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ABSTRACT 

In recent times it has been observed that Electrical Vehicle (EV) is a promising 

technology for road transportation. There is a substantial increase in the number of EVs 

due to improved Energy efficiency and reduction in environmental impact as compared 

with internal combustion engine vehicles. The improper planning of Fast Charging Stations 

(FCSs) causes a negative impact on the Distribution System. In this context, the 

Distribution System operator has to face a significant challenge to identify the optimal 

location and sizing of FCSs in the Distribution Power Network. 

The large-scale construction of FCSs for EVs is helpful in promoting the EV 

population. Even though the FCSs are optimally planned, it added additional load to the 

existing Distribution System. To ease these, addition of DGs in Distribution System is one 

of the suitable solutions. A multi-objective optimization problem has been formulated for 

the simultaneous placement and sizing of FCSs and DGs in the distribution system. The 

EV population in various zones and the possible number of FCSs based on the road as well 

as electrical distribution network topology have been considered as constraints in the 

proposed approach. This optimization problem is formulated as Mixed Integer Non-linear 

Problem (MINLP) and it is solved by using Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) to optimize the selected objectives like EV user loss, Network power loss, FCS 

development cost and improving the Voltage profile of the Electrical Distribution System.  

From the last decade onwards, the EV population is greatly increased due to 

advanced developments in Batteries and its Charging technologies. This requires that the 

present and future increase in EV population has to be considered for optimal planning of 

FCSs and DGs in coupled Transportation and Electrical Distribution Network. A multi-

objective optimization problem is formulated for optimal planning of FCSs and DGs with 

the objective of minimizing the Voltage deviation, Network power loss, DGs cost and the 

energy consumption of EV users. This optimization problem is solved for different levels 

of increase in future EV population for various cases. To solve the complex combinatorial 

problems a newly proposed Hybrid Shuffled Frog Leaping-Teaching Learning Based 

Optimization (SFL- TLBO) algorithm is implemented to solve the above multi-objective 

problem. The performance of the proposed algorithm is compared with prior-art algorithms 

in the literature. 
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To analyse the impact of load of Charging Station in Distribution System an 

accurate EV load model is required. The inaccurate modelling of EV load may overload 

the Distribution System which increases Network Power Loss (NPL) and maximum 

Voltage deviation. In literature, the Constant Power (CP) load model is more popularly 

used to model both the conventional and EV loads in the Distribution System. But the CP 

load modelling cannot provide accurate information about different types of voltage-

dependent conventional loads and EV charging process. To address these aspects, the EV 

loads are modelled as constant Impedance-constant Current-constant Power (ZIP), 

Exponential and Constant Current (CC) load models. Then the conventional loads are 

modelled as Constant Power and Residential-Industrial-Commercial (RIC) loads. With 

these EV load models, the impact of FCS in the Distribution System has been analysed.  

Nowadays, Battery Swapping Station (BSS) charging method is more popular, due 

to its short charging time just like gas refuelling station. This has increased travel range 

with the increased high capacity batteries. Further, the EV users need not pay the total 

initial cost of the battery. In addition to this, the batteries are charged in slow-charging 

mode to extend their life. The multi-objective BSS model is developed in order to optimize 

the number of new batteries taken from battery stock, charging damage and electricity 

charging cost of batteries. The dynamic electricity price is also considered for the EVs 

batteries in BSS. A BSS model with finite EV battery swapping demand in each hour of 

the day is solved by using a multi-objective Shuffled Frog Leaping Algorithm (SFLA). 
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1.1 Introduction 

1.1.1 History of the Electric Vehicles 

For the development of human society, mobility is an advanced level of a basic 

need. In the early days of carriages, the horses were the principal source of power. Later, 

the horse power became a ‘unit of power’.  Richard Trevithick built a steam powered 

carriage in 1801. This is the first horseless transportation. 30 years later of the noise and 

dirty Steam Engine, the first battery powered Electric Vehicles (EVs) were developed in 

1834. After over 50 years, the first petrol powered Internal Combustion Engine (ICE) 

vehicle was built in 1885. The EVs are not new; it is about 50 years older than internal 

combustion vehicles. In early 1990s, the EVs were better than   internal combustion ICE 

vehicles. After over 70 years the EV population declined due to the following reasons [1], 

 By the 1920s, the United States had a better road system with the 

interconnection of all cities, which resulted in a need for long range vehicles.  

 The reduction in the price of gasoline by the Texas crude oil unit could offer 

more affordable price to the average consumer. 

 In 1912, Charles Kettering invented the electric starter which eliminated the 

need of hand crank. 

The above initiation gave opportunity the mass production of internal combustion 

EVs by Henry Ford and made these vehicles widely available and affordable in the $500–

$1000 price range. In 1912, the price of electric roadster sold was $1750, while a gasoline 

car sold for $650 [1]. 

The development of EVs has its own characteristics in different historical stages. 

The momentum or a driving force for the inventions, the technical features, applications, 

charging infrastructure, and business model were not all the same in different historical 

periods. However, the same spirit, fundamental principles, and philosophy remain today, 

inspiring us and providing useful references for current EV development. 

From 1970s onwards, the EVs are blooming because they were clean, quiet, easy to 

start and drive, as compared to the steam cars or Internal Combustion Engine (ICE) 

vehicles that were noisy, smelly, produced a lot of smoke, and needed crankshaft to start an 

engine, as well as gear shift to drive. The major components of the Propulsion system were 
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DC motor drive and Lead-Acid batteries and these were used for low-speed, short-distance 

city driving purpose. Currently, the EVs may become a renewed and popular means of 

mobility. The internal combustion engine has the following disadvantages as compared to 

the electric motor [1], 

1. The operation and construction of ICE is more complex and heavy in weight. 

Also, it is more expensive. 

2. In ICE 75% of energy is wasted. It requires more maintenance. 

3. It cannot run on Renewable Energy Sources like Solar, Wind etc. 

4. The ICE produces an unhealthy exhaust. The every litre of gasoline produces the 

2.3 kg of CO2. 

5. The current transportation system is responsible for about 23% of greenhouse gas 

emissions worldwide.  

The main advantages of the EV are that it mainly runs on a less cost and freely 

available Renewable Energy Sources (RESs), require less maintenance due to reduction in 

moving parts. But its major disadvantage is the requirement of large batteries for long 

range. At present the research is going on to improve the energy density of battery 

technology. In early 1990s, the size and weight of the battery were very high and the EVs 

were not that popular. Now days the energy density of battery is exponentially increased 

with time. Further, there is lot of research is going on Lithium-Air battery technology and 

its energy density is exactly equal to gasoline as shown in Table I [1]. 

Table 1.1: Energy density of different energy sources 

Energy 

source 
Year 

Energy density 

(Whr/kg) 

Lead-acid 1900 10 

Lead-acid 2000 35 

NiMH 2000 80 

Lithium-ion 2015 250 

Lithium-ion 2025 400 

Gasoline or 

Lithium-air 

1900-till 

date 
12000 
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The total cost of ownership of ICE and EVs are compared in below table II. In table 

II the EVs in year 2000 and year 2030 are compared. This comparison clearly indicates 

that there are significant improvements added to the battery and drive train technologies. 

Table 1.2: Total cost of ownership of ICE and EVs [2] 

Vehicle part Gasoline EVs in 2000 EVs in 2030 

Drive train cost ($) 15k 20k 5k 

Battery cost ($) 0 100k 10k 

Fuel cost/Year ($) 17k-40k 6k-10k 6k-10k 

Maintenance cost/Year ($) 18k 12k 6k 

Total cost ($) 50k-73k 65k-92k 19k-46k 

 

Current trends suggest that the EV is a promising technology for road 

transportation. There is a substantial increase in the number of EVs due to improved 

energy efficiency and reduction in environmental impact as compared with ICE vehicles.  

The International Energy Agency (IEA) global electric vehicle outlook 2018 made 

a survey on EVs sales and its charging infrastructure. Over 1 million electric cars were sold 

in 2017 – a new record – with more than half of global sales in China. The total number of 

electric cars on the road surpassed 3 million worldwide, an expansion of over 50% from 

2016. The EV sales in different countries during last six years are listed below [1]. The 

recent figure is about 4.2 million electric cars in 2018.  

 

Figure 1.1: Number of global electric cars in circulation 
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The government of different countries is setting goals towards the EV deployment, 

providing more subsidy to EV users and manufacturing companies. Further, ten countries 

are giving great importance to improve the EV population collectively representing over 

60% of the global electric car stock, endorsed the EV30@30 Campaign in 2017, pledging 

to actively pursue the collective objective of 30% EV sales by 2030. Also, a few regions or 

the national governments are pledged their intention to end the registration and sales of 

ICE vehicles in coming few years. The Table 1.3 summarises deployment goals and 

objectives for the 2020-2030 time frame.   

Table 1.3: The EV deployment goals during 2020-2030 for various countries [3] 

Region or 

Country 

EV 30% 

@2030 

2020-2030 EV Goals 

China  Yes   5 million EVs by 2020, including 4.6 million PLDVs, 

0.2 million buses and 0.2 million trucks 

 Number of EVs sales share: 7-10% by 2020, 15-20% 

by 2025 and 40-50% by 2030. 

Canada Yes  40% of new passenger vehicle sales by 2040. 

European 

Union  

Yes  15% EV sales by 2025 and 30% by 2030 

Finland Yes  250000 EVs by 2030. 

India Yes  30% electric car sales by 2030. 

100% BEV sales for urban buses by 2030. 

Ireland  • 500000 EVs and 100% EV sales by 2030 

Japan  Yes  20-30% electric car sales by 2030. 

Netherlands  Yes  100% electric public bus sales by 2025 and 100% electric 

public bus stock by 2030. 

New Zealand   64000 EVs by 2021. 

Norway  Yes 100% EV sales in PLDVs, LCVs and urban buses by 

2025. 

United states  3300000 EVs in eight states combined by 2025. 
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There are different types of EV charging methods existing in literature like 

Conductive charging, Inductive charging, Capacitive charging and Smart charging. Among 

these the Conductive charging is more popularly used to recharge the EVs. 

1.2 Conductive Charging 

Conductive charging requires a metal-to-metal connection between the charger and 

the device requiring charging. Basically the conductive charging can be classified into two 

types. The first one is AC (Alternating Current) charging. It consists of level 1 and level 2 

charging.      

1.2.1 Level 1 AC charging:  

Almost all PHEVs come with a Level 1 charging cord. One end of the cord is a 

standard connector that can be plugged directly to a wall outlet at home. The other end is a 

SAE J1772 standard connector that plugs into the vehicle's J1772 charge port [2]. 

Therefore, there is no need for additional charging equipment. Level 1 charging can be 

provided, by using an on-board charger, up to 1.9 kW through 120 V single-phase AC. 

This is mainly used in the countries where the single phase voltage is 120 V. The level 2 

will address the case of 230 V AC supply. 

In Japan and North America, many of the EVs are using the SAE J1772 charging 

connector, which contains five pins and a mechanical lock. The level 1 charging cord and 

SAE J1772 five pin plug are as shown in figure 1.2. 

 
Charging cord 

 
SAE J1772 

Figure 1.2: Level 1 charging cord [8] 
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1.2.2 Level 2 AC charging: 

 This charging option uses the same SAE J1772 charging cord as in level 1, but it 

offers better output power up to 19.2 kW by using an on-board charger. Level 2 charging is 

applicable to premise the supply of AC at 208 or 240 V, and requires dedicated electric 

circuit to support a higher current up to 80 amp. This option is suitable for charging at 

home, as well as at public charging facilities, although residential level 2 charging operates 

at a lower current (about 30 amp) and a lower power of 7.2 kW, as compared to the public 

ones. Level 2 is preferred over level 1 due to short charging time. 

Level 2 charging uses the Mennekes connector; this connector has seven pins and 

takes advantage of the three-phase alternating charging. The exception to this regional 

breakdown is Tesla, which uses a proprietary connector for its vehicles sold in North 

America, although adapters to SAE J1772 are available. In Europe and Asia, Tesla vehicles 

have the Type 2 plug and it is as shown in Figure 1.3. 

 
Mennekes 

 
Tesla (US) 

 

Figure 1.3: Level 2 charging connector types [8] 

1.2.3  Level 2 AC charging (3-phase AC at 480 V):  

This is a new charging option which is being developed by Society of Automotive 

Engineers (SAE) to supply up to 130 kW for very rapid restoration of State of Charge 

(SOC), using 3-phase AC at 480 V and high current [2]. This 3-phase power distribution is 

common at Commercial and Industrial locations. To support the high output power, level 2 

chargers are much larger in size and heavier in weight as compared to level 1 and level 2 

single phase charger. Also, level 2 3-phase chargers require dedicated cooling equipment 

for high power electronics equipment. As a result, level 2 3-phase chargers are not 
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installed on-board, but they are located externally (off-board). It is likely that SAE J1772 

connector will not be suitable for this option.  

Main disadvantage of AC charging system is that it has to be converted in to DC 

for charging the battery, which results in low efficiency. Now a day’s level 3 or DC Fast 

Charging Station is more popularly used due to its high powered fast charging system for 

highway charging on long distance journeys.  

1.2.4 Level 3 (DC fast charging)  

The DC fast charging offers an experience almost similar to Gasoline refueling for 

longer-distance travel. It requires off board EV charging connector along with the proper 

communication between EV and charging post. Further, more safety is needed due to its 

high power ratings. There are three charging standards for DC fast charging. The first one 

is CHAdeMO connector, its means “charge to move”. CHAdeMO connector is developed 

by Tokyo Electric Power Company in 2011. Currently, CHAdeMO is more popularly used 

in United States in the Nissan Leaf and Mitsubishi EVs. At present the CHAdeMO fast 

chargers are rated up to 70 kW and the company announced that it would be upgraded to a 

rating of    150 kW [2]. 

The next or second standard DC fast charging is Coast Clutch Solenoid (CCS) or 

SAE Combo. The word combo means the plug consists of both AC and DC charging 

facility. It is developed by a group of European and US auto manufacturers in 2011.  At 

present the CCS fast chargers offer charging power up to 50 kW. The third DC fast 

charging standard is developed by Tesla in 2012. It is operated at 480 V and with the 

maximum power rating of 120kW. Tesla Company announced that it would be upgrade the 

Tesla connector to a rating of 350 kW [2]. 

 
 

CHAdeMO 
 

CCS (North America) 

 
 

CCS (Europe) 

Figure 1.4 DC fast charging connector types [8] 
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The advantage of DC fast charging is that it connects directly to the battery input 

system. Level 3 charging is typically around 480 V and 100 Amps. The maximum output 

power available is 120 kW and this has the potential to add 200 miles of range in 1 hour, or 

100 miles in 30 mins. The actual power is “negotiated” between the charger and the EV 

battery management system, on a real time basis. Thus, the actual current varies greatly 

according to the Temperature of the battery and the State of Charge (SoC). The 

comparison of different charging levels of EVs is listed in Table 1.4. 

Table 1.4: The comparison of different charging methods of EVs [3] 

 

1.2.5 Charging Communication Protocols 

The Charging communication protocols are necessary for both the EV users and 

grid operators. For optimal charging of EV battery the EV user needs to know the state of 

charge, state of health, battery voltage and required safety information. Further, the EV 

user has to know Time-of-Use (ToU) Pricing, Distribution network capacity and the 

Demand response measures. The CHAdeMO uses a communication protocol knows as 

CAN and the CCS or SAE Combo uses the PLC protocol. In United States and Europe 

Open Charge Point Protocol is more popularly using, it is developed by Open Charging 

Alliance. 

Charging 

method 
Charge Time 

Power(kW)/ Voltage(V)/ 

Current(A) 

Power 

Equivalent 

Level 1 
2 to 5 miles of range per 

hour of charging 
1.2-2.4/120/15 Toaster 

Level 2 
10 to 20 miles of range 

per one hour of charging 
7.2-7.6/240/40 Clothes dryer 

DC Fast 

Charging 

80to 100 miles if range 

per 20 minutes of 

charging 

100-120/480/125 CHAdeMO 
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1.3 Wireless Power Charging (WPC) 

The wireless charging is working based on the principle of inductive coupling. It is 

also known as inductive charging. In this kind of coupling, charging pad is placed on the 

pavement and the charging pad is placed underneath of the EV. The electric current is 

passed through the pavement pad, which creates a circular magnetic field that is captured 

by EV receiving pad to charge the EVs batteries.   

The wireless EV charging system has four methods: 1) traditional inductive power 

transfer charging 2) Capacitive wireless power transfer (WPT) charging 3) Magnetic gear 

wireless power transfer 4) Resonant inductive power transfer. The comparison of above 

wireless power transfer technologies for EVs is given Table 1.5. 

Table 1.5: Comparison of different WPT methods for EVs charging [6] 

WPC 

methods 

Performance  Price  Suitability for 

EV charging  Efficiency  EMI  Frequency 

range (kHz) 

Inductive  Medium/High  Medium 10-50 Medium/High High  

Capacitive  Low/Medium Medium 100-600 Low  Low/Medium 

Permanent 

magnet 

Low/Medium High 0.05-0.5 High  Low/Medium 

Resonant 

inductive 

Medium/High Low  10-150 Medium/High High  

Further the WPT can be classified in two types: 1) Static charging 2) Dynamic 

charging 

1.3.1 Static Charging 

The static WPT charging technology is used when the vehicle is stationary. Static 

wireless charging can easily replace the EV with minimal driver participation and it solves 

the safety hazards like trip hazards and electric shock. The following are the merits and 

demerits of static charging. 

Merits: 

1. Static charging is more convenient 
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2. It is suitable for self-driving EVs 

3. It is more safety charging method 

Demerits: 

1. High initial investment required for static charging 

2. More induction losses occurred  

3. It creates radiation exposure 

1.3.2 Dynamic charging 

At present the EVs are greatly suffered from two major drawbacks-initial cost and 

range anxiety. To overcome these drawbacks the EVs are required to charge frequently or 

install large capacity battery. This creates additional problems such as increase in cost and 

weight of EVs.  The dynamic wireless charging system is a promising technology, which 

can reduce the problems associated with range anxiety and cost of EVs. The following are 

the merits and demerits of dynamic charging [7]. 

Merits: 

1. Dynamic charging reduces the stand-in charge time 

2. Minimum battery depth of discharge, it increases the life time of battery 

3. Smaller EV  battery required 

Demerits: 

1. The abrasion and foreign objects on road surface reduces the efficiency 

2. High magnetic flux leakage  

3. Real-time coil misalignment estimation is required 

1.4 Battery Swapping Station 

  In recent years, the people are moving towards the Battery Swapping Station (BSS) 

methodology, due to its own advantages. In BSS technology the EV owners swap their 

depleted batteries in nearby BSS with the fully charged batteries. This process takes around 

three minutes just like gasoline refueling stations. In BSS method, the EV driving into a 

battery switching bay and the automated system will position the EV and current battery is 

replaced with the fully charged battery [3]. The depleted batteries are charged (with 

appropriate Level-1, Level-2 and Level-3 charging options) in BSS based on next hour’s 

demand and electricity price. The BSS charging method has more advantages as compared 
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to the conductive and inductive charging. The following are the advantages of BSS 

charging method, 

1. The BSS provide fully charged battery, without waiting for battery charging. 

2. The range anxiety is eased to some extent. 

3. The charger is outside of EV, so there is no limitation on size and power levels of 

charger. 

4. The BSS provides high flexibility on the charging power as well as charging time 

of battery based local load demand. 

However, the BSS charging method is not so popular due to the following reasons. 

1. A standardized battery and its interface devices required across the all EV users and 

BSS. 

2. The EV users cannot accept the not owning the battery. 

3. The frequent connection and disconnection of EV battery causes safety issues. 

4. There should be a reliable way to estimate the state of health of battery and a better 

communication (arrival time, state of charge and   travelling distance) required 

between EV users and BSS.  

1.5 Distributed Generations (DGs) 

Distributed Generations (DGs) in Distribution System networks are rapidly 

increased as the load demand on the Distribution System is growing exponentially. DG is 

small-scale power generation and usually located in distribution network. DG units are 

mainly energized by Wind, Solar and Fuel cell and have many advantages over centralized 

power generation. The optimum DG placement and sizing at planning stage of distribution 

system is necessary to achieve reduction of power system losses and improve the voltage 

profile. However, installing of DG units at non-optimal place may get an opposite effect to 

what is desired.  

Selecting the best places for installing DG units and their preferable sizes in large 

distribution systems is a complex combinatorial optimization problem. Further, the optimal 

planning of FCSs and DGs in distribution system, and optimal scheduling of EV batteries 

in BSS are the complex combinatorial (the objective function with two more objective 

parameters) optimization problems. To solve these, multi-objective meta-heuristic 

techniques with good exploration and exploitation are popularly used.  
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1.6 Multi-Objective Optimization 

Multi-objective can be defined as the problem of finding “a vector of decision 

variables which satisfies the constraints and optimize a vector function whose elements 

represent the objective function”. These objective functions are from mathematical 

description of relevant performance criteria and are usually conflicting with each other. 

Hence, the term ‘optimize’ means finding a solution which give the values of all objective 

functions that are acceptable [8].  

Though the multi-objective optimization offers a set of solutions which are all 

optimal, the user needs only one final solution. The user needs some higher level 

information to choose one solution from the set of optimal solutions. Often, such higher 

level information is non-technical, qualitative and experience driven. Therefore, in a multi-

objective optimization, idealist effort must be made in finding the set of trade-off optimal 

solutions by considering the all objections simultaneously. After a set of such trade off 

solutions are found, the user can use high level information to make a choice. Higher level 

information is usually taken from domain expertise.  

The principle of an ideal multi-objective optimization procedure is to: 1) find 

multiple trade-off optimal solutions with a wide range of values for objectives 2) choose 

one of the solutions using higher level information. This approach is depicted in Figure 

1.5. 

Minimize f1
Minimize f2

.

.

Minimize fNobj

Subjected to equality and 

inequality constraints

Multi objective 

optimizer

Multiple trade-off solutions

 (Pareto set)

Problem Knowledge 

decision making

Solution 

Step-1

Step-2

  

Figure 1.5: Schematic of an ideal multi-objective optimization procedure [10] 
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The Figure 1.5 shows the principle of an ideal multi-objective optimization 

procedure. Step-1 is achieved by blocks vertically downwards where optimization is 

performed for f1 to fNobj using Multi-objective optimizer. Step-2 is achieved by horizontal 

blocks towards the right. The single objective problem doesn’t require step-2. But, in case 

of objective function optimization with multiple global solutions, both steps are necessary. 

In multi-objective optimization, a solution could be best, worst and also totally 

different from other solutions, with respect to the objective function values. Best solution 

means a solution which is not worst in any of the objectives, but at least better in one of the 

objective functions. The optimal solution is the solution set that is not dominated by any 

other solution in the search space. Such an optimal solution is called a Pareto-optimal 

solution and the entire set of such optimal trade-off solutions is called a Pareto-optimal set. 

1.7 Meta-heuristics Techniques 

Most conventional or classic algorithms are deterministic. For example, the 

Simplex method in linear programming is deterministic. Some deterministic optimization 

algorithms have used the Gradient information and they are called Gradient-based 

algorithms. The well-known Newton-Raphson algorithm is Gradient-based approach, as it 

uses the function values and their derivatives, and it works extremely well for smooth uni-

modal problems. Even though, if there is some discontinuity in the objective function, it 

works well. But it gives a single optimal solution. The multi-objective optimization gives 

multiple optimal solutions as an optimal Pareto front. The solutions present in the optimal 

front are optimal.  

For stochastic algorithms, in general we have two types: heuristic and meta-

heuristic, though their difference is small. Generally speaking, heuristic means “to find” or 

“to discover by trial and error.” Quality solutions to a tough optimization problem can be 

found in a reasonable amount of time, but there is no guarantee that the solutions have 

reached the optimal solutions. It can be expected that these heuristic algorithms work most 

but not all the time. This is good when we do not necessarily want the best solutions or 

rather good solutions are easily reachable. Further development of heuristic algorithms is 

the so-called meta-heuristic algorithms. Here Meta means “beyond” or “higher level,” and 

these algorithms generally perform better than simple heuristics. In addition, all meta-

heuristic algorithms use certain trade-offs of randomization and local search. It is worth 
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pointing out that no agreed definitions of heuristics and Meta-heuristics exist in the 

literature; some use the terms heuristics and Meta-heuristics interchangeably. However, the 

recent trend is to name all stochastic algorithms with randomization and local search 

property as Meta-heuristic. Here we also use this convention. Randomization provides a 

good way to move away from local search to another search on a global scale. Therefore, 

almost all Meta-heuristics algorithms tend to be suitable for global optimization. 

Two major components of any meta-heuristic algorithm are intensification and 

diversification, or exploitation and exploration. Diversification means to generate diverse 

solutions so as to explore the search space on a global scale. Intensification means to focus 

on the search in a local region by exploiting the information that a current good solution is 

found in this region. This is in combination with the selection of the best solutions. The 

selection of the best solution ensures that the solutions will converge to the optimality, 

whereas the diversification via randomization avoids the solutions being trapped at local 

optima and, at the same time, increases the diversity of the solutions. The good 

combination of these two major components will usually ensure that the global optimality 

is achievable [8]. 

Meta-heuristics, in their original definition, are solution methods that organize an 

interaction between local improvement procedures and higher level strategies to create a 

process capable of escaping from local optima and performing a robust search of a solution 

space. Over time, these methods have also come to include some procedures that employ 

strategies for overcoming the trap of local optimality in complex solution spaces.  

A number of tools and mechanisms that have emerged from the creation of 

metaheuristic methods have proved to be remarkably effective. With that Meta-heuristics 

have moved into the spotlight in recent years as the preferred line of attack for solving 

many types of complex optimization problems, particularly those of a combinatorial 

nature.  

The problem considered in this dissertation is “Multi-objective optimal planning of 

FCSs and DGs in distribution system” and it is also a complex combinatorial problem with 

many constraints. To obtain optimal solution for these types of problems a suitable multi-

objective optimization Algorithm is required. 
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 Due to the great improvements in charging methodologies and increase in EV 

population, the literature survey initially focussed on optimal planning of FCSs in 

distribution system. Even though the FCSs are optimally planned, it added load to the 

distribution system. To ease these, the addition of DGs along with FCSs in distribution 

system is one of the suitable solution. Further, the survey is continued on effect of EV load 

modelling in distribution system and optimal scheduling of EV batteries in BSS.  

1.8 Literature Review  

1.8.1 Optimal planning of Charging Stations in Distribution System 

Wang .G et al., have considered the power distribution network, traffic network and 

EV owners driving behavior to formulate a multi-objective charging station planning 

method in [9]. The objectives in multi-objective optimization problem are to minimize the 

power loss and voltage deviation in the distribution network and the maximization of the 

service capability of charging station. To solve this optimization problem an efficient 

Cross-Entropy method is used and obtains the optimal Pareto solutions. However, the EV 

demand for services has been assumed to occur at fixed locations of the traffic network.  

To investigate the optimal site for EV charging station, the impact of fast charging 

at several specified sites in an existing distribution system has been calculated in [10]. The 

short circuit and protection studies were carried out at these sites using the utility-grade 

software packages.    

In [11], the authors firstly, the optimal location of EV charging station have 

identified by a two-step screening method with the account of environmental factors and 

the service radius of EVCSs. Secondly, a modified Primal-Dual Interior Point algorithm 

was proposed to determine the size of charging station by considering the total cost 

associated with the charging stations. The developed model was applied on IEEE 123 bus 

test system. The results indicated that the proposed method was significantly faster in 

minimization of distribution network power loss and improvement in voltage profile. But 

the EVs charging demand and their uncertainties were not considered.  

Sadeghi-Barzani P et al., have proposed a Mixed Integer Non-Linear Programming 

(MINLP) problem to solve the optimal planning (placement and sizing) of FCS, with the 

account of the cost of charging station, EV energy loss, electrification and electrical power 
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loss in the distribution system in [12]. The geographic information has been used to 

calculate the EV energy loss and station electrification cost. The size and location of 

charging station have been determined by solving the optimization problem using Genetic 

Algorithm (GA). 

Albert et al., the EV charging station placement problem was formulated as Mixed 

Integer Linear Problem (MILP) based on the convenience of drivers and the charging 

station coverage in [13]. The authors proved that the optimization problem was 

nondeterministic polynomial-time hard. To tackle this optimization problem the iterative 

MILP, Greedy Approach, effective MILP and Chemical Reaction optimization techniques 

were applied. The above each optimization method has its own characteristics and it was 

suitable for different situations like solution accuracy, problem size and existence of 

system prerequisite.  

The state of California uses freeway exits and highway intersections as moderate 

candidate charging station locations and also solves the optimization problem to optimize 

the number of FCSs in [14]. This study suggests that, the reservation system can benefit 

both the EV users and FCS operators by reducing the waiting time and minimizing the 

extra charging connecters needed.  

Guo et al., a multi-criteria decision making method has been used for selecting the 

most sustainable site of EVCSs by considering environmental, economic and social criteria 

in [15]. Further, to reflect the vagueness and ambiguity due to the judgements of decision 

makers, fuzzy Technique for Order Preference by Similarity to Ideal Situation (TOPSIS) 

method was applied for optimal charging station site selection.  

In [16], a heuristic algorithm has been employed to determine the optimal location 

and sizing of charging stations by considering the various aspects like initial investment 

cost and distribution system power quality parameters (real power loss reduction index, 

reactive power loss reduction index and voltage profile improvement index), in the 

objective function for the city of Allahabad in India. The improved version of Particle 

Swarm Optimization (PSO) was compared with the conventional GA and PSO algorithm 

and it was found that improved version of PSO has offered better results with minimum 

computational time. 
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A zonal approach and the geographic information associated urban roads, city 

zones and electric substations have been considered in [17], for optimal planning of FCSs 

in distribution system. The EV user behavior and hourly load profiles were considered to 

evaluate the expected charging demand, EV user cost and electric grid losses in 

distribution system. The extra power losses due to EV charging were also calculated by 

using AC load flow. The optimization problem was formulated as MINLP and it was 

solved by using the Genetic Algorithm to determine the optimal location and capacity of 

charging stations. For the optimal planning of FCSs the EV user charging preference plays 

a major role. But in this paper, the uncertainties regarding to initial SOC and charging start 

time of EVs have not considered.   

 X. Wang et al., the EV charging stations were placed at selected bus stops, to 

minimize the total installation cost of charging stations. For optimal planning of FCSs the 

two different scenarios were considered in [18]. The first one was by considering the 

battery size of EV and the second one was without considering the battery size of EV. Both 

the problems were formulated as integer nonlinear programs and solved by using Linear 

Programming Relaxation algorithm to get an optimal solution. The results demonstrate 

that, larger size of battery results in minimization of total cost of charging stations at 

selected bus stop. 

C. Luo et al., have applied a nested logit model to analyze the charging preference 

of the individual EV user and to predict the aggregated charging demand of each charging 

station in [19]. To determine the optimal location and size of FCSs, the authors have 

considered both the transportation network graph and the electric power network graph. 

The EV virtual city 1.0 Simulation Software was developed using the Java to investigate 

the interactions among the EV users, transportation network, electrical network and 

charging stations. A series of experiments were conducted on the city of the San Pedro 

District of Los Angeles, CA, USA, by collecting demographic and geographic data and it 

was found that, the charging station placement was highly consistent with the traffic flow. 

The authors have not considered the power quality parameters of distribution system in 

different stages of problem solving. 

The interactions between the road transportation and electrical network have been 

considered for optimal planning of FCSs in distribution system in [20]. The capacitated- 
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flow refueling location model has been used to capture the EV charging demand on the 

road transportation network under the constraints of different driving ranges. Then MINLP 

model was formulated for EV FCS planning with the electrical and transportation network 

constraints, which can be solved by using the deterministic Branch-and-Bound methods. 

In [21], a realistic model has been developed for the FCS placement problem in 

cities like Singapore by considering the interactions among charging stations, EV users 

charging activities, traffic congestion and queuing time. Initially, the FCS planning 

problem was formulated as bi-level optimization problem, later it is converted in single 

level optimization problem by exploiting the equilibrium point of EV charging game. 

    Liu H et al., have determined the moderate location of EVCS by using the 

Integrated Multiple Criteria Decision Making approach based on Grey Decision making 

trial and Evaluation Laboratory and uncertain linguistic multi-objective optimization in 

[22]. Grey Decision making trial and Evaluation Laboratory method was used to calculate 

the criteria weights and the uncertain linguistic multi-objective optimization by ratio 

analysis plus full multiplicative form has been used to select the optimal location of FCS.  

The Bayesian network model has been used to determine the optimal location of 

charging stations based on a sustainability perspective with the consideration of both 

qualitative and quantitative factors in [23]. Further, the sensitivity analysis was applied to 

validate the model and to identify the impactful factors on charging station location 

problem. 

Xiangning Lin et al., the analytic hierarchy process and load density method were 

used to calculate the cost coefficients of the objective function and to optimize the capacity 

of the charging station in [24]. Further, the authors have considered the aspect of Vehicle-

to-Grid. The optimization problem has been solved with the inclusion of the initial 

investment, operational and maintenance costs of feeders, substations and charging 

stations. 

In [25], the EVCS location has been determined in two stages. In the first stage, the 

service range of EVCS was evaluated using trip success ratio with the account of the 

uncertainty of trip distance and uncertainty in the remaining electric charge of EVs. In the 

second stage, the service range of charging station has been determined for the optimal 

location of the charging station. The optimization problem was formulated as the 
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maximum covering location problem in order to identify the optimal location of EVCSs in 

the distribution network.  

1.8.2 Simultaneous planning of FCSs and DGs in Distribution System 

In [26], the joint planning of EVCS and distributed Photovoltaic generation in the 

distribution system has been solved by using an accelerated generalized Benders 

Decomposition algorithm. A multidisciplinary approach has been proposed with the 

account of investment cost (the fixed cost of EVCS and PV power plant, variable cost for 

adding an extra charging spot in EVCS and per unit PV panel in PV power plant) and 

maintenance cost (the cost of electricity, penalty for unsatisfied PEV charging demand and 

penalty for undesirable voltage deviation), for identifying the location and size of EVCS 

and PV plant. 

In [27], an optimization model has been presented for the optimal planning of DG 

units, EVCSs, and Energy Storage systems within the electrical distribution system. The 

optimal planning of charging stations, renewable DG units and energy storage systems in 

the distribution system was solved by using a Second-Order Conic Programming problem, 

to optimize the active power loss and the penetration of DG, EVCS and energy storage 

systems within the distribution system. In this paper, most of the data was derived from 

probabilistic distributions which were not realistic. 

The optimized design of the EV charging station was explained in [28] with the 

integration of Renewable Energy Sources (RESs) and energy storage system. The Monte 

Carlo simulation was used to model the EV charging demand and the Renewable Energy 

Generation. Further, the GA was employed to maximize the net profit value. In this paper, 

the authors have not considered the simultaneous planning of both the charging stations 

and Renewable Energy Generation units. The optimization problem was attempted by 

using the weighted sum approach. 

Mohammad H et al., have determined the simultaneous optimal location and size of 

RESs and charging stations with the minimization of network power loss, voltage 

deviation and charging cost of EVs as objectives in [29]. The optimization problem was 

solved by using the multi-objective Differential Evaluation algorithm to get an optimal 

location and size of charging stations and RESs. Further, the objective coefficients were 
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calculated to increase the load factor by shifting the EV charging peak demand in to the 

domain of the hours with high solar radiation and wind speed. 

1.8.3 Impact of EV load modelling in Distribution System 

Mota .L et al., have obtained the realistic system analysis by using an accurate load 

model in [30]. The aim of this model was to optimize the operating cost while maintain the 

system security and reliability.  However, the load modeling was a complex problem due 

to distinctive feature of different type of loads in the distribution system.  The Exponential 

and the ZIP load models have been used to estimate the load parameters and the Weighted 

Least Squares method in recursive form was applied for dynamic parameter estimation. 

In [31], a group of well-defined EVs have been established to analyse their energy 

consumption and storage in the context of heavily electrified road transportation. The same 

requirements have been applied on European Union residential load profile to evaluate the 

impact of increased EV load and the potential for residential and EV load integration.  

The comparative studies have been carried out in [32] for various charging methods 

like uncontrolled domestic charging and off-peak domestic charging, smart charging and 

uncontrolled public charging. The optimization problem was stochastically formulated in 

order to account the stochastic nature of individual SOC and the starting charging time of 

each battery. The expected changes in future electricity tariffs and EV load have been 

incorporated in the above four scenarios. The degree of accuracy of results obtained by 

using proposed algorithm has not reported. 

Mullan .J et al., the potential impacts of EV charging has been tested on the 

Western Australian electricity grid by using constant power load model with the account of 

constraints on the system’s capacity to supply electricity for EV recharging in [33]. The 

test results demonstrated that, if the EV charging behaviors were managed from outside, 

then the electrical utility and transmission companies can get the significant short-term and 

long term benefits. Further, it has been investigated how the EV demand will affect the 

various components in electrical network. 

Li .G et al., have applied the probabilistic power flow load model to analyze the 

impact of PHEVs charging on electrical distribution system in [34]. Basically it 

emphasized a single PHEV charging load model and then focused on Queuing theory to 
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describe the behavior of multiple PHEVs in the distribution system. Two more scenarios 

have been carried out. The first one was modelling the overall EV charging demand at a 

charging station and the second one was modelling the overall EV charging demand in a 

local residential community. At the end a comparison has been made for results of the 

probabilistic power flow load model and Monte Carlo simulation. 

In [35], the multistate ZIP EV load model has been developed for Nissan Leaf 

using the level-1 charging. The results demonstrated that the Nissan Leaf with level-1 

charging was similar to Constant Current load model. The multistate ZIP load model was 

compared with the Constant Current load, which indicated that the predicted losses were 

lower in ZIP load model as compared with Constant Current load model. 

Stephen Schey et al., [36] summarizes the usage of Electric Vehicle Supply 

Equipment (EVSE) in households with Nissan leafs. To analyse the charging usage of EV, 

the data aggregation model has been developed by means of two metrics i.e. the charging 

demand and charging availability. Further, the impact of large scale EVs and the AC and 

DC EV charging methods were analysed. 

To study the impact of Plug in Hybrid Electric Vehicle (PHEV) in distribution 

system, a comprehensive load model has been developed in [37], by considering the 

battery capacity, SOC, number of electric vehicles, penetration level for upcoming years 

and energy consumption in daily trips. The impact of load of PHEVs charging has been 

tested with IEEE   34-bus radial distribution system. Further, the sensitivity analysis has 

been carried out to study the effects of PHEV operation modes in distribution network.  

  A multistage time-variant ZIP EV load model is proposed in [38] for the accurate 

analysis of EV battery charging. An accurate voltage dependent FCS EV load model has 

been presented with the account of power consumption, grid voltage and SOC of EVs. 

Purvins et. al., have proposed an accurate EV charging system by considering the 

constraints in the power converter which connects battery to electric grid [39]. To analyse 

the variation of power losses and voltage deviation in distribution system, the different 

voltage dependent EV load models have been presented in [40]. 
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1.8.4 Optimal scheduling of EV Batteries in BSS 

In [41] and [42] the authors have explained that, over the past decade the EV 

population was greatly increased to reduce reliance on fossil fuels and lower environmental 

pollution. However, many car owners were still deterred to buy EVs due to certain major 

drawbacks of EVs, such as long charging time, range anxiety, expensive EV batteries and 

short life time with fast charging. An efficient solution to these problems is the deployment 

of BSS to encounter all the drawbacks.  Firstly, The BSS provides a short charging time 

just like gas refuelling station. Secondly, the range is increased with high capacity batteries 

and by swapping a battery in nearby BSS. Thirdly, the EV users need not to pay the total 

initial cost of battery. Fourthly, in BSS technology, the batteries are charged in slow-

charging mode to extend their life.  

Q. Dai et al., have proposed an universal EV charging load forecasting method for 

Battery Swapping Station (BSS). To analyze the stochastic nature of BSS, the numbers of 

buses for battery swapping, charging start time, charging duration and the travelled 

distance were considered in [43]. The Monte Carlo simulation was used to estimate the 

uncontrolled energy consumption of BSS. Further, to estimate the uncertainty of EV 

charging demand the Generic Nonparametric method was employed. But, the parameters 

like battery degradation cost and the electricity Time of Unit (ToU) price were not 

considered.  

N. Liu et al., [44] have proposed a novel charging strategy to improve the 

operational performance of PV based BSS, with the account of self-consumption of PV 

energy, the service availability and operational profit. The specialty of proposed method 

was that a new decision-making approach was implemented instead of optimization 

algorithm. The charging methodology has been considered for simultaneous operation of 

the power distribution and battery-swapping service model. 

M. R. Sarker et al., have developed an optimization framework model for 

operational scheduling of EV batteries in BSS in [45]. It has considered the day-ahead 

scheduling process. In this optimization problem, the battery demand uncertainty and the 

electricity price uncertainty were modelled with Inventory Robust Optimization and Multi-

band Robust Optimization respectively. Further, the batteries were scheduled in BSS to 

operate in the mode of Grid to Battery (G2B), Battery to Grid (B2G) and Battery to Battery 
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(B2B).  The results obtained from the proposed model were helpful to stakeholders for the 

design and operation of BSS, to enhance the environmental sustainability of the power 

system with the integration of RESs and it allows taking short-run and long-run market 

decisions that exploit the storage capabilities of BSS. However, the authors have not 

incorporated the EVs demand uncertainties. 

Q. Kang et al., [46] have proposed a novel centralized charging strategy for EVs in 

BSS by considering the optimal charging location and charging priority based on spot 

electricity price. A population based optimization algorithms i.e. GA and PSO were used to 

minimize the charging cost, electric power loss and voltage deviation of electrical 

distribution system. Further, to get more accurate results a hybrid PSO-GA with dynamic 

crossover and adaptive mutation strategy was proposed and it has been compared with the 

GA, PSO and IPSO.  

In [47], a two level hierarchical model has been proposed. In which the unit model 

follows a transition-based battery allocation technique and the station model offers a 

system-view platform.  Based on the above hierarchical model, the grid scheduling strategy 

with battery reservation and the general grid scheduling were evaluated in terms of average 

battery life and net profit using South Australia and New South Wales electricity demand 

profiles. The test results demonstrate that, the grid scheduling strategy with battery 

reservation results in maximization of both profit and life time of batteries.  

Hao .W et al., have formulated  a multi-objective optimization problem for BSS in 

order to optimize the number of batteries taken from stock and charging of damage 

batteries using different charging methods in [48]. The varied population Genetic 

Algorithm (GA) and varied population Differential Evaluation (DE) algorithm have been 

proposed in order to calculate the optimal solution and these algorithms were compared 

with conventional GA, Particle Swarm Optimization (PSO) and IPSO. The results 

demonstrate that the varied population GA and varied population DE were giving better 

results with less computational time. 

In [49], the optimization problem was formulated in order to minimize the cost by 

determining the optimal scheduling of EV batteries in BSS. Here, the cost includes the 

number of batteries taken from stock to serve for the all incoming EVs swapping demand, 

charging of damage EV batteries with the use of high power rating chargers and electricity 
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charging cost of EVs during different time periods of the day. An integrated algorithm has 

been proposed to solve the above optimization problem, which was inspired by the GA, 

DE and PSO. The proposed method was not suitable, if the depleted battery inventory has 

few or no batteries. 

B. Sun et al., have proposed an optimal charging policy with the aim of minimizing 

charging cost while ensuring the Quality-of-Service in [50]. The charging scheduling 

problem has been formulated as a constrained Markov Decision process and the optimal 

policy was derived by the standard Dynamic Programming and Lagrangian method.  

Further, to avoid the curse of dimensionality in practical applications the structure of the 

optimal policy and Dynamic Programming procedure transform into an equivalent 

threshold optimization problem with a discrete separable convex objective function.  

P. You et al., have proposed an optimal charging scheduling problem for BSS that 

assigns each EV to optimal charging station to swap its depleted battery based on its 

current location and state of charge in [51]. The optimal charging scheduling problem 

considers to minimize the weighted sum of travelled distances of EVs and electricity 

charging cost with the account of EV range and grid operational constraints. To solve the 

optimization problem the Second-Order Cone Programming Relaxation of optimal power 

flow and generalized Benders Decomposition algorithms have been used. 

In [52], the optimal scheduling of EVs batteries in BSS has been proposed and it 

was solved by using Non-dominated Sorting Genetic Algorithm-II to optimize the battery 

charging cost, distribution network power loss cost, voltage profile and network power 

loading capacity. Further, the Dynamic Pricing model was applied for EV battery charging 

scheduling. 

In [53], the scheduling of charging bays in BSS have been proposed with the aim of 

minimizing charging cost while satisfying the fully charged batteries demand. Basically, 

the BSS has two types of operations. The first one is loading the depleted batteries in to 

charging bays and unloading the fully charged batteries. The second one is controlling the 

charging rate of individual charging bay. The optimization problem as formulated has 

Mixed Integer Non-Linear with quadratic battery degradation cost and it was solved by 

using Benders Decomposition algorithm. The significance of proposed algorithm was that 

it solves own sub problem in each charging bay and then each sub problem was partitioned 
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into multiple independent and identically structured problems for efficient parallel 

implementation. 

1.9 Motivation 

From the above literature review, it is observed that the maximum benefits can be 

obtained from the optimal planning of FCSs and DGs in the distribution system. But there 

is a greatest challenge to create adequate charging infrastructure to meet the present and 

future increased EV population demand. The increased EV charging infrastructure will 

cause certain problems (increase of power losses, line loading and the voltage deviation) in 

the distribution system.  

 To overcome the above mentioned problems, the simultaneous planning of FCSs 

and DGs in the distribution system is required. Further, the optimal planning of 

FCSs and DGs in distribution system has to be addressed by considering the 

present and future increase in EV population.  

 

 Next, for analyzing the impact of the load of charging stations on the performance 

of distribution system an accurate EV load model is required. 

 

 Multi-objective optimal scheduling of EV batteries in BSS has to be developed in 

order to optimize the number of batteries taken from battery stock, charging 

damage and electricity charging cost of batteries. 

1.10 Objectives of Thesis 

The objectives of this thesis include: 

 To develop a multi-objective optimization model for simultaneous optimal 

planning of FCSs and DGs in distribution system. 

 To propose an optimization algorithm that enhances the exploration and exploitation 

of the optimization problem in a multi-objective environment. Thus, a novel hybrid 

Shuffled Frog Leap-Teaching Learning Based Optimization (SFL-TLBO) algorithm 

is proposed and implemented to solve the optimization problem for optimal planning 

of FCSs and DGs in the distribution system for the present and future EV load 

enhancement. 
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 Further, to analyze the impact of load of FCS in distribution system with various EV 

load models. 

 To develop multi-objective BSS model to optimize the number of batteries taken 

from battery stock, battery degradation and electricity charging cost of batteries. 

1.11 Outline of Research Work  

In the majority of previous works, the authors have considered the optimal planning 

of charging stations only as it strongly affects the distribution system power losses and 

voltage profile. It also causes the over loading in distribution system.  From the literature, 

it is noticed that the optimal planning of DGs in distribution system results in improved 

voltage profiles, reduced real and reactive power losses. Hence, there is a need of 

simultaneous planning of both the FCSs and DGs in distribution system. The improper 

planning of FCSs and DGs causes a negative impact on the distribution system. In this 

context the distribution system operator has to face a significant challenge to identify the 

optimal location and size of FCSs and DGs in the distribution power network.   

In this research work, the simultaneous placement of both FCSs and DGs were 

optimally planned to minimize the investment cost of FCSs and DG units, the specific 

energy consumption of EV users, voltage deviation and power losses in the coupled 

electrical distribution system and transportation network. 

Meta-heuristic techniques are more popular to solve the combinatorial complex 

optimization problems. To date, there are numerous meta-heuristic optimization algorithms 

available in the literature. The more popular meta-heuristic algorithms are Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), Shuffled Frog-Leaping Algorithm 

(SFLA), Teaching-Learning-Based Optimization (TLBO). Considering the exploration and 

exploitation abilities of TLBO and SFLA, these algorithms are considered for optimal 

planning of FCSs and DGs in the distribution system. Further, a novel attempt of 

hybridization of SFLA and TLBO (Shuffled Frog Leaping- Teaching-Learning-Based 

Optimization (SFL-TLBO)) has been made to enhance search ability and the obtained 

results found to be superior.  

Furthermore, the present and future growth of EV population have been considered 

for simultaneous planning of FCSs and DGs in the electrical distribution system, which is 

essential for better operation of the distribution system.  
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Inaccurate modeling of EV load in the distribution system may result in imprecise 

calculation for Network Power Loss (NPL) and voltage deviation. The Constant Power 

(CP) load model is the more popularly used load model to model both the conventional and 

EV loads in the distribution system. But the CP load modeling cannot provide accurate 

information about different types of voltage-dependent conventional loads and EV 

charging process. Hence, as a part of this research work, for optimal planning of FCSs and 

DGs in the distribution system, the EV loads are modeled as Constant impedance-Constant 

current-Constant power (ZIP), Exponential and Constant Current load models. The 

conventional loads are modeled as Residential-Industrial-Commercial (RIC) loads. With 

these EV load models, the impact of FCS on the distribution system has been analyzed.    

Any optimization approach for optimal planning of FCSs and DGs in the 

distribution network demands a load flow algorithm. The research work is initiated by 

developing software for “Current Injection based distribution Load Flow (CILF) method 

which can work for Radial and Meshed distribution networks. 

The BSS methodology is more popularly used to recharge EV batteries due to its 

several advantages.  As a part of this research work, the multi-objective BSS model is 

developed in order to optimize the number of batteries taken from battery stock, charging 

damage and electricity charging cost of batteries.  Further, the dynamic electricity pricing 

model is considered to avoid new peaks of battery charging demand in BSS.  

1.12 Thesis Organization 

The thesis is organized into six chapters and presented as below; 

The first chapter presents the detailed literature survey, key issues and motivation 

for the research work carried out in the area of “Optimal planning of Fast Charging 

Stations (FCSs) and DGs in Distribution System.” In this chapter, an in-depth literature 

review is carried out on simultaneous planning of FCS and DGs in distribution system, 

impact analysis of FCS in distribution system and the operational scheduling of Electric 

Vehicles (EVs) in Battery Swapping Station (BSS). The objectives, motivation of the 

thesis and chapter wise summary are also outlined. 

Second chapter reports “a Multi-objective optimization problem is formulated to 

obtain the simultaneous placement and sizing of FCSs and DGs with the constraints  as the 
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number of EVs in all zones and possible number of FCSs based on the Road and Electrical 

network in the proposed system.” The problem is formulated as a Mixed Integer Non-

Linear Problem (MINLP) to optimize the EV user loss cost, Network power loss cost, FCS 

development cost and improve the Voltage profile of the electrical Distribution System. 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is used for solving the MINLP.  

Third chapter delineates the “optimal planning of FCSs and DGs with the account 

of the present and future increase in EV population.” A Multi-objective optimization 

problem is formulated for optimal planning of FCSs and DGs with the objective of 

minimizing the Voltage deviation, Distribution network power loss, DGs cost and the 

Energy consumption of EV users. This optimization problem is solved for different levels 

of increase in EV population for various cases. A novel hybrid Shuffled Frog Leaping-

Teaching Learning Based Optimization (SFL-TLBO) algorithm is proposed and 

implemented to solve the above multi-objective optimization problem. The performance of 

the proposed algorithm is compared with Shuffled Frog Leaping (SFLA) and Teaching 

Learning Based Optimization (TLBO) algorithms. 

Fourth chapter elaborates the “Impact of EV Load Modeling on FCSs planning in 

electrical Distribution System.” EV loads are modelled as constant impedance-constant 

current-constant power (ZIP), Exponential, Constant Current and Constant Power load 

models and the conventional loads are modeled as Constant Power and Residential-

Industrial-Commercial (RIC) load models. With these EV load models, the impact of FCS 

on the performance of distribution system is analyzed. A newly proposed multi-objective 

hybrid SFL-TLBO algorithm has been used for optimal planning of FCSs in distribution 

system with the objective of minimizing all three aspects like Network Power Loss (NPL), 

Maximum Voltage Deviation (MVD) and EV User Cost (EVUC). To consider the 

uncertainty of initial State of Charge (SOC) of EVs, Monte-Carlo simulation is used. These 

studies are carried out on 37-bus distribution system. The results establish that the ZIP load 

model is accurate for modeling the EV loads and the RIC load model is more appropriate 

for modeling the conventional load.   

Fifth chapter covers “the operational scheduling of EV batteries in BSS in order to 

optimize the number of batteries taken from battery stock, battery degradation and 

electricity charging cost of batteries.”  Further, a newly proposed dynamic electricity 
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pricing model is employed to avoid new peaks of battery charging demand in BSS. A BSS 

model with finite EV battery swapping demand in each hour of the day is solved by using a 

multi-objective Shuffled Frog Leaping Algorithm (SFLA). The simulation results 

demonstrate the effectiveness of multi-objective optimization and dynamic pricing model. 

Finally, Sixth chapter highlights the various conclusions drawn in different chapters 

and the significant contribution of research work and provides scope for further research in 

this area. The complete research work is presented in the form of flow chart as shown in 

the figure 1.6. 
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Figure 1.6: Flow chart for work flow 

 

 

 

 

FCSs: Fast Charging Stations; DGs: Distributed Generations; NSGA-II: Non-dominated Sorting Genetic Algorithm-II; 

SFLA: Shuffled Frog Leaping Algorithm; TLBO: Teaching and Learning Based Optimization Algorithm; SFL-TLBO: Shuffled 

Frog Leap-Teaching and Learning Based Optimization algorithm; CP: Constant Power; CC: Constant Current; ZIP:  

Constant Impedance-Constant Current-Constant Power, BSS: Battery Swapping Station 
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2.1 Introduction 

The large-scale construction of FCSs for EVs charging is helpful in promoting the 

EVs. It creates a significant challenge for the Distribution System operator to determine the 

optimal planning, especially the siting and sizing of FCSs in the electrical distribution 

system. Inappropriate planning of Electric Vehicle Charging Stations (EVCSs) cause a 

negative impact on the distribution system [10].  

One of the greatest challenges in developed and developing countries is reducing 

the greenhouse gas emissions. The fossil fuel vehicles with Internal Combustion Engines 

(ICE) and electrical power generation from fossil fuels are the major causes of the 

greenhouse gas emissions [10]. The most promising pathway to energy security and 

reducing emissions is facilitating the global deployment of 20 million EVs by 2020 and the 

use of renewable distributed DGs [54].  If this rate is maintained to 2050, Electric vehicles 

will replace 62% of fleet vehicles. The EVs cause lower emission and require less energy 

for transit for a mile, as compared to ICEs. Hence they are required as a promising tool to 

combat the challenges related to energy sustainability and global warming. Therefore, 

governments, automobile companies, energy agencies, etc., have made significant efforts 

to enhance the EV population [55], [56]. 

This chapter present a multi-objective optimization problem to obtain the 

simultaneous placement and sizing of FCSs and DGs with the constraints such as the 

number of EVs in all zones and possible number of FCSs based on the road and electrical 

network in the proposed system.  

2.1.1 Fast Charging Station 

The schematic diagram of FCS is shown in Figure 2.1 and it shows that, 

arrangement requires only one AC-DC Grid Tied converter to realize a DC bus and the 

EVs are charged by DC-DC converters. In this the DC bus facilitates to connect the 

Renewable Energy Sources (RESs) generating units directly through a simple DC-DC 

converter. Three phase transformer is used to step down the voltage from the distribution 

grid voltage level to EVs battery voltage levels. Three phase AC/DC converter transforms 

the AC power into DC power and it forms a DC bus. EVs get connected to the DC bus for 

charging through DC/DC converters.  
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Figure 2.1: The schematic diagram of FCS [61] 

The following aspects have to be considered while designing a FCS 

 Available area for parking of electric vehicles; this determines the number 

of vehicles which can be charged. 

 The EVs charging demand estimation for FCS in a particular area. 

 Network constraints like nominal and permissible voltage profile. 

 The power flows at the point of common coupling. 

 Allowable rated charging power to be supplied to EV. 

 

2.2 Problem formulation  

This section presents the formulation of the objective function to minimize (i). FCS 

development cost, (ii). Cost of specific energy consumption of EVs, (iii). Electrical 

Network Power Loss (NPL) cost, (iv). DG power generation cost and (v). maximum 

voltage deviation (MVD) in the electrical distribution network. 

For determining the optimal FCS location and EVs position, the proposed approach 

uses an area with the number of zones as shown in Figure 2.2. The area divided into zones 
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as Z1, Z2, and Z3 for which the EVs data are available. EV population in each zone is 

distributed and it is assumed that the EV population in each zone is located at the 

geographic centre of the zone. 

Z1

Z2

Z3

 

Figure 2.2: Proposed area with zones 

Assume that in a considered day, the total number of EVs (𝑁𝑇𝐸𝑉) in the study area 

are charged by the FCS. The 𝑁𝑇𝐸𝑉 in study area calculated as 

𝑁𝑇𝐸𝑉 = ∑ 𝑁𝐸𝑉,𝑧
𝑛𝑧

𝑧=0
      (2.1) 

Where NEV,z is the number of dedicated EVs in zone Z, i.e., all dedicated vehicles 

are regular costumers of that zonary FCS and 𝑛𝑧 is the number of zones in the considered 

study area. 

2.2.1 Station Development Cost (SDC) 

The considered jth station development cost mainly depends on the number of 

charging connectors in jth FCS (S(j)), and its rated capacity (PC) [17]. 

𝑆𝐷𝐶(𝑗) = 𝐶𝑖𝑛𝑖𝑡 + 25 ∙ 𝐶𝑙𝑎𝑛 ∙ 𝑆(𝑗) ∙ 𝑁𝑌 + 𝐶𝑐𝑜𝑛 ∙ (𝑆(𝑗) − 1) ∙ 𝑃𝐶    (2.2) 

where Cinit is the station fixed cost ($); Clan is the yearly land rental cost ($ per 

square meter); Ccon is the charger development cost ($/kW) of jth station and NY is the 

number of years in the study period; S(j) and PC are the number of connectors in the jth 

charging station and rated power of charging connector (kW); The number of connectors in 

the jth charging station S(j) is calculated as:  

𝑆(𝑗) = ∑ (𝑚𝑎𝑥(𝐶𝑃𝐸𝑉) ∙ 𝑁𝐸𝑉,𝑧 ∙ 𝑆𝐸(𝑧, 𝑗))
𝑛𝑧
𝑧=1      (2.3) 
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Where the variable CPEV is a vector having the probability of EV charging in the 

hour (h) of the day; SE(z, j) is binary decision variable, equals to 1 if EVs in the zone z is 

charged by the station j, otherwise, zero. The selection of EVs in the zone z to jth charging 

station depends on the minimum distance between jth charging station to zone z as 

compared to the other CSs. 

The area required for each connector and the minimum clearance between the 

connectors are 25m2 and 3m respectively. The rating of charging connector varies in the 

range of 50-250 kW based on the connector technology [13]. The capacity of jth FCS is 

determined as:  

𝐶𝐹𝐶𝑆(𝑗) = 𝑠(𝑗) ∙ 𝑃𝐶              (2.4) 

2.2.2 Electrical Vehicle User Cost (EVUC)  

The EV user should drive a certain trajectory to reach to the FCS. EV user cost 

represents the cost associated with the energy consumed by EV to reach the FCS. For EVs 

located in zone Z, the EV user cost to reach nearest FCS for being charged at charging 

station 𝑗, 𝐸𝑉𝑈𝐶(z, j) is calculated as follows [17]: 

𝐸𝑉𝑈𝐶(𝑧, 𝑗) = 𝑑(𝑧, 𝑗) ∙ 𝑆𝐸𝐶 ∙ ∑ 𝐶𝑃𝐸𝑉(ℎ) ∙ 𝑁𝐸𝑉,𝑧 ∙ 𝐶𝐸𝑃
24
ℎ=1     (2.5) 

Where d(z, j) is the distance between zone z and charging station j. SEC and CEP 

are the specific energy consumption of EVs (kWh) and electricity price during hour h. The 

distance to displacement ratio depends strongly on the optimality of the road network in 

the study area. For an optimal road network, the distance approaches the displacement. 

Hence, choosing the displacement rather than distance in this approach to obtained CSs are 

still optimal for the optimal road network. 

2.2.3 Network Power Loss (NPL) Cost  

The higher FCS charging demand increases the line and substation loading. It 

causes an increase in Distribution System losses. The Distribution System loss has a 

nonlinear relationship with the system loading. The variable Distribution System loss is 

significant due to EV charging demand, hence the precise calculation of electrical grid loss 

is required by considering the variation in grid load.  
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The distribution NPL cost during one year for all seasons is calculated as follows: 

𝐶𝑁𝑃𝐿 = ∑ ∑ 𝐿𝑇𝑃(ℎ, 𝜔) ∙ 𝑁𝑇𝐻(𝜔)24
ℎ=1

𝑛𝜔
𝜔=1 ∙ 𝐶𝐸𝑃      (2.6) 

Where nω is the number of seasons; LTP is the total electrical power loss including 

FCS load; and NTH is the total number of hours in each season of the year. 

The total power loss (LAP) for hour h, during the season ω due to FCS charging 

demand, is calculated as follows [23]: 

LTP(h, ω) = LGP(h, ω) + LAP(h, ω)      (2.7) 

Where LTP is the total power loss including FCS load; and LGP is the gross power 

loss with conventional load (without FCS load).  

2.2.4 DG Power Cost  

The DG power cost consists of investment cost(CI) , operation cost  (COP)  and 

maintenance cost (CM) of DGs. Investment cost contains unit construction, installation and 

essential equipment cost. Operation cost includes the cost of replacing components during 

their technical lifetime and maintenance cost contains costs of renewing, repairing, and 

restoring unit equipment in case of necessity [58]-[59] and [57]. 

 𝐶𝐼 = ∑ (𝑃𝐷𝐺,𝑔 ∙ 𝐶𝐼𝑁𝑉,𝑔)
𝑁𝐷𝐺
𝑔=1        (2.8) 

 𝐶𝑂𝑃 = ∑ ∑ (𝑃𝐷𝐺,𝑔 ∙ 𝑇ℎ ∙ 𝐶𝑂𝑃′ ∙ (
1+𝑅𝐼𝑁𝐹

1+𝑅𝐼𝑁𝑇
)

𝑁𝑌

)
𝑁𝐷𝐺
𝑔=1

𝑁𝑌
𝑦=1      (2.9) 

𝐶𝑀 = ∑ ∑ (𝑃𝐷𝐺,𝑔 ∙ 𝑇ℎ ∙ 𝐶𝑀′ ∙ (
1+𝑅𝐼𝑁𝐹

1+𝑅𝐼𝑁𝑇
)

𝑁𝑌

)
𝑁𝐷𝐺
𝑔=1

𝑁𝑌
𝑦=1            (2.10) 

𝐶𝐷𝐺 = 𝐶𝐼 + 𝐶𝑂𝑃 + 𝐶𝑀       (2.11) 

where PDG,g and CINV,g are the rated real power (kW) and inverter cost of gth DG 

unit; COP′ and CM′ are the operating cost (MWh) and maintenance cost (MWh) of each DG 

unit; RINF  and RINT  are the inflation rate and interest rate of each DG unit; Th  is total 

number of hours in a year; NY and NDG are number of years and the number of DGs 

considered for the study. The above-mentioned parameters required to calculate DG power 

cost are taken from [58]. 
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2.2.5 Maximum Voltage Deviation (MVD) 

Inappropriate placement of FCSs and DGs causes voltage instability in the 

distribution network. Both of over and under voltages affect the power quality of supply. 

The bus voltage deviation (p.u.) in four seasons for 24 hours is considered. The MVD of 

electrical Distribution System is calculated as follows, 

𝑚𝑎𝑥 𝑣𝑑𝑒𝑣 = 𝑚𝑎𝑥{1 − 𝑚𝑖𝑛(𝑣(𝑖))}         ∀ 𝑖 = 1,2, … 𝑛   (2.12) 

Where, min (v(i)) the minimum per unit voltage at bus i, n is the number of buses 

in a considered electrical distribution system.  

2.2.6 Objective function 

𝑚𝑖𝑛{∑ 𝑆𝐷𝐶(𝑗) + ∑ 𝐸𝑉𝑈𝐶(𝑘)𝑁𝑇𝐸𝑉
𝑘=1 + 𝐶𝑁𝑃𝐿 + 𝐶𝐷𝐺 + 𝑚𝑎𝑥 𝑣𝑑𝑒𝑣

𝑁𝐹𝐶𝑆
𝑗=1 }    

(2.13) 

Where NFCS is the optimal number of FCS obtained from the optimization 

algorithm. The objective function is to minimize the total cost related to FCSs, DGs, NPL 

and minimize the bus voltage deviation of the electrical Distribution System by meeting 

the following constraints. 

2.3 System Constraints 

The multi-objective optimization function (2.13) is bounded to the power balance, 

voltage, thermal and DG power generation constraints as explained in [27]-[29].    

At least one charging station should be selected to recharge the EVs in the study 

area with the following condition: 

∑ X(j)
NPC
j=1 > 0       ∀c = 1,2, … , NPC       (2.14) 

Where NPC is number of possible Charging Stations (CSs) and X(j) is the binary 

decision variable, which is equal to 1 if jth charging station is selected, otherwise, zero. 

At least one charging connector should be considered for each selected charging 

station, with the following condition given by (2.15): 

S(j) ≥ 0        ∀j = 1,2, … , NPC       (2.15) 
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Where S(j) is the number of charging connectors in jth FCS. 

EVs in each zone should select one optimal FCS based on the displacement 

between jth charging station and zone Z. 

∑ SE(z, j)X(j) = 1   
nz
z=1     ∀ 1,2, … , nz     (2.16) 

Where SE(z, j) is 1 if the EVs in zone z are selected jth charging station, otherwise 

zero. 

2.4 Modelling of DG units in Load Flow Studies  

In Distribution System the DG units, such as Photovoltaic systems, Fuel cells, 

Micro- turbines and the Wind turbine units are injected into the system via power 

electronic interfaces [62]. In such cases, the modelling of a DG unit in load flows depends 

on the control method employed in the converter control circuit. The DG units which have 

control over ‘P’ and ‘V’ independently may be model as PV type. Other DG units such as 

Induction generator based units which have control over ‘P’ and ‘Q’ independently may be 

modelled as PQ type. Using these models for DG units, Current Injection based Load Flow 

method is employed for Distribution System studies. 

2.4.1 Current Injection Based Load Flow (CILF)  

Any optimization approach for optimal placement and sizing of DG units in 

distribution network demands a good load flow algorithm. The traditional load flow 

methods such as Gauss-Seidel, Newton-Raphson and Fast Decoupled techniques are 

inefficient to solve Distribution networks due to the radial structure and wide range of 

resistance with low X/R ratios. Several methodologies have been proposed to solve the 

power flow problem in Distribution Systems such as Vector based Distribution load flow, 

Primitive Impedance Distribution load flow and Forward & Backward Sweep Distribution 

load flow. But, all these methods have limitations such as, not applicable for meshed 

Distribution Systems and implementation become complex when control devices are 

present in the system. The CILF (Appendix-III) [34] can be used for both radial and mesh 

systems and easy to accommodate the implementation of control devices. 

The present research work is initiated by developing software for “Current 

Injection based Distribution Load Flow” (CILF) method which can work for radial and 
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meshed distribution networks with and without the role of DG units. The working of this 

load flow technique is tested on IEEE 38 and 118-bus radial systems. 

2.5 NSGA-II for Simultaneous Optimal Planning of FCSs and DGs  

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is one of the most 

popularly used multi-objective optimization algorithm in different applications, due to its 

high performance for finding a set of Pareto solutions. The performance of NSGA-II is 

majorly depends on its evolution operators, mainly on the aspects of non-dominated 

sorting and crowing distance operator. Initially, a random parent population Pt of size N is 

generated, then it is sorted based on non-domination. Assign a rank to each solution based 

on its fitness value. The Binary Tournament selection, Recombination, and Mutation 

operators are used to generate offspring population Qt  of size N . Get the combined 

population Rt (Pt ∪ Qt) of size 2N. Then, the population Rt  is sorted according to its non-

domination. The solutions in the first front Ƒ1 are of good solutions as compared to the 

other front solutions in the combined population. If the size of the first front ( Ƒ1) is less 

than N, then choose all populations of front Ƒ1  for the new population Pt+1 . Then the 

remaining members of the new population are chosen from subsequent fronts in order of 

their ranking.  To choose exact N members for new population Pt+1 from the subsequent 

fronts we use crowded distance operator [62]. The crowding distance operator guides the 

selection process at various stages of the algorithm, to determine the density of solutions 

that are surrounding a particular solution [63].  

Table 2.1: Best NSGA-II parameters for optimal planning of FCSs and DGs  

NSGA-II parameters Values 

Population size (N) 100 

Number of iterations (Nite)  400 

Crossover probability (Pc) 0.8 

Mutation probability (Pm) 0.03 

The best parameter values for the NSGA-II which are selected through multiple test 

simulation runs for the optimal planning of FCSs and DGs in a coupled electrical 

distribution and transportation network are given in Table 2.1. 
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Figure 2.3: NSGA-II flow chart for optimal planning of FCSs and DGs [64] 
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In NSGA-II algorithm, the non-dominated sorting technique and crowding distance 

operator is used to rank the individual populations and to get good spread in the optimal 

Pareto front respectively. The selection operator is to “select the best and discard the rest” 

from a population keeping the population size constant. The crossover operator is used to 

create new solutions from the existing solutions available in the mating pool after applying 

selection operator. Mutation is the occasional introduction of new features in to the 

solution strings of the population pool to maintain diversity in the population and avoid 

premature convergence. The flowchart for optimal planning of FCSs and DGs in a coupled 

electrical Distribution System and transportation network with the NSGA-II algorithm is 

shown in Figure 2.3. 

2.6 Simulation Results and Observations 

To analyse the effectiveness of the proposed optimal planning of FCSs and DGs in 

a coupled electrical distribution and transportation network, three scenarios with multiple 

case studies are considered. 

2.6.1 Proposed System Data 

To test the proposed methodology, a study area of 720 km2 surface has been 

considered. The study area consists of 180 zones, and each zone has an equal area of 4 km2 

(2 km×2 km).  

Table 2.2: EVs population in each zone of test system 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 3 5 3 4 6 4 0 0 3 7 5 6 4 0 

2 3 5 4 6 4 6 7 8 7 9 8 7 5 6 4 

3 7 11 16 9 9 13 12 10 11 14 17 6 9 5 3 

4 6 1 7 15 16 17 17 9 15 7 14 17 9 15 1 

5 4 6 9 10 8 16 16 14 0 14 16 11 7 9 7 

6 0 13 14 10 16 14 19 15 17 14 12 8 15 9 4 

7 7 11 0 16 16 17 13 18 17 15 9 19 12 8 0 

8 4 9 15 14 12 11 4 16 19 9 12 17 17 12 6 

9 8 13 14 19 17 15 17 0 13 12 11 13 9 15 8 

10 3 12 9 16 13 14 9 14 16 15 17 16 15 13 3 

11 0 6 7 8 7 5 6 4 8 5 4 6 4 0 0 

12 0 5 3 4 6 4 0 7 3 0 5 6 4 3 4 

 



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System 
 

 

                                                                                                                                                      43 

 

Table 2.2 presents the assumed EV population in each zone of the study area. The 

total population in the study area is 1632 and among the total EVs population only some 

probability of EVs is charging in each hour during a day. The 118 bus electrical 

Distribution System is assumed to be available on the study area for electrical power 

supply. 

The percentage of electrical power load variation during the day for different 

seasons is taken from [25]. The base values of 118 Distribution System are 10 MVA, 11 

KV and the total real and reactive power load on the system is 22.71 MW and 

17.041MVAr. Figure 2.4 shows the single line diagram of 118 bus distribution network 

associated with the case study. 
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Figure 2.4: 118-bus radial distribution test system 

The possible placement of 16 FCSs (based connectivity of road and electrical 

Distribution network system connectivity) has been assumed to be placed along the main 

roads of the study area, with constraints of approximately equal distance among the FCSs. 

Rhombus symbol in Figure 2.4 shows the locations of possible FCSs. The Distribution 

System and charging station parameters used in the proposed system are listed in         

Table 2.3.  
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Table 2.3: EV and FCS parameters [13] 

Parameter Value Parameter Value 

NTEV 1632 SEC 0.142 kWh/km 

NY 5 CEP 87.7 $/MWh 

NPC 16 Clan 240 $/M2.Yr 

  Cinit 70000 $ 

  Ccon 208.33 $/kW 

    𝑃𝐶  96 kW 

 

NTEV- Total Number of Electric Vehicles 

NY-Number of Years 

NPC-Number of Possible Charging stations 

SEC- Specific Energy Consumption 

CEP-Electricity Price Cost 

Clan-Yearly land rental cost (in $/m2) 

Cinit-Fixed cost of station development. 

Ccon-Charging connector development cost (in $/kW) 

PC-Rated power of each connecter 

 

The charging probability of EVs (CPEV) in each hour during the day is shown in 

Figure 2.5. It is assumed that EVs are charged at their respective FCSs from 5:00 to 21:00 

hours a day. 

 

Figure 2.5: Variation of Charging probability (CPEV) 

To verify the effectiveness and feasibility of the proposed optimal planning of 

FCSs and DGs in the radial distribution network, three different scenarios are proposed as 

case studies. 

2.6.2 Scenario 1:Optimal placement of FCSs in coupled Electrical Distribution and 

Transportation Network 

The optimal number and locations of FCSs have been determined by considering 

the minimization of EV user's cost, NPL cost and the MVD in the distribution network. 

The optimal placement of FCSs is determined considering load variation during four 

different seasons (Appendix-IV). The optimization algorithm presented in Figure 2.2 is 

employed to evaluate the fitness function given in (2.13) against the different number of 
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FCSs in the network. This algorithm determines the optimal capacity and locations of 

FCSs in the study area. Since, the DGs are not considered in this scenario, the DGc in 

(2.13) is zero. The objective function for the different number of FCSs is compared in 

Figure 2.6. From this comparison, the optimal number of FCSs is determined to be 6. 

 

Figure 2.6: Optimal number of FCSs in the coupled electrical distribution and 

transportation network 

In scenario 1, based on the objective functions to minimize viz. NPL cost, EVUC 

and MVD, the following three cases are considered. The variation of Station  Development 

Cost (SDC) does not impact significantly on the overall objective function, since the total 

number of connectors in all CSs is approximately constant. Hence, SDC is not considered 

as an objective to minimize.  

Case 1: Minimization of NPL cost and MVD 

Case 2: Minimization of NPL cost and EVUC  

Case 3: Minimization of NPL cost, MVD and EVUC  

The optimal Pareto-front for the minimization of NPL cost, EVUC and MVD 

(Max. VD) simultaneously for all case studies of scenario 1 is shown in Figure 2.7. 
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Figure 2.7: Optimal Pareto-front plots for scenario 1 
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Table 2.4: Optimal planning of FCSs for scenario 1 

 S No. FCS number 1 2 3 4 5 6 

Case 1 
FCS location 92 40 98 61 28 108 

Number of EVs to FCS 243 187 187 469 300 246 

Case 2 
FCS location 28 42 92 71 35 57 

Number of EVs to FCS 307 83 330 358 307 247 

Case 3 
FCS location 61 108 103 57 80 98 

Number of EVs to FCS 661 274 89 281 262 65 

From the optimal Pareto front the best compromised solution is obtained using a 

min-max optimization technique as discussed in [31].  For the obtained compromised or 

moderate solution, the optimal FCS location and number of EVs connected to FCS for 

various cases in scenario-1 are presented in Table 2.4. The optimal objective parameters 

for scenario 1 are listed in Table 2.5. 

Table 2.5: Optimal objective parameters for scenario 1 

Case 
SDC 

(M$) 

EVUC 

(M$/year) 

NPL cost 

(M$/year) 

MVD 

(p.u.) 

1 2.053 0.02178 0.2178 0.1459 

2 2.052 0.01896 0.1876 0.156 

3 2.041 0.01399 0.18857 0.156 

(M$=Millions of Dollars) 

The SDC has been evaluated based on the total number of connectors in each FCS. 

The SDC, EVUC, NPL cost and MVD are obtained as 2.053 (M$), 0.02178 (M$/year), 

0.2178 (M$/year) and 0.1459 (p.u.) respectively in case 1 of scenario 1. In case 2, it has 

approximately same SDC. The EVUC, NPL cost and MVD are 0.01896 (M$/year), 0.1876 

(M$/year) and 0.156 (p.u.) respectively. When three objective parameters are considered 

(Case 3) the SDC, EVUC, NPL cost and MVD are comparatively minimum as compared 

to case 1 and case 2 of scenario 1. From the Table 2.5 the optimal values of the SDC, 

EVUC, NPL cost and MVD in scenario 1 are 2.041 (M$), 0.01399 (M$/year), 0.18857 

(M$/year) and 0.156 (p.u.) respectively. 

Even after optimal placement of FCSs, the voltage profile of the 118 bus 

Distribution System violates the system voltage constraints. To improve the voltage 

profile, in next scenario i.e. scenario 2, the optimal planning of DGs is considered in the 

coupled electrical distribution and transportation network.    
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2.6.3 Scenario 2:Optimal placement of DGs in proposed study system with 

previous optimal FCS load 

Optimal placement of DGs has been considered to improve the voltage profile in 

proposed distribution system.  Objective function (2.13) includes the DG cost, SDC, 

EVUC, NPL cost and MVD in Distribution System with the optimal FCSs load obtained in 

case 3 of scenario 1. The optimal placement of DGs is determined considering load 

variation during four different seasons (. The optimization algorithm presented in Figure 

2.8 is employed to evaluate the objection function presented in (2.13) against different 

number of DGs in the network. This algorithm determines the optimal size and placement 

of DGs in the network.  

 

Figure 2.8: Optimal number of DGs in the coupled electrical distribution and 

transportation network 

The objective function for different number of DGs is compared in Figure 2.8. 

From this comparison the optimal numbers of DGs is determined to be 4. In scenario 2, 

three cases are conducted to determine the optimal location and size of DGs with the 

account of the optimal FCSs load obtained in case 3 of scenario 1. The SDC and EVUC in 

scenario 2 are same as the case 3 of scenario1 and its value is constant.  
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Figure 2.9: Optimal Pareto-front plots for scenario 2 

Case 4: Minimization of DG value cost and MVD 

Case 5: Minimization of NPL cost and DG value cost  

Case 6: Minimization of DG value cost, MVD and NPL cost 
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The Pareto-front for different case studies in scenario 2 is shown in Figure 2.9. 

From the above optimal Pareto fronts the best moderate location and size of DG 

units are determined using min-max method. The optimal location and size of DG units for 

different case studies in scenario 2 are presented in Table 2.6. 

Table 2.6: Optimal place and sizes of DGs 

DG 

no. 

Case 4 Case 5 Case 6 

DG 

location 

DG size 

(MW) 

DG 

location 

DG size 

(MW) 

 

DG 

location 

DG size 

(MW) 

1 32 0.1032 40 0.1262 37 0.2 

2 36 0. 1 42 0.101 42 0.1996 

3 70 0.1265 72 0.1164 74 0.1982 

4 118 0.1071 111 0.0749 111 0.1896 

(M$=Millions of Dollars) 

From the Pareto front provided in Figure 2.9, best compromised objective 

parameters for the case 4, case 5 and case 6 are reported in Table 2.7. 

Table 2.7: Optimal cost values with DGs placement 

Case SDC cost 

(M$) 

EVUC 

(M$/year) 

NPL cost 

(M$/year) 

DG cost 

(M$) 

MVD (p.u.) 

4 2.041 0.01399 0.07212 14.06 0.0681 

5 2.041 0.01399 0.05625 15.95 0.899 

6 2.041 0.01399 0.05651 14.82 0.072 

There are two observations that can be made by analysing the results provided in 

Table 2.7. The first one is that as both NPL cost and MVD decreases, the DG cost 

increases. The NPL cost and MVD directly depend on DGs location and their size. The 

second one is that SDC and EVUC are constant. In scenario 2, the optimal planning of 

DGs is determined with the account of optimal FCS load (case 3 of scenario 1) in the 

electrical distribution system.  Therefore, the SDC and EVUC are constant in all three 

cases of scenario 2. 

In case 4, DG cost and MVD are considered for optimal planning of DGs in the 

electrical distribution system. For which the NPL cost, DG cost and MVD are 0.07212 

(M$/year), 14.06 (M$), 0.0681 (p.u.) respectively.  Similarly, the NPL cost, DG cost, and 
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MVD are 0.05625 (M$/year), 15.95 (M$), 0.899 (p.u.) respectively for case 5. 

Furthermore, in case 6, three objective parameters are considered for optimal planning of 

DGs in the distribution system. Because of the participation of three objective parameters 

in optimization processes, case 6 provided a best economical solution as compared to case 

4 and case 5 in scenario 2. The optimal values of the NPL cost, DG cost, and MVD are 

0.05651 (M$/year) 14.82 (M$), 0.072 (p.u.) respectively. It can be observed that case 6 of 

scenario 2 gives best economical solution as compared to the case 4 and case 5.   

Furthermore, to minimize the NPL cost, DG cost and MVD, the simultaneous placement of 

FCSs and DGs in coupled electrical distribution and transportation network is considered 

in scenario 3.     

2.6.4 Scenario 3:Simultaneous placement of FCSs and DGs in coupled Electrical 

Distribution and Transportation Network 

In this scenario, the FCSs and DGs are simultaneously placed in the distribution 

network, with the objective of decreasing the EVUC, NPL cost, DG cost and MVD. In 

scenario 3, the following four different cases are considered for the simultaneous optimal 

placement of FCSs and DGs in coupled electrical distribution and transportation network.  

Case 7: Minimization of NPL cost and EVUC  

Case 8: Minimization of DG value cost and MVD 

Case 9: Minimization of NPL cost and DG value cost  

Case 10: Minimization of DG value cost, MVD and NPL cost 

The algorithm presented in Figure 2.3 is employed to evaluate the fitness function 

given in (2.13) against the different number of FCSs and DGs in the distribution network. 

This algorithm determines the optimal size and placement of FCSs and DGs in the 

distribution network, for the same number of FCSs and DGs as in scenario 1 and scenario 

2 respectively. The Pareto-front for minimization of NPL cost, DG cost, EVUC and MVD 

for various case studies of scenario 3 are shown in Figure 2.10. 
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Figure 2.10: Optimal Pareto-front plots for scenario 3 

The optimal capacity and location of FCSs and DGs are listed in Table 2.8 and Table 2.9. 



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System 
 

 

                                                                                                                                                      53 

 

Table 2.8: Optimal planning of FCSs in scenario 3 

FCS 

No. 

Case 7 Case 8 Case 9 Case 10 

FCS 

location 

No. of 

EVs to 

FCS 

FCS 

location 

No. of 

EVs to 

FCS 

FCS 

location 

No. of 

EVs to 

FCS 

FCS 

location 

No. of 

EVs to 

FCS 

1 28 245 61 428 13 94 83 576 

2 71 570 48 200 103 165 28 251 

3 22 245 40 76 71 591 80 156 

4 98 136 71 376 28 236 103 254 

5 80 354 92 276 80 356 48 249 

6 103 82 103 276 22 189 92 146 

Table 2.9: Optimal planning of DGs in scenario 3 

DG 

No. 

Case 7 Case 8 Case 9 Case 10 

DG 

location 

DG size 

(MW) 

DG 

location 

DG size 

(MW) 

DG 

location 

DG size 

(MW) 

DG 

location 

DG size 

(MW) 

1 95 0.0711 83 0.0867 97 0.0698 36 0.2 

2 59 0.0611 43 0.0764 30 0.1074 74 0.1749 

3 93 0.0751 28 0.0885 103 0.0626 83 0.1498 

4 32 0.1811 114 0.1516 46 0.0935 11 0.1947 

From the obtained Pareto fronts, the moderate solution is determined using the min-

max technique.  

Table 2.10: Optimal cost values in scenario 3 

Case 
SDC cost 

(M$) 

EVUC 

(M$/year) 

NPL cost 

(M$/year) 

DG cost 

(M$) 
MVD (p.u.) 

7  2.038 0.01958 0.05432 17.95 0.0998 

8 2.041 0.02359 0.06312 16.52 0.072 

9 2.04 0.01969 0.05389 16.53 0.0899 

10 2.0101 0.005963 0.054323 15.951 0.0613 
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Table 10 presents the optimal objective parameters of different cases of scenario 3. 

In case 7, optimized values of NPL cost and EVUC are 0.05432 (M$/year) and 0.01958 

(M$/year) respectively, for which the DG cost and MVD are 17.95 (M$) and 0.0998 (p.u.). 

In case 8, the optimized values of the DG cost and MVD are 16.52 (M$) and 0.072 (p.u.), 

for which EVUC and NPL cost is maximum, i.e., 0.02359 (M$/year) and 0.06312 

(M$/year). Similarly, the optimized values of the DG cost and NPL cost are 16.53 M$ and 

0.05389 (M$/year) in case 9, for which the optimal EVUC and MVD are 0.01969 

(M$/year) and 0.0899 (p.u.) respectively. Furthermore, three objectives, i.e., MVD, NPL 

cost and DG cost optimized values are 0.0613 (p.u.), 0.054323 (M$/year) and 15.951 (M$) 

respectively. In scenario 3 the NPL cost and EVUC are considerably reduced for 

approximately same investment.  The NPL cost and EVUC are variable ones, with the 

reduction of this losses result in benefit to both the EV users and charging station owners.   

The optimal objective parameters namely NPL cost, MVD, EVUC and DG cost for 

the best cases (case 3 in scenario 1; case 6 in scenario 2; and case 10 in scenario 3) in the 

above three different scenarios are presented in Table 2.11. From Table 2.11, it is clear that 

case 10 gives best compromised solution as compared to the other cases of scenario 3.  

Table 2.11: Optimal cost comparison results in three scenarios 

Case 
SDC  

(M$) 

EVUC 

(M$/year) 

NPL cost 

($/year) 

DG  cost 

(M$) 
MVD (p.u.) 

10 2.0101 0.0059636 543.23 15.951 0.0613 

6 2.041 0.013996 565.17 16.5233 0.0721 

3 2.041 0.013996 188.57 -  0.156 

In scenario 3, the EVUC and NPL cost and MVD are significantly reduced as 

compared to the scenario 2 and scenario 1. The simultaneous planning of FCSs and DGs in 

the coupled electrical distribution and transportation network of case 10 has a 60.7% and 

14.97% reduction of MVD as compared to the case 3 and case 6. Also, the NPL cost 

reduced by 71.2% and 3.8% in case 10 as compared to the case 3 and case 6. Furthermore, 

there is a 57.3% reduction of EVUC in case 10 as compared to other cases.  Therefore, the 

proposed method is capable of providing the best economical solution for the simultaneous 

optimal placement of FCS and DGs in coupled electrical distribution and transportation 

network. 
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In order to investigate the impact of parameters mentioned in Table 2.3, the 

following four additional cases are considered. 

In case I, the objective parameters have been calculated by considering 75% of EV 

population and 50% of EV population is considered in case II. The optimal parameters are 

listed Table II. The optimal Pareto fronts to optimize the MVD, NPL cost and DG value 

cost in case I and Case II is shown in Figure 2.11 and Figure 2.12 respectively. 

 

Figure 2.11 Optimal Pareto fronts of case I 

 

Figure 2.12 Optimal Pareto fronts of case II 

In case III and Case IV, the objective parameters have been calculated by 

considering 13 possible FCSs  and 10 possible FCSs  (in original study it is 16 possible 

FCSs (NPC). The optimal parameters are listed Table II. The optimal Pareto fronts to 

optimize the MVD, NPL cost and DG value cost in case III and Case IV are shown in 

Figure 13 and Figure 14 respectively. 
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Figure 2.13 Optimal Pareto fronts of case III 

  

Figure 2.14 Optimal Pareto fronts of case IV 

Table 2.12 Optimal parameters for case I, case II, case III and case IV  

Case 
NPL cost 

($/year) 

DG  cost 

(M$) 
MVD (p.u.) 

Case I 473.28 14.5992 0.0519 

Case II 371.25 12.6416 0.0316 

Case III 934.1 18.5569 0.0621 

Case IV 1818.59 19.63 0.0803 

Case 10  543.23 15.951 0.0613 

(Case I, case II, case III and case IV are conducted to investigate the impact of 

parameters mentioned in Table I and it compared with case 10).      

From the above analysis, it is concluded that the NPL cost, DG cost and MVD are 

decreases as the total number of EVs are reduced to 75% in case I and 50% in case II. And 

the NPL cost, DG cost and MVD are increases as the numbers of possible FCSs are 
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decreased to 13 FCSs in case III and 10 FCSs in case IV.   So, for analysis purpose, Table I 

parameters are considered for various case studies in the Thesis. 

In summary, this chapter has covered the simultaneous placement of DGs and FCSs 

in radial distribution system. Simulation results emphasize the importance of optimal 

concurrent placement of both FCSs and DGs in the distribution system. In the proposed 

approach, ‘optimal planning of FCSs’ and ‘optimal planning of DGs with the account of 

optimal FCSs load’ are compared to ‘simultaneous planning of FCSs and DGs’ in coupled 

electrical distribution and transportation network. The simultaneous placement of FCSs 

and DGs results in more reduction in EVUC and NPL cost for the same SDC and DG 

power cost investment. The EVUC and NPL cost are variable with respect to time. Hence, 

reduction in this cost will prove beneficial for both EV and charging station owners. It is 

clear that the optimal simultaneous placement of both FCSs and DGs in Distribution 

System provides significant benefits to all involved. 

This part of work is published in journal of Modern Power System and Clean 

Energy with the title as “A Multi-objective simultaneous optimal planning of electrical 

vehicle fast charging stations and DGs in distribution system” pp:923-934, issue 7, volume 

4, 2019. (SCI) DOI: 10.1007/s40565-018-0493-2.  

The next stage of investigation is focused of Optimal Planning of FCSs and DGs in 

Distribution System with Future EV Load Enhancement and the same is reported in 

chapter 3. 
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3.1 Introduction 

Current trends suggest that EV is a promising technology for road transportation. 

There is a substantial increase in the number of EVs due to improved energy efficiency and 

reduction in environmental impact as compared with internal combustion engine vehicles. 

The improper planning of FCSs and DGs causes a negative impact on the Distribution 

System [65]. So the Distribution System operator has a significant challenge to identify the 

optimal location and sizing of FCSs in distribution power network. This part work presents 

optimal planning of FCSs and DGs with the account of the present and future increase in EV 

population.  

From the last decade onwards, the EVs have great attention from the government 

agencies and automobile industries due to a significant reduction in overall operating cost and 

emission as compared to the internal combustion engine vehicles. According to the Electric 

Power Research Institute survey, 35% of total vehicles in the USA will be EVs by 2020 [66].  

The increasing population of EVs creates new challenges to the power Distribution System 

operator to develop adequate charging facilities to the EV users in distribution system. The 

rapid increase of EV population requires efficient fast charging stations (FCS). Charging at 

home is an alternative way for the EV users, but it requires too much time (which can take 6 

to 8 hours). Therefore, the charging station with high voltage is necessary for EV user's 

convenience, because it can charge the EVs at least 12 times faster than charging at home 

[66]. The higher adoption of EVs may cause a potential impact on the distribution grid. 

A multi-objective optimization problem is formulated for optimal planning of FCSs 

and DGs with the objective of minimizing the voltage deviation, distribution network power 

loss, DGs cost and the energy consumption of EV users in the coupled transport and electrical 

distribution network by considering the present and different levels of future increase of EV 

population demand.  

3.2 Problem formulation  

This section reports the formulation of the objective function to minimize FCS 

development cost (SDC), cost of specific energy consumption of EVs (SEC of EVs cost), 

electrical Network Power Loss (NPL) cost, DG power generation cost and Maximum Voltage 

Deviation (MVD) in the electrical distribution network. 
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3.2.1 Objective function 

The objective parameters in this optimization function are same as the parameters 

which are considered in objective function (2.13) in section 2.2. With this optimization 

problem the optimal planning of FCSs and DGs are determined for the present and different 

levels of future increase of EV population demand in the coupled road and electrical 

distribution system. 

 FCS development cost (SDC) 

 EV user cost (EVUC)  

 Electrical network power loss cost (NPLC)  

 DG power generation cost (DGPC) 

 Maximum Voltage Deviation (MVD) 

Considering all the five objectives, the objective function is formulated as 

min{∑ SDC(j) + ∑ EVUC(k)TNEV
k=1 +  NPLC + DGPC + MVDNFCS

j=1 }                      (3.1) 

Where NFCS is the optimal number of FCS obtained from the optimization algorithm. 

The objective function is to minimize the total cost related to FCS, DGs and Network power 

losses; and minimize the bus voltage deviation of the electrical Distribution System by 

meeting the following constraints. 

3.3 Constraints 

3.3.1 Charging Station Constraints 

At least one charging station should be installed in the proposed area to meet the EV 

loads and it is described as below: 

∑ FCS(j)NFCS
j=1 > 0   ∀    j = 1,2, … … … , NPC                              (3.2) 

Where NPC is the number of possible FCSs based on the optimality of road transport 

network and electrical distribution network. At least one charging connector should be 

considered for each selected FCS i.e. 

S(j) ≥ 0   ∀  j = 1,2,3, … … … , NPC                                           (3.3) 

EVs in each zone should select one optimal FCS based on the distance between jth 

charging station and zone z. 
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∑ Select(z, j)X(j) = 1   nzone
z=1   ∀ 1,2,3 … … z                                (3.4) 

Where Select(z, j) is 1 if the EVs in zone z are selected jth charging station, otherwise 

zero. X(j) is the binary decision variable, which is equal to 1 if jth FCS is selected, otherwise, 

zero. 

3.3.2 DG Constraints 

Each Distributed Generation source has its own real and reactive power generation 

limits.  In this work, the DG is modelled as a negative P-Q model. The DGs should meet the 

following constraints, 

PDG,g
min ≤ PDG,g ≤ PDG,g

max                                                              (3.5) 

QDG,g
min ≤ Qg ≤ QDG,g

max                                                                 (3.6) 

WherePDG,g
min  ,  QDG,g

min   and PDG,g
max , QDG,g

max  are the minimum and maximum of real and 

reactive power generation of  gth DG unit. The per unit voltage of each bus in each time step 

does not decrease below the predefined minimum voltage, which is assumed 0.9 p.u. for all 

the cases considered. 

3.4 Hybrid SFL-TLBO Algorithm and System Data  

In all classical methods like weighted objectives method, the multiple objectives 

functions are formulated as a single objective function by choosing suitable weights for each 

objective. In determining the optimal value of the proposed single objective function, it has 

majorly two problems. The first one is the optimization of that single objective function may 

guarantee a single optimal solution, but in all practical applications, the decision makers need 

an alternative solution in decision making. The second one is the selection of suitable weights 

for each objective parameter in single objective function. Moreover, if the objective function 

is more noisy and the variables are discontinuous in search space, the classical methods 

cannot work effectively [74]. To overcome the above problems, multi-objective Pareto front 

optimization algorithms are necessary for solving multi-objective problems. Furthermore, the 

hybrid algorithms are highly efficient in finding optimal solution. A new hybrid Shuffled 

Frog Leaping-Teaching Learning Based Optimization (SFL-TLBO) algorithm is developed 

by combining the best features of Shuffled Frog Leaping (SFL) and Teaching Learning Based 

Optimization (TLBO) algorithms for solving the optimal planning of FCSs and DGs in the 
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coupled road and electrical distribution system. This optimization problem has been solved 

by considering the present and different levels of future increase of EV population demand.  

3.4.1 Shuffled Frog Leap Algorithm (SFLA) 

The SFLA is a population-based optimization algorithm, and the population consists 

of a set of frogs that is divided into subsets referred to as memeplexes. Each frog in the 

population represents a solution in search space and its hold ideas, which can be influenced 

by the ideas of other frogs and evolve through a process of memetic evaluation. After a 

certain number of memetic evaluation steps, ideas are passed among the memeplexes in the 

shuffling process. The exploration and the shuffling processes continue until it reaches the 

specified convergence criteria as explained in [74].     

3.4.2 Teaching Learning Based Optimization (TLBO) 

TLBO is a teaching- learning process based inspired algorithm, in which teaching –

learning is an important process where every individuals tries to improve their knowledge by 

interacting with others (i.e either a teacher or student or both), which simulates the traditional 

teaching-learning phenomenon of a class room. TLBO proposed by R.V. Rao et al. in 2011.  

In TLBO algorithm, the best learner is regarded as a teacher and rest individuals within the 

population are seen as students. To determine better optimal solution the TLBO algorithm 

consists of two phases: teacher phase and learner phase. During the teacher phase, a teacher 

wants to increase his or her students’ knowledge level up to his or her knowledge level. Thus 

the individual knowledge level of students is various with the following expression: [75], [76] 

Xnew,i = Xold,i + rand(Xteacher − Xmean)                               (3.7) 

Where Xteacher and Xmeanare the best learner in the population and the current mean 

value of the individuals respectively. rand  is the a uniform random number in between          

0 and 1. 

In the learner phase, the knowledge of learner increases through the interaction 

between classmates. A learner (Xi)  randomly interacts with his/her classmate (Xj) within the 

population and the selected classmate trains a learner. If the learner knowledge is better than 

the former one, then it is replaced with the newly generated population. The individual 

knowledge level of the learner is updated with the following expression: 
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Xnew,i = Xi + rand(Xj − Xi)                                              (3.8) 

Where Xj and Xi are two individual learners in the current population.  

TLBO is a population based algorithm and its operation is explained below with step 

by step procedure. 

Step 1: Define the optimization problem as minimization or maximization of f(X). Where 

f(X) is the objective function and X is a vector of design variables.  

Teacher phase : 

Step 2: Initialize the population (a group of learners) as P1, P2, P3 - - - - - Pn. And take the 

design variables of optimization problem (number of subjects) as x1, x2, x3 - - - - - -xm. 

Step 3: Determine the objective function value for each population, Identify the optimal 

objective function value f(x)best who act as a teacher and its respective population is xmbest. 

Step 4: Calculate the mean and difference mean of each design variable respectively. Mean is 

the average of each design variable with respect to population size and the difference mean is 

calculated by 

Difference_meanm  = rand*(xmbest - meanm)                (3.9) 

Where Difference_meanm , xmbest and meanm are the difference mean, best of population  and 

the average of mth design variable respectively. 

Step 5: Based on this difference mean, the existing population is updated according to the 

following equation 

xnewn,m = xoldn,m + Difference_meanm        (3.10) 

Evaluate the objective function value with xnewn,m population. 

Learner phase: 

Step 6: In learner phase, their knowledge is increased by randomly interacting with other 

learners which are present in current iteration. This algorithm uses the tournament selection 

operator for random selection of learners.  
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Step 7: If the knowledge of updated learner is less than current learner accept the current 

learner. Otherwise accept the updated learner. And continue this process for all learners 

which are presented in the current population. 

Step 8: Repeat the procedure from step 3 to step 7 until the termination criterion is met. 

The flowchart for Hybrid SFL-TLBO algorithm is shown in figure 3.1. 

 

Figure 3.1: Flow chart for Hybrid SFL-TLBO algorithm 
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3.4.3 Hybrid SFL-TLBO Algorithm 

The hybrid SFL-TLBO algorithm is a real-coded population-based meta-heuristic 

optimization technique that is newly formed by combining the strengths of SFLA [38] and 

TLBO [39]. In the SFLA, each memeplex evolves independently to local search at different 

regions of the search space. Then, the memeplexes are shuffled and re-divided into new 

memeplexes to enhance the exploration capability through exchanging the information with 

each other. On evaluating the fitness and formation of a memeplex, the frogs with the best 

and the worst fitness are identified as Xb and Xw, respectively. The position of the frog with 

the worst fitness is adjusted as follows 

Di = rand(Xb − Xw)                                                     (3.12) 

Dmax ≥ Di ≥ −Dmax         (3.13) 

new Xw = current position of Xw + Di                                      (3.14) 

The equation (3.14) clearly says that, when the difference in position between Xw and 

Xb become small, the change in position of frog Xw (new) is small that may lead to reaching 

the local optimum, i.e., premature convergence.  

TLBO algorithm has excellent exploration capability but lack in exploiting the 

solution space locally [40]. To enhance the exploitation capability of the TLBO algorithm, it 

is combined with SFLA which is having good local search ability [38]. Hybrid SFL-TLBO 

optimization algorithm has been developed to determine the simultaneous optimal planning 

of FCS and DGs for the present and different levels of future EV load enhancement. 

3.5 Operational procedure of Hybrid SFL-TLBO Algorithm 

The SFL-TLBO is a population-based algorithm and its operation is explained below 

with step by step procedure. 

Step 1) Define the optimization problem as minimization or maximization of f(X). 

Where f(X) is the objectives function and X is a vector of decision variables. 

Teacher phase: 

Step 2) Initialize the parameters, population (a group of learners) as X1, X2, X3 - - -

Xn and the design variables of optimization problem (number of subjects) as xa, xb, - - xm. 
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Step 3) Determine the objective function value for each population, identify the 

optimal objective function value f(Xbest) who act as a teacher and its respective variables set 

is Xgbest =[ xabest, xbbest, - - xmbest] 

Step 4) Calculate the mean (meanm) and difference mean (diff meanm ) of each 

design variable respectively. Mean is the average of each design variable with respect to 

population size and the difference mean is calculated by 

diff meanm = rand ∗ (Xgbest − meanm)                                    (3.15) 

Where the Xgbest, meanm are the best population and difference mean of all variables 

for n number of population. 

Step 5) Based on this difference mean, the existing population is updated according to 

the following equation 

Xnewn,m = Xoldn,m + Diff meanm                                          (3.16) 

Evaluate the Teacher phase objective function f(x)T value with Xnewn,m population. 

Learner phase: 

Step 6) Divide the population (Xn) into G number of student groups (memeplex) and 

each group having S number of students i.e, Xn=g*S. 

student group1 student group2  student groupG 

population f(x) population f(x) …………….. population f(x) 

P1 f1(x) P2 f2(x)     …………….. PG fG(x) 

PG+1 fG+1(x) PG+2 fG+2(x) …………….. P2G f2G(x) 

P2G+1 f2G+1(x) P2G+2 f2G+2(x) …………….. P3G f3G(x) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

PG(S-1)+1 fG(S-1)+1(x) PG(S-1)+2 fG(S-1)+2(x)  PSG fSG(x) 

Identify the group best student in each student group (Xgroup_best) and its respective 

population. Based on this Xgroup_best, update the existing population in that group with the 

help of the following expression. 
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Xnews,g = Xolds,g + rand (Xgroup_bests,g
− Xolds,g)                       (3.17) 

Combine all student groups and evaluate the learner phase objective function f(x)L 

value with Xnewn population. If f(x)L is not optimal than f(x)T then update the population 

with the overall population best (Xbest_pop) following expression 

Xnews,g = Xolds,g + rand (Xbest_pops,g
− Xolds,g)                         (3.18) 

Similarly calculate f(x)L value with Xnews,g population. If f(x)L is optimal than f(x)T, 

then consider that population for next iteration. Otherwise generate a new population 

randomly within limits.  

Step 7) Combine all students groups and sort them based on non-dominated sorting 

technique [41], [42]. Identify the best population Xbest and its fitness value f(Xbest) i.e 

Fbest. 

Step 8) Save the Xbest and Fbest as the global best Xgbest and global fitness Fgbest 

in each iteration. 

Step 9) Repeat the procedure from step 4 to step 8 until the termination criterion is 

met.  

Algorithm 1.Pseudo code of proposed hybrid SFL-TLBO 

Initialize parameters 

Number of populations (n), student groups (g),   

Define  𝑓(𝑋)          X= (𝑥𝑎 , 𝑥𝑏 , 𝑥𝑐 … … … 𝑥𝑑)  d=no. of decision variables.  

Initialize the group of learners randomly  𝑋𝑖         i= 1,2,3……..n. 

Evaluate objective function value for group of learners 𝑓(𝑋) 

Identify the best solution as teacher Xgbest 

For iter=1to maximum iterations 

        for i=1 to n   // Teacher phase// 

                 Calculate the mean of each variable 𝑚𝑒𝑎𝑛𝑚 

 Calculate difference mean of each variable (𝑑𝑖𝑓𝑓 𝑚𝑒𝑎𝑛𝑚) 

 𝑑𝑖𝑓𝑓 𝑚𝑒𝑎𝑛𝑚 = 𝑟𝑎𝑛𝑑 ∗ (𝑋𝑔𝑏𝑒𝑠𝑡 − 𝑚𝑒𝑎𝑛𝑚)         

                  Update each solution based on best solution  

                 𝑋𝑛𝑒𝑤𝑛,𝑚 = 𝑋𝑜𝑙𝑑𝑛,𝑚 + 𝐷𝑖𝑓𝑓 𝑚𝑒𝑎𝑛𝑚 

                 Evaluate the objective value for new mapped solution 𝑓(𝑋𝑛𝑒𝑤𝑛,𝑚)  

         If 𝑓(𝑋𝑛𝑒𝑤𝑛,𝑚) ≤ 𝑓(𝑋𝑖)  i.e., (𝑋𝑛𝑒𝑤𝑛,𝑚  is better than 𝑋𝑖)       

                     𝑋𝑇 = 𝑋𝑛𝑒𝑤𝑛,𝑚 
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                   𝐹𝑇 = 𝑓(𝑋𝑇) 

             else 

    𝑋𝑇 = 𝑋𝑖  

                    𝐹𝑇 = 𝑓(𝑋𝑇) 

           end if  

           end for   n loop                // End of teacher phase // 

       Sort the population based on non-dominated sorting technique 

       Divide the learners into g Number of groups    

for i=1to g                  // Learner phase// 

                for i=1to s  

      Identify the best solution in each group  𝑋𝑔𝑟𝑜𝑢𝑝−𝑏𝑒𝑠𝑡 

              𝑋𝑛𝑒𝑤𝑠,𝑔 = 𝑋𝑜𝑙𝑑𝑠,𝑔 + 𝑟𝑎𝑛𝑑 (𝑋𝑔𝑟𝑜𝑢𝑝_𝑏𝑒𝑠𝑡𝑠,𝑔
− 𝑋𝑜𝑙𝑑𝑠,𝑔)               

Calculate objective function value 𝑓(𝑋𝑛𝑒𝑤𝑠,𝑔) 

If   𝑓(𝑋𝑛𝑒𝑤𝑠,𝑔) is better than 𝑓(𝑋𝑇) 

                                           𝑋𝑖 = 𝑋𝑛𝑒𝑤𝑠,𝑔 

            else 

                  𝑋𝑛𝑒𝑤𝑠,𝑔 = 𝑋𝑜𝑙𝑑𝑠,𝑔 + 𝑟𝑎𝑛𝑑 (𝑋𝑏𝑒𝑠𝑡_𝑝𝑜𝑝𝑠,𝑔
− 𝑋𝑜𝑙𝑑𝑠,𝑔) 

  𝑋𝑖 = 𝑋𝑛𝑒𝑤𝑠,𝑔  (𝑋𝑔𝑏𝑒𝑠𝑡 = 𝑋𝑖  ) 

  Otherwise generate a random population 

 end if    

                          end for      ---------𝑠 loop 

    end for-------g loop   //End of learner phase// 

end for ---------iter loop (Termination criterion) 

𝑋𝑔𝑏𝑒𝑠𝑡  ------------------- − − − 𝑏𝑒𝑠𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

𝐹𝑔𝑏𝑒𝑠𝑡 − − − −𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠  

Save the optimal population and its fitness value.___________________ 

 

The current injection load flow method is used to analyse the Distribution System 

power flows, voltage profiles and current flows in each branch of the distribution network. 

The objective function is solved by considering the distribution network constraints, DG 

constraints and FCS constraints.  

3.6 Proposed Test System Data 

For the proposed work we considered an urban city having surface area of 720 km2. 

This consist of 180 zones, each zone has an equal area of 4 km2 (2km×2km).  

Table 3.1 presents the EV population in each zone of the study area. The total EV 

population in the study area is 1632 and among the total EVs population only some 
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probability of EVs is charging in each hour during a day. The 118 bus electrical Distribution 

System is assumed to be available on the study area for electrical power supply. The charging 

probability of EVs (CPEV (h)) in each hour during the day is shown in Figure 3.2.   It is 

assumed that EVs are charged at their respective FCSs from 5:00 to 21:00 hours a day. 

Table 3.1: EVs population in each zone of test system 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 3 5 3 4 6 4 0 0 3 7 5 6 4 0 

2 3 5 4 6 4 6 7 8 7 9 8 7 5 6 4 

3 7 11 16 9 9 13 12 10 11 14 17 6 9 5 3 

4 6 1 7 15 16 17 17 9 15 7 14 17 9 15 1 

5 4 6 9 10 8 16 16 14 0 14 16 11 7 9 7 

6 0 13 14 10 16 14 19 15 17 14 12 8 15 9 4 

7 7 11 0 16 16 17 13 18 17 15 9 19 12 8 0 

8 4 9 15 14 12 11 4 16 19 9 12 17 17 12 6 

9 8 13 14 19 17 15 17 0 13 12 11 13 9 15 8 

10 3 12 9 16 13 14 9 14 16 15 17 16 15 13 3 

11 0 6 7 8 7 5 6 4 8 5 4 6 4 0 0 

12 0 5 3 4 6 4 0 7 3 0 5 6 4 3 4 

 

 

Figure 3.2: Variation of CPEV (h) 

Figure 3.3 shows the single line diagram of the 118 bus radial Distribution System 

associated with the study area, which is considered as the electric test system. The 

percentages of load variation in each hour during the day for four seasons are taken from 

[34]. The Base values of 118 Distribution System are 10 MVA, 11 KV and the total load on 

the system is 22.71 MW and 17.041MVAr. 

In the proposed Distribution System the possible 16 candidate FCSs have been 

assumed to be placed along the main roads of the study area, with constraints of 

approximately equal distance among the FCSs. The locations of possible charging stations 



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System 
 

 

70 
 

are shown by rhombus symbol in the electrical distribution network as shown in Figure 3.3. 

The Distribution System and charging station parameters used in the proposed system are 

listed in Table 3.2. 

 

Figure 3.3: 118-bus Distribution System in the study area 

Table 3.2: EV and FCS parameters [79] 

Parameter Value Parameter Value Unit 

TNEV 1632 SEC 0.142 kWh/kM 

NY 5 EP 87.7 $/MWh 

NPC 16 Clan 240 $/M2.Yr 

  Cinit 70000 $ 

  Ccon 208.33 $/kW 

  PC 96 kW 

  

TNEV- Total Number of Electric Vehicles 

NY-Number of Years 

NPC-Number of Possible Charging stations 

SEC- Specific Energy Consumption 

CEP-Electricity Price Cost 

Clan-Yearly land rental cost (in $/m2) 

Cinit-Fixed cost of station development. 

Ccon-Charging connector development cost (in $/kW) 

PC-Rated power of each connecter 

 

 

3.7 Results and Analysis 

To demonstrate the effectiveness of proposed hybrid SFL-TLBO algorithm, IEEE 118 

bus test system has been considered in this chapter. The newly proposed SFL-TLBO 

algorithm is employed to evaluate the fitness value given in objective function (3.1) against 
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the different number of FCSs and DGs in the network for the simultaneous planning of FCSs 

and DGs in the coupled electrical distribution and transportation network.  

 

Figure 3.4: Optimal number of FCSs in the coupled electrical distribution and 

transportation network. 

This algorithm determines the optimal capacity and locations of FCSs and DGs for 

the present and future penetration of EVs in the study area. The objective function for the 

different number of FCSs is compared in Figure 3.4. From this comparison, the optimal 

number of FCSs is determined to be 6. The optimal planning of FCSs is determined by 

considering load variation during four different seasons. 

The objective function for different number of DGs is compared in Figure 3.5. From 

this comparison the optimal number of DGs is determined to be 4.  

 

Figure 3.5: Optimal number of DGs in the coupled electrical distribution and 

transportation network. 
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The optimal planning of FCSs and DGs has been determined with the objective of 

reducing the DGPC, NPLC, SEC of EVs and MVD by using TLBO, SFLA and a newly 

proposed hybrid SFL-TLBO algorithm and the performance of proposed algorithm is 

compared with the SFLA and TLBO algorithm for the present and different levels of future 

penetration of EVs.   

The following three scenarios are considered for optimal planning of FCSs and DGs 

in the coupled electrical distribution and transportation network. 

Scenario-1: Optimal size of FCSs and DGs for their fixed location.  

Scenario-2: Optimal size of all FCSs and DGs for half of fixed location of FCSs and 

DGs. 

Scenario-3: Optimal location and size of FCSs and DGs. 

Four different cases are evaluated in each scenario to study the effect of increased EV 

population demand on optimal planning of FCSs and DGs in the coupled electrical 

distribution and transportation network. 

Case-1: Optimal planning of FCSs and DGs for the present EV population demand.  

Case-2: Optimal planning of FCSs and DGs with 10% penetration of EVs.  

Case-3: Optimal planning of FCSs and DGs with 20% penetration of EVs.  

Case-4: Optimal planning of FCSs and DGs with 30% penetration of EVs. 

The proposed algorithm can be applicable for any percentage penetration of EVs, but 

to test the algorithm performance these four cases have been considered.  

3.7.1 Scenario 1:  Optimal size of FCSs and DGs for their fixed location   

The parameter DGPC, NPLC, SEC of EVs and MVD of distribution network has 

been calculated for Case 1, Case 2, Case 3 and Case 4 for the current location of FCSs and 

DGs. The newly proposed hybrid SFL-TLBO algorithm has been used for the optimal 

planning of FCSs and DGs in the multi-objective environment. The obtained results are 

compared with pre-existing SFLA and TLBO algorithms and the results are listed in       

Table 3.3. The variation of DGPC, MVD and NPLC in the form of Pareto fronts for the 
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present EV population and future penetration of EVs at different levels are shown in Figure 

3.6 for various case studies.  

 

Figure 3.6.1 Optimal Pareto fronts for case 1 

 

Figure 3.6.2 Optimal Pareto fronts for case 2 
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Figure 3.6.3 Optimal Pareto fronts for case 3 

 

Figure 3.6.4 Optimal Pareto fronts for case 4 

Figure 3.6: Optimal Pareto-front for Scenario 1 

In Table 3.3, size of FCS resembles the number of charging connectors in that 

respective charging station and each connector is having 96 kW of rated power. The optimal 

moderate solutions, obtained from Pareto front solutions using min-max method, contain 

number of connectors and DG sizes for various case studies are shown in Table 3.3. The 

number of connectors in each charging station varies with the location of FCS (bus number) 

and with the increase of EV population demand. 

Table 3.4 presents the variation of NPLC, SEC of EVs and MVD for the present and 

future penetration of EVs at different levels. There are four observations made by analysing 

the results provided in Table 3.4. The first one is the variation of the SEC of EVs in various 

levels of EV population demand using different algorithms. The SEC of EV users directly 

depends on the location of charging station and EVs load demand. The second one is related 

to the NPLC and DGPC which are conflicting to each other i.e., as the DGPC increases, the 

NPLC decrease. The better planning of FCSs and DGs results in the reduction of both NPLC 

and DGPC. The third one is related to the DGPC which is having a major share of total cost. 

The DGPC includes the investment cost, operation and maintenance cost for the period of 

one year. The fourth one is related to the performance of the proposed SFL-TLBO algorithm 

and it is found to be better due to its efficient search ability. The hybridization of SFLA and 

TLBO brings a high degree of balance between intensification and diversification during the 

efficient searching process. 
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Table 3.3: Optimal planning of FCSs and DGs in scenario 1 

Algorithm Parameters 

TLBO 
 

FCSs  
Location 

22 48 57 92 98 108 

DGs 74 85 108 110 

FCS 

Case-1 

No. of 
connectors 

9 13 9 11 3 8 

Case-2 10 14 10 12 4 9 

Case-3 11 16 11 14 4 10 

Case-4 12 17 12 15 4 11 

DG 

Case-1 

Size 
(MW) 

1.596 0.687 0.904 1.015 

Case-2 1.781 1.909 1.835 1.143 

Case-3 0.576 0.512 0.707 0.899 

Case-4 0.635 1.855 0.874 1.089 

SFLA 

FCSs  
Location 

98 92 61 57 13 35 

DGs 43 50 64 75 

FCS 

Case-1 

No. of 
connectors 

3 16 16 7 6 7 

Case-2 4 17 17 8 7 7 

Case-3 4 19 19 9 7 8 

Case-4 4 20 21 9 8 9 

DG 

Case-1 

Size 
(MW) 

0.833 0.654 1.031 0.733 

Case-2 1.048 1.304 1.223 1.57 

Case-3 0.875 1.012 0.725 1.338 

Case-4 1.369 0.992 0.852 0.809 

Hybrid 
SFL-TLBO 

FCSs  
Location 

92 40 98 61 28 108 

DGs 40 71 84 112 

FCS 

Case-1 

No. of 
connectors 

8 7 6 16 10 7 

Case-2 9 7 7 17 11 8 

Case-3 10 8 7 19 12 9 

Case-4 11 9 8 20 13 9 

DG 

Case-1 

Size 
(MW) 

1.0453 0.653 0.8216 0.6712 

Case-2 1.325 1.364 1.752 0.793 

Case-3 1.686 1.557 0.568 0.747 

Case-4 0.889 1.415 1.732 1.004 

Comparing the TLBO, SFLA and hybrid SFL-TLBO in all levels of EV population, 

the proposed hybrid algorithm is offering better results as shown in Table 3.4. In Case 1, the 

DGPC, NPLC, SEC of EVs and MVD obtained with hybrid SFL-TLBO algorithm are 7.2759 

(M$), 1.8078105 ($/year), 4.7436105 ($/year) and 0.0792 (PU) respectively which are 

minimum as against 8.8948 (M$) 1.7704105 ($/year) 4.9705105 ($/year) and 0.0797 

(PU) in TLBO algorithm and 7.4147 (M$) 2.2128105 ($/year)  4.78332105 ($/year) and 

0.0812 (PU) in SFLA. Furthermore, the proposed hybrid SFL-TLBO algorithm is yielding 
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the optimal values of DGPC, NPLC, SEC of EVs and MVD even for the Case 2, Case 3 and 

Case 4. The NPLC and SEC of EVs are the two major objective functions of the optimization 

problem due to their variable nature with respect to time. The reduction in SEC of EVs and 

NPLC is beneficial for both EV users and EV charging station owners. The station 

development cost (SDC) is constant in all the proposed optimization techniques for each 

penetration level of EVs demand, as the number of connectors for that respective penetration 

level is constant. Furthermore, the variation of SEC of EVs is nearly constant in each 

penetration level of EVs. In view of this, these two parameters are not plotted.  

Table 3.4: Optimal results for the scenario 1 

Case 

No. 
Algorithm 

DGPC 

($/year) 
NPLC ($/year) 

SEC of EVs 

($/year) 

MVD 

(P.U) 

1 

 

TLBO 8.8948106 1.7704105 4.9705105 0.0797 

SFLA 7.4147106 2.2128105 4.78332105 0.0812 

Hybrid 

SFL-TLBO 
7.2759106 1.8078105 4.7436105 0.0792 

2 

 

TLBO 11.6473106 1.4089105 5.4452105 0.08 

SFLA 7.0899106 1.937105 5.3263105 0.0797 

Hybrid 

SFL-TLBO 
8.5056106 1.446105 5.3783105 0.0684 

3 

TLBO 6.144106 2.3701105 5.9721105 0.0856 

SFLA 8.9964106 1.6895105 5.899105 0.0797 

Hybrid 

SFL-TLBO 
9.213106 1.04403105 5.9206105 0.0752 

4 

TLBO 10.0177106 2.0462105 6.4076105 0.0874 

SFLA 9.175106 1.9399105 6.3735105 0.0797 

Hybrid 

SFL-TLBO 
11.4917106 1.1642105 6.3735105 0.0752 

 

3.7.2 Scenario 2: Optimal size of all FCSs and DGs for half of fixed locations of         

FCSs and DGs  

In this case, half of the number of FCSs and DGs locations is changed and the 

remaining FCSs and DGs locations are kept same as the present location (Previous scenario 

locations) but the capacities are considered to change due to increase in EV population i.e. to 
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meet the increased EV load. To avoid the duplication with in the scenario-2 and scenario-3, 

present EV population demand case (case-1) is not discussed. The Pareto fronts of variation 

of DGPC, MVD and NPLC to the different penetration levels of EVs demand are shown in 

Figure 3.7 for various case studies. 

 

Figure 3.7.1: Optimal Pareto fronts for case 2 

 

Figure 3.7.2: Optimal Pareto fronts for case 3 
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Figure 3.7.3 Optimal Pareto fronts for case 4 

Figure 3.7: Optimal Pareto-fronts for Scenario 2 

Table 3.5: Optimal planning of FCSs and DGs in scenario 2 

Algorithm Parameters 

TLBO 

 

FCS 

Location 

Case-2 22 57 92 80 61 71 

Case-3 22 57 92 40 11 28 

Case-4 22 57 92 80 48 13 

No. of 

connectors 

Case-2 8 12 8 7 8 17 

Case-3 12 9 24 10 3 8 

Case-4 6 14 15 16 15 6 

 

DG 

Location 

Case-2 110 74 35 76 

Case-3 110 74 65 23 

Case-4 110 74 52 4 

Size (MW) 

Case-2 0.794 0.969 0.944 1.388 

Case-3 1.016 0.913 1.217 1.038 

Case-4 1.473 1.155 1.155 0.997 

SFLA 

 

FCS 

Location 

Case-2 35 57 92 61 28 98 

Case-3 35 57 92 80 61 22 

Case-4 35 57 92 84 98 40 

No. of 

connectors 

Case-2 7 5 17 17 9 4 

Case-3 8 13 14 9 13 9 

Case-4 10 16 8 20 4 10 

 

DG 

Location 

Case-2 43 75 111 86 

Case-3 43 75 108 109 

Case-4 43 75 88 9 

Size (MW) Case-2 0.859 1.533 0.896 0.922 
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Case-3 0.675 0.931 0.855 1.145 

Case-4 1.141 1.123 1.128 1.154 

Hybrid 

SFL-TLBO 

 

FCS 

Location 

Case-2 28 40 92 71 35 57 

Case-3 28 40 92 71 61 108 

Case-4 28 40 92 48 71 80 

No. of 

connectors 

Case-2 13 3 12 16 6 9 

Case-3 17 4 9 15 11 9 

Case-4 20 3 10 10 16 12 

 

DG 

Location 

Case-2 71 84 43 62 

Case-3 71 84 104 97 

Case-4 71 84 46 67 

Size (MW) 

Case-2 1.105 0.761 0.925 0.895 

Case-3 1.723 1.258 1.625 0.557 

Case-4 0.977 1.012 1.295 0.893 

 

For the all levels of EV population investigated in scenario 2, the FCSs and DGs 

location and sizes are obtained from Pareto front solutions (Figure 3.6) using min-max 

method and their values are listed in Table 3.5. It can be visualized that with the change in 

location of half of the number of FCSs causes the change in number of connectors in the 

present location of charging stations. Therefore in scenario 2, the location of half of the 

number of DGs is same as scenario 1 but their sizes are not same as scenario 1. 

Table 3.6 presents the consolidated results of DGPC, NPLC, SEC of EVs and MVD 

in the radial distribution network with the new location of FCSs and DGs for the selected 

penetration levels of EV population. With the new location of half of FCSs and DGs, the 

DGPC is approximately equal to scenario 1, but the NPLC and SEC of EVs are drastically 

reduced in scenario 2 against case 2. Similarly, for the case 3 and case 4, the NPLC and SEC 

of EVs cost are reduced.  
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Table 3.6: Optimal objective parameters in scenario 2 

Case number Algorithm 
DGPC 

(M$/year) 
NPLC ($/year) 

SEC of EVs 

($/year) 
MVD (p.u) 

2 

 

TLBO 9.0857 1.3787105 4.9632105 0.0814 

SFLA 9.372 1.4238105 5.2497105 0.0697 

Hybrid 

SFL-TLBO 
8.4052 1.4231105 5.2182105 0.0792 

3 

TLBO 9.0361 1.8299105 5.9123105 0.0849 

SFLA 8.159 1.8937105 5.7409105 0.0759 

Hybrid 

SFL-TLBO 
10.0606 1.2857105 5.3621105 0.0677 

4 

TLBO 7.3093 2.1127105 6.0966105 0.0878 

SFLA 9.3648 1.2587105 6.5774105 0.0686 

Hybrid 

SFL-TLBO 
9.5254 1.7491105 5.9534105 0.0979 

 

With the increase in EV population, we can observe that the rise in NPLC and SEC of 

EVs is predominantly high in scenario 1 as compared with scenario 2. Furthermore, the 

optimal values are realized with the proposed new hybrid multi-objective optimization are 

minimum as compared to the SFLA and TLBO algorithm. The primary reason for the better 

performance of above scenario is due to the optimal size and location of the new half of the 

number of FCSs and DGs in the coupled electrical distribution and transportation network, 

which results in a significant reduction in network power loss and SEC of EVs. 

In case 2 of scenario 2, the optimal values of the DGPC, NPLC and SEC of EVs are 

8.4052 (M$/year), 1.4231105 ($/year) and 5.2182105 ($/year) respectively and these are 

obtained by using an SFL-TLBO algorithm.  These objectives values of scenario 2 are 

minimum as compared to scenario 1. In scenario 1 of case 2, the DGPC, NPLC and SEC of 

EVs are 8.5056 (M$/year), 1.446105 ($/year) and 5.3783105 ($/year) respectively using 

an SFL-TLBO algorithm. Similarly, in case 3 and case 4, the total DGPC, NPLC and SEC of 

EVs are optimal as compared to that of case 3 and case 4 of scenario 1.  

3.7.3 Scenario 3: Optimal location and size of FCSs and DGs  

In this case, to meet the increased number of EV population, new optimal location and 

sizes of both FCSs and DGs are determined. For each level of increases in EV population the 

objective parameters DGPC, NPLC, SEC of EVs and MVD of distribution network have 

been determined separately.  
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The Pareto fronts of variation of DGPC, MVD and NPLC to the case 2, case 3 and 

case 4 for scenario 3 are shown in Figure 3.8. 

 

Figure 3.8.1: Optimal Pareto fronts for case 2 

 

Figure 3.8.2: Optimal Pareto fronts for case 3 
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Figure 3.8.3: Optimal Pareto fronts for case 4 

Figure 3.8: Optimal Pareto-fronts for Scenario 3 

Table 3.7: Optimal new location and sizes of FCSs and DGs in scenario 3 

Algorithm Parameters 

TLBO 

 

FCS 

Location 

Case-2 28 71 22 98 80 103 

Case-3 61 48 40 71 92 103 

Case-4 13 103 71 28 80 22 

No. of 

connectors 

Case-2 9 21 9 5 13 3 

Case-3 17 8 3 15 11 11 

Case-4 4 7 25 10 15 8 

 

DG 

Location 

Case-2 95 59 93 32 

Case-3 83 43 28 114 

Case-4 97 30 103 46 

Size (MW) 

Case-2 0.711 1.111 0.751 1.811 

Case-3 0.867 0.764 0.885 1.516 

Case-4 1.448 1.074 1.376 0.935 

SFLA 

 

FCS 

Location 

Case-2 98 28 57 40 48 61 

Case-3 57 92 35 28 80 40 

Case-4 48 40 57 71 22 98 

No. of 

connectors 

Case-2 6 9 5 6 7 27 

Case-3 9 11 10 15 14 6 

Case-4 6 3 12 30 12 8 

 Location Case-2 35 42 77 81 



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System 
 

 

83 
 

DG Case-3 66 80 73 84 

Case-4 96 109 63 33 

Size (MW) 

Case-2 0.842 0.966 0.706 1.053 

Case-3 0.773 1.247 1.185 0.718 

Case-4 0.621 0.875 1.604 0.654 

Hybrid 

SFL-

TLBO 

 

FCS 

Location 

Case-2 71 92 80 103 57 22 

Case-3 71 98 84 48 108 13 

Case-4 57 35 103 22 92 28 

No. of 

connectors 

Case-2 19 8 8 5 10 11 

Case-3 16 14 14 4 4 14 

Case-4 17 4 8 5 23 13 

 

DG 

Location 

Case-2 23 41 31 11 

Case-3 29 21 86 77 

Case-4 39 74 12 95 

Size (MW) 

Case-2 1.276 0.716 1.393 0.846 

Case-3 1.178 0.951 0.652 0.856 

Case-4 1.666 0.722 1.542 0.722 

 

For various EV loads, location and sizes of FCSs and DGs are obtained from Pareto 

front solutions (Figure 3.8) using min-max method for scenario-3 and they are listed in Table 

3.7. The new location and size of both FCSs and DGs in the coupled electrical distribution 

and transportation network have resulted in the reduction of NPLC, SEC of EVs and MVD as 

compared to that of scenario 1 and scenario 2. 

In case 2 of scenario 3, the total DGPC, NPLC and SEC of EVs are calculated by 

using proposed new hybrid SFL-TLBO algorithm and their values are 8.0737 (M$/year), 

1.4614105 ($/year) and 5.0623105 ($/year)  respectively. These values are comparatively 

less as compared to 8.4052 (M$/year), 1.4231105 ($/year) and 5.2182105 ($/year)) 

respectively for the case 2 of scenario 2; and 8.5056 (M$/year), 1.446105 ($/year) and 

5.3783105 ($/year) for the case 2 of scenario 1 obtained using an SFL-TLBO algorithm. 

Consequently, for the case 3 and case 4 of the scenario 3 better results are observed compared 

to the scenario 1 and scenario 2. Furthermore, the consolidated results in Table 3.8 clearly 

explain the effectiveness of proposed a multi-objective hybrid SFL-TLBO algorithm. It may 

be noted that due to huge investment cost, the DGPC is very high as compared to the NPLC 

in all cases. To calculate DGPC we have considered the operation and maintenance cost for 
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one year in addition to investment cost. These results underline the fact that the future 

penetration of EVs are playing a significant role in the optimal planning of FCSs and DGs in 

a coupled electrical distribution and transportation system.  

Table 3.8: Optimal objective parameters in scenario 3 

Case 

No. 
Algorithm 

DGPC 

(M$/year) 
NPLC ($/year) 

SEC of EVs 

($/year) 

MVD 

(p.u) 

2 
 

TLBO 9.6818 2.3028105 4.9892105 0.0992 

SFLA 8.1305 1.9179105 5.1897105 0.0709 

Hybrid 

SFL-TLBO 
8.0737 1.4614105 5.0623105 0.0797 

3 

TLBO 9.2305 2.3028105 5.4519105 0.1052 

SFLA 8.8053 2.1889105 5.8295105 0.09 

Hybrid 

SFL-TLBO 
8.3501 1.625105 5.3599105 0.0718 

4 

TLBO 10.3383 2.2733105 5.8815105 0.0929 

SFLA 9.1479 2.1523105 6.2701105 0.0797 

Hybrid 

SFL-TLBO 
8.0463 1.6128105 5.8935105 0.0884 

 

This chapter mainly focused on multi-objective hybrid SFL-TLBO algorithm, for 

better planning of the FCSs and DGs in the coupled electrical distribution and transportation 

network considering the objectives of voltage deviation, NPLC, DGPC and the energy 

consumption of EV users. Further, the optimal planning of FCSs and DGs has been 

determined for the present and future increase in EV population. The results obtained using 

the hybrid SFL-TLBO algorithm is compared with the SFLA and TLBO algorithm. Results 

have shown that the DGPC and SEC of EVs constitute the major share of the total cost. 

Optimization of FCSs location has a drastic impact on SEC of EVs, so did the increase in EV 

population.  

The results suggest that proper erection of new FCSs in Distribution System is 

required to address the future penetration of EVs. Otherwise, the NPLC and SEC of EVs are 

financially more expensive. The proposed hybrid SFL-TLBO is tested on IEEE 118 bus 

benchmark test system. It is verified that proposed hybrid algorithm is reliable and robust in 

covering different levels of EV population demand in three scenarios. Therefore, the 
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proposed optimal planning FCSs and DGs technique can be used for the planning study of 

charging stations in the coupled electrical distribution and transportation network. 

This part of work is published in IET Electrical Systems in Transportation, with the 

title as “Multi-Objective Optimal Planning of FCSs and DGs in Distribution System with 

Future EV Load Enhancement” pp: 128-139, issue 3, volume 9, 2019 (ESCI). DOI:  

10.1049/iet-est.2018.5066. 

The next stage of investigation is focused on an accurate EV load model. This is 

required to optimize the operating cost while maintaining the system security and reliability.  

However, the load modeling is a complex problem due to distinctive feature of different type 

of loads in the distribution system. To analyze the impact of load of EV in distribution 

system, the EV battery load is modeled by considering the start time and the initial State of 

Charge (SOC) of individual battery and the same is reported in chapter 4. 
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4.1 Introduction 

In recent years, the significant developments in energy battery technologies such as 

high energy density (longer EV range), longer life and DC FCS have led to fast growth in EV 

population. If the FCSs are not optimally planned, the increased penetration of load of FCS 

has a disruptive impact on distribution system. The FCSs load characteristics are different 

from the conventional load demand. The impact of addition of FCS on the Distribution 

System depends on FCS location, charging level, driving pattern, number and types of EVs, 

battery capacity and initial State of Charge (SoC). Hence, it is necessary to know whether the 

current Distribution System is capable of handling a massive EV penetration or not [31]. 

The realistic system analysis has been obtained by using an accurate load model. This 

is required to optimize the operating cost while maintain the system security and reliability.  

However, the load modelling is a complex problem due to distinctive feature of different type 

of loads in the Distribution System [32]. To analyze the impact of EV load in distribution 

system, the EV battery load is modeled by considering the start time and the initial SOC of 

individual battery. The charging load and its charging methodologies play significant role in 

distribution system. The inaccurate modelling of EV load may overload the Distribution 

System components, increase in network power loss (NPL) and maximum voltage deviation. 

The Constant Power (CP) load model is more popularly using to model both the conventional 

and EV loads in distribution system. But the CP load modelling cannot provide accurate 

information of different types of voltage dependent conventional loads and EV charging 

process.  

In this work, the EV loads are modelled as Constant (i). Impedance-Constant Current-

Constant Power (ZIP), (ii). Exponential, (iii). Constant Current and (iv). Constant Power load 

models and the conventional loads are modelled as (a). Residential-Industrial-Commercial 

(RIC) and (b). Constant Power load models. With these EV load models, the impact of load 

of FCS in distribution system has been analysed. 

4.2 EV Load model and Problem formulation 

4.2.1 EV load model 

In the aforementioned literature [30]-[36], EV charging was modelled as Constant 

Power load model and the same is updated in Distribution System load flow for each time 

interval to analyse electrical power losses, voltage deviation and a daily load profile. The 
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variation in voltage at load buses have a greater impact on the power consumption of the 

loads.  In EV charging, at low SOC of the battery it draws the high power. Power flow from 

converter to battery depends on converter to battery current (I) and battery voltage (V). The 

battery terminal voltage depends on its SOC [67]-[73].  

In this chapter, the voltage dependent load modelling has been used to analyse the 

impact load of FCS in distribution system.  

4.2.2 ZIP load model 

The ZIP or Polynomial model is combination of Constant Current, Constant Power 

and Constant Impedance. The ZIP load model is an expansion of Exponential load model, 

which has been widely used to analyse the voltage dependence of loads.     

𝑃𝐸𝑉
1 = 𝑃0 [𝑍𝑝 (

𝑉

𝑉0
)

2

+ 𝐼𝑝 (
𝑉

𝑉0
) + 𝑃𝑃]                             (4.1) 

Where 𝐏𝟎 is the active power at the nominal voltage 𝐕𝟎 (1.0 p.u);   𝐕 is the actual 

voltage; 𝐙𝐩, 𝐈𝐩 and 𝐏𝐏 are the constants associated with the impedance, current and power of 

active load at particular bus. The𝐙𝐩, 𝐈𝐩 and 𝐏𝐏 values are -0.1773, 0.9949 and 0.1824 [80] 

respectively. 

4.2.3 Exponential load model 

The second type of EV load model is represented with the help of constant power 

term(= 𝐛), exponent constant (= 𝐚) and exponent indices (= 𝛃) as follows: 

𝑃𝐸𝑉
2 = 𝑃0 [𝑎 (

𝑉

𝑉0
)

𝛽

+ 𝑏]                           (4.2) 

Where 𝐚, 𝛃 and 𝐛 are the constants of Exponential load model and their values are 

considered as 0.0122, -1.9392 and 0.9878 [81] respectively. 

4.2.4 Constant Current load model 

The Constant Current load model is obtained by using an exponential load model and 

is given below:  

𝑃𝐸𝑉
3 = 𝑃0 (

𝑉

𝑉0
)

𝛼

                                          (4.3) 

where α is an exponential index and its value is taken as 1. 
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4.3 Objective function formulation  

In the distribution network, the network power losses, voltage profile and the power 

flows through the line are greatly depend on EV load modelling and its load profiles. The 

variation of Distribution System parameters like distribution network power losses, bus 

voltages and power flows, from their rated values is measured by the system performance 

indices. 

It is assumed that, in a selected day, the total number of EVs (TNEV) in the study 

area is charged by the FCS. The TNEV in study area is calculated as 

𝑻𝑵𝑬𝑽 = ∑ 𝑵𝑬𝑽(𝒛)
𝒏𝒛𝒐𝒏𝒆

𝒛=𝟎
                                                     (4.4) 

Where NEV(z) is the number of dedicated EVs in zone z, i.e., all dedicated vehicles 

are regular costumers of that zone FCS and nzone is the number of zones in the selected 

study area.  

4.3.1 EVUC (Electric Vehicle User Cost) index 

The EV user should drive a certain trajectory to reach to the FCS. EVUC represents 

the cost associated with the energy consumed by EVs to reach the FCS. For EVs located in 

zone z, the EV user cost to reach nearest FCS for being charged at jth charging station 

EVUC(z, j) is calculated as follows [36]. 

𝐸𝑉𝑈𝐶 = ∑ ∑ 𝑑(𝑧, 𝑗)𝑆𝐸𝐶 ∑ 𝐶𝑃𝐸𝑉(ℎ)𝑁𝐸𝑉(𝑧)𝐸𝑃24
ℎ=1

𝑛𝑐𝑠
𝑗=1

𝑛𝑧𝑜𝑛𝑒
𝑧=1                       (4.5) 

where d(z, j) is the distance between zone z and jth charging station  SEC and EP are 

the specific energy consumption of EVs (kWh) and electricity price during hour h 

respectvely. the variable CPEV(h) is a vector having the probability of EV charging in the 

hour (h) of the day. The distance to displacement ratio strongly depends on the optimality of 

the road network in the selected study area. For an optimal road network, the distance 

approaches the displacement. Hence, choosing the displacement rather than distance in this 

approach to obtain charging stations are still optimal for the optimal road network.  

The EVUC index reflects the minimization of EVUC from the maximum EVUC and 

it is calculated as follows 

𝐸𝑉𝑈𝐶𝐼 =
 𝐸𝑉𝑈𝐶𝑚𝑎𝑥−𝐸𝑉𝑈𝐶

𝑛𝑧𝑜𝑛𝑒∗𝑛𝑐𝑠
                                              (4.6) 
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where the  EVUCmax  is the maximum possible EVUC as compared to all possible 

FCSs locations and ncs is number of FCSs. 

4.3.2 Power loss index (PLI) 

The higher FCS charging demand increases the line and substation loading. It causes 

an increase in Distribution System power losses. The Distribution System loss has a nonlinear 

relationship with the system loading. The variable Distribution System loss is significant due 

to EV charging demand, hence the precise calculation of electrical grid loss is required, with 

the account of the variation in grid load [39].  

The distribution network power losses (NPL) during a day is calculated as follows, 

𝑁𝑃𝐿𝑇𝐿 = ∑ ∑ 𝑃𝐿(ℎ, 𝑡)
𝑛𝑝

𝑡=1
24
ℎ=1                                                 (4.7) 

𝐺𝑃𝐿(ℎ, 𝑡) = 𝑃𝐿(ℎ, 𝑡) + 𝐴𝑃𝐿(ℎ, 𝑡)                                            (4.8) 

𝑁𝑃𝐿𝑇𝐿𝐸𝑉 = ∑ ∑ 𝐺𝑃𝐿(ℎ, 𝑡)
𝑛𝑝

𝑡=1
24
ℎ=1                                                 (4.9) 

where PL(h, t) is the power losses with conventional load at time t during hour h. The 

GPL and APL are the total electrical power loss including FCS load and added power losses 

due to FCS load at time t during hour h. The PLI is related the difference in power losses with 

and without load of FCSs. The PLI is calculated as follows 

𝑃𝐿𝐼 =
𝑁𝑃𝐿𝑇𝐿𝐸𝑉−𝑁𝑃𝐿𝑇𝐿

𝑁𝑙𝑁𝑝
                                          (4.10) 

where Np and Nl are the number of time periods in the load profile and number of 

lines in the test system. NPLTLEVAnd NPLTL are the distribution network power losses with 

and without FCS load respectively.  

4.3.3 Voltage profile index (VPI) 

Inappropriate planning of FCSs causes voltage instability in the distribution network. 

Both of over and under voltages affect the power quality of supply. The VPI for load 

modelling is related to the voltage deviation between each bus Vi and the root bus voltage (v0) 

considering the time varying voltage magnitude for EV load demand at each time interval. 

The lower value of VPI means better the network performance. 

𝑉𝑃𝐼 =
∑ ∑ |𝑉0

𝑡−𝑉𝑖
𝑡|

𝑁𝑏
𝑖=1

𝑁𝑝
𝑡=1

𝑁𝑏𝑁𝑝
                                     (4.11) 
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where Nb is the number of buses in the distribution system. V0 and Vi are the voltage 

magnitude at the slack and bus i respectively.  

4.3.4 Apparent power performance index (APPI) 

The APPI reflects the violation of branch active power flows in the distribution 

system. It measures the severity of the branch or line over loads considering EV load demand 

at each time interval [23]. The APPI is calculated as follows 

𝐴𝑃𝑃𝐼 =
∑ ∑

𝑆𝑙
𝑡

𝑆𝑙
𝑚𝑎𝑥

𝑁𝑙
𝑙=1

𝑁𝑝
𝑡=1

𝑁𝑝𝑁𝑙
                             (4.12) 

where Nl is the number of lines in the distribution network. 𝑆l and 𝑆l
max are the actual 

power flow and the maximum power flow limit in line l respectively.  

4.3.5 Objective function 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 {𝐸𝑉𝑈𝐶𝐼, 𝑃𝐿𝐼, 𝑉𝑃𝐼, 𝐴𝑃𝑃𝐼}                                   (4.13) 

The objective function is the minimization of  EVUCI, PLI, VPI  and APPI  of the 

electrical Distribution System by meeting the following constraints, 

∑ 𝐹𝐶𝑆(𝑗)𝑁𝐹𝐶𝑆
𝑗=1 > 0   ∀    𝑗 = 1,2, … … … , 𝑁𝑃𝐶                                    (4.14) 

𝑆(𝑗) ≥ 0   ∀  𝑗 = 1,2,3, … … … , 𝑁𝑃𝐶                                               (4.15) 

∑ 𝑆𝑒𝑙𝑒𝑐𝑡(𝑧, 𝑗)𝑋(𝑗) = 1   𝑛𝑧𝑜𝑛𝑒
𝑧=1   ∀ 1,2,3 … … 𝑧                                    (4.16) 

0 ≤ 𝑏𝑎𝑡𝑖,𝑡
𝑐ℎ𝑔

≤ (1 − 𝑦𝑖,𝑡) ∗ 𝑃𝐶    ∀ 𝑡 ∈ 𝑇, ∀ 𝑖 ∈ 𝑇𝑁𝐸𝑉             (4.17) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑖,𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥    ∀ 𝑡 ∈ 𝑇, ∀ 𝑖 ∈ 𝑇𝑁𝐸𝑉                              (4.18) 

Equation (4.14) represents, at least one charging station should be installed in the 

selected area to meet the EV loads [24]. The NPC is the number of possible FCSs based on 

road transport network and electrical distribution network. Equation (4.15) and (4.16) 

represent, at least one charging connector should be considered for each selected FCS. The 

EVs in each zone should select one optimal FCS based on the distance between jth charging 

station and zone z. These Select(z, j) is 1 if the EVs in zone z are selected jth charging station, 

otherwise it is zero. X(j) is the binary decision variable, which is equal to 1 if jth FCS is 

selected, otherwise it is zero. 
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Table 4.1 Comparison of SFLA and TLBO with hybrid SFL-TLBO algorithm 
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Each battery has a maximum charging power as given in (4.17). and bati,t
chg

 is the 

charging power of ith EV battery at time t. The yi,t  is the swapping status of ith EV at time t. 
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SOCi,t is the SOC of ith EV battery at time t and it should be with in minimum SOC (SOCmin) 

and maximum SOC of battery (SOCmax). 

4.4 Multi-objective hybrid Optimization Algorithm  

To analyze the impact of EV load modelling on optimal planning of FCSs and DGs in 

distribution system the proposed SFL-TLBO hybrid optimization algorithm has been used. 

The concept of SFL-TLBO algorithm and its step by step procedure was explained in section 

3.5 and 3.6 respectively.   The comparison between the proposed SFL-TLBO, SFLA and 

TLBO algorithms are reported in Table 4.1.  

Algorithm 1.Pseudo code of proposed hybrid SFL-TLBO 

Initialize NPS, CPEV, distribution system parameters, EV load model parameters and termination criteria 

Number of populations (n), student groups (s),   

Define  𝑓(𝑋)          X= (𝑥𝑎 , 𝑥𝑏 , 𝑥𝑐 … … … 𝑥𝑑)  d=no. of decision variables.  

Initialize the group of learners randomly  𝑋𝑖         i= 1,2,3……..n. 

Evaluate objective function value for group of learners 𝑓(𝑋) 

Identify the best solution as teacher Xgbest 

For iter=1to maximum iterations 

        for i=1 to n   // Teacher phase// 

                 Calculate the mean of each variable 𝑚𝑒𝑎𝑛𝑚 

 Calculate difference mean of each variable (𝑑𝑖𝑓𝑓 𝑚𝑒𝑎𝑛𝑚) 

 𝑑𝑖𝑓𝑓 𝑚𝑒𝑎𝑛𝑚 = 𝑟𝑎𝑛𝑑 ∗ (𝑋𝑔𝑏𝑒𝑠𝑡 − 𝑚𝑒𝑎𝑛𝑚)         

                  Update each solution based on best solution  

                 𝑋𝑛𝑒𝑤𝑛,𝑚 = 𝑋𝑜𝑙𝑑𝑛,𝑚 + 𝐷𝑖𝑓𝑓 𝑚𝑒𝑎𝑛𝑚 

                 Evaluate the objective value for new mapped solution 𝑓(𝑋𝑛𝑒𝑤𝑛,𝑚)  

         If 𝑓(𝑋𝑛𝑒𝑤𝑛,𝑚) ≤ 𝑓(𝑋𝑖)  i.e., (𝑋𝑛𝑒𝑤𝑛,𝑚  is better than 𝑋𝑖)       

                              𝑋𝑇 = 𝑋𝑛𝑒𝑤𝑛,𝑚  

                            𝐹𝑇 = 𝑓(𝑋𝑇) 

                        else 

                        𝑋𝑇 = 𝑋𝑖   

                             𝐹𝑇 = 𝑓(𝑋𝑇) 

                         end if  

           end for   n loop                // End of teacher phase // 
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       Sort the population based on non-dominated sorting technique 

       Divide the learners into g Number of groups    

for i=1to g                  // Learner phase// 

                for i=1to s  

      Identify the best solution in each group  𝑋𝑔𝑟𝑜𝑢𝑝−𝑏𝑒𝑠𝑡  

              𝑋𝑛𝑒𝑤𝑠,𝑔 = 𝑋𝑜𝑙𝑑𝑠,𝑔 + 𝑟𝑎𝑛𝑑 (𝑋𝑔𝑟𝑜𝑢𝑝_𝑏𝑒𝑠𝑡𝑠,𝑔
− 𝑋𝑜𝑙𝑑𝑠,𝑔)               

Calculate objective function value 𝑓(𝑋𝑛𝑒𝑤𝑠,𝑔) 

If   𝑓(𝑋𝑛𝑒𝑤𝑠,𝑔) is better than 𝑓(𝑋𝑇) 

                                           𝑋𝑖 = 𝑋𝑛𝑒𝑤𝑠,𝑔 

                            else 

                  𝑋𝑛𝑒𝑤𝑠,𝑔 = 𝑋𝑜𝑙𝑑𝑠,𝑔 + 𝑟𝑎𝑛𝑑 (𝑋𝑏𝑒𝑠𝑡_𝑝𝑜𝑝𝑠,𝑔
− 𝑋𝑜𝑙𝑑𝑠,𝑔) 

  𝑋𝑖 = 𝑋𝑛𝑒𝑤𝑠,𝑔  (𝑋𝑔𝑏𝑒𝑠𝑡 = 𝑋𝑖  )   

Otherwise generate a random population 

 end if    

                          end for      ---------𝑠 loop 

    end for-------g loop   //End of learner phase// 

end for ---------iter loop (Termination criterion) 

𝑋𝑔𝑏𝑒𝑠𝑡  ------- optimal location and size of FCSs   

𝐹𝑔𝑏𝑒𝑠𝑡   -------- optimal 𝐸𝑉𝑈𝐶𝐼, 𝑃𝐿𝐼, 𝑉𝑃𝐼, 𝐴𝑃𝑃𝐼 values 

Save the optimal population and its fitness value. 

4.5 Test system Data and Performance comparison of proposed 

Algorithm 

4.5.1 Test System Data 

The IEEE 38 bus test system has been used as case study to analyze the impact of 

FCS EV load modelling in distribution system. For this test system, base voltage and base 

MVA are 12.66 kV and 1 MVA respectively. The total real and reactive power loads on the 

test system are 5084.26 kW and 2547.32 kVAr [79].  
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Figure 4.1: 38-bus Distribution System with zones 

 

Figure 4.1 shows the single line diagram of 38 bus system associated with uniformly 

divided EV zones. To analyze the impact of EV load modeling a study area of 256 km2 

surface area has been considered. It consist of 64 uniformly divided EV zones, with the area 

of each zone is 4km2. The EV population in zone is mentioned in middle of each zone. The 

total EV population in study area is considered as 330. The variation of conventional load in 

each hour during a day is considered for investigation purpose and it is shown in Figure 4.2. 

 

Figure 4.2: Hourly conventional load profile during a day 

To consider the uncertainty of arrival EVs, a charging probability distribution 

function (CPEV(h)) is considered. The charging probability distribution function is shown in 

Figure 4.3. It has been divided in to 17 probability levels [72].  
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Figure 4.3: Variation of CPEV (h) 

Furthermore, to consider the uncertainty of the initial SOC of the EVs in load flow the 

Monte-Carlo simulation has been used. This uncertainty is modelled as normal distribution 

function with mean 20 and standard deviation is 5 as shown in Figure 4.4. 

 

Figure 4.4:   EVs initial SOC PDF 

A normal distribution is a random variable x with mean (μ) and variance σ2  is a 

statistical distribution with probability distribution function.  The normal distribution function 

is calculated as follows 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−(𝑥−𝜇)2/(2𝜎2)                                                (4.26) 

The distribution network and EV parameters are listed in Table 1. 

Table 4.2: EV and FCS parameters [79] 

Parameter Value Parameter Value Unit 

TNEV 330 SEC 0.142 kWh/kM 

NPC 9 EP 87.7 $/MWh 

  PC 30 kW 

  BCmax 24 kWh 

4.6 Performance comparison of Hybrid SFL-TLBO with SFLA and 

TLBO 

The performance comparison of multi-objective optimization is more complex as 

compared with single objective optimization, because the optimization goal itself consists of 
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multiple objectives. The performance of proposed Hybrid SFL-TLBO algorithm is compared 

with SFLA and TLBO by using two metrics. To calculate these metrics the algorithms are 

executed for 20 runs with random initial seeds [71].  

4.6.1 Convergence metric (C-metric)  

The C-metric is evaluating the progress towards the optimal pareto-front. The set 

convergence metric C (A, B) calculates the proportion of solutions in B which are weakly 

dominated by solutions of A. 

𝐶(𝐴, 𝐵) =
|{𝑏𝜖𝐵;∃ 𝑎𝜖𝐴:𝑎≼𝑏}|

|𝐵|
                                                    (4.27) 

4.6.2 Spacing metric (S-metric) 

The S-metric is evaluating the spread of solutions in pareto-front. It is defined as the 

distance variance of each solution to nearest neighbor and it is calculated as follows; 

𝑆 = √
1

𝑛−1
∑ (𝑑̅ − 𝑑𝑖)2𝑛

𝑖=1                                                  (4.28) 

Where di is the distance of the ith individual to its closest neighbor, and d̅ is the mean 

of among individuals. The d̅ and di are calculated as follows; 

𝑑̅ =
∑ 𝑑𝑖

𝑛
𝑖=1

𝑛
                                  (4.29) 

𝑑𝑖 = min {∑
|𝑓𝑚(𝑥𝑖)−𝑓𝑚(𝑥𝑗)|

𝑓𝑚,𝑚𝑎𝑥−𝑓𝑚,𝑚𝑖𝑛

𝑁𝑜𝑏𝑗

𝑚=1 }       (4.30) 

The boxplots of C-metric and S-metric are shown in Figure 4.5 and Figure 4.6. It 

shows that the proposed Hybrid SFL-TLBO has the better performance as compared to the 

SFLA and TLBO. Therefore, the proposed algorithm has been used for different cases of 

scenario 1 and scenario 2.  
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Figure 4.5: Average C-metric value for case 1 of scenario 1 
 

 

Figure 4.6: Average S-metric value for case 1 of scenario 1 

4.7 Results and Analysis 

To analyze the impact of FCS EV charging on Distribution System, the network 

power loss, maximum voltage deviation and EVUC are considered as objectives. Two 

possible scenarios are considered with different load models. In each scenario the objective is 

to reveal the impact levels of EV load models on distribution system. For this, the daily 

conventional loads and the EV loads are not separated. The load variation in each hour during 

the day has been considered to solve the objective function (4.13). The Current Injection 

Method (CIM) has been used to analyze load flow in distribution system. In voltage 

dependent load modelling case, the active and reactive loads are continuously updated after 

computing the new voltages in order to reflect the changes in bus voltage in each iteration of 

CIM load flow method.   

In each scenario four different cases are considered. In case 1, case 2, case 3 and case 

4, the EV load is modelled as Constant Power, ZIP, Exponential and Constant Current load 

models respectively. 

4.7.1 Scenario 1: Different load modelling of EV and treating conventional load as 

RIC load model 

In this scenario the FCSs are optimally planned in order to minimizing the EVUC, 

MVD and NPL in the distribution network. The SFL-TLBO algorithm has been used to solve 

the objective function (4.13). This algorithm determines the optimal locations of FCSs in the 

distribution system. In scenario 1, the conventional load is treated as Constant Power load 

and it is added with different EV load models. In case 1 of scenario 1 both the conventional 

and EV loads are modelled as Constant Power load modelling.   
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 The optimal Pareto fronts to optimize the EVUC, MVD and NPL in case1 of scenario 

1 is shown in Figure 4.7. 

 

Figure 4.7: Optimal Pareto fronts of case 1 of scenario 1 

From the optimal Pareto fronts as shown in Figure 4.7 the compromised solution has 

been determined using min-max optimization technique for case 1 of scenario 1. Similarly, 

for case 2, case 3 and case 4 the optimal parameters are calculated and listed in Table 4.3. 

Table 4.3: Optimal objective parameters in scenario I 

 EVUC ($/day) MVD (p.u.) NPL (MW/day) 

Case 1 

3048.8 

0.0776 138.3095 

Case 2 0.0772 138.1601 

Case 3 0.0775 138.283 

Case 4 0.0774 138.4477 

In case 1 of scenario 1 the optimal values EVUC, MVD and NPL are 3048.8 ($/day), 

0.0776 (p.u.) and 138.3095 (MW/day) respectively. In scenario 1 the EVUC is constant in all 

the four cases, as the optimal location of three FCSs are same in case 2, case 3 and case 4. 

Furthermore, the number of connectors in FCS is also been calculated and their values are 15, 

7 and 11 respectively. Similarly for case 2 of scenario 1 the MVD and NPL are 0.0772 (p.u.) 

and 138.1601 (MW/day). These values are minimum as compared to the case 1, case 3 and 

case 4.   
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Figure 4.8: Maximum percentage of load in each hour of the day of case 1 of scenario 1 

 

The conventional and EV loads vary with the daily load demand and EVs charging 

probability respectively.  The EV load demand in each FCS directly depends on its location. 

The variation of sum of maximum conventional and EV load during the day is compared with 

the conventional load demand as shown in Figure 4.8. 

Further, the maximum line flows has been calculated to analyze the impact of EV 

load modelling. In case 1 of scenario 1 the maximum MVA flows in each line is compared 

with the line MVA limits and it is plotted as shown in Figure 4.9. In Constant Power load 

modeling of scenario 1 the line MVA flow is more than line MVA limit. 

 

Figure 4.9: Line MVA limit comparison with maximum line flows of case 1 of scenario 1 

Furthermore, to quantify the impact of EV load modelling in Distribution System the 

EVUCI, PLI, VPI and APPI are calculated and listed in Table 4.4.  
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Table 4.4: Impact of indices with different load models in scenario 1 

 FCS bus locations EVUCI PLI VPI APPI 

Case 1 

10, 16, 21 0.00457 

0.389 0.0357 0.2324 

Case 2 0.3916 0.0341 0.2324 

Case 3 0.3922 0.0345 0.2325 

Case 4 0.3923 0.0353 0.2326 

In case 2 of scenario 1, the PLI, VPI and APPI are 0.3916, 0.0341 and 0.2324 

respectively. The indices in case 2 of scenario 1are less as compared to the case 1, case 3 and 

case 4. The case 1 is inaccurate load model, as the conventional load at buses and EV loads 

are modelled as Constant Power load model. As shown in Table 4.4 the case 2 indices are 

optimal as compared to the remaining cases in scenario 1. In case 2 the EV load is modeled 

as ZIP load model and the conventional load is modelled as constant power load.   

4.7.2 Scenario 2: Different load modelling of EV and treating conventional load as 

CP load model 

In scenario 2 the conventional load at each bus is modelled with the residential, 

industrial and commercial (RIC) load models. The conventional load types and their 

magnitudes are listed in [30] and the EV load is modelled as Constant Power, ZIP, 

Exponential and Constant Current load models as case 1, case 2, case 3 and case 4 

respectively. In each case the optimal site and size of FCSs have been determined by solving 

the objective function (4.13) using the hybrid SFL-TLBO algorithm. To analyze the impact 

FCSs EV charging on Distribution System NPL, MVD and EVUC has been determined. 

Further, the PLI, VPI and APPI indices are also calculated. The optimal Pareto fronts for case 

2 of scenario 2 are shown in Figure 4.10. The location and size of three FCSs are same for 

case 1, case 2, case 3 and case 4. Hence, the optimal pareto-fronts are plotted only for case 2 

of scenario 2. 
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Figure 4.10: Optimal Pareto fronts of case 2 of scenario 2 

From Figure 4.10 the best suitable solution has been determined by using the min-

max method. Similarly, for case 1, case 3 and case 4 the optimal values are evaluated and 

listed in Table 4.5.  

Table 4.5 Optimal objective parameters in scenario 2 

 EVUC ($/day) MVD (p.u.) NPL (MW/day) 

Case 1 

2866.8 

0.0667 129.2259 

Case 2 0.0662 129.1451 

Case 3 0.0667 129.3741 

Case 4 0.0664 129.5626 

In case 1 of scenario 2, the optimal values EVUC, MVD and NPL are 2866.8 ($/day), 

0.0667 (p.u.) and 129.2259 (MW/day) respectively. In scenario 2 also the EVUC is constant 

for all four cases as the optimal location and size of three FCSs are same in each case. The 

number of connectors in FCS is also been calculated as 10, 13 and 10 respectively. Similarly 

for case 2 of scenario 2 the MVD and NPL are 0.0662 (p.u.) and 129.1451 (MW/day). The 

objective parameters in case 2 of scenario 2 are minimum as compared to the case 1, case 3 

and case 4.  The main observation from Table 4.5 is that the EVUC, MVD and NPL costs are 

drastically reduced in scenario 2 as compared to the all cases in scenario 1. Furthermore, case 

2 of scenario 2 is yielding more accurate information about the conventional and EV loads in 

the distribution system.  
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The variation of sum of maximum conventional and EV loads during the day is 

compared with the conventional load demand as shown in Figure 4.11. 

 

Figure 4.11 Maximum percentage of load in each hour of the day of case 2 of scenario 2 

Due to the change in charging probability and initial SOC of EVs the line flows have 

a chance to exceed the maximum MVA limit. In scenario 2, the line maximum MVA flows 

are drastically reduced as compared to the all cases of scenario 1. The line MVA flows are 

compared with the maximum line MVA limit of case 2 of scenario 2 as shown in Figure 4.12. 

 

Figure 4.12: Line MVA limit comparison with maximum line flows of case 2 of scenario 2 

The PLI, VPI and APPI indices for different cases of scenario 2 are calculated and 

listed in Table 4.6.  These indices are more optimal in scenario 2 as compared to scenario 1. 

Further, in case 2 of scenario 2 the PLI, VPI and APPI found to be better as compared with 

other cases of both the scenario 1 and scenario 2. 
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Table 4.6 Impact of indices with different load models in scenario 2 

 FCS bus locations EVUCI PLI VPI APPI 

Case 1 

6, 21, 25 0.00552 

0.3763 0.0331 0.1682 

Case 2 0.3753 0.0321 0.1696 

Case 3 0.3781 0.0324 0.1681 

Case 4 0.3185 0.0328 0.1703 

In summary of this chapter, the conventional loads are modeled as Constant Power 

and RIC loads and the EV load is modeled as the ZIP, Exponential, Constant Current and 

Constant Power load models. These have been considered to analyze the impact of EV load 

on distribution system. A newly proposed multi-objective hybrid SFL-TLBO algorithm has 

been used for optimal planning of FCSs in Distribution System with the objective of 

minimizing NPL, MVD and EVUC. The EVUC, MVD and NPL cost are drastically reduced 

in scenario 2 as compared to the all cases in scenario 1. Further, case 2 of scenario 2 is 

offering more accurate information about the affect of conventional and EV loads on the 

distribution system.  

Furthermore, in case 2 of scenario 2, the Distribution System indices (PLI, VPI and 

APPI) are more optimal as compared to the results of scenario 1and other cases of scenario 2. 

It is observed that there existed a significant difference in Distribution System indices and the 

objective parameters with different load models for both the conventional and EV loads. The 

results substantiate that the RIC and ZIP load models are accounting the accurate behaviour 

of conventional and EV loads respectively. 

This part of work is communicated in IET Electrical Systems in Transportation with 

the title as “Impact of EV Load Modelling on Fast Charging Station Planning in Electrical 

Distribution System.”  

The next stage of investigation is focused on Optimal Scheduling of Electric Vehicle 

Batteries in Battery Swapping Station and the same is reported in chapter 5.  
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Chapter-5  

 

 

 

 

 

 

 

Multi-Objective Optimal Scheduling of Electric 

Vehicle Batteries in Battery Swapping Station 
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5.1 Introduction  

Due to maturity of the Batteries and their charging technology, public incentives and 

growing criticism on dense air pollution, the EVs gaining more popularity as compared  to 

traditional fuel vehicles. 

Over the past decade, the EV population is greatly increased due to reduce reliance on 

fossil fuels and environmental pollution. However, many car owners are still deterred to buy 

EVs due to certain major drawbacks of EVs, such as long charging time, range anxiety, 

expensive EV batteries and short life time with fast charging [41]. An efficient solution to 

these problems is the deployment of Battery Swapping Stations (BSS) to encounter all the 

drawbacks.  First, the BSS provides a short charging time just like gas refuelling station. 

Secondly, the range is increased with high capacity batteries by swapping a battery in nearby 

BSS. Thirdly, the EV users need not to pay the total initial cost of battery. Fourthly, in BSS 

technology, the batteries are charged in slow-charging mode to extend their life [42]. In [65], 

the performance of BSS is compared with the FCS and it has been claimed that BSS is more 

feasible than fast charging stations for EVs charging.  

 As a part of this research work the multi-objective Battery Swapping Station (BSS) 

model is developed in order to optimize (i). the number of batteries taken from battery stock, 

(ii) Charging damage and (iii). electricity charging cost of batteries.  Further, the dynamic 

electricity pricing model is considered to avoid new peaks of battery charging demand in 

BSS. A BSS model with finite EV battery swapping demand in each hour of the day is solved 

by using the proposed Multi-objective Shuffled Frog Leaping Algorithm (SFLA).  

5.2 Problem formulation  

5.2.1 Decision Solution  

The decision variable vector of the objective problem consists of different charging 

methods. The solution decision variable vector is given as 

𝑆 = {𝑎𝑛𝑠(1), 𝑎𝑛𝑠(2), … 𝑎𝑛𝑠(𝑗) … … 𝑎𝑛𝑠(𝑁𝐸𝑉)}                      (5.1) 

where, ans(j) = m means that charging method m  is assigned to recharge jth EV.  

NEV is the number of EVs required battery swapping in each time period. 
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5.2.2 Mathematical model 

In this model, the aim is to minimize the number of batteries taken from stock, battery 

degradation cost and battery electricity charging cost. In this context, the following equations 

are more relevant for the investigation. 

𝐹𝐶𝐵(𝑡) = 𝐶𝐵(𝑡 − 1) − 𝐼𝐵𝑆(𝑡)                  ⇔  (𝐹𝐶𝐵(𝑡 − 1) > 𝐼𝐵𝑆(𝑡)           (5.2) 

Otherwise  

𝐵𝑆(𝑡) = 𝐵𝑆(𝑡 − 1) + 𝐼𝐵𝑆(𝑡) − 𝐹𝐶𝐵(𝑡)                      (5.3) 

When battery becomes fully charged at time t, the FCB(t) is updated as follows  

𝐹𝐶𝐵(𝑡) = 𝐹𝐶𝐵(𝑡 − 1) + 1                                 (5.4) 

 𝑂𝑏𝑗1 = 𝐵𝑆𝑚𝑎𝑥 = max (𝐵𝑆)                                  (5.5) 

𝑂𝑏𝑗2 = 𝐴𝐶𝐷 =
1

𝑁𝐸𝑉
∑ 𝐶𝐷𝑖(𝑚)

𝑁𝐸𝑉
𝑖=1                        (5.6) 

Here, the FCB(t) is the number of incoming batteries recharged and available for 

swapping, IBS(t)number of incoming batteries for swapping at time ‘t’, BS(t) is the number 

of batteries taken from stock and  BSmax is maximum number of batteries taken from stock to 

serve all incoming EVSs. Equation (5.2) calculates the number of incoming batteries 

available for swapping ( FCB(t) ). if (FCB(t − 1) > 0) , the FCB(t) is reduced by one. 

Otherwise the batteries taken from stock are increased by one and it is calculated by (5.3). If 

the incoming battery is fully charged then FCB(t) is increased by one and it is updated as 

(5.4).     

The charging damage of all incoming batteries are calculated as (5.6). In (5.6), ACD is 

the average charging damage of battery and CDi(m) is the charging damage of ith EV battery 

due to charging method ‘m’.  The optimal scheduling of EVs and calculation of objectives 

have been carried out shown in Figure 5.1. 

5.2.3 Dynamic Price Change 

The dynamic price change is considered with the addition of Time of Use price 

(TOU). In TOU price, the low price attracts to charge more number of batteries in BSS and it 
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creates a new peak. To avoid the above drawback the dynamic price change is considered as 

one of the objectives and it is calculated as bellow:     

𝑖𝑓 (𝐵𝑈𝐶(𝑡) > 𝐼𝐵𝑆(𝑡)) the Battery Charging Cost (BCC) is calculated as bellow: 

𝑂𝑏𝑗3 = 𝐵𝐶𝐶 = (
𝐼𝐶𝐵(𝑡)−𝐵𝑈𝐶𝐴𝑃𝐶(𝑡)

max (𝐼𝐶𝐵)
) 𝐸𝑃𝑝𝑠𝑡 + 𝐸𝑃(𝑡)                        (5.7) 

Here, BUC(t)  and IBS(t)  are the number of batteries charging and number of 

incoming batteries for swapping at time ‘t’. BUCAPC(t) batteries under charging right after 

price change at time ‘t’. EPpst  and EP(t)  are the predefined electricity step price and 

electricity price at time ‘t’ respectively. 

 

Figure 5.1: Flow chart for optimal scheduling of EVs in BSS 

5.2.4 Objective function 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓  (  𝐵𝑆𝑚𝑎𝑥, 𝐴𝐶𝐷, 𝐵𝐶𝐶)                    (5.8) 
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 The following Constraints are considered for optimal scheduling of EVs batteries in 

BSS.  

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑗 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥                      (5.9) 

𝑆𝑂𝐻𝑚𝑖𝑛 ≤ 𝑆𝑂𝐻𝑗 ≤ 𝑆𝑂𝐻𝑚𝑎𝑥                  (5.10) 

𝐹𝐶𝐵(𝑡) ≥ 0               (5.11) 

𝐶𝐵(𝑡) = 𝐵𝑆𝑖𝑛𝑖𝑡 + ∑ 𝐶𝐵(𝑡 + 1)𝑇
𝑡=1                       (5.12) 

In (5.9), SOCj is the State of Charge (SoC) of jth EV battery and it should be with in 

minimum SOC (SOCmin) and maximum SOC of battery. With the increases in number cycles 

of charging and discharging, the State of Health (SOH) of battery is affected. The life cycle 

of battery is improved by avoiding over charging and discharging. For better operation of 

BSS the SOH is should follow the constraint (5.10). In (5.12), CB(t) is the number of charged 

batteries at time ‘t’. The BSS needs to have initial number batteries (BSinit) in stock to serve 

for incoming EVs. T is the total time intervals considered for optimal scheduling of EV 

batteries in BSS. 

5.3 Test System Data 

In this study, a typical Lithium-ion battery with rated capacity of 85 kWh has been 

considered (Tesla model S) for optimal scheduling of batteries in BSS. Four types of EV 

battery charging methods such as super-charging, fast-charging, normal-charging and slow-

charging are considered with the power ratings of 120 kW, 80 kW, 60 kW and 40 kW 

respectively.  The battery cost is 21000 ($). The life cycle of battery with above charging 

rates are 800, 1100, 1150 and 1200 respectively [80]. The “Time of Use (TOU) Price” is 

listed in Table 5.1.  

Table 5.1: Electricity TOU price [80] 

Time of the day TOU period Price/kWh (USD) 

7:00 to 11:00 On-peak $0.13 

11:00 to 17:00 Mid-peak $0.10 

17:00 to 19:00 On-peak $0.13 

19:00 to 7:00 Off-peak $0.06 
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The EV battery swapping demand during each hour of a day is given in Figure 5.2. 

 

Figure 5.2: EVs battery swapping demand 

5.4 Methodology 

The aim of this model is to determine the optimal scheduling of incoming EVs in 

order to minimize the number of batteries taken from battery stock, charging damage and 

electricity charging cost of batteries. In literature, the optimal scheduling of EVs batteries in 

BSS is solved by using weighted sum approach method. In all classical methods like 

weighted objectives method, the multiple objectives functions are formulated as a single 

objective function by choosing suitable weights for each objective. The approach to 

determine the optimal value of the single objective has majorly two problems. The first one is 

the optimization of that single objective function may guarantee a single optimal solution, but 

in all practical applications, the decision makers need an alternative solution in decision 

making. The second one is the sensitivity towards weights or demand levels of each objective 

in a single objection function. Moreover, if the objective function is having more noise and 

the variables are discontinuous in search space, the classical methods cannot work 

effectively. To overcome the above problems, multi-objective Pareto front optimizations 

algorithms are necessary for solving multi-objective problems. 

5.4.1 Shuffled Frog Leap Algorithm (SFLA) 

The SFLA is a population-based optimization algorithm [74], and the population 

consists of a set of frogs that is divided into subsets referred to as memeplexes. Each frog in 

the population represents a solution in search space and its hold ideas, which can be 

influenced by the ideas of other frogs and evolve through a process of memetic evaluation. 

After a certain number of memetic evaluation steps, ideas are passed among the memeplexes 
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in the shuffling process. The exploration and the shuffling processes continue until it reaches 

the specified convergence criteria as explained in [74].   

In SFLA, the exploitation and exploration are trying to improve the attempt to 

determine the optimal solution. 

In each iteration, to improve exploitation of the given optimization problem the new 

population is calculated follows 

𝑋𝑛𝑒𝑤𝑠,𝑔 = 𝑋𝑜𝑙𝑑𝑠,𝑔 + 𝑟𝑎𝑛𝑑 (𝑋𝑔𝑟𝑜𝑢𝑝_𝑏𝑒𝑠𝑡𝑔
− 𝑋𝑜𝑙𝑑𝑠,𝑔)                                       (5.13) 

Where Xolds,g is the sorted population divided in to g number of memeplexes and 

each memeplex has S number of frogs.  

𝑋𝑔𝑟𝑜𝑢𝑝_𝑏𝑒𝑠𝑡𝑔
is the optimal solution in gth memeplex.  

If the 𝑋𝑛𝑒𝑤𝑠,𝑔<𝑋𝑜𝑙𝑑𝑠,𝑔 the global search has to be done in order to calculate the optimal 

solution as follows 

      𝑋𝑛𝑒𝑤𝑠,𝑔 = 𝑋𝑜𝑙𝑑𝑠,𝑔 + 𝑟𝑎𝑛𝑑(𝑋𝑏𝑒𝑠𝑡_𝑝𝑜𝑝 − 𝑋𝑜𝑙𝑑𝑠,𝑔)                                                (5.14) 

Where 𝑋𝑏𝑒𝑠𝑡_𝑝𝑜𝑝 is the global optimal solution in each iteration. 

Algorithm 1.Pseudo code of proposed hybrid SFL-TLBO 

Initialize parameters 

Number of incoming EVs in each hour (n)  

Define  𝑓(𝑋)          X= (𝑥𝑎 , 𝑥𝑏 , 𝑥𝑐 … … … 𝑥𝑑)  d=no. of decision variables.  

For h=1:number of hours 

Initialize the population randomly  𝑋𝑖         i= 1,2,3……..n. 

For iter=1to maximum iterations 

        for i=1 to n    

                 Evaluate objective function value 𝑓(𝑋𝑖) 

           end for   n loop                 

       Sort the population based on non-dominated sorting technique 

       Divide the frogss into g Number of memeplexes    

for i=1to g                   

                for i=1to s  

      Identify the best solution in each group  𝑋𝑔𝑟𝑜𝑢𝑝−𝑏𝑒𝑠𝑡  

 𝑋𝑛𝑒𝑤𝑠,𝑔 = 𝑋𝑜𝑙𝑑𝑠,𝑔 + 𝑟𝑎𝑛𝑑 (𝑋𝑔𝑟𝑜𝑢𝑝_𝑏𝑒𝑠𝑡𝑠,𝑔
− 𝑋𝑜𝑙𝑑𝑠,𝑔)              
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 Calculate objective function value 𝑓(𝑋𝑛𝑒𝑤𝑠,𝑔) 

If   𝑓(𝑋𝑛𝑒𝑤𝑠,𝑔) is better than 𝑓(𝑋𝑇) 

                                           𝑋𝑖 = 𝑋𝑛𝑒𝑤𝑠,𝑔 

            else 

      𝑋𝑛𝑒𝑤𝑠,𝑔 = 𝑋𝑜𝑙𝑑𝑠,𝑔 + 𝑟𝑎𝑛𝑑 (𝑋𝑏𝑒𝑠𝑡_𝑝𝑜𝑝𝑠,𝑔
− 𝑋𝑜𝑙𝑑𝑠,𝑔) 

  𝑋𝑖 = 𝑋𝑛𝑒𝑤𝑠,𝑔  (𝑋𝑔𝑏𝑒𝑠𝑡 = 𝑋𝑖  ) 

  Otherwise generate a random population 

 end if    

                          end for      ---------𝑠 loop 

    end for-------g loop    

end for ---------iter loop (Termination criterion) 

𝑋𝑔𝑏𝑒𝑠𝑡  ------------------- − − − 𝑏𝑒𝑠𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

𝐹𝑔𝑏𝑒𝑠𝑡 − − − −𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠  

end for hour loop 

Save the optimal population and its fitness value.  

5.5 Results and Analysis  

The implementation of BSSs is still limited to few countries and in some other 

countries at demonstration level only. A multi-objective BSS model has been developed in 

order to optimize the number of batteries taken from battery stock, charging damage and 

electricity charging cost of batteries. The optimal scheduling has been carried out by 

considering the dynamic pricing model, to avoid the peak demand during low electricity cost 

hours. The dynamic pricing provides more realistic scheduling of EV batteries in BSS. The 

objective function (5.8) has been solved by using a multi-objective SFLA and hybrid SFL-

TLBO algorithms. The optimal Pareto fronts for both algorithms are as shown in Figure 5.3. 
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Figure 5.3: Optimal pareto-fronts for a multi-objective BSS model 

The min-max method has been used to determine the compromised solution from the 

optimal Pareto fronts as shown Figure 5.3. The optimal values of the number of batteries 

taken from battery stock, charging damage and the normalized electricity charging cost of 

batteries by using the hybrid SFL-TLBO are 23, 10.48 ($/kWh), 9.86 ($) respectively. 

Similarly, The optimal values of the number of batteries taken from battery stock, charging 

damage and the normalized electricity charging cost of batteries by using the SFLA are 25, 

10.495 ($/kWh), 9.9 ($) respectively. The proposed hybrid SFL-TLBO gives better results as 

compared to the SFLA. This model has been run for several times and the optimal results are 

presented. The presented algorithm gave accurate results, due to its good exploration and 

exploitation capability.  

For better operation of BSS the number of batteries taken from stock should be 

minimum otherwise the cost of BSS is greatly increased. Similarly the charging method is a 

major factor that decides the degradation cost of EV batteries. In addition to above the 

optimal scheduling of EV batteries, it gives some more additional benefit to BSS operator. 

The variation of number of batteries taken from stock, number of batteries available in BSS 

and the variation of battery charging cost in each hour during the day is shown in Figure 5.4.  
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Figure 5.4: Variation of BSS parameters in each hour during the day with optimal scheduling 

of EV batteries 

 

Figure 5.5: Variation of BSS parameters in each hour during the day with random charging of 

EV batteries 

Further, the comparison of optimal scheduling and random charging of EV batteries 

in BSS has been carried out and the results are as shown in Figure 5.5.  

Table 5.2 presents the comparison of number of number of batteries taken from stock, 

battery charging cost of EVs for both the optimal scheduling and random charging scenarios. 

In optimal scheduling scenario the total number of batteries taken from stock is 23 and the 

total BCC during the day is 9.86 ($). In random charging scenario the number of batteries 

taken from stock is 44 and the total BCC during the day is 15.3757 ($). The above 

comparison clears indicates that the optimal scheduling is beneficial for both BSS operator 

and EV user due to significant reduction in number of number of batteries taken from stock to 

serve all EV swapping demand and the total battery charging cost.  

In summary, this chapter has covered the more effective method of EV charging in fast 

convenient way. In BSS the EV batteries optimally scheduled with suitable charging methods, 
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there by the life time of batteries increases. Further, the charging cost also reduced as 

compared to the conventional random charging methods. 

Table 5.2: Comparison of optimal scheduling and random charging of EVs in BSS 

Hour 

Optimal 

scheduling 
Random charging 

BS BCC ($) BS BCC ($) 

1 3 0.275 5 0.312 

2 0 0.059 0 0.643 

3 1 0.176 3 0.29 

4 0 0.269 3 0.26 

5 0 0.159 2 0.989 

6 1 0.214 0 1.323 

7 2 0.169 3 0.37 

8 0 0.389 0 0.512 

9 0 0.655 4 0.896 

10 2 0.604 3 0.58 

11 3 0.481 3 0.376 

12 0 0.333 3 0.477 

13 0 0.452 0 0.989 

14 1 0.65 3 0.632 

15 0 0.595 0 1.231 

16 2 0.662 2 0.225 

17 2 0.754 0 0.394 

18 1 0.773 3 0.4 

19 1 0.602 2 0.4667 

20 0 0.36 3 0.36 

21 1 0.39 1 1.23 

22 2 0.361 0 1.32 

23 0 0.24 1 0.54 

24 1 0.234 0 0.56 

 

A multi-objective BSS optimal scheduling model with dynamic pricing approach, it 

greatly reduced the electricity battery charging cost and peak demand during low electricity 

price hours. The number batteries taken from stock are also reduced. Further, the comparison 
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of optimal scheduling and random charging of EV batteries in BSS has been carried out and 

the results demonstrate that the number batteries taken from stock, battery damage cost and 

charging cost are minimum in optimal scheduling scenario, it is more beneficial to both the 

EV users and BSS operator. Therefore, the proposed optimal scheduling of EV batteries can 

be used for the planning study of BSS. 

This part of work is published in IEEE PES Innovative Smart Grid Technologies 

Europe Conference with the title as "Multi-Objective Optimal Scheduling of Electric Vehicle 

batteries in Battery Swapping Station" 2019 IEEE Power & Energy Society (PES) Innovative 

Smart Grid Technologies Europe (ISGT-Europe, 2019) conference held at University 

POLITEHNICA of Bucharest, Romania from September 29 to October 2, 2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System 
 

 

117 
 

Chapter-6  
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6.1 Conclusions  

The following conclusions are drawn based on the investigations carried out at 

various stages of this research work. 

A Multi-objective optimization model for simultaneous optimal planning of EV 

Fast Charging Stations (FCSs) and Distributed generations (DGs) in the distribution 

system is developed. The simultaneous planning of FCSs and DGs results in more 

reduction in Electric Vehicle User cost (EVUC) and Network Power Loss (NPL) cost for 

the same station Develop Cost (SDC) and DG power cost investment. The EVUC and NPL 

cost are variable with respect to time. Hence, reduction in this cost will prove beneficial for 

both EV and charging station owners. It is clear from the results that the optimal 

simultaneous placement of both FCSs and DGs in Distribution System provides significant 

benefit to both the EV users and charging station owners.  

The multi-objective optimization model is developed for optimal planning of FCSs 

and DGs in distribution system by considering the present and different levels of increment 

in future EV population growth using newly proposed SFL-TLBO algorithm. The results 

obtained using the hybrid SFL-TLBO algorithm is compared with the SFLA and TLBO 

algorithm. Results have shown that the DGPC and SEC of EVs constitute the major share 

of the total cost. The optimal FCSs location has a drastic impact on SEC of EVs. The 

results suggest that for new erection of FCSs in distribution system, it is necessary to 

consider the present and future penetration of EVs. Otherwise, the NPLC and SEC of EVs 

would be more expensive. The proposed hybrid SFL-TLBO is tested on IEEE 118 bus 

distribution system. It is established that the proposed hybrid algorithm is reliable and 

robust concerning different levels of increase of EV population demand in three scenarios. 

Therefore, the proposed optimal planning FCSs and DGs technique can be used for the 

planning study of charging stations in the coupled electrical distribution and transportation 

network. 

To analyze the impact of EV load modeling on FCSs planning in distribution 

system, the conventional loads are modeled as (a). Constant Power and (b). RIC loads, and 

the EV load is modeled as the (i). ZIP, (ii). Exponential, (iii). Constant Current and 

Constant Power load models. A multi-objective hybrid SFL-TLBO algorithm has been 

used for optimal planning of FCSs in distribution system with the objective of minimizing 
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the Electric Vehicle User cost (EVUC), Maximum Voltage Deviation (MVD) and Network 

Power Loss (NPL) cost. It is observed that there was significant difference in distribution 

system indices and the objective parameters with consideration of different load models for 

both the conventional and EV loads. The results substantiate that the RIC and ZIP load 

models provide accurate behavior of conventional and EV loads respectively. 

An optimal Scheduling of EVs batteries in BSS is analyzed to serve for all 

incoming EVs swapping demand in order to minimize the charging cost, battery 

degradation cost and the number of batteries taken from stock. Further, the comparison of 

optimal scheduling and random charging of EV batteries in BSS has been carried out and 

the results demonstrate that the numbers of batteries taken from stock, battery degradation 

cost and charging cost are minimum in optimal scheduling against the random charging. It 

is more beneficial to both the EV users and BSS operator. 

6.2 Scope for Research work 

Further, this research work in the area of optimal planning of FCSs and DGs in the 

distribution system can be extended in the following directions 

1. Scheduling of EV batteries in BSS with the integration of RESs. 

2. The optimal planning FCSs in distribution system can be attempted by considering 

the Communication between Vehicle to BSS and Vehicle to Grid.  

3. Investigation of grid operation in the presence of BSS incorporating the battery 

degradation aspect. 
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Appendix-I 

IEEE 118 bus Distribution System 

Number of buses: 118 

Number of lines: 117 

Base voltage: 12.66 kV 

Total active power load= 22.71MW 

Total reactive power load=17.041 MVAr

 

Figure A.1: IEEE 118-bus distribution system 
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Line 

Number 

From 

Bus 
To Bus 

R 

(Ohms) 

X 

(Ohms) 

Pload 

(kW) 

Qload 

(kW) 

1 1 2 0.036 0.01296 133.84 101.14 

2 2 3 0.033 0.01188 16.214 11.292 

3 2 4 0.045 0.0162 34.315 21.845 

4 4 5 0.015 0.054 73.016 63.602 

5 5 6 0.015 0.054 144.2 68.604 

6 6 7 0.015 0.0125 104.47 61.725 

7 7 8 0.018 0.014 28.547 11.503 

8 8 9 0.021 0.063 87.56 51.073 

9 2 10 0.166 0.1344 198.2 106.77 

10 10 11 0.112 0.0789 146.8 75.995 

11 11 12 0.187 0.313 26.04 18.687 

12 12 13 0.142 0.1512 52.1 23.22 

13 13 14 0.18 0.118 141.9 117.5 

14 14 15 0.15 0.045 21.87 28.79 

15 15 16 0.16 0.18 33.37 26.45 

16 16 17 0.157 0.171 32.43 25.23 

17 11 18 0.218 0.285 20.234 11.906 

18 18 19 0.118 0.185 156.94 78.523 

19 19 20 0.16 0.196 546.29 351.4 

20 20 21 0.12 0.189 180.31 164.2 

21 21 22 0.12 0.0789 93.167 54.594 

22 22 23 1.41 0.723 85.18 39.65 

23 23 24 0.293 0.1348 168.1 95.178 



Optimal Planning of Electric Vehicle Fast Charging Stations and Distributed Generations in Distribution System 
 

 

                                                                                                                                               133 

  

24 24 25 0.133 0.104 125.11 150.22 

25 25 26 0.178 0.134 16.03 24.62 

26 26 27 0.178 0.134 26.03 24.62 

27 4 28 0.015 0.0296 594.56 522.62 

28 28 29 0.012 0.0276 120.62 59.117 

29 29 30 0.12 0.2766 102.38 99.554 

30 30 31 0.21 0.243 513.4 318.5 

31 31 32 0.12 0.054 475.25 456.14 

32 32 33 0.178 0.234 151.43 136.79 

33 33 34 0.178 0.234 205.38 83.302 

34 34 35 0.154 0.162 131.6 93.082 

35 35 36 0.21 0.1383 66.195 42.361 

36 36 37 0.12 0.0789 73.904 51.653 

37 37 38 0.15 0.0987 114.77 57.965 

38 38 39 0.15 0.0987 918.37 1205.1 

39 39 40 0.24 0.1581 210.3 146.66 

40 40 41 0.12 0.0789 66.68 56.608 

41 41 42 0.405 0.1458 42.207 40.184 

42 42 43 0.405 0.1458 433.74 283.41 

43 29 44 0.33 0.194 112.54 55.134 

44 44 45 0.31 0.194 53.963 38.998 

45 45 46 0.13 0.194 393.05 342.6 

46 46 47 0.28 0.15 326.74 278.56 

47 47 48 1.18 0.85 536.26 240.24 
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48 48 49 0.42 0.2436 76.247 66.562 

49 49 50 0.27 0.0972 53.52 39.76 

50 50 51 0.339 0.1221 40.328 31.964 

51 51 52 0.27 0.1779 39.653 20.758 

52 29 53 0.391 0.141 62.1 26.86 

53 53 54 0.406 0.1461 92.46 88.38 

54 54 55 0.406 0.1461 85.188 55.436 

55 55 56 0.706 0.5461 345.3 332.4 

56 56 57 0.338 0.1218 22.5 16.83 

57 57 58 0.338 0.1218 80.551 49.156 

58 58 59 0.207 0.0747 95.86 90.758 

59 59 60 0.247 0.8922 62.92 47.7 

60 30 61 0.187 0.261 448.4 369.79 

61 61 62 0.133 0.099 440.52 321.64 

62 1 63 0.028 0.0418 478.8 463.74 

63 63 64 0.117 0.2016 120.94 52.006 

64 64 65 0.255 0.0918 139.11 100.34 

65 65 66 0.21 0.0759 391.78 193.5 

66 66 67 0.383 0.138 27.741 26.713 

67 67 68 0.504 0.3303 52.814 25.257 

68 68 69 0.406 0.1461 66.89 38.713 

69 69 70 0.962 0.761 467.5 395.14 

70 70 71 0.165 0.06 594.85 239.74 

71 71 72 0.303 0.1092 132.5 84.363 
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72 72 73 0.303 0.1092 52.699 22.482 

73 73 74 0.206 0.144 869.79 614.775 

74 74 75 0.233 0.084 31.349 29.817 

75 75 76 0.591 0.1773 192.39 122.43 

76 76 77 0.126 0.0453 65.75 45.37 

77 65 78 0.669 0.2412 62.93 42.96 

78 78 79 0.266 0.1227 30.67 34.93 

79 79 80 0.266 0.1227 62.53 66.79 

80 80 81 0.266 0.1227 114.57 81.748 

81 81 82 0.266 0.1227 81.292 66.526 

82 82 83 0.233 0.115 31.733 15.96 

83 83 84 0.496 0.138 33.32 60.48 

84 80 85 0.196 0.18 531.28 224.85 

85 85 86 0.196 0.18 507.03 367.42 

86 86 87 0.1866 0.122 26.39 11.7 

87 87 88 0.0746 0.318 45.99 30.392 

88 64 89 0.559 0.3687 238.15 223.22 

89 89 90 0.186 0.1227 294.55 162.47 

90 90 91 0.186 0.1227 485.57 437.92 

91 91 92 0.26 0.139 243.53 183.03 

92 92 93 0.154 0.148 243.53 183.03 

93 93 94 0.23 0.128 134.25 119.29 

94 94 95 0.252 0.106 22.71 27.96 

95 95 96 0.18 0.148 49.513 26.515 
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96 90 97 0.16 0.182 383.78 257.16 

97 97 98 0.2 0.23 49.64 20.6 

98 98 99 0.16 0.393 22.473 11.806 

99 1 100 0.0625 0.0265 100.66 47.572 

100 100 101 0.1501 0.234 456.48 350.3 

101 101 102 0.1347 0.0888 522.56 449.29 

102 102 103 0.2307 0.1203 408.43 168.46 

103 103 104 0.447 0.1608 141.48 134.25 

104 104 105 0.1632 0.0588 104.43 66.024 

105 105 106 0.33 0.099 96.793 83.647 

106 106 107 0.156 0.0561 493.92 419.34 

107 107 108 0.3819 0.1374 225.38 135.88 

108 108 109 0.1626 0.0585 509.21 387.21 

109 109 110 0.3819 0.1374 188.5 173.46 

110 110 111 0.2088 0.0753 305.08 215.37 

111 111 112 0.2301 0.0828 54.38 40.97 

112 100 113 0.6102 0.2196 211.14 192.9 

113 113 114 0.1866 0.127 67.009 53.336 

114 114 115 0.3732 0.246 162.07 90.321 

115 115 116 0.405 0.367 48.785 29.156 

116 116 117 0.489 0.438 33.9 18.98 

117 110 118 0.2445 0.0879 918.03 898.55 
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Appendix-II 

IEEE 38-bus Distribution System 

Number of buses: 38 

Number of lines: 37 

Base voltage: 12.66 kV 

Total active power load= 5084.26 kW 

Total reactive power load=2547.32 kVAr 

 

 

 

Figure A.2: IEEE 38-bus distribution system 
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 Line impedance (p.u) Line limit (p.u) Loads on to-node (p.u) 

From 

Bus 
To Bus R (p.u) X (p.u) L SL P Q LT 

1 2 0.000574 0.000293 1 4.6 0.1 0.06 R 

2 3 0.00307 0.001564 6 4.1 0.09 0.04 I 

3 4 0.002279 0.001161 11 2.9 0.12 0.08 C 

4 5 0.002373 0.001209 12 2.9 0.06 0.03 R 

5 6 0.0051 0.004402 13 2.9 0.06 0.02 I 

6 7 0.001166 0.003853 22 1.5 0.2 0.1 C 

7 8 0.00443 0.001464 23 1.05 0.2 0.1 C 

8 9 0.006413 0.004608 25 1.05 0.06 0.02 I 

9 10 0.006501 0.004608 27 1.05 0.06 0.02 C 

10 11 0.001224 0.000405 28 1.05 0.045 0.03 C 

11 12 0.002331 0.000771 29 1.05 0.06 0.035 R 

12 13 0.009141 0.007192 31 0.5 0.06 0.035 C 

13 14 0.003372 0.004439 32 0.45 0.12 0.08 R 

14 15 0.00368 0.003275 33 0.3 0.06 0.01 C 

15 16 0.004647 0.003394 34 0.25 0.06 0.02 I 

16 17 0.008026 0.010716 35 0.25 0.06 0.02 C 

17 18 0.004558 0.003574 36 0.1 0.09 0.04 I 

2 19 0.001021 0.000974 2 0.5 0.09 0.04 R 

19 20 0.009366 0.00844 3 0.5 0.09 0.04 C 

20 21 0.00255 0.002979 4 0.21 0.09 0.04 I 

21 22 0.004414 0.005836 5 0.11 0.09 0.04 R 

3 23 0.002809 0.00192 7 1.05 0.09 0.05 C 
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23 24 0.005592 0.004415 8 1.05 0.42 0.2 C 

24 25 0.005579 0.004366 9 0.5 0.42 0.2 C 

6 26 0.001264 0.000644 14 1.5 0.06 0.025 C 

26 27 0.00177 0.000901 15 1.5 0.06 0.025 I 

27 28 0.006594 0.005814 16 1.5 0.06 0.02 C 

28 29 0.005007 0.004362 17 1.5 0.12 0.07 C 

29 30 0.00316 0.00161 18 1.5 0.2 0.6 C 

30 31 0.006067 0.005996 19 0.5 0.15 0.07 R 

31 32 0.001933 0.002253 20 0.5 0.21 0.1 R 

32 33 0.002123 0.003301 21 0.1 0.06 0.04 C 

8 34 0.012453 0.012453 24 0.5 0 0 

 

9 35 0.012453 0.012453 26 0.5 0 0 

 

12 36 0.012453 0.012453 30 0.5 0 0 

 

18 37 0.003113 0.003113 37 0.5 0 0 

 

25 38 0.003113 0.003113 10 0.1 0 0 

 

L-Line number; SL-Line MVA limit in p.u; P-Active power load; Q-Reactive power load, LT-Load Type; 

R-Residential load; I-Industrial load; C-commercial load. 
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Appendix-III 

Current Injection Distribution System Load Flow Method 

 

Algorithm: 

1. Read the system data (input data). 

2. Print the input data and cross check it. 

3. Form the Y bus by using sparsity technique. 

4. Calculate Pinj and Qinj for i=1to n. where n is number of buses. 

5. Set iter=0 

6. Set ΔIreal max=0 and ΔIimag max=0. 

7. Calculate Isp(i)=(Pinj(i)-Qinj(i))/E(i). for i=1to n.  

8. Calculate 𝐼𝑐𝑎𝑙 = 𝑌𝑝𝑝 ∗ 𝐸𝑝 + ∑ 𝐸𝑞
𝑛
𝑞=1,𝑞≠𝑝  

9. Calculate ΔI(i)=Isp(i)-Ical(i) 

10. Calculate ΔI(i)real and ΔI(i)imag and check for convergence. 

11. If ΔI(i)real and ΔI(i)imag are less than epsilon, go to step 16. 

12. Form jacobian matrix 

Set A(nslack, nslack)=1020 to Δenslack=0. 

Set A(n+nslack, n+nslack)=1020 to Δfnslack=0. 

13. Solve [
𝐼𝑖𝑚𝑎𝑔

𝐼𝑟𝑒𝑎𝑙
] = [𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑚𝑎𝑡𝑟𝑖𝑥] ∗ [

∆𝑒

∆𝑓
] 

14. Update complex voltages (voltage magnitude and phase angles) 

15. If iter < itermax. Go to step 6. 

16. Save the results. 
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Appendix-IV 

AVERAGE DAILY LOAD PROFILE AS A FRACTION OF 

YEARLY PEAK 

Hour 

Winter 

load Spring load 

Summer 

Load 

Autumn 

Load 

1 0.4008 0.398 0.547 0.4108 

2 0.3943 0.3821 0.5173 0.3945 

3 0.3928 0.372 0.4952 0.3843 

4 0.3966 0.3669 0.4806 0.3795 

5 0.4112 0.3715 0.4783 0.3857 

6 0.4466 0.39 0.484 0.41 

7 0.4964 0.4179 0.5037 0.4408 

8 0.5195 0.4408 0.5426 0.4595 

9 0.5083 0.4568 0.5881 0.4765 

10 0.4886 0.4701 0.6292 0.4916 

11 0.474 0.4865 0.6751 0.5106 

12 0.459 0.5 0.7151 0.5267 

13 0.4466 0.5134 0.7519 0.5418 

14 0.4366 0.5271 0.7854 0.5561 

15 0.4285 0.5386 0.811 0.5656 

16 0.4249 0.5468 0.8275 0.5732 

17 0.4297 0.5526 0.8331 0.5765 

18 0.4604 0.5508 0.8229 0.5799 

19 0.5001 0.5432 0.7926 0.5851 

20 0.5019 0.5459 0.7628 0.5729 

21 0.4949 0.5374 0.7426 0.5491 

22 0.483 0.5126 0.7027 0.5213 

23 0.4521 0.47 0.6455 0.478 

24 0.4168 0.4255 0.59 0.4354 
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Appendix-V 

BOX PLOT 

 The box and whisker plots are more popularly used to represent the minimum, first 

quartile, median, third quartile, and maximum of a set of data instead of showing the mean 

and standard deviation. The statisticians refer to this set of statistics as a five-number 

summary. The each five-number summary is representing as a box with whiskers. And the 

box is bounded on the top by the third quartile and on the bottom by the first quartile. The 

median divides the box into two parts. The layout of chart determines the width of the box. 

The whiskers are error bars in which first one extends upward from the third quartile to the 

maximum and the second one extends downward from the first quartile to the minimum.  

Notice that the median is not necessarily in the middle of the box and the whiskers 

are not necessarily the same length.  

 

Figure A.3 Vertical box plot 
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Median  

The median (middle quartile) is the mid-point of the data and it is shown by the line 

that divides the box into two parts. In which the half of the scores are greater than or equal 

to this value and half are less.  

Inter-quartile range  

The middle box represents the middle 50% of scores for the set of data. The range 

of data from first to third quartile is referred to as the inter-quartile range and the middle 

50% of scores fall within the inter-quartile range.  

Third quartile  

Seventy-five percent of the scores fall below the third quartile. 

First quartile  

Twenty-five percent of scores fall below the first quartile.  

Whiskers  

The upper and lower whiskers represent scores outside the middle 50%. Whiskers often 

(but not always) stretch over a wider range of scores than the middle quartile groups.  

Example: Box and whisker plots  

The below given is recorded data of the number of sales made in each month in a 

Computer shop. In the past 12 months, the following numbers of computers are sold:  

51, 17, 25, 39, 7, 49, 62, 41, 20, 6, 43, 13.  

To plot the Box-plot:  

First, put the data in ascending order. Then find the median. 6, 7, 13, 17, 20, 25, 39, 41, 43, 

49, 51, 62.  

Median = (12th + 1st) ÷ 2 = 6.5th value = (sixth + seventh observations) ÷ 2 = (25 + 39) ÷ 

2 = 32 

There are six numbers below the median, namely: 6, 7, 13, 17, 20, 25. Q1 = the median of 

these six items = (6 + 1 ) ÷ 2= 3.5th value = (third + fourth observations) ÷ 2 = (13 + 17) ÷ 

2 = 15.  

Here are six numbers above the median, namely: 39, 41, 43, 49, 51, 62. Q3 = the median of 

these six items = (6 + 1) ÷ 2= 3.5th value = (third + fourth observations) ÷ 2 = 46 

 

 


