
Investigations on Wind Speed
Forecasting using Artificial Intelligence

Techniques

Thesis

submitted in partial fulfillment of the requirements

for the award of the degree of

Doctor of Philosophy

in

Electrical Engineering

By

M. Santhosh

(Roll No. 715023)

Supervisor

Dr. Chintham Venkaiah

Associate Professor

Department of Electrical Engineering

National Institute of Technology Warangal
(An Institute of National Importance)

Warangal - 506004, Telangana State, India

June - 2020



APPROVAL SHEET

This Thesis entitled Investigations on Wind Speed Forecasting using Artificial Intelligence

Techniques by M. Santhosh is approved for the degree of Doctor of Philosophy.

Examiners

.......................................................

.......................................................

.......................................................

Supervisor

Dr. Chintham Venkaiah

Associate Professor

EED, NIT Warangal.

Chairman

Dr. S Srinivasa Rao

Professor and Head,

EED, NIT Warangal.

Date:

Department of Electrical Engineering

National Institute of Technology Warangal
(An Institute of National Importance)

Warangal - 506004, Telangana State, India

June - 2020



Department of Electrical Engineering

National Institute of Technology Warangal

CERTIFICATE

This is to certify that the thesis entitled Investigations on Wind Speed Forecasting using

Artificial Intelligence Techniques, which is being submitted by Mr. M. Santhosh (Roll No.

715023), is a bonafide work submitted to National Institute of Technology, Warangal in partial

fulfilment of the requirement for the award of the degree of Doctor of Philosophy in Department

of Electrical Engineering. To the best of my knowledge, the work incorporated in this thesis

has not been submitted elsewhere for the award of any degree.

Supervisor

Dr. Chintham Venkaiah

Associate Professor

EED, NIT Warangal.



DECLARATION

This is to certify that the work presented in the thesis entitled Investigations on Wind Speed

Forecasting using Artificial Intelligence Techniques is a bonafide work done by me under the

supervision of Dr. Ch. Venkaiah, Department of Electrical Engineering, National Institute of

Technology, Warangal, India and was not submitted elsewhere for the award of any degree.

I declare that this written submission represents my ideas in my own words and where

others ideas or words have been included; I have adequately cited and referenced the original

sources. I also declare that I have adhered to all principles of academic honesty and integrity and

have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission.

I understand that any violation of the above will be a cause for disciplinary action by the

institute and can also evoke penal action from the sources which have thus not been properly

cited or from whom proper permission has not been taken when needed.

Signature:

Name: M. Santhosh

Roll.No: 715023

Date:

Place: Warangal



ACKNOWLEDGMENTS

It gives me immense pleasure to express my deep sense of gratitude and thanks to my supervisor

Dr. Chintham Venkaiah, Associate Professor, Department of Electrical Engineering, National

Institute of Technology Warangal, for his valuable guidance, support, and suggestions. His

knowledge, guidance and discussions helped me to become a capable researcher. He showed

me the interesting side of this wonderful and potential research area. His encouragement helped

me to overcome the difficulties encountered in research as well as in my life.

I am very thankful to Prof. S. Srinivasa Rao, Head, Department of Electrical Engineer-

ing for his constant encouragement, support and cooperation.

I take this opportunity to thank all my Doctoral Scrutiny Committee members, Dr. D.
M. Vinod Kumar, Professor, Department of Electrical Engineering, Dr. S. Srinivasa Rao,
Professor, Department of Electrical Engineering and Dr. Debashis Dutta, Professor, Depart-

ment of Mathematics for their detailed review, constructive suggestions and excellent counsel

during the progress of this research work. I would like to thank Sri. R. Mohan, Associate

Professor, Department of School of Management and Dr. M. Raja Viswanathan, Assistant

Professor, Department of Humanities & Social Science for their valuable suggestions, support

and cooperation.

I also appreciate the encouragement from teaching, non-teaching members, and frater-

nity of the Department of Electrical Engineering of NIT Warangal.

I wish to express my sincere thanks to Prof. N. V. Ramana Rao, Director, NIT Warangal

for his support and encouragement.

I convey my special thanks to my friends, Dr. Venkataramana Veeramsetty, Mr. Pranay

Kumar A, Dr. Ratna Rahul T, Dr. K. V. Praveen Kumar, Dr. T. Abhilash, Dr. Suresh Lakhim-

setty, Dr. Kiran Teeparthi, Dr. Ramanjaneya Reddy, Dr. Kasi Rama Krishna Reddy, Dr. Hareesh

Myneni, Dr. Phanendra Babu N V, Mr. G. Mahanandeshwara Goud, Dr. Sachidananda Prasad,

Dr. S Kayalvizhi, Mr. K. Hemasundara Rao, Mr. M. Rambabu, Mr. B. Gurappa, Dr. Saptarshi

Roy, Dr. Durga Harikiran B, Dr. D Rakesh Chandra, Mr. M. Madhubabu and Mr. V. Vijay for

being with me during my research journey.

I acknowledge my gratitude to all my teachers and colleagues at various places for sup-

porting and co-operating with me to complete the work. I gratefully acknowledge my best

friends Mr. Praveen Polasa, Mr. S. Sri Kumar, Mr. Battula Devraj and Mr. Ache Mohan



for continuous support and encouragement throughout my life.

I express my deep sense of gratitude and reverence to my beloved parents Late Sri. M.
Gangadhar & Smt. M. Saraswathi, my wife Veeraja, father-in-law Chandrakant, mother-

in-law Vijaya Devi, grand father Venkatram, grand mother Gangu bai, and uncles Avinash
Rao, Venkat Rao for their sincere prayers, blessings, and constant encouragement, and for

shouldering the responsibilities and for the moral support rendered to me all through my life,

without which my research would not have been possible. I heartily acknowledge all my rela-

tives for their love and affection.

Above all, I express my deepest regards and gratitude to the ALMIGHTY whose divine

light and warmth showered on me the perseverance, inspiration, faith and strength to sustain the

momentum even at tough moments of research.

M. Santhosh
Warangal, India

June 2020

II



ABSTRACT

In the recent past, significant growth in renewable generation and integration with grid has

resulted in diversified experiences for planning and operation of modern electric power sys-

tems. Electrical power system planners and operators have to work with technical issues of

photo-voltaic and wind resources integration into the grid to provide clean, reliable, safe, and

affordable energy for people around the globe and also to minimize the use of fossil fuels. Wind

energy is one of the emerging dependable sources of renewable energy for generating electricity

in spite of its highly non-linear and chaotic nature. The typical grid operation of wind energy

is complex. In order to maximize profits, economic scheduling, dispatching and planning the

unit commitment, there is a great demand for wind speed and wind power forecasting methods.

Also, an accurate wind speed forecasting method can play a vital role in tackling the challenges

posed to the electric grid. An accurate wind speed forecasting method will help the utility plan-

ners and operators to meet the balance of supply and demand by generating wind energy. But

prediction of such data demands highly non-linear temporal features. This research aims at

testing, developing, and improving of artificial intelligence (AI) based methods for wind speed

forecasts.

In this thesis, statistical-based wind speed prediction models are implemented without

utilizing the numerical weather prediction inputs. An analytical study proposes a hybrid short-

term prediction approach that can successfully preprocess the original wind speed data to en-

hance the forecasting accuracy. The most efficient signal decomposition algorithm, ensemble

empirical mode decomposition is used for preprocessing. This ensemble empirical mode de-

composition technique decomposes the original wind speed data. Each decomposed signal is

regressed to forecast the future wind speed value by utilizing the adaptive wavelet neural net-

work model. The proposed hybrid approach is subsequently implemented on the wind farms

of South India. The results thus obtained are reported along with comprehensive comparisons.

The prediction performance delivered high accuracy, low uncertainty and low computational

burden in the forecasts attained. The proposed hybrid model outperforms six other benchmark

models such as persistence method, back propagation neural network, radial basis function

neural network, Elman neural network, Gaussian regression neural network, and wavelet neural

network.

The above statistical forecasting approach is modified for accurate forecasting of day-



ahead wind speed by employing multi resolution analysis (MRA) and adaptive wavelet neural

network (AWNN). First, wavelet decomposition of wind series data has been executed and then

each decomposed signal is regressed to forecast day-ahead wind speed by using AWNN. The

proposed hybrid method has outperformed four other benchmark models such as persistence

method, feed-forward neural network (FFNN), AWNN, and MRA based FFNN.

Subsequently, a hybrid day-ahead wind speed prediction approach for high accuracy is

implemented. The hybrid approach initially converts raw wind speed data series into actual

hourly input structure for reducing uncertainty and the intermittent nature of wind speed. The

back-propagation neural network is utilized for its better learning capability and also for its

ability for nonlinear mapping among complex data. The teaching learning-based optimization

algorithm is used to auto-tune the best weights of the artificial neural network. This optimiza-

tion algorithm is used for its powerful ability to search and explore on a global scale. Then,

the artificial neural network-teaching learning-based optimization approach is implemented for

wind speed forecasting. After that, day-ahead prediction on wind farm in the U.S.A. is per-

formed using the proposed hybrid model for actual hourly input structure. The hybrid model

prediction results give enhanced prediction accuracy when compared to existing approaches.

Further, a new robust hybrid deep learning strategy (HDLS) is developed for enhanced

prediction accuracy by pre-processing the raw input. The most effective signal decomposition

technique, ensemble empirical mode decomposition, is used for preprocessing. This technique

decomposes the input into finite intrinsic mode functions and a residue after which training

input matrices are established. In the next step, each deep Boltzmann machine model is con-

structed by stacking four restricted Boltzmann machines. The training input matrices formed

by each of the extracted intrinsic mode functions and a residue are applied to each deep Boltz-

mann machine. Then the summation of all the predicted results are evaluated to attain the final

result of time-series. For adequate performance assessment, hybrid deep learning strategy is

developed for analysing wind farms in Telangana and Tamilnadu. Finally, the proposed deep

learning strategy is found to give more accurate results in comparison with existing approaches.

IV
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Chapter 1

Introduction

1.1 General Overview

Electrical energy has come to play a significant role not only in modern human life but

also in the growth of the world economy. Renewable energy sources (RES) have been playing a

vital role in advanced power systems. These renewable sources such as hydro, solar, wind, and

geothermal are capable of reducing greenhouse gas emissions to meet the primary objectives of

the Paris agreement. To facilitate the enhanced integration of RES, it is necessary to deal with

vulnerabilities caused to the grid because of intermittent and uncertain nature of these resources.

Specifically, wind energy is clean, pollution-free and is emerging rapidly as a reliable source of

energy in the renewable energy generation technologies around the world.

As per the Global Wind Statistics-2018 released by Global Wind Energy Council (GWEC),

industry installed wind power was 51.3 GW in 2018 [1]. This brings the total global wind in-

stalled capacity to 591 GW. Fig. 1.1 shows the wind market forecasting chronologically from

2017 to 2022. Electricity dealers and grid engineers need to know, hour-ahead and day-ahead

RES power generation for system balancing, reserve management, scheduling and commitment

of generating units [11]. The reliable and efficient energy supplement planning requires accu-

rate wind speed and wind power prediction. An error-free wind speed prediction is required

for improved renewable energy integration for effective electricity market operation and also

for supporting the operators of the grid for better control of the balance of power supply and

demand [12]. This has encouraged many utilities and researchers to develop accurate and reli-

able prediction techniques for wind speed and power forecasting. And better forecasting will

position wind energy for continued growth and penetration into the global energy mix [13].

The implications of the value of the forecast are:

I Reduced imbalance charges and penalties.

I Competitive knowledge advantage in real time and day-ahead energy market trading.

I More efficient project construction, operations, and maintenance planning.
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Figure 1.1: Wind market forecast from 2017 to 2022 [1]

Accurate wind speed forecasts are also important in reducing the occurrence or length

of curtailments (which translate as cost savings), improved worker safety, and mitigation of

physical impact of extreme weather on wind power systems.

1.2 Bibliometric Analysis

There are primarily two procedures for discovering the novel research problem.

a) Carry out a literature survey with the help of recognised databases such as Scopus, and

Google Scholar etc., and then gather the trending topics and use the most cited articles in

that trending topic for better understanding of the research problem(s).

b) Study two or three review articles covering the broad research area and get acquainted

with the technologies employed to solve the research problem.

First, bibliometric analysis was carried out using Scopus database and detailed results are

presented. The chronological distribution of the number of articles from year 2000 to 2018 was

shown in Fig. 1.2. The trend of publishing wind speed and wind power forecasting (WF) meth-

ods started increasing in the year 2004. This trend is increasing with deregulation of power

systems and the evolution of artificial intelligence (AI) techniques such as use of neural net-

works and time-series based models for forecasting wind speed. In the year 2013, the trend

fell slightly but from 2014 there was renewed interest in WF, which is clearly seen up to 2018.

Predominantly, the 580 articles from the total number of articles were journal articles (53.8%)

followed by 454 Conference papers (42.1%) (See Fig. 1.3). The top ten countries with most

number of WF publications are shown in Table 1.1. It is clear that China is the major contrib-

3
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Figure 1.2: Number of WF publications

utor with 421 publications followed by the U.S.A. (137) and India (67). Table 1.2 shows the

top ten journals that have been published WF articles. Obviously, the number one journal is

Renewable Energy with 64 publications followed by Wind Energy (38), and Energy Conversion

And Management (35).

Figure 1.3: Number of WF publications by type of article

4
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Table 1.1: Top 10 countries ranked by number of WF publications

Rank Country No. of Publications
1 China 421
2 U.S.A 137
3 India 67
4 United Kingdom 60
5 Spain 58
6 Canada 50
7 Germany 48
8 Denmark 39
9 Australia 36

10 Turkey 29

Table 1.2: Top 10 journals ranked by number of WF publications

Rank Journal No. of Publications
1 Renewable Energy 64
2 Wind Energy 38
3 Energy Conversion And Management 35
4 Energies 27
5 Applied Energy 23
6 Wind Engineering 16
7 Energy 15
8 Renewable And Sustainable Energy Reviews 13
9 IEEE Transactions On Sustainable Energy 10

10 Journal Of Applied Meteorology And Climatology 10

Second, there are few review articles and books available for researchers in WF area

which signifies that this research area is not very mature yet. The review of WF models and

their application to power system operations is reported in [14]. Wind field deterministic and

probabilistic approaches for numerical weather prediction are detailed in [15]. From the avail-

able review articles, one can find the best review of wind resource assessment in [16]. Evalua-

tion of single ANN models, single SVM models, and hybrid forecasting models are performed

based on mean absolute error (MAE) and root mean square error (RMSE) which are employed

as statistical measures of forecasting accuracy [17]. One can acquire knowledge about NWP,

ensemble, and statistical approaches implemented for wind power forecasting from [18]. The

review of combined models and their future trends have been presented in [19,20] and it can be

inferred from the results that the combined models have outperformed all single models.

5
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1.3 Motivation

Developing the wind speed prediction model is a complex practice as it depends mainly

on the unpredictable nature of wind flow. And most wind farms are relatively new and sufficient

performance analysis of these wind farms is needed for building a robust forecasting tool. Al-

though there are numerous approaches available for wind speed forecasting, as reported in the

literature, there is still a tremendous need for a method that promises high prediction accuracy,

and low computational burden.

� The large-scale grid integration of renewable energy sources like wind and solar poses

challenges to electric power utility industry in terms of technical and economical point

of view [21]. In order to address these challenges, an accurate and reliable forecasting is

regarded as one of the best ways.

� This accurate wind speed prediction is useful for bundled generation and transmission

expansion planning under wind generation and demand uncertainties [22].

� While considering the non-linear features of the generator such as prohibited operating

zone and non-smooth functions, an accurate prediction of wind speed is essential for

optimal economic load dispatch planning in power systems [23].

� It is very essential to determine the proper uncertainty level of the wind forecast for op-

erational security in the day-ahead electricity market [12].

� For an effective unit commitment decisions with wind energy integration are possible

only by optimizing the utilization of the forecast error and reserve decision [24].

� Further, spatio-temporal forecasting approaches are useful for regulation actions, and

maintenance scheduling for acquiring optimal operating cost [25].

This has motivated the researchers to develop new forecasting tools using artificial intelligence

techniques.

1.4 Objectives and Contributions

The key technical objectives and contributions of this research work are as follows:

• Development of new robust hybrid AI based prediction approaches: The powerful

hybrid models for wind speed prediction are developed for enhanced accuracy forecasts.

The proposed models are implemented using data pre-processing technique to remove

6
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the uncertain nature of data while neural networks are utilized for their ability to extract

high-level abstractions from non-linear input dataset.

• Focusing on statistical models without numerical weather prediction inputs: A

statistical-based wind speed prediction is implemented without utilizing the numerical

weather prediction (NWP) inputs.

• Focusing on better extraction of features from dataset and adaptive learning: The

proposed hybrid prediction approaches can successfully preprocess the original wind

speed data to enhance forecasting accuracy. The most efficient signal decomposition

algorithms are used for preprocessing. Then each decomposed signal is regressed to fore-

cast the future wind speed value by utilizing ANNs and DNN based models.

• Efficient performance assessment criteria and model validation system: The efficacy

of hybrid models is analysed through experimental validation using real wind speed data

from wind farms in India and U.S.A. The results from a real-world case studies are re-

ported along with comprehensive comparison in terms of performance measures.

• Enhanced accuracy centric strategy: The prediction performance delivered high ac-

curacy, low uncertainty and low computational burden in the forecasts attained. The

proposed hybrid approaches are easy to develop and they deliver more accurate results

with lower CPU time in comparison with existing approaches. Therefore, these hybrid

approaches can perform better than both individual models and other hybrid models.

1.5 Organization of the thesis

The thesis is organized into seven main chapters, which are further reorganized into

relevant subdivisions.

Chapter 1 concisely introduces the background of wind power industry. It unfolds the

necessity of accurate wind speed and wind power forecasting methods for enhanced renewable

energy integration and reliable operation of power systems. After that, bibliometric analysis

is presented based on the number of articles published from 2000 to 2018. From the review

of wind speed and wind power prediction models, the motivating factors for developing new

forecasting methods are explained. Then, key technical objectives are defined based on the

motivating factors and significant contributions of the present research are enumerated. Finally,

organization of the thesis is outlined.

Chapter 2 explores the relevant literature review of the proposed research work. First,

forecasting techniques are categorized based on the time-horizon. After that, a comprehensive

7
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review of current wind speed prediction approaches is presented in this chapter. Then, the

historical evolution of artificial intelligence (AI) techniques and their classifications, specifically

as per architectures and functionalities are reviewed. Some of the current real world applications

of AI techniques are then highlighted with specific focus on artificial neural networks (ANNs)

and deep neural networks (DNNs), which have been applied across the most scientific and

engineering disciplines. Finally, the performance evaluation criteria of different forecasting

approaches are reported.

Chapter 3 describes the hybrid short-term wind speed prediction approach that can suc-

cessfully preprocess the original wind speed data to enhance the forecasting accuracy. The most

efficient signal decomposition algorithm, ensemble empirical mode decomposition (EEMD) is

used for preprocessing. The EEMD technique decomposes the original wind speed data. Each

decomposed signal is regressed to forecast the future wind speed value by utilizing the adaptive

wavelet neural network (AWNN) model. The proposed hybrid approach is implemented on

wind farms of South India. The results thus obtained were reported along with a comprehen-

sive comparison. The prediction performance delivered high accuracy, low uncertainty and low

computational burden in the forecasts attained. The proposed hybrid model outperformed six

other benchmark models such as persistence method, back propagation neural network, radial

basis function neural network, Elman neural network, Gaussian regression neural network, and

wavelet neural network.

Chapter 4 presents the statistical forecasting approach which can accurately predict the

day-ahead wind speed by employing multi resolution analysis (MRA) of wind speed data based

adaptive wavelet neural network (AWNN). First, wavelet decomposition of wind series data has

been executed and then each decomposed signal is regressed to forecast day-ahead wind speed

by using AWNN. The forecasting performance of the proposed hybrid method is compared with

four other models and this hybrid approach has outperformed other benchmark models.

Chapter 5 explores the implementation of the hybrid day-ahead wind speed prediction

approach for high accuracy. The hybrid approach initially converts raw wind speed data se-

ries into actual hourly input structure for reducing uncertainty and the intermittent nature of

wind speed. The back-propagation neural network (BPNN) is utilized for its better learning

capability and also for its ability for nonlinear mapping among complex data. The teaching

learning-based optimization (TLBO) algorithm is used to auto-tune the best weights of the arti-

ficial neural network. The optimization algorithm is used for its powerful ability to search and

explore on a global scale. Then, the ANN-TLBO approach is implemented on wind farm in the

U.S.A. for wind speed forecasting. After that, the day-ahead prediction is performed using the

proposed hybrid model for actual hourly input structure. The hybrid model prediction results

8
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give enhanced prediction accuracy when compared to existing approaches.

Chapter 6 explains the development of a new robust hybrid deep learning strategy

(HDLS) for enhanced prediction accuracy by preprocessing the raw input. The most effective

signal decomposition technique, EEMD technique decomposes the input into finite intrinsic

mode functions and a residue after which training input matrices are established. In the next

step, each Deep Boltzmann Machine (DBM) model is constructed by stacking four restricted

Boltzmann machines (RBM). The training input matrices formed by each of the extracted in-

trinsic mode functions and a residue are applied to each DBM. Then the summation of all the

predicted results are evaluated to attain the final result of time-series. For adequate performance

assessment, HDLS is developed for analysing wind farms in Telangana and Tamilnadu. Finally,

the proposed deep learning strategy is found to give more accurate results in comparison with

existing approaches.

Finally, Chapter 7 highlights the main findings of the present research work reported in

this thesis and gives perspectives for further research.

1.6 Summary

In this chapter, the background to wind power industry is introduced. The necessity of

accurate wind speed and wind power forecasting methods for enhanced renewable energy inte-

gration and reliable operation of power systems is described. After that, bibliometric analysis

based on the number of articles published from 2000 to 2018 is presented. From the review

of wind speed and wind power prediction models, the main motivating factors for developing

new forecasting methods are explained. Then, the key technical objectives are defined based

on motivating factors and significant contributions of this research are enumerated. Finally,

organization of the thesis is outlined.
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Chapter 2

Literature review of wind speed forecasting methods

2.1 Introduction

One of the most evolving renewable energy systems, wind energy is playing a pivotal

role in global energy growth as it is clean and pollution-free. In order to maximize profits,

economic scheduling, dispatching and planning unit commitment, there is a great demand for

wind speed and wind power forecasting methods. This drives the researchers and electric utility

planners in the direction of more advanced approaches to forecast over broader time horizons.

An extensive review of current forecasting techniques as well as their performance evaluation

is reported in this chapter.

2.2 Classification of Forecasting Techniques

Table 2.1: Time horizon Classification of Forecasting Techniques

Time-scale Applications Reference
Very short-term
(from a few seconds to 30 minutes-
ahead )

- Grid stability operations
- Voltage Regulation actions

10 seconds-ahead [26]

short-term
(from 30 minutes to 6 hour-ahead) - Economic load dispatch planning

- Load increment or decrement
decisions
- Power reserve management

1-hour ahead [27, 28]
3-hour ahead [28]
5-hour ahead [28]

Medium-term
(from 6 hours to 24 hour-ahead) - Operational security in day-ahead

electricity market
- Generator Online/Offline
decisions

6-hour ahead [27]
24 hour-ahead [24, 29]

Long-term
(from 1 day to week-ahead) - Unit commitment decisions

- Maintainance scheduling to
acquire optimal operating cost

72 hour-ahead [30]

Very long term
(more than one week ahead) - wind farm optimal design

- restructured electricity markets
30 days ahead [31]
1-year ahead [31]
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Based on the time-horizon, wind speed and wind power forecasting techniques are cate-

gorized into four types as shown in Table 2.1.

2.3 Current forecasting approaches

Nowadays, many utilities and principal researchers have focused on wind speed predic-

tion investigations. The current wind speed prediction methods are broadly categorized into

four approaches: persistence method, physical method, statistical method, and artificial intelli-

gence (AI) based models. Fig. 2.1 shows different practices of wind speed forecasts with regard

to spatial resolution and temporal horizon.

Figure 2.1: Different applications of wind speed forecasts with regard to spatial resolution and
temporal horizon [2]

2.3.1 Physical methods

Persistence method is most popularly used as a benchmark method among all predic-

tion techniques. This method is the most straightforward approach and states that future wind

12
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speed value (w(t+1)) is the same as the past hour predicted wind speed value (w(t)) [32]. It

can exhibit the best performance for short-term forecasting applications but as the forecast-

ing time horizon increases, its error value also increases rapidly. Physical method depends on

parametrization that utilizes historical meteorological data such as wind speed, wind direction,

temperature, pressure, humidity, surface roughness, and obstacles. Numerical weather predic-

tion (NWP) is a simplified physical prediction technique [33]. Prediktor is the first physical

wind forecasting model implemented by national laboratory for sustainable energy, Denmark.

Previento, LocalPred, and HIRPOM (HIRlam POwer prediction Model) are the other physical

models which have also utilized NWP inputs. Physical methods require complex mathematical

modeling that needs considerable computational resources and high execution time. Therefore,

physical methods are most suitable for medium-term and long-term predictions [34].

2.3.2 Statistical methods

Statistical method desires no mathematical modeling and utilizes available past mea-

sured time-series data along with NWP inputs for forecasting. This method is fairly straightfor-

ward and easy to develop and can predict accurately in comparison with the physical method.

The most extensively used statistical models include auto-regressive moving average (ARMA)

model and its variants like auto-regressive integrated moving average (ARIMA), recursive-

ARIMA [29]. These statistical models can produce the best performance for short-term wind

speed forecasting. In the Cesme and Bandon case study [29], the authors have presented the

results of polynomial auto-regressive (PAR) models for day-ahead prediction. The results have

shown that PAR models outperformed all other reported models. In [35], an accurate wind

speed prediction model is implemented based on ARIMA, kalman filter (KF), and artificial

neural network (ANN). The KF-ANN model has outperformed other reported conventional

ANN, ARIMA based models. A computational intelligence approach is developed in [36] us-

ing ARIMA and neuro-fuzzy system (NFS). The parameters of NFS-ARIMA model are tuned

by employing hybrid learning algorithm.

2.3.3 Artificial Intelligence based models

Recently, artificial intelligence (AI) techniques have gained global attention in provid-

ing solutions for diverse real-world problems. The principal merits of AI techniques are their

potential to elicit patterns and detect the trends from nonlinear data [37]. Because of the above

reasons, most of the utilities and global researchers are using AI techniques for wind speed time-

series prediction applications. AI techniques primarily consist of ANN, fuzzy logic approach,

13
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evolutionary computation, and machine learning.

ANNs are widely accepted models among all AI techniques for wind speed time-series

prediction applications due to their capability to deal with non-linearities [38]. The most com-

monly used ANNs are back propagation neural network (BPNN), recurrent neural network

(RNN), radial basis function neural network (RBFNN), elman neural network (ENN) and fuzzy

neural network (FNN) [39]. For improving prediction accuracy further, data decomposition

techniques such as wavelet transforms (WT) and empirical mode decomposition (EMD) tech-

nologies are combined with these ANNs to eliminate noisy data [28, 40]. For instance, the

hybrid model for multiresolution analysis and for the future time-series prediction is developed

by employing WT and ANN [41]. In [42], the hybrid model based on wavelet packet decompo-

sition (WPD), density-based spatial clustering of applications with noise (DBSCAN), and ENN

is implemented and investigated. The results have shown that WPD-DBSCAN-ENN approach

outperforms WPD-ENN and single ENN models. EMD is another decomposition method of

original wind data series other than wavelet transforms. The authors in [28] employed two

hybrid models which combine EMD, feature selection with ANN and SVM to forecast future

value of wind speed. This EMD technique decomposes the time-series into intrinsic mode

functions (IMFs) and a residue. Then each IMF and residue is easy to examine by SVR to

forecast the one hour, three hour, and five hour ahead wind speed. It is not just SVR but there

are so many models such as ANN, ARMA etc. for wind speed forecasting in combination

with EMD. However, WT is sensitive to the choice of threshold, and the main disadvantage

of EMD is the phenomenon of mode mixing problem. Fortunately, ensemble empirical mode

decomposition (EEMD) technique can overcome the limitation of EMD. And EEMD is the

most powerful and enhanced signal decomposition technique used for nonlinear or intermittent

time-series analysis [43]. The wind speed forecasting tool which combines EEMD technique,

feature selection, and error correction is utilized for short-time horizon prediction in [44]. And

unlike other reported methodologies, the authors have implemented big multi-step wind speed

forecasting. But this big multi-step wind speed forecasting is more difficult and complicated

due to the complexity of mapping relationships. The authors in [45] used fast EEMD and mul-

tilayer perceptron (MLP) neural networks for prediction. Mind evolutionary algorithm (MEA)

and genetic algorithm (GA) are employed for optimizing the MLP neural networks.

The ANNs need a number of neurons to handle the diversified problems. As the number

of neurons increases, the forecasting accuracy is reduced. For accurate forecasts and reliable

operation of power system, fuzzy logic approaches are combined with the ANNs to establish

the hybrid soft computing techniques like FNN, adaptive neuro-fuzzy inference system (AN-

FIS) [46]. In a case study, forecasting was performed using an ANFIS model based hybrid
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method. The hybrid method thus implemented outperformed back-propagation neural network

(BPNN), radial basis function neural network (RBFNN), and least squares support vector ma-

chine (LSSVM) based on the normalized root mean squared error (NRMSE) values [47]. Apart

from these models, evolutionary optimization techniques such as genetic algorithm (GA), par-

ticle swarm optimization (PSO) etc. have been employed for tuning the weights and biases of

ANN model to enhance the learning of the network and reduce computational time of the imple-

mented model [48, 49]. For example, in a case study of predicting emergency supply-demand

time-series, RBFNN architecture was determined by GA, and modified adaptive PSO algorithm

initiated the training parameters of the network. The type-2 fuzzy inference systems were op-

timized using GA and PSO for solving the Mackey-Glass time-series problem in [50]. The

above-reported model may trap local minima for chaotic wind speed prediction applications.

The ANNs reviewed in the literature possess the following disadvantages: 1) The ma-

jority of the models are shallow in nature. In other words, most of the ANNs possess only one

single hidden layer in the network architecture [51]. 2) Wind uncertainty properties extraction

is indirect in a majority of the approaches. 3) Some of the models need monotonous hand-

engineered features and prior awareness of that particular field. In order to deal with above

demerits of AI models, machine learning techniques and deep learning architectures such as

deep belief network (DBN), denoising auto-encoder (DAE), stacked auto-encoder (SAE) and

stacked DAE (SDAE) have been developed. Further, deep learning techniques were employed

for numerous real-world applications in the recent past [52]. On the other hand, hybrid models

have also attained global attention in recent years. Nowadays, around 90% of the wind speed

and power forecasting approaches are hybrid models. The hybrid models can be implemented

by combining the superior features of the above mentioned individual models [53]. The deep

neural network and transfer learning algorithms are combined for enhanced short-term wind

power prediction. The model is tested against existing approaches in terms of RMSE, MAE

and standard deviation error (SDE) [54]. A deep learning strategy employing long short-term

memory neural network, ENN and empirical wavelet transform is implemented for wind speed

forecasting. The results obtained are compared with eleven different models for validation of

the developed model [55]. In the China and Australia case study, the hybrid model was imple-

mented based on the combination of WT, DBN, and spine quantile regression (QR). Through

this hybrid approach, the nonlinear feature of wind speed series was separated using layer-wise

pre-training rule [9]. For acquiring comprehensive knowledge about wind speed forecasting ap-

proaches in literature, a brief comparison of fundamental approaches is presented in Table 2.2.
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Table 2.2: Comparison of main forecasting approaches of wind speed in literature

Forecasting
Approach

Advantages Disadvantages

Time-series
models (Persistence,
AR, ARMA, ARX,
ARIMA, GARCH etc.)
[29] [32] [34] [35]

- Most reliable forecasting ap-
proach because it utilizes readily
available meteorological data
- No need of expert skill
- Determination of prediction in-
tervals are very simple, accurate
for short-term forecasts.

- These approaches requires large
number of past input values
- Intermittent behaviour of pre-
diction parameter can not be cap-
tured perfectly
- Less accurate for long-term fore-
casts.

NWP approach
[33]

Best suitable for long-term fore-
casting

- Not applicable for short-term
forecasting due to computational
complexities
- Difficult to get physical input
data.

SVM-based
approaches
[28]

- Exhibits better generalization
capabilities.

- Requires longer training time
- Consists of complex optimiza-
tion structure
- Model accuracy rely on the
proper tuning of parameters.

ANN-based
approaches
[38–41]

- Adaptable to wide range of pa-
rameters
- Highly non-linear models like
wind speeds
- Knowledge based systems and
learns through the training pro-
cess
- ANNs react to even the smallest
change in data.

- Majority of the models are
shallow in nature
- Wind uncertainty properties
extraction is indirect
- Need huge training data-set and
optimal training algorithm
- Very difficult to design and
needs large amount of computa-
tional resources.
- Need monotonous hand-
engineered features

Fuzzy-logic
approaches
[46] [47] [50] [56]

- Easy to implement and have the
ability to deal with uncertainties
and non-linearities
- Improves the accuracy of fore-
casts by rule-based learning pro-
cess
- Comparatively less complex ap-
proaches and acceptable for mod-
els that are tough to design pre-
cisely.

- Exhibits weak learning ability
- Model becomes complex
and computational time also
increases.

Artificial Intelligence
approaches
[9] [36, 37] [42] [45]
[48] [52–55] [22] [23]

- These approaches will utilize the
superior features of the above in-
dividual forecasting methods in
order to reduce the effect of lim-
itations, computational complex-
ity and obtain better forecasts in
terms of robustness and accuracy
- These methodologies can be ap-
plied to larger systems.

- Designing and training of these
type of forecasting approaches are
challenging
- The input data must be prepro-
cessed for enhanced generaliza-
tion capability.
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2.4 Performance evaluation criteria of different forecasting ap-
proaches

For improved renewable energy integration with the grid, the dependable and error-free

forecasting approaches have become necessary and important [57]. The amount of data needed

for forecasting relies on the approach used for prediction. The benchmark persistence model

takes very low amount of data whereas NWP model takes huge amount of data for forecasting.

The statistical approaches and neural network (NN) models depend on historical meteorological

data at wind farms [58].

The efficacy of the forecasting depends upon the methodology used and the time-scale of

forecasting. The main statistical error parameters used for evaluating the forecasting approach

accuracy are mean absolute percentage error (MAPE) and root mean square error (RMSE).

Other error parameters like mean bias error (MBE) and skill score are also employed for per-

formance evaluation [59]. The frequently used statistical error parameters being considered for

performance evaluation are:

MSE =
1
N

N

∑
i=1

(Pf orecasted,i −Pactual,i)
2 (2.1)

Where N is total number of wind data samples, and i is time-stamp of wind data samples.

Assessment of forecasting approaches is done by comparing the normalized RMSE of

each individual approach. The major advantage with RMSE is that weightage for big variations

between forecast and actual values is more than for small variations. Because of this reason,

this is the most suitable for wind power generation applications [60].

RMSE =

√
1
N

N

∑
i=1

(Pf orecasted,i −Pactual,i)2 (2.2)

MAPE and mean absolute error (MAE) are also commonly employed parameters for checking

forecasting accuracy.

MAE =
∑N

i=1

∣∣Pf orecasted,i −Pactual,i
∣∣

N
(2.3)

MAPE =
1
N

N

∑
i=1

∣∣∣∣Pactual,i −Pf orecasted,i

Pactual,i

∣∣∣∣∗100 (2.4)

Mean bias error (MBE) indicates that forecasted value is under-estimated or over-estimated. For

statistical approaches and physical approaches with model output statistics (MOS), it gives low

results. The effectiveness of the forecasting approach is found by considering the uncertainty
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and variability of forecasts [61].

MBE =
∑N

i=1(Pf orecasted,i −Pactual,i)

N
(2.5)

2.5 Summary

In this chapter, the relevant literature review of the proposed research work is explored.

First, forecasting techniques are categorized based on the time-horizon. After that, a compre-

hensive review of current wind speed prediction approaches is presented. Then, the historical

evolution of artificial intelligence (AI) techniques and their classifications, specifically as per

architectures and functionalities is reviewed. Some of the current known real world applica-

tions of AI techniques are then highlighted with a specific focus on artificial neural networks

(ANNs) and deep neural networks (DNNs), which have been applied across most scientific and

engineering disciplines. Finally, the performance evaluation criteria of different forecasting

approaches is reported.
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Chapter 3

Short-term wind speed prediction based on
ensemble empirical mode decomposition and

adaptive wavelet neural network method

3.1 Introduction

Renewable energy sources (RES) must play a vital part in reaching the goals set by

Paris agreement in December 2015. RES technologies are helpful in reduction of greenhouse

gas emissions, reduction in damage to human health, and conservation of resources [62]. The

large-scale grid integration of RES like wind and solar impose challenges to the electric power

utility industry in terms of technology and economic viability [21]. In order to address these

challenges, an accurate and reliable forecasting model is regarded as one of the best ways.

Presently, many researchers and utilities have shown enthusiasm for wind speed pre-

diction investigations. The fast growth in artificial intelligence techniques has been promoting

ANN models [63]. These ANN models have been extensively used in wind speed time-series

prediction due to their capability to deal with non-linearities predominantly, including back

propagation neural network (BPNN) [64]. Further, the learning ability of the neural network

and fuzzy system’s expert knowledge is utilized for accurate forecasting using fuzzy neural

network (FNN) [65]. The neural networks require a number of neurons to tackle various prob-

lems [66]. To overcome this problem, wavelets are incorporated into them [67]. Currently,

hybrid approaches such as wavelet neural networks (WNN) that combine the wavelet trans-

forms (WT) and artificial neural networks (ANN) have drawn a lot of attention and have been

extensively employed for wind speed forecasting [68]. The principal difficulty of WNN is

that of the selection of wavelet transforms [69]. The translation and dilation parameters of the

wavelet basis are fixed and only weights are adjustable during the training of WNN [70]. But

with proper selection of wavelet transforms, one can improve the forecasting accuracy and com-

putational complexity [71]. Many other hybrid approaches have been implemented to address

these problems of WNN.

To enhance the prediction accuracy, improved WNN is employed in this study, that is

adaptive wavelet neural network (AWNN). AWNN is a combination of adaptive learning algo-
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rithm [72] and conventional WNN. Due to adaptive learning rate, this hybrid model delivers

rapid convergence rate and accuracy of forecasting performance is also improved [5]. For fur-

ther improving the prediction accuracy, there is a need of data preprocessing technique which

is significant because it eliminates the noise from data. Wavelet transforms (WT) and empirical

mode decomposition (EMD) technologies can be employed to eliminate noisy data [73]. EMD

is another decomposition method of original wind data series in comparison with other tech-

nique like wavelet transforms. This EMD technique decomposes the time-series into intrinsic

mode functions (IMFs) and a residue. However, WT is sensitive to the choice of threshold,

and the main disadvantage of EMD is the phenomenon of mode mixing problem. Fortunately,

Ensemble empirical mode decomposition (EEMD) technique can overcome the limitation of

EMD. And EEMD is the most powerful and enhanced signal decomposition technique used for

nonlinear or intermittent time-series analysis [43].

3.1.1 Principles of wind speed decomposition techniques

Before formally introducing the hybrid EEMD-AWNN prediction approach, it is essen-

tial to outline the needed fundamental concepts.

3.1.1.1 Empirical mode decomposition

EMD (Empirical mode decomposition) method is adaptive and highly efficient for analysing

non-linear and non-stationary time series data. It is employed for extracting several IMFs and

one residue from the raw wind speed data signal [74]. It is easy to analyse IMFs (IMFi) and

residue (RN) separately rather than analysing the original time series data directly. But EMD

experiences frequent appearance of mode mixing problem and this problem can be solved by

employing ensemble EMD (EEMD).

The original time-series (x(t)) can be decomposed as shown in equation (3.1) by using

EMD technique

x(t) =
N

∑
i=1

IMFi(t)+RN(t) (3.1)

3.1.1.2 Ensemble empirical mode decomposition

EEMD (Ensemble empirical mode decomposition) technique is a truly noise-assisted data anal-

ysis approach and is used for overcoming the disadvantages of EMD. Mainly, there are oscil-

lations of very dissimilar amplitudes in a mode or very similar oscillations in different modes.

This phenomenon is known as mode mixing problem. EEMD [43] takes the full benefit of
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Figure 3.1: Decomposed results of Tamilnadu wind farm data [3] by the EEMD technique

the statistical characteristics of Gaussian white noise to successfully avoid the mode mixing

problem of EMD. Fig. 3.1 presents the decomposed IMFs of raw data.

The procedure of EEMD is as follows:

1. From the given raw data signal (x(t)), produce the new noise-added signal using equation

(3.2)

xi(t) = x(t)+ ε i(t) (3.2)

where ε i(t) is Gaussian white noise.

2. Then decompose the new noise-added signal, xi(t) into several IMFs and one residue

using equation (3.3).

xi(t) =
N

∑
j=1

IMF i
j(t)+Ri

N(t) (3.3)

3. Reiterate steps 1 and 2 with distinct Gaussian white noise every time.

4. Finally, take the average of all the corresponding IMFs and arrive at the final result.
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3.1.2 Adaptive Wavelet Neural Network

ANNs are knowledge-based systems and these will learn from experience utilizing data

in order to show their generalizing capabilities. These ANNs are data-driven learning ap-

proaches and are also called as Artificial Intelligence (AI) approaches [75]. In order to resolve

complex problems, they can embrace the ability of the human brain’s cognitive process. The

ANNs are trained by employing historical wind sample values to acquire knowledge about the

relation between predicted output and input samples. Besides these, ANNs are capable of train-

ing, adaptation and self-organising property [76]. Therefore, they are flexible and robust tools

to forecast the wind speed. In ANNs, historical data is fed to the Input layer for training. Hidden

layer(s) and output layer forecasts wind speed and power.

Figure 3.2: Mexican Hat Wavelet adopted from [4]

Wavelet is a mathematical function employed for image processing and analysing time

series data [77]. Length and breadth of a wavelet are represented by translation parameter a

and dilation parameter b respectively. In this chapter, the Mexican hat wavelet [4] as shown in

Fig. 3.2 is used as mother wavelet in AWNN.

The general schematic structure of AWNN [5] with three layers is as depicted in Fig. 3.3.

It is almost the same as that of FFNN. Here in FFNN hidden layer comprises sigmoidal function.

This AWNN structure consists of input layer, the hidden layer with Mexican hat as mother

wavelet and output layer. Detailed and smooth signals are individually applied to AWNN model

to forecast the day-ahead wind speed.

The second derivative of Gaussian function is called Mexican hat wavelet which is given

by equation (3.4)

ψ(xi) = (1− x2
i )e

−0.5x2
i (3.4)
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Figure 3.3: General structure of AWNN [5]

This wavelet is considered as mother wavelet in the hidden layer of the network because

of its special properties like symmetry in shape, due to which it allows exact time-frequency

analysis. The input pattern vector to train AWNN is U = [u1,u2, .........un]
T where n is wind

speed sample number. By using translation and dilation parameters of Mexican hat, wavelet

family is produced as given in equation (3.5)

ψa,b(ui) =

(
1−
(

ui −b
a

)2
)

e
−0.5
(

ui−b
a

)2

(3.5)

iεn;a,bεℜ;a > 0

The input wind speed sample data is directly passed on to wavelon (hidden layer with

Mexican hat wavelet). The hidden layer output z j is equal to the tensor product of all 1-D

wavelets as depicted in equation (3.6)

z j =
n

∏
i=1

ψai j,bi j(ui) (3.6)

The output of AWNN can be calculated as the sum of three terms of which the first term

represents hidden layer to output layer, the second term is direct input and is mapped to output

layer and the third one is external bias. It is given as below in equation (3.7)

y =
m

∑
j=1

w jz j +
n

∑
j=1

viui +g (3.7)
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where w j is connecting weight from jth hidden neuron to output neuron, vi is connecting weight

from ith input neuron to output neuron, and g is bias signal.

The standard back-propagation (BP) technique is employed for training the AWNN [76].

This BP algorithm is based on the gradient descent technique. The output function is calculated

using AWNN, which is differentiable w.r.t. translation and dilation coefficients, all unknown

coefficients, weights, and biases. As shown in equation (3.8) the minimization of mean square

error (MSE), which acts as a cost function, is a primary goal of training the network

E =
1

2N

P

∑
p=1

[e(p)]2 (3.8)

Where e(p) = yd(p)− y(p) and y(p), yd(p) are predicted and actual values for the pth input

pattern, respectively. And a free parameter can be updated using equation (3.9) and (3.10)

f (p+1) = f (p)+η∆ f (p)+α∆ f (p−1) (3.9)

∆ f =
∂E
∂ f

(3.10)

Where η is the learning rate and α is the momentum factor. Then the changes in the free

parameters can be calculated employing all equations from (3.11) to (3.16)

∆w j = ez j (3.11)

∆vi = eui (3.12)

∆ai j =− ∂E
∂ai j

(3.13)

= ew jz j

[
1

ai j

][
xi −bi j

ai j

]2
[

3−
[

xi −bi j

ai j

]2
]

e
−0.5
[

xi−bi j
ai j

]2

(3.14)

∆bi j =− ∂E
∂bi j

(3.15)

= ew jz j

[
1

ai j

][
xi −bi j

ai j

][
3−
[

xi −bi j

ai j

]2
]

e
−0.5
[

xi−bi j
ai j

]2

(3.16)
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3.1.3 Architecture of hybrid EEMD-AWNN model

The intermittent nature of wind speed encourages one to use EEMD technique, which

is an efficient data preprocessing algorithm for eliminating noisy data. The individual AWNN

model can predict the wind speed but for enhancing the performance accuracy further, the hy-

brid EEMD-AWNN model is utilized. The framework of EEMD-AWNN approach is shown in

Fig. 3.4.

For this statistical-based model, historical wind speed time-series data is collected from

wind farm anemometer in southern India.This will enable one to generate original wind time-

series data for analytical study. Then for preprocessing the data, the proposed model employs

the most efficient signal decomposition technique ensemble empirical mode decomposition

(EEMD) algorithm to decompose the original wind speed data. The EEMD technique decom-

poses the original data into a finite number of independent IMFs and one residue. After obtain-

ing the decomposed sub-series, remove the high frequency IMF, that is first IMF to form the

new time-series data without noise. Then build the AWNN model to forecast the future wind

speed time-series data. Finally, apply the new data which is obtained by removing the high-

frequency IMF to the hybrid EEMD-AWNN model to obtain the final wind speed predictions.

This hybrid EEMD-AWNN approach is applied to other fields such as power load forecasting,

stream flow forecasting, product sales forecasting, and traffic flow forecasting. And this appli-

cation of methodology is different compared to other fields because it employs only statistical

information without including any NWP inputs for accurate prediction.

The main steps of novel hybrid EEMD-AWNN approach are as follows:

Step 1: De-noising: By employing EEMD technique, first decomposition of raw wind data is

carried out to find the several IMFs and a residue.

Step 2: Build model: Establish the AWNN model for future wind speed prediction.

Step 3: Remove the highest frequency IMF from the number of IMFs obtained by denoising the

original wind speed signal. After that, aggregate the remaining IMFs and one residue to form

new data.

Step 4: Then apply the new data which is obtained by removing the high-frequency IMF to the

hybrid EEMD-AWNN model to obtain the final wind speed predictions.

In this particular work, the proposed method has been tested using two major case studies:

1. one step ahead prediction using Melamandai, Tamilnadu wind farm data

2. one step ahead prediction using Lingampalli, Telangana wind farm data
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Figure 3.4: Framework of the hybrid EEMD-AWNN method

3.2 Analytical study

The wind speed data utilized for this work is collected from anemometers installed at

Telangana and TamilNadu [3]. This data was captured between April 01, 2015 and April 30,

2015 as 10 minute samples of wind time series. The wind speed was averaged over 1-hour

and the first 70% of the data was utilized for training and the remaining 30% of the data was

employed for testing the selected AWNN model. The analytical study for predicting the future

wind speed was conducted by utilizing MATLAB R2009b software on an Intel i3-4005U CPU

1.70 GHz, 4GB RAM computer.

3.2.1 Forecasting results and discussions

In the proposed hybrid EEMD-AWNN model, EEMD method is utilized for extracting

the decomposed components which are high frequency to low frequency, from the raw wind
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Figure 3.5: The detailed flowchart of the hybrid EEMD-AWNN method
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speed time-series as depicted in Fig. 3.1. Then remove the highest frequency IMF from the

number of IMFs obtained by de-noising the original wind speed signal. After that, aggregate the

remaining IMFs and one residue to form new data. Too many IMFs may lead to computational

burden and low forecasting accuracy. These difficulties can be solved by simply aggregating

the new data.

In the next step, build the appropriate AWNN model. The number of input nodes, hid-

den nodes and output nodes of this AWNN model are 4, 9, and 1 respectively. The procedure

for constructing the AWNN structure and principle of operation is explained in detail in sec-

tion 3.1.2. For this AWNN model, apply the new data which is obtained by removing the

high-frequency IMF. The detailed flowchart of the hybrid EEMD-AWNN forecasting method

is shown in Fig. 3.5.

3.2.2 Case study 1: One step ahead prediction using Melamandai, Tamil-
nadu wind farm data

For decreasing the intermittent nature of generated wind power, accurate forecasting is

the most important technique with growing wind capacity. Validation of forecasting model is

very important and this can be achieved by performance evaluation criteria (like RMSE, MAE,

MAPE). Adopting distinct criteria for forecasting approach may lead to distinct results every

time and this is avoided through validation of the model. The statistical information about the

data which is used for this case study is shown in Table 3.1.

Table 3.1: Statistical information of original wind speed data collected from Tamilnadu wind
farm

Wind
input

Minimum
(m/s)

Maximum
(m/s)

Mean
(m/s)

Median
(m/s)

Standard
Deviation

(m/s)
x(t) 0.4845 12.5762 4.9734 4.8805 2.2411

The performance evaluation in terms of RMSE (m/s), MAE (m/s), MAPE (%), and

computational time (s) of the individual models in comparison with the proposed hybrid EEMD-

AWNN model is shown in Table 3.2. The forecasting results using these individual models such

as persistence method, back propagation based feed forward NN (BPNN), radial basis function

based NN (RBFNN), elman NN (ENN), general regression NN (GRNN), and individual WNN

are compared with the original wind time-series in Fig. 3.6. And a zoom section is added, from

160h to 180h in Fig. 3.6 to grasp the small differences between the models.
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Figure 3.6: Comparison of predicted values with actual wind speed data of Tamilnadu wind
farm

The RMSE, MAE values of individual BPNN model are 1.1938, 0.8377 respectively

and these RMSE, MAE values of hybrid EEMD-BPNN model are 0.7695, 0.5726 respectively,

which means that combining EEMD technique with BPNN model, one can improve the fore-

casting accuracy (as shown in Fig. 3.7). This improvement in prediction accuracy is only

because of the most efficient signal decomposition algorithm which is EEMD and employed

for preprocessing the original wind speed data to remove noise from the data. The hybrid

EEMD-AWNN model further enhances the prediction accuracy with 0.5249, 0.4176 values of

RMSE, MAE measures. The reason for the proposed method superior performance is that the

model acquires the knowledge about the data to be forecasted through the training process, it

exhibits a high data error tolerance, and it has a higher adaptability to past wind speed measure-

ments. The other statistical metric, MAPE value of proposed hybrid EEMD-AWNN model is

14.0188, which is the best value when compared with the all individual model MAPE values

like 23.9041, 23.6522, 21.5713, 23.2732, 29.2489, and 24.8214 (as shown in Fig. 3.8). The

computational time required for individual models is less than 4 seconds but the computational
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time of the proposed EEMD-AWNN method about 8 times more. This may not be a concern

due to high performance capabilities of computers these days. By comparing the performance

metrics between the proposed hybrid EEMD-AWNN model and individual approaches, the hy-

brid approach outperformed all individual approaches for the wind dataset under RMSE, MAE,

and MAPE measures. The main reason for this is simply the best features of EEMD are utilized

for wind speed forecasting. The proposed approach performance when compared with indi-

vidual WNN in terms of percentage is improved by 58.3505 % as presented in Table 3.3. The

MAE, MAPE values of the proposed hybrid EEMD-AWNN model are 0.4176, 14.0188 respec-

tively, which are the best values when compared with all other individual models. Therefore, it

is evident that the proposed approach is very effectively forecasting than any other individual

model.

Figure 3.8: Comparison of MAPE values of different prediction models for Tamilnadu wind
farm

Table 3.2: Comparison of performance indices between proposed hybrid EEMD-AWNN model
and benchmark models for Tamilnadu wind farm

Performance
Metrics

Persistence
model
[78]

BPNN
model
[63]

RBFNN
model
[64]

ENN
model
[73]

GRNN
model
[79]

WNN
model [4]

Proposed
model

RMSE
(m/s)

01.2134 01.1938 01.0507 01.1455 01.4794 01.2602 00.5249

MAE (m/s) 00.8721 00.8377 00.7521 00.8067 01.1178 00.9130 00.4176
MAPE (%) 23.9041 23.6522 21.5713 23.2732 29.2489 24.8214 14.0188
CPU Time

(s)
- 02.8600 03.1100 03.6500 03.7400 03.9900 32.1600
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Table 3.3: Comparison of performances in percentage of proposed hybrid EEMD-AWNN
model over benchmark models for Tamilnadu wind farm

Performance metrics PRMSE (%) PMAE (%) PMAPE (%)
Hybrid EEMD-AWNN Vs Persistence [78] 56.7413 52.1156 41.3539
Hybrid EEMD-AWNN Vs BPNN [63] 56.0304 50.1509 40.7294
Hybrid EEMD-AWNN Vs RBFNN [64] 50.0428 44.4755 35.0118
Hybrid EEMD-AWNN Vs ENN [73] 54.1792 48.2374 39.7642
Hybrid EEMD-AWNN Vs GRNN [79] 64.5194 62.6409 52.0707
Hybrid EEMD-AWNN Vs WNN [4] 58.3505 54.2642 43.5212

Figure 3.7: Comparison of RMSE and MAE values of different prediction models for Tamil-
nadu wind farm

Reliable forecasts play a vital role in the enhanced renewable energy integration into

the electrical system. The enhanced approaches like the combination of distinct forecasting

methods are employed to utilize the strengths and minimize the weaknesses of each method.

The forecasting performance of hybrid approaches such as EEMD-BPNN, EEMD-RBFNN,

EEMD-ENN, and EEMD-GRNN is plotted along with original wind time-series in Fig. 3.9.

And a zoom section is added, from 30h to 50h in Fig. 3.9 to grasp the small differences between

the EEMD based models. The RMSE value of the proposed hybrid EEMD-AWNN model is

0.5249, which is the best value compared to combinational model RMSE values such as 0.7695,

1.2359, 0.7731, and 0.9811 (shown in Table 3.4). The proposed hybrid EEMD-AWNN model

can predict with enhanced accuracy and less uncertainty in future wind speed time-series since

it can overcome the disadvantages of mode mixing problem of signal decomposition using

EEMD technique and slow convergence by employing AWNN model. In comparison with four

32



CHAPTER 3. SHORT-TERM WIND SPEED PREDICTION BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND ADAPTIVE WAVELET NEURAL NETWORK
METHOD Section 3.2

EEMD based combinational models, it is observed that the proposed EEMD-AWNN model has

shown best performance for wind dataset prediction under RMSE, MAE, and MAPE measures

as presented in Figs. 3.10 and 3.11. And the MAPE error percentage is improved by employing

the proposed hybrid EEMD-AWNN model with 15.7035 % in comparison with hybrid EEMD-

BPNN model (shown in Table 3.5). Similarly, among all other EEMD based hybrid models, the

proposed hybrid EEMD-AWNN model gives the best performance in terms of MAE, MAPE

values. This best performance of the hybrid EEMD-AWNN model is because the proposed

model exploits the merits of EEMD technique and AWNN model.

Figure 3.9: Comparison of Predicted values using EEMD based hybrid models with actual wind
speed data of Tamilnadu wind farm
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Table 3.4: Comparison of performance indices between proposed hybrid EEMD-AWNN model
and EEMD based hybrid models for Tamilnadu wind farm

Performance
Metrics

EEMD-BPNN
Model [80]

EEMD-
RBFNN

Model [79]

EEMD-ENN
Model [81]

EEMD-
GRNN

Model [79]

Proposed
model

RMSE (m/s) 00.7695 01.2359 00.7731 00.9811 00.5249
MAE (m/s) 00.5726 00.8617 00.5761 00.7244 00.4176
MAPE (%) 16.6304 25.1255 16.8295 20.1528 14.0188

CPU Time (s) 30.2700 31.5100 31.7800 31.8400 32.1600

Table 3.5: Comparison of performances in percentage of proposed hybrid EEMD-AWNN
model over EEMD based hybrid models for Tamilnadu wind farm

Performance
metrics

Hybrid EEMD-AWNN
Vs EEMD-BPNN [80]

Hybrid EEMD-AWNN
Vs EEMD-RBFNN [79]

Hybrid EEMD-AWNN
Vs EEMD-ENN [81]

Hybrid EEMD-AWNN
Vs EEMD-GRNN [79]

PRMSE (%) 31.7829 57.5299 32.1066 46.4967
PMAE (%) 27.0655 51.5402 27.5152 42.3559
PMAPE (%) 15.7035 44.2049 16.7008 30.4374

Figure 3.10: Comparison of RMSE and MAE values of different EEMD based hybrid prediction
models for Tamilnadu wind farm
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Figure 3.11: Comparison of MAPE values of different EEMD based hybrid prediction models
for Tamilnadu wind farm

3.2.3 Case study 2: One step ahead prediction using Lingampalli, Telan-
gana wind farm data

The statistical information about the data which is used for this work is as shown in

Table 3.6. The performance evaluation in terms of RMSE (m/s), MAE (m/s), MAPE (%),

and computational time (s) of the individual models in comparison with the proposed hybrid

EEMD-AWNN model is shown in Table 3.7. The decomposed IMFs of Telangana wind farm

data as shown in Fig. 3.12. The forecasting results using these individual models such as

persistence method, back propagation based feed forward NN (BPNN), radial basis function

based NN (RBFNN), elman NN (ENN), general regression NN (GRNN), and individual WNN

are compared with the original wind time-series in Fig. 3.13.

Table 3.6: Statistical information of original wind speed data collected from Telangana wind
farm

Wind
input

Minimum
(m/s)

Maximum
(m/s)

Mean
(m/s)

Median
(m/s)

Standard
Deviation

(m/s)
x(t) 0.6775 11.2801 5.4687 5.3114 1.9536

The RMSE, MAE values of individual BPNN model are 0.8098, 0.6544 respectively

and the RMSE, MAE values of hybrid EEMD-BPNN model are 0.5272, 0.4017 respectively,

which means that combining the EEMD technique with this BPNN model, one can improve

the forecasting accuracy (shown in Fig. 3.14). This improvement in prediction accuracy be-
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Figure 3.12: Decomposed results of Telangana wind farm data [3] by the EEMD technique

cause of the most efficient signal decomposition algorithm, which is EEMD, is employed for

preprocessing the original wind speed data to remove noise from the data. The hybrid EEMD-

AWNN model further enhances the prediction accuracy with 0.5051, 0.3882 values of RMSE,

MAE measures. The main reason for this is that the hybrid EEMD-AWNN model uses the best

features of adaptive learning rate. The other statistical metric, MAPE value of proposed hybrid

EEMD-AWNN model is 10.3797 which is the best value when compared with all individual

model MAPE values such as 14.4161, 16.9040, 18.2774, 16.5947, 18.7390, and 14.6571 (as

shown in Fig. 3.15). The computational time required for individual models is less than 4 sec-

onds but the computational time of the proposed EEMD-AWNN method about 6 times more.

This may not be a concern due to high performance capabilities of computers these days. By

Table 3.7: Comparison of performance indices between proposed hybrid EEMD-AWNN model
and benchmark models for Telangana wind farm

Performance
Metrics

Persistence
model
[78]

BPNN
model
[63]

RBFNN
model
[64]

ENN
model
[73]

GRNN
model
[79]

WNN
model [4]

Proposed
model

RMSE
(m/s)

00.7878 00.8098 00.8209 00.7874 00.8913 00.8197 00.5051

MAE (m/s) 00.6350 00.6544 00.7166 00.6220 00.7320 00.6405 00.3882
MAPE (%) 14.4161 16.9040 18.2774 16.5947 18.7390 14.6571 10.3797
CPU Time

(s)
- 03.1400 03.2700 03.3600 03.5900 03.7600 31.3800
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Figure 3.13: Comparison of predicted values with actual wind speed data of Telangana wind
farm

comparing the performance metrics between the proposed hybrid EEMD-AWNN model and

individual approaches, the hybrid approach outperformed all individual approaches for wind

dataset under RMSE, MAE, and MAPE measures. The main reason for this is simply the best

features of EEMD are utilized for wind speed forecasting. The performance of the proposed

approach when compared with individual WNN in terms of percentage is improved by 39.3911

% and is as presented in Table 3.8. The MAE, MAPE values of the proposed hybrid EEMD-

AWNN model are 0.3882, 10.3797 respectively, which are the best values when compared with

all other individual models. Therefore, it is evident that the proposed approach forecasts very

effectively than any other individual model.

Table 3.8: Comparison of performances in percentage of proposed hybrid EEMD-AWNN
model over benchmark models for Telangana wind farm

Performance metrics PRMSE (%) PMAE (%) PMAPE (%)
Hybrid EEMD-AWNN Vs Persistence [78] 35.8847 38.8661 27.9993
Hybrid EEMD-AWNN Vs BPNN [63] 37.6266 40.6785 38.5962
Hybrid EEMD-AWNN Vs RBFNN [64] 38.4699 45.8275 43.2102
Hybrid EEMD-AWNN Vs ENN [73] 35.8521 37.5884 37.4517
Hybrid EEMD-AWNN Vs GRNN [79] 43.3290 46.9672 44.6091
Hybrid EEMD-AWNN Vs WNN [4] 38.3799 39.3911 29.1831
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Figure 3.14: Comparison of RMSE and MAE values of different prediction models for Telan-
gana wind farm

Figure 3.15: Comparison of MAPE values of different prediction models for Telangana wind
farm

Reliable forecasts play a vital role in the enhanced renewable energy integration into

the electrical system. The enhanced approaches like the combination of distinct forecasting

methods are employed to utilize the strengths and minimize the weaknesses of each method.

The forecasting performance of hybrid approaches such as EEMD-BPNN, EEMD-RBFNN,

EEMD-ENN, and EEMD-GRNN is plotted along with original wind time-series in Fig. 3.16.

The RMSE value of the proposed hybrid EEMD-AWNN model is 0.5051, which is the best
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value when compared to combinational model RMSE values such as 0.5272, 0.5356, 0.5254,

and 0.5639 (shown in Table 3.9). The proposed hybrid EEMD-AWNN model can predict with

enhanced accuracy and low uncertainty in future wind speed time-series since it can overcome

the disadvantages of mode mixing problem of signal decomposition using EEMD technique

and slow convergence by employing the AWNN model. In comparison with four EEMD based

combinational models, it is observed that the proposed EEMD-AWNN model has showed best

performance for wind dataset prediction under RMSE, MAE, and MAPE measures, presented

in Figs. 3.17 and 3.18. The MAPE error percentage improved by employing the proposed

hybrid EEMD-AWNN model with 9.6002 % in comparison with hybrid EEMD-GRNN model

(shown in Table 3.10). Similarly, among all other EEMD based hybrid models, the proposed

hybrid EEMD-AWNN model gave the best performance in terms of MAE, MAPE values. This

best performance of the hybrid EEMD-AWNN model is because the proposed model exploits

the merits of both EEMD technique and AWNN model.

Figure 3.16: Comparison of Predicted values using EEMD based hybrid models with actual
wind speed data of Telangana wind farm
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Table 3.9: Comparison of performance indices between proposed hybrid EEMD-AWNN model
and EEMD based hybrid models for Telangana wind farm

Performance
Metrics

EEMD-BPNN
Model [80]

EEMD-
RBFNN

Model [79]

EEMD-ENN
Model [81]

EEMD-
GRNN

Model [79]

Proposed
model

RMSE (m/s) 00.5272 00.5356 00.5254 00.5639 00.5051
MAE (m/s) 00.4017 00.4249 00.4214 00.4546 00.3882
MAPE (%) 11.0400 10.7325 10.4790 11.4820 10.3797

CPU Time (s) 29.5500 30.8900 31.6100 31.7600 31.3800

Table 3.10: Comparison of performances in percentage of proposed hybrid EEMD-AWNN
model over EEMD based hybrid models for Telangana wind farm

Performance
metrics

Hybrid EEMD-AWNN
Vs EEMD-BPNN [80]

Hybrid EEMD-AWNN
Vs EEMD-RBFNN [79]

Hybrid EEMD-AWNN
Vs EEMD-ENN [81]

Hybrid EEMD-AWNN
Vs EEMD-GRNN [79]

PRMSE (%) 04.1919 05.6945 03.8637 10.4273
PMAE (%) 03.3607 08.6373 07.8785 14.6062
PMAPE (%) 05.9809 03.2872 00.9476 09.6002

Figure 3.17: Comparison of RMSE and MAE values of different EEMD based hybrid prediction
models for Telangana wind farm
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Figure 3.18: Comparison of MAPE values of different EEMD based hybrid prediction models
for Telangana wind farm

3.3 Summary

A statistical-based approach without employing NWP inputs is developed and tested

with two Indian wind farms data successfully. This hybrid approach combines EEMD tech-

nique with AWNN model to deliver high accuracy, low uncertainty and low computational bur-

den. The most efficient signal decomposition algorithm EEMD is utilized for preprocessing the

original wind speed data and enhance the forecasting accuracy by eliminating noisy data. The

AWNN model delivers faster convergence and improved forecasting accuracy by using adaptive

learning rate. The developed hybrid model is investigated with regard to wind farms of south-

ern India. The RMSE, MAE and MAPE values of the hybrid EEMD-AWNN model are 0.5249,

0.4176 and 14.0188 % were show best performance measures in comparison with all individual

and hybrid models in case of Tamilnadu wind farm. This hybrid model also reduced MAPE

value by 43.5212 % when compared to individual WNN model. The RMSE, MAE and MAPE

values of the hybrid EEMD-AWNN model are 0.5051, 0.3882 and 10.3797 % were show best

performance measures in comparison with all individual and hybrid models in the second case

of Telangana wind farm. This hybrid model also reduced MAPE value by 29.1831 % when

compared to individual WNN model. Hence, the performance evaluation among the proposed

model and ten other models (individual and hybrid models) have shown that the hybrid EEMD-

AWNN approach outperformed all other approaches in terms of performance measures such as

RMSE, MAE, and MAPE. This prediction method would be applied to larger power system for

better forecasts in terms of robustness and accuracy.
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Chapter 4

Day-ahead wind speed forecasting
based on multi resolution analysis and

adaptive wavelet neural network approach

4.1 Introduction

Wind energy has been emerging rapidly in renewable energy generation technologies

around the world. For enhanced renewable integration with the grid, wind speed and power

forecasting is absolutely necessary. With the evolution of power electronic devices, wind tur-

bine technology can provide better grid reliability services than conventional electric power

technologies. Because of intermittent and uncertain nature of wind speed, design of highly

accurate prediction approach is difficult.

An accurate prediction is needed to support the grid operators to maintain superior con-

trol over the electric balance between power demand and supply. Wind speed forecasting can

be utilized for wind energy bidding [82] [83]. Developing the wind speed prediction model is

a complex practice as it depends mainly on the intermittent nature of wind. And the most wind

farms are relatively new and sufficient performance analysis of these wind farms is needed for

building a robust forecasting tool. Although there are numerous approaches available for wind

speed forecasting as reported in the literature, there is still a tremendous need for a method that

gives high prediction accuracy. Wavelet transform based multi resolution analysis is employed

in developing the proposed model by replacing the EEMD technique of previous chapter, to

further improve the prediction accuracy.

In this study, accurate forecasting was done by employing AWNN which combines the

superior features of wavelet transforms and neural networks. The main idea of this method is

that

• Input wind series data is applied to least asymmetric wavelet filter of scaling level-8

(LA8).

• Then the wind series data is first decomposed into detailed signal and smooth signal. This

is called wavelet based multi resolution analysis (MRA).
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• The detailed and smooth signals are individually applied to AWNN approach to predict

the day-ahead wind speed.

4.2 Wavelet transforms and multi resolution analysis

Wavelet is a mathematical function for image processing and analysing time series data

[77]. Length and breadth of a wavelet are represented by translation parameter (a) and dilation

parameter (b) respectively. The Mexican hat wavelet as shown below in Fig. 4.1 is used as

mother wavelet in AWNN in this chapter. discrete wavelet transform (DWT) has emerged

as a powerful technique and an alternative to the discrete cosine transform (DCT). In DWT,

significant amount of compression ratio is achieved. The main objective of wavelet transform is

to achieve space frequency localization. One wants to know at exactly what position, and what

frequency the component exists.

Figure 4.1: Mexican hat wavelet (mother wavelet) [6]

In wavelet analysis, one very important aspect is MRA [85]. During this analysis the

signal is decomposed by using low pass and high pass filters with decimation. Down sampling

and up sampling by two is performed during MRA. To eliminate aliasing, up sampling followed

by band pass or low pass filter is used. Down sampling is followed by a low pass filter which

halves the signal band width and reduces the resolution. This makes the signal clearer and easy

to remove noise in that particular signal. Wavelet is a mathematical tool which is denoted by

ψ(t) specified along real axis (-∞,∞) and this function must satisfy the following two conditions:∫ ∞

−∞
ψ(t)dt = 0 (4.1)

∫ ∞

−∞
ψ2(t)dt = 1 (4.2)
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If U = [U1,U2,U3, ....UN ]
T is input wind series data vector, where N= integer multiple

of 2J , then DWT of {U} is

W = MU (4.3)

Where W is vector of length N ×1 and M is real matrix of length N ×N so thatMT M = IN . As

M is orthogonal, reconstruction of U is possible by Pre-multiplying both sides withMT

MT W = MT MU = U (4.4)

Then vector U can be expressed as an addition of J+1 vectors of length N

U = MT W = [MT
1 ,M

T
2 , .....M

T
J ,V

T
J ]



W1

W2

.

.

.

WJ

VJ


(4.5)

=
J

∑
j=1

MT
J WJ +V T

J VJ =
J

∑
j=1

D j +SJ (4.6)

Figure 4.2: MRA analysis of wind series data using MODWT (maximal overlap discrete
wavelet transform)
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Figure 4.3: Smooth signal after decomposition of wind series data

Here the wind series data is first decomposed into detailed signal and smooth signal

using LA8 wavelet filter as shown in Fig. 4.2 and Fig. 4.3.

In this work, the proposed method has been tested using two major case studies:

1. Day-ahead prediction using Texas wind farm data

2. Day-ahead prediction using North Carolina wind farm data

4.3 Analytical Study

The wind speed time series data is gathered from national renewable energy laboratory

(NREL) website [8]. The hourly averaged 5-min wind speed samples of 2012 at the wind

farm (21299) located in Eastern ISO region with longitude -100.95 and latitude of 35.48 in

Pampa city, Texas, U.S.A. are used to train AWNN. To enhance the performance, training data

is normalised to [-1,1]. RStudio software [84] was used for MRA of Wind series and MAT-

LAB software [6] was utilized for implementation of AWNN. To assess the ability of proposed

method, forecasting results were tested with four other approaches.

4.3.1 Auto Correlation and Selection of Input Variables

The correlation analysis is conducted before developing the actual AWNN model. Fig. 4.4

shows the actual ACF of wind speed data for 1024 lag hours. It is clear from Fig. 4.4 there are no

seasonal patterns. As lag hours increase, the correlation decreases. The structure of the AWNN

used for the two data sets is 24-36-1. From the hourly averaged wind speed, the first 70% of

the data was utilized for training and the remaining 30% of the data was employed for testing
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Figure 4.4: Auto correlation function of wind speed data for 1024 lag hours

the selected AWNN model. For the assessment of performance of AWNN, feed forward neural

network (FFNN) with three layers were considered. This FFNN has non-linear sigmoidal func-

tion and Linear activation function in hidden and output layers, respectively. For configurations

of AWNN and FFNN networks, actual wind series data is provided as input.

4.3.2 Case Study 1: Day-ahead prediction using Texas wind farm data

Multi resolution analysis (MRA) is conducted using least asymmetry with scaling level-

8 (LA-8) wavelet. LA-8 is advantageous when compared to daubechies wavelet in terms of

better MRA in the absence of humps. The Mexican hat wavelet is utilized in the hidden layer of

AWNN for forecasting upto six levels of decomposition. In all cases of this study, before testing

the network, it is trained with 1024 past wind speed data points while the last 30 percent training

data is considered as validation data. The learning rate (η) is 0.5, momentum coefficient (α) is

assumed to be 0.5, MSE goal is set as 0.0001 and maximum iterations at 1000. Fig. 4.5 shows

the comparison of wind speeds using AWNN and FFNN networks.

To calculate the performance of forecasting, the following statistical parameters are con-

sidered. Absolute percentage error (APE) is described in equation (4.7) and Mean absolute

percentage error (MAPE) is shown in equation (4.8).

APE =

∣∣∣∣AWS−PWS
AWS

∣∣∣∣ (4.7)

where AWS, PWS are actual and predicted wind speeds respectively.
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Figure 4.5: Day-ahead hourly predicted wind speed using AWNN and FFNN networks for
Texas wind farm data

Figure 4.6: Day-ahead hourly predicted wind speed using MRA based AWNN and MRA based
FFNN networks for Texas wind farm data
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Table 4.1: APE and MAPE for persistence, FFNN and AWNN using Texas wind farm data

Absolute Percentage Error

Hour PERSISTENCE
[78]

FFNN AWNN

01 01.8349 02.2353 02.2864

02 14.8413 01.8688 01.1228

03 04.3022 08.2465 04.7617

04 01.3715 03.0626 01.3175

05 11.1041 15.5795 09.1359

06 15.7189 07.9450 07.7814

07 11.5077 10.6538 09.4737

08 13.9447 05.2489 04.0444

09 03.8537 05.6036 05.3063

10 05.0569 19.8259 16.5456

11 09.9527 05.0188 03.3083

12 08.7661 25.9308 20.5913

13 17.0070 18.8296 10.4662

14 09.0313 04.9861 04.5110

15 03.0549 07.2114 06.3814

16 18.5554 03.8427 03.9962

17 27.0842 10.1374 06.6726

18 13.4440 10.1306 11.2727

19 26.4965 19.4745 24.1844

20 13.1355 11.1650 10.0436

21 13.9424 12.4433 14.2117

22 14.6525 12.2321 10.8989

23 02.1921 10.2252 09.2766

24 02.3555 00.4861 00.4885

MAPE 10.9669 09.6826 08.2533

MAPE =
1
N

N

∑
i=1

∣∣∣∣AWSi −PWSi

AWSi

∣∣∣∣∗100 (4.8)

where AWS, PWS are actual and predicted wind speeds respectively, N is no. of samples.
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Table 4.2: APE and MAPE using MRA based AWNN and MRA based FFNN Models for
Texas wind farm data

Absolute Percentage Error

Hour FFNN(MRA) AWNN(MRA)

01 00.8823 00.5605

02 00.6615 00.3099

03 03.3152 01.0940

04 00.7035 00.4988

05 05.3454 01.5550

06 05.1497 02.5179

07 06.5391 03.6045

08 02.9298 00.7006

09 02.9911 01.0233

10 08.0329 03.1685

11 01.9712 00.6341

12 10.4108 03.1391

13 07.0628 00.2560

14 02.9630 01.4150

15 03.1908 02.7122

16 01.9130 01.0201

17 04.5025 02.3324

18 05.6377 00.5662

19 08.9974 03.4749

20 04.2562 00.2772

21 10.9146 01.0231

22 07.6926 00.6386

23 03.6317 02.3773

24 00.2959 00.1349

MAPE 04.5830 01.4973

When compared with Persistence method and FFNN model, MAPE value acquired using

AWNN model is considerably less. That means that AWNN model can predict wind speed

accurately when compared with FFNN, as shown in Table 4.1.

In case of day ahead forecasting, using the proposed approach, MAPE value is further
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reduced to a low value. And it reports better performance compared to persistence, FFNN,

AWNN, and MRA based FFNN models. Fig. 4.6 gives results of actual and predicted wind

speeds employing MRA based networks. Table 4.2 depicts actual value of MAPE as 1.4973,

which is low in comparison with MAPE of other models.

4.3.3 Case Study 2: Day-ahead prediction using North Carolina wind
farm data

Figure 4.7: Day-ahead hourly predicted wind speed using AWNN and FFNN networks for
North Carolina wind farm data

When compared with Persistence method and FFNN model, the MAPE value acquired

using AWNN model is considerably less. That means AWNN model can predict wind speed

accurately when compared with FFNN as shown in Table 4.3. In case of day ahead forecasting,

using the proposed approach, MAPE value is further reduced to low value. And it promises

better performance compared to persistence, FFNN, AWNN, and MRA based FFNN models.

Fig. 4.8 gives the results of actual and predicted wind speeds employing MRA based networks.

TABLE 4.4 depicts actual value of MAPE as 1.0027 that is low compared with MAPE of other

benchmark models.
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Table 4.3: APE and MAPE for persistence, FFNN and AWNN using North Carolina wind farm
data

Absolute Percentage Error

Hour PERSISTENCE
[78]

FFNN AWNN

01 14.4465 10.8619 08.5424

02 02.7323 02.4610 02.1371

03 22.3605 21.4050 17.6830

04 14.5949 11.5881 07.7518

05 08.8099 07.1108 06.8943

06 18.3162 14.1192 10.8972

07 02.6697 14.0801 10.2364

08 06.1575 05.5827 04.8343

09 28.5298 06.5442 04.2361

10 17.3619 15.9653 13.9755

11 12.6764 11.9530 09.2718

12 00.9952 00.7599 00.6218

13 00.8041 00.7704 00.5140

14 06.1948 08.1113 05.7963

15 03.9410 03.7348 03.3296

16 01.3103 00.8183 00.3262

17 03.4043 06.5814 04.7643

18 01.4796 01.4377 00.7902

19 01.4830 08.4151 07.2154

20 01.9789 01.7782 03.0277

21 05.8908 05.5181 04.4408

22 01.0865 09.3961 06.4361

23 12.3921 10.9187 09.8920

24 12.4914 10.7393 08.6022

MAPE 08.4212 07.9438 06.2434
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Table 4.4: APE and MAPE using MRA based AWNN and MRA based FFNN Models for
North Carolina wind farm data

Absolute Percentage Error

Hour FFNN(MRA) AWNN(MRA)

01 4.3890 2.1582

02 0.9047 0.2057

03 9.9475 2.9713

04 4.7679 1.0082

05 4.2362 0.9892

06 8.9777 2.6051

07 5.8915 1.3830

08 2.9364 1.2235

09 3.3432 0.6284

10 8.3204 1.8654

11 5.6543 0.8863

12 0.5375 0.3124

13 0.3427 0.1230

14 3.2506 0.3174

15 2.1207 0.7218

16 0.1645 0.0147

17 3.5490 1.2062

18 0.5687 0.1441

19 4.1723 0.4708

20 1.9680 0.8152

21 3.4732 1.4806

22 3.4013 0.6335

23 1.5894 0.5510

24 5.6755 1.3507

MAPE 3.7993 1.0027
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Figure 4.8: Day-ahead hourly predicted wind speed using MRA based AWNN and MRA based
FFNN networks for North Carolina wind farm data

4.4 Summary

The accurate day ahead wind speed prediction approach is modelled by utilizing the

multi resolution analysis based adaptive wavelet neural network model. Wind series is decom-

posed into detailed and smooth signals employing LA-8 Wavelet based on the MRA. Each

decomposed signal is applied to a neural network model to predict the future wind speed value.

The outcomes are analysed using other approaches for the performance evaluation of this ap-

proach. With the results, this MRA based AWNN model outperformed other benchmark mod-

els. The proposed method can be extended for energy pricing and economic scheduling of

energy.
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Chapter 5

A hybrid forecasting model based on artificial neural
network and teaching learning based optimization

algorithm for day-ahead wind speed prediction

5.1 Introduction

Electrical energy plays a significant role not only in modern human life but also in the

growth of the world economy. Specifically, wind energy is part of the fast-growing renew-

able energy sources (RES) and wind energy is drawing worldwide attention among all energy

resources [86]. RES must play a vital role in reaching the goals set by Paris agreement in

December 2015. Currently, the energy generation depends mainly on the role of RES [87].

RES help in reducing greenhouse gasses discharge, reducing the operating cost, and enhancing

the energy security of consumers [11]. Wind energy is clean, pollution-free and is part of the

fast-growing renewable energy sources. Wind power technology is young by power systems

standards, but it has made significant strides in the last two decades. Advancement of power

electronic devices gives us better grid reliability services with wind turbines than conventional

power plants. Wind speed assessment plays an important role in the wind energy field. Reli-

able and efficient energy supplement planning requires accurate wind speed and wind power

prediction. Such prediction however is a challenging task due to the intermittent and nonlinear

nature of wind. Wind forecasting is more challenging when compared to PV forecasting due to

intermittent nature of wind [88]. Exact prediction of wind power production is necessary as the

wind generator output power will be proportional to the cube of wind speed [89]. An error-free

wind speed prediction is required for improved renewable energy integration for effective elec-

tricity market operation and also for supporting the operators of the grid by better control of the

balance of power supply and demand [90].

The main idea of this analytical study is to develop a hybrid forecasting model for fur-

ther enhancing the accuracy of day-ahead hybrid MRA-AWNN wind speed prediction model.

Optimal weight parameters of ANN are obtained by an optimization technique (OT) for better

learning process. These OT algorithms are employed to auto-tune the weights and biases of

the ANN to improve the training of the network so that minimizing the computational burden
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of the forecasting model. In this study, the teaching-learning based optimization (TLBO) al-

gorithm is employed to greatly improve the performance of artificial neural network (ANN) so

that forecasting error is minimized so as to achieve the desired results. The proposed hybrid

model can be implemented in two stages. First, by employing conventional algorithms, ANN is

trained to determine the most appropriate structure of the network. Second, TLBO algorithm is

used to adjust the weights and biases of ANN so as to auto-tune the best parameters of BPNN.

This optimization algorithm is utilized for its powerful ability of global search and exploration.

From this, it is clear that hybrid training technique can enhance the training of BPNN satisfac-

torily. Finally, the results from the real-world case studies in the U.S.A. are reported along with

comprehensive comparison. Therefore, the proposed hybrid forecasting model outperformed

all the benchmark models. The principal objectives of this chapter are as follows:

• to develop a hybrid technique for day-ahead forecasting.

• to enhance the prediction accuracy by comparing the results acquired with five other

bench mark models.

• to reduce computational time burden for practical wind speed prediction.

5.2 Artificial neural network

ANN-based models are most commonly used in case of short-term wind speed fore-

casting (STWSF). Appropriate selection of ANN model is based on the characteristics of the

problem and needs cautious analysis. The architecture of ANN model for building the hybrid

model is shown in Fig. 5.1. This is capable of mapping the actual non-linear input data into

forecasted output data. The number of neurons in each layer of NN depends upon the problem

(STWSF problem).

The algorithm utilized for training the multilayer perceptron ANN is the back-propagation

algorithm and is employed in [76]. During training, with minimization of error between actual

input values and target output values, this network will adjust the weights and biases present in

ANN.

The input vector is [x1,x2,x3, ....,xi] and corresponding target value is applied to ANN.

The output at jth hidden layer neuron is given by equation (5.1)

Y j =
Ni

∑
i=1

wi jxi +b j (5.1)
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Figure 5.1: Architecture of ANN model [7]

where Ni is number of neurons in the input layer, [w1 j,w2 j,w3 j, ....,wi j] is connection

weight vector of ith input layer neuron to jth hidden layer neuron and b j is bias value connected

to jth hidden layer neuron.

Then Y j is processed by transfer function f (·) into Zk. Hence, the output at kth output

layer neuron can be calculated using equation (5.2)

Zk = f (Y j) =
Nh

∑
k=1

w jkY j +bk (5.2)

where Nh is number of neurons in the hidden layer, [w1k,w2k,w3k, ....,w jk] is connection

weight vector of jth hidden layer neuron to kth output layer neuron and bk is bias value connected

to kth output layer neuron. The output of the kth output layer neuron is calculated with the

generalized formula shown in equation (5.3).

Zk = f2

(
Nh

∑
k=1

w jk f1

(
Ni

∑
i=1

wi jxi +b j

)
+bk

)
(5.3)
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5.3 Teaching learning based optimization algorithm

For enhancing the accuracy of the forecasts nowadays, appropriate optimization algo-

rithms are utilized. Evolutionary algorithms such as differential evolution (DE), genetic algo-

rithm (GA) and swarm intelligence algorithms like PSO, artificial bee colony (ABC), shuffled

frog leaping (SFL) and ant colony optimization (ACO) algorithms play a significant role in

optimization applications. The main drawback of the population-based algorithms is that it is

difficult to select the proper algorithm-specific parameters for the effectiveness of that particular

algorithm. In order to overcome the above difficulty the novel population-based optimization

technique, that is TLBO algorithm [91] is implemented. This TLBO algorithm is mainly in-

spired by the classroom environment, where learners will learn things by the influence of the

teacher in class. Through this algorithm, learning takes place in two phases. First, knowledge

transfers from teacher to learners in this phase, which is known as teacher phase. Second, in the

learner phase, knowledge transfers through interaction among the learners. The population of

this algorithm consists of a group of learners and distinct subjects opted by them are considered

as distinct input variables of STWSF problem.

For a better understanding of working principle of TLBO, the only parameters required

for proper working of the algorithm are population size and a number of generations are initial-

ized [92]. And the objective function is chosen based on the STWSF problem. Then randomly

generate the initial population that is equal to the number of learners in the class. After ini-

tial parent population generation, the teacher phase and then learner phase will start. The two

phases of TLBO are explained clearly in the following subsections:

5.3.1 Teacher phase

In this phase, learning takes place through the teacher. In the initial population, the

number of learners is the population size (k=1,2,3,....n) that is ’n’ and the number of subjects

(j=1,2,3,.....m) is equal to design variables ’m’. In ith iteration, the mean result value of the

learners in the jth subject can be represented by M j,i. In the total population, that is among all

learners (k=1,2,3,....n), the best learner (kbest) is identified by considering best overall result

(Xtotal−kbest,i) in all subjects and this best learner is considered as the teacher by the algorithm.

Based on his best knowledge, the teacher tries to enhance the mean grade of class in that

particular subject taught by him. The updated position of each of the learners in ith iteration is

calculated as equation (5.4)

Xnew j,k,i = Xold j,k,i + γ(X j,kbest,i −TFM j,i) (5.4)
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Where Xnew j,k,i is the updated value of Xold j,k,i and γ is the random value in the range

[0,1]. X j,kbest,i is the result of the best learner in subject j. TF is teaching factor which can be

either 1 or 2. After the teacher phase, all accepted better objective function values (Xnew j,k,i)

are maintained and these are considered inputs for next phase.

5.3.2 Learner phase

The learner phase is inspired by group discussions, debates, and presentations among

all learners. In this phase, learners learn through random interaction with other learners in the

class. Here, p and q are randomly selected two learners for interaction such that

Xnewtotal−p,i ̸= Xnewtotal−q,i. Where Xnewtotal−p,i and Xnewtotal−q,i are the updated objective

function values of Xoldtotal−p,i and Xoldtotal−q,i of p and q respectively at the end of teacher

phase.

If Xnewtotal−p,i < Xnewtotal−q,i

Xnew
′
j,p,i = Xnew j,p,i + γ(Xnew j,p,i −Xnew j,q,i) (5.5)

If Xnewtotal−q,i < Xnewtotal−p,i

Xnew
′
j,p,i = Xnew j,p,i + γ(Xnew j,q,i −Xnew j,p,i) (5.6)

Xnew
′
j,p,i (updated learner’s position in learner phase from equation (5.5) and equation

(5.6)) is accepted if it yields best value of objective function.

5.4 Hybrid forecasting model

The proposed hybrid ANN-TLBO approach for STWSF is based on ANN model and

TLBO algorithm. Schematic diagram of the hybrid method is depicted in Fig. 5.2. In the

hybrid model, the main purpose of ANN is for better learning capability and the ability of

nonlinear mapping among distinct complex data. And TLBO algorithm is used just for tuning

the weighting and biasing factors of BPNN to improvise the training of the network. First, input

data values and target values that are past wind speed time series values must be normalized

within the specific range using equation (5.7) and these are to be utilized for training ANN.

WIn =
WTmax −WTmin

WImax −WImin
(WI −WImin)+WTmin (5.7)
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Where WIn is the normalized value of wind speed input; WImax and WImin are the max-

imum and minimum of the wind speed inputs (WI), respectively; WTmax and WTmin are the

maximum and minimum of the wind speed targets (WT), respectively. If the range [-1,1] is

considered, then WTmax = 1 and WTmin =−1.

Figure 5.2: Framework of hybrid ANN-TLBO model

5.4.1 Working principle of hybrid forecasting model

ANNs are most popularly employed in wind speed time-series forecasting due to their

capability to handle nonlinearity more effectively. But traditional BP training algorithm has

an intrinsic disadvantage wherein ANN is vulnerable to trap in local minima. To overcome

this disadvantage, TLBO algorithm is used to evolve the weights and biases of ANN so as to

auto-tune the best parameters of BPNN. This optimization algorithm is utilized for its powerful

ability of global search and exploration. Therefore, the hybrid training technique can enhance
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the training of BPNN satisfactorily. Before starting TLBO algorithm, ANN structure must be

designed based on STWSF problem. ANN works based on the equations mentioned in Section

5.2. For developing the hybrid ANN-TLBO model, an individual in the population carries the

information of weights and biases expressed as a learner’s initial position. A group of weights

and biases [wl
i j,b

l
j] and [wl

jk,b
l
k] are encoded to form a number of learners, where ’l’ means lth

learner (an individual in the population) as depicted in Fig. 5.3. The length of each learner (i.e

number of subjects) is always decided based on the architecture of ANN [93].

Figure 5.3: Population of the class includes all learners

After building the ANN structure, TLBO algorithm is started executing for generating

and optimizing the weights and biases of BPNN. Basic algorithm control parameters like ini-

tial population size (number of learners), number of design variables (number of subjects), and

number of generations (termination criterion) are initialized. Then the fitness function is de-

fined as the difference between the forecasted and actual wind speeds. Next, random weights

and biases are generated within the coding interval so as to form the learners in the classroom

(population). With the evaluation of the fitness value of each learner in the whole class, teacher

phase will start. In this particular phase, the best learner in the class is decided based on the

fitness value and such a learner is identified as teacher. In this way, the teacher will attempt to

enhance the mean result of the class. Then new accepted positions of the learners are updated

at the end of teacher phase. Then the learner phase should begin with these updated positions

of the learners. During the learner phase, the procedure as touched upon in section 5.3.2 is

employed so that any learner can interact with any other learner for knowledge transfer. Ran-
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domly, a learner can choose whom he is interested to interact with. New positions of learners

are calculated in every subject (for each design variable) and updated in each iteration. At last,

if the termination criterion is satisfied, the algorithm must stop to record the best weights and

biases for ANN, otherwise the algorithm must go to the calculation of the fitness value for new

positions obtained by the learners, which is nothing but the beginning of teacher phase. This

termination criterion may be a number of generations or zero prediction error precision. There-

fore, TLBO algorithm searches total search space to find the best weights and biases values of

ANN for accurate prediction. The organized framework for hybrid modeling of day-ahead wind

speed prediction is depicted in Fig. 5.2.

In this work, wind speed forecasting has been performed using two case studies:

1. Day-ahead prediction using Colorado wind farm data

2. Day-ahead prediction using Texas wind farm data

5.5 Analytical Study

The data utilized for this work is collected from wind farms located in Colorado and

Texas, the U.S.A. as hourly samples of wind time series data. The input data samples are

obtained from national renewable energy laboratory (NREL) as hourly data samples of wind

speed time series [8]. MATLAB R2009b software is utilized for implementation of hybrid

ANN-TLBO model [6]. This past wind speed time-series is the only input for BPNN train-

ing. The proposed model combines BPNN and optimization technique (TLBO). Optimizing

the weights of ANN is simpler in comparison with AWNN the proposed model in chapter 4,

where wavelet parameters also involved. For STWSF only 2160 past wind speed observation

values were selected. The initial 2136 values were utilized as training data samples, and the re-

maining 24 values were utilized for testing. For improving the day-ahead prediction accuracy,

the number of samples is increased in comparison with the proposed model in chapter 4. For

the execution of TLBO, the algorithm control parameters are initialized as follows: the initial

number of learners=30, number of subjects=4, and number of generations=100. The parameters

considered for GA and PSO algorithms are shown in Table 5.1.

5.5.1 Case Study 1: Day-ahead prediction using Colorado wind farm data

The wind speed profile of Colorado wind farm is as shown in Fig. 5.4. Table 5.2 and

Table 5.3 show the comparison between the proposed hybrid ANN-TLBO model and other

reported models in terms of statistical measures such as RMSE (m/s) and MAPE (%) respec-
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Table 5.1: Parameters of GA, and PSO algorithm

GA PSO algorithm
Population size= 30 Number of particles = 30

number of variables = 4 dimention of the problem = 4
max. number of generations = 100 max. number of steps = 100

mutation probability = 0.1 c1=c2 = 2
cross-over probability = 0.8 inertia weight factor (W) = 0.8

Table 5.2: Comparison between reported models and the proposed hybrid ANN-TLBO model
on RMSE for day-ahead prediction for Colorado wind farm

Day Persistence
model [32]

NRM
[32]

ANN
model
[94]

ANN-GA
model
[93]

ANN-
PSO

model
[95]

Proposed
model

1 0.3486 0.3092 0.2821 0.1665 0.0293 0.0164
2 0.0409 0.0243 0.2609 0.065 0.0573 0.0734
3 0.4745 0.4395 0.4260 0.2861 0.0635 0.0483
4 0.3897 0.3680 0.3424 0.2722 0.1398 0.0436
5 0.3933 0.3196 0.2886 0.2313 0.1521 0.0529
6 0.3212 0.2920 0.2346 0.1446 0.1100 0.0524
7 0.1004 0.0742 0.0372 0.0346 0.0459 0.0663
8 0.4116 0.3584 0.3231 0.1916 0.1305 0.0569
9 0.5919 0.5729 0.5458 0.4138 0.1646 0.094

10 0.2206 0.1995 0.1812 0.1413 0.0839 0.0656
11 0.4332 0.4206 0.3999 0.2845 0.1354 0.0287
12 0.1912 0.1486 0.1336 0.0908 0.0336 0.0153
13 0.1542 0.1002 0.0559 0.0470 0.0409 0.0428
14 0.3061 0.2679 0.2584 0.1573 0.1102 0.0403
15 0.1409 0.0976 0.0297 0.0248 0.0182 0.0106
16 0.1608 0.1421 0.1088 0.0998 0.0689 0.0349
17 0.1640 0.1408 0.1340 0.0907 0.0494 0.0298
18 0.0954 0.0804 0.0669 0.0609 0.0460 0.0283
19 0.1911 0.1519 0.1061 0.0519 0.0447 0.0415
20 0.0886 0.0825 0.0788 0.0591 0.0463 0.0284
21 0.1092 0.0959 0.0899 0.0786 0.0380 0.0198
22 0.0083 0.0051 0.0033 0.0047 0.0057 0.0032
23 0.0176 0.0079 0.0057 0.0044 0.0029 0.0011
24 0.2580 0.2348 0.1840 0.1599 0.1246 0.0339

Average
RMSE

0.2338 0.2055 0.1907 0.1317 0.0725 0.0386
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Table 5.3: Comparison between reported models and the proposed hybrid ANN-TLBO model
on MAPE for day-ahead prediction for Colorado wind farm

Day Persistence
model [32]

NRM
[32]

ANN
model
[94]

ANN-GA
model
[93]

ANN-
PSO

model
[95]

Proposed
model

1 35.7043 31.6753 28.8925 17.0545 03.0003 01.6789
2 52.0795 03.7869 40.6455 10.1240 08.9253 11.4372
3 32.6018 46.1415 44.7271 30.0366 06.6691 05.0683
4 24.0931 29.3262 27.2879 21.6921 11.1380 03.4763
5 13.7001 21.9828 19.8461 15.9084 10.4600 03.6359
6 17.6258 23.6232 18.9765 11.6960 08.8955 04.2372
7 18.9344 07.1389 03.5763 03.3308 04.4129 06.3789
8 09.3470 31.2580 28.1797 16.7088 11.3855 04.9655
9 20.0990 39.9277 38.0343 28.8362 11.4685 06.5508

10 01.3182 13.7206 12.4642 09.7169 05.7667 04.5089
11 12.1563 25.4100 24.1559 17.1887 08.1782 01.73502
12 05.3046 09.4560 08.4990 05.7734 02.1361 00.9739
13 23.3980 07.8661 04.3857 03.6887 03.2112 03.3602
14 02.6852 20.4666 19.7399 12.0195 08.4158 03.0813
15 21.0461 09.0224 02.7445 02.2896 01.6856 00.97586
16 11.2911 14.6227 11.1923 10.2743 07.0876 03.5963
17 02.9994 14.0598 13.3772 09.0553 04.9332 02.9770
18 11.5490 08.9510 07.4440 06.7780 05.1233 03.1526
19 20.3266 20.3512 14.2220 06.9524 05.9897 05.5548
20 27.9679 14.1397 13.5097 10.1358 07.9413 04.8614
21 24.4607 12.4233 11.6487 10.1787 04.9175 02.5672
22 01.4266 00.6677 00.4344 00.6141 00.7481 00.4156
23 00.3154 01.0398 00.7485 00.5747 00.3849 00.1443
24 36.9577 42.1051 33.0002 28.6802 22.3467 06.0846

Average
MAPE

17.8078 18.7151 17.8221 12.0544 06.8842 03.8090

Table 5.4: Comparison between reported models and the proposed hybrid ANN-TLBO model
on computational time for day-ahead prediction for Colorado wind farm

Model Computation time
(Sec)

Persistence model [32] -
NRM [32] -

ANN model [94] 3.2600
ANN-GA model [93] 29.4300
ANN-PSO model [95] 31.5700

Proposed model 32.8200
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Figure 5.4: Wind speed profile of Colorado wind farm [8]

tively. For evaluating the model performance, RMSE (m/s) and MAPE (%) are used as model-

evaluation indices. The average RMSE values of Persistence model and NRM are 0.2338, and

0.2055 respectively. These models are restricted to short prediction horizons (3-6 hours). For

triumph over these models and for reduced RMSE values, AI models are utilized. ANN model

gives an RMSE value of 0.1907 and this error value is further reduced by combining the opti-

mization algorithms such as GA, and PSO algorithms with ANN model. The average RMSE

value is reduced from 0.2338 to 0.0386 by employing the hybrid ANN-TLBO model, presented

in Fig. 5.5. The average MAPE value is also minimized from 17.8028 to 3.8090 by utilizing

the proposed hybrid ANN-TLBO model, depicted in Fig. 5.6. When compared with all five

forecasting models, the average RMSE and the average MAPE values acquired by using the

proposed hybrid ANN-TLBO model is known to give the best performance. This hybrid ANN-

TLBO method is also effective in terms of computational burden. For the short iteration times

and small training sets, the CPU time is very efficient in case of the proposed ANN-TLBO

model. As the execution time of TLBO algorithm is added to the individual model’s execution

time, the CPU time of hybrid method moderately increases. With the large scale data set such

as the U.S.A. case study, the computational time for training and testing of ANN-TLBO model

to forecast the day-ahead wind speed is 32.82 seconds. The CPU time is moderately low for the

accuracy level of best RMSE and MAPE values practically (as shown in Table 5.4).

From Table 5.5 it is evident that significant performance improvement is achieved by the

proposed hybrid ANN-TLBO model when compared with other reported models. The percent-

age improvement in RMSE is 79.7063% and in MAPE 78.6276 % is achieved by amalgamating
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Figure 5.5: Comparison of average RMSE values of different forecasting models for Colorado
wind farm

Figure 5.6: Comparison of average MAPE values of different forecasting models for Colorado
wind farm
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ANN model with TLBO algorithm. This is because of optimizing the weights and biases of the

ANN model. That means that hybrid ANN-TLBO model can predict the day-ahead wind speed

accurately in comparison with other five different models such as persistence model, NRM,

ANN, ANN-GA, ANN-PSO models. The actual and forecasted wind speeds utilizing differ-

ent prediction models are shown in Fig. 5.7. Therefore, by using optimization algorithms in

combination with ANN models, one can improve the accuracy of STWSF.

Table 5.5: Comparison of performance improvement of proposed hybrid ANN-TLBO model
over benchmark models for Colorado wind farm

Performance metrics PRMSE(%) PMAPE(%)

Proposed Model Vs Persistence [32] 83.4473 78.6104

Proposed Model Vs NRM [32] 81.1770 79.6474

Proposed Model Vs ANN [94] 79.7063 78.6276

Proposed Model Vs ANN-GA [93] 70.6150 68.4015

Proposed Model Vs ANN-PSO [95] 46.6942 44.6704

Figure 5.7: Comparison of predicted wind speed values using different forecasting models with
actual wind speed for Colorado wind farm

5.5.2 Case Study 2: Day-ahead prediction using Texas wind farm data

The wind speed profile of Texas wind farm is shown in Fig. 5.8. Table 5.6 and Ta-

ble 5.7 report the comparison between the proposed hybrid ANN-TLBO model and other re-

ported models in terms of statistical measures such as RMSE (m/s) and MAPE (%) respectively.

For evaluating the model performance, the RMSE (m/s) and MAPE (%) are used as model-
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Table 5.6: Comparison between reported models and the proposed hybrid ANN-TLBO model
on RMSE for day-ahead prediction for Texas wind farm

Day Persistence
model [32]

NRM
[32]

ANN
model
[94]

ANN-GA
model
[93]

ANN-
PSO

model
[95]

Proposed
model

1 0.0548 0.2615 0.1921 0.1715 0.1242 0.0228
2 0.3649 0.3259 0.2830 0.2549 0.2094 0.0819
3 0.0911 0.0853 0.0785 0.0592 0.0416 0.0097
4 1.1750 0.1209 0.1116 0.1001 0.0912 0.0299
5 0.2814 0.2328 0.2182 0.1879 0.1232 0.0080
6 0.5787 0.5439 0.3021 0.2579 0.2082 0.0244
7 0.3141 0.2893 0.2407 0.2058 0.1520 0.0139
8 0.4624 0.4388 0.3974 0.3284 0.2379 0.0402
9 0.1092 0.0907 0.0831 0.0754 0.0690 0.0227

10 0.3034 0.1428 0.1263 0.1106 0.0779 0.0261
11 0.0249 0.0231 0.0215 0.0185 0.0159 0.0022
12 0.0038 0.0029 0.0024 0.0018 0.0007 0.0005
13 0.1390 0.1041 0.0981 0.0710 0.0610 0.0047
14 0.0433 0.0389 0.0261 0.0226 0.0182 0.0079
15 0.1375 0.1153 0.1074 0.0608 0.0526 0.0203
16 0.0029 0.0023 0.0020 0.0015 0.0009 0.0008
17 0.4925 0.1504 0.1396 0.1037 0.0830 0.0219
18 0.7777 0.3020 0.2102 0.1841 0.1349 0.0271
19 0.1766 0.1708 0.1554 0.1376 0.1199 0.0108
20 0.3983 0.1818 0.1753 0.1439 0.07806 0.0384
21 0.4086 0.2331 0.1837 0.1615 0.1347 0.0228
22 0.1764 0.1592 0.1319 0.0850 0.0609 0.0203
23 0.0182 0.0132 0.0129 0.0107 0.0078 0.0037
24 0.0889 0.0791 0.0583 0.0367 0.0329 0.0113

Average
RMSE

0.2756 0.1712 0.1399 0.1163 0.0890 0.0197
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Table 5.7: Comparison between reported models and the proposed hybrid ANN-TLBO model
on MAPE for day-ahead prediction for Texas wind farm

Day Persistence
model [32]

NRM
[32]

ANN
model
[94]

ANN-GA
model
[93]

ANN-
PSO

model
[95]

Proposed
model

1 03.8589 18.3927 13.5074 12.0604 08.7341 01.6021
2 20.4254 18.2378 15.8399 14.2669 11.7172 04.5889
3 04.8521 04.5434 04.1792 03.1510 02.2141 00.5174
4 19.1526 17.2048 15.8720 14.2400 12.9711 04.2540
5 28.5845 23.6552 22.1662 19.0867 12.5129 00.8212
6 42.6386 34.0747 30.4591 30.1705 11.3284 06.0028
7 43.6390 40.1934 33.4468 28.5945 21.1219 01.9312
8 49.6130 41.4464 34.3890 27.5711 20.4272 15.6292
9 29.7946 24.7453 22.6521 20.5756 18.8220 06.1905

10 45.2798 21.3148 18.8503 16.5078 11.6276 3.8962
11 03.5889 03.3305 03.0985 02.6638 02.2820 00.3201
12 00.5433 00.4134 00.3543 00.2539 00.1093 00.0679
13 25.1756 18.8549 17.7645 12.8631 11.0631 00.8502
14 08.5024 07.6442 05.1376 04.4437 03.5694 01.5521
15 37.0225 31.0436 28.9223 16.3928 14.1617 05.4734
16 00.7976 00.6149 00.5484 00.4099 00.2659 00.2326
17 57.2001 17.4656 16.2115 12.0554 09.6443 02.5509
18 47.4589 18.4317 12.8300 11.2369 08.2312 01.6554
19 12.0822 11.6843 10.6344 09.4113 08.2037 00.7386
20 37.4384 17.0776 16.4789 13.5258 07.3376 03.6054
21 62.3672 35.5828 28.0431 24.6440 20.5627 03.4831
22 36.8509 33.2523 27.5433 17.7667 12.7270 04.2508
23 03.9443 02.8851 02.8054 02.3222 01.6974 00.8065
24 23.9304 21.2940 15.6918 09.8753 08.8757 03.0427

Average
MAPE

26.8642 19.3076 16.5594 13.5037 10.0086 03.0859

Table 5.8: Comparison between reported models and the proposed hybrid ANN-TLBO model
on computational time for day-ahead prediction for Texas wind farm

Model Computation time
(Sec)

Persistence model [32] -
NRM [32] -

ANN model [94] 3.1300
ANN-GA model [93] 30.2200
ANN-PSO model [95] 30.7400

Proposed model 31.1000
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Figure 5.8: Wind speed profile of Texas wind farm [8]

evaluation indices. The average RMSE values of Persistence model and NRM are 0.2756, and

0.1712 respectively. These models are restricted to short prediction horizons (3-6 hours). For

triumph over these models and for reduced RMSE values, AI models are utilized. ANN model

gives an RMSE value of 0.1399 and this error value is further reduced by combining the opti-

mization algorithms such as GA, and PSO algorithms with ANN model. The average RMSE

value is reduced from 0.2756 to 0.0197 by employing the hybrid ANN-TLBO model, presented

in Fig. 5.9. The average MAPE value is also minimized from 26.8642 to 3.0859 by utilizing

the proposed hybrid ANN-TLBO model, depicted in Fig. 5.10. When compared with all five

forecasting models, the average RMSE and the average MAPE values acquired by using the pro-

posed hybrid ANN-TLBO model gives the best performance. The hybrid ANN-TLBO method

is also effective in terms of computational burden. For short iteration times and small training

sets, the CPU time is very efficient in case of ANN-TLBO model. As the execution time of

TLBO algorithm is added to the individual model’s execution time, the CPU time of hybrid

method moderately increases. With large scale data set such as Texas case study, the computa-

tional time for training and testing of ANN-TLBO model to forecast the day-ahead wind speed

is 31.10 seconds. This CPU time is moderately low for accuracy level of best RMSE and MAPE

values practically (as shown in Table 5.8).

From Table 5.9 it is evident that significant improvement in performance is achieved

by the proposed hybrid ANN-TLBO model when compared with other reported models. The

percentage improvement in RMSE is 85.9185 % and in MAPE 81.3647 % is achieved by amal-
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Figure 5.9: Comparison of average RMSE values of different forecasting models for Texas wind
farm

Figure 5.10: Comparison of average MAPE values of different forecasting models for Texas
wind farm
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gamating ANN model with TLBO algorithm. This is because of optimizing the weights and

biases of ANN model. That implies that the hybrid ANN-TLBO model can predict the day-

ahead wind speed accurately in comparison with other five different models such as persistence

model, NRM, ANN, ANN-GA, ANN-PSO models. The actual and forecasted wind speeds

utilizing different prediction models are shown in Fig. 5.11. Therefore, by using optimization

algorithms in combination with ANN models, one can improve the accuracy of STWSF.

Table 5.9: Comparison of performance improvement of proposed hybrid ANN-TLBO model
over benchmark models for Texas wind farm

Performance metrics PRMSE(%) PMAPE(%)

Proposed Model Vs Persistence [32] 92.8520 88.5129

Proposed Model Vs NRM [32] 88.4929 84.0171

Proposed Model Vs ANN [94] 85.9185 81.3647

Proposed Model Vs ANN-GA [93] 83.0610 77.1477

Proposed Model Vs ANN-PSO [95] 77.8652 69.1675

Figure 5.11: Comparison of predicted wind speed values using different forecasting models
with actual wind speed for Texas wind farm

5.6 Summary

Prediction accuracy and computational complexity are considered primary concerns nowa-

days. The increase in forecasting accuracy can be achieved through hybrid approaches which
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combines the strengths of individual approaches and optimization techniques. Therefore, utili-

ties and researchers have developed new approaches and hybrid models by combining the best

features of the above individual forecasting approaches so as to obtain high accuracy and be

effective in decreasing systematic error. The performance level of hybrid models depends on

the features of historical wind data and also on the main objectives of prediction. The scope

for improvement in designing and training these types of forecasting approaches is quite chal-

lenging. Encouraged by the requirement of accurate forecasting techniques, a statistical-based

approach without employing NWP inputs is developed and tested on Colorado wind farm data

successfully. This hybrid model is developed based on the ANN model and TLBO technique to

provide high accuracy, low uncertainty and low computational burden. The traditional BPNN

model is employed for its capability of nonlinear mapping from past complex wind time-series

data to day-ahead wind speed. The TLBO algorithm is utilized for adjusting the weights and

biases of the BPNN so as to auto-tune the best parameters of BPNN. The powerful ability of

global search and exploration of this TLBO algorithm enhances the training of BPNN satisfac-

torily. The forecasting approach accuracy has been evaluated by computing the main statistical

error parameters like RMSE and MAPE. The RMSE (m/s) and MAPE (%) values of the hybrid

ANN-TLBO model are 0.0386 and 3.8090 respectively, in case of Colorado wind farm. The

RMSE (m/s) and MAPE (%) values of the hybrid ANN-TLBO model are 0.0197 and 3.0859

respectively, in case of Texas wind farm. These error values are the best performance measures

obtained in comparison with all individual and hybrid models. Based on the performance evalu-

ation, the hybrid ANN-TLBO model outperformed other benchmark models and that is evident

in forecasting results. In future, wind direction would be included for wind speed prediction

model implementation.
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Chapter 6

Short-term wind speed prediction based on
Ensemble Empirical Mode Decomposition and

Deep Boltzmann Machine method

6.1 Introduction

In the recent past, significant growth in renewable generation and integration with grid

have resulted in diversified experiences for planning and operation of modern electric power

systems. Electrical power system planners and operators have to work with technical issues

of photovoltaic and wind resource integration into the grid to provide clean, reliable, safe, and

affordable energy for people around the globe and also to minimize the use of fossil fuels. Wind

energy is a fairly dependable source of renewable energy for generating electricity in spite of

its highly non-linear and chaotic nature. But prediction of such data demands highly non-linear

temporal features. Further, the methods proposed in chapter 3, chapter 4 and chapter 5 are

possess the following disadvantages: (1) the models are shallow in nature. In other words, the

ANNs possess only one single hidden layer in the network architecture. (2) wind uncertainty

properties extraction is indirect in the approaches. (3) Some of the models need monotonous

hand-engineered features and prior awareness of that particular field. In order to deal with the

demerits of ANN based hybrid models, the hybrid EEMD-DBM approach is implemented and

presented in this chapter 6.

A new robust hybrid deep learning strategy (HDLS) is developed for enhanced prediction

accuracy by preprocessing the raw input. The most effective signal decomposition technique,

Ensemble Empirical Mode Decomposition is used for preprocessing. This technique decom-

poses the input into finite intrinsic mode functions and a residue after which training input

matrices are established. In the next step, each Deep Boltzmann Machine model is constructed

by stacking four Restricted Boltzmann Machines. The training input matrices formed by each

of the extracted intrinsic mode functions and a residue are applied to each Deep Boltzmann

Machine. Then the summation of all the predicted results are evaluated to attain the final result

of time-series. For adequate performance assessment, hybrid deep learning strategy was devel-

oped for analysing wind farms in Telangana and Tamilnadu, India. Finally, the proposed deep



CHAPTER 6. SHORT-TERM WIND SPEED PREDICTION BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND DEEP BOLTZMANN MACHINE METHODSection 6.2

Figure 6.1: The Architecture of Restricted Boltzmann machine [9]

learning strategy is found to give more accurate results in comparison with existing approaches.

6.2 Deep Learning Model

Recently, AI models such as ANNs have been employed on a large-scale for wind speed

forecasting because of their generalized ability of learning from historical data. These ANNs

may not deliver the accuracy that may be needed as most of the ANN architectures are shallow in

nature. To overcome the disadvantages of the ANNs, deep learning architectures are developed.

Deep learning can extract high-level abstractions from non-linear input dataset provided for

learning. The primary objective of deep learning is that monotonous hand-engineered features

can be easily substituted by effective deep learning algorithms in an unsupervised way.

Restricted Boltzmann machine (RBM) is a stochastic generative NN which comprises

a visible layer (v) and a hidden layer (h) as shown in Fig. 6.1. As the name suggests, RBM

is a restricted NN which has no visible-visible and hidden-hidden connections. Wi j is the

weight connectivity matrix between visible and hidden nodes. b and c are the biases of visible

and hidden layers respectively. RBM can learn the probability distribution over the input data

training through unsupervised learning. Hence, RBM is used for real-time applications like

data classification, pattern recognition, feature extraction, etc. The Deep Belief Network (DBN)

belongs to the family of deep neural network (DNN) which consists of multiple layers of hidden

nodes. The nodes in each of these hidden layers are not connected with each other. DBN is

stacked by multiple RBMs and it embraces a layer-wise training algorithm to find a solution to

a problem. DBN is employed for separating different features from input data in unsupervised

training. Fig. 6.2 represents the general structure of DBN. The total training process of DBN is

mainly divided into two parts. a) Pre-training, b) Fine-tuning.

In pre-training, the primary objective is to initialize the network parameters employing

layer-by-layer greedy pre-training technique. Network parameters which need to be initialized
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Figure 6.2: General structure of the Deep Boltzmann Machine with k number of RBMs stacked

are connecting weights between layers and bias values of each layer nodes. The pre-training

algorithm considers each successive pair of layers in DBN as a RBM (Fig. 6.1) whose energy

function value is determined by equation (6.1)

E(v,h | θ) =−
n

∑
i=1

bivi −
m

∑
j=1

c jh j −
n

∑
i=1

m

∑
j=1

viwi jh j (6.1)

Where θ = {wi j,bi,c j} is the parameter of RBM, vi is state of ith visible node, h j is state

of jth hidden node. wi j is connection weight between vi and h j; bi is bias of vi; c j is bias of h j.

From energy function, the joint probability distribution of (v, h) is computed using equa-

tion (6.2)

P(v,h | θ) =
e−E(v,h|θ)

Z(θ)
(6.2)
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Where Z(θ) is partition function or the normalized factor.

But only the visible variables (v) are actually observed, therefore, the marginal distri-

bution (also known as likelihood function) of the joint probability distribution P(v | θ) can be

calculated from equation (6.3)

P(v | θ) = ∑
h

e−E(v,h|θ)

Z(θ)
(6.3)

The RBM parameters are efficiently trained and updated by minimizing the negative data

log-likelihood function on the training dataset, which is given by equation (6.4)

min L(θ ,D) =− ∑
v∈D

logP(v,θ) (6.4)

Where θ = {wi j,bi,c j} is the parameter of RBM and D is the training dataset.

The gradients of the negative log-likelihood over the training samples are given by equa-

tions (6.5),(6.6), and (6.7)

∂ logP(v | θ)
∂ wi j

= ⟨vih j⟩data −⟨vih j⟩model (6.5)

∂ logP(v | θ)
∂ bi

= ⟨vi⟩data −⟨vi⟩model (6.6)

∂ logP(v | θ)
∂ c j

= ⟨h j⟩data −⟨h j⟩model (6.7)

Where ⟨ · ⟩data is the expectation over the dataset, and ⟨ · ⟩model is the expected value determined

in the model.

The main objective of RBM learning algorithm is to compute the value of the parameter

θ that decreases the energy function. For solving the problem of long training time, an efficient

and fast learning approach for training the RBM parameters is employed. It is called contrastive

divergence (CD) algorithm. The CD is an unsupervised learning algorithm that uses an iterative

process called Gibbs sampling (Fig. 6.3). The principal idea of CD algorithm is initializing

the visible layer with the training data and then executing the Gibbs sampling. For training

multiple layers, the first layer is trained and freezes weights initially. Then it employs the

conditional distribution of output as input to adjacent layer and this process is carried on to

train the subsequent layers in the network.

The parameters of RBM are updated during CD learning process as below:

∆W = η
(

v(0) ·h(0)−v(1) ·h(1)
)

(6.8)

79



CHAPTER 6. SHORT-TERM WIND SPEED PREDICTION BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND DEEP BOLTZMANN MACHINE METHODSection 6.3

Figure 6.3: Gibbs sampling on CD algorithm [10]

∆b = η
(

v(0)−v(1)
)

(6.9)

∆c = η
(

h(0)−h(1)
)

(6.10)

Where η is the learning rate. By employing a fast learning CD algorithm, the updated values of

( w, b, c ) and remaining parameters are obtained swiftly. Therefore, the pre-training of RBM

network is completed with this.

After completion of the pre-training phase, all the parameters are well-initialized for

each RBM network so as to form the initial framework of DBN. Then the next phase is fine-

tuning the DBN for optimizing the parameters furthermore to achieve better performance. The

back-propagation (BP) algorithm is employed to fine-tune the network parameters. The fine-

tuning is a supervised learning approach and this process utilizes labeled data for training the

DBN. Eventually, this fine-tuning phase drives the network to attain the global optima.

6.3 Hybrid deep learning strategy for wind speed prediction

The hybrid deep learning strategy (HDLS) is a combination of EEMD method and Deep

Boltzmann Machine (DBM). DBM is formed by combining DBN and RBM. In the proposed

model of HDLS, the wind speed time-series data is decomposed into finite IMFs and one residue

by employing EEMD method. The DBM is constructed with 6 hidden layers using four RBMs.

Each IMF and residue constitutes the training matrices for each DBM. Then each DBM is
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Figure 6.4: Acquired IMFs and a residue of EEMD technique for one month window [3]

trained by a training matrix corresponding to each IMF and residue. Final forecasting of wind

speed is attained by summing all sub-series forecasts from each DBM. The proposed HDLS

can effectively forecast the wind speed and is mainly inspired by two features. a) RBM and

DBN which are used for their ability to capture the hidden characteristics of wind input data

and for reducing the dimensionality of the data. b) RBM is utilized for its good classification

accuracy capabilities to infer part of its knowledge from incomplete training data. Due to the

above advantages of HDLS, this model can be employed for prediction of other datasets but the

structure of DBM may vary based on the type of the problem. The decomposed wind speed

time-series signal is shown in Fig. 6.4. The general framework of the HDLS for time-series

prediction is presented in Fig. 6.5.

The detailed step-by-step strategy is presented below:

Step 1 De-noise: EEMD technique is employed for decomposing the historical wind speed into

several IMFs and a residue.

Step 2 Establish training input: From each IMF and residue, establish one training matrix as the

input for the DBM.

Step 3 Build model: Construct each DBM model stacking four RBMs for time-series prediction.

Step 4 Then each DBM is trained to attain the forecast sub-series result for each of the applied

IMF and residue.
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Step 5 Finally, evaluate the summation of all the predicted results to get the final result of time-

series.

In this particular work, the proposed method has been tested using two major case stud-

ies:

1. One-step ahead prediction using Molala gutta, Telangana wind farm data with a sampling

period of 10 minutes

2. One-step ahead prediction using Kalimandayam, Tamilnadu wind farm data which are

based on hourly samples

6.4 Analytical study

The original historical data is provided by wind farm located in south India and is used

for training and testing HDLS model. The training, validation and testing dataset sizes required

to predict the wind speed are always different for different models. But the same testing dataset

is utilized for the purpose of uniform comparison.

The four RBMs with the size of [50 50] are stacked for implementing DBM model. The

HDLS model structure used for wind speed prediction is 10-50-50-10-1. The number of input

nodes are 10, the number of hidden nodes in RBM structure are [50 50], the inference layer

nodes are 10, and the output layer is having only one node for point forecasting. The best and

optimal structure of DBM is decided based on the problem; in other words, different problems

need distinct optimal structures of DBM and determining the structure of the network is an

intellectual challenge for all researchers. Deep learning toolbox is employed for developing

DBM model. The learning rate of gradient descent technique in the pre-training and back

propagation (BP) technique in fine-tuning is assigned as 0.001. The number of epochs for the

BP algorithm is set as 500.

Performance evaluation of the proposed HDLS model is determined by employing two

statistical error indices, such as the mean absolute percentage error (MAPE) and root mean

square error (RMSE). The accuracy of HDLS forecasting model is investigated in pair-wise

comparison with various benchmark models including persistence method (PR), back propaga-

tion NN (BPNN), ENN, wavelet NN (WNN), ensemble empirical mode decomposition tech-

nique based BPNN (EEMD-BPNN), EEMD-ENN, EEMD-WNN, support vector machines for

regression (SVR), DAE, SAE, and deep boltzmann machine (DBM). The implementation and

analytical study of all the above approaches are performed using MATLAB R2012b software [6]

on an i7-3770 CPU 3.40 GHz, 8GB RAM computer.
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Figure 6.5: General framework of hybrid deep learning strategy (HDLS)
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The HDLS model is a combination of EEMD technique and DBM network, which is

employed for wind speed prediction. EEMD technique is employed for decomposing the his-

torical wind speed into several IMFs and a residue. One input training matrix for each DBM is

established using each IMF and residue sub-series signals. After establishing the training input,

four RBMs are stacked to form the DBM model. Following that, the hybrid HDLS model is

built using DBMs for prediction. Then each DBM is trained to obtain forecast sub-series result

for each IMF and residue. Finally, the summation of all the predicted results is calculated to

attain the final result of time-series. The flowchart of HDLS is shown in Fig. 6.6.

The wind speed time-series prediction is significant for economic and reliable operation

of wind power plants. Although there are numerous approaches available for forecasting as

reported in literature, there is still a tremendous need for a model that gives high prediction

accuracy, and low computational burden. Further, the validation of the implemented model is

a significant task and it is attained by performance validation (such as MAPE, RMSE). Adopt-

ing distinct criteria for forecasting approach may lead to distinct results every time and this is

avoided through validation of the model.

6.4.1 Case study 1

6.4.1.1 Molala Gutta, Telangana wind farm data with sampling period of 10 minutes

From the 10 minute sampled original historical data, which is collected from Molala gutta

(Telangana) flat area wind farm located in southern India, the cycles and hidden patterns are

identified. The statistical details of data utilized for this work are presented in Table 6.1.

Table 6.1: Statistical data of original wind speed for Telangana wind farm

Wind
input

Minimum
(m/s)

Maximum
(m/s)

Mean
(m/s)

Median
(m/s)

Standard
Deviation

(m/s)
x(t) 0.8400 15.8212 5.8899 5.7905 2.4309

One-step ahead forecasting error values attained from Persistence method, BPNN, ENN,

WNN, SVR, DAE, SAE, DBM, and proposed hybrid EEMD-DBM model are presented in Ta-

ble 6.2. As shown in Table 6.2, the statistical indices using the proposed HDLS have better

performance values when compared with other individual benchmark approaches. The predic-

tion results employing benchmark individual models are depicted in Figs. 6.7 and 6.8. It is

evident that the prediction results using hybrid EEMD-DBM model and the actual wind speed

time-series values nearly coincide with each other. The RMSE, MAE indices obtained by the
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Figure 6.6: Schematic flow chart of hybrid deep learning strategy
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Table 6.2: Comparison of statistical indices, computation time between individual models and
proposed model for Telangana wind farm

Performance
Metrics

RMSE
(m/s)

MAE
(m/s)

MAPE
(%)

Time (s)

Persistence
model [32]

00.6863 0.5269 11.258 -

BPNN
model [63]

00.6624 00.5047 10.8329 02.6594

ENN
model [42]

00.6566 00.5069 10.5600 03.4428

WNN
model [96]

00.7018 00.5403 11.5273 03.8377

SVR
model [97]

00.6232 00.4660 10.0251 03.1561

DAE
model [53]

00.5150 00.3790 08.1123 02.9643

SAE
model [98]

00.4782 00.3451 07.3744 03.0005

DBM
model [9]

00.3018 00.2044 04.3851 03.0549

Proposed
model

00.1238 00.0466 00.9941 31.6400

proposed model are 0.1238 and 0.0466 respectively. Hence, these values show the improve-

ment in performance by at least 58% employing the proposed hybrid model. Also, the MAPE

index of proposed model is 0.9941 and it shows the improvisation in performance by at least

70% using the proposed model (shown in Table 6.3). Furthermore, the better performance of

EEMD-DBM approach is presented through bar charts in Fig.6.9, and Fig. 6.10.

Wind speed time-series prediction is a significant task for reliable and economic oper-

ation of power systems. Improved models such as a combination of different prediction ap-

proaches employ the strengths and reduce the weaknesses of each approach. The prediction

results using developed hybrid approaches are shown in Fig. 6.11. The statistical indices val-

ues attained from EEMD based models are tabulated in Table 6.4. The values of statistical

indices such as RMSE and MAE using hybrid EEMD-BPNN approach are 0.4682 and 0.3407

respectively. The RMSE and MAE indices of individual BPNN model are 0.6624 and 0.5047

respectively. Accurate noise-assisted data decomposing technique of EEMD is combined with

traditional BPNN model to enhance the prediction accuracy as shown in Fig. 6.11. The MAPE

value of BPNN is 10.8329 and MAPE of EEMD-BPNN model is 7.255, which is enhanced by
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Figure 6.7: Comparison of Prediction results between four benchmark individual models and
proposed model for Telangana wind farm

Table 6.3: Performance improvements by proposed model for Telangana wind farm

Performance metrics PRMSE (%) PMAE (%) PMAPE (%)
Hybrid EEMD-DBM Vs Persistence [32] 81.9612 91.1558 91.1698
Hybrid EEMD-DBM Vs BPNN [63] 81.3103 90.7667 90.8233
Hybrid EEMD-DBM Vs ENN [42] 81.1452 90.8068 90.5861
Hybrid EEMD-DBM Vs WNN [96] 82.3596 91.3752 91.3761
Hybrid EEMD-DBM Vs SVR [97] 80.6162 90.0000 90.0839
Hybrid EEMD-DBM Vs DAE [53] 75.9611 87.7044 87.7457
Hybrid EEMD-DBM Vs SAE [98] 74.1112 86.4967 86.5195
Hybrid EEMD-DBM Vs DBM [9] 58.9794 77.2015 77.3300

removing the noise from the time-series data by utilizing the most efficient signal decomposition

technique EEMD. These statistical indices are further improved by utilizing the features of deep

learning technique. The RMSE of the proposed EEMD-DBM approach is 0.1238. From Ta-

ble 6.5, the RMSE index value is improved by the proposed approach to 73.5558%, 67.6170%,

and 71.8059% respectively. Similarly, better MAE value is obtained by using the developed

EEMD-DBM approach, which is 0.0466. Also, MAE is enhanced by 86.3222%, 84.0027%,

and 86.2779% respectively. In addition, the least MAPE value attained through the developed

hybrid EEMD-DBM model is 0.9941. This MAPE index value is promoted by 86.2977%,

83.4076%, and 85.9328% respectively. The CPU time needed for all individual models is fewer

than 4 seconds as shown in Table 6.2 but the CPU time of the proposed hybrid EEMD-DBM

model is a little longer compared with individual models. Despite high computational time,

the best and most accurate statistical performance values are obtained using the proposed hy-

brid EEMD-DBM model. Furthermore, the better performance of the proposed EEMD-DBM
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Figure 6.8: Comparison of Prediction results between another four benchmark individual mod-
els and proposed model for Telangana wind farm

Figure 6.9: Comparison of RMSE and MAE measures between distinct individual forecasting
models and proposed model for Telangana wind farm
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Figure 6.10: Comparison of MAPE between distinct individual forecasting models and pro-
posed model for Telangana wind farm

Table 6.4: Comparison of statistical indices performance between hybrid models and proposed
model for Telangana wind farm

Performance
Metrics

EEMD-BPNN
Model [80]

EEMD-ENN
Model [42]

EEMD-WNN
Model [96]

Proposed
model

RMSE (m/s) 00.4682 00.3823 00.4391 00.1238
MAE (m/s) 00.3407 00.2913 00.3396 00.0466
MAPE (%) 07.255 05.9913 07.0668 00.9941

Time (s) 31.0500 31.4200 32.7300 31.6400

model is depicted as bar charts in Fig. 6.12, and Fig. 6.13. Therefore, prediction results and

performance comparison criteria show that the proposed hybrid EEMD-DBM model gives best

point prediction capability in overall individual and EEMD based models. These prediction

results are attained because deep learning is capable of extracting effectively high non-linearity

and complexity presented in actual wind speed, but this is not possible with shallow NN models

such as BPNN, ENN, WNN, and EEMD based NN models.

Table 6.5: Performance improvements by proposed model for Telangana wind farm

Performance
metrics

Hybrid EEMD-DBM
Vs EEMD-BPNN [80]

Hybrid EEMD-DBM
Vs EEMD-ENN [42]

Hybrid EEMD-DBM
Vs EEMD-WNN [96]

PRMSE (%) 73.5558 67.6170 71.8059
PMAE (%) 86.3222 84.0027 86.2779
PMAPE (%) 86.2977 83.4076 85.9328

89



CHAPTER 6. SHORT-TERM WIND SPEED PREDICTION BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND DEEP BOLTZMANN MACHINE METHODSection 6.4

Figure 6.11: Comparison of One-step ahead wind speed time-series prediction results between
hybrid models and proposed model for Telangana wind farm

Figure 6.12: Comparison of RMSE and MAE measures between hybrid models and proposed
model for Telangana wind farm
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Figure 6.13: Comparison of MAPE between hybrid model and proposed model for Telangana
wind farm

6.4.2 Case study 2

6.4.2.1 Kalimandayam, Tamilnadu wind farm data which are hourly samples

From the hourly sampled original historical data, which is collected from Kalimandayam (Tamil-

nadu) flat area wind farm located in southern India, the cycles and hidden patterns are identified.

The statistical details of data utilized for this work are presented in Table 6.6.

Table 6.6: Statistical data of original wind speed for Tamilnadu wind farm

Wind
input

Minimum
(m/s)

Maximum
(m/s)

Mean
(m/s)

Median
(m/s)

Standard
Deviation

(m/s)
x(t) 0.5486 13.3698 5.7420 5.3142 2.8891

The decomposed Tamilnadu wind speed time-series data signal is shown in Fig. 6.14.

One-step ahead forecasting error values attained from Persistence method, BPNN, ENN, WNN,

SVR, DAE, SAE, DBM, and hybrid EEMD-DBM model for Tamilnadu wind farm data are pre-

sented in Table 6.7. As shown in Table 9, the statistical indices using the proposed HDLS have

better performance values when compared to other individual benchmark approaches. The pre-

diction results employing benchmark individual models are depicted in Figs. 6.15 and 6.16. It

is evident that prediction results using hybrid EEMD-DBM model and the actual wind speed

time-series values nearly coincide with each other. The RMSE, MAE indices obtained by pro-

91



CHAPTER 6. SHORT-TERM WIND SPEED PREDICTION BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND DEEP BOLTZMANN MACHINE METHODSection 6.4

Figure 6.14: Comparison of IMFs and a residue using EEMD technique for Tamilnadu wind
farm data [3]

posed model are 0.2064 and 0.1298 respectively. Hence, these values show an improvement

in performance by at least 47% on employing the proposed hybrid model. Also, the MAPE

index of the proposed model is 1.7298 and it shows the improvisation in performance by at

least 54% using the proposed model (shown in Table 6.8). Furthermore, the better performance

of EEMD-DBM approach which has been implemented is presented through bar charts in Fig.

6.17, and Fig. 6.18.

Figure 6.15: Comparison of Prediction results between four benchmark individual models and
proposed model for Tamilnadu wind farm

The prediction results using developed hybrid approaches are shown in Fig. 6.19. The

statistical indices values attained from EEMD based models are tabulated in Table 6.9. The

values of statistical indices like RMSE and MAE are improved by utilizing the features of
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Table 6.7: Comparison of statistical indices, computation time between individual models and
proposed model for Tamilnadu wind farm

Performance
Metrics

RMSE
(m/s)

MAE
(m/s)

MAPE
(%)

Time (s)

Persistence
model [32]

01.1748 00.9409 12.5446 -

BPNN
model [63]

01.2194 00.9713 12.6646 02.4862

ENN
model [42]

01.2609 00.9977 12.7242 03.0197

WNN
model [96]

01.2001 00.9368 12.2999 03.1559

SVR
model [97]

01.1606 00.9133 11.9165 02.9434

DAE
model [53]

01.4142 01.1200 13.8863 02.7231

SAE
model [98]

01.2873 00.9880 13.1402 02.9672

DBM
model [9]

00.3906 00.2890 03.8234 02.9553

Proposed
model

00.2064 00.1298 01.7298 29.4728

Figure 6.16: Comparison of Prediction results between another four benchmark individual mod-
els and proposed model for Tamilnadu wind farm
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Table 6.8: Performance improvements by proposed model for Tamilnadu wind farm

Performance metrics PRMSE (%) PMAE (%) PMAPE (%)
Hybrid EEMD-DBM Vs Persistence [32] 82.4310 86.2046 86.2107
Hybrid EEMD-DBM Vs BPNN [63] 83.0736 86.6364 86.3415
Hybrid EEMD-DBM Vs ENN [42] 83.6307 86.9900 86.3715
Hybrid EEMD-DBM Vs WNN [96] 82.8014 86.1443 85.9365
Hybrid EEMD-DBM Vs SVR [97] 82.2160 85.7878 85.4840
Hybrid EEMD-DBM Vs DAE [53] 85.4052 88.4107 87.5431
Hybrid EEMD-DBM Vs SAE [98] 83.9664 86.8623 86.8358
Hybrid EEMD-DBM Vs DBM [9] 47.1582 55.0865 54.7575

Figure 6.17: Comparison of RMSE and MAE measures between distinct individual forecasting
models and proposed model for Tamilnadu wind farm

Figure 6.18: Comparison of MAPE between distinct individual forecasting models and pro-
posed model for Tamilnadu wind farm
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Figure 6.19: Comparison of One-step ahead wind speed time-series prediction results between
hybrid models and proposed model for Tamilnadu wind farm

Table 6.9: Comparison of statistical indices performance between hybrid models and proposed
model for Tamilnadu wind farm

Performance
Metrics

EEMD-BPNN
Model [80]

EEMD-ENN
Model [42]

EEMD-WNN
Model [96]

Proposed
model

RMSE (m/s) 01.3162 01.1769 01.1814 00.2064
MAE (m/s) 01.0402 00.9426 00.9342 00.1298
MAPE (%) 13.3640 12.2124 12.1727 01.7298

Time (s) 29.4557 29.0592 29.1166 29.2351

Table 6.10: Performance improvements by proposed model for Tamilnadu wind farm

Performance
metrics

Hybrid EEMD-DBM
Vs EEMD-BPNN [80]

Hybrid EEMD-DBM
Vs EEMD-ENN [42]

Hybrid EEMD-AWNN
Vs EEMD-WNN [96]

PRMSE (%) 84.3185 82.4624 82.5292
PMAE (%) 87.5216 86.2296 86.1058
PMAPE (%) 87.0563 85.8357 85.7895

Figure 6.20: Comparison of RMSE and MAE measures between hybrid models and proposed
model for Tamilnadu wind farm
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Figure 6.21: Comparison of MAPE between hybrid model and proposed model for Tamilnadu
wind farm

deep learning technique. The RMSE of developed EEMD-DBM approach is 0.2064. From

Table 6.10, the RMSE index value is improved by the proposed approach by at least 82 %.

Similarly, better MAE value is obtained by using the proposed EEMD-DBM approach, which

is 0.1298. Also, MAE is enhanced by at least 86 %. In addition, the least MAPE value attained

through the hybrid EEMD-DBM model is 1.7298. The MAPE index value is promoted by 85

%. The CPU time needed for all individual models is fewer than 4 seconds as shown in Ta-

ble 6.7 but the CPU time of the proposed hybrid EEMD-DBM model is a little longer compared

with individual models. Despite high computational time, the best and most accurate statistical

performance values are obtained using the proposed hybrid EEMD-DBM model. Furthermore,

better performance of the proposed EEMD-DBM model is depicted as bar charts in Fig. 6.20,

and Fig. 6.21. Therefore, prediction results and performance comparison criteria show that the

proposed hybrid EEMD-DBM model gives best point prediction capability in terms of overall

individual and EEMD based models. These prediction results are attained because deep learn-

ing is capable of extracting information effectively from data that has high non-linearity and

complexity with reference to actual wind speed, which is not possible with shallow NN models

such as BPNN, ENN, WNN, and EEMD based NN models.

6.5 Summary

Modern electric power systems have been utilizing wind energy forecasts to predict chal-

lenging load operating problems, for reducing the risk and increasing the efficiency. Recently,

deep learning techniques have emerged as powerful tools for advanced prediction. The neces-
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sity for accurate prediction models motivated the researchers to implement a statistical-based

model without employing NWP inputs. In this chapter, a hybrid deep learning strategy (HDLS)

model based on EEMD technique and DBM network was developed. The effective de-noising

technique EEMD was employed for input preprocessing and which enhanced prediction accu-

racy significantly by removing noisy data. DBM network was provided with better extraction

of highly non-linear and complex features of data from the actual input time-series dataset for

further enhanced wind speed prediction. This hybrid model was reliably validated using Indian

wind farms (Telangana and Tamilnadu) data. The RMSE, MAE, and MAPE indices attained

using hybrid EEMD-DBM approach were 0.1238, 0.0466, and 0.9941 respectively for Telan-

gana wind farm. The hybrid EEMD-DBM model enhanced on the whole RMSE index value

by 58.9794% in comparison with the DBM model. The proposed hybrid EEMD-DBM method

gives 0.2064, 0.1298, and 1.7298 as RMSE, MAE, and MAPE index values respectively for

Tamilnadu wind farm. Therefore, the proposed model delivers better performance in compar-

ison with all eleven models reported in the literature. The future job of researchers would

be to utilize wind direction with input time-series data for optimizing the proposed approach.

The mode mixing problem of decomposition technique should be executed more productively,

which requires profound study. The number of hidden layers in the network can be increased

for better extraction of time-series features.
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Conclusions

7.1 General

The prominence of wind energy generation and integration with the Grid has encouraged

reliable and most accurate forecasting approaches. Virtual Power Plants (VPP) and Smart grid

concepts have raised the worth of accurate forecasts. Encouraged by this requirement of accu-

rate forecasting techniques, in this thesis, the statistical approaches without employing NWP

inputs were developed and tested with real wind farm data successfully.

7.1.1 Summary of Important findings

The following conclusions have been arrived at from the current research:

In the thesis, hybrid wind speed prediction approach which combines EEMD technique

and AWNN model was implemented to deliver high accuracy, and low uncertainty. The most ef-

ficient signal decomposition algorithm EEMD was utilized for preprocessing the original wind

speed data for enhancing the forecasting accuracy by eliminating noisy data. The AWNN model

delivered faster convergence and improved forecasting accuracy by using adaptive learning rate.

The proposed hybrid model was investigated with regard to wind farms in southern India. The

RMSE, MAE and MAPE values of the hybrid EEMD-AWNN model performed best in compar-

ison with all individual and hybrid models. This implemented model also reduced the MAPE

value by 43.5212 % when compared to individual WNN model for Tamilnadu wind farm . This

hybrid model also reduced MAPE value by 29.1831 % when compared to individual WNN

model for Telangana wind farm. Hence, the performance evaluation among the proposed model

and ten other models (individual and hybrid models) have shown that the hybrid EEMD-AWNN

approach outperformed all other approaches in terms of performance measures such as RMSE,

MAE, and MAPE. This prediction method would be applied to a large power system for better

forecasts in terms of robustness and accuracy.

The day ahead wind speed prediction approach was modelled by utilizing multi resolu-

tion analysis based adaptive wavelet neural network model. Wind series was decomposed into

detailed and smooth signals employing LA-8 wavelet based on the MRA. Each decomposed sig-
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nal was applied to neural network model to predict the future wind speed value. The outcomes

were analysed using other approaches for the performance evaluation of this approach. With

the results, MRA based AWNN model outperformed other benchmark models. The proposed

method can be extended for energy pricing and economic scheduling of the energy.

The hybrid ANN-TLBO approach was implemented and examined successfully with

real world wind speed datasets provided by Colorado wind farm, and Texas wind farm. This

approach was developed based on the ANN model and TLBO technique to provide high ac-

curacy, and low uncertainty. The traditional BPNN model was employed for its capability of

nonlinear mapping from past complex wind time-series data to day-ahead wind speed. TLBO

algorithm was utilized for adjusting the weights and biases of BPNN so as to auto-tune the best

parameters of BPNN. The powerful ability of global search and exploration of TLBO algorithm

enhances the training of BPNN satisfactorily. Based on the performance evaluation, the hybrid

ANN-TLBO model has outperformed other benchmark models and that is evident in the results

that had been forecast. In future, wind direction would be included for wind speed prediction

model implementation.

The hybrid deep learning strategy (HDLS) based on EEMD technique and DBM network

was developed. The effective de-noising technique EEMD was employed for input preprocess-

ing and this enhanced prediction accuracy significantly by removing noisy data. DBM network

was provided with tools for better extraction of highly non-linear and complex features of data

from the actual input time-series dataset for further enhanced wind speed prediction. This hy-

brid model was reliably validated using Indian wind farms data. The best values of RMSE,

MAE, and MAPE indices were attained using hybrid EEMD-DBM approach. The hybrid

EEMD-DBM model enhanced on the whole RMSE index value by 58.9794% in comparison

with DBM model for Telangana wind farm data. The hybrid EEMD-DBM model enhanced on

the whole RMSE index value by 47.1582% in comparison with the DBM model for Tamilnadu

wind farm data. Therefore, the proposed model delivers better performance in comparison with

all eleven models reported in the literature. The future job of researchers would be to utilize

wind direction with input time-series data for optimizing the proposed approach. The mode

mixing problem of decomposition technique should be executed more productively, which re-

quires profound study. The number of hidden layers in the network can be increased for better

extraction of time-series features.

The proposed methods are equally suitable for short-term and day-ahead forecasting

of wind speed time-series data. But the structure of the neural network for short-term wind

speed prediction is different from the structure of the neural network for day-ahead wind speed

forecasting. These hybrid approaches can deliver high accuracy, and low uncertainty. The
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most efficient signal decomposition algorithms were utilized for preprocessing the original wind

speed data and enhance the forecasting accuracy by eliminating noisy data. The neural network

models can deliver faster convergence and improved forecasting accuracy by using adaptive

learning rate. The proposed hybrid models were investigated with regard to wind farms of

southern India and the U.S.A. The RMSE, MAE and MAPE values of the hybrid models were

best performance measures in comparison with all individual and hybrid models. Hence, the

performance evaluation among the proposed models and all other existing models (individual

and hybrid models) have shown that the hybrid approaches outperformed all other approaches

in terms of performance measures such as RMSE, MAE, and MAPE.

7.2 Suggestions For Future Research

As an extension to the current research work, there is scope for exploring the area further

for a prospective researcher:

The prediction methods designed for the purpose would be applied to larger power sys-

tem for better forecasts in terms of robustness and accuracy. These hybrid approaches can be

applied in other parts of the world as generalized statistical models in forecasting aspects by

incorporating past meteorological and technical characteristics, including wind power, wind

direction, temperature, pressure, and air humidity for enhanced accuracy. The future job of

researchers would be to utilize wind direction with input time-series data for optimizing the de-

veloped approach. The mode mixing problem of decomposition technique should be executed

more productively, which requires profound study. The number of hidden layers in the network

can be increased for better extraction of time-series features. The implementation of the pro-

posed hybrid models for very short-term and long term forecasting cases would be investigated.

And the proposed hybrid methods can be applied in many different fields, such as power load

forecasting, product sales prediction, and traffic flow forecasting.
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