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ABSTRACT

With the vast increase in the usage of biometric recognition, template protection for bio-
metrics captured attention in the recent years. Since biometrics are irrevocable, it is very
important to protect its privacy. Biometric template protection schemes such as cancelable
biometrics, biometric cryptosystem and homomorphic encryption (HE) are introduced to
provide privacy-preserving (PP) biometric authentication. PP biometric authentication en-
ables a user to verify him or herself without sending the original biometric information to a
server. HE is the most widely explored research area to construct PP biometric authentica-
tion system due to the advantages over cancelable biometrics and biometric cryptosystem.
Most of the existing PP biometric authentication systems using HE assumed that the server
performs computations honestly. In a malicious server setting, the server may return an
arbitrary result to save the computational resources results in false accept/false reject.

This thesis focuses to solve the modify templates, intercept channel and override com-
parator attacks of biometric recognition system. A PP iris authentication system using
Fan-Vercauteren scheme (PIAHC) is proposed to solve the modify templates and intercept
channel attacks. In PIAHC, the rotational inconsistencies occurred due to the head tilt
of a person are eliminated. A procedure to compute the hamming distance between the
encrypted reference and probe templates is designed. Experimental results proves the ef-
ficiency of PIAHC. Blockchain-based multi-instance iris authentication (BMIAE), secure
and verifiable multi-instance iris authentication using public auditor (SviaPA), secure and
verifiable multi-instance iris authentication using Blockchain (SviaB), secure and verifiable
machine-learning based iris authentication (SvaS) and multi-instance iris remote authenti-
cation using private multi-class perceptron on malicious cloud server (MIRAMCS) meth-
ods are proposed to provide privacy to the iris templates and also to check the correctness
of the comparator result.

ElGamal and Paillier HE provides the confidentiality of the iris templates in BMIAE
and SviaPA/SviaB. Fan-Vercauteren HE scheme provides the confidentiality of the iris tem-
plates in SvaS and MIRAMCS. The correctness of the comparator result is ensured by a
public auditor in SviaPA, SvaS and MIRAMCS. The Blockchain provides the integrity of

v



the encrypted reference iris templates as well as trust of the comparator result in BMIAE,
SviaB. The challenges of using Blockchain in biometrics are also addressed in BMIAE,
SviaB. SvaS performs both training and classification of nearest neighbor and multi-class
perceptron classification algorithms on encrypted data to provide privacy not only to the
iris templates but also to the model. Multi-biometric systems use information from multi-
ple sources to provide better recognition than unimodal biometric systems. So, the features
of both left and right irises of a person are fused in BMIAE, SviaPA, SviaB. Finally, a
feature-level fusion technique, contradistinguish similarity analysis (CSA) that minimizes
the between-class correlations and maximizes the pair-wise correlations is proposed in MI-
RAMCS. Extensive experimental results on benchmark iris databases demonstrate that the
proposed methods provides privacy to the iris templates with no loss in accuracy as well as

trust of the comparator result.
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Chapter 1

Introduction

Person recognition plays a vital role in many applications. Examples of such applications
include distributing social welfare benefits, granting access to nuclear facilities, performing
remote financial transactions, managing international border crossings. The essential task
in person recognition is to create an association between personal identity and an individual.
A person can be recognized in three ways [3], as shown in Figure 1.1: (i) Knowledge-based
(i1) Token-based (ii1) Biometric Recognition. Knowledge-based recognition recognizes the
person based on What he knows (Password, Cryptographic key or Personal Identification
Number (PIN)). Token-based recognition recognizes the person based on What he pos-
sesses extrinsically (Passport, Identification Card, Driving License, etc). Biometric recog-
nition recognizes the person based on What he does (Behavioral modalities) or Who he is
intrinsically (Physiological modalities) [4].

Formally, biometric recognition can be described as the science of establishing the iden-
tity of a person based on the physiological or/and behavioral attributes of the person either
in a semi-automated or fully automated manner [5]. Biometric authentication system de-
mands the person to be present during the time of authentication, thus prevents the need
to remember a password or carry a token. As a result, the identity of the user is difficult
to lose, forge, duplicate or forgotten [3, 5, 6]. Fingerprint, iris, face, palmprint, etc. are
the most used physiological biometric modalities. Gait, signature, keystroke dynamics are
commonly used behavioral biometric modalities [5, 7]. These modalities are unique for a

person results in uniqueness, permanence, and non-repudiation of biometrics [6, 8].
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Figure 1.1: (a) Traditional authentication systems (based on what he knows and what he
possess?) (b) Biometric based authentication systems based on who he is intrinsically

1.1 Biometric Recognition System (BRS)

BRS includes two phases, namely the enrollment phase & identification/verification phase
[9] as shown in Figure 1.2. It also consists of five modules, namely sensor, feature ex-
tractor, template generator, comparator & decision module. The sensor helps to acquire
the biometric characteristics from the person. During the acquisition of a biometric, there
may be the possibility of unwanted background information, the occurrence of noise, etc.
Therefore, preprocessing is needed to remove them. The unwanted background informa-
tion can be removed with segmentation. The noise can be removed with filters. The second
module, feature extractor plays a significant role in the BRS. Depending on the biometric
trait and application, the number of features varies. The first time a person uses a biometric
system is called enrollment. The feature extractor module extract features from reference
biometric trait. The template generator module converts the extracted features into tem-
plate and stored in the database. The same procedure is followed to extract features from
the probe biometric at the time of the identification/verification phase. The comparator
module compares the probe template with the reference template and produces the result to

the decision module. The decision module provides a match (accept) or non-match (reject).
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Figure 1.2: Block diagram of Biometric Recognition System

1.2 Modes of Operation of a BRS

BRS can be operated in two basic modes: verification & identification [7]. The system
implements 1-to-1 comparison in the verification (authentication) mode. The probe tem-
plate is compared with a specific template stored in the database to verify the individual is
the person he/she claim to be. In verification mode, identity of a person like ID number
(e.g. PIN), user name, or a smart card is used to indicate which template should be used
for comparison. The system performs a one-to-many comparison to establish the iden-
tity of an unknown individual in the identification mode. The probe template is compared
with all the reference templates stored in the database and produce a match (accept) result
for an individual if the value falls within a predefined threshold; otherwise, it produces a

non-match.

1.3 Attacks on Biometric Systems

The eight attack points of the biometric system found by Ratha et al. [1] are shown in

Figure 1.3. Based on the type of attack, these attacks are categorized into four groups,
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namely attacks on template databases, on modules, on user interfaces, channels between

modules.

1.3.1 Attacks on Template Databases

The reference templates are stored in the database, either locally or remotely. Adversaries
read these templates and modify/replace them results in the authorization for an intruder.

The following vulnerabilities can be performed by an adversary with a stolen template:

* The adversary can replace an imposter’s template with a template in the database

results in false acceptance.

» The adversary can present the stolen template to the comparator module to gain unau-

thorized access.

* The adversary can create a physical spoof from the stolen template to access the

system in an unauthorized way.

So, these type of attacks are considered to be the most dangerous attacks [6, 10].

1.3.2 Attacks on Modules

The attacks happening on the modules of BRS falls under this category. Spoofing, device
substitution, coercive attacks are the possible attacks on the sensor module [10]. In a spoof-
ing attack, an intruder enters into the system by using the genuine user biometric results
in false accept. Device substitution attack refers to replacing the sensor device with the
genuine capture device. The original biometric is presented to the sensor illegally, leads
to coercive attack. The hacker produces the chosen feature sets by attacking the feature
extractor module with a Trojan horse. The intruder attacks the comparator module and

produces a fake score [11].

1.3.3 Attacks on User Interfaces

The fake biometric attack falls under this category. In this, the intruder presents a fake

biometric such as the mask of a face, gummy finger to enter into the system at the sensor

4
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Figure 1.3: Possible attacks of Biometric Recognition System adapted from [1]. Rounded
Rectangle and ellipse represent the modules and attacks of the Biometric system.

module [12]. The imposter enters into the system with a false identity when the sensor is
not able to differentiate between the genuine and fake biometric modalities. New sensing
technologies such as Touch-less, High resolution and Multi-spectral sensors should be used
to overcome the fake biometric attack. Liveliness detection is also a possible solution to

overcome this attack [13, 14, 15].

1.3.4 Attacks on Channels between Modules

The intruder may interrupt the channel between the modules results in a Replay attack,
Synthesized feature vector, Intercept channel, and Override final decision [10, 11]. Re-
play attack refers to presenting the already recorded biometric data into the system instead
of the acquisition of biometric data through the sensor. The originally extracted features
are replaced with different synthesized features results in synthesized feature vector attack.
This attack is tough to happen if the comparator and feature extractor are inseparable. On
the other hand, in cloud-based authentication systems, the chance of this attack is real. In-
tercept channel attack refers to changing the contents of templates by the adversary during
the transmission from the database to the comparator module. Override final decision at-

tack refers to overriding the result produced by the comparator with the result of hacker’s
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Figure 1.4: Evolution of Biometric Template Protection Schemes

choice, result in false accept [6, 16].

1.4 Biometric Template Protection and its Evolution

The vast increase in the usage of BRS in various applications has raised privacy and se-
curity concerns [6, 16]. As the biometric data is unique to a person, it is irrevocable if it
gets compromised. Initially, it is believed that biometric data cannot be reconstructed from
the extracted template. But studies in the literature such as [17, 18] proved that, an iris
biometric could be reconstructed from iris template. In [19], the authors showed that a face
biometric could be reconstructed from its template. The unauthorized access to biometric
templates that are stored in the database results in several attacks like hill-climbing [20], re-
play, masquerade [21], and the stole-token attack [11], which makes the system vulnerable.
Leakage or disclosure of biometric data to unauthorized persons causes the consequence of
“Lose it once, it’s gone forever”. So, a biometric system capable of protecting the biomet-
ric templates need to be designed to ensure the privacy & security for user’s data [22]. The

evolution of Biometric Template Protection (BTP) schemes is shown in Figure 1.4.
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1.5 Desirable Properties of Biometric Template Protection
techniques

A BTP scheme should satisfy the following requirements according to ISO/IEC standard

24745 about Biometric Information Protection [23]:

1. Diversity: The protected templates used in various applications must not have any

correlation. This ensures user’s privacy (ISO/IEC 24745: 2011).

2. Revocability: The BTP scheme should be capable of canceling a compromised tem-

plate and generate a new template (ISO/IEC 24745: 2011).

3. Irreversibility: The template generated by protection method must be non-invertible
(Original template cannot be obtained from the secured template) (ISO/IEC 24745:
2011)

4. Performance: The accuracy of the recognition system should not be degraded due

to the BTP scheme [11].

1.6 Taxonomy of Biometric Template Protection Schemes

BTP schemes are categorized into four types [22], namely cancelable biometrics, biometric

cryptosystems, hybrid methods & homomorphic encryption as shown in Figure 1.5.

1.6.1 Cancelable Biometrics

A one-way transformation function is used to protect the biometric templates in cancelable
biometrics [24]. The transformation function depends on a parameter, known as a key. In
cancelable biometrics, matching or comparison is made between transformed reference &
probe templates instead of original reference & probe templates, as shown in Figure 1.6.
Cancelable biometrics can be categorized into Salting & Non-invertible transforms. Table

1.1 describes the differences between salting and non-invertible transforms.



CHAPTER 1. INTRODUCTION

Biometric Template

Protection Schemes

Cancelable Bio- Hybrid ___Homomorphic
Biometrics Cryptosystem methods Encryption
Non-
= invertible Salting - Genlt(gtion = Key Binding g?;’tmzl:
transforms
Partial
| Random S— |_ Quantization Fuzzy —Homomorphic
Projections 2D Schemes Commitment Encryption
Somewhat
| Random Secure u —=Homomorphic
Permutations Sketch Fuzzy Vaul Encryption
Fully
| Geometric ——Homomorphic
Transforms Encryption
Robust
Hashing
| Biometric
Filters

Figure 1.5: A hierarchical taxonomy of Biometric Template Protection schemes
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Table 1.1: Non-invertible transforms vs Salting

Non-invertible transforms

Salting

The irreversible function is used as a
transformation function.

An invertible function is used as a trans-
formation function.

The key is produced during the authenti-
cation phase.

The key should be recalled or stored se-
curely by the user during the authentica-
tion phase.

Unlike salting, the key is generated dur-
ing the authentication phase as a result in-
creases security, but with a loss of accu-
racy [10].

Once the key is lost, the intruder recov-
ers original template results in permanent
loss of biometric data.

1.6.2 Biometric cryptosystems

Biometric cryptosystems refer to generating a key or binding a key from or to a biometric

feature [25]. The helper data is used to generate or bind keys. The biometric cryptosys-

tems are categorized into Key Generation and Key Binding systems depending on how the

helper data is obtained. The keys are directly generated from the biometric features in key

generation cryptosystem, which is shown in Figure 1.7. One of the examples for key gen-

eration cryptosystem is Quantization scheme. The key is bound with the biometric feature

to generate the helper data in a key binding cryptosystem, which is shown in Figure 1.8.

Fuzzy Commitment [26] & Fuzzy Vault [27] schemes come under this category.
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Figure 1.8: Framework of Key Binding Biometric Cryptosystem

1.6.3 Hybrid Methods

A single scheme is not sufficient to satisfy all the requirements of template protection
schemes [28]. So, hybrid method scheme is introduced to solve the limitations of using
either cancelable biometrics or biometric cryptosystems alone. Hybrid methods of Biomet-

ric Template Protection Schemes can be obtained by integrating cancelable biometrics and

biometric cryptosystems.

10
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1.6.4 Homomorphic Encryption

Cancelable biometrics suffer from performance degradation [24, 29]. Biometric cryptosys-
tem uses the auxiliary data, compromise of the auxiliary data leads to the leakage of biomet-
ric information [30, 31], results in the entire system vulnerability. Homomorphic encryp-
tion (HE) is introduced as a BTP scheme to solve the limitations of cancelable biometrics
& biometric cryptosystems [32]. Combining HE with BRS would meet the properties of
BTP schemes without degradation of the performance. HE is a unique kind of encryption
technique which allows operations like multiplication and addition to be performed directly

on the encrypted data without accessing the secret key [33].

1.7 Properties, Functions and Categories of Homomorphic
Encryption

The advantage of HE is explained with the help of the below scenario.

Scenario: The scenario is shown in Figure 1.9. It consists of two entities, namely Client

O Enc(x), F ) Eval(Enc(x), F)
Q < Enc(F(x))

Client Cloud Server

\

Figure 1.9: Scenario explaining the advantage of homomorphic encryption

and Cloud server. The client owns private data x and wants to perform function F on
x. However, the client has very limited computational resources. So, the client wants to
outsource the computation to the cloud server. At the same time, the client might not trust
the cloud. As a result, instead of sending x, the client performs encryption on x using

homomorphic encryption algorithms like Paillier, ElIGamal, etc. and send Ene(x) & F to

11
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cloud server. Cloud server runs the homomorphic evaluation function. The inputs for the
function are Enc(x) & F and produces the output as Enc(F(x)) without learning the value

of F(x). The server sends Enc(F(x)) to the client. The client decrypts Enc(F(x)) to obtain
the value of F(x).

1.7.1 Properties of Homomorphic Encryption

Given two encrypted values Enc(a) & Enc(b) for values a, b. The properties of HE are

defined as follows:

Additive Property:

It states that the addition of two original values can be obtained by the decryption of mul-

tiplication of two encrypted values. The additive property of HE is shown in Figure 1.10

and given in equation (1.1).

Dec(Enc(a) * Enc(b)) =a+b (1.1)
Compute .
Dec(Enc(a)*Enc(b))
a, b >
= a+b
I3 a
- -
o (& ]
c O
w o
\4
Enc(a), > (Encla)’
nc(a)*Enc(b))
Enc(b) Compute

Figure 1.10: Additive Property of homomorphic encryption

Multiplicative Property:

It states that the multiplication of two original values can be obtained by the decryption

12
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of multiplication of two encrypted values. The multiplicative property of HE is shown in

Figure 1.11 and given in equation (1.2).

Dec(Enc(a) * Enc(b)) = ax*b (1.2)

Compute .
a, b > Dec(Enc(a)*Enc(b))

=a*b

A

Encrypt
Decrypt

Enc(a),
Enc(b)

» (Enc(a)*Enc(b))
Compute

Figure 1.11: Multiplicative Property of homomorphic encryption

1.7.2 Functions of Homomorphic Encryption

HE involves four functions [33, 34], namely Key Generation (KeyGen), Encryption (Enc),

Evaluation (Eval), and Decryption (Dec) as shown in Figure 1.12. The details of each

function are given below:

1. KeyGen(parameters) = (Fy, Sk): The function generates secret (Sy) and public

keys (F) by using the given security parameters.

2. Enc(Py, msg) = £(msg): For a given Pj, and message msg, the function encrypts

msg using Py and outputs a ciphertext £(msg).

3. Eval(Py, C, e(msg1), e(msga), . . ., e(msg,)) = £(R): For a given public key F,
evaluated circuit C, and a group of ciphertexts, e(msg; ), €(msgs), . . ., €(msg,), the

function outputs a computation result in encrypted form, £(R).

13
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4. Dec(Sk, (R)) = R: For a given ciphertext £(R) and secret key Sy, the function

decrypts €(R) and produces its original value R.

The evaluation function (Eval) helps to achieve the computation on the cipher texts itself

without accessing the secret key.

(Px, Sk)

Key Generation

Encryption
E(Pksa)s E(Pk!b)

Cloud Server

€«

A

Client
Decryption
Dec(Y)

Y= E(a+b)

Evaluation
Eval(f(E(a),E(b))

Encrypted Data
Storage

Figure 1.12: Functions involved in homomorphic encryption

1.7.3

Categories of Homomorphic Encryption Schemes

The homomorphic encryption schemes are broadly classified into three types based on the

allowed number of operations on encrypted data [33, 34, 35] as shown in Figure 1.5.

1.7.3.1 Partial Homomorphic Encryption (PHE)

, : Tatsuaki Ivan
Rivest, David
Shamir iﬂgmr Taher dosh | | Naccache, s%'::m:;:h :::f"cl:: m:g: Steven D
Adleman EiGamal | | Benaloh | Wacques Ster : .|| Galbraith
1078 1982 1985 1904 1998 1998 1999 201 2002
(iokdwagser Naccache- \ \ Okamot- o Damgard ,
RSA il ) ElGamal ) ) Benaloh ) ) e )) Uchiyama) ) Pailir ) ) ik ))Galbranh )

Figure 1.13: Evolution of Partial homomorphic encryption Schemes before Gentry’s work

(2]
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PHE allows to perform either addition or multiplication with an unlimited number of
times on encrypted data. The evolution of major PHE schemes is shown in Figure 1.13.
In 1978, Rivest et al. built a homomorphic scheme named Rivest Shamir Adleman (RSA)
[36] which allows multiplication operation on encrypted data. In 1982, Goldwasser & Mi-
cali proposed an additive homomorphic scheme named Goldwasser-Micali (GM) [37]. GM
allows addition operation on encrypted data. Taher ElGamal improved the Diffe-Hellman
key exchange algorithm [38] and developed a scheme named ElGamal [39] in 1985. El-
Gamal satisfies the multiplicative property of homomorphic encryption. Benaloh enhanced
the GM cryptosystem and introduced a homomorphic scheme named Benaloh [40] in 1994
by preserving the additive homomorphic property. GM performs bit-by-bit encryption,
whereas Benaloh performs block-wise encryption. Okamoto and Uchiyama built a scheme
named Okamoto-Uchiyama (OU) [41] in 1998. OU allows addition operation on encrypted
data. In 1999, Paillier proposed an additive homomorphic scheme named Paillier [42].
Naccache and Stern, Damgard and Jurik improved the computational efficiency of Be-
naloh, Paillier and proposed cryptosystems, namely Naccache & Stern, Damgard & Jurik
[43, 44] in 1998, 2001, respectively by preserving the same homomorphic properties. In
2002, Galbraith introduced an additive homomorphic scheme named Galbraith [45] which

can be applied on elliptic curves.

1.7.3.2 Somewhat Homomorphic Encryption (SHE)

SHE allows both addition & multiplication but with a limited number of times on encrypted
data. The major SHE schemes, which were used as a stepping stone to fully homomorphic
encryption, are shown in Figure 1.14. In 1982, Yao built the first SHE scheme [46] where
the ciphertext grows at least linearly. Sander et al. proposed a SHE scheme named Sander
Young Yung (SYY) [47] in 1999 over a semi-group which allows one OR/NOT operation
and polynomially many AND operations on encrypted data. In 2005, Boneh et al. proposed
a SHE scheme named Boneh Goh Nissim (BGN) [48] which allows unlimited addition op-
erations and one multiplication operation. Ishai et al. developed a homomorphic encryption
technique named Yuval Ishai & Anat Paskin (IP) [49] in 2007 by implementing the branch-
ing programs on the ciphertext. Except BGN, the size of ciphertext for Yao, SYY & IP

15
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SHE schemes grows either linearly or exponentially. In BGN, the size of ciphertext grows

constantly.

Sander, Boneh, Yuval
Yao Young and Goh and Ishai, Anat
Yung Nissim Paskin
1982 1999 2005 2007

Y v D) sw D) e V) ® )

Figure 1.14: Evolution of Somewhat homomorphic encryption Schemes before Gentry’s
work [2]

1.7.3.3 Fully Homomorphic Encryption (FHE)

FHE allows both addition & multiplication with an unlimited number of times on encrypted
data. Gentry made a breakthrough in 2009 and introduced a first FHE scheme [2]. Gentry’s
scheme is based on ideal lattices and is a framework to obtain an FHE scheme. However,
Gentry’s scheme is not a practical one. Therefore, a lot of researchers used the frame-
work proposed by Gentry and introduced practically achievable FHE schemes in successive

years.

1.8 Information Fusion in Biometrics

The use of several methods or inputs of processing of biometric modalities/samples is
known as biometric fusion. Multi-biometric systems (MBS) depend on the evidence pre-
sented by various sources of biometric information. The advantages, such as improved
efficiency, accuracy, non-universality, less vulnerable to spoofing attack, makes the MBS
to be used in various applications over unimodal systems [50]. Single or multiple biometric
modalities can be used for biometric fusion and is shown in Figure 1.15

MBS are categorized into six types [51] namely, multi-instance, multi-sample, multi-
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Multibiometric sources

|

y h Y A 4 A
Multi-instance Multi-sample Multi-sensor Multi-algorithm| | Multi-modal
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Biometric
Modalities

Single Biometric
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Figure 1.15: Multiple sources of evidence used for fusion

sensor, multi-algorithm, multi-modal & hybrid systems. Single biometric modality is used
for fusion in multi-instance, multi-sample, multi-sensor, and multi-algorithm. Multiple
modalities are used for fusion in multi-modal systems [52]. Multi-instance systems use
multiple instances of the same biometric data (eg. left and right iris of a person). The in-
formation collected from several sensors is fused in multi-sensor systems. Several samples
of a same biometric modality are collected at different times and fuse in multi-sample sys-
tems (eg. left, right and frontal profiles of a face). Different algorithms are used to create
feature sets from a single biometric modality, and all the extracted feature sets information
are fused in multi-algorithm systems (eg. texture based features and minutiae based fea-
tures extracted from fingerprint). The information of various biometric modalities is fused
in the multi-modal system [51]. Some of the works in this thesis use the multi-instance fu-
sion as they are cost-effective and do not require the additional sensors, need of matching
algorithms, and feature extraction methods.

Fusion can be accomplished at various levels, namely sensor level, feature level, deci-
sion level or score level [52]. Decision level and score level fusion are considered as fusion
after matching and called late fusion [51]. Sensor level and feature level fusion are consid-
ered as fusion prior to matching and called early fusion. The feature level fusion provides

better recognition rate when compared to other level fusion techniques [53].
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1.9 Performance of a Biometric System

The following measures can be used to assess the performance of a biometric system:

Genuine Score: The score computed by matching two samples of a biometric modal-

ity belongs to the same user is known as a genuine score.

Imposter Score: The score computed by matching two samples of a biometric

modality belongs to different users is known as imposter score.

False Accept Rate (FAR) or False Match Rate (FMR): The ratio of imposter scores

exceeding the threshold to the total imposter scores is known as the FMR.

N 1 '
FMER — umber of I'mposter scores exceeding the threshold

1.3
Total imposter scores (1.3)

False Reject Rate (FRR) or False Non-Match Rate (FNMR): The ratio of genuine

scores exceeding the threshold to the total genuine scores is known as the FNMR.

FNMR — Number of Genuine scores exceeding the threshold

1.4
Total Genuine scores (14

Genuine Accept Rate (GAR): GAR is defined as the percentage of genuine users
accepted by the system. Therefore, GAR =I - FRR.

The Receiver Operating Characteristic (ROC) or Detection Error Tradeoff (DET)
curve is used to measure the efficiency of a biometric system. ROC curve is plot-
ted by taking FAR on X-axis and GAR on Y-axis. In ROC curve, linear, or semi-

logarithmic scale is used whereas a logarithmic scale is used in DET curve.

The point at which the FAR equals the FRR is referred as Equal Error Rate (EER).

The better performance is indicated by a lower EER value.

The d-prime value (d’) and Kolmogorov-Smirnov (KS) - test are used to measure
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how well the genuine and imposter scores are separated. The d’ is given by

d/ _ |mgenuine - mimposter’ (15)

\/(Sdgenuine + Sdzzmposter)/2

where sd, and m indicate standard deviation and mean of imposter and genuine dis-
tributions. The better performance is indicated, by the larger d’ value. The range of
KS-test value is [0, 1]. KS-test value closer to 1 indicates more separation between

the imposter and genuine scores.

1.10 Benchmark Databases

The following databases are considered to validate the efficiency of the system.
* CASIA-V 1.0 [54] contains 108 subjects. Each subject consists of 7 samples.

* CASIA-V3-Interval [55] contains 172 subjects of the left eye & 165 subjects of the

right eye. Each subject consists of 5 samples.

e IIT-Delhi (IITD) [56] contains 224 subjects. Each subject consists of 5 left & right

samples.

* SDUMLA-HMT [57] contains 106 subjects. Each subject consists of 5 left & right

samples.

The University of Salzburg tool kit [58] is used to extract the iris code from the iris im-
ages in the databases. The first five samples from each subject are considered to per-
form the experiments. Subjects consisting of minimum 5 left & right samples are required
to develop a multi-instance iris recognition system. So, 106, 208 & 115 subjects from
SDUMLA-HMT, IITD & CASIA-V3-Interval iris databases are considered to check the
efficiency of Blockchain-based multi-instance iris authentication system, Secure & verifi-
able multi-instance iris authentication system using public auditor and Secure & verifiable
multi-instance iris authentication system using Blockchain as the subjects contain both left

& right irises with a minimum of 5 samples each.
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1.11 Motivation for present work, Aim & Objectives

The exposure of biometric modalities in a variety of applications for verification makes a
serious compromise on user’s privacy [6]. To address this, biometric templates are pro-
tected using BTP schemes such as cancelable biometrics, biometric cryptosystems and
homomorphic encryption [29, 35]. Homomorphic encryption is the most recent explored
research area to construct privacy-preserving biometric authentication systems due to its
advantages over cancelable biometrics and biometric cryptosystems [32]. But studies in
the existing literature assumed that the server is honest-but-curious. In a malicious server
setting, the server may return an arbitrary result to save the computational resources results

in false accept or false reject.

1.11.1 Aim

This dissertation aims to provide secure & verifiable methods for iris authentication on a

malicious cloud server by maintaining the trade-off between accuracy & security.

1.11.2 Objectives

The main objectives of this dissertation are stated as follows:

To get insight into the state-of-the-art privacy-preserving biometric authentication

system.

* To understand the existing template protection methods using homomorphic encryp-

tion and provide solutions for better security & performance.

* To use advanced technology such as Blockchain in BRS to solve the override com-

parator attack.

* To implement machine learning classification techniques on encrypted data and use

these techniques for secure authentication.

* To propose a fusion technique which maximizes the pair-wise correlations and min-

imizes the between-class correlations.
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* To understand the research gap that needs to be addressed and to find the future

directions in the field of BRS.

1.12 Overview of the Contributions of the Thesis

This thesis provides the following contributions made for secure & verifiable methods for

iris authentication on a untrusted server.

1. Proposed a privacy preserving iris authentication technique using Fan-Vercauteren
scheme, which generates rotation-invariant iris template yields higher recognition
accuracy and perform hamming distance computation between encrypted reference

and probe template results in preserving the privacy of user’s data.

2. Proposed a Blockchain-based multi-instance iris authentication system (BMIAE),
which integrates ElGamal homomorphic encryption [39] with Blockchain technol-
ogy to achieve privacy of iris templates and trust on the comparator result. The

challenges of using Blockchain in biometrics are also addressed in BMIAE.

3. Proposed a method for multi-instance iris authentication on a malicious cloud server
(SviaPA), which not only provides privacy for the iris templates but also includes a

verification procedure to check whether the comparator result is correct or not.

4. A method for secure and verifiable iris authentication using Blockchain (SviaB) is
proposed. SviaB combines Blockchain technology with Paillier homomorphic en-
cryption [42]. Paillier homomorphic encryption provides confidentiality for the iris
templates. The Blockchain provides the integrity of the encrypted reference iris tem-
plates as well as the trust of the comparator result. In addition, SviaB reduces the

time taken to authenticate a person when compared to BMIAE.

5. A secure and verifiable machine learning-based iris authentication method (SvaS)
is proposed. SvaS performs both privacy-preserving (PP) training & classification
phases on the encrypted data. The public verifier can verify the correctness of the

classification result computed by the cloud server using a verification procedure. The
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nearest neighbor & multi-class perceptron classification algorithms are implemented

on encrypted data.

6. Proposed a feature level fusion technique, namely Contradistinguish Similarity Anal-
ysis (CSA) which increases the correlations between samples of different class and
reduces the correlations between samples of the same class. It also includes a ver-
ification procedure by using polynomial factorization algorithm to verify the result

returned by the cloud server.

1.13 Thesis Organization

The rest of the chapters of this thesis are organized as follows: Chapter 2 describes the
recent state-of-the-art works on homomorphic encryption applied to biometric recognition,
machine learning on encrypted data, machine learning approaches applied to iris recogni-
tion and Blockchain for biometrics. This chapter reports the extraction outcomes resulted
from the analysis of literature.

Chapter 3 assumes that the server is Honest-but-curious and presents a privacy-preserving
iris authentication system to solve the limitations of cancelable biometrics and biometric
cryptosystems. It also provides a solution to solve the rotational inconsistency problem
due to head tilt of a person during the authentication phase. Chapter 4 presents three multi-
instance iris authentication systems which not only provide the confidentiality of the iris
templates but also trust on the matching result. The advantage of using emerging technol-
ogy like Blockchain in biometrics is explored here.

Chapter 5 assumes that the server is a malicious entity and presents two secure and
verifiable iris authentication systems by using private machine learning classification. It
also presents a technique, contradistinguish similarity analysis (CSA) for effective feature
level fusion. The conclusions of the thesis and future directions are outlined in chapter 6.
The techniques in chapter 4 & 5 are trustworthy against a malicious server and eliminates
the need to trust any third-party or a server for comparator result. All the techniques in

chapter 3, 4, 5 satisfy all the properties of biometric template protection schemes.
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Literature Survey

In this chapter, a brief survey of the literature related to the contributions made in this thesis
is given. The chapter is organized as follows: Section 2.1 covers some studies related
to homomorphic encryption schemes applied to biometric recognition. Works related to
machine learning techniques applied to iris recognition are given in Section 2.2. Section 2.3
discusses some studies related to machine learning techniques applied on encrypted data.
Works related to applying Blockchain technology for Biometrics are discussed in Section
2.4. The publicly available implementations of some FHE schemes, research communities
working on template protection schemes, publicly available databases and its sources are

listed in Section 2.5. Finally, the summary of this chapter is provided in Section 2.6.

2.1 Homomorphic Encryption applied to Biometric Au-

thentication

Upmanyu et al. [59] suggested a secure protocol for biometric verification named “Blind
Authentication” by using Rivest Shamir Adleman (RSA) and Paillier [42]. Blind Authen-
tication protocol considered the enrollment server is a trusted entity; as a result, it provides
only privacy-preserving (PP) classification and fails to provide PP enrollment. Osadchy et
al. [60] proposed a secure face identification (“Scifi”’) system by using Paillier cryptosys-

tem [42]. The Scifi system yields superior results when compared to the existing works,

23



CHAPTER 2. LITERATURE SURVEY

even in illumination invariant conditions. Rahulamathavan et al. [61] suggested a method
to recognize the expression of a face by using the properties of Paillier and computed the
required operations on encrypted data. Pastoriza et al. [62] introduced a secure face ver-
ification system in a non-interactive manner which can be applied to lightweight devices.
The authors proposed a homomorphic encryption scheme to accomplish the matching on
encrypted data. Sedenka ef al. [63] designed a secure biometric authentication in an out-
sourced environment. Penn ef al. [64] used the Paillier homomorphic scheme [42] and
proposed a biometric matching technique which performs better than Goldwasser-Micali
approach. Authors applied the matching technique on iris biometric to validate the effi-
ciency. Haghighat et al. [65] suggested a biometric verification in a cloud environment.
The method uses a searching-based matching instead of distance-based matching. Yasuda
et al. [66] proposed two packing techniques to reduce the size of the encrypted data results

in better performance. These techniques are applied for secure biometric authentication.

Xiang et al. [67] introduced a secure face recognition with computation in a cloud server
by using public key encryption & fully homomorphic encryption algorithm. The client is
able to validate the result computed by the cloud server. Hahn et al. [68] introduced an
secure & efficient identification system by using symmetric homomorphic encryption. The
system performs better when compared to the existing works. Gomez et al. [32] proposed
a template protection approach for multi-biometric recognition using Paillier. The final
comparison is performed on the plaintext by the server; as a result, introduces a breach
into the security of the system. Santosh ez al. [69] used the Paillier and Elliptic curve en-
cryption techniques to provide privacy of biometric templates which are stored in a cloud
server. Taheri et al. [70] suggested a method on encrypted data using correlation filters
and homomorphic scheme. The privacy of the iris templates is achieved by storing only the
each class correlation filter instead of templates. Naresh ef al. [71] presented an approach
to secure the database of face templates and to perform matching on the encrypted face

templates by using fan-vercauteran scheme [72].

Zhu et al. [73] designed a method named efficient fingerprint authentication (‘“‘e-Finga”)
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for secure online fingerprint authentication. e-Finga uses lightweight multi-party polyno-
mial aggregation & multi-party random masking techniques to provide security. A light
weighted encryption scheme named “Threshold Predicate Encryption (TPE)” is proposed
by Zhou et al. [74]. A PP user-centric authentication system named “PassBio” is proposed
by using TPE. Lee et al. solved the limitations of PassBio in [75] by using single-key
function-hiding inner product encryption. Hu et al. [79] suggested single-server and two-
server solutions to preserve the privacy of iris templates by performing the computations
on the encrypted templates. Single-server solution uses the symmetric key algorithm and
two-server solution uses somewhat homomomorphic encryption scheme. Barni et al. [76]
designed a secure multi-modal biometric authentication (“SEMBA”), which combines iris
and face templates. Guo et al. [77] use randomness techniques instead of homomorphic
encryption to provide the privacy of the face templates result in a good performance. Topcu
et al. [78] proposed a framework for secure fingerprint authentication system. The authors
generated the fixed-length binary templates by leaving the security as future work. The
summary of homomorphic encryption schemes applied to biometric recognition is shown

in Table 2.1.

2.2 Machine Learning approaches applied to Iris Recog-
nition

Sibai et al. [95] designed an iris recognition system by using feed forward artificial neural
network. Authors conducted several experiments by varying the input format, number of
hidden layers, and the number of neurons in the hidden layer to find the optimal parame-
ters. Khedkar and Ladhake [80] proposed an iris recognition system using neural network
techniques such as support vector machines (SVM), radial basis function (RBF) and multi-
layer perceptron (MLP). Rai et al. [81] suggested a method to identify the iris patterns by
using SVM and Hamming distance. Authors proposed two feature extraction techniques,
namely 1D Log Gabor wavelet and Haar wavelet decomposition. Srivastava et al. [82]

implemented an approach for iris recognition by combining functional modular neural net-
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Article’s refer- | Machine learning Database Performance Results
ence technique Measures
Khedkar et al. | MLP, RBF, SVM CASIA-V 1.0 Accuracy | 95%
[80]
Rai et al. [81] SVM CASIA-V 1.0, Chek Accuracy 99.91%,
99.88%
Functional modular
Srivastava et al. neural nerorks * CASIA-V 1.0 Accuracy | 98.12%
Evolutionary
[82] .
fuzzy clustering
Saminathan er al, | ~omAPased mult |0 g0 v g Accuracy | 99.3%
183] -class SVM
Ahmadi er al. [84] MLP and PSO CASIA-V3-Interval Accuracy | 95.36%
SVM, KNN
Fahim et al. [85] Linear Discrimi- Trokielewicz [86] Accuracy | 97%
nant Analysis
Ahmadi et al. [87] MLP-ICA CASIA-V3-Interval Accuracy | 99.99%
. CNN CASIA-V3-Interval 100%
Waisy et al. [88] Soft-max classifier IITD Accuracy 100%
SDUMLA-HMT 7
Hybrid radial
) basis function CASIA-V3-Interval 99.99%
Ahmadietal 18911 o al network with|  UBIRIS.V1 Aceuracy | g9 984,
genetic algorithm
Fully residual CASIA-V4.0 Interval 99.10%
Arsalan et al. [90] encoder-decoder IITD Accuracy | 98.41%
network UBIRIS V2.0 98.52%
mask R-CNN CASIA-I\S:.B Interval ?)(6);?
Zhao and Ajay Fully CNN EER Do
[91] ETL function ICE 2006 1.12%
WVU non-ideal 2.20%
. CNN + supervised PolyU B1 5.31%
gg?g and - Ajay discrete hashing Cross-spectral EER 6.34%
Deep CNN + JlulrisV 3.1 99.37%
Zhao et al. [93] Capsule network JlulrisV 4 Accuracy 99.42%
CASIA-V4.0 Interval
Adamovic et al Random forest IITD Accuracy | 99.99%
[94] MMU
Sibai ef al. [95] Feed forward 1ITD Accuracy | 93.33%
neural network
weighted DAG )
Gale et al. [96] SVM + SNN CASIA-V 1.0 Accuracy | 99.99%

Table 2.2: Summary of selected works under machine learning techniques applied to iris

recognition.
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works and evolutionary fuzzy clustering. Saminathan et al. [83] introduced a method for
iris authentication by using kernel-based multi-class SVM. Marsico et al. [97] presented a
survey of machine learning techniques ranging from neural networks to deep learning for
iris recognition. An iris recognition system is proposed by Ahmadi et al. [84] to increase
generalization performance by using particle swarm optimization and MLP. The authors
extended their work in [89] by using RBF with a genetic algorithm to reduce the computa-
tional complexity. Fahim et al. [85] proved the feasibility of machine learning techniques
to recognize a person with iris modality even if an eye image is captured through a smart-

phone.

Ahmadi et al. [87] designed an iris recognition system by using MLP-imperialist compet-
itive algorithm (MLP-ICA) as a classifier. The authors used Gray-level difference matrix
to extract the features from the iris. The convolutional neural network (CNN) and softmax
classifier are used to extract the features from the iris image and classify the user into any of
the N classes by Waisy et al. [88]. The method performs better when compared to existing
approaches. A deep learning model is designed by Arsalan et al. [90], which determines
the true iris region without pre-processing the eye image. Unlike existing approaches, the
performance is not affected by non-ideal situations. Zhao and Ajay [91] used fully convo-
lutional network and proposed a framework for accurate iris detection, segmentation and
recognition. Authors developed an “Extended Triplet Loss (ETL)” function to learn the
spatially corresponding features of an iris image. A cross-spectral iris recognition system
is designed by Wang et al. [92]. The features are extracted by using CNN and supervised
discrete hashing (SDH) is used for compression and classification. Admovic et al. [94]
proposed an approach for iris recogntion by using stylometric features and random forect
machine learning methods. The hybrid based particle swarm optimization (PSO) is used as
a classifier and proposed an iris recognition system by Gale et al. [96]. Hybrid based PSO
is a combination of weighted directed acyclic graph (DAG) SVM and spiking neural net-
works (SNN). The classification task is achieved by weighted DAG SVM and evaluation is
achieved by SNN. The summary of machine learning techniques applied to iris recognition

is shown in Table 2.2.
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2.3 Machine Learning on Encrypted Data

The research on machine learning on encrypted data is broadly classified into two types:
Privacy-preserving training and Privacy-preserving classification. Privacy-preserving train-
ing refers to building the machine learning model using the encrypted training data. In
privacy-preserving classification works, the researchers assume that the model was already
build on unencrypted data and model parameters are stored in an encrypted form. During
the classification phase, the test instance is encrypted and classified using the model pa-

rameters.

Orlandi et al. [98] used Paillier cryptosystem [42] to achieve the neural network-based
privacy-preserving computation. The protocol achieved privacy-preserving classification
but failed to achieve privacy-preserving training. Barni et al. [99] proposed two classifiers,
namely linear branching programs and neural networks in a privacy-preserving manner to
classify the electrocardiogram (ECG) signals. The classifiers are build by using the Paillier
cryptosystem [42] and Garbled circuits. Graphel et al. [100] used somewhat homomorphic
encryption scheme to train linear means classifier and fisher’s linear discriminant classifier.
In the proposed method, the authors concentrated on privacy-preserving training rather than
privacy-preserving classification. There is a leakage of information about the model apart
from the result of the classification. The privacy-preserving clinical decision support sys-
tems are designed by Rahulamathavan et al. [101] and Zhu et al. [102]. The former used
Gaussian Kernel-based SVM and the latter used Non-linear SVM to diagnose the patient’s

disease in a secure manner.

Liu et al. [103] suggested a privacy-preserving patient-centric clinical decision system us-
ing naive Bayesian classifier. In their proposed method, the old patient data is encrypted by
using Paillier cryptosystem [42] and the encrypted data is used to train the naive Bayesian
classifier. The secure trained classifier is used to predict the disease risk for the new patient.
Two multi-key secure deep-learning schemes are proposed by Li ef al. [104] to minimize

the communication and computational cost. Later the authors proposed a secure classifica-
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tion framework [105] in an outsourced environment. The scheme generates different public
keys to retain the secrecy of client and data provider. The classification protocols such as
private decision tree classification, private hyperplane decision based classification, and
private naive Bayes classification are constructed by Bost ef al. [106] using Paillier cryp-
tosystem [42] and Quadratic Residuosity. The number of interactions between the server
and the client required to implement the protocols is 2. The number of interactions are
reduced from 2 to 1 by Sun et al. [107] using an improved version of Fan-Vercauteran

scheme [72].

The privacy of back propagation neural network (BPNN) learning algorithm is presented in
Yuan et al. [109] which reduces the communication and computation costs of each party.
Zhang et al. [110] utilized the Brakerski, Gentry and Vaikuntanathan (BGV) [111] to pre-
serve the privacy of BPNN learning algorithm. Bachrach et al. [113] implemented the
neural networks on encrypted data (CryptoNets) by using the properties of homomorphic
encryption. The efficiency of CryptoNets for deeper neural networks is improved by Cha-
banne et al. [118] with the help of batch normalization principle. Li ef al. [115] used
the additive property of Paillier [42] and implemented the classification phases of naive
Bayes and hyperplane decision-based classifiers in a privacy-preserving manner. Abadi et
al. [112] utilized the differential privacy and proposed a secure deep learning scheme in
an outsourced environment. The summary of machine learning techniques applied to iris

recognition is shown in Table 2.3.

2.4 Blockchain for Biometrics

Delgado-Mohatar et al. [119] presented the advantages and limitations of using blockchain
in biometrics and vice versa. The authors extended their work in [120] to store the biomet-
ric templates in the blockchain by using on-chain, direct hashing and Merkle-trees. The
storage cost and execution time are less for Merkle-tree based storage when compared to
on-chain and direct hashing. The limitations of blockchain for biometrics is not addressed.

Delgado-Mohatar et al. [121] also analyzed the cost and performance factors to store the
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Article’s reference | Security scheme Machine I.’P. ?P .
. Training| Classification
Learning
technique
Orlandi et al. [98] Paillier [42] Neural Network No Yes
. Linear Branchin
Barni et al. [99] Paillier [4?] a1‘1d Program : No Yes
Garbled Circuits
Neural Network
Linear Means
Graphel et al. [100] SHE [108] Fisher’s linear Yes No
discriminant
Rahulamathavan et Paillier [42] SVM No Yes
al. [101]
Boneh, Goh &
Yuan e al. [109] Nissim Neural Network |  Yes No
doubly
homomorphic [48]
Paillier [42] ?{ecmori tree
Bost et al. [106] Quadratic yperp ane No Yes
Residuosity demswn—based
Naive Bayes
Liu et al. [103] Paillier [42] Naive Bayes Yes Yes
Zhang et al. [110] BGV scheme [111] Neural network Yes No
Random
Maskin Nonlinear
Zhu et al. T102] Polynomfi%al Kernel SVM No Yes
aggregation
Abadi et al. [112] Plr)ilvf:;i;etlltlf 11 | Deep learning Yes No
Bachrach et al. FHE Neural network Yes No
[113]
. Multi-ke Multi-layer
Lietal. [104] FHE [1 14{] Neural Netywork Yes Yes
Decision tree
Fan & Hyperplane
Sun et al. [107] Vercauteren [72] dec?s];i)onlibased No Yes
Naive Bayes
Hyperplane
Lietal [115] FHE decision-based No Yes
Naive Bayes
Quadratic
Wang et al. [116] Réii;lszlstiff Decision tree No Yes
Micalli [117]

Table 2.3: Summary of selected works under machine learning classification techniques
applied on encrypted data. 31
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protected and unprotected biometric templates and on-chain, off-chain biometric matching.
Mohsin et al. [122] used blockchain to achieve the integrity and availability in finger-vein

verification system.
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S.No Community Accessible at
Biometrics Research Group,
! Michigan Sate University, USA http:
& Y //biometrics.cse.msu.edu/
da/sec Biometrics and Internet
Security,
2 Research Group, Center for https://www.dasec.h-da.de/
Advanced Security Research
Darmstadt (CASED), Germany
The Multimedia Signal Processing

3 and Security Lab(WaveLab), http://wavelab.at/
University of Salzburg, Austria member—-uhl.shtml

4 IBM Research, Thomas J. Watson https://www.research. ibm.
Research Center, USA

com/labs/watson/
5 Multll.nedlra Sec.urlty Lab, https://sites.google.com/
Yonsei University, South Korea , , , ,
site/multimediasecuritylab/
Yokohama Research Laboratory,

6 Hitachi Ltd, Japan http:

- J4p //www.hitachi.com/rd/about/
Advanced Cryptosystems
Research Group,

7 National Institute of Advanced https://www.aist.go. jp/
Industrial Science and Technology aist_e/list/highlights/
(AIST), Japan 2015/vol4d/index.html

8 La Trobe University, Australia http://www.latrobe.edu.au/

University of New South Wales
9 at the Australian Defence Force httos:
Academy(UNSW @ ADFA), pes
) //www.unsw.adfa.edu.au/
Australia
Centre for Automation Research,

10 University of Maryland, USA http://www.cfar.umd.edu/
Biometric Systems and Multi-

11 media Forensics LAB, University http://biomediadné.
of "Roma TRE”, Italy uniroma3.it/index.html

12 Blc?metrilcs Systems Laboratory, http://bioclab.csr.unibo.it/

University of Bolgona, Italy
home.asp

13 CyLab,.Blometrlcs C‘ente‘r, https://www.cylab.cmu.edu/
Carnegie Mellon University, USA , ,

research/biometrics.html

14 Universiti tunku abdul rahman www . utar . edy.m

Kuala Lumpur, Malaysia ) ’ Y

Table 2.4: Active Research Communities for Biometric Template Protection schemes
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https://sites.google.com/site/multimediasecuritylab/
http://www.hitachi.com/rd/about/
http://www.hitachi.com/rd/about/
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https://www.aist.go.jp/aist_e/list/highlights/2015/vol4/index.html
http://www.latrobe.edu.au/
https://www.unsw.adfa.edu.au/
https://www.unsw.adfa.edu.au/
http://www.cfar.umd.edu/
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https://www.cylab.cmu.edu/research/biometrics.html
www.utar.edu.my
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S.No Database Biometric trait Abbreviation Source
1 CASIA Iris version 1 National Laboratory of Pattern http://b¥0metrlcs.ldegltest.org/
.. . . dbDetailForUser.do?id=1
. Recognition Institute of Automation, . —
) CASIA Iris Chi Acad £ Sci http://biometrics.idealtest.org/
version 3 tnese Academy of sciences dbDetailForUser.do?id=3
. . http://biometrics.idealtest.org/
3 | CASIA lIris version 4 dbDetailForUser.do?id=4
Iris Challege http://www.nist.gov/itl/
4 ICE . s e g
Evaluation iad/ig/ice.cfm
L . Do . http://www4.comp.polyu.edu.hk/
5 IITD iris v1 Iris IIT Dellhi Iris version 1 csajaykr/ITTD/Database_Iris. htm
6 FVC 2000 http://bias.csr.unibo.it/fvc2000/
7 FVC 2002 Fingerprint Verification http://bias.csr.unibo.it/fvc2002/
8 FVC 2004 Fingerprint Competetion http://bias.csr.unibo.it/fvc2004/
9 FVC 2006 http://bias.csr.unibo.it/fvc2006/
National Institute of Standards and http://www.nist.gov/srd/
10 NIST-SD14 Technology- Special Database nistsd14.cfm
11 FERET Facial Recognition Technology http://www.mst.gov/ltl/lad/
ig/colorferet.cfm
. . . http://www.vision.caltech.edu/
12 CALTECH California Institute of Technology. html-files/archive.html
13 CMU-PIE Face Carnegie Mellqn University- . http://vasc.ri.cmu.edu/idb/
Pose, Illumination and Expression html/face/
14 NIR face Hong Kong Polytechnic University, http://www4.comp.polyu.edu.hk/
Near-Infrared biometrics/polyudb_face.htm
. http://www.cl.cam.ac.uk/
15 ORL face AT& T.Laboratorles, research/dtg/attarchive/
Cambridge
facedatabase.html
16 NVIE Nat}lral Vmbk? and Infrared http://nvie.ustc.edu.cn/
Facial Expression
y .. . . http://www.nist.gov/
17 FRGC Face Recognition Grand Challenge itl/iad/ig/frec.cfm
17 XM2VTS Multi Mf)dal Verlﬁcatl(?n for o http://www.ee.surrey.ac.uk/
Teleservices and Security applications | CVSSP/xm2vtsdb/
http://www?2.ece.ohio-state.edu/
18 | ARface ] aleix/ARdatabase.html
. Hong Kong Polytechnic htFp://www4.comp.polyu.edu.hk/
19 Poly U Palmprint University Palmprint biometrics/
y P MultispectralPalmprint/MSP.htm
20 SVC 2004 . Signature Verification Competetion http://www.cse.ust.hk/svc2004/
Signature e —
(Ministerio de Cienciay Tecnologia,
21 MCYT Spanish Ministry of Science and MCYT baseline corpus [132]
Technology
Texas Instruments 46-
22 TI 46 Voice Word Speaker-Dependent lit]t;)é/ggastglog dc.upenn.edu/
Isolated Word Corpus
23 YOHO speech YOHO Speaker Verification hitps://catalog Idc.upenn.edu/

LDC93S9

Table 2.6: Publicly available databases on which the methods in the literature are evaluated
and their source.
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2.5 Resources and Analysis

The research communities who are working to protect the biometric templates by using
various BTP schemes are mentioned in Table 2.4. Some of the FHE implementations are
made available as an open-source by several researchers are listed in Table 2.5. In this
thesis, Simple Encrypted Arithmetic Library (SEAL) implemented by Cheon et al. [128]
is used to perform the operations on encrypted data. The publicly available databases on
which the homomorphic encryption schemes are applied to protect the biometric templates

discussed in the literature are evaluated along with their source are listed in Table 2.6.

L 6%

00 | 26%
p Fingerprint

Tris
X Face
Signature

15% O Hand
Geometry
41% Multimodal

Figure 2.1: Percentage of Homomorphic Encryption schemes applied to each biometric
trait

The percentage distribution of HE schemes applied to each biometric trait is illustrated in
Figure. 2.1. We can infer from the Figure 2.1 that BTP schemes based on HE developed so
far are 41% on the face, 21% on the fingerprint, 15% on the iris, 9% on the signature, 6%
on multi-modal and 3% on Hand Geometry. The percentage distribution of PHE, SHE and
FHE applied to biometric recognition is shown in Figure. 2.2. It is observed that 67%, 20%
and 13% works are used PHE, SHE and FHE schemes respectively. Hence, we can say that
FHE schemes need to be applied to biometric recognition as a BTP scheme to make use of

the advantages of FHE schemes.
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13%

20%

PHE
SHE

Figure 2.2: Percentage of each Homomorphic Encryption category applied to biometric
recognition

The percentage distribution of machine learning classification techniques achieving PP
training only, PP classification only and both PP training, PP classification discussed in
the literature is shown in Figure. 2.3. We can infer from the Figure. 2.3 that 47% of works
are achieved only PP training, 40% works are achieved only PP classification and 13% of
works are achieved both PP training & PP classification. Therefore, machine learning clas-
sification techniques need to be applied on encrypted data in such a way that achieves both

PP training & PP classification.

13%
[ PP Training

| PP
47% | Classification

\ / PP Training
40% _. and PP
\ classification

Figure 2.3: Percentage of machine learning classification techniques achieving PP training,
PP classification and both discussed in the literature
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2.6 Summary

In this chapter, some of the existing works on homomorphic encryption applied to bio-
metric authentication, machine learning approaches applied to iris recognition, machine
learning on encrypted data and Blockchain for biometrics are described. Most of the ex-
isting biometric authentication methods based on HE to provide privacy for the biometric
templates assume that the server is “Honest-but-serious”. Therefore, the existing methods
only solve the modify templates attack of BAS and fail to overcome the override compara-
tor attack of BAS. The techniques proposed in chapter 4 and chapter 5 of this thesis solve
the modify templates, intercept channel and override comparator attacks of BAS. Some of
the machine learning classification techniques on encrypted data provide only PP training
or PP classification but not both. So, the classification techniques proposed in chapter 5

provides both PP training and PP classification.
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Chapter 3

Privacy-preserving Iris Authentication

on Honest-but-Curious Server (PIAHC)

The brief introduction of homomorphic encryption and the advantage of applying homo-
morphic encryption in biometric recognition system is explained in section 1.6.4. The main

contributions of this chapter are described below:

* A privacy-preserving iris authentication system using FHE (PIAHC) is proposed to

solve the limitations of biometric cryptosystems and cancelable biometrics.

* Rotation-invariant iris template is generated to solve the rotational inconsistency

problem.

* An algorithm to compute the Hamming distance between the encrypted reference iris

template and encrypted probe iris template is designed.

The block diagram of PIAHC is shown in Figure. 3.1. PIAHC involves two entities
and three modules. The two entities are client device and server. The three modules are
Generation of iris codes, Encryption/decryption and Computation of hamming distance on
encrypted iris templates. The steps involved during the enrollment & authentication phases

of PIAHC are described in Algorithm 3.1 and Algorithm 3.2.
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Assumptions of PIAHC:

PIAHC assume the following:

* The client device has limited computation resources and memory.

* During the enrollment and authentication phases, the client device is fully trusted and

stores the secret key of the user in a secure manner.

¢ The server is Honest-but-Curious.

using id

Enrollment
Client Device id
Identity label .
v (8(%), id)
Generation of | Xi . &(Xi)
IrisCodes Encryption
Py
KeyG
eyGen ;@
Authentication
Client Device id Retrieves £(X;)
Identity label
. . | Compute Hamming
Generation of | Y Encrvption (E(Y’ld)\ distance
IrisCodes » between £(X;)
Py T and &(Y)
¢ &)
Yes D . &(s)
Accept <«—— Decryption
No
Reject
Figure 3.1: Block diagram of Privacy-preserving Iris Authentication on Honest-but-

Curious Server (PIAHC)
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Algorithm 3.1 Enrollment phase of PIAHC
Input: Reference iris image
Identity label, id
Output: Encrypted reference iris template, ()

1: Client device generates the iris template from the reference iris image using University
of Salzburg tool kit [58].

2: Client device generates the rotation-invariant iris code, RR. It further reduces the dimen-
sions of R as described in section 3.1.2, encode the reduced iris template as described
in section 3.1.3 and obtains X;.

3: Client device generates the secret key (Sy), public key (Py). // Refer section 3.2.1.1

4: The client device encrypts the encoded iris template. //Refer section 3.2.1.2

5: The encrypted reference iris template, £(X;) and identity label, id are sent to the server
by the client device. The server stores (¢(X;), id) into the database.

3.1 Generation of Iris Codes

The generation of iris code comprises of three phases:

1. Generation of rotation-invariant iris template.
2. Compression of rotation-invariant iris template.

3. Encode the compressed rotation-invariant iris template using batching scheme.

The extracted iris template from the iris image has rotational inconsistency problems due
to the head tilt of a person results in false accept or false reject. To overcome this limita-
tion, rotation invariant iris template is generated in the generation of rotation-invariant iris
template phase. The rotational-invariant iris template is first compressed and then encoded
using the batching scheme to improve the performance of the system in terms of com-
putational time in the compression of rotation-invariant iris template phase and encoding

phase.

3.1.1 Generation of rotation-invariant iris template

The rotational irregularities caused during acquisition may affect the performance of the
system. There are several techniques proposed in the spatial domain, which works on iris
textures to evade the rotational inconsistency problem, and these techniques do not bring

high recognition accuracy. In this scenario, PIAHC is designed to solve both rotational
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Algorithm 3.2 Authentication phase of PIAHC
Input: Probe iris image
Identity label, id
Output: Accept/Reject

1: Client device generates the iris template from the probe iris image using University of
Salzburg tool kit [58].

2: Client device generates the rotation-invariant iris code, Y. It further reduces the di-
mensions of Y as described in section 3.1.2 and encode the reduced iris template as
described in section 3.1.3.

3: The client device encrypts the encoded probe iris template. //Refer section 3.2.1.2

4: The client device sends (¢(Y), id) to the server.

5: The server retrieves the reference iris template with the same identity label from the
database.

6: The server computes the hamming distance between €(.X;) & £(Y") by using Algorithm
3.3 and send result £(s) to the client device.

7: The client device decrypts £(s) by using S, and obtains the decrypted result, D. The
client device compares [ with a threshold 7, and returns accept/reject.

inconsistency problem and achieving high recognition accuracy. PIAHC shifts each of
the iris template by +8 to get the rotation-invariant iris template. This helps in shifting
in a sequence of eight columns left and right to get 16 shifted iris templates and the one
original iris template. Four samples are considered per user to obtain the rotation invariant
iris template. Out of four samples, one sample is considered as a reference sample. The
hamming distances are calculated between the 17 iris instances taken from each sample
and the considered reference iris code. The least hamming distance from each sample is
considered, and the average of 3 iris instances is calculated. The template obtained by
calculating the average is considered as the reference iris template.

During the verification stage, the probe iris template is shifted by £8. Further, the
Hamming distances between the 17 probe iris instances and the reference iris instance are
calculated. The iris instance having the minimum Hamming distance is considered as the
probe template. The Equal Error Rate (EER) for the original iris template and the rotation-
invariant iris template are shown in Table 3.1. It is observed that 4.43 is the EER obtained
before applying a rotation-invariant mechanism, and 1.34 is the optimal value after the
rotation-invariant mechanism is involved. It is observed from the results that a low EER

is obtained with the rotation-invariant operation when compared to the template without
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rotation-invariant. So, rotation-invariant iris template results in better accuracy.

Table 3.1: Comparison of EER between original iris template and rotation-invariant iris
template for CASIA-V 1.0

Original iris template | Rotation-invariant iris template
Equal Error Rate Reference Equal Er-
Sample ror Rate
1 2.28
2 1.34
4.43
3 1.86
4 2.35

3.1.2 Compression of rotation-invariant iris template

The size of the iris template determines the performance of the system. The above phase
produces an iris template of size 1 x 10240. The computational performance of the overall
system can be improved by reducing the size of the iris template. So, the 10240-bit binary
vector is grouped into blocks of size m by using equation (3.1). m denotes the size of
the block, and we consider 4, 5, 6, 8, and 10 as m values. These m-bits are converted to
decimal values and stored in a vector. The process of converting a vector of size 1 x 10240
to a vector of size 1 x 2560 is shown in Figure. 3.2. The original iris code (10240-bit) is
exactly divisible with m =4, 5, 8, and 10. But, the 10240-bit vector is grouped into 1706
blocks if the original iris code is divided with m = 6 and 2-bits will be left. Four zeros are
left padded to these 2-bits, and the total 6-bits are considered as one block. Therefore, a

total of 1707 blocks are obtained.

Total number of bits

compressed iriscode size = 3.1

m

The EER obtained for the original 10240-bit binary vector, and different sizes of iris tem-

plate are shown in Table 3.2. From Table 3.2, we can infer that the 10240-bit binary vector
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L1fof+]1fofofaf+]oJofoft]1]ofr]o]

Converting
4-bit binary
Y Y Y Y to decimal

1 3 1 10

Figure 3.2: Compression of Bits(1 x 10240 — 1 x 2560)

Table 3.2: Compression of 10240 vector into blocks of various sizes for CASIA-V 1.0

Rotation- EER m compressed | EER
invariant iris iris tem-
template plate size
10 1024 1.23
8 1280 0.81
10240 1.34 6 1707 0.79
5 2048 0.54
4 2560 0.19

is divided into blocks of 4 bits to achieve better performance.

3.1.3 Encode the compressed rotation-invariant iris template using

Batching scheme

The input to the Brakerski/Fan-Vercauteren (BFV) HE scheme (used in section 3.2.1) is
a polynomial in ring 7., whereas the output in section 3.1.2 are integers. Encoders are
accountable to convert integers into a polynomial in ring R,. BFV scheme consists of four
encoding techniques, namely scalar encoder, integer encoder, fractional encoder and Chi-
nese Remainder Theorem (CRT) Batching [128]. CRT batching scheme performs better
when compared to other encoding techniques, since it can form a single plaintext polyno-
mial for a group of n integers modulo x. As a result, with a single instruction, an operation
can be performed on multiple data simultaneously. This manner is often called as Single
Instruction, Multiple Data (SIMD). Batching technique improves the performance of the

system by encrypting a group of integers at once instead of encrypting a single integer
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[133, 134]. Batching is based on the Chinese remainder theorem.
If Y is the primitive 2n'" root o f unity modulo = then the polynomial modulus a™ + 1

can be rewritten as
a"+1=(a—")(a—"T?..(a—"T*"")(mod )

If we consider plain text modulus, a to be multiplication of many small prime factors i.e.,

x =[], x;, then the ring R, can be factorized by using the CRT as

Lyla] Z.|a) T
ar+1 H?;ol(a — Y2it)

$:

At the cost of single addition (multiplication) in R,, one can perform n coefficient-wise

additions (multiplications) in integers modulo z.

3.2 Ensuring the confidentiality of iris templates and Com-

putation of Hamming Distance

3.2.1 Ensuring the confidentiality of iris templates

Basic Notations:
For x € Z, aring R, = Z,[a]/(a"+1) denotes polynomials of degree smaller than n with
the coefficients modulo x. g & F represents g is sampled uniformly from the finite set F'.
Similarly, g <— x represents g is sampled from a discrete truncated Gaussian. Consider the
largest integer smaller than or equal to x, smallest integer greater than or equal to  and
closest integer to x are denoted by | z], [z] and |z]. The reduction of an integer by modulo
x is denoted by [.],.

BFV scheme [72] is used to ensure the confidentiality of the iris templates. The secu-
rity of the BFV scheme relies on the hardness of solving the Ring Learning With Errors
(RLWE) problem. The main difference between symmetric or asymmetric, and HE is the

evaluation function. As explained in section 1.7.2, FHE technique consists of four func-
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tions, namely Key Generation (KeyGen), Encryption (Enc), Evaluation (Eval) and Decryp-

tion (Dec). The steps involved in each function are explained in the following sections:

3.2.1.1 Key Generation

The function to generate the public key, secret key and evaluation key of BFV scheme [72]
is shown in Figure 3.3. The function takes the security parameter () as input and produces

P, Sy and d,, as output.

KeyGen(lA) = (Pk, Sk, 5€vk)

Input: Security Parameter A

Output: Public key (Py), Secret key (5;) and Evaluation key (d,x)

S, &R,

P = ([ (aS + )y, a)

for j =0,1,...,l,wherel = |log,q|, sample x; & R, e; < x

56’!}]{3 = ([_(ZL']Sk + ej) "’stl?]q ) ZBj)

Figure 3.3: Key Generation function in BFV Homomorphic Encryption

3.2.1.2 Encryption

The function to encrypt the value in BFV scheme [72] is shown in Figure 3.4. It takes the
plaintext m and public key P as input and produces the encrypted value of m i.e., €(m) as

output.
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Enc(P;, m) — e(m)

Input: Public key (F), message m
Output: Encrypted message €(m) = [cto, ct;]
form € R,, let P, = (Px[0] , Px[1]), sample v & Rs and ay, ay < x. The encrypted

value (¢(m)) is given as :

e(m) = ([m + Pc[0v + ai], , [Pe[l]v + a2ly).

Figure 3.4: Encryption function in BFV Homomorphic Encryption

3.2.1.3 Evaluation (Add & Multiply)

The steps required to perform addition and multiplication of two encrypted values in BFV
scheme [72] are shown in Figure 3.5. The addition of two encrypted values in BFV scheme
is similar to performing the addition of two polynomials. The multiplication of two en-
crypted values involves two steps: the first step is multiplying two polynomials together.
The limitation is that the result consists of 3 ring elements instead of 2. To solve this

limitation, re-linearisation is used.
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Eval(F;, C, (X)) — €(R)

Input: Public key (P, = (F3[0], Px[1])), Evaluated Circuit C, Group of Cipher texts
€(X)

Output: Computed result €(R)

Let ct[0] = ([m1+ Py[0]v+a1],), ctoll] = [Pr[l]v + ao]y). ct1[0] = ([m2+ P[0]v+
ailg), ct1[l] = [Px[1]v + as],) and a4, as < x.

If we want to perform addition of two encrypted values then the evaluated circuit C'is

add and is computed as
e(R) = add(e(m1l),e(m2)) = ([cto[0] + ct1[0]]4, [cto[1] + ct1[1]],)

If we want to perform product of two encrypted values then the evaluated circuit C' is

multiply and is computed as
e(R) = multiply(e(m1),e(m2)) = (po, p1)

where py = [[%(cto[0]cta [0])1)y + iy Sewr[I0]([L 2 (cto[L]ect [1])T],)" and p1 =
(L (ctol0]cta[1] + eto[L]ets [0]) ]y + 35y Sean A [LI([LE (cto[L]ets [L)T],)

Figure 3.5: Evaluation function in BFV Homomorphic Encryption

3.2.1.4 Decryption

The function to decrypt the encrypted value in BFV scheme [72] is shown in Figure 3.6. It
takes the encrypted value (m) and secret key .Sy as input and produces the original value

m as output.
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Dec(S;, ct) = m

Input: Secret key (Si), Cipher text e(m)
Output: message m

m— [Lg[ct[()] + ct[1]S,]]

Where ct[0] = [m + Py[0]v + a1],, ct[1] = [Py[1]v + aq], and a1, as < x

Figure 3.6: Decryption function in BFV Homomorphic Encryption

3.2.2 Computation of Hamming Distance on encrypted data

The additive and multiplicative properties of BFV scheme are used to compute the Ham-
ming distance on encrypted iris templates. Given ¢(z) and €(y), one can compute €(x + y)
and e(xy) without decryption with the help of FHE. The server is capable of performing
computations, but not trustworthy; as a result with the help of FHE, we can encrypt our
data and send it to the server which performs the hamming distance on the encrypted data.
To compute Hamming distance, we need to perform both multiplication and addition. So,
PHE and SHE fail to implement hamming distance on encrypted data.

Generally, Hamming distance is used as a distance measure to find the similarity be-
tween reference & probe templates in iris authentication system. This section describes
about the computation of Hamming distance on encrypted templates as a result privacy
of the iris templates is preserved. The encrypted reference & probe iris templates are de-
noted as ¢(a), £(b) and e; = ->7 ' a"F, ey = 31" @’ are the constant polynomials. The

Hamming distance on encrypted templates can be given as
Hamming Distance = e(a) X e; +(b) X ea —2 x £(a) x £(b) (3.2)

Due to the batching scheme used in PIAHC, the Hamming distance can be computed with
only four multiplications and two additions instead of 2560 homomorphic multiplications.
The server sends ¢(s) to the client device. The client device decrypts (s) with Si. Client

device decomposes the decrypted result using equation (3.3) and obtains the decomposed
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Algorithm 3.3 Computation of Hamming distance on encrypted data
Input: ¢(a), (b)
Output: Encrypted Hamming distance score, £(d)

1: begin

2: e ¢ =S a

3 er = Yiy d!

4: Encode e; and e, using Batching encoding scheme
5: ft < multiply(e(a), e1) //Batch Multiply
6: st «— multiply(e(b), es) /l/Batch Multiply

7 cst < —2

8 Encode cst using encoding(a)=sign(z)(x,_1a" ' + .. + 312 + x0)
9: temp < multiply(cst,e(a)) //Batch Multiply
10: tt < multiply(temp, (b)) //Batch Multiply
11: res < add(ft, st)
12: result <— add(res, tt)
13: e(d) « result
14 return ¢(d)
15: end

result as m(a) — [m(5o), m(51), .., m(Bn_1)]-
Decompose : R, — 1:[ Ly, 3.3)

=0

The ratio between the number of non-zero values in the decomposed result to the total
number of bits is denoted as . The client device compares D with threshold 7 to check

whether the user is genuine or not.

Accept, ifD <.
Authentication = (3.4)

Reject, otherwise.

3.3 Implementation details and Security Analysis of PI-

AHC

The following measures are used to evaluate the efficiency of a biometric system according

to biometric information protection [23].
1. Performance evaluation in terms of EER, d’ and KS-test.
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2. Irreversibility and Unlinkability Analysis.

3. Computational cost in terms of time taken to perform operations.

3.3.1 Performance Evaluation of PIAHC

Table 3.3: Comparison of EER (in terms of %) between unprotected rotation-variant, un-
protected rotation-invariant and protected rotation-variant iris template

Database Size of URYV iris URl iris PRI iris
Iriscode template template template
1024 3.83 1.23 1.23
1280 2.98 0.81 0.81
CASIA-V 1.0 1707 2.30 0.79 0.79
2048 2.28 0.54 0.54
2560 2.13 0.19 0.19
1024 4.15 1.38 1.38
1280 3.68 0.94 0.94
CASIA-V3- ! 4 5 )
Interval 707 3.45 0.8 0.8
2048 3.54 0.58 0.58
2560 3.36 0.39 0.39
1024 4.58 2.24 2.24
1280 4.35 2.09 2.09
OTD 1707 4.09 1.32 1.32
2048 4.19 1.48 1.48
2560 4.05 0.99 0.99
1024 3.76 1.00 1.00
1280 3.72 0.96 0.96
SDUMLA-
HMT 1707 3.12 0.32 0.32
2048 2.98 0.28 0.28
2560 3.68 0.94 0.94
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Figure 3.7: ROC Curves of PIAHC for CASIA-V 1.0, CASIA-V3-Interval, IITD and
SDUMLA-HMT databases

The comparison of EER between unprotected rotation variant (URV), unprotected rotation
invariant (URI), and protected rotation invariant (PRI) iris templates for different sizes are
shown in Table 3.3. The protected rotation invariant iris templates indicate the templates
with encryption & rotation invariant operation. The unprotected rotation invariant iris tem-
plates suggest the templates without encryption & with the rotation invariant operation,
and unprotected rotation variant iris templates indicate the templates without encryption &
rotation invariant operation. We can infer from Table 3.3 that there is no degradation of
accuracy with PIAHC method. The increase in accuracy is due to the rotation invariant
operation.

The ROC curves of PIAHC for different databases is shown in Figure 3.7. The clear
separation between genuine and imposter scores for different databases are shown in Fig-
ure 3.8. The separability measures (d” & KS-test values) and EER on encrypted data for

different databases are shown in Figure 3.9.
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Figure 3.8: Genuine and Imposter distributions of PIAHC for (a) CASIA-V 1.0 (b) CASIA-
V3-Interval (c¢) IITD and (d) SDUMLA-HMT databases
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Figure 3.9: EER, Separability Measures (d" and KS test) for CASIA-V 1.0, CASIA-V3-
Interval, IITD and SDUMLA-HMT databases

3.3.2 Security Analysis of PIAHC

The template protection method must satisty the requirements of irreversibility, revocability
and unlinkability to ensure the privacy of the iris templates. The vulnerability of attacks in

PIAHC can occur in the following entries:

1. The server database.
2. The client device.

3. The communication channel between the server and the client device.

The client device extracts the features of the iris image, and the secret key is also stored in
the client device. Hence, security is to be ensured for the client device. As, PIAHC assume
the client device is a trusted entity, the keys and features of iris image are secure. Since the
security of PIAHC depends on the apparent hardness of Ring Learning with Errors (RLWE)
problem, the iris templates stored in the server database are secure. It is difficult to decrypt
the encrypted iris templates without the secret key. As a result, the communication channel
is also reliable.

Ring Learning with Errors (RLWE) [108]: Problems like integer factorization & discrete
logarithm are considered as the basis for many asymmetric cryptographic algorithms in
the early 1980s. But these algorithms will have serious problems in the near future with

the existence of Quantum computers [135]. RLWE is a computational problem which
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serves as the support of advanced cryptographic algorithms constructed to defend against
cryptanalysis by Quantum computers. The advancement to Learning with Errors (LWE)
problem is referred to as RLWE and is specialized to polynomial rings over finite fields.
The security of many prominent homomorphic encryption schemes relies on the LWE [136]

and RLWE [108]. The RLWE problem is to solve n(x) from a random noisy system.

(po(a:)n(x) + to(z) = qo(x) mod rA

pi(z)n(x) + t1(x) = ¢1(z) mod r A

where p;(x) - uniformly random polynomials, ¢;(x) - unknown small random polynomials,
7 is a prime and is given as r = 1(mod 2n), n is a power of 2 and A = Z[z]/(x™+1). Given
pi(z) and g;(x), it is computationally infeasible to find the polynomial n(z). The difficulty
of solving RLW E problem is similar to solving NP-Hard Shortest Vector Problem (SVP).

Irreversibility Analysis: Irreversibility refers to obtaining the original template from the
encrypted template. The client device sends the encrypted reference and encrypted probe
iris templates of a user to the server for distance computation. The server computes the
Hamming distance on the encrypted templates and returns the encrypted result to the client
device. As the PIAHC uses BFV scheme to protect the templates, and the security of BFV
scheme relies on solving the RLWE problem, it is computationally infeasible to decrypt the
templates by the server or an imposter without secret key (Si). Therefore, PIAHC satisfies
the irreversibility property.

Revocability Analysis: Revocability ensures that a new protected template should be gen-
erated by the protection method if the old template is compromised or stolen. In PIAHC,
Revocability can be achieved by re-encrypting the samples in the database with a new key
pair (P, S}) instead of acquiring the new samples from the users.

Unlinkability Analysis: Unlinkability ensures that there won’t be any correlation between
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the protected templates used in different applications. BFV scheme used in PIAHC is based
on probabilistic encryption. Due to the randomness involved in BFV scheme, different ci-
phertexts can be generated even if the same message is encrypted multiple times with the

same key, and there won’t exist any similarity between the generated ciphertexts.

Table 3.4: Total time taken in PIAHC (with & without batching scheme)

A | M? | NFT? | Parameters Batching Time(Seconds) | NBT(Seconds)*

n q x Enc Score Dec Total | Enc Score DecTotal
(bits)

640 | 0.0075| 102429 40961| 0.00140.0026 0.00080.0048| 0.7 1.5 0.1 2.3
1024 | 0.014 | 204856 40961| 0.00260.00520.00160.0094| 2.1 4.8 0.5 7.4
128-| 1280 | 0.019 | 2048 56 40961| 0.00270.00530.00160.0096| 2.6 6.0 0.6 9.2
bit | 1707 | 0.021 | 204856 40961| 0.00280.00530.00180.0099| 3.5 8.0 0.8 12.3
2048 | 0.035 | 4096 11040961| 0.00600.018 0.00390.0279| 10.035.2 3.2 48.4
2560 | 0.044 | 4096 11040961| 0.00580.019 0.00380.0286| 12.544.0 4.1 60.6
640 | 0.0075| 102420 40961| 0.00130.00270.00090.0049| 0.7 1.4 0.1 2.2
1024 | 0.014 | 204839 40961| 0.00260.00530.00150.0094| 2.3 5.2 0.5 8.0
192-| 1280 | 0.019 | 204839 40961| 0.00270.00550.00160.0098| 2.8 6.5 0.6 9.9
bit | 1707 | 0.021 | 204839 40961| 0.00290.00530.00160.0098| 3.8 8.7 0.9 13.4
2048 | 0.035 | 409677 40961| 0.00630.018 0.00410.0284| 10.934.8 3.5 49.2
2560 | 0.044 | 409677 40961| 0.00590.019 0.00400.0289| 13.643.5 4.4 61.5

L\ refers to security.

2M refers to size of iris template.

3NFT refers to Time in seconds without FHE.

4NBT refers to Time in seconds without Batching.

Enc, Score and Dec stands for time taken to perform encryption, hamming distance between probe and
reference templates, and decryption.

3.3.3 Computational Analysis of PIAHC

The security parameters used in PIAHC are polynomial modulus (a™ + 1), coefficient mod-
ulus (q), plaintext modulus (x) and security level (A\). PIAHC considered two different
values for A. From Table. 3.4, it can be inferred that the higher security level has nearly
no influence on the execution time. a” + 1 must be a power-of-2 cyclomatic polynomial.

The security level is directly proportional to the polynomial modulus. On the other hand,
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Table 3.5: Comparison Analysis in terms of Time

Method Iris Bit | Total time | Homomorphic Encryp-
Size (in secs) tion Scheme

Barni, M, et al. [76] 6400 0.12 Damgard-Jurik cryp-
Bits tosystem (SHE)

Alberto Torres, W. A et al. | 2048 645.049 Lattice-based-FHE
[137] Bits

Cheon, Jung Hee, et al. [138] | 2400 0.57 BGYV Scheme (SHE)
Bits

Kulkarni, Rohan et al. [139] | 2048 58 BGN Cryptosystem
Bits (SHE)

Yasuda, Masaya, et al. [66] 2048 0.01243 Polynomial-LWE (SHE)
Bits (HD=0.05)

PIAHC 2560 0.0286 BFV Scheme (FHE)
Bits (HD=0.019)

larger "™ + 1 makes ciphertext size larger, and all operations become slower. n value must
be a power of 2 and greater than the size of the iris template. So, PIAHC choose different
n values for different sizes of iris templates. The default ¢ values for different n values are
mentioned in [128]. = can be any positive integer, and mostly it is a power of two. But,
batching encoding only works when a is chosen to be a prime number and congruent to
1 (mod 2n). So, PIAHC considered plaintext modulus as 40961.

For a given desired security level (\), Table. 3.4 illustrates the time taken (in seconds) to
encrypt, decrypt and to compute the Hamming distance on the encrypted data for different
security parameter values (n, x and ¢) and iris code sizes. PIAHC considered the average
time in seconds by running the experiments ten times. The table also shows the time taken
to compute the Hamming distance on original values. The iris template size is proportional
to the computational time. PIAHC converts 1 x 10240 into 1 x 640, 1 x 1024, 1 x 1280,
1 x 1707, 1 x 2048 and 1 x 2560 respectively. Even though the total time taken for iris
code of size 640, 1024, 1280, 1707 and 2048 is less when compared to iris code of size

2560, but the optimal accuracy is achieved with iris template of size 1 x 2560.
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Table 3.6: Comparison of PIAHC with existing approaches (EER in terms of %)

Database EFER
Dwivedi, R. et al. [140] 0.37
Punithavathi, P et al. [141] 1.2
CASIAV 1.0 Mahesh, M. et al. [142] 0.57
Gad, R. et al. [143] 0.299
Barni, M. et al. [76] 2.08
PIAHC 0.19
Dwivedi, R. et al. [140] 0.43
Lai, Y.L. et al. [144] 0.54
Punithavathi, P et al. [141] 1.9
Soliman, R.F et al. [145] 0.63
CASIA-V3-Interval Zhao, D. et al. [146] 1.03
Barpanda, S.S et al. [147] 11.75
Sadhya, D. et al. [148] 0.105
Soliman, R.F et al. [149] 0.36
PIAHC 0.39
Punithavathi, P et al. [141] 33
Barpanda, S.S et al. [147] 12.69
IITD Gomez-Barrero, M. et al. [150] 0.7
Sadhya, D. et al. [148] 1.4
PIAHC 0.88
Gad, R. et al. [143] 0.300
SDUMLA-HMT Kamalskar, C et al. [151] 2.5947
PIAHC 0.28

Table 3.7: Comparison of PIAHC with other approaches (in terms of Separability measure
(d’))

CASIA-V 1.0 | CASIA-V3-Interval | IITD
Barpanda, S.S et al. [147] | - 1.71 1.76
Sadhya, D. et al. [148] 2.39 2.92
Walia, G.S. et al. [152] 2.6053 - 1.9578
PIAHC 5.3664 3.9263 3.8141
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3.3.4 Comparison Analysis

PIAHC is compared with other state-of-the-works (in terms of computational time) and is
given in Table 3.5. The batching scheme used in PIAHC makes the system to give a fair
performance when compared to other works. On the other hand, PIAHC uses a higher
bit security level, i.e., 128-bit & 192-bit, whereas the other methods use 80-bit security.
From Table 3.5, we can observe the performance of Yasuda et al. is better when compared
to PIAHC. The reason for the degradation of performance is that they used SHE whereas
PIAHC uses FHE.

The EER comparison of PIAHC with state-of-the-art works is shown in Table 3.6. We
can infer that PIAHC shows better EER value when compared to other existing works. The
comparison of d’ with the existing approaches is shown in Table 3.7. We can infer from
Table 3.7 that the genuine and imposter scores are well separated when compared to other

works.

3.4 Summary

In this chapter, a privacy-preserving iris authentication system using FHE (PIAHC) is pro-
posed to preserve the privacy of iris templates by performing the matching on the encrypted
iris templates. PIAHC solves the rotational inconsistency problems occurred due to the
head tilt of a person by generating the rotation-invariant iris templates. These templates
help to improve recognition accuracy. The rotation-invariant iris template is first com-
pressed and then encoded using the batching scheme to improve the performance of the
system in terms of the computational time. A procedure to compute the Hamming distance
is proposed, which helps to check whether the user is genuine or not. PIAHC consumes
0.0185 seconds only with no performance degradation. Experimental results prove the

significance and validity of PIAHC.
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Chapter 4

Privacy-preserving Multi-Instance Iris
Authentication on Untrusted Cloud

Server using PHE schemes

A brief introduction, advantages and types of multi-biometric systems are explained in sec-
tion 1.8. In particular, the multi-instance systems have many benefits like cost-effective
and do not require the additional sensors, need of matching algorithms, and feature extrac-
tion methods. On the other hand, the literature reveals that the privacy-preserving schemes
based on HE assume that the server/cloud server is Honest-but-curious. However, due to
financial or timing reasons, the server/cloud server assigned to a task may not honestly per-
form the computation. The cloud server may return an arbitrary result which leads to false

accept or false reject. The main contributions of this chapter are described below:

* Proposed a Blockchain-based multi-instance iris authentication system (BMIAE),
which integrates ElIGamal HE [39] with Blockchain technology to achieve privacy of
iris templates and trust on the comparator result. The challenges of using Blockchain

in biometrics are also addressed in BMIAE.

* Proposed a secure and verifiable multi-instance iris authentication using public audi-
tor (SviaPA), which not only provides privacy for the iris templates but also includes

a verification procedure to check whether the comparator result is correct or not.
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* A method for secure and verifiable multi-instance iris authentication using Blockchain
(SviaB) is proposed. SviaB combines Blockchain technology with Paillier HE [42].
Paillier HE provides confidentiality for the iris templates. The Blockchain provides
the integrity of the encrypted reference iris templates as well as the trust of the com-
parator result. In addition, SviaB reduces the time taken to authenticate a person

when compared to BMIAE.

4.1 BMIAE: Blockchain-based Multi-Instance Iris Authen-
tication using Additive ElGamal Homomorphic En-
cryption

The flow diagram for BMIAE is shown in Figure. 4.1. BMIAE involves three entities,
namely client device, server and a Blockchain network. The steps involved during the en-
rollment & authentication phases of BMIAE are described in Algorithm 4.1 and Algorithm
4.2.

Assumptions of BMIAE:
BMIAE assume the following:

* During the enrollment/authentication phase, the client device is fully trusted and

stores the user’s secret key securely at its local storage.
* The client device has limited memory and computational resources.
* The server & client device need not store the entire ledger of the Blockchain network.

* The consensus algorithm of the Blockchain is secure & robust against security attacks

of the Blockchain.

¢ The contract address of the smart contract is shared with the server & the client device

before the enrollment phase.
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Figure 4.1: BlocK diagram of Blockchain-based Multi-Instance Iris Authentication using
Additive ElGamal Homomorphic Encryption (BMIAE).

4.1.1 Generation of Integer vector from iris templates
This section comprises of three phases:

1. Fusion of left and right iris template
2. Compression of fused iris template.

3. Mapping of compressed iris template to integer vector.

The left & right iris templates extracted from the iris images using University of Salzburg
tool kit [58] are fused in the first phase to achieve better recognition accuracy. The fused
iris template is compressed in the second phase to improve the performance of the system in
terms of computational time. In general, a number to be encrypted using ElGamal HE must
present in the group Zg), () is a prime number. Therefore, the compressed fused template

is mapped to an integer vector in the third phase.
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Algorithm 4.1 Enrollment phase of BMIAE
Input: Reference images of both left & right eye
Identity label, id

1: Client device generates the iris templates from the reference left & right iris images
using University of Salzburg tool kit [58].

2: Client device generates the reference fused iris template, X; as described in section
4.1.1.1. It further reduces the dimensions of X; as defined in section 4.1.1.2 and map
the fused compressed iris template to an integer vector as described in section 4.1.1.3.

3: Client device generates the secret key (Sy) and public key (FPy). //Refer section 4.1.2.1

4: Client device encrypts the mapped iris template using P, and generates the encrypted
reference fused compressed iris template, €(.X;). //Refer section 4.1.2.2

5: The client device send (¢(X;), id) to the Blockchain & server.

6: The Blockchain calculates the hash value of £(X;), Hr and stores (Hr, id). (BMIAE
stores only Hr in Blockchain & £(X;) in the server to overcome the storage limitations
of Blockchain).

4.1.1.1 Fusion of left and right iris template

The dimension of the extracted left (L;) and right (R;) iris templates is 1 x 10240. The

concatenation of L; and R; as shown in equation (4.1) gives the fused iris template.

7= 4.1

The dimension of the fused iris template, Z is 1 x 20480.

4.1.1.2 Compression of fused iris template

The size of the iris template determines the performance of the system. The fusion phase
produces an iris template of size 1 x 20480. The computational performance of the overall
system can be improved by reducing the size of the iris template. So, the 20480-bit binary
vector is grouped into blocks of size v by using equation (4.2). v denotes the size of the
block, and BMIAE consider 2, 4, 8, 16 and 32 as v values. The v bits obtained in each block
is converted to integers and perform modulo operation on each integer by 2. The resultant

binary vector is considered as the compressed fused iris template. The compression process
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Algorithm 4.2 Authentication phase of BMIAE
Input: Probe images of both left & right eye
Identity label, id
Output: Accept/Reject

1: Client device generates the iris templates from the probe left and right iris images using
University of Salzburg tool kit [58].

2: Client device generates the probe fused iris template, Y. It further reduces the dimen-
sions of Y as described in section 4.1.1.2 and map the fused compressed iris template
as described in section 4.1.1.3.

3: The client device encrypts the mapped fused probe iris template and generates the
encrypted probe fused compressed iris template, £(Y'). //Refer section 4.1.2.2

4: The client device sends (¢(Y), id) to the Blockchain.

5: The Blockchain retrieves €(.X;) with the same identity label from the server.

6: The hash value of retrieved £(X;), Hp is computed by the Blockchain and compares
Hr, Hp. The Blockchain computes the distance £(s) if the hash values are same
otherwise it will send an “integrity failed” message to the client device.

7: The client device decrypts £(s) by using Sy, and obtains the decrypted result, Y. The
client device computes the number of zeros in Y and obtains D). The client device
compares D with a threshold 7, and returns accept/reject.

is shown in Figure. 4.2.

Total number of bits 42)

Size of compressed iris template =
v

The EER obtained for the original 20480-bit binary vector, and different sizes of iris tem-
plate are shown in Figure. 4.3. From Figure. 4.3, we can infer that the 20480-bit binary
vector is divided into blocks of 16-bits for CASIA-V3-Interval, 8-bits for IITD and 8-bits

for SDUMLA-HMT iris databases to achieve better performance.

4.1.1.3 Mapping of compressed iris template to integer vector

The number to be encrypted using EIGamal HE must present in the group Zg, () is a prime
number. So, the compressed fused template obtained in the section 4.1.1.2 is mapped to
integers which belong to Zg. On the other hand, an additive HE scheme must be used to
compute the distance. Generally, ElGamal is a multiplicative HE scheme but if we consider
g™ instead of m, where m and g denotes the number to be encrypted and generator of the

group then it satisfies the additive property. The steps involved in the conversion of binary
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Figure 4.2: Compression of Bits in Blockchain-based Multi-Instance Iris Authentication
using Additive EIGamal Homomorphic Encryption
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to integer vector are mentioned below:

Step 1: Select a large prime ().

Step 2: Let g be the generator of the group Z,.

step 3: Two different prime numbers a; & as such that a; & ay < (), a; > ay are chosen
randomly. The ones and zeros in the binary vector obtained in section 4.1.1.2 are replaced
with ¢ & g*2.

The mapping process is explained with an example. Consider () = 131. g = 2 is the
generator of the group Zi3;. Choose a; =5 & as = 2 are the two primes. Then, the ones

and zeros in the binary vector are replaced with g* = 25 = 32 and ¢* = 22 = 4.

4.1.2 Ensuring the Confidentiality of Iris templates using ElGamal

Homomorphic Encryption

During the enrollment and authentication phase, ElGamal HE [39] is used to ensure the
confidentiality of the iris templates. The security of the ElIGamal HE depends on the hard-
ness of solving the discrete logarithm problem on a cyclic group. Generally, ElIGamal HE
satisfies the multiplicative property. An additive HE scheme must be used to compute the
distance. In the literature, there exist various PHE schemes which satisfy the additive prop-
erty. Due to its advantages over other HE schemes [39, 153], BMIAE uses a modified
version (i.e., consider the message (m) to be encrypted as g™ instead of m) of EIGamal HE
which satisfies the additive property. The template obtained in section 4.1.1.3 is encrypted
using the Enc function given in Figure. 4.5.

ElGamal HE scheme consists of four functions, namely Key Generation (KeyGen),
Encryption (Enc), Evaluation (Eval) and Decryption (Dec). The steps involved in each

function are explained in the following sections:

4.1.2.1 Key Generation

The function to generate the public key, secret key of ElGamal scheme [39] is shown in
Figure. 4.4. The function takes a prime number (()) as input and produces P, Sy as

output.
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(P, Si) <— KeyGen((Q))

Input: Prime number ()

Output: Secret key (S;) and Public key (Fy,)

* Let g be the generator of the cyclic group Z, and [ be the number of elements
in Zg.
e Anelement r € {1, 2, ...., f-1} is chosen randomly.

* Calculate ¢ = ¢" (mod Q)
(Se) = [r]-

(Pk) . [Z*Q7 T, gaQ]'

Figure 4.4: Key Generation function in EIGamal Homomorphic Encryption

4.1.2.2 Encryption

The function to encrypt the value in ElIGamal scheme [39] is shown in Figure. 4.5. It takes
the plaintext m and public key P as input and produces the encrypted value of m i.e., £(m)

as output.
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g(m) «— Enc(Pg, m)

Input: Public key (F), message m
Output: Encrypted message €(m) = [cto, ct;]

e Anelementa € {1, 2, ...., f-1} is chosen randomly.
 Calculate cty = g* (mod p)
* s = q“ is the shared secret key.

e Compute ct; = g™ X s (mod Q)

e(m) = [cto, ct1] = [g° (mod Q), g™ X s (mod Q)]

Figure 4.5: Encryption function in EIGamal Homomorphic Encryption

4.1.2.3 Evaluation (Add)

The steps required to perform addition of two original values in ElGamal scheme [39] is
shown in Figure. 4.6. The addition of two original values can be obtained by the decryption

of multiplication of two encrypted values.

e(R) «— Eval(¢(a), e(b), Q)

Input: Prime number Q, £(a) = (g™, g% - q™), e(b) = (¢*2, g° - ¢*2), where a,, ay are
the random values chosen during encryption.
Output: Computed result £(C')

The addition of two values can be computed as

€(C) = add(a,b) = e(a) - £(b) mod Q

Figure 4.6: Evaluation function in ElGamal Homomorphic Encryption
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4.1.2.4 Decryption

The function to decrypt the encrypted value in ElGamal scheme [39] is shown in Figure.
4.7. Tt takes the encrypted value £(m) and secret key Sy as input and produces the original

value m as output.

m <— Dec(Sy, £(m))

Input: Secret key (Si), Encrypted message €(m)

Output: message m’
m' = (cty x (ctg)9™™") mod Q) mod Q

Since, we considered the message as g™ instead of m to achieve the additive property.

So, discrete logarithm has to be applied on m' to obtain m.

Figure 4.7: Decryption function in ElGamal Homomorphic Encryption

Additive Property of ElGamal:

Let £(a) = Enc(Py,a) & £(b) = Enc(Py,b) be the encrypted values for messages ¢° and
g°. As defined in section 1.7.1, the additive property states that the addition of two original
values can be obtained by the decryption of multiplication of two encrypted values and is
given in equation (4.3).

Dg,(e(a) -€(b)) = a+b (4.3)

proof:

e(a) -e(b) = (g™, g* - ¢") - (9™, 9" ¢™)

— (qtaz  a b _ai+taz
(g""™, g" - g" - ¢""™)
— (ga1+a2’ ga+b . qa1+a2)

=c(a+0b)
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4.1.3 Ensuring the integrity of encrypted reference templates and trust

on computed distance using Smart contract

The smart contract running on a Blockchain network helps the BMIAE to address the
override comparator attack of BRS (Refer Figure. 1.3). Therefore, the user or client device
can ensure the computed distance is correct without including any third party or centralized
server. The integrity of the encrypted reference iris templates is also ensured in BMIAE by
comparing the hash values in Blockchain. The formal smart contract to ensure the trust on
the computed distance & integrity of encrypted reference iris template is given in Figure.

4.8.

Contract-EIRTDC
Init: Setrefer :=[], Buff := Null, 6. =0
Enrollment: /IComputation of Hash value
Upon receiving (“reference”, (X;), ¢d) from Client device
set referfid] :== H(e(X;))
Verification:  Upon receiving (“verify”, £(Y'), id) from Client device
set Buff :=¢e(Y)
set 6. := 0 + D (Threshold time)
send (retrieve £(X;)”, id) to server.
Computation: Upon receiving (“computation”, £(X;), id) from Server
require § < 4,
if H(e(X;)) == referlid]
/IDistance computation
sete(s) :=e(X;) x Buff
send £(s) to client device
else
send(“Integrity failed”) to client device

Timer: if 6 > 6,

Send(“Session Expired”) to Client device

Figure 4.8: Contract-Ensuring the Integrity of Reference templates and Trust on Distance
Computation (EIRTDC)
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4.1.3.1 Ensuring the integrity of encrypted reference iris templates

The client device sends (e(X;), id) to server & smart contract during the enrollment phase
and invokes the Enrollment function of a smart contract. The server stores ((X;), id).
The hash value of £(X;), Hr = H(e(X;)) is computed and stores Hr in refer[id] by the
smart contract. The limitations of using Blockchain in biometrics like expensive storage
cost and privacy are described in [119]. To solve expensive storage cost limitation, BMIAE
stores only hash value of encrypted reference iris template instead of £(X;). To overcome
the privacy limitation, BMIAE encrypts the fused templates using ElGamal HE before
sending the template to Blockchain.

The client device sends ((Y'), id) to a smart contract and invokes the Verification
function during the authentication phase. The smart contract requests the server for £(R)
with the same identity label id. If the server sends £(Y") within a stipulated time, J,. then the
Computation function of a smart contract is invoked otherwise 7Timer function of smart
contract gets executed. It sends “Session Expired” message to the client device. When the
computation function is invoked, the smart contract computes hash value Hp = H(e(Y)).
The smart contract computes the distance between £(X;) & £(Y'), if the values of Hr & Hp
are same otherwise it indicates that £(X;) is modified by the intruder. Therefore, a smart

contract helps to check the integrity of the encrypted reference template.

4.1.3.2 Encrypted distance computation in the Blockchain

The smart contract computes the distance; as a result, the trust on the distance is achieved.
The smart contract computes the distance only if Hr and Hp are same. The distance

between X; and Y can be computed by using equation (4.4).

Dipan, = | X; = Y| 4.4)

The distance between encrypted reference and probe iris templates can be calculated by

using equation 4.3.
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Dman = |Xz - Yl
= [X; + (=Y)]
e(Dman) = €(X;) - e(=Y)
€(Dman) = €(X;) - e(=Y) (4.5)

The smart contract computes the distance between £(X;) & ¢(Y") by using equation (4.5).

e(s) = (e(X[1])-e(Y[1]), e(Xi[2])-e(Y([2]), ..., e(Xi[M])-e(Y[M])) = ((s1),e(s2), -, €(501))

The smart contract send £(s) to the client device.

4.1.4 Computation of Hamming distance (from ¢(s)) (HDM)

Step 1: Client device decrypts £(s) by using Sy and obtains P = (s1, So, . . ., Spr)-

Step 2: Compute a vector, R consisting of remainder values obtained by performing mod-
ulus operation on P with ¢g** x g**. R; = P, mod a where i = 1, 2, 3,..., M and a =
(g™) % (9")

R=1[ry,ro,r3,.....,rprl.

Step 3: A binary vector H is computed by using equation (4.6).

0, ifr=0.
H; = (4.6)

1, otherwise.

Step 4: Client device computes the number of zeros in the vector, /. Number of zeros

helps in calculation of Hamming distance between the reference and probe templates.

__ Number of zerosin H
Total number of bits in H

4.7)

Hamming distance (D) =
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Step S: The result D is compared with 7 to decide whether the user is genuine or not.

Accept, ifD > 7.
Authentication = (4.8)

Reject, otherwise.

4.1.5 Limitations of BMIAE

In BMIAE, the Blockchain computes the distance between the encrypted reference iris
template and encrypted probe iris template to ensure the trust on the computed result. The

limitations of BMIAE are as follows:
* The computational cost and execution time required to authenticate a person is more.

* The size of the iris template varies from each database in BMIAE to obtain optimal
accuracy. Therefore, BMIAE needs to find the size of the iris template for every

database, which is a cumbersome process.

4.2 SviaPA: Secure and Verifiable Multi-Instance Iris Au-
thentication using Public Auditor

SviaPA is the first known multi-instance iris authentication system which provides privacy
to the user data, i.e., iris templates as well as trust on the computed result. The flow diagram
of the SviaPA is shown in Figure. 4.9. SviaPA consists of four entities, namely client de-
vice, trusted authenticator, cloud server and public auditor. The role of trusted authenticator
is to 1) Generate the public (P) and secret (S;) keys used in the encryption. 2) Reduce the
dimensions of fused iris template by using autoencoders and 3) Send accept/reject decision
to the client device. The cloud server provides the storage and computation resources to
the client device. If the cloud server is malicious, then the imposter may get access to the
system, which is a severe problem. So, we introduce a public auditor as a third party who
helps to check the correctness of the result returned by the cloud server and send the verifi-

cation result to the trusted authenticator. The trusted authenticator determines whether the
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user is genuine or not based on the verification result. The steps involved in the enrollment

and authentication phases are shown in Algorithm 4.3 and Algorithm 4.4.

Client Device Cloud Server

Enrollment Phase

Left Iris ---> Fusion of Encryption | | = 1. Stores £(X;)
Iris codes using Paillier i . i

5. Compute distances,

.............. s o

Trusted
Authenticator

Client Device
Authentication Phase

G, id
'1 G o
Left Iris Fusion of

Public Auditor

L .| Encryption 4. &Y)
Iris Codes using Paillier

Right Iris

Figure 4.9: Block diagram of SviaPA. The dashed line, Dotted line and Solid line indicates
the steps during enrollment, after the enrollment and during the authentication phases.

4.2.1 Preliminaries and Assumptions of SviaPA

4.2.1.1 Autoencoder

Autoencoder is an unsupervised neural network method; which optimizes a rebuilding of
the input data in the output layer through a hidden layer with chosen dimensions. Simi-
lar to the state-of-the-art dimensionality reduction techniques such as principal component
analysis (PCA), linear discriminant analysis (LDA), isometric mapping (ISOMAP), etc.,
autoencoder can be used to reduce the high-dimensional feature vector [154]. Autoencoder
consists of three layers, namely input, hidden and output. The dimensions of input and out-

put layers are the same, whereas the hidden layer contains fewer dimensions. Autoencoder

74



CHAPTER 4. PRIVACY-PRESERVING MULTI-INSTANCE IRIS AUTHENTICATION ON UNTRUSTED CLOUD SERVER USING PHE SCHEMES

Algorithm 4.3 Enrollment Phase of SviaPA
Input: Reference left and right iris images of i*" user.

1: Client device generates the left and right iris templates from the reference left and right
iris images using University of Salzburg tool kit [58].

2: Client device performs the fusion of iris codes, F; and send F; to trusted authenticator.
/IRefer section 4.1.1.1

3: Trusted authenticator reduces the dimensions of F; to improve the performance of the
system and send the compressed template, X; to the client device. //Refer section 4.2.2

4: Trusted authenticator generates the public key, P} and secret key Si. //Refer section
4.2.3.1

5: Client device encrypts X; and sends the encrypted reference fused compressed iris
template, £(X;) to the cloud server. //Refer section 4.2.3.2

6: Once all the enrollment phase is completed, the cloud server send £(X;), ¢ € [1, N]
to trusted authenticator.

7: The trusted authenticator generates the encrypted verification vector, £(Z,,,1) using
encrypted random vector €(V'), e(X;) and send (¢(Z,,41), €(V')) to the public auditor.
/IRefer section 4.2.4.2

consists of two phases, 1) encoder and 2) decoder. An encoder converts the input data into
a hidden code, and the decoder reconstructs the original input data from the hidden code.
The input and output for an autoencoder are I € [0, 1]¢ and O € [0, 1]%, where d is the
number of dimensions. Firstly, the encoder maps the input into hidden (or) latent code, A

€ [0, 1]¥, d' < d using the transformation given in equation (4.9).
h=SW xI+b) 4.9)

Where S is a sigmoid function, W is a weight matrix, and b is the bias. By using the
decoder, the hidden code, h is then converted back into O with the same dimension as /.

The conversion occurs through the transformation given in equation (4.10).
O=SW xh+1b) (4.10)

Where S is a sigmoid function, W' is a weight matrix of the reverse mapping, and b is
the bias. The average reconstruction error is maximized by optimizing the parameters
(W, b, b). The reconstruction error can be measured by either squared error, L(I,0) =

|| — O||? or binary cross-entropy, L(I, O) = — Zzzl[]klogOk + (1 — Ix)log(1 — Oy)].
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Algorithm 4.4 Authentication Phase of SviaPA
Input: Probe left and right iris images, User identifier ¢d of the end user U
Output: Accept or Reject

1: The client device generates the left and right iris templates from the probe left and right
iris images using University of Salzburg tool kit [58]. It also acquires the identifier ¢d
of the end-user.

2: Client device performs the fusion of iris codes, G and send (G, id) to trusted authen-
ticator. //Refer section 4.1.1.1

3: Trusted authenticator reduces the dimensions of GG to improve the performance of the
system and send the fused compressed template, Y to the client device. //Refer section
4.2.2

4: The client device encrypts Y and sends the encrypted probe fused compressed iris
template, €(Y") to the cloud server. //Refer section 4.2.3.2

5: The cloud server computes the Manhattan distances, ¢(d) between £(Y') & £(X;), 7 €
[1, N]and send £(d) to the public auditor. //Refer section 4.2.4.1

6: The public auditor checks the correctness of the computed result £(d) by using (Z,,11),
e(V), e(Y) and sends the verification result to trusted authenticator. //Refer section
4.24.2

7: If the verification succeeds, then the trusted authenticator considers the Manhattan
distance value for the corresponding id given by the end-user to determine whether
the user is genuine or not.

To use the autoencoder as a dimensionality reduction technique, use the data obtained in

hidden layer and discard the decoder phase.

4.2.1.2 Assumptions

SviaPA assume the following:

The client device is fully trusted in the enrollment/authentication phase and has lim-

ited memory and computational resources.

The cloud server is malicious as opposed to Honest-but-curious.

The trusted authenticator is a trusted entity which generates the secret and public
keys differently for each user. The secret keys of the users are stored securely and

broadcast the public keys to the client device.

The public auditor is only trusted to check the correctness of £(d).
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4.2.2 Fusion & Reducing the dimensions of Iris code using Autoen-

coder

This section consists of two phases, namely Fusion and reducing the dimensions of the iris
code. In the fusion phase, the iris codes obtained from left and right irises are fused as
discussed in section 4.1.1.1. The size of the fused iris code is reduced by using a non-linear
dimensionality reduction technique, autoencoder in the reduction phase.

The performance of the system depends on the size of the iris code vector. The fused
iris code vector, Z obtained from section 4.1.1.1 is of dimension 1 x 20480. Reduction
in the size improves the overall computational performance of the system. SviaPA uses
the autoencoder as a technique to reduce the dimensions of the iris code. Autoencoder is
a neural network-based reduction technique and is more efficient than other state-of-the-
art linear dimensionality reduction technique such as PCA or non-linear dimensionality
reduction techniques such as LDA, ISOMAP, etc [155]. Firstly, the trusted authenticator
train the autoencoder using both encoder and decoder phases, but after training, the data
obtained after the encoder phase, i.e., in the hidden layer is considered as the reduced
feature vector and discard the decoder phase. As the iris code, i.e., the input data to auto-
encoder contains 1’s and 0’s, SviaPA use the cross-entropy as an error function. The 20480-
bit binary vector is given as an input to auto-encoder and compressed into 64, 128, 256 and
512-bit respectively.

SviaPA considered 64, 128, 256 and 512 nodes in the hidden layer and computed the
EER. Table 4.1 represents the EER values for different sizes of iris code. From Table 4.1,
experimentally, we found that there is no loss in the accuracy (EER) if we compress the
original iris template of size 20480-bit to 128-bit. Thus, SviaPA reduces the dimensions to

128-bit using the autoencoder and use the 128-bit iris template for further operations.

4.2.3 Ensuring Confidentiality for the Iris templates using Paillier Ho-

momorphic Encryption

Paillier HE [42] is used to ensure the confidentiality of the iris templates during enrollment

and authentication phase. The security of the Paillier HE relies on the decisional composite
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Table 4.1: EER obtained for databases CASIA-V3-Inerval, IITD and SDUMLA-HMT with
different sizes of iris template

Size of EER (in %)
iriscode | CASIA- | IITD | SDUMLA-
V3-Interval HMT
64-bit 1.38 1.62 0.28
. 128-bit 0.31 0.86 0.13
Compressed Iris template
256-bit 0.43 1.12 0.17
512-bit 0.47 1.16 0.19
Uncompressed Iris template | 20480- 0.31 0.86 0.13
bit

residuosity assumption (DCRA). HE must satisfy additive property for distance function
computation. Paillier HE is an additive homomorphic cryptosystem and is more efficient
than other algorithms (e.g., RSA and ElGamal) in terms of encryption and decryption effi-
ciency [42, 153].

Paillier HE scheme consists of four PPT (Probabilistic Polynomial-Time) functions,
namely Key Generation (KeyGen), Encryption (Enc), Evaluation (Eval) and Decryption

(Dec). The steps involved in each function are explained in the following sections:

4.2.3.1 Key Generation

The function to generate the public key, secret key of Paillier scheme [42] is shown in
Figure. 4.10. The function takes two prime numbers m & n as inputs and produces P, &

Sy, as output.
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(P, Si) «— KeyGen(m, n)

Input: Two large prime numbers, m & n randomly and independently such that
ged(mn, (m — 1)(n — 1))=1
Output: Public key (F) and Secret key (S)

* Compute p=m - nand A =lcm(m,n).

* Choose a random integer g, g € Z;Q such that p divides the order of g.

(u—1)
_—

« Compute k = I(g* (mod p*)), where function [ is defined as I (u) =
« Compute ¢ = k! (mod p).

Public key (Py) : [p, g] Secret key (Sk) : [\, ¢].

Figure 4.10: Key Generation function in Paillier Homomorphic Encryption

4.2.3.2 Encryption

The function to encrypt the value in Paillier scheme [42] is shown in Figure. 4.11. It takes
the plaintext msg and public key P as input and produces the encrypted value of msg i.e.,

e(msg) as output.

e(msg) «— Enc(Py, msg)

Input: Public key (F%), message msg
Output: Encrypted message, (msg)

 Choose a random element r such that gcd(r, p) = 1,7 € (0, p) and r € Z.

 Compute £(msg) = g™ - r? mod p.

Figure 4.11: Encryption function in Paillier Homomorphic Encryption
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4.2.3.3 Evaluation

The steps required to perform addition of two original values in Paillier scheme [42] is
shown in Figure. 4.12. The addition of two original values can be obtained by the decryp-

tion of multiplication of two encrypted values.

e(R) <— Eval(e(a), £(b), k)

Input: p, encrypted values e(a), £(b), constant k
Output: Computed result (R)

The addition of two values can be computed as
e(R) = add(a,b) = (a) - £(b) mod p*

where 1, 9 are the random values considered in encryption function.
The multiplication of the original value with a constant can be computed by raising

the encrypted value to the constant.

e(R) = £(a)* mod p?

Figure 4.12: Evaluation function in Paillier Homomorphic Encryption

4.2.3.4 Decryption

The function to decrypt the encrypted value in Paillier scheme [42] is shown in Figure.
4.13. Tt takes the encrypted value €(msg) and secret key Sy as input and produces the

original value msg as output.
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msg <— Dec(Sy, £(msg))

Input: Secret key (S), Encrypted message (msg)

Output: message msg

Compute msg = I(g(msg)* mod p?) - ¢ mod p

Figure 4.13: Decryption function in Paillier Homomorphic Encryption

The random number introduced in the encryption process provides the randomness to
the encryption result of Paillier. Therefore, Paillier resists chosen plaintext attacks (CPA).

The template obtained in section 4.2.2 is encrypted using the Enc function given in Figure.

4.11.

Properties of Paillier HE:
Property 1: Given two encrypted values €(m;) = Enc(Py, m1) and e(ms) = Enc(Py, ms)
for messages m, and ms, decryption of multiplication of the two encrypted values, results

in the addition of two original messages and is given in the equation (4.11).

Ds, (e(my) - e(mg) mod p*) = my + mg mod p 4.11)

Property 2: Given an encrypted value €(m) = Enc(P;, m) for a message m and a constant
k, decryption of encrypted value raised to a constant results in the multiplication of the

original message and the constant and is given in the equation (4.12).

Dy, (e(m)* mod p*) = m - k mod p (4.12)

4.2.4 Encrypted Distance Computation & Verifying the Correctness
of Result

This section describes the computation of Manhattan distance on the encrypted values and

a verification procedure to check the correctness of the result returned by the cloud server.
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4.2.4.1 Encrypted Distance Computation

SviaPA considered Manhattan distance to compare the reference and probe iris templates.
The distance S,,4n = dman(X, Y) can be precisely calculated on the original values by using
equation (4.13)

Span = | X =Y (4.13)

The cloud server calculates the distance on the encrypted values by using equation (4.11)

& equation (4.12) and send to the public auditor.

Sman = Z|X[Z] - Y[Z”
= Z’X[i] +(=1) - Y[i])|

&(Sman) = [ [ e(X[) - e(YTi) ™" mod p?

=1

M

&(Sman) = [ [e(X[i]) - (Y[i]) ™" mod p? (4.14)

i=1
e(Y)~! represents the multiplicative inverse of £(Y") in the integers modulo p. If the vector
Y contains smaller values than X, then after decryption the correct subtraction result will
come. On the other hand, if the vector Y contains larger values than X, then after decryp-
tion, the result lies in between 0 and p-1. The obtained result will be subtracted from p to
get the correct subtraction result. For example, if the result is -1, then we will get p-1 as a

result after decryption. So, to get -1 as a result, return p-1-p as a result after decryption.

4.2.4.2 Verifying the Correctness of Result

The distances between X; and Y are given by
M

d={ri/ri=>Y (Xilj] +Y[j]),Vi=1to N} (4.15)

J=1
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Y'[j] is the multiplicative inverse integers in the modulo p. The cloud server computes
the Manhattan distances on the encrypted values, £(d) = &(r;),Vi = 1to N between
e(X;) Vi = 1to N and £(Y) by using the properties of Paillier. The distances on the

encrypted values are given in equation (4.16).

M
e(d) = {e(rs) /e(ri) = [ J(e(Xli]) - e(Y[i]). Vi = 1 to N} (4.16)

j=1
Since both the reference and the probe templates are in encrypted form, the privacy of iris
templates, i.e., user privacy is maintained. The verification scheme allows the public audi-

tor to check the correctness of ¢(d) returned by the cloud server.

Generation of encrypted verification vector (¢(Z,,;1)): After the enrollment phase, the
trusted authenticator constructs the encrypted verification vector using £(X;),Vi = 1to N
returned by the cloud server. The encrypted verification vector helps the public auditor to
check the correctness of the Manhattan distances. Let €(Z,,,1) be the encrypted verification
vector and is computed on the encrypted values by using equation (4.11).

Zpnl] =) (Xilj]+w), Vj=1to M

M-

.
Il
—

(4.17)

c(Zusali]) = [JEC) - ci)), Vi = Lto M

=

1

-
Il

where, v; Vi = 1 to N are the random integers, and (V') = (e(v1),e(v2), ..., e(vn)).
As long as the secret key is secure, encrypted verification vector is also secure and its
security relies on the hardness of DCRA. The steps involved in the generation of encrypted
verification vector are given in Algorithm 4.5. The trusted authenticator implements the
Algorithm 4.5 after the training phase. The verification vector denoted as Z,, 1 with same
dimension of Xj is initialized to (1, 1, ..., 1). Encrypt Z,, 1 using the public key P,. The
function randomlInteger() generates a random value v;. Encrypt v; using the public key F.
The random value generated in each and every iteration is encrypted with different public

keys. The keys used to encrypt v; are completely different from the keys used to encrypt iris
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Algorithm 4.5 Generation of Encrypted Verification Vector in SviaPA
Input: (X)), e(Xs), . .., e(Xn),
Output: £(Z,,11), (V)

1: begin

2 Zy=(1,1,...,1)

3 fori <1 to Ndo

4: v; < randomlInteger()

5: e(v;) < Enc(Pg,v;)

6: end for

7 forj <1 to Mdo

g (Zuaalf]) < Enc(Po, Zunilj)

9: fori<1 to Ndo

10: e(tmp) « multiply(e(X;[j]),e(v;))
11 &(Zn+15]) < multiply(e(Zn11[4]), tmp)
12: end for

13: end for

140 &(Zn) = (e(Zpial ]) e(Zp1[2]), - e(Znia [M]))
15 e(V) = (g(v1),e(va), ..., e(un))

2
16: return (¢(Z,,1),e(V))
17: end

templates by client device. multiply function is used to achieve the property 1 of Paillier.
The function multiply is called to perform the multiplication between j** value of en-
crypted reference template ¢(X;) and encrypted random value &(v;), where i varies from 1
to N. e(tmp) stores the multiplication result. The function multiply is called to perform
the multiplication between £(Z,, ;1) and e(¢mp). After the completion of M iterations, the
encrypted verification vector €(Z,, 1) which is shown in equation (4.17) is obtained. The N
random values are assigned to (1"). After the enrollment phase, the trusted authenticator

send £(Z,,+1) and e(V') to the public auditor.

Ensuring the correctness of Manhattan distance: The public auditor checks the cor-
rectness of Manhattan distances ¢(d) using the £(Z,11), €(Y) and (V). The verification
scheme checks the correctness of the result on the encrypted values itself; as a result, any-
one can perform the correctness of the ¢(d) without the private information of the user. The
steps involved to check the correctness of Manhattan distances are described in Algorithm

4.6.
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Algorithm 4.6 Correctness of result in SviaPA
Input: (Z,.1),e(V), e(Y), e(d)
Output: Zero or Non-Zero

1
2 D1 =1

3 e(D1) < Enc(Py, D1)

4: forj <1 to Mdo

5: e(tmp;) < mul_const(e(Y[j]), N)

6 e(temp;) < multiply(e(Z,11[j]), e(tmp;))
7 e(D1) < multiply(e(D1), e(temp;))

8 end for

9: D2=1

10: e(D2) < Enc(Py, D2)

11: for: <1 to Ndo

12: e(t;) < mul_const(e(v;), M)

13: e(te;) < multiply(e(r;),e(t;))
14: e(D2) < multiply(e(D2),(te;))
15: end for

16:

17: D1 < Dec(Sg,e(D1))
18: D2 < Dec(Sk,e(D2))
19: return (¢(D1) — e(D2))
20: end

The steps (4-8) of Algorithm 4.6 computes ¢(D1) = Hj]\il(e(ZnH[j]) —e(Y[I)M).
The steps (11-15) of Algorithm 4.6 computes £(D2) = [T, (e(r;) - €(v;)™). The public
auditor decrypt £(D1) and £(D2). The keys used to encrypt/decrypt D1 & D2 by pub-
lic auditor are completely different from the keys used to encrypt iris templates by client
device. mul_const is called to perform encrypted value raised to a constant value which
results in multiplication of constant and corresponding plaintext value. Finally, compute
D1 — D2 and send the result to trusted authenticator. If the result is a zero value, the
Manhattan distances ¢(d) returned by the cloud server are considered to be correct. For
better clarity, First, we prove that the D1 and D2 are same in the normal domain by using
the equation (4.16), equation (4.17) and some algebraic properties of vectors. Later, we
use the properties of Paillier, i.e., equation (4.11) and equation (4.12) to achieve the same

on the encrypted values. If the verification succeeds then the Manhattan distances £(d) is

considered correct. So, the trusted authenticator finds the value with index id given by the
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end-user from £(d). The value is compared with a threshold, 7 to determine whether the
user is genuine or not.

The time required to compute the N Manhattan distances between iris templates X;
and Y, each of dimension M is O(N M ). We excluded the time required to compute 7, , 1
as it is computed only once after the enrollment phase. The time required to compute D1
and D2 are O(M) and O(N). The total time required for verification of computed result
returned by the cloud server is O(N + M), which is less than the time required to compute

the distances. The steps to check whether D1 and D2 are given below.

D1=> (Znuli]) + NY[j])

_ Ml(i( X;lj] + vi) + NY[j]) //Using equation(4.17)
— ﬁ;(ﬁ; Xi[j] + i:vz + NY[j])

_ ééxzm +§;évl+§éﬂﬂ

_ i(ﬁ Xilj) + jiw;Y[j] + ]f;vz)

= é(i(&b] +Y[j]) + Mv;)

D1 and D2 can be realized on the encrypted values by using equation (4.11) and (4.12) as

follows.
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The proof to check e(D1) = £(D2) are similar to the steps in the normal domain.

4.2.5 Limitations of SviaPA

In SviaPA, we introduce a public auditor as a third party to check the correctness of result

returned by the cloud server. The limitations of SviaPA are as follows:

* SviaPA assume that the public auditor is Honest-but-Curious, means the public au-
ditor follows the verification protocol honestly but curious to know the information.
Our verification scheme performs on the encrypted data; as a result, it is difficult for
the public auditor to know the original data. However, if the public auditor is a ma-
licious entity and returns an incorrect verification result, then the imposter may get

access into the system.

* The trusted authenticator compute €(Z,1) by using £(X;), as a result the number
of users are fixed in SviaPA. If a new user wants to authenticate using SviaPA, then

£(Zn41) need to be recomputed by including the new user template.

» SviaPA require extra time to verify the correctness of the Manhattan distances re-

turned by the cloud server.

4.3 SviaB: Secure and Verifiable Multi-Instance Iris Au-
thentication using Blockchain

SviaB leverage emerging technologies like Blockchain and smart contract to overcome the
limitations of SviaPA discussed in section 4.2.5. Blockchain has been developed to allow
decentralized consensus between two non-trusting agents. Autoencoder is used in SviaB as
a dimensionality reduction technique to overcome the limitations of BMIAE discussed in
section 4.1.5. SviaB is the first multi-instance iris authentication system to combine Paillier
HE and Blockchain technology to achieve privacy and integrity against malicious comput-
ing server. SviaB focuses on achieving both the confidentiality of fused iris templates and

integrity of fused reference iris templates as well as the trust of the matching result. The
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privacy of iris templates is achieved by encrypting the iris templates using Paillier HE [42].
The smart contract running on a Blockchain network computes the distance between the
encrypted reference template and encrypted probe template; hence, the integrity of compu-

tation is achieved.

Assumptions of SviaB:

SviaB assume the following:

During the enrollment/authentication phase, the client device is fully trusted and has

limited memory and computational resources.

* The trusted authenticator is a trusted entity which generates the secret and public
keys differently for each user. The secret keys of the users are stored securely and

broadcast the public keys to the client device.
* The server & client device need not store the entire ledger of the Blockchain network.

* The consensus algorithm of the Blockchain is secure & robust against security attacks

of the Blockchain.

¢ The contract address of the smart contract is shared with the server & the client device

prior to the enrollment phase.

Since the data present in the Blockchain is visible to all the nodes present in the
Blockchain, privacy problem may exist. To overcome this limitation, SviaB encrypts the
fused templates using Paillier HE before sending to the Blockchain. As long as the secret
key used to decrypt the template is secure, even if the encrypted templates are exposed,
SviaB is secure due to the hardness of computation of DCRA. In Blockchain, the stor-
age cost is expensive when compared to computation [119]. To overcome this limitation,
SviaB stores only the hash value of the encrypted reference templates in the Blockchain
and stores the encrypted reference templates in the server itself.

The flow diagram for SviaB is shown in Figure. 4.14. SviaB consists of two phases,
namely enrollment phase and authentication phase whose participants are a client device,

a centralized server and a Blockchain network. The steps involved in the enrollment and
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Figure 4.14: Block diagram of SviaB. The dashed line and Solid line indicates the steps
during enrollment and the authentication phases.

authentication phases for SviaB are described in Algorithm 4.7 and Algorithm 4.8. The
phases like Fusion, Reducing the dimensions of the iris template and ensuring the con-
fidentiality for the iris templates are the same as SviaPA. The formal smart contract to
achieve the integrity of encrypted reference iris template and trust on the computed dis-

tance is shown in Figure. 4.8.

4.4 Implementation details and Security Analysis

The following measures are used to evaluate the efficiency of a biometric system according

to biometric information protection [23].

1. Performance evaluation in terms of EER, d” and KS-test.

2. Irreversibility and Unlinkability Analysis.
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Algorithm 4.7 Enrollment Phase of SviaB
Input: Reference left and right iris images of i*" user.

1: Trusted authenticator generate the public key, P, and secret key S.

2: Client device generates the left & right iris templates from the reference left & right iris
images using University of Salzburg tool kit [58]. It also acquires the corresponding
user identifier, id of the end user U.

3: Client device performs the fusion of iris codes, F; and send F; to trusted authenticator.
/IRefer section 4.1.1.1

4: Trusted authenticator reduces the dimensions of £ to improve the performance of the
system and send the reference fused compressed template, X; to the client device.
/IRefer section 4.2.2

5: Client device encrypts X; and sends the encrypted reference fused compressed iris
template, £(.X;) along with id to cloud server and Blockchain. //Refer section 4.2.3.2

6: The Blockchain computes the hash value of (.X;), Hr and stores Hr along with id.
(Since the storage in the Blockchain is more expensive than computation, SviaB stores
the hash value of encrypted reference templates in Blockchain and encrypted reference
templates in the server.)

Algorithm 4.8 Authentication Phase of SviaB
Input: Probe left and right iris images, User identifier id of the end user U
Output: Accept or Reject

1: Client device generates the left & right iris templates from the probe left & right iris
images using University of Salzburg tool kit [58]. It also acquires the identifier, d of
the end-user.

2: Client device performs the fusion of iris codes, G and send G to trusted authenticator.
/IRefer section 4.1.1.1

3: Trusted authenticator reduces the dimensions of GG to improve the performance of the
system and send the compressed template, Y to the client device. //Refer section 4.2.2

4: Client device encrypts Y and sends the encrypted probe fused compressed iris tem-
plate, ¢(Y") along with id to the Blockchain. //Refer section 4.2.3.2

5: The Blockchain retrieves €(.X;) from server using id.

6: The Blockchain computes the hash value of retrieved ¢(X;), Hp.

7: The Blockchain compares Hr and H p. If the hash values are differ then the Blockchain
will inform to the client device that the server database is compromised otherwise it
computes the distance, £(s) and send to the trusted authenticator.

8: The trusted authenticator decrypts the distance, (s) using the secret key Sy and ob-
tains . The trusted authenticator compares /2 with 7 and decides whether the user is
genuine or not.
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3. Computational cost in terms of time taken to perform operations.

4.4.1 Performance Evaluation of BMIAE, SviaPA and SviaB

The EER obtained for only left iris (OLI), only right iris (ORI), fused iris (FT) and fused
compressed iris template (FCT) in unprotected and protected systems for BMIAE, SviaPA
and SviaPB are shown in Table 4.2 & Table 4.3. We observe that there is no loss of accuracy

in the protected system from Table 4.2 & Table 4.3.

Table 4.2: EER obtained in unprotected system for BMIAE, SviaPA and SviaB

Database OLI ORI FT FCT

BMIAE | SviaPA | SviaB
CASIA-V3-Interval | 3.26 4.41 0.31 0.13 0.31 0.31
IITD 4.41 4.15 0.86 0.88 0.86 0.86
SDUMLA-HMT 2.10 1.28 0.13 0.0002 0.13 0.13

Table 4.3: EER obtained in protected system for BMIAE, SviaPA and SviaB

Database OLI ORI FT FCT

BMIAE | SviaPA | SviaB
CASIA-V3-Interval | 3.26 4.41 0.31 0.13 0.31 0.31
IITD 4.41 4.15 0.86 0.88 0.86 0.86
SDUMLA-HMT 2.10 1.28 0.13 0.0002 0.13 0.13

The baseline comparison of EER, storage cost and time for BMIAE, SviaPA & SviaB
are shown in Table 4.4, Table 4.5. The unprotected and uncompressed template (UUT)
indicates the template without compression and encryption, compressed and unprotected
template (CUT) indicates the template with compression and without encryption, and com-
pressed and protected template (CPT) indicates the template with compression and encryp-
tion. We can infer from Table 4.4 and Table 4.5 that there is no degradation of accuracy
with BMIAE, SviaPA/SviaB. The same EER can be obtained if the distance is computed
either in the Blockchain or in a server. So, the DET curves, EER, d’, & KS-test values are

same for SviaPA and SviaB.
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Table 4.4: Baseline Comparison in terms of Storage cost (in Kilo Bytes (KB)), EER and
Time (Average in seconds) for BMIAE

Blockchain

Database | Template type Template Storage| EER | Time
size cost (%)
UUT and distance computation in | 20480 | 228 0.31 0.035
CASIA- | server
V3- CUT and distance computation in | 1280 25 0.13 | 0.009
Interval
server
CPT and distance computation in | 1280 25 0.13 | 0.062
server
CPT and distance computation in | 1280 - 0.13 | 6.0254
Blockchain
UUT and distance computation in | 20480 | 413 0.86 | 0.054
server
ITD . .
CUT and distance computation in | 2560 88 0.88 | 0.023
server
CPT and distance computation in | 2560 88 0.88 | 0.12729
server
CPT and distance computation in | 2560 - 0.88 10.0472
Blockchain
UUT and distance computation in | 20480 | 207.5 | 0.13 | 0.048
SDUMLA-| server
HMT CUT and distance computation in | 2560 23 0.0002| 0.021
server
CPT and distance computation in | 2560 23 0.0002| 0.1163
server
CPT and distance computation in | 2560 - 0.0002| 10.0462

The DET curves of BMIAE for different databases are shown in Figure. 4.15. The sepa-

rability measures (d’ & KS-test values) and EER on encrypted data of BMIAE for differ-

ent databases are shown in Figure. 4.16. The DET curves of SviaPA/SviaB for different

databases are shown in Figure. 4.17. The separability measures (d’ & KS-test values) and

EER on encrypted data of SviaPA/SviaB for different databases are shown in Figure. 4.18.

The clear separation between genuine and imposter scores of BMIAE and SviaPA/SviaB

for different databases are shown in Figure. 4.19 and Figure. 4.20.
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Table 4.5: Baseline Comparison in terms of Storage cost (in Kilo Bytes (KB)), EER and
Time (Average in seconds) for SviaPA and SviaB

Database | Template type Template Storage| EER | Time
size cost (%)
UUT and distance computation in | 20480 | 228 0.31 | 0.035
CASIA- server
V3- CUT and distance computation in | 128 12 0.31 | 0.0094
Interval
server
CPT and distance computation in | 128 58 0.31 | 0.33
server (SviaPA)
CPT and distance computation in | 128 - 0.31 | 1.33
Blockchain (SviaB)
UUT and distance computation in | 20480 | 413 0.86 | 0.054
server
IITD . .
CUT and distance computation in | 128 88 0.88 | 0.094
server
CPT and distance computation in | 128 88 0.86 | 0.33
server (SviaPA)
CPT and distance computation in | 128 - 0.86 | 1.33
Blockchain (SviaB)
UUT and distance computation in | 20480 | 207.5 | 0.13 | 0.048
SDUMLA- | 5¢TVet
HMT CUT and distance computation in | 128 10.5 0.13 | 0.0094
server
CPT and distance computation in | 128 40 0.13 | 0.33
server (SviaPA)
CPT and distance computation in | 128 - 0.13 | 1.33
Blockchain (SviaB)

4.4.2 Security Analysis of BMIAE, SviaPA and SviaB

The template protection method must satisfy the requirements of irreversibility, revocability
and unlinkability to ensure the privacy of the iris templates. The vulnerability of attacks in

BMIAE can occur in the following entries:

1. The server.
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Figure 4.15: DET curves of BMIAE for (a) CASIA-V3-Interval, (b) IITD, (c) SDUMLA-
HMT databases

2. The client device.

3. The communication channel between the server/Blockchain network and the client

device.

4. Blockchain network

In BMIAE, the client device extracts the features of the iris image, and the secret key is
also stored in the client device. Hence, security is to be ensured for the client device.
As, we assume the client device is a trusted entity, the keys and features of iris image are
secure. The server only stores the templates which are encrypted using ElGamal and the
hash value of the encrypted templates is stored in smart contract. Since the security of
ElGamal depends on the apparent hardness of solving the discrete logarithm problem on
a cyclic group, the iris templates stored in the server database are secure. It isn’t easy to
decrypt the encrypted iris templates without the secret key. As a result, the communication
channel is also reliable.

The vulnerability of attacks in SviaPA and SviaB can occur in the following entries:

94



CHAPTER 4. PRIVACY-PRESERVING MULTI-INSTANCE IRIS AUTHENTICATION ON UNTRUSTED CLOUD SERVER USING PHE SCHEMES

6
5
4.3786
o PRI
4 i
:
3 ‘ ‘
f
2 ¥
¥
' 0.88
1 ‘ V7
0.13 | 7 /
R |
CASIA-V3-Interval IITD
Database

EER
d-prime
KS-test

SDUMLA-HMT

Figure 4.16: EER, Separability Measures (d' and KS test) of BMIAE for CASIA-V3-

Interval, IITD and SDUMLA-HMT databases

=1

S,

T

=

False Non—Match Rate (%)

=

3

10
False Match Rate (%)
(a)

au
False Non—Match Rate (%)

=)

=

False Non—Match Rate (%)
2

=

-3

1
False Match Rate (%)
(©)

ES

=

Figure 4.17: DET curves of SviaPA or SviaB for
SDUMLA-HMT databases

95

=

M

3

10
False Match Rate (%)
(b)

=Y

(a) CASIA-V3-Interval, (b) IITD, (c)



CHAPTER 4. PRIVACY-PRESERVING MULTI-INSTANCE IRIS AUTHENTICATION ON UNTRUSTED CLOUD SERVER USING PHE SCHEMES

EER
d-prime
5.1123
= KS-test

4.3257 4.3877
3 .'\
7
2 7
0.9937 0.983 0.9977
1 0.31 , § . )
AR N
0 ‘ f \
CASIA-V3-Interval IITD SDUMLA-HMT

Database

Figure 4.18: EER, Separability Measures (d’ and KS test) of SviaPA or SviaB for CASIA-
V3-Interval, IITD and SDUMLA-HMT databases

1. The cloud server.

2. The client device.

3. The communication channel between the server and the client device.

4. Blockchain network.
5. The trusted authenticator

6. The public auditor.

In SviaPA/SviaB, the client device extracts the features from the iris image. Hence, security
is to be ensured for the client device. SviaPA/SviaB assume that the client device is a trusted
entity. The trusted authenticator generates the keys needed for encryption and decryption.
SviaPA and SviaB assume that the trusted authenticator is also a trusted entity. In SviaB, the
server only stores the templates which are encrypted using Paillier and the smart contract
only stores the hash of the encrypted templates. The security of the Paillier HE relies on
the hardness of solving the decisional composite residuosity assumption (DCRA). The data
is always secure even if an attacker attacks the communication channel because encrypted
iris template cannot be decrypted without a secret key. The encrypted iris templates in

the cloud server are secure since the security of both SviaPA and SviaB depends on the
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Figure 4.19: Genuine and Imposter distributions of BMIAE for (a) CASIA-V3-Interval (b)
IITD and (¢) SDUMLA-HMT databases
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DCRA. The public auditor in SviaPA verifies the computation result without using the
private information of the user.

Irreversibiltiy Analysis: Irreversibility refers to obtaining the original template from the
encrypted template.

In BMIAE and SviaB, the client device sends the encrypted reference template of a user
to the server and the smart contract during the enrollment phase. The encrypted reference
template is stored in the server wheres hash value of the encrypted reference template is
stored in the smart contract. The client device sends the encrypted probe template to the
Blockchain during the authentication phase. The smart contract retrieves the encrypted
reference template from the server and computes the distance between encrypted reference
and encrypted probe iris templates. The smart contract sends the computed encrypted result
to the client device. Only the client device has the secret key (Sy) to decrypt the result. As
the BMIAE uses ElGamal HE scheme [39] to protect the templates, and the security of
ElGamal scheme relies on solving the discrete logarithm problem, it is computationally
infeasible to decrypt the templates by the server or an imposter without secret key (Sy).
Therefore, BMIAE satisfies the irreversibility property. As the SviaB uses Paillier HE
scheme [42] to protect the templates, and the security of Paillier scheme relies on solving
the DCRA, it is computationally infeasible to decrypt the templates by the server or an
imposter without secret key (S;). Therefore, SviaB satisfies the irreversibility property.

In SviaPA, during the enrollment phase, the cloud server stores the encrypted reference
templates. During the authentication phase, the client device sends the encrypted probe
template to the server to calculate the distances. The server computes the Manhattan dis-
tances and sends the computed encrypted result to the public auditor. The trusted authenti-
cator sends the £(Z,,11) and (V') to the public auditor; as a result, the reference templates
cannot be accessed by the auditor. The public auditor checks the correctness of the com-
puted result without using the secret information of the user. The trusted authenticator can
decrypt the result with the secret key (S;). As mentioned earlier, it is computationally in-
feasible to decrypt the templates without secret key (S). The security of SviaPA depends
on solving the DCRA, which is an NP-Hard. Hence SviaPA satisfies the property of irre-

versibility requirement standards.
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Revocability: Revocability ensures that a new protected template should be generated by
the protection method if the old template is compromised or stolen. In BMIAE, SviaPA &
SviaB, Revocability can be achieved by re-encrypting the samples in the database with a
new key pair (P/, S}) instead of acquiring the new samples from the users.

Unlinkability: Unlinkability ensures that there won’t be any correlation between the pro-
tected templates used in different applications. Elgamal, Paillier schemes used in BMIAE,
SviaPA/SviaB are based on probabilistic encryption. Due to the randomness involved in
bothe ElGamal & Paillier schemes, different ciphertexts can be generated even if the same
message is encrypted multiple times with the same key, and there won’t exist any similarity

between the generated ciphertexts.

4.4.3 Computational Analysis of BMIAE, SviaPA and SviaB

The computational cost in terms of time, cost and number of the operations is discussed in

the following sections.

4.4.3.1 Computational cost in terms of time & cost

The time required to perform the encryption/decryption of BMIAE, SviaPA/SviaB on dif-
ferent databases is shown in Table 4.6. The computation cost & time required to execute
operations in a smart contract in units of gas & dollars and in units of seconds are shown
in Table 4.7. The reduced iris code size is the same for all considered databases in Svi-
aPA/SviaB, whereas the iris code size varies for each database in BMIAE to obtain optimal
accuracy. Therefore, in Table 4.6, the encryption/decryption time is same for all databases
in SviaPA/SviaB. The comparison of time to compute the distance in the Blockchain and
the server is illustrated in Table 4.4 & Table 4.5. The increase in the computation provides

an enhanced functionality (i.e., trust on the computed distance without any third party) to

SviaB & BMIAE.
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Table 4.6: Computational cost (for encryption and decryption (Average in secs)

Method Database Template size | Encryption | Decryption
CASIA-V3-Interval 1280 0.0184 0.007
BMIAE IITD 2560 0.03521 0.012
SDUMLA-HMT 2560 0.03519 0.011
SviaPA/SviaB - 128 0.00242 0.00001

4.4.3.2 Computational cost in terms of number of operations

The privacy of the fused reference and probe iris templates in BMIAE, SviaPA and SviaB
are ensured by performing the encryption using P, before sending to the server/Blockchain.
The client device or trusted authenticator needs to perform only one encryption and de-
cryption in BMIAE or SviaPA/SviaB. The number of exponentiation, multiplications, and
encryptions/decryptions required in BMIAE, SviaPA and SviaB for different databases are
shown in Table 4.8.

* As, BMIAE and SviaB are verification systems, they need to compute the distance

between the probe & corresponding reference template associated with id only.

» SviaPA need to compute N Manhattan distances between the probe and each refer-
ence template. So, a single distance is multiplied by the number of reference tem-

plates. We include the computational cost of distance computation only and exclude

the cost required to check the correctness of the result.

4.4.4 Comparison Analysis of BMIAE, SviaPA and SviaB with exist-

ing methods

The EER comparison of BMIAE, SviaPA/SviaB with state-of-the-art works is shown in Ta-
ble 4.9. We can infer that BMIAE, SviaPA/SviaB shows better EER value when compared
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Table 4.8: Computational cost in terms of number of operations

Compute CASIA- IITD | SDUMLA-HMT
distance V3-Interval
Enc/Dec 171 171 1/1 171
BMIAE | Multiplications 2M-1 2559 5119 5119
Exponentiations 0 0 0 0
Enc/Dec 171 171 171 1/1
SviaPA | Multiplications 2MN-1 29,339 53,247 27,135
Exponentiations MN 14,720 26,624 13,568
Enc/Dec 11 11 171 1/1
SviaB Multiplications 2M-1 255 255 255
Exponentiations M 128 128 128

Table 4.9: Comparison of BMIAE, SviaPA & SviaB with existing approaches (FER in
terms of %)

Dwivedi, R. et al., [140] 0.43
Lai, Y.L. et al., [144] 0.54
Punithavathi, P et al., [141] 1.9
CASIA- Soliman, R.F et al., [145] 0.63
V3-Interval Zhao, D. et al., [146] 1.03
Sadhya, D. et al., [148] 0.105
BMIAE 0.13
SviaPA (or) SviaB 0.31
Rathgeb, C., Busch, C. [156] 0.43
Punithavathi, P et al., [141] 3.3
ITD Gomez-Barrero, M. et al., [150] 0.7
Sadhya, D. et al., [148] 1.4
BMIAE 0.88
SviaPA (or) SviaB 0.86
Gad, R et al. [143] 0.300
;&UTMLA' Kamalskar, C et al. [151] 2.5947
BMIAE 0.0002
SviaPA (or) SviaB 0.13
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to other existing works. The d’ comparison of BMIAE, SviaPA/SviaB with the existing
approaches are shown in Table 4.10. We can infer from Table 4.10 that the genuine and im-
poster scores are well separated when compared to other works. The advantage of BMIAE,
SviaPA and SviaB when compared to other template protection schemes is shown in Table
4.11. BMIAE, SviaPA and SviaB satisfies the properties of template protection schemes

and also provides trust to the user that the cloud server/Blockchain computes the distance

honestly.

Table 4.10: Comparison of BMIAE, SviaPA & SviaB with other approaches (in terms of

Separability measure (d’))

CASIA-V3-Interval

IITD

Sadhya, D. et al., [148]
Walia, G.S. et al., [152]
BMIAE

SviaPA (or) SviaB

2.39

4.3784
4.3257

292
1.9578
4.3786
4.3877

Table 4.11: Comparison of biometric template protection schemes with BMIAE, SviaPA

& SviaB
Scheme Irreversibility | Diversity Accuracy| Verification
of Result
Cancelable Biometrics + + -
Biometric cryptosystems - - - X
Homomorphic Encryption + + + X
BMIAE + + + +
SviaPA + + + +
SviaB + + + +

+, -, and X indicates strongly achieved, weakly achieved and not achieved
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4.5 Summary

In this chapter, three multi-instance iris authentication systems, namely BMIAE, SviaPA
& SviaB are proposed to provide privacy to the iris templates and trust on the comparator
result. Two different partial HE schemes, namely Paillier and El1Gamal, are used to provide
the privacy of the iris templates. In BMIAE & SviaB, a smart contract is used to check
the similarity between encrypted reference & probe iris templates. The comparator result
returned by the cloud server is verified by the public auditor in SviaPA to check whether
the cloud server performs computation correctly or not. The privacy & expensive storage
limitations of Blockchain for biometrics are addressed in BMIAE & SviaB. The limitations
of BMIAE & SviaPA are addressed in SviaB. Experimental results prove the significance
& validity of BMIAE, SviaPA & SviaB.
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Chapter 5

Privacy-preserving Machine Learning
based Iris Authentication on untrusted

Cloud Server using FHE Scheme

The literature study about machine learning classification on encrypted data reveals that
either training or classification is performed on unencrypted data leads to loss of privacy in

user’s data. The main contributions of this chapter are described below:

* A secure and verifiable machine learning-based iris authentication method (SvaS)
is proposed. SvaS performs both privacy-preserving (PP) training & classification
phases on the encrypted data. The public verifier can verify the correctness of the
classification result computed by the cloud server by using a verification proce-
dure. The nearest neighbor & multi-class perceptron classification algorithms are
implemented on encrypted data and proposed two algorithms, namely private nearest

neighbor (PNN) and private multi-class perceptron (PMCP).

* Proposed a feature level fusion technique, namely Contradistinguish Similarity Anal-
ysis (CSA) which increases the correlations between samples of different class and
reduces the correlations between samples of the same class. It also includes a ver-
ification procedure by using polynomial factorization algorithm to verify the result

returned by the cloud server.
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5.1 Preliminaries

5.1.1 Classification in machine learning algorithms:

Suppose the user possess d-dimensional feature vector x, 2=(z;);=012,.4—1, Where z; €
R?. To classify the input z, the classification algorithm C,,(x) : R 1 — Cj- is evaluated
using the model w, where k* € [ 0, ¢ ) c is the number of classes. The formal definitions
of two most popular classifiers namely Nearest Neighbor and Multi-class Perceptron on

unencrypted data are described in the following sections.

5.1.1.1 Nearest Neighbor (NN):

NN is a non-parametric supervised classification algorithm [157, 158, 159]. During the
training phase, the model stores all the training instances to make future predictions. During
the classification phase, to predict the class of the probe instance, a distance measure is used
between the test instance and each training instance. The most commonly used distance
measures are Manhattan, Hamming, Minkowski, Chebyshev or Euclidean distance [160].
SvaS used the Manhattan distance as a distance measure which is widely used. The Model
(w) selects the instance among the training instances, which is nearer to the test instance.
The class label of the nearest instance will be the class label of the test instance. Suppose
Xq, Xo, ..., Xy are the N training reference templates with each X; having d features, and
Y is the probe template with d dimensions. Equation (5.1) gives the classification result of

the probe template (Y').

d
Ci+ = argmin,cp,n) Z |Xi; — Y] (5.1

7j=1
where argmin outputs the index i1, is, .., i,y that makes ijl | X;; — Y| as small as possi-

ble.
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Figure 5.1: Perceptron for Multi-class Classification. w;.1, w;.s, ..., w;.q 1S the weight vector
for the i'" class and x1, o, ..., 24 is the feature vector.

5.1.1.2 Multi-class Perceptron (MCP):

The MCP classifier [161, 162] is based on the biological model of a neuron, and it’s activa-
tion value. The feature vector is multiplied (dot product) with many weight vectors. Each
weight vector belongs to a class. The class label of a weight vector which yields the highest
product value is the class label of the test instance. The equation to find the dot product
between a feature vector and weight vector is given in the equation (5.2), where z;, W ;

h

are the feature vector, i"" weight vector, j € [1, d] and Bias is a constant which helps the

model in a way that it can fit best for the given data.

d
Ci =Y x; Wi, + Bias (5.2)

j=1

The classification result of the test instance in MCP is given in the equation (5.3). The

example of MCP is shown in Figure. 5.1.
Cw = argmaxicio,n)C; (5.3)

where argmax function produces the value of ¢ with the highest C; value as output.
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5.2 SvaS: Secure and Verifiable Machine Learning based
Iris Authentication System

SvaS uses the machine learning classification to authenticate a person. The block diagram
of SvaS is shown in Figure. 5.2. SvaS involves four entities, namely authentication server,
cloud server, client device and public verifier. The role of authentication server is to 1) Gen-
erate secret (S;) and public (FP;) keys. 2) Send accept/reject decision to the client device.
The cloud server provides the classification service and storage to the client device. The
cloud server builds a private machine learning model in the training phase and classifies
the end-user using the generated model in the testing phase. The false accept/reject may
happen if the cloud server doesn’t perform the computations honestly. So, the correctness
of the classification result computed by the cloud server is verified by the public verifier to
avoid false acceptances/rejections. SvaS consists of enrollment and authentication phases.

The steps involved in these phases are illustrated in Algorithm 5.1 & Algorithm 5.2.

Assumptions of SvaS

SvaS assume the following

* The client device is a trusted entity and has limited memory and computational re-

sources.

* The authentication server is a trusted entity and generates the public, secret keys. The
public and secret keys are different for each user. It broadcasts the public keys to the

system, and the secret keys of the users are stored securely.
* The cloud server doesn’t perform the computations honestly.

* The public verifier is only trusted to check the correctness of £(R).

5.2.1 Generation of Iris Code

This section consists of two phases, namely compression of iris template and encoding

scheme. The iris template is first compressed and then encoded using the batching scheme
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Figure 5.2: Block diagram of Secure and Verifiable Machine Learning based Iris Authenti-
cation System (SvaS)

to improve the performance of the system in terms of computational time. The size of the
iris code is reduced by using the compression technique discussed in section 4.1.1.2. So,
the 10240-bit binary vector is grouped into blocks of size v by using equation (4.2). v
denotes the size of the block, and SvaS consider 4, 8, and 16 as v values. We can infer
from Figure. 5.3 that there is a slight variation of accuracy between the actual iris code
of size 1 x 10240 and compressed iris code of size 1 x 2560 for both MCP and NN. The
computational time is less for compressed iris code when compared to original iris code.
Hence, SvaS considers the 2560-bit iris template as a feature vector instead of the original
iris code for further operations.

The compressed iris templates are encoded using the batching scheme described in
section 3.1.3. The encoded polynomial is encrypted using the BFV scheme [72] described

in section 3.2.1.2 to ensure the confidentiality of iris templates.
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Algorithm 5.1 Enrollment Phase of SvaS
Input: Reference iris image of i user, Corresponding class label [

1: Client device generates the iris template from the reference iris image using University
of Salzburg tool kit [58].

2: Client device generates the compressed iris template, X; as described in section 5.2.1
and encode the reduced iris template as described in section 3.1.3.

3: Authentication server generate the public key, P, and secret key Si. //Refer section
3.2.1.1

4: Client device encrypts the encoded iris template and sends the encrypted reference iris
template, £(X;) along with a class label to server. //Refer section 3.2.1.2

5: The cloud server applies PP training on encrypted reference iris templates ¢(X;), i €
[1, N] using PMCP or PNN and generates a model. //Refer section 5.2.2.1 for PNN &
section 5.2.2.3 for PMCP

6: The cloud server sends the model parameters of PMCP, (w(i]), i € [1, ] i.e., weight
vectors and parameters of PNN, ¢(X;), ¢ € [1, N] to authentication server.

7: The authentication server generates the encrypted verification vector, £(Z,1), en-
crypted random vector, (1) separately for each classifier using the model parameters.
/IRefer section 5.2.2.2 & section 5.2.2.4

5.2.2 Secure and Verifiable Machine Learning Classification

Two private machine learning classification algorithms, namely private nearest neighbor
(PNN) & private multi-class perceptron (PMCP) are implemented on encrypted data by
using the homomorphic properties of BFV [72] FHE scheme. The advantage of PNN &
PMCP classifiers is that they provide privacy not only to iris templates but also to the model
by implementing both training & classification on the encrypted data. The model is only

accessible to the server and the templates are known only to the client device.

5.2.2.1 Private Nearest Neighbor

The NN algorithm for the multi-class classification on unencrypted data is described in
section 5.1. Instead of returning the class label, PNN returns the Manhattan distances
between ¢(X;) and (Y).

M

R:{Ti/ﬂ'ZZ(Xi[j]—Y[j])a\Vi:ltO N} (5.4)

j=1
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Algorithm 5.2 Authentication Phase of SvaS
Input: Probe iris image, Identifier or class label ¢d of the end user
Output: Accept or Reject

1: Authentication server sends £(Z,,+1) and (V) to the public verifier.

2: Client device generates the iris template from probe iris image using University of
Salzburg tool kit [58]. It also acquires the identifier id of the end-user and sends id to
the authentication server.

3: Client device generates the compressed iris template, Y as described in section 5.2.1
and encode the reduced iris template as described in section 3.1.3.

4: Client device encrypts Y and sends the encrypted probe iris template, £(Y") to the cloud
server. // Refer section 3.2.1.2

5: The cloud server compute the classification result, £(R) and send to public verifier. (In
stead of returning the class label, our private classifiers returns the encrypted Manhattan
distance between £(Y') and €(.X;) for PNN and dot product results between £(Y") and
e(wli]), © € [1,c] for PMCP). // Refer section 5.2.2.1 for PNN & section 5.2.2.3 for
PMCP

6: The public verifier checks the correctness of the computed result £(R) by using
e(Zn+1), €(V), e(Y') and sends the verification result to authentication server. // Refer
section 5.2.2.2 & section 5.2.2.4

7. If the verification succeeds, then the authentication server computes the predicted class
label and compares with id given by the end-user to determine whether the user is
genuine or not.

The server doesn’t learn either £(X;) or e(Y"). In particular, we show how the server can ex-
ecute equation (5.4) when both the testing & training instances are encrypted. The detailed
procedure to find the NN on the encrypted data is given in Algorithm 5.3. The inputs to
the PNN are the class labels of the templates, encrypted reference templates, and encrypted
probe template, respectively. PNN returns the Manhattan distances, () between £(.X;)

and £(Y") as an output which is given in equation (5.5).

e(R) ={ri/ri = (e(X;) —e(Y)),Vi=1to N} (5.5)

Since both the reference and the probe templates are in encrypted form, the privacy of iris
templates, i.e., user privacy is maintained.

Let £(X;) and ¢(Y) are the encrypted vectors. The aim is to achieve equation (5.5)
i.e., find the Manhattan distances between £(X;) and £(Y") without decryption. 7; is the

variable to store the subtracted result of i’ encrypted reference template, £(X;) and probe
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template, £(Y"). Batching scheme is used as the encoding scheme before encrypting the
reference and probe templates to improve the performance of the system. Hence, with the
computational cost of just one operation, we can accomplish A/ homomorphic subtractions.
The disadvantage of batching is that it is not possible to access the individual elements of
the encrypted vector. Hence, it restricts to compute the sum of elements after the subtract
operation (equation (5.4)). This problem can be solved by using the observation made
by Gentry et al. [163], particularly, it is likely to rotate the encrypted vectors cyclically
without decryption. As a result, if the encrypted vectors are rotated cyclically and adding
the encrypted vectors p = logd times then the first slot of the resultant vector gives the
sum value. The steps (5-7) of Algorithm 5.3 describes the process of cyclically rotating
and adding the 7;. The operation is illustrated in Figure. 5.4 with an example. The 3"
Manhattan result is stored in r;. The steps (3-7) of Algorithm 5.3 repeat for /N reference
templates yields N Manhattan distances which are assigned to £(R). The cloud server
computes the Manhattan distance on the encrypted data. So, the privacy of the iris templates
is achieved. If the cloud server did not perform the Manhattan distance honestly and return
a random result to minimize the use of its computational resources, then false accept/reject
may happen. To overcome this limitation, the public verifier checks the correctness of the

result returned by the cloud server.
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Algorithm 5.3 Nearest Neighbor on Encrypted data (PNN)

Input: £(X;), e(X2), . . ., e(Xy), Corresponding class labels clsy, clsa, . . . , clsy,
e(Y)

Output: =(R)

1: begin

2 fori <1 to Ndo

3 ri < sub(e(X;),e(Y))

4: for j <~ 0 to pdo  //wherep =logl

5: i 4= i+ kg (1)

6 end for /IThe element in the first slot is the desired Manhattan distance
result

T: T, Ty

8: end for

9 e(R) = (11,72, ooy T'N)

11: end

Figure 5.4: Homomorphic computation of Manhattan distance between vectors when vec-
tors are encoded using batching scheme

5.2.2.2 Verification Scheme for Nearest Neighbor

The cloud server computes the Manhattan distances ¢(R) = r;,Vi=1to N between
e(X;) Vi =1to N and ¢(Y). The verification scheme allows the public verifier to check

the correctness of (R) returned by the cloud server.

Generation of encrypted verification vector: After the enrollment phase, the authentica-
tion server constructs the encrypted verification vector using the model parameters returned
by the cloud server. In the case of PNN, model parameters are simply the encrypted refer-
ence iris templates, £(X;),V ¢ = 1 to N. The encrypted verification vector helps the public

verifier to check the correctness of the Manhattan distances. Let £(Z,, ;1) be the encrypted
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Algorithm 5.4 Nearest Neighbor_Verification Vector
Input: (X)), e(Xs), . .., e(Xn),
Output: £(Z,,11), (V)

1

2 Zns+1 = (0,0,...,0)

3 e(Zny1) < Enc(Z,41, Pr)
4 fori<1 to Ndo

5: v; < randomlInteger|()
6 e(v;) < Enc(v;, Py)

7 tmp; < sub(e(X;), e(v;))

8 e(Zns1) < add(e(Zpi1), tmp;)
9 end for

1 e(V) = (e(v1),e(va), ..., e(vn))

11: return (¢(Z,41),e(V))

12: end

verification vector and is defined as
(Zn1) = (e(X1) —e(v1)) + (e(X2) —e(v2)) + ... + (e(Xn) — €(vw))

N (5.6)
Z(ﬁ(Xi) —&(v))

where, v; Vi = 1 to N is the random integer and (V') = (£(v1), e(va), ...,e(vn)). As
long as the secret key is secure, encrypted verification vector is also secure and its security
relies on the hardness of RLWE described in section 3.3.2. Algorithm 5.4 explains the steps
involved in the generation of encrypted verification vector for PNN.

The authentication server implements the Algorithm 5.4 after the training phase. The
verification vector denoted as Z,,; with same dimension of X; is initialized to (0, O, ...,
0). Encrypt Z,, 1 using Pj. The function randomlnteger() generates a random integer v;.
Encrypt v; using Py. The random integer generated in each and every iteration is encrypted
with different public keys. The function sub is called to perform the subtraction between
e(X;) and e(v;). tmp; stores the subtraction result. The function add is called to perform
the addition between Z,,,; and tmp;. After the completion of N iterations, the encrypted
verification vector €(Z,,1) which is shown in equation (5.6) is obtained. The N random
integers are assigned to (V). During the authentication phase, the authentication server

send £(Z,,11) and (V') to the public verifier.
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Ensuring the correctness of Manhattan distance: The public verifier checks the cor-
rectness of Manhattan distances, ¢(R) using €(Z,41), €(Y') and (V). The verification
scheme checks the correctness of the result on the encrypted data itself; as a result, anyone
can perform the correctness of £(R) without the secret key. The steps involved to check the

correctness of Manhattan distances are described in Algorithm 5.5.

Algorithm 5.5 Nearest Neighbor_Correctness
Input: (Z,,11), (V), e(Y), e(R)
Output: Zero (or) Non zero

1: begin
2: D2=0

3 e(D2) < Enc(D2, Py)

4: tmp < multiply(N,e(Y))

5: D1 = sub(e(Zy+1), tmp)

6 e(D1) < Enc(D1, Py)

7 for: <1 to Ndo

8 tmpl < sub(r;,e(v;)),r; € e(R),e(v;) € (V)
9 e(D2) < add(e(D2),tmpl)

10: end for

11: return sub(e(D1),e(D2))

12: end

The steps (4-5) of Algorithm 5.5 computes €(D1) = (e(Z,41) — Ne(Y')). The steps
(7-11) of Algorithm 5.5 computes £(D2) = >~ (r; — &(v;)). Finally, compute (¢(D1) —
£(D2)). If the result is zero, the Manhattan distances ¢(R) returned by the cloud server is
considered to be correct. The below proof uses the equation (5.5), equation (5.6) and some

algebraic properties of vectors and explains how (D1) and £(D2) are same.

116



CHAPTER 5. PRIVACY-PRESERVING MACHINE LEARNING BASED IRIS AUTHENTICATION ON UNTRUSTED CLOUD SERVER USING FHE SCHEME

£(D1) = ((Zus1) — Ne(Y))

= Z(&?(Xz‘) —e(v;)) — Ne(Y)

If the verification succeeds then the Manhattan distances ¢(R) are considered to be correct.
So, the authentication server finds the predicted class by computing the index of the min-
imum value among (R). The computed predicted class is compared with id given by the

end-user to determine whether the user is genuine or not.

5.2.2.3 Private Multi-class Perceptron (PMCP)

The MCP algorithm for the multi-class classification on unencrypted data is described in
section 5.1. Instead of returning the class label, PMCP:classification returns the dot prod-

ucts between ¢(w;),Vi = 1to cand e(Y).

e(R) ={ri/ri =e(Y).e(w[i]),Vi=1toc} (5.7)
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Homomorphic Comparison Protocol: The procedure to compare two cipher text val-
ues without decryption is given in Algorithm. 5.6. Consider C}, Cs and C, are the cipher
texts for the plain texts m;, ms and plain text modulus (a) are encrypted by using BFV
scheme [72] respectively. The authentication server calculates C, = C, + C; — C' by using
the homomorphic properties of BFV scheme [72]. The authentication server decrypts C},
and obtains the decryption result, b using Si. The ¢*" bit, b, of b is the comparison result,
where g = logsa + 1 returned to the cloud server. If b, = 0 then m; < my otherwise

my > me. The ecmpsn protocol is secure because the protocol returns only one bit to the

Algorithm 5.6 Homomorphic Comparison (cmpsn)
Procedure cmpsn(C, Cy)

Input: Ciphertexts C'y, Cy

Output: b,

1: begin

2: Compute Cy, = C, + C; — Oy

3: b= DGC(Sk, Ob)

4: return b, /b, is the g*" bit of b, where g = logy a + 1
5: end

cloud server. Therefore, even in an attack scenario, the cloud server can only learn at most
one single bit of the secret key. On the other hand, each time cmpsn protocol is invoked by
PMCP:training protocol, the authentication server uses a new secret key. So, there won’t
exist any leakage of secret keys to the cloud server.

This section describes about how cloud server can execute equation (5.2) and equation
(5.3) when both the training and testing instances are encrypted. PMCP consists of two
phases namely training phase (PMCP:training) and classification phase (PMCP:classificat-
ion). The detailed procedure to find the weight vectors using MCP on encrypted data i.e.,
PMCP:training is given in Algorithm 5.7. The inputs to the PMCP:training are the class
labels of iris templates, encrypted reference iris templates, iterations T (not encrypted) and
Bias. PMCP:training returns the encrypted weight vectors as an output. The process during
training phase is explained below. Let (X ), £(X32), ..., e(Xy) are the encrypted reference
templates. The PMCP requires multiple training iterations to fully learn the model.

During each iteration, the j'* encrypted reference template is multiplied with each

unique weight vector and stores in ct. As explained in section 5.2.2.1, the problem with
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36 15 56 II“““

Figure 5.5: Homomorphic computation of dot product between vectors when vectors are
encoded using batching scheme

batching occurs here as well while performing the sum of the elements after the multi-
plication. The problem can be solved by the process of cyclically rotated and adding the
encrypted vectors [163]. The steps (20-22) of Algorithm 5.7 describes the process of cycli-
cally rotating and adding the ct. The element in the first slot is the desired product. This
operation is explained with an example in Figure. 5.5. The class of the j* encrypted tem-
plate is the class that gives the highest product result. If the calculated class, p_cls and
the actual class, cls; of the j encrypted reference template are not equal then the weight
vector is updated as follows: feature vector, (X j) is added to the actual weight vector,
e(wlcls;]) and subtracted from the predicted weight vector, c(w[p_cls;]). After the final
iteration, the final encrypted weight vectors should be stable.

The detailed procedure to achieve £(R) is given in Algorithm 5.8. The inputs to the
PMCP:classification are the encrypted probe template £(Y") and encrypted weight vectors
e(wli]),¥ i = 1 to c respectively. PMCP:classification returns the dot product (R) be-
tween £(w(i]),V ¢ = 1 to ¢ and ¢(Y') as an output which is given in equation (5.7). In
Algorithm 5.8, r; stores the multiplication result of e(Y') and e(w[i]),V i = 1 to c. As ex-
plained in section 5.2.2.1, the problem with batching occurs here as well while performing
the sum of the elements after the multiplication. The problem can be solved by the process
of cyclically rotated and adding the encrypted vectors [163]. The steps (4-6) of Algorithm
5.8 describes the process of cyclically rotating and adding the ;. The element in the first
slot is the desired dot product. The operation is explained with an example in Figure. 5.5.

The steps (3-7) of Algorithm 5.8 repeats for c times yields ¢ dot products which are as-
signed to £(R). The advantage of PMCP is that the client device is not able to learn the in-

formation about the model parameters, i.e., weight vectors and the server is unable to learn
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Algorithm 5.7 Perceptron for multi-class classification on encrypted data (PMCP:training)
Input: £(X)), e(X3), . . ., e(Xn), Corresponding class labels clsy, clsa, . . . ,clsy,
Iteration number T (Not Encrypted), BIAS=1 (Not Encrypted)
Output: The encrypted weight vectors for each class, e(w[i]) where ¢ ranges from 1

1

2 for: <1 to cdo
3 classesli] < i
4: end for

5: for: <1 to cdo
6 forj <1 to d+1do
7

8

9

Ws 5 < 1
end for

: end for
10: for: <1 to cdo
11: e(wli]) < Enc(w;, Py)  //Batch Encryption of weight vectors
12: end for
13: for T' iterations do
14: forj <1 to Ndo
15: arg-maz < 0
16: p-cls < classes|0]
17: e(arg-mazx) < Enc(arg-max, Py)
18: for: <1 to cdo
19: ct < multiply(e(X;),e(wli]))
20: for: <0 to l[do //wherel =log]
21: ct < ct+ kyi(ct)
22: end for /[The element in the first slot is the desired dot product

result

23: b < cmpsn(ct,e(arg-max))
24: if b, = 1 then /lwhere z = log, a + 1,
25: e(arg-mazx) < ct
26: p_cls <1
27: end if
28: end for
29: if cls; # p_cls then
30: e(wlels;]) = add(e(wlcls;]), e(X;))
31: e(wlp-clsj]) < sub(e(w[p-cls;]),e(X;))
32: end if
33: end for
34: end for
35: end
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Algorithm 5.8 Perceptron for Multi-class Classification on encrypted data
(PMCP:classification)

Input: £(Y), e(w[i]) from training phase where 7 ranges from 1 to ¢

Output: =(R)

1

2 for: <1 to cdo

3 ri <— multiply(e(Y), e(wl[i]))
4 for j <~ 0 to pdo  //wherep =logl
5: Ty T + ]{?gj (Tz)
6 end for /IThe element in the first slot is the desired dot product result
7 T < T
8 end for

©
™
—
&y
SN~—
|
—
=
=
5
Ry

10: return ¢(R)
11: end

any information of reference templates or probe template as they are in encrypted form.
Hence the privacy of both client device and model are preserved. The cloud server com-
putes the dot products on encrypted data. So, the privacy of the iris templates is achieved.
Consider a scenario; if the cloud server did not perform the dot product result honestly and
return a random result to minimize the use of its computational resources, then imposter
may get access into the system. To overcome this limitation, the public verifier checks the

correctness of the result returned by the cloud server.

5.2.2.4 Verification Scheme for Multi-class Perceptron

The cloud server computes the dot products ¢(R) = r;,Vi = 1 to ¢ between encrypted
weight vectors e(wli])V i = 1 to ¢ and €(Y’). The verification scheme allows the public

verifier to verify the correctness of £(R) computed by the cloud server.

Generation of encrypted verification vector: After the enrollment phase, the authenti-
cation server constructs the encrypted verification vector using the model parameters com-
puted by the cloud server. In PMCP, model parameters are weight vectors e(w[i]),V i =
1 to c. The encrypted verification vector helps the public verifier to check the correctness
of the dot product results.

Let £(Z,,+1) be the encrypted verification vector and is defined as
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Algorithm 5.9 Multi-class Perceptron_Verification Vector
Input: e(w[l]), e(w[2]), . . ., e(wld]),
Output: (7, 1), encrypted random integers, (1)

1

2 Zns+1 = (0,0,...,0)

3 e(Zny1) < Enc(Z,41, Pr)

4 fori< 1 to cdo

5: v; < randomlInteger|()
6 e(v;) < Enc(v;, Py)

7 tmp; < multiply(e(wli]), e(v;))
8 e(Zns1) < add(e(Zpi1), tmp;)

9 end for

1 e(V) = (e(v1),e(v2), ..., e(ve))

11: return (¢(Z,41),e(V))

12: end

e(Zns1) = e(w[l]).e(vy) + e(w[2]).e(ve) + .... + e(w]c]).e(v.)
. (5.8)

where, v; Vi = 1 to ¢ are the random integers and (V) = (e(v1),&(v, ...,e(ve)). As
long as the secret key is secure, encrypted verification vector is also secure and its security
relies on the hardness of RLWE. The steps involved in the generation of encrypted verifi-
cation vector for PMCP are given in Algorithm 5.9. The authentication server implements
the Algorithm 5.9 after the training phase. The verification vector denoted as Z,,,; with
same dimension of X; is initialized to (0, O, ..., 0). Encrypt Z,, ;1 using the public key F.
The function randomlinteger() generates a random integer which is assigned to v;. Encrypt
v; using the public key P,. The random integer generated in each and every iteration is
encrypted with different public keys. The function multiply is called to perform the mul-
tiplication between encrypted weight vector £(w[i|) and encrypted random integer £(v;).
tmp; stores the multiplication result. The function add is called to perform the addition
between Z,, .1 and tmp;. After the completion of c iterations, the encrypted verification
vector €(Z,+1) which is shown in equation (5.8) is obtained. The ¢ random integers are

assigned to £(V'). During the authentication phase, the authentication server send £(Z,, 1)

122



CHAPTER 5. PRIVACY-PRESERVING MACHINE LEARNING BASED IRIS AUTHENTICATION ON UNTRUSTED CLOUD SERVER USING FHE SCHEME

Algorithm 5.10 Multi-class Perceptron_Correctness
Input: (Z,11),e(V), e(Y), e(R)
Output: Zero (or) Non zero

1: begin
2: D2+ 0

3 e(D2) < Enc(D2, Py)

4: e(D1) = multiply(e(Zn11),e(Y))

5: for j <~ 0 to pdo  // wherep =logl

6 e(D1) < e(D1) + kyi(e(D1))

7 end for /[The element in the first slot is the desired result
8 fori< 1 to cdo

9: tmpl < multiply(r;,e(v;)),m; € e(R),e(v;) € e(V)

10: e(D2) « add(e(D2),tmpl)

11: end for

12: return sub(s(D1),e(D2))

13: end

and £(V') to the public verifier.

Ensuring the correctness of dot product: The public verifier checks the correctness
of dot products e(R) using €(Z,,11), €(Y) and (V). Our verification scheme checks the
correctness of the result on the encrypted data itself as a result anyone can perform the
correctness of the €(R) without the private information. The steps involved to check the
correctness of dot products are described in Algorithm 5.10.

The steps (4-7) of Algorithm 5.10 computes €(D1) = &(Z,,41).€(Y'). The steps (8-11)
of Algorithm 5.10 computes €(D2) = > ¢, (r;.(v;)). Finally, compute (¢(D1)—e(D2). If
the result is zero, then the dot product values £( R) returned by the cloud server is considered
to be correct. Equation (5.9) uses the equation (5.7), equation (5.8) and some algebraic
properties of vectors and explains how (D1) and £(D2) are same. If the verification
succeeds then the dot products £(R) are correct. So, the authentication server computes the
predicted class by computing the index of the maximum value among £(R). The computed
predicted class is compared with ¢d given by the end user to determine whether the user is

genuine or not.
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= (5.9)

=¢(D2)

5.3 Multi-instance Iris Remote Authentication using pri-

vate multi-class perceptron on Malicious Cloud Server

(MIRAMCS)

MIRAMCS uses the multi-class perceptron classification to authenticate a person. The
block diagram of MIRAMCS is shown in Figure. 5.6. MIRAMCS involves four entities,
namely authentication server, client device, cloud server and public verifier. The role of au-
thentication server is to 1) Generate secret (Sx) and public (F) keys. 2) Send accept/reject
decision to the client device. The classification service and storage to the client device
is provided by the cloud server. During the training phase, the cloud server builds a pri-
vate machine learning model & classifies the end-user using the developed model in the
classification phase. The false accept/reject may happen if the cloud server doesn’t per-
form the computations honestly. So, the correctness of the classification result computed
by the cloud server is verified by the public verifier to avoid false acceptances/rejections.
MIRAMCS consists of enrollment and authentication phases. The steps involved in these

phases are illustrated in Figure. 5.7 and Figure. 5.8.
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Figure 5.6: Block diagram of Multi-instance Iris Remote Authentication using private
multi-class perceptron on Malicious Cloud Server (MIRAMCS)

Assumptions of MIRAMCS
MIRAMCS assume the following

sSources.

The client device is a trusted entity and has limited memory and computational re-

The authentication server is a trusted entity and generates the public, secret keys. The

public and secret keys are different for each user. It broadcasts the public keys to the

system, and the secret keys of the users are stored securely.
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The cloud server doesn’t perform the computations honestly.

The public verifier is only trusted to check the correctness of e(R).
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Enrollment Phase

Authentication Client Device Malicious Cloud Server
Server

Key Generation

(P, Sk) 1. Acquire the reference left
and right iris images of s sep-
arate users and generate corre-
sponding iris codes Ej, E,.

2. Apply CSA on the sam-
ples in the data matrix which
are collected from s separate
classes to obtain transforma-
tion matrices 7;, 7, and trans-
formed iris codes R;, R,.

3. Apply fusion and encod-
ing on R;, R, to get the fused
reference template X; which
contains discriminative infor-
mation.

4. e(X;) = Enc(Pg, X;) and

send £(X;) to the cloud server
Store £(X;) in database. Apply
the PP training on £(X;) using
PMCP and generates a secure
model.

Figure 5.7: Enrollment Phase of Multi-instance Iris Remote Authentication using private
multi-class perceptron on Malicious Cloud Server (MIRAMCS)

5.3.1 Contradistinguish Similarity Analysis (CSA)

CSA maximizes the pair-wise correlations & minimizes the between-class correlations.
CSA also includes the class structure similar to discriminant correlation analysis (DCA).
The difference between DCA and CSA is in the way of defining the between-class scatter
matrix and covariance matrix. Assume the data matrix consists of /N samples belong to ¢

['" class is represented by al. The

different classes. The feature vector of k" sample in
nearest neighbor to al belongs to k' class & not belongs to k' class denoted by (al).,

& (al),. The weight vector corresponding to (al) is denoted as v(k, 1) and is defined in
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Authentication Phase

Client Device Authentication Public Verifier Malicious Cloud
Server Server

1. Acquire the probe left and right iris
image and generate corresponding iris

codes Q;, Q.

2. Multiply the transformation matri-
ces 1y, T, with Q);, ), to obtain trans-
formed iris code P, P,

3. Apply fusion and encoding on P},
P, to get the fused probe template ¥
which contains discriminative informa-
tion.

4. Encrypt the probe template. (V') =
Enc(P, Y) and send €(Y) to the cloud
server.

5. Compute the
classification  result,
e(p_cls) using PMCP.

6. Send e(p-cls),
e(Y), e(wlc]) to the
public verifier.

7. Prepare Parameters for Verification
(Explained in section 5.3.3) and send
these parameters to the public verifier.

8. Result Ver-
ification  using
e(bj(RM)}_,),

Jj=1

e(RND),  H,
e(p-cls), e(Y),
e(wle]) (Ex-
plained in

section 5.3.3)
and send verfica-
tion result to the
authentication
server

9. If the verifi-
cation succeeds,
then decrypt the
classification

result to deter-
mine whether the
user is genuine
or not and send
accept/reject  to
the client device

Figure 5.8: Authentication Phase of Multi-instance Iris Remote Authentication using pri-
vate multi-class perceptron on Malicious Cloud Server (MIRAMCS)
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equation (5.12). The between-class scatter matrix (BCSM) is defined as

C Nk

By =Y > w(k, D(af — (ap)s)(af — (af)s)" = 5ur6%, (5.10)

k=1 l=1

where

Ser = [Vo(1, 1) (a] — (a})p, Vu(1,2)(ag — (a3)p, ..., Vv(c, N)(a% — (a%)s]  (5.11)

and

U(k, l) _ mm{d(ai, (abw)» d(aé, ((Igg)b) (512)

d(agw (agg)w) + d(ai, ((Z%)b)

The euclidean distance between two vectors m & n is denoted as d(m, n). The BCSM can

be diagonalized as follows:

XTB, X =¢ (5.13)

Where X represents the right eigenvectors of B, and ¢ represents the diagonal matrix con-
taining eigenvalues in decreasing order corresponding to the eigenvectors. The dimensions
are reduced to c-1 in DCA [164] whereas in CSA, the top ¢ eigen values & their correspond-
ing eigen vectors are chosen to preserve the significant dimension of the feature vector for

correlation analysis.

X(j;xd)BsrX(dXt) = Q(ixt) (5.149)

The size of the data matrix R reduces from d to ¢.

(exn) = X{oeay Riaxn) (5.15)

Similarly, the other feature vector is solved & find the transformed feature vector that di-

agonalizes the BCSM B;,. The P is transformed to P’

P(,th) = Xg;xd)P(de) (5.16)
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The diagonal & non-diagonal elements of (5;TT(5;T & (5;pT(5;p are nearer to one and zero.
This indicates the matrices are strict diagonally dominant. Therefore, the classes are well
separated because of less correlation between the centroid of the classes.
A class matrix Z € RY*¢, where each row of Z denotes the class label. class 1, class 2,
.. , class s are represented as [1 00 0..], [0 1 00..], ..., [0 0 0...1]. The covariance matrix
of R’ & P’ are given as:
V.= (R'DZ)(P'DZ)" (5.17)

where D € RV*N & is given as D = I — N~Y4T, i is an identity vector. V, is diagonal-
ized by using singular value decomposition (SVD) to obtain non-zero correlation between

corresponding features in both the feature vectors.
V.=TAJ" (5.18)

where A is a diagonal matrix of singular values
I & J contains left & right singular vectors corresponding to singular values of A.

Equation (5.18) can be rewritten as
I'v,.J=A (5.19)
Assume L, = [ A7V/2 & L, = J A~'/2, then V, can be unitized as
(TAVTV(JA YY) =T = (L)' V(L) =1 (5.20)

The dimension of both L, & L,, are t X t. Since, c-1 dimensions only contribute for transfor-
mation the dimensions are reduced from ¢ to c-1. So, the feature vectors can be transformed

as follows:

R=LTR =L"X"R=W,R (5.21)
P'=L'P =L X'P=W,P (5.22)

CSA produces the transformed matrices and transformed features sets as outputs which is

shown in Figure. 5.6. During the enrollment phase, CSA takes £, F, as input and produces
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transformed reference iris templates ;, R, & transformed matrices 7;, 7T).. The probe iris
templates ();, (.- are multiplied with 7}, T,. to produce transformed probe iris templates P,

P..

5.3.2 Fusion & Encoding

The transformed iris templates obtained in CSA are fused using the technique discussed in
section 4.1.1.1. The fused iris template is encoded using the batching scheme discussed in
section 3.1.3 to improve the performance of the system. The batching scheme encodes a
group of integers into a single polynomial but the fused iris template contains non-integer
values. So, the scaling of fused feature sets has to be done before encoding. Min-Max
normalization is used for feature scaling. The comparison of accuracy between before nor-
malization and after normalization for CASIA-V3-Interval and IITD iris database is shown
in Figure. 5.9. The accuracies obtained after normalization are less when compared to
accuracies obtained before normalization, but batching helps to reduce the time complex-
ity and improves the performance of the system. So, MIRAMCS considered the values
obtained after normalization for further operations.

The cloud server classifies the encrypted fused probe iris template by using PMCP
discussed in section 5.2.2.3. If the cloud server doesn’t perform the classification honestly
then false accept/reject may happen. So, a verification procedure is described in section

5.3.3, in which a public verifier checks the classification result returned by the cloud server.

5.3.3 Verification Procedure

The public verifier & the authentication server receives £(p.s) from the cloud server. To
save the computational time & other resources, the cloud server may send arbitrary clas-
sification result without performing the desired computation results in false accept/reject.
The public verifier helps to check the correctness of the classification result computed by
the cloud server. The verification parameters, classification parameters & encrypted probe
template are used by the public verifier to check the correctness of the classification result.

The authentications server receives the verification result from the public verifier. The pre-
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Figure 5.9: Comparison of before-normalization (BN) and after-normalization (AN) accu-
racies with different train-test split ratios (S1, S2 and S3 are described in Section 5.4.1) for
a) CASIA-V3-Interval b) IITD database
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dicted class, £(pes) is correct if the verification succeeds. Later, £(p.s) is decrypted by the
authentication server using P}, & send the result to the client device. The predicted class is

not computed correctly by the cloud server if the verification fails.

Multivariate Polynomial Factorization (MVPF):
Consider h(x) = h(ai,aq,...,a,) € Zp[y] as a m-variable polynomial. According to
MVPF, h(x) — h(a) can be expressed as h(z) — h(a) = > 77, (z; — a;)bj(x) Va €

Zy3bi() € Zy|x]. A polynomial-time algorithm exists to find b;(z).

Construction of Verification Parameters:

Consider My, = (ag;, b)), where k € [1, ¢] and 57 € [1, M]. The client device decom-
poses H (y) = H(y) — H(Ny, Ny, ..., N.) into > i—1(y; — Nj)bj(y) by using the
MVPF, and y € Z; and b; (y);:1 are the polynomials generated by the MVPF. Client
device selects a set of random data at the same time, RM;, = (RAy, RB)), k € [1,
c] & j € [1, M]. This random data is refreshed periodically. The client device calcu-
lates RND = H(RM;, RM,, ..., RM,) and b;(RM);_,. The client device sends
(e(bj(RM);_,), e(RND), H) to the public verifier.

Verification of predicted result (c(p_cls))

The public verifier collects ((¢(D,) = (e(w;), €(Y))), e(p-cls)) from the cloud server and
(e(bj(RM)’_,), e(RND), H) from the client device. The main operation of the verifi-
cation process is to calculate the polynomial factorization formula in a fully homomorphic
manner. Our verification procedure reduces the difficulty of the user by allowing anyone
can check the correctness of the classification result without the need for user’s secret keys

by using FHE. The public verifier checks whether equation (5.23) holds or not.

Eval{e(RND) — (p-cls)} = Eval{i(s(RMj) —¢e(D;))e(b;(RM)} (5.23)

i=1
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5.4 Implementation details and Security Analysis of SvaS,

MIRAMCS

The following measures are used to evaluate the efficiency of a biometric system according

to biometric information protection [23].

1. Performance evaluation in terms of EER, d’ and KS-test.
2. Irreversibility and Unlinkability Analysis.

3. Computational cost in terms of time taken to perform operations.

5.4.1 Performance Evaluation of SvaS and MIRAMCS

The classification accuracy of SvaS with PNN & PMCP for different databases with differ-
ent train-test split ratios are shown in Figure. 5.10. The comparison of accuracy between
protected & unprotected templates of SvaS for different databases when train-test split ratio
is 60-40 is shown in Figure. 5.11. From Figure. 5.11, we infer that there is no degradation
of accuracy between protected & unprotected templates in SvaS.

The accuracy, training & classification time on normal data for only left iris (OLI),
only right iris (ORI), fusion without CSA (FWCSA) & fusion using CSA (FUCSA) for
MIRAMCS is shown in Table 5.1. The accuracies of canonical correlation analysis (CCA),
DCA & CSA with different train-test ratios for CASIA-V3-Interval, IITD iris databases are
shown in Figure. 5.12. From Figure. 5.12, we infer that CSA performs better than CCA
& DCA. The comparison of accuracy between protected & unprotected templates of MI-
RAMCS for different databases for different train-test split ratios is shown in Figure. 5.13.
From Figure. 5.13, we infer that there is no degradation of accuracy between protected &

unprotected templates in MIRAMCS.
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Figure 5.10: Accuracy of SvaS (PMCP & PNN with different train-test split ratio) obtained
for a) CASIA-V 1.0 b) CASIA-V3-Interval ¢) [ITD d) SDUMLA-HMT iris databases
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Interval b) IITD iris databases
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Table 5.1: Accuracy obtained in unprotected system for MIRAMCS (MCP classifer with
80-20 train-test ratio)

CASIA-V3-Interval IITD
Instanc
T | f TRT | TST | Accuracy] T | f TRT | TST | Accuracy
(secs) | (secs) | (%) (secs) | (secs) | (%)

OLI 100| 10240| 170.66| 0.005 | 94.09 100| 10240| 368.37| 0.01 | 91.79
ORI 100| 10240| 170.66| 0.005 | 93.22 100| 10240| 368.37| 0.01 | 93.14
FWCSA| 100| 20480| 325.89| 0.008 | 96.21 100| 20480| 695.08| 0.009 | 95.34
FUCSA | 400| 228 | 35.39 | 0.0006| 98.15 400( 414 | 79.37 | 0.0007| 97.15

f refers to size of iris template.
TRT refers to training time (in seconds).
TST refers to testing time (in seconds).
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Figure 5.13: Comparison of accuracy of MIRAMCS between protected and unprotected
templates
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5.4.2 Security Analysis of SvaS & MIRAMCS

The template protection method must satisty the requirements of irreversibility, revocability
and unlinkability to ensure the privacy of the iris templates. The vulnerability of attacks in

SvaS and MIRAMCS can occur in the following entries:

1. The cloud server.

2. The client device.

3. The communication channel between the cloud server and the client device.
4. The authentication server.

5. The public verifier.

The client device extracts the features of the iris image. Hence, security is to be ensured
for the client device. As, SvaS and MIRAMCS assume the client device is a trusted entity,
the features of iris image are secure. The authentication server generates the keys needed
for encryption and decryption. SvaS & MIRAMCS assume that the authentication server
is also a trusted entity. Since the security of SvaS & MIRAMCS depends on the apparent
hardness of Ring Learning with Errors (RLWE) problem, the iris templates stored in the
server database are secure. It is difficult to decrypt the encrypted iris templates without
the secret key. As a result, the communication channel is also reliable. The description of

RLWE is given in section 3.3.2.

Irreversibility Analysis: Irreversibility refers to obtaining the original template from the
encrypted template. The client device sends the encrypted reference templates to the cloud
server during the enrollment phase, and encrypted probe iris template of a user to the server
for classification result. The server classifies the encrypted probe template and returns the
encrypted classification result to the authentication server. As the SvaS & MIRAMCS uses
BFV scheme to protect the templates, and the security of BFV scheme relies on solving
the RLWE problem, it is computationally infeasible to decrypt the templates by the server
or an imposter without secret key (S;). Therefore, SvaS & MIRAMCS satisfies the irre-

versibility property.
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Revocability Analysis: Revocability ensures that a new protected template should be gen-
erated by the protection method if the old template is compromised or stolen. In SvaS &
MIRAMCS, Revocability can be achieved by re-encrypting the samples in the database

with a new key pair (P], S}) instead of acquiring the new samples from the users.

Unlinkability Analysis: Unlinkability ensures that there won’t be any correlation between
the protected templates used in different applications. BFV scheme used in SvaS & MI-
RAMCS is based on probabilistic encryption. Due to the randomness involved in BFV
scheme, different ciphertexts can be generated even if the same message is encrypted mul-
tiple times with the same key, and there won’t exist any similarity between the generated

ciphertexts.

5.4.3 Computational Analysis of SvaS & MIRAMCS

For a given desired security level (\), the time taken (in seconds) to encrypt, decrypt and to
classify the encrypted probe template for different security parameter values and iris code
sizes of SvaS is given in Table 5.2. The average time in seconds by running the experiments
ten times is considered. The table also shows the time taken to perform classification on
unencrypted values. From Table 5.3, we infer that the reduction in the size of the iris
template and batching scheme can speed-up homomorphic iris computation over element-
wise (without batching scheme). The iris template size is proportional to the computational
time. SvaS converts 1 x 10240 into 1 x 640, 1 x 1280, 1 x 2560 respectively. Even
though the total time taken for iris code of size 640, and 1280 is less when compared to iris
code of size 2560, but the optimal accuracy is achieved with iris template of size 1 x 2560.
For a given desired security level (), the time taken (in seconds) to encrypt, decrypt and
to classify the encrypted fused probe template in MIRAMCS for n = 4096 & a = 40961 is
given in Table 5.3.
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Table 5.4: Comparison Analysis in terms of Accuracy for CASIA-V3-Interval & IITD
database

Method CASIA-V3-Interval IITD
Rathgeb et al. [165] - 97%
Sardar et al. [166] 97.12% 97.19%
Barpanda et al. [147] 91.65% 89.72%
Arsalan et al. [90] 99.10% 98.41%
Zhao et al. [91] 96.92% 96.80%
Noruzi et al. [167] 98.80% 99.57%
SvaS (MCP) 91.52% 90.89 %
SvaS (NN) 98.12% 97.35%
MIRAMCS 98.15% 97.95 %

Table 5.5: Comparison of biometric template protection schemes with SvaS and MI-
RAMCS

Scheme Irreversibility | Diversity Accuracy| Verification
of Result
Cancelable Biometrics + + -
Biometric cryptosystems - - - X
Homomorphic Encryption + + X
SvaS + + +
MIRAMCS + + +

+, -, and X indicates strongly achieved, weakly achieved and not achieved

5.4.4 Comparison Analysis of SvaS & MIRAMCS

The accuracy comparison of SvaS and MIRAMCS with state-of-the-art works is shown in
Table 5.4. We can infer that SvaS & MIRAMCS shows better performance when compared
to [165, 166, 147, 91] and lesser performance when compared to [90, 167], which are
devoid of guarantee the properties of BTP schemes. The accuracies obtained in SvaS with
MCP and NN are mentioned in Table 5.4. We also observe from Table 5.4 that MIRAMCS
performs better when compared to SvaS. The increase in the performance is due to feature

level fusion technique (CSA) involved in MIRAMCS.
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The advantage of SvaS & MIRAMCS when compared to other template protection
schemes is shown in Table 5.5. SvaS & MIRAMCS satisfies the properties of template
protection schemes and also provides trust to the user that the cloud server computes the

distance honestly.

5.5 Summary

In this chapter, two iris authentication systems, namely SvaS & MIRAMCS, are proposed
to provide the privacy to the iris templates and trust on the comparator result. SvaS &
MIRAMCS uses the machine learning classification methods to authenticate a person. MI-
RAMCS is a multi-instance iris authentication system. The BFV FHE scheme is used to
provide the privacy of the iris templates. Two private machine learning classification algo-
rithms, namely private nearest neighbor & private multi-class perceptron are implemented
on encrypted data by using the homomorphic properties of BFV scheme. In MIRAMCS, a
feature-level fusion technique, named CSA is proposed, which increases the correlation be-
tween samples belongs to different classes and decreases the correlation between samples
belongs to the same class. The recognition rate of MIRAMCS is better when compared
to SvaS due to CSA. Experimental results prove the significance and validity of SvaS &
MIRAMCS.
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Chapter 6

Conclusion and Future Scope

6.1 Conclusions

This thesis investigates the reliable and privacy-preserving iris remote authentication tech-
niques to solve the modify templates, intercept channel, and override comparator attacks of
biometric recognition system.

In chapter 3, we assume that the server is “honest-but-curious” and proposed a privacy-
preserving iris authentication system (PIAHC) using Fan-Vercauteren scheme. PIAHC
avoids the rotational inconsistencies occured due to the head tilt of a person during the
authentication phase results in the improvement of recognition accuracy. An algorithm to
compute the Hamming distance between the encrypted reference and probe templates is
proposed.

In chapter 4, a Blockchain-based Multi-instance Iris Authentication (BMIAE) method
which combines Blockchain technology and ElGamal homomorphic encryption is pro-
posed. Most of the existing template protection works based on homomorphic encryption
rely on an implication that the server is “Honest-but-curious”. Therefore, the compromise
of such server fails to address override comparator attack of BAS results in the entire sys-
tem vulnerability. This fact motivated us to design a method which not only provides the
confidentiality of iris templates but also trust on the matching result. ElGamal encryption
technique is used to achieve the confidentiality of iris templates and to perform matching

in the encrypted domain. The Blockchain can emulate the functionality of an honest entity
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as it is trusted for the correctness of execution and cannot be compromised. Additionally,
the integrity of iris templates are also guaranteed by the Blockchain due to its immutability
property.

Paillier homomorphic encryption is used for privacy-preserving and proposed two meth-
ods, namely secure and verifiable multi-instance iris authentication using public auditor
(SviaPA), secure and verifiable multi-instance iris authentication using (SviaB). Reduction
in the size of the iris template improves the overall computational performance. So, Auto-
encoders are used to reduce the dimension size of iris template in SviaPA and SviaB. The
correctness of comparator result is ensured by a public auditor in SviaPA and Smart con-
tract running on a Blockchain in SviaB. The computational cost and time to authenticate
a person are less in SviaB when compared to BMIAE. The limitations of Blockchain for
biometrics like privacy and expensive storage cost are described in [119]. These limitations
are also addressed in BMIAE and SviaB.

In chapter 5, a secure and verifiable machine learning based iris authentication method,
namely SvaS is proposed. SvaS aims to achieve both privacy-preserving training and
privacy-preserving classification of two classification algorithms, namely nearest neighbor
and multi-class perceptron. SvaS includes a verification procedure to check the correctness
of classification result returned by the cloud server. SvaS allows public verification i.e.
anyone can verify the correctness of the computed result without the user’s private infor-
mation. A Privacy-preserving multi-instance iris authentication system is proposed to solve
the modify templates and override comparator attacks of biometric recognition system. A
feature-level fusion technique, Contradistinguish Similarity Analysis (CSA) which maxi-
mizes the pair-wise correlations and minimizes the between-class correlations is proposed.
Fan-Vercauteran scheme is used to achieve the confidentiality of the fused iris templates.
Polynomial factorization algorithm is used to check the correctness of the result returned
by the cloud server.

All the techniques in chapter 3, 4, 5 satisfy all the requirements specified in the ISO/IEC
24745 standard. The proposed methods achieves better performance in terms of EER,
d’', KS-test. The proposed methods are experimented on publicly available iris databases

and a comparative study of the proposed methods has been presented and discussed to
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CHAPTER 6. CONCLUSION AND FUTURE SCOPE

demonstrate their merits and capabilities.

6.2 Future Scope

* Most of the existing works assumed that the server is “Honest-but-curious”. There-
fore, the compromise of server results into the entire system vulnerability. So, a
biometric remote authentication system needs to be developed in such a way that the
system addresses not only privacy-preserving but also trust to the comparator result

by maintaining the trade-off between time and cost.

* Multi-modal template protection schemes have to be developed to make use of ben-

efits of multi-biometrics.

* Most of the iris template protection schemes have been evaluated on small and mid-
size databases. However, these schemes have to be evaluated on large scale databases

to prove their significance.

* The fully homomorphic encryption with more security and consumes less execution
time need to be explored or developed, use it in BAS to make the template more

securc€.

* In BMIAE and SviaB, the encrypted reference templates are stored in server and only
the hash values of encrypted reference templates are stored in the Blockchain. So, in
future the template information has to be stored in the Blockchain itself in an optimal

way.
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