellow color corresponds to forest, and orange color corresponds to bare soil.
Fig 4.6 (e) is the Wishart classified image, where red color corresponds to urban class, green
color corresponds water body class, blue color corresponds crop fields, and yellow color
corresponds to forest, and orange color corresponds to bare soil. From Fig 4.6 (d) and Fig 4.6

(e), the urban class was better classified using SVM classifier.

From the Table 4.3, SVM has classified the urban class 98.37% better than Wishart classifier
96.85%. SVM and Wishart classifiers classified water bodies to 100%. Wishart classifier has
classified crop field class to 94.4% better than SVM classifier 92.75%. SVM has classified the
forest class to 81.71% better than Wishart classifier 72.21%. Wishart classifier has classified
bare soil class to 91.90 % better than SVM classifier 82.61%. On a whole SVM and Wishart

supervised classifier, Overall Accuracy were almost similar (91.08% and 91.07%).
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U 96.8 198300 (00 31 |06 |00 |06 00 |02

wB |00 |0.0 |100|100 0.0 |0.0 |00 |00 0.0 |00

CF |00 |00 (0.0 [0.0 [94.4927|29 |06 26 |6.6

F 00 |00 (00 (00 0.6 |00 |722 817 27.1 | 18.2

BS (00 (02 |00 |05 |04 |46 |76 |120 91.9 | 82.6

OA | Wishart: 91.076 | SVM: 91.088

U:Urban, W: Water Body, CF: Crop Fields, F: Forest, BS: Bare Soil,
OA: Overall Accuracy, W: Wishart Classifier, S: SVM Classifier

Table 4.3. Confusion Matrix for Accuracy Assessment

kE

Fig 4.6 (d) SVM classifer image Fig 4.6 (e) Wishart Clasifer
Fig 4.6 Processing of Alos-Palsar -2 dual-pol data
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4.6 Conclusion:

SV M classifier gave an excellent overall accuracy on RISAT Hybrid-Pol data and on optical
LISS-1V data. SVM has been classified into four classes with an OA of 91.58 % and 93.59%,
respectively.

SVM, when applied on dual-pol systems when co and cross-polarization are available, co
polarization (VV) channel enables better results for ocean applications. Similarly, Cross
polarization (VH) enables better results for land application. From this study, we have observed
the importance of co and cross-polarization. We have observed that the VV channel histogram
has three peaks, but we have only two peaks in the VH histogram. The VV histogram shows
that we have another peak for oil spill other than land and water peaks. This study has
successfully presented water body mapping, oil spill detection, and land cover classification
using sentinel 1B data. SVM has classified the dataset to an accuracy of 83.03%. The validation

for the classified results was verified with optical data (Sentinel 2A and Google Earth).

When SVM was applied on L-band Alos palsar data and compared with Wishart classifier,
from this study, we have explored the performance of L-band Alos palsar-1 data using SVM
and Wishart classifier on metropolitan areas. In order to know the available natural resources
around the city Hyderabad, LULC was performed. As L-band has more penetrating capability,
the results for the SVM and Wishart classifier are almost similar. From Table 4.2, SVM has
classified urban class well when compared to the Wishart classifier. The (OA) achieved on the
data were 91.08% and 91.07% for SVM and Wishart classifier. The preprocessing was carried
on POLSARPRO 5.0 version. The classified results were validated using Google Earth images

and Ground Truth information.
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Chapter 5

Exploring the Capability of Compact
Polarimetry (Hybrid-pol) C-band RISAT-1
data over Dual-pol for land cover
classification and crop identification.

Contributions and citations of this chapter
Publication: 2

Citations: 9
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5.1 Introduction

This chapter specifies the credibility of compact polarimetry circular transmission over
linear dual-pol and quad-pol data for land cover and Crop identification. This chapter aims to
study and record the response of circular components from the targets over linear transmission.

The second objective is to compare the three modes of Compact polarimetry.

5.1.1 Motivation: The motivation of this chapter came from the contributions of Raney et al.,
Souyris et al, Charbonneau et al., and M.E Nord et al.

5.1.2 Significance of Study: To explore the potential of compact polarimetry (hybrid-pol) for

various applications.

5.1.3 Significance of the datasets and frequency: RISAT-1 is the only mission to have Hybrid

Polarimetric architecture on board, and C-band has good signal penetration into the targets.

5.1.4 Novelty: In the literature, comparisons were made from the simulated hybrid-pol data.
As the RISAT-1 has Dual-pol, Hybrid-pol data availability on the study area, investigations

were performed.
5.1.5 Type of target: Rural

5.1.6 Application: Land Cover and Crop Discrimination
5.2 Radar Polarimetry

Radar polarimetry is the science of acquiring, processing, and analyzing the electromagnetic
field's polarization state and is concerned with the utility of polarimetry for radar application.
With recent advances in polarimetry, many upcoming SAR-based space-borne missions are
planned to overcome the trade-off, such as polarimetry, resolution, and swath width [71-73].
From the past two decades, the concept of polarimetric SAR and its application has been an
active research field. Radar polarimetry can be performed on two platforms, i.e., Space-borne
and Airborne SAR systems, by providing high-resolution data in single, dual, and quad-pol
data for the radar community. In general, a single pol system transmits and receives only one
polarization, viz. horizontal (H) or vertical (V). Similarly, a dual-pol SAR transmits one
polarization and receives the backscatter in a pair of orthogonal polarization viz. transmit (H)
and receives (H, V) vice versa. In quad-pol SAR, two orthogonal polarizations H and V, are

coherently transmitted and received. Complete polarimetric scattering information can be
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obtained from the target from quad-pol SAR, and hence, better analysis and classification can
be performed [10].

5.3 Compact Polarimetry Overview

In a quad-pol SAR systems a pulse is first transmitted on one polarization, and all
orthogonally polarized signals are received before the next signal is transmitted. Similarly,
SAR transmits two orthogonal polarized pulses alternatively and receives backscattered signal
simultaneously using two orthogonally polarized antenna thus by capturing all polarization
information. This process doubles, pulse repletion frequency (PRF) and halves the swath width

which is the limitation to the fully quad-pol SAR systems.

These limitations will have an adverse effect on the revisit time, which is an important factor
for earth observation missions [74-75]. The tradeoffs between conventional single-pol linear
systems and quad-pol systems is a dual-pol system, in which a single polarization is transmitted
and receives two orthogonal polarizations, by overcoming the drawbacks of conventional linear
polarization systems. To achieve better swath width and to reduce average peak power with
simple architecture Compact polarimetry (Dual Partial Polarimetric mode) has been proposed
[17]. The dual partial polarimetric mode was proposed by Souyris [17]. The information from
the compact-pol SAR is almost similar to that of fully polarimetric SAR from the azimuthally
symmetric scattering targets and was proved by Souyris et al. Raney et.al [13] drew a similar
conclusion and also promoted the use of Hybrid SAR for its simpler architecture in contrast to
the conventional SAR. Compact polarimetry is a technique which allows construction of
pseudo quad-pol data from dual-pol SAR. Recently Compact polarimetry has gained more
importance than fully polarimetric SAR by its advantages such as larger swath width, less
power, and simple architecture. Compact polarimetry has proven its potential in distinguishing
oil slicks, ship detection and in crop monitoring. Compact polarimetry has three modes as
shown in Table 5.1and Fig. 5.1.
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S.No Mode Tx/Rx(Transmitting/Reception)

1 /4 45°/ (H, V)
2 CTLR (Hybrid) | RC/ (H,V)
3 DCP RC/ (RC,LC)

H = Horizontal, V = Vertical, RC = Right Circular, LC = Left Circular
Table 5.1: Compact Polarimetry Modes

v

<
reception

H

reception

reception

reception

. RC LC receive
{a) /4 mode (b) Hybrid mode (c) DCP mode

Figure 5.1: Illustration of CP modes

5.3.1 CP-Modes

T
— de:
(4)moe

The (%) mode was one of the first partial polarimetric concepts to appear in the radar

imaging literature developed by Souyris et.al [17]. In this mode, SAR transmits a linear
polarized field at an angle of 45 concerning Horizontal or vertical orientation and receives
Horizontal and vertical components [12, 13]. The covariance matrix is obtained from the Eqgn.
5.1.

[c ]:l |Skn|” (St -Sw) i |SHV|2 |SHV|2 +1{ 2R(Spw -Stv ) Sk -Stv +S W Sk (5.1)
T2l % i Sw)  ISwlt ] 2lIswl ISw ] 2L e Sy FSw STy 2(Sw Siy)
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5.3.2 Dual circular polarimetric (DCP)

In this mode, right circular polarization is transmitted and both left and right circular
polarization are received. Stacy and Preiss demonstrated that dual circular polarization could
be implemented with slight modification from original compact polarimetry algorithm. The

covariance matrix was obtained from the Eqn. 5.2.

1 IS —Sw [’ ~i(Sim —&m} 1 {4%2 o} 1 {43((% =S )-Siy)  2(Si +Sw) Sy

[Cocrl=— . *
e ISk + S )-(Sin =Sw)” (S "'va)‘2 4 0 0] 4 2(Suy +Sw)S'wy 0

.(56.2)
5.3.3 Circular Transmit Linear Receive (CTLR) Polarimetry

CTLR is popularly known as Hybrid polarimetry. In Hybrid polarimetry, only one
polarization will be transmitted, and other orthogonal polarization will be received along with
relative phase which is different from dual polarimetry systems. In this mode, Circular (right
or left) component is transmitted and Linear component is Received (CTLR). In dual
polarimetry systems, relative phase information is not available. Hybrid Polarimetry is the
optimum architecture for applications related to planetary explorations and earth observations.
SAR systems transmitting linear component may not be able to excite target response from
linear structures as they are orthogonally oriented to the incident electric field [74-75]. Quad-
pol SAR system is restricted in terms of incidence angle. In this case, by transmitting a linear
component volume scattering is overestimated due to the change in orientation angle shift
during reception of the signal from the target [76-78]. Therefore illuminating circularly
polarized signal can overcome the limitation of linear transmitted systems. However,
transmitting a circular component will not be affected by ionospheric distortions (Faraday
rotation) and are free from the polarization orientation angle shift [79]. Hence, overestimation
of volume scattering can be reduced when compared to quad-pol SAR system and another
advantage of transmitting circular polarization is to reduce the range ambiguities [13]. Among
circular transmit systems, Hybrid-pol is preferred over DCP because its performance is limited
to weaker cross-polarized links and it is affected by additive noise and by crosstalk from
stronger like polarized signal [13]. From hybrid-pol data, an equivalent covariance or
coherency matrix may be reconstructed to produce pseudo quad-pol data. From the Egn. 5.3
covariance matrix of hybrid-pol data was obtained.

1
+_

2

:{ |SHH |2 IS Sv*v )}
2

[Corrl== PSHVlz _ilsHV|z}r£|: _ZS(SHH'S;V) SHH'S;V+S*W'SHV (5.3)
. * 2
=i(Spp Sy ) |va|

i[Shy |2 Sty |2 2] 8"y Sy +Sw Sy 23(Syy Sy )
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5.4 Hybrid Polarimetric SAR Architecture

Hybrid Polarimetry architecture is shown in Fig. 5.2. The hardware realization of hybrid
polarimetry is in-complex as compared to that of linear full polarimetric systems. Both in active
and passive case, the dual polarized antenna will transmit circular polarization only if H and V
components are driven simultaneously. In this system, the same signal is transmitted through
horizontal and vertical antenna such that phase 90° is maintained. Simultaneously during the
reception, an additional pair of 90° hybrids in the receive paths is equired after the antenna or
along each of receive chains. Hybrid polarimetry architecture has numerous advantages such
as the generation of Stokes parameter from dual-pol data, less risk of crosstalk, calibration, less
flight hardware, quad polarization transformation [13].

Transmitter &
waveform

T

Timing and
control

90° |«

[HI

H Receive HProcessor [—a —— %
" HV*
. v

V Receive V Processor I‘-f'lI

Figure. 5.2: Hybrid polarimetry Architecture @ Raney 2007 et al.
5.5. Study area and Datasets

In this study we have used RISAT-1 Hybrid pol data and Dual pol data and optical
resourcesat-2 data for validation of classifed image as shown in Table 5.2 .

Mission/ Polarization | Band Mode Incidence | Res Rg | Res Az | Date of Acq
Sensor /Freq Angle Dd/mm/YYYY
RISAT-1 Dual Pol C/5.04 FRS-1 46.59 3.33 1.80 5/12/2015
RISAT-1 Hybrid pol C/5.04 | FRS-1 39.57 3.33 1.80 05/07/2016
Resourcesat-2 | 3 bands - - - - - 09/04/2016
Google Earth

Table 5.2: Datasets
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5.5.1 Ground truth

Ground truth data was collected on 4th and 5th of July 2016. Detailed information such as
water level, crop yield progress, weather conditions were also recorded. On 4th and 5 July the
study area was covered with clouds and had rainfall, during the time of acquisition. For better
classification accuracy, ground coordinates for various target class were recorded with the help
of hand-held GPS of Trimble Company. With the help of ground coordinates, training sites are

given for supervised classification. Based on the ground truth, we have identified four classes

(Urban, Water Body, Vegetation, Bare Soil).
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5.6 Methodology
The flow chart of the propesed work in this chapter is shown in Fig 2.3.
5.6.1 Sigma naught image generation

Sigma naught image is generated using the equation (5.4).

Radiometric calibrations (backscatter calibration)

&°(db) = 20l0g,, (DN, )~ K,,, +10l0g,, [ 2::%:17;} (5.4)

o (db) = radar backscatter coefficient in dB
(DN p) Is the digital number are the image pixel gray-level count for the pixel p

K, Is calibration constant in dB
ip Incidence angle for the pixel position p

I, Incidence angle at the scene centre

The calibration constant are obtained from the

Calibration of RH and RV channel

RH_,, = RH, sqrt [(mA (~KdB,, /10) {sin (ip)/Sin(icemer)}}
(5.5)

RV,

calib

=RV, 'sqrt [(w (~KdBq, /10) {Sin i, )/Sin (i )}}

RH, RV, are pixel values of original complex images

KdB Is the calibration constant of dB

i, Incidence angle of the pixel position

Incidence angle at the scene centre

Icenter

Using the equation 5.4 and 5.5 backscattered coefficient ¢° is processed

Hybrid-pol data has a 2*2 covariance matrix with phase information stokes vectors and child

parameters are derived from the equation 5.6.
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5.6.2 Stokes vector

sonRHF+mv|>
s, =([RH[" ~[RV[")
S, =2R(RH-RV") =
S;=—23(RH-RV" >=—2-<QRH-|R

RH + QRH

(3
< RH +QRH
2

Where |RH |2 Intensity of RH

|RV|2 Intensity of RV

RV + Qév )>
RV + Qév )>

’ RV +QRH QRV>
vV _IRH 'QRV>

(5.6)

Class Urban | Water Vegetati | Bare soil
body on

Sigma RH(dB) -7.76 -20.69 -10.82 -11.31

Hybrid Pol

Sigma HH(dB) -2.09 |-17.58 |-18.59 -19.45

Dual Pol

Sigma RV(dB) -8.24 |-18.33 | -8.45 -13.15

Hybrid Pol

Sigma HV(dB) -15.61 | -25.52 -16.52 -10.72

Dual Pol

Table. 5.3 Sigma naught values for hybrid pol (RH, RV) and dual pol (HH, HV) RISAT-1 data

The values in Table 5.3, are the Sigma naught values of Hybrid-pol (RH, RV) and Dual-pol
(HH, HV) RISAT-1 data. The training and testing samples of Hybrid-pol RISAT-1are shown
in Table 5.4

Class Training samples | No of Polygons | Test Samples | No of Polygons

Urban 4699 02 10097 05

Water Body 3355 04 9582 08

Vegetation 5005 02 17154 09

Bare Soil 1147 02 2403 03

OA 95.31% 91.58%
Table 5.4: Training and Testing for Hybrid Pol RISAT-1 data
5.7 Results

Fig. 5.4 (a), is the Google Earth image, green color indicates vegetation, White Color
indicates settlements, green color indicates water-bodies and brown color indicates bare soil.
Fig 5.4 (b), is the FCC image of LISS-IV data, where red color indicates paddy fields, black
color indicates water body, green color indicates vegetation, and white color indicates bare soil.
Fig 5.4 (c), is the Raney derived RGB image on Hybrid pol data, where red color indicates
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urban settlements, black color indicates water body, green color indicates vegetation, and white
color indicates bare soil. Fig 5.4 (d), is the Raney derived RGB image on Dual pol data, where
green color indicates vegetation, black color indicates water bodies and red color indicates

urban settlements and paddy fields.

Vegetation
Water Body

(@) (b)

Urban
¥ Cotton Field

(C) i are Solt_ | T S (d

Fig 5.4 Images of Optical and Raney derived parameters of the Area of Interest. (a) Google
Earths image. (b) Resourcesat-2 LISS- 1V image (c) Raney derived RGB image on hybrid pol
data. (d) Raney derived RGB image on dual pol data.

SVM parameterization

In this paper, the method of SVM is implemented by using the library LIBSVM on Polsarpro
tool [97]. In this study, OAO approach has been retained with RBF kernel.
The kernel parameters are tuned in the range of C={8,16,32,64,128,256} and
v={0.03,0.06.0.12,0.25,0.5,1,2}. The cost parameter C and kernel parameter y were optimized
using cross-validation for obtaining best possible classification accuracy [80-82]. From
fivefold cross validation, we have obtained the values of C=64, y=0.5 with an accuracy 93.55
using grid search within a given set. While tuning the kernel parameters we have observed,

as the values of C and vy increases the accuracy also increases. With a large values of C and y
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there is a tendency for the SVM to over fit to the training data. The cross validation procedure

prevents the over fitting problem.

Vegetation
Vegetation 3 % 5 A Water body
Bare Soil 3 $ A 7 2 A A Bare Soil

Water Body
Vegetation

(d) (€) (f)
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Figure 5.6 Ground truth collection

Fig. 5.5 (a), is the Pseudo compact decomposition performed on Hybrid-pol data. From this
decomposition, we obtain volume scattering, double bounce scattering and surface scattering.
Where green color corresponds to the volume scattering from thick vegetation, red color
corresponds to the surface scattering from crop fields and water bodies, blue color corresponds
to the double bounce scattering from urban settlements. Fig. 5.5 (b) and 5.5 (c) are the m-delta
and m-chi decomposed images, respectively. From m-delta and m-chi decompositions, yellow
color corresponds to the double bounce from urban structures, i.e., buildings, green color
corresponds to the volume scattering from vegetation’s. The magenta color corresponds to the
surface scattering from crop fields, bare soil and dark blue corresponds to water bodies. It was
observed visually that m-delta and m-chi decomposition results were almost similar. Fig. 5.5
d) and 5.5 (e) are the SVM classified images on Hybrid-pol RISAT-1 data and Dual-pol
RISAT-1 data, where red color corresponds to urban, green color corresponds to water body,
blue color corresponds to vegetation and yellow color corresponds to bares soil. Fig. 5.5 (e) is
the SVM classified image on optical LISS-IV data, where blue color corresponds to water
body, green color corresponds to vegetation, red color corresponds to bare soil, yellow color
corresponds to urban [83-87]. The Table 5.5 represents the performance of kernel parameters
for Land cover classification using SVM classifier. In this study, we have compared all kernel
parameters (linear, polynomial, RBF) on the test data. In this paper, the method of SVM is
implemented by using the library LIBSVM on Polsarpro tool. In this study, OAO approach has
been retained with RBF kernel. The kernel parameters Cost Parameter (C) and kernel parameter
(Gamma) are tuned. Table 5.6 represents the confusion matrix of the Hybrid-pol, dual-pol and

LISS-1V data. Table 5.6 represents the cost parameterization effect with respect to accuracy.
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RBF P2’ L CP
U w |V BS |U W |V BS |U W |V BS
B B B
U |80.7 0.0 |188 |047 |751 |02 |224 215|784 |00 |20.0 |1.55 | 1009
0 0 3 6 6 3 4 0 0 l
W | 0.00 {10 |0.00 {0.00 |0.00 | 10 |0.00 | 0.00 | 0.00 | 10 | 0.00 | 0.00 | 9582
B 0 0 0
V |515|0.1 (858 |8.81 |3.64 |03 |86.4 |9.63 434 |0.1 |859 953 |1715
4 9 2 1 8 5 4
B |0.00|01 |0.09 |99.7 000 |01 017 |99.3 |0.00 |0.1 |0.35|99.4 |2403
S 7 4 7 9 7 8
O |92.34% 90.24% 90.96 %
A

Kernel Types RBF: Radial Basis Function; P ’2’: Polynomial; L: Linear U: Urban Class; WB: Water Body, V:
Vegetation; BS: Bare Soil

Table 5.5 Confusion matrix for Hybrid pol RISAT-1 SAR data using various Kernel parameters

on test set

RISAT-1 RISAT-1 LISS-IV

Hybrid Pol Dual Pol

U WB |V BS U WB |V BS U WB |V BS
U |80.7 |00 |188 |0.47 |56.6 |0.00 |353 |8.02 |86.6 |0.01 |00.0 |45.0

0 0 3 6 2 9 0 8
W |0.00 | 100 [ 0.00 | 0.00 |0.00 | 96.6 |0.00 |0.40 | 0.00 |99.9 |0.00 |0.00
B 0 9
V |515 |01 (858 |88l |42.0 |0.00 |57.6 |0.37 [8.97 |0.00 |96.9 |0.64

4 9 2 1 0

B |0.00 {01 |[0.09 |99.7 | 289 |258 |1.07 |93.4 |4.34 |0.17 |0.06 |54.2
S 7 4 6 8
O |92.34% 76.83% 93.59
A

Table 5.6 Comparison of Hybrid pol, dual Pol and LISS IV data for accuracy assessment using
SVM classifier (RBF kernel).

S.No C () Accuracy (%)
1 8 0.5 90.70
2 16 0.5 91.70
3 32 0.5 92.90
4 64 0.5 93.55
5 128 0.5 94.10
6 256 0.5 95.35

Table 5.7 Parameterization of cost parameter
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Alos-palsar RISAT-1
Quad-Pol Hybrid-Pol

W C ) P M W C U P M
98.67 | 1.33 | 0.00 |0.00 |0.00 |99.54 |0 0 0 0.46
220 |96.62 |0 031 |0.87 |0.05 |47.35|8.25 |27.07|17.26
0 424 | 57.45|7.66 |30.64|0.85 | 1558 |23.83|14.60 | 45.14
0 229 |201 |86.51|11.19|0 31.86 | 10.28 | 38.15 | 19.71
0 166 |9.21 |13.21|75.92|3.27 |11.85|9.16 |6.18 |69.55
OA | 83.03% (1656,1271,966,2091,2346) | 55.6% (3053,2150,4096,2451,2752)
Classes W:Water, C:cotton, U:urban, P:Paddy, M:Mango

Table 5.8 Confusion matrix of RISAT-1 Hybrid-pol and Dual-pol for crop discrimination

Z| 9 c|l o s

Hybrid-pol data has discriminated the crops very well. For crop discrimniation, five land
targets were identified namely Water, cotton, urban, paddy and Mango. SVM has classifed five
classes very well in Hybrid-pol data than in Dual-pol data. The two seasonal crops cotton and
paddy were clearly discriminated and classified in Hybrid-pol data. In dual-pol data, cotton and
paddy were not discriminated and classified with respect to Hybrid-pol data. From Table 5.8,
Hybrid pol data has obtained OA of 83.03% and dual-pol data has obtained OA of 55.6 %.

5.8 Polarimetric synthesis of Compact Polarimetry (CP) and the comparison
of CP modes

In this chapter, a compact polarimetry mode is simulated from quad-pol Alos-Palsar-2 SAR
data. By symmetry assumptions a quad pol data can be synthesized to a compact pol data. This
chapter presents the comparisons of three modes of compact Polarimetry and to study the

compact pol mode interaction with the targets.
5.8.1 Methodology

In order to study the three modes of compact polarimetry, we need to acquire quad-pol then
simulate/ synthesis to compact-pol data [88-93]. Quad-pol data has to be synthesis to (%)

mode, Hybrid mode and DCP mode. All the CP mode have to undergo multilooking, Speckle
filtering, decomposition, classification, accuracy assessment then should be compared.
Multilooking (6: 1 range and azimuth direction) is performed to reduce the speckle content and

also allows us to obtain square pixel. Performing multilooking for a several time degrades the
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image quality. Lee filter with window size 7*7 reduced the speckle effectively, so
decomposition is performed on the filtered image. HAA decomposition is performed to
understand the scattering response of the target. As, the decomposed image consist valuable
information, SVM classifier is performed. Accuracy assessment is done using confusion

matrix. The flow chart of the proposed work is shown in Fig. 5.7.

5.8.2 Study Area and SAR Data

For this study we have opted Amazon forest, Brazil. The study area consists of the
deforested part, short vegetation and dense vegetation. We have opted Alos palsar-1 quad-pol
data. We would like to record the response of circular transmission on intracting the targets.

The below images are the SLC level 1.1 images

e A
Import SLC quad-pol
Data
\. U y,
e A
Polarimetric Synthesis
(Qp-CP)

\. lL y,
e A
Multilooking
(6:1)

\. @ y,
e A

Speckle Filtering

LEE filter 7*7

L

Decomposition

HAA

L

SVM Classification

i

Accuracy Assessment

. J
Figure 5.7 Flow chart of proposed section
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5.9 Results and Discussion

Figure 5.8 is the SLC quad pol image with four channels, HH, HV, VH, and VV.
Speckle in the images are clearly evident. Once multilooked is performed on the images,

speckle is reduced in the images as shown in Figure 5.9.

a(HH) b (HV) ¢ (VH) d (VV)

Figure 5.8 Quad Polarization channels of Alos palsar-1 data

a(HH) b (HV) ¢ (VH) d (VV)

Figure 5.9 Multilook Quad Polarization channels of Alos palsar-1 data

The Figure in 5.10 represents three chanels in (%) mode, cross pol HV channel gave a

brighter response from short vegetation and the deforested area also gave specular reflection.

Figure 5.11 represents three channels of elliptical mode. Visually we can make out the

difference between (%) mode and elliptical mode. Figure 5.12 represents the three channel
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in (%) mode. Figure 5.13 represents the comparison of SVM classifier over (%) mode,

elliptical mode and (%) mode. Visually elliptical mode gave good results, the short

vegetation was very well classified in elliptical mode.

HH HV \AY

Figure 5.10 Three channel image of (%) mode

Table 5.2: represents the SVM classifier Comparison of CP Modes, (%) mode gave OA of

86.31%, elliptical mode gave an OA of 85.78% and (%) mode gave an OA of 86.35 % as

shown in Table 5.9. Where red color represents forest land, green color represents deforested
land and blue color represents short vegetation. Short vegetation was better classified by

elliptical mode. From the results all modes OA are almost equal.
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HH HV Y

Figure 5.11 Three channel image of elliptical mode

/4
Figure 5.12 Three channel image of (E) mode

T
4 2
Figure 5.13 SVM Classifier Comparission on CP modes

T
(=) Elliptical (—)
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Pi/4 mode Elliptical mode Pi/2 mode CP

F DF SV F DF SV F DF SV
F 97.23 6.66 |80.90 |94.27 |9.42 64.67 |[96.72 0.16 0.62 4419
DF | 0.88 93.29 |1 0.00 2.24 90.42 |0.00 0.88 93.07 [ 0.00 1757

Sv |1.89 0.05 |19.10 |3.49 0.16 3533 (224 0.55 21.72 225

CE/ | 17.45/2 | 1.88/ | 2.00/8 | 16.36/ | 4.79/9 | 32.1/64 | 17.05/3. | 1.88/6. | 32.82/78. | 6401
OE | .77 6.71 |0.90 5.73 .58 .67 28 93 28

PA/ | 97.23/8 | 93.29 | 19.10/ | 94.27/ | 90.42/ | 35.33/6 | 96.72/8 | 93.07/9 | 21.72/67.
UA | 2.55 /98.1 | 68.00 | 83.64 |95.21 |7.87 2.95 8.12 18

KC 10.73 0.72 0.73

OA | 86.31% 85.78% 86.28 %

F: Forest; DF: Deforested ; SV: Short Vegetation; CP: Class Population; OA: Overall Accuracy; CE:
Commission Error; OE: Omission Error; PA: Producer Accuracy; UA: User Accuracy; KC: Kappa

Coefficient

Table 5.9 Comparison of CP Modes using SVM classifier
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Chapter 6

Exploring the Capability of Compact
Polarimetry (Hybrid-Pol) C-band RISAT-1 data
over dual-pol and quad-po( for Land Cover

Classification.

Contributions and citations of this chapter
Publication: 2

Citations:
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6.1 Introduction

This chapter specifies the capability of compact polarimetry (Hybrid-pol) of RISAT-1 over
dual-pol RISAT-1 and quad-pol Alos-PALSAR-2 data for land cover classification. The
objective of this chapter is to compare the information content and penetration capability into

the targets among the datasets.

6.1.1 Motivation: The motivation of this chapter came from the contributions of Raney et al.,

Thomas Aisworth et al., and Rajib Kumar et al.

6.1.2 Significance of Study area: The test site (San Francisco) used for this study is a Standard
test site, approved by NASA, CSA, JAXA, and ESA. For a comparative analysis, the test site

should be the same.

6.1.3 Significance of the datasets and frequency: RISAT-1 is the only mission to have Hybrid
Polarimetric architecture on board. Alos Palsar-2 data is the only available L-band with quad-

pol configuration. RISAT-1 and Alos palsar-2 data availability of Test site made to opt.

6.1.4 Novelty: In the literature, no one has attempted to compare RISAT-1, C-band, Hybrid-
pol data with ALOS Palsar-2, L-band, quad-pol data. Moreover, the Hybrid-Pol recorded in

the literature were simulated from quad-pol data.

6.1.5 Type of target: Urban

6.1.6 Application: Land Cover

6.1.7 Significance of frequency: L band and C-band has more penetration capability

Boularbah souissi et al. [96] used ESAR DLR polarimetric data in fully polarimetric mode
and radarsat-2 in their study. From quad pol, CP mode was simulated. The authors have
presented an initial comparison of polarimetric information content between QP and CP
imaging modes. They have used an automated statistical clustering method based on
Expectation Maximization. It was reported in case 1: that all modes almost have the same
Overall Accuracy (95.47% for QP, 90.93% for C2, and 88.2% for CP). Case 2: all modes have
different OA Accuracy (90.41% for QP, 64.53% for C2, and 75% for CP). It was reported that

CP performance was very poor when compared to QP and C2.

Rajib Kumar et al. [21] used NASA/JPL AIRSAR L-band quad-pol data. From quad-pol

data, hybrid-pol data was simulated by symmetrical assumptions(SHV =S,y ) . From simulated
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hybrid-pol, Pseudo-quad-Pol was simulated. It was observed that Pseudo-quad-Pol values are
matching with original quad-pol values. It was also found that the scattering mechanism for

hybrid-pol data is less but comparable to quad-pol data.

Rajib Kumar et al. [16] used airborne multi-polarization GTRI data for comparing the
information content of quad-pol with simulated hybrid-pol data. The authors concluded that
the information contained in Hybrid-pol imagery is found to be comparable to that of quad-pol
data.

T.L Anisworth et al. [19] used airborne AIRSAR L-band quad-pol data. Compact-Pol (pi/2)
and CTLR modes are simulated from quad-pol data. Wishart maximum likelihood classifier
was applied on all modes to compare the several class type accuracy. On the whole, quad-pol
gave a good percentage of the training area and are correctly classified. It was found that CTLR

and pi/2 mode almost gave similar results. The linear dual-pol yields the lowest results.
6.2 Why is hybrid-pol so special?

Hybrid-pol has the same feature as full-pol but has a half data rate. Full-pol has less than
optimal ambiguity performance across the entire swath width because the pulse rate is too high.
Therefore the full-pol is best suited for selected areas and applications, whereas the dual-pol

mode has better uniform performance across the swath.

If a full-pol system is used all the time, it has some practical limitations on the performance.
While operating in full-pol, we have to switch from H to V on the next pulse and receive both
the polarization. In order to get the images in two polarizations and to get the images adequately
sampled, we have to pulse the radar at twice the rate to get twice the data. As the missions are
planned for global observation in ascending and descending pass over all land surface, water
and ice surfaces, radars are imaging over a 50% of its orbiting time. If we continuously image
using full-pol all the time we would have more data than we could get to the ground station.
Hybrid-pol has many of the characterization of the full-pol not quite as rich but rich. In hybrid-
pol we don’t have to pulse the radar at double rate. The other issues of full-pol are noise
properties, called ambiguities that are little higher than one would like at the certain part of the
swath. So several space agencies decided to operate mostly in dual-pol mode and to have
optimal imaging performance. Therefore Hybrid-Pol data has the advantage of being a dual-
pol in terms of swath width, power consumption, and almost the same as quad-pol in terms of

information content.
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6.3 Penetration Depth and Polarization

Like polarization back scatter toward the sensor results from single refraction from canopy
component such as the leaves, stems, branches and trunk. These returns are generally very
strong and are recorded as bright signals in like polarized radar imagery (HH or VV). This is
often called canopy scattering. Conversely, if the energy is scattered multiple times with in a
diffuse volume such as a stand of pine tree (i.e., from a needle to a stem, to the trunk, to a
needle), the energy may become depolarized. This is often called volume scattering. A radar
can measure the volume of depolarized volume scattering that takes place. E.g., it is possible
to configure a radar to send a vertically polarized pulse of energy. Some of this energy becomes
depolarized in canopy and exists towards the sensor in the horizontal domain. The depolarized

energy may then be recorded by the sensor VH mode — vertical send and horizontal receive.
6.3.1 Penetration depth vs Frequency

Longer the microwave wavelength, the greater the penetration into the plant canopy. Surface
scattering takes place at the top of the canopy as the energy entreats with the
leaves\needle\stems. VVolume scattering by the leaves, stems, branches and trunk takes place
throughout the stand, and surface scattering can occur again at the soil surface [98]. A
comparison of the repose of X-, C- and L-band microwave energy incident to the same canopy.
The stronger wave length x band 3 cm energy is attenuated most by surface scattering at the
top if the canopy by the foliage and small branches the ¢ band 5.8 cm energy experiences
surface scattering at the top of the canopy as well some volume scattering in the heart of the
stand. Little energy reaches the ground. L-band 23.5 cm microwave energy penetrates farther
into the canopy, where volume scattering among the leaves, stems, branches and trunk cause
the beam to become depolarized [99]. Also, numerous pulses may be transmitted to the ground
where surface scattering from the soil vegetation boundary layer may takes place longer p-band
radar would afford the greater penetration thought he vegetation and mainly reflect of large

stems and the soil surface.
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6.4 Datasets used

The Datasets used in this study as shown in Table 6.1

SAR Mission RISAT-1 RISAT-1 Alos-palsar 2
Frequency C-Band (5.35 GHz) | C-Band (5.35 GHz) | L-Band (1.2 GHz)
Polarization Dual -Pol Hybrid-Pol Quad-Pol
Country India India Japan

Agency ISRO ISRO JAXA

Incidence angle 26.35° 26.35° 8-70°

Swath 25 km 25 km 50 km

Resolution (m) 2.34,3.3 2.34,3.3 43,51
(Azimuth, Range)

Altitude 530.789 km 530.789 km 639 km

Table 6.1 Datasets used in this study
6.5 Methodology

For RISAT 1 hybrid-pol data processing, Hybrid-Pol is imported to Polsarpro tool. The

covariance matrix (C,) is generated and radiometric calibration is performed. The Stokes

vector and stokes child parameters are generated. To remove speckle, speckle filtering was
performed using refined lee filter 7*7 window size. Raney decomposition was performed on
the filtered data resulting in six Raney derived parameters i.e. i) Raney odd bounce ii) Raney
double bounce iii) Raney Random iv) Raney m v) Raney - delta, vi) Raney chi. M delta
decomposition is performed using the Raney m parameter, Raney delta and Stokes first
parameter. For land cover classification supervised classifier SVM with multi case approach
was performed. Similarly, for Alos palsar-2 quad-pol data processing quad-pol data is imported
to Polsarpro tool, and refined lee filter 7*7 window size is opted for speckle filtering.
Yamaguchi four component decomposition is performed on the filtered image. For land cover
classification supervised classifier SVM with multi case approach was performed. For RISAT-

1 dual-pol data processing dual-pol data is to be imported to Polsarpro tool, and covariance

matrix (Cz) is generated. Refined lee filter 7*7 window size is opted for speckle filtering.

Raney decomposition is performed and SVM with multi case approach was applied. Overall
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Accuracy is performed for three SVM classified for comparing the information content,
scattering response. The Flow chart of the proposed work is shown in. Fig 6.1.

6.5.1 Details of Test Site

The test site consists of two forest zones, three urban areas and one water body. In this work
five classes are identified as targets viz. SOMA, Golden Gate Park, Water body, NOMA,
Richmond. South of Market (SOMA) is an urban area occupied with tall buildings, Golden
Gate Park a forest place full of vegetation and tall trees, Water body is a Sea, North of Market
(NOMA) is an urban area occupied with large building with different orientation, and
Richmond is a residential area with gardens in between and some medium buildings.

]E
|
— ) .

RISAT-1
Hvbrid -Pol
Generation of stokes
matrix

Speckle Filtering
Refined lee7*7
M-delta
Decomposition
I A

i

Fig 6.1 Flow chart of the work
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6.6 Results and discussions

The quad-pol Alos palsar-2 data contains the full information when compared to Risat-1

hybrid-pol and dual-pol data. Alos palsar-2 quad-pol data has covariance matrix(CS) of 3*3,
Hybrid-pol RISAT-1 data has a covariance matrix (CZ) 2*2 with phase information, and dual-

pol RISAT-1 has a covariance matrix (C2)2*2 without phase information [100]. Figure 6.2 a)

is the Yamaguchi four component decomposed image of Alos-palsar-2 quad-pol data, 6.2 b) is
the m delta decomposed image of RISAT-1 hybrid-pol data, 6.2 c) is the Raney decomposed
image of dual-pol RISAT-1 data. Fig 6 a) green color corresponds to vegetation class, red color
corresponds to urban class and blue color corresponds to Water body (Sea), here SOMA an
urban area was decomposed as a vegetation class due to multiple scattering. Fig 6 b) green
color corresponds to vegetation class, red color corresponds to urban class and blue color
corresponds to Water body (Sea), here SOMA is decomposed as a vegetation class due to
multiple scattering but less compared to Yamaguchi four component decomposition. Fig 6 ¢)
green color corresponds to vegetation class, red color corresponds to urban class and blue color
corresponds to Water body, here water body is also decomposed as an urban class.

a) Yamaguchi quad-pol data ~ b) M delta hybrid-pol data  ¢) Raney Dual-pol data
Fig 6.2 Decomposition images on quad-pol, hybrid-pol and dual-pol data

Supervised classifier, SVM with multi class approach classified alos palsar quad-pol data
very effectively with an Overall Accuracy of 85.80%. SVM classified Risat-1 hybrid-pol data
with an Overall Accuracy of 69.79%. SVM classified Risat-1 dual-pol data with an Overall
Accuracy of 49.98%. From Table 6.2, SOMA was classified very in quad-pol data very well
when compared to hybrid-pol and dual-pol data. Golden Gate Park is similarly classified in
quad-pol and hybrid-pol data. In dual-pol data Golden Gate Park is poorly classified. Water
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class is well classified in all data. NOMA is effectively classified in quad-pol data, less
effectively classified in hybrid-pol data, and very poorly classified in dual-pol data. Richmond
class is also classified effectively in in quad-pol data, less effectively classified in hybrid-pol
data as shown in Fig 6.3. Dual-pol data is classified better than hybrid-pol data. From the results

below hybrid-pol data is an intermediate between quad-pol and dual-pol data.

Alos-palsar RISAT-1 RISAT-1
Quad-Pol Hybrid-Pol Dual-Pol
S G W [N R S G W [N R S G W |IN |R
S |60. |34. |2. |04 |16 |42. |21. |0.0 |88 |27. |45. |16. | 8.0 |3. | 22.
83 |51 |60 |0 7 13 (85 |4 1 16 |85 |17 |6 27 | 66
G |35 |88 |6, |00 (18 |00 |81 |16. |O 22 |10.0 [49. |44. |0 |53
6 38 |18 |4 4 9 63 | 07 0 9 73 |81 7
W |0 0 10 | O 0 0 0.0 [100 |0 0 0 01 ]99. |0 |02
0 0 7 81
N |[03 |01 |0 [(90. |86 (10. |0.8 |[0.0 |57. [30. |4.1 |14. (7.3 |7. |66.
2 1 9% |0 35 |1 2 88 |95 |7 56 |6 53 | 38
R |04 |13. |2. |42 |79. |33 |38. |37 (49 |49. |09 |29. |28 |4. |61
2 78 |01 |7 52 |3 21 |8 3 9% |7 46 |5 95 | 77

O | 85.80% 67.79% 49.98%
A

S: SOMA, G: Golden Park, W: Water, N: NOMA, R: Richmond

Table 6.2 Confusion matrix of three datasets

a) Alos quad-pol b) RISAT-1, Hybrid- pol
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c) RISAT-1 Dual- pol

Fig 6.3 Supervised classified images on quad-pol, hybrid-pol and dual-pol data
6.7 Conclusions

In this chapter a comparative study on C-band dual-pol RISAT-1, Hybrid-pol, RISAT-1, L-
band quad-pol Alos-PALSAR-2 with respect to information content and signal penetration is
performed. The information content and penetration capability of L-band quad-pol Alos-
PALSAR-2 recorded the highest overall accuracy 85.80% due to more signal penetration. The
results of C-band Hybrid-pol, RISAT-1 were promising and the overall accuracy is recorded
as 69.79%. The results of C-band dual-pol, RISAT-1 were very poor and was recorded with an

overall accuracy 49.98%.

The difference between L-band quad-pol AlosPALSAR-2 and C-band Hybrid-pol, RISAT-
1 OA was due to poor target decomposition in C-band hybrid-pol. Thus NOMA class and
Richmond class were not classified accurately when compared to L-band quad-pol
AlosPALSAR-2. We can conclude that hybrid-pol data will be an intermediate between quad-
pol and dual-pol. Thus opting Hybrid-pol data using L-band can increase the overall
classification accuracy. In future a comparison of L-band hybrid-pol data and L-band quad-pol

data elaborate the capability of hybrid-pol data.

89



90

Chapter 7

Conclusions



7.1 Conclusions

In hybrid polarimetry, to characterize the return signal, Stokes parameters are sufficient.
Hybrid-pol (compact polarimetry) SAR is a new SAR mode, with a combination of wider swath
along with coherent dual polarization with relative phase information. Therefore, Hybrid-pol
(compact polarimetry) SAR is always the best choice when transmitted power and swath width
are the main constraints. From this work, we studied the importance of speckle filtering for
image classification and the impact of speckle filter window size in speckle reduction in SAR
images. This study also investigated the capability of m-delta, m-chi decomposition, Raney
decomposition, and Pseudo Three-Component decomposition techniques for Land cover
Classification. We have characterized and classified various ground target classes in the data
very well. The m-chi decomposition approach has been proven to be robust even though the
transmitting signal is not perfectly circular polarized. This study evaluated the potential of
Compact polarimetric (Hybrid-pol) for meeting the Earth observation missions. Besides, this
study has demonstrated the potential of Compact-pol for crop identification and crop
classification. SVM classifier has classified the dataset very well, and the results are very
satisfactory. In this study, we have obtained (OA) of 92.34% for Hybrid-pol RISAT-1 data
using the SVM classifier with RBF kernel. Similarly, SVM with RBF kernel parameter gave
an Overall Accuracy (OA) of 76.83% for dual-pol RISAT-1 data. The results obtained from a
comparative study of dual-pol vs Hybrid-pol RISAT-1 data for crop discrimination are very
promising. The OA of Hybrid-pol data was 83.03% and for dual-pol, data was 54.75%. Thus
from this study, we can conclude that Hybrid-pol data is always preferred over Dual-pol data
concerning information content. Compact polarimetric SAR contains more polarimetric
information than conventional linear dual-pol SAR. Compact polarimetric SAR (Hybrid-pol)
achieves comparable polarimetric information to quad-pol SAR. To compare the penetration
capability, Alos palsar-2 (L-band) data and RISAT-1 (C-band) data have opted on the standard
test site San Francisco city. From this study, using a standard test site, Hybrid-pol RISAT-1
data, and Quad -pol Alos-Palsar-2 data are compared for information content and it was found
that Hybrid -pol data is far more superior than linear dual-pol data and comparable to quad-pol
data in terms of information content and penetration capability. The overall accuracy for L-
band quad-pol AlosPALSAR-2 is 85.80%, C-band Hybrid-pol, RISAT-1 data is 69.79%, C-
band dual-pol, and RISAT-1 data is 49.98%.
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7.2 Future scope

The SAR remote sensing using compact pol data is been an active field of research with
wide applications, many space agencies ISRO, CSA, NASA/JPL, JAXA, ESA are planning
with compact-pol architecture such as RISAT-1B, RCM constellation. The possibility of
hybrid polarimetry in exploring the Lunar (moon) surface and for planetary studies will be

investigated.

In future, a comparison of L-band hybrid-pol data and L-band quad-pol data elaborates the
capability of hybrid-pol data over quad-pol data for agriculture application, oil spill detection,

and sea ice characterization.
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