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ABSTRACT

Online Social Networks (OSNs) represent a platform where people (users) share links,

news, opinions, promote products and services. Moreover, the users trust OSNs which

leads to establish new social relationships and share the information among other OSN

users. The information sharing feature is also used by social bots (or spammers) in order to

spread fake information. Social bots are automated software programs that control social

network user accounts with malicious activities, such as creating multiple fake accounts,

spreading spam, and manipulating online ratings. Moreover, social bots also post shortened

malicious URLs in the tweet in order to redirect the requests of OSN participants to some

malicious web page. Therefore, the detection of social bots in an online social network is

an important task.

The thesis focuses on social bot detection and trust models for distinguishing legitimate

participants among social bots in OSNs. The challenging issues of social bot detection

have been addressed by considering trust model with features, such as tweet-content,

user profile, URL, graph and behavioral similarity based features. In this thesis, the

proposed methods have detected malicious social bots in order to provide trustworthy

information in online social networks. Firstly, a Learning Automata-based Malicious

Social Bot Detection (LA-MSBD) algorithm has been presented by integrating a trust

model with URL-based features for identifying trustworthy participants (users) in Twitter

network. The proposed method computes direct and indirect trust by considering Bayesian

learning and Dempster-Shafer theory, respectively. Secondly, a deep Q-network based

architecture has been designed by integrating single agent deep Q-learning model with

social attributes for social bot detection. A multi-agent deep Q-learning model based on

particle swarm optimization (PSO) method is also proposed for detecting social spam

bots more accurately. Further, a top-k influential (user) algorithm has been proposed

to identify the most influential users (which are influenced by the social bots) based on

the tweets and the users’ interactions. Thirdly, a Deep autoencoder-based Social Botnet

Community Detection (DA-SBCD) algorithm has been proposed to detect social botnet

communities of social bots with higher malicious behavioral similarity. Further, an

iii



Influential Community Detection algorithm has been proposed and this helps in reducing

the spread of spam-content through influential communities in Twitter network. Finally,

a Learning Automata based Recommended Trust Path Selection (LA-RTPS) algorithm

has been proposed in order to evaluate trustworthy paths in online social networks for

trusted-user recommendations. The experimentation using real time datasets illustrates the

efficacy of the proposed algorithms.

Keywords: Online social networks (like Twitter), social bots, deep Q-learning, Q-value,

particle swarm optimization, trust, learning automata, behavioral similarity, social botnet

community detection, deep autoencoder.
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Chapter 1

Introduction

Online social networks (OSNs) attract millions of users to share variety of information

(through Internet) related to social activities, e-marketing, jobs, politics, sports and other

news (like natural disaster notifications) [1]. Online social networking sites contain huge

amount of data (such as data from online reviews, online ratings and discussions forums)

which are generated by users (from various communities). The data can be accessed seam-

lessly due to proliferation of online social network technologies. This in turn provides an

additional space (comfort) for an attacker to steal user’s personal information and to per-

form malicious activities (generating fake identities, manipulating online ratings, spreading

social spam content and performing phishing attacks) in online social networks [1]. More-

over, such huge amount of data may also contain untrustworthy and fake information [2].

However, finding untrustworthy information manually is a difficult task. Building trust of

the participants among online social network users may help to provide good recommenda-

tions, credible opinions and online ratings (or reviews) [3]. Therefore, trust should be taken

into consideration to avoid untrustworthy information and malicious comments posted in

OSNs.

Social bot is an automated computer program that is created to perform (either ma-

licious or non-malicious) activities in Twitter network. Like traditional bots (in Internet

chat), social bots are more common in Twitter [4]. Social bots are created with the support

of open APIs (like Twitter API) [5]. Moreover, social bots are mostly used for posting spam

tweets, retweets and sharing public opinion in Twitter. The recent studies have identified

1



CHAPTER 1. INTRODUCTION Section 1.0

different types of social bots, such as legitimate bots, influence bots and malicious bots

[6]. Legitimate bots are used to promote products or services, natural disaster notifications

and blog updates [7]. Influence bots are involved to affect users’ behavior by manipulat-

ing online reviews and ratings [2]. Malicious (or spam) bots are mostly used to spread

spam content, post phishing URLs and generate fake accounts. However, malicious social

bots can also manipulate natural disaster notifications and quality of product by posting

fake information or malicious comments [8]. A social botnet is a group of bots which are

controlled by a botmaster.
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Figure 1.1: An online social network with social botnet and legitimate communities

Fig. 1.1 shows an online social network architecture with social botnet and legitimate

communities, where each node represents either a social bot or legitimate user and each

directed edge represents a tweeting (or re-tweeting) relationship between two users (or

participants). As shown in Fig. 1.1, the botmaster A establishes a strong social relationship

with other social bots B, C, D and E, and also with other legitimate users I, K, M and L

in order to reduce the probability of identification [9]. Moreover, the botmaster creates

2



CHAPTER 1. INTRODUCTION Section 1.0

malicious tweets (with fake information or malicious URL in the tweet) and the social bots

re-tweet them. Additionally, the social bots can spread malicious tweets to other legitimate

users. Further, social bots may post shortened malicious URLs in the tweet. When a user

clicks on a shortened malicious URL, the user’s request will be redirected to intermediate

URLs associated with malicious servers, which in turn redirect the user to malicious web

pages. Then the legitimate user is exposed to an attacker. This leads to online social

networks suffering from several vulnerabilities (like phishing attack).

The traditional botnet detection approaches mainly focus on peer-to-peer networks and

botnet-based command-and-control protocols [10]. Moreover, these type of approaches fail

to detect social bots. Social bots are more common in Twitter in order to obtain command-

and-control information, such as follower ratio, tweets and URLs. Traditional Twitter bots

can easily be detected as they view the profile page of a user frequently in order to obtain

command-and-control information [11]. However, bots interact among themself by con-

sidering the private message passing features provided by online social networks in order

to establish the relationship among social bots (which are controlled by a botmaster) [12].

Most of the existing works consider only user profile-based features to detect social bots

[13], [14]. Moreover, these type of approaches fail to distinguish legitimate users from the

new kinds of social bots. The following are the limitations related to social bot detection in

online social networks: (i) social bots can reduce trust value of their legitimate neighbors

by sending fake and untrustworthy information, (ii) in an online social network, the behav-

ior of user rapidly changes over time and thus, it is important to extract the information that

is needed to evaluate a user, (iii) a few malicious users may use tools to create fake accounts

and manipulate their influence value on other users and (iv) the user may be influenced by

various factors, such as content of information posted in the tweet and behavior of other

users. Thus, it is important to detect the social bots (from legitimate users) in online social

networks.

The contributions in this thesis are as follows:

• Detection of phishing bots using learning automata model: This work presents a

trust model (which consists of two components namely, direct trust and indirect trust)

to evaluate trustworthiness of tweets (posted by each participant) by using Bayesian

3
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learning and Dempster-Shafer Theory (DST). A Learning Automata based Malicious

Social Bot Detection algorithm is designed by integrating a trust model with a set

of URL-based features in order to distinguish malicious social bots from legitimate

participants.

• Deep reinforcement learning models for detecting malicious social bots and in-

fluential users: In this work, a deep Q-network architecture has been designed by in-

corporating a single agent Deep Q-Learning (DQL) model using the social attributes

(such as tweet-content, user profile and graph-based features) in the Twitter network

for detection of malicious social bots. A multi-agent deep Q-Learning algorithm has

been proposed by using particle swarm optimization method with users’ temporal

features in order to detect malicious social bots in Twitter network. Further, an al-

gorithm has been proposed to identify top-k influential Twitter network users (which

are influenced by the social bots) based on the tweets and the users’ interactions.

• Detection of Social Botnet and Spam Influential Communities: This work ana-

lyzes the behavioral similarity of the participants by considering four different as-

pects, such as tweet-content similarity, shared URL similarity, interest similarity and

social interaction similarity for identifying similar type of behavior (malicious or

non-malicious) among participants in the Twitter network. This work considers the

important features, such as tweet content, URL-based, graph-based, profile-based

features and influence value of the neighboring participants in order to evaluate the

trust value of each participant. Based on a deep autoencoder model, the proposed al-

gorithm detects social botnet communities with improved precision and recall. Fur-

ther, an Influential Community Detection algorithm has been proposed and this helps

in reducing the spread of spam-content through influential communities in Twitter

network.

• Determining trustworthy paths using a learning automata model: This work

presents a social trust model with learning automata in order to evaluate trustworthy

paths in online social networks for trusted-user recommendations. In addition, Shan-

non’s entropy approach is presented to compute utility value for each trustworthy

4
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path.

The rest of this chapter is organized as follows. Motivation behind the work has been

presented in Section 1.1. In Section 1.2.1, a learning automata based malicious social

bot detection algorithm is proposed by integrating a trust model with a set of URL-based

features in order to distinguish legitimate participants from social bots. Section 1.2.2 de-

scribes a deep Q-network based architecture by integrating single agent deep Q-learning

model with social attributes for social bot detection. A multi-agent deep Q-learning model

based on particle swarm optimization (PSO) method is also proposed for detecting social

bots more accurately. Further, a top-k influential (user) algorithm is also presented in this

section. Section 1.2.3 discuses the detection of social botnet communities more accurately

in presence of different types of malicious activities in Twitter network. A discussion on the

spread of spam content and identification of influential communities in Twitter network are

also presented in this section. In Section 1.2.4, the importance of trustworthy paths in an

online social network has been highlighted. A learning automata-based recommended trust

path selection algorithm is also presented in this section. The organization of the thesis has

been presented in Section 1.3.

1.1 Motivation and Objectives

In recent years, social bots are emerged as major threats in online social networks. Social

bots usually perform malicious activities, such as generating fake identities, manipulating

online ratings, spreading social spam content and performing phishing attacks. These types

of malicious activities have to be detected and malicious participants should be identified

in online social networks. However, social bots can pretend like legitimate participants in

order to reduce the probability of identification. Social bots can reduce the trust value of

their legitimate neighbors by sending malicious and untrustworthy information. In a typical

social network, if neighbors of a participant are trustworthy, the participant is likely to be

trustworthy. In this work, two trust parameters are introduced, namely direct trust (i.e., from

users’ own behavioral patterns while interacting in its neighborhood) and indirect trust (i.e.,

from belief values that are collected from the neighbors depending on their behavioral pat-
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terns) for social bot detection. Social bots can easily manipulate user profile-based features,

such as follower ratio, URL ratio and number of retweets. Moreover, social bots can easily

manipulate tweet-based features (such as sentimental words, emoticons and most frequent

words used in the tweets) by changing the content of a tweet. Especially in Twitter, the size

of tweet is limited upto 140 characters, social bots may also post shortened malicious URLs

in the tweets in order to redirect participants (users) to some malicious servers. This leads

to phishing attack. Moreover, spam bots are the bots who mainly spread spam-content

(i.e., any tweet which is irrelevant or unnecessary information that is being repeatedly sent

to user) by sharing, liking or retweeting spam posts [15]. Due to the presence of spam

bots, legitimate users may be influenced by fake information (which is repeatedly sent to

a legitimate user). Further, the social botnet community detection is an important research

challenge where the coordination and cooperation among the social bots (i.e., botnet or bot

community) may create strong malicious activities, there by breaking the security perime-

ter of users. Thus, the present work focuses on the above mentioned observations to detect

malicious social bots and social botnet communities more accurately in online social net-

works by considering important features, such as tweet content, URL-based, graph-based,

profile-based, temporal-based and similarity-based features.

In the era of social media, it is demanding to extract trust information and finding trust-

worthy participants in online social networks. The conventional approaches (like content-

based recommendation models) consider social relationships based on comments provided

in online social networks. These types of approaches are not taken into consideration for

the establishment of social relationships among participants. Moreover, an attacker may

act unethically and gets good reputation. Once an attacker gets high trust value then the

attacker may provide untrustworthy recommendations. Therefore, social trust informa-

tion along with recommended influence value of a user (i.e., user ratings) are considered

for finding a social trustworthy path. In real-time, certain service providers select a few

malicious participants to provide faulty decisions to the services (i.e., trust formation and

recommendations) of the other participants. Moreover, the service providers award signif-

icant ranking (i.e., increase of ratings) to their own services for selective decision making.

Therefore, the social trust information should be taken into consideration for avoiding such
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malicious comments posted in online social networks. The above mentioned challenges

motivate the present work towards detecting malicious social bots and determining trust-

worthy paths in an online social network. The objectives of this dissertation are as follows.

1. Detection of phishing bots using learning automata model with URL-based features

in Twitter network.

2. Detection of malicious social bots using single and multi-agent deep Q-learning mod-

els with a set of tweet-content, user-profile, graph-based features and a set of tempo-

ral features with spam-content, respectively.

3. Detection of social botnet communities with different types of malicious activities

using a deep autoencoder model and behavioral similarity parameters and further

detection of spam influential communities in Twitter network.

4. Design of a learning automata-based trust model to identify trustworthy paths in

online social networks for trusted user recommendations.

1.2 Overview of the Contributions of this Thesis

In this section, an overview of chapter-wise contributions of this thesis has been presented.

Each subsection presents summary of contributions of the corresponding chapter.

1.2.1 Detection of Phishing Bots using Learning Automata with URL

features in Twitter Network

In this work, URL-based features, such as URL redirection, frequency of shared URLs and

spam content in a URL are considered for identifying trustworthy participants (users) in

Twitter network. LetG = (P,E), where P represents a participant set P = {p1, p2, . . . , pn}

and E represents a social relationship set (or directed edges) between the participants

(users). If there exists a social relationship between two participants, then they are con-

sidered as neighbors (i.e., either followers or followees). In a typical Twitter network with
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n participants and series of m tweets twpi = {twi1, twi2, ...twim} posted by each partici-

pant pi, a feature set F = {f1, f2, ...., fn} can be constructed from each tweet posted by

each participant. In this work, the features are assumed to be independent to each other.

Based on the URL-based features, the trust parameters are defined in order to evaluate

trustworthiness of all tweets posted by each participant.

In Twitter, when a participant (user) wants to share a tweet containing URL(s) with the

neighboring participants (i.e., followers or followees), the participant uses URL shortened

service (i.e., bit.ly [16]) in order to reduce the length of URL (because tweet is restricted

upto 140 characters). Moreover, a malicious social bot may post shortened phishing URLs

in the tweet [11]. When a participant clicks on a shortened phishing URL, the request of a

participant will be redirected to intermediate URLs associated with malicious servers. This

in turn redirect the user to malicious web pages. Thus, the legitimate participant is exposed

to an attacker. This leads to Twitter network suffering from several vulnerabilities (like

phishing attack) [17]. Therefore, detection of social bots who post malicious URLs in the

tweets is a challenging task in Twitter network.

To address the above challenges, the malicious behavior of a participant is analyzed by

considering features extracted from the posted URLs (in the tweets), such as URL redirec-

tion, frequency of shared URLs and spam content in URL, to distinguish between legitimate

and malicious tweets. The proposed Learning Automata based Malicious Social Bot De-

tection (LA-MSBD) algorithm integrates a trust computational (i.e., evaluation) model with

a set of URL-based features for detection of malicious social bots. The proposed trust com-

putation model contains two parameters namely, direct trust and indirect trust. The direct

trust value is derived from Bayesian learning [18] (by considering URL-based features) to

determine trustworthiness of tweets posted by each participant. In addition to direct trust,

belief values (i.e., indicators for determining indirect trust) are collected from multiple

neighbors of a participant. This is due to the fact that in case the neighbors of a partic-

ipant are trustworthy, the participant is likely to be trustworthy. Further, the Dempster’s

combination rule [19] aggregates the belief values provided by multiple 1-hop neighbor-

ing participants in order to evaluate indirect trust value of participants in Twitter network.

Moreover, in this work, the belief values provided by multiple neighboring participants are

8
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considered to be independent.

Learning Automata based Malicious Social Bot Detection using Trust Model

A Learning Automata based Malicious Social Bot Detection algorithm (LA-MSBD) has

been proposed by incorporating a trust evalaution model in order to identify the malicious

social bots. Each participant (i.e., each user in Twitter) is represented by a learning au-

tomaton in order to determine the trust value of a participant‘ at time t. At each iteration,

learning automata selects a specific action from finite set of actions (i.e., a series of tweets

posted by the participant at different time slots) and produces response (or reinforcement

signal) in terms of reward and penalty. The proposed LA-MSBD detects a participant as a

malicious social bot only after executing finite number of learning actions at different time

slots.

The performance of the proposed Learning Automata based Malicious Social Bot De-

tection algorithm (LA-MSBD) is presented by considering Social Honeypot dataset [20] and

The Fake Project dataset [21]. The proposed LA-MSBD algorithm has been compared in

two different ways: (i) LA-MSBD algorithm with four conventional machine learning algo-

rithms and (ii) LA-MSBD algorithm with the existing social bot detection algorithms, such

as random forest-based spam detection [22] and neural-network based redirection spam

detection (NN-RS) [23]. For The Fake Project dataset and Social Honeypot dataset, the

highest precision level of the proposed LA-MSBD algorithm is obtained as approximately

95% and 90%, respectively. For The Fake Project dataset, the recall (true positive ratio) of

the proposed LA-MSBD algorithm is found to be around 96% and the recall of the existing

algorithm [22] is found to be around 91%.

1.2.2 Detection of Malicious Social Bots using Single-Agent and Multi-

Agent Deep Q-Learning Models in Twitter Network

In this work, a set of social attributes, such as tweet-based attributes (i.e., from the content

of each user tweet), user profile-based attributes (i.e., from a series of weekly tweets posted

by each user) and social graph based attributes (i.e., the users’ interaction with their friends
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and followers) are considered to identify the suspicious behavior of social bots. Based on

these social attributes, the deep Q-learning elements namely, a state vector St, a learning ac-

tion α and reward rt are defined for each participant (or user) in Twitter network. Malicious

bots are the bots who mainly spread spam-content (i.e., any tweet which is irrelevant or un-

necessary information that is being repeatedly sent to user) by sharing, liking or retweeting

spam posts [21], [15]. Moreover, in order avoid detection, malicious bots show variation

in posting positive (or negative) sentimental tweets over time. Users’ temporal features,

such as variation in posting positive (or negative) tweets over time, percentage of dropped

followers and spam content in the tweet are considered in order to analyze malicious user’s

behavioral patterns.

In [24], malicious users have strong intention to manipulate the data (which is used by

supervised machine learning algorithm for training the data) in order to avoid detection.

Thus, this may lead to misclassification for new sample of data during testing phase. How-

ever, the recent studies have illustrated that supervised machine learning algorithms fail

to detect social bots in certain situations, such as when training data is more biased [25].

In deep reinforcement learning (DRL) techniques (like deep Q-learning) with single agent

requires much computation time in order to determine an optimal policy [26]. Moreover,

the learning process of DRL requires more computational resources compared to other ma-

chine learning algorithms. The deep Q-learning converges slower with high computation

and storage space in order to determine and store the Q-values for all possible state-action

pairs [26]. Therefore, finding an optimal sequence of actions in Q-learning (with faster

convergence rate) is a challenging issue. Thus, in this work deep reinforcement learning

algorithms (with single and multi-agent) has been presented in order to detect malicious

social bots more accurately.

A Single Agent Deep Q-Learning Model for Detecting Social Bots

In the proposed deep Q-learning model, three different types of social attributes (such as,

tweet-based attributes, user profile-based attributes and social graph based attributes) are

given as input to the deep Q-network. For each user, the social attributes are represented in

the form of state vector S, which contains a set of states (i.e., social attributes). For each
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state-action pair, the system (i.e., deep Q-learning model) determines next state and reward

function (i.e., social behavior of user). After finding the state-action pair, the agent decides

whether the corresponding user is acting as a malicious social bot or a legitimate user.

The performance of the proposed Deep Q-Learning algorithm is evaluated in terms of

precision, recall (true positive rate), false positive rate and f-measure by considering three

real-world datasets from the Twitter network, such as The Fake Project dataset, [21], Social

Honeypot dataset [20] and User Popularity Band dataset (i.e., the dataset is partitioned into

four groups based on number of followers) [27]. The proposed Deep Q-Learning algo-

rithm has been compared with the other existing algorithms, such as feed-forward neural

network (FFNN) [28], deterministic Q-Learning (QL) [29] and regularized deep neural

network (RDNN) [30]. For social bot detection, the proposed algorithm with the tweet-

based attributes achieves average of 85% on the precision value, the proposed algorithm

with the user profile-based attributes achieves average of 87% on the precision value and

the proposed algorithm with the social graph-based attributes achieves average of 88% on

the precision value. Therefore, by integrating all the above social attributes, the proposed

algorithm have achieved average of 93% on the precision value.

A Multi-Agent Deep Q-Learning Model using Particle Swarm Optimization for De-

tecting Social Bots

In the proposed particle swarm optimization based deep Q-learning (P-DQL) algorithm ,

the users’ temporal features such as spam-content in the tweet, average number of tweets

posted per day, longest user session time without any break and percentage of dropped fol-

lowers) are represented as state vector Sk. Initially states are given as input to the learning

agent (i.e., deep Q-network) in order to obtain Q-values Q(si, A) with action sequences

A = {a1, a2, ...} for each state si (where si ∈ SK). Each user with set of Q-values is

termed as a swarm with set of particles (or a population) and each Q-value Q(si, ai) (i.e.,

where ai ∈ A) represents a particle’s position. For each particle (i.e., Q(si, A)), the fitness

function (i.e., long-term immediate reward Rlong) is to be computed in order to determine

local and global best particle’s positions. Based on local and global best particle’s po-

sitions, the position and velocity of particles are updated to determine global best action
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sequences (i.e., swarm updated). Moreover, the entire process will be executed for finite

number of iterations until the variation of fitness values becomes negligible (i.e. fitness

value unchanged in consecutive iterations). Therefore, the particle swarm optimization

(PSO) component determines global best action. The learning agent takes each state from

global best action and obtains belief-based reward value in order to compute Q-value and

target Q-value. After executing a specific action in a state, the learning agent moves to the

next state (i.e., which is available in global action sequences) and obtains belief-based re-

ward value. For all possible global action sequences, if the learning agent cannot reach to a

terminal state (i.e., identified as a spam bot based on its social behavior) then the participant

is identified as a legitimate. Otherwise, user is identified as a spam bot.

The performance of proposed particle swarm optimization based deep Q-learning (P-

DQL) algorithm is evaluated by considering two real-time Twitter datasets, such as Social

Honeypot dataset and The Fake Project dataset. For social spam detection, the proposed P-

DQL has been compared with adaptive single-agent deep Q-learning (ADQL) algorithm and

with other existing algorithms such as, PSO algorithm [31], feed-forward neural network

(FFNN) [28], regularized deep neural network (RDNN) [30]. The precision values of P-

DQL and ADQL are obtained as approximately 94% and 89%, respectively.

Influence Bots in Twitter

The proposed top-k influential algorithm is used to identify the most influential users

(which are influenced by the social bots) based on the tweets and the user’s interactions in

Twitter network. For each user, a user influence score is determined based on two param-

eters namely, influence of user’s tweets and influence of user’s interactions in the Twitter

network.

The proposed top k-influential users algorithm has been compared with other existing

algorithms, such as degree centrality based radius-neighborhood (DERND) [32], suspected

infected recovered (SIR) diffusion model [33] and true-top [34]. The performance of the

proposed top k-influential users algorithm is evaluated in terms of precision and recall (true

positive rate). The proposed algorithm identifies 80% of top-10% influential users which

were influenced by the social bots.
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1.2.3 Detection of Social Botnet and Spam Influential Communities in

Twitter Network

In this work, a Deep Autoencoder based Social Botnet Community Detection (DA-SBCD)

algorithm has been designed to detect social botnet communities more accurately with

different type of malicious activities including sybil bots. Sybil bots are bots who cre-

ate multiple fake accounts in order to influence legitimate participants [35]. In real-time

certain service providers may create multiple fake accounts (i.e., sybil bots) in order to

provide faulty decisions to other services and provide significant ranking to their services.

The presence of sybil bots may mislead a legitimate user to be influenced by fake informa-

tion. In this work, a trust-driven random walk model is presented to distinguish legitimate

participants among social bots in Twitter network. User behavioral similarity parameters

(such as tweet-content similarity, URL-shared similarity, interaction similarity and interest

similarity) are considered in order to identify similar type of (malicious or non-malicious)

behavior among the participants.

Social Botnet Community Detection Algorithm

In the proposed algorithm, the weighted eigenvector centrality measure and friendship-

characteristics of communities are considered to detect the presence of a botmaster and

social botnet communities, respectively. The proposed algorithm consists of two phases

– community formation phase and community reconstruction phase (which identifies the

communities more accurately). In the first phase, the weighted signed Twitter network

graph G′ is used for detecting social botnet communities with different types of malicious

activities (such as posting malicious tweets, posting or redirecting to malicious URLs and

creating multiple fake identifies). In the second phase, the proposed architecture is inte-

grated with deep autoencoder model consisting of two sub-phases, namely the encoder and

decoder. The proposed model encodes an observed input community ci with the set of

trusted and untrusted weighted edges. In the decoding sub-phase, a reconstructed com-

munity structure c̃i is determined using the decoding function (i.e., c̃i ≈ f(ci)) for social

botnet community detection with better accuracy.
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The proposed algorithm has been compared with two promising recent community de-

tection methods, such as detecting spam communities (SpamCom) [36] and Botnet Discov-

ery [37]. Two datasets, such as The Fake Project dataset [21] and Social Honeypot dataset

[20] are considered for performance evaluation. The performance of the social botnet com-

munity detection algorithm is evaluated in terms of normalized mutual information (NMI),

precision, recall, f-measure and g-measure. The proposed algorithm achieves around 90%

on precision value and provides up to 8% improvement on the NMI value over existing

social botnet detection algorithms.

Spam Influential Users and Influential Community Detection

To provide accuracy and veracity of information, identification and reduction of the influ-

ence of spam bots (i.e. reduction of negative impact of spreading spam content) is an im-

portant task in a Twitter network. Most of the existing works [38], [39] focus on spreading

trustworthy information in order to reduce the influence of spam content (or fake informa-

tion) and detect spam initiators (i.e. social spam bots) in online social networks. However,

the amount of influence of spam bots on legitimate participants (by frequent interactions)

has not been adequately addressed in the existing works[38], [39]. A Spam Influential

Users and Influential Community Detection (SIU-ICD) algorithm has been proposed to de-

tect the most influential participants (which are influenced by spam bots) in Twitter network

in order to minimize the spread of spam content.

The proposed SIU-ICD algorithm has been compared with two existing algorithms,

such as opinion spammer community detection (OSCD) [40] algorithm and spammer group

detection approach (SGD) [41]. For The Fake Project dataset, the highest modularity Q̃

value obtained by SIM-ICD is 0.65. Moreover, the proposed SIU-ICD algorithm achieves 4-

9% improvement on modularity Q̃ over existing spammer community detection algorithms.
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1.2.4 Determining Trustworthy Paths using Learning Automata-based

Trust Model in Online Social Networks

In this work, a high-quality of social trust model with learning automata has been presented

in order to determine trustworthy paths in online social networks for trusted-user recom-

mendations. In addition, Shannon’s entropy approach is presented to compute utility value

for each path. In an online social network, multiple recommended trust paths exist between

a service provider and the consumers [42]. Moreover, an attacker may act unethically and

gets good reputation. Once an attacker gets high trust value then the attacker may provide

untrustworthy recommendations. Thus, determining a recommended trustworthy path is a

challenging problem in social networks. In a service-oriented system, trust plays a major

role for selective decision making and requires a methodology to evaluate the trust paths

between the participants who are unknown to each other. A trust evaluation model is for-

mulated with different parameters such as trust information (direct trust and indirect trust),

social relationships and recommended influence of a participant for providing an accurate

trustworthy recommendations. Further, this work focuses on formulating a trust model for

establishing a strong social connection among a group of participants.

Learning Automata based-Recommended Trust Path Selection Algorithm

A Learning Automata based-Recommended Trust Path Selection (LA-RTPS) algorithm has

been proposed by considering parameters, such as direct trust, indirect trust (T), relevance

degree (r) and recommended influence value (ρ) of a participant . Each path is represented

by a learning automaton in order to determine the trustworthy path at time t. At each

iteration, learning automata selects a specific action from a finite set of actions (i.e., a finite

set of intermediate participants) and produces response in terms of reward and penalty.

The proposed LA-RTPS identifies a trustworthy path only after executing finite number of

learning actions at different time slots.

The performance of LA-RTPS algorithm is evaluated by considering two datasets, such

as Slashdot dataset and Epinions dataset [43] and compared with MFPB-HOSTP [44]. The

experimental results show that the proposed LA-RTPS algorithm provides (recommended)
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trust path utilities (i.e., a metric in terms of trust, relevance degree and recommended in-

fluence value) on an average of 31.48% more than the existing MFPB-HOSTP approach.

The average execution time of the proposed learning automata based approach is found to

be 34.41% less than MFPB-HOSTP approach [44].

1.3 Organization of the Thesis

The main focus of this dissertation is to analyze user behavioral patterns and detection of

social bots in online social networks. The proposed algorithms achieve improvement in

precision, recall and F-measure for detecting social bots. The thesis has been organized

into seven chapters.

Chapter 1: In this chapter, a brief introduction to security and threats in online social net-

works and objectives of the thesis have been presented. It also presents an overview of the

major contributions and outline of the thesis.

Chapter 2: In this chapter, existing works on malicious activities and trust evaluation

models in online social networks have been discussed. A survey on malicious social bot

detection approaches is presented.

Chapter 3: A Learning Automata based Social Bot Detection (LA-SBD) model has been

proposed for social bot detection with URL-based features. The trustworthiness of each

tweet is evaluated by using Bayesian learning and Dempster-Shafer Theory (DST). This

chapter is completely derived from the following paper:

R. R. Rout, G. Lingam and D. V. L. N. Somayajulu, ”Detection of Malicious Social Bots

Using Learning Automata With URL Features in Twitter Network,” IEEE Transactions on

Computational Social Systems, pp. 1004 - 1018, 2020.

Chapter 4: In this chapter, a single and multi-agent deep Q-learning models are designed

to detect social bots. Further, an algorithm has been proposed to identify the most influ-

ential users (which are influenced by the social bots) based on the tweets and the users’

interactions. This chapter is derived from the part of the work as presented in the following

two papers:

G. Lingam, R. R. Rout and D. V. L. N. Somayajulu, “Adaptive deep q-learning model for
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detecting social bots and influential users in online social networks,” Applied Intelligence,

Springer, pp. 1–18, 2019 and

G. Lingam, R. R. Rout, D. V. L. N. Somayajulu and S. K. Ghosh, ”Particle Swarm Op-

timization on Deep Reinforcement Learning for Detecting Social Spam-Bots and Spam-

Influential Users in Twitter Network,” IEEE Systems Journal, Accepted.

Chapter 5: In this chapter, a deep autoencoder (DA) model, DA-Social Botnet Community

Detection (DA-SBCD) algorithm has been proposed to detect social botnet communities

consisting of social bots having higher malicious behavioral similarity. Further, an Influ-

ential Community Detection (ICD) algorithm has been proposed to reduce the spread of

spam-content through influential communities in Twitter network. This chapter is derived

from the part of the work as presented in the following two papers:

G. Lingam, R. R. Rout, D. V. L. N. Somayajulu, S. K. Das, ”Social Botnet Community

Detection: A Novel Approach based on Behavioral Similarity in Twitter Network using

Deep Learning,” In Proceedings of the 15th ACM Asia Conference on Computer and Com-

munications Security 2020, pp. 708-718 and

G. Lingam, R. R. Rout, D. V. L. N. Somayajulu, and S. K. Ghosh, ”Particle Swarm Op-

timization on Deep Reinforcement Learning for Detecting Social Spam-Bots and Spam-

Influential Users in Twitter Network,” IEEE Systems Journal, Accepted.

Chapter 6: In this chapter, a Learning Automata based Recommended Trust Path Selec-

tion (LA-RTPS) algorithm has been proposed to identify multiple recommended trust paths

in online social networks. A trust model named as High quality of Social trust (HoS) model

has been presented to determine the best trustworthy path in online social networks. This

chapter is completely derived from the following paper:

G. Lingam, R. R. Rout and D. V. L. N. Somayajulu, ”Learning automata-based trust model

for user recommendations in online social networks,” Computers & Electrical Engineer-

ing, Elsevier, pp. 174-88, 2018.

Chapter 7: This chapter summarizes the outcomes of the contributions and future direc-

tions for expansion of the work.
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Chapter 2

Literature Survey

In this chapter, functionalities in different types of online social networks are discussed.

Literature survey on data representation (including features in online social networks) has

been discussed. Further, existing works on security issues (which includes malicious activ-

ities) and necessity of trust in online social networks are also discussed. A discussion on

social bot detection approaches and requirement of learning algorithms has been included

in this chapter.

2.1 Types of Online Social Networks

Online social networks such as Twitter, Google+, Facebook and Instagram have become

most important social media for people to share their information, opinion(s) and to pro-

mote their products and services. Online social networks provide a communication plat-

form where users can interact with their friends (or neighbors) in terms replies, comments

and posts (or re-posts) [45]. Fig. 2.1 shows a simple social network with set of nodes

and edges. The node represents a user (or participant) and edge represents the social rela-

tionship between two users. Based on social relationships, the edge can be represented as

undirected edge, directed edge and signed directed edge (as depicted in Fig. 2.1). Online

social (static or dynamic) communities are formed with people who have similar type of

interests or opinions on a specific topic or an event [46]. Online social networks are mainly

classified into three different types namely, social connections (such as Facebook, Twitter,
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Google+ and MySpace), multimedia sharing (such as YouTube and Flickr) and professional

(like LinkedIn).

Social Connections: Interacting with friends and family members is one of the impor-
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Figure 2.1: An online social network where directed edge represents interactions between
two neighboring participants and signed directed edge represents type of relationship (i.e.,
trusted or untrusted edge) between two participants

tant characteristics of online social networks. The following are the popular online social

networks which establish social connections with other online users:

1. Twitter: Twitter is an online social networking service on which users can post tweets

(or messages), retweet tweets and interact with other online users by expressing their

views or opinions. Moreover, the users can post a series of tweets on specific topic or

by prefixing hashtag (i.e., #) symbol with word. Similarly, username prefixed with

’@’ symbol is used for replying or mentioning to other Twitter users.

2. Facebook: Facebook provides an online communication platform for users to estab-

lish social connections and tries to share information with other Facebook users. In

Facebook, users can follow the content posted by other Facebook users without nec-

essarily being a friend (or follower). Moreover, Facebook restricts the users to view

their profiles and posts through privacy settings.

3. Google+: Google+ provides a platform to upload photos to private cloud album and

allows users to create circles of social connections. Circle is a main feature provided

by Google+ social network. Moreover, once circle is created then the user can share

his/her (private) information only to that circle.
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4. MySpace: MySpace social network provides a platform to establish social connec-

tions related to social entertainment, such as music, movies and games.

Multimedia Sharing: Online social networking websites are providing a platform to

upload, view and share video content in online. The following are the most popular online

social networks for sharing multimedia information.

1. YouTube: YouTube is an online social networking platform which allows users to

upload, rate, view and share video content information. Moreover, YouTube allows

users to post comments on video and provides subscription option to other users.

2. Flickr: Flickr provides a social networking platform to upload and share images

(or videos) with other users. Moreover, Flickr provides two types of online social

networking user accounts namely, free and pro.

Professional: Professional online social networks provide a platform to establish social

relationships with other professional users based on interests or profession. Moreover, pro-

fessional networks also provide employment-related services (such as job applicants post

their curriculum vitae and recruiters post jobs in professional social networks to employ

potential candidates). LinkedIn is one of the largest online professional social networks.

In this thesis, Twitter network has been investigated in Chapter 3, Chapter 4 and Chapter

5. In Chapter 5, a weighted signed Twitter network graph has been considered based on

the behavioral similarity and trust values between the participants (i.e., OSN accounts) as

weighted edges.

2.2 Representation of Data with Features in Online Social

Networks

Online social networking user profile contains several distinct features, where the shared

data can be represented as features. Moreover, each feature describes about the social be-

havior of user. For Twitter network, the features are broadly classified into five categories,
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namely user profile-based, tweet-based, graph-based, temporal-based and similarity-based

features.

User profile-based features represent the characteristics behavior of each user, such

as location, followers ratio, number of tweets, retweets, likes, comments, followees and

followers. Ala et al. [47] have proposed a support vector machine-based optimization

algorithm by considering user profile-based features to detect spam profiles in online social

networks. Lin et al. [48] have presented a convolutional neural network model with user

profile-based features to detect users’ stress state in online social networks. In [49], a

deep neural network based on long short-term memory (LSTM) architecture is designed

by considering user profile-based features to detect social bots in Twitter network. Al et al.

[50] have presented user profile-based features to identify the malicious activities in online

social networks. Subrahmanian et al. [51] have presented user profile-based features to

detect social bots and influence bots in Twitter network.

Tweet-based features describe about syntax, semantic behavior of content in the tweets

and URL-based features. The syntax-based features represent percentage of tweets con-

taining the number of links, user mentions, hashtags and special characters (’@’, ’$’, ’%’)

and emoticons. The semantic-based features represent user’s sentimental score, number of

languages in which tweets are posted, suspicious words, frequent words, number of positive

and negative sentimental in the tweets. Moreover, URL-based features are based on URL

redirection chains and lexical properties of URL such as frequency of shared URLs, URL

redirection length, relative position of initial URL, http-302 status code and spam content

in URL. In [51], the authors have presented tweet syntax and semantic-based features to

detect bots in online social networks. Chu et al. [13] have presented an automated clas-

sification system using tweet-based features to distinguish benign users among malicious

users in Twitter network. In [52], a URL-based approach is proposed to detect spam tweets

in Twitter based on the tweet content and URL redirection chains. Hans et al. [23] have

detected malicious URL redirections by integrating multilayer perceptron neural network

with URL-based features in online social network.

Graph-based features describe about social relationships among the users. For each

user, the graph-based features represent clustering coefficient, closeness, betweenness and
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pagerank centrality measures. In [53], a stegbot detection method is proposed by consider-

ing social graph-based features to detect stegbots in multimedia social networks. In [10],

a botnet detection approach has been proposed based on graph-based features. Yan [12]

has identified different types of malicious users based on graph-based features in online

social networks. Liang et al. [54] have extracted social network-topology based and tweet-

content based features to develop a Bayesian classifier model which helps o detect rumours

in Twitter network.

Temporal-based features contain longest user’s session time without any break for at

least 5-10 minutes, percentage of dropped followers, average number of tweets posted per

day, average time between two consecutive tweets, temporal patterns of posting tweets

(or retweets) and inter arrival time between user’s click events. Ferrara et al. [55] have

analyzed the social behavior of user by considering temporal-based features in Twitter net-

work. Shi et al. [8] have presented temporal-based features and user behavioral transition

probability features (such as sharing, liking and commenting) to detect malicious users in

online social networks. In [8], it has been shown that quantitative features (like number of

hashtags, number of replies and number of comments) help in detecting malicious users.

Similarity-based features are analyzed from the viewpoints of tweet-content similarity,

shared URL similarity, interest similarity, and social interaction similarity for identifying

similar types of behavior among users in the Twitter network. Davoudi et al. [56] have

considered interaction similarity between two users for predicting trustworthy ratings in

online recommended system. Zhao et al. [57] have presented a hashtag-based user simi-

larity ranking method to identify the most similar users using Latent Dirichlet Allocation

(LDA) method. Further, the authors have proposed a hashtag-based LDA model to identify

the social relationship between users, topics and hashtags in the tweets. In [54], the authors

have presented tweet-content similarity measure using term frequency-inverse document

frequency (TF-IDF) for the identification of rumour spreading in Twitter network.

In this thesis, URL-based features are considered in Chapter 3 and Chapter 5. In Chap-

ter 4 and Chapter 5, user profile-based, tweet content-based and graph-based features are

taken into consideration to analyze the social behavior of users. Moreover, temporal-based

and similarity-based features are considered in Chapter 4 and Chapter 5, respectively.
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2.3 Security Issues and Types of Attacks in Online Social

Networks

In recent years, most of the users published their daily activities and share their information

with friends, family members and colleagues in online social networks. Moreover, user

generated data may contain opinions, past experiences and personal information (such as

name, location, personal photos, e-mail address and gender). However, such information

can allow an attacker to steal user’s credential details. In addition, user-generated data may

be provided to other social applications (like third-party platforms) and it leads to privacy

issue in an online social network. The following are the challenging issues related to protect

online users’ and their data sharing with other users in online social networks.

1. Data sharing with blind social connections: Users may be at risk by sharing their per-

sonal information with unknown users (or more specifically with strangers). More-

over, some of the users may not be legitimate accounts (i.e., for example automated

accounts which are created by malicious user) or users with malicious intention.

2. Data sharing with third party based social applications: Users may interact with

several other external applications for desirable purpose. Moreover, malicious third

party based social application can access users’ data for performing malicious activ-

ities.

3. Data leakage through crawlers and online social networks: Professional data col-

lectors may crawl users’ information through application programming interfaces

(APIs) provided by online social networks. Professional data collectors may sale

users’ information to insurance companies and other online rating agencies. There is

a requirement of trusted communication and trust evaluation for personal data shar-

ing in online social networks.

In recent years, various threats such as privacy violations, malware, information leakage

and fake profiles (termed as sybils or social bots) are observed in online social networks

[1], [58], [59]. In [58], [59], the authors have found that the online social networking
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Figure 2.2: Attacks on online social networking user accounts

users reveal their personal information such as date of birth, phone number, email and

hometown address. A study by Boshmaf et al. [60] found that Facebook users accept

friend request from other unknown users when they have mutual connections. However,

by accepting such friend request from unknown users may lead the users to reveal their

personal information to unknown users or strangers. Hence, this lead to privacy and leakage

problems in online social networks. Moreover, the attacker may have strong motivation to

perform malicious activities and there by breaking the security perimeter of users.

A study in [61] found that social network users trust most of social networking web-

sites and they trust other social networking users. Therefore, this trust will lead to estab-

lish new social relationships and information sharing among users. A study by Niu et al.

[62] found that the trusted behavior of social relationships has became an essential way of

spreading social spam content (or malware) and executing phishing attacks. Malware is a

malicious software designed to obtain user’s credential details and to access private infor-

mation. Koobface is a malicious software designed to spread fake information to the friends

of online social networking users by stealing credentials [63]. In online social networks,

malicious users initiate different type of attacks, such as spreading spam content, creating

multiple fake accounts, executing phishing attacks and manipulating user opinions. Fig.2.2

shows different type of attacks that can be performed on online social networking user

accounts.
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Compromised accounts: Compromised accounts are originally created by legitimate

users but they are hacked and controlled by malicious users. For example, when a legiti-

mate user’s account is hacked then the malicious user starts spreading fake information to

followers by acting like legitimate user. In [64], the authors have analyzed the malicious be-

havior of compromised accounts through phishing attack on Twitter network. However, the

proposal method fail to detect the compromised accounts which does not perform phishing

attack. Egele et al. [65] have designed a system to detect the compromised accounts in

online social networks. The authors have tried to determine whether a fake information is

posted by an attacker through a compromised account.

De-Anonymization Attacks: In online social networks like Twitter, users’ anonymity

and privacy can be protected by considering pseudonyms. The de-anonymization attacks

consider different methods, such as network topology and capturing cookies to detect the

real identification of each user in online social networks [66]. In [67], the authors have

presented a technique to de-anonymize online social networking users by capturing their

cookies and obtaining group memberships for each user account. Peled et al. [68] have

proposed a novel method to detect the real identification of user based on matching user

profiles across multiple online social networks.

Information and location Leakage attacks: In recent years, due to the usage of smart

mobile devices, most of the users are willing to share their private, personal and location

information with their friends and other users in online social networks [58]. A study by

Torabi et al. [69] have found that most of users are sharing their health information through

online social networks. Further, the authors have observed that few insurance companies

are using leaked health-related information to identify clients with health conditions either

to deny or increase their premiums. Li et al. [70] have found that most of the Twitter

users are mentioning their location information in the tweets. In [71], a framework has

been proposed to identify the user’s hometown location information based on the content

of tweets posted by each user.

Fake Accounts: Fake accounts (sybils or social bots) are automated online social net-

working accounts which pretend like social behavior of legitimate users in online social

networks. Social bot is an automated computer program that is created to perform (either
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malicious or non-malicious) activities in Twitter network [4]. Like traditional bots (in In-

ternet chat), social bots are more common in Twitter [72]. A social bot is created with

the support of open APIs (like Twitter API) [5]. Moreover, social bots are mostly used for

posting spam tweets, retweets and sharing public opinion in Twitter. The recent studies

have identified different types of social bots, such as legitimate bots and malicious bots [6].

Legitimate bots are used to promote products or services, natural disaster notifications and

blog updates. Malicious (or spam) bots are mostly used to distribute spam content, phishing

URLs, generate fake accounts and manipulate online reviews and ratings [2]. However, ma-

licious social bots can also manipulate natural disaster notifications and quality of product

by posting fake information or malicious comments [8]. However, such type of malicious

activities can affect online social networks.

A study by Stringhini et al. [73] found that the fraudsters who are selling the legitimate

online social networking accounts created in Twitter network. Moreover, if a social bot (or

malicious user) is willing to buy the legitimate accounts from fraudsters, then the attacker

can compromise a larger number of legitimate friends by creating attack edges between

the fake accounts and legitimate accounts. Boshmaf et al. [60] have created more than a

hundred of Facebook fake accounts (or social bots) to attack Facebook legitimate accounts

by sending multiple friend requests. Moreover, the authors have showed that the acceptance

rate of social bot friend request is about 80% when there are common friends between social

bots and Facebook legitimate users.

Phishing Attacks: In Phishing attack, the malicious user attempts to obtain user’s cre-

dentials and personal information by pretending like trusted third party. In [74], the authors

have found that the legitimate Twitter users who click on shortened URLs are more likely

to fall under phishing attack due to the trusted behavior of online social networks. Lee et

al. [52] have showed that 85% of phishing attacks target online social networking users.

Moreover, a recent study by Niu et al. [62] found that phishing attacks are increased on

online social networks by posting suspicious hyperlinks in messages.

Several spam detection approaches have been proposed in Twitter network to distin-

guish non-spam accounts and spam accounts [75], [76], [77], [78]. Moreover, these studies

consider user profile features which can easily be modified by malicious bots. To avoid fea-
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ture manipulation, Yang et al. [79] have considered social relationships between malicious

users and with their neighboring users based on closeness centrality. Moreover, profile fea-

tures and social interaction features may not help in detecting malicious URLs which are

posted by the participants. Attackers may use malicious URL redirection chains in order to

avoid detection. Thus, spammers can attack legitimate users by misleading detectors.

In this thesis, URL-based features are considered in Chapter 3 and Chapter 5 to detect

malicious social bots through malicious URL redirections. In Chapter 4 and Chapter 5, user

profile-based, tweet content-based and graph-based features are considered to detect mali-

cious social bots with spam behavior. Moreover, similarity-based features are considered

in Chapter 5 to detect sybil bots (or multiple fake accounts).

2.4 Trust Computational Models in Online Social Networks

Online social networking participants (or users) are unaware of online social threats such

as malware attacks [80], phishing attacks [23] and fake profiles (or social bots [81], [8] or

sybils [82] [35]). Recently, online social networking sites (or communities) contain tremen-

dous data, such as online reviews, online ratings and discussions which are generated by

users (in various communities).

In the literature, various trust evaluation models have been proposed for determining

and predicting the trust value. Trust is one of the important aspects to improve the quality

of social relationships among users in online social networks. Trust is defined as degree of

user’s belief based on previous experiences on a specific context, other user’s recommen-

dations and relationships [83]. Moreover, trusting a user may affect other users’ opinion,

reputation and selective decision making on specific product or service. To evaluate trust

value using the current experiences can be considered rather than considering only the past

experiences. Moreover, trust value changes over time. Thus, trust is time-dependent and

dynamic in nature [61]. When the information (or data) is shared among users in online so-

cial networks, malicious users take the advantage of information sharing in order to spread

the spam content (or fake information) in online social networks. Trust modeling helps to

provide veracity of information and helps to penalize the malicious users (or social bots)
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who try to destruct the system with false information [84]. The trust computational mod-

els are broadly classified into two categories, namely evaluation of trust based on social

relationships and topic-based trust modeling.

2.4.1 Evaluation of Trust based on Social Relationships

The works presented in [83], [85], [86] are based on social trust relationship models in

online social networks. Golbeck et al. [83] have proposed a trust mechanism by inferring

binary relationship between two individual participants in a web-based social network. A

trust model has been proposed by Walter et al. [85] to integrate dynamic trust value among

the participants. The authors have identified two factors: (i) heterogeneity preferences

and (ii) knowledge deficiency among the participants. In [86], the authors have analyzed

that social relationships including recommendations have a significant impact on the par-

ticipants in selective decision making for trustworthy services. In [87], Gong et al. have

proposed multi-path trust aggregation model by considering weight of path length and trust

quality. The trust aggregation model considers direct trust, inter-node relationship and rec-

ommended social trust influence value to measure the degree of belief between two users.

In [88], Hamzelou et al. have proposed a model to prevent cascading trust failures

in online social networks. The proposed model have considered parameters, such as cas-

cading time, changes in social network topology and connectivity ratio to determine the

trust relationship between two users. Further, the proposal has been evaluated by consider-

ing trust parameters, such as user’s behavioral trust on information propagation and user’s

emotional sensitivity. In [3], trust-oriented social influence evaluation method has been

designed to provide accuracy and veracity of information for selective decision making by

considering trust relationship between users, user preferences and social relationships. Wu

et al. [89] have constructed a social trust relationship model based on trust score and user

preferences in an online social network. Further, the authors have presented a visual group

interaction model with trust propagation for selective decision making. In [90], a social

trust relationship model with nonlinear optimization technique has been proposed by Liu

et al. to detect and eliminate conflicts for selective decision making in social networks. Tan
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et al. [91] have presented indirect trust model to determine the veracity of good recommen-

dations based on users similarity with one-hop and multi-hop recommendations. Cheng et

al. [92] have derived a social trust relationship-based network from Bayesian learning to

predict the users’ preferences and personalized user-item recommendations.

Recently, user generated data items in online social networks originate the new age

of Big Data problems [42]. The huge volume of data cannot be processed or analyzed

efficiently using statistical tools or traditional data analytic methods. Big Data creates

many challenging research issues in the context of online social networking analysis [43].

In the new era of Big Data, it is challenging to identify the most relevant trust information in

online social networks. In [93], a geometric differential learning model has been proposed

to handle multimedia Big Data in online social networks for video recommendations.

Jamali et al. [94] have proposed a trust walker model for building a trust-based rec-

ommendation system. This model combines trust value with the item-based collaborative

filtering approach in order to build a recommender system. Small Blue [95] is a networking

application where upto six hops can be selected in order to find the shortest path between a

source and target participants. However, in this application trust value and the participant

preference value are not taken into consideration for evaluating a trustworthy service. Hang

et al. [96] have proposed a trust path selection approach, where belief is considered as a

most relevant trustworthy service. Eirinaki et al. [97] have evaluated trust value of each

user based on recommendations received through user interactions. For each user, the au-

thors have identified trustworthy and untrustworthy social relationships in OSNs. In [98],

a mechanism based on indirect trust has been presented for removing the untrustworthy

recommendations. However, the recommended trust value has not been considered. In the

above mentioned approaches, although the trust value is taken into account, they are not

applicable to determine trustworthy decision making in online social networks.

2.4.2 Topic-Focused Trust Modeling

Zhao et al. [61] have proposed a novel topic-based trust model to determine the trustwor-

thiness of tweets posted by user in Twitter network. Further, the authors have proposed
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trust propagation algorithm by considering semantics, social and contextual relationships

in Twitter network. Gupta et al.[99] have designed a support vector machine based Tweet-

Cred system to evaluate the credibility of each user’s tweet. In [100], a semi-supervised

framework have been proposed to detect trustworthy users based on profile-based, content-

based and graph-based features in Twitter network. Further, the authors have proposed a

feature-based ranking trust model for trust propagation on social network graph. Wang et

al. [101] have proposed content-based trust model by considering textual features (such as

average length of words, replication of text content and fraction of most common words

used in the content) and quality-based features (such as popularity, cohesiveness and accu-

racy) to evaluate the trustworthiness of each user in online social networks.

Kang et al. [102] have evaluated trustworthiness of each tweet based on content and

user-level features. The authors have also evaluated trustworthy ratings for each user based

on topic based behavioral patterns and retweeting behavior. Todd et al. [103] have evalu-

ated trust value through a n-gram classifier model by considering context and user’s meta-

data features such as, number of tweets, followers and friends. Castillo et al. [104] have

considered a classification model to distinguish tweets as trustworthy and untrustworthy

based on propagation and content based features. In [105], a trust model has been designed

to detect malicious activities in an online social network. The author have analyzed that

low trust value of user indicates that the information spreaded by the user is considered as

untrustworthy.

Alrubaian et al. [84] have evaluated trust value based on trustworthiness of content,

user expertise and user reputation in order to classify tweets as credible and non-credible

tweets. The authors have considered two-topic based datasets (which are crawled from

Twitter network) to evaluate the performance of the proposal model. Ikegami et al. [106]

have considered a topic-based and opinion based classifier model to evaluate the trust-

worthiness of tweets posted by each user. Further, the authors have identified topics by

considering latent Dirichlet allocation (LDA) and applied sentiment analysis to evaluate

opinion of tweet as positive or negative. In [107], Gupta and Ponnurangam have applied

different statistical techniques such as linear regression and logistic regression to evaluate

and predict the trustworthiness of tweets based on content and user profile-based features.
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In [108], a cognitive model is used to detect untrustworthy or fake information spreading in

Twitter network. The cognitive model is evaluated based on source credibility, coherence

and consistency of tweet.

Due to the availability of tremendous data has attracted an attacker to steal user’s per-

sonal information and to perform malicious activities (generating fake identities, manip-

ulating online ratings, spreading social spam content and performing phishing attacks) in

online social networks and this leads to vulnerabilities [1]. Moreover, such huge amount of

data may also contain untrustworthy, fake or irrelevant information. However, identifying

untrustworthy information manually is a difficult task. Building trust allows online social

network users to gain good recommendations, credible opinions and online ratings (and

reviews) [3]. Therefore, trust is used to protect against the attacks (such as social botnet

attacks and phishing attacks) and to improve the security in online social networks.

In Chapter 3 and Chapter 5, trust computational models are presented to evaluate trust-

worthiness of tweets posted by each participant in Twitter network. In Chapter 6, a High

quality of Social trust (HoS) model is designed to evaluate trustworthy services in online

social networks by incorporating attributes, such as trust information (direct trust and indi-

rect trust), social relationships and the participants’ recommendations.

2.5 Types of Malicious Activities in OSNs

In online social networks, malicious social bots perform malicious activities, such as gen-

erating fake profiles (or sybils), posting fake (or spam) content, posting malicious URLs (or

links) and fraudulent reviews. Moreover, each malicious activity can be identified through

different techniques which are discussed in the following subsections.

2.5.1 Fake Profiles (or Sybil) Detection

The existing works [109], [82], [110], [111], [35] are based on random walk framework

(i.e., each participant moves to one of its neighboring participants with equal probability)

to detect sybil users (fake multiple identities), which are under the control of single ma-

licious user. SybilGuard approach [109] has been proposed by Yu et al. to control the
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influences of sybil users in social network. SybilGuard depends on fast mixing properties

of social graph and malicious users can generate multiple fake profiles but with limited at-

tack edges (i.e., an edge between legitimate user and sybil). Wei et al. [82] have presented

SybilDefender mechanism to detect the sybil users in large-scale social networks based on

the assumptions that limited number of edges exist between legitimate community and sybil

community. In [112], SybilShield framework has been proposed to detect legitimate users

through a modified random walk approach based on community detection algorithm. Gong

et al. [110] have proposed SybilBelief, which is a semi-supervised learning approach for

detecting sybil users based on Markov random fields and belief propagation. Further, this

approach fails when the number of edges has increased between legitimate community and

sybil community. Yang et al. [111] have proposed VoteTrust model for detecting sybils over

social network graph. This model restricts the number of requests sent from sybil to legit-

imate users. However, if sybil can increase the number of attack edges, then the VoteTrust

model requires high computation and achieves low accuracy. In [35], SybilSCAR method

has been proposed to detect sybil users (in online social networks) by considering random

walk and belief propagation with neighbor influence. The proposal is scalable, convergent

and robust to identify noisy data. However, the existing methods cannot detect other type

of sybils such as fake comments, fake likes, fake contents and fake reviews.

In [113], SybilRank tool has been developed in order to rank the users based on their

probability of being identified as sybil users. This tool reduces the false positive rates by

considering trustworthy users. Furthermore, its efficiency is reduced when the trustwor-

thy user establishes the social relationship among sybil users. Boshmaf et al. [114] have

designed Integro method, which is an improvement over SybilRank by considering the so-

cial behavioral aspects of each user in order to predict the probability of being identified

as sybil. Furthermore, Integro is restricted to an undirected social network graph and it

achieves low accuracy for detecting sybil among new users.

Mislove et al. [115] have designed Ostra method to reduce the unwanted social interac-

tions among users. This model requires the user to classify the message as either relevant or

irrelevant message by providing feedback, which is slightly burden to the user. SocialFilter

has been derived by Sirivianos et al. [9] to improve sybil tolerance of spam mitigation.
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However, these existing works are based on the assumption that the edge between legiti-

mate community and sybil community is limited because legitimate users are more likely

to be friend of known users.

Tran et al. [116] have designed a decentralized GateKeeper to provide sybil-resilient

mechanism. The proposal uses ticket distribution process on each user (or node), where

each weighted edge represents the number of tickets disseminated through that edge. Sybil-

Infer has been presented by Danezis et al. [117], which is a centralized sybil detection

approach based on Bayesian inference method. Moreover, SybilInfer can handle up to

thousand of nodes, which is not comparable to the size of large-scale social networks. In

[118], Mulamba et al. have proposed SybilRadar approach by integrating with the trust

model to detect sybil users more accurately. In [119], SybilFence framework has been de-

signed to detect sybil users based on the user feedback in online social networks. Moreover,

this framework also restrict the social relationships among users who spreads the malicious

information or negative feedback.

2.5.2 Spammer based Fake Content Detection

In literature, several spam detection approaches have been proposed in Twitter network to

detect spam (or fake) content in Twitter network [75], [120], [121], [122]. Madisetty et

al. [75] have developed ensemble-based convolutional neural networks model by consider-

ing user-level features, tweet content-level features and n-gram features to detection spam

content (or fake content) in Twitter network. In [120], Sedhai et al. have designed a semi-

supervised spam detection approach to detect spam tweets (i.e.,fake content) from three

different perspectives, such as tweet with blacklisted URLs, tweets posted by untrustwor-

thy user and predicting spam tweets based on multi-classifier model. In [121], the authors

have detected spam tweets by considering different classification learning techniques (such

as Naive Bayes, Random forest and Decision tree). Fazil et al. [122] have designed a

hybrid approach to detect automated spammers in Twitter network by considering commu-

nity features (such as reputation and clustering coefficient features) with user’s metadata

and social interaction features. Further, the authors have analyzed by applying two-tailed
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Z-test to distinguish social behavior of spammers from legitimate users.

In [22], Chen et al. have proposed a learning method from unlabelled tweets (Lfun)

framework by integrating with Random forest classifier method to identify changed spam

content from unlabelled tweets. However, the efficiency of the proposal reduces when too

old spam tweets are considered in order to detect the unlabelled tweets. Shen et al. [123]

have analyzed spammer behavior from the viewpoints of user closeness based on interac-

tions, users’ interests and trustworthiness of a user. Further, the authors have proposed a

Bayesian spam filtering technique to differentiate spam emails from legitimate emails. In

[47], a support vector machine based learning algorithm has been proposed for detecting

spammers based on content-based features, profile-based features and user behavior-based

features. Further, the authors have also analyzed the most influencing features for detect-

ing the spammers in an online social network. Sometimes, conventional machine learning

algorithms cannot capture the variation of spammer’s behavior. Wu et al. [78] have ap-

plied a deep learning model by considering Word2Vec [124] embedding model to identify

the variability of spammer posting spam content. However, the proposal relies only on text

features and which may not be efficient to distinguish spam content from non-spam content

in Twitter network.

Fakhraei et al. [125] have presented a Markov random field model by considering users’

credibility score based on sequential n-gram features and graph based features in order to

classify spammers in social networks. In [126], Wu et al. have detected spammers and

spam content by considering posting relationship between users and messages, social in-

teractions between (any) two users and social relationships between messages (in terms of

replies, re-posts or comments) in microblogging. Shena et al. [126] have proposed multi-

view learning model by integrating classification model with regularization for detecting

spammers in Twitter. Further, the authors have applied non-negative matrix factorization

approach to predict user influence based on the posting behavior between users and tweets

on a specific topic. In [127], the authors have analyzed automated spam posting behav-

ior of spammer based on distribution of URLs, co-occurring words and user mentions to

differentiate spam tweets among legitimate tweets.
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2.5.3 Malicious URLs Detection

In literature [128], [129], the characteristic features of URL are considered as most essential

features to classify malicious URLs because URLs contain phishing links. Moreover, the

malicious users can manipulate the trust value in order to propagate malicious URLs in

social networks [62]. Therefore, the semantic features of URLs are important for detecting

the malicious URLs. Especially in Facebook, a malicious user sends friend request to

many unknown users and also posts malicious content or malicious URLs to steal user

credentials [130]. Therefore, by considering both content and URLs can improve malicious

user detection rate.

Chen et al. [18] have considered both content-based and URL features, such as domain

rank, URL count, similarity of content among different users to detect malicious URLs

using Bayesian classification in online social networks. Akiyama et al. [131] have de-

signed a social honeypot-based monitoring system to identify malicious websites based on

malicious behavior of URL redirections. In [128], the authors have identified the mali-

cious URLs using different machine learning algorithms by considering semantic features

of URL and network host information. Suleman et al. [132] have extracted hyperlink

based features, such as suspicious words in URL, http status count and number of links to

distinguish phishing hyperlinks using a genetic algorithm.

Niu et al. [62] have proposed enhanced opinion walk (EOW) algorithm to distinguish

trustworthy websites from spam websites based on hyperlinks. EOW algorithm is evaluated

by integrating with trust model to determine the trustworthiness of each website. Janabi et

al. [129] have extracted URL-based features (such as URL length, Http-302 status code and

disabling right click) to distinguish legitimate URLs from suspicious URLs. In [52], a URL-

based approach is proposed to detect spam tweets in Twitter based on the tweet content and

URL redirection chains. Moreover, as detectors, if dynamic crawlers are used then the

malicious user may identify them based on their interactions, IP addresses or honey client

detection approaches [133].

In [134], Cao et al. have mainly focused on forwarding-based features to detect mali-

cious URLs in online social networks. Moreover, the malicious user need to widely prop-
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agate the malicious links because the malicious links may be identified by online social

network administrator. Vu et al. [135] have presented a multi-layer anomaly detection

method to detect malicious URLs. This method applies n-gram features from URL to ex-

tract lexical based features. In [136], a multi-level classification model is presented using

convolutional gated-recurrent-unit (GRU) neural network to detect malicious URLs based

on text features. This model considers URL as a string and applies character-level embed-

ding to extract features.

2.5.4 Fraudulent Reviews Detection

Online reviews are posted by users (with social content information) to express their opin-

ions about items (or products). For instance, reviews about services, books, news, movies,

etc. are categorized as product reviews. Recently, most of the people rely on online prod-

uct reviews for their selective decision making process. In addition, the online reviews

will help the service providers to improve the quality of their products and services. More-

over, the negative online reviews can cause financial loss for a service provider. Especially,

in e-commerce websites, any user can post comments about a product as online reviews.

Thus, by taking this advantage, malicious user tries to post fraudulent reviews in order to

mislead the opinion of user for selective decision making. In literature [137], [138], dif-

ferent approaches are used to detect spammers and fraudulent reviews. These approaches

are broadly classified into three different types based on features namely, linguistic pat-

terns in the reviews (which depends on uni-gram, bi-gram or n-gram features) [139], user

behavioral patterns (mostly user metadata based features) [140] and user linguistic pat-

terns (which describe users’ feelings or opinions about a product or service) [141]. The

existing studies [142], [137] have suggested that fraudulent reviews can be identified more

accurately by considering review-linguistic based, user metadata-based and user-linguistic

based features.

Shehnepoor et al. [142] have proposed a network-based spam detection framework by

considering user-behavioral, review-behavioral, user-linguistic and review-linguistic based

features to identify spammers and fraudulent reviews in online social networks. Rout et
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al. [137] have presented a deceptive review detection system with linguistic features, POS

features and sentiment score using supervised and unsupervised techniques to identify (la-

beled and unlabeled) spam reviews in e-commerce websites. In [139], Fusilier et al. have

designed a opinion-based spam detection model with character-level n-gram word embed-

ding to distinguish spam reviews among legitimate reviews. The authors have analyzed

that spam and legitimate reviews are similar and dissimilar in terms of content and opinion,

respectively. This method cannot integrate both character-level and word-level n-gram fea-

tures to detect spam reviews more accurately. A review spam detection method has been

proposed by Ahsan et al. [143] using three classification techniques namely, support vector

machine (SVM), multi-layer perceptron (MLP) and stochastic gradient descent (SGD) with

term frequency-inverse document frequency (TF-IDF) features of review content.

Jiang et al. [138] have identified that certain service providers are select a few fraudsters

to manipulate content and provide faulty decisions to other products and services. Further,

the authors have analyzed that the service providers provide significant ranking to their own

services for selective decision making. Thanikkal et al. [144] have proposed opinion spam

recognition using ontology model to detect faulty reviews. The authors have classified the

faulty reviews into three categories namely, non-review (i.e., a review which does not have

any opinion), off-product review (i.e., a review which does not describe about the product)

and fraudulent review (i.e., a review which is untrustworthy and mislead user with fake

information). In [145], Shao et al. have proposed a hybrid spam detection method with

deep sentiment analysis to distinguish spam content among genuine content. Further, the

authors have identified a set of words which are mostly associated with fake content.

Most of the existing approaches [35], [111] have considered a random walk model

(where each participant moves to one of its neighboring participants with equal probabil-

ity) to detect sybil users (i.e., multiple fake identities), which are under the control of a

single malicious user. Such models assumed a limited number of edges exists between the

legitimate community and the sybil community because legitimate users are more likely to

be a friend of known users. However, a malicious user can compromise a large number of

legitimate accounts in order to establish a large number of attack-edges between the legit-

imate community and the sybil community. Hence, a malicious user can perform different
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type of malicious activities either by creating multiple fake identities or by compromising

legitimate accounts in order to spread spam-content in online social networks.

2.6 Learning Algorithms and Malicious Social Bot Detec-

tion Approaches in OSNs

Learning algorithms can identify data patterns from huge volume of data shared in online

social networks. Moreover, learning algorithms learn from past experiences and provide ac-

curate results. Learning algorithms are broadly classified into three different types namely,

supervised learning, unsupervised learning and reinforcement learning algorithms. Super-

vised learning algorithms are trained on a class (with a set of specific tasks) and predicts

a class. Unsupervised learning helps to find patterns from dataset without pre-existing

labeled data. Reinforcement learning algorithms are trained on a reward and predicts a

learning action.

Madisetty et al. [75] have presented five different convolutional neural network models

by considering tweet features. Gupta et al. [77] have designed a framework for detecting

spammers in Twitter network using different supervised learning algorithms (such as neural

network, gradient boosting, support vector machine and Random Forest). Cao et al. [146]

have presented an autoencoder-based unsupervised learning algorithm by incorporating

users’ content information with network structure for community detection in online social

network. Further, the authors have adopted modularity maximization model [147] and

normalized cut [148] in order to partition (social) graph into different groups.

In [149], a reinforcement learning based trust propagation algorithm has been proposed

to identify the trustworthy paths between the source and target participant. The authors

have evaluated the trust value between two participants based on the identification of trust-

worthy path. In [150], a learning automata based particle swarm optimization-influence

maximization algorithm is proposed to identify a set of users, who can maximize influence

spread in an online social network. Jaradat et al. [151] have proposed a neural network-

based reinforcement learning algorithm to minimize privacy propagation in online social
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networks. Further, the authors have presented a hybrid trust model by considering social

semantic relationship between two participants (i.e., OSN accounts).

Malicious social bot detection approaches are broadly classified into different cate-

gories namely, machine learning-based and social graph-based approaches. The machine

learning-based approaches consider large number of features with different classification

techniques in order to distinguish legitimate users among social bots. The social graph-

based approaches are based on social network graph with nodes as users and edges as

social relationship between users. Two different types of social-graph based approaches

have been proposed to detect malicious social bots. First type of approaches are based on

the social trust relationship between users. Second type of approaches are based on central-

ity measures and graph topology. For social botnet detection, the existing works [51], [13]

considered user based features, such as sentimental analysis and content based features.

Several existing approaches have been proposed for detecting social bots in online social

networks [75], [49], [8], [12]. The existing approaches have considered either tweet based

features or graph based features for detecting social bots in online social networks.

2.6.1 Machine Learning based Social Bot Detection

The social bots in online social networks (like Facebook and Twitter) have gained more

attention recently. Chu et al. [13] have categorized Twitter users into three different groups

(i.e., human, bot and cyborg) based on their tweeting behavior, account based features and

tweet content. Further, the authors have proposed a classification model which includes

three major components, (i) an entropy based component used to measure regular tweeting

behavior of user, (ii) a spam detection component used to verify whether tweet contains

any spam content or not and (iii) account based features to classify the users. Zhang et al.

[81] have analyzed over thousands of Twitter accounts and discussed two new types of so-

cial botnet attacks, such as manipulation of user’s influence value and spam distribution on

Twitter. The authors have identified that botmaster constructs a retweeting tree, where the

root bot is regarded as spam originator and remaining all other bots only retweet spam con-

tent from the parent bot. In botnet-based manipulation of user influence, the authors have
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found that a few malicious user can manipulate their influence value to attract legitimate

users. Further, the authors have presented two countermeasures to protect against the social

botnet attacks based on maintaining spam score of each user and identifying the credible

users among social bots. Davis et al. [152] have designed a system named as BotorNot by

adopting 10-fold cross validation with random forest classification technique. The authors

have identified three types of social bots namely, self-promoters, spammers and social bots

who adopt applications for posting content in social media.

Freitas et al. [153] have studied social bot infiltration strategies in Twitter network. The

authors have created social bots in Twitter network by performing malicious activities, such

as spam distribution, following other users and retweeting other users’ tweets. Their work

also shows that only 31% of social bot accounts have been detected by Twitter network

after one month. Subrahmanian et al. [51] have proposed to separate bots from other

Twitter users on a specific topic. The authors have identified additional bots based on the

cosine similarity between bot and human. Further, the authors have analyzed behavior of

social bot based on the hashtag co-occurence, prediction score (higher value more likely to

be social bot) and the proposed program could generate social bots by varying number of

parameters for social botnet creation. Ashfaq et al. [154] have designed a framework for

bot detection using Bayesian network classifier model. This model quantifies a belief value

(which lies within a range of 0 and 1) to indicate whether a host is acting as a bot or not.

In [155], a hashing method has been proposed to dynamically differentiate user accounts

based on their posting behavior.

Kudugunta et al. [49] have proposed a deep neural network model based on long short

term memory (LSTM) architecture. In this architecture, content based features (such as

retweet count, number of hashtags and number of mentions) and user metadata based

features (such as status count, follower count and default profile) are given as input to

LSTM for social botnet detection. The authors have also analyzed that considering only

tweet based features may not effectively detect the social bots in online social networks.

Madisetty et al. [75] have developed five different convolutional neural network models

by considering tweet features. Gupta et al. [77] have designed a framework for detecting

spammers in Twitter network using different machine learning algorithms. Shi et al. [8]
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have detected malicious social bots based on user behavioral transition probability features

(such as sharing, liking and commenting). The authors have shown that malicious social

bots can be accurately detected with user behavioral transition probability features when

compared to quantitative features (like number of hashtags, number of replies and number

of comments). Moreover, these studies consider user profile features which can easily be

modified by malicious bots. Moreover, profile features and social interaction features may

not detect malicious URLs which are posted by the participants.

2.6.2 Graph based Social Bot Detection

Yan [12] has discovered three different types of social botnets (such as appendix botnet,

standalone botnet and crossover botnet) which are hidden in Twitter network based on

dividing graph into small connected components which help to effectively monitor social

botnet activities. In their work, the authors have analyzed Twitter network by constructing

a social network graph in which node represents as Twitter user and edge represents the

information flow between two connected users. Further, the authors have investigated the

size of weakly and strongly connected components for identifying suspicious activities of

social bots in Twitter network. Halfaker et al. [156] have summarized Wikipedia’s Immune

system to distinguish social bots from cyborgs (which integrate both human (i.e., manual

characteristics) and bot (i.e., automated) behavior). The programmable Wikipedia social

bots are capable of performing many activities (like spell checker bots) on the website.

In [10], a botnet detection approach has been proposed based on the node central-

ity measures, such as degree centrality, betweenness centrality, eigenvector centrality and

pagerank centrality. Further, the authors have adopted self organizing feature map in order

to form clusters based on these features and focused on the abnormal behavior of social

bots. Mehrotra et al. [157] have presented an approach to detect fake Twitter followers

based on centrality measures. Soliman et al. [158] have designed a weighted AdaGraph

model by integrating with unsupervised technique based on clustering coefficient to detect

and predict accuracy of social bot detection. Alarifi et al. [159] have constructed ground

truth for 2000 accounts based on 10 expert ratings to distinguish automated accounts (i.e.,

41



CHAPTER 2. LITERATURE SURVEY Section 2.7

social bots) among non-automated accounts (i.e., legitimate users). The authors have eval-

uated their performance by comparing with the ground truth in other existing works.

Boshmaf et al. [60] have proposed a social bot network model on Facebook in or-

der to infiltrate the Facebook users by creating programmable social bots for two months

duration. Ferrara et al. [55] have proposed botnet detection approaches based on crowd-

sourcing based features, graph based features and user based features. The authors have

identified two limitations in the crowdsourcing based features, (i) human experts fail to

detect fake accounts more accurately, and (ii) revealing the personal information to the hu-

man experts lead to privacy issue. Graph based features are taken into consideration to

detect sybil accounts by analyzing the social network graph. In [53], a stegbot detection

method in multimedia social network has been proposed to detect stegbots. The authors

have analyzed that stegbots can affect the legitimate users by performing malicious activi-

ties such as stealing sensitive information (like credit card details and password), phishing

and spreading spam content. The authors have also extracted the social attributes (such as

image based features, user profile based features and network based features) to distinguish

between legitimate users and malicious users (stegbots).

Besel et al. [160] have analyzed social botnet attack on Twitter. The authors have

revealed that usually social bots use URL shortening services and URL redirection in order

to redirect users to malicious web pages. Echeverria et al. [161] have detected, retrieved

and analyzed star wars botnet over thousands of users to observe the social behavior of bots.

In [162], a social bot hunter model has been presented based on the user behavioral features,

such as follower ratio, number of URLs and reputation score. In [105], a trust model has

been designed to detect malicious activities in an OSN. The author have analyzed that

low trust value of user indicates that the information spreaded by the user is considered

as untrustworthy. Moreover, in some social networks (like Twitter), establishing social

interaction with strangers is one of the characteristics.

Learning from the data patterns using supervised learning may not provide accurate

results in cases where existing data items are biased and bot behaviour dynamically changes

over a period of time. Moreover, reinforcement learning algorithms provide improved

learning by repeated interactions with the environment.
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2.7 Spam Influential Users and Influential Community De-

tection Approaches in OSNs

Zhang et al. [34] have presented a True-Top sybil resilient system for measuring user in-

fluence value in Twitter network. The authors have analyzed that in Twitter network, users

usually interact with strangers. Ma et al. [163] have identified that detecting influential

users plays a vital role in spreading spam content in online social networks. The authors

have observed that centrality measures (such as betweenness, closeness and pagerank) are

important to identify how quickly the information can be spread across social networks.

Further, the author have proposed Adjustable Multi-hop Spreading (AMS) method to mea-

sure the user influence. Alshahrani et al. [32] have proposed D-hops model, which consid-

ers degree centrality with multi-hop distance measure for identifying top-k influential users

in directed and undirected graph.

In [164], the authors have proposed and validated a user centric approach based on four

different social attributes (namely social-emotional, socio-psychological, behavior and pri-

vacy related attributes) for detecting cyber attacks in online social networks. Further, the

authors have analyzed how these attributes have more impact on influencing users in social

networks. Wu et al. [165] have presented topic behavior influence based tree method based

on five features (such as message content, hashtags, replies, mentions and retweets) for

identifying influential users in Twitter network. Singh et al. [150] have proposed a learning

automata based particle swarm optimization-influence maximization (LAPSO-IM) algo-

rithm to identify a set of influential users, who can maximize influence spread in an online

social network.

Wang et al. [37] have detected bots by considering correlation graph and applied mod-

ularity based clustering approach for botnet community detection. In [36], the SpamCom

method is proposed to detect spammers communities based on user behavioral features.

The proposal method identifies spammers (or social spam bots) based on user behavioral

features and applies clique to determine strongly connected botnet communities. Further,

the authors have used normalized mutual information (NMI) to determine the correctness

of detected communities with true communities. Zhuang et al. [166] have detected bot-
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net communities depending on maximum clique detection method with network structure.

Dang et al. [41] have presented a method to detect spammer groups in microblogging based

on the characteristics of network topology and retweeting networks.

Choo et al. [40] have proposed a spammer group detection (SGD) algorithm to detect

spammer communities based on content similarity, sentimental score and user interactions.

Further, the authors have analyzed the correlations between content spamicity (i.e., the

probability of message being spam) and number of reviews posted by spammers. Zhang

et al. [167] have proposed a partially supervised learning (PSL) algorithm which uses

frequent item set mining and positive unlabeled learning methods to detect spammer com-

munities in online social networks. Wang et al. [168] have presented a graph-based group

spam framework to detect spammer reviewer communities based on network-based fea-

tures. Further, the authors have proposed spammer community-based measures (such as

reviewer ratio, multiple reviews and neighbor tightness ) to determine spamicity score for

each community. Khanchi et al. [169] have presented a botnet detection method using ge-

netic programming to detect bots and their malicious activities. Their proposal method is

partitioned into two communities such that positive links are established within community

and negative links are established across communities.

Most of the existing approaches [38], [39] focus on spreading trustworthy information

in order to reduce the influence of spam content (or fake information) and detect spam

initiators (i.e. social spam bots) in OSNs. However, the amount of influence of spam bots

on legitimate participants (by frequent interactions) has not been adequately addressed.

In this thesis, Chapter 4 identifies the most influential users (which are influenced by

the social bots) based on tweets and the users’ interactions. In Chapter 5, spam-influential

users are identified using the proposed spam influence minimization model and it helps in

restricting the flow of illegitimate tweets in Twitter network. Further, in Chapter 5 social

botnet community detection methods have been discussed in presence of different types of

malicious activities. Further, behavioral similarity and trust values has been considered to

detect social botnet communities more accurately.
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2.8 Summary

In this chapter, different types of online social networks are discussed. A survey on data

sharing security issues and attacks in online social networks has been presented. An ex-

haustive survey on learning algorithms and trust computational models have been dis-

cussed. Different types of malicious activity based detection approaches (such fake pro-

files, spreading spam-content, phishing attack and fraudulent reviews based detection ap-

proaches) have been presented. Malicious social bot detection approaches in online social

networks are discussed. Further, spam influential users and spam influential community

detection approaches have been presented. In this thesis, trust computational models and

social bot detection approaches have been designed for online social networks. Table 2.1

shows the summary of literature on social bot detection approaches and and trust evaluation

models in OSNs.

Table 2.1: Summary of literature on social bot detection approaches and trust evaluation
models

Reference no. Outcomes Assumptions/Approach Limitations

[22] Bot detection

through spam

content

Proposed a model by con-

sidering RandomForest

classifier method to detect

spam content from unlabelled

tweets

Older spam tweets are

considered in order to

detect the unlabelled

tweets

[81] Attacks and

countermeasures

for social bot

detection

A bot retweets the spam

tweets which are posted by

botmaster and manipulates

the influence value of each

user

Network features are

not taken into consider-

ation

Continued on next page

45



CHAPTER 2. LITERATURE SURVEY Section 2.8

Table 2.1 – continued from previous page

Reference no. Outcomes Assumptions/Approach Limitations

[14] Detection of Bot

using deep neural

network

Considers both content and

metadata features to detect

bots. These features are

given as input to deep neural

networks for processing the

tweet content

Tweet content and

metadata features can

easily be modified by

malicious bots. Further,

this approach is unable

to capture dynamic

behaviors of bots

[13] Detection of

social bots using

classification

techniques

Classification system which

includes spam based detec-

tion component and entropy-

based component method

Temporal based fea-

tures are not taken into

consideration

[8] Detection of

Social Bots using

Semi-supervised

clustering

Semi-supervised clustering

method is presented by

considering quantitative and

transition probability features

Feature ranking method

is not addressed in or-

der to identify impor-

tant features

[35] Sybil Bot detec-

tion

Based on random walk, trust

value is assigned to each user.

Each user updates its trust

value based on its neighbor

influence

This method is not

more robust to handle

noisy data

[111] Detection of

Sybil Bots based

on vote trust

model

Vote trust model uses PageR-

ank algorithm. Legitimate

user is more likely to be a

friend of known user rather

than strangers

Limited number of at-

tack edges exists be-

tween social bot and le-

gitimate communities

Continued on next page
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Table 2.1 – continued from previous page

Reference no. Outcomes Assumptions/Approach Limitations

[159] Social Bot de-

tection based on

crowdsourcing

method

Social bots are detected based

on crowdsourcing method,

where the experts are used for

constructing ground truth

Human experts fail to

detect fake accounts

more accurately

[37] Detection of so-

cial botnet com-

munities

Detects botnet communities

based on graph-based fea-

tures and correlations of inter-

actions among users

Unable to detect bot-

net communities with

different types of mali-

cious activities

[61] Topic-based trust

evaluation

If a tweet is trustworthy, then

the user who posted it is likely

to be trustworthy, and other

tweets posted by this user are

also likely to be trustworthy.

Malicious user may

change its behavior

(over time) and again

may start posting

malicious tweets

[34] Identifies top-k

sybil Influential

users

Assumes that incoming

retweets, mentions and

replies are more trustworthy

for measuring influence

score rather than considering

outgoing social interactions

Considered only lim-

ited number of edges

exist between sybil bot-

net and legitimate com-

munities.

[167] Detection of

spammers com-

munities

Proposed D-hops model,

which considers degree

centrality with multi-hop dis-

tance measure for identifying

top-k influential users

More relevant features

are not addressed.

Continued on next page
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Table 2.1 – continued from previous page

Reference no. Outcomes Assumptions/Approach Limitations

[40] Detection of

spammers com-

munities

Discovered positive and neg-

ative spammers communities

through sentiment analysis

and content similarity

Characteristics of

network topology and

retweeting networks

are not addressed

[165] Topic-based trust

evaluation

Presented a topic based tree

influence method based on

five features (such as message

content, hashtags, replies,

mentions and retweets) for

identifying influential users.

Temporal and graph-

based features are not

addressed.

[89] Trustworthy

propagation

Evaluates the trustworthy ser-

vices and identifies a trust-

worthy path between a source

and the target participants

Social relationships be-

tween participants have

significant impact on

trust evaluation which

has not been addressed.

Several social bot detection approaches have been proposed in Twitter network to dis-

tinguish legitimate users and social bots [14], [81], [13]. Moreover, these studies consider

user profile features which can easily be modified by malicious bots. The user profile fea-

tures and social interaction features may not help in detecting malicious URLs which are

posted by the users. Bots may use malicious URL redirection chains in order to avoid detec-

tion. Thus, bots can attack legitimate users by misleading detectors. In this thesis, Chapter

3 and Chapter 5 considers URL-based features to detect social bots who post malicious

URLs in the tweets.

In Chapter 5, detection of malicious activities using deep autoencoder model has been

presented. In this work, user behavioral similarity is analyzed from the viewpoints of

48



CHAPTER 2. LITERATURE SURVEY Section 2.8

tweet-content similarity, shared URL similarity, interest similarity, and social interaction

similarity for identifying similar types of behavior (malicious or non-malicious) among

participants in the Twitter network.

In this thesis, malicious social bot detection algorithms are designed to distinguish le-

gitimate users among malicious social bots in Twitter network. In Chapter 3, malicious

social bots are detected by considering learning automata model with URL-based features,

such as URL redirection, frequency of shared URLs and spam content in URL in order to

avoid phishing attack in Twitter network. In Chapter 4, a single-agent deep Q-network ar-

chitecture has been designed by incorporating a deep Q-learning (DQL) model using social

attributes (or features) in the Twitter network for detection of social bots based on updating

Q-value function. Further, in Chapter 4, a multi-agent deep Q-learning model is presented

to detect social spam bots in online social networks. In the next chapter, detection of ma-

licious social bots using learning automata with URL-based features has been presented to

distinguish legitimate participants among malicious social bots in the Twitter network.
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Chapter 3

Detection of Malicious Social Bots using

Learning Automata with URL Features

in Twitter Network

Malicious social bot is a software program that pretends to be a real user in online social

networks (OSNs) [8]. Moreover, malicious social bots perform several malicious attacks,

such as spread social spam content, generate fake identities, manipulate online ratings and

perform phishing attacks [8]. In Twitter, when a participant (user) wants to share a tweet

containing URL(s), with the neighboring participants (i.e., followers or followees), the par-

ticipant adapts URL shortened service (i.e., bit.ly [16]) in order to reduce the length of URL

(because for example a tweet is restricted upto 140 characters). Moreover, a malicious so-

cial bot may post shortened phishing URLs in the tweet [11]. As shown in Fig. 3.1, when a

participant clicks on a shortened phishing URL, the participant’s request will be redirected

to intermediate URLs associated with malicious servers, which in turn redirect the user to

malicious web pages. Then the legitimate participant is exposed to an attacker. This leads

to Twitter network suffering from several vulnerabilities (like phishing attack).

Several approaches have been proposed to detect spam in Twitter network [75], [76],

[77], [78]. These approaches are based on tweet-content features, social relationship fea-

tures and user profile features. However, the malicious social bots can manipulate profile

features, such as hashtag ratio, follower ratio, URL ratio and number of retweets. The ma-
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Figure 3.1: Malicious-act on URL shortened service

licious social bots can also manipulate tweet-content features, such as sentimental words,

emoticons and most frequent words used in the tweets, by manipulating the content of each

tweet [170]. The social relationship-based features are highly robust because the malicious

social bots cannot easily manipulate the social interactions of users in Twitter network.

However, extracting social relationship-based features consumes huge amount of time due

to the massive volume of social network graph [12]. Therefore, identifying the malicious

social bots from the legitimate participants is a challenging task in Twitter network. The

existing malicious URL detection approaches [171], [128] are based on DNS information

and lexical properties of URLs. The malicious social bots use URL redirections in order to

avoid detection [172]. However, for detectors, identification of all malicious social bots is

an issue because malicious social bots do not post malicious URLs directly in the tweets.

Thus, it is important to identify malicious URLs (i.e., harmful URLs) posted by malicious

social bots in Twitter.

Most of the existing approaches [13], [22] are based on supervised learning algorithms,

where the model is trained with the labeled data in order to detect malicious bots in online

social networks. However, these approaches rely on statistical features instead of analyz-

ing social behavior of users [173]. Moreover, these approaches are not highly robust in

detecting the temporal data patterns with noisy data (i.e., where the data is baised with un-

trustworthy or fake information) because the behavior of malicious bots changes over time

in order to avoid detection [174], [175]. This motivated us to consider one of the reinforce-

ment learning techniques (like learning automata model) to handle temporal data patterns.

In this work, a learning automata model is designed to detect the malicious social bots with
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improved precision and recall.

In this chapter, the malicious behavior of participant is analyzed by considering fea-

tures extracted from the posted URLs (in the tweets), such as URL redirection, frequency

of shared URLs and spam content in URL, to distinguish between legitimate and malicious

tweets. To protect against the malicious social bot attacks, a Learning Automata based Ma-

licious Social Bot Detection (LA-MSBD) algorithm has been proposed and this integrates

a trust computational model with a set of URL-based features for detection of malicious

social bots. The proposed trust computational model contains two parameters namely, di-

rect trust and indirect trust. The direct trust value is derived from Bayesian learning [18]

(by considering URL-based features) to determine trustworthiness of tweets posted by each

participant. In addition to direct trust, belief values (i.e., indicators for determining indirect

trust) are collected from multiple neighbors of a participant. This is due to the fact that

in case neighbors of a participant are trustworthy, the participant is likely to be trustwor-

thy. Further, the Dempster’s combination rule [19] aggregates the belief values provided

by multiple 1-hop neighboring participants in order to evaluate indirect trust value of par-

ticipants in Twitter network. Moreover, in this contribution, the belief values provided

by multiple neighboring participants are considered to be independent. The proposed LA-

MSBD algorithm helps to detect malicious social bots accurately (in terms of precision,

recall, F-measure and accuracy) in Twitter. The major contributions of this chapter are as

follows:

• Analyze the malicious behavior of a participant by considering URL-based features,

such as URL redirection, relative position of URL, frequency of shared URLs and

spam content in URL.

• Evaluate trustworthiness of tweets (posted by each participant) by using Bayesian

learning and Dempster-Shafer Theory (DST).

• Design of a Learning Automata based Malicious Social Bot Detection (LA-MSBD)

algorithm by integrating a trust model with set of URL-based features.

• Performance evaluation of the proposed LA-MSBD algorithm using two Twitter datasets,

namely The Fake Project dataset [21] and Social Honeypot dataset [20] in terms of
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precision, recall, F-measure and accuracy for malicious social bot detection in Twitter

network.

The remaining portion of this chapter is organized as follows: Section 3.1 presents the

problem formulation. Section 3.2 provides a Learning Automata based Malicious Social

Bot Detection algorithm. Section 3.3 presents the experimental results. Finally, the work is

summarised in Section 3.4.

3.1 Problem Formulation

In this section, some basic terminologies are defined followed by problem formulation. The

notations as used in this chapter are listed in Table 3.1.

Given a Twitter networkG = (P,E), where P represents a participant set P = {p1, . . . , pn}

and E (i.e., E ⊆ P × P ) represents a social relationship set (or directed edges) between

the participants (users). If there exists a social relationship between two participants, then

they are considered as neighbors (i.e., either followers or followees). According to a given

Twitter network with n participants and series of m tweets twpi = {twi1, twi2, ...twim}

posted by each participant pi, a feature set F = {f1, f2, ...., fn} can be constructed from

each tweet posted by each participant. In this work, the features are assumed to be indepen-

dent to each other. Based on the URL-based features (such as URL redirection, frequency

of shared initial URLs and spam content in URL), trust parameters are defined in order to

evaluate trustworthiness of all tweets posted by each participant.

The aim is to design a framework by considering feature set to evaluate the trust value of

each OSN account (i.e., participant) and to detect malicious social bots in Twitter network

effectively and efficiently. Further, two trust components namely, direct and indirect trust

are defined to determine trust value of each participant.

Definition 1 (Direct Trust): Direct trust is defined as belief value of all tweets posted by

each participant and denoted as TDpi (t). Let TDpi (t) ∈ [0, 1] represents the direct trust value

of participant pi and Ttwij(t) ∈ [0, 1] represents trustworthiness of jth tweet posted by ith

participant at time t. If TDpi (t) = 0, it implies that all the tweets posted by participant pi
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contain completely fake or malicious information. If TDpi (t) = 1, it implies that participant

pi consistently posts trustworthy information in the tweets.

Definition 2 (Indirect Trust): Indirect trust is a belief value of tweets posted by all one-

hop neighboring participants of participant pi at time t (denoted as T IDpi (t)). If neighbors

of a participant are trustworthy, then the participant is more likely to be trustworthy. The

T IDpi (t) ∈ [0, 1] represents the indirect trust value of participant pi. If T IDpi (t) = 0, it

implies that all the tweets posted by all the neighbors of participant pi contain completely

fake or malicious information. If T IDpi (t) = 1, it implies that all the tweets posted by all the

neighbors of participant pi contain completely trustworthy information.

Table 3.1: Notations

Symbol Description

Tpi(t) the trust value of participant pi at time t

TDpi (t) the direct trust of participant pi at time t

T IDpi (t) the indirect trust of participant pi at time t

twpi(t) twpi(t) = {twi1(t), twi2(t), ...twim(t)}, the series of

m tweets for each participant pi at time t

twij(t) the participant pi posting jth tweet at time t

Ttwij(t) the trustworthiness of participant pi posting jth tweet

at time t

TD(t) TD(t) = {Ttwi1(t), ...., Ttwim(t)}, the set of trustworthiness

of all tweets posted by ith participant at time t

T ID(t) T ID(t) = {TDp1 (t), ...., TDpL(t)}, the set of direct trust values

of all one-hop neighboring participants of pi at time t

F F = {f1, f2, ...., fn}, the feature set
~F ~F = {~f1, ~f2, ...., ~fn}, the feature ranking vector

bp1(A) the belief value of participant p1 with assumption A

β β = {β1, β2, ....βn} represent set of reinforcement signal,

where βi ∈ {0, 1}

Problem (Malicious social bot detection): Given a Twitter networkG(t) = (P (t), E(t))

with series of m tweets twpi(t) = {twi1(t), twi2(t), ...twim(t)} posted by each participant
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pi at different times t ∈ 1, 2, .....τ , where P (t) is a set of participants and E(t) is a set

of social relationships (directed edges) at time t. Let TP (t) represents the set of trust val-

ues (by considering both direct trust and indirect trust) of all the participants for all the

posted tweets by the participants at time t. The goal of trust evaluation is to determine the

trustworthiness of each tweet posted by participant and to identify malicious social bots in

Twitter. The objective is to compute two functions:

f : {G(1), G(2), . . . , G(τ)} → {TP (1), TP (2), . . . , TP (τ)}

and

g : {TP (1), . . . , TP (τ)} → C = {Legitimate, Malicious bot}

to determine the set of trust values of all the participants for all the posted tweets (by the

participants) at time t (i.e., denoted as TP (t)) and determine the class C of a participant pi

(as either legitimate or malicious social bot).

3.2 Detection of malicious social bots using Learning Au-

tomata along with URL-based features

In this section, firstly, a framework is proposed for analyzing the tweets posted by partici-

pants in Twitter network. In addition, a trust model is presented with several features that

are extracted from URLs (which are posted by the participants in the tweets) for evaluating

trust value of each participant in Twitter. Finally, a Learning Automata based Malicious

Social Bot Detection (LA-MSBD) algorithm is proposed to identify the malicious social

bots.

3.2.1 Proposed Framework for Detecting Malicious Social Bots

As shown in Fig. 3.2, the proposed framework consists of three components namely data

collection, feature extraction and learning automata model. To collect tweets posted by

participants (users), the tweets can be crawled using Twitter Streaming APIs [176]. The

data collection component (i.e., phase) consists of three sub-components (i.e., sub-phases)
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Figure 3.2: Proposed framework for detecting malicious social bots

namely reading tweets from Twitter streaming, collecting tweets and URLs. Moreover,

the collected tweets and collected URLs are stored in a repository. The feature extraction

consists of two sub-components namely, expanding shortened URLs and extracting feature

set. Whenever feature extraction component obtains a shortened URL from the reposi-

tory, it is converted into a long URL using URL shortened services (such as t.co, bit.ly and

tinyurl.com) [177]. For each URL (posted by the participant in the tweet), several features

are extracted that are based on the lexical properties of URLs (such as spam content, pres-

ence of -, @ and # symbols in domain name) along with the features of URL redirection

(such as URL redirection length and relative position of initial URL). Further, these features

are given as input to the proposed learning automata model for malicious social bot detec-

tion. The proposed learning automata model is integrated with a trust evaluation model.

Moreover, the trust model determines the probability of a tweet containing any malicious

information (such as URL redirection, frequency of URLs and spam content in URL). Fi-

nally, after evaluating the malicious behavior of a series of tweets posted by a participant,

tweets are classified as malicious and legitimate tweets. However, malicious tweets are

likely to be posted by malicious social bots. This helps in distinguishing malicious social

bots from benign participants.
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3.2.2 Feature Extraction

The accuracy of malicious social bot detection approach is based on several features which

are extracted from Twitter network. In the proposed approach, URL-based feature set

F = {f1, f2, ....f11} has been considered and the features are described in Table 3.2 (sim-

ilar features are mentioned in [128], [52], [23]). These features are derived from URL

redirection chains and the lexical properties of URLs. Moreover, the URL-based features

are used in evaluating the trustworthiness of tweets posted by the participants. For exam-

ple, malicious social bots usually have long URL redirects to avoid detection [23]. The

malicious URLs are not usually placed at the end of URL redirection chain because social

bots have to redirect Twitter users to different web pages in order to perform phishing at-

tack [52]. Therefore, in this work, URL redirection length, relative position of initial URL

and suspicious words in a URL are considered in order to detect malicious tweets.

Algorithm 3.1 Feature Ranking()
1: for each feature fi ∈ F do
2: Compute weight wtfi = G(fi)

/∑n
i=1 G(fi)

3: end for
4: ~F → Construct a feature ranking vector with weights wtfi associated with each impor-

tant feature fi

Feature ranking algorithm is presented in Algorithm 3.1. Feature ranking algorithm

(with a weight function) helps to identify the most important features based on the the

weights associated with each feature. The weight function for ith feature is defined as

wtfi = G(fi)
/∑n

i=1G(fi), where n is the number of features, G(fi) represents the infor-

mation gain value (i.e., the amount of information which is gained for a feature) of each

feature fi and it is computed based on Shannon’s entropy model (Line 1-3). Using the

weight function (Line 2, Algorithm 3.1), a set of features will be identified as important

features and other set of features will be identified as less influential features based on

available Twitter network dataset. For example (i.e., for some dataset), spam content, URL

redirection length and relative position of initial URLs may be the most important features,

whereas URL without host name and presence of symbols (like @, - and #) may be the least

influential features for identifying malicious information in tweets. However, the actual set
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Table 3.2: URL-based features

Category Description and functionalities of each feature
Spam content Tweets (or URLs) which are posted by legitimate participants are

considered as legitimate tweets (or URLs). Initially, malicious so-
cial bots may act like legitimate participants. However, after at-
taining the (friend) acceptance request from other legitimate users,
malicious bot post spammy words in the tweets (or URLs).

Presence of -, @
and # symbols in
domain name

Malicious social bots usually add -, @ and # symbols in the domain
name. Malicious social bots want Twitter users to feel that they are
using a legitimate URL.

URL redirection
length

URL redirection length represents the number of URL redirections
which are performed by user until he/she reaches to landing web
page.

Frequency of
URLs

Most frequently appearing URLs (which are blacklisted) are usually
considered as malicious. Moreover, this feature is computed as n

s
,

where ′n′ is the number of times the initial URL appearing in the
tweet and ′s′ be the size of tweet. Malicious social bots usually have
higher n

s
value than that of legitimate participants.

Relative position
of initial URL

Malicious URLs are generally placed at the beginning of URL redi-
rection chains. Malicious social bots redirect Twitter users to differ-
ent web pages. Moreover, this feature is computed as rp

l
, where rp

is the relative position of an URL and l is length of URL redirection.
HTTP-302 status
code

HTTP-302 is a status code which is returned by a server when a
user makes HTTP request for an online web page. Moreover, HTTP-
302 represents a URL redirection. Malicious social bots usually use
HTTP URL redirection status code for redirecting the users to mali-
cious website.

Number of dif-
ferent endpoint
URLs

Number of different endpoint URLs is considered as one of the fea-
tures because landing to multiple endpoint URLs is one of the mali-
cious activities which is usually performed by malicious social bots.

PageRank PageRank is a measure which determines the importance of web
page used in the Internet and its value lies within a range of 0 and 1.
Moreover, PageRank is based on the weight assigned to each linked
pages and the number of incoming links.

Domain expira-
tion

Most of the malicious websites usually expire within a short time
duration. Moreover, most of the trustworthy websites regularly pay
for many years in advance.

Abnormal URL Abnormal URL represents the URL without any hostname. More-
over, this feature is extracted from WHOIS database [178].

Number of dif-
ferent domain
names

Domain name or IP address is the most important part of URL.
Moreover, usually the malicious URL redirection happens with dif-
ferent domain IP addresses.
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of important features will be determined based on higher weight values on a given dataset.

Finally, feature ranking vector ~F = {~f1, ~f2, ...., ~fn} is constructed based on weights associ-

ated with each important feature (i.e., where important features will be chosen with higher

weight values and the actual number of important features in ~F will be less than or equal

to the number of features in initial feature set F ) (Line 4, Algorithm 3.1).

3.2.3 Trust Computational Model

In Twitter network, there is an uncertainty in evaluating the trust value of participants be-

cause social trust relationship changes over time. To address this uncertainty, two methods

namely, Bayesian learning and Dempster-Shafer Theory (DST) are considered. The pro-

posed trust computational model contains two parameters - direct trust and indirect trust,

where the former is derived using Bayesian learning and the latter is derived based on

Dempster-Shafer Theory (DST).

Let G = (P,E) be a Twitter network, where P = {p1, p2, ...., pn} represents a set

of participants (users) and E ⊆ P × P is the set of directed edges representing social

relationships among participants. The trust value of participant pi at time t (denoted as

Tpi(t)) is obtained using

Tpi(t) = αTDpi (t) + (1− α)T IDpi (t) (3.1)

where TDpi (t) and T IDpi (t) are the direct and indirect trust of participant pi respectively, at

time t. Further, α ∈ [0, 1] represents weight assigned to TDpi and it is computed by adopting

Shannon’s entropy based trust model.

3.2.3.1 Direct Trust Computation

For malicious social bot detection, the direct trust value is evaluated based on identifying

the malicious behavior of a participant in terms of posting malicious URLs in the tweets. It

is assumed that participant pi posts malicious information in the jth tweet twij(t) at time

t. The distrust value of participant pi posting jth tweet at time t (denoted as DTtwij(t)) is

given by
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DTtwij(t) = pr(C = malicious|twij(t)) (3.2)

Two classes namely, malicious and legitimate are considered to train a classifier in

order to identify the malicious tweets. Here, a Bayesian classifier is applied in order to

achieve better precision. In Bayesian classification, the class C to which a tweet belongs

will be determined. The probability that tweet twij(t) belongs to class C (i.e., malicious) is

denoted as pr(C = malicious|twij(t)). The feature set is considered with 11 features (for

performance evaluation) which are extracted from each tweet (refer Section 3.2.2). Further,

the feature ranking vector ~F is constructed with the weights associated with each important

feature (as presented in Algorithm 3.1). Therefore, the tweet twij(t) is represented as a

feature ranking vector ~F = {~f1, ~f2, ...., ~fn}. From Bayesian learning [179], the probability

that a tweet (represented by feature ranking vector ~F ) is malicious will be determined as:

pr(C = malicious|twij(t)) = pr(C = malicious|~F )

=
pr(C = malicious)× pr(~F |C = malicious)

pr(~F )

= pr(C = malicious)× pr(~F |C = malicious)
/

(
pr(C = malicious)× pr(~F |C = malicious)+

pr(C = legitimate)× pr(~F |C = legitimate)
)

(3.3)

The weights are assigned to each feature before computing the trust value of a tweet,

because features play a vital role for evaluating the trustworthiness of tweets posted by

each participant. The features are ranked based on their associated weights (as discussed

in Section 3.2.2). Ranking these features play a vital role to detect malicious social bots.

Therefore, the probability of each feature is multiplied with its associated weightwtfi (refer

Algorithm 3.1).

pr(~F |C = malicious) = pr(~f1, ~f2, ..|C = malicious)

=
n∏
i=1

pr(~fi = xi|C = malicious)× wtfi
(3.4)
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In Equation (3.4), each feature is conditionally independent. The probabilities pr(~fi =

xi|C = malicious) are estimated as the ratio of number of tuples containing a malicious

classC (in training data tuples) having the value xi for feature ~fi (i.e., ~fi is a ranked feature)

and number of tuples containing a malicious class C (in training data tuples). Substituting

Equation (3.4) in Equation (3.3), the probability pr(C = malicious|twij(t)) (which is

DTtwij(t) as given in Equation (3.2)) can be obtained. The trust value of jth tweet posted

by ith participant at time t (denoted as Ttwij(t)) is determined by

Ttwij(t) = 1−DTtwij(t) (3.5)

Therefore, the direct trust value of participant pi (denoted as TDpi (t)) at time t is computed

as

TDpi (t) =

∑m
j=1 Ttwij(t)

m
(3.6)

where Ttwij(t) is the trustworthiness of jth tweet posted by ith participant at time t and m

represents the number of tweets posted by pi.

Algorithm 3.2 Direct Trust Computation()

1: TD(t) = φ
2: for each tweet twij j=1 to m do
3: if participant pi has posted jth tweet tw to one of its neighboring participant (friend)

then
4: F ← Extract feature set of twij
5: ~F ← Feature ranking(F )
6: for each feature ~fi ∈ ~F do
7: Compute pr(~f1, .., ~fn|C = malicious) using Equation (3.4)
8: end for
9: Compute Ttwij(t) using Equation (3.5)

10: Concatenation of TD(t) with value Ttwij(t) and TD(t) is updated with the con-
catenated values

11: end if
12: end for
13: Compute direct trust TDpi (t) using Equation (3.6)

Direct trust computation algorithm (as discussed in Algorithm 3.2) takes a series of

tweets posted by a participant pi at time t as input. A set of features F are extracted from
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each jth tweet twij posted by a participant pi at time t (Line 2-4). Based on the extracted

features, a feature ranking vector ~F is constructed with the weights associated with the

features (Line 5). The probability of each feature in ~F belonging to malicious class C is

determined using Equation (3.4). Further, the distrust value of a tweet is computed by sub-

stituting Equation (3.4) in Equation (3.3), and finally from Equation (3.2) (Line 6-8). The

trust value of each jth tweet posted by a participant pi (i.e., denoted as Ttwij(t)) is deter-

mined using Equation (3.5) (Line 9). Moreover, each trust value Ttwij(t) is concatenated

with a set TD(t) (where TD(t) is initially φ as shown in Line 1, Algorithm 3.2) in order to

determine direct trust value of a participant pi at time t (Line 10). Then TD(t) is updated

with the concatenated values. The entire process is repeated form number of tweets posted

by each participant pi. Finally, the direct trust value TDpi (t) of a participant pi at time t is

determined using Equation (3.6) by considering {Ttwi1(t), ...., Ttwim(t)} (i.e. from the set

TD(t)) (Line 13, Algorithm 3.2).

3.2.3.2 Indirect Trust Computation

The indirect trust is determined by considering belief values of all 1-hop neighbors of a

participant pi. Although the direct trust value is important in evaluating the trustworthiness

of participant, the belief values collected from multiple neighboring participants are also

helpful in evaluating the trustworthiness of participant. Moreover, if legitimate participants

randomly add malicious social bots as their friends, then the tweets posted by legitimate

participants are likely to be considered as malicious because the legitimate participants are

influenced by the malicious social bots [180]. Hence, the belief values collected from the

multiple neighboring participants can reduce the bias in the trust value of a participant.

The belief value of each one-hop neighboring participant is considered as conditionally

independent. The direct trust value as computed using Equation (3.6) will be the belief

value of a participant pi at time t and it is used by Dempster-Shafer theory (DST) [19],

where Dempster’s weighted combination rules are applied to determine indirect trust value

of a participant in Twitter network.

In this work, let X={malicious, legitimate} and A be an assumption that neighbors of

a participant pi are legitimate. Based on assumption A, the neighbors of pi belongs to one
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Algorithm 3.3 Indirect Trust Computation()

1: T ID(t) = φ
2: if participant pi has one or more one-hop neighboring participants then
3: for each pk ∈ NB(pi) do; NB(pi)-neighbors of pi
4: TDpk(t)← Direct Trust Computation(pk)
5: Concatenation of T ID(t) with value TDpk(t) and T ID(t) is updated with the con-

catenated values
6: end for
7: Compute indirect trust T IDpi (t) by using Equation (3.11)
8: else
9: T IDpi (t) = 0

10: end if

of the states power set 2X = {{}, A={legitimate}, Ā={malicious} and µ = X}. Then the

indirect trust value of participant pi is computed from the belief value of multiple one-hop

neighbors of pi based on assumption A. If participant pi has a neighbor p1, then the belief

value of p1 with an assumption A (that participant p1 is legitimate) is denoted as bp1(A)

and it is computed as the direct trust of p1 using Equation (3.6) i.e., bp1(A) = TDp1 (t).

According to assumption A, the belief value bp1(Ā) = 0. From Dempster-Shafer Theory

[19], [181]
∑

m∈2X bp1(m) = 1, then the belief value bp1(µ) = 1− TDp1 (t). If participant p1

is legitimate, then participant pi is likely to be legitimate. Therefore, the belief values are

shown as:
bp1(A) = TDp1 (t)

bp1(Ā) = 0

bp1(µ) = 1− TDp1 (t)

(3.7)

Similarly, if participant pi has a neighbor p2, then the belief value of p2 with an as-

sumption A (that participant p2 is legitimate) is denoted as bp2(A). The belief values are

computed as follows:
bp2(A) = TDp2 (t)

bp2(Ā) = 0

bp2(µ) = 1− TDp2 (t)

(3.8)

From the belief values of 1-hop neighboring participants of pi, the participant pi is

identified as either legitimate or malicious social bot based on the trust value of neighbors

of pi (say p1 and p2). Therefore, the belief of p1 and p2 are combined by using Dempster’s
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rule [19] that is given by:

bp1(A)⊕ bp2(A) =
1

k

[
bp1(A)bp2(A) + bp1(A)bp2(µ)

+bp1(µ)bp2(A)

]
bp1(Ā)⊕ bp2(Ā) =

1

k

[
bp1(Ā)bp2(Ā) + bp1(Ā)bp2(µ)

+bp1(µ)bp2(Ā)

]

bp1(µ)⊕ bp2(µ) =
1

k

[
bp1(µ)bp2(µ)

]
(3.9)

where, k =

{
bp1(A)bp2(A) + bp1(A)bp2(µ) + bp1(µ)bp2(A)+

bp1(µ)bp2(µ) + bp1(Ā)bp2(Ā) + bp1(Ā)bp2(µ) + bp1(µ)bp2(Ā)

} (3.10)

Therefore, the indirect trust value of pi at time t (denoted as T IDpi (t)) is derived by

combining the belief values [182] of all 1-hop neighbors (of pi) and is determined as:

T IDpi (t) = bp1(A)⊕ bp2(A)⊕ ......⊕ bpL(A) (3.11)

where, participant p1, p2, . . . , pL represents neighbors of pi and the belief aggregation

operator (i.e., ⊕) is commutative and associative [181].

Indirect trust computation algorithm is discussed in Algorithm 3.3. If participant pi has

one or more one-hop neighboring participants, then the indirect trust value of participant

pi at time t requires the belief values of its neighbors (say p1, p2, ...pL). The belief value

of each pi neighbor is determined using the direct trust computation (as discussed in Al-

gorithm 3.2) (Line 1-4). Moreover, each neighboring participant’s direct trust value TDpk(t)

is concatenated with a set T ID(t) (where T ID(t) is initially φ as shown in Line 1, Algo-

rithm 3.3) in order to determine indirect trust value of a participant pi at time t (Line 5).

Then T ID(t) is updated with the concatenated values. The entire process is repeated for

each neighboring participants (i.e., for L number of neighbors). Finally, the indirect trust

value of pi is computed by combining the belief values (i.e., direct trust values) of all 1-hop

neighbors of pi using Equation (3.11) by considering {TDp1 (t), ...., TDpL(t)} (i.e. from the set
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T ID(t)) (Line 7, Algorithm 3.3). Otherwise, the indirect trust value T IDpi (t) is set to 0 (Line

9).

For example, if participant pi has two neighbors (say p1 and p2), then the result of

combining two belief functions is computed as follows (using Equation 3.9): bp1(A) =

0.5, bp1(Ā) = 0, bp1(µ) = 0.5, bp2(A) = 0.8, bp2(Ā) = 0, bp2(µ) = 0.2, bpi(A) =

bp1(A) ⊕ bp2(A) = 0.5 ∗ 0.8 + 0.5 ∗ 0.2 + 0.8 ∗ 0.5 = 0.90, bpi(Ā) = bp1(Ā) ⊕ bp2(Ā) =

0 ∗ 0 + 0.2 ∗ 0 + 0.5 ∗ 0 = 0, bpi(µ) = 0.5 ∗ 0.2 = 0.10. The indirect trust value of pi is

0.90.

3.2.4 Learning Automata based Malicious Social Bot Detection using

Trust Model

In this section, firstly the motivation is discussed to applying learning automata model

for malicious bot detection. Later, the Learning Automata based Malicious Social Bot

Detection (LA-MSBD) algorithm has been proposed by considering direct and indirect

trust components with various URL-based features in a Twitter network.

3.2.4.1 Motivation Behind Trust Computation and Learning Automata Model

Malicious social bots usually send malicious or fake content to their legitimate neighbor-

ing participants. Thereby, malicious bots can reduce the trust value of their legitimate

neighbors. This motivated us to consider two trust parameters, namely direct trust (i.e.,

from users’ own behavioral patterns while interacting in its neighborhood) and indirect

trust (i.e., from belief values that are collected from the neighbors depending on their be-

havioral patterns) for malicious social bot detection. In OSNs, the behavior of malicious

social bot changes with time. For constructing ground-truth, involving human experts may

not always provide genuine interpretation by manually observing users’ behavioral pat-

terns [183]. Moreover, most of the existing supervised machine learning algorithms are

not suitable when a malicious user manipulates data with noisy patterns (i.e., where data

is baised with fake information) [175]. This motivated us to design a learning automata

model (which is one of the reinforcement learning techniques) to detect the participants
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who are posting malicious information in the tweets. A participant cannot be considered

as legitimate by posting a series of legitimate tweets at particular time slot t. This is due to

the fact that the participant may change its behavior (with time) and start posting malicious

tweets again, this in-turn misleads the detection of malicious bots. The motivation behind

using learning automata is to detect a participant as a malicious social bot only after ex-

ecuting finite number of learning actions. In this work, finite number of learning actions

represents a series of tweets posted by a participant at different time slots.

3.2.4.2 Learning Automata Model

In the proposed model, learning automata is defined as < LA,A, pr, β, rs, F >, where

LA = {la1, la2, ...., lan} and each learning automata lai is associated with each partici-

pant (user) in Twitter network. Let A = {a1, a2, ....an} represents set of actions, where

each action ai represents a series of tweets posted by participant pi in Twitter network. Let

pr = {pr1, pr2, . . . ..prn} be the set of action probability values of participant pi posting

malicious information in the tweets at different time slots. Let ak(t) represents a learn-

ing action selected by a automata at time t. The learning actions are performed on an

environment and produces either a penalty or a reward. In addition, β = {β1, β2, ...., βn}

represents a set of reinforcement signals for each participant pi at different time slots, where

βi ∈ {1, 0}. If βi = 1, it implies that the proposed learning automata model identifies the

malicious information from series of tweets posted by a participant at time slot t. The term

rs represents the learning algorithm in order to update reinforcement signal which is based

on either penalty (ρ) or reward (r). For each tweet, success or failure of identifying a tweet

as malicious will be predicted. Thus, βi = 0 implies that the learning algorithm rs fails to

identify the malicious tweets. Further, F : pr × β → pr represents the updation of action

probability values with respect to the current action probability value and the response from

the environment (i.e., β). If the learning automaton obtains a reward (i.e., when βi = 1),

then the probability value pr(t+ 1) remains constant (unchanged). Otherwise, if the learn-

ing automaton obtains a penalty (i.e., when βi = 0) then the probability value pr(t+ 1) (at

next time slot t+ 1) is updated as follows [184]:
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pr(t+ 1) =

 (1− η)pr(t), βi = 0

pr(t), βi = 1
where η is a constant. (3.12)
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Figure 3.3: Learning Automata model for social bot detection in Twitter network

In Twitter network, a tweet may contain malicious information which may lead to sev-

eral vulnerabilities (like performing phishing attack). Malicious social bots are usually used

for posting (or re-posting) spam (or malicious) tweets. In the proposed model, if a partici-

pant pi posts a tweet to a participant pj in Twitter network, then the learning algorithm rs

determines whether the tweet contains any malicious information, such as malicious URL

redirection, frequency of shared URLs and spam content in URL (which are described in

Section 3.2.2). In this work, reward r is defined as the probability of tweet which contains

malicious information. The participant who posts malicious information in the tweet is

rewarded for his/her postings and trust value of the participant will be reduced. Further, if

a participant is continuously posting retweeted tweets with malicious information, then the

participant will gain high reward for his/her malicious postings. Therefore, as the reward

of the participant increases, then the distrust value also increases.

3.2.4.3 Proposed Learning Automata based Malicious Social Bot Detection Algo-

rithm

A Learning Automata based Malicious Social Bot Detection algorithm (LA-MSBD) (refer

Algorithm 3.4) has been presented by incorporating trust computational model in order to

identify the malicious social bots. For each participant pi, the learning automata is activated
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Algorithm 3.4 Learning Automata based Malicious Social Bot Detection
Input:

Set of participants P = {p1, ..., pn} in Twitter, τ : Number of time slots, Tf :
Threshold value, ε: Reward parameter
Output:

T : a set of trust values of all legitimate participants with list of legitimate partici-
pants, Sb: a set of malicious social bots
Assumptions:

Let LA = {la1, la2, ...lan} be set of learning automata, where lai represents learn-
ing automata for each participant.
begin

1: Sb = φ, β = φ, T = φ
2: Learning automata is activated for each participant pi
3: for each participant pi ∈ P do
4: for t = 1, 2, ..., τ do
5: TDpi (t)← Direct Trust Computation()
6: T IDpi (t)← Indirect Trust Computation()
7: Compute trust value of pi (Tpi(t)) using Equation (3.1)
8: Compute action probability value pr(t) = 1− Tpi(t)
9: if Tpi(t) < Tf then

10: Concatenation of set β with a string 1 and β is updated with the concate-
nated values

11: else
12: Concatenation of set β with a string 0 and β is updated with the concate-

nated values
13: end if
14: Compute pr(t+ 1) using Equation (3.12)
15: end for
16: if (no. of 1’s in β > no. of 0’s in β) then
17: Sb = Sb ∪ {pi} // pi-malicious social bot
18: reward pi using Tpi(t) = Tpi(t)− ε
19: else
20: pi is legitimate and added into the legitimate list of participants.
21: Concatenation of set T with the value Tpi(t) and T is updated with the concate-

nated values
22: end if
23: β = φ
24: end for
25: return T with list of legitimate participants and Sb

and the trust value of pi at time t (denoted as Tpi(t)) is computed using Equation (3.1) (Line

1-7). Moreover, the Direct Trust Computation() (as mentioned in Line 5, Algorithm 3.4)

will be determined using Algorithm 3.2 and Indirect Trust Computation() (as mentioned
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in Line 6, Algorithm 3.4) will be determined using Algorithm 3.3. Initially, the action

probability value is computed as 1 − Tpi(t) in order to identify the malicious information

in the tweets posted by participant pi at time slot t (Line 8). If Tpi(t) < Tf , then pi is

rewarded by concatenating reinforcement signal set β with a string 1. This implies that

the proposed LA-MSBD algorithm identifies a participant as a malicious social bot at time

slot t. Otherwise, pi is penalized by concatenating β with a string 0. Then β is updated

with the concatenated values. The action probability value is updated for the next time slot

using Equation (3.12). The entire process is repeated for finite number of learning actions

at different time slots (Line 9-15). Therefore, reinforcement signal β is obtained as a string

of 0’s and 1’s from different time slots t. Moreover, the proposed LA-MSBD algorithm

identifies a participant as a malicious social bot if the number of 1’s in β is greater than the

number of zeroes in β. Moreover, once a participant is detected as a malicious social bot

then the participant is rewarded by reducing the trust value of the participant with reward

constant ε (where ε ∈ [0, 0.05]). Otherwise, the participant is considered as a legitimate

and added into the legitimate list of participants (Line 16-22). Moreover, the reinforcement

signal set β is reset to null after identifying each participant as a legitimate or social bot

(Line 23). Therefore, learning automata returns a set of trust values of all the legitimate

participants with list of legitimate participants and set of malicious social bots in Twitter

network (Line 25).

The malicious social bots (or spammer bots) can manipulate profile features (such as

number of tweets, retweets and followers) by using pseudo-random generator functions

[170]. Moreover, the malicious social bots can manipulate the content of each tweet. When

malicious social bots perform phishing attack, the proposed LA-MSBD algorithm analyzes

the malicious behavior of tweet (containing URL) by considering URL-based features (like

URL redirection, frequency of shared URLs and spam content in URL) for bot detection.

However, malicious social bots cannot manipulate URL redirection chains and spam con-

tent in URL because their intention is to perform phishing attack through URL redirection.

Hence, the proposed method detects malicious social bots (by considering URL-based fea-

tures) from phishing attack.

The time complexity of the proposed Learning Automata based Malicious Social Bot
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Detection (LA-MSBD) Algorithm 3.4 is O(nτkm), where n is the number of participants

(or users), τ is the number of time slots, m is the number of tweets posted by each partic-

ipant at a particular time slot and k is the number of neighbors of a participant pi. In the

Algorithm 3.4, for each time slot t, the time complexity of direct trust computation Algo-

rithm 3.2 is O(F̂m), where F̂ is the number of features (in a feature ranking vector ~F as

defined in Section 3.2.2). The time complexity of indirect trust computation Algorithm 3.3

is O(F̂ km). Therefore, the time complexity for one time slot is O(F̂m + F̂ km) which

can be rewritten as O(km) by assuming F̂ as a constant. For the number of time slots in

Algorithm 3.4, the time complexity of each participant is O(τkm). Therefore, the time

complexity of the proposed LA-MSBD algorithm is O(nτkm).

3.3 Performance Evaluation

In this section, the performance of the proposed Learning Automata based Malicious So-

cial Bot Detection algorithm (LA-MSBD) is evaluated by considering two Twitter datasets

namely Social Honeypot1 dataset [20] and The Fake Project2 dataset [21]. The Fake Project

dataset and Social Honeypot dataset contain the labels for tweets (i.e., as legitimate and

malicious tweets) and users (i.e., legitimate users and malicious bots). The Fake Project

dataset contains 3,474 legitimate participants and 1000 malicious social bots (i.e., folder

named as traditional spambots 1). Social Honeypot dataset contains 19,276 legitimate par-

ticipants and 22,223 social bots. For example, Social Honeypot dataset contains a set of

labeled legitimate users and content polluter tweets (i.e., bots tweets). For Social Honeypot

dataset, it has been considered that the tweets posted by legitimate users are (implicitly) la-

beled as legitimate tweets, and all tweets posted by content polluters are malicious tweets.

Moreover, Social Honeypot dataset contains a text file as ’legitimate users tweets.txt’ with

samples in the form of ’UserID, TweetID, Tweet, CreatedAt’. Further, all the URLs in the

tweets are collected in order to extract the URL based features. Using Algorithm 3.1, the

feature ranking vector is constructed by choosing a set of features which have higher weight

1http://infolab.tamu.edu/data/
2http://mib.projects.iit.cnr.it/dataset.html
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values for the above datasets. The details of Social Honeypot and The Fake Project datasets

are presented in Table 3.3.

The proposed LA-MSBD algorithm identifies the participants as either legitimate par-

ticipants or malicious social bots by considering URL-based features. Moreover, each URL

feature is conditionally independent. If a tweet is determined to be malicious based on one

URL feature and legitimate based on another URL feature, then the probability of the tweet

being malicious is computed by using Equation (3.3). If a malicious tweet and a legitimate

tweet both are posted by the same participant pi, then the trustworthiness of each tweet

will be determined by using Equation (3.5). Later, the trust value of participant pi will

be determined by using Equation (3.6). Moreover, if a participant posts a series of tweets

with malicious information (or spam content in the tweet), then the participant is identified

as malicious social bot. For example, if a participant pi is marked as a malicious social

bot in January 2019, then based on his/her malicious behavior in subsequent months, the

proposed LA-MSBD algorithm identifies user as either a malicious social bot or legitimate.

Table 3.3: Summary of Twitter Datasets

Dataset Name Legitimate Malicious Legitimate Malicious
Users Social Bots Tweets Tweets

The Fake Project 3474 1000 8,377,522 145,094
Social Honeypot 19,276 22,223 3,259,693 2,353,473

Fig. 3.4 shows the variation of false negative and false positive rates for different thresh-

old values. The false negative rates start decreasing when the threshold value is around 70

percent and 60 percent for The Fake Project dataset and Social Honeypot dataset, respec-

tively. This implies that the proposed LA-MSBD algorithm can achieve high detection

rate (i.e., in terms of recall) to detect malicious social bots for the above threshold values.

Therefore, 70 percent as threshold value and 60 percent as threshold value have been con-

sidered for The Fake Project dataset and Social Honeypot dataset, respectively. However,

the threshold value may vary depending on the nature of the dataset. The proposed LA-

MSBD algorithm has been compared in two different ways: (i) LA-MSBD algorithm with

four conventional machine learning algorithms and (ii) LA-MSBD algorithm with the exist-
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Figure 3.4: Variation of false negative and false positive rates for different threshold values.

ing social bot detection algorithms, such as learning from unlabeled tweets (Lfun) [22] and

neural-network based redirection spam detection (NN-RS) [23].

3.3.1 Comparison with Conventional Machine Learning Algorithms

Firstly, the proposed LA-MSBD algorithm is compared with four conventional machine

learning algorithms (such as Support Vector Machine, Multilayer Perceptron, Logistic Re-

gression and Random Forest) by considering URL-based features with 5-fold cross-validation

for malicious social bot detection. A library named as scikit-learn (with the respective

packages) is used for the following four conventional machine learning algorithms.

Support Vector Machine (SVM): SVM is one of the popular supervised machine learn-

ing methods in order to classify the data. Moreover, SVM is used for both linear and non-

linear separation of data by constructing a hyperplane in order to reduce the over-fitting

of data [185]. For SVM, LinearSVC is used with RBF kernel (from sklearn package) by

considering URL-based features.

Multilayer Perceptron (MLP): A MLP is a feed-forward neural network with at least

three layers namely, input layer, hidden layer and output layer. MLP uses back propagation

for training and network weights can be adjusted in order to minimize error between ac-

tual and predicted output [186]. For MLP, MLPClassifier is used with stochastic gradient

descent (from sklearn.neural network package) by considering URL-based features.
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Logistic Regression (LR): LR uses logistic function to predict the outcome in terms of

binary value (such as true/false, win/lose and yes/no) [187]. For LR, LogisticRegression is

used (from sklearn.linear model package of scikit-learn library) by considering URL-based

features.

Random Forest (RF): RF is an ensemble learning algorithm, which implies that al-

gorithm uses other machine learning algorithms in order to achieve better performance.

Moreover, RF algorithm is used for constructing multiple decision trees based on random

subsets of features [188]. For RF, RandomForestClassifier is used (from sklearn.ensemble

package) by considering URL-based features.

The performance of the proposed LA-MSBD algorithm is evaluated in terms of F-

measure, precision, recall and accuracy by taking set of URL-based features into consider-

ation. The results are summarize for the proposed LA-MSBD algorithm by considering the

following evaluation metrics: True Positive (TP): Participants detected as malicious social

bots are really malicious social bots. False Positive (FP): Participants detected as malicious

social bots are really legitimate participants. False Negative (FN): Participants detected as

legitimate participants are really malicious social bots. True Negative (TN): Participants

detected as legitimate participants are really legitimate participants.

The outcomes of the proposed LA-MSBD algorithm are compared with other existing

algorithms based on the following metrics:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(3.13)

F-measure = 2 ∗ Precision ∗Recall
Precision+Recall

(3.14)

Accuracy =
TP + TN

TP + FN + FP + TN
(3.15)

Table 3.4 and Table 3.5 shows the comparison of the results of the proposed Learning

Automata based Malicious Social Bot Detection (LA-MSBD) algorithm with four conven-
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Table 3.4: Comparison performance of the proposed LA-MSBD algorithm with the existing
algorithms for 5-folds cross validation of The Fake Project Dataset

Algorithm one-fold two-fold three-fold four-fold five-fold Average Precision (in %)

LA-MSBD 94.17 95.73 96.09 93.56 97.32 95.37

RF 91.74 92.71 93.20 92.23 93.68 92.71

LR 85.67 87.37 85.19 87.59 87.56 86.67

MLP 76.23 77.58 78.11 77.45 76.75 77.22

SVM 74.94 76.72 75.45 76.65 75.99 75.95

Table 3.5: Comparison performance of the proposed LA-MSBD algorithm with the existing
algorithms for 5-folds cross validation of Social Honeypot Dataset

Algorithm one-fold two-fold three-fold four-fold five-fold Average Precision (in %)

LA-MSBD 90.0 92.85 91.81 90.91 93.32 91.77

RF 87.68 88.20 87.18 88.23 86.74 87.60

LR 84.18 84.20 83.18 84.23 83.74 83.90

MLP 75.52 76.79 75.01 73.16 75.68 75.23

SVM 72.92 71.12 70.12 72.01 72.35 71.70

tional machine learning algorithms (such as SVM, MLP, LR, RF) for 5-fold cross validation

on two datasets (such as Social Honeypot dataset and The Fake Project dataset) by con-

sidering URL-based features. For SVM, the malicious social bot detection performance

in terms of precision is around 74%, which is a moderate value for binary data classifi-

cation. The experimental results illustrate that the proposed LA-MSBD algorithm gives

better performance when compared to conventional machine learning algorithms in terms

of precision. The reason is that the data labeled by crowd-sourcing methods (i.e., which

uses human intelligence or experts to label participant as either a bot or a legitimate) can-

not efficiently provide genuine interpretation by manually observing behavioral patterns

of a participant with its neighboring participants. Further, the trust value of a participant

changes over time based on their behavioral patterns. Moreover, the proposed LA-MSBD

algorithm is based on the malicious behavior of a participant (at different time intervals) and

the belief values collected from the multiple one-hop neighboring participants (refer Sec-

74



CHAPTER 3. DETECTION OF MALICIOUS SOCIAL BOTS USING LEARNING AUTOMATA WITH URL FEATURES IN TWITTER NETWORK Section 3.3

tion 3.2.3.2). Therefore, by incorporating direct and indirect trust parameters with learning

automata model, the proposed LA-MSBD algorithm has achieved approximately 95% (for

The Fake Project dataset) on precision with 5-fold cross validation. Therefore, the learn-

ing process conventional machine learning algorithms have achieved less precision when

compared to the proposed LA-MSBD algorithm. Further, the precision value obtained for

The Fake Project dataset is better than Social Honeypot dataset because Social Honeypot

dataset contains noisy and untrustworthy information in its user content features than The

Fake Project dataset.

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Days

 SVM
 MLP
 LR
 RF
 LA-MSBD

(a) Precision

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca
ll

Days

 SVM
 MLP
 LR
 RF
 LA-MSBD

(b) Recall (True Positive Rate)

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
m
ea
su
re

Days

 SVM
 MLP
 LR
 RF
 LA-MSBD

(c) F-measure

Figure 3.5: Malicious social bot detection on The Fake Project Dataset.

Fig.3.5 and Fig.3.6 show the performance of social bot detection algorithms in terms

of precision, recall (true positive rate) and F-measure on different time slots. Fig.3.5(a)

and Fig.3.6(a) illustrate that the LA-MSBD algorithm shows better performance in terms

of precision as compared with the four conventional machine learning algorithms such as
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Figure 3.6: Malicious social bot detection on Social Honeypot Dataset.
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Figure 3.7: Comparison (performance in terms of precision) of the proposed LA-MSBD
algorithm with the existing algorithms.
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Figure 3.8: Detection rates (in terms of accuracy) on The Fake Project Dataset.

SVM, MLP, LR, RF. Moreover, in terms of recall (refer Fig. 3.5(b) and Fig. 3.6(b)) and F-

measure (refer Fig. 3.5(c) and Fig. 3.6(c)), the proposed LA-MSBD algorithm outperforms

the existing algorithms. For The Fake Project dataset, it has been observed that the preci-

sion level of proposed LA-MSBD algorithm is 10% higher than Logistic Regression (LR)

when performing social bot detection for the 10th day. From Fig.3.6(a), can be observed

that the precision level of proposed LA-MSBD algorithm is around 10% higher than Logis-

tic Regression (LR) while performing social bot detection on Social Honeypot dataset for

the month of October. Fig. 3.5(c) and Fig.3.6(c) show that the F-measure of the proposed

is above 90% for all days and months. The Support Vector Machine (SVM) has lowest

F-measure of social bot detection that is below 75%. For The Fake Project dataset, the

highest precision level of the proposed LA-MSBD algorithm is around 95% and the highest
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Figure 3.9: Detection rates (in terms of accuracy) on Social Honeypot Dataset.

precision level of Random Forest (RF) is around 92%. For malicious social bot detection in

Social Honeypot dataset, the highest precision level of the proposed LA-MSBD algorithm

is around 90% and the highest precision level of Random Forest (RF) is around 87%. This

is due to the fact that the proposed LA-MSBD algorithm executes for finite set of learning

actions to update the action probability value and achieves the advantages of incremental

learning. Hence, the learning automata model with trust component identifies the malicious

tweets which are posted by malicious social bots.

3.3.2 Comparison with the Existing Social Bot Detection Algorithms

The proposed LA-MSBD algorithm provides better performance when compared with the

existing algorithms, such as learning from unlabeled tweets (Lfun) [22] and neural-network
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based redirection spam detection (NN-RS) [23]. From Fig. 3.7, it can be observed that

the proposed LA-MSBD algorithm with direct and indirect trust computation has highest

precision among the three approaches. Further, it has been observed that the proposed LA-

MSBD algorithm with direct and indirect trust achieves 2-3% improvement on precision

value over the proposed LA-MSBD with only direct trust. The first reason is that the indirect

trust of participant is derived from Dempster-Shafer Theory (DST) by considering the belief

values of all 1-hop neighbors. The second reason is that malicious social bots may be

trustworthy towards one participant and may be malicious towards other participants.

Table 3.6: Comparison of performance on two dataset in terms of Precision (P), Recall (R)
and F-measure

The Fake Project Social Honeypot Third Search

Algorithm P R F-measure P R F-measure party based engine based

features features

NN-RS 87.75 85.38 86.54 84.53 82.34 83.42 no no

Lfun 92.71 90.88 91.78 89.29 87.94 88.60 no no

LA-MSBD 95.37 96.12 95.74 91.77 90.98 91.37 yes yes

In the proposed LA-MSBD, search engine based features (like PageRank and domain ex-

piration) are taken into consideration for detection of malicious social bots because most of

the popular legitimate URLs may appear within the top-k search engine results. Moreover,

comparison has been done in terms of recall, precision and F-measure to detect malicious

social bots. Table 3.6 shows the comparison of the proposed algorithm with other existing

approaches. The existing Lfun and NN-RS approaches obtain lower precision and recall

when compared to the proposed LA-MSBD algorithm. For The Fake Project dataset, the

recall of the proposed LA-MSBD algorithm is 96.12 percent and the recall of the existing

Lfun is 90.88 percent. In the proposed LA-MSBD algorithm, third party based features

(such as DNS information and WHOIS database3) are taken into consideration for detection

of malicious social bots. Thus, the recall of the proposed algorithm is higher than the ex-

isting algorithms. For The Fake Project and Social Honeypot datasets, it can observed that

3http://whois.domaintools.com
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the precision of the proposed LA-MSBD algorithm provides 3 percent improvement over

the existing Lfun.

Fig. 3.8 and Fig. 3.9 show the accuracy of legitimate participant and malicious social

bot detection for three different approaches namely, LA-MSBD, Lfun and NN-RS. From Fig.

3.8(a), Fig. 3.8(b) and Fig. 3.9(a), it can be observed that accuracy of legitimate participant

detection is stable and it is more than 90% for the proposed LA-MSBD and the existing Lfun

approaches. From Fig. 3.8(c), it can be observed that accuracy of legitimate participant is

more than 85% for the existing NN-RS approach. From Fig. 3.8, it is observed that the

accuracy of malicious social bot detection fluctuates. This is due to the fact that bots post

less number of malicious tweets (at particular time slot t) in order to avoid detection. The

malicious social bot detection (i.e., in terms of accuracy) for the proposed LA-MSBD algo-

rithm is around 92% on the first day and decreases to 70% on 5th day (as shown in 3.8(a)).

The malicious social bot detection for the existing Lfun approach has been decreased from

90% on first day to almost 65% on 5th day (as shown in Fig. 3.8(b)). Moreover, the mali-

cious social bot detection for the existing NN-RS approach has been decreased from 81%

on first day to almost 60% on 5th day (as shown in Fig. 3.8(c)). Similarly, the results for

the different approaches can be compared accordingly for different days (as shown in Fig.

3.8). From Fig. 3.9, it can be observed that the accuracy of malicious social bot detection

fluctuates. This is due to the fact that the malicious social bots have reduced the length

of URL redirection chains because long URL redirection chains are usually considered as

suspicious. The malicious social bot detection for both the proposed LA-MSBD and the

existing Lfun algorithms are around 90% on May month and the accuracy reduces to 75%

on September (as shown in Fig. 3.9(a)). However, in other months, the accuracy of the pro-

posed LA-MSBD algorithm is better than the existing Lfun approach. Moreover, the social

bot detection for the existing NN-RS approach decreases from 85% on first month to almost

60% on other months (as shown in Fig. 3.9(c)). On an average, the proposed LA-MSBD

algorithm provides better accuracy over the existing algorithms namely, Lfun and NN-RS.
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3.4 Summary

In this chapter, the proposed trust computation model contains two parameters, namely,

direct trust and indirect trust. Moreover, the direct trust is derived from Bayesian learning,

and the indirect trust is derived from the Dempster–Shafer theory (DST) to determine the

trustworthiness of each participant accurately. A Learning Automata based Malicious So-

cial Bot Detection (LA-MSBD) algorithm has been designed by integrating a trust model

with a set of URL-based features in order to distinguish malicious social bots from legiti-

mate participants. Moreover, the proposed LA-MSBD algorithm detects a participant as a

malicious social bot only after executing a finite number of learning actions. In the next

chapter, single-agent and multi-agent deep reinforcement learning (i.e., deep Q-learning)

models have been presented.
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Chapter 4

Deep Reinforcement Learning Models

for Detecting Social Bots and Influential

Users

Most of the existing approaches are designed on learning algorithms which rely on statisti-

cal features in order to detect social bots in OSNs [14], [8], [189]. In [24], [80], malicious

users have strong motivation to manipulate the data (which may be used by supervised

machine learning algorithm) in order to avoid detection. Thus, this may lead to misclas-

sification for new sample of data during testing phase. However, the recent studies have

illustrated that supervised machine learning algorithms fail to detect social bots in certain

situations, such as when training data is more biased [25]. Thus, a reinforcement learning

algorithm is applied in order to detect social bots more accurately.

Reinforcement Learning (RL) has been adopted for social botnet detection problem be-

cause in an online social network the behavior of a user rapidly changes over time. To

detect the social bots, the learning agent has to learn from the past experiences to reach a

goal state through several episodes. The main objective of RL is to obtain an optimal policy

(i.e., process of selecting a specific learning action) at each state [190]. Moreover, two dif-

ferent learning strategies are adopted to determine the optimal policies quickly. In the first

strategy, each learning agent (i.e., user) learns individually by considering past experiences

of another learning agent from a random environment. In the second strategy, each learn-
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ing agent learns by (frequently) establishing interactions with other learning agents (i.e., by

commenting and retweeting on other users’ tweets). Several existing reinforcement learn-

ing approaches have been proposed [191], [192], [193] to obtain the optimal policy. Q-

learning is one of the RL techniques. In Q-learning, choosing an optimal policy from large

number of training samples is a difficult task. Moreover, Q-learning needs less number of

states in order to converge quickly [29]. To overcome this problem, single-agent and multi-

agent deep Q-learning models are considered by using Q-value function (i.e., state-action

value function) through a deep Q-network. Hence, in comparison to Q-learning, deep Q-

network has more ability to handle large number of states and can converge quickly when

compared to Q-learning [194].

In the proposed deep Q-learning models, different types of social attributes (such as,

tweet-based attributes, user profile-based attributes, social graph based attributes and tem-

poral attributes (or features)) are given as input to the deep Q-network. For each user, the

social attributes are represented in the form of state vector S, which contains a set of states

(i.e., social attributes). For each state-action pair, the system (i.e., deep Q-learning model)

determines next state and reward function (i.e., social behavior of user). After finding the

state-action pair, the agent decides whether the corresponding user is acting as a malicious

social bot or a legitimate user. The major contributions of this chapter are as follows:

• A single agent deep Q-network based architecture is proposed by integrating deep

Q-learning model with social attributes for social bot detection based on the Q-value

function (i.e., state-action value function).

• A multi-agent deep Q-learning model based on particle swarm optimization (PSO)

method is also proposed for detecting social bots more accurately.

• A top-k influential (user) algorithm has been proposed to identify the most influential

users (which are influenced by the social bots) based on the tweets and the users’

interactions.

• The experiments are conducted on two datasets collected from the Twitter network,

such as The Fake Project dataset [21] and Social Honeypot dataset [20].
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The rest of this work is organized as follows: Section 4.1 presents the problem formu-

lation. In Section 4.2, a single agent Deep Q-Learning algorithm has been proposed for

detecting the social bots. Section 4.3 presents a multi-agent deep Q-Learning model using

particle swarm optimization for detecting social bots. Section 4.4 identifies the most influ-

ential users in an online social network. The experimental results are discussed in Section

4.5. Finally, the summary of this work is presented in Section 4.6.

4.1 Problem Formulation

Given a Twitter network G = (P,E) where P = {p1, ...., pn} is the set of users (or partic-

ipants) and E = {e1, ..., en} is the set of social relationships (or directed edges) between

users. For, each participant pi, different attributes (or features) (such as, tweet-based at-

tributes, user profile-based attributes, social graph based attributes and temporal attributes)

are represented as a state vector Si. In deep reinforcement learning, the agent transition

movements from current state to next state is termed as a learning action set A (which is

discussed in Section 4.3.2). Based on state and action pairs, positions Q(s, a) and veloci-

ties V (s, a) are modeled in order to determine an optimal action. The objective is to design

single and multi-agent deep Q-learning models by considering state vector with optimal

action sequences in order to detect social bots more accurately in Twitter network. Further,

the goal is to identify the most influential users (which are influenced by the social bots) in

Twitter network.

Problem Statement: Given a participant pi ∈ P , the features (of pi) are represented by

state vector Si with optimal action. The single-agent and multi-agent deep reinforcement

learning algorithms determine the group (Ĝ) that the participant pi belongs to. Further,

to minimize influence of spreading spam content, top-k influential users are identified in

Twitter network. The objective is to determine two functions f and g namely,

f : P =< Si >→ Ĝ = {Social bots, Legitimate participants}

and

g : Ĝ = {Social bots, Legitimate participants} → {top-k influential users}

84



CHAPTER 4. DEEP REINFORCEMENT LEARNING MODELS FOR DETECTING SOCIAL BOTS AND INFLUENTIAL USERS Section 4.2

4.2 A Single Agent Deep Q-Learning Model for Detecting

Social Bots

In this section, a set of social attributes and an attribute ranking algorithm are presented

to analyze the behavior of social bots. In addition, a deep Q-network architecture has

been designed, which incorporates the proposed Deep Q-Learning algorithm and social

attributes from the Twitter network for social bot detection.

4.2.1 Deep Q-Network Architecture
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Figure 4.1: Deep Q-learning architecture for social botnet detection

Fig.4.1 shows the proposed deep Q-network architecture for detecting the social bots in

Twitter network. Three different types of social attributes (such as, tweet-based attributes,

user profile-based attributes and social graph based attributes) are given as input to the deep

Q-network. Firstly, the tweet-based attributes such as syntax, semantic and temporal behav-

ior attributes are extracted from each user tweet (as shown in Fig.4.1 as rectangular boxes).

Secondly, user-profile based attributes are extracted from a series of each user tweets (with

weekly sampling time period) based on the tweeting behavior and the user interactions.

Lastly, social graph-based attributes are extracted from the tweets based on the social re-
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lationship among participants (users). Therefore, a server (i.e., an interface between an

online social network data and deep Q-learning model) is responsible for collecting each

participant’s (user’s) social attributes. For each user, the server (as shown in Fig.4.1) also

stores the collected data in the form of state vector S (which is discussed in Section 4.2.3),

which contains a set of states (i.e., social attributes). Next, for each user the server sends

S to deep Q-network. For every user, the social attributes values are collected in each time

slot (where the total time ’t’ is divided into ls time slots and
∑ls

i=1 τi = t). Later, deep

Q-network determines an optimal action for each state. After executing the action, the

server decides whether the corresponding user is acting as a social bot or a legitimate user.

Finally, after detecting the corresponding user as a social bot, then the server isolates the

social bot from the Twitter network. Therefore, the system (i.e., deep Q-learning model) is

transferred to the next state after a specific action is executed and obtains a reward which

is computed by using the reward function (which is discussed in Section 4.2.3). Moreover,

at each time ’t’, the deep Q-network stores the experience tuple (i.e.,<state, action, reward,

next state>) into a replay memory. Therefore, the proposed deep Q-learning model is used

in the proposed architecture that helps to differentiate social bots among legitimate users

and identifies the most influential users in the Twitter network.

4.2.2 Classification of Social Attributes

To address the challenging issue of social bot detection, the social attributes are classified

into three categories, such as tweet-based attributes user profile-based attributes and social

graph based attributes.

4.2.2.1 Tweet-based Attributes

Tweet-based attributes are extracted from the content of each user’s tweet. Hence, tweet-

based attributes describe about tweet syntax, tweet-semantics and temporal behavioral fea-

tures, which are listed in Table 1.

A lexical normalization technique is used on Twitter data to obtain the individual words

(or tokens) [195]. Further, the individual words are classified as either positive or negative
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Table 4.1: Overview of Tweet-based Attributes

Category Length Description
Syntax (Sy) 1 Whether the tweet contain any emoticons (e.g., _̈©)

5 Total number of URLs, replies, retweets and hashtags in tweets
1 Whether the tweet is socially geo-enabled

Semantics (Sm) 2 Number of positive and negative sentimental words
1 Identifying the most frequent words tweeted about the user
1 Computing the user’s sentimental score

Temporal behavior (Tm) 1 Timestamp of each user’ tweet

Table 4.2: Overview of User profile-based Attributes

Category Length Description
Tweet Behavior (TB) 2 Total number of tweets and retweets posted by user’s (If number of

retweets is more than the number of the user’s tweets, then the user
is most likely to be a social bot )

1 Posting tweets in several languages (which may be a social bot)
1 Total number of user’s tweets posted per day (If the value is too

large then the user may be a social bot)
1 User session time (If the user session is continued for a long time

without any discontinuity for 5-10 minutes, then the user
is most likely to be a social bot)

1 URL ratio- |twURL|
|tw|+|twURL|

(where |tw| is the total number of tweets
posted by user’s and |twURL| is the total number of
user’s tweets containing URLs)

1 Hashtag ratio- |tw#|
|tw|+|tw#|

(where |tw#| is the total number of tweets
posted by user’s starting with #name)

1 Mention ratio- |tw@|
|tw|+|tw@|

(where |tw@| is the total number of tweets
posted by user’s starting with @name )

User Interactions (UI) 2 Number of user’s friends and followers (If number of followers
is more than the number of friends, then the user is most likely to
be a social bot )

1 Follower ratio- log |followers|+1
|friends|+1

2 Number of messages and images shared
1 Number of active days
1 Number of retweeted tweets
1 Total number of user’s trusted neighbors (follower/friends)
2 Total number of trusted neighbors with strong and weak ties

emotions based on the user’s tweets. Moreover, punctuation symbols (’#’,’?’, ’!’, ’....’, ’.’),

special characters (’@’, ’$’, ’%’) and emoticons (i.e., _̈©) in the tweet are to be extracted.
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Geo-tagged user’s tweets gives the information about location of the posted tweets [196].

Latent dirichlet allocation is used to identify the most frequent words or topics posted by

the Twitter users [197]. A sentimental analysis framework and an opinion analysis system

are adopted in order to compute user’s sentimental score based on the tweet [198], [199].

The tweet-based attribute vector A(T )
pi of ith participant’s jth tweet is represented as

A(T )
pi

=<< Syji >,< Smj
i >,< Tmj

i >> (4.1)

4.2.2.2 User Profile-based Attributes for Behavioral Analysis

User profile-based attributes show the behavioral characteristics of the user’s. More-

over, some malicious users send friend requests to unknown user accounts or randomly

share tweets with other users. In this work, user profile based attributes are extracted from

a series of user’s tweets with sampling time per-week basics. Moreover, the tweet size is

limited up to 140 characters [81]. Hence, user profile-based attributes are defined to dis-

tinguish social bots among legitimate users based on two aspects, such as tweet behavioral

attributes and user interaction attributes. An overview of user profile-based attributes are

listed in Table 2.

The user profile-based attribute vector A(U)
pi of participant pi is represented as

A(U)
pi

=<< TBi >,< UIi >> (4.2)

4.2.2.3 Social Graph-based Attributes for Tweet Propagation

The social graph-based attributes mainly focus on the social relationships among the

users. Hence, social graph-based attributes, such as clustering coefficient, closeness cen-

trality, betweenness centrality and pagerank centrality are to be defined for each user.

1. Clustering coefficient: A social graph G = (P,E), where P represents a set of

participants (users) and E represents a set of directed edges (or links). A directed

edge eij represents the social interaction from a participant pi to a participant pj . If

p′is has n links with its neighbors, then the clustering coefficient CC(Pi) is defined

as CC(Pi) = n
di(di−1)

, where di represents the number of neighbors of a participant
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pi.

2. Closeness Centrality: Closeness centrality is defined as sum of distance between a

participant and all other participants in a social network. Therefore, the closeness

centrality of the participant pi (which is denoted as C(pi)) is defined as C(pi) =

1∑
d(pi,pj):pj∈P .

3. Betweenness Centrality: Betweenness centrality is a measure of identifying the im-

portant participants (users) within a social network. The betweenness centrality of

the participant pk (which is denoted asBc(pk)) is defined asBc(pk) =
∑

pi 6=pk 6=pj
σpipj (pk)

σpipj
,

where σpipj(pk) represents the total number of paths from participant pi to participant

pj passing through an intermediate participant pk and σpipj represents the total num-

ber of shortest paths from pi to pj

4. Pagerank Centrality: Pagerank centrality of a participant is defined as the out-degree

centrality of participant by establishing social relationships among participants (users)

based on their interactions. Therefore, the pagerank centrality of a participant pi

(which is denoted as PR(pi)) is defined as PR(pi) = 1−df +df
∑
∀pk∈M(pi)

PR(pk)
dego(pk)

,

where df represents the damping factor (whose value usually set to 0.85 [12]). Fur-

ther, M(pi) represents the set of participants that have directed links pointing from

participant pi. The term dego(pk) represents the out-degree of a participant (node)

pk.

The social graph-based attribute vector A(G)
pi is represented as

A(G)
pi

=< CC(pi), BC(pk), C(pi), PR(pi) > (4.3)

For a given unknown participant pi ∈ P , the social attribute vector is represented as

Api =<< A(T )
pi

>,< A(U)
pi

>,< A(G)
pi

>> (4.4)

Therefore, the social attributes determines the social bots among legitimate users.

As shown in Algorithm 4.1, for each participant (user) in an online social network, three
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Algorithm 4.1 Extract Social Attributes
Input:

A set of all online social network participants (users) P = {p1, p2, ...., pn}
Output:

S, set of states (social attributes)
Procedure:

1: Initialize S={}
2: for each participant pi ∈ P do
3: < A(T ) >= Extract Tweet Based Features(pi)
4: < A(U) >= Extract User Profile Based Features(pi)
5: < A(G) >= Extract Graph Based Features(pi)
6: Api=<< A

(T )
pi >,< A(U)pi >,< A(G)pi >>

7: Āpi=Normalization(A)
8: pv=PCA(Āpi)
9: for each attribute ai ∈ Āpi do

10: Compute geometric mean wtai =
(
∏n
j=1 aij)

1/n∑n
i=1(

∏n
j=1 aij)

1/n

11: S = wtai
12: end for
13: end for
14: S=Create a list of ranked states (social attributes) with respect to pv
15: return S

different types of social attributes, such as tweet-based attributes (< A(T ) >), user-profile

based attributes < A(U) > and social graph based attributes < A(G) >. The tweet-based

attributes are extracted from the content of each user’s tweet. The user-profile based at-

tributes are derived from a series of each user’s tweets (with weekly sampling time period)

based on the tweeting behavior and the user interactions. Further, the social graph-based

attributes are extracted based on the social relationships among the users (Line 3-6). The

social attributes have to be normalized since the range of the values are different for dif-

ferent social attributes. A normalization technique (z-score) is used, where a value of each

social attribute ai is normalized as a′i = ai−āi
σai

(σai and āi are the standard deviation and

mean of social attribute ai) (Line 7). All the social attributes are not equal important for

social bot detection. Further, principal component analysis (PCA) method is applied by

integrating with a ranking measure in order to create a priority vector which ranks the so-

cial attributes based on their relative importance. Moreover, the extracted social attributes

should be weighted before determining Q-value function, since the social attributes have
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more impact on bot detection (Line 8-13).

4.2.3 Proposed Single Agent Deep Q-Learning Model for Detecting

Social Bots

An adaptive single agent deep Q-learning algorithm has been proposed by considering the

following elements:

• State: The state vector St (for each user) at time time slot t is defined by a set of

social attribute. The state vector S for a participant (i.e., user) is represented as

St =< {si1t , si2t , .......s
ij
t } > (4.5)

Here, each participant (user) pi ∈ P is associated with a set of social attributes A

(refer Section 4.2.2 Equation 4.4). Moreover, each value sijt represents the jth social

attribute of ith participant at time slot t. Further, the goal state is defined as detecting

each user as a social bot or not.

• Action: An action is the selection of a state among ’n’ states based on the current

state. Moreover, the learning agent’s movement from one state to another state is

defined as an action α. Further, at each state, the server has to decide whether the

corresponding user is a social bot or a normal user based on the social attributes (refer

Section 4.2.2 Equation 4.4).

• Reward: The reward value is determined based on the social behavior of each partic-

ipant (user).Therefore, the reward function rt at a time ’t’ is computed as follows:

rt = βxijt + c (4.6)

where xijt represents the jth social attribute value associated with a participant Pi at

time ’t’. Let β represents a model parameter (whose value lies between 0 and 1).

Further, if the state reaches a goal state (i.e., detected as a social bot) then it gets

rewarded and c set to 1. Otherwise, if goal state is not obtained then c will be -1.
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Algorithm 4.2 Deep Q-Learning algorithm
Input:

A set of all online social network participants (users) P = {p1, p2, ...., pn}
Output:

Set of all social bots
Procedure:

1: Initialize replay memorym, deep Q-network with associated weights w as Q(sijt , αt;w)
and the deep Q-network with associated weights w− = w, episode i = 1

2: while i < n do // n represents total number of participants
3: for t = 1, 2.....τ do
4: Initializes state vector St and begins with a state sijt
5: Randomly choose a learning action αt
6: Determine αt = argmaxα[Q(sijt , αt;w)] by observing the next state sijt and the

reward rt
7: Store et =< sijt , αt, rt, s

ij
t > into m

8: Compute Q(sijt , αt;w) = Q(sijt , αt) +
ε{r + γQ(sijt , argmaxα′ [Q(sijt , all actions;w)])}

9: Compute the target Q-value y by using
y = r + γQ(sijt , argmaxα′ [Q(sijt , all actions;w)];w−)

10: Deep Q-network is updated by reducing the loss function Loss(w) =
E
[
(y −Q(sijt , αt;w))2

]
11: Deep Q-network is updated with a learning rate parameter ε, w− = εw + (1 −

ε)w−

12: end for
13: i++
14: end while
15: return Set of all social bots

The proposed Deep Q-Learning algorithm (refer Algorithm 4.2) initializes replay mem-

ory and deep Q-network (which is denoted Q(sijt , αt;w)) with associated weights w (Line

1). For each episode (i.e., user), Deep Q-Learning algorithm initializes state vector St and

begins with a state sijt (which represents the jth social attribute of ith participant) at time

slot t. Moreover, by random selection the learning agent chooses an action αt at time t.

Later, the learning agent executes the learning action αt by observing the next state sijt and

reward rt at time slot t. For each action, the learning agent (i.e., deep Q-network) stores the

past interactions (as an experience tuple et =< sijt , αt, r, s
ij
t >) into replay memory. The

Deep Q-Learning algorithm is executed as follows: (i) Update the Q-values Q(sijt , αt;w),

(ii) Compute the target Q-values y, (iii) Deep Q-network is updated by reducing the loss

function Loss(w) and (iv) Deep Q-network parameter w (where w represents the weights
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associated with deep Q-network) is updated at time slot t. Therefore, this process will be

repeated for a finite number of episodes (Line 2-14).

4.3 A Multi-Agent Deep Q-Learning Model using Particle

Swarm Optimization for Detecting Social Bots

In conventional deep reinforcement learning (DRL) techniques (like deep Q-learning), an

agent learns to reach the goal state through several episodes (i.e., path from initial state to

goal state). Moreover, the learning process of DRL requires more computational resources

compared to other machine learning algorithms [200], [26]. The deep Q-learning converges

slower with high computation and storage space in order to determine and store the Q-

values for all possible state-action pairs [26]. Therefore, finding an optimal sequence of

actions in Q-learning (with faster convergence rate) is a major challenge.

Detection of web bots and traditional network bots have been addressed in [201], [202]

using Particle swarm optimization (PSO). Moreover, PSO can be used to model each par-

ticle tagged with social behaviors in a social network. Further, in swarm intelligence, each

particle’s (a state) social behavior plays a vital role to improve the convergence performance

of PSO [203]. In PSO, the temporal features (such as average number of tweets posted per

day, longest user session time and percentage of dropped followers) are tuned to obtain

optimal action. PSO has been applied to maximize social spam bot detection accuracy and

to minimize learning action sequences in order to reach a goal state at faster rate with less

number of iterations. The novelty of the proposed approach lies on the way the parame-

ters are tuned using PSO for selecting an optimal action in an environment with multiple

learning agents. This motivated us to integrate deep Q-learning with PSO in order to re-

duce high computation and also the learning agent stores only global best action sequences

into replay memory instead of storing all possible state-action pairs. Moreover, based on

situations, social spam bots may dynamically change their behavior to avoid bot detection.

Thus in order to distinguish legitimate OSN accounts (i.e., participants) from social spam

bots more accurately, users’ temporal features (such as average number of tweets posted
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per day, longest user session time and percentage of dropped followers) are considered to

analyze their behavioral patterns.

4.3.1 Particle Swarm Optimization based Deep Q-Learning Architec-

ture

Target Q
 Social

Behavior


Features
PSO


Twitter network


Environment


Q


Learning agent


Action


state


reward


next

state


Figure 4.2: Architecture of P-DQL

Fig. 4.2 shows the architecture of the proposed particle swarm optimization based deep

Q-learning (P-DQL). The environment represents a set of (malicious and non-malicious)

users with series of tweets posted by each user (or participant). From the tweets posted by

each user, the features (such as spam-content in the tweet, average number of tweets posted

per day, longest user session time without any break and percentage of dropped followers)

are extracted and represented as set of states. Initially states are given as input to the

learning agent. The particle swarm optimization (PSO) component determines global best

action sequences (as depicted in Fig. 4.3). The learning agent takes each state from global

best action sequences and their respective belief-based reward value (which is discussed in

Section 4.3.2) in order to compute Q-value and target Q-value. After executing a specific

action in a state, the learning agent moves to the next state (i.e., which is available in global

action sequences) and obtains belief-based reward value. For all possible global action

sequences, if the learning agent cannot reach to a terminal state (i.e., identified as a spam

bot based its social behavior) then the participant is identified as a legitimate. Otherwise,
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user is identified as a spam bot. Thus, the proposed P-DQL architecture is used to classify

Twitter users as either spam bots or legitimate participants.
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Figure 4.3: PSO framework with deep Q-network

Fig. 4.3 shows the proposed particle swarm optimization (PSO) framework with deep

Q-network. The proposed P-DQL contains one of the elements as state vector (or a set

of states) Sk which represents the kth participant features that are extracted from Twitter

network. Moreover, a state vector Sk is given as input to deep Q-network in order obtain Q-

values Q(si, A) with action sequences A = {a1, a2, ...} for each state si (where si ∈ SK).

Each user with set of Q-values is termed as a swarm with set of particles (or a population)

and each Q-value Q(si, ai) (i.e., where ai ∈ A) represents a particle’s position. For each

particle (i.e., Q(si, A)), the fitness function (i.e., long-term immediate reward Rlong) is to

be computed (using Equation (4.17)) in order to determine local and global best particle’s

positions. Based on local and global best particle’s positions, the position and velocity

of particles are updated to determine global best action sequences (i.e., swarm updated).

Moreover, the entire process will be executed for finite number of iterations until the vari-

ation of fitness values becomes negligible (i.e. fitness value unchanged in consecutive

iterations).
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Table 4.3: States

State Description of a user behavioral patterns

s0 Variation in posting positive (or negative) tweets over time

s1 Longest session time without any break for at least 5-10 minutes

s2 Percentage of dropped followers

s3 Posting spam content in the tweet

s4 Posting average number of tweets per day

s5 Average time between two consecutive tweets

s6 Temporal patterns of posting tweets (or retweets)

s7 Inter arrival time between user’s click events

s8 Entropy of user’s metadata features (such as posts, followers and

reposts)

4.3.2 Updation Strategy of Q-value based on Particle Swarm Opti-

mization

In optimization problem, population-based approaches are used to determine an optimal so-

lutions [204]. Particle swarm optimization (PSO) utilizes features of swarm (or population)

by considering local and global behavior of an agent [203]. For reinforcement learning, the

optimal policies (i.e., the agent determines which action will be performed when agent is in

a particular state) can be identified by considering updation strategies used in population-

based approaches [205]. Especially in Twitter network, spam bots may influence other

legitimate participants by tweets, number of followers and number of likes, comments or

replies from participants. In this work, the behavior of social spam bot is analyzed with

temporal features (such as average number of tweets posted per day, longest user session

time without any break and percentage of dropped followers per week) and spam content in

the tweet. Further, PSO is applied for an updation strategy of Q-value. A deep Q-learning

method consists of four elements (namely, (S,A, r(s, a), γ)) are as follows:

• S is a set of states (or state vector) which represents the user’s temporal features (or

social attributes). The state set for kth participant is denoted as Sk which is defined
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as

Sk = {s1, ....., sl} (4.7)

For each participant, l states (s0, s1, .....sl) are considered (as listed in Table 4.3).

The terminal state is defined as social behavior of feature (or state) with malicious

intention (or activity). Moreover, if the agent can reach out a kth terminal (or goal)

state after performing a set of actions then the participant (or user) is identified as

spam bot.

• A is a set of learning actions and defined as A = {a1, a2, .....}. The agent transition

movements from current state to the next state is termed as a learning action. More-

over, at each current state, the learning agent determines the behavior of user in a

current state si based on user’s temporal features. Moreover, the learning agent (i.e.,

deep Q-network) learns to find an optimal action sequences which can reach terminal

state with less number of iterations.

• r(si, ai) defines a current reward value r(si, ai) (where si ∈ Sk and ai ∈ A) which

is determined based on social behavior of user (while performing an action ai) in a

state si. The current reward r(si, ai) is defined as

r(si, ai) = βsb(si, ai) + υ (4.8)

where β ∈ [0, 1] represents learning parameter and the term sb(si, ai) represents so-

cial behavior of user in a state si (while performing an action ai). If state si is terminal

state then it gains reward and υ is set to 1. Otherwise, if state si is not terminal state

then it gains penalty and υ is set to -1. In Twitter network, the uncertainty is involved

in the probability of state being malicious to avoid detection where spam bots may

randomly change their behavior over time. Therefore, a belief-based reward value

r(si, ai, b) is defined in order to improve the trustworthiness of a state si and it is

defined as
r(si, ai, b) = −H(b) + r(si, ai)

= −blogb+ r(si, ai)
(4.9)
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where b represents the belief value (or probability value) that state si is being ma-

licious and the term −H(b) represents negative entropy reward which maximizes

future reward [206]. To determine the dynamic behavior of spam bots, belief value b

is considered and it determines the probability that participant pi changes its behavior

(or state si) at time t. Based on the social behavior of each state, the probability that

state si with belief value b (such that state contains malicious behavior) at time t+ 1

(i.e., which is denoted as prsi(Xt+1 = b)) is defined as follows [207], [208]:

prsi(Xt+1 = b) =
1 +

∑
sj∈NB(si,b)t

Vjisb(sj)

1 +
∑

sk∈NB(si)t
Vkisb(sk)

(4.10)

whereXt+1 represents the belief value b of state si at time t+1 andNB(si) represents

the neighboring states of si and NB(si, b)t represents the neighboring states of si

having belief value b at time t. For each particle (or state), the learning agent (i.e.,

deep Q-network) considers the velocity Vji i.e., rate at which agent moves from state

sj to the next state si (and whose value lies between 0 and 1). Further, the term

sb(sj) represents the social behavior of state sj . In this work, maximum likelihood

estimation (MLE) method [209] is considered and it is used to determine unknown

parameter from a given probabilistic model. The advantage of using MLE method

provides faster convergence especially when the sample size increases [208]. In order

to determine the immediate reward for each state-action pairs, the social behavior sb

(i.e., unknown parameter) of each state being malicious has to be estimated. The

maximum likelihood function ML(E ′, sb) is defined as follows [208], [209]:

ML(E ′, sb) = log
∏

(si,b)t∈E′
prsi(Xt+1 = b) (4.11)

where E ′ represents the experience tuple which consists of a series of four deep Q-

network elements namely, state si, action ai, reward r(si, ai) and next state sj (i.e.,

E ′ =< si, ai, r(si, ai), sj, aj, r(sj, aj), sk...... >). Substituting Equation (4.10) in
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Equation (4.11), which can be expressed as follows:

ML(E ′, sb) =
∑

(si,b)t∈E′
log

(
1 +

∑
sj∈NB(si,b)t

Vjisb(sj)

)
∗1

−
∑

(si,b)t∈E′
log

(
1 +

∑
sk∈NB(si)t

Vkisb(sk)

)
(4.12)

The belief b that present state si is influenced by its previous neighboring state’s sj

behavior (i.e., which is denoted as b(sj ,si)t(sb) or bj(sb)) and it is defined as follows

[208]:

b(sj ,si)t(sb) = bj(sb) =
Vjisb(sj))

1 +
∑

sk∈NB(si,b)
Vkisb(sk)

(4.13)

For any b ∈ [0, 1] and
∑

sj∈NB(si,b)
bj(sb) = 1, then

∑
sj∈NB(si,b)

bj(sb) +
1

1 +
∑

sk∈NB(si,b)
Vkisb(sk)

= 1 (4.14)

Substituting L.H.S of Equation (4.14) in Equation (4.12) and ML(E, sb) can be ex-

pressed as:

ML(E ′, sb) =
∑

(si,b)t∈E′

∑
sj∈NB(si,b)

bj(sb) ∗ log

(
1 +

∑
sj∈NB(si,b)t

Vjisb(sj)

)

−
∑

(si,b)t∈E′

∑
sj∈NB(si,b)

bj(sb)log(Vjisb(sj)) +
∑

(si,b)t∈E′

∑
sj∈NB(si,b)

bj(sb)log(Vjisb(sj))

+
∑

sj∈NB(si,b)

1

1 +
∑

sk∈NB(si,b)
Vkisb(sk)

log

(
1 +

∑
sj∈NB(si,b)t

Vjisb(sj)

)

−
∑

(si,b)t∈E′
log

(
1 +

∑
sk∈NB(si)t

Vkisb(sk)

)
(4.15)

99



CHAPTER 4. DEEP REINFORCEMENT LEARNING MODELS FOR DETECTING SOCIAL BOTS AND INFLUENTIAL USERS Section 4.3

From Equation (4.16), it can be obtained as follows:

ML(E ′, sb) = −
∑

(si,b)t∈E′

∑
sj∈NB(si,b)

bj(sb) ∗ log
Vjisb(sj)

(1 +
∑

sj∈NB(si,b)t
Vjisb(sj)

= −
∑

(si,b)t∈E′

∑
sj∈NB(si,b)

bj(sb) ∗ log(bj(sb)) (4.16)

where bj(sb) ∗ log(bj(sb)) represents entropy reward, which is used to determine

belief-based reward value r(si, ai, b) (as defined in Equation (4.9)).

• γ: discount factor γ ∈ [0, 1] determines importance of future rewards. When the dis-

count factor γ reaches to one then the performance of learning process will improve

and the number of learning steps will be significantly reduced [210].

The long-term immediate reward is the summation of all belief-based reward values

for a sequence of actions. The goal of using particle swarm optimization based deep Q-

learning (P-DQL) algorithm is to find the optimal action sequences which maximize the

long-term immediate reward. Therefore, the long-term immediate reward Rlong
i for ith state

(i.e., fitness function) is defined as

Rlong
i =

∑L
l=1 γ

L−lr(si, al, b) (4.17)

where L is the number of learning actions and r(si, al, b) is the belief-based reward value

(i.e., which is determined using Equation (4.9)).

For social spam bot detection, consider a set of Q-values (or state-action pairs) Qi =

{Q(si, ai1), ......, Q(si, aiL)} represents the position of ith particle with L number of learn-

ing actions. Let V i = {V (si, ai1), ....., V (si, aiL)} represents the velocity of ith particle in

a population, where V (si, aij) represents the state transition probability values while learn-

ing agent is moving from one state to other. Let pib represents local best solution which is

identified by ith particle and gb represents global best solution which is identified among

all particles in a population (i.e., based on long-term immediate reward Rlong). At each jth

iteration, the Q-values (i.e., position of particles) are updated as follows:
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Algorithm 4.3 Particle Swarm Optimization (PSO)
Input:

Initial values of all particles with Q(s,a)
Output:

Optimal solution
1: for j=1 to itrmax do
2: for i=1 to κ do // κ number of particles
3: Compute the long-term immediate reward Rlong by using Eq. (4.17)
4: // Update particle’s local best position
5: if Rlong < Rlong

b or Rlong
b == −1 then

6: pib(j) = Qi
j(s, a)

7: Rlong
b = Rlong

8: end if
9: // Update particle’s global best position

10: if Rlong < Rlong
g or Rlong

g == −1 then
11: gb(j) = Qi

j(s, a)
12: Rlong

g = Rlong

13: end if
14: Update particle’s velocity using Equation (4.18)
15: Update particle’s position using Equation (4.19)
16: end for
17: end for
18: return gb=Optimal Solution

V i
j+1(s, a) = wV i

j (s, a) + c1ran1(pib(j)−Qi
j(s, a))

+c2ran2(gb(j)−Qi
j(s, a))

(4.18)

Qi
j+1(s, a) = Qi

j(s, a) + V i
j+1(s, a) (4.19)

Qi
j(s, a) = Qi

j(s, a) + ε

{
r(si, ai, b) + γQi

(
ŝ,maxa[Q(ŝ, a)]

)
−Qi

j(s, a)

}
(4.20)

where r(si, ai, b) is the belief-based reward value obtained when learning agent moves

from current state s to the next state ŝ and ε is the learning rate (where 0 < ε ≤ 1).

Let V i
j (s, a) and V i

j+1(s, a) represent the current velocity of ith particle at jth iteration and

new velocity of ith particle at (j+1)th iteration, respectively. The term w represents weight

101



CHAPTER 4. DEEP REINFORCEMENT LEARNING MODELS FOR DETECTING SOCIAL BOTS AND INFLUENTIAL USERS Section 4.3

Algorithm 4.4 PSO based deep Q-learning (P-DQL) algorithm for social spam bot detec-
tion

Input:
Initialize deep Q-network Q(s,a), velocities V (s, a), B=φ, replay memory rm and

P = P ′, a set of participants {p1, ....pn} (i.e., Twitter user accounts)
Output:

B, set of social spam bots and P, set of legitimate participants
1: while P 6= φ do
2: β = {} and PL← {pi}, where pi ∈ P
3: for t = 1, 2.....τ do
4: Fpi(t) ← Extract temporal features and spam content in each tweet posted by
pi

5: Si(t)= Fpi(t)
6: for each state st in Si(t) do
7: Initialize a state st from state vector Si(t)
8: at=Particle Swarm Optimization()
9: Execute action at and obtain belief-based reward value r(si, ai, b) and next

state ŝt
10: Store the experience tuple et =< st, at, r(st, at, b), ŝt > into rm
11: Get a sample < st, at, r(st, at, b), ŝt > from rm
12: Compute target Q-value y for each mini-batch transition
13: if (ŝt reaches kth goal state) then
14: y = r(si, ai, b)
15: β = β.append(1) // β is appended with a string 1
16: break
17: else
18: y = r(si, ai, b) + γ Q(ŝ, arg maxâQ(ŝ, â))
19: end if
20: Update deep Q-network by minimizing Loss= (y −Q(s, a))2

21: st = ŝt
22: end for
23: end for
24: if (|β| > ψ) then
25: P = P − PL
26: B = B ∪ PL
27: end if
28: pi ← pi+1

29: end while
30: return B and P

parameter, c1 and c2 represent learning rate parameters and ran1 and ran2 represent random

numbers (where ran1 and ran2 ∈ [0, 1]). The first term (in Eq. (4.18)) wVj(s, a) represents

the inertia of the particle and the second term (in Eq. (4.18)) c1ran1(pib(j) − Qi
j(s, a))
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represents that a participant (user) pi learns the personal experience from the tweet posted

by user (i.e., by choosing the temporal features and spam content in the tweet which are

extracted from each tweet). The term Qi
j(s, a) represents the ith particle Q-value that has

obtained at jth iteration from the personal experience of choosing learning action a in state

s. The term pib(j) represents the local best position of personal experience that particle

has obtained at jth iteration by choosing the optimal Q-value with respect to state s and

learning action a. The third term (in Eq. (4.18)) c2ran2(gb(j) − Q(s, a)) represents that

participant (user) pi learns the social experience from the social interactions among other

users’. Further, gb(j) represents the global best position of particle that has been obtained

from social experiences of other users’ at jth iteration. The term Qi
j(s, a) and Qi

j+1(s, a)

represent the current Q-value (i.e., position) of ith particle at jth iteration and new Q-value

of ith particle at (j + 1)th iteration, respectively.

A Particle Swarm Optimization (PSO) algorithm (refer Algorithm 4.3) has been pro-

posed to find optimal action sequences. Q-values (s, a) and velocities V (s, a) will be ini-

tialized for all state-action pairs. For each particle (i.e., representing a state), the long-

term immediate reward Rlong is computed by equation (4.17). The global best action

sequences is identified from all particles which has highest long-term immediate reward

value. Moreover, if the current long-term immediate reward value is better than local best

action sequences, then identify the current immediate reward position as local best ac-

tion sequences. Otherwise, the position of local best action sequences remains unchanged.

Based on Rlong, the local best pib and global gb best action sequences are determined at each

iteration. Further, Q-values and velocities are updated by Equation (4.19) and Equation

(4.18), respectively. This process is executed repeatedly until the variation of long-term

immediate reward becomes negligible.

A Particle Swarm Optimization based Deep Q-Learning (P-DQL) algorithm (refer Al-

gorithm 4.4) has been proposed for social spam bot detection. For P-DQL algorithm,

Q(s, a) values in deep Q-network are initialized for all state-action pairs. For each par-

ticipant pi ∈ P ′ (i.e., P ′ is the set of all participants), the spam content and temporal

features are extracted. Each participant feature set Fpi is associated with state vector Si.

The learning agent initializes a beginning state s from a state vector and finds an optimal
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action sequences for a state based on particle swarm optimization algorithm (refer Algo-

rithm 2). For each state, the learning agent stores an optimal action into an experience tuple

et =< st, at, r(st, at, b), ŝt > into replay memory rm. The deep Q-network is updated by

minimizing loss, Loss= (y − Q(s, a))2 where y = r(si, ai, b) + γ Q(ŝ, arg maxâQ(ŝ, â)).

Moreover, if current state s reaches kth goal state (i.e., detected as a bot based on state

behavior) then the participant is detected a social spam bot. A set of social spam bots are

identified from Twitter network.

The proposed P-DQL algorithm converges faster (with multiple learning agents) to find

an optimal sequence of actions in order to reach-out a goal state. Moreover, the proposed

algorithm requires less storage space because the learning agent (i.e., proposed P-DQL

algorithm) stores only global best sequences into replay memory instead of storing all

possible state-action pairs. In particle swarm optimization, the temporal features (such

as average number of tweets posted per day, longest user session time and percentage of

dropped followers) are tuned to obtain optimal action sequences.

4.4 Influence Bots in Twitter

In order to influence the user in the Twitter network, the social bots may post malicious

information in tweet. Moreover, social bots may influence a few legitimate users by posting

attractive and fake information in the tweet. Even though the social bots are isolated from

the Twitter network, few users may be influenced by the tweets posted by the social bot.

In this work, the most influential users are identified, where they are influenced by social

bots (termed as influence bots) in Twitter network. The user influence value is defined as

a measure of influencing more number of users by rapidly sharing a tweet among users

and influencing based on their social interactions (such as retweets, replies, comments and

mentions) in the Twitter network. Moreover, after reading a tweet, a reader may post

comment about a tweet, retweeting a tweet or posting a tweet with similar opinion. Hence,

this implies that a user has influenced reader’s opinion. Therefore, the user influence value

is determined based on the social interaction behavior of other user’s after reading a tweet.

If a tweet has more number of comments, likes and retweets, then the user influence value is
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high. As mentioned in Algorithm 3, a user influence score (UI) is based on two parameters,

such as the influence of user’s tweets and influence of user’s interactions in the Twitter

network and it is defined as

UIpi =

I
T (pi) + II(pi) if participant (user) pi follows participant pj

0 otherwise
(4.21)

where IT (pi) is the influence of user’s tweets and II(pi) is the influence of user’s interac-

tions.

4.4.1 Influence of User’s Tweets

The influence of each user’s tweet is based on the number of comments, retweets and

replies. Commenting on a tweet represents that a user wants to express his/her views and

willing to share the opinion of tweet with his/her friends. Retweeting a tweet represents

that a user is supporting about the opinion of tweet. Moreover, if a tweet is commented,

retweeted, liked and replied more number of times, then it indicates that the probability of

user reading a tweet is high. The influence of user’s series of tweets IT is defined as the

probability of sharing a tweet from participant (user) pi to its neighbors is defined as

IT (pi) = Co(tw) + Li(tw) +RT (tw) +RE(tw) (4.22)

where Li(tw) and Co(tw) represent the number of likes and comments posted for tweet

tw, respectively. Further, RT(tw) and RE(tw) represent the number of retweets and replies

posted for tweet tw, respectively.

4.4.2 Influence of User’s Interactions

The influence of user’s interactions is based on the clustering coefficient, betweenness cen-

trality and closeness centrality measures (refer Section 4.2.2.3). If the user’s degree central-

ity is more, then it implies that the probability of reading a tweet will be high. If the user’s

clustering coefficient is high, then it implies that all its neighbors are strongly connected. If
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Algorithm 4.5 User Influence score
Input:

A set of all online social network participants (users) P = {p1, p2, ...., pn}
Output:

User Influence score
Procedure:

1: for each participant pi ∈ P do
2: for each tweet tw ∈tweets do
3: Compute influence value of user’s tweet ITpi by using Equation (4.22)
4: end for
5: Compute influence of user’s interactions IIpiby using Equation (4.23)
6: Compute user influence score UIpi by using Equation (4.21)
7: end for

the user’s betweenness centrality is high, then the user can quickly share tweet to the entire

Twitter community through few users. If the user’s closeness centrality is high, then the

user has more ability in order to control the information from spreading. The influence of

user’s interactions II is defined as

II(pi) = Dc(pi) + CC(p) +BC(pi) + C(pi) + PR(pi) (4.23)

where Dc(pi) and CC(pi) represent the degree centrality and clustering coefficient of par-

ticipant (user) pi, respectively. BC(pi) and C(pi) represent the betweenness centrality and

closeness centrality of pi, respectively. Further PR(pi) is denoted as the pagerank central-

ity of pi.

4.4.3 Proposed Top-k Influential Users Algorithm

The proposed top-k influential algorithm (refer Algorithm 4.6) is used to identify the most

influential users (which are influenced by the social bots) based on tweets and the user’s

interactions in Twitter network. For each user, the user influence value (refer Algorithm

4.5) has to be determined. Moreover, the users are ranked based on their influence value.

Hence, the ranking value of each user is monitored between two consecutive iterations.

The rank distance dr(k) is measured between the ranking of kth-influential user in two
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Algorithm 4.6 top-k influential users
Input:

A set of all online social network legitimate participants (users) P =
{p1, p2, ...., pn}, maximum number of iterations max, threshold T
Output:

K top-k influential users
Procedure:

1: UI={}, K={}
2: for (i = 1; i ≤ max; i+ +) do
3: for each participant pi ∈ P do
4: s= User Influence score(pi)
5: UI = UI ∪ s
6: end for
7: Rank the users R based on their influential value UI
8: Obtain the top-k influential users Ri at ith iteration
9: Compute the rank distance dr(k) between Ri and Ri−1 by using Eq. (4.24)

10: if dr(k) ≤ T then
11: break
12: else
13: K=Update(K,R)
14: end if
15: end for
16: return K

consecutive (i.e., at ith and ith − 1) iterations and it is defined as

dr(k) =
K∑
i=1

|Ri(pi)−Ri−1(pi)| (4.24)

where Ri(pi) and Ri−1(pi) represent the ranking of influential user pi at ith and ith − 1

iterations, respectively. Let K represents the total number of influential users (which are

influenced by social bots). If the difference between the ranking value of user in two

consecutive iterations is less than threshold Tf , then the algorithm is terminated and returns

the top-k influential users. Moreover, larger Tf leads to high accuracy of identifying the

most influential users.
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4.5 Performance Evaluation

In this section, the experimental results are presented to evaluate the performance of the

proposed single and multi-agent Deep Q-Learning algorithms by considering real-world

datasets collected from the Twitter network, such as The Fake Project dataset, Social Hon-

eypot dataset and User Popularity Band dataset (the dataset is partitioned into four groups

based on number of followers) [27]. The details of three different Twitter datasets are

presented in Table 4.4. The proposed algorithms are offline deep reinforcement learning

algorithms, in each case a deep Q-network is trained to determine an optimal action for

a given state. The proposed algorithms adapted offline process in order to train the deep

Q-networks with the collected offline data (i.e., from each dataset) in terms of series of

state, action and reward. The proposed algorithms are trained and tested in an offline pro-

cess where a massive volume of offline data makes deep Q-network highly stable with

less number of iterations [211]. Therefore, once the proposed algorithms identify social

bots, then an appropriate action can be taken to isolate social bots by the Twitter network.

The proposed single agent Deep Q-Learning algorithm (with three hidden layers) has been

compared with the other existing algorithms, such as feed-forward neural network (FFNN)

[28], deterministic Q-Learning (QL) [29] and regularized deep neural network (RDNN)

[30]. Further, the proposed multi-agent P-DQL has been compared with the proposed adap-

tive single-agent deep Q-learning (ADQL) algorithm and with the existing algorithms, such

as FFNN, RDNN, content-based deep reinforcement learning (C-DRL) [212] and social net-

work analysis-based deep reinforcement learning (SNA-DRL) [213]. Further, the proposed

top k-influential users algorithm has been compared with other existing algorithms, such as

degree centrality based radius-neighborhood (DERND) [32], suspected infected recovered

(SIR) diffusion model [33] and true-top [34]. The performance of the proposed single and

multi-agent Deep Q-Learning algorithms are evaluated in terms of precision, recall (true

positive rate) and F-measure (refer section 4.5.1). The following metrics are defined for the

performance evaluation of the proposed algorithms:

• True Positive (TP): the total number of users detected as social bots, which are actu-

ally social bots,
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• True Negative (TN): the total number of users detected as legitimate users, which are

actually legitimate users,

• False Negative (FN): the total number of users detected as legitimate users, which

are actually social bots,

• False Positive (FP): the total number of users detected as social bots, which are

actually legitimate users.

• True positive rate (or Recall): It is defined as TP
TP+FN

,

• False positive rate: It is defined as FP
FP+TN

,

• Precision: It is defined as TP
TP+FP

.

• F-measure: It is defined as 2×Precision×Recall
Precision+Recall

• G-measure: It is defined as
√
Precision×Recall

Table 4.4: Summary of datasets collected from Twitter

Dataset Name Human Bots Total Accounts Tweets

Dataset 1 The Fake Project 3474 991 4465 9,987,698

Dataset 2 Social Honeypot 19,276 22,223 41499 5,613,166

Dataset 3 User Popularity

Band 10M 26 24 50 150,336

Band 1M 450 296 746 303,517

Band 100K 740 707 1447 230,577

Band 1K 794 499 1293 37,679

4.5.1 Experimental Results for Single-Agent Deep Q-Learning

Fig. 4.4(a), Fig. 4.4(b) and Fig. 4.4(c) show the (convergence) performance of the proposed

DQL algorithm with two different learning rate parameter values i.e., ε = 0.001 and ε =

0.0001. It can be observed that the proposed algorithm quickly converges with a learning
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Table 4.5: List of parameters

Parameter Value

Learning rate 0.001

Discount factor 0.99

Mini Batch size 32

Replay memory size 50,000
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Figure 4.4: Comparison of precision value with different learning rate parameter values

rate ε = 0.001 when compared to ε = 0.0001. Moreover, a higher learning rate leads to a

local optimum in order to obtain higher precision value. From Fig. 4.4, it can be observed
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Figure 4.5: Comparison of precision value with different mini batch sizes

that for learning rate ε = 0.001, the precision value is more than 90% (on an average) for

social bot detection. Further, lowering learning rate value below 0.0001 will give lower

precision. The convergence of target Q-function is also affected by other parameters, such

as discount factor and mini batch size. The parameter values that are used for computing the

target Q-values are listed in Table 4.5. The discount factor γ determines how much weight

it provides for future reward (γ value usually lies in [0, 1)). If discount factor γ = 0, implies

that the state-action values represent the current reward. If discount factor γ is approaches

to 1, then the state-action values represent a (constant) high reward. Moreover, if discount

factor γ is 1 (or exceeds 1), then the state-action values may diverge [210]. Therefore,
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discount factor γ = 0.99 has been chosen. Fig. 4.5(a), Fig. 4.5(b) and Fig. 4.5(c) show the

(convergence) performance of mini-batch size in the proposed deep Q-learning algorithm.

The mini-batch size determines number of experience tuples in each training step. The

mini-batch size is usually based on computational system on which the experimentation is

being performed [214]. From Fig. 4.5, it has been observed that the proposed algorithm

can converge quickly with smaller mini batch size 32 as compared to larger mini batch size

64. It can be observed that for mini-batch size 32, a high precision is achieved (i.e., more

than 90% precision, on an average) for social bot detection. Further, increasing mini-batch

size (i.e., greater than 64) will give lower precision.
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Figure 4.6: Experimental results by considering all possible combinations of social at-
tributes on The Fake Project dataset
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Figure 4.7: Experimental results by considering all possible combinations of social at-
tributes on Social Honeypot dataset

A set of social attributes, such as tweet-based attributes (i.e., from the content of each

user tweet), user profile-based attributes (from a series of each user’s tweets) and social

graph-based attributes (i.e., the user establishes the social relationship with their friends

and followers) are considered and they are denoted as A(T ), A(U) and A(G) respectively

(discussed in Section 4.2.2). The performance of the proposed Deep Q-Learning (DQL)

algorithm has been compared with other existing algorithms (such as feed-forward neu-

ral network (FFNN), deterministic Q-Learning (QL) and regularized deep neural network

(RDNN) in terms of precision, recall and F-measure on three different Twitter datasets (such

as The Fake Project dataset, Social Honeypot dataset and User Popularity Band dataset).
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Figure 4.8: Experimental results by considering all possible combinations of social at-
tributes on User Popularity Band dataset

From Fig. 4.6, it has been observed that all the algorithms can obtain the best social bot de-

tection performance by considering all the three different types of social attributes. When

only user profile-based attributes are considered, the social bot detection performance of

the proposed DQL algorithm and RDNN has been fallen down from 87% to 84% respec-

tively on precision value. From Fig. 4.6, it can also be observed that by considering only

tweet-based attributes, the social bot detection performance of all algorithms is drastically

reduced when compared to user profile-based attributes. However, by combining the tweet-

based attributes with the user profile-based attributes, the social bot detection performance

has been improved up to 5-9% on precision value. Therefore, by combining all the so-
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cial attributes, the social bot detection performance has been improved up to 4-10% on

precision value. From Fig. 4.7, it has been observed that by combining the tweet-based

attributes with the user profile-based attributes, the social bot detection performance has

been improved up to 4-8% on precision value. Therefore, by combining all the social at-

tributes, the social bot detection performance has been improved up to 3-8% on precision

value. From Fig. 4.8, it can be observed that by combining the tweet-based attributes with

the user profile-based attributes, the social bot detection performance has been improved

up to 4-9% on precision value. Therefore, by combining all the social attributes, the social

bot detection performance has been improved up to 5-10% on precision value. Table 4.6

shows performance of proposed DQL algorithm for 5-fold cross-validation.

Table 4.6: Performance of the proposed Deep Q-learning algorithm for 5-fold cross-
validation

Dataset 1-fold 2-fold 3-fold 4-fold 5-fold Average

The Fake Project 93.24 93.13 94.11 93.18 93.53 93.43

Social Honeypot 93.36 93.28 93.51 93.62 94.15 93.65

User Popularity 94.09 93.54 94.37 94.62 93.75 94.07

Table 4.7: Average Execution time for the proposed DQL algorithm and the existing QL
algorithm

Execution time in seconds

Dataset DQL-1 DQL-2 DQL-3

The Fake Project 2521 2754 2846

Social Honeypot 1521 1676 1707

User Popularity 904 972 1012

Table 4.7 shows the average execution time for the proposed Deep Q-Learning (DQL)

algorithm. The average execution time for the DQL algorithm is computed with one, two

and three hidden layers, which are denoted as DQL-1, DQL-2 and DQL-3, respectively.

As the number of hidden layers increase, the average execution time also increases. This

is due to fact that the DQL consumes more execution time (as number of hidden layers
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increases) for training target Q-function parameters, such as learning rate, mini-batch size

and discount factor.

4.5.2 Experimental Results for Multi-Agent Deep Q-Learning

Table 4.8: P-DQL parameters

Parameter Value

learning rate ε 0.0001

Mini Batch size 32

DQN discount rateγ 0.99

Number of hidden layers 3
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Figure 4.9: Optimal learning action sequences needed to reach terminal state

Fig. 4.9 shows comparison of proposed particle swarm optimization based deep Q-

learning (P-DQL) algorithm with existing particle swarm optimization (PSO) algorithm

[31]. Number of learning actions required to reach terminal (or goal) state versus number

of iterations for P-DQL algorithm is depicted in Fig 4.9. From Fig. 4.9, it is observe that

less number of actions are required for P-DQL to reach terminal (or goal) state. This is due

to the fact that deep Q-network considers the updation strategy of Q-value based on global

and local best action sequences which helps to reach terminal state quickly. The proposed
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Figure 4.10: Convergence Performance of P-DQL and other existing algorithms (SNA-
DRL, C-DRL and ADQL)
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Figure 4.11: Precision of P-DQL and other existing algorithms (FFNN, RDNN, SNA-DRL,
C-DRL and ADQL)

P-DQL algorithm converges quickly with less number of iteration. Hence, this presents

that P-DQL is better than PSO in terms of faster convergence rate.

Fig. 4.10 shows comparison of the proposed P-DQL and adaptive single-agent deep

Q-learning (ADQL) algorithm with other existing algorithms namely, content-based deep

reinforcement learning (C-DRL) [212] and social network analysis-based deep reinforce-

ment learning (SNA-DRL) [213] on two real-time Twitter datasets in terms of precision.

The proposed P-DQL obtains better precision value when compared to other existing al-

gorithms. The proposed P-DQL algorithm considers multiple learning agents to find an
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Figure 4.12: Recall of P-DQL and other existing algorithms (FFNN, RDNN, SNA-DRL,
C-DRL and ADQL)
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Figure 4.13: F-measure of P-DQL and other existing algorithms (FFNN, RDNN, SNA-
DRL, C-DRL and ADQL)

optimal policy at faster convergence rate with less number of iterations as compared with

deep reinforcement learning algorithms such as ADQL , C-DRL and SNA-DRL (as shown

in Fig. 4.10). Moreover, the existing deep reinforcement learning algorithms with a sin-

gle agent selects an appropriate action in a longer learning time (as shown in Fig. 4.10).

Moreover, the convergence of the proposed P-DQL algorithm is affected by parameters,

such as DQN discount rate (γ), learning rate (ε) and mini-batch size. From Fig. 4.10, it

can be observed that for DQN discount rate γ 0.99, mini-batch size 32 and learning rate

ε 0.0001, the P-DQL algorithm has achieved highest precision (i.e., on an average more
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Figure 4.14: G-measure of P-DQL and other existing algorithms (FFNN, RDNN, SNA-
DRL, C-DRL and ADQL)

than 90% precision) for social spam bot detection. In ADQL, deep Q-network selects a

specific action depending on next state and stores all possible state-action pairs. Due to this

the convergence of ADQL is slow when compared to the proposed P-DQL algorithm (as

depicted in Fig. 4.10). It is observed that the precision value of proposed P-DQL algorithm

is (on average) 11% higher than existing SNA-DRL.

Fig. 4.11, Fig. 4.12, Fig. 4.13 and Fig. 4.14 show comparison of proposed P-DQL

and adaptive single-agent deep Q-learning (ADQL) algorithm with other existing algo-

rithms namely, feed-forward neural network (FFNN), regularized deep neural network

(RDNN), content-based deep reinforcement learning (C-DRL) and social network analysis-

based deep reinforcement learning (SNA-DRL) on two real-time Twitter datasets in terms

of precision, recall, F-measure and G-measure. From Fig. 4.11, it can be observed that

precision value of FFNN algorithm is reduced from 78% to 73%. Moreover, the precision

of P-DQL and ADQL is around 94% and 91%, respectively. This is due to the fact that

the proposed P-DQL finds an optimal action based on updating Q-values (using PSO) with

temporal features and spam content in the tweet because the behavior of spam bot rapidly

changes over time as compared with existing algorithms such as FFNN, RDNN, ADQL,

C-DRL and SNA-DRL (as shown in Fig. 4.11, Fig. 4.12, Fig. 4.13 and Fig. 4.14). It

can be observed that from Fig. 4.12, the recall of P-DQL outperforms with other existing

algorithms when testing on different months. For The Fake Project dataset and Social Hon-
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eypot dataset, the recall value of P-DQL is about 15% and 12% higher than FFNN when

the data is tested on different days and months, respectively. Fig. 4.12 shows that recall of

P-DQL is above 90% for all months (and days). Especially, FFNN has lowest social spam

bot detection which is around 78%. This happens due to the consideration of temporal

features which can capture dynamic behavior of spam bots more accurately. For The Fake

Project dataset, the performance of proposed algorithm is improved by 7% on F-measure

over C-DRL algorithm. Therefore, F-measure and G-measure results show that proposed

P-DQL algorithm outperforms other existing algorithms.

4.5.3 Experimental Results for Top-k Influential Users
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Figure 4.15: Top-k Influential Users on The Fake Project Dataset

The performance of the proposed top-k influential users algorithm is evaluated by con-

sidering the following metrics.

• Precision: The precision value is defined as |LU1(k)∩LU2(k)|
|LU1(k)| , where LU1 represents the

list of legitimate users ranked by the user influence metric and LU2 represents the list

of legitimate users ranked based on the user interactions (such as retweets, replies,

comments and likes). Further, LU1(k) and LU2(k) represents the top-k influential

users in LU1 and LU2, respectively.

• Recall: The recall value is defined as |LU1(k)∩LU2(k)|
|LU2(k)| .
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Figure 4.16: Top-k Influential Users on Social Honeypot Dataset
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Figure 4.17: Top-k Influential Users on User Popularity Band Dataset

Fig. 4.15, Fig. 4.16 and Fig. 4.17 show that the proposed influential users algorithm

has the better recall and precision than other existing algorithms, such as degree central-

ity based radius-neighborhood (DERND) [32], suspected infected recovered (SIR) diffusion

model [33] and true-top [34] (on all three different Twitter datasets). It can be observed that

as k-value increases, the recall values of all algorithms increase. The experiment results of

the proposed algorithm shows that the tweet-based attributes and the user interactions are

two important factors in order to influence the user. The precision of the proposed algo-

rithm is approximately 80% as shown in Fig. 4.15(b), Fig. 4.16(b) and Fig. 4.17(b). This
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implies that the proposed algorithm can identify 80% of top-10% influential users, which

were influenced by the social bots. Moreover, the influential users may attract other legiti-

mate users and become trustworthy users, which affects the entire Twitter community. The

computation of influence score for each user makes the proposed method consume more

time. However, the proposed method identifies the most influential users (which are influ-

enced by social bots) in online social networks more effectively. The proposed method is

more efficient than the existing True top algorithm because the proposed method is based

on various centrality measures that determines the spreading probability of information in

Twitter network. From Fig. 4.15(b), Fig. 4.16(b) and Fig. 4.17(b), it has been observed

that DERND algorithm cannot effectively identify the influential users because this method

gives same precision value as number of the influential users increases. The existing SIR

diffusion model and DERND algorithm identify the influential users based on only de-

gree centrality and radius-neighboring degree centrality measures, respectively. Moreover,

the users with high degree centrality measure may not necessarily have more number of

retweets or comments. It is observed that the proposed top-k influential users algorithm

performs better than the other existing algorithms in terms of tweet propagation under the

influence value of each user tweet IT . Further, the proposed method has a high influence

spreading probability based on the influence of user interaction. This means that the pro-

posed algorithm selects the users which are influenced by social bots so that these users

cannot further influence the current users.

4.6 Summary

In this chapter, a deep Q-network architecture has been designed by incorporating a single

agent Deep Q-Learning (DQL) model using the social attributes in the Twitter network

for detection of malicious social bots. A multi-agent deep Q-Learning algorithm has been

proposed by using particle swarm optimization method with users’ temporal features in

order to detect malicious social bots in Twitter network. Moreover, each social attribute

of a user is considered as a state and the learning agent’s movement from one state to

another state is considered as an action. In the proposed single agent and multi-agent DQL
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algorithms, the learning agent chooses a specific learning action with an optimal Q-value

in each state for social bot detection. Further, an algorithm has been proposed to identify

top-k influential Twitter network users (which are influenced by the social bots) based on

the tweets and the users’ interactions. In the next chapter, social botnet and spam influential

community detection approaches have been presented.
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Chapter 5

Detection of Social Botnet and Spam

Influential Communities

A social botnet is a group of social bots created and controlled by a botmaster (acting as a

leader among social bots) and performs malicious activities, such as creating multiple fake

accounts, spreading spam, manipulating online ratings, and so on [8], [215]. To protect

against botnet attacks, existing social botnet detection approaches [49], [50], [81] have

mostly focused on the tweet content and social interactions among the participants in the

Twitter network. In [73], [216], some methods have been proposed to identify fraudsters

who sell legitimate online social networking accounts created in the Twitter network. If a

botmaster (malicious user) is willing to buy legitimate accounts from fraudsters, then it can

compromise a larger number of legitimate participants (OSN accounts) by creating attack

edges between them and the social bot. In fact, the botmaster can perform devastating

malicious activities, such as spreading social spam content, manipulating online ratings

and recommendations [50]. The social bots can also re-tweet the malicious tweets posted

by the botmaster [81]. Furthermore, the botmaster may create multiple fake identities and

attempt to establish social relationship between a larger number of legitimate participants

to avoid detection [81], affecting the quality of experience for Twitter users. Therefore,

detecting malicious bots is an important problem.

To protect against botmaster attacks, in this chapter, a weighted signed Twitter net-

work graph is constructed based on the trust values and behavioral similarity between pairs
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of participants. For evaluating the trust value of each participant, a random walk model

[217] has been adopted in which each participant moves to one of its neighboring par-

ticipants with equal probability. The proposed trust-driven random walk model evaluates

the trust value of each participant by considering important features, such as tweet con-

tent, URL-based, graph-based, profile-based features and influence value of the neighbor-

ing participants. The behavioral similarity of the participants are analyzed by considering

tweet-content similarity, shared URL similarity, interest similarity, and social interaction

similarity for identifying similar type of behavior (malicious or non-malicious) among the

participants in the Twitter network. Next, a Social Botnet Community Detection (SBCD)

algorithm is proposed by considering the behavioral similarity matrix in order to identify

the social botnet communities in the weighted signed Twitter network graph. A Deep Au-

toencoder based Social Botnet Community Detection (DA-SBCD) algorithm is proposed

to reconstruct and detect social botnet communities with different types of malicious ac-

tivities. Further, a Spam-Influential Users and Influential Community Detection (SIU-ICD)

algorithm has been proposed to identify the spam influential communities C = {c1, ...cm}

in Twitter network. Finally, the effectiveness of SBCD, DA-SBCD and SIU-ICD are ana-

lyzed experimentally in terms of normalized mutual information (NMI), precision, recall,

F-measure and modularity.

The novel contributions of this chapter are summarized as follows:

• Analyze the participants’ behavioral features to identify malicious and non-malicious

participants in the Twitter network.

• Evaluate the trust value of each participant based on several features and influence

values of the neighboring participants.

• Design SBCD algorithm to detect social botnet communities of social bots having

higher malicious behavioral similarity.

• Based on deep autoencoder model, develop DA-SBCD algorithm to reconstruct and

detect social botnet communities that exhibit better performance.

• Develop a Spam Influential users and Influential Community Detection (SIU-ICD)
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algorithm to minimize the disseminating of spam-content through influential com-

munities in Twitter network.

• Conduct experiments with two Twitter datasets to demonstrate the efficacy of the

proposed algorithms in terms of normalized mutual information, precision, recall

and F-measure.

This chapter is organized as follows. Section 5.1 presents the problem formulation.

Section 5.2 deals with the detection of social botnet communities using deep learning. Af-

ter analyzing the participants’ behavioral features and trust-driven random walk model,

this section describes the Social Botnet Community Detection (SBCD) algorithm and and

DA-SBCD) algorithm using deep autoencoder. Section 5.3 presents SIU-ICD algorithm to

detect spam influential communities in Twitter network. Section 5.4 presents the experi-

mental results while the final section offers summary of this work.

5.1 Problem Formulation

Given a Twitter network G = (P,E), where the vertex-set P = {p1, p2, ...., pn} represents

the set of participants (i.e., OSN accounts) and E = {< pi, pj >} is the set of directed

edges representing the social relationship between pairs of participants pi, pj ∈ P . The

weight on a directed edge is based on the behavioral similarity features, such as tweet

similarity, shared URL similarity, interest similarity, and interaction similarity (see Section

5.2.2). The social trust relationship between two participants pi and pj determines the

signi,j of each directed edge < pi, pj >. Furthermore, a normalized weighted behavioral

similarity matrix S = [wij]n×n, where wij is the weight of the edge between pi and pj

and n = |P | is the number of participants. Now S is constructed based on the weighted

edges with a goal to partition the participants into different communities (groups), C =

{c1, c2, ...., cm}, where m represents the desired number of communities. The participants

belonging to the same community are assumed to have similar type of behavior (malicious

or non-malicious) and higher behavioral similarity.

As illustrated in Fig. 5.1(a), the botmaster P1 usually establishes a strong social re-
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Figure 5.1: Deep learning architecture for social botnet community detection

lationship with other social bots P2, P7, P9 and P10. In this attack model, the botmaster

constructs a re-tweeting graph, where each node represents the social bot and each directed

edge represents a re-tweeting relationship between two participants (users). The botmaster

thus creates malicious tweets (with fake information or malicious URL in the tweet) and the

social bots re-tweet them. Additionally, the social bots can spread malicious tweets to other

legitimate participants. Indeed, the aim of the botmaster is to spread spam content by cre-

ating multiple fake identities. Moreover, in Fig. 5.1, the botmaster P1 establishes a strong

social relationship not only with social bots (P2, P7, P9 and P10) but also with legitimate

participants (P3, P5 and P8). If a botmaster is willing to buy the legitimate accounts from

fraudsters, then the botmaster can have more legitimate friends by creating attack edges

(e.g., between P1 and P3). This type of attack will influence legitimate users by affecting

users’ behavior, opinions and emotions. Many such malicious activities can be performed

either by the botmaster or social bots.
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Definition 1 (Signed Edge Set): Let E ′ ⊆ P × P × sign represent a set of directed

edges between the pairs of participants in P and sign ∈ {1,−1}. If signij = 1, it implies

there exists a trusted (non-attack) edge from participant pi to pj . On the other hand, if

signij = −1, then there exists an attack (or untrusted) edge between a social bot and a

legitimate participant from pi to pj .

Definition 2 (Weighted Signed Twitter Network Graph): A weighted signed Twitter

network graphG′ = (P,E ′, T, S) is constructed from four components: a participant set P ,

a signed edge set (with trusted and untrusted edges) E ′, a trust vector T for all participants,

and a weighted behavioral similarity matrix S.

Problem (Social Botnet and Spam Influential Communities Detection): A Twitter

network graph G = (P,E) is given with the set of (malicious or non-malicious) activities

performed by each participant pi ∈ P . The objective is to construct a weighted signed

Twitter network graph G′ = (P,E ′, T, S) with the set of trusted (non-attack) and untrusted

(attack) weighted edges based on the behavioral similarity among the participants with

trust values. Here G′ is used to identify the social botnet communities with different types

of malicious activities. The goal is to determine three functions f : G → G′, g : G′ →

C = {c1, c2, ...., cm} and h : C = {c1, c2, ....,m} → C̃ = {c̃1, c̃2, ...., c̃m} for distinguish-

ing legitimate participants among social botnet communities C (with different types of

malicious activities) and community structure C̃ is reconstructed for detecting social bot-

net communities with better accuracy. Further, to minimize influence of spreading spam

content, spam influential communities (i.e., participants who are more influenced by spam

bots) C = {c1, ..., cm} have to be identified in Twitter network.

Detection of social botnet communities with different types of malicious activities is a

challenging task. In the next section, a deep autoencoder model is applied to reconstruct the

community c̃i from a community ci based on trust parameter T and behavioral similarity

matrix S. The proposed model is considered accurate when ci ≈ c̃i, ∀ci ∈ C, such that

the participants belonging to the same community are more likely to have similar type of

(malicious or non-malicious) behavioral similarities.
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5.2 Deep Learning based Social Botnet Communities De-

tection

In this section, firstly a deep learning architecture is presented for social botnet community

detection. Then the participants’ behavioral features are analyzed from different perspec-

tives to identify similar type of behavior (malicious or not) among the participants. The

proposed trust-driven random walk model predicts attack edges based on the participants’

behavioral features in the Twitter network. By considering both behavioral similarity mea-

sure and trust-driven random walk model, a social botnet community detection (SBCD)

algorithm is presented. This is followed by a DA-SBCD (Deep Autoencoder based SBCD)

algorithm to detect more accurately social botnet communities with different type of mali-

cious activities.

5.2.1 Deep Learning Architecture for SBCD

Fig. 5.1 shows the proposed deep learning (deep autoencoder) architecture for detecting

social botnet community. The architecture consists of two phases – community forma-

tion and community reconstruction (which identifies the communities more accurately). In

the first phase, the Twitter network graph G is converted into a weighted signed Twitter

network graph G′ based on the trust parameter and the participants’ behavioral similarity

features, such as tweet similarity, shared URL similarity, interest similarity and interaction

similarity. The weighted signed Twitter network graphG′ is used for detecting social botnet

communities with different types of malicious activities, such as posting malicious tweets,

posting or redirecting to malicious URLs, and creating multiple fake identities). In the

second phase, the architecture is integrated with deep autoencoder model consisting of two

sub-phases, namely the encoder and decoder. The proposed model encodes an observed

input community ci with the set of trusted and untrusted weighted edges using a function

f defined in Equation (5.13). In the decoding sub-phase, a reconstructed community struc-

ture c̃i is to be determined using the decoding function, i.e., c̃i ≈ f(ci), for social botnet

community detection with better accuracy.
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5.2.2 Participants’ Behavioral Features

As mentioned, the behavioral features of the participants include tweet-content similar-

ity, shared URL similarity, social interaction similarity, and interest similarity. These are

discussed below.

5.2.2.1 Tweet-Content Similarity

Each tweet is represented as a term frequency inverse document frequency (TFIDF) feature

vector < TFIDF (w1, tw, Tw), ..., TFIDF (wl, tw, Tw) >, where wl represents (distinct)

word in the tweet. The term TFIDF (w, tw, Tw) represents the importance of w within a

tweet tw and a set of tweets posted by a participant (denoted as Tw), which is computed as:

TFIDF (w, tw, Tw) = TF (w, tw)× IDF (w, Tw) (5.1)

where TF (w, tw) is the ratio of the number of times the word w appears in the tweet tw

and the total number of words in the tweet. The term IDF (w, Tw) is computed as:

IDF (w, Tw) = log
|Tw|

|{tw ∈ Tw : w ∈ tw}|
(5.2)

where |Tw| denotes the total number of tweets posted by a participant and |{tw ∈ Tw : w ∈

tw}| represents the number of tweets containing the word w.

For any two tweets u and v, let the TFIDF feature vectors be U and V, respectively.

For example, if a tweet u consists of message ”Hi good morning hello hello” and tweet v

consists of message ”hi good morning”. The word ”hello” is appearing twice in the tweet

u. Thus TF (”hello”, u) = 2/4 = 0.5, TF (”hello”, v) = 0/2 = 0 and IDF (”hello”, Tw) =

log(2/1) = 0.301. Finally, TFIDF (”hello”, u, Tw) = TF (”hello”, u) × IDF (”hello”,Tw)

= 0.5× 0.301 ≈ 0.150 and TFIDF (”hello”, v, Tw) = TF (”hello”, v) × IDF (”hello”,Tw)

= 0× 0.301 = 0.

Let a denote the total number of tweets posted by pi, and let b denote the total number

of tweets posted by pj . A tweet-content similarity matrix M = [x̂ij]a×b is calculated using

the cosine similarity measure. It is constructed such that each tweet of participant pi is
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compared with all tweets of pj . The cosine similarity measure of two TFIDF feature vectors

U and V is defined as

xij =

∑m
k=1 UkVk√∑m

k=1 U
2
k

√∑m
k=1 V

2
k

(5.3)

where Uk ∈ U , Vk ∈ V , and m is the length of the feature vector. Considering threshold

value ς , the values of xij are recomputed as

x̂ij =

1, If xij ≥ ς

0, If xij < ς

(5.4)

The tweet-content similarity value TSij between two participants pi and pj is thus de-

fined as:

TSij =
|{x̂ij ∈M |x̂ij = 1}|

a× b
(5.5)

where the numerator represents the number of non-zero elements in the tweet-content sim-

ilarity matrix M of dimension a× b.

5.2.2.2 Shared URL Similarity

The shared URL similarity, USij , is defined as the number of identical shared URLs be-

tween two participants pi and pj . It is determined by the Jaccard coefficient:

USij =
|USi ∩ USj|
|USi ∪ USj|

(5.6)

where USi and USj are the set of URLs which are shared by the participants pi and pj ,

respectively.

5.2.2.3 Social Interaction Similarity

It quantifies the rate at which the participants interact with the neighboring participants.

The social interaction similarity, SSij , between pi and pj is determined by the cosine simi-
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larity based on their neighboring set:

SSij =
|NB(pi) ∩NB(pj)|√
|NB(pi)| × |NB(pj)|

(5.7)

where NB(pi) and NB(pj) represent the set of neighboring participants of pi and pj , re-

spectively.

5.2.2.4 Interest Similarity

In [218], an associative ripple method has been proposed for representing Twitter data

into the most relevant information based on the participant’s interests. The associative

ripple contains several circles clustered by ranking (from interior to exterior) based on their

relevance. This implies that the data closest to the center are the most relevant information

to a specific topic based on the interests of the participants. Therefore, this method is

adopted to determine the interest similarity, ISij , between two participants pi and pj based

on their current interests. Thus,

ISij =

∑K
k=1 wck(|{l : if pl ∈ pck}|)∑K

k=1wck(|pck |)
(5.8)

where pck represents the set of participants having similar type of topic-based interest and

clustered on the kth circle and K is the total number of circles. The term wck represents

the weight of each circle (which represents the ranking of relevant information from the

center to the kth circle). Therefore, the interest similarity value determines two participants’

interactions based on the current interests among a group of participants.

Based on the above four behavioral similarity features, the weight wij of the edge be-

tween pi and pj is determined as:

wij = ϕ1 × TSij + ϕ2 × USij + ϕ3 × SSij + ϕ4 × ISij (5.9)

where ϕ1, ϕ2, ϕ3 and ϕ4 are (positive) weighted shares of the corresponding features such

that ϕ1+ϕ2+ϕ3+ϕ4 = 1.

The weighted behavioral similarity matrix is given by S = [wij]n×n, where n is number
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of participants. The behavioral similarity features help identify multiple fake accounts

created by the botmaster attempting to establish social relationship with more legitimate

participants via attack edges. The trust-driven random walk model proposed next predicts

the attack edges by observing prior behavioral features of each participant in the Twitter

network.

Table 5.1: Features to evaluate prior trust of each participant

Category Description
Tweet Content Tweet content based features capture linguistic factors such as fre-

quency of words in tweets, number of hashtags and positive (or
negative) sentimental score [47], [51],

URL URL-based features deal with URL redirection properties such as
frequency of URL appearing in a tweet, URL redirection length
and Http-302 status code [23]

Profile Profile based features include user meta-data features such as pro-
file creation time, number of followers and followees [13]

Graph Graph based features represent the behavioral pattern of informa-
tion spreading among users based on the degree centrality, clus-
tering coefficient and betweenness measures [12]

5.2.3 Trust-Driven Random Walk Model

In the random-walk based approaches, each participant moves to one of its neighbors with

equal probability [217]. The prior trust value of each participant pi as T ′pi is initialized based

on the Bayesian theorem [13]. The prior trust value is determined using Equation (5.11).

After the initialization step, pi equally assigns the same T ′pi value to each of its neighboring

participants, pj . Next, pi updates its trust value based on its neighbor’s influence. The trust

value of pj is distributed to one of its neighbors (since each participant moves to one of

its neighbors) with equal probability, wij
deg(pj)

. Here the numerator wij denotes weight of

the edge between pi and pj and according to Equation (5.9). The denominator deg(pj) =∑
pk∈NB(pj)

wjk is the sum of the weighted edges linked from participant pj to each of its

neighboring participants, pk, where NB(pj) denotes the set of neighbors of pj . The trust

value Tpi of pi is determined as:

Tpi = γ T ′pi + (1− γ)
∑

pj∈NB(pi)

T ′pj
wij

deg(pj)
(5.10)
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where
T ′pi = pr(g = Trustworthy|A) ={
pr(g = Trustworthy)×

h∏
i=1

pr(ai|g = Trustworthy)

}
/{

pr(g = Trustworthy)×
h∏
i=1

pr(ai|g = Trustworthy)+

pr(g = Untrustworthy)×
h∏
i=1

pr(ai|g = Untrustworthy)

}
(5.11)

Here A = {a1, .., ai, ...ah} represents a set of attributes (features listed in Table 5.1) and

γ ∈ [0, 1] represents the probability of random walk. The term pr(g = Trustworthy|A)

denotes the probability that an attribute setA belongs to the trustworthy group g. (Note that

the participant may be in trustworthy or untrustworthy group.) If Tpi ≥ Tf , (a threshold

value), then it implies that pi is more likely to be a legitimate participant. On the other

hand, Tpi < Tf implies that pi is more likely to be a social bot.

For participant pi, random variable wpi ∈ {1,−1} is defined, where wpi = 1 implies

that pi is a legitimate participant and wpi = −1 implies that pi is a social bot. The sign of

the weighted edge signij is defined as:

signij =

1, if wpiwpj = 1

−1, if wpiwpj = −1

(5.12)

The trust model captures the attack edges between any two participants based on the

feature set and behavioral similarity features as described above. In the next section, the

weighted eigenvector centrality measure and friendship-characteristics of communities will

be considered to detect the presence of a botmaster and social botnet communities, respec-

tively.

5.2.4 Social Botnet Community Detection (SBCD) Algorithm

Algorithm 5.1 describes the SBCD algorithm. For each participant pi ∈ P , the trust

value Tpi is computed (Lines 1-3), leading to the trust value T =< Tp1 , Tp2 , ..., Tpn >

for all participants. Each element (wij) of the weighted behavioral similarity matrix S
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is determined using Equation (5.9). For each directed edge, the sign of a weighted edge

is determined by Equation (5.12) which helps to detect the signed weighted edge set E ′

with a set of attack and non-attack edges. Then the weighted signed Twitter network

graph G′ = (P,E ′, T, S) is constructed (Lines 4-8). In each iteration, the signed edge

< pi, pj >∈ E ′ with the lowest weighted behavioral similarity value is removed, each

disconnected component is considered as a community, and matrix S is recomputed. This

process is repeated until the desired number of communities are obtained (Lines 9-17).

In Line 18, the disconnected components in G′ are shown as C = {c1, ..., cm}. Line 20

executes Intra Community Reformation (Algorithm 5.2) to determine the updated com-

munities for better accuracy. Algorithm 5.2 removes legitimate participants from a social

botnet community and adds similar type of social bots to a social botnet community based

on the sign of the weighted edges.

Algorithm 5.1 Social Botnet Community Detection (SBCD)

Input: G = (P,E): Twitter graph, ς: Similarity threshold
Output: Legitimate and social botnet communities

1: for each participant pi ∈ P do
2: Compute trust value Tpi using Equation (5.10)
3: end for
4: for < pi, pj >∈ E do
5: S[i][j]← Compute weighted behavioral similarity wij using Equation (5.9)
6: Compute sign of weighted edge using Equation (5.12)
7: end for
8: Obtain G′ = (P,E ′, T, S)
9: // Finding Primary Communities

10: for 1 ≤ i ≤ m do // m: desired number of communities
11: for < pi, pj >∈ E ′ do
12: if S[i][j] < ς then
13: Delete the edge (pi, pj) with the lowest weighted behavioral similarity value
14: Recompute weighted behavioral similarity for all participants after removal

of the edge.
15: end if
16: end for
17: end for
18: C = {c1, ..., cm} ← disconnected components in G′

19: // Intra-Community Reformation
20: C = {c1, ..., cm} ← Intra Community Reformation

Algorithm 5.2 determines which neighbors in the set B (i.e., the set of participants
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Algorithm 5.2 Intra Community Reformation

Input: C = {c1, ..., cm} communities
Output: C = {c1, ..., cm} updated communities (i.e., ci contains updated list of par-
ticipants)

1: repeat
2: C = {c1, ..., cm} ← disconnected components in G′

3: for 1 ≤ i ≤ m do
4: for pi ∈ ci do //Pruning legitimate participants
5: if υ(pi) < 0 then
6: ci = ci − {pi}
7: end if
8: Compute eigen vector centrality of pi
9: end for

10: BM ← pi with highest eigen vector centrality.
11: for pi ∈ B do // B: set of participants adjacent to ci
12: if υ(pi) > 0 and S[bm][i] ≥ ς then
13: // Adding similar type of social bot to ci
14: ci = ci ∪ {pi}
15: end if
16: end for
17: end for
18: until communities are similar after two consecutive iterations

pi adjacent to ci in terms of at least one incoming or outgoing edge) should be added to

the detected social botnet ci. A higher value of υintra(pi) =
∑

pj∈ci sign(pi, pj) signifies

whether pi ∈ ci is more likely to be within the social botnet community ci. Similarly, a

higher value of υinter(pi) =
∑

pj /∈ci sign(pi, pj) signifies whether a participant pi is more

likely to have higher (malicious or non-malicious) behavioral similarity with participants

that are outside the social botnet community. An improved way to detect a social botnet

community is to increase the number of non-attack edges (between any two social bots)

with higher behavioral similarity and decrease the number of attack edges (between the

social bots and legitimate participants).

If υ(pi) = (υintra(pi) − υinter(pi)) < 0, then the participant pi from ci is removed.

For each social botnet community, the weighted eigenvector centrality measure [219] is

determined to identify the botmaster BM , the leader among the social bots. The weighted

eigenvector centrality quantifies the influence of a participant based on the (intra commu-

nity) strength and the number of social interactions with neighboring participants. The
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weighted eigenvector centrality of pi ∈ ci, denoted as ec(pi), is based on its neighbors’

eigenvector centrality and computed as ec(pi) = 1
λ

∑n
j=1 wjiec(pj), where λ is a constant

and wji is behavioral similarity value between participants pj and pi (Lines 1-9, Algorithm

5.2). The participant with the highest weighted eigenvector centrality measure is selected

as the botmaster BM (Line 10, Algorithm 5.2). If there exists higher behavioral similarity

between the botmasterBM and participant pi, and υ(pi) ≥ 0, then the social bot pi is added

to ci. This process is repeated until the social botnet communities remain unchanged over

two consecutive iterations. The SBCD algorithm returns C = {c1, ..., cm} as the detected

social botnet communities and legitimate communities (Lines 11-18, Algorithm 5.2).

Thus, the community formation phase (SBCD algorithm) detects social botnet commu-

nities with different types of malicious behavior. In the next section, the output of each

SBCD community is given as input to the deep autoencoder model to detect different types

of social botnet communities more accurately.

5.2.5 Deep Autoencoder based SBCD Algorithm

A deep neural network autoencoder is used and it is one of the deep learning techniques

[220], that is trained to reconstruct the social botnet communities more accurately. The

deep autoencoder based SBCD algorithm (DA-SBCD) is presented in Algorithm 5.3, for

which the inputs are the community set C = {c1, ....., cm} and the number κ of hidden

layers.

For each community ci, the weighted behavioral similarity matrix Sci is constructed

in such a way that each element wij in Sci is computed with the help of Equation (5.9),

i.e., wij ∈ RU×U , where Sci is a similarity matrix in the form RU×U and U represents the

number of participants in the community ci. Further, the trust matrix for ith community

is represented as Tci = [Tp1 , Tp2 ....]
T , where Tpi ∈ RU×1 and Tci is a trust matrix in the

form RU×1 . Equation (5.10) evaluates the trust value Tpi of each participant pi ∈ ci (Lines

1-6, Algorithm 5.3). By concatenating the similarity matrix Sci with trust matrix Tci , the

aggregated matrix Z (i.e., RU×V where V = U +1) will be constructed. Now Z along with

the weighted similarity matrix and trust matrix are given as input to the deep autoencoder
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Algorithm 5.3 Deep Autoencoder based SBCD

Input: C = {c1, ..., cm} communities, κ: number of hidden layers
Output: C̃ = {c̃1, ...., c̃m} reconstructed communities

1: C̃ = φ
2: for each community ci ∈ C do
3: Compute normalized weighted behavioral similarity matrix Sci using Equation

(5.9)
4: for each participant pi ∈ ci do
5: Compute trust value of pi (i.e., Tpi) using Equation (5.10)
6: end for
7: Z← concat(Sci , Tci)
8: Z̃ ← Train the autoencoder model with Z and κ using Equations (5.13) and (5.14)
9: Execute hierarchical cluster on the rows of Z̃ to obtain c̃i

10: C̃ = C̃ ∪ c̃i
11: end for

model, which is trained to reconstruct the social botnet communities more accurately (Lines

7-8, Algorithm 5.3). The Deep Autoencoder consists of two phases, namely encoding

f(Z) : RU×V → RU×D and decoding g(Y ) : RU×D → RU×V . In the encoding phase, the

aggregated matrix Z is mapped to D-dimensional hidden layers to obtain Y , computed as

Y = f(Z) = sig(Wh2 · sig(Wh1Z + bh1) + bh2) (5.13)

where Wh1,Wh2, bh1 and bh2 are respectively the weights and biases of the encoding phase

in the deep autoencoder. Here, sig(σ) = 1
1+e−σ

, where σ is an argument, represents a

mapping function for both encoding and decoding phases. In the decoding phase, Y is

mapped to obtain the reconstructed aggregated matrix Z̃ as follows:

Z̃ = g(Y ) = sig(Wh4 · sig(Wh3Y + bh3) + bh4) (5.14)

where Wh3,Wh4, bh3 and bh4 are respectively the weights and biases of the decoding phase

in the deep autoencoder. Thus, the deep autoencoder model is defined as

Z̃ = g(f(Z)) (5.15)

Line 9 of Algorithm 5.3 implements the hierarchical clustering [221] on the rows of the
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trained autoencoder model Z̃ to obtain the reconstructed community structure c̃i. The entire

process is repeated for each community in order to obtain the reconstructed community set

C̃ = {c̃1, ..., c̃m} for accurate social bonet community detection.

5.3 Spam Influential Users and Influential Community De-

tection

Bots may influence some legitimate participants by frequently interacting with them. Thus,

identifying the influential participants (which are influenced by social spam bots) from

Twitter network helps to minimize influence of spreading spam content. In this section,

spam influence minimization model is presented in order to identify the influential partici-

pant set in Twitter network.

Given a Twitter network G = (P ′, E) with influence propagation model Ip, where G

holds the following properties:



P ′ = P ∪B

P ∩B = φ

∃ attack edge e′ij ∈ E, if pi ∈ P ∧ pj ∈ B

∃ non-attack edge eij ∈ E, if pi, pj ∈ P or B

(5.16)

where P and B represents set of legitimate participants and social spam bots, respectively.

5.3.1 Spam Influence Minimization

The aim of spam influence minimization model is to find a influential set I with k-participants

in order to minimize influence of spam content. Moreover, the spam influence minimiza-

tion model captures the amount of spam propagation in the presence of bot. The probability

of a participant pi influencing any of its outgoing neighbors along a path zk is defined as
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Figure 5.2: An example to illustrate spam influence minimization model

(in [222])

ϑ(zk) = 1−
∏

(pi,pj)∈succeed(zk)

(1− prij) (5.17)

where prij represents the interaction probability from ith participant to jth participant. In a

network, the probability of a participant pi influencing any of its outgoing neighbors along

multi-paths Z(pi) = {z1, z2, ..., zk, ..} (in the presence of bot b) (i.e., which is denoted as

Pr(b, pi))) is defined as

Pr(b, pi) = 1−
∏

zk∈Z(pi)

(1− ϑ(zk)) (5.18)

Fig. 5.2 shows the method of identifying most influential participant by considering one

participant as social spam bot. Fig. 5.2(a) shows a Twitter network with one participant as

social spam bot (i.e., p8). The most influential participant can be identified either: (i) by

choosing the participant p1 as most influential participant (as shown in Fig. 5.2(b)) or (ii)

by choosing the participant p4 as most influential participant (as shown in Fig. 5.2(c)). In

the first case, when p1 is chosen as most influential participant. At different time slots, p1

may influence p2 with probability value 0.2 and p2 spreads the information to p4. Finally,

p4 spreads to p6. Therefore, the probability of participant p1 influencing any of its outgoing

neighbors along a path (i.e., p1 → p2 → p4 → p6) Pr(p8, p1) = 0.488. In the second
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Algorithm 5.4 Spam Influential Users (SIU) Detection
Input:

G = (P ′, E), B- set of social spam bots and NBout(b)- outgoing neighbors of
spam bot b
Output:

I, set of influential participants
1: I = φ; Visited={}; the set Dp = φ
2: for each social spam bot b ∈ B do
3: for each pi ∈ NBout(b) do
4: Compute Pr(b, pi) using Equation (5.18)
5: Dp = Dp.append Pr(b, pi)
6: end for
7: k∗ = maxpi∈NBout(b)Dp

8: I = I ∪ k∗
9: end for

10: return I
11: Influential Community Detection()

case, when p4 is chosen as influential participant. At time slot t1, p8 may influence p4 with

probability value 0.2. Similarly, at time slot t2, p4 may influence p6 with probability value

0.2. Therefore, the participant p4 influencing any of its outgoing neighbors along a path

(i.e., p4 → p6) Pr(p8, p4) = 0.2. Because of p1, more participants (i.e., p2, p4 and p6)

are influenced by spam content. Hence, it is more likely to choose participant p1 as most

influential participant instead of choosing participant p4 for spam influence minimization

problem.

A Spam Influential Users (SIU) detection algorithm (Algorithm 5.4) has been proposed

to determine influential participants and to minimize spam influence in Twitter network.

In SIU algorithm, firstly an empty influential participant set is initialized (i.e., I = φ).

For each social spam bot b ∈ B, the participant k∗ (who has the maximum dissemination

probability) will be added into influential participant set I . Further, Algorithm 5.5 presents

influential community detection (ICD) in Twitter network. For all participants which are

not assigned to a influential community ci, the influence value of each participant pi will

be determined using Equation (5.18). Later, all one-hop neighbors of pi (whose influence

value with pi is greater than threshold value Tf ) will be identified. If neighbors are not

assigned to an influential community ci then pi and its neighbors belong to same influential
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Algorithm 5.5 Influential Community Detection (ICD)
Input:

G = (P ′, E), B, Ip
Output:

C = {c1, c2, ....cm} a set of influential communities
1: Visited ={}
2: for each participant pi ∈ P ′ do
3: if pi /∈ Visited then
4: C={}; temp={pi}
5: ci ← {pi} and C = C ∪ ci
6: Visited = Visited ∪{pi}
7: while temp 6= φ do
8: p← Randomly select a participant from temp
9: Compute influence of p and its neighbors using Equation (5.18)

10: N ← Find the neighbors of p whose influence value is greater than thresh-
old value Tf

11: N ← Delete the participants from N which belong to Visited
12: temp← Add the participants in N to temp
13: ci = ci ∪N
14: Visited = Visited ∪ N
15: end while
16: end if
17: end for
18: C = {c1, c2, ....}
19: repeat
20: for each community ci ∈ C do
21: for each participant pi ∈ ci do
22: NC=Find the neighbors of pi which doesn’t belong to ci
23: for j=1 to |NC| do
24: cc(pi, NCj)← Compute closeness between pi and NCj
25: if cc(pi, NCj) < ς then
26: Delete the edge between pi and NCj
27: else
28: ci = ci ∪NCj
29: end if
30: end for
31: end for
32: end for
33: until influential communities are almost identical for at least two successive iterations

community ci. Moreover, once the initial influential community ci (which is associated with

pi) is detected, then the ICD algorithm starts to identify the influential communities which

are associated with other participants (i.e., which are not assigned to ci). The influential
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community ci is extended by considering the neighbors of pi (where pi ∈ ci) which doesn’t

belong to ci (and it is denoted as NC). If closeness centrality between pi and NCj (i.e.,

denoted cc(p,NCj)) is greater than threshold value ς , then the participant NCj is added

to ci. Otherwise, if cc(p,NCj) is less than ς , then delete the edge between pi and NCj

from G. The algorithm runs till the influential communities are identical (for at least two

successive iterations).

5.4 Performance Evaluation

In this section, the performance of the proposed SBCD and DA-SBCD algorithms are eval-

uated for detecting social botnet communities, and compare them with two recent methods,

namely detecting spam communities (SpamCom) [36] and Botnet Discovery [37]. The

SpamCom identifies spammers (or social spam bots) based on the user behavioral features

and applies clique to determine strongly connected botnet communities. On the other hand,

the Botnet Discovery identifies bots by considering correlation graph and applies modular-

ity based clustering approach for community detection. Further, the proposed spam influ-

ential users and influential community detection (SIU-ICD) algorithm is compared with

two existing algorithms, such as opinion spammer community detection (OSCD) [40] al-

gorithm and spammer group detection (SGD) [41]. Two datasets, such as The Fake Project

dataset and Social Honeypot dataset are considered for performance evaluation. The pro-

posed SBCD and DA-SBCD algorithms consider two parameters namely similarity value

(Section 5.2.2) and trust value (Section 5.2.3) to detect botnet communities.The perfor-

mance of the proposed algorithms are evaluated in terms of normalized mutual information

(NMI), precision, recall, F-measure G-measure and modularity. These metrics are defined

as follows:

• Normalized Mutual Information (NMI): There exist two different types of communi-

ties, namely detected communities C̃ and ground-truth labeled communities ~C. Let

qij represent the number of participants in a detected community c̃i with label j. Let

qi and qj represent the number of participants in each detected community c̃i and
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with labeled data j for a ground-truth labeled community ~cj , respectively. NMI is

defined as follows:

NMI(C̃, ~C) =

∑
c̃i∈C̃

∑
~cj∈~C

qij log
n.qij
qi.qj√

(
∑
c̃i∈C̃

qilog
qi
n

)(
∑

~cj∈~C
qj log

qj
n

)

where n represents the total number of participants. If NMI is close to zero, it implies

that there exists dissimilarity between the detected and ground-truth labeled commu-

nities. If NMI is close to one, it implies that there exists high similarity between the

detected and ground-truth labeled communities.

• Modularity: Modularity Q̃ is a metric which evaluates the quality of detected com-

munities, especially when the ground-truth is unavailable. Modularity is defined as

Q̃ = 1
2k

∑
i,j(Aij −

degidegj
2k

)δ(i, j) (in [223]), where k is the number of edges, degi

and degj represent the degree of participant pi and pj , respectively and Aij is the

element of adjacency matrix. The term δ(i, j) = 1 represents that participant pi and

pj belong to same group. Otherwise, δ(i, j) = 0. Modularity Q̃ value lies between

-1 and 1. Higher modularity Q̃ value represents a best partition of communities in

network.

• Precision (P ): It is defined as P = TP
TP+FP

, where TP (respectively, FP ) represents

similar (respectively, dissimilar) type of participants assigned to the same commu-

nity.

• Recall (R): It is defined as R = TP
TP+FN

, where FN represents similar type of

participants that are assigned to different communities.

• F-measure: F-measure is defined as 2×Precision×Recall
Precision+Recall

• G-measure: G-measure is defined as
√
Precision×Recall

5.4.1 Experimental Results for Social Botnet Community Detection

The proposed DA-SBCD algorithm considers both similarity and trust values which are

given as input matrix [S, T ]T to the deep autoencoder model. A parameter α is considered,
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where 0 < α < 1, in order to balance the proportion of trust T and similarity values S,

i.e., [(1−α).S, α.T ]T . Fig. 5.3(a) shows the performance of DA-SBCD algorithm in terms

of NMI by varying α values from 0 to 1 on the Social Honeypot and The Fake Project

datasets. It is observed that when α is either 0 or 1, the DA-SBCD algorithm achieves

low NMI value. However, when α ∈ (0, 1) in the open interval, the DA-SBCD algorithm

provides better NMI value. The is because by considering the trust value of a participant

and behavioral similarity between participants, better performance is achieved for social

botnet community detection. Fig. 5.3(a) demonstrates that by varying α between 0.1 and

0.9, the NMI values slightly fluctuate because the deep autoencoder adjusts α for better

performance.

Fig. 5.3(b) shows the performance of DA-SBCD algorithm for detecting social bot-

net communities with two, three, and four hidden layers on the two datasets. For Social

Honeypot dataset, it has been observed that DA-SBCD algorithm with four hidden layers

achieves better NMI value when compared to the performance with three hidden layers.

This implies that the number of hidden layers in the deep autoencoder plays a vital role.

For The Fake Project dataset, the NMI value of the proposed DA-SBCD algorithm with

four hidden layers has been drastically reduced when compared to the performance with

three hidden layers. However, for The Fake Project dataset, the DA-SBCD algorithm with

four hidden layers achieves moderate accuracy (in terms of NMI) as compared to the cases

with two hidden layers and three hidden layers. This is because, when more hidden layers

are considered for low dimensionality of data, the original data will be reduced, leading to

lower performance.

Table 5.2: Evaluation metrics of legitimate and other type of social bot attacks for two
Twitter datasets

Dataset Community P R F
The Fake Project Legitimate 89.21 85.58 87.35

Spam bots 91.16 84.42 87.66

Fake followers 92.12 87.65 89.82

Social Honeypot Legitimate 92.16 84.26 88.03

Content polluters 91.25 87.14 89.14
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Figure 5.3: Performance of DA-SBCD algorithm on two Twitter datasets

Table 5.2 shows the performance of determining overlapping communities using eval-

uation metrics, such as recall (R), precision (P) and F-measure (F) on two Twitter datasets

for different types of communities. For The Fake Project dataset, the DA-SBCD al-

gorithm achieves an average precision of P = 90.86% for classifying legitimate users

and other types of social botnet communities. The obtained F-measure values are F =

87.35%, 87.66%, and 89.82% for legitimate, spam bots, and fake followers communities,

respectively.

Figures 5.4 and 5.5 compare the performance of the proposed DA-SBCD and SBCD

algorithms with existing methods SpamCom and Botnet Discovery in terms of precision,

recall, F-measure and G-measure on the two Twitter datasets with a parameter µ ranging

from 0 to 1 (where the parameter µ is defined as the ratio of the number of attack edges

that a social bot can create at a particular time slot and the total number of attack edges

that exist in the network). It has been observed that DA-SBCD outperforms those two ex-

isting algorithms on the Twitter datasets. Specifically, for µ > 0.3, DA-SBCD achieves

better precision value when compared to SpamCom and Botnet Discovery methods. As µ

increases, the performance in terms of precision, recall, F-measure and G-measure of all

social botnet community detection algorithms also increase, due to the fact that the social

bots attempt to establish social relationships with the legitimate participants. Moreover, the

DA-SBCD algorithm provides 2-4% improvement on precision over the SBCD algorithm.
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(d) G-measure

Figure 5.4: Comparison of DA-SBCD algorithm with other botnet communities detection
algorithms on The Fake Project dataset

The is because DA-SBCD identifies different types of malicious activities using deep au-

toencoder with random-walk based trust model and similarity among participants. For

Social Honeypot dataset, the performance of DA-SBCD algorithm provides an improve-

ment of about 6% on precision, 3% on recall, and 3% on F-measure over the SpamCom

algorithm . Therefore, on an average, the performance of the proposed DA-SBCD algo-

rithm is improved around 3% over the existing algorithms. Indeed, the F-measure result

demonstrates that the DA-SBCD outperforms other existing methods (such as SpamCom

and Botnet Discovery) for social botnet community detection.

Figures 5.6(a) and 5.6(b) compare the DA-SBCD algorithm with the SBCD algorithm,
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Figure 5.5: Comparison of DA-SBCD algorithm with other botnet communities detection
algorithms on Social Honeypot dataset

SpamCom and Botnet Discovery in terms of NMI for different values of µ varying from

0 to 1. It has been observed that DA-SBCD outperforms other existing social botnet de-

tection algorithms on both the Twitter datasets considered. Precisely, DA-SBCD provides

4-8% improvement on the NMI values. For Social Honeypot dataset, DA-SBCD achieved

the highest NMI = 0.75 when µ = 0.7, which is a significant improvement over Botnet

Discovery. Although SpamCom achieves better performance when compared to Botnet

Discovery, it is lower than DA-SBCD algorithm. One reason for this is that the existing so-

cial botnet community detection algorithms learn only from a single layered representation

of data. However, the proposed DA-SBCD algorithm learns from multiple deep layers for
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Figure 5.6: Performance of DA-SBCD algorithm on two Twitter datasets in terms of NMI

social botnet community detection. Another reason is thatDA-SBCD integrates both trust

and similarity values, and learns by adjusting the parameter α for better performance in dif-

ferent types of datasets. Moreover, in the deep autoencoder model, the encoding phase of

hidden layer considers only a set of participants having high behavioral similarity edges, in-

stead of considering all participants. This implies that by integrating the deep autoencoder

model with trust and similarity values, the botnet detection approach is more accurate.

5.4.2 Experimental Results for Spam Influential Communities

Fig. 5.7(a) and 5.7(b) show comparison of proposed spam influential users and influ-

ential community detection (SIU-ICD) algorithm with two existing algorithms, such as

opinion spammer community detection (OSCD) [40] algorithm and spammer group de-

tection (SGD) [41] in terms of modularity Q̃ over 100 iterations. From Fig. 5.7, it can

be observed that the proposed SIU-ICD algorithm holds good community detection per-

formance in terms modularity Q̃ after 50 iterations. Moreover, the proposed SIU-ICD

algorithm achieves better among other existing spammer community detection algorithms

on two Twitter datasets and it obtains the highest modularity Q̃ value on the two datasets.

The reason is that in the datasets with non-overlapping community structures, the existing

community detection algorithms can accurately detect communities with good modularity
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Figure 5.7: Modularity of SIU-ICD and other existing algorithms (OSCD and SGD)

value. The proposed SIU-ICD algorithm is not much significant for such kind of datasets.

The datasets with dynamic community structures (i.e., where user behavior changes over a

period of time) having spammer behavior, the proposed SIU-ICD algorithm identifies the

most influential users and communities based on their malicious behavior (and which are

influenced by spam bots).

From Fig. 5.7(b), it can be observed that for The Fake Project dataset, the highest

modularity Q̃ value obtained by SIU-ICD is 0.65. This is due to fact that SIU-ICD algo-

rithm considers an influence propagation model where the number of users in the influential

neighboring participant set increase iteratively. This makes the proposed algorithm more

stable during influential community detection phase. The proposed SIU-ICD algorithm

achieves 4-9% improvement on modularity Q̃ over existing spammer community detection

algorithms. This is due to the fact that the SIU-ICD is able to identify the dynamic behav-

ioral changes of spammer community detection. However, identifying the most influential

participants (which have higher out-degree) play a significant role in influencing the par-

ticipants within a community structure. Thus, spreading spam content to such influential

participants may have more (negative) impact on such influential community structure.

Therefore, identifying such spam influential community structure helps to minimize spam

influence in Twitter network.
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5.5 Summary

This chapter analyzes the behavioral similarity of the participants by considering four dif-

ferent aspects, such as tweet-content similarity, shared URL similarity, interest similarity

and social interaction similarity for identifying similar type of behavior (malicious or non-

malicious) among participants in the Twitter network. Based on a deep autoencoder model,

the proposed algorithm detects social botnet communities with improved precision and re-

call. Further, an Influential Community Detection algorithm has been proposed and this

helps in reducing the spread of spam-content through influential communities in Twitter

network. In the next chapter, a social trust model has been presented with learning au-

tomata in order to evaluate trustworthy paths in online social networks for trusted-user

recommendations.
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Chapter 6

Learning Automata-based Trust Model

for Determining Trustworthy Paths in

Online Social Networks

Online social networking websites attract a millions of users and provide variety of social

services by interacting with participants [224]. In a social network structure, each node is

identified as participant and each edge corresponds to the relationship between the partici-

pants. Each participant can interact with other participants directly or indirectly [225]. In a

service-oriented system, trust plays a major role for selective decision making and requires

a methodology to evaluate the trust paths between the participants who are unknown to

each other. A service provider may choose trust path selection criteria, such as releasing

an upgraded product and interviewing employees for evaluating the trustworthy services

for the consumers. The trust value specified between two participants is based on their

recommendations and the quality of the products [94]. Moreover, a trustworthy service

is based on the social relationships and recommended influence value among the partici-

pants. Therefore, finding a trustworthy path by selecting trust parameters is a challenging

task [83].

A recommendation based online social network is shown in the Fig. 6.1. Participants

A and I are indirectly linked by multiple paths. A is a service provider and I is a con-

sumer (participant) to evaluate a trust path based on direct [226] and indirect trust values
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[94] (from A to I). In case of Big Data networks [227], multiple recommended trust paths

exist between a service provider and the consumers [42]. Moreover, evaluating the trust-

worthy services for the consumers by considering multiple social paths is a critical issue

and time consuming process. Further, finding a best recommended trust path is a chal-

lenging problem in social networks. However, for identifying the social trust path, the

shortest path based approaches are used [44]. For good recommendations, to purchase ser-

vices, consumers need to focus mainly on the non-functional requirements, such as service

cost, service availability and service delivery time (response time) along with the consumer

feedbacks [228]. For accurate recommendations, social network criteria, such as proxim-

ity, realization, chunk and betweenness (as depicted in Fig. 6.1) are considered including

non-functional requirements (refer Section 6.3).
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Figure 6.1: A social network structure for finding recommended trust path between a source
participant A and a target participant I

A participant (i.e., consumer) may select a recommended trust path with highest trust

value. However, the participant may dislike a service as its cost may go beyond the par-

ticipant’s budget or some attributes may not fulfill the participant’s preferences. Although,

the requirements fulfill the participant’s preferences, the services may not be selected by
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a participant if it is not a recommended trust path [229]. The following are the Big Data

challenging issues that the existing algorithms fail to address: (i) The potential growth of

large volume of non-functional requirements will increase the complexity of social net-

work for selective decision making, (ii) Due to the uncertainty of trust information in a net-

work, evaluating trustworthy services leads to variability in non-functional requirements,

(iii) Heterogeneous qualitative or quantitative participant preferences and trust information

lead to a variety of non-functional requirements in online social networks [230]. Therefore,

a Big Data model is developed for finding a recommended trust path to evaluate trustworthy

services based on the social trust information.

To address the above challenging issues in online social networks, a novel approach has

been proposed for finding a recommended trust path by considering direct trust, indirect

trust, social relationships and recommendations. The major contributions are summarized

as follows:

• Develop a High quality of Social trust (HoS) constrained model for evaluating trust-

worthy services in online social networks by incorporating attributes, such as trust

information (direct trust and indirect trust), social relationships and the participants’

recommendations.

• Design a Learning Automata based-Recommended Trust Path Selection (LA-RTPS)

algorithm, where multiple recommended trust paths are identified from a source par-

ticipant to a target participant.

• Experiments are conducted on two real online social network datasets, such as Slash-

dot dataset [231] and Epinions dataset [232] to evaluate the efficacy of the proposed

LA-RTPS algorithm.

This chapter is organized as follows: Section 6.1 presents the motivation. Section 6.2

discusses the basic definitions and overview of learning automata. In Section 6.3, a multiple

HoS model has been designed for evaluating trustworthy services in online social networks

and a Learning Automata based-Recommended Trust Path Selection (LA-RTPS) algorithm

has been presented. Section 6.4 presents the experimental results based on two datasets to
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evaluate the performance of the proposed algorithm. Finally, the summary of this work is

presented in Section 6.5.

6.1 Motivation

In this era of Big Data, it is demanding to extract trust information and finding trustworthy

participants in online social networks. The conventional approaches (like content-based

recommendation models) consider social relationships based on comments provided in on-

line social networks [233]. Moreover, these types of approaches are not taken into consid-

eration for the establishment of social relationship among multi-hop participants. This has

motivated us to propose and design a recommendation based multi-hop trust management

system for finding recommended trust paths. Moreover, an attacker may act unethically and

gets good reputation. Once an attacker gets high trust value then the attacker may provide

untrustworthy recommendations. This motivated us to integrate social trust information

along with a good recommendation for finding a best recommended social trust path. In

real-time, certain service providers select a few malicious participants to provide faulty

decisions to the services (i.e., trust formation and recommendations) of the other partic-

ipants. Moreover, the service providers provide significant ranking to their own services

for selective decision making. Therefore, the social trust information should be taken into

consideration for avoiding such malicious comments posted in online social networks. In

this work, a Learning Automata based Recommended Trust Path Selection (LA-RTPS) al-

gorithm has been proposed where multiple recommended trust paths are identified from a

source participant to a target participant. LA-RTPS algorithm aims to overcome the limita-

tions of an existing heuristic based optimal social trust path selection approach [44].

6.2 Basic Definitions and Learning Automata

In this section, some basic terminologies are defined. Later, an overview of learning au-

tomata is presented.
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6.2.1 Definitions

In complex social networks, trust plays a major role for users’ recommendations and social

relationships. Many authors have proposed trust definition in different scenarios [83], [96].

In this contribution, the parameters are defined as follows:

Definition 1 (Trust): Trust is a belief on a specific service performed by one participant.

Trust is assigned to others based on recommendations and relationships. Let TPiPj ∈ [0, 1]

represents the trust value between two participants Pi and Pj . If TPiPj = 1, it indicates that

Pi fully trust Pj . Further, if TPiPj = 0 then it indicates that Pi (fully) distrusts Pj .

Definition 2 (Relevance degree): Relevance degree between two participants Pi and Pj

is denoted as rPiPj ∈ [0, 1]. If rPiPj = 0, it indicates that no relationship exists between two

participants. If rPiPj = 1, it indicates that there exists a strong social relationship between

two participants.

Definition 3 (Recommended influence value): Recommended influence value of a par-

ticipant Pi is based on recommendations on social trust path. The recommended influence

value is denoted as ρPi ∈ [0, 1]. If ρPi = 1, it implies that participant Pi will prefer the

service. If ρPi = 0, it implies that participant Pi has no information regarding the service.

Definition 4 (High quality of Social trust): High quality of Social trust (HoS) is the

ability of providing a trustworthy service in social trust propagation by considering trust

(T), relevance degree (r) and recommended influence value (ρ) as a set of attributes.

Definition 5 (Aggregate Path (AP)): In an online social subnetwork, there exists mul-

tiple paths from a source participant vi to a target participant vj through an intermediate

node vk. For each path, HoS attribute values (refer Section 6.3.2 and Section 6.3.3) are to

be computed. An Aggregate Path is a social path from vi to vj through an intermediate node

vk (i.e., path APU
vi→vj ) with maximal utility value U (which is determined using Eq.(14)).

In service-oriented computing, participants can define multiple constraints for a given

set of Quality of Service (QoS) attributes to satisfy non-functional requirements, such as

service cost, service availability and service delivery time (response time) [230]. Different

non-functional requirements have different constraints for HoS attributes.
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6.2.2 Learning Automata

Random

Environment


Learning Automaton


INPUT
 OUTPUT


Figure 6.2: Learning Automaton

Fig. 6.2 shows the relationship between learning automaton and a random environment.

A learning automata selects the required action from a finite set of feasible actions through

repetitive process. The actions are executed on random environment and produces the

responses in terms of either a reward or a penalty. Moreover, each input is associated with

a specific action and learning automaton updates its action probability value by taking the

learning algorithm into consideration [184].

Learning Automaton is defined as a quadruple< I, α, pd, R >, where I = {I1, I2, ...., In}

represents learning automaton’s input set and α = {α1, α2, ....., αn} represents a finite

set of actions such that each automata selects one of the trustworthy participant. Further,

p = {p1, p2, ....pn} represents the action probability set where pi denotes the probability

of selecting a specific action αi. The term R represents the learning algorithm which up-

dates the reinforcement signal (represents success or failure of a system after performing

a finite set of actions) based on the random environment responses. In the random envi-

ronment, the learning automaton is denoted as < a, b, c >, where a = {a1, a2, ....., an}

represents the finite input set, b = {b1, b2, ....., bn} represents reinforcement signal values

and c = {c1, c2, ....., cn} represents penalty probability set (where ci is the corresponding

value with each ai, 1 ≤ i ≤ n). In the proposed algorithm, a reward value is considered. If

the learning automaton gets a reward from the random environment then the action prob-

ability value p is updated. Otherwise, the p value remains same. Let α(m) be a specific

action chosen by the learning automata at an instant m. The action probability value is

given by
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pj(m+ 1) =


(1− ϕ)pj(m),∀j 6= i, b = 0

pj(m) + ϕ(1− pj(m)),∀j = i, b = 0

pj, b = 1

(6.1)

where ϕ is a constant.

6.3 Learning Automata based High Quality of Social Trust

Constrained Model

In this section, firstly, a recommendation-based online social network architecture has been

designed for analyzing the recommended trust paths based on learning automata. In ad-

dition, a High quality of Social trust (HoS) model is presented for establishing a strong

social connection among a group of participants. Shannon’s entropy approach is used to

compute utility value for each trustworthy service. Further, a Learning Automata based

Recommended Trust Path Selection (LA-RTPS) algorithm has been proposed to identify

multiple recommended trust paths from a given source participant to a target participant.

6.3.1 A Recommendation-based Online Social Network Architecture

As shown in Fig. 6.3, the proposed recommendation-based online social network archi-

tecture have the following five measures: (a) Service providers publish their services, such

as social relationships, trust value and recommended influence value (which are collected

and stored in a service registry), (b) Social trust (influence) among the participants is deter-

mined based on proximity, realization, chunk and betweenness. A participant can establish

a directed link with others based on proximity (which is determined using a geo-social

based distance measure [234]). In real world, a simple way for a participant is to estab-

lish a social connection in order to have mutual friends. A participant creates trusted links

among a group of participants [235]. The realization and chunk are the two other parame-

ters (in an online social networking structure) which dynamically influence the social trust

composition. These two measures are considered as basic idea for establishing a strong so-
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Figure 6.3: A recommendation based online social network architecture for finding recom-
mended trust paths

cial connection within the group of participants, (c) When a consumer request for a service,

user specifies all his non-functional requirements, such as cost, availability and response

time along with the users’ feedback and trust value, (d) For a recommended trust path, all

services stored in a service registry are collected based on the consumer non-functional

requirements. Later, a recommended trust path is evaluated based on utility value ’U’ and

the best aggregate path is selected with a maximal utility value ’U’, (e) Finally, after the

consumer invokes the recommendations about a service, its feedback will be stored in a

service registry for social trust information (as a recommended influence value).

A participant’s trust value is evaluated based on either current direct relationships or

previous direct relationships. If a participant’s trust value is based on recommendations,

then it is termed as indirect trust.

159



CHAPTER 6. LEARNING AUTOMATA-BASED TRUST MODEL FOR DETERMINING TRUSTWORTHY PATHS IN ONLINE SOCIAL NETWORKS Section 6.3

6.3.2 HoS Attribute Association

Big Data challenging issues deals with the massive volume and variety of non-functional

requirements, such as cost, availability and response time including the consumer feedback

and trust. The existing model [44] is customized by considering the parameters, such as

direct trust, indirect trust, relevance degree and recommended influence value. In a service

oriented system, participants specify constraints for HoS attributes in order to fulfill the

non-functional requirements. As shown in Fig.3, a source participant specifies HoS con-

straints (assumed asHAI = {TAI > 0.4, rAI > 0.3, ρAI > 0.4}) for the recommended trust

path from A to I. The HoS attribute associated model is presented in next section.

6.3.2.1 Trust Association

Trust may be transitive among participants [236]. If there exists n participants {P1, P2, .....Pn}

then the recommended trust path is denoted as TP (P1,P2,.....Pn). Realization, proximity,

chunk and betweenness as the essential characteristics to measure the social trust influence

among the group of participants. Trust association model is established between participant

Pi and participant Pj at time ’t’ (which is denoted as TPiPj(t)) and it is given by

TP (P1,P2,.....Pn) =
∏

(Pi,Pj)∈(P (P1,P2,.....Pn))

TPiPj(t) (6.2)

TPiPj(t) =
all∑
A

TAPiPj(t) (6.3)

where ’A’ represents a trust attribute which contains realization, proximity, chunk and

betweenness. TAPiPj(t) denotes the participant P ′is trust (in trust attribute ’A’) towards the

participant Pj at a particular time (t+ δt) and the term is defined as follows:

TAPiPj(t+ δt) = αTD,APiPj
(t+ δt) + (1− α)T ID,APiPj

(t+ δt) (6.4)

where TD,APiPj
(t + δt) represents a direct trust using direct relationship, T ID,APiPj

(t + δt)

represents indirect trust using recommendations and α lies within a range of 0 and 1. Let

XD,A
Pi,Pj

(t) represents a boolean variable. This implies that the data needed for assessing trust
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attribute ’A’ is obtained at time δt. The direct trust TD,APiPj
(t+ δt) is represented as follows:

TD,APiPj
(t+ δt) =

 TAPiPj(t+ δt), ifXD,A
Pi,Pj

(t) = true

e−θδt ∗ TD,APiPj
(t), ifXD,A

Pi,Pj
(t) = false

(6.5)

The participant Pi will update direct trust TD,APiPj
(t + δt) towards the participant Pj (for

a trust attribute ’A’) if and only if participant Pi directly interacts with participant Pj at

time t and the information required for assessing ’A’ is obtained at time δt. Otherwise, the

participant simply updates the direct trust TD,APiPj
(t + δt) with its past interaction TD,APiPj

(t)

over an exponential time e−θδt where 0 < θ < 1. The following terms are related to social

trust measurement for trust evaluation (in this model):

• T realizationPiPj
(t+ δt): It is computed as the probability of determining whether both the

participants Pi and Pj are within same group at a time interval [t, t+ δt].

• T proximityPiPj
(t + δt): A geo-social based distance measure [234] is used to find the

distance between two participants at a time interval [t, t + δt]. If distance is smaller

then less effort is needed to initiate interaction of the participants.

• T betweennessPiPj
(t + δt): Participant Pi creates trusted links between itself and an par-

ticipant Pj (belonging to a different group) based on identifying family members or

close friends over time interval [t, t+ δt].

• T chunkPiPj
(t + δt): The social trust chunk value is established between participant Pi

and participant Pj , if and only if there are more common neighbors between the

participants Pi and Pj .

The indirect trust T ID,APiPj
(t+ δt) is computed as follows:

T ID,APiPj
(t+ δt) =

 e−θδt ∗ T ID,APiPj
(t), if |Si| = 0∑

k∈Si
(TAPiPk

(t)∗TAPkPj (t))∑
k∈Si

(TAPiPk
(t)

, if |Si| ≥ 1
(6.6)

When a participant Pi finds an intermediate participant Pk as a trustworthy participant

(based on trust information and social relationships), then the participant Pk provides rec-

ommendations to participant Pi for evaluating a participant Pj . Let |Si| represents the

161



CHAPTER 6. LEARNING AUTOMATA-BASED TRUST MODEL FOR DETERMINING TRUSTWORTHY PATHS IN ONLINE SOCIAL NETWORKS Section 6.3

number of elements in a set containing participant P ′is 1-hop neighbors. The indirect trust

value should be greater than the social trust threshold value (Tf ). A directed link is estab-

lished between participant Pi and the participant Pj if and only if TPiPj(t) ≥ Tf . This helps

for selecting trustworthy next hop neighbors.

6.3.2.2 Relevance Degree Association

Relevance degree reduces significantly as the number of transitive hop increases between

the intermediate participants in a social trust propagation model. The associated relevance

degree value r in a social path P (P1, P2, .....Pn) at a time t is defined as follows:

rP (P1,P2,.....Pn) =
∏

(Pi,Pj)∈(P (P1,P2,.....Pn))

rPiPj(t) (6.7)

6.3.2.3 Recommended Influence Value Association

The recommended influence value of a participant does not reduce with the increase in the

number of transitive hops. The associated recommended influence value ρ in a social path

P (P1, P2, .....Pn) at a time t is defined as follows:

ρP (P1,P2,.....Pn) =

∑n
i=1 ρPi(t)

n
(6.8)

As shown in Fig.6.3, the HoS associated models are determined using the Eq.(2), Eq.(7)

and Eq.(8) between a source participant and a target participant. Therefore, HoS associated

model is considered as basic approach for establishing strong social connections among the

group of participants. The HoS attribute values are sent to the service registry.

6.3.3 Entropy Based Trust Model

In this section, to deal with variability (i.e., Big Data challenges) Shannon’s entropy based

trust model is proposed by considering trust, relevance degree and recommended influence

value. Claude E. Shannon introduced Shannon’s communication and information theory in

1948 [237]. Shannon entropy is an important measure to quantify uncertainty of informa-

tion content.
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In online social networks, a set of n participants P = {P1, P2, .........Pn} are consid-

ered. The key attributes for providing trustworthy services denoted asA = {A1, A2, .....An}.

In this work, a sample set S is considered and the set contains data tuples that are defined by

considering a set of High quality of Social trust (HoS) attributes, such as trust (T), relevance

degree (r), recommended influence value (ρ) and a class attribute (which has k unique val-

ues). The class attribute gives the information about a tuple in the sample set S. Therefore,

there are k unique classes Ci (for i = 1,2...k). In this work, there are two classes (C1 and

C2). The class C1 belongs to trustworthy link and class C2 belongs to untrustworthy link.

The HoS attribute with a highest value of information gain is considered as a most influ-

ential HoS attribute, while providing n services from a participant Pi to a participant Pj .

Therefore, this HoS attribute reduces the information required in order to classify the data

tuples in each subset and leads to impurity in these subsets. According to Shannon entropy

[238], the information required in order to classify a data tuple in sample set S is defined

as:

Info(S) = −
k∑
i=1

|Ci|
|S|

log2
|Ci|
|S|

(6.9)

where |S| denotes the total number of data tuples in sample set S and |Ci| denotes the

number of data tuples in class Ci. Info(S) (i.e. entropy) represents the average amount of

information required in order to classify the class label information in sample set S with n

number of services.

Sample set S on any HoS attribute ’A’ contains m unique values, {v1, v2, .....vm}, from

the sample set S. Therefore, HoS attribute ’A’ divides sample set S into m subsets, {S1, S2, ...., Sm},

where Sj contains tuples in S that have value vj of ’A’. In this work, trust attribute contains

3 unique values, such as direct, indirect and past information. Therefore, trust attribute

is divided into 3 subsets. However, each subset may likely to be impure (where a subset

contain tuples from multiple classes instead from a single class). Moreover, each subset Sj

is further divided into a k classes Ci (for i = 1,2....k) as {Sj(C1), Sj(C2), .....Sj(Ck)}. For

any subset Sj(Ci), the participant Pi provides n number of services to the participant Pj

in a sample set S with a HoS attribute ’A’. Therefore, the expected amount of information

needed from S by partitioning into subsets is defined as
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InfoA(S) = −
m∑
j=1

|Sj|
|S|

K∑
i=1

|Sj(Ci)|
|Sj|

log2
|Sj(Ci)|
|Sj|

(6.10)

where |Sj| denotes number of tuples in subset Sj . |Sj(Ci)| denotes number of tuples in

subset Sj of class Ci on some HoS attribute ’A’. InfoA(S) indicates the expected value of

information needed in order to classify the data tuples from S based on partitioning by the

most influential HoS attribute ’A’. If InfoA(S) is smaller then the impurity in the subsets

is low. Therefore, the information gain is defined as follows:

Gain(A) = Info(S)− InfoA(S) (6.11)

Gain(A) indicates that the amount of impurity in the subsets Sj for a trustworthy se-

lective decision reduces significantly after splitting the HoS attribute ’A’ in a sample set S.

Therefore, high value of Gain(A) indicates the most influential HoS attribute ’A’ for best

classification. Accordingly, the weights of each HoS attribute ’A’ for providing a trustwor-

thy service that is defined as:

wi =
Gain(Ai)∑n
i=1Gain(Ai)

(6.12)

To adjust a set of attribute weights w = {w1, w2, ......., wn}, utility function in this

model is considered as a measurement for evaluating the trustworthy service in online social

networks by incorporating trust, relevance degree and recommended influence value. The

utility value U in a recommended trust path P (P1, P2, .....Pn) is determined as:

UP (P1,P2,.....Pn) =
n∑
i=1

wiAi (6.13)

where
∑n

i=1wi = 1 and 0 < wi < 1.

The above Eq. (13) can be rewritten by considering trust (T), relevance degree (r) and

recommended influence value (ρ)

U(PP1,P2,.....Pn) = w1TP (P1,P2,.....Pn) + w2rP (P1,P2,.....Pn) + w3ρP (P1,P2,.....Pn) (6.14)
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The main objective of finding a trustworthy selective decision in online social networks

is to select a recommended trust path that satisfies HoS constraints (as mentioned in Section

6.3.2) and obtains best utility value.

6.3.4 Proposed LA-RTPS Algorithm

A Learning Automata based Recommended Trust Path Selection (LA-RTPS) algorithm (re-

fer Algorithm 6.1) has been proposed in online social networks. Let α = {α1, α2, ......, αn}

denotes a finite set of paths between source participant vi and target participant vj , where

αi is the recommended trust path selected by an intermediate participant vk at an instant

i. Learning automaton uses recommended trust path selection in online social networks

depending on parameters namely direct trust, indirect trust (T), relevance degree (r) and

recommended influence value (ρ) of a participant. The proposed LA-RTPS searches a rec-

ommended trust path in online social networks by using Dijkstra’s single source shortest

path algorithm [239]. In the recommended trust path selection procedure from a source

participant vi to a target participant vj at an intermediate node vk, there exists either a path

PU
vi→vj (which is identified with maximal utility value U using Eq.(14)) or an Aggregate

Path (AP) APU
vi→vj (refer Section 6.2.1, Definition 5). The action probability value is given

by

pj =
1

deg(vk)
(6.15)

where deg(vk) is the degree of an intermediate participant vk.

The LA-RTPS algorithm computes High quality of Social trust (HoS) attribute weights

using Eq.(12) (Line 2). The LA-RTPS algorithm starts on the selection of source partici-

pant vi and learning automata is activated at each intermediate participant vk (Line 3-4). To

identify the recommended trust path (Pvi→vj ) from a source participant vi to a target partic-

ipant vj through an intermediate participant vk, the HoS attributes, such as trust, relevance

degree, recommended influence value and utility values are determined. If one of the path

satisfies a threshold value T then a source participant vi is inserted into a queue. A neigh-

boring participant of vi is vy (which is chosen with maximal utility value of Pvi→vy ). The
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Algorithm 6.1 Learning Automata based Recommended Trust Path Selection (LA-RTPS)
Input:

vi, vj, vk, Convergence Threshold T
Output:

Pvi→vj , U(Pvi→vj)
Parameters:

ar: Number of times a specific action is rewarded, ap: Number of times a specific
action is penalized
Assumption:

α = {α1, α2, ......, αn} denotes a finite set of paths between source participant vi
and target participant vj , where αi is the path selected by an intermediate participant
vk at an instant i
Procedure:

1: Pvi→vj = Φ
2: Compute HoS attribute weights based on Shannon’s entropy using Eq.(12)
3: Select a source participant
4: Activate learning automata at each intermediate participant vk
5: for i do = 1 to n //n is the total number of intermediate participants
6: Find the recommended trust path via an intermediate participant vk as follows
7: for a given path Pvi→vk→vj at time [t+ δt]
8: Compute the trust value using Eq.(2)
9: Compute the associated relevance degree using Eq.(7)

10: Compute the associated recommended influence value using Eq.(8)
11: Compute the utility value U for a given path Pvi→vk→vj using Eq.(14)
12: if one of{U(Pvi→vk→vj) and U(APvi→vk→vj) ≥ T} then
13: Set Queue= Φ, Pvi→vi = vi
14: Add vi into Queue
15: while Queue 6= Φ do
16: for vy ∈ Neighbor[vx], where (vx ∈ Queue) do
17: Select Neighbor[vx] with maximal µ as vy
18: Add vy into Queue and Pvi→vj = Pvi→vy + vy → vk → vj
19: end for
20: Remove vx from Queue
21: end while
22: Store the utility value U and the associated path are stored in a buffer
23: else
24: No feasible solution
25: end if
26: end for
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27: for j do = 1 to n
28: if (jth intermediate participant is trustworthy) then
29: reward the intermediate participant and the associated path
30: U = U + ω, where ω ∈ [0, 0.1]
31: Action probability value is updated using Eq.(1)
32: ar + +
33: else
34: penalize the intermediate participant and the associated path
35: U = U − ω, where ω ∈ [0, 0.1]
36: Action probability value is updated using Eq.(1)
37: ap + +
38: end if
39: end for
40: return Maximal utility value U and the associated path

Table 6.1: Entropy, Gain and Weights
associated with a sample set S

Info(S)=0.7822

A InfoA(S) Gain(A) Wts

A1(T ) 0.4310 0.3512 0.4494

A2(r) 0.5217 0.2605 0.3333

A3(ρ) 0.6125 0.1697 0.2171

participant vy is inserted into the queue. Moreover, the utility value and the associated path

are stored in a buffer. This process is repeated for all intermediate participants (Line 5-26).

Learning automata produces the response in terms of either penalty or reward. Moreover,

if an intermediate participant vk is considered as a trustworthy participant then the learning

automata is rewarded. If learning action is rewarded then the utility value is incremented

by ω, where ω ∈ [0, 0.1]. Otherwise, learning action is penalized and the utility value is

decremented by ω (Line 27-39). Therefore, the learning algorithm returns the maximal

utility value with best recommended trust path (Line 40) .

6.3.5 Analysis of Proposed Trust Model

In this section, the performance of the proposed model is analyzed by considering Trust
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Table 6.2: Proposed Trusted Model Computation Results

Path Links A1(T) A2(r) A3(ρ) Utility

Pvi→v3 vi → v1 → v2 → v3 0.6 0.5 0.6 0.57

Pv3→vj v3 → v4 → vj 0.5 0.6 0.5 0.53

Pv2→vj v2 → v3 → v4 → vj 0.7 0.8 0.7 0.73

T, relevance degree r and recommended influence value ρ as HoS attribute set. For each

attribute, entropy, gain and weights are listed in Table 6.1. Fig. 6.4 illustrates a social

network structure between a source participant vi and a target participant vj with six inter-

mediate participants. For a given path, HoS attribute values are computed (Table 6.2) based

on HoS attribute associated model (refer Section 6.3.2).
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Figure 6.4: Multiple paths are aggregated for the recommended trust path selection

For a recommended trust path, a path (PU
vi→vj ) has to be identified from vi to vj through

an intermediate node vk with maximal utility value U (which is determined using Eq. (14))

by satisfying HoS constraints. A given path PU
vi→vj is considered as a recommended trust

path if and only if utility value U is greater than a threshold value T . LA-RTPS identifies

m paths (from vi to vj) which are to be aggregated in order to find a best recommended

trust path (i.e., path APU
vi→vj ). For example, in Fig. 6.4 from v3 to vj , there exists only

one path through an intermediate node v4. Similarly, at v2 there are two intermediate nodes

(v3 and v4) between v2 to vj . LA-RTPS identifies two paths. The first path is APU
v2→vj

(i.e., v2 → v3 → v4 → vj). The second path is APU
v2→vj (i.e., v2 → v3 → vj). The paths

will be aggregated with maximal utility value U in order to find a best recommended trust
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Table 6.3: Weights associated
with T, r and ρ values

W ID wtT wtr wtρ
1 0.5 0.3 0.2
2 0.25 0.25 0.5
3 0.5 0.25 0.25

Table 6.4: Features of online social subnetworks with
a sub-network ID varied from 5 to 8 hops

2* Slashdot Dataset Epinions Dataset

Hops SID Nodes Links SID Nodes Links

5 1 423 1523 20 535 1626

6 1 674 2875 20 784 2985

7 1 1400 6823 20 1282 6698

8 1 935 5723 20 868 4585

path. Table 6.2 shows the results of the proposed trust model which are computed based on

the weights specified in Table 6.1.

6.4 Performance Evaluation

In this section, experimental results are presented to evaluate the performance of LA-RTPS

algorithm by considering two datasets, such as Slashdot dataset and Epinions dataset [43]

and comparing with MFPB-HOSTP [44]. The two datasets captures real-world characteris-

tics of online social networks and these datasets are extracted from the Slashdot [231] and

Epinions [232] websites published by the Stanford Network Analysis Project [240].

HoS attribute values such as trust (T), relevance degree (r) and recommended influence

value (ρ) are considered and they are randomly generated (because different Big Data ap-

plications may have different values). HoS constraints are set by a source participant as

Hvi,vj = {Tvi,vj > 0.4, rvi,vj > 0.3, ρvi,vj > 0.4}. Moreover, different weights of HoS

attributes are taken from Table 6.3. Arbitrarily 100 subnetworks are chosen from both

Slashdot and Epinions dataset. Further, the maximum length of the recommended trust

path is varied from 5 to 7 hops based on the real-world characteristics. These subnetworks

are categorized by number of hops and sub-network IDs varying from 1 to 20. Table 6.4

lists the features of online social subnetworks with a sub-network ID.
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6.4.1 Experimental Results

In this section, we analyze the performance of the proposed algorithm in terms of recom-

mended trust path utilities and execution time.
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(b) Epinions Dataset

Figure 6.5: Comparison of recommended trust path utilities of online social subnetworks
with 5 hops.
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(b) Epinions Dataset

Figure 6.6: Comparison of recommended trust path utilities of online social subnetworks
with 6 hops.

6.4.1.1 Recommended Trust Path Utilities

Fig. 6.5, Fig. 6.6 and Fig. 6.7 shows the utilities of the recommended trust paths in online

social subnetworks that are grouped based on the number of hops with different weights
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(b) Epinions Dataset

Figure 6.7: Comparison of recommended trust path utilities of online social subnetworks
with 7 hops.
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(b) Epinions Dataset

Figure 6.8: Comparison of total execution time of online social subnetworks with 5 hops.

of HoS constraints. It has been observed from Fig. 6.5 to Fig. 6.7 that the proposed

algorithm obtains the utilities that outperforms MFPB-HOSTP algorithm [44] (e.g., case

S1 and S2 in Fig. 6.5, Fig. 6.6 and Fig. 6.7). The reason is that, in LA-RTPS, the utility

values fluctuate due to use of random functions for generating HoS attributes. LA-RTPS

identifies multiple paths which are aggregated and selects a best recommended trust path

with maximal utility value by satisfying HoS constraints. However, when there exists a

path Pvi→vj with minimal utility value then MFPB-HOSTP algorithm stops identifying the

recommended trust path (e.g., case S3 in Fig. 6.5, Fig. 6.6 and Fig. 6.7). The reason

is that the existing algorithm uses trust value without good recommendations in order to
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(b) Epinions Dataset

Figure 6.9: Comparison of total execution time of online social subnetworks with 6 hops.
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(b) Epinions Dataset

Figure 6.10: Comparison of total execution time of online social subnetworks with 7 hops.

identify the social trust paths. Due to this a best recommended trust path may not be found

in all possible cases by satisfying HoS constraints. Therefore, LA-RTPS always find a best

recommended trust path that outperforms existing algorithm. For Slashdot dataset, it can be

observed that average value of utilities of LA-RTPS is 26.78% better in Fig. 6.5(a), 32.75%

better in Fig. 6.6(a) and 35.38% better in Fig. 6.7(a) in comparison to MFPB-HOSTP [44].

For Epinions dataset, it has been observed that average value of utilities of LA-RTPS is

31.14% better in Fig. 6.5(b), 33.69% better in Fig. 6.6(b) and 29.14% better in Fig. 6.7(b)

in comparison to MFPB-HOSTP [44].
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6.4.1.2 Execution Time of LA-RTPS

Fig. 6.8, Fig. 6.9 and Fig. 6.10 shows the execution time of a recommended trust path

in online social subnetworks based on the number of hops. From Fig. 6.8 to Fig. 6.10, it

can be observed that when the subnetwork ID is small, the performance of both LA-RTPS

and MFPB-HOSTP are similar in terms of execution time. Moreover, when the number

of subnetwork ID increases, it has been observed that LA-RTPS outperforms existing algo-

rithm in execution time. The reason is that, to identify the recommended trust path, any

HoS attribute in the selected trust path from vi to vk does not satisfy HoS constraints. The

node vk is not selected for the next searching process. The existing algorithm uses forward

and backward search approach in order to identify the local paths which take more execu-

tion time. For Slashdot dataset, the average execution time of LA-RTPS is 30.11% less in

Fig. 6.8(a), 35.24% in Fig. 6.9(a) and 34.28% in Fig. 6.10(a) in comparison to MFPB-

HOSTP [44]. For Epinions dataset, the average execution time of LA-RTPS is 35.39% less

in Fig. 6.8(b), 36.14% less in Fig. 6.9(b) and 35.33% less in Fig. 6.10(b) in comparison to

MFPB-HOSTP.

6.5 Summary

In this chapter, a trust model has been presented for user recommendations based on trust

information (such as direct trust and indirect trust), relevance degree and recommended

influence values in online social networks. For selecting the recommended trust paths with

HoS attributes in online social networks, firstly, a recommendation-based online social

network architecture has been designed. In addition, a Learning Automata based Rec-

ommended Trust Path Selection (LA-RTPS) algorithm has been proposed, where multiple

recommended trust paths are identified from a source participant to the target participant.

The proposed model determines utility values for evaluating trustworthy services based on

Shannon entropy. The multiple recommended trust paths are aggregated and a best recom-

mended trust path is chosen with maximal utility value.

173



Chapter 7

Conclusions and Future Directions

This thesis investigates the detection of social bots which provides trusted and efficient

sharing and accessing information in online social networks. Different trust computational

models are presented by taking social attributes (or features) into consideration. The pro-

posed algorithms achieve better performance in terms of the accuracy, precision, recall

and F-measure. The proposed algorithms are implemented and experimented on real-time

online social network datasets. A comparative study of the proposed algorithms and the

experimental results demonstrate that there is a necessity of the proposed algorithms which

effectively analyze and detect the participants (i.e., online social networking user accounts)

based on their behavioral patterns in online social networks.

In this thesis, the main limitations related to social bot detection, such as reducing trust

value of the legitimate participants by sending fake and untrustworthy information, gen-

erating multiple fake identities and performing phishing attacks through URL redirection

chains have been addressed. Thus, it is important to detect the social bots from legitimate

users in online social networks. In this thesis, the important features (such as tweet-content,

user profile, URL, graph and behavioral similarity based features) are taken into considera-

tion to analyze the behavior of a participant. This thesis has made contributions by consid-

ering the above-mentioned features in order to evaluate the trust value of a participant and

trustworthy paths in online social networks for providing trusted user recommendations.

Contributions of this thesis are identification of social bots and botnet communities, and

analyze the influence of social bots in online social networks.

174



CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS Section 7.2

7.1 The Major Contributions of the Thesis

A learning automata based malicious social bot detection approach has been proposed by

integrating a trust computational model with a set of URL-based features for malicious so-

cial bot detection. This approach is presented in Chapter 3. The proposed trust computation

model contains two parameters namely, direct trust and indirect trust. Moreover, the direct

trust is derived from Bayes’ theorem and indirect trust is derived from Dempster-Shafer

Theory to evaluate the trustworthiness of tweets (posted by each participant).

In Chapter 4, a single agent deep Q-network based architecture has been designed by

integrating deep Q-learning model with social attributes for social bot detection based on

the Q-value function (i.e., state-action value function). A multi-agent particle swarm opti-

mization based deep Q-learning algorithm has been proposed using the updation strategy

of Q-value based on determining local and global best action sequences in order to detect

social bots more accurately. Further, a top-k influential user algorithm has been proposed

to identify the most influential users based on tweets and the user’s interactions.

Based on the behavioral similarity, Chapter 5 presents a novel two-phase model for de-

tecting social botnet communities. The first phase, called the community formation phase,

uses the social botnet community detection algorithm to distinguish legitimate participants

among social botnet communities. The second phase, called the community reconstruc-

tion phase, involves deep autoencoder based social botnet community detection algorithm

in order to classify different types of social botnet communities with improved precision.

Further, an influential community detection approach has been developed to minimize the

disseminating of spam-content through influential communities in Twitter network.

In Chapter 6, a learning automata based recommended trust path selection algorithm

has been designed to determine the trusted user recommendations. In the proposed algo-

rithm, a trust model for user recommendations are taken into consideration based on trust

information (such as direct trust and indirect trust), relevance degree and recommended

influence value in online social networks. Moreover, the proposed model determines trust

path utility values (in terms of trust, relevance degree and recommended influence value)

for evaluating trustworthy services based on Shannon entropy.
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7.2 Future Directions

Although the proposed social bot detection algorithms show performance improvement

over other existing approaches available in the literature. Moreover, there are other aspects

and scenarios which can be taken into consideration. The extensions of the research work

presented in this thesis are presented as follows:

Online rating and recommended systems play a vital role in affecting consumers’ opin-

ion for a selective decision making. However, providing an efficient method for iden-

tification and classification of malicious comments or fake information posted by social

bots in online rating and reviews is a research challenging task in OSNs. Research can

be extended by considering two assumptions that malicious social bots are less likely to

have strong social relationship with legitimate participants, and the social interaction be-

tween two participants and messages can be modeled as a social network graph structure

for detecting malicious comments posted in online recommendation systems. Further, the

influence of social botnet communities on the online rating and recommended systems can

be investigated with different types of attack models.

Identification of emotional malicious social bots from tweets play an important role to

analyze user’s behavior in OSNs. Research can be extended by considering bag-of-words

models and linguistic based features which may help in identifying different types of emo-

tional bots more accurately. In Chapter 3, each feature is assumed to be conditionally

independent. However, there may be dependency among the features. Research may be ex-

tended to investigate the dependency among the features and its impact on malicious social

bot detection in Twitter network. In Chapter 4, single and multi-agent offline deep rein-

forcement learning models have been presented. These approaches can be further explored

in the presence of an interactive environment with online experiments in Twitter network.

As a future research scope, the problem addressed in Chapter 5 can be further investigated

by analyzing similar type of malicious social botnet communities across multiple social

networks.
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