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ABSTRACT 

Earth Observation (EO) from space has been recognized as an invaluable way of 

monitoring the Earth. Today the necessity of Earth Observation Missions has increased rapidly 

due to its wide applications in many fields. Using EO systems, one can monitor Earth’s climate 

change, ocean surfaces, disaster management, mapping, land usage (such as agriculture, urban, 

and forestry). Particularly, Earth Observation using Synthetic Aperture Radar (SAR) is gaining 

importance due to its all-weather capability and day-night acquisitions. For continuous 

monitoring, SAR systems require a huge amount of storage, higher transmission power, and 

larger swath width. SEASAT, the first-ever civilian space-borne radar remote sensing system, 

was launched by NASA/JPL, in the year 1978. Depending on the type of polarization of signals 

these radars use for transmission and reception, they are known to be operating in full 

polarimetry, single polarimetry, dual polarimetry, and compact polarimetry modes. From the 

earlier studies, it is known that the performance of fully polarimetric SAR systems is the 

highest in the SAR application due to its complete radar target information content. However, 

Fully Polarimetric SAR systems have half the swath width, requires double the transmitting 

power, and complex architecture when compared to single and dual-polarized SAR systems. 

Compact Polarimetry (Hybrid Polarimetry) has gained significant importance in recent 

years among other earth observation missions due to its low power consumption, simple 

architecture, and larger swath width. For Space-based SAR systems, these parameters are vital 

to monitor the earth's surface continuously for various applications. Therefore, many 

International Space Agencies such as Canada Space Agency (CSA), Japan Aerospace 

Exploration Agency (JAXA), National Aeronautics and Space Administration (NASA), 

European Space Agency (ESA) and Indian Space Research Organization (ISRO) are interested 

to implement Hybrid polarimetry modes in their upcoming missions. Compact polarimetry 

offers a tradeoff with fully polarimetric systems in terms of swath width, power, architecture, 

budget, and information content. Initially, Compact polarimetry data was used for Lunar and 

Planetary explorations such as Mini SAR (Chandrayaan-1) mission and Mini-RF (Lunar 

Reconnaissance Orbiter) mission. RISAT-1 was the first space-borne EO mission with Hybrid 

Polarimetry and was launched by ISRO in 2012. The main difference of Hybrid polarimetry 

from fully polarimetric systems is transmitting a circularly polarized signal towards the target 

and receiving the linearly polarized returns. 
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In this research, the performance assessment of Compact Polarimetry (Hybrid 

Polarimetry) over dual-pol and quad-pol data for land cover classification, urban land cover, 

and crop classification has been attempted. Evaluation of hybrid polarimetry was done on 

various ground targets such as agriculture land, forest land, urban land, and semi-urban land, 

over dual polarimetry, and quad polarimetry data. Speckle filtering is performed over the 

datasets using various polarimetric speckle filters. A comparative study of different 

polarimetric speckle filters with variable window size and the impact of their selection from 

the point of view of edge preservation, information content, and classification has been done. 

To understand the scattering mechanism of the targets, target decomposition theorems such as 

three-component Freeman-Durden, four-component Yamaguchi decomposition, Raney 

decomposition, Pseudo Three-Component decomposition, m-delta, and m-chi decompositions 

were performed on the SAR datasets. The m-chi decomposition has proven to be robust when 

the transmitting component is not perfectly circularly polarized. A comparative study among 

the different modes of compact polarimetry was performed, hybrid-pol mode gave good results 

for various ground targets. The C-band hybrid polarimetry data and dual polarimetry linear 

data are also compared to study the response of circular transmission over a linear transmission 

from the target. It is observed that the transmitted circular component interaction with targets 

gave more detailed information than transmitting a linear component. The penetration 

capability of microwave frequencies using C-band, and L-band into the targets has also been 

studied, and it was observed L-band hybrid polarimetry gave more accuracy than C-band 

hybrid polarimetry data.  

Support Vector Machine (SVM) classifier, and  Wishart classifier, and other machine 

learning algorithms were used to classify the datasets. SVM classifier gave good results when 

compared to Wishart classifier on Hybrid pol data. The datasets were compared using three 

different SVM kernel parameters, i.e., Radial Basis Function (RBF), Polynomial with degree 

'2', and Linear. It is observed that SVM with RBF kernel parameter gave the highest Overall 

Accuracy (OA) of 92.34% for hybrid-Pol RISAT-1 data. Similarly, SVM with RBF kernel 

parameter gave an Overall Accuracy (OA) of 76.83% for dual-Pol RISAT-1 data. The results 

obtained from a comparative study of dual-pol vs hybrid pol RISAT-1 are very promising. The 

OA of Hybrid-pol data was 83.03% and for dual-pol, data was 54.75%. A wide variety of 

datasets with different areas of interest have opted for this study to evaluate the hybrid pol data 

over dual and quad pol data. Using SVM classifier the OA of Hybrid pol data on an urban area, 

was the best recorded to OA 84.10 %. To compare the information content and target 
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penetration capability, C-band RISAT-1(Hybrid-pol) data and L-band Alos Palsar-2 (quad-pol) 

have opted in this study. It is observed that Hybrid-pol data gave almost similar accuracy to 

that of quad pol data. The evaluation of data was performed using the confusion matrix for 

accuracy assessment. For validating the results, after the classification, the images are 

compared with the optical imagery, Google Earth, and In-situ information that was collected 

synchronously to the satellite pass.  

This study was initiated to compare the information content of Compact-pol (Hybrid-

pol) over dual-pol, pseudo-quad-pol, and quad-pol datasets and also to improve the overall 

accuracy using machine learning algorithms for accuracy assessment. From the overall study, 

it was recorded that hybrid pol data gave very good results when compared to linear dual-pol 

data and almost the same to that of quad- pol data. Few studies in the literature exclusively on 

Hybrid-pol data were reported only to (80-85) % accuracy. The SVM classifier was not used 

for classification in the literature. The majority of the work carried on Hybrid-pol were 

simulated from quad pol data. In this study, original hybrid pol data from RISAT-1 has been 

used.  

For this research, six SAR datasets viz., RISAT-1, Alos Palsar-1, Alos Palsar-2, 

Radarsat-2, Sentinel-1A, Sentinel-1B and three optical datasets (Resourcesat-2, Landsat-8, and 

Sentinel-2) and In-situ data are used. Quad-pol, Compact-pol, and Dual-pol datasets are also 

used in this study.  RISAT-1 Hybrid-pol data, RISAT-1 Dual-pol data, RISAT-1 Quad-pol, and 

Resourcesat-2 datasets have been purchased from NRSC/ ISRO, Hyderabad and other datasets 

are obtained from (ESA) and (JAXA). A combination of SAR missions and polarimetry were 

selected upon the study requirement. Optical datasets were used as a reference and also 

compared for the evaluation of SAR datasets. 

The research outcome has been published in the journal related to the subject of research. 

Very few studies with results have been reported in the literature on the performance of 

Compact polarimetry data over dual and quad pol data. These results will fill the gap in the 

literature to some extent.  

Keywords:  Earth Observation, Synthetic Aperture Radar, Compact Polarimetry, Hybrid 

polarimetry, Circular transmission, Land cover classification, SVM classifier. 
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1.1 Earth Observation 

Earth observation missions are designed to continuously monitor the earth to monitor the environment, 

land surface, biosphere, solid Earth, atmosphere, and oceans. The first earth observing satellite (Sputnik-

1) was launched on October 4, 1957, by the Soviet Union [1].  Explorer-1 was the first American satellite 

launched by NASA on January 31, 1958 [2]. Indian Space Research Organization (ISRO) has launched 

many Earth-observing (EO) satellites since 1979, beginning with Bhaskara - I, as it was the first 

experimental remote sensing satellite built by ISRO [3]. Indian Remote Sensing Satellite (IRS-1A) was 

the first series of indigenous remote sensing satellites launched into orbit on March 15, 1988. As of today, 

ISRO has launched 30 (27 optical and 3 Radar) Earth Observation missions and also has the largest 

constellation of remote sensing satellites in operation [4]–[5]. Earth-observing satellites are mainly used 

for remote sensing purposes to monitor the earth continuously. Satellites with optical sensors were 

providing the data from the past three decades with limitations.  

1.1.1 Microwave Remote Sensing 

Remote Sensing is the art and science of acquiring information without any physical contact. EO 

missions use remote sensing techniques to capture and analyze the Earth's terrain continuously using 

Space-borne satellites. Remote Sensing is categorized into two parts: 1) Passive Remote Sensing, 2) 

Active Remote Sensing. Passive Remote Sensing uses the sun as the source of illumination and captures 

the return radiance response onboard. Active remote sensing uses its source of illumination without 

depending on the sun as a source of energy [6]. Passive remote sensing uses optical cameras and scanners 

for imaging. Common passive sensors are Landsat-7, Geo Eye, Quick Bird, Ikonos, and IRS. Active 

remote sensing uses RADAR, SONAR, and LIDAR to capture the earth's surface. Alos palsar-2, 

Radarsat-2, Sentinel-1 are the commonly used Active sensors. Remote sensing can be performed on 

various platforms such as spacecraft, aircraft. In remote sensing, the resolution depends on the sensor's 

height; the higher the height lower the resolution [7]. 

 

Fig 1.1 Illustration of Optical Remote Sensing ©CRISP2001 
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In Optical remote sensing, the sun is the source of illumination. The sensors on the satellite make use 

of visible, near-infrared, and short wave infrared rays to form the images of the earth's surface by detecting 

the reflected solar radiation from the targets (water, forest, grass, building, and bare soil) on the ground 

as shown in Fig 1.1. The sensors mounted on the satellite can image only in daylight and in perfect weather 

conditions with limitations.  

In Microwave Remote sensing, sensors use the microwave region of the electromagnetic spectrum. 

The sensor in microwave remote sensing is called an antenna. RADAR is an acronym for RAdio Detection 

and Ranging. RADAR is a type of antenna which can transmit and receive the electromagnetic signal 

from the targets. RADAR uses the microwave region of the electromagnetic spectrum from P-band (0.3 

GHz) to Ka-band (40 GHz) to transmit and receive, as shown in Figure 1.2. The Development of RADAR 

took place during World War II for navigation and target location. Imaging radars are operated in the 

range of 1mm to 1-meter wavelength, as longer wavelengths improve signal penetration through the 

atmosphere and clouds [9]. In the microwave, remote sensing resolution is independent of the sensor 

mounted altitude but dependent on the length of the antenna. The longer the antenna length, the greater 

the resolution, but practically it is difficult to deploy a longer antenna into space [7]. 

 

 

Fig 1.2 Electromagnetic spectrum Canada Centre for Remote Science © (CCRS) 

1.1.2 Why Microwaves for Remote Sensing 

Microwaves can penetrate through clouds and, to an extent, rain. Microwaves do not rely on sunlight 

as a source of illumination. These attributes allow sensing the earth's surface independently of the day 

and almost in all weather conditions [8]. Microwaves can penetrate through vegetation, soil, ice than 

optical waves. Longer microwave penetrates much better than shorter wavelengths, as shown in Figure 
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1.3, the most crucial reason for the use of microwaves is the information content available is different 

from visible and infrared regions of the electromagnetic spectrum. 

 

Fig 1.3 Radar signal penetration for different wavelengths 

 

1.1.3 Advantages and disadvantages of Microwaves Remote Sensing over Optical Remote Sensing 

Advantages Disadvantages 

Nearly all-weather capability The Information content is different from 

Optical  

Day or Night capability  Difficult to interpret the information 

Penetration through vegetation Canopy Speckle effects 

Penetration through soil Topographic effects  

Minimal Atmospheric effects  

Sensitivity to dielectric properties of the 

target 

 

Sensitivity to structure of the targets  

Unique Sensitivity to moisture content of the 

target  

 

Unique Sensitivity towards the orientation of 

the target 

 

                            Table 1.1- Advantage and disadvantages of Microwave Remote sensing 
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1.2 Overview and History of Microwave Remote Sensing 

P-band, L-band, S-band, C-band, and X-band are the frequently used microwave bands for imaging. 

Active microwave sensors are categorized into imaging and non-imaging sensors. Altimeters and scatter 

meters are the non-imaging sensors. Imaging Radar is operated in two platforms a) Airborne platform b) 

Space-borne platform. From these platforms, RADAR can be used in nadir looking, Side looking. Real 

Aperture Radar (RAR) is an example of nadir looking sensors. Side Looking Airborne Radar (SLAR) and 

Synthetic Aperture Radar (SAR) are examples of side-looking sensors.  

1.2.1 Imaging Radar 

     James clerk Maxwell (1831-1879) provided the fundamental mathematical descriptions of the 

magnetic and electric fields associated with electromagnetic radiation. In the year 1886, Hertz 

demonstrated the transmission of Radio microwaves and reflections from various objects. Hertz also 

studied the interaction of radio waves with a metallic surface. Based on the fundamental physics principles 

discovered by Maxwell and Hertz, M. Marconi (1874 -1937) constructed an antenna that transmitted and 

received radio signals.  A.H Taylor and L.C investigated RADAR. Young in the year 1922. RADAR was 

initially used to detect targets such as ships and aircraft, both friendly and enemy. In 1935, Young and 

Taylor and Sir Robert Watson-Watt independently combined antenna transmitter and receiver in the same 

instrument. These advancements in RADAR laid the ground-work for the development of RADAR in 

World War [9].  

The imaging radar's origin came from the first airborne scanning radar system, H2S, developed by the 

Royal Air force Bomber Command during World War II. It helped to identify the targets on the ground 

surface in all weather and even through clouds. The critical development was to use high frequencies long 

antennas capable of producing narrow beams projecting sideways from the aircraft. This resulted in 

extensive coverage by scanning along the flight path known as Side Looking Airborne Radar (SLAR). In 

1952, the critical development of the technique "Doppler beam sharpening" took place in the Goodyear 

Aircraft Corporation by Carl Wiley.  In the mid-1960s, there are two types of SLAR: Real Aperture Radar 

and Synthetic Aperture Radar.  
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Fig 1.4 Family of Remote Sensing 

1.2.2 Radar Image construction  

    The Radar instrument is placed on a spacecraft/aircraft and pointing the antenna sideways, i.e. tilting 

the antenna with a viewing angle as shown in Fig 1.5. The basic idea was to introduce to make spatial 

measurement of the backscattered signal from the target using a scatterometer. The distance on the ground 

is related to the time delay of the backscatter. Thus the construction of a two dimensional image is 

generated by utilizing the motion of the radar antenna to scan the earth surface along with the motion of 

the sensor.    

 

Fig 1.5 Radar Imaging Geometry © NASA 
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Azimuth Direction: The direction in which Flight is travelling. 

Near Range: Minimum distance between target and antenna.  

Far Range: Maximum distance between target and antenna. 

Range Direction: Antenna beam direction from near range to far range 

Nadir: Perpendicular direction to the flight path 

Swath: Distance between near range and far range 

Incidence angle: Angle to nadir. 

Radars are classified depending upon their look direction  

a) Nadir Looking 

b) Side Looking 

In Nadir looking, the antenna is placed perpendicular to the flight path, as the footprint is circular the 

range between near range and far range will be the same. But in side looking, the antenna is tilted towards 

the flight direction shown in Figure 1.6. 

 

Fig 1.6 Nadir looking Radar and Side looking Radar 

1.3 Synthetic Aperture Radar (SAR) 

      Synthetic aperture radar (SAR) is one of the most advanced engineering inventions in the twentieth 

century. SAR is a powerful remote sensing tool. The idea of SAR was initially mentioned in a Good year 

Aircraft report by Carl.A.Wiley in the year 1951 and was put into operation in early 1952 [10]. A SAR is 

an active sensor that first transmits a microwave signal and returns the backscattered signal from the 

earth's surface. In general, the larger the antenna's size, the unique information can be obtained by the 

SAR scientist. The more information, the better the image resolution. The space-borne or the airborne 
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platform should deploy the larger antenna (10 m) to obtain better resolution. But, practically deploying 

such a larger antenna is infeasible. The scientist, therefore, used the motion of the spacecraft, along with 

the advanced signal processing techniques they simulated a larger antenna. Microwave imaging 

(Microwave Remote Sensing) 's motivation came from its unique features such as weather independent, 

day and night imaging capability, geometric resolution independent of the distance, penetration of radar 

waves through atmosphere, clouds, vegetation, and even though the soil. SEASAT was the first-ever 

civilian spaceborne radar remote sensing system launched by NASA/JPL in 1978. Later, few SAR 

missions such as ERS-1, 2 from Europe, JERS-1 from Japan, and Radarsat-1 from Canada were launched 

in the '90s and proved the potential of SAR Remote Sensing [11].  

1.3.1 SAR Principle 

SAR transmits a radar pulse towards the target and reflects back the pulse towards the transmitter, 

which depends on the type of scattering. Suppose the scatter, the surface is smooth. In that case, the 

incident energy will be reflected away from the sensor. If the scattering surface is rough, then the incident 

energy will be diffused in all directions, and the sensor will receive only a part of the reflected power. 

The amount of backscattered energy depends on the properties of ground targets. 

 

 

Fig. 1.7- Aperture Synthesis 
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Fig 1.8 SAR principle © CRISP 

1.3.2 Resolution  

The capability of a sensor to discriminate the smallest object on the ground. In SAR, there are two 

types of resolution. 1) Range Resolution 2) Azimuth Resolution [12]. 

1.3.2.1 Range Resolution 

To determine the spatial resolution at any point is a radar image, it is necessary to compute the 

resolution in two dimensions. Range and Azmimuth resolution. Radar is a ranging device that measures 

the distance to objects in the terrain using sending out and receiving pulses of active microwave energy. 

The range resolution in the across-track direction is proportional to the length of the microwave pulse. 

The shorter the pulse length, the finer the range resolution. Pulse length is a function of the speed of light 

multiplied by the duration of the transmission . The length of time that the microwave energy is 

transmitted is measured in microseconds and typically ranges from 0.4 -1.0microseconds and translates 

into a pulse length ranging from 8 – 210m. The pulse length must travel to the target and back to the 

sensor. Therefore it is necessary to divide by 2 to measure the slant-rang resolution. And to scale it to 

ground-range, it is multiplied by the cosine of the depression angle   .  

Thus the equation for computing the range resolution is: 

    
2cos

r

c
R






                                                                                            (1.1) 
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Fig 1.9 Family of Synthetic Aperture Radar 

1.3.2.2 Azimuth Resolution 

Thus far, we have only identified the length in meters of an active microwave resolution element at 

a specific depression angle and pulse length in the range direction. To know both the resolution element's 

length and width, we must also compute the width of the resolution element in the craft flying direction. 

Azimuth resolution ( aR ) is determined by computing the terrain strip's width that is illuminated by the 

radar beam. Real aperture active microwave radars produce a lob-shaped beam. 

sin
a

H
R

L





 
  
 

        (1.2)                                            

1.4 Radar Polarimetry 

It is a science of acquiring, processing, and analyzing the polarization state of an electromagnetic field. 

The polarization information contained in the backscattered wave from a given medium is related to its 

geometrical structure, reflectivity, shape, and orientation. There are four types of polarization 1) Single 

polarization, 2) Dual polarization, 3) Quad polarization 4) Compact polarization. In general, a single pol 

system transmits and receives only one polarization, viz. horizontal (H) or vertical (V). Similarly, a dual-

pol SAR transmits one polarization and receives the backscatter in a pair of orthogonal polarization viz. 

transmit (H) and receives (H, V) vice versa. In quad-pol SAR, two orthogonal polarizations H and V, are 

coherently transmitted and received. In compact polarization, one linear polarization is transmitted, and 

SAR 

GB SAR AB SAR SB SAR 

Quad-Pol Compact-Pol Dual-Pol Single-Pol 

Pi/4 Hybrid- Pol DCP 
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two mutually coherent circular polarization is received. Complete polarimetric scattering information can 

be obtained from the target from quad-pol SAR, and hence, better analysis and classification can be 

performed. 

1.5 Scattering mechanism 

They are four types of scattering mechanisms 1) Specular 2) Surface 3) Double bounce 4) Volume 

scattering.  

Specular 

 When a radar signal is transmitted on flat terrain, the reflection angle is the same as the incidence 

angle; it is called specular reflection. These areas in the radar image appear very dark, e.g., smooth water 

body or tarmac. 

Surface scattering 

When a radar signal hits on a rough surface, some energy will be backscattered to the sensor. Example: 

vegetation, bare soil. 

Double Bounce 

When the radar pulse hits to smooth surface that is perpendicular to each other, the returned signal will 

be strong and appears brighter in a SAR image. Example: Buildings and manmade structures. 

Volume Scattering 

When a man's radar pulse hits a three-dimensional body, the energy gets reflected multiple times in 

multiple directions. Examples are dense snow, forests. 
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Fig 1.10 Scattering Mechanism © esa 

1.6 Motivation 

      Earth Observation (EO) Missions are meant for continuous monitoring, and thus the SAR systems 

require a huge amount of storage, higher transmission power, and larger swath width. SAR systems can 

image the Earth during rainy seasons and in the absence of sunlight, which is an advantage over traditional 

optical imaging systems. Therefore the data can be well utilized in disaster management. Generally, dual-

pol SAR and quad-pol SAR are used for EO Missions. The dual-pol SAR cannot give more information 

than the quad-pol SAR, and the quad-pol SAR consumes a huge amount of energy with less swath width 

and complex architecture. Compact polarimetry offers a tradeoff with fully polarimetric systems in terms 

of swath width, power, architecture, budget, and information content [13]. Compact polarimetry (Hybrid-

pol) 's main difference from fully polarimetric systems is transmitting a circularly polarized signal towards 

the target and receiving linearly polarized returns [14]. While transmitting a circular component, 

ionosphere interaction will be reduced. RISAT-1 was the first EO mission built on Hybrid-pol 
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Architecture; therefore, original Hybrid-pol RISAT-1 data was used in this study [15]. It was compared 

to dual-pol and quad-pol data in the literature to explore the performance of simulated Compact-Pol data. 

All the studies so far performed on Hybrid-pol were simulated from quad-pol data [16]. This motivated 

us to investigate the performance of original Hybrid-pol data over dual-pol and quad-pol data. In the 

literature, a Comparison of Dual-pol and Hybrid-pol has been made using the data from different 

missions. The availability of Dual-pol and Hybrid-pol data from the same RISAT-1 mission with the 

exact resolution made us work on this topic. To compare the penetration capability, Alos palsar-2 (L-

band) data and RISAT-1 (C-band) data have opted on the standard test site Sanfransico city.  

Parameter Launch 

date 

Country Wavelength, 

cm 

 Incident 

Angle 

Polarization Azimuth 

resolution 

Range 

resolution 

Swath 

width, 

km 

Altitude 

km 

SEASAT June 26, 

1978 

USA L-(23.5)  [230] HH 25 25 100 800 

SIR-A Nov 12, 

1981 

USA L-(23.5)  [500] HH 40 40 50 260 

SIR-B Oct 5, 

1984 

USA L-(23.5)  [150-64] HH 17-58 25 10-60 225 and 

350 

SIR-C/X-SIR April 

1994 

Oct 1994 

USA X-(3.0) C-

(5.8) L-

(23.5) 

 [150-550] HH, HV, 

VV,VH 

30 10-30 15-90 225 

ALMAZ-1 March 31, 

1991 

Soviet 

Union 

S-(9.6)  [300-600] HH 15 15-30 20-45 300 

ERS-1,2 1991  

1995 

Europe C-(5.6)  [230] VV 30 26 100 785 

JERS-1 Feb 11, 

1992 

Japan L-(23.5)  [390] HH 18 18 75 568 

RADARSAT-1 November 

1995 

Canada C-(5.6)  [100-600] HH 8-100 8-100 50-

500 

798 

ALOS 

PALSAR-2 

May 2014 Japan L-(22.9)  [8-700] HH, HV, 

VV,VH 

4.3 5.1 70km 691 

RADARSAT-2 Dec 2007 Canada C-(5.6) [20-450] HH, HV, 

VV,VH 

3-80 1-100 18-

500 

798 

RISAT-1 April 

2012 

India C-(5.6) [26.350] RH, RV 

HH-HV 

2.34 3.33  540 

 

Table 1.2 Earth Observing (EO) SAR Missions 

1.7 Literature Survey 

     This chapter presents a detailed literature survey on the Speckle filtering, the target decomposition 

theorems and classification algorithms, compact polarimetry with existing state-of-art methods for 

processing and analyzing SAR images. We also discuss the literature around partial polarimetry. The 

author has collected ten base research articles  

     The concept of dual partial polarimetric mode was proposed by Je Souyris et al., the authors have 

assessed the performance of SAR compact Polarimetry architectures based on mixed basis measurement, 

i.e., transmitting polarization is either circular or oriented at an angle of 45°, and the receiver is at 

horizontal or vertical polarization. The performance is assessed in two folds: the first is concerned about 

the information content preserved with comparing to FP SAR, and the second is to address the space 



14  

implementation complexity in terms of swath width, power budget, calibration, and ionospheric effects. 

Because of the mismatch between transmitter and receiver bias, the power budget is deteriorated by a 

factor of 3dB [17]. 

     Raney was the first person to build the Hybrid-Polarity SAR architecture on a space-borne platform. 

In this, SAR transmits only one circular polarization and receives two mutually orthogonal linear 

polarizations. The author has introduced the m-delta decomposition technique in this paper. This paper's 

objective is full characterization and exploitation of backscattered response with a monostatic radar that 

transmits in one polarization is invariant to geometrical orientations in the scene. The Stokes parameters 

require measuring the relative phase, and the amplitudes of the received backscattered signal. The Hybrid-

pol architecture minimizes sensitivity to relative errors, crosstalk, and optimizes relative phase and 

amplitude calibration. This architecture requires less RF hardware, less weight with fewer losses. The 

Hybrid-pol architecture systems will be an alternative for Earth Observations missions and a prime 

architecture for extraterrestrial missions. The study has demonstrated that hybrid-pol systems provide 

double swath width and less transmission power with simple architecture over quad-pol systems [13]. 

     Michael E Nord, Thomas l, Ainsworth et al., (2009), the authors have compared the three compact 

polarimetric modes. The authors have studied different transmit/receive configuration to determine which 

configuration allows for superior construction of full polarimetric data. The authors have noted that DCP 

and CLTR modes are related via bias change on the received signal. The authors have opted for L-band 

E-SAR data and simulated compact polarimetric modes. The single linear transmit will not excite returns 

from linear oriented structures, causing loss of polarimetric information. While transmitting a circular 

component misses some helical structure, which is less compared to a linear structure [18]. 

     T.L Ainsworth, J.P.Kelly, J.S.Lee (2009), et al. Presented a study of the polarimetric information 

content of dual-pol imaging modes and dual-pol imaging extended by polarimetric scattering models. The 

authors have compared with Wishart classification on both partial polarimetric and full quad-pol datasets. 

In this study, NASA/JPL AIRSAR L-band airborne SAR data was used for the Flevoland region and L 

band E-SAR imagery of Oberpfaffenhofen. The authors have concluded that quad-pol data gave the most 

accurate results while performing Wishart classification and dual-pol data gave the most unsatisfactory 

results. The compact-pol data and pseudo-quad-pol data are the intermediates between dual-pol and quad-

pol data. From the results on the Flevoland image, quad-pol data gave 81.8% accuracy, dual-pol data gave 

59.1% accuracy, compact-pol (Pi/4) data gave 80.9%, CLTR mode gave 81.8% accuracy, Pseudo quad-

pol data (Pi/4) and CLTR gave 80.1%, and 73.5% accuracy respectively. From the results on 

Oberpfaffenhofen image, quad-pol data gave 97.5% accuracy, dual-pol data gave 96.1% accuracy, 

compact-pol (Pi/4) data gave 97.3%, CLTR mode gave 96.8% accuracy, Pseudo quad-pol data (Pi/4) and 
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CLTR gave 97.2% and 95.1% accuracy respectively. The Hybrid dual-pol modes (Pi/4 and CLTR) not 

always perform better for image classification than standard linear dual-pol transmission [19].   

     A SAR system with Compact-pol architecture transmits a circular component and receives two 

mutually orthogonal coherent linear components, which is one manifestation of Compact polarimetry. 

The authors have utilized Radarsat-2 full polarimetric data to simulate Compact polarimetry. A research 

team composed of various departments of the Government of Canada evaluated compact- pol mode for 

various applications. Besides, the study has demonstrated the potential of Compact-pol for ship detection, 

soil moisture estimation, crop identification, and sea ice classification. The Compact-pol system provided 

a wider swath than a quad-pol system with simple architecture [20]. 

     Rajib Kumar Panigrahi & Amit Kumar Mishra have compared hybrid-pol data with quad-pol 

schemes on the airborne GTRI dataset. This paper describes the benefits of using a hybrid-pol scheme. 

The comparison was made based on the information content, and it was concluded that the information 

of hybrid-pol is found to be comparable to that of the quad-pol airborne SAR system. However, hybrid-

pol is the optimum choice when there is a requirement of wide swath cover, low transmission power [16].  

     Rajib Kumar Panigrahi & Amit Kumar Mishra have presented a comparison of Hybrid-pol and 

quad pol synthetic Aperture data (SAR) data for information content. First, the Hybrid-pol data was 

converted to pseudo quad pol data using compact polarimetric scattering models. The scattering 

mechanism was evaluated using Freeman and Durden decomposition techniques. In this study, 

NASA/JPL AIRSAR L-band airborne SAR data was used for the Flevoland region. The authors have 

evaluated and compared the scattering contribution for clusters of the pixels in SAR images. The authors 

have concluded that the information content in pseudo quad pol is found to be comparable to quad pol 

data. Hybrid-pol data is the optimum choice when wider swath coverage and average transmitted power 

are the constraints [21]. 

     Haldar, D., Das, A., Mohan, S., Pal, O., Hooda, R.S., and Chakraborty, M have evaluated L-band 

SAR data different polarization combinations, i.e., linear, circular, and Hybrid-polarimetric modes. The 

authors have opted for Alos-palsar full polarimetric data and simulated pi/4 mode and circular mode. The 

authors performed supervised classification using the maximum likelihood classifier on various 

polarimetric combinations. It has been observed linear full polarimetric mode gave an OA of (92%) 

followed by circular –full (89%), dual-circular (87%), hybrid-pol (7-75%), and linear dual-pol with (63-

71%).The Hybrid-pol data with different modes found to be good for crop classification apart from fully 

polarimetric data [22].  

     Lardeux, C., Frison, P.L., Tison, C., Souyris, J.C, have addressed the potential of the SVM 

algorithm for classifying the polarimetric SAR data. The authors have used L-band, P-band, and C-band 
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data in this study and have obtained an OA of 87%, 82%, and 99%, respectively. SVM classifier has 

recorded a great improvement of about 20% compared to Wishart classification [23].  

     Yekkehkhany, B., A. Safari, S. Homayouni, and M. Hasanlou have presented a comparative study 

on the classification of multi-temporal L-band SAR data using different SVM kernels. In this study, the 

authors have opted for kernel functions such as RBF, Linear, and Polynomial. RBF Kernel performed 

better than the other two kernels. They have concluded that using two data OA increased by 14%, and by 

using three multi-temporal data, OA increased by 5%. Moreover, the effect of multi-temporal data is 

expensive and time-consuming [24]. 

1.8 Research Objectives 

The thesis deals with the three main applications of Microwave Remote sensing Viz. Land Use Land 

Cover, Urban Land Cover, and Crop Discrimination. 

(i) The first objective is to draw the Importance of Speckle filtering and the impact of speckle filter 

window size on speckle reduction in SAR images. 

(ii) The second objective is to characterize the ground targets of Compact polarimetry data using 

robust m-chi and m-delta decomposition.  

(iii)The third objective is to improve the overall classification accuracy of Hybrid-pol data using 

various machine learning algorithms. 

(iv) The fourth objective of this study is to explore the potential of compact polarimetry and compare 

it with other compact polarimetry modes.    

(v) The fifth objective is to record, compare, and analyze the response of circular transmission over 

linear transmission and its interaction with the targets.  

(vi) The sixth objective is to compare the penetration capability and information content of L-band 

Alos Palsar-2 and C-band RISAT-1 data. 

1.9 Thesis Organization 

The thesis is organized into seven chapters. The first chapter presents the introduction, background, 

motivation for the research work, problem statement, and literature survey. The second, third, and fourth 

chapters and fifth provide the contributions of the research work. The sixth chapter provides the 

conclusions of the research work. The summary of each chapter is given below.  

 Chapter 1: The First chapter deals with the introduction to Microwave Remote Sensing, and Radar 

Polarimetry. The motivation for the research is explained and the corresponding problem 

statement is derived. A literature survey is carried out for the problem statement identified. 
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 Chapter 2: The Second Chapter deals with the importance of speckle filtering and the effect of 

speckle window size on speckle reduction. Polarimetric Speckle filters preserve the information 

without a smoothing effect. Dual-pol, Hybrid-pol, Quad-pol, and Psuedo Quad pol data were used 

for speckle filtering for various land targets [25-38].   

 Chapter 3: The Third Chapter deals with the Target Decomposition theorems which characterizes 

the targets. In this chapter, a Four-component decomposition along with the robust m-delta and 

m-chi decomposition are explained in detail [39-56]. 

 Chapter 4: The Fourth Chapter deals with improving the classification accuracy on Hybrid-pol 

data using Supervised clasifier. In this chapter, an SVM parameterization effect on classification 

accuracy will be discussed in detail. A comparison of SVM classifier with Wishart classifier and 

other machine learning algorithms will be analyzed [57-70]. 

 Chapter 5: The Fifth Chapter deals with Exploring the Capability of Compact Polarimetry over 

other modes [71-92]. 

 Chapter 6: The sixth chapter deals with a comparison of Hybrid-Pol, C band RISAT-1 data over 

dual-pol and quad-pol for Land Cover Classification and Crop Identification [92-95]. 

  Chapter 7: A summary of the contributions and the conclusions drawn from the earlier chapters 

were discussed. The future extension of the proposed work is also discussed. 

1.10 Imaging modes 

SAR Images in three different modes depending on the application and the user requirement as shown 

in Fig 1.11 and Table 1.3. 

Stripmap SAR: In this mode, the antenna pointing direction is constant as the radar platform moves. The 

beam sweeps along the ground at an approximately uniform rate, and a contiguous image is formed. A 

strip ground is imaged, and the length of the strip is only limited by how far the sensor moves or how 

long the radar is left on. The azimuth resolution is governed by the antenna length. 

Scansar: This mode is a variation of stripmap SAR, whereby the antenna is scanned in range several 

times during a synthetic aperture. In this way, a much wide swath is obtained, but the azimuth resolution 

is degraded (or the number of looks is reduced). The best azimuth resolution can be obtained in that of 

the stripmap mode multiplied by the number of swaths scanned. 

Spotlight: The resolution of the stripmap mode can be improved by increasing the angular extent of the 

illumination on the area of interest (a spot on the ground). This can be done by steering the beam gradually 

backwards as the sensor passes the scene. The beam steering has the transient effect of simulating a wider 

antenna beam (i.e., a shorter antenna). However, the antenna must ultimately be steered forward again, 
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and a part of the ground is missed. This means that the coverage is not contiguous; only one spot on the 

ground is imaged at a time. 

 
 

Fig 1.11 RISAT-1 Imaging Modes © ISRO 

 

Mode HRS FRS-1 FRS-2 MRS CRS 

swath 10m 25km 25km 115km 223 

Pol Single, Dual, 

Circular 

Single, Dual, 

Circular 

Quad circular Single, Dual, 

Circular 

Single, 

Dual, 

Circular 

Resolution 1*1(m) 3*2(m) 9*4 (m) 21-23*8 (m) 41-55*8 

(m) 

 spotlight 

mode 

stripmap stripmap scansar scansar 

 

Table 1.3 Acquisition Modes of RISAT-1 

 

The datasets and study area used in this work is shown in Table 1.4. 
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1.11 Datasets and Study Area 

Dataset Band Date of 

Acquisition  

Acquisition 

mode  

Resolution 

RISAT-1 

 (Ghanpur Vil, Warangal Dst, 

Telangana, India. 

Compact pol 

Dual-pol 

C 

C 

5-07-2016 

5-12-2015 

FRS-1 

FRS-1 

3 meters 

RISAT-1 (Hyderabad),India 

Hybrid 

Quad  

C 29-09-2016 

26-09-2014 

FRS-1 

FRS-1 

FRS-2 

3 meters 

Alos Palsar -1 (Hyderabad) 

Alos Palsar-2  (Sanfransico, Mt 

Fuji, Tokyo) 

L 23-08-2010 Dual-pol 

Quad-pol 

Better than 

1meter 

Sentinel 1A, 1B 

(Chennai), India 

C 18-12-16 Dual-pol  

     Table 1.4 Datasets and Study Area 

1.12 Land Use and Land Cover (LULC) 

Land cover: physical and biological cover of earth surface including artificial surfaces, agriculture areas, 

forests, wetlands, water bodies. 

Land use: territory characterized according to its current and feature planned dimensions or socio-

economic purpose (residential, commercial industrial, agriculture, forestry). 

1.13 Scientific tool used for processing 

 Envi SARscape [103] 

 PolSARpro [104] 

 SNAP [105] 
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 2.1 Introduction  

          In this chapter, the research was performed on dual-pol, Hybrid-pol, and quad-pol SAR datasets. 

Furthermore, the selection of polarization channels and the selection of amplitude and intensity images 

in SAR images are discussed in this chapter. This study specifies data selection in terms of the filter size, 

polarization, and amplitude or intensity for a SAR image. This chapter deals with the importance of 

speckle filtering in SAR images for classification. This chapter describes the effect of speckle window 

sizing with respect to speckle reduction. In this chapter, speckle filter analysis was performed on urban 

targets, i.e., Tokyo City, Japan, Quebec City, Vegetation target, i.e., Amazon forest, Heterogeneous target, 

i.e., Mt Fuji, Japan. We presented a comparative study between several speckle filters that are widely 

used in the radar imaging community. Speckle evaluation is done by Speckle Suppression Index (SSI) 

ENL, SMPI. Based on the SSI values for a filter, image classification was performed using K Mean cluster 

analysis. 

2.2 Speckle  

  Speckle is a grainy salt and pepper pattern in the image due to the interference of the backscattered 

signal from the target. SAR images suffer from Speckle, and it is a general phenomenon in all imaging 

systems [25]. Therefore, the presence of speckles in the data reduces its capability for advanced analysis, 

e.g. image segmentation, image classification, image fusion with optical data etc., and makes it difficult 

for the analyst to interpret [26]. The Speckle can be reduced by processing separate portions of an aperture 

and recombining them so that the interference does not occur. This process is called Multilooking. 

2.2.1 Speckle Filtering  

 The reduction of Speckle is made using Speckle Suppression Techniques in two approaches. The first 

technique involves an average process, generally known as Multilook. The Multilook reduces speckle-

noise at the cost of spatial resolution. There is a trade-off between the reduction of speckle noise and the 

loss of the SAR image's spatial properties. The second technique involves smoothing the image using 

digital image processing techniques, and it can be performed after the image is obtained [27]. When a 

filter is selected for speckle reduction, it should smooth homogenous area while preserving linear features, 

edges, point targets. A filter should remove speckles without sacrificing image structure such as edges, 

linear features. The most commonly used filters are: 

 

Mean Filter 

This filter calculates the mean value of the pixels of the neighbor window. The mean value will replace 

the center pixel value window. This filter cannot preserve information and resolution.  
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 Median Filter 

This filter calculates the median value of the pixels of the neighbor window. The median value will 

replace the center pixel value window. The common problems of this filter, its cause's edge blurring, and 

the thin linear features will disappear, and object shape distortion takes place. 

Frost filter  

This filter calculates exponentially weighted averaging based on the coefficient of variation, which is 

the local standard deviation ratio to the local mean. 

This filter preserves sharp features by retaining its original pixel value while at low coefficient 

variation. 

Lee Filter 

The Lee filters compute a linear combination of the center pixel intensity in a filter window with an 

average intensity of the window. This filter is based on the minimum mean square error (MMSE) 

2.2.2 Polarimetric Filters 

Refined Lee Filter 

The Minimum Mean Square Error (MMSE) filter cannot remove the Speckle near the edges 

effectively. To overcome this problem, the refined lee filter uses a no square window to match the edges' 

direction. Pixels that are in the non-edge area are used for computation. Refined lee filter follows three 

processing steps, 1) selection of edge aligned window, 2) Computation of filtering weight (b) from the 

span image, 3) Filtering each element in the covariance matrix [Y] with the weight (b). The filtered matrix 

is given by  

 Y Y b Y Y                                                                          (1.1) 

Where Y is the local mean of matrices computed with pixels in the same edge directed window. We 

have opted for a 3x3 window size kernel for speckle filtering. 

Boxcar filter:  

It is a spatial averaging filter; it averages the pixels in the neighborhood of the pixel mask. It replaces 

the value of every pixel with the average of neighborhood pixels. It improves the radiometric resolution 

at the expense of spatial resolution. 
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Intensity-driven adaptive-neighborhood (IDAN):  

Instead of employing edged aligned windows, a set of stationary pixels surrounding the pixel under 

analysis, adapting to the data's local morphology. The filtering process considers only the information 

provided by the diagonal elements of the covariance or coherency matrices to determine stationary pixels. 

The stationary neighborhood's search process is started by a seed pixel derived from the 3×3 median 

values of the diagonal elements. The covariance or coherency matrix's estimated value is obtained through 

the mean value of the pixels within the adaptive neighborhood. 

2.2.3 Study Area and SAR Dataset 

     The study area used in this paper is of Mt Fuji, Japan. The Geo-coordinates of the study area are 35 

o.27'30"N and 138 o.44'6"E, and also Amazon forest in the state of Roraima, South America. The Geo-

coordinates of the study area are 0 o.53'44"N center latitude and 59 o.19'25"W, center longitude.  

SAR Dataset: The SAR dataset used in this work is ALOSPALSAR-2 of Level 1.5 CEOS (Committee 

on Earth Observing Sensors) format and was provided by JAXA, Japan. 

ALOS-PALSAR-2   

Advanced Land Observation Satellite Phased Array type L-band Synthetic Aperture Radar was 

launched on 24 May 2014 by JAXA. Alos was the first L band spaceborne SAR mission, launched by 

ALOS-2 satellite with PALSAR-2 sensor. The satellite has SAR with dual-polarization modes (HH-HV).  

Fig 2.1 is the flow chart of the proposed work in this chapter. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1 Flowchart of the proposed work 
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2.3. Importance and Impact of Speckle Filter Window Size in Speckle Reduction  

2.3.1 Methodology 

     The process of removal of Speckle in a SAR image is essential for the analyst to interpret. A filter 

should remove speckle noise without sacrificing image structure such as edges, linear features. The 

performance can be verified with the commonly available commercial image processing software such as 

PolSARpro [104], ENVI [103], and NEST [105]. Fig 2.1 shows the pre-processing procedure of the 

proposed work. 

     NEST (Next ESA SAR Toolbox) 5.0 β is developed by Array systems computing Inc. of Toronto, 

Canada, under ESA (European Space Agency). It is an open-source toolbox for reading, post-processing, 

analyzing, and visualizing an extensive archive of data of level 1 from ESA and also includes SAR 

missions like ERS-1, 2, ENVISAT, Sentinel-1. NEST 5.0 β has six speckle filters, Mean, Median, Frost, 

Lee, Refined Lee, and Gamma-Map. Multilooking, radiometric correction, and conversion of slant range 

to the ground range can also be performed. In this work, the speckle filters of NEST 5.0 β have been used 

on SAR datasets of ALOSPALSAR-2. 

    Fig. 2.2 shows the step by step procedure for the proposed work. Level 1.5 format is preferred because 

it is already slanted range to ground range converted data. As the level 1.5 format data consists of Speckle, 

it isn't easy to interpret the data and classify it. Using the speckle filters in NEST, data has to be filtered. 

The ALOS PALSAR-2 operates with dual-polarization, i.e., HH, HV polarizations. For example, HV 

means transmit in horizontal (H) polarization and receive in vertical (V) polarization. Each polarized data 

consists of amplitude and intensity images. Selection of images can be done using indices and visually.  

  We opted 3x3, 5x5, 7x7, 9x9, 11x11 filter window size for speckle filtering in this study. As the 

window size of the speckle filter increases, Speckle in the image reduces, as window size increases, we 

may lose the image's details [27]. Filter evaluation is done using three indices, ENL (Equivalent Number 

of Looks), SSI (Speckle suppression index) [28], and SMPI (Speckle Suppression and Mean Preservation 

Index) [29]. Finally, the best filter is selected based on these indices values. Speckle Filter Assessment 

Indices. 

2.3.2 Filter Evaluation 

Speckle Filter Assessment Indices  

Generally, evaluation of speckle reduction in SAR images is done using indices and visually. These 

indices help us to evaluate different speckle filters using their values. 

1) Speckle suppression index (SSI): 

SSI is defined as  

 
 

 
 

 

var
*

var

f o

f o

iance I mean I
SSI

mean I iance I
                                  (1.2) 

Where fI   = Filtered image, oI  = Noisy image. 
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The SSI value should always be less than one and hence can be considered that filter is efficient in 

reducing the speckle noise. Lower values indicate better performance of the speckle filter. 

2) Equivalent Number of Looks (ENL): 

2

 

mean
ENL

standard deviation

 
  
 

                                                  (1.3) 

For a speckle-free image, the value must be high. 

3) Speckle Suppression and Mean Preservation Index (SMPI): 

 

 

var
*

var

f

o

iance I
SMPI Q

iance I
                                   (1.4) 

01 (I ) (I )fQ mean mean   , Where fI = Filtered image, oI = Noisy image 

Lower values of SMPI indicates better performance in terms of speckle reduction and mean 

preservation. 

 

Fig. 2.2 preprocessing procedure. 
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2.4. Results and Discussions:  

     Fig 2.3 shows ALOS PALSAR-2 dual-pol data with amplitude and intensity (HH and HV) for level 

1.5 of Mt Fuji, Japan, with a median filter (3x3). For better visual clarity, median filtered images are 

shown instead of original images (level 1), containing Speckle. 

 

                 

                                        (a)                                                               (b) 

 

                  

                                       (c)                                                                 (d) 

Fig. 2.3 Illustration of amplitude and intensity images in Alos Palsar-2 

 

     The images in Fig 2.4 show the impact of speckle filter size on speckle reduction. Fig 2.4(a) is the 

study area shown in Google Maps, Figure 2.4(b) is the original image with Speckle. Table 2.1 shows the 

values of SSI, ENL, SMPI for Amplitude (AHH, AHV), and Intensity (IHH, IHV) images for various 

speckle filters. As the filter window size increases, SSI values decreases, ENL values increases, and SMPI 

value decreases. 
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                                                (a)                                                             (b) 

             

                                              (c)                                                            (d) 

            

                                             (e)                                                           (f) 
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                                  (g) 

Fig. 2.4. Effect of filter window size and edge smoothing during speckle filtering on I HH image. 

     Fig 2.4(c) – 2.4 (g) of the median filter indicates the reduction in Speckle. However, as the filter 

size increases, smoothing of the image occurs, and the linear features like edges disappear. Selection of 

best speckle filter with good preservation can be done using indices value. When an image is classified 

with Speckle, the classification will not be accurate, and it will be difficult for the analyst to understand 

an image. We can easily find out the impact of filter window size in classification [30-32]. From Table 

2.1, I HH image shows less SSI value for the 7x7 median filter, followed by a mean filter and Lee filter.  

Filter window size 7x7 shows good results than 5x5 and 3x3; similarly, ENL value increases with an 

increase in filter window size. The ENL values of amplitude images are more than an intensity image. 

Similarly, I HV median filter with a 7x7 filter size shows a high ENL value. Even though 11x11 size 

shows a value higher than 7x7, 7x7 is selected because it has a less smoothing effect. SMPI value in both 

images decreases with an increase in filter size. I HH median 7x7 shows less SMPI value, indicating better 

performance in terms of speckle reduction and mean preservation [33]. 

Fig 2.5 shows the graphical representation of the values given in Table 2.1. It is a graphical 

representation of ENL, SSI, and SMPI values for amplitude and intensity images for various filters with 

various filter window sizes. Frost filter has high SSI values due to the damping factor (2, 4); the SSI 

values are very high, different from other filters. So, for a Frost filter, a less damping factor is preferred. 

The Gamma filter with filter size 11x11 is not preferred because its SSI value is more. The median filter 

shows less SMPI value indicating mean preservation. 

(a): Google Maps 

(b): Original Image 

(c): Med 3x3, (d) Med 5x5, (e): Med 7x7,  

(f):  Med 9x9, (g):11x11 
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                           Table 2.1: SSI, ENL, SMPI values for various filters with different window size  

 

 

Fig 2.5 Graphical representation of ENL, SSI and SMPI values for various filters 

     Fig 2.6 (a - f) shows the comparison of various filters of size 7x7 filter size. Images of Figure 2.6 

(c-d) are of frost filter with 2 and 4 as damping factors. Using indices, the best filter is preferred for further 

classification. Table 2.1 shows that the median filter I HH has less SSI value, less SMPI value, and a high 

ENL value. So median filter 7x7 is used to perform K- mean classification. The classified image is shown 

Mean Std Ssi SMPI ENL Mean std Ssi SMPI ENL Mean Std SSI SMPI ENL Mean Std SSI SMPI ENL

without filter 1264.239 424.015 850627.5 1491674 974.5534 305.2594 720301 713887.1

Mean 3x3 1277.966 264.5318 0.617172 8.563914 23.33902 1434215 1008771 0.401092 0.256414 2.02136 981.0814 178.6604 0.58138 3.825864 30.15459 894440 429254.2 0.484226 104708.4 4.341835

5x5 1284.175 234.3926 0.544212 11.02037 30.01652 1651378 860223.3 0.29705 0.218655 3.685282 984.0589 157.4331 0.510754 4.906903 39.0706 960562.1 370712.1 0.3894 124764.5 6.713938

7x7 1285.228 220.0674 0.510533 10.89707 34.10742 1733499 793701.1 0.261095 0.201746 4.770162 986.7103 148.1998 0.479507 5.906343 44.32861 1004117 343837.3 0.345504 136697.7 8.52831

9X9 1285.06 210.7822 0.489056 10.35401 37.16886 1740767 750104.2 0.245723 0.190665 5.385653 988.2468 142.5407 0.460479 6.398274 48.06767 1028782 326340.6 0.320061 141016.7 9.938126

11X11 1286.615 203.8148 0.472319 10.7588 39.84974 1756741 717062.9 0.232764 0.182266 6.002069 989.3329 138.4356 0.446727 6.706556 51.07276 1043197 314309.7 0.304002 142164.5 11.01583

Median 3x3 1282.783 273.5801 0.635886 11.96503 21.98556 1370427 945201.3 0.393309 0.171638 2.102147 986.5348 187.9933 0.608368 7.382378 27.53849 838140.9 426975.1 0.514008 70480.05 3.853265

5x5 1286.86 234.4138 0.543125 12.50609 30.13675 1597355 762874.8 0.272344 0.138529 4.384258 991.3305 160.5914 0.517178 8.829257 38.10591 966528.7 342486.1 0.35753 118127.4 7.964226

7x7 1284.946 217.2604 0.504131 10.61239 34.97911 1600837 696153.5 0.247984 0.126413 5.287914 991.9229 149.4209 0.480917 8.50508 44.06899 984310.4 313351.5 0.321206 115883.6 9.867351

9X9 1282.894 206.9259 0.480919 9.105984 38.4372 1592339 655348.1 0.234694 0.119004 5.903737 991.8152 142.7733 0.459571 8.076324 48.2578 990789.6 297548.4 0.303013 112739.8 11.08786

11X11 1281.537 199.611 0.46441 8.145116 41.21858 1587710 623123.1 0.223804 0.113152 6.49224 990.898 138.468 0.446126 7.416735 51.21051 988144.6 286788.8 0.292837 107600.5 11.8718

Frost2 3x3 1277.232 264.9786 0.61857 8.122188 23.23366 1270469 1055929 0.473954 0.454704 1.447635 980.7654 178.9272 0.582435 3.643054 30.04537 870488.9 437652.9 0.507284 92073.75 3.956096

5x5 1280.246 235.7297 0.548996 8.899149 29.49567 808372 1201138 0.84732 0.517235 0.452935 983.1872 158.0486 0.513205 4.471847 38.69823 839697.4 403417.9 0.484749 67471.07 4.332468

7x7 1278.858 222.3979 0.518509 7.669746 33.0661 731784.6 1219668 0.950438 0.525214 0.359984 983.5295 149.2307 0.484404 4.389691 43.43686 761147.9 420585 0.557531 24065.01 3.275145

9X9 1275.699 214.273 0.500803 5.793621 35.44556 726368.2 1227726 0.963851 0.528684 0.350034 982.6208 144.0044 0.467871 3.807282 46.56079 713395.8 431636.2 0.610481 4175.193 2.731652

11X11 1275.02 208.4711 0.487502 5.302762 37.40609 724072.9 1232368 0.970562 0.530683 0.34521 982.0099 140.3235 0.456196 3.429142 48.9746 702974 430899.1 0.618473 10458.65 2.661506

Frost4 3x3 1275.155 265.9824 0.621925 6.850203 22.98371 949508.1 1222028 0.733919 0.206474 0.603719 980.3377 179.5452 0.584702 3.404447 29.81287 832703.2 462580 0.560507 72833.76 3.24046

5x5 1272.724 238.1032 0.5578 4.76504 28.57184 737450.6 1272274 0.983814 0.214963 0.335973 980.4831 159.1444 0.518189 3.09342 37.95749 735170.5 469960.7 0.644998 9788.892 2.447107

7x7 1269.006 226.3219 0.531754 2.548235 31.4394 735335.5 1281026 0.993431 0.216442 0.3295 979.1982 150.9122 0.492029 2.298183 42.10101 710082.1 471336.8 0.669742 6747.065 2.269627

9X9 1266.694 219.6054 0.516915 1.274925 33.27033 735121.8 1286497 0.997964 0.217366 0.326513 977.7248 146.2307 0.477484 1.521075 44.705 707044.7 469169.4 0.669526 8712.218 2.27109

11X11 1266.396 215.0934 0.506414 1.097764 34.66449 735651.9 1291153 1.000854 0.218153 0.32463 977.1018 143.0487 0.467391 1.19603 46.65646 795950.3 468596.8 0.594016 49656.48 2.885182

Gamma Map

3x3 1277.536 264.5308 0.617378 8.299878 23.32349 1432705 990428.8 0.394214 1.304733 2.092508 980.7082 178.6691 0.581629 3.606643 30.12872 874714.3 445196.7 0.513535 96296.35 3.860368

5x5 1284.045 234.3784 0.544234 10.94796 30.01409 1527439 893304 0.333504 1.176786 2.923677 983.6938 157.4204 0.510902 4.717371 39.04791 939514.7 388283.6 0.416994 119231 5.854759

7x7 1284.823 220.0486 0.51065 10.6858 34.09174 1454790 861780.8 0.337802 1.135259 2.849751 986.3316 148.1797 0.479626 5.720906 44.3066 941100.2 375077 0.402132 116008.6 6.295509

9X9 1285.163 210.7634 0.488973 10.40415 37.18143 1453865 853817.8 0.334893 1.124769 2.899463 987.3415 142.5327 0.460876 5.974434 47.98503 936766 365220 0.393376 110742.6 6.578898

11X11 1286.16 203.7949 0.472439 10.53949 39.82939 706352.7 1148642 0.927317 1.513153 0.378159 985.4858 138.4769 0.448604 4.962615 50.64611 898852.8 375839.5 0.421889 94002.47 5.719687

Lee

3x3 1277.787 264.5305 0.617256 8.456766 23.33273 1445958 1000973 0.394759 0.627966 2.086732 980.9529 178.6645 0.581469 3.750476 30.14531 888964.3 440218 0.499652 104006.2 4.077867

5x5 1284.173 234.3938 0.544215 11.01966 30.01615 1647344 881709.5 0.305215 0.553145 3.490741 984.0575 157.4342 0.510758 4.905981 39.06994 960348.3 383178.9 0.402585 128845.4 6.281371

7x7 1285.226 220.0692 0.510538 10.89604 34.10674 1594279 844649.3 0.302119 0.529895 3.562672 986.7086 148.2053 0.479525 5.905516 44.32516 968754.8 363732.3 0.378837 126589.6 7.093557

9X9 1285.602 210.7888 0.488865 10.62342 37.19784 1400541 846347.5 0.344602 0.530961 2.738384 988.2455 142.5512 0.460514 6.397926 48.06046 954352.5 353440.1 0.373673 115877.2 7.29098

11X11 1286.613 203.8264 0.472346 10.75876 39.84511 1269887 868912.4 0.39019 0.545117 2.135886 988.762 138.4545 0.447046 6.448326 50.99991 894462.1 363267.7 0.409779 88623.47 6.062758

Amplitude HH Intensity HH Amplitude HV Intensity HV
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in Fig 2.6. Fallow land, vegetation, wetland /water, and buildings are represented in a different color, as 

shown in the legend. 

  

                                               (a)                                                             (b) 

  

(c)                                                           (d) 

    

                                           (e)                                                             (f) 

(a): Mean filter, (b): Median Filter, (c): Frost Filter (Df=2), (d): Frost Filter (Df=4), (e): Gamma Map 

Filter, (f): Lee Filter     

Fig. 2.6. Illustration of Intensity images of 7x7 filter window size of various filters. 
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2.5 Importance of speckle filtering in SAR image classification 

2.5.1 Unsupervised classification 

In this approach, the identities of land cover types specified as classes within a scene are generally not 

known prior. When the ground information/surface features are lacking, the unsupervised approach has 

opted. The computer groups pixels with similar spectral characteristics into unique clusters with 

statistically determined criteria. Later, the analyst then combines and re-labels the spectral clusters into 

information classes.   

2.5.2 K-Mean Clustering 

     K-means classification is an unsupervised classifier, where training sites is not required. Clustering 

algorithm is a cluster analysis method that aims to partition n observations into k clusters in which each 

observation belongs to the cluster with the nearest mean. The K-means clustering algorithm is also known 

as C-means clustering and has been applied to various areas, including image and speech data 

compression. The objective function is defined as 

W=∑ ∑ |(Ei
(j)

− Vj)
2|N

i=1
M
j=1           (1.5) 

Where(Ei
(j)

− Vj)
2  is a distance measured between a data pointEi

(j)
 and the cluster Vjis an indicator of 

the n data points' distance from their respective cluster centers. 

     The below Figure 2.7 (a - e) shows the subset of Amazon Forest, Fig 2.7 (a) is an optical image 

acquired from Google Maps, 2.7 (b) is a Microwave image with Speckle, 2.7 (c) is the Mean filter 3*3 

window size image, 2.7 (d) is the Mean Filter 5*5 window size image, 2.7 (e) is the Mean Filter 7*7 

window size image. We opted for Intensity HH pol data because of its less SSI value compared to Intensity 

HV pol data. We observe that as window size increases, speckle value decreased from 3*3 window size 

to 7*7 window size (0.686337 to 0.535655) as shown in Fig [2.9, 2.10]. Similarly, we opted for 7*7 

window size and Mean filter, based on SSI values. For classification, less Speckle free data is preferred, 

so a mean filter image is selected for K mean classification [34].  

    

(a) Optical image                              (b) Microwave image with speckle 
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                           (c) Mean Filter I HH 3*3                   (d) Mean Filter I HH 5*5 

 

 

(e) Mean Filter I HH 3*3 

Fig. 2.7 Speckle Filtering with different window sizes for Mean filter Intensity HH pol data. 

     The below Figure 2.8 (a) is the classified image without speckle filtering, due to the presence of 

speckle analyst cannot classify the image. Figure 2.8 (b, c, d) represents k mean classified images for the 

Mean filter for 3*3, 5*5, 7*7 window size. We can observe the difference in 3*3, 5*5, and 7*7 window 

sizes, i.e., red ellipse part is not classified correctly because of speckle presence. As window size 

increases, classification can be done more accurately due to reducing the Speckle in it. Mean filter 7*7 

classified image gave the right information in classifying the image such as light green indicates 

deforested part, light blue indicates water, red shows forest, respectively. Hence window size plays a vital 

role in the classification of an image. As the window size increases, smoothing of the image can happen; 

even edges and linear features may disappear [35]. So the selection of window size plays a crucial role in 

classification. The classified image results are verified with Google maps. 
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(a) Microwave image with Speckle (b) K Mean Classified I HH 3*3 

 

 

(c) K Mean Classified I HH 5*5          (d) K Mean Classified I HH 7*7 

 

Fig. 2.8 K Mean Classified image. 
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Fig. 2.9. Graphs for various filter with different window size   with SSI values. 

 

 

Fig. 2.10. Tabulation for IHH and IHV Data with SSI values. 

2.6 Conclusion 

     This chapter presents a comparative study between different speckle filters with different filter 

window size and their impact on speckle reduction. Amplitude/Intensity) images with different 

polarizations have been used for speckle reduction.  

     For the best speckle free image, K means the classification is applied. Fig 2.9 and Fig 2.10 show 

that the mean filter with window size 7*7 Intensity HH images shows the lowest SSI value. From this 

work, we can make out the importance of Speckle filtering for image classification [36-38]. The selection 

of the best speckle reduced image is mainly based on values like speckle suppression index (SSI), an 

equivalent number of looks (ENL), Speckle Suppression, and Mean Preservation Index (SMPI). The 

classified image is verified using Google maps. The following conclusions can be drawn from this study  

• As speckle filter window size increases, Speckle in an image decreases. Similarly, as the 

filter window increases, smoothing of the edges and point target takes place. 

Mean Median std SSI ENL Mean Median Std SSI ENL

without filter 688833.3 634580.1 330459.9 384026.9 365197.1 195124.5

Mean 3x3 694144.2 689291.7 228555.6 0.686337 9.223924 385208.5 394475.4 145009.8 0.740886 7.056621

5x5 696864.6 697770.2 195069.3 0.583493 12.76201 385676.5 404548.9 129773.3 0.662235 8.832332

7x7 698329.9 710996.6 179452.9 0.535655 15.14329 385817.3 409410.7 122958.5 0.62723 9.84569

Median 3x3 672419.5 662973.1 233052.1 0.722451 8.324812 374400.5 381837.9 145773.7 0.766289 6.596514

5x5 666141.1 665979.8 195686.2 0.612335 11.5881 369949.9 384714.7 127414.7 0.677839 8.430367

7x7 663274.4 672729 179705.3 0.564759 13.62275 368043.5 389106.5 119658.7 0.639875 9.460409

Frost 1 3x3 693857.5 690547 229247.4 0.688699 9.160761 385082.8 391639.2 145269.1 0.742453 7.026864

5x5 695346 704370 196534.7 0.58916 12.51767 385568 402276 130252.1 0.664865 8.762592

7x7 694106.9 697002.2 181534.5 0.545165 14.61956 385709.9 409043.8 123492.7 0.63013 9.755263

Gamma Map3x3 683096.9 678912.5 232775.8 0.710315 8.611698 382212.1 387952.2 146037.3 0.751985 6.849856

5x5 684076.3 685371.4 203795.4 0.620991 11.26731 382485.7 402180.6 130989.2 0.674016 8.526276

7x7 684627 685371.4 189594.6 0.577254 13.03936 382721.6 4074.361 124177.2 0.638571 9.499089

Lee 3x3 690447.4 676925.7 231816.8 0.699858 8.870973 384129.5 392940.1 146009 0.748087 6.921435

5x5 689383.6 693526.5 200354.3 0.605805 11.83926 384824.2 403480.4 131080.5 0.670387 8.61883

7x7 689539.9 699439.1 185537.9 0.560878 13.8119 384990.3 408001.9 124283.5 0.635351 9.595615

Intensity HH Intensity HV
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• The selection of polarization data (HH-HV) can be made using SSI, ENL values, and 

visual interpretation. 

• Selection of Amplitude or Intensity Image can be made using the above mentioned Indices. 

• Selection for a Frost filter with less damping factor is preferred as the damping factor 

increases with filter window size SSI values. The low value of SSI indicates an effective 

filter. 

•  Intensity HH image for Median filter with 7*7 window has less SSI, SMPI, and high ENL 

value. Low SMPI value indicates better speckle reduction with mean preservation. 
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3.1 Introduction 

     This chapter deals with the different types of polarimetric decomposition techniques. Various 

decomposition techniques are applied to the datasets to understand the polarized wave's scattering 

mechanism with each target in the scene. Quad pol Radarsat-2 data and Hybrid-pol RISAT-1 were opted 

for this study. Robust m chi, m delta decomposition, and pseudo three-component decomposition on 

Hybrid-pol data were utilized. 

3.2 Polarimetric Decomposition 

     The process of extracting information about the scattering process using various techniques from 

full polarimetric SAR data is known as target decompositions. The first objective of decomposition theory 

is to express the scattering mechanism in the resolution cell is a sum of independent elements aiming to 

associate a physical mechanism to each type of scattering [39]. The main aim of target decompositions 

theorems is to interpret based on physical constraints, which are changed based on wave polarization. The 

average scattering is expressed as the sum of independent elements with each component.   

 There are two methods for model-based decomposition theorems: coherent and incoherent target 

decomposition. Coherent is suitable for coherent local target characterization, incoherent is for distributed 

target characterization. 

3.2.1 Coherent Decomposition 

     This theorem was developed to characterize polarized scattered wave in which the information is 

contained in the scattering matrix. The scattering matrix is expressed as a sum of the elemental scattering 

matrix by using coherent averaging. Coherent averaging results in the generation of Speckle [40]. 

Krogager (1990) and Boerner (1996) contributed major work on coherent decomposition. Later, Corr and 

Rodrigues (2002) and Touzi and Charbonneau (2002) published many other decomposition methods. 

3.2.2 Incoherent Decomposition 

     Most of the targets on the earth's surface are disturbed heterogeneously scattered. Therefore 

incoherent decomposition provides good results. Incoherent decomposition is further categorized into 

Eigen value/Eigen vector decomposition, model-based decomposition, and Hybrid Eigen value/Model-

Based Decompositions. Polarimetric decomposition can be classified into four main types [41-46].  

o Coherent decomposition based on scattering matrix S (Pauli, Touzi, Cameron). 

o Model-based decomposition of coherency and covariance matrix (Yamaguchi, Freeman, 

and Durden). 

o Decomposition based on Eigen value or Eigen vector of coherency and covariance 

(H/A/Alpha, Vanzyl). 
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3.3 Study area and SAR Datasets  

     Vancouver is a Canadian province of British Columbia with latitude 49˚28ʹ27ʺ N and longitude 

123˚12ʹ07ʺ W in the country of Canada and Que 

     The data used for this study is RADARSAT- 2 fine-beam polarimetric SAR (PolSAR) data, which 

contains HH, HV, VH, and VV polarizations. The center frequency at this beam mode is 5.4GHz, i.e., C-

band, and the spatial resolution is 8 meters. 

 3.4 Methodology 

     Fig.3.1 shows the implementation of flowchart for generating polarimetric decomposed images of 

RADARSAT-2 full polarimetric data. RADARSAT-2 data are recorded in the form of a Scattering 

matrix(S) from which the coherency matrix T3 was extracted using Sentinel tool box software. The 

coherency matrix T3 contains all the polarimetric information. Most of the decomposition parameters 

were derived from coherency matrix T3, or covariance C3, which contains similar information, but in 

different form. Initially datasets are calibrated and the T3 matrix is generated for polarimetric speckle 

filtering and polarimetric decomposition. Polarimetric speckle filtering is performed using a refined lee 

filter. Filtered datasets are decomposed using several polarimetric decomposition operators. Using 

Speckle filtered T3 product as input, unsupervised polarimetric classification is performed to similar 

group pixels into classes.  A detailed explanation of polarimetric decomposition, along with a related 

equation, is provided in subsequent sections.  

3.4.1 Coherent Decomposition: Pauli Decomposition 

Initially, the Hermitian coherency matrix is extracted for all the raw polarimetric SAR data and then 

filtered by the Refined Lee filter. The Pauli parameters are directly obtained as the diagonal elements of 

the coherency matrix T3. The three elements of Pauli decomposition corresponds to a primary scattering 

mechanism. Shh + Svv represents single bounce scattering [41]. 

Shh - Svv represents double-bounce scattering, and Shv + Svh represents volume scattering. In comparison 

to other coherent decomposition methods, the Pauli decomposition is excellent for exposing natural 

targets but not ideal for highlighting man-made targets. Since the targets' total power is equal to that of 

the backscattering matrix, it is often used for preliminary representation. The Pauli parameters could 

present the most contrast between the land-cover/land-use classes representing single bounce is from bare 

soil, the double bounce is from buildings, and volume scattering is from forests, respectively.  

 
1 0 1 0 0 1

0 1 0 1 1 0
S   

     
       

     
                                                                             (3. 1) 

Where   𝛼 =
(𝑆ℎℎ + 𝑆𝑣𝑣)

√2
⁄  , 𝛽 =

(𝑆ℎℎ − 𝑆𝑣𝑣)

√2
⁄  and 𝛾 = √2𝑠ℎ𝑣are the complex quantities 
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The α, β,  𝛾 components are represented as blue, red, green color after decomposition in the RGB image 

plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Flowchart of the proposed work. 

3.4.2 Model based Decomposition: Freeman- Durden Decomposition 

The Freeman-Durden decomposition is a method for fitting a physically based, three component 

scattering mechanism model to polarimetric SAR observations. The three component scattering 

mechanism include surface scattering from a rough surface, double-bounce scattering from orthogonal 

surface, and volume scattering mechanisms from randomly oriented dipoles. The Freeman decomposition 

possesses similar characteristics to the Pauli-based decomposition, but Freeman decomposition provides 

a more realistic representation because it uses scattering models with dielectric surfaces. Since the 

Freeman-Durden method was intended to model the backscattering from forests, it might be invalid for 

other surface scatterings because of correlation coefficients [42-45].  

Radarsat-2 

Quad Pol (HH, HV, VH, VV) 

Decomposition 

 Pauli 

 Freeman -Durden 

 Yamaguchi 

 H-A-Alpha 

Polarimetric Speckle 

Filtering (Refined Lee) 

Polarimetric 

MatrixGenerationT3 

Calibration 

Unsupervised Polarimetric 

Classification 
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T P P Ps surface d double v volumeT T T  
                                                                                    (3.2)
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3.4.3 Yamaguchi Decomposition 

Yamaguchi, in the year 2005, proposed a new technique which is an addition to Freeman Durden 

decomposition. Yamaguchi added the fourth component as helix scattering corresponding to non-

reflection symmetric cases 0HH HV HV VVS S S S   . This condition appears in heterogeneous (manmade 

structures). The concept of helix mechanism was developed by krogager in coherent decomposition [46]. 

Representation of Yamaguchi decomposition in coherency matrix is 

T P T P T P T P Ts v csurface d double volume helix                                                               (3.3) 

3.4.4 Eigen value-Eigen vector based Decomposition: H/ / A Decomposition 

H/α/A decomposition was proposed by Cloude and Pottier for extracting average parameters from 

experimental data using a smoothing algorithm9. From the coherency matrix, T3 matrix decomposition 

parameters are generated from an eigenvector analysis. The eigenvectors describe different scattering 

processes, and the eigenvalues indicate their relative magnitudes. Among all the parameters, the averaged 

Alpha angle (α) relates directly to the underlying average physical scattering mechanisms. The value of 

Alpha ranges from 0° to 90°, which indicates the dominant scattering varies from surface scattering 

mechanism (0°), moving into single scattering (45°) by a cloud of anisotropic particles, and finally 

reaching dihedral scattering (90°). The Entropy (H) describes the randomness of the scatter. The 

anisotropy (A) corresponds to the relative power of the second and third Eigen vectors. The elements of 

the scattering matrix are defined as  

 

  hh hv

vh vv

S S
S

S S

 
  
 

                          (3.4) 

 

The coherency matrix is defined as  

    (3.5) 
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        (3.6)                                 

 
Let λ1, λ2, λ3 be the Eigen values of the coherency matrix and 1 2 3, ,u u u

 are the corresponding Eigen 
vectors. 

1 1cos sin cos sin cos
T

j j
i i i i i iu e e      

  
 ,                                        (3.7) 

 

                                                                    (3.8) 

 

3.5. Results and Discussions 

The polarimetric decomposition methods discussed in the previous section are used over 

RADARSAT-2data, Quebec, and Vancouver city, Canada. All the polarimetric decomposition has their 

own pro and cons as related to its methodology implemented on the scattering matrix of a quad pol data. 

As the quad pol data is full polarimetric data retaining coherency between the channels, it is highly 

essential to apply polarimetric speckle filters preserving the phase information in the signal. Each 

component in all decomposition signifies the scattering mechanism pertaining to the target properties. 

However, the attempt of applying decomposition technique to exploit the utilization of full polarimetric 

data is appreciable as the conception of a smart city in developing countries has initiated its journey. 

 Fig.3.2 and Fig.3.3 represent the outputs of the images of Quebec and Vancouver city, respectively 

considered for the study. Google Earth images are shown in Fig.3.2 (a), 3.3(a) as a reference for the 

images considered. Fig.3.2 (b), 3.3(b) corresponds to Pauli decomposition images, where blue color 

indicates the single bounce scattering mechanism from targets like water bodies, green indicates volume 

scattering from vegetation, forest, etc., and red indicates double bounce from building manmade. Fig. 3.2 

(c) and 3.3(c) are related to Freeman Durden decomposition images, where red indicates the power 

scattered by the double-bounce component of the covariance matrix, green indicates the power scattered 

by the volume scattering component and blue indicates the power scattered by the surface-like scattering 

component. This study has shown that the coherent decomposition parameters such as helix scattering, 

which operates on the individual pixels on a coherent basis, can also provide useful information for the 

land cover classification. Fig. 3.2 (d) and 3.3 (d) are the Yamaguchi decomposition images, which clearly 

show the helix scattering mechanism in urban areas compared to Freeman Durden decomposition because 
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the urban areas are brighter due to the double bounce effect, which is represented in red color. Fig. 3.2 

(e), 3.3(e) corresponds to H- -A decomposition images, where red color indicates Entropy, green color 

indicates Anisotropy, and blue color indicates Alpha. As discussed in section 3, the value of α will 

determine the dominant scattering mechanism for every pixel.  The Polarimetric unsupervised H-

Wishart classified images along with H-Alpha Plane plot with 9 classes are depicted in Fig. 2(f), (g) and 

3(f), (g).  The various classes are divided based on entropy and scattering angles into different targets like 

bare soil, wetland, water bodies, buildings, vegetation, etc. It is suggested that supervised classification, 

along with ground truth samples, will improve the classification accuracy. The ocean and the urban area, 

where much of the land surface is covered by roads and buildings, have a high degree of polarization 

values because the single scattering and double bounce scattering are dominant in these areas. This type 

of classification gives comprehensive information on existing resources to develop a better proposal in 

the establishment of a smart city. 

      

                     (a)                                                 (b)                                         (c)                                                (d) 

      

                        (e)                                             (f)                                                  (g) 

 

Fig. 3.2: (a) Google Earth image of Quebec city ,(b) Pauli Decomposition, (c) Freeman Durden Decomposition, (d) Yamaguchi 
Decomposition, (e) H-A-α Decomposition, (f) ) H-α Wishart Classification, (g) ) H-α Plane. 

Fig 3.2 output images of Quebec City 
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                        (a)                                                   (b)                                                     (c)                                                    (d) 

 

 

 

 

 

 

 

 

 

    

            (e)                                                       (f)                                                         (g)                                     

 

Fig. 3.3: (a) Google Earth image of  Vancouver city ,(b) Pauli Decomposition, (c) Freeman Durden Decomposition, (d) Yamaguchi 
Decomposition, (e) H-A-α Decomposition, (f) ) H-α Wishart Classification, (g) ) H-α Plane. 

 
Fig 3.3 Output images of Vancouver city 

 

 

  3.5.1 Robust Hybrid Decomposition 

Target Decomposition is only possible for a polarimetric image. Target decomposition cannot be 

performed for Dual-pol data. As RISAT-1 is a Hybrid polarimetric data, with the help of stokes 

parameters  

Raney Decomposition 

Raney decomposition was proposed by Raney. From Raney decomposition, six Raney derived 

parameters were obtained, i.e., i) Raney odd bounce, ii) Raney double bounce, iii) Raney random, iv) 

Raney-m, v) Raney-delta, vi) Raney-chi. From these derived parameters, along with the first stokes 

parameter (S1), m-delta and m- chi decomposition were performed. Raney decomposition utilizes the first 

three parameters to construct an RGB composite image. Whereas m-chi decomposition utilizes 'm' and 

chi parameters from Raney decomposition and (S1) from the first stokes parameter. Similarly, M-delta 

decomposition utilizes 'and delta parameters from Raney decomposition and (S1) from the first stokes 

parameter. 
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m-delta    Decomposition: 

M delta is one of the child parameters derived from the stokes vector and was also found to be an 

important tool for polarimetric analysis. This technique was proposed and developed by Raney [47-51] 

using the principle as the relative phase difference between horizontal and vertical polarized backscatter 

signal gets the effect of each scattering. In this technique, the total intensity is segmented into polarized 

and unpolarized using a degree of polarization (m). The polarized part is subdivided into the even bounce 

and odd bounce by using the relative phase information. The unpolarized part is considered as volume 

component. In this decomposition from the color-coded image, red indicates single bounce, green 

represents volume component, and blue represents the double bounce. 

 

 

 

1

1

1

1 sin

2

1 m

1 sin

2

R S m

G S

B S m








 




             (3.9) 

M Chi (χ) Decomposition 

M Chi decomposition was proposed/developed by Raney [52-56]. The parameters degree of 

polarization 'm' and degree of circularity's.' [Circular polarization ratio and degree of linear polarization 

are the two-child parameters derived from stokes parameters. General decomposition techniques used for 

quad-pol data do not apply to hybrid polarimetric and dual-pol data because compact pol data and dual-

pol data consist of the 2x2 covariance matrix. The degree of polarization' is a natural choice for the first 

decomposition variable for hybrid dual-pol data. The Poincare elasticity parameter χ is the best choice for 

the second decomposition variable. M Chi decomposition was tested on lunar orbiter mission, and this 

method was proven to be an excellent tool for hybrid polarimetric data. M and degree of circularity are 

the key inputs for m chi decomposition. In hybrid polarimetry for every scattering, the electric field loses 

its circularity and hence it is a principle of this technique. The unpolarized part is considered as volume 

component, and polarized part is categorized into odd and even bounce using χ. Blue color indicates single 

bounce (Bragg scatters), red indicates double bounce and green indicates randomly polarized constitute.  

  4
12 *

S
Sin S

m
              (3.10) 

M chi decomposition can be expressed in a color-coded image where  
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                             (3.11) 

Pseudo Three Component decomposition 

Three- component compact decomposition was proposed by S.R Cloude, PV is the volume component, 

PS is the surface component and PD is the dihedral component. Using the geometrical factor (1 sin )

single component is split into two components i.e. dihedral and surface component. The split can be 

represented in the form of decomposition parameters as shown in eq. 3.12. A pseudo three component 

decomposition using a geometrical factor is shown in Eqn. 3.13. Where S1 is the first stokes vector. 
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                                                                                     (3.13) 

3.5.2 Results  

Fig 3.4 (a ), is the Raney derived RGB image on Hybrid-pol data, where red color indicates urban 

settlements, black color indicates water body, green color indicates vegetation, and white color indicates 

bare soil. Fig 3.4 (a) is the Raney derived RGB image on Dual-pol data, where green color indicates 

vegetation, black color indicates water bodies and red color indicates urban settlements and paddy fields. 

  

                                         (a)                                                       (b) 

Fig 3.4 Raney derived RGB image of Hybrid-pol and Dual-pol data 
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 Fig 3.5(a), is the Pseudo compact decomposition performed on Hybrid-pol data. From this 

decomposition we obtain volume scattering, double bounce scattering and surface scattering. Where green 

color corresponds to the volume scattering from thick vegetation, red color Corresponds to the surface 

scattering from crop fields and water bodies, blue color corresponds to the double bounce scattering from 

urban settlements. Fig. 3.5 (b) and Fig. 3.5 (c) are the m-delta and m-chi decomposed images, 

respectively. From m-delta and m-chi decompositions, yellow color Corresponds to the double bounce 

from urban structures, i.e. buildings, green color Corresponds to the volume scattering from vegetation's. 

The magenta color Corresponds to the surface scattering from crop fields, bare soil and dark blue 

corresponds to water bodies. It was observed visually that m-delta and m-chi decomposition results were 

almost similar. 

   

                        (a)                                                (b)                                              (c) 

Fig 3.5 Pseudo compact-Pol, m-delta and m-chi decomposed images of RISAT-1 data 

3.6 Conclusions 

From this chapter, different polarimetric decomposition methods emphasize their excellence in 

determining the unique scattering properties pertaining to various terrain features. It was also observed 

that some polarimetric parameters have a more significant influence in distinguishing between natural 

and man-made objects. Yamaguchi decomposition performed good results, mainly in urban settlements 

due to the helix scattering components, followed by Freeman Durden decomposition. The H-  Wishart 

is used for polarimetric unsupervised classification based on the target scattering properties of land use/ 

land cover helps in the assessment of available and depleted resources(natural and man-made) for a better 

livelihood.  

The hybrid Robust decomposition techniques were excellent in discriminating various land covers and 

various crops on hybrid-pol data. Raney RGB, m-delta, m-chi, discriminated cotton field from paddy 

fields very well.  
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4.1 Introduction 

In this chapter, various Supervised and unsupervised algorithms are explained in detail. In this chapter, 

SVM linear case, nonlinear, multi-class case are described in detail. SVM classifier was applied on 

Hybrid-pol and dual-pol RISAT-1 data. To validate the performance of SVM classifier on hybrid-pol 

data, SVM classifier was also applied on optical LISS IV data. The results obtained are almost similar. 

Further, SVM classifier was applied on dual-pol sentinel- 1B data for land cover, water body mapping 

and oil spill discrimination. For dual-pol Alos-Palsar-2 data SVM classifier was compared to the Wishart 

classifier the results obtained were almost similar. 

 In pixel based image classification- pixels are smaller than targets. Pixel is homogeneous in a target. 

In Image object based image segmentation: the pixel is smaller than the targets. Objects/classes are not 

homogeneous. In Sub-pixel classification- Pixel is larger than targets- pixel value is an area weighted 

combination of the targets. In pixel based classifier, there are different possibilities, and there are various 

algorithms that can be classified based on the type of learning like supervised and unsupervised. 

Classification is the task of assigning a given set of data (pixels) to a given class such that the cost of 

assigning is minimum [57]. The significant steps involved in image classification include feature 

extraction, selection of training samples, and finally, classifying the data using a suitable classifier. There 

are two types of classification techniques: parametric and non-parametric. 

Furthermore, parametric classification can be performed in two approaches, i.e., supervised and 

unsupervised classification. In an unsupervised approach, an image is classified automatically by finding 

the clusters based on specific criteria. In a supervised approach, the analyst has to identify location and 

land cover type using field data (ground truth). Further, the analyst has to locate these areas on the remote 

sensing data, and these areas are known as training sites. In supervised technique, selection of training 

sets without ground truth data makes the analyst difficult and leads to poor classification. The 

classification procedure usually involves separating the data into training sets and testing sets. Fig 4.1. 

represents the types of classifier. 

4.2 Parametric classifier 

In this case, we assume a Gaussian distribution. The parameters, such as mean vector and covariance 

matrix, are generated from training samples. The size of the training sample does not matter to estimate 

parameters; as the dimensionality increases for fixed sample size, the accuracy of the parameters 

decreases. It cannot work effectively in hyper spectral data. 
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4.3 Non Parametric classifier 

Assumption of the data is not required (Gaussian distribution). In this case, the classifier will not employ 

any statistical parameter to calculate class separation. This approach is suitable for incorporation ancillary 

data for improving the classification.  

 

Fig 4.1 Types of Classifiers 

4.3.1 Neural networks 

Neural Networks' advantage is High computation rates and faster processing of huge volumes of data 

and better accuracy than conventional classifiers [57-60]. Hence, it's non-parametric; therefore, the 

assumption is not required for the data's statistical distribution. Unlike in the case of MLC, NN's 

performance depends on how well you train the data. NN can construct a nonlinear decision boundary; in 

MLC.  

4.3.2 Parallelepiped classification algorithm 

In the Parallelepiped decision rule, the candidate pixel's data file values are compared to the upper and 

lower limit. The limit can either be minimum and maximum data file values of each band in the signature. 

The mean of each band, plus and minus a number if standard deviation. Any limit that analysts specify or 

based on the knowledge of data and signatures.  

Generally, in every band, there are high and low limits for every signature. Based on the pixels value 

limit, pixel will be assigned to a signature class. The high and low decision boundaries are defined as 

different  
possibilities to 

categorize 
classifiers

Type of learning

Supervised Unsupervised

Assumptions on 
data distributions

Parametric Non parametric
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                   (4.1) 

ckL  and ckH  are the lower and higher limit of class ‘C’ in band K.  

ck is the mean of the class ‘C’ in band K 

ckS is the standard deviation of the class ‘C’ in band K 

Therefore, we obtain the lower limit by subtracting ck and ckS and higher limit by adding ck and ckS . 

The parallelepiped algorithms becomes 

ck ijk ckL BV H             (4.2) 

Where ijkBV is the brightness value of the Ith column and jth row in band K. 

Advantages 

Fast and simple and by giving broad classification, thus narrows down the number of possible classes 

to which each pixel can be assigned before more time-consuming calculations are made. It’s not 

dependent on a normal distribution.  

Disadvantages 

Since Parallelepiped has corners pixels that are far, spectrally from the mean of the signature may be 

classified. 

4.3.3 Minimum Distance to Means Classification Algorithm 

This algorithm is commonly used and is computationally simple. It requires mean vectors for each 

class in each band ck  from the training data. Euclidean distance is calculated for all the pixels with all 

the signature means  

   
2 2

ijk ck ijl clD BV BV              (4.3) 

Where ck  and cl  represents the mean vectors for the class c  measured in bands k and l. Any unknown 

pixel will be assigned to one of many types; thus there will be no unclassified pixel.  

 Advantages 

Since every pixel is spectrally closer to either one sample mean or other, so there are no unclassified 

pixels. The computational requires is fast. 
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Disadvantages 

Pixels which should be unclassified will be classified and it does not consider class variability. 

 4.3.4 Mahalanobis Decision rule 

Mahalanobis distance is similar to the minimum distance, except for the covariance matrix used in the 

equation. Variance and covariance are figured in such a way that clusters that are highly varied to similarly 

varied classes.  

    1T

c c cD X M Cov X M            (4.4) 

Where D is the Mahalanobis distance 

C  is the particular class 

X  is the measurement vector of the candidate pixel 

cM is the mean vector of the signature of the class c 

cCov  is the covariance matrix of the pixel in the signature of the class C 

1

cCov 
 is the inverse of cCov  

T is the transposition function 

Advantages 

The algorithm takes variability of classes into account, unlike minimum distance or parallelepiped. It 

is more useful than minimum distance in cases where statistical criteria must be taken into account. 

Disadvantages 

The algorithm tends to over classify signatures with relatively large values in the covariance matrix. It 

is slower when compared to a minimum distance or parallelepiped. As the Mahalanobis distance is 

parametric, it relies on a normal distribution of the data in each band. 

4.3.5 Maximum Likelihood/Bayesian Decision Rule 

     The maximum likelihood decision rule is based on the probability that a pixel belongs to a particular 

class [65]. The basic equation assumes that these probabilities are equal for all classes, and the input bands 

have a normal distribution. If the analyst have a prior knowledge, that the probabilities are not equal for 

all classes then we can specify weight factor for a particular class. The variation of the maximum 

likelihood decision rule is known as Bayesian decision rule (Hord, 1982) 
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       
11 1

ln ln
2 2

T

i i i i i

i

g x p w x m x m


            (4.5) 

Where  

i= class 

X= n- dimensional data (n is number of bands) 

 ip w = probability that class  iw occurs in the image 

i =determinant of the covariance matrix of the data in class  iw  

im = mean vector 

4.3.6 Support Vector Machine 

SVM is a supervised non-parametric classification approach derived from statistical learning theory 

that often yields good classification results from the complex and noisy data [61-64]. As SVM classifiers 

fall under non-parametric classification, estimation of statistical parameters is not involved before 

classification, and therefore they are more appropriate for classifying Remote Sensing data. [66] The non-

parametric approach's advantage is that they do not require one specific statistical distribution model; 

hence, they are versatile enough to be implemented in various data sets with minimal training sets. [67]. 

the main objective of SVM is to produce a model based on the training sets which can predict target 

values of the test sets. SVM classifier is well suited to handle linear non-separable cases using Kernel 

theory; therefore, SVM classifier was used effectively to hyper-spectral remote sensing data and SAR 

data. 

A brief discussion regarding the SVM classifier can be found in [68-70]. SVM can be performed using 

either of the three approaches; 1) linear case, 2) Non-linear case 3) Multi-class case. SAR images can be 

classified into two stages: extraction of appropriate features and labeling the features based on a set of 

decision rules. 

4.3.6.1 Linear Case 

 Let us consider a two-class classification with N-vectors of a training set from `d'-dimensional feature 

space for separating two classes. From the Fig. 4.2 (a ,b), two classes (vectors) are represented in red and 

blue color, the green color line which separates the two classes are called hyperplanes. The vectors which 

are close to the hyperplane are called as support vectors. The distance between support vectors and the 

hyperplane is called margin and is equal to 1/\omega whereas w refers to norm of vector. The objective 

of SVM is to compute optimum hyperplane by maximum margin and y finding minimum 
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            (4.6) 

The membership decision rule is based on the function  sgn if x    

Newline in finding optimum hyperplane, we have to estimate iY  where   0i iY x b    

The optimization is performed using Lagrangian formalism  

1

( ) ( )
N

i i i

i

f x Y xx b


            (4.7) 

Where   denotes Lagrange multiplier.  

 

                                                                 (a)                                          (b) 

Fig 4.2 a) linear b) non linear 

SVM classifies the data into different classes by determining the set of support vectors that summarizes 

a hyperplane. SVM has a robust feature which ignores the outliners and finds the best hyperplane with 

maximum margin. 

4.3.6.2 Non-Linear Case 

The two classes are represented in red and blue color, the green color line which separates the two 

cassesbare called hyperline. In this case, the first step is to make a soft margin that adapts noisy data. The 

second step is the utility of kernel. Kernel is the function that simulates the projection of initial data in a 

feature space with higher dimensions nK H   . In this new space the data is consider as linearly 

separable by replacing the dot product , ( ), ( )i j iX X with x x   

The new function to classify the data are 

0

( ) ,
sN

i i i j

i

f x sign y K X X b


 
  

 
          (4.8) 
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Generally three kernel are used in this approach i) polynomial kernel, 2) sigmoid kernel, 3) RBF kernel. 

The polynomial kernel is represented as 

 ( , ) . 1
p

i iK X X X X            (4.9) 

The sigmoid kernel and RBF Kernal are represented as  

 
2

2

| |

2

( , ) tanh . 1

( . ) exp
i

i i

X X

i

K X X X X

K X X 




 



          (4.10) 

4.3.6.3 Multiclass case 

The SVM classifier was designed for binary classification. To handle more than two problems or multi 

problems, there are different algorithms such as One against All (OAA) and One against One (OAO). 

OAA algorithm constructs K number of hyperplanes for K classes and separates K-1 classes. OAO 

algorithms constructs 
( 1)

2

k k 
 hyper planes to separate each pair of classes. 

4.4 Unsupervised classification 

In this approach, the identities of land cover types to be specified as classes within a scene are generally 

not know prior. When the ground information/surface features are lacking the unsupervised approach is 

opted. The computer groups pixels with similar spectral characteristics into unique clusters with 

statistically determined criteria. Later, the analyst then combines and re-labels the spectral clusters into 

information classes.   

4.4.1 ISODATA Clustering 

Iterative Self Organizing Data Analysis Technique (ISODATA) represents a comprehensive set of 

heuristic procedures that have been incorporated into an iterative classification algorithm. This algorithm 

is a modification of the K means clustering algorithm, which includes rules for merging and splitting 

clusters. 

ISODATA is iterative because it makes a large number of passes through the remote sensing dataset until 

specified results are obtained, instead of two passes. Isodata does not allocate its initial mean vectors 

based on the analysis of  the pixels rather, an initial arbitrary assignment of all Comic clusters takes place 

along ab n dimensional vector that runs between very specific in the feature space. 

4.4.2 K-Mean Clustering 

     K-means classification is an unsupervised classifier, where training sites is not required. Clustering 

algorithm is a method of cluster analysis which aims to partition of n observations into k clusters in which 
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each observation belongs to the cluster with the nearest mean. K-means clustering algorithm also known 

as C-means clustering and has been applied to variety of areas including image and speech data 

compression. The objective function is defined as 

W=∑ ∑ |(Ei
(j)

− Vj)
2|N

i=1
M
j=1           (4.11) 

Where(Ei
(j)

− Vj)
2  is a distance measured between a data pointEi

(j)
 and the cluster Vjis an indicator of 

the distance of the n data points from their respective cluster centres. 

 

4.5 Results and Discussions 

4.5.1 SVM classifier for RISAT-1 Hybrid-Pol and dual-pol data 

Fig. 4.3 (a) and Fig. 4.3 (b) are the SVM classified images on Hybrid-pol RISAT-1 data and Dual-pol 

RISAT-1 data. Fig. 4.3 (a), 4.3 (b) are the SVM classifier image classified in 4 classes viz. urban, water 

bodies, vegetation and bare soil. Where red color corresponds to urban, green color corresponds to water 

body, blue color corresponds to vegetation and yellow color corresponds to bare soil. Fig. 4.4 a) is the 

optical LISS-IV image and Fig. 4.4 b) is SVM classified image on optical LISS-IV data, where blue color 

corresponds to water body, green color corresponds to vegetation, red color corresponds to bare soil, 

yellow color corresponds to urban. 

  

a) SVM classified images on Hybrid-pol RISAT-1 data b) SVM classified images Dual-pol RISAT-1 data 

Fig 4.3 Hybrid-pol, Dual-pol RISAT-1 SVM classified images

  

                               a) Optical LISS-IV                                  b) SVM classified LISS-IV       

Fig 4.4 LISS IV image and SVM classified LISS IV image 
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Table 4.1 represents the confusion matrix obtained for RISAT-1 Hybrid pol data, RISAT-1 Dual-pol 

data, and LISS –IV data using SVM classifier with RBF kernel parameter. We observe that (OA) 91.58 

% for Hybrid pol data is more when compared to Dual-pol data 76.83 %. We also observe that RISAT-1 

hybrid pol result and Optical LISS-4 results are almost similar.  

Table 4.1 comparison of Hybrid-pol, dual-pol and LISS-IV data for accuracy assessment using 

SVM classifier (RBF) 

4.5.2 SVM classifier on dual-pol data 

SVM classifier for Land cover classification, Water body mapping and Oil Spill Detection on Sentinel1-

B data 

Results of SVM 

Fig 4.5 (a) and Fig 4.5 (b) are the VH and VV sigma naught images. From both figures, we can observe 

that cross-pol channel VH can be used for land applications, and co-pol channel VV can be used for ocean 

applications. From Fig 4.5 (b), we can easily identify the ships passage and oil spill. Fig 4.5 (c) and Fig 

4.5 (d) are the histograms of VH and VV channels. Fig 4.5 (c) We can clearly observe that we have two 

peaks in the VH channel histogram, the large peak corresponds to the pixels on the land, and a smaller 

peak corresponds to the pixel over water surfaces. Fig 4.5 (d) shows three peaks for VV channel, which 

corresponds to water, land, and oil spill. From the Fig 4.5 (e) magenta color corresponds to VV backscatter 

and green color corresponds to VH backscatter these areas are likely to be vegetation because of volume 

scattering. The water bodies appears to have dark response, this is because of specular reflection in VV 

and VH channels. Magenta color represents crop fields (paddy fields), green color represents thick 

vegetation (forest), and the black color corresponds to the oil spill on oceans and water bodies on land. 

The bright response is from the urban area. Fig 4.5 (f) is the water body mapping image, where the white 

color represents the water bodies and the black color represents the land. As we have opted a VH cross-

pol channel oil spill is not visible. Fig 4.5 (g) is the oil spill image, the white color represents oil spill and 

the black color is the masked area. Fig 4.5 (h) is the SVM classified image, the blue (aqua) color represents 

the water body, red color represents urban class, pink color represents oil spill, green color represents 

forest and the dark blue represents crop fields (paddy fields). 

 RISAT-1 

Hybrid Pol  

RISAT-1 

Dual Pol 

LISS-IV 

 U WB V BS U WB V BS U WB V BS 

U 80.70 0.00 18.83 0.47 56.66 0.00 35.32 8.02 86.69 0.01 00.00 45.08 

W 

B 

0.00 100 0.00 0.00 0.00 96.60 0.00 0.40 0.00 99.99 0.00 0.00 

V 5.15 0.14 85.89 8.81 42.02 0.00 57.61 0.37 8.97 0.00 96.90 0.64 

B 

S 

0.00 0.17 0.09 99.74 2.89 2.58 1.07 93.46 4.34 0.17 0.06 54.28 

OA 91.58% 76.83% 93.59% 
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Waterbody mapping was performed after radiometric calibration, speckle filtering and terrain 

correction. From the backscattering values, we observe that the values are different for different classes. 

From the Fig 4.5 (c) histogram of VH the water body has a sigma naught values of -23 dB to -30 dB, and 

the land has a sigma naught values between -10 dB to -21 dB. To mask the water bodies, we have to find 

a suitable threshold value. Therefore by selecting sigma naught values less than -23 dB as threshold water 

body mapping can be performed. 

Oil spill detection was performed after radiometric calibration, speckle filtering, and terrain correction. 

From the Fig 4.5 (d) histogram of VV channel, we have three peaks that correspond to land, water, and 

oil spill. The sigma naught values for land are -2 dB to -14 dB, for water, the values are between -16 dB 

to -24 dB, and for oil spill, the values are between -25 dB to -29 dB. Therefore selecting sigma naught 

value less than -26 dB as threshold oil spill detection can be performed.  

 Water  Oil Spill Forest Crop field Urban PA 

Water 98.67 1.33 0.00 0.00 0.00 98.67 

Oil Spill 2.20 96.62 0.00 0.31 0.87 96.62 

Forest 0.00 4.24 57.45 7.66 30.64 57.45 

Crop field 0.00 0.29 2.01 86.51 11.19 86.51 

Urban 0.00 1.66 9.21 13.21 75.95 75.95 

OA      83.03 

OA: Overall Accuracy, PA: Producer Accuracy 

Table 4.2 Confusion matrix 

 

                

                  (a) Lee filtered VH Image                           (b) Lee filtered VV Image 
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               (c) Histogram of VH channel   (d) Histogram of VV channel                                        

 

 

                              (e)   GB (FCC) Image                           (f) Water Body Mapping Image 

 

  
 

                                     (g) Oil Spill Image                                   (h) SVM Classified Image 

 

Fig 4.5 Results of filtered, waterbody mapping, oil spill detection and SVM classified Images. 

 



59 
 
 

Table 4.2 is the confusion matrix obtained from the classification output for accuracy 

assessment. SVM classified the class water to 98.67% and the remaining 1.33% was classified 

as oil spill. Oil spill was classified to 96.62% and the remaining 2.20%, 0.3%, 0.87% were 

classified as water, crop field and urban. Forest was classified to 57.45% and the remaining 

4.24%, 7.66%, 30.64% were classified as oil spill, crop fields and urban respectively. The 

classifier has misclassified urban to forest because of its vertical orientation. The Crop field 

was classified to 86.51% and the remaining 0.29%, 2.01% and 11.19% as oil spill, forest and 

urban respectively. The urban class was classified to 75.95% and the remaining 1.66%, 9.21% 

and 13.21% was classified as oil spill, crop field and forest. The Producer Accuracy (PA) for 

water, oil spill, forest, crop field and urban are 98.62%, 96.62%, 57.45%, 86.51% and 75.95%. 

The overall accuracy for SVM classifier was 83.03%. For validation the classified results were 

compared to the optical Sentinel 2A and Google Earth. 

 

4.5.3 Comparison of SVM vs Wishart classifiers  

Results 

Fig 4.6 (a) is the SLC image of level 1.1 without multilooking, Fig 4.6 (b) is the multilooked 

image, 5 looks in range and 1 look in azimuth direction. Fig 4.6 (c) is the refined lee filtered 

image with window size 3x3. Fig 4.6 (a-c), magenta color corresponds to urban class, green 

color corresponds vegetation class, blue color corresponds crop fields, and black color 

corresponds to water body. Fig 4.6 (d) is the SVM classified image, where red color 

corresponds to urban class, green color corresponds water body class, blue color corresponds 

crop fields, and yellow color corresponds to forest, and orange color corresponds to bare soil. 

Fig 4.6 (e) is the Wishart classified image, where red color corresponds to urban class, green 

color corresponds water body class, blue color corresponds crop fields, and yellow color 

corresponds to forest, and orange color corresponds to bare soil. From Fig 4.6 (d) and Fig 4.6 

(e), the urban class was better classified using SVM classifier. 

From the Table 4.3, SVM has classified the urban class 98.37% better than Wishart classifier 

96.85%. SVM and Wishart classifiers classified water bodies to 100%. Wishart classifier has 

classified crop field class to 94.4% better than SVM classifier 92.75%. SVM has classified the 

forest class to 81.71% better than Wishart classifier 72.21%. Wishart classifier has classified 

bare soil class to 91.90 % better than SVM classifier 82.61%. On a whole SVM and Wishart 

supervised classifier,  Overall Accuracy were almost similar (91.08% and 91.07%).     
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Table 4.3. Confusion Matrix for Accuracy Assessment 

          

    Fig 4.6 (a) SLC                Fig 4.6 (b) Multilooked   Fig 4.6 (c) Refined Lee Filtered

       

               

Fig 4.6 (d) SVM classifer image                                   Fig 4.6 (e) Wishart Clasifer 

Fig 4.6  Processing of Alos-Palsar -2 dual-pol data 

 

        U WB C F F  B S 

 W S W S W S W S  W S 

U 96.8 98.3 0.0 0.0 3.1 0.6 0.0 0.6  0.0 0.2 

WB 0.0 0.0 100 100 0.0 0.0 0.0 0.0  0.0 0.0 

C F 0.0 0.0 0.0 0.0 94.4 92.7 2.9 0.6  2.6 6.6 

F 0.0 0.0 0.0 0.0 0.6 0.0 72.2 81.7  27.1 18.2 

BS 0.0 0.2 0.0 0.5 0.4 4.6 7.6 12.0  91.9 82.6 

OA Wishart: 91.076 SVM: 91.088   

U:Urban, W: Water Body, CF: Crop Fields, F: Forest, BS: Bare Soil, 

OA: Overall Accuracy, W: Wishart Classifier, S: SVM Classifier  
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4.6 Conclusion: 

SVM classifier gave an excellent overall accuracy on RISAT Hybrid-Pol data and on optical 

LISS-IV data. SVM has been classified into four classes with an OA of 91.58 % and 93.59%, 

respectively.  

SVM, when applied on dual-pol systems when co and cross-polarization are available, co 

polarization (VV) channel enables better results for ocean applications. Similarly, Cross 

polarization (VH) enables better results for land application. From this study, we have observed 

the importance of co and cross-polarization. We have observed that the VV channel histogram 

has three peaks, but we have only two peaks in the VH histogram. The VV histogram shows 

that we have another peak for oil spill other than land and water peaks. This study has 

successfully presented water body mapping, oil spill detection, and land cover classification 

using sentinel 1B data. SVM has classified the dataset to an accuracy of 83.03%. The validation 

for the classified results was verified with optical data (Sentinel 2A and Google Earth). 

When SVM was applied on L-band Alos palsar data and compared with Wishart classifier, 

from this study, we have explored the performance of L-band Alos palsar-1 data using SVM 

and Wishart classifier on metropolitan areas. In order to know the available natural resources 

around the city Hyderabad, LULC was performed. As L-band has more penetrating capability, 

the results for the SVM and Wishart classifier are almost similar. From Table 4.2, SVM has 

classified urban class well when compared to the Wishart classifier. The (OA) achieved on the 

data were 91.08% and 91.07% for SVM and Wishart classifier. The preprocessing was carried 

on POLSARPRO 5.0 version. The classified results were validated using Google Earth images 

and Ground Truth information. 
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Chapter 5 

Exploring the Capability of Compact 

Polarimetry (Hybrid-pol) C-band RISAT-1 

data over Dual-pol for land cover 

classification and crop identification. 
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5.1 Introduction 

This chapter specifies the credibility of compact polarimetry circular transmission over 

linear dual-pol and quad-pol data for land cover and Crop identification. This chapter aims to 

study and record the response of circular components from the targets over linear transmission. 

The second objective is to compare the three modes of Compact polarimetry. 

5.1.1 Motivation: The motivation of this chapter came from the contributions of Raney et al., 

Souyris et al, Charbonneau et al., and M.E Nord et al.  

5.1.2 Significance of Study:  To explore the potential of compact polarimetry (hybrid-pol) for 

various applications.  

5.1.3 Significance of the datasets and frequency: RISAT-1 is the only mission to have Hybrid 

Polarimetric architecture on board, and C-band has good signal penetration into the targets.  

5.1.4 Novelty: In the literature, comparisons were made from the simulated hybrid-pol data. 

As the RISAT-1 has Dual-pol, Hybrid-pol data availability on the study area, investigations 

were performed.  

5.1.5 Type of target: Rural 

5.1.6 Application: Land Cover and Crop Discrimination 

5.2 Radar Polarimetry 

Radar polarimetry is the science of acquiring, processing, and analyzing the electromagnetic 

field's polarization state and is concerned with the utility of polarimetry for radar application. 

With recent advances in polarimetry, many upcoming SAR-based space-borne missions are 

planned to overcome the trade-off, such as polarimetry, resolution, and swath width [71-73]. 

From the past two decades, the concept of polarimetric SAR and its application has been an 

active research field. Radar polarimetry can be performed on two platforms, i.e., Space-borne 

and Airborne SAR systems, by providing high-resolution data in single, dual, and quad-pol 

data for the radar community. In general, a single pol system transmits and receives only one 

polarization, viz. horizontal (H) or vertical (V). Similarly, a dual-pol SAR transmits one 

polarization and receives the backscatter in a pair of orthogonal polarization viz. transmit (H) 

and receives (H, V) vice versa. In quad-pol SAR, two orthogonal polarizations H and V, are 

coherently transmitted and received. Complete polarimetric scattering information can be 
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obtained from the target from quad-pol SAR, and hence, better analysis and classification can 

be performed [10]. 

5.3 Compact Polarimetry Overview 

In a quad-pol SAR systems a pulse is first transmitted on one polarization, and all 

orthogonally polarized signals are received before the next signal is transmitted. Similarly, 

SAR transmits two orthogonal polarized pulses alternatively and receives backscattered signal 

simultaneously using two orthogonally polarized antenna thus by capturing all polarization 

information. This process doubles, pulse repletion frequency (PRF) and halves the swath width 

which is the limitation to the fully quad-pol SAR systems.  

These limitations will have an adverse effect on the revisit time, which is an important factor 

for earth observation missions [74-75]. The tradeoffs between conventional single-pol linear 

systems and quad-pol systems is a dual-pol system, in which a single polarization is transmitted 

and receives two orthogonal polarizations, by overcoming the drawbacks of conventional linear 

polarization systems. To achieve better swath width and to reduce average peak power with 

simple architecture Compact polarimetry (Dual Partial Polarimetric mode) has been proposed 

[17]. The dual partial polarimetric mode was proposed by Souyris [17]. The information from 

the compact-pol SAR is almost similar to that of fully polarimetric SAR from the azimuthally 

symmetric scattering targets and was proved by Souyris et al. Raney et.al [13] drew a similar 

conclusion and also promoted the use of Hybrid SAR for its simpler architecture in contrast to 

the conventional SAR. Compact polarimetry is a technique which allows construction of 

pseudo quad-pol data from dual-pol SAR. Recently Compact polarimetry has gained more 

importance than fully polarimetric SAR by its advantages such as larger swath width, less 

power, and simple architecture. Compact polarimetry has proven its potential in distinguishing 

oil slicks, ship detection and in crop monitoring. Compact polarimetry has three modes as 

shown in Table 5.1and Fig. 5.1. 
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S.No Mode Tx/Rx(Transmitting/Reception) 

1 π/4 45°/ (H, V)  

2 CTLR (Hybrid) RC/ (H,V) 

3 DCP RC/ (RC,LC) 

                    H = Horizontal, V = Vertical, RC = Right Circular, LC = Left Circular 

Table 5.1: Compact Polarimetry Modes 

 

 

                                                Figure 5.1: Illustration of CP modes 

 

5.3.1 CP-Modes 

(
4


) mode: 

The (
4


) mode was one of the first partial polarimetric concepts to appear in the radar 

imaging literature developed by Souyris et.al [17]. In this mode, SAR transmits a linear 

polarized field at an angle of 45 concerning Horizontal or vertical orientation and receives 

Horizontal and vertical components [12, 13]. The covariance matrix is obtained from the Eqn. 

5.1. 

/4
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2 2 2 * * *

( . ) 2 ( . ) . .1 1 1
[ ]
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(5.1)           
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5.3.2 Dual circular polarimetric (DCP)  

In this mode, right circular polarization is transmitted and both left and right circular 

polarization are received. Stacy and Preiss demonstrated that dual circular polarization could 

be implemented with slight modification from original compact polarimetry algorithm. The 

covariance matrix was obtained from the Eqn. 5.2. 

2 * *2

2 **

( ) 4 (( ).S ) 2( ) .1 1 14 0
[ ]

4 4 40 0 2( ). 0( ).( ) ( )

HH VV HH VV HH VV HV HH VV HVHV
DCP

HH VV HVHH VV HH VV HH VV

S S i S S S S S S SS
C

S S Si S S S S S S

     
  

  

    
    
       

..(5.2) 

5.3.3 Circular Transmit Linear Receive (CTLR) Polarimetry 

CTLR is popularly known as Hybrid polarimetry. In Hybrid polarimetry, only one 

polarization will be transmitted, and other orthogonal polarization will be received along with 

relative phase which is different from dual polarimetry systems. In this mode, Circular (right 

or left) component is transmitted and Linear component is Received (CTLR). In dual 

polarimetry systems, relative phase information is not available. Hybrid Polarimetry is the 

optimum architecture for applications related to planetary explorations and earth observations. 

SAR systems transmitting linear component may not be able to excite target response from 

linear structures as they are orthogonally oriented to the incident electric field [74-75]. Quad-

pol SAR system is restricted in terms of incidence angle. In this case, by transmitting a linear 

component volume scattering is overestimated due to the change in orientation angle shift 

during reception of the signal from the target [76-78]. Therefore illuminating circularly 

polarized signal can overcome the limitation of linear transmitted systems. However, 

transmitting a circular component will not be affected by ionospheric distortions (Faraday 

rotation) and are free from the polarization orientation angle shift [79]. Hence, overestimation 

of volume scattering can be reduced when compared to quad-pol SAR system and another 

advantage of transmitting circular polarization is to reduce the range ambiguities [13]. Among 

circular transmit systems, Hybrid-pol is preferred over DCP because its performance is limited 

to weaker cross-polarized links and it is affected by additive noise and by crosstalk from 

stronger like polarized signal [13]. From hybrid-pol data, an equivalent covariance or 

coherency matrix may be reconstructed to produce pseudo quad-pol data. From the Eqn. 5.3 

covariance matrix of hybrid-pol data was obtained. 

2 22 * * * *

2 2 2 * * **

( . ) 2 ( . ) . .1 1 1
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         

(5.3) 
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5.4 Hybrid Polarimetric SAR Architecture  

Hybrid Polarimetry architecture is shown in Fig. 5.2. The hardware realization of hybrid 

polarimetry is in-complex as compared to that of linear full polarimetric systems. Both in active 

and passive case, the dual polarized antenna will transmit circular polarization only if H and V 

components are driven simultaneously. In this system, the same signal is transmitted through 

horizontal and vertical antenna such that phase 90° is maintained. Simultaneously during the 

reception, an additional pair of 90° hybrids in the receive paths is equired after the antenna or 

along each of receive chains. Hybrid polarimetry architecture has numerous advantages such 

as the generation of Stokes parameter from dual-pol data, less risk of crosstalk, calibration, less 

flight hardware, quad polarization transformation [13]. 

 

Figure. 5.2: Hybrid polarimetry Architecture @ Raney 2007 et al. 

5.5. Study area and Datasets  

In this study we have used RISAT-1 Hybrid pol data and Dual pol data and optical 

resourcesat-2 data for validation of classifed image as shown in Table 5.2 .  

Mission/ 
Sensor 

Polarization  Band 
/Freq 

Mode Incidence 
Angle 

Res Rg 
 

Res Az Date of Acq 
Dd/mm/YYYY 

RISAT-1 Dual Pol C/ 5.04 FRS-1 46.59 3.33 1.80 5/12/2015 

RISAT-1 Hybrid pol C/ 5.04 FRS-1 39.57 3.33 1.80 05/07/2016 

Resourcesat-2 3 bands - - - - - 09/04/2016 

Google Earth        

Table 5.2: Datasets 
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5.5.1 Ground truth 

Ground truth data was collected on 4th and 5th of July 2016. Detailed information such as 

water level, crop yield progress, weather conditions were also recorded. On 4th and 5th July the 

study area was covered with clouds and had rainfall, during the time of acquisition. For better 

classification accuracy, ground coordinates for various target class were recorded with the help 

of hand-held GPS of Trimble Company. With the help of ground coordinates, training sites are 

given for supervised classification. Based on the ground truth, we have identified four classes 

(Urban, Water Body, Vegetation, Bare Soil).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 Flow chart of the proposed work 

Importing 

RISAT-1 (FRS-1) Data  
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5.6 Methodology 

The flow chart of the propesed work in this chapter is shown in Fig 2.3. 

5.6.1 Sigma naught image generation 

Sigma naught image is generated using the equation (5.4).  

Radiometric calibrations (backscatter calibration) 

   
 
 

0

10 1020log 10log
p

p db

c

Sin i
db DN K

Sin i


 
   
 
 

     (5.4) 

0  db = radar backscatter coefficient in dB 

 pDN  Is the digital number are the image pixel gray-level count for the pixel p 

dbK  Is calibration constant in dB  

pi   Incidence angle for the pixel position p 

ci  Incidence angle at the scene centre         

The calibration constant are obtained from the  

Calibration of RH and RV channel  

      

      

*
*

*
*

10 ( /10 Sin / Sin

10 ( /10 Sin / Sin

calib P RH p center

calib P RV p center

RH RH sqrt KdB i i

RV RV sqrt KdB i i





  
  

  
  

            (5.5) 

PRH  PRV  are pixel values of original complex images  

KdB Is the calibration constant of dB 

pi  Incidence angle of the pixel position  

centeri  Incidence angle at the scene centre 

Using the equation 5.4 and 5.5 backscattered coefficient 0 is processed 

Hybrid-pol data has a 2*2 covariance matrix with phase information stokes vectors and child 

parameters are derived from the equation 5.6. 
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5.6.2 Stokes vector 

   
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1

2

3

2 2

2 2
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Where 
2

RH  Intensity of RH 

    
2

RV  Intensity of RV 

Class Urban Water 
body 

Vegetati
on 

Bare soil 

Sigma RH(dB) 
Hybrid Pol 

-7.76 -20.69 -10.82 -11.31 

Sigma HH(dB) 
Dual Pol 

-2.09 -17.58 -18.59 -19.45 

Sigma RV(dB) 
Hybrid Pol 

-8.24 -18.33 -8.45 -13.15 

Sigma HV(dB) 
Dual Pol 

-15.61 -25.52 -16.52 -10.72 

Table. 5.3 Sigma naught values for hybrid pol (RH, RV) and dual pol (HH, HV) RISAT-1 data 

The values in Table 5.3, are the Sigma naught values of Hybrid-pol (RH, RV) and Dual-pol 

(HH, HV) RISAT-1 data. The training and testing samples of Hybrid-pol RISAT-1are shown 

in Table 5.4 

Class Training  samples No of Polygons Test Samples No of Polygons 

Urban 4699 02 10097 05 

Water Body 3355 04 9582 08 

Vegetation 5005 02 17154 09 

Bare Soil 1147 02 2403 03 

OA 95.31%  91.58%  

Table 5.4: Training and Testing for Hybrid Pol RISAT-1 data 

5.7 Results  

Fig. 5.4 (a), is the Google Earth image, green color indicates vegetation, White Color 

indicates settlements, green color indicates water-bodies and brown color indicates bare soil. 

Fig 5.4 (b), is the FCC image of LISS-IV data, where red color indicates paddy fields, black 

color indicates water body, green color indicates vegetation, and white color indicates bare soil. 

Fig 5.4 (c), is the Raney derived RGB image on Hybrid pol data, where red color indicates 
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urban settlements, black color indicates water body, green color indicates vegetation, and white 

color indicates bare soil. Fig 5.4 (d), is the Raney derived RGB image on Dual pol data, where 

green color indicates vegetation, black color indicates water bodies and red color indicates 

urban settlements and paddy fields. 

 

 

 

 

 

(a)       (b) 

 

 

 

 

(c)             (d) 

 Fig 5.4 Images of Optical and Raney derived parameters of the Area of Interest. (a) Google 

Earths image. (b) Resourcesat-2 LISS- IV image (c) Raney derived RGB image on hybrid pol 

data. (d) Raney derived RGB image on dual pol data. 

SVM parameterization 

In this paper, the method of SVM is implemented by using the library LIBSVM on Polsarpro 

tool [97]. In this study, OAO approach has been retained with RBF kernel.  

The kernel parameters are tuned in the range of C={8,16,32,64,128,256} and 

γ={0.03,0.06.0.12,0.25,0.5,1,2}. The cost parameter C and kernel parameter γ were optimized 

using cross-validation for obtaining best possible classification accuracy [80-82]. From 

fivefold cross validation, we have obtained the values of C=64, γ=0.5 with an accuracy 93.55 

using grid search within a given set. While tuning the kernel parameters we have observed, 

as the values of C and γ increases the accuracy also increases. With a large values of C and γ 
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there is a tendency for the SVM to over fit to the training data. The cross validation procedure 

prevents the over fitting problem. 

 

 

 

 

 

 

(a)                                                (b)                                         (C) 

 

                    (d)                                              (e)                                                 (f) 

                        Fig 5.5 Processed images of SAR and optical data 
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Figure 5.6 Ground truth collection 

Fig. 5.5 (a), is the Pseudo compact decomposition performed on Hybrid-pol data. From this 

decomposition, we obtain volume scattering, double bounce scattering and surface scattering. 

Where green color corresponds to the volume scattering from thick vegetation, red color 

corresponds to the surface scattering from crop fields and water bodies, blue color corresponds 

to the double bounce scattering from urban settlements. Fig. 5.5 (b) and 5.5 (c) are the m-delta 

and m-chi decomposed images, respectively. From m-delta and m-chi decompositions, yellow 

color corresponds to the double bounce from urban structures, i.e., buildings, green color 

corresponds to the volume scattering from vegetation’s. The magenta color corresponds to the 

surface scattering from crop fields, bare soil and dark blue corresponds to water bodies. It was 

observed visually that m-delta and m-chi decomposition results were almost similar. Fig. 5.5 

d) and 5.5 (e) are the SVM classified images on Hybrid-pol RISAT-1 data and Dual-pol 

RISAT-1 data, where red color corresponds to urban, green color corresponds to water body, 

blue color corresponds to vegetation and yellow color corresponds to bares soil. Fig. 5.5 (e) is 

the SVM classified image on optical LISS-IV data, where blue color corresponds to water 

body, green color corresponds to vegetation, red color corresponds to bare soil, yellow color 

corresponds to urban [83-87]. The Table 5.5 represents the performance of kernel parameters 

for Land cover classification using SVM classifier. In this study, we have compared all kernel 

parameters (linear, polynomial, RBF) on the test data. In this paper, the method of SVM is 

implemented by using the library LIBSVM on Polsarpro tool. In this study, OAO approach has 

been retained with RBF kernel. The kernel parameters Cost Parameter (C) and kernel parameter 

(Gamma) are tuned. Table 5.6 represents the confusion matrix of the Hybrid-pol, dual-pol and 

LISS-IV data. Table 5.6 represents the cost parameterization effect with respect to accuracy.  
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Kernel Types RBF: Radial Basis Function; P ’2’: Polynomial; L: Linear U: Urban Class; WB: Water Body, V: 

Vegetation; BS: Bare Soil 

Table 5.5 Confusion matrix for Hybrid pol RISAT-1 SAR data using various Kernel parameters 

on test set 

 

Table 5.6 Comparison of Hybrid pol, dual Pol and LISS IV data for accuracy assessment using 

SVM classifier (RBF kernel).  

S.No C  (γ) Accuracy (%) 

1 8 0.5 90.70 

2 16 0.5 91.70 

3 32 0.5 92.90 

4 64 0.5 93.55 

5 128 0.5 94.10  
6 256 0.5 95.35 

Table 5.7 Parameterization of cost parameter 

 RBF P ‘2’ L CP 
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      Table 5.8 Confusion matrix of RISAT-1 Hybrid-pol and Dual-pol for crop discrimination  

Hybrid-pol data has discriminated the crops very well. For crop discrimniation, five land 

targets were identified namely Water, cotton, urban, paddy and Mango. SVM has classifed five 

classes very well in Hybrid-pol data than in Dual-pol data. The two seasonal crops cotton and 

paddy were clearly discriminated and classified in Hybrid-pol data. In dual-pol data, cotton and 

paddy were not discriminated and classified with respect to Hybrid-pol data. From Table 5.8, 

Hybrid pol data has obtained OA of 83.03%  and dual-pol data has obtained OA of 55.6 %. 

5.8  Polarimetric synthesis of Compact Polarimetry (CP) and the comparison 

of CP modes  

In this chapter, a compact polarimetry mode is simulated from quad-pol Alos-Palsar-2 SAR 

data. By symmetry assumptions a quad pol data can be synthesized to a compact pol data. This 

chapter presents the comparisons of three modes of compact Polarimetry and to study the 

compact pol mode interaction with the targets.    

5.8.1 Methodology 

In order to study the three modes of compact polarimetry, we need to acquire quad-pol then 

simulate/ synthesis to compact-pol data [88-93]. Quad-pol data has to be synthesis to (
4


) 

mode, Hybrid mode and DCP mode. All the CP mode have to undergo multilooking, Speckle 

filtering, decomposition, classification, accuracy assessment then should be compared. 

Multilooking (6: 1 range and azimuth direction) is performed to reduce the speckle content and 

also allows us to obtain square pixel. Performing multilooking for a several time degrades the 

 Alos-palsar 

Quad-Pol 

RISAT-1 

Hybrid-Pol 

 W C U P M W C U P M 

W 98.67 1.33 0.00 0.00 0.00 99.54 0 0 0 0.46 

C 2.20 96.62 0 0.31 0.87 0.05 47.35 8.25 27.07 17.26 

U 0 4.24 57.45 7.66 30.64 0.85 15.58 23.83 14.60 45.14 

P 0 2.29 2.01 86.51 11.19 0 31.86 10.28 38.15 19.71 

M 0 1.66 9.21 13.21 75.92 3.27 11.85 9.16 6.18 69.55 

OA 83.03% (1656,1271,966,2091,2346) 55.6% (3053,2150,4096,2451,2752) 

Classes W:Water, C:cotton, U:urban, P:Paddy, M:Mango 



76  

image quality. Lee filter with window size 7*7 reduced the speckle effectively, so 

decomposition is performed on the filtered image. HAA decomposition is performed to 

understand the scattering response of the target. As, the decomposed image consist valuable 

information, SVM classifier is performed. Accuracy assessment is done using confusion 

matrix. The flow chart of the proposed work is shown in Fig. 5.7. 

 5.8.2 Study Area and SAR Data  

For this study we have opted Amazon forest, Brazil. The study area consists of the 

deforested part, short vegetation and dense vegetation. We have opted Alos palsar-1 quad-pol 

data.  We would like to record the response of circular transmission on intracting the targets.   

The below images are the SLC level 1.1 images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Flow chart of proposed section 
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5.9 Results and Discussion 

Figure 5.8 is the SLC quad pol image with four channels, HH, HV, VH, and VV. 

Speckle in the images are clearly evident. Once multilooked is performed on the images, 

speckle is reduced in the images as shown in Figure 5.9.   

                  

                                   a(HH)                b (HV)                 c (VH)                     d (VV) 

Figure 5.8 Quad Polarization channels of Alos palsar-1 data 

       

            a(HH)                           b (HV)                         c (VH)                                     d (VV) 

Figure 5.9 Multilook Quad Polarization channels of Alos palsar-1 data 

The Figure in 5.10 represents three chanels in (
4


) mode, cross pol HV channel gave a 

brighter response from short vegetation and the deforested area also gave specular reflection. 

Figure 5.11 represents three channels of elliptical mode. Visually we can make out the 

difference between (
4


) mode and elliptical mode. Figure 5.12 represents the three channel 
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in (
2


) mode. Figure 5.13 represents the comparison of SVM classifier over (

4


) mode, 

elliptical mode and (
2


) mode. Visually elliptical mode gave good results, the short 

vegetation was very well classified in elliptical mode. 

                         

                                     HH                            HV                                  VV 

                                Figure 5.10 Three channel image of (
4


) mode 

          Table 5.2:  represents the SVM classifier Comparison of CP Modes, (
4


) mode gave OA of 

86.31%, elliptical mode gave an OA of 85.78% and (
2


) mode gave an OA of 86.35 % as 

shown in Table 5.9. Where red color represents forest land, green color represents deforested 

land and blue color represents short vegetation. Short vegetation was better classified by 

elliptical mode. From the results all modes OA are almost equal.  
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                    HH                                            HV                                        VV 

Figure 5.11 Three channel image of elliptical mode 

                             

Figure 5.12 Three channel image of (
2


) mode 

         

(
4


)                                    Elliptical                                   (

2


) 

           Figure 5.13 SVM Classifier Comparission on CP modes 
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 Pi/4 mode Elliptical mode Pi/2 mode CP 

  F DF SV F DF SV F DF SV   

F 97.23 6.66 80.90 94.27 9.42 64.67 96.72 0.16 0.62 4419 

DF 0.88 93.29 0.00 2.24 90.42 0.00 0.88 93.07 0.00 1757 

SV 1.89 0.05 19.10 3.49 0.16 35.33 2.24 0.55 21.72 225 

CE/

OE 

17.45/2

.77 

1.88/

6.71 

2.00/8

0.90 

16.36/

5.73 

4.79/9

.58 

32.1/64

.67 

17.05/3.

28 

1.88/6.

93 

32.82/78.

28 

6401 

PA/

UA 

97.23/8

2.55 

93.29

/98.1

2 

19.10/

68.00 

94.27/

83.64 

90.42/

95.21 

35.33/6

7.87 

96.72/8

2.95 

93.07/9

8.12 

21.72/67.

18 

  

KC 0.73 0.72 0.73  

OA 86.31% 85.78% 86.28 %  

F: Forest; DF: Deforested ; SV: Short Vegetation; CP: Class Population; OA: Overall Accuracy; CE: 

Commission Error; OE: Omission Error; PA: Producer Accuracy; UA: User Accuracy; KC: Kappa 

Coefficient  

          

Table 5.9 Comparison of CP Modes using SVM classifier  
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Chapter 6 

Exploring the Capability of Compact 

Polarimetry (Hybrid-Pol) C-band RISAT-1 data 

over dual-pol and quad-pol for Land Cover 

Classification. 
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6.1 Introduction 

This chapter specifies the capability of compact polarimetry (Hybrid-pol) of RISAT-1 over 

dual-pol RISAT-1 and quad-pol Alos-PALSAR-2 data for land cover classification. The 

objective of this chapter is to compare the information content and penetration capability into 

the targets among the datasets.  

6.1.1 Motivation: The motivation of this chapter came from the contributions of Raney et al., 

Thomas Aisworth et al., and Rajib Kumar et al. 

6.1.2 Significance of Study area: The test site (San Francisco) used for this study is a Standard 

test site, approved by NASA, CSA, JAXA, and ESA. For a comparative analysis, the test site 

should be the same. 

6.1.3 Significance of the datasets and frequency: RISAT-1 is the only mission to have Hybrid 

Polarimetric architecture on board. Alos Palsar-2 data is the only available L-band with quad-

pol configuration. RISAT-1 and Alos palsar-2 data availability of Test site made to opt. 

6.1.4 Novelty: In the literature, no one has attempted to compare RISAT-1, C-band, Hybrid-

pol data with ALOS Palsar-2, L-band, quad-pol data. Moreover, the Hybrid-Pol recorded in 

the literature were simulated from quad-pol data. 

6.1.5 Type of target: Urban 

6.1.6 Application: Land Cover 

6.1.7 Significance of frequency: L band and C-band has more penetration capability 

Boularbah souissi et al. [96] used ESAR DLR polarimetric data in fully polarimetric mode 

and radarsat-2 in their study. From quad pol, CP mode was simulated. The authors have 

presented an initial comparison of polarimetric information content between QP and CP 

imaging modes. They have used an automated statistical clustering method based on 

Expectation Maximization. It was reported in case 1: that all modes almost have the same 

Overall Accuracy (95.47% for QP, 90.93% for C2, and 88.2% for CP). Case 2:  all modes have 

different OA Accuracy (90.41% for QP, 64.53% for C2, and 75% for CP). It was reported that 

CP performance was very poor when compared to QP and C2. 

Rajib Kumar et al. [21] used NASA/JPL AIRSAR L-band quad-pol data. From quad-pol 

data, hybrid-pol data was simulated by symmetrical assumptions  HV HVS S . From simulated 
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hybrid-pol, Pseudo-quad-Pol was simulated.  It was observed that Pseudo-quad-Pol values are 

matching with original quad-pol values. It was also found that the scattering mechanism for 

hybrid-pol data is less but comparable to quad-pol data.   

Rajib Kumar et al. [16] used airborne multi-polarization GTRI data for comparing the 

information content of quad-pol with simulated hybrid-pol data. The authors concluded that 

the information contained in Hybrid-pol imagery is found to be comparable to that of quad-pol 

data. 

T.L Anisworth et al. [19] used airborne AIRSAR L-band quad-pol data. Compact-Pol (pi/2) 

and CTLR modes are simulated from quad-pol data. Wishart maximum likelihood classifier 

was applied on all modes to compare the several class type accuracy. On the whole, quad-pol 

gave a good percentage of the training area and are correctly classified. It was found that CTLR 

and pi/2 mode almost gave similar results. The linear dual-pol yields the lowest results. 

6.2 Why is hybrid-pol so special?  

Hybrid-pol has the same feature as full-pol but has a half data rate. Full-pol has less than 

optimal ambiguity performance across the entire swath width because the pulse rate is too high. 

Therefore the full-pol is best suited for selected areas and applications, whereas the dual-pol 

mode has better uniform performance across the swath.  

If a full-pol system is used all the time, it has some practical limitations on the performance. 

While operating in full-pol, we have to switch from H to V on the next pulse and receive both 

the polarization. In order to get the images in two polarizations and to get the images adequately 

sampled, we have to pulse the radar at twice the rate to get twice the data. As the missions are 

planned for global observation in ascending and descending pass over all land surface, water 

and ice surfaces, radars are imaging over a 50% of its orbiting time. If we continuously image 

using full-pol all the time we would have more data than we could get to the ground station. 

Hybrid-pol has many of the characterization of the full-pol not quite as rich but rich. In hybrid-

pol we don’t have to pulse the radar at double rate. The other issues of full-pol are noise 

properties, called ambiguities that are little higher than one would like at the certain part of the 

swath. So several space agencies decided to operate mostly in dual-pol mode and to have 

optimal imaging performance. Therefore Hybrid-Pol data has the advantage of being a dual-

pol in terms of swath width, power consumption, and almost the same as quad-pol in terms of 

information content.  
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6.3 Penetration Depth and Polarization 

Like polarization back scatter toward the sensor results from single refraction from canopy 

component such as the leaves, stems, branches and trunk. These returns are generally very 

strong and are recorded as bright signals in like polarized radar imagery (HH or VV). This is 

often called canopy scattering. Conversely, if the energy is scattered multiple times with in a 

diffuse volume such as a stand of pine tree (i.e., from a needle to a stem, to the trunk, to a 

needle), the energy may become depolarized. This is often called volume scattering. A radar 

can measure the volume of depolarized volume scattering that takes place. E.g., it is possible 

to configure a radar to send a vertically polarized pulse of energy. Some of this energy becomes 

depolarized in canopy and exists towards the sensor in the horizontal domain. The depolarized 

energy may then be recorded by the sensor VH mode – vertical send and horizontal receive.  

6.3.1 Penetration depth vs Frequency 

Longer the microwave wavelength, the greater the penetration into the plant canopy. Surface 

scattering takes place at the top of the canopy as the energy entreats with the 

leaves\needle\stems. Volume scattering by the leaves, stems, branches and trunk takes place 

throughout the stand, and surface scattering can occur again at the soil surface [98]. A 

comparison of the repose of X-, C- and L-band microwave energy incident to the same canopy. 

The stronger wave length x band 3 cm energy is attenuated most by surface scattering at the 

top if the canopy by the foliage and small branches the c band 5.8 cm energy experiences 

surface scattering at the top of the canopy as well some volume scattering in the heart of the 

stand. Little energy reaches the ground. L-band 23.5 cm microwave energy penetrates farther 

into the canopy, where volume scattering among the leaves, stems, branches and trunk cause 

the beam to become depolarized [99]. Also, numerous pulses may be transmitted to the ground 

where surface scattering from the soil vegetation boundary layer may takes place longer p-band 

radar would afford the greater penetration thought he vegetation and mainly reflect of large 

stems and the soil surface.  
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6.4 Datasets used 

 The Datasets used in this study as shown in Table 6.1 

SAR Mission RISAT-1 RISAT-1 Alos-palsar 2 

Frequency C-Band (5.35 GHz) C-Band (5.35 GHz) L-Band (1.2 GHz) 

Polarization Dual -Pol Hybrid-Pol Quad-Pol 

Country India India Japan 

Agency ISRO ISRO JAXA 

Incidence angle 26.35° 26.35° 8-70° 

Swath   25 km 25 km 50 km 

Resolution (m) 

(Azimuth, Range) 

2.34, 3.3  2.34, 3.3  4.3 , 5.1  

Altitude 530.789 km 530.789 km 639 km 

       

Table 6.1 Datasets used in this study  

6.5 Methodology 

For RISAT_1 hybrid-pol data processing, Hybrid-Pol is imported to Polsarpro tool. The 

covariance matrix  2C  is generated and radiometric calibration is performed. The Stokes 

vector and stokes child parameters are generated. To remove speckle, speckle filtering was 

performed using refined lee filter 7*7 window size. Raney decomposition was performed on 

the filtered data resulting in six Raney derived parameters i.e. i) Raney odd bounce ii) Raney 

double bounce iii) Raney Random iv)  Raney m v) Raney - delta, vi) Raney chi. M delta 

decomposition is performed using the Raney m parameter, Raney delta and Stokes first 

parameter. For land cover classification supervised classifier SVM with multi case approach 

was performed. Similarly, for Alos palsar-2 quad-pol data processing quad-pol data is imported 

to Polsarpro tool, and refined lee filter 7*7 window size is opted for speckle filtering. 

Yamaguchi four component decomposition is performed on the filtered image. For land cover 

classification supervised classifier SVM with multi case approach was performed. For RISAT-

1 dual-pol data processing dual-pol data is to be imported to Polsarpro tool, and covariance 

matrix  2C  is generated. Refined lee filter 7*7 window size is opted for speckle filtering. 

Raney decomposition is performed and SVM with multi case approach was applied. Overall 
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Accuracy is performed for three SVM classified for comparing the information content, 

scattering response. The Flow chart of the proposed work is shown in. Fig 6.1. 

6.5.1 Details of Test Site 

The test site consists of two forest zones, three urban areas and one water body. In this work 

five classes are identified as targets viz. SOMA, Golden Gate Park, Water body, NOMA, 

Richmond. South of Market (SOMA) is an urban area occupied with tall buildings, Golden 

Gate Park a forest place full of vegetation and tall trees, Water body is a Sea, North of Market 

(NOMA) is an urban area occupied with large building with different orientation, and 

Richmond is a residential area with gardens in between and some medium buildings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             Fig 6.1 Flow chart of the work 
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6.6 Results and discussions 

The quad-pol Alos palsar-2 data contains the full information when compared to Risat-1 

hybrid-pol and dual-pol data. Alos palsar-2 quad-pol data has covariance matrix  3C  of 3*3, 

Hybrid-pol RISAT-1 data has a covariance matrix  2C  2*2 with phase information, and dual-

pol RISAT-1 has a covariance matrix  2C 2*2 without phase information [100]. Figure 6.2 a) 

is the Yamaguchi four component decomposed image of Alos-palsar-2 quad-pol data, 6.2 b) is 

the m delta decomposed image of RISAT-1 hybrid-pol data, 6.2 c) is the Raney decomposed 

image of dual-pol RISAT-1 data. Fig 6 a) green color corresponds to vegetation class, red color 

corresponds to urban class and blue color corresponds to Water body (Sea), here SOMA an 

urban area was decomposed as a vegetation class due to multiple scattering. Fig 6 b) green 

color corresponds to vegetation class, red color corresponds to urban class and blue color 

corresponds to Water body (Sea), here SOMA is decomposed as a vegetation class due to 

multiple scattering but less compared to Yamaguchi four component decomposition. Fig 6 c) 

green color corresponds to vegetation class, red color corresponds to urban class and blue color 

corresponds to Water body, here water body is also decomposed as an urban class. 

         

a) Yamaguchi quad-pol data       b) M delta hybrid-pol data      c) Raney Dual-pol data 

Fig 6.2 Decomposition images on quad-pol, hybrid-pol and dual-pol data 

Supervised classifier, SVM with multi class approach classified alos palsar quad-pol data 

very effectively with an Overall Accuracy of 85.80%. SVM classified Risat-1 hybrid-pol data 

with an Overall Accuracy of 69.79%. SVM classified Risat-1 dual-pol data with an Overall 

Accuracy of 49.98%. From Table 6.2, SOMA was classified very in quad-pol data very well 

when compared to hybrid-pol and dual-pol data. Golden Gate Park is similarly classified in 

quad-pol and hybrid-pol data. In dual-pol data Golden Gate Park is poorly classified. Water 
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class is well classified in all data. NOMA is effectively classified in quad-pol data, less 

effectively classified in hybrid-pol data, and very poorly classified in dual-pol data. Richmond 

class is also classified effectively in in quad-pol data, less effectively classified in hybrid-pol 

data as shown in Fig 6.3. Dual-pol data is classified better than hybrid-pol data. From the results 

below hybrid-pol data is an intermediate between quad-pol and dual-pol data. 

 

Table 6.2 Confusion matrix of three datasets 

 

    

                          a) Alos quad-pol                                  b) RISAT-1, Hybrid- pol 

 Alos-palsar 

Quad-Pol 

RISAT-1 

Hybrid-Pol 

RISAT-1  

Dual-Pol 

 

 S G W N R S G W N R S G W N R 

S 60.

83 

34.

51 

2.

60 
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1.6

7 

42.

13 

21.

85 

0.0

4 

8.8

1 

27.

16 

45.

85 

16.

17 

8.0

6 

3.

27 

22.

66 

G 3.5

6 

88.

38 

6.

18 

0.0

4 

1.8

4 

0.0

9 

81.

63 

16.

07 

0 2.2

0 

0.0

9 

49.

73 

44.

81 

0 5.3

7 

W 0 0 10

0 

0 0 0 0.0

0 

100 0 0 0 0.1

7 

99.

81 

0 0.2 

N 0.3

2 

0.1

1 

0 90.

96 

8.6

0 

10.

35 

0.8

1 

0.0

2 

57.

88 

30.

95 

4.1

7 

14.

56 

7.3

6 

7.

53 

66.

38 

R 0.4

2 

13.

78 

2.

01 

4.2

7 

79.

52 

3.3

3 

38.

21 

3.7

8 

4.9

3 

49.

96 

0.9

7 

29.

46 

2.8

5 

4.

95 

61.

77 

O

A 

85.80% 67.79% 49.98% 

S: SOMA, G: Golden Park, W: Water, N: NOMA, R: Richmond 
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                                           c) RISAT-1 Dual- pol 

Fig 6.3 Supervised classified images on quad-pol, hybrid-pol and dual-pol data 

6.7 Conclusions 

In this chapter a comparative study on C-band dual-pol RISAT-1, Hybrid-pol, RISAT-1, L-

band quad-pol Alos-PALSAR-2 with respect to information content and signal penetration is 

performed. The information content and penetration capability of L-band quad-pol Alos-

PALSAR-2 recorded the highest overall accuracy 85.80% due to more signal penetration. The 

results of C-band Hybrid-pol, RISAT-1 were promising and the overall accuracy is recorded 

as 69.79%. The results of C-band dual-pol, RISAT-1 were very poor and was recorded with an 

overall accuracy 49.98%.  

The difference between L-band quad-pol AlosPALSAR-2 and C-band Hybrid-pol, RISAT-

1 OA was due to poor target decomposition in C-band hybrid-pol. Thus NOMA class and 

Richmond class were not classified accurately when compared to L-band quad-pol 

AlosPALSAR-2. We can conclude that hybrid-pol data will be an intermediate between quad-

pol and dual-pol. Thus opting Hybrid-pol data using L-band can increase the overall 

classification accuracy. In future a comparison of L-band hybrid-pol data and L-band quad-pol 

data elaborate the capability of hybrid-pol data. 
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Chapter 7 

Conclusions 
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7.1 Conclusions 

In hybrid polarimetry, to characterize the return signal, Stokes parameters are sufficient. 

Hybrid-pol (compact polarimetry) SAR is a new SAR mode, with a combination of wider swath 

along with coherent dual polarization with relative phase information. Therefore, Hybrid-pol 

(compact polarimetry) SAR is always the best choice when transmitted power and swath width 

are the main constraints. From this work, we studied the importance of speckle filtering for 

image classification and the impact of speckle filter window size in speckle reduction in SAR 

images. This study also investigated the capability of m-delta, m-chi decomposition, Raney 

decomposition, and Pseudo Three-Component decomposition techniques for Land cover 

Classification. We have characterized and classified various ground target classes in the data 

very well. The m-chi decomposition approach has been proven to be robust even though the 

transmitting signal is not perfectly circular polarized. This study evaluated the potential of 

Compact polarimetric (Hybrid-pol) for meeting the Earth observation missions. Besides, this 

study has demonstrated the potential of Compact-pol for crop identification and crop 

classification. SVM classifier has classified the dataset very well, and the results are very 

satisfactory. In this study, we have obtained (OA) of 92.34% for Hybrid-pol RISAT-1 data 

using the SVM classifier with RBF kernel. Similarly, SVM with RBF kernel parameter gave 

an Overall Accuracy (OA) of 76.83% for dual-pol RISAT-1 data. The results obtained from a 

comparative study of dual-pol vs Hybrid-pol RISAT-1 data for crop discrimination are very 

promising. The OA of Hybrid-pol data was 83.03% and for dual-pol, data was 54.75%. Thus 

from this study, we can conclude that Hybrid-pol data is always preferred over Dual-pol data 

concerning information content. Compact polarimetric SAR contains more polarimetric 

information than conventional linear dual-pol SAR. Compact polarimetric SAR (Hybrid-pol) 

achieves comparable polarimetric information to quad-pol SAR. To compare the penetration 

capability, Alos palsar-2 (L-band) data and RISAT-1 (C-band) data have opted on the standard 

test site San Francisco city. From this study, using a standard test site, Hybrid-pol RISAT-1 

data, and Quad -pol Alos-Palsar-2 data are compared for information content and it was found 

that Hybrid -pol data is far more superior than linear dual-pol data and comparable to quad-pol 

data in terms of information content and penetration capability. The overall accuracy for L-

band quad-pol AlosPALSAR-2 is 85.80%, C-band Hybrid-pol, RISAT-1 data is 69.79%, C-

band dual-pol, and RISAT-1 data is 49.98%.  

 



92  

7.2 Future scope 

The SAR remote sensing using compact pol data is been an active field of research with 

wide applications, many space agencies ISRO, CSA, NASA/JPL, JAXA, ESA are planning 

with compact-pol architecture such as RISAT-1B, RCM constellation. The possibility of 

hybrid polarimetry in exploring the Lunar (moon) surface and for planetary studies will be 

investigated. 

In future, a comparison of L-band hybrid-pol data and L-band quad-pol data elaborates the 

capability of hybrid-pol data over quad-pol data for agriculture application, oil spill detection, 

and sea ice characterization.  
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