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ABSTRACT

In recent times it has been observed that Electrical Vehicle (EV) is a promising
technology for road transportation. There is a substantial increase in the number of EVs
due to improved Energy efficiency and reduction in environmental impact as compared
with internal combustion engine vehicles. The improper planning of Fast Charging Stations
(FCSs) causes a negative impact on the Distribution System. In this context, the
Distribution System operator has to face a significant challenge to identify the optimal

location and sizing of FCSs in the Distribution Power Network.

The large-scale construction of FCSs for EVs is helpful in promoting the EV
population. Even though the FCSs are optimally planned, it added additional load to the
existing Distribution System. To ease these, addition of DGs in Distribution System is one
of the suitable solutions. A multi-objective optimization problem has been formulated for
the simultaneous placement and sizing of FCSs and DGs in the distribution system. The
EV population in various zones and the possible number of FCSs based on the road as well
as electrical distribution network topology have been considered as constraints in the
proposed approach. This optimization problem is formulated as Mixed Integer Non-linear
Problem (MINLP) and it is solved by using Non-dominated Sorting Genetic Algorithm-11
(NSGA-II) to optimize the selected objectives like EV user loss, Network power loss, FCS
development cost and improving the Voltage profile of the Electrical Distribution System.

From the last decade onwards, the EV population is greatly increased due to
advanced developments in Batteries and its Charging technologies. This requires that the
present and future increase in EV population has to be considered for optimal planning of
FCSs and DGs in coupled Transportation and Electrical Distribution Network. A multi-
objective optimization problem is formulated for optimal planning of FCSs and DGs with
the objective of minimizing the Voltage deviation, Network power loss, DGs cost and the
energy consumption of EV users. This optimization problem is solved for different levels
of increase in future EV population for various cases. To solve the complex combinatorial
problems a newly proposed Hybrid Shuffled Frog Leaping-Teaching Learning Based
Optimization (SFL- TLBO) algorithm is implemented to solve the above multi-objective
problem. The performance of the proposed algorithm is compared with prior-art algorithms

in the literature.



To analyse the impact of load of Charging Station in Distribution System an
accurate EV load model is required. The inaccurate modelling of EV load may overload
the Distribution System which increases Network Power Loss (NPL) and maximum
Voltage deviation. In literature, the Constant Power (CP) load model is more popularly
used to model both the conventional and EV loads in the Distribution System. But the CP
load modelling cannot provide accurate information about different types of voltage-
dependent conventional loads and EV charging process. To address these aspects, the EV
loads are modelled as constant Impedance-constant Current-constant Power (ZIP),
Exponential and Constant Current (CC) load models. Then the conventional loads are
modelled as Constant Power and Residential-Industrial-Commercial (RIC) loads. With

these EV load models, the impact of FCS in the Distribution System has been analysed.

Nowadays, Battery Swapping Station (BSS) charging method is more popular, due
to its short charging time just like gas refuelling station. This has increased travel range
with the increased high capacity batteries. Further, the EV users need not pay the total
initial cost of the battery. In addition to this, the batteries are charged in slow-charging
mode to extend their life. The multi-objective BSS model is developed in order to optimize
the number of new batteries taken from battery stock, charging damage and electricity
charging cost of batteries. The dynamic electricity price is also considered for the EVs
batteries in BSS. A BSS model with finite EV battery swapping demand in each hour of
the day is solved by using a multi-objective Shuffled Frog Leaping Algorithm (SFLA).

Xi
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1.1 Introduction

1.1.1 History of the Electric Vehicles

For the development of human society, mobility is an advanced level of a basic
need. In the early days of carriages, the horses were the principal source of power. Later,
the horse power became a ‘unit of power’. Richard Trevithick built a steam powered
carriage in 1801. This is the first horseless transportation. 30 years later of the noise and
dirty Steam Engine, the first battery powered Electric Vehicles (EVs) were developed in
1834. After over 50 years, the first petrol powered Internal Combustion Engine (ICE)
vehicle was built in 1885. The EVs are not new; it is about 50 years older than internal
combustion vehicles. In early 1990s, the EVs were better than internal combustion ICE

vehicles. After over 70 years the EV population declined due to the following reasons [1],

> By the 1920s, the United States had a better road system with the
interconnection of all cities, which resulted in a need for long range vehicles.
» The reduction in the price of gasoline by the Texas crude oil unit could offer
more affordable price to the average consumer.
> In 1912, Charles Kettering invented the electric starter which eliminated the
need of hand crank.
The above initiation gave opportunity the mass production of internal combustion
EVs by Henry Ford and made these vehicles widely available and affordable in the $500—
$1000 price range. In 1912, the price of electric roadster sold was $1750, while a gasoline
car sold for $650 [1].

The development of EVs has its own characteristics in different historical stages.
The momentum or a driving force for the inventions, the technical features, applications,
charging infrastructure, and business model were not all the same in different historical
periods. However, the same spirit, fundamental principles, and philosophy remain today,

inspiring us and providing useful references for current EV development.

From 1970s onwards, the EVs are blooming because they were clean, quiet, easy to
start and drive, as compared to the steam cars or Internal Combustion Engine (ICE)
vehicles that were noisy, smelly, produced a lot of smoke, and needed crankshaft to start an

engine, as well as gear shift to drive. The major components of the Propulsion system were
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DC motor drive and Lead-Acid batteries and these were used for low-speed, short-distance
city driving purpose. Currently, the EVs may become a renewed and popular means of
mobility. The internal combustion engine has the following disadvantages as compared to

the electric motor [1],

1. The operation and construction of ICE is more complex and heavy in weight.

Also, it is more expensive.

2. In ICE 75% of energy is wasted. It requires more maintenance.
3. It cannot run on Renewable Energy Sources like Solar, Wind etc.
4. The ICE produces an unhealthy exhaust. The every litre of gasoline produces the

2.3 kg of CO2.

5. The current transportation system is responsible for about 23% of greenhouse gas
emissions worldwide.

The main advantages of the EV are that it mainly runs on a less cost and freely
available Renewable Energy Sources (RESS), require less maintenance due to reduction in
moving parts. But its major disadvantage is the requirement of large batteries for long
range. At present the research is going on to improve the energy density of battery
technology. In early 1990s, the size and weight of the battery were very high and the EVs
were not that popular. Now days the energy density of battery is exponentially increased
with time. Further, there is lot of research is going on Lithium-Air battery technology and

its energy density is exactly equal to gasoline as shown in Table I [1].

Table 1.1: Energy density of different energy sources

Energy Energy density
Year
source (Whr/kg)
Lead-acid 1900 10
Lead-acid 2000 35
NiMH 2000 80
Lithium-ion 2015 250
Lithium-ion 2025 400
Gasoline or 1900-till
12000
Lithium-air date
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The total cost of ownership of ICE and EVs are compared in below table II. In table
Il the EVs in year 2000 and year 2030 are compared. This comparison clearly indicates

that there are significant improvements added to the battery and drive train technologies.

Table 1.2: Total cost of ownership of ICE and EVs [2]

Vehicle part Gasoline | EVsin 2000 | EVs in 2030
Drive train cost (3$) 15k 20k 5k
Battery cost ($) 0 100k 10k
Fuel cost/Year ($) 17k-40k 6k-10k 6k-10k
Maintenance cost/Year ($) 18k 12k 6k
Total cost ($) 50k-73k 65k-92k 19k-46k

Current trends suggest that the EV is a promising technology for road
transportation. There is a substantial increase in the number of EVs due to improved

energy efficiency and reduction in environmental impact as compared with ICE vehicles.

The International Energy Agency (IEA) global electric vehicle outlook 2018 made
a survey on EVs sales and its charging infrastructure. Over 1 million electric cars were sold
in 2017 — a new record — with more than half of global sales in China. The total number of
electric cars on the road surpassed 3 million worldwide, an expansion of over 50% from
2016. The EV sales in different countries during last six years are listed below [1]. The

recent figure is about 4.2 million electric cars in 2018.

3| I china
I united States
2.5 ] Europe

Others

1

1

1

]w
|
'
N
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The government of different countries is setting goals towards the EV deployment,

providing more subsidy to EV users and manufacturing companies. Further, ten countries

are giving great importance to improve the EV population collectively representing over
60% of the global electric car stock, endorsed the EV30@30 Campaign in 2017, pledging

to actively pursue the collective objective of 30% EV sales by 2030. Also, a few regions or

the national governments are pledged their intention to end the registration and sales of

ICE vehicles in coming few years. The Table 1.3 summarises deployment goals and
objectives for the 2020-2030 time frame.

Table 1.3: The EV deployment goals during 2020-2030 for various countries [3]

Region or | EV 2020-2030 EV Goals
Country @2030
China Yes v" 5 million EVs by 2020, including 4.6 million PLDVs,
0.2 million buses and 0.2 million trucks
v" Number of EVs sales share: 7-10% by 2020, 15-20%
by 2025 and 40-50% by 2030.
Canada Yes 40% of new passenger vehicle sales by 2040.
European Yes 15% EV sales by 2025 and 30% by 2030
Union
Finland Yes 250000 EVs by 2030.
India Yes 30% electric car sales by 2030.
100% BEV sales for urban buses by 2030.
Ireland * 500000 EVs and 100% EV sales by 2030
Japan Yes 20-30% electric car sales by 2030.
Netherlands | Yes 100% electric public bus sales by 2025 and 100% electric
public bus stock by 2030.
New Zealand 64000 EVs by 2021.
Norway Yes 100% EV sales in PLDVs, LCVs and urban buses by

2025.

United states

3300000 EVs in eight states combined by 2025.
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There are different types of EV charging methods existing in literature like
Conductive charging, Inductive charging, Capacitive charging and Smart charging. Among

these the Conductive charging is more popularly used to recharge the EVs.

1.2 Conductive Charging

Conductive charging requires a metal-to-metal connection between the charger and
the device requiring charging. Basically the conductive charging can be classified into two
types. The first one is AC (Alternating Current) charging. It consists of level 1 and level 2

charging.
1.2.1 Level 1 AC charging:

Almost all PHEVs come with a Level 1 charging cord. One end of the cord is a
standard connector that can be plugged directly to a wall outlet at home. The other end is a
SAE J1772 standard connector that plugs into the vehicle's J1772 charge port [2].
Therefore, there is no need for additional charging equipment. Level 1 charging can be
provided, by using an on-board charger, up to 1.9 kW through 120 V single-phase AC.
This is mainly used in the countries where the single phase voltage is 120 V. The level 2
will address the case of 230 V AC supply.

In Japan and North America, many of the EVs are using the SAE J1772 charging
connector, which contains five pins and a mechanical lock. The level 1 charging cord and

SAE J1772 five pin plug are as shown in figure 1.2.

Charging cord SAE J1772
Figure 1.2: Level 1 charging cord [8]
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1.2.2 Level 2 AC charging:

This charging option uses the same SAE J1772 charging cord as in level 1, but it
offers better output power up to 19.2 kW by using an on-board charger. Level 2 charging is
applicable to premise the supply of AC at 208 or 240 V, and requires dedicated electric
circuit to support a higher current up to 80 amp. This option is suitable for charging at
home, as well as at public charging facilities, although residential level 2 charging operates
at a lower current (about 30 amp) and a lower power of 7.2 kW, as compared to the public
ones. Level 2 is preferred over level 1 due to short charging time.

Level 2 charging uses the Mennekes connector; this connector has seven pins and
takes advantage of the three-phase alternating charging. The exception to this regional
breakdown is Tesla, which uses a proprietary connector for its vehicles sold in North
America, although adapters to SAE J1772 are available. In Europe and Asia, Tesla vehicles

have the Type 2 plug and it is as shown in Figure 1.3.

Mennekes ‘ Tesla (US)

Figure 1.3: Level 2 charging connector types [8]

1.2.3 Level 2 AC charging (3-phase AC at 480 V):

This is a new charging option which is being developed by Society of Automotive
Engineers (SAE) to supply up to 130 kW for very rapid restoration of State of Charge
(SOC), using 3-phase AC at 480 V and high current [2]. This 3-phase power distribution is
common at Commercial and Industrial locations. To support the high output power, level 2
chargers are much larger in size and heavier in weight as compared to level 1 and level 2
single phase charger. Also, level 2 3-phase chargers require dedicated cooling equipment

for high power electronics equipment. As a result, level 2 3-phase chargers are not
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installed on-board, but they are located externally (off-board). It is likely that SAE J1772
connector will not be suitable for this option.

Main disadvantage of AC charging system is that it has to be converted in to DC
for charging the battery, which results in low efficiency. Now a day’s level 3 or DC Fast
Charging Station is more popularly used due to its high powered fast charging system for

highway charging on long distance journeys.

1.2.4 Level 3 (DC fast charging)

The DC fast charging offers an experience almost similar to Gasoline refueling for
longer-distance travel. It requires off board EV charging connector along with the proper
communication between EV and charging post. Further, more safety is needed due to its
high power ratings. There are three charging standards for DC fast charging. The first one
iIs CHAdeMO connector, its means “charge to move”. CHAdeMO connector is developed
by Tokyo Electric Power Company in 2011. Currently, CHAdeMO is more popularly used
in United States in the Nissan Leaf and Mitsubishi EVs. At present the CHAdeMO fast
chargers are rated up to 70 kW and the company announced that it would be upgraded to a
rating of 150 kW [2].

The next or second standard DC fast charging is Coast Clutch Solenoid (CCS) or
SAE Combo. The word combo means the plug consists of both AC and DC charging
facility. It is developed by a group of European and US auto manufacturers in 2011. At
present the CCS fast chargers offer charging power up to 50 kW. The third DC fast
charging standard is developed by Tesla in 2012. It is operated at 480 V and with the
maximum power rating of 120kW. Tesla Company announced that it would be upgrade the

Tesla connector to a rating of 350 kW [2].

CHAdeMO CCS (North America)

CCS (Europe)

Figure 1.4 DC fast charging connector types [8]
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The advantage of DC fast charging is that it connects directly to the battery input
system. Level 3 charging is typically around 480 V and 100 Amps. The maximum output
power available is 120 kW and this has the potential to add 200 miles of range in 1 hour, or
100 miles in 30 mins. The actual power is “negotiated” between the charger and the EV
battery management system, on a real time basis. Thus, the actual current varies greatly
according to the Temperature of the battery and the State of Charge (SoC). The

comparison of different charging levels of EVs is listed in Table 1.4.

Table 1.4: The comparison of different charging methods of EVs [3]

Charging . Power(kW)/ Voltage(V)/ Power
method Charge Time Current(A) Equivalent
Level1 | 2105 milesof range per 1.2-2.4/120/15 Toaster

hour of charging
Level 2 10 to 20 miles of range 7.2-7.6/240/40 Clothes dryer
per one hour of charging

DC Fast 80to 100 miles if range

. per 20 minutes of 100-120/480/125 CHAdeMO

Charging ,

charging

1.2.5 Charging Communication Protocols

The Charging communication protocols are necessary for both the EV users and
grid operators. For optimal charging of EV battery the EV user needs to know the state of
charge, state of health, battery voltage and required safety information. Further, the EV
user has to know Time-of-Use (ToU) Pricing, Distribution network capacity and the
Demand response measures. The CHAdeMO uses a communication protocol knows as
CAN and the CCS or SAE Combo uses the PLC protocol. In United States and Europe
Open Charge Point Protocol is more popularly using, it is developed by Open Charging

Alliance.
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1.3 Wireless Power Charging (WPC)

The wireless charging is working based on the principle of inductive coupling. It is
also known as inductive charging. In this kind of coupling, charging pad is placed on the
pavement and the charging pad is placed underneath of the EV. The electric current is
passed through the pavement pad, which creates a circular magnetic field that is captured

by EV receiving pad to charge the EVs batteries.

The wireless EV charging system has four methods: 1) traditional inductive power
transfer charging 2) Capacitive wireless power transfer (WPT) charging 3) Magnetic gear
wireless power transfer 4) Resonant inductive power transfer. The comparison of above

wireless power transfer technologies for EVs is given Table 1.5.

Table 1.5: Comparison of different WPT methods for EVs charging [6]

WPC Performance Price Suitability ~ for

methods Efficiency EMI Frequency EV charging
range (kHz)

Inductive Medium/High | Medium | 10-50 Medium/High | High

Capacitive | Low/Medium | Medium | 100-600 Low Low/Medium

Permanent | Low/Medium | High 0.05-0.5 High Low/Medium

magnet

Resonant Medium/High | Low 10-150 Medium/High | High

inductive

Further the WPT can be classified in two types: 1) Static charging 2) Dynamic
charging

1.3.1 Static Charging

The static WPT charging technology is used when the vehicle is stationary. Static
wireless charging can easily replace the EV with minimal driver participation and it solves
the safety hazards like trip hazards and electric shock. The following are the merits and
demerits of static charging.

Merits:

1. Static charging is more convenient
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2. Itis suitable for self-driving EVs

3. Itis more safety charging method

Demerits:

1. High initial investment required for static charging
2. More induction losses occurred

3. It creates radiation exposure

1.3.2 Dynamic charging

At present the EVs are greatly suffered from two major drawbacks-initial cost and
range anxiety. To overcome these drawbacks the EVs are required to charge frequently or
install large capacity battery. This creates additional problems such as increase in cost and
weight of EVs. The dynamic wireless charging system is a promising technology, which
can reduce the problems associated with range anxiety and cost of EVs. The following are

the merits and demerits of dynamic charging [7].

Merits:
1. Dynamic charging reduces the stand-in charge time
2. Minimum battery depth of discharge, it increases the life time of battery
3. Smaller EV battery required

Demerits:
1. The abrasion and foreign objects on road surface reduces the efficiency
2. High magnetic flux leakage

3. Real-time coil misalignment estimation is required

1.4  Battery Swapping Station

In recent years, the people are moving towards the Battery Swapping Station (BSS)
methodology, due to its own advantages. In BSS technology the EV owners swap their
depleted batteries in nearby BSS with the fully charged batteries. This process takes around
three minutes just like gasoline refueling stations. In BSS method, the EV driving into a
battery switching bay and the automated system will position the EV and current battery is
replaced with the fully charged battery [3]. The depleted batteries are charged (with
appropriate Level-1, Level-2 and Level-3 charging options) in BSS based on next hour’s

demand and electricity price. The BSS charging method has more advantages as compared
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to the conductive and inductive charging. The following are the advantages of BSS
charging method,

1. The BSS provide fully charged battery, without waiting for battery charging.

2. The range anxiety is eased to some extent.

3. The charger is outside of EV, so there is no limitation on size and power levels of
charger.

4. The BSS provides high flexibility on the charging power as well as charging time
of battery based local load demand.

However, the BSS charging method is not so popular due to the following reasons.

1. A standardized battery and its interface devices required across the all EV users and
BSS.

2. The EV users cannot accept the not owning the battery.
3. The frequent connection and disconnection of EV battery causes safety issues.

4. There should be a reliable way to estimate the state of health of battery and a better
communication (arrival time, state of charge and travelling distance) required
between EV users and BSS.

1.5  Distributed Generations (DGS)

Distributed Generations (DGs) in Distribution System networks are rapidly
increased as the load demand on the Distribution System is growing exponentially. DG is
small-scale power generation and usually located in distribution network. DG units are
mainly energized by Wind, Solar and Fuel cell and have many advantages over centralized
power generation. The optimum DG placement and sizing at planning stage of distribution
system is necessary to achieve reduction of power system losses and improve the voltage
profile. However, installing of DG units at non-optimal place may get an opposite effect to
what is desired.

Selecting the best places for installing DG units and their preferable sizes in large
distribution systems is a complex combinatorial optimization problem. Further, the optimal
planning of FCSs and DGs in distribution system, and optimal scheduling of EV batteries
in BSS are the complex combinatorial (the objective function with two more objective
parameters) optimization problems. To solve these, multi-objective meta-heuristic

techniques with good exploration and exploitation are popularly used.
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1.6 Multi-Objective Optimization

Multi-objective can be defined as the problem of finding “a vector of decision
variables which satisfies the constraints and optimize a vector function whose elements
represent the objective function”. These objective functions are from mathematical
description of relevant performance criteria and are usually conflicting with each other.
Hence, the term ‘optimize’ means finding a solution which give the values of all objective

functions that are acceptable [8].

Though the multi-objective optimization offers a set of solutions which are all
optimal, the user needs only one final solution. The user needs some higher level
information to choose one solution from the set of optimal solutions. Often, such higher
level information is non-technical, qualitative and experience driven. Therefore, in a multi-
objective optimization, idealist effort must be made in finding the set of trade-off optimal
solutions by considering the all objections simultaneously. After a set of such trade off
solutions are found, the user can use high level information to make a choice. Higher level

information is usually taken from domain expertise.

The principle of an ideal multi-objective optimization procedure is to: 1) find
multiple trade-off optimal solutions with a wide range of values for objectives 2) choose
one of the solutions using higher level information. This approach is depicted in Figure
1.5.

Minimize f;
Minimize f,

Minimize fyob;
Subjected to equality and
inequality constraints Step-1

L

Multi objective

optimizer
Multiple trade-off solutions Solution
(Pareto set)
e — Problem Knowledge | I
] decision making ———

Step-2
-

Figure 1.5: Schematic of an ideal multi-objective optimization procedure [10]
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The Figure 1.5 shows the principle of an ideal multi-objective optimization
procedure. Step-1 is achieved by blocks vertically downwards where optimization is
performed for f1 to fnobj USing Multi-objective optimizer. Step-2 is achieved by horizontal
blocks towards the right. The single objective problem doesn’t require step-2. But, in case
of objective function optimization with multiple global solutions, both steps are necessary.

In multi-objective optimization, a solution could be best, worst and also totally
different from other solutions, with respect to the objective function values. Best solution
means a solution which is not worst in any of the objectives, but at least better in one of the
objective functions. The optimal solution is the solution set that is not dominated by any
other solution in the search space. Such an optimal solution is called a Pareto-optimal

solution and the entire set of such optimal trade-off solutions is called a Pareto-optimal set.

1.7 Meta-heuristics Techniques

Most conventional or classic algorithms are deterministic. For example, the
Simplex method in linear programming is deterministic. Some deterministic optimization
algorithms have used the Gradient information and they are called Gradient-based
algorithms. The well-known Newton-Raphson algorithm is Gradient-based approach, as it
uses the function values and their derivatives, and it works extremely well for smooth uni-
modal problems. Even though, if there is some discontinuity in the objective function, it
works well. But it gives a single optimal solution. The multi-objective optimization gives
multiple optimal solutions as an optimal Pareto front. The solutions present in the optimal

front are optimal.

For stochastic algorithms, in general we have two types: heuristic and meta-
heuristic, though their difference is small. Generally speaking, heuristic means “to find” or
“to discover by trial and error.” Quality solutions to a tough optimization problem can be
found in a reasonable amount of time, but there is no guarantee that the solutions have
reached the optimal solutions. It can be expected that these heuristic algorithms work most
but not all the time. This is good when we do not necessarily want the best solutions or
rather good solutions are easily reachable. Further development of heuristic algorithms is
the so-called meta-heuristic algorithms. Here Meta means “beyond” or “higher level,” and
these algorithms generally perform better than simple heuristics. In addition, all meta-

heuristic algorithms use certain trade-offs of randomization and local search. It is worth
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pointing out that no agreed definitions of heuristics and Meta-heuristics exist in the
literature; some use the terms heuristics and Meta-heuristics interchangeably. However, the
recent trend is to name all stochastic algorithms with randomization and local search
property as Meta-heuristic. Here we also use this convention. Randomization provides a
good way to move away from local search to another search on a global scale. Therefore,
almost all Meta-heuristics algorithms tend to be suitable for global optimization.

Two major components of any meta-heuristic algorithm are intensification and
diversification, or exploitation and exploration. Diversification means to generate diverse
solutions so as to explore the search space on a global scale. Intensification means to focus
on the search in a local region by exploiting the information that a current good solution is
found in this region. This is in combination with the selection of the best solutions. The
selection of the best solution ensures that the solutions will converge to the optimality,
whereas the diversification via randomization avoids the solutions being trapped at local
optima and, at the same time, increases the diversity of the solutions. The good
combination of these two major components will usually ensure that the global optimality
is achievable [8].

Meta-heuristics, in their original definition, are solution methods that organize an
interaction between local improvement procedures and higher level strategies to create a
process capable of escaping from local optima and performing a robust search of a solution
space. Over time, these methods have also come to include some procedures that employ
strategies for overcoming the trap of local optimality in complex solution spaces.

A number of tools and mechanisms that have emerged from the creation of
metaheuristic methods have proved to be remarkably effective. With that Meta-heuristics
have moved into the spotlight in recent years as the preferred line of attack for solving
many types of complex optimization problems, particularly those of a combinatorial

nature.

The problem considered in this dissertation is “Multi-objective optimal planning of
FCSs and DGs in distribution system” and it is also a complex combinatorial problem with
many constraints. To obtain optimal solution for these types of problems a suitable multi-

objective optimization Algorithm is required.
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Due to the great improvements in charging methodologies and increase in EV
population, the literature survey initially focussed on optimal planning of FCSs in
distribution system. Even though the FCSs are optimally planned, it added load to the
distribution system. To ease these, the addition of DGs along with FCSs in distribution
system is one of the suitable solution. Further, the survey is continued on effect of EV load
modelling in distribution system and optimal scheduling of EV batteries in BSS.

1.8 Literature Review

1.8.1 Optimal planning of Charging Stations in Distribution System

Wang .G et al., have considered the power distribution network, traffic network and
EV owners driving behavior to formulate a multi-objective charging station planning
method in [9]. The objectives in multi-objective optimization problem are to minimize the
power loss and voltage deviation in the distribution network and the maximization of the
service capability of charging station. To solve this optimization problem an efficient
Cross-Entropy method is used and obtains the optimal Pareto solutions. However, the EV
demand for services has been assumed to occur at fixed locations of the traffic network.

To investigate the optimal site for EV charging station, the impact of fast charging
at several specified sites in an existing distribution system has been calculated in [10]. The
short circuit and protection studies were carried out at these sites using the utility-grade

software packages.

In [11], the authors firstly, the optimal location of EV charging station have
identified by a two-step screening method with the account of environmental factors and
the service radius of EVCSs. Secondly, a modified Primal-Dual Interior Point algorithm
was proposed to determine the size of charging station by considering the total cost
associated with the charging stations. The developed model was applied on IEEE 123 bus
test system. The results indicated that the proposed method was significantly faster in
minimization of distribution network power loss and improvement in voltage profile. But

the EVs charging demand and their uncertainties were not considered.

Sadeghi-Barzani P et al., have proposed a Mixed Integer Non-Linear Programming
(MINLP) problem to solve the optimal planning (placement and sizing) of FCS, with the

account of the cost of charging station, EV energy loss, electrification and electrical power
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loss in the distribution system in [12]. The geographic information has been used to
calculate the EV energy loss and station electrification cost. The size and location of
charging station have been determined by solving the optimization problem using Genetic
Algorithm (GA).

Albert et al., the EV charging station placement problem was formulated as Mixed
Integer Linear Problem (MILP) based on the convenience of drivers and the charging
station coverage in [13]. The authors proved that the optimization problem was
nondeterministic polynomial-time hard. To tackle this optimization problem the iterative
MILP, Greedy Approach, effective MILP and Chemical Reaction optimization techniques
were applied. The above each optimization method has its own characteristics and it was
suitable for different situations like solution accuracy, problem size and existence of
system prerequisite.

The state of California uses freeway exits and highway intersections as moderate
candidate charging station locations and also solves the optimization problem to optimize
the number of FCSs in [14]. This study suggests that, the reservation system can benefit
both the EV users and FCS operators by reducing the waiting time and minimizing the
extra charging connecters needed.

Guo et al., a multi-criteria decision making method has been used for selecting the
most sustainable site of EVCSs by considering environmental, economic and social criteria
in [15]. Further, to reflect the vagueness and ambiguity due to the judgements of decision
makers, fuzzy Technique for Order Preference by Similarity to Ideal Situation (TOPSIS)
method was applied for optimal charging station site selection.

In [16], a heuristic algorithm has been employed to determine the optimal location
and sizing of charging stations by considering the various aspects like initial investment
cost and distribution system power quality parameters (real power loss reduction index,
reactive power loss reduction index and voltage profile improvement index), in the
objective function for the city of Allahabad in India. The improved version of Particle
Swarm Optimization (PSO) was compared with the conventional GA and PSO algorithm
and it was found that improved version of PSO has offered better results with minimum

computational time.
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A zonal approach and the geographic information associated urban roads, city
zones and electric substations have been considered in [17], for optimal planning of FCSs
in distribution system. The EV user behavior and hourly load profiles were considered to
evaluate the expected charging demand, EV user cost and electric grid losses in
distribution system. The extra power losses due to EV charging were also calculated by
using AC load flow. The optimization problem was formulated as MINLP and it was
solved by using the Genetic Algorithm to determine the optimal location and capacity of
charging stations. For the optimal planning of FCSs the EV user charging preference plays
a major role. But in this paper, the uncertainties regarding to initial SOC and charging start
time of EVs have not considered.

X. Wang et al., the EV charging stations were placed at selected bus stops, to
minimize the total installation cost of charging stations. For optimal planning of FCSs the
two different scenarios were considered in [18]. The first one was by considering the
battery size of EV and the second one was without considering the battery size of EV. Both
the problems were formulated as integer nonlinear programs and solved by using Linear
Programming Relaxation algorithm to get an optimal solution. The results demonstrate
that, larger size of battery results in minimization of total cost of charging stations at

selected bus stop.

C. Luo et al., have applied a nested logit model to analyze the charging preference
of the individual EV user and to predict the aggregated charging demand of each charging
station in [19]. To determine the optimal location and size of FCSs, the authors have
considered both the transportation network graph and the electric power network graph.
The EV virtual city 1.0 Simulation Software was developed using the Java to investigate
the interactions among the EV users, transportation network, electrical network and
charging stations. A series of experiments were conducted on the city of the San Pedro
District of Los Angeles, CA, USA, by collecting demographic and geographic data and it
was found that, the charging station placement was highly consistent with the traffic flow.
The authors have not considered the power quality parameters of distribution system in

different stages of problem solving.

The interactions between the road transportation and electrical network have been

considered for optimal planning of FCSs in distribution system in [20]. The capacitated-
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flow refueling location model has been used to capture the EV charging demand on the
road transportation network under the constraints of different driving ranges. Then MINLP
model was formulated for EV FCS planning with the electrical and transportation network

constraints, which can be solved by using the deterministic Branch-and-Bound methods.

In [21], a realistic model has been developed for the FCS placement problem in
cities like Singapore by considering the interactions among charging stations, EV users
charging activities, traffic congestion and queuing time. Initially, the FCS planning
problem was formulated as bi-level optimization problem, later it is converted in single

level optimization problem by exploiting the equilibrium point of EV charging game.

Liu H et al., have determined the moderate location of EVCS by using the
Integrated Multiple Criteria Decision Making approach based on Grey Decision making
trial and Evaluation Laboratory and uncertain linguistic multi-objective optimization in
[22]. Grey Decision making trial and Evaluation Laboratory method was used to calculate
the criteria weights and the uncertain linguistic multi-objective optimization by ratio

analysis plus full multiplicative form has been used to select the optimal location of FCS.

The Bayesian network model has been used to determine the optimal location of
charging stations based on a sustainability perspective with the consideration of both
qualitative and quantitative factors in [23]. Further, the sensitivity analysis was applied to
validate the model and to identify the impactful factors on charging station location

problem.

Xiangning Lin et al., the analytic hierarchy process and load density method were
used to calculate the cost coefficients of the objective function and to optimize the capacity
of the charging station in [24]. Further, the authors have considered the aspect of Vehicle-
to-Grid. The optimization problem has been solved with the inclusion of the initial
investment, operational and maintenance costs of feeders, substations and charging

stations.

In [25], the EVCS location has been determined in two stages. In the first stage, the
service range of EVCS was evaluated using trip success ratio with the account of the
uncertainty of trip distance and uncertainty in the remaining electric charge of EVs. In the
second stage, the service range of charging station has been determined for the optimal

location of the charging station. The optimization problem was formulated as the
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maximum covering location problem in order to identify the optimal location of EVCSs in
the distribution network.

1.8.2 Simultaneous planning of FCSs and DGs in Distribution System

In [26], the joint planning of EVCS and distributed Photovoltaic generation in the
distribution system has been solved by using an accelerated generalized Benders
Decomposition algorithm. A multidisciplinary approach has been proposed with the
account of investment cost (the fixed cost of EVCS and PV power plant, variable cost for
adding an extra charging spot in EVCS and per unit PV panel in PV power plant) and
maintenance cost (the cost of electricity, penalty for unsatisfied PEV charging demand and
penalty for undesirable voltage deviation), for identifying the location and size of EVCS
and PV plant.

In [27], an optimization model has been presented for the optimal planning of DG
units, EVCSs, and Energy Storage systems within the electrical distribution system. The
optimal planning of charging stations, renewable DG units and energy storage systems in
the distribution system was solved by using a Second-Order Conic Programming problem,
to optimize the active power loss and the penetration of DG, EVCS and energy storage
systems within the distribution system. In this paper, most of the data was derived from

probabilistic distributions which were not realistic.

The optimized design of the EV charging station was explained in [28] with the
integration of Renewable Energy Sources (RESs) and energy storage system. The Monte
Carlo simulation was used to model the EV charging demand and the Renewable Energy
Generation. Further, the GA was employed to maximize the net profit value. In this paper,
the authors have not considered the simultaneous planning of both the charging stations
and Renewable Energy Generation units. The optimization problem was attempted by

using the weighted sum approach.

Mohammad H et al., have determined the simultaneous optimal location and size of
RESs and charging stations with the minimization of network power loss, voltage
deviation and charging cost of EVs as objectives in [29]. The optimization problem was
solved by using the multi-objective Differential Evaluation algorithm to get an optimal

location and size of charging stations and RESs. Further, the objective coefficients were
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calculated to increase the load factor by shifting the EV charging peak demand in to the
domain of the hours with high solar radiation and wind speed.

1.8.3 Impact of EV load modelling in Distribution System

Mota .L et al., have obtained the realistic system analysis by using an accurate load
model in [30]. The aim of this model was to optimize the operating cost while maintain the
system security and reliability. However, the load modeling was a complex problem due
to distinctive feature of different type of loads in the distribution system. The Exponential
and the ZIP load models have been used to estimate the load parameters and the Weighted
Least Squares method in recursive form was applied for dynamic parameter estimation.

In [31], a group of well-defined EVs have been established to analyse their energy
consumption and storage in the context of heavily electrified road transportation. The same
requirements have been applied on European Union residential load profile to evaluate the

impact of increased EV load and the potential for residential and EV load integration.

The comparative studies have been carried out in [32] for various charging methods
like uncontrolled domestic charging and off-peak domestic charging, smart charging and
uncontrolled public charging. The optimization problem was stochastically formulated in
order to account the stochastic nature of individual SOC and the starting charging time of
each battery. The expected changes in future electricity tariffs and EV load have been
incorporated in the above four scenarios. The degree of accuracy of results obtained by
using proposed algorithm has not reported.

Mullan .J et al., the potential impacts of EV charging has been tested on the
Western Australian electricity grid by using constant power load model with the account of
constraints on the system’s capacity to supply electricity for EV recharging in [33]. The
test results demonstrated that, if the EV charging behaviors were managed from outside,
then the electrical utility and transmission companies can get the significant short-term and
long term benefits. Further, it has been investigated how the EV demand will affect the

various components in electrical network.

Li .G et al., have applied the probabilistic power flow load model to analyze the
impact of PHEVs charging on electrical distribution system in [34]. Basically it

emphasized a single PHEV charging load model and then focused on Queuing theory to
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describe the behavior of multiple PHEVs in the distribution system. Two more scenarios
have been carried out. The first one was modelling the overall EV charging demand at a
charging station and the second one was modelling the overall EV charging demand in a
local residential community. At the end a comparison has been made for results of the

probabilistic power flow load model and Monte Carlo simulation.

In [35], the multistate ZIP EV load model has been developed for Nissan Leaf
using the level-1 charging. The results demonstrated that the Nissan Leaf with level-1
charging was similar to Constant Current load model. The multistate ZIP load model was
compared with the Constant Current load, which indicated that the predicted losses were

lower in ZIP load model as compared with Constant Current load model.

Stephen Schey et al., [36] summarizes the usage of Electric Vehicle Supply
Equipment (EVSE) in households with Nissan leafs. To analyse the charging usage of EV,
the data aggregation model has been developed by means of two metrics i.e. the charging
demand and charging availability. Further, the impact of large scale EVs and the AC and

DC EV charging methods were analysed.

To study the impact of Plug in Hybrid Electric Vehicle (PHEV) in distribution
system, a comprehensive load model has been developed in [37], by considering the
battery capacity, SOC, number of electric vehicles, penetration level for upcoming years
and energy consumption in daily trips. The impact of load of PHEVs charging has been
tested with IEEE 34-bus radial distribution system. Further, the sensitivity analysis has

been carried out to study the effects of PHEV operation modes in distribution network.

A multistage time-variant ZIP EV load model is proposed in [38] for the accurate
analysis of EV battery charging. An accurate voltage dependent FCS EV load model has
been presented with the account of power consumption, grid voltage and SOC of EVs.

Purvins et. al., have proposed an accurate EV charging system by considering the
constraints in the power converter which connects battery to electric grid [39]. To analyse
the variation of power losses and voltage deviation in distribution system, the different

voltage dependent EV load models have been presented in [40].
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1.8.4 Optimal scheduling of EV Batteries in BSS

In [41] and [42] the authors have explained that, over the past decade the EV
population was greatly increased to reduce reliance on fossil fuels and lower environmental
pollution. However, many car owners were still deterred to buy EVs due to certain major
drawbacks of EVs, such as long charging time, range anxiety, expensive EV batteries and
short life time with fast charging. An efficient solution to these problems is the deployment
of BSS to encounter all the drawbacks. Firstly, The BSS provides a short charging time
just like gas refuelling station. Secondly, the range is increased with high capacity batteries
and by swapping a battery in nearby BSS. Thirdly, the EV users need not to pay the total
initial cost of battery. Fourthly, in BSS technology, the batteries are charged in slow-

charging mode to extend their life.

Q. Dai et al., have proposed an universal EV charging load forecasting method for
Battery Swapping Station (BSS). To analyze the stochastic nature of BSS, the numbers of
buses for battery swapping, charging start time, charging duration and the travelled
distance were considered in [43]. The Monte Carlo simulation was used to estimate the
uncontrolled energy consumption of BSS. Further, to estimate the uncertainty of EV
charging demand the Generic Nonparametric method was employed. But, the parameters
like battery degradation cost and the electricity Time of Unit (ToU) price were not

considered.

N. Liu et al., [44] have proposed a novel charging strategy to improve the
operational performance of PV based BSS, with the account of self-consumption of PV
energy, the service availability and operational profit. The specialty of proposed method
was that a new decision-making approach was implemented instead of optimization
algorithm. The charging methodology has been considered for simultaneous operation of

the power distribution and battery-swapping service model.

M. R. Sarker et al., have developed an optimization framework model for
operational scheduling of EV batteries in BSS in [45]. It has considered the day-ahead
scheduling process. In this optimization problem, the battery demand uncertainty and the
electricity price uncertainty were modelled with Inventory Robust Optimization and Multi-
band Robust Optimization respectively. Further, the batteries were scheduled in BSS to
operate in the mode of Grid to Battery (G2B), Battery to Grid (B2G) and Battery to Battery
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(B2B). The results obtained from the proposed model were helpful to stakeholders for the
design and operation of BSS, to enhance the environmental sustainability of the power
system with the integration of RESs and it allows taking short-run and long-run market
decisions that exploit the storage capabilities of BSS. However, the authors have not

incorporated the EV's demand uncertainties.

Q. Kang et al., [46] have proposed a novel centralized charging strategy for EVs in
BSS by considering the optimal charging location and charging priority based on spot
electricity price. A population based optimization algorithms i.e. GA and PSO were used to
minimize the charging cost, electric power loss and voltage deviation of electrical
distribution system. Further, to get more accurate results a hybrid PSO-GA with dynamic
crossover and adaptive mutation strategy was proposed and it has been compared with the
GA, PSO and IPSO.

In [47], a two level hierarchical model has been proposed. In which the unit model
follows a transition-based battery allocation technique and the station model offers a
system-view platform. Based on the above hierarchical model, the grid scheduling strategy
with battery reservation and the general grid scheduling were evaluated in terms of average
battery life and net profit using South Australia and New South Wales electricity demand
profiles. The test results demonstrate that, the grid scheduling strategy with battery

reservation results in maximization of both profit and life time of batteries.

Hao .W et al., have formulated a multi-objective optimization problem for BSS in
order to optimize the number of batteries taken from stock and charging of damage
batteries using different charging methods in [48]. The varied population Genetic
Algorithm (GA) and varied population Differential Evaluation (DE) algorithm have been
proposed in order to calculate the optimal solution and these algorithms were compared
with conventional GA, Particle Swarm Optimization (PSO) and IPSO. The results
demonstrate that the varied population GA and varied population DE were giving better

results with less computational time.

In [49], the optimization problem was formulated in order to minimize the cost by
determining the optimal scheduling of EV batteries in BSS. Here, the cost includes the
number of batteries taken from stock to serve for the all incoming EVs swapping demand,

charging of damage EV batteries with the use of high power rating chargers and electricity
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charging cost of EVs during different time periods of the day. An integrated algorithm has
been proposed to solve the above optimization problem, which was inspired by the GA,
DE and PSO. The proposed method was not suitable, if the depleted battery inventory has

few or no batteries.

B. Sun et al., have proposed an optimal charging policy with the aim of minimizing
charging cost while ensuring the Quality-of-Service in [50]. The charging scheduling
problem has been formulated as a constrained Markov Decision process and the optimal
policy was derived by the standard Dynamic Programming and Lagrangian method.
Further, to avoid the curse of dimensionality in practical applications the structure of the
optimal policy and Dynamic Programming procedure transform into an equivalent

threshold optimization problem with a discrete separable convex objective function.

P. You et al., have proposed an optimal charging scheduling problem for BSS that
assigns each EV to optimal charging station to swap its depleted battery based on its
current location and state of charge in [51]. The optimal charging scheduling problem
considers to minimize the weighted sum of travelled distances of EVs and electricity
charging cost with the account of EV range and grid operational constraints. To solve the
optimization problem the Second-Order Cone Programming Relaxation of optimal power

flow and generalized Benders Decomposition algorithms have been used.

In [52], the optimal scheduling of EVs batteries in BSS has been proposed and it
was solved by using Non-dominated Sorting Genetic Algorithm-Il to optimize the battery
charging cost, distribution network power loss cost, voltage profile and network power
loading capacity. Further, the Dynamic Pricing model was applied for EV battery charging
scheduling.

In [53], the scheduling of charging bays in BSS have been proposed with the aim of
minimizing charging cost while satisfying the fully charged batteries demand. Basically,
the BSS has two types of operations. The first one is loading the depleted batteries in to
charging bays and unloading the fully charged batteries. The second one is controlling the
charging rate of individual charging bay. The optimization problem as formulated has
Mixed Integer Non-Linear with quadratic battery degradation cost and it was solved by
using Benders Decomposition algorithm. The significance of proposed algorithm was that

it solves own sub problem in each charging bay and then each sub problem was partitioned
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into multiple independent and identically structured problems for efficient parallel

implementation.

1.9 Motivation

From the above literature review, it is observed that the maximum benefits can be
obtained from the optimal planning of FCSs and DGs in the distribution system. But there
is a greatest challenge to create adequate charging infrastructure to meet the present and
future increased EV population demand. The increased EV charging infrastructure will
cause certain problems (increase of power losses, line loading and the voltage deviation) in
the distribution system.

v" To overcome the above mentioned problems, the simultaneous planning of FCSs
and DGs in the distribution system is required. Further, the optimal planning of
FCSs and DGs in distribution system has to be addressed by considering the
present and future increase in EV population.

v" Next, for analyzing the impact of the load of charging stations on the performance
of distribution system an accurate EV load model is required.

v Multi-objective optimal scheduling of EV batteries in BSS has to be developed in
order to optimize the number of batteries taken from battery stock, charging

damage and electricity charging cost of batteries.

1.10 Objectives of Thesis
The objectives of this thesis include:

e To develop a multi-objective optimization model for simultaneous optimal
planning of FCSs and DGs in distribution system.

e To propose an optimization algorithm that enhances the exploration and exploitation
of the optimization problem in a multi-objective environment. Thus, a novel hybrid
Shuffled Frog Leap-Teaching Learning Based Optimization (SFL-TLBO) algorithm
is proposed and implemented to solve the optimization problem for optimal planning
of FCSs and DGs in the distribution system for the present and future EV load

enhancement.
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e Further, to analyze the impact of load of FCS in distribution system with various EV
load models.
e To develop multi-objective BSS model to optimize the number of batteries taken

from battery stock, battery degradation and electricity charging cost of batteries.

1.11 Outline of Research Work

In the majority of previous works, the authors have considered the optimal planning
of charging stations only as it strongly affects the distribution system power losses and
voltage profile. It also causes the over loading in distribution system. From the literature,
it is noticed that the optimal planning of DGs in distribution system results in improved
voltage profiles, reduced real and reactive power losses. Hence, there is a need of
simultaneous planning of both the FCSs and DGs in distribution system. The improper
planning of FCSs and DGs causes a negative impact on the distribution system. In this
context the distribution system operator has to face a significant challenge to identify the
optimal location and size of FCSs and DGs in the distribution power network.

In this research work, the simultaneous placement of both FCSs and DGs were
optimally planned to minimize the investment cost of FCSs and DG units, the specific
energy consumption of EV users, voltage deviation and power losses in the coupled

electrical distribution system and transportation network.

Meta-heuristic techniques are more popular to solve the combinatorial complex
optimization problems. To date, there are numerous meta-heuristic optimization algorithms
available in the literature. The more popular meta-heuristic algorithms are Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Shuffled Frog-Leaping Algorithm
(SFLA), Teaching-Learning-Based Optimization (TLBO). Considering the exploration and
exploitation abilities of TLBO and SFLA, these algorithms are considered for optimal
planning of FCSs and DGs in the distribution system. Further, a novel attempt of
hybridization of SFLA and TLBO (Shuffled Frog Leaping- Teaching-Learning-Based
Optimization (SFL-TLBO)) has been made to enhance search ability and the obtained

results found to be superior.

Furthermore, the present and future growth of EV population have been considered
for simultaneous planning of FCSs and DGs in the electrical distribution system, which is

essential for better operation of the distribution system.
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Inaccurate modeling of EV load in the distribution system may result in imprecise
calculation for Network Power Loss (NPL) and voltage deviation. The Constant Power
(CP) load model is the more popularly used load model to model both the conventional and
EV loads in the distribution system. But the CP load modeling cannot provide accurate
information about different types of voltage-dependent conventional loads and EV
charging process. Hence, as a part of this research work, for optimal planning of FCSs and
DGs in the distribution system, the EV loads are modeled as Constant impedance-Constant
current-Constant power (ZIP), Exponential and Constant Current load models. The
conventional loads are modeled as Residential-Industrial-Commercial (RIC) loads. With
these EV load models, the impact of FCS on the distribution system has been analyzed.

Any optimization approach for optimal planning of FCSs and DGs in the
distribution network demands a load flow algorithm. The research work is initiated by
developing software for “Current Injection based distribution Load Flow (CILF) method

which can work for Radial and Meshed distribution networks.

The BSS methodology is more popularly used to recharge EV batteries due to its
several advantages. As a part of this research work, the multi-objective BSS model is
developed in order to optimize the number of batteries taken from battery stock, charging
damage and electricity charging cost of batteries. Further, the dynamic electricity pricing

model is considered to avoid new peaks of battery charging demand in BSS.

1.12  Thesis Organization
The thesis is organized into six chapters and presented as below;

The first chapter presents the detailed literature survey, key issues and motivation
for the research work carried out in the area of “Optimal planning of Fast Charging
Stations (FCSs) and DGs in Distribution System.” In this chapter, an in-depth literature
review is carried out on simultaneous planning of FCS and DGs in distribution system,
impact analysis of FCS in distribution system and the operational scheduling of Electric
Vehicles (EVs) in Battery Swapping Station (BSS). The objectives, motivation of the

thesis and chapter wise summary are also outlined.

Second chapter reports “a Multi-objective optimization problem is formulated to

obtain the simultaneous placement and sizing of FCSs and DGs with the constraints as the
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number of EVs in all zones and possible number of FCSs based on the Road and Electrical
network in the proposed system.” The problem is formulated as a Mixed Integer Non-
Linear Problem (MINLP) to optimize the EV user loss cost, Network power loss cost, FCS
development cost and improve the Voltage profile of the electrical Distribution System.
Non-dominated Sorting Genetic Algorithm-I11 (NSGA-II) is used for solving the MINLP.

Third chapter delineates the “optimal planning of FCSs and DGs with the account
of the present and future increase in EV population.” A Multi-objective optimization
problem is formulated for optimal planning of FCSs and DGs with the objective of
minimizing the Voltage deviation, Distribution network power loss, DGs cost and the
Energy consumption of EV users. This optimization problem is solved for different levels
of increase in EV population for various cases. A novel hybrid Shuffled Frog Leaping-
Teaching Learning Based Optimization (SFL-TLBO) algorithm is proposed and
implemented to solve the above multi-objective optimization problem. The performance of
the proposed algorithm is compared with Shuffled Frog Leaping (SFLA) and Teaching
Learning Based Optimization (TLBO) algorithms.

Fourth chapter elaborates the “Impact of EV Load Modeling on FCSs planning in
electrical Distribution System.” EV loads are modelled as constant impedance-constant
current-constant power (ZIP), Exponential, Constant Current and Constant Power load
models and the conventional loads are modeled as Constant Power and Residential-
Industrial-Commercial (RIC) load models. With these EV load models, the impact of FCS
on the performance of distribution system is analyzed. A newly proposed multi-objective
hybrid SFL-TLBO algorithm has been used for optimal planning of FCSs in distribution
system with the objective of minimizing all three aspects like Network Power Loss (NPL),
Maximum Voltage Deviation (MVD) and EV User Cost (EVUC). To consider the
uncertainty of initial State of Charge (SOC) of EVs, Monte-Carlo simulation is used. These
studies are carried out on 37-bus distribution system. The results establish that the ZIP load
model is accurate for modeling the EV loads and the RIC load model is more appropriate

for modeling the conventional load.

Fifth chapter covers “the operational scheduling of EV batteries in BSS in order to
optimize the number of batteries taken from battery stock, battery degradation and

electricity charging cost of batteries.” Further, a newly proposed dynamic electricity
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pricing model is employed to avoid new peaks of battery charging demand in BSS. A BSS
model with finite EV battery swapping demand in each hour of the day is solved by using a
multi-objective Shuffled Frog Leaping Algorithm (SFLA). The simulation results

demonstrate the effectiveness of multi-objective optimization and dynamic pricing model.

Finally, Sixth chapter highlights the various conclusions drawn in different chapters
and the significant contribution of research work and provides scope for further research in
this area. The complete research work is presented in the form of flow chart as shown in

the figure 1.6.
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2.1 Introduction

The large-scale construction of FCSs for EVs charging is helpful in promoting the
EVs. It creates a significant challenge for the Distribution System operator to determine the
optimal planning, especially the siting and sizing of FCSs in the electrical distribution
system. Inappropriate planning of Electric Vehicle Charging Stations (EVCSs) cause a
negative impact on the distribution system [10].

One of the greatest challenges in developed and developing countries is reducing
the greenhouse gas emissions. The fossil fuel vehicles with Internal Combustion Engines
(ICE) and electrical power generation from fossil fuels are the major causes of the
greenhouse gas emissions [10]. The most promising pathway to energy security and
reducing emissions is facilitating the global deployment of 20 million EVs by 2020 and the
use of renewable distributed DGs [54]. If this rate is maintained to 2050, Electric vehicles
will replace 62% of fleet vehicles. The EVs cause lower emission and require less energy
for transit for a mile, as compared to ICEs. Hence they are required as a promising tool to
combat the challenges related to energy sustainability and global warming. Therefore,
governments, automobile companies, energy agencies, etc., have made significant efforts
to enhance the EV population [55], [56].

This chapter present a multi-objective optimization problem to obtain the
simultaneous placement and sizing of FCSs and DGs with the constraints such as the
number of EVs in all zones and possible number of FCSs based on the road and electrical

network in the proposed system.

2.1.1 Fast Charging Station

The schematic diagram of FCS is shown in Figure 2.1 and it shows that,
arrangement requires only one AC-DC Grid Tied converter to realize a DC bus and the
EVs are charged by DC-DC converters. In this the DC bus facilitates to connect the
Renewable Energy Sources (RESs) generating units directly through a simple DC-DC
converter. Three phase transformer is used to step down the voltage from the distribution
grid voltage level to EVs battery voltage levels. Three phase AC/DC converter transforms
the AC power into DC power and it forms a DC bus. EVs get connected to the DC bus for
charging through DC/DC converters.
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2.2
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Figure 2.1: The schematic diagram of FCS [61]
The following aspects have to be considered while designing a FCS

» Auvailable area for parking of electric vehicles; this determines the number

of vehicles which can be charged.
The EVs charging demand estimation for FCS in a particular area.
Network constraints like nominal and permissible voltage profile.

The power flows at the point of common coupling.

vV V VYV V

Allowable rated charging power to be supplied to EV.

Problem formulation

This section presents the formulation of the objective function to minimize (i). FCS

development cost, (ii). Cost of specific energy consumption of EVs, (iii). Electrical

Network Power Loss (NPL) cost, (iv). DG power generation cost and (v). maximum

voltage deviation (MVD) in the electrical distribution network.

For determining the optimal FCS location and EVs position, the proposed approach

uses an area with the number of zones as shown in Figure 2.2. The area divided into zones
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as Z1, Z2, and Z3 for which the EVs data are available. EV population in each zone is
distributed and it is assumed that the EV population in each zone is located at the

geographic centre of the zone.

Figure 2.2: Proposed area with zones

Assume that in a considered day, the total number of EVs (N;gy) in the study area

are charged by the FCS. The Ny in study area calculated as

Nrgy = 2:20 Ngy . (2.1)

Where Ngy , is the number of dedicated EVs in zone Z, i.e., all dedicated vehicles
are regular costumers of that zonary FCS and n, is the number of zones in the considered

study area.

2.2.1 Station Development Cost (SDC)

The considered j station development cost mainly depends on the number of

charging connectors in j" FCS (S(j)), and its rated capacity (Pc) [17].
SDCU) = Cinit + 25 Cgn S(]) "Ny + Ceon (S(]) -1)- Pc (2-2)

where Cjpj; is the station fixed cost ($); Cjan, is the yearly land rental cost ($ per
square meter); C.o, is the charger development cost ($/kW) of j station and NY is the
number of years in the study period; S(j) and Pc are the number of connectors in the jth
charging station and rated power of charging connector (kW); The number of connectors in

the j™ charging station S(j) is calculated as:

S() = 2,2, (max(Cpev) * Nev 2 * SE(2,))) (2.3)
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Where the variable Cpgy is a vector having the probability of EV charging in the
hour (h) of the day; SE(z,j) is binary decision variable, equals to 1 if EVs in the zone z is
charged by the station j, otherwise, zero. The selection of EVs in the zone z to j" charging
station depends on the minimum distance between j™ charging station to zone z as

compared to the other CSs.

The area required for each connector and the minimum clearance between the
connectors are 25m? and 3m respectively. The rating of charging connector varies in the
range of 50-250 kW based on the connector technology [13]. The capacity of j" FCS is

determined as:
Cres() =s() - P¢ (2.4)
2.2.2 Electrical Vehicle User Cost (EVUC)

The EV user should drive a certain trajectory to reach to the FCS. EV user cost
represents the cost associated with the energy consumed by EV to reach the FCS. For EVs
located in zone Z, the EV user cost to reach nearest FCS for being charged at charging

station j, EVUC(z,j) is calculated as follows [17]:
EVUC(zj) = d(zj) - SEC - 2%11 Cppv(h) - Ngy,; " Cgp (2.5)

Where d(z,j) is the distance between zone z and charging station j. SEC and Cgp
are the specific energy consumption of EVs (kWh) and electricity price during hour h. The
distance to displacement ratio depends strongly on the optimality of the road network in
the study area. For an optimal road network, the distance approaches the displacement.
Hence, choosing the displacement rather than distance in this approach to obtained CSs are

still optimal for the optimal road network.

2.2.3 Network Power Loss (NPL) Cost

The higher FCS charging demand increases the line and substation loading. It
causes an increase in Distribution System losses. The Distribution System loss has a
nonlinear relationship with the system loading. The variable Distribution System loss is
significant due to EV charging demand, hence the precise calculation of electrical grid loss
is required by considering the variation in grid load.
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The distribution NPL cost during one year for all seasons is calculated as follows:

Cnpr = ZZfil Z%‘L Lrp(h,w) * Nry (w) - Cgp (2.6)

Where n,, is the number of seasons; Lyp is the total electrical power loss including

FCS load; and Nty is the total number of hours in each season of the year.

The total power loss (Lap) for hour h, during the season w due to FCS charging

demand, is calculated as follows [23]:
Lrp(h, w) = Lgp(h, w) + Lap(h, w) (2.7)

Where Ltp is the total power loss including FCS load; and Lgp is the gross power

loss with conventional load (without FCS load).

2.2.4 DG Power Cost

The DG power cost consists of investment cost(C;), operation cost (Cop) and
maintenance cost (Cy;) of DGs. Investment cost contains unit construction, installation and
essential equipment cost. Operation cost includes the cost of replacing components during
their technical lifetime and maintenance cost contains costs of renewing, repairing, and

restoring unit equipment in case of necessity [58]-[59] and [57].

C = Zggg(PDG,g ) CINV,g) (2-8)
. (1+RiNE\YY
Cor = Zyt1 528 (o T Co' - (Fe)™) (2.9)
, (1+Rive\ VY
Cor = Sty 5528 (Pog T '~ (Eoe) ™) (2.10)
CDG == CI + COP + CM (211)

where Ppg ¢ and Ciyy g are the rated real power (kW) and inverter cost of g DG
unit; Cop' and Cy;" are the operating cost (MWh) and maintenance cost (MWh) of each DG
unit; Rjyr and Ryyr are the inflation rate and interest rate of each DG unit; Ty, is total
number of hours in a year; NY and NDG are number of years and the number of DGs
considered for the study. The above-mentioned parameters required to calculate DG power

cost are taken from [58].



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

2.2.5 Maximum Voltage Deviation (MVD)

Inappropriate placement of FCSs and DGs causes voltage instability in the
distribution network. Both of over and under voltages affect the power quality of supply.
The bus voltage deviation (p.u.) in four seasons for 24 hours is considered. The MVD of

electrical Distribution System is calculated as follows,
max vge, = max{1 —min(v(i))} Vi=12,..n (2.12)

Where, min(v(i)) the minimum per unit voltage at bus i, n is the number of buses

in a considered electrical distribution system.

2.2.6 Objective function

min{ ?':Ffs SDC(j) + Zgﬁ" EVUC(k) + Cypy, + Cpg + max vdev}

(2.13)

Where Nrcs is the optimal number of FCS obtained from the optimization
algorithm. The objective function is to minimize the total cost related to FCSs, DGs, NPL
and minimize the bus voltage deviation of the electrical Distribution System by meeting

the following constraints.

2.3  System Constraints

The multi-objective optimization function (2.13) is bounded to the power balance,

voltage, thermal and DG power generation constraints as explained in [27]-[29].

At least one charging station should be selected to recharge the EVs in the study
area with the following condition:

NTEX(G) >0 Ve=12,..,Npc (2.14)

Where Npc is number of possible Charging Stations (CSs) and X(j) is the binary

decision variable, which is equal to 1 if jth charging station is selected, otherwise, zero.

At least one charging connector should be considered for each selected charging

station, with the following condition given by (2.15):
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Where S(j) is the number of charging connectors in j" FCS.

EVs in each zone should select one optimal FCS based on the displacement

between jt* charging station and zone Z.
Y2, SE@DX() =1 Vv12,..,n, (2.16)

Where SE(z,j) is 1 if the EVs in zone z are selected j" charging station, otherwise

ZEro.

2.4 Modelling of DG units in Load Flow Studies

In Distribution System the DG units, such as Photovoltaic systems, Fuel cells,
Micro- turbines and the Wind turbine units are injected into the system via power
electronic interfaces [62]. In such cases, the modelling of a DG unit in load flows depends
on the control method employed in the converter control circuit. The DG units which have
control over ‘P’ and ‘V’ independently may be model as PV type. Other DG units such as
Induction generator based units which have control over ‘P’ and ‘Q’ independently may be
modelled as PQ type. Using these models for DG units, Current Injection based Load Flow

method is employed for Distribution System studies.

2.4.1 Current Injection Based Load Flow (CILF)

Any optimization approach for optimal placement and sizing of DG units in
distribution network demands a good load flow algorithm. The traditional load flow
methods such as Gauss-Seidel, Newton-Raphson and Fast Decoupled techniques are
inefficient to solve Distribution networks due to the radial structure and wide range of
resistance with low X/R ratios. Several methodologies have been proposed to solve the
power flow problem in Distribution Systems such as Vector based Distribution load flow,
Primitive Impedance Distribution load flow and Forward & Backward Sweep Distribution
load flow. But, all these methods have limitations such as, not applicable for meshed
Distribution Systems and implementation become complex when control devices are
present in the system. The CILF (Appendix-111) [34] can be used for both radial and mesh

systems and easy to accommodate the implementation of control devices.

The present research work is initiated by developing software for “Current

Injection based Distribution Load Flow” (CILF) method which can work for radial and
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meshed distribution networks with and without the role of DG units. The working of this

load flow technique is tested on IEEE 38 and 118-bus radial systems.

25  NSGA-II for Simultaneous Optimal Planning of FCSs and DGs

Non-dominated Sorting Genetic Algorithm-11 (NSGA-II) is one of the most
popularly used multi-objective optimization algorithm in different applications, due to its
high performance for finding a set of Pareto solutions. The performance of NSGA-II is
majorly depends on its evolution operators, mainly on the aspects of non-dominated
sorting and crowing distance operator. Initially, a random parent population P; of size N is
generated, then it is sorted based on non-domination. Assign a rank to each solution based
on its fitness value. The Binary Tournament selection, Recombination, and Mutation
operators are used to generate offspring population Q, of size N. Get the combined
population R; (P U Q,) of size 2N. Then, the population R; is sorted according to its non-
domination. The solutions in the first front F; are of good solutions as compared to the
other front solutions in the combined population. If the size of the first front ( F,) is less
than N, then choose all populations of front F; for the new population P.,;. Then the
remaining members of the new population are chosen from subsequent fronts in order of
their ranking. To choose exact N members for new population P, from the subsequent
fronts we use crowded distance operator [62]. The crowding distance operator guides the
selection process at various stages of the algorithm, to determine the density of solutions

that are surrounding a particular solution [63].

Table 2.1: Best NSGA-II parameters for optimal planning of FCSs and DGs

NSGA-II parameters Values
Population size (N) 100
Number of iterations (Nit) 400
Crossover probability (Pc) 0.8
Mutation probability (Pm) 0.03

The best parameter values for the NSGA-II which are selected through multiple test
simulation runs for the optimal planning of FCSs and DGs in a coupled electrical

distribution and transportation network are given in Table 2.1.
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Figure 2.3: NSGA-II flow chart for optimal planning of FCSs and DGs [64]
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In NSGA-I11 algorithm, the non-dominated sorting technique and crowding distance
operator is used to rank the individual populations and to get good spread in the optimal
Pareto front respectively. The selection operator is to “select the best and discard the rest”
from a population keeping the population size constant. The crossover operator is used to
create new solutions from the existing solutions available in the mating pool after applying
selection operator. Mutation is the occasional introduction of new features in to the
solution strings of the population pool to maintain diversity in the population and avoid
premature convergence. The flowchart for optimal planning of FCSs and DGs in a coupled
electrical Distribution System and transportation network with the NSGA-II algorithm is
shown in Figure 2.3.

2.6 Simulation Results and Observations

To analyse the effectiveness of the proposed optimal planning of FCSs and DGs in
a coupled electrical distribution and transportation network, three scenarios with multiple

case studies are considered.

2.6.1 Proposed System Data

To test the proposed methodology, a study area of 720 km? surface has been
considered. The study area consists of 180 zones, and each zone has an equal area of 4 km?
(2 kmx2 km).

Table 2.2: EVs population in each zone of test system

1 (2 (314 /516 |7 (8|9 (10/11|12(13|14|15
1 |10 (3|53 (41]6 (41010 (3|7 (51614 (0
2 3 |51(416 416 |7 (8]7 |9 (8|7 |56 |4
3 |7 |11(16]9 |9 [13|12{10|11|14}{17|6 |9 |5 |3
4 (6 (1 |7 [15]16|17|17|9 |15|7 |14|17|9 |15]1
514 |6 |9 [10|8 |16]16|14(0 |14|16|11|7 (9 |7
6 (0 |[13|14]10|16(14|19|15(17|14|12|8 |15(9 |4
7 |7 |11|0 [16|16|17|13|18(17|15|9 |19|12(8 |0
8 (4 |9 |15]14|12|11|4 |16[19|9 [12]17|17|12|6
9 (8 [13(14]19|17(15|17|0 |13|12(11|13|9 |15|8
10|13 (12|19 (16]13|14|9 |14|16|15|17|16|15|13|3
110 |6 |7 |8 |7 |56 (4|8 (5416|4010
12|10 |5 |3 6 017 ({3 01516 (4 |3 |4
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Table 2.2 presents the assumed EV population in each zone of the study area. The
total population in the study area is 1632 and among the total EVs population only some
probability of EVs is charging in each hour during a day. The 118 bus electrical

Distribution System is assumed to be available on the study area for electrical power

supply.

The percentage of electrical power load variation during the day for different
seasons is taken from [25]. The base values of 118 Distribution System are 10 MVA, 11
KV and the total real and reactive power load on the system is 22.71 MW and
17.041MVA:r. Figure 2.4 shows the single line diagram of 118 bus distribution network

associated with the case study.
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25 % 39
16] A 48 36
15 132 %/ 40
4 47 42 75
y 12 A9 8 16 41 35
18 20 62 34 74
10¢” 11 7 45 33 73
25y 6 61
55 54 28 44 3L 32 71 12 88
29
1 856 58°° 30 & 10 .
" 57 5, 59 60 68 85 5 %
80
63 86 67 95
L16P\ 99 | 65 79 . =2 1
8 111
115 89 81 > 93 94
1149 \% “e—go 91 7 110
109
100
113 101 . 103 %4 105 1% 108 118

@ Bus distribution network; ® FCS
Figure 2.4: 118-bus radial distribution test system

The possible placement of 16 FCSs (based connectivity of road and electrical
Distribution network system connectivity) has been assumed to be placed along the main
roads of the study area, with constraints of approximately equal distance among the FCSs.
Rhombus symbol in Figure 2.4 shows the locations of possible FCSs. The Distribution
System and charging station parameters used in the proposed system are listed in
Table 2.3.
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Table 2.3: EV and FCS parameters [13]

Parameter | Value | Parameter | Value
Nrey 1632 | SEC 0.142 kWh/km
Ny 5 Cep 87.7 $/MWh
Npc 16 Clan 240 $/M>.Yr
Cinit 70000 $
Ceon 208.33 $/kW
P 96 kW
Nrey- Total Number of Electric Vehicles Cian-Yearly land rental cost (in $/m?)
Ny-Number of Years Cinit-Fixed cost of station development.
Nrc-Number of Possible Charging stations | Ccon-Charging connector development cost (in $/kW)
SEC- Specific Energy Consumption Pc-Rated power of each connecter
Cep-Electricity Price Cost

The charging probability of EVs (CPEV) in each hour during the day is shown in
Figure 2.5. It is assumed that EVs are charged at their respective FCSs from 5:00 to 21:00
hours a day.

0.10¢ — I

0.05¢ HH H
0 === == .
0:00

05:00 1 15:00 21:00

ClsppB)

Hour
Figure 2.5: Variation of Charging probability (Ceev)

To verify the effectiveness and feasibility of the proposed optimal planning of
FCSs and DGs in the radial distribution network, three different scenarios are proposed as
case studies.

2.6.2 Scenario 1:Optimal placement of FCSs in coupled Electrical Distribution and

Transportation Network

The optimal number and locations of FCSs have been determined by considering
the minimization of EV user's cost, NPL cost and the MVD in the distribution network.
The optimal placement of FCSs is determined considering load variation during four
different seasons (Appendix-1V). The optimization algorithm presented in Figure 2.2 is
employed to evaluate the fitness function given in (2.13) against the different number of
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FCSs in the network. This algorithm determines the optimal capacity and locations of
FCSs in the study area. Since, the DGs are not considered in this scenario, the DG, in
(2.13) is zero. The objective function for the different number of FCSs is compared in

Figure 2.6. From this comparison, the optimal number of FCSs is determined to be 6.
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Figure 2.6: Optimal number of FCSs in the coupled electrical distribution and

transportation network

In scenario 1, based on the objective functions to minimize viz. NPL cost, EVUC
and MVD, the following three cases are considered. The variation of Station Development
Cost (SDC) does not impact significantly on the overall objective function, since the total
number of connectors in all CSs is approximately constant. Hence, SDC is not considered

as an objective to minimize.
Case 1: Minimization of NPL cost and MVD
Case 2: Minimization of NPL cost and EVUC
Case 3: Minimization of NPL cost, MVD and EVUC

The optimal Pareto-front for the minimization of NPL cost, EVUC and MVD

(Max. VD) simultaneously for all case studies of scenario 1 is shown in Figure 2.7.



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

o
(o8
<
T
*

0.10+ * I

Ol 0.1 0.2 03 0.4 0.5

NPL cost (MS$/year)
(a) Optimal pareto-front of case 1

*

*  « X E.3

0.184 0.187 0.190 0.193 0.195
NPL cost (MS$/year)
(b) Optimal pareto-front of case 2

0.003

2
o
S
o

=
o
S

Crpye (M$/year)

0.0205
x <0.0200
0.0]900.0 195

0.0185 o (Mgl.'yeaﬁ

oy 0.
Doy 01400180 NPLCO

(c) Optimal parcto-front of case 3

Figure 2.7: Optimal Pareto-front plots for scenario 1
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Table 2.4: Optimal planning of FCSs for scenario 1

S No. FCS number 1 2 3 4 15|16
Case | FCS location 92 | 40 | 98 | 61 |28 |108
Number of EVs to FCS| 243 | 187 | 187 | 469 [300|246

Case 2 FCS location 28 | 42 | 92 | 71 | 35|57
Number of EVs to FCS| 307 | 83 | 330|358 (307|247

Case 3 FCS location 61 | 108 | 103 | 57 [ 80| 98
Number of EVs to FCS| 661 | 274 | 89 |281 |262| 65

From the optimal Pareto front the best compromised solution is obtained using a
min-max optimization technique as discussed in [31]. For the obtained compromised or
moderate solution, the optimal FCS location and number of EVs connected to FCS for
various cases in scenario-1 are presented in Table 2.4. The optimal objective parameters

for scenario 1 are listed in Table 2.5.

Table 2.5: Optimal objective parameters for scenario 1

Case SDC EVUC NPL cost MVD

(MS$) (M$/year) (M$/year) (p.u.)
1 2.053 0.02178 0.2178 0.1459
2 2.052 0.01896 0.1876 0.156
3 2.041 0.01399 0.18857 0.156

(M$=Millions of Dollars)

The SDC has been evaluated based on the total number of connectors in each FCS.
The SDC, EVUC, NPL cost and MVD are obtained as 2.053 (M$), 0.02178 (M$/year),
0.2178 (M$/year) and 0.1459 (p.u.) respectively in case 1 of scenario 1. In case 2, it has
approximately same SDC. The EVUC, NPL cost and MVD are 0.01896 (M$/year), 0.1876
(M$/year) and 0.156 (p.u.) respectively. When three objective parameters are considered
(Case 3) the SDC, EVUC, NPL cost and MVD are comparatively minimum as compared
to case 1 and case 2 of scenario 1. From the Table 2.5 the optimal values of the SDC,
EVUC, NPL cost and MVD in scenario 1 are 2.041 (M$), 0.01399 (M$/year), 0.18857
(M$/year) and 0.156 (p.u.) respectively.

Even after optimal placement of FCSs, the voltage profile of the 118 bus
Distribution System violates the system voltage constraints. To improve the voltage
profile, in next scenario i.e. scenario 2, the optimal planning of DGs is considered in the

coupled electrical distribution and transportation network.
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2.6.3 Scenario 2:Optimal placement of DGs in proposed study system with

previous optimal FCS load

Optimal placement of DGs has been considered to improve the voltage profile in
proposed distribution system. Objective function (2.13) includes the DG cost, SDC,
EVUC, NPL cost and MVD in Distribution System with the optimal FCSs load obtained in
case 3 of scenario 1. The optimal placement of DGs is determined considering load
variation during four different seasons (. The optimization algorithm presented in Figure
2.8 is employed to evaluate the objection function presented in (2.13) against different
number of DGs in the network. This algorithm determines the optimal size and placement

of DGs in the network.
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Figure 2.8: Optimal number of DGs in the coupled electrical distribution and

transportation network

The objective function for different number of DGs is compared in Figure 2.8.
From this comparison the optimal numbers of DGs is determined to be 4. In scenario 2,
three cases are conducted to determine the optimal location and size of DGs with the
account of the optimal FCSs load obtained in case 3 of scenario 1. The SDC and EVUC in

scenario 2 are same as the case 3 of scenariol and its value is constant.
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Figure 2.9: Optimal Pareto-front plots for scenario 2
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Case 6: Minimization of DG value cost, MVD and NPL cost
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The Pareto-front for different case studies in scenario 2 is shown in Figure 2.9.

From the above optimal Pareto fronts the best moderate location and size of DG
units are determined using min-max method. The optimal location and size of DG units for

different case studies in scenario 2 are presented in Table 2.6.

Table 2.6: Optimal place and sizes of DGs

Case 4 Case 5 Case 6
Ef DG |DGsize| DG [ZI(\B/I\S/:/z)e DG | DG size
" |location| (MW) | location location | (MW)
1 32 0.1032 40 0.1262 37 0.2
2 36 0.1 42 0.101 42 0.1996
3 70 0.1265 72 0.1164 74 0.1982
4 118 | 0.1071 111 0.0749 111 0.1896

(M$=Millions of Dollars)

From the Pareto front provided in Figure 2.9, best compromised objective

parameters for the case 4, case 5 and case 6 are reported in Table 2.7.

Table 2.7: Optimal cost values with DGs placement

Case | SDC cost | EVUC NPL cost DG cost |[MVD (p.u.)
(M$) |(M$/year)| (M$/year) (M$)
2.041 0.01399 0.07212 14.06 0.0681
5 2.041 0.01399 0.05625 15.95 0.899
6 2.041 0.01399 0.05651 14.82 0.072

There are two observations that can be made by analysing the results provided in
Table 2.7. The first one is that as both NPL cost and MVD decreases, the DG cost
increases. The NPL cost and MVD directly depend on DGs location and their size. The
second one is that SDC and EVUC are constant. In scenario 2, the optimal planning of
DGs is determined with the account of optimal FCS load (case 3 of scenario 1) in the
electrical distribution system. Therefore, the SDC and EVUC are constant in all three

cases of scenario 2.

In case 4, DG cost and MVD are considered for optimal planning of DGs in the
electrical distribution system. For which the NPL cost, DG cost and MVD are 0.07212
(M$/year), 14.06 (M$), 0.0681 (p.u.) respectively. Similarly, the NPL cost, DG cost, and
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MVD are 0.05625 (M$/year), 15.95 (M$), 0.899 (p.u.) respectively for case 5.
Furthermore, in case 6, three objective parameters are considered for optimal planning of
DGs in the distribution system. Because of the participation of three objective parameters
in optimization processes, case 6 provided a best economical solution as compared to case
4 and case 5 in scenario 2. The optimal values of the NPL cost, DG cost, and MVD are
0.05651 (M$/year) 14.82 (M$), 0.072 (p.u.) respectively. It can be observed that case 6 of
scenario 2 gives best economical solution as compared to the case 4 and case 5.
Furthermore, to minimize the NPL cost, DG cost and MVD, the simultaneous placement of
FCSs and DGs in coupled electrical distribution and transportation network is considered

in scenario 3.

2.6.4 Scenario 3:Simultaneous placement of FCSs and DGs in coupled Electrical

Distribution and Transportation Network

In this scenario, the FCSs and DGs are simultaneously placed in the distribution
network, with the objective of decreasing the EVUC, NPL cost, DG cost and MVD. In
scenario 3, the following four different cases are considered for the simultaneous optimal

placement of FCSs and DGs in coupled electrical distribution and transportation network.
Case 7: Minimization of NPL cost and EVUC
Case 8: Minimization of DG value cost and MVD
Case 9: Minimization of NPL cost and DG value cost
Case 10: Minimization of DG value cost, MVD and NPL cost

The algorithm presented in Figure 2.3 is employed to evaluate the fitness function
given in (2.13) against the different number of FCSs and DGs in the distribution network.
This algorithm determines the optimal size and placement of FCSs and DGs in the
distribution network, for the same number of FCSs and DGs as in scenario 1 and scenario
2 respectively. The Pareto-front for minimization of NPL cost, DG cost, EVUC and MVD

for various case studies of scenario 3 are shown in Figure 2.10.
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Figure 2.10: Optimal Pareto-front plots for scenario 3

The optimal capacity and location of FCSs and DGs are listed in Table 2.8 and Table 2.9.
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Table 2.8: Optimal planning of FCSs in scenario 3

Case 7 Case 8 Case 9 Case 10
FeS No. of No. of No. of No. of
No. Io::t;son EVsto Iozg:ti)n EVsto IoE;:tiSon EVsto Iol;ii)n EVS 10
FCS FCS FCS FCS
1 28 245 61 428 13 94 83 576
2 71 570 48 200 103 165 28 251
3 22 245 40 76 71 591 80 156
4 98 136 71 376 28 236 103 254
5 80 354 92 276 80 356 48 249
6 103 82 103 276 22 189 92 146
Table 2.9: Optimal planning of DGs in scenario 3
Case 7 Case 8 Case 9 Case 10
oG DG DG size DG DG size DG DG size DG DG size
No. | location | (MW) | location| (MW) | location| (MW) | location| (MW)
1 95 0.0711 83 0.0867 97 0.0698 36 0.2
2 59 0.0611 43 0.0764 30 0.1074 74 0.1749
3 93 0.0751 28 0.0885 103 0.0626 83 0.1498
4 32 0.1811 114 0.1516 46 0.0935 11 0.1947

From the obtained Pareto fronts, the moderate solution is determined using the min-

max technique.

Table 2.10: Optimal cost values in scenario 3

Case SDC cost EVUC NPL cost DG cost MVD (p.u)
(M$) (M$/year) | (M$/year) (M$)
7 2.038 0.01958 0.05432 17.95 0.0998
8 2.041 0.02359 0.06312 16.52 0.072
9 2.04 0.01969 0.05389 16.53 0.0899
10 2.0101 0.005963 0.054323 15.951 0.0613
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Table 10 presents the optimal objective parameters of different cases of scenario 3.
In case 7, optimized values of NPL cost and EVUC are 0.05432 (M$/year) and 0.01958
(M$/year) respectively, for which the DG cost and MVD are 17.95 (M$) and 0.0998 (p.u.).
In case 8, the optimized values of the DG cost and MVD are 16.52 (M$) and 0.072 (p.u.),
for which EVUC and NPL cost is maximum, i.e., 0.02359 (M$/year) and 0.06312
(M$/year). Similarly, the optimized values of the DG cost and NPL cost are 16.53 M$ and
0.05389 (M#$/year) in case 9, for which the optimal EVUC and MVD are 0.01969
(M$/year) and 0.0899 (p.u.) respectively. Furthermore, three objectives, i.e., MVD, NPL
cost and DG cost optimized values are 0.0613 (p.u.), 0.054323 (M$/year) and 15.951 (M$)
respectively. In scenario 3 the NPL cost and EVUC are considerably reduced for
approximately same investment. The NPL cost and EVUC are variable ones, with the

reduction of this losses result in benefit to both the EV users and charging station owners.

The optimal objective parameters namely NPL cost, MVD, EVUC and DG cost for
the best cases (case 3 in scenario 1; case 6 in scenario 2; and case 10 in scenario 3) in the
above three different scenarios are presented in Table 2.11. From Table 2.11, it is clear that
case 10 gives best compromised solution as compared to the other cases of scenario 3.

Table 2.11: Optimal cost comparison results in three scenarios

SDC EVUC NPL cost DG cost
Case (M$) (M$/year) ($/year) (M$) MVD (p.u.)
10 2.0101 | 0.0059636 543.23 15.951 0.0613
6 2.041 0.013996 565.17 16.5233 0.0721
3 2.041 0.013996 188.57 - 0.156

In scenario 3, the EVUC and NPL cost and MVD are significantly reduced as
compared to the scenario 2 and scenario 1. The simultaneous planning of FCSs and DGs in
the coupled electrical distribution and transportation network of case 10 has a 60.7% and
14.97% reduction of MVD as compared to the case 3 and case 6. Also, the NPL cost
reduced by 71.2% and 3.8% in case 10 as compared to the case 3 and case 6. Furthermore,
there is a 57.3% reduction of EVUC in case 10 as compared to other cases. Therefore, the
proposed method is capable of providing the best economical solution for the simultaneous
optimal placement of FCS and DGs in coupled electrical distribution and transportation

network.
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In order to investigate the impact of parameters mentioned in Table 2.3, the
following four additional cases are considered.

In case I, the objective parameters have been calculated by considering 75% of EV
population and 50% of EV population is considered in case Il. The optimal parameters are
listed Table Il. The optimal Pareto fronts to optimize the MVD, NPL cost and DG value
cost in case | and Case Il is shown in Figure 2.11 and Figure 2.12 respectively.
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Figure 2.12 Optimal Pareto fronts of case Il
In case Il and Case IV, the objective parameters have been calculated by

considering 13 possible FCSs and 10 possible FCSs (in original study it is 16 possible
FCSs (NPC). The optimal parameters are listed Table Il. The optimal Pareto fronts to
optimize the MVD, NPL cost and DG value cost in case Il and Case IV are shown in

Figure 13 and Figure 14 respectively.



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

(M$)

18

~DG value cost

o

o -

o N
"2

3000

2000

NPL cost ($/year)

20.5

20

DG value cost (M$)

2000

1000

0 004

0.05 0.06

0.09

0.07 0.08

MVD (p.u)

Figure 2.13 Optimal Pareto fronts of case Il

1000

NPL cost ($/year)

0.02

0.04

A
0.08 0

0.06

MVD (p.u)

Figure 2.14 Optimal Pareto fronts of case IV

Table 2.12 Optimal parameters for case I, case I, case Ill and case IV

NPL cost DG cost
Case ($lyear) (M$) MVD (p.u.)
Case | 473.28 14.5992 0.0519
Case Il 371.25 12.6416 0.0316
Case Il 934.1 18.5569 0.0621
Case IV 1818.59 19.63 0.0803
Case 10 543.23 15.951 0.0613

(Case 1, case Il, case Il and case IV are conducted to investigate the impact of

parameters mentioned in Table | and it compared with case 10).

From the above analysis, it is concluded that the NPL cost, DG cost and MVD are

decreases as the total number of EVs are reduced to 75% in case | and 50% in case Il. And

the NPL cost, DG cost and MVD are increases as the numbers of possible FCSs are
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decreased to 13 FCSs in case 1l and 10 FCSs in case IV. So, for analysis purpose, Table |

parameters are considered for various case studies in the Thesis.

In summary, this chapter has covered the simultaneous placement of DGs and FCSs
in radial distribution system. Simulation results emphasize the importance of optimal
concurrent placement of both FCSs and DGs in the distribution system. In the proposed
approach, ‘optimal planning of FCSs’ and ‘optimal planning of DGs with the account of
optimal FCSs load’ are compared to ‘simultaneous planning of FCSs and DGs’ in coupled
electrical distribution and transportation network. The simultaneous placement of FCSs
and DGs results in more reduction in EVUC and NPL cost for the same SDC and DG
power cost investment. The EVUC and NPL cost are variable with respect to time. Hence,
reduction in this cost will prove beneficial for both EV and charging station owners. It is
clear that the optimal simultaneous placement of both FCSs and DGs in Distribution

System provides significant benefits to all involved.

This part of work is published in journal of Modern Power System and Clean
Energy with the title as “A Multi-objective simultaneous optimal planning of electrical
vehicle fast charging stations and DGs in distribution system” pp:923-934, issue 7, volume
4,2019. (SCI) DOI: 10.1007/s40565-018-0493-2.

The next stage of investigation is focused of Optimal Planning of FCSs and DGs in
Distribution System with Future EV Load Enhancement and the same is reported in
chapter 3.
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Chapter-3

Multi-Objective Optimal Planning of FCSs and
DGs in Distribution System with Future EV Load
Enhancement
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3.1 Introduction

Current trends suggest that EV is a promising technology for road transportation.
There is a substantial increase in the number of EVs due to improved energy efficiency and
reduction in environmental impact as compared with internal combustion engine vehicles.
The improper planning of FCSs and DGs causes a negative impact on the Distribution
System [65]. So the Distribution System operator has a significant challenge to identify the
optimal location and sizing of FCSs in distribution power network. This part work presents
optimal planning of FCSs and DGs with the account of the present and future increase in EV

population.

From the last decade onwards, the EVs have great attention from the government
agencies and automobile industries due to a significant reduction in overall operating cost and
emission as compared to the internal combustion engine vehicles. According to the Electric
Power Research Institute survey, 35% of total vehicles in the USA will be EVs by 2020 [66].
The increasing population of EVs creates new challenges to the power Distribution System
operator to develop adequate charging facilities to the EV users in distribution system. The
rapid increase of EV population requires efficient fast charging stations (FCS). Charging at
home is an alternative way for the EV users, but it requires too much time (which can take 6
to 8 hours). Therefore, the charging station with high voltage is necessary for EV user's
convenience, because it can charge the EVs at least 12 times faster than charging at home

[66]. The higher adoption of EVs may cause a potential impact on the distribution grid.

A multi-objective optimization problem is formulated for optimal planning of FCSs
and DGs with the objective of minimizing the voltage deviation, distribution network power
loss, DGs cost and the energy consumption of EV users in the coupled transport and electrical
distribution network by considering the present and different levels of future increase of EV

population demand.

3.2  Problem formulation

This section reports the formulation of the objective function to minimize FCS
development cost (SDC), cost of specific energy consumption of EVs (SEC of EVs cost),
electrical Network Power Loss (NPL) cost, DG power generation cost and Maximum Voltage

Deviation (MVD) in the electrical distribution network.
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3.2.1 Objective function

The objective parameters in this optimization function are same as the parameters
which are considered in objective function (2.13) in section 2.2. With this optimization
problem the optimal planning of FCSs and DGs are determined for the present and different
levels of future increase of EV population demand in the coupled road and electrical
distribution system.

FCS development cost (SDC)
EV user cost (EVUC)
Electrical network power loss cost (NPLC)

DG power generation cost (DGPC)

N N N NN

Maximum Voltage Deviation (MVD)
Considering all the five objectives, the objective function is formulated as

min{3 1 SDC()) + Xi2r " EVUC(K) + NPLC + DGPC + MVD} (3.1)

Where NFCS is the optimal number of FCS obtained from the optimization algorithm.
The objective function is to minimize the total cost related to FCS, DGs and Network power
losses; and minimize the bus voltage deviation of the electrical Distribution System by

meeting the following constraints.
3.3 Constraints

3.3.1 Charging Station Constraints

At least one charging station should be installed in the proposed area to meet the EV

loads and it is described as below:
YIESFCSG) >0 V. j=12, 0. ,NPC (3.2)

Where NPC is the number of possible FCSs based on the optimality of road transport
network and electrical distribution network. At least one charging connector should be

considered for each selected FCS i.e.
SGY=0 Vj=123,...... ,NPC (3.3)

EVs in each zone should select one optimal FCS based on the distance between jt

charging station and zone z.
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YozdheSelect(z,DX() =1 VvV 1,23.... zZ (3.4)

Where Select(z,j) is 1 if the EVs in zone z are selected j™" charging station, otherwise
zero. X(j) is the binary decision variable, which is equal to 1 if j'" FCS is selected, otherwise,

Zero.

3.3.2 DG Constraints

Each Distributed Generation source has its own real and reactive power generation
limits. In this work, the DG is modelled as a negative P-Q model. The DGs should meet the

following constraints,

PRES < Ppgg < PSS (3.5)
QB < Qg < QP& (3.6)

WherePﬁ“Gig : Qg‘g_‘g and Ppg’g, Qpég are the minimum and maximum of real and

reactive power generation of g™ DG unit. The per unit voltage of each bus in each time step
does not decrease below the predefined minimum voltage, which is assumed 0.9 p.u. for all

the cases considered.

3.4  Hybrid SFL-TLBO Algorithm and System Data

In all classical methods like weighted objectives method, the multiple objectives
functions are formulated as a single objective function by choosing suitable weights for each
objective. In determining the optimal value of the proposed single objective function, it has
majorly two problems. The first one is the optimization of that single objective function may
guarantee a single optimal solution, but in all practical applications, the decision makers need
an alternative solution in decision making. The second one is the selection of suitable weights
for each objective parameter in single objective function. Moreover, if the objective function
is more noisy and the variables are discontinuous in search space, the classical methods
cannot work effectively [74]. To overcome the above problems, multi-objective Pareto front
optimization algorithms are necessary for solving multi-objective problems. Furthermore, the
hybrid algorithms are highly efficient in finding optimal solution. A new hybrid Shuffled
Frog Leaping-Teaching Learning Based Optimization (SFL-TLBO) algorithm is developed
by combining the best features of Shuffled Frog Leaping (SFL) and Teaching Learning Based
Optimization (TLBO) algorithms for solving the optimal planning of FCSs and DGs in the
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coupled road and electrical distribution system. This optimization problem has been solved

by considering the present and different levels of future increase of EV population demand.

3.4.1 Shuffled Frog Leap Algorithm (SFLA)

The SFLA is a population-based optimization algorithm, and the population consists
of a set of frogs that is divided into subsets referred to as memeplexes. Each frog in the
population represents a solution in search space and its hold ideas, which can be influenced
by the ideas of other frogs and evolve through a process of memetic evaluation. After a
certain number of memetic evaluation steps, ideas are passed among the memeplexes in the
shuffling process. The exploration and the shuffling processes continue until it reaches the

specified convergence criteria as explained in [74].

3.4.2 Teaching Learning Based Optimization (TLBO)

TLBO is a teaching- learning process based inspired algorithm, in which teaching —
learning is an important process where every individuals tries to improve their knowledge by
interacting with others (i.e either a teacher or student or both), which simulates the traditional
teaching-learning phenomenon of a class room. TLBO proposed by R.V. Rao et al. in 2011.
In TLBO algorithm, the best learner is regarded as a teacher and rest individuals within the
population are seen as students. To determine better optimal solution the TLBO algorithm
consists of two phases: teacher phase and learner phase. During the teacher phase, a teacher
wants to increase his or her students’ knowledge level up to his or her knowledge level. Thus

the individual knowledge level of students is various with the following expression: [75], [76]
Xnew,i = Xold,i + rand (Xeacher — Xmean) (3.7)

Where Xieacher @aNd X eanare the best learner in the population and the current mean
value of the individuals respectively. rand is the a uniform random number in between
0 and 1.

In the learner phase, the knowledge of learner increases through the interaction
between classmates. A learner (X;) randomly interacts with his/her classmate (X;) within the
population and the selected classmate trains a learner. If the learner knowledge is better than
the former one, then it is replaced with the newly generated population. The individual

knowledge level of the learner is updated with the following expression:
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Xnew,i = Xi + rand(Xj - Xl) (38)
Where X; and X; are two individual learners in the current population.

TLBO is a population based algorithm and its operation is explained below with step

by step procedure.

Step 1: Define the optimization problem as minimization or maximization of f(X). Where

f(X) is the objective function and X is a vector of design variables.
Teacher phase :

Step 2: Initialize the population (a group of learners) as Py, P2, P3 - - - - - Pn. And take the

design variables of optimization problem (number of subjects) as X1, X2, X3 - - - - - - Xm.

Step 3: Determine the objective function value for each population, Identify the optimal

objective function value f(X)nest Who act as a teacher and its respective population is Xmbest.

Step 4: Calculate the mean and difference mean of each design variable respectively. Mean is
the average of each design variable with respect to population size and the difference mean is
calculated by

Difference_meanm = rand™*(Xmbest - meanm) (3.9)

Where Difference_meanm  Xmhest and meanm are the difference mean, best of population and
the average of m" design variable respectively.

Step 5: Based on this difference mean, the existing population is updated according to the

following equation

XNeWn m = X0ldnm + Difference_meanm (3.10)
Evaluate the objective function value with xnew,m population.
Learner phase:

Step 6: In learner phase, their knowledge is increased by randomly interacting with other
learners which are present in current iteration. This algorithm uses the tournament selection

operator for random selection of learners.
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Step 7: If the knowledge of updated learner is less than current learner accept the current

learner. Otherwise accept the updated learner. And continue this process for all learners
which are presented in the current population.

Step 8: Repeat the procedure from step 3 to step 7 until the termination criterion is met.

The flowchart for Hybrid SFL-TLBO algorithm is shown in figure 3.1.
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Figure 3.1: Flow chart for Hybrid SFL-TLBO algorithm
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3.4.3 Hybrid SFL-TLBO Algorithm

The hybrid SFL-TLBO algorithm is a real-coded population-based meta-heuristic
optimization technique that is newly formed by combining the strengths of SFLA [38] and
TLBO [39]. In the SFLA, each memeplex evolves independently to local search at different
regions of the search space. Then, the memeplexes are shuffled and re-divided into new
memeplexes to enhance the exploration capability through exchanging the information with
each other. On evaluating the fitness and formation of a memeplex, the frogs with the best
and the worst fitness are identified as Xb and Xw, respectively. The position of the frog with

the worst fitness is adjusted as follows

D; = rand (X, — Xy) (3.12)
Dmax = Di = _Dmax (3-13)
new X,, = current position of X, + D; (3.14)

The equation (3.14) clearly says that, when the difference in position between Xw and
Xb become small, the change in position of frog Xw (new) is small that may lead to reaching

the local optimum, i.e., premature convergence.

TLBO algorithm has excellent exploration capability but lack in exploiting the
solution space locally [40]. To enhance the exploitation capability of the TLBO algorithm, it
is combined with SFLA which is having good local search ability [38]. Hybrid SFL-TLBO
optimization algorithm has been developed to determine the simultaneous optimal planning
of FCS and DGs for the present and different levels of future EV load enhancement.

3.5 Operational procedure of Hybrid SFL-TLBO Algorithm

The SFL-TLBO is a population-based algorithm and its operation is explained below
with step by step procedure.

Step 1) Define the optimization problem as minimization or maximization of f(X).

Where f(X) is the objectives function and X is a vector of decision variables.
Teacher phase:

Step 2) Initialize the parameters, population (a group of learners) as X1, X2, X3 - - -

Xn and the design variables of optimization problem (number of subjects) as xa, xb, - - xm.
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Step 3) Determine the objective function value for each population, identify the
optimal objective function value f(Xbest) who act as a teacher and its respective variables set

is Xgbest =[ xabest, xbbest, - - xmbest]

Step 4) Calculate the mean (mean,,) and difference mean (diff mean,,) of each
design variable respectively. Mean is the average of each design variable with respect to
population size and the difference mean is calculated by

diff meany,, = rand * (Xgpest — meany,) (3.15)

Where the Xgbest, meanm are the best population and difference mean of all variables

for n number of population.

Step 5) Based on this difference mean, the existing population is updated according to

the following equation
Xnew, , = Xold,, ,, + Diff mean,, (3.16)
Evaluate the Teacher phase objective function f(x)r value with Xnew,, ,, population.
Learner phase:

Step 6) Divide the population (Xn) into G number of student groups (memeplex) and
each group having S number of students i.e, Xn=g*S.

student group: student group: student groupc
population f(x) population fX) population f(x)
P1 f1(x) P2 fa) PG fa(x)
Pe+1 fe+1(X) Pe+2 fera(X) P2c foc(X)
P2c+1 fac+1(X) Pac+2 fogro(X) P3c fac(X)
Pois+1 fosn+1(X)  Posn+e  fos-1)+2(X) Psc fsa(X)

Identify the group best student in each student group (Xgroup_best) and its respective
population. Based on this Xgroup_best, update the existing population in that group with the

help of the following expression.
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Xnews ; = Xoldg g + rand (Xgmup_bestS e Xolds‘g) (3.17)

Combine all student groups and evaluate the learner phase objective function f(x)L
value with Xnew,, population. If f(x). is not optimal than f(x)t then update the population

with the overall population best (Xpest pop) following expression
Xnews ; = Xoldg g + rand (Xbest_pops’g — Xolds,g) (3.18)

Similarly calculate f(x). value with Xnews, population. If f(x). is optimal than f(x)r,

then consider that population for next iteration. Otherwise generate a new population

randomly within limits.

Step 7) Combine all students groups and sort them based on non-dominated sorting
technique [41], [42]. Identify the best population Xbest and its fitness value f(Xbest) i.e
Fbest.

Step 8) Save the Xbest and Fbest as the global best Xgbest and global fitness Fgbest

in each iteration.

Step 9) Repeat the procedure from step 4 to step 8 until the termination criterion is

met.

Algorithm 1.Pseudo code of proposed hybrid SFL-TLBO

Initialize parameters
Number of populations (n), student groups (g),
Define f(X) X= (Xg, Xpy X wn ven e Xq) d=no. of decision variables.
Initialize the group of learners randomly X; i=1,2,3.....n.
Evaluate objective function value for group of learners f(X)
Identify the best solution as teacher Xgpes:
For iter=1to maximum iterations
fori=1ton // Teacher phase//
Calculate the mean of each variable mean,,
Calculate difference mean of each variable (dif f mean,,)
dif f meany, = rand * (Xgpese — mean,,)
Update each solution based on best solution
Xnewy , = Xold,, ,, + Dif f mean,,
Evaluate the objective value for new mapped solution f(Xnewnrm)
If f (Xnew, ) < f(X;) i.e., (Xnew, , is better than X;)
X7 = Xnew,



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

Fr = f(Xr)
else
Xr =X;
Fr = f(Xr)
end if
end for nloop // End of teacher phase //
Sort the population based on non-dominated sorting technique
Divide the learners into g Number of groups
fori=lto g // Learner phase//
for i=1to s

Identify the best solution in each group Xy, oup—pest
Xnewsy = Xoldg 4 + rand (Xymup-b65ts,g - Xoldsrg)

Calculate objective function value f(Xnews ;)
If f(Xnews'g) is better than f(X;)
X; = Xnews 4
else
Xnews, = Xoldg 4 + rand (XbeSt-Pops,g - Xoldsrg)
Xi = Xnews g5 (Xgpest = X )
Otherwise generate a random population
end if

end for  --—-——- s loop

end for------- g loop //End of learner phase//

end for --------- iter loop (Termination criterion)
Xgbest ~mw=mmmmr=mmmoes = = — best population
Fypest — — — —bestfitness

Save the optimal population and its fitness value.

The current injection load flow method is used to analyse the Distribution System
power flows, voltage profiles and current flows in each branch of the distribution network.
The objective function is solved by considering the distribution network constraints, DG

constraints and FCS constraints.

3.6  Proposed Test System Data

For the proposed work we considered an urban city having surface area of 720 km?.

This consist of 180 zones, each zone has an equal area of 4 km2 (2kmx2km).

Table 3.1 presents the EV population in each zone of the study area. The total EV
population in the study area is 1632 and among the total EVs population only some



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

probability of EVs is charging in each hour during a day. The 118 bus electrical Distribution
System is assumed to be available on the study area for electrical power supply. The charging
probability of EVs (CPEV (h)) in each hour during the day is shown in Figure 3.2. It is
assumed that EVs are charged at their respective FCSs from 5:00 to 21:00 hours a day.

Table 3.1: EVs population in each zone of test system
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Figure 3.2: Variation of CPEV (h)

Figure 3.3 shows the single line diagram of the 118 bus radial Distribution System
associated with the study area, which is considered as the electric test system. The
percentages of load variation in each hour during the day for four seasons are taken from
[34]. The Base values of 118 Distribution System are 10 MVA, 11 KV and the total load on
the system is 22.71 MW and 17.041MVAr.

In the proposed Distribution System the possible 16 candidate FCSs have been
assumed to be placed along the main roads of the study area, with constraints of

approximately equal distance among the FCSs. The locations of possible charging stations



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

are shown by rhombus symbol in the electrical distribution network as shown in Figure 3.3.

The Distribution System and charging station parameters used in the proposed system are
listed in Table 3.2.

3.7

7@ 52

50

49 38 7
3 51 3 o 37
24
16 48 36
14 9 . 76
3 2 40
15 P .
12 19 1 8 a1 35
3 6
s 34 74
(1 20 ® 62
A %5 y 3
6 61
Y
2 " 28 44 a1 32 e 72 88
5! 29
3 30 .
. 6 5 69 87
7 59 60 68 > %6
11 64 80
63 67
66 05
83 84 12
116 00 -3 79 o
115 89 o 81 111
93 94
98 92
o1
114 o7 90 197

100

113 101
02

103

104

105
106

110
109

118

Figure 3.3: 118-bus Distribution System in the study area

Table 3.2: EV and FCS parameters [79]

Parameter | Value | Parameter | Value | Unit
TNev 1632 | SEC 0.142 | KWh/kM
Ny 5 EP 87.7 $/MWh
Npc 16 Cian 240 $IM2.Yr
Cinit 70000 | $
Ceon 208.33 | $/kW
PC 96 kwW

TNEV. Total Number of Electric VVehicles

Ny-Number of Years

Npc-Number of Possible Charging stations

SEC- Specific Energy Consumption

Cep-Electricity Price Cost

Cian-Yearly land rental cost (in $/m?)

Cinit-Fixed cost of station development.
Ccon-Charging connector development cost (in $/kW)
Pc-Rated power of each connecter

Results and Analysis

To demonstrate the effectiveness of proposed hybrid SFL-TLBO algorithm, IEEE 118
bus test system has been considered in this chapter. The newly proposed SFL-TLBO

algorithm is employed to evaluate the fitness value given in objective function (3.1) against
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the different number of FCSs and DGs in the network for the simultaneous planning of FCSs

and DGs in the coupled electrical distribution and transportation network.

objective function f(x)

0.37

0.36 |

- %

7 8 9 10 N 12
number of charging stations

Figure 3.4: Optimal number of FCSs in the coupled electrical distribution and

transportation network.

This algorithm determines the optimal capacity and locations of FCSs and DGs for

the present and future penetration of EVs in the study area. The objective function for the

different number of FCSs is compared in Figure 3.4. From this comparison, the optimal

number of FCSs is determined to be 6. The optimal planning of FCSs is determined by

considering load variation during four different seasons.

The objective function for different number of DGs is compared in Figure 3.5. From

this comparison the optimal number of DGs is determined to be 4.

Objective function
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Figure 3.5: Optimal number of DGs in the coupled electrical distribution and

transportation network.
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The optimal planning of FCSs and DGs has been determined with the objective of
reducing the DGPC, NPLC, SEC of EVs and MVD by using TLBO, SFLA and a newly
proposed hybrid SFL-TLBO algorithm and the performance of proposed algorithm is
compared with the SFLA and TLBO algorithm for the present and different levels of future

penetration of EVs.

The following three scenarios are considered for optimal planning of FCSs and DGs

in the coupled electrical distribution and transportation network.
Scenario-1: Optimal size of FCSs and DGs for their fixed location.

Scenario-2: Optimal size of all FCSs and DGs for half of fixed location of FCSs and
DGs.

Scenario-3: Optimal location and size of FCSs and DGs.

Four different cases are evaluated in each scenario to study the effect of increased EV
population demand on optimal planning of FCSs and DGs in the coupled electrical

distribution and transportation network.
Case-1: Optimal planning of FCSs and DGs for the present EV population demand.
Case-2: Optimal planning of FCSs and DGs with 10% penetration of EVs.
Case-3: Optimal planning of FCSs and DGs with 20% penetration of EVs.
Case-4: Optimal planning of FCSs and DGs with 30% penetration of EVs.

The proposed algorithm can be applicable for any percentage penetration of EVs, but

to test the algorithm performance these four cases have been considered.

3.7.1 Scenario 1: Optimal size of FCSs and DGs for their fixed location

The parameter DGPC, NPLC, SEC of EVs and MVD of distribution network has
been calculated for Case 1, Case 2, Case 3 and Case 4 for the current location of FCSs and
DGs. The newly proposed hybrid SFL-TLBO algorithm has been used for the optimal
planning of FCSs and DGs in the multi-objective environment. The obtained results are
compared with pre-existing SFLA and TLBO algorithms and the results are listed in
Table 3.3. The variation of DGPC, MVD and NPLC in the form of Pareto fronts for the
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present EV population and future penetration of EVs at different levels are shown in Figure

3.6 for various case studies.
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Figure 3.6.3 Optimal Pareto fronts for case 3
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Figure 3.6: Optimal Pareto-front for Scenario 1

In Table 3.3, size of FCS resembles the number of charging connectors in that
respective charging station and each connector is having 96 kW of rated power. The optimal
moderate solutions, obtained from Pareto front solutions using min-max method, contain
number of connectors and DG sizes for various case studies are shown in Table 3.3. The
number of connectors in each charging station varies with the location of FCS (bus number)

and with the increase of EV population demand.

Table 3.4 presents the variation of NPLC, SEC of EVs and MVD for the present and
future penetration of EVs at different levels. There are four observations made by analysing
the results provided in Table 3.4. The first one is the variation of the SEC of EVs in various
levels of EV population demand using different algorithms. The SEC of EV users directly
depends on the location of charging station and EVs load demand. The second one is related
to the NPLC and DGPC which are conflicting to each other i.e., as the DGPC increases, the
NPLC decrease. The better planning of FCSs and DGs results in the reduction of both NPLC
and DGPC. The third one is related to the DGPC which is having a major share of total cost.
The DGPC includes the investment cost, operation and maintenance cost for the period of
one year. The fourth one is related to the performance of the proposed SFL-TLBO algorithm
and it is found to be better due to its efficient search ability. The hybridization of SFLA and
TLBO brings a high degree of balance between intensification and diversification during the

efficient searching process.



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

Table 3.3: Optimal planning of FCSs and DGs in scenario 1

Algorithm Parameters

FCSs 22|48| 57 | 92 [98] 108

DGs Location | 74 85 108 110

Case-1 913 9 11 | 3] 8

FCS Case-2 No.of (10|14 10 12 4 9

TLBO Case-3 |connectors{11|16 | 11 14 | 4| 10
Case-4 12|17] 12 15 [ 4] 11

Case-1 1.596 | 0.687 | 0.904 | 1.015

DG Case-2 Size | 1.781|1.909 | 1.835 | 1.143

Case-3 | (MW) | 0576 | 0.512 | 0.707 | 0.899

Case-4 0.635 | 1.855 | 0.874 | 1.089

FCSs 98/92| 61 | 57 [13] 35

DGs Location | 43 50 64 75

Case-1 3/16| 16 7 |6 7

FCS Case-2 No.of |4 |17| 17 8 7 7

SFLA Case-3 |connectors| 4 |19 | 19 9 |[7] 8
Case-4 4120 21 9 8 9

Case-1 0.833 | 0.654 | 1.031 | 0.733

DG Case-2 Size | 1.048 | 1.304 | 1.223| 1.57

Case-3 | (MW) | 0875 |1.012 |0.725| 1.338

Case-4 1.369 | 0.992 | 0.852 | 0.809
FCSs 92[40| 98 61 |28| 108

DGs Location | 40 71 84 112

Case-1 8|7 6 16 10| 7

FCS Case-2 No.of |9 | 7 7 17 |11 8

Hybrid Case-3 |connectors|10| 8 | 7 19 [12] 9
SFL-TLBO Case-4 11| 9 8 20 13| 9
Case-1 1.0453| 0.653 [0.8216| 0.6712

DG Case-2 Size | 1.325|1.364 | 1.752 | 0.793

Case-3 | (MW) | 1686|1557 |0.568 | 0.747

Case-4 0.889 | 1.415 [ 1.732 | 1.004

Comparing the TLBO, SFLA and hybrid SFL-TLBO in all levels of EV population,
the proposed hybrid algorithm is offering better results as shown in Table 3.4. In Case 1, the
DGPC, NPLC, SEC of EVs and MVD obtained with hybrid SFL-TLBO algorithm are 7.2759
(M$), 1.8078%X105 ($/year), 4.7436 X105 ($/year) and 0.0792 (PU) respectively which are
minimum as against 8.8948 (M$) 1.7704 X105 ($/year) 4.9705%105 ($/year) and 0.0797
(PU) in TLBO algorithm and 7.4147 (M$) 2.2128X 105 ($/year) 4.78332X% 105 ($/year) and
0.0812 (PU) in SFLA. Furthermore, the proposed hybrid SFL-TLBO algorithm is yielding
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the optimal values of DGPC, NPLC, SEC of EVs and MVD even for the Case 2, Case 3 and
Case 4. The NPLC and SEC of EVs are the two major objective functions of the optimization
problem due to their variable nature with respect to time. The reduction in SEC of EVs and
NPLC is beneficial for both EV users and EV charging station owners. The station
development cost (SDC) is constant in all the proposed optimization techniques for each
penetration level of EVs demand, as the number of connectors for that respective penetration
level is constant. Furthermore, the variation of SEC of EVs is nearly constant in each
penetration level of EVs. In view of this, these two parameters are not plotted.

Table 3.4: Optimal results for the scenario 1

Case . DGPC SEC of EVs MVD
Al h NPL

No. gorithm ($/year) C ($lyean) ($/year) (P.U)

TLBO [8.8948%10%| 1.7704X10° | 4.9705%X10°| 0.0797

1 SFLA |7.4147X106| 2.2128%10° [4.78332x10° 0.0812

SFT_’_?L'; 0| 72759%10°| 1.8078X10° | 4.7436X10° | 0.0792
TLBO [11.6473%108 1.4089X%10° | 5.4452X10° 0.08

2 SFLA |7.0899%10°| 1.937%X10° |5.3263%10°| 0.0797

SFT-/'?:_IS; o|85056X10°| 1.446X10° | 5.3783X10° | 0.0684

TLBO | 6.144%10% | 2.3701X10° | 5.9721%10° | 0.0856

3 SFLA [8.9964Xx106| 1.6895%X10° | 5.899%10° | 0.0797

SF'T_}_?L'; o] 9:213X10° | 1.04403X 10° | 5.9206X 10° | 00752

TLBO [10.0177X109% 2.0462%10° | 6.4076X10°| 0.0874

4 SFLA | 9.175%10° | 1.9399%x10° | 6.3735%10° | 0.0797

SFFL“_’?L'; o 11.4917%10% 1.1642X10° | 6.3735%10°| 0.0752

3.7.2 Scenario 2: Optimal size of all FCSs and DGs for half of fixed locations of
FCSs and DGs

In this case, half of the number of FCSs and DGs locations is changed and the
remaining FCSs and DGs locations are kept same as the present location (Previous scenario

locations) but the capacities are considered to change due to increase in EV population i.e. to
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meet the increased EV load. To avoid the duplication with in the scenario-2 and scenario-3,
present EV population demand case (case-1) is not discussed. The Pareto fronts of variation
of DGPC, MVD and NPLC to the different penetration levels of EVs demand are shown in

Figure 3.7 for various case studies.
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Figure 3.7: Optimal Pareto-fronts for Scenario 2

Table 3.5: Optimal planning of FCSs and DGs in scenario 2

Algorithm Parameters
Case-2 | 22 | 57192 |80 |61 |71
Location | Case-3 | 22 | 57 | 92 | 40 | 11 | 28
Case-4 | 22 | 57 | 92 | 80 | 48 | 13

Case-:2| 8 |12 | 8 7 8 | 17
co[r\llr?éc%rs Case3| 12 | 9 | 24| 10| 3 | 8
TLBO Case-4| 6 | 14| 15 |16 [ 15| 6
Case-2 | 110 74 35 76
Location | Case-3 | 110 74 65 23
Case-4 | 110 74 52 4
DG Case-2 | 0.794 | 0.969 | 0.944 | 1.388
Size (MW)| Case-3 | 1.016 | 0.913 | 1.217 | 1.038
Case-4 | 1.473 | 1.155 | 1.155 | 0.997
Case-2 | 35 | 57 | 92 | 61 | 28 | 98
Location | Case-3 | 35 | 57 | 92 | 80 | 61 | 22
Case-4 | 35 | 57 | 92 | 84 | 98 | 40

Case-2 | 7 5 17 | 17 | 9 4
SFLA No.of o cea| 8 |13 | 14| 9 | 13| 9

connectors

Case-4 | 10 | 16 | 8 | 20 | 4 | 10
Case-2 | 43 75 111 86
Location | Case-3 43 75 108 109
DG Case-4 | 43 75 88 9
Size (MW)| Case-2 | 0.859 | 1.533 | 0.896 | 0.922

FCS

FCS
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Case-3 | 0.675 | 0.931 | 0.855 | 1.145
Case-4 | 1.141 | 1.123 | 1.128 | 1.154
Case-2 | 28 | 40 | 92 | 71 | 35 | 57
Location | Case-3 | 28 | 40 | 92 | 71 | 61 | 108
Case-4 | 28 | 40 | 92 | 48 | 71 | 80

FCS
. Case-2 | 13| 3 |12 | 16 | 6 | 9

. COlr\llr(l)éC(iOI’S Case3 | 7 4 d 1> 1 ?
Hybrid Case-4 | 20 | 3 | 10 | 10 | 16 | 12

SFL-TLBO

Case-2 71 84 43 62
Location | Case-3 71 84 104 97
Case-4 | 71 84 46 67
DG Case-2 | 1.105 | 0.761 | 0.925 | 0.895
Size (MW)| Case-3 | 1.723 | 1.258 | 1.625 | 0.557
Case-4 | 0.977 | 1.012 | 1.295 | 0.893

For the all levels of EV population investigated in scenario 2, the FCSs and DGs
location and sizes are obtained from Pareto front solutions (Figure 3.6) using min-max
method and their values are listed in Table 3.5. It can be visualized that with the change in
location of half of the number of FCSs causes the change in number of connectors in the
present location of charging stations. Therefore in scenario 2, the location of half of the

number of DGs is same as scenario 1 but their sizes are not same as scenario 1.

Table 3.6 presents the consolidated results of DGPC, NPLC, SEC of EVs and MVD
in the radial distribution network with the new location of FCSs and DGs for the selected
penetration levels of EV population. With the new location of half of FCSs and DGs, the
DGPC is approximately equal to scenario 1, but the NPLC and SEC of EVs are drastically
reduced in scenario 2 against case 2. Similarly, for the case 3 and case 4, the NPLC and SEC

of EVs cost are reduced.
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Table 3.6: Optimal objective parameters in scenario 2

. DGPC SEC of EVs
Case number |  Algorithm (M$/year) NPLC ($/year) ($/year) MVD (p.u)
TLBO 9.0857 | 1.3787%10° | 4.9632x10°| 0.0814
2 SFLA 9.372 1.4238X10° | 5.2497%X10° | 0.0697
Hybrid 5 5
SELTLBO 8.4052 | 1.4231%10° |5.2182%10°| 0.0792
TLBO 9.0361 | 1.8299%10° |5.9123%10° | 0.0849
3 SFLA 8.159 1.8937%10° | 5.7409%10° | 0.0759
SF':’_’$:_"; o | 100606 | 12857x10° | 5.3621x10°| 00677
TLBO 7.3093 | 2.1127%10° | 6.0966%10° | 0.0878
A SFLA 9.3648 | 1.2587%10° | 6.5774%10° | 0.0686
SFTY_?L'; o | 95254 | 17491X10° |59584x10° | 00979

With the increase in EV population, we can observe that the rise in NPLC and SEC of
EVs is predominantly high in scenario 1 as compared with scenario 2. Furthermore, the
optimal values are realized with the proposed new hybrid multi-objective optimization are
minimum as compared to the SFLA and TLBO algorithm. The primary reason for the better
performance of above scenario is due to the optimal size and location of the new half of the
number of FCSs and DGs in the coupled electrical distribution and transportation network,

which results in a significant reduction in network power loss and SEC of EVs.

In case 2 of scenario 2, the optimal values of the DGPC, NPLC and SEC of EVs are
8.4052 (M$/year), 1.4231X 105 ($/year) and 5.2182 X 105 ($/year) respectively and these are
obtained by using an SFL-TLBO algorithm. These objectives values of scenario 2 are
minimum as compared to scenario 1. In scenario 1 of case 2, the DGPC, NPLC and SEC of
EVs are 8.5056 (M$/year), 1.446 X105 ($/year) and 5.3783 X105 ($/year) respectively using
an SFL-TLBO algorithm. Similarly, in case 3 and case 4, the total DGPC, NPLC and SEC of

EVs are optimal as compared to that of case 3 and case 4 of scenario 1.

3.7.3 Scenario 3: Optimal location and size of FCSs and DGs

In this case, to meet the increased number of EV population, new optimal location and
sizes of both FCSs and DGs are determined. For each level of increases in EV population the
objective parameters DGPC, NPLC, SEC of EVs and MVD of distribution network have

been determined separately.



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

The Pareto fronts of variation of DGPC, MVD and NPLC to the case 2, case 3 and

case 4 for scenario 3 are shown in Figure 3.8.
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Figure 3.8: Optimal Pareto-fronts for Scenario 3

Table 3.7: Optimal new location and sizes of FCSs and DGs in scenario 3

Algorithm Parameters
Case-2 |28 | 71 | 22 | 98 | 80 | 103
Location | Case-3 |61 | 48 | 40 | 71 | 92 | 103
Case-4 | 13 103 | 71 | 28 | 80 | 22
Case-2 | 9 | 21| 9 5 (13| 3
col::écc;fors Case-3 | 17| 8 | 3 | 15 | 11 | 11
TLBO Case-4 | 4 | 7 | 25|10 | 15| 8
Case-2 | 95 59 93 32
Location | Case-3 | 83 43 28 114
Case-4 | 97 30 103 46
DG Case-2 | 0.711 | 1.111 | 0.751 | 1.811
Size (MW) | Case-3 | 0.867 | 0.764 | 0.885 | 1.516
Case-4 | 1.448 | 1.074 | 1.376 | 0.935
Case-2 | 98 | 28 | 57 | 40 | 48 | 61
Location | Case-3 |57 | 92 | 35 | 28 | 80 | 40
Case-4 |48 | 40 | 57 | 71 | 22 | 98
Case-:2 | 6 | 9 | 5 6 7 |27
Case-3 | 9 |11 | 10 | 15 | 14
Case-4 | 6 | 3 |12 | 30 | 12
Location | Case-2 | 35 42 77 81

FCS

SFLA |FCS

No. of
connectors
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DG Case-3 | 66 80 73 84

Case-4 | 96 109 63 33

Case-2 | 0.842 | 0.966 | 0.706 | 1.053
Size (MW) | Case-3 | 0.773 | 1.247 | 1.185 | 0.718
Case-4 | 0.621 | 0.875 | 1.604 | 0.654
Case-2 | 71| 92 | 80 | 103 | 57 | 22
Location | Case-3 | 71| 98 | 84 | 48 | 108 | 13
Case-4 | 57| 35 |103| 22 | 92 | 28

FCS
" Case-2 | 19| 8 8 5 10 | 11
No. o
. - 1 14 | 14 4 4 14
Hybrid connectors Case-3 | 16
SFL- Case-4 |17 | 4 8 5 23 | 13
TLBO Case-2 23 41 31 11

Location | Case-3 | 29 21 86 77
Case-4 | 39 74 12 95
DG Case-2 | 1.276 | 0.716 | 1.393 | 0.846
Size (MW) | Case-3 | 1.178 | 0.951 | 0.652 | 0.856
Case-4 | 1.666 | 0.722 | 1.542 | 0.722

For various EV loads, location and sizes of FCSs and DGs are obtained from Pareto
front solutions (Figure 3.8) using min-max method for scenario-3 and they are listed in Table
3.7. The new location and size of both FCSs and DGs in the coupled electrical distribution
and transportation network have resulted in the reduction of NPLC, SEC of EVs and MVD as

compared to that of scenario 1 and scenario 2.

In case 2 of scenario 3, the total DGPC, NPLC and SEC of EVs are calculated by
using proposed new hybrid SFL-TLBO algorithm and their values are 8.0737 (M$/year),
1.4614 X105 ($/year) and 5.0623 X105 ($/year) respectively. These values are comparatively
less as compared to 8.4052 (M$/year), 1.4231X105 ($/year) and 5.2182% 105 ($/year))
respectively for the case 2 of scenario 2; and 8.5056 (M$/year), 1.446 X105 ($/year) and
5.3783X 105 ($/year) for the case 2 of scenario 1 obtained using an SFL-TLBO algorithm.
Consequently, for the case 3 and case 4 of the scenario 3 better results are observed compared
to the scenario 1 and scenario 2. Furthermore, the consolidated results in Table 3.8 clearly
explain the effectiveness of proposed a multi-objective hybrid SFL-TLBO algorithm. It may
be noted that due to huge investment cost, the DGPC is very high as compared to the NPLC

in all cases. To calculate DGPC we have considered the operation and maintenance cost for
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one year in addition to investment cost. These results underline the fact that the future
penetration of EVs are playing a significant role in the optimal planning of FCSs and DGs in

a coupled electrical distribution and transportation system.

Table 3.8: Optimal objective parameters in scenario 3

Case DGPC SECOfEVs | MVD
Algorith NPL
No. gorithm (M$/year) C ($fyean) ($/year) (p.u)
TLBO | 9.6818 | 2.3028X10° | 4.9892X10° | 0.0992
2 | SFLA | 81305 | 19179x10° | 5.1897x10° | 0.0709
SFT’_?:_'% o| 80737 | 14614x10° | 5.0623X10° | 00797
TLBO | 9.2305 | 2.3028X10° | 54519X10° | 0.1052
, | SFLA | 88053 | 21889x10° | 5.8295X10° | 009
SFT_’EL"; o| 83501 | 1625x10° | 53509x10° | 00718
TLBO 10.3383 | 2.2733%10° | 5.8815X10° | 0.0929
4 SFLA 9.1479 | 2.1523x10° | 6.2701X10° | 0.0797
v
snﬁtg o| 80863 | 16128x10° | 58935x10° | 0.0884

This chapter mainly focused on multi-objective hybrid SFL-TLBO algorithm, for
better planning of the FCSs and DGs in the coupled electrical distribution and transportation
network considering the objectives of voltage deviation, NPLC, DGPC and the energy
consumption of EV users. Further, the optimal planning of FCSs and DGs has been
determined for the present and future increase in EV population. The results obtained using
the hybrid SFL-TLBO algorithm is compared with the SFLA and TLBO algorithm. Results
have shown that the DGPC and SEC of EVs constitute the major share of the total cost.
Optimization of FCSs location has a drastic impact on SEC of EVs, so did the increase in EV
population.

The results suggest that proper erection of new FCSs in Distribution System is
required to address the future penetration of EVs. Otherwise, the NPLC and SEC of EVs are
financially more expensive. The proposed hybrid SFL-TLBO is tested on IEEE 118 bus
benchmark test system. It is verified that proposed hybrid algorithm is reliable and robust in

covering different levels of EV population demand in three scenarios. Therefore, the
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proposed optimal planning FCSs and DGs technique can be used for the planning study of

charging stations in the coupled electrical distribution and transportation network.

This part of work is published in IET Electrical Systems in Transportation, with the
title as “Multi-Objective Optimal Planning of FCSs and DGs in Distribution System with
Future EV Load Enhancement” pp: 128-139, issue 3, volume 9, 2019 (ESCI). DOI:
10.1049/iet-est.2018.5066.

The next stage of investigation is focused on an accurate EV load model. This is
required to optimize the operating cost while maintaining the system security and reliability.
However, the load modeling is a complex problem due to distinctive feature of different type
of loads in the distribution system. To analyze the impact of load of EV in distribution
system, the EV battery load is modeled by considering the start time and the initial State of
Charge (SOC) of individual battery and the same is reported in chapter 4.
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Chapter-4

Impact of EV Load Modelling on Fast Charging
Station Planning in Electrical Distribution
System
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4.1 Introduction

In recent years, the significant developments in energy battery technologies such as
high energy density (longer EV range), longer life and DC FCS have led to fast growth in EV
population. If the FCSs are not optimally planned, the increased penetration of load of FCS
has a disruptive impact on distribution system. The FCSs load characteristics are different
from the conventional load demand. The impact of addition of FCS on the Distribution
System depends on FCS location, charging level, driving pattern, number and types of EVs,
battery capacity and initial State of Charge (SoC). Hence, it is necessary to know whether the
current Distribution System is capable of handling a massive EV penetration or not [31].

The realistic system analysis has been obtained by using an accurate load model. This
is required to optimize the operating cost while maintain the system security and reliability.
However, the load modelling is a complex problem due to distinctive feature of different type
of loads in the Distribution System [32]. To analyze the impact of EV load in distribution
system, the EV battery load is modeled by considering the start time and the initial SOC of
individual battery. The charging load and its charging methodologies play significant role in
distribution system. The inaccurate modelling of EV load may overload the Distribution
System components, increase in network power loss (NPL) and maximum voltage deviation.
The Constant Power (CP) load model is more popularly using to model both the conventional
and EV loads in distribution system. But the CP load modelling cannot provide accurate
information of different types of voltage dependent conventional loads and EV charging

process.

In this work, the EV loads are modelled as Constant (i). Impedance-Constant Current-
Constant Power (ZIP), (ii). Exponential, (iii). Constant Current and (iv). Constant Power load
models and the conventional loads are modelled as (a). Residential-Industrial-Commercial
(RIC) and (b). Constant Power load models. With these EV load models, the impact of load

of FCS in distribution system has been analysed.

4.2 EV Load model and Problem formulation
4.2.1 EV load model

In the aforementioned literature [30]-[36], EV charging was modelled as Constant
Power load model and the same is updated in Distribution System load flow for each time

interval to analyse electrical power losses, voltage deviation and a daily load profile. The
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variation in voltage at load buses have a greater impact on the power consumption of the
loads. In EV charging, at low SOC of the battery it draws the high power. Power flow from
converter to battery depends on converter to battery current (I) and battery voltage (V). The
battery terminal voltage depends on its SOC [67]-[73].

In this chapter, the voltage dependent load modelling has been used to analyse the

impact load of FCS in distribution system.

4.2.2 ZIP load model

The ZIP or Polynomial model is combination of Constant Current, Constant Power
and Constant Impedance. The ZIP load model is an expansion of Exponential load model,

which has been widely used to analyse the voltage dependence of loads.

Pk, = P, [Zp (Vlo)2 () + PP] @4.1)

Where P, is the active power at the nominal voltage V, (1.0 p.u); Vis the actual
voltage; Zp, I, and Pp are the constants associated with the impedance, current and power of
active load at particular bus. TheZp, I, and Pp values are -0.1773, 0.9949 and 0.1824 [80]

respectively.

4.2.3 Exponential load model

The second type of EV load model is represented with the help of constant power

term(= b), exponent constant (= a) and exponent indices (= B) as follows:

P%, = P, [a (VK)B + b] (4.2)

0

Where a, 8 and b are the constants of Exponential load model and their values are
considered as 0.0122, -1.9392 and 0.9878 [81] respectively.

4.2.4 Constant Current load model

The Constant Current load model is obtained by using an exponential load model and

is given below:

P3, =P, (Vlo)“ (4.3)

where a is an exponential index and its value is taken as 1.
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4.3  Objective function formulation

In the distribution network, the network power losses, voltage profile and the power
flows through the line are greatly depend on EV load modelling and its load profiles. The
variation of Distribution System parameters like distribution network power losses, bus
voltages and power flows, from their rated values is measured by the system performance

indices.

It is assumed that, in a selected day, the total number of EVs (TNEV) in the study
area is charged by the FCS. The TNEV in study area is calculated as

nzone

TNEV = )~ " NEV(z) (4.4)

Where NEV(z) is the number of dedicated EVs in zone z, i.e., all dedicated vehicles
are regular costumers of that zone FCS and nzone is the number of zones in the selected

study area.

4.3.1 EVUC (Electric Vehicle User Cost) index

The EV user should drive a certain trajectory to reach to the FCS. EVUC represents
the cost associated with the energy consumed by EVs to reach the FCS. For EVs located in
zone z, the EV user cost to reach nearest FCS for being charged at j charging station
EVUC(z,j) is calculated as follows [36].

EVUC = ¥129" Y15 d(z, J)SEC Y3%, CPEV (R)NEV (2)EP (4.5)

where d(z,j) is the distance between zone z and j charging station SEC and EP are
the specific energy consumption of EVs (kWh) and electricity price during hour h
respectvely. the variable CPEV(h) is a vector having the probability of EV charging in the
hour (h) of the day. The distance to displacement ratio strongly depends on the optimality of
the road network in the selected study area. For an optimal road network, the distance
approaches the displacement. Hence, choosing the displacement rather than distance in this

approach to obtain charging stations are still optimal for the optimal road network.

The EVUC index reflects the minimization of EVUC from the maximum EVUC and

it is calculated as follows

EVUCnax—EVUC

nzonex*ncs

EVUCI =
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where the EVUC, .« IS the maximum possible EVUC as compared to all possible

FCSs locations and ncs is number of FCSs.

4.3.2 Power loss index (PLI)

The higher FCS charging demand increases the line and substation loading. It causes
an increase in Distribution System power losses. The Distribution System loss has a nonlinear
relationship with the system loading. The variable Distribution System loss is significant due
to EV charging demand, hence the precise calculation of electrical grid loss is required, with

the account of the variation in grid load [39].

The distribution network power losses (NPL) during a day is calculated as follows,

NPLTE = 324 3 PL(h,t) (4.7)
GPL(h,t) = PL(h,t) + APL(h,t) (4.8)
NPLTEV = 324 3% GPL(h,t) (4.9)

where PL(h, t) is the power losses with conventional load at time t during hour h. The
GPL and APL are the total electrical power loss including FCS load and added power losses
due to FCS load at time t during hour h. The PLI is related the difference in power losses with

and without load of FCSs. The PLI is calculated as follows

TLEV _ TL
pLy = NP (4.10)

Nle
where N, and N; are the number of time periods in the load profile and number of

lines in the test system. NPL™-EVAnd NPL™ are the distribution network power losses with

and without FCS load respectively.

4.3.3 Voltage profile index (\VPI)

Inappropriate planning of FCSs causes voltage instability in the distribution network.
Both of over and under voltages affect the power quality of supply. The VPI for load
modelling is related to the voltage deviation between each bus V; and the root bus voltage (vo)
considering the time varying voltage magnitude for EV load demand at each time interval.

The lower value of VPI means better the network performance.

Np N
14 b [yt t
Yioq Xy Vo - Vi |

Npr

VPI
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where Ny, is the number of buses in the distribution system. V, and V; are the voltage

magnitude at the slack and bus i respectively.

4.3.4 Apparent power performance index (APPI)

The APPI reflects the violation of branch active power flows in the distribution
system. It measures the severity of the branch or line over loads considering EV load demand
at each time interval [23]. The APPI is calculated as follows

t
N Ny S
p l L

Et:l lelsznax

APPI = (4.12)

Nle

where N; is the number of lines in the distribution network. S; and §"#* are the actual

power flow and the maximum power flow limit in line I respectively.

4.3.5 Objective function
optimization of {EVUCI, PLI, VPI, APPI} (4.13)

The objective function is the minimization of EVUCI, PLI, VPI and APPI of the

electrical Distribution System by meeting the following constraints,

YMPFCS(H >0V j=1.2, .. ,NPC (4.14)
SGHI=0 V j=123..... ,NPC (4.15)

ynzone soloct(z, DX() =1 V1,23....z (4.16)

0 < bat{p? < (1-y;,)* PC Vt€eT,VieTNEV (4.17)
SOCpin < SOC;; < SOCpax VtET,Vi€TNEV (4.18)

Equation (4.14) represents, at least one charging station should be installed in the
selected area to meet the EV loads [24]. The NPC is the number of possible FCSs based on
road transport network and electrical distribution network. Equation (4.15) and (4.16)
represent, at least one charging connector should be considered for each selected FCS. The
EVs in each zone should select one optimal FCS based on the distance between j™ charging
station and zone z. These Select(z, j) is 1 if the EVs in zone z are selected j™ charging station,
otherwise it is zero. X(j) is the binary decision variable, which is equal to 1 if j" FCS is

selected, otherwise it is zero.
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Table 4.1 Comparison of SFLA and TLBO with hybrid SFL-TLBO algorithm
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Each battery has a maximum charging power as given in (4.17). and bat;

charging power of i EV battery at time t. The y; is the swapping status of i"" EV at time t.

92
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SOC; . is the SOC of i EV battery at time t and it should be with in minimum SOC (SOCy;y,)
and maximum SOC of battery (SOC,ax)-

4.4  Multi-objective hybrid Optimization Algorithm

To analyze the impact of EV load modelling on optimal planning of FCSs and DGs in
distribution system the proposed SFL-TLBO hybrid optimization algorithm has been used.
The concept of SFL-TLBO algorithm and its step by step procedure was explained in section
3.5 and 3.6 respectively. The comparison between the proposed SFL-TLBO, SFLA and
TLBO algorithms are reported in Table 4.1.

Algorithm 1.Pseudo code of proposed hybrid SFL-TLBO

Initialize NPS, CPEV, distribution system parameters, EV load model parameters and termination criteria
Number of populations (n), student groups (s),
Define f(X) X= (X gy Xpy X ven eve ven X4) d=no. of decision variables.
Initialize the group of learners randomly X; i=1,2,3....... n.
Evaluate objective function value for group of learners f(X)
Identify the best solution as teacher Xgpest
For iter=1to maximum iterations
fori=1ton // Teacher phase//

Calculate the mean of each variable mean,,

Calculate difference mean of each variable (dif f mean,,)

dif f mean,, = rand * (Xgpese — meany,)

Update each solution based on best solution
Xnew, ,, = Xold, ., + Dif f mean,,
Evaluate the objective value for new mapped solution f(XneWnym)
Iff(Xnewn,m) < f(Xy) ie, (Xnew,,, isbetter than X;)

Xr = Xnew,

Fr = f(Xr)
else
Xr =X
Fr = f(Xr)
end if
end for nloop // End of teacher phase //



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System
 — ————— ————— |

Sort the population based on non-dominated sorting technique
Divide the learners into g Number of groups
fori=ltog // Learner phase//
fori=1to s

Identify the best solution in each group Xy, oup—pest
Xnews, = Xold, ;, + rand (Xgmup_bests‘g - Xolds_g)

Calculate objective function value f(Xnew; ;)
If f(XnewS‘g) is better than f(X;)
X; = Xnews 4
else
Xnews, = Xold ;4 + rand (Xbest_pops‘g - Xolds‘g)
X; = Xnews 5 (Xgpese = X )

Otherwise generate a random population

end if
end for - s loop
end for------- g loop //End of learner phase//
end for --------- iter loop (Termination criterion)
Xgbest =====- optimal location and size of FCSs
Fypest - optimal EVUCI, PLI, VPI, APPI values

Save the optimal population and its fitness value.

45  Test system Data and Performance comparison of proposed

Algorithm
451 Test System Data

The IEEE 38 bus test system has been used as case study to analyze the impact of
FCS EV load modelling in distribution system. For this test system, base voltage and base
MVA are 12.66 kV and 1 MVA respectively. The total real and reactive power loads on the
test system are 5084.26 kW and 2547.32 kVAr [79].
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Figure 4.1: 38-bus Distribution System with zones

Figure 4.1 shows the single line diagram of 38 bus system associated with uniformly
divided EV zones. To analyze the impact of EV load modeling a study area of 256 km?
surface area has been considered. It consist of 64 uniformly divided EV zones, with the area
of each zone is 4km?2. The EV population in zone is mentioned in middle of each zone. The
total EV population in study area is considered as 330. The variation of conventional load in

each hour during a day is considered for investigation purpose and it is shown in Figure 4.2.

0.9

Conventional load (%)
O O O O
a o N ©

@]
N

4T 2 34256 7 809 ioil_liiznnilg,('1#0'13'18?'17'18'19é0é1'22é324
Figure 4.2: Hourly conventional load profile during a day
To consider the uncertainty of arrival EVs, a charging probability distribution
function (CPEV/(h)) is considered. The charging probability distribution function is shown in

Figure 4.3. It has been divided in to 17 probability levels [72].
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Figure 4.3: Variation of CPEV (h)

5 6 7 8 9

Furthermore, to consider the uncertainty of the initial SOC of the EVs in load flow the
Monte-Carlo simulation has been used. This uncertainty is modelled as normal distribution

function with mean 20 and standard deviation is 5 as shown in Figure 4.4.
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Figure 4.4: EVs initial SOC PDF

100

A normal distribution is a random variable x with mean (p) and variance o2 is a

statistical distribution with probability distribution function. The normal distribution function

is calculated as follows

1 o—(x-w?/(20%)

FO0) = 3= (4.26)

The distribution network and EV parameters are listed in Table 1.

Table 4.2: EV and FCS parameters [79]

Parameter | Value | Parameter | Value Unit
TNEV | 330 SEC | 0.142 | KWh/kM
NPC 9 EP 87.7 | $/MWh
PC 30 KW
BCMaX 24 kWh
46  Performance comparison of Hybrid SFL-TLBO with SFLA and
TLBO

The performance comparison of multi-objective optimization is more complex as

compared with single objective optimization, because the optimization goal itself consists of



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

multiple objectives. The performance of proposed Hybrid SFL-TLBO algorithm is compared
with SFLA and TLBO by using two metrics. To calculate these metrics the algorithms are

executed for 20 runs with random initial seeds [71].

4.6.1 Convergence metric (C-metric)

The C-metric is evaluating the progress towards the optimal pareto-front. The set
convergence metric C (A, B) calculates the proportion of solutions in B which are weakly
dominated by solutions of A.

|{beB;3 acA:a<b}|

C(4,B) = o

(4.27)

4.6.2 Spacing metric (S-metric)

The S-metric is evaluating the spread of solutions in pareto-front. It is defined as the

distance variance of each solution to nearest neighbor and it is calculated as follows;

1 -
S= |=3n,(d-d)> (4.28)

Where d; is the distance of the i individual to its closest neighbor, and d is the mean
of among individuals. The d and d; are calculated as follows;

7 — 2?:1 d;

n

(4.29)

di — min {ZNobj |fm(xi)—fm(xj)|} (4.30)

m=1 fm,max_fm,min

The boxplots of C-metric and S-metric are shown in Figure 4.5 and Figure 4.6. It
shows that the proposed Hybrid SFL-TLBO has the better performance as compared to the
SFLA and TLBO. Therefore, the proposed algorithm has been used for different cases of

scenario 1 and scenario 2.
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Figure 4.5: Average C-metric value for case 1 of scenario 1
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Figure 4.6: Average S-metric value for case 1 of scenario 1
4.7  Results and Analysis

To analyze the impact of FCS EV charging on Distribution System, the network
power loss, maximum voltage deviation and EVUC are considered as objectives. Two
possible scenarios are considered with different load models. In each scenario the objective is
to reveal the impact levels of EV load models on distribution system. For this, the daily
conventional loads and the EV loads are not separated. The load variation in each hour during
the day has been considered to solve the objective function (4.13). The Current Injection
Method (CIM) has been used to analyze load flow in distribution system. In voltage
dependent load modelling case, the active and reactive loads are continuously updated after
computing the new voltages in order to reflect the changes in bus voltage in each iteration of
CIM load flow method.

In each scenario four different cases are considered. In case 1, case 2, case 3 and case
4, the EV load is modelled as Constant Power, ZIP, Exponential and Constant Current load

models respectively.

4.7.1 Scenario 1: Different load modelling of EV and treating conventional load as
RIC load model

In this scenario the FCSs are optimally planned in order to minimizing the EVUC,
MVD and NPL in the distribution network. The SFL-TLBO algorithm has been used to solve
the objective function (4.13). This algorithm determines the optimal locations of FCSs in the
distribution system. In scenario 1, the conventional load is treated as Constant Power load
and it is added with different EV load models. In case 1 of scenario 1 both the conventional

and EV loads are modelled as Constant Power load modelling.
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The optimal Pareto fronts to optimize the EVUC, MVD and NPL in casel of scenario

1 is shown in Figure 4.7.
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Figure 4.7: Optimal Pareto fronts of case 1 of scenario 1

From the optimal Pareto fronts as shown in Figure 4.7 the compromised solution has
been determined using min-max optimization technique for case 1 of scenario 1. Similarly,

for case 2, case 3 and case 4 the optimal parameters are calculated and listed in Table 4.3.

Table 4.3: Optimal objective parameters in scenario |

EVUC ($/day) MVD (p.u.) NPL (MW/day)
Case 1 0.0776 138.3095
Case 2 0.0772 138.1601
3048.8
Case 3 0.0775 138.283
Case 4 0.0774 138.4477

In case 1 of scenario 1 the optimal values EVUC, MVD and NPL are 3048.8 ($/day),
0.0776 (p.u.) and 138.3095 (MW/day) respectively. In scenario 1 the EVUC is constant in all
the four cases, as the optimal location of three FCSs are same in case 2, case 3 and case 4.
Furthermore, the number of connectors in FCS is also been calculated and their values are 15,
7 and 11 respectively. Similarly for case 2 of scenario 1 the MVD and NPL are 0.0772 (p.u.)
and 138.1601 (MW/day). These values are minimum as compared to the case 1, case 3 and

case 4.
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Figure 4.8: Maximum percentage of load in each hour of the day of case 1 of scenario 1

The conventional and EV loads vary with the daily load demand and EVs charging
probability respectively. The EV load demand in each FCS directly depends on its location.
The variation of sum of maximum conventional and EV load during the day is compared with
the conventional load demand as shown in Figure 4.8.

Further, the maximum line flows has been calculated to analyze the impact of EV
load modelling. In case 1 of scenario 1 the maximum MVA flows in each line is compared
with the line MVA limits and it is plotted as shown in Figure 4.9. In Constant Power load
modeling of scenario 1 the line MVA flow is more than line MVA limit.
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g s L [ Line MVA flows
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Figure 4.9: Line MVA limit comparison with maximum line flows of case 1 of scenario 1

Furthermore, to quantify the impact of EV load modelling in Distribution System the
EVUCI, PLI, VPI and APPI are calculated and listed in Table 4.4.
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Table 4.4: Impact of indices with different load models in scenario 1

FCS bus locations EVUCI PLI VPI APPI
Case 1 0.389 0.0357 0.2324
Case 2 0.3916 0.0341 0.2324
10, 16, 21 0.00457
Case 3 0.3922 0.0345 0.2325
Case 4 0.3923 0.0353 0.2326

In case 2 of scenario 1, the PLI, VPl and APPI are 0.3916, 0.0341 and 0.2324
respectively. The indices in case 2 of scenario lare less as compared to the case 1, case 3 and
case 4. The case 1 is inaccurate load model, as the conventional load at buses and EV loads
are modelled as Constant Power load model. As shown in Table 4.4 the case 2 indices are
optimal as compared to the remaining cases in scenario 1. In case 2 the EV load is modeled

as ZIP load model and the conventional load is modelled as constant power load.

4.7.2 Scenario 2: Different load modelling of EV and treating conventional load as
CP load model

In scenario 2 the conventional load at each bus is modelled with the residential,
industrial and commercial (RIC) load models. The conventional load types and their
magnitudes are listed in [30] and the EV load is modelled as Constant Power, ZIP,
Exponential and Constant Current load models as case 1, case 2, case 3 and case 4
respectively. In each case the optimal site and size of FCSs have been determined by solving
the objective function (4.13) using the hybrid SFL-TLBO algorithm. To analyze the impact
FCSs EV charging on Distribution System NPL, MVD and EVUC has been determined.
Further, the PLI, VPI and APPI indices are also calculated. The optimal Pareto fronts for case
2 of scenario 2 are shown in Figure 4.10. The location and size of three FCSs are same for
case 1, case 2, case 3 and case 4. Hence, the optimal pareto-fronts are plotted only for case 2

of scenario 2.
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Figure 4.10: Optimal Pareto fronts of case 2 of scenario 2

From Figure 4.10 the best suitable solution has been determined by using the min-

max method. Similarly, for case 1, case 3 and case 4 the optimal values are evaluated and

listed in Table 4.5.

Table 4.5 Optimal objective parameters in scenario 2

EVUC ($/day) | MVD (p.u.) | NPL (MW/day)
Case 1l 0.0667 129.2259
Case 2 0.0662 129.1451
2866.8
Case 3 0.0667 129.3741
Case 4 0.0664 129.5626

In case 1 of scenario 2, the optimal values EVUC, MVD and NPL are 2866.8 ($/day),
0.0667 (p.u.) and 129.2259 (MW/day) respectively. In scenario 2 also the EVUC is constant

for all four cases as the optimal location and size of three FCSs are same in each case. The

number of connectors in FCS is also been calculated as 10, 13 and 10 respectively. Similarly
for case 2 of scenario 2 the MVD and NPL are 0.0662 (p.u.) and 129.1451 (MW/day). The
objective parameters in case 2 of scenario 2 are minimum as compared to the case 1, case 3
and case 4. The main observation from Table 4.5 is that the EVUC, MVD and NPL costs are

drastically reduced in scenario 2 as compared to the all cases in scenario 1. Furthermore, case

2 of scenario 2 is yielding more accurate information about the conventional and EV loads in

the distribution system.
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The variation of sum of maximum conventional and EV loads during the day is

compared with the conventional load demand as shown in Figure 4.11.
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Figure 4.11 Maximum percentage of load in each hour of the day of case 2 of scenario 2

Due to the change in charging probability and initial SOC of EVs the line flows have
a chance to exceed the maximum MVA limit. In scenario 2, the line maximum MVA flows
are drastically reduced as compared to the all cases of scenario 1. The line MVA flows are

compared with the maximum line MVA limit of case 2 of scenario 2 as shown in Figure 4.12.
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Figure 4.12: Line MVA limit comparison with maximum line flows of case 2 of scenario 2

The PLI, VPI and APPI indices for different cases of scenario 2 are calculated and
listed in Table 4.6. These indices are more optimal in scenario 2 as compared to scenario 1.
Further, in case 2 of scenario 2 the PLI, VPI and APPI found to be better as compared with

other cases of both the scenario 1 and scenario 2.



Table 4.6 Impact of indices with different load models in scenario 2

FCS bus locations EVUCI PLI VPI APPI
Case 1 0.3763 | 0.0331 | 0.1682
Case 2 0.3753 | 0.0321 | 0.1696
6,21, 25 0.00552
Case 3 0.3781 | 0.0324 | 0.1681
Case 4 0.3185 | 0.0328 | 0.1703
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In summary of this chapter, the conventional loads are modeled as Constant Power
and RIC loads and the EV load is modeled as the ZIP, Exponential, Constant Current and
Constant Power load models. These have been considered to analyze the impact of EV load
on distribution system. A newly proposed multi-objective hybrid SFL-TLBO algorithm has
been used for optimal planning of FCSs in Distribution System with the objective of
minimizing NPL, MVD and EVUC. The EVUC, MVD and NPL cost are drastically reduced
in scenario 2 as compared to the all cases in scenario 1. Further, case 2 of scenario 2 is
offering more accurate information about the affect of conventional and EV loads on the

distribution system.

Furthermore, in case 2 of scenario 2, the Distribution System indices (PLI, VPI and
APPI) are more optimal as compared to the results of scenario 1and other cases of scenario 2.
It is observed that there existed a significant difference in Distribution System indices and the
objective parameters with different load models for both the conventional and EV loads. The
results substantiate that the RIC and ZIP load models are accounting the accurate behaviour

of conventional and EV loads respectively.

This part of work is communicated in IET Electrical Systems in Transportation with
the title as “Impact of EV Load Modelling on Fast Charging Station Planning in Electrical
Distribution System.”

The next stage of investigation is focused on Optimal Scheduling of Electric Vehicle

Batteries in Battery Swapping Station and the same is reported in chapter 5.
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Chapter-5

Multi-Objective Optimal Scheduling of Electric
Vehicle Batteries in Battery Swapping Station



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

5.1 Introduction

Due to maturity of the Batteries and their charging technology, public incentives and
growing criticism on dense air pollution, the EVs gaining more popularity as compared to

traditional fuel vehicles.

Over the past decade, the EV population is greatly increased due to reduce reliance on
fossil fuels and environmental pollution. However, many car owners are still deterred to buy
EVs due to certain major drawbacks of EVs, such as long charging time, range anxiety,
expensive EV batteries and short life time with fast charging [41]. An efficient solution to
these problems is the deployment of Battery Swapping Stations (BSS) to encounter all the
drawbacks. First, the BSS provides a short charging time just like gas refuelling station.
Secondly, the range is increased with high capacity batteries by swapping a battery in nearby
BSS. Thirdly, the EV users need not to pay the total initial cost of battery. Fourthly, in BSS
technology, the batteries are charged in slow-charging mode to extend their life [42]. In [65],
the performance of BSS is compared with the FCS and it has been claimed that BSS is more

feasible than fast charging stations for EVs charging.

As a part of this research work the multi-objective Battery Swapping Station (BSS)
model is developed in order to optimize (i). the number of batteries taken from battery stock,
(if) Charging damage and (iii). electricity charging cost of batteries. Further, the dynamic
electricity pricing model is considered to avoid new peaks of battery charging demand in
BSS. A BSS model with finite EV battery swapping demand in each hour of the day is solved
by using the proposed Multi-objective Shuffled Frog Leaping Algorithm (SFLA).

52  Problem formulation

5.2.1 Decision Solution

The decision variable vector of the objective problem consists of different charging

methods. The solution decision variable vector is given as
S = {ans(1), ans(2), ...ans(j) ... ... ans(Ngy)} (5.1)

where, ans(j) = m means that charging method m is assigned to recharge j" EV.

Ngy Is the number of EVs required battery swapping in each time period.
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5.2.2 Mathematical model

In this model, the aim is to minimize the number of batteries taken from stock, battery
degradation cost and battery electricity charging cost. In this context, the following equations

are more relevant for the investigation.
FCB(t) = CB(t — 1) — IBS(t) & (FCB(t —1) > IBS(t) (5.2)
Otherwise
BS(t) = BS(t — 1) + IBS(t) — FCB(t) (5.3)

When battery becomes fully charged at time t, the FCB(t) is updated as follows

FCB(t) = FCB(t —1) + 1 (5.4)

Obj, = BS™** = max(BS) (5.5)

0bj, = ACD = — YN& CD;(m) (5.6)
Ngy “'t

Here, the FCB(t) is the number of incoming batteries recharged and available for
swapping, IBS(t)number of incoming batteries for swapping at time ‘t’, BS(t) is the number
of batteries taken from stock and BS™?#* is maximum number of batteries taken from stock to
serve all incoming EVSs. Equation (5.2) calculates the number of incoming batteries
available for swapping (FCB(t)). if (FCB(t—1) > 0), the FCB(t) is reduced by one.
Otherwise the batteries taken from stock are increased by one and it is calculated by (5.3). If
the incoming battery is fully charged then FCB(t) is increased by one and it is updated as
(5.4).

The charging damage of all incoming batteries are calculated as (5.6). In (5.6), ACD is
the average charging damage of battery and CD;(m) is the charging damage of i'" EV battery
due to charging method ‘m’. The optimal scheduling of EVs and calculation of objectives

have been carried out shown in Figure 5.1.
5.2.3 Dynamic Price Change

The dynamic price change is considered with the addition of Time of Use price
(TOU). In TOU price, the low price attracts to charge more number of batteries in BSS and it
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creates a new peak. To avoid the above drawback the dynamic price change is considered as
one of the objectives and it is calculated as bellow:

if (BUC(t) > IBS(t)) the Battery Charging Cost (BCC) is calculated as bellow:

1CB(t)-BUCAPC (1)
max(ICB)

Objs = BCC = ( ) EPPSt + EP(t) (5.7)

Here, BUC(t) and IBS(t) are the number of batteries charging and number of
incoming batteries for swapping at time ‘t’. BUCAPC(t) batteries under charging right after

price change at time ‘t’. EPPSt and EP(t) are the predefined electricity step price and
electricity price at time ‘t’ respectively.

Read |Bs(t), T, Pm, SO(--:mins
SOCnax

Select charging method
EV(m)

EV=EV+1

Calculate T,(EV), CD(EV),
BCC(EV), FCB(t)

t=t+1

BS(t)=BS(t-1)+IBS(1)-
FCB(t) ‘ ‘ FCB(t) FCB(‘H)IBS(t

If
(t<T)

Calculate objectives by
),(5.8) and (5.7)

Figure 5.1: Flow chart for optimal scheduling of EVs in BSS

5.2.4 Objective function

minimization of ( BS™**,ACD, BCC) (5.8)
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The following Constraints are considered for optimal scheduling of EVs batteries in

BSS.
SOCpin < SOC; < SOCpay (5.9)
SOH i < SOH; < SOH pqy (5.10)
FCB(t) =0 (5.11)
CB(t) = BSipit + XI_, CB(t + 1) (5.12)

In (5.9), SOC; is the State of Charge (SoC) of j™ EV battery and it should be with in
minimum SOC (SOC,,;,) and maximum SOC of battery. With the increases in number cycles
of charging and discharging, the State of Health (SOH) of battery is affected. The life cycle
of battery is improved by avoiding over charging and discharging. For better operation of
BSS the SOH is should follow the constraint (5.10). In (5.12), CB(t) is the number of charged
batteries at time ‘t’. The BSS needs to have initial number batteries (BS;,;;) in stock to serve
for incoming EVs. T is the total time intervals considered for optimal scheduling of EV
batteries in BSS.

5.3  Test System Data

In this study, a typical Lithium-ion battery with rated capacity of 85 kWh has been
considered (Tesla model S) for optimal scheduling of batteries in BSS. Four types of EV
battery charging methods such as super-charging, fast-charging, normal-charging and slow-
charging are considered with the power ratings of 120 kW, 80 kw, 60 kW and 40 kW
respectively. The battery cost is 21000 ($). The life cycle of battery with above charging
rates are 800, 1100, 1150 and 1200 respectively [80]. The “Time of Use (TOU) Price” is
listed in Table 5.1.

Table 5.1: Electricity TOU price [80]

Time of the day | TOU period | Price/kWh (USD)
7:00 to 11:00 On-peak $0.13
11:00t0 17:00 | Mid-peak $0.10
17:00t0 19:00 | On-peak $0.13
19:00 to 7:00 Off-peak $0.06
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The EV battery swapping demand during each hour of a day is given in Figure 5.2.
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during different hours
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Figure 5.2: EVs battery swapping demand
54  Methodology

The aim of this model is to determine the optimal scheduling of incoming EVs in
order to minimize the number of batteries taken from battery stock, charging damage and
electricity charging cost of batteries. In literature, the optimal scheduling of EVs batteries in
BSS is solved by using weighted sum approach method. In all classical methods like
weighted objectives method, the multiple objectives functions are formulated as a single
objective function by choosing suitable weights for each objective. The approach to
determine the optimal value of the single objective has majorly two problems. The first one is
the optimization of that single objective function may guarantee a single optimal solution, but
in all practical applications, the decision makers need an alternative solution in decision
making. The second one is the sensitivity towards weights or demand levels of each objective
in a single objection function. Moreover, if the objective function is having more noise and
the variables are discontinuous in search space, the classical methods cannot work
effectively. To overcome the above problems, multi-objective Pareto front optimizations

algorithms are necessary for solving multi-objective problems.
5.4.1 Shuffled Frog Leap Algorithm (SFLA)

The SFLA is a population-based optimization algorithm [74], and the population
consists of a set of frogs that is divided into subsets referred to as memeplexes. Each frog in
the population represents a solution in search space and its hold ideas, which can be
influenced by the ideas of other frogs and evolve through a process of memetic evaluation.

After a certain number of memetic evaluation steps, ideas are passed among the memeplexes



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

in the shuffling process. The exploration and the shuffling processes continue until it reaches

the specified convergence criteria as explained in [74].

In SFLA, the exploitation and exploration are trying to improve the attempt to

determine the optimal solution.

In each iteration, to improve exploitation of the given optimization problem the new

population is calculated follows

Xnews y = Xolds y + rand (Xgmup_bestg — Xoldy ) (5.13)

Where Xold; , is the sorted population divided in to g number of memeplexes and

each memeplex has S number of frogs.
Xgmup_bestgis the optimal solution in g" memeplex.

If the Xnew; ,<Xold, 4, the global search has to be done in order to calculate the optimal
solution as follows

Xnews, = Xolds ; + rand(Xpese pop — Xolds g) (5.14)
Where Xj,es¢ pop IS the global optimal solution in each iteration.

Algorithm 1.Pseudo code of proposed hybrid SFL-TLBO

Initialize parameters
Number of incoming EVs in each hour (n)
Define f(X) X=X gy Xpy X ne nn ene Xx4) d=no. of decision variables.
For h=1:number of hours
Initialize the population randomly X; i=1,2,3....... n.
For iter=1to maximum iterations
fori=1ton
Evaluate objective function value f(X;)
end for nloop
Sort the population based on non-dominated sorting technique
Divide the frogss into g Number of memeplexes
fori=1tog
fori=1to s

Identify the best solution in each group Xgroup—pest

Xnews, = Xold, ; + rand (Xgroup-be“s,g - Xolds_g)



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

Calculate objective function value f(XnewS,g)
If f(XnewS‘g) is better than f(X;)
X; = Xnews 4
else
Xnews , = Xold, 4, + rand (XbeSf-POPS,g - Xolds‘g)
X = Xnew, g (Xgpest = X;)

Otherwise generate a random population

end if
endfor  ---mee- s loop
end for------- g loop
end for --------- iter loop (Termination criterion)
Xgpest ==================- — — — best population
Fypest — — — —bestfitness

end for hour loop

Save the optimal population and its fitness value.

55  Results and Analysis

The implementation of BSSs is still limited to few countries and in some other

countries at demonstration level only. A multi-objective BSS model has been developed in

order to optimize the number of batteries taken from battery stock, charging damage and

electricity charging cost of batteries. The optimal scheduling has been carried out by

considering the dynamic pricing model, to avoid the peak demand during low electricity cost

hours. The dynamic pricing provides more realistic scheduling of EV batteries in BSS. The

objective function (5.8) has been solved by using a multi-objective SFLA and hybrid SFL-

TLBO algorithms. The optimal Pareto fronts for both algorithms are as shown in Figure 5.3.
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Figure 5.3: Optimal pareto-fronts for a multi-objective BSS model

The min-max method has been used to determine the compromised solution from the
optimal Pareto fronts as shown Figure 5.3. The optimal values of the number of batteries
taken from battery stock, charging damage and the normalized electricity charging cost of
batteries by using the hybrid SFL-TLBO are 23, 10.48 ($/kWh), 9.86 ($) respectively.
Similarly, The optimal values of the number of batteries taken from battery stock, charging
damage and the normalized electricity charging cost of batteries by using the SFLA are 25,
10.495 ($/kWh), 9.9 ($) respectively. The proposed hybrid SFL-TLBO gives better results as
compared to the SFLA. This model has been run for several times and the optimal results are
presented. The presented algorithm gave accurate results, due to its good exploration and
exploitation capability.

For better operation of BSS the number of batteries taken from stock should be
minimum otherwise the cost of BSS is greatly increased. Similarly the charging method is a
major factor that decides the degradation cost of EV batteries. In addition to above the
optimal scheduling of EV batteries, it gives some more additional benefit to BSS operator.
The variation of number of batteries taken from stock, number of batteries available in BSS

and the variation of battery charging cost in each hour during the day is shown in Figure 5.4.
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Figure 5.4: Variation of BSS parameters in each hour during the day with optimal scheduling
of EV batteries
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Figure 5.5: Variation of BSS parameters in each hour during the day with random charging of
EV batteries

Further, the comparison of optimal scheduling and random charging of EV batteries

in BSS has been carried out and the results are as shown in Figure 5.5.

Table 5.2 presents the comparison of number of number of batteries taken from stock,
battery charging cost of EVs for both the optimal scheduling and random charging scenarios.
In optimal scheduling scenario the total number of batteries taken from stock is 23 and the
total BCC during the day is 9.86 ($). In random charging scenario the number of batteries
taken from stock is 44 and the total BCC during the day is 15.3757 ($). The above
comparison clears indicates that the optimal scheduling is beneficial for both BSS operator
and EV user due to significant reduction in number of number of batteries taken from stock to

serve all EV swapping demand and the total battery charging cost.

In summary, this chapter has covered the more effective method of EV charging in fast

convenient way. In BSS the EV batteries optimally scheduled with suitable charging methods,
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there by the life time of batteries increases. Further, the charging cost also reduced as

compared to the conventional random charging methods.

Table 5.2: Comparison of optimal scheduling and random charging of EVs in BSS

Optimal ]
Hour scheduling Random charging
BS | BCC($) | BS | BCC (%)
1 3 0.275 5 0.312
2 0 0.059 0 0.643
3 1 0.176 3 0.29
4 0 0.269 3 0.26
5 0 0.159 2 0.989
6 1 0.214 0 1.323
7 2 0.169 3 0.37
8 0 0.389 0 0.512
9 0 0.655 4 0.896
10 2 0.604 3 0.58
11 3 0.481 3 0.376
12 0 0.333 3 0.477
13 0 0.452 0 0.989
14 1 0.65 3 0.632
15 0 0.595 0 1.231
16 2 0.662 2 0.225
17 2 0.754 0 0.394
18 1 0.773 3 0.4
19 1 0.602 2 0.4667
20 0 0.36 3 0.36
21 1 0.39 1 1.23
22 2 0.361 0 1.32
23 0 0.24 1 0.54
24 1 0.234 0 0.56

A multi-objective BSS optimal scheduling model with dynamic pricing approach, it

greatly reduced the electricity battery charging cost and peak demand during low electricity

price hours. The number batteries taken from stock are also reduced. Further, the comparison



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

of optimal scheduling and random charging of EV batteries in BSS has been carried out and
the results demonstrate that the number batteries taken from stock, battery damage cost and
charging cost are minimum in optimal scheduling scenario, it is more beneficial to both the
EV users and BSS operator. Therefore, the proposed optimal scheduling of EV batteries can
be used for the planning study of BSS.

This part of work is published in IEEE PES Innovative Smart Grid Technologies
Europe Conference with the title as "Multi-Objective Optimal Scheduling of Electric Vehicle
batteries in Battery Swapping Station” 2019 IEEE Power & Energy Society (PES) Innovative
Smart Grid Technologies Europe (ISGT-Europe, 2019) conference held at University
POLITEHNICA of Bucharest, Romania from September 29 to October 2, 2019.



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

Chapter-6

Conclusions and Scope for Future Work



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System

6.1  Conclusions

The following conclusions are drawn based on the investigations carried out at
various stages of this research work.

A Multi-objective optimization model for simultaneous optimal planning of EV
Fast Charging Stations (FCSs) and Distributed generations (DGs) in the distribution
system is developed. The simultaneous planning of FCSs and DGs results in more
reduction in Electric Vehicle User cost (EVUC) and Network Power Loss (NPL) cost for
the same station Develop Cost (SDC) and DG power cost investment. The EVUC and NPL
cost are variable with respect to time. Hence, reduction in this cost will prove beneficial for
both EV and charging station owners. It is clear from the results that the optimal
simultaneous placement of both FCSs and DGs in Distribution System provides significant

benefit to both the EV users and charging station owners.

The multi-objective optimization model is developed for optimal planning of FCSs
and DGs in distribution system by considering the present and different levels of increment
in future EV population growth using newly proposed SFL-TLBO algorithm. The results
obtained using the hybrid SFL-TLBO algorithm is compared with the SFLA and TLBO
algorithm. Results have shown that the DGPC and SEC of EVs constitute the major share
of the total cost. The optimal FCSs location has a drastic impact on SEC of EVs. The
results suggest that for new erection of FCSs in distribution system, it is necessary to
consider the present and future penetration of EVs. Otherwise, the NPLC and SEC of EVs
would be more expensive. The proposed hybrid SFL-TLBO is tested on IEEE 118 bus
distribution system. It is established that the proposed hybrid algorithm is reliable and
robust concerning different levels of increase of EV population demand in three scenarios.
Therefore, the proposed optimal planning FCSs and DGs technique can be used for the
planning study of charging stations in the coupled electrical distribution and transportation

network.

To analyze the impact of EV load modeling on FCSs planning in distribution
system, the conventional loads are modeled as (a). Constant Power and (b). RIC loads, and
the EV load is modeled as the (i). ZIP, (ii). Exponential, (iii). Constant Current and
Constant Power load models. A multi-objective hybrid SFL-TLBO algorithm has been

used for optimal planning of FCSs in distribution system with the objective of minimizing
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the Electric Vehicle User cost (EVUC), Maximum Voltage Deviation (MVD) and Network
Power Loss (NPL) cost. It is observed that there was significant difference in distribution
system indices and the objective parameters with consideration of different load models for
both the conventional and EV loads. The results substantiate that the RIC and ZIP load

models provide accurate behavior of conventional and EV loads respectively.

An optimal Scheduling of EVs batteries in BSS is analyzed to serve for all
incoming EVs swapping demand in order to minimize the charging cost, battery
degradation cost and the number of batteries taken from stock. Further, the comparison of
optimal scheduling and random charging of EV batteries in BSS has been carried out and
the results demonstrate that the numbers of batteries taken from stock, battery degradation
cost and charging cost are minimum in optimal scheduling against the random charging. It
is more beneficial to both the EV users and BSS operator.

6.2  Scope for Research work

Further, this research work in the area of optimal planning of FCSs and DGs in the

distribution system can be extended in the following directions

1. Scheduling of EV batteries in BSS with the integration of RESs.

2. The optimal planning FCSs in distribution system can be attempted by considering
the Communication between Vehicle to BSS and Vehicle to Grid.

3. Investigation of grid operation in the presence of BSS incorporating the battery

degradation aspect.
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Appendix-I
IEEE 118 bus Distribution System

Number of buses: 118

Number of lines: 117

Base voltage: 12.66 kV

Total active power load= 22.71MW

Total reactive power load=17.041 MV Ar
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Figure A.1: IEEE 118-bus distribution system



Line From R X Pload Qload
Number Bus ToBus (Ohms) (Ohms) (kW) (kW)
1 1 2 0.036 0.01296 133.84 101.14
2 2 3 0.033 0.01188 16.214 11.292
3 2 4 0.045 0.0162 34.315 21.845
4 4 5 0.015 0.054 73.016 63.602
5 5 6 0.015 0.054 144.2 68.604
6 6 7 0.015 0.0125 104.47 61.725
7 7 8 0.018 0.014 28.547 11.503
8 8 9 0.021 0.063 87.56 51.073
9 2 10 0.166 0.1344 198.2 106.77
10 10 11 0.112 0.0789 146.8 75.995
11 11 12 0.187 0.313 26.04 18.687
12 12 13 0.142 0.1512 52.1 23.22
13 13 14 0.18 0.118 141.9 117.5
14 14 15 0.15 0.045 21.87 28.79
15 15 16 0.16 0.18 33.37 26.45
16 16 17 0.157 0.171 32.43 25.23
17 11 18 0.218 0.285 20.234 11.906
18 18 19 0.118 0.185 156.94 78.523
19 19 20 0.16 0.196 546.29 351.4
20 20 21 0.12 0.189 180.31 164.2
21 21 22 0.12 0.0789 93.167 54.594
22 22 23 141 0.723 85.18 39.65
23 23 24 0.293 0.1348 168.1 95.178
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24 24 25 0.133 0.104 125.11 150.22
25 25 26 0.178 0.134 16.03 24.62
26 26 27 0.178 0.134 26.03 24.62
27 4 28 0.015 0.0296 594.56 522.62
28 28 29 0.012 0.0276 120.62 59.117
29 29 30 0.12 0.2766 102.38 99.554
30 30 31 0.21 0.243 5134 318.5
31 31 32 0.12 0.054 475.25 456.14
32 32 33 0.178 0.234 151.43 136.79
33 33 34 0.178 0.234 205.38 83.302
34 34 35 0.154 0.162 131.6 93.082
35 35 36 0.21 0.1383 66.195 42.361
36 36 37 0.12 0.0789 73.904 51.653
37 37 38 0.15 0.0987 114.77 57.965
38 38 39 0.15 0.0987 918.37 1205.1
39 39 40 0.24 0.1581 210.3 146.66
40 40 41 0.12 0.0789 66.68 56.608
41 41 42 0.405 0.1458 42.207 40.184
42 42 43 0.405 0.1458 433.74 283.41
43 29 44 0.33 0.194 112.54 55.134
44 44 45 0.31 0.194 53.963 38.998
45 45 46 0.13 0.194 393.05 342.6
46 46 47 0.28 0.15 326.74 278.56
47 47 48 1.18 0.85 536.26 240.24
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48 48 49 0.42 0.2436 76.247 66.562
49 49 50 0.27 0.0972 53.52 39.76
50 50 51 0.339 0.1221 40.328 31.964
51 51 52 0.27 0.1779 39.653 20.758
52 29 53 0.391 0.141 62.1 26.86
53 53 54 0.406 0.1461 92.46 88.38
54 54 55 0.406 0.1461 85.188 55.436
55 55 56 0.706 0.5461 345.3 332.4
56 56 57 0.338 0.1218 22.5 16.83
57 57 58 0.338 0.1218 80.551 49.156
58 58 59 0.207 0.0747 95.86 90.758
59 59 60 0.247 0.8922 62.92 47.7

60 30 61 0.187 0.261 448.4 369.79
61 61 62 0.133 0.099 440.52 321.64
62 1 63 0.028 0.0418 478.8 463.74
63 63 64 0.117 0.2016 120.94 52.006
64 64 65 0.255 0.0918 139.11 100.34
65 65 66 0.21 0.0759 391.78 193.5
66 66 67 0.383 0.138 27.741 26.713
67 67 68 0.504 0.3303 52.814 25.257
68 68 69 0.406 0.1461 66.89 38.713
69 69 70 0.962 0.761 467.5 395.14
70 70 71 0.165 0.06 594.85 239.74
71 71 72 0.303 0.1092 132.5 84.363
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72 72 73 0.303 0.1092 52.699 22.482
73 73 74 0.206 0.144 869.79 614.775
74 74 75 0.233 0.084 31.349 29.817
75 75 76 0.591 0.1773 192.39 122.43
76 76 77 0.126 0.0453 65.75 45.37
77 65 78 0.669 0.2412 62.93 42.96
78 78 79 0.266 0.1227 30.67 34.93
79 79 80 0.266 0.1227 62.53 66.79
80 80 81 0.266 0.1227 114.57 81.748
81 81 82 0.266 0.1227 81.292 66.526
82 82 83 0.233 0.115 31.733 15.96
83 83 84 0.496 0.138 33.32 60.48
84 80 85 0.196 0.18 531.28 224.85
85 85 86 0.196 0.18 507.03 367.42
86 86 87 0.1866 0.122 26.39 11.7
87 87 88 0.0746 0.318 45.99 30.392
88 64 89 0.559 0.3687 238.15 223.22
89 89 90 0.186 0.1227 294.55 162.47
90 90 91 0.186 0.1227 485.57 437.92
91 91 92 0.26 0.139 243.53 183.03
92 92 93 0.154 0.148 243.53 183.03
93 93 94 0.23 0.128 134.25 119.29
94 94 95 0.252 0.106 22.71 27.96
95 95 96 0.18 0.148 49.513 26.515
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96 90 97 0.16 0.182 383.78 257.16
97 97 98 0.2 0.23 49.64 20.6

98 98 99 0.16 0.393 22.473 11.806
99 1 100 0.0625 0.0265 100.66 47.572
100 100 101 0.1501 0.234 456.48 350.3
101 101 102 0.1347 0.0888 522.56 449.29
102 102 103 0.2307 0.1203 408.43 168.46
103 103 104 0.447 0.1608 141.48 134.25
104 104 105 0.1632 0.0588 104.43 66.024
105 105 106 0.33 0.099 96.793 83.647
106 106 107 0.156 0.0561 493.92 419.34
107 107 108 0.3819 0.1374 225.38 135.88
108 108 109 0.1626 0.0585 509.21 387.21
109 109 110 0.3819 0.1374 188.5 173.46
110 110 111 0.2088 0.0753 305.08 215.37
111 111 112 0.2301 0.0828 54.38 40.97
112 100 113 0.6102 0.2196 211.14 192.9
113 113 114 0.1866 0.127 67.009 53.336
114 114 115 0.3732 0.246 162.07 90.321
115 115 116 0.405 0.367 48.785 29.156
116 116 117 0.489 0.438 33.9 18.98
117 110 118 0.2445 0.0879 918.03 898.55
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Appendix-11
IEEE 38-bus Distribution System

Number of buses: 38

Number of lines: 37

Base voltage: 12.66 kV

Total active power load=5084.26 kW

Total reactive power load=2547.32 kKVAr
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Line impedance (p.u) Line limit (p.u) Loads on to-node (p.u)
From

Bus To Bus R (p.u) X (p.u) L SL P Q Lt
1 2 0.000574 0.000293 1 4.6 0.1 0.06 R

2 3 0.00307 0.001564 6 4.1 0.09 0.04 I
3 4 0.002279 0.001161 11 2.9 0.12 0.08 C
4 5 0.002373 0.001209 12 2.9 0.06 0.03 R

5 6 0.0051 0.004402 13 2.9 0.06 0.02 I
6 7 0.001166 0.003853 22 15 0.2 0.1 C
7 8 0.00443 0.001464 23 1.05 0.2 0.1 C

8 9 0.006413 0.004608 25 1.05 0.06 0.02 I
9 10 0.006501 0.004608 27 1.05 0.06 0.02 C
10 11 0.001224 0.000405 28 1.05 0.045 0.03 C
11 12 0.002331 0.000771 29 1.05 0.06 0.035 R
12 13 0.009141 0.007192 31 0.5 0.06 0.035 C
13 14 0.003372 0.004439 32 0.45 0.12 0.08 R
14 15 0.00368 0.003275 33 0.3 0.06 0.01 C
15 16 0.004647 0.003394 34 0.25 0.06 0.02 I
16 17 0.008026 0.010716 35 0.25 0.06 0.02 C
17 18 0.004558 0.003574 36 0.1 0.09 0.04 I
2 19 0.001021 0.000974 2 0.5 0.09 0.04 R
19 20 0.009366 0.00844 3 0.5 0.09 0.04 C
20 21 0.00255 0.002979 4 0.21 0.09 0.04 I
21 22 0.004414 0.005836 5 0.11 0.09 0.04 R
3 23 0.002809 0.00192 7 1.05 0.09 0.05 C
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23 24 0.005592 0.004415 8 1.05 0.42 0.2 C
24 25 0.005579 0.004366 9 0.5 0.42 0.2 C
6 26 0.001264 0.000644 14 1.5 0.06 0.025 C
26 27 0.00177 0.000901 15 1.5 0.06 0.025 |
27 28 0.006594 0.005814 16 1.5 0.06 0.02 C
28 29 0.005007 0.004362 17 1.5 0.12 0.07 C
29 30 0.00316 0.00161 18 1.5 0.2 0.6 C
30 31 0.006067 0.005996 19 0.5 0.15 0.07 R
31 32 0.001933 0.002253 20 0.5 0.21 0.1 R
32 33 0.002123 0.003301 21 0.1 0.06 0.04 C
8 34 0.012453 0.012453 24 0.5 0 0
9 35 0.012453 0.012453 26 0.5 0 0
12 36 0.012453 0.012453 30 0.5 0 0
18 37 0.003113 0.003113 37 0.5 0 0
25 38 0.003113 0.003113 10 0.1 0 0
L-Line number; S_-Line MVA limit in p.u; P-Active power load; Q-Reactive power load, Lt-Load Type;
R-Residential load; I-Industrial load; C-commercial load.
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Appendix-III

Current Injection Distribution System Load Flow Method

Algorithm:

© 00 N o g b~ w0 DD

[ S S
N P O

13.

14.
15.
16.

Read the system data (input data).

Print the input data and cross check it.

Form the Y bus by using sparsity technique.

Calculate Pinj and Qinj for i=1to n. where n is number of buses.
Set iter=0

Set Alreal max=0 and Alimag max=0.

Calculate Isp(i)=(Pinj(i)-Qinj(i))/E(i). for i=1to n.

Calculate Iq; = Ypp * Ep + Xg=142p Eq

Calculate Al(i)=Isp(i)-Ical(i)

. Calculate Al(i)real and Al(i)imag and check for convergence.
. If Al(i)real and Al(i)imag are less than epsilon, go to step 16.

. Form jacobian matrix

Set A(nslack, nslack)=10?°to Aenslack=0.
Set A(n+nslack, n+nslack)=10%° to Afnslack=0.

Solve [I;;”ﬁ] = [jacobian matrix] * [i—;]
Update complex voltages (voltage magnitude and phase angles)

If iter < itermax. Go to step 6.

Save the results.
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Appendix-1V

AVERAGE DAILY LOAD PROFILE AS A FRACTION OF

YEARLY PEAK

Winter Summer Autumn

Hour load Spring load Load Load
1 0.4008 0.398 0.547 0.4108
2 0.3943 0.3821 0.5173 0.3945
3 0.3928 0.372 0.4952 0.3843
4 0.3966 0.3669 0.4806 0.3795
5 0.4112 0.3715 0.4783 0.3857

6 0.4466 0.39 0.484 0.41
7 0.4964 0.4179 0.5037 0.4408
8 0.5195 0.4408 0.5426 0.4595
9 0.5083 0.4568 0.5881 0.4765
10 0.4886 0.4701 0.6292 0.4916
11 0.474 0.4865 0.6751 0.5106
12 0.459 0.5 0.7151 0.5267
13 0.4466 0.5134 0.7519 0.5418
14 0.4366 0.5271 0.7854 0.5561
15 0.4285 0.5386 0.811 0.5656
16 0.4249 0.5468 0.8275 0.5732
17 0.4297 0.5526 0.8331 0.5765
18 0.4604 0.5508 0.8229 0.5799
19 0.5001 0.5432 0.7926 0.5851
20 0.5019 0.5459 0.7628 0.5729
21 0.4949 0.5374 0.7426 0.5491
22 0.483 0.5126 0.7027 0.5213

23 0.4521 0.47 0.6455 0.478
24 0.4168 0.4255 0.59 0.4354
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Appendix-V
BOX PLOT

The box and whisker plots are more popularly used to represent the minimum, first
quartile, median, third quartile, and maximum of a set of data instead of showing the mean
and standard deviation. The statisticians refer to this set of statistics as a five-number
summary. The each five-number summary is representing as a box with whiskers. And the
box is bounded on the top by the third quartile and on the bottom by the first quartile. The
median divides the box into two parts. The layout of chart determines the width of the box.
The whiskers are error bars in which first one extends upward from the third quartile to the

maximum and the second one extends downward from the first quartile to the minimum.

Notice that the median is not necessarily in the middle of the box and the whiskers

are not necessarily the same length.

Maximum
Third Quartile
Dependent
Variable
— ——— Median
First Quartile
— Minimum
Independent Variable

Figure A.3 Vertical box plot
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Median

The median (middle quartile) is the mid-point of the data and it is shown by the line
that divides the box into two parts. In which the half of the scores are greater than or equal

to this value and half are less.
Inter-quartile range

The middle box represents the middle 50% of scores for the set of data. The range
of data from first to third quartile is referred to as the inter-quartile range and the middle

50% of scores fall within the inter-quartile range.

Third quartile

Seventy-five percent of the scores fall below the third quartile.

First quartile

Twenty-five percent of scores fall below the first quartile.

Whiskers

The upper and lower whiskers represent scores outside the middle 50%. Whiskers often
(but not always) stretch over a wider range of scores than the middle quartile groups.
Example: Box and whisker plots

The below given is recorded data of the number of sales made in each month in a
Computer shop. In the past 12 months, the following numbers of computers are sold:

51, 17, 25, 39, 7, 49, 62, 41, 20, 6, 43, 13.

To plot the Box-plot:

First, put the data in ascending order. Then find the median. 6, 7, 13, 17, 20, 25, 39, 41, 43,
49, 51, 62.

Median = (12th + 1st) + 2 = 6.5th value = (sixth + seventh observations) + 2 = (25 + 39) +
2=32

There are six numbers below the median, namely: 6, 7, 13, 17, 20, 25. Q1 = the median of
these six items = (6 + 1) + 2= 3.5th value = (third + fourth observations) + 2 = (13 + 17) +
2=15.

Here are six numbers above the median, namely: 39, 41, 43, 49, 51, 62. Q3 = the median of

these six items = (6 + 1) + 2= 3.5th value = (third + fourth observations) + 2 = 46



