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ABSTRACT

With the vast increase in the usage of biometric recognition, template protection for bio-

metrics captured attention in the recent years. Since biometrics are irrevocable, it is very

important to protect its privacy. Biometric template protection schemes such as cancelable

biometrics, biometric cryptosystem and homomorphic encryption (HE) are introduced to

provide privacy-preserving (PP) biometric authentication. PP biometric authentication en-

ables a user to verify him or herself without sending the original biometric information to a

server. HE is the most widely explored research area to construct PP biometric authentica-

tion system due to the advantages over cancelable biometrics and biometric cryptosystem.

Most of the existing PP biometric authentication systems using HE assumed that the server

performs computations honestly. In a malicious server setting, the server may return an

arbitrary result to save the computational resources results in false accept/false reject.

This thesis focuses to solve the modify templates, intercept channel and override com-

parator attacks of biometric recognition system. A PP iris authentication system using

Fan-Vercauteren scheme (PIAHC) is proposed to solve the modify templates and intercept

channel attacks. In PIAHC, the rotational inconsistencies occurred due to the head tilt

of a person are eliminated. A procedure to compute the hamming distance between the

encrypted reference and probe templates is designed. Experimental results proves the ef-

ficiency of PIAHC. Blockchain-based multi-instance iris authentication (BMIAE), secure

and verifiable multi-instance iris authentication using public auditor (SviaPA), secure and

verifiable multi-instance iris authentication using Blockchain (SviaB), secure and verifiable

machine-learning based iris authentication (SvaS) and multi-instance iris remote authenti-

cation using private multi-class perceptron on malicious cloud server (MIRAMCS) meth-

ods are proposed to provide privacy to the iris templates and also to check the correctness

of the comparator result.

ElGamal and Paillier HE provides the confidentiality of the iris templates in BMIAE

and SviaPA/SviaB. Fan-Vercauteren HE scheme provides the confidentiality of the iris tem-

plates in SvaS and MIRAMCS. The correctness of the comparator result is ensured by a

public auditor in SviaPA, SvaS and MIRAMCS. The Blockchain provides the integrity of
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the encrypted reference iris templates as well as trust of the comparator result in BMIAE,

SviaB. The challenges of using Blockchain in biometrics are also addressed in BMIAE,

SviaB. SvaS performs both training and classification of nearest neighbor and multi-class

perceptron classification algorithms on encrypted data to provide privacy not only to the

iris templates but also to the model. Multi-biometric systems use information from multi-

ple sources to provide better recognition than unimodal biometric systems. So, the features

of both left and right irises of a person are fused in BMIAE, SviaPA, SviaB. Finally, a

feature-level fusion technique, contradistinguish similarity analysis (CSA) that minimizes

the between-class correlations and maximizes the pair-wise correlations is proposed in MI-

RAMCS. Extensive experimental results on benchmark iris databases demonstrate that the

proposed methods provides privacy to the iris templates with no loss in accuracy as well as

trust of the comparator result.
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Chapter 1

Introduction

Person recognition plays a vital role in many applications. Examples of such applications

include distributing social welfare benefits, granting access to nuclear facilities, performing

remote financial transactions, managing international border crossings. The essential task

in person recognition is to create an association between personal identity and an individual.

A person can be recognized in three ways [3], as shown in Figure 1.1: (i) Knowledge-based

(ii) Token-based (iii) Biometric Recognition. Knowledge-based recognition recognizes the

person based on What he knows (Password, Cryptographic key or Personal Identification

Number (PIN)). Token-based recognition recognizes the person based on What he pos-

sesses extrinsically (Passport, Identification Card, Driving License, etc). Biometric recog-

nition recognizes the person based on What he does (Behavioral modalities) or Who he is

intrinsically (Physiological modalities) [4].

Formally, biometric recognition can be described as the science of establishing the iden-

tity of a person based on the physiological or/and behavioral attributes of the person either

in a semi-automated or fully automated manner [5]. Biometric authentication system de-

mands the person to be present during the time of authentication, thus prevents the need

to remember a password or carry a token. As a result, the identity of the user is difficult

to lose, forge, duplicate or forgotten [3, 5, 6]. Fingerprint, iris, face, palmprint, etc. are

the most used physiological biometric modalities. Gait, signature, keystroke dynamics are

commonly used behavioral biometric modalities [5, 7]. These modalities are unique for a

person results in uniqueness, permanence, and non-repudiation of biometrics [6, 8].
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Figure 1.1: (a) Traditional authentication systems (based on what he knows and what he
possess?) (b) Biometric based authentication systems based on who he is intrinsically

1.1 Biometric Recognition System (BRS)

BRS includes two phases, namely the enrollment phase & identification/verification phase

[9] as shown in Figure 1.2. It also consists of five modules, namely sensor, feature ex-

tractor, template generator, comparator & decision module. The sensor helps to acquire

the biometric characteristics from the person. During the acquisition of a biometric, there

may be the possibility of unwanted background information, the occurrence of noise, etc.

Therefore, preprocessing is needed to remove them. The unwanted background informa-

tion can be removed with segmentation. The noise can be removed with filters. The second

module, feature extractor plays a significant role in the BRS. Depending on the biometric

trait and application, the number of features varies. The first time a person uses a biometric

system is called enrollment. The feature extractor module extract features from reference

biometric trait. The template generator module converts the extracted features into tem-

plate and stored in the database. The same procedure is followed to extract features from

the probe biometric at the time of the identification/verification phase. The comparator

module compares the probe template with the reference template and produces the result to

the decision module. The decision module provides a match (accept) or non-match (reject).
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Figure 1.2: Block diagram of Biometric Recognition System

1.2 Modes of Operation of a BRS

BRS can be operated in two basic modes: verification & identification [7]. The system

implements 1-to-1 comparison in the verification (authentication) mode. The probe tem-

plate is compared with a specific template stored in the database to verify the individual is

the person he/she claim to be. In verification mode, identity of a person like ID number

(e.g. PIN), user name, or a smart card is used to indicate which template should be used

for comparison. The system performs a one-to-many comparison to establish the iden-

tity of an unknown individual in the identification mode. The probe template is compared

with all the reference templates stored in the database and produce a match (accept) result

for an individual if the value falls within a predefined threshold; otherwise, it produces a

non-match.

1.3 Attacks on Biometric Systems

The eight attack points of the biometric system found by Ratha et al. [1] are shown in

Figure 1.3. Based on the type of attack, these attacks are categorized into four groups,
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namely attacks on template databases, on modules, on user interfaces, channels between

modules.

1.3.1 Attacks on Template Databases

The reference templates are stored in the database, either locally or remotely. Adversaries

read these templates and modify/replace them results in the authorization for an intruder.

The following vulnerabilities can be performed by an adversary with a stolen template:

• The adversary can replace an imposter’s template with a template in the database

results in false acceptance.

• The adversary can present the stolen template to the comparator module to gain unau-

thorized access.

• The adversary can create a physical spoof from the stolen template to access the

system in an unauthorized way.

So, these type of attacks are considered to be the most dangerous attacks [6, 10].

1.3.2 Attacks on Modules

The attacks happening on the modules of BRS falls under this category. Spoofing, device

substitution, coercive attacks are the possible attacks on the sensor module [10]. In a spoof-

ing attack, an intruder enters into the system by using the genuine user biometric results

in false accept. Device substitution attack refers to replacing the sensor device with the

genuine capture device. The original biometric is presented to the sensor illegally, leads

to coercive attack. The hacker produces the chosen feature sets by attacking the feature

extractor module with a Trojan horse. The intruder attacks the comparator module and

produces a fake score [11].

1.3.3 Attacks on User Interfaces

The fake biometric attack falls under this category. In this, the intruder presents a fake

biometric such as the mask of a face, gummy finger to enter into the system at the sensor

4
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Figure 1.3: Possible attacks of Biometric Recognition System adapted from [1]. Rounded
Rectangle and ellipse represent the modules and attacks of the Biometric system.

module [12]. The imposter enters into the system with a false identity when the sensor is

not able to differentiate between the genuine and fake biometric modalities. New sensing

technologies such as Touch-less, High resolution and Multi-spectral sensors should be used

to overcome the fake biometric attack. Liveliness detection is also a possible solution to

overcome this attack [13, 14, 15].

1.3.4 Attacks on Channels between Modules

The intruder may interrupt the channel between the modules results in a Replay attack,

Synthesized feature vector, Intercept channel, and Override final decision [10, 11]. Re-

play attack refers to presenting the already recorded biometric data into the system instead

of the acquisition of biometric data through the sensor. The originally extracted features

are replaced with different synthesized features results in synthesized feature vector attack.

This attack is tough to happen if the comparator and feature extractor are inseparable. On

the other hand, in cloud-based authentication systems, the chance of this attack is real. In-

tercept channel attack refers to changing the contents of templates by the adversary during

the transmission from the database to the comparator module. Override final decision at-

tack refers to overriding the result produced by the comparator with the result of hacker’s
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Figure 1.4: Evolution of Biometric Template Protection Schemes

choice, result in false accept [6, 16].

1.4 Biometric Template Protection and its Evolution

The vast increase in the usage of BRS in various applications has raised privacy and se-

curity concerns [6, 16]. As the biometric data is unique to a person, it is irrevocable if it

gets compromised. Initially, it is believed that biometric data cannot be reconstructed from

the extracted template. But studies in the literature such as [17, 18] proved that, an iris

biometric could be reconstructed from iris template. In [19], the authors showed that a face

biometric could be reconstructed from its template. The unauthorized access to biometric

templates that are stored in the database results in several attacks like hill-climbing [20], re-

play, masquerade [21], and the stole-token attack [11], which makes the system vulnerable.

Leakage or disclosure of biometric data to unauthorized persons causes the consequence of

“Lose it once, it’s gone forever”. So, a biometric system capable of protecting the biomet-

ric templates need to be designed to ensure the privacy & security for user’s data [22]. The

evolution of Biometric Template Protection (BTP) schemes is shown in Figure 1.4.
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1.5 Desirable Properties of Biometric Template Protection

techniques

A BTP scheme should satisfy the following requirements according to ISO/IEC standard

24745 about Biometric Information Protection [23]:

1. Diversity: The protected templates used in various applications must not have any

correlation. This ensures user’s privacy (ISO/IEC 24745: 2011).

2. Revocability: The BTP scheme should be capable of canceling a compromised tem-

plate and generate a new template (ISO/IEC 24745: 2011).

3. Irreversibility: The template generated by protection method must be non-invertible

(Original template cannot be obtained from the secured template) (ISO/IEC 24745:

2011)

4. Performance: The accuracy of the recognition system should not be degraded due

to the BTP scheme [11].

1.6 Taxonomy of Biometric Template Protection Schemes

BTP schemes are categorized into four types [22], namely cancelable biometrics, biometric

cryptosystems, hybrid methods & homomorphic encryption as shown in Figure 1.5.

1.6.1 Cancelable Biometrics

A one-way transformation function is used to protect the biometric templates in cancelable

biometrics [24]. The transformation function depends on a parameter, known as a key. In

cancelable biometrics, matching or comparison is made between transformed reference &

probe templates instead of original reference & probe templates, as shown in Figure 1.6.

Cancelable biometrics can be categorized into Salting & Non-invertible transforms. Table

1.1 describes the differences between salting and non-invertible transforms.
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Table 1.1: Non-invertible transforms vs Salting

Non-invertible transforms Salting
The irreversible function is used as a
transformation function.

An invertible function is used as a trans-
formation function.

The key is produced during the authenti-
cation phase.

The key should be recalled or stored se-
curely by the user during the authentica-
tion phase.

Unlike salting, the key is generated dur-
ing the authentication phase as a result in-
creases security, but with a loss of accu-
racy [10].

Once the key is lost, the intruder recov-
ers original template results in permanent
loss of biometric data.

1.6.2 Biometric cryptosystems

Biometric cryptosystems refer to generating a key or binding a key from or to a biometric

feature [25]. The helper data is used to generate or bind keys. The biometric cryptosys-

tems are categorized into Key Generation and Key Binding systems depending on how the

helper data is obtained. The keys are directly generated from the biometric features in key

generation cryptosystem, which is shown in Figure 1.7. One of the examples for key gen-

eration cryptosystem is Quantization scheme. The key is bound with the biometric feature

to generate the helper data in a key binding cryptosystem, which is shown in Figure 1.8.

Fuzzy Commitment [26] & Fuzzy Vault [27] schemes come under this category.
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Figure 1.8: Framework of Key Binding Biometric Cryptosystem

1.6.3 Hybrid Methods

A single scheme is not sufficient to satisfy all the requirements of template protection

schemes [28]. So, hybrid method scheme is introduced to solve the limitations of using

either cancelable biometrics or biometric cryptosystems alone. Hybrid methods of Biomet-

ric Template Protection Schemes can be obtained by integrating cancelable biometrics and

biometric cryptosystems.
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1.6.4 Homomorphic Encryption

Cancelable biometrics suffer from performance degradation [24, 29]. Biometric cryptosys-

tem uses the auxiliary data, compromise of the auxiliary data leads to the leakage of biomet-

ric information [30, 31], results in the entire system vulnerability. Homomorphic encryp-

tion (HE) is introduced as a BTP scheme to solve the limitations of cancelable biometrics

& biometric cryptosystems [32]. Combining HE with BRS would meet the properties of

BTP schemes without degradation of the performance. HE is a unique kind of encryption

technique which allows operations like multiplication and addition to be performed directly

on the encrypted data without accessing the secret key [33].

1.7 Properties, Functions and Categories of Homomorphic

Encryption

The advantage of HE is explained with the help of the below scenario.

Scenario: The scenario is shown in Figure 1.9. It consists of two entities, namely Client

Client Cloud Server

Enc(x), F
Eval(Enc(x), F)

Enc(F(x))

Figure 1.9: Scenario explaining the advantage of homomorphic encryption

and Cloud server. The client owns private data x and wants to perform function F on

x. However, the client has very limited computational resources. So, the client wants to

outsource the computation to the cloud server. At the same time, the client might not trust

the cloud. As a result, instead of sending x, the client performs encryption on x using

homomorphic encryption algorithms like Paillier, ElGamal, etc. and send Enc(x) & F to

11
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cloud server. Cloud server runs the homomorphic evaluation function. The inputs for the

function are Enc(x) & F and produces the output as Enc(F(x)) without learning the value

of F(x). The server sends Enc(F(x)) to the client. The client decrypts Enc(F(x)) to obtain

the value of F(x).

1.7.1 Properties of Homomorphic Encryption

Given two encrypted values Enc(a) & Enc(b) for values a, b. The properties of HE are

defined as follows:

Additive Property:

It states that the addition of two original values can be obtained by the decryption of mul-

tiplication of two encrypted values. The additive property of HE is shown in Figure 1.10

and given in equation (1.1).

Dec(Enc(a) ∗ Enc(b)) = a+ b (1.1)

a, b

Enc(a),
Enc(b) (Enc(a)*Enc(b)) 

Compute

Compute

En
cr

yp
t

D
ec

ry
pt

Dec(Enc(a)*Enc(b))
= a+b

Figure 1.10: Additive Property of homomorphic encryption

Multiplicative Property:

It states that the multiplication of two original values can be obtained by the decryption

12
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of multiplication of two encrypted values. The multiplicative property of HE is shown in

Figure 1.11 and given in equation (1.2).

Dec(Enc(a) ∗ Enc(b)) = a ∗ b (1.2)

a, b

Enc(a),
Enc(b) (Enc(a)*Enc(b)) 

Compute

Compute

En
cr

yp
t

D
ec

ry
pt

Dec(Enc(a)*Enc(b))
= a*b

Figure 1.11: Multiplicative Property of homomorphic encryption

1.7.2 Functions of Homomorphic Encryption

HE involves four functions [33, 34], namely Key Generation (KeyGen), Encryption (Enc),

Evaluation (Eval), and Decryption (Dec) as shown in Figure 1.12. The details of each

function are given below:

1. KeyGen(parameters) ⇒ (Pk, Sk): The function generates secret (Sk) and public

keys (Pk) by using the given security parameters.

2. Enc(Pk, msg) ⇒ ε(msg): For a given Pk and message msg, the function encrypts

msg using Pk and outputs a ciphertext ε(msg).

3. Eval(Pk, C, ε(msg1), ε(msg2), . . ., ε(msgn))⇒ ε(R): For a given public key Pk,

evaluated circuit C, and a group of ciphertexts, ε(msg1), ε(msg2), . . ., ε(msgn), the

function outputs a computation result in encrypted form, ε(R).

13
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4. Dec(Sk, ε(R)) ⇒ R: For a given ciphertext ε(R) and secret key Sk, the function

decrypts ε(R) and produces its original value R.

The evaluation function (Eval) helps to achieve the computation on the cipher texts itself

without accessing the secret key.

Key Generation
(Pk, Sk)

a, b

Encryption
E(Pk,a), E(Pk,b) 

F

Encrypted Data
Storage

EvaluationDecryption
Eval(f(E(a),E(b))

Y= E(a+b)

Dec(Y)

Cloud Server

Client

Figure 1.12: Functions involved in homomorphic encryption

1.7.3 Categories of Homomorphic Encryption Schemes

The homomorphic encryption schemes are broadly classified into three types based on the

allowed number of operations on encrypted data [33, 34, 35] as shown in Figure 1.5.

1.7.3.1 Partial Homomorphic Encryption (PHE)

1978

Rivest,
Shamir, 
Adleman

RSA

1982 1985 1994 1998 1998 1999 2001 2002

Steven D
Galbraith

Galbraith

Ivan
Damgard
and Mads

Jurik

Damgard-
Jurik

Pascal
Paillier

Paillier

Tatsuaki
Okamoto,

Shingenori
Uchiyama

Okamoto-
Uchiyama

David
Naccache,

Jacques Stern

Naccache-
Stern

Josh
Benaloh

Benaloh

Taher
ElGamal

ElGamal

Goldwasser
and Micali

Goldwasser
and Micali

Figure 1.13: Evolution of Partial homomorphic encryption Schemes before Gentry’s work
[2]
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PHE allows to perform either addition or multiplication with an unlimited number of

times on encrypted data. The evolution of major PHE schemes is shown in Figure 1.13.

In 1978, Rivest et al. built a homomorphic scheme named Rivest Shamir Adleman (RSA)

[36] which allows multiplication operation on encrypted data. In 1982, Goldwasser & Mi-

cali proposed an additive homomorphic scheme named Goldwasser-Micali (GM) [37]. GM

allows addition operation on encrypted data. Taher ElGamal improved the Diffe-Hellman

key exchange algorithm [38] and developed a scheme named ElGamal [39] in 1985. El-

Gamal satisfies the multiplicative property of homomorphic encryption. Benaloh enhanced

the GM cryptosystem and introduced a homomorphic scheme named Benaloh [40] in 1994

by preserving the additive homomorphic property. GM performs bit-by-bit encryption,

whereas Benaloh performs block-wise encryption. Okamoto and Uchiyama built a scheme

named Okamoto-Uchiyama (OU) [41] in 1998. OU allows addition operation on encrypted

data. In 1999, Paillier proposed an additive homomorphic scheme named Paillier [42].

Naccache and Stern, Damgard and Jurik improved the computational efficiency of Be-

naloh, Paillier and proposed cryptosystems, namely Naccache & Stern, Damgard & Jurik

[43, 44] in 1998, 2001, respectively by preserving the same homomorphic properties. In

2002, Galbraith introduced an additive homomorphic scheme named Galbraith [45] which

can be applied on elliptic curves.

1.7.3.2 Somewhat Homomorphic Encryption (SHE)

SHE allows both addition & multiplication but with a limited number of times on encrypted

data. The major SHE schemes, which were used as a stepping stone to fully homomorphic

encryption, are shown in Figure 1.14. In 1982, Yao built the first SHE scheme [46] where

the ciphertext grows at least linearly. Sander et al. proposed a SHE scheme named Sander

Young Yung (SYY) [47] in 1999 over a semi-group which allows one OR/NOT operation

and polynomially many AND operations on encrypted data. In 2005, Boneh et al. proposed

a SHE scheme named Boneh Goh Nissim (BGN) [48] which allows unlimited addition op-

erations and one multiplication operation. Ishai et al. developed a homomorphic encryption

technique named Yuval Ishai & Anat Paskin (IP) [49] in 2007 by implementing the branch-

ing programs on the ciphertext. Except BGN, the size of ciphertext for Yao, SYY & IP
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SHE schemes grows either linearly or exponentially. In BGN, the size of ciphertext grows

constantly.

1982

Yao

Yao

1999 2005 2007

Yuval
Ishai, Anat

Paskin

IP

Boneh,
Goh and
Nissim

BGN

Sander,
Young and

Yung

SYY

Figure 1.14: Evolution of Somewhat homomorphic encryption Schemes before Gentry’s
work [2]

1.7.3.3 Fully Homomorphic Encryption (FHE)

FHE allows both addition & multiplication with an unlimited number of times on encrypted

data. Gentry made a breakthrough in 2009 and introduced a first FHE scheme [2]. Gentry’s

scheme is based on ideal lattices and is a framework to obtain an FHE scheme. However,

Gentry’s scheme is not a practical one. Therefore, a lot of researchers used the frame-

work proposed by Gentry and introduced practically achievable FHE schemes in successive

years.

1.8 Information Fusion in Biometrics

The use of several methods or inputs of processing of biometric modalities/samples is

known as biometric fusion. Multi-biometric systems (MBS) depend on the evidence pre-

sented by various sources of biometric information. The advantages, such as improved

efficiency, accuracy, non-universality, less vulnerable to spoofing attack, makes the MBS

to be used in various applications over unimodal systems [50]. Single or multiple biometric

modalities can be used for biometric fusion and is shown in Figure 1.15

MBS are categorized into six types [51] namely, multi-instance, multi-sample, multi-
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Figure 1.15: Multiple sources of evidence used for fusion

sensor, multi-algorithm, multi-modal & hybrid systems. Single biometric modality is used

for fusion in multi-instance, multi-sample, multi-sensor, and multi-algorithm. Multiple

modalities are used for fusion in multi-modal systems [52]. Multi-instance systems use

multiple instances of the same biometric data (eg. left and right iris of a person). The in-

formation collected from several sensors is fused in multi-sensor systems. Several samples

of a same biometric modality are collected at different times and fuse in multi-sample sys-

tems (eg. left, right and frontal profiles of a face). Different algorithms are used to create

feature sets from a single biometric modality, and all the extracted feature sets information

are fused in multi-algorithm systems (eg. texture based features and minutiae based fea-

tures extracted from fingerprint). The information of various biometric modalities is fused

in the multi-modal system [51]. Some of the works in this thesis use the multi-instance fu-

sion as they are cost-effective and do not require the additional sensors, need of matching

algorithms, and feature extraction methods.

Fusion can be accomplished at various levels, namely sensor level, feature level, deci-

sion level or score level [52]. Decision level and score level fusion are considered as fusion

after matching and called late fusion [51]. Sensor level and feature level fusion are consid-

ered as fusion prior to matching and called early fusion. The feature level fusion provides

better recognition rate when compared to other level fusion techniques [53].

17



CHAPTER 1. INTRODUCTION

1.9 Performance of a Biometric System

The following measures can be used to assess the performance of a biometric system:

• Genuine Score: The score computed by matching two samples of a biometric modal-

ity belongs to the same user is known as a genuine score.

• Imposter Score: The score computed by matching two samples of a biometric

modality belongs to different users is known as imposter score.

• False Accept Rate (FAR) or False Match Rate (FMR): The ratio of imposter scores

exceeding the threshold to the total imposter scores is known as the FMR.

FMR =
Number of Imposter scores exceeding the threshold

Total imposter scores
(1.3)

• False Reject Rate (FRR) or False Non-Match Rate (FNMR): The ratio of genuine

scores exceeding the threshold to the total genuine scores is known as the FNMR.

FNMR =
Number of Genuine scores exceeding the threshold

Total Genuine scores
(1.4)

• Genuine Accept Rate (GAR): GAR is defined as the percentage of genuine users

accepted by the system. Therefore, GAR =l - FRR.

• The Receiver Operating Characteristic (ROC) or Detection Error Tradeoff (DET)

curve is used to measure the efficiency of a biometric system. ROC curve is plot-

ted by taking FAR on X-axis and GAR on Y-axis. In ROC curve, linear, or semi-

logarithmic scale is used whereas a logarithmic scale is used in DET curve.

• The point at which the FAR equals the FRR is referred as Equal Error Rate (EER).

The better performance is indicated by a lower EER value.

• The d-prime value (d’) and Kolmogorov-Smirnov (KS) - test are used to measure
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how well the genuine and imposter scores are separated. The d’ is given by

d′ =
|mgenuine −mimposter|√
(sd2genuine + sd2imposter)/2

(1.5)

where sd, and m indicate standard deviation and mean of imposter and genuine dis-

tributions. The better performance is indicated, by the larger d’ value. The range of

KS-test value is [0, 1]. KS-test value closer to 1 indicates more separation between

the imposter and genuine scores.

1.10 Benchmark Databases

The following databases are considered to validate the efficiency of the system.

• CASIA-V 1.0 [54] contains 108 subjects. Each subject consists of 7 samples.

• CASIA-V3-Interval [55] contains 172 subjects of the left eye & 165 subjects of the

right eye. Each subject consists of 5 samples.

• IIT-Delhi (IITD) [56] contains 224 subjects. Each subject consists of 5 left & right

samples.

• SDUMLA-HMT [57] contains 106 subjects. Each subject consists of 5 left & right

samples.

The University of Salzburg tool kit [58] is used to extract the iris code from the iris im-

ages in the databases. The first five samples from each subject are considered to per-

form the experiments. Subjects consisting of minimum 5 left & right samples are required

to develop a multi-instance iris recognition system. So, 106, 208 & 115 subjects from

SDUMLA-HMT, IITD & CASIA-V3-Interval iris databases are considered to check the

efficiency of Blockchain-based multi-instance iris authentication system, Secure & verifi-

able multi-instance iris authentication system using public auditor and Secure & verifiable

multi-instance iris authentication system using Blockchain as the subjects contain both left

& right irises with a minimum of 5 samples each.
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1.11 Motivation for present work, Aim & Objectives

The exposure of biometric modalities in a variety of applications for verification makes a

serious compromise on user’s privacy [6]. To address this, biometric templates are pro-

tected using BTP schemes such as cancelable biometrics, biometric cryptosystems and

homomorphic encryption [29, 35]. Homomorphic encryption is the most recent explored

research area to construct privacy-preserving biometric authentication systems due to its

advantages over cancelable biometrics and biometric cryptosystems [32]. But studies in

the existing literature assumed that the server is honest-but-curious. In a malicious server

setting, the server may return an arbitrary result to save the computational resources results

in false accept or false reject.

1.11.1 Aim

This dissertation aims to provide secure & verifiable methods for iris authentication on a

malicious cloud server by maintaining the trade-off between accuracy & security.

1.11.2 Objectives

The main objectives of this dissertation are stated as follows:

• To get insight into the state-of-the-art privacy-preserving biometric authentication

system.

• To understand the existing template protection methods using homomorphic encryp-

tion and provide solutions for better security & performance.

• To use advanced technology such as Blockchain in BRS to solve the override com-

parator attack.

• To implement machine learning classification techniques on encrypted data and use

these techniques for secure authentication.

• To propose a fusion technique which maximizes the pair-wise correlations and min-

imizes the between-class correlations.
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• To understand the research gap that needs to be addressed and to find the future

directions in the field of BRS.

1.12 Overview of the Contributions of the Thesis

This thesis provides the following contributions made for secure & verifiable methods for

iris authentication on a untrusted server.

1. Proposed a privacy preserving iris authentication technique using Fan-Vercauteren

scheme, which generates rotation-invariant iris template yields higher recognition

accuracy and perform hamming distance computation between encrypted reference

and probe template results in preserving the privacy of user’s data.

2. Proposed a Blockchain-based multi-instance iris authentication system (BMIAE),

which integrates ElGamal homomorphic encryption [39] with Blockchain technol-

ogy to achieve privacy of iris templates and trust on the comparator result. The

challenges of using Blockchain in biometrics are also addressed in BMIAE.

3. Proposed a method for multi-instance iris authentication on a malicious cloud server

(SviaPA), which not only provides privacy for the iris templates but also includes a

verification procedure to check whether the comparator result is correct or not.

4. A method for secure and verifiable iris authentication using Blockchain (SviaB) is

proposed. SviaB combines Blockchain technology with Paillier homomorphic en-

cryption [42]. Paillier homomorphic encryption provides confidentiality for the iris

templates. The Blockchain provides the integrity of the encrypted reference iris tem-

plates as well as the trust of the comparator result. In addition, SviaB reduces the

time taken to authenticate a person when compared to BMIAE.

5. A secure and verifiable machine learning-based iris authentication method (SvaS)

is proposed. SvaS performs both privacy-preserving (PP) training & classification

phases on the encrypted data. The public verifier can verify the correctness of the

classification result computed by the cloud server using a verification procedure. The

21



CHAPTER 1. INTRODUCTION

nearest neighbor & multi-class perceptron classification algorithms are implemented

on encrypted data.

6. Proposed a feature level fusion technique, namely Contradistinguish Similarity Anal-

ysis (CSA) which increases the correlations between samples of different class and

reduces the correlations between samples of the same class. It also includes a ver-

ification procedure by using polynomial factorization algorithm to verify the result

returned by the cloud server.

1.13 Thesis Organization

The rest of the chapters of this thesis are organized as follows: Chapter 2 describes the

recent state-of-the-art works on homomorphic encryption applied to biometric recognition,

machine learning on encrypted data, machine learning approaches applied to iris recogni-

tion and Blockchain for biometrics. This chapter reports the extraction outcomes resulted

from the analysis of literature.

Chapter 3 assumes that the server is Honest-but-curious and presents a privacy-preserving

iris authentication system to solve the limitations of cancelable biometrics and biometric

cryptosystems. It also provides a solution to solve the rotational inconsistency problem

due to head tilt of a person during the authentication phase. Chapter 4 presents three multi-

instance iris authentication systems which not only provide the confidentiality of the iris

templates but also trust on the matching result. The advantage of using emerging technol-

ogy like Blockchain in biometrics is explored here.

Chapter 5 assumes that the server is a malicious entity and presents two secure and

verifiable iris authentication systems by using private machine learning classification. It

also presents a technique, contradistinguish similarity analysis (CSA) for effective feature

level fusion. The conclusions of the thesis and future directions are outlined in chapter 6.

The techniques in chapter 4 & 5 are trustworthy against a malicious server and eliminates

the need to trust any third-party or a server for comparator result. All the techniques in

chapter 3, 4, 5 satisfy all the properties of biometric template protection schemes.
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Chapter 2

Literature Survey

In this chapter, a brief survey of the literature related to the contributions made in this thesis

is given. The chapter is organized as follows: Section 2.1 covers some studies related

to homomorphic encryption schemes applied to biometric recognition. Works related to

machine learning techniques applied to iris recognition are given in Section 2.2. Section 2.3

discusses some studies related to machine learning techniques applied on encrypted data.

Works related to applying Blockchain technology for Biometrics are discussed in Section

2.4. The publicly available implementations of some FHE schemes, research communities

working on template protection schemes, publicly available databases and its sources are

listed in Section 2.5. Finally, the summary of this chapter is provided in Section 2.6.

2.1 Homomorphic Encryption applied to Biometric Au-

thentication

Upmanyu et al. [59] suggested a secure protocol for biometric verification named “Blind

Authentication” by using Rivest Shamir Adleman (RSA) and Paillier [42]. Blind Authen-

tication protocol considered the enrollment server is a trusted entity; as a result, it provides

only privacy-preserving (PP) classification and fails to provide PP enrollment. Osadchy et

al. [60] proposed a secure face identification (“Scifi”) system by using Paillier cryptosys-

tem [42]. The Scifi system yields superior results when compared to the existing works,
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even in illumination invariant conditions. Rahulamathavan et al. [61] suggested a method

to recognize the expression of a face by using the properties of Paillier and computed the

required operations on encrypted data. Pastoriza et al. [62] introduced a secure face ver-

ification system in a non-interactive manner which can be applied to lightweight devices.

The authors proposed a homomorphic encryption scheme to accomplish the matching on

encrypted data. Sedenka et al. [63] designed a secure biometric authentication in an out-

sourced environment. Penn et al. [64] used the Paillier homomorphic scheme [42] and

proposed a biometric matching technique which performs better than Goldwasser-Micali

approach. Authors applied the matching technique on iris biometric to validate the effi-

ciency. Haghighat et al. [65] suggested a biometric verification in a cloud environment.

The method uses a searching-based matching instead of distance-based matching. Yasuda

et al. [66] proposed two packing techniques to reduce the size of the encrypted data results

in better performance. These techniques are applied for secure biometric authentication.

Xiang et al. [67] introduced a secure face recognition with computation in a cloud server

by using public key encryption & fully homomorphic encryption algorithm. The client is

able to validate the result computed by the cloud server. Hahn et al. [68] introduced an

secure & efficient identification system by using symmetric homomorphic encryption. The

system performs better when compared to the existing works. Gomez et al. [32] proposed

a template protection approach for multi-biometric recognition using Paillier. The final

comparison is performed on the plaintext by the server; as a result, introduces a breach

into the security of the system. Santosh et al. [69] used the Paillier and Elliptic curve en-

cryption techniques to provide privacy of biometric templates which are stored in a cloud

server. Taheri et al. [70] suggested a method on encrypted data using correlation filters

and homomorphic scheme. The privacy of the iris templates is achieved by storing only the

each class correlation filter instead of templates. Naresh et al. [71] presented an approach

to secure the database of face templates and to perform matching on the encrypted face

templates by using fan-vercauteran scheme [72].

Zhu et al. [73] designed a method named efficient fingerprint authentication (“e-Finga”)
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for secure online fingerprint authentication. e-Finga uses lightweight multi-party polyno-

mial aggregation & multi-party random masking techniques to provide security. A light

weighted encryption scheme named “Threshold Predicate Encryption (TPE)” is proposed

by Zhou et al. [74]. A PP user-centric authentication system named “PassBio” is proposed

by using TPE. Lee et al. solved the limitations of PassBio in [75] by using single-key

function-hiding inner product encryption. Hu et al. [79] suggested single-server and two-

server solutions to preserve the privacy of iris templates by performing the computations

on the encrypted templates. Single-server solution uses the symmetric key algorithm and

two-server solution uses somewhat homomomorphic encryption scheme. Barni et al. [76]

designed a secure multi-modal biometric authentication (“SEMBA”), which combines iris

and face templates. Guo et al. [77] use randomness techniques instead of homomorphic

encryption to provide the privacy of the face templates result in a good performance. Topcu

et al. [78] proposed a framework for secure fingerprint authentication system. The authors

generated the fixed-length binary templates by leaving the security as future work. The

summary of homomorphic encryption schemes applied to biometric recognition is shown

in Table 2.1.

2.2 Machine Learning approaches applied to Iris Recog-

nition

Sibai et al. [95] designed an iris recognition system by using feed forward artificial neural

network. Authors conducted several experiments by varying the input format, number of

hidden layers, and the number of neurons in the hidden layer to find the optimal parame-

ters. Khedkar and Ladhake [80] proposed an iris recognition system using neural network

techniques such as support vector machines (SVM), radial basis function (RBF) and multi-

layer perceptron (MLP). Rai et al. [81] suggested a method to identify the iris patterns by

using SVM and Hamming distance. Authors proposed two feature extraction techniques,

namely 1D Log Gabor wavelet and Haar wavelet decomposition. Srivastava et al. [82]

implemented an approach for iris recognition by combining functional modular neural net-

26



CHAPTER 2. LITERATURE SURVEY

Article’s refer-
ence

Machine learning
technique

Database Performance
Measures

Results

Khedkar et al.
[80]

MLP, RBF, SVM CASIA-V 1.0 Accuracy 95%

Rai et al. [81] SVM CASIA-V 1.0, Chek Accuracy 99.91%,
99.88%

Srivastava et al.
[82]

Functional modular
neural networks +

Evolutionary
fuzzy clustering

CASIA-V 1.0 Accuracy 98.12%

Saminathan et al.
[83]

Kernal-based multi
-class SVM

CASIA-V 1.0 Accuracy 99.3%

Ahmadi et al. [84] MLP and PSO CASIA-V3-Interval Accuracy 95.36%

Fahim et al. [85]
SVM, KNN

Linear Discrimi-
nant Analysis

Trokielewicz [86] Accuracy 97%

Ahmadi et al. [87] MLP-ICA CASIA-V3-Interval Accuracy 99.99%

Waisy et al. [88]
CNN

Soft-max classifier

CASIA-V3-Interval
IITD

SDUMLA-HMT
Accuracy

100%
100%

Ahmadi et al. [89]

Hybrid radial
basis function

neural network with
genetic algorithm

CASIA-V3-Interval
UBIRIS.V1 Accuracy

99.99%
99.98%

Arsalan et al. [90]
Fully residual

encoder-decoder
network

CASIA-V4.0 Interval
IITD

UBIRIS V2.0
Accuracy

99.10%
98.41%
98.52%

Zhao and Ajay
[91]

mask R-CNN
Fully CNN

ETL function

CASIA-V4.0 Interval
IITD

ICE 2006
WVU non-ideal

EER

4.07%
0.68%
1.12%
2.20%

Wang and Ajay
[92]

CNN + supervised
discrete hashing

PolyU B1
Cross-spectral EER

5.31%
6.34%

Zhao et al. [93]
Deep CNN +

Capsule network
JluIrisV 3.1
JluIrisV 4 Accuracy

99.37%
99.42%

Adamovic et al.
[94]

Random forest
CASIA-V4.0 Interval

IITD
MMU

Accuracy 99.99%

Sibai et al. [95]
Feed forward

neural network
IITD Accuracy 93.33%

Gale et al. [96]
weighted DAG
SVM + SNN

CASIA-V 1.0 Accuracy 99.99%

Table 2.2: Summary of selected works under machine learning techniques applied to iris
recognition.
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works and evolutionary fuzzy clustering. Saminathan et al. [83] introduced a method for

iris authentication by using kernel-based multi-class SVM. Marsico et al. [97] presented a

survey of machine learning techniques ranging from neural networks to deep learning for

iris recognition. An iris recognition system is proposed by Ahmadi et al. [84] to increase

generalization performance by using particle swarm optimization and MLP. The authors

extended their work in [89] by using RBF with a genetic algorithm to reduce the computa-

tional complexity. Fahim et al. [85] proved the feasibility of machine learning techniques

to recognize a person with iris modality even if an eye image is captured through a smart-

phone.

Ahmadi et al. [87] designed an iris recognition system by using MLP-imperialist compet-

itive algorithm (MLP-ICA) as a classifier. The authors used Gray-level difference matrix

to extract the features from the iris. The convolutional neural network (CNN) and softmax

classifier are used to extract the features from the iris image and classify the user into any of

the N classes by Waisy et al. [88]. The method performs better when compared to existing

approaches. A deep learning model is designed by Arsalan et al. [90], which determines

the true iris region without pre-processing the eye image. Unlike existing approaches, the

performance is not affected by non-ideal situations. Zhao and Ajay [91] used fully convo-

lutional network and proposed a framework for accurate iris detection, segmentation and

recognition. Authors developed an “Extended Triplet Loss (ETL)” function to learn the

spatially corresponding features of an iris image. A cross-spectral iris recognition system

is designed by Wang et al. [92]. The features are extracted by using CNN and supervised

discrete hashing (SDH) is used for compression and classification. Admovic et al. [94]

proposed an approach for iris recogntion by using stylometric features and random forect

machine learning methods. The hybrid based particle swarm optimization (PSO) is used as

a classifier and proposed an iris recognition system by Gale et al. [96]. Hybrid based PSO

is a combination of weighted directed acyclic graph (DAG) SVM and spiking neural net-

works (SNN). The classification task is achieved by weighted DAG SVM and evaluation is

achieved by SNN. The summary of machine learning techniques applied to iris recognition

is shown in Table 2.2.
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2.3 Machine Learning on Encrypted Data

The research on machine learning on encrypted data is broadly classified into two types:

Privacy-preserving training and Privacy-preserving classification. Privacy-preserving train-

ing refers to building the machine learning model using the encrypted training data. In

privacy-preserving classification works, the researchers assume that the model was already

build on unencrypted data and model parameters are stored in an encrypted form. During

the classification phase, the test instance is encrypted and classified using the model pa-

rameters.

Orlandi et al. [98] used Paillier cryptosystem [42] to achieve the neural network-based

privacy-preserving computation. The protocol achieved privacy-preserving classification

but failed to achieve privacy-preserving training. Barni et al. [99] proposed two classifiers,

namely linear branching programs and neural networks in a privacy-preserving manner to

classify the electrocardiogram (ECG) signals. The classifiers are build by using the Paillier

cryptosystem [42] and Garbled circuits. Graphel et al. [100] used somewhat homomorphic

encryption scheme to train linear means classifier and fisher’s linear discriminant classifier.

In the proposed method, the authors concentrated on privacy-preserving training rather than

privacy-preserving classification. There is a leakage of information about the model apart

from the result of the classification. The privacy-preserving clinical decision support sys-

tems are designed by Rahulamathavan et al. [101] and Zhu et al. [102]. The former used

Gaussian Kernel-based SVM and the latter used Non-linear SVM to diagnose the patient’s

disease in a secure manner.

Liu et al. [103] suggested a privacy-preserving patient-centric clinical decision system us-

ing naive Bayesian classifier. In their proposed method, the old patient data is encrypted by

using Paillier cryptosystem [42] and the encrypted data is used to train the naive Bayesian

classifier. The secure trained classifier is used to predict the disease risk for the new patient.

Two multi-key secure deep-learning schemes are proposed by Li et al. [104] to minimize

the communication and computational cost. Later the authors proposed a secure classifica-
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tion framework [105] in an outsourced environment. The scheme generates different public

keys to retain the secrecy of client and data provider. The classification protocols such as

private decision tree classification, private hyperplane decision based classification, and

private naive Bayes classification are constructed by Bost et al. [106] using Paillier cryp-

tosystem [42] and Quadratic Residuosity. The number of interactions between the server

and the client required to implement the protocols is 2. The number of interactions are

reduced from 2 to 1 by Sun et al. [107] using an improved version of Fan-Vercauteran

scheme [72].

The privacy of back propagation neural network (BPNN) learning algorithm is presented in

Yuan et al. [109] which reduces the communication and computation costs of each party.

Zhang et al. [110] utilized the Brakerski, Gentry and Vaikuntanathan (BGV) [111] to pre-

serve the privacy of BPNN learning algorithm. Bachrach et al. [113] implemented the

neural networks on encrypted data (CryptoNets) by using the properties of homomorphic

encryption. The efficiency of CryptoNets for deeper neural networks is improved by Cha-

banne et al. [118] with the help of batch normalization principle. Li et al. [115] used

the additive property of Paillier [42] and implemented the classification phases of naive

Bayes and hyperplane decision-based classifiers in a privacy-preserving manner. Abadi et

al. [112] utilized the differential privacy and proposed a secure deep learning scheme in

an outsourced environment. The summary of machine learning techniques applied to iris

recognition is shown in Table 2.3.

2.4 Blockchain for Biometrics

Delgado-Mohatar et al. [119] presented the advantages and limitations of using blockchain

in biometrics and vice versa. The authors extended their work in [120] to store the biomet-

ric templates in the blockchain by using on-chain, direct hashing and Merkle-trees. The

storage cost and execution time are less for Merkle-tree based storage when compared to

on-chain and direct hashing. The limitations of blockchain for biometrics is not addressed.

Delgado-Mohatar et al. [121] also analyzed the cost and performance factors to store the
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Article’s reference Security scheme Machine
Learning
technique

PP
Training

PP
Classification

Orlandi et al. [98] Paillier [42] Neural Network No Yes

Barni et al. [99]
Paillier [42] and
Garbled Circuits

Linear Branching
Program

Neural Network
No Yes

Graphel et al. [100] SHE [108]
Linear Means
Fisher’s linear
discriminant

Yes No

Rahulamathavan et
al. [101]

Paillier [42] SVM No Yes

Yuan et al. [109]

Boneh, Goh &
Nissim
doubly

homomorphic [48]

Neural Network Yes No

Bost et al. [106]
Paillier [42]
Quadratic

Residuosity

Decision tree
Hyperplane

decision-based
Naive Bayes

No Yes

Liu et al. [103] Paillier [42] Naive Bayes Yes Yes
Zhang et al. [110] BGV scheme [111] Neural network Yes No

Zhu et al. [102]

Random
Masking

Polynomial
aggregation

Nonlinear
Kernel SVM No Yes

Abadi et al. [112]
Differential

Privacy [111]
Deep learning Yes No

Bachrach et al.
[113]

FHE Neural network Yes No

Li et al. [104]
Multi-key
FHE [114]

Multi-layer
Neural Network Yes Yes

Sun et al. [107]
Fan &

Vercauteren [72]

Decision tree
Hyperplane

decision-based
Naive Bayes

No Yes

Li et al. [115] FHE
Hyperplane

decision-based
Naive Bayes

No Yes

Wang et al. [116]

Quadratic
Residuosity of

Goldwasser
Micalli [117]

Decision tree No Yes

Table 2.3: Summary of selected works under machine learning classification techniques
applied on encrypted data.

31



CHAPTER 2. LITERATURE SURVEY

protected and unprotected biometric templates and on-chain, off-chain biometric matching.

Mohsin et al. [122] used blockchain to achieve the integrity and availability in finger-vein

verification system.
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S.No Community Accessible at

1
Biometrics Research Group,
Michigan Sate University, USA http:

//biometrics.cse.msu.edu/

2

da/sec Biometrics and Internet
Security,
Research Group, Center for
Advanced Security Research
Darmstadt (CASED), Germany

https://www.dasec.h-da.de/

3
The Multimedia Signal Processing
and Security Lab(WaveLab),
University of Salzburg, Austria

http://wavelab.at/
member-uhl.shtml

4
IBM Research, Thomas J. Watson
Research Center, USA https://www.research.ibm.

com/labs/watson/

5
Multimedia Security Lab,
Yonsei University, South Korea https://sites.google.com/

site/multimediasecuritylab/

6
Yokohama Research Laboratory,
Hitachi Ltd, Japan http:

//www.hitachi.com/rd/about/

7

Advanced Cryptosystems
Research Group,
National Institute of Advanced
Industrial Science and Technology
(AIST), Japan

https://www.aist.go.jp/
aist_e/list/highlights/
2015/vol4/index.html

8 La Trobe University, Australia http://www.latrobe.edu.au/

9

University of New South Wales
at the Australian Defence Force
Academy(UNSW@ADFA),
Australia

https:
//www.unsw.adfa.edu.au/

10
Centre for Automation Research,
University of Maryland, USA http://www.cfar.umd.edu/

11
Biometric Systems and Multi-
media Forensics LAB, University
of ”Roma TRE”, Italy

http://biomedia4n6.
uniroma3.it/index.html

12
Biometrics Systems Laboratory,
University of Bolgona, Italy http://biolab.csr.unibo.it/

home.asp

13
CyLab, Biometrics Center,
Carnegie Mellon University, USA https://www.cylab.cmu.edu/

research/biometrics.html

14
Universiti tunku abdul rahman
Kuala Lumpur, Malaysia

www.utar.edu.my

Table 2.4: Active Research Communities for Biometric Template Protection schemes
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S.No Database Biometric trait Abbreviation Source

1 CASIA Iris version 1 National Laboratory of Pattern
Recognition Institute of Automation,
Chinese Academy of Sciences

http://biometrics.idealtest.org/
dbDetailForUser.do?id=1

2
CASIA Iris
version 3

http://biometrics.idealtest.org/
dbDetailForUser.do?id=3

3 CASIA Iris version 4
http://biometrics.idealtest.org/
dbDetailForUser.do?id=4

4 ICE

Iris

Iris Challege
Evaluation

http://www.nist.gov/itl/
iad/ig/ice.cfm

5 IITD iris v1 IIT Dellhi Iris version 1
http://www4.comp.polyu.edu.hk/
csajaykr/IITD/Database Iris.htm

6 FVC 2000

Fingerprint
Fingerprint Verification
Competetion

http://bias.csr.unibo.it/fvc2000/
7 FVC 2002 http://bias.csr.unibo.it/fvc2002/
8 FVC 2004 http://bias.csr.unibo.it/fvc2004/
9 FVC 2006 http://bias.csr.unibo.it/fvc2006/

10 NIST-SD14
National Institute of Standards and
Technology- Special Database

http://www.nist.gov/srd/
nistsd14.cfm

11 FERET

Face

Facial Recognition Technology
http://www.nist.gov/itl/iad/
ig/colorferet.cfm

12 CALTECH California Institute of Technology.
http://www.vision.caltech.edu/
html-files/archive.html

13 CMU-PIE
Carnegie Mellon University-
Pose, Illumination and Expression

http://vasc.ri.cmu.edu/idb/
html/face/

14 NIR face
Hong Kong Polytechnic University,
Near-Infrared

http://www4.comp.polyu.edu.hk/
biometrics/polyudb face.htm

15 ORL face
AT& T Laboratories,
Cambridge

http://www.cl.cam.ac.uk/
research/dtg/attarchive/
facedatabase.html

16 NVIE
Natural Visible and Infrared
Facial Expression http://nvie.ustc.edu.cn/

17 FRGC Face Recognition Grand Challenge
http://www.nist.gov/
itl/iad/ig/frgc.cfm

17 XM2VTS
Multi Modal Verification for
Teleservices and Security applications

http://www.ee.surrey.ac.uk/
CVSSP/xm2vtsdb/

18 AR face -
http://www2.ece.ohio-state.edu/
aleix/ARdatabase.html

19 Poly U Palmprint
Hong Kong Polytechnic
University Palmprint

http://www4.comp.polyu.edu.hk/
biometrics/
MultispectralPalmprint/MSP.htm

20 SVC 2004
Signature

Signature Verification Competetion http://www.cse.ust.hk/svc2004/

21 MCYT
(Ministerio de Cienciay Tecnologıa,
Spanish Ministry of Science and
Technology

MCYT baseline corpus [132]

22 TI 46
Voice

Texas Instruments 46-
Word Speaker-Dependent
Isolated Word Corpus

http://catalog.ldc.upenn.edu/
LDC93S9

23 YOHO speech YOHO Speaker Verification
https://catalog.ldc.upenn.edu/
LDC93S9

Table 2.6: Publicly available databases on which the methods in the literature are evaluated
and their source.
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2.5 Resources and Analysis

The research communities who are working to protect the biometric templates by using

various BTP schemes are mentioned in Table 2.4. Some of the FHE implementations are

made available as an open-source by several researchers are listed in Table 2.5. In this

thesis, Simple Encrypted Arithmetic Library (SEAL) implemented by Cheon et al. [128]

is used to perform the operations on encrypted data. The publicly available databases on

which the homomorphic encryption schemes are applied to protect the biometric templates

discussed in the literature are evaluated along with their source are listed in Table 2.6.

Figure 2.1: Percentage of Homomorphic Encryption schemes applied to each biometric
trait

The percentage distribution of HE schemes applied to each biometric trait is illustrated in

Figure. 2.1. We can infer from the Figure 2.1 that BTP schemes based on HE developed so

far are 41% on the face, 21% on the fingerprint, 15% on the iris, 9% on the signature, 6%

on multi-modal and 3% on Hand Geometry. The percentage distribution of PHE, SHE and

FHE applied to biometric recognition is shown in Figure. 2.2. It is observed that 67%, 20%

and 13% works are used PHE, SHE and FHE schemes respectively. Hence, we can say that

FHE schemes need to be applied to biometric recognition as a BTP scheme to make use of

the advantages of FHE schemes.
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Figure 2.2: Percentage of each Homomorphic Encryption category applied to biometric
recognition

The percentage distribution of machine learning classification techniques achieving PP

training only, PP classification only and both PP training, PP classification discussed in

the literature is shown in Figure. 2.3. We can infer from the Figure. 2.3 that 47% of works

are achieved only PP training, 40% works are achieved only PP classification and 13% of

works are achieved both PP training & PP classification. Therefore, machine learning clas-

sification techniques need to be applied on encrypted data in such a way that achieves both

PP training & PP classification.

Figure 2.3: Percentage of machine learning classification techniques achieving PP training,
PP classification and both discussed in the literature
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2.6 Summary

In this chapter, some of the existing works on homomorphic encryption applied to bio-

metric authentication, machine learning approaches applied to iris recognition, machine

learning on encrypted data and Blockchain for biometrics are described. Most of the ex-

isting biometric authentication methods based on HE to provide privacy for the biometric

templates assume that the server is “Honest-but-serious”. Therefore, the existing methods

only solve the modify templates attack of BAS and fail to overcome the override compara-

tor attack of BAS. The techniques proposed in chapter 4 and chapter 5 of this thesis solve

the modify templates, intercept channel and override comparator attacks of BAS. Some of

the machine learning classification techniques on encrypted data provide only PP training

or PP classification but not both. So, the classification techniques proposed in chapter 5

provides both PP training and PP classification.
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Chapter 3

Privacy-preserving Iris Authentication

on Honest-but-Curious Server (PIAHC)

The brief introduction of homomorphic encryption and the advantage of applying homo-

morphic encryption in biometric recognition system is explained in section 1.6.4. The main

contributions of this chapter are described below:

• A privacy-preserving iris authentication system using FHE (PIAHC) is proposed to

solve the limitations of biometric cryptosystems and cancelable biometrics.

• Rotation-invariant iris template is generated to solve the rotational inconsistency

problem.

• An algorithm to compute the Hamming distance between the encrypted reference iris

template and encrypted probe iris template is designed.

The block diagram of PIAHC is shown in Figure. 3.1. PIAHC involves two entities

and three modules. The two entities are client device and server. The three modules are

Generation of iris codes, Encryption/decryption and Computation of hamming distance on

encrypted iris templates. The steps involved during the enrollment & authentication phases

of PIAHC are described in Algorithm 3.1 and Algorithm 3.2.
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Assumptions of PIAHC:

PIAHC assume the following:

• The client device has limited computation resources and memory.

• During the enrollment and authentication phases, the client device is fully trusted and

stores the secret key of the user in a secure manner.

• The server is Honest-but-Curious.

Sk

Client	Device

Generation	of
IrisCodes Encryption

KeyGen

ε(Xi)

Pk

Xi	

Compute	Hamming
distance

between	ε(Xi)
and	ε(Y)

ε(d)

	Server

Authentication

Generation	of
IrisCodes Encryption

Sk

Pk

Y

DecryptionD	<	τ
D

Reject

No

Yes
Accept

Client	Device

ε(s)

(ε(Y),	id)
Identity	label

id

Enrollment

Retrieves		ε(Xi)	using	id

id
(ε(Xi),	id)Identity	label

Figure 3.1: Block diagram of Privacy-preserving Iris Authentication on Honest-but-
Curious Server (PIAHC)

40



CHAPTER 3. PRIVACY-PRESERVING IRIS AUTHENTICATION ON HONEST-BUT-CURIOUS SERVER (PIAHC)

Algorithm 3.1 Enrollment phase of PIAHC
Input: Reference iris image

Identity label, id
Output: Encrypted reference iris template, ε(x)

1: Client device generates the iris template from the reference iris image using University
of Salzburg tool kit [58].

2: Client device generates the rotation-invariant iris code,R. It further reduces the dimen-
sions of R as described in section 3.1.2, encode the reduced iris template as described
in section 3.1.3 and obtains Xi.

3: Client device generates the secret key (Sk), public key (Pk). // Refer section 3.2.1.1
4: The client device encrypts the encoded iris template. //Refer section 3.2.1.2
5: The encrypted reference iris template, ε(Xi) and identity label, id are sent to the server

by the client device. The server stores (ε(Xi), id) into the database.

3.1 Generation of Iris Codes

The generation of iris code comprises of three phases:

1. Generation of rotation-invariant iris template.

2. Compression of rotation-invariant iris template.

3. Encode the compressed rotation-invariant iris template using batching scheme.

The extracted iris template from the iris image has rotational inconsistency problems due

to the head tilt of a person results in false accept or false reject. To overcome this limita-

tion, rotation invariant iris template is generated in the generation of rotation-invariant iris

template phase. The rotational-invariant iris template is first compressed and then encoded

using the batching scheme to improve the performance of the system in terms of com-

putational time in the compression of rotation-invariant iris template phase and encoding

phase.

3.1.1 Generation of rotation-invariant iris template

The rotational irregularities caused during acquisition may affect the performance of the

system. There are several techniques proposed in the spatial domain, which works on iris

textures to evade the rotational inconsistency problem, and these techniques do not bring

high recognition accuracy. In this scenario, PIAHC is designed to solve both rotational
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Algorithm 3.2 Authentication phase of PIAHC
Input: Probe iris image

Identity label, id
Output: Accept/Reject

1: Client device generates the iris template from the probe iris image using University of
Salzburg tool kit [58].

2: Client device generates the rotation-invariant iris code, Y . It further reduces the di-
mensions of Y as described in section 3.1.2 and encode the reduced iris template as
described in section 3.1.3.

3: The client device encrypts the encoded probe iris template. //Refer section 3.2.1.2
4: The client device sends (ε(Y ), id) to the server.
5: The server retrieves the reference iris template with the same identity label from the

database.
6: The server computes the hamming distance between ε(Xi) & ε(Y ) by using Algorithm

3.3 and send result ε(s) to the client device.
7: The client device decrypts ε(s) by using Sk, and obtains the decrypted result, D. The

client device compares D with a threshold τ , and returns accept/reject.

inconsistency problem and achieving high recognition accuracy. PIAHC shifts each of

the iris template by ±8 to get the rotation-invariant iris template. This helps in shifting

in a sequence of eight columns left and right to get 16 shifted iris templates and the one

original iris template. Four samples are considered per user to obtain the rotation invariant

iris template. Out of four samples, one sample is considered as a reference sample. The

hamming distances are calculated between the 17 iris instances taken from each sample

and the considered reference iris code. The least hamming distance from each sample is

considered, and the average of 3 iris instances is calculated. The template obtained by

calculating the average is considered as the reference iris template.

During the verification stage, the probe iris template is shifted by ±8. Further, the

Hamming distances between the 17 probe iris instances and the reference iris instance are

calculated. The iris instance having the minimum Hamming distance is considered as the

probe template. The Equal Error Rate (EER) for the original iris template and the rotation-

invariant iris template are shown in Table 3.1. It is observed that 4.43 is the EER obtained

before applying a rotation-invariant mechanism, and 1.34 is the optimal value after the

rotation-invariant mechanism is involved. It is observed from the results that a low EER

is obtained with the rotation-invariant operation when compared to the template without
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rotation-invariant. So, rotation-invariant iris template results in better accuracy.

Table 3.1: Comparison of EER between original iris template and rotation-invariant iris
template for CASIA-V 1.0

Original iris template Rotation-invariant iris template

Equal Error Rate Reference
Sample

Equal Er-
ror Rate

4.43

1 2.28

2 1.34

3 1.86

4 2.35

3.1.2 Compression of rotation-invariant iris template

The size of the iris template determines the performance of the system. The above phase

produces an iris template of size 1× 10240. The computational performance of the overall

system can be improved by reducing the size of the iris template. So, the 10240-bit binary

vector is grouped into blocks of size m by using equation (3.1). m denotes the size of

the block, and we consider 4, 5, 6, 8, and 10 as m values. These m-bits are converted to

decimal values and stored in a vector. The process of converting a vector of size 1× 10240

to a vector of size 1 × 2560 is shown in Figure. 3.2. The original iris code (10240-bit) is

exactly divisible with m = 4, 5, 8, and 10. But, the 10240-bit vector is grouped into 1706

blocks if the original iris code is divided with m = 6 and 2-bits will be left. Four zeros are

left padded to these 2-bits, and the total 6-bits are considered as one block. Therefore, a

total of 1707 blocks are obtained.

compressed iriscode size =
Total number of bits

m
(3.1)

The EER obtained for the original 10240-bit binary vector, and different sizes of iris tem-

plate are shown in Table 3.2. From Table 3.2, we can infer that the 10240-bit binary vector
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1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 0

11 3 1 10

Converting
4-bit binary
to decimal

Figure 3.2: Compression of Bits(1 × 10240→ 1 × 2560)

Table 3.2: Compression of 10240 vector into blocks of various sizes for CASIA-V 1.0

Rotation-
invariant iris
template

EER m compressed
iris tem-
plate size

EER

10240 1.34

10 1024 1.23

8 1280 0.81

6 1707 0.79

5 2048 0.54

4 2560 0.19

is divided into blocks of 4 bits to achieve better performance.

3.1.3 Encode the compressed rotation-invariant iris template using

Batching scheme

The input to the Brakerski/Fan-Vercauteren (BFV) HE scheme (used in section 3.2.1) is

a polynomial in ring Rx, whereas the output in section 3.1.2 are integers. Encoders are

accountable to convert integers into a polynomial in ring Rx. BFV scheme consists of four

encoding techniques, namely scalar encoder, integer encoder, fractional encoder and Chi-

nese Remainder Theorem (CRT) Batching [128]. CRT batching scheme performs better

when compared to other encoding techniques, since it can form a single plaintext polyno-

mial for a group of n integers modulo x. As a result, with a single instruction, an operation

can be performed on multiple data simultaneously. This manner is often called as Single

Instruction, Multiple Data (SIMD). Batching technique improves the performance of the

system by encrypting a group of integers at once instead of encrypting a single integer
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[133, 134]. Batching is based on the Chinese remainder theorem.

If Υ is the primitive 2nth root of unity modulo x then the polynomial modulus an+1

can be rewritten as

an + 1 = (a−Υ)(a−Υ3)...(a−Υ2n−1)(mod x)

If we consider plain text modulus, a to be multiplication of many small prime factors i.e.,

x =
∏n

i=1 xi, then the ring Rx can be factorized by using the CRT as

Rx =
Zx[a]

an + 1
=

Zx[a]∏n−1
i=0 (a−Υ2i+1)

u
n−1∏
i=0

Zx

At the cost of single addition (multiplication) in Rx, one can perform n coefficient-wise

additions (multiplications) in integers modulo x.

3.2 Ensuring the confidentiality of iris templates and Com-

putation of Hamming Distance

3.2.1 Ensuring the confidentiality of iris templates

Basic Notations:

For x ∈ Z, a ring Rx = Zx[a]/(an+1) denotes polynomials of degree smaller than n with

the coefficients modulo x. g $←− F represents g is sampled uniformly from the finite set F .

Similarly, g← χ represents g is sampled from a discrete truncated Gaussian. Consider the

largest integer smaller than or equal to x, smallest integer greater than or equal to x and

closest integer to x are denoted by bxc, dxe and bxe. The reduction of an integer by modulo

x is denoted by [.]x.

BFV scheme [72] is used to ensure the confidentiality of the iris templates. The secu-

rity of the BFV scheme relies on the hardness of solving the Ring Learning With Errors

(RLWE) problem. The main difference between symmetric or asymmetric, and HE is the

evaluation function. As explained in section 1.7.2, FHE technique consists of four func-
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tions, namely Key Generation (KeyGen), Encryption (Enc), Evaluation (Eval) and Decryp-

tion (Dec). The steps involved in each function are explained in the following sections:

3.2.1.1 Key Generation

The function to generate the public key, secret key and evaluation key of BFV scheme [72]

is shown in Figure 3.3. The function takes the security parameter (λ) as input and produces

Pk, Sk and δevk as output.

KeyGen(1λ)⇒ (Pk, Sk, δevk)

Input: Security Parameter λ

Output: Public key (Pk), Secret key (Sk) and Evaluation key (δevk)

Sk
$←− R2

Pk = ([−(aSk + e)]q, a)

for j = 0, 1, ..., l, where l = blogωqc, sample xj
$←− Rq, ej ← χ

δevk = ([−(xjSk + ej) + ωjS2
k ]q , xj)

Figure 3.3: Key Generation function in BFV Homomorphic Encryption

3.2.1.2 Encryption

The function to encrypt the value in BFV scheme [72] is shown in Figure 3.4. It takes the

plaintext m and public key Pk as input and produces the encrypted value of m i.e., ε(m) as

output.
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Enc(Pk, m)→ ε(m)

Input: Public key (Pk), message m

Output: Encrypted message ε(m) = [ct0, ct1]

for m ∈ Rx, let Pk = (Pk[0] , Pk[1]), sample v $←− R2 and a1, a2 ← χ. The encrypted

value (ε(m)) is given as :

ε(m) = ([m+ Pk[0]v + a1]q , [Pk[1]v + a2]q).

Figure 3.4: Encryption function in BFV Homomorphic Encryption

3.2.1.3 Evaluation (Add & Multiply)

The steps required to perform addition and multiplication of two encrypted values in BFV

scheme [72] are shown in Figure 3.5. The addition of two encrypted values in BFV scheme

is similar to performing the addition of two polynomials. The multiplication of two en-

crypted values involves two steps: the first step is multiplying two polynomials together.

The limitation is that the result consists of 3 ring elements instead of 2. To solve this

limitation, re-linearisation is used.

47



CHAPTER 3. PRIVACY-PRESERVING IRIS AUTHENTICATION ON HONEST-BUT-CURIOUS SERVER (PIAHC)

Eval(Pk, C, ε(X))→ ε(R)

Input: Public key (Pk = (Pk[0], Pk[1])), Evaluated Circuit C, Group of Cipher texts

ε(X)

Output: Computed result ε(R)

Let ct0[0] = ([m1 +Pk[0]v+a1]q), ct0[1] = [Pk[1]v+a2]q), ct1[0] = ([m2 +Pk[0]v+

a1]q), ct1[1] = [Pk[1]v + a2]q) and a1, a2 ← χ.

If we want to perform addition of two encrypted values then the evaluated circuit C is

add and is computed as

ε(R) = add(ε(m1), ε(m2)) = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q)

If we want to perform product of two encrypted values then the evaluated circuit C is

multiply and is computed as

ε(R) = multiply(ε(m1), ε(m2)) = (p0, p1)

where p0 = [bx
q
(ct0[0]ct1[0])e]q +

∑l
i=1 δevk[i][0]([bx

q
(ct0[1]ct1[1])e]q)i and p1 =

[bx
q
(ct0[0]ct1[1] + ct0[1]ct1[0])e]q +

∑l
i=1 δevk[i][1]([bx

q
(ct0[1]ct1[1])e]q)i

Figure 3.5: Evaluation function in BFV Homomorphic Encryption

3.2.1.4 Decryption

The function to decrypt the encrypted value in BFV scheme [72] is shown in Figure 3.6. It

takes the encrypted value ε(m) and secret key Sk as input and produces the original value

m as output.
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Dec(Sk, ct)⇒ m

Input: Secret key (Sk), Cipher text ε(m)

Output: message m

m = [bx
q

[ct[0] + ct[1]Ske]

Where ct[0] = [m+ Pk[0]v + a1]q, ct[1] = [Pk[1]v + a2]q and a1, a2 ← χ

Figure 3.6: Decryption function in BFV Homomorphic Encryption

3.2.2 Computation of Hamming Distance on encrypted data

The additive and multiplicative properties of BFV scheme are used to compute the Ham-

ming distance on encrypted iris templates. Given ε(x) and ε(y), one can compute ε(x+ y)

and ε(xy) without decryption with the help of FHE. The server is capable of performing

computations, but not trustworthy; as a result with the help of FHE, we can encrypt our

data and send it to the server which performs the hamming distance on the encrypted data.

To compute Hamming distance, we need to perform both multiplication and addition. So,

PHE and SHE fail to implement hamming distance on encrypted data.

Generally, Hamming distance is used as a distance measure to find the similarity be-

tween reference & probe templates in iris authentication system. This section describes

about the computation of Hamming distance on encrypted templates as a result privacy

of the iris templates is preserved. The encrypted reference & probe iris templates are de-

noted as ε(a), ε(b) and e1 = -
∑n−1

i=0 a
n−i, e2 =

∑n−1
i=0 a

i are the constant polynomials. The

Hamming distance on encrypted templates can be given as

Hamming Distance = ε(a)× e1 + ε(b)× e2 − 2× ε(a)× ε(b) (3.2)

Due to the batching scheme used in PIAHC, the Hamming distance can be computed with

only four multiplications and two additions instead of 2560 homomorphic multiplications.

The server sends ε(s) to the client device. The client device decrypts ε(s) with Sk. Client

device decomposes the decrypted result using equation (3.3) and obtains the decomposed
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Algorithm 3.3 Computation of Hamming distance on encrypted data
Input: ε(a), ε(b)
Output: Encrypted Hamming distance score, ε(d)

1: begin
2: e1 ← −

∑n−1
i=0 a

n−i

3: e2 ←
∑n−1

i=0 a
i

4: Encode e1 and e2 using Batching encoding scheme
5: ft← multiply(ε(a), e1) //Batch Multiply
6: st← multiply(ε(b), e2) //Batch Multiply
7: cst← −2
8: Encode cst using encoding(a)=sign(x)(xn−1an−1 + ..+ x1x+ x0)
9: temp← multiply(cst, ε(a)) //Batch Multiply

10: tt← multiply(temp, ε(b)) //Batch Multiply
11: res← add(ft, st)
12: result← add(res, tt)
13: ε(d)← result
14: return ε(d)
15: end

result as m(a)→ [m(β0),m(β1), ..,m(βn−1)].

Decompose : Rx →
n−1∏
i=0

Zx (3.3)

The ratio between the number of non-zero values in the decomposed result to the total

number of bits is denoted as D. The client device compares D with threshold τ to check

whether the user is genuine or not.

Authentication =

Accept, if D < τ.

Reject, otherwise.
(3.4)

3.3 Implementation details and Security Analysis of PI-

AHC

The following measures are used to evaluate the efficiency of a biometric system according

to biometric information protection [23].

1. Performance evaluation in terms of EER, d’ and KS-test.
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2. Irreversibility and Unlinkability Analysis.

3. Computational cost in terms of time taken to perform operations.

3.3.1 Performance Evaluation of PIAHC

Table 3.3: Comparison of EER (in terms of %) between unprotected rotation-variant, un-
protected rotation-invariant and protected rotation-variant iris template

Database Size of
Iriscode

URV iris
template

URI iris
template

PRI iris
template

CASIA-V 1.0

1024 3.83 1.23 1.23

1280 2.98 0.81 0.81

1707 2.30 0.79 0.79

2048 2.28 0.54 0.54

2560 2.13 0.19 0.19

CASIA-V3-
Interval

1024 4.15 1.38 1.38

1280 3.68 0.94 0.94

1707 3.45 0.82 0.82

2048 3.54 0.58 0.58

2560 3.36 0.39 0.39

IITD

1024 4.58 2.24 2.24

1280 4.35 2.09 2.09

1707 4.09 1.32 1.32

2048 4.19 1.48 1.48

2560 4.05 0.99 0.99

SDUMLA-
HMT

1024 3.76 1.00 1.00

1280 3.72 0.96 0.96

1707 3.12 0.32 0.32

2048 2.98 0.28 0.28

2560 3.68 0.94 0.94
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Figure 3.7: ROC Curves of PIAHC for CASIA-V 1.0, CASIA-V3-Interval, IITD and
SDUMLA-HMT databases

The comparison of EER between unprotected rotation variant (URV), unprotected rotation

invariant (URI), and protected rotation invariant (PRI) iris templates for different sizes are

shown in Table 3.3. The protected rotation invariant iris templates indicate the templates

with encryption & rotation invariant operation. The unprotected rotation invariant iris tem-

plates suggest the templates without encryption & with the rotation invariant operation,

and unprotected rotation variant iris templates indicate the templates without encryption &

rotation invariant operation. We can infer from Table 3.3 that there is no degradation of

accuracy with PIAHC method. The increase in accuracy is due to the rotation invariant

operation.

The ROC curves of PIAHC for different databases is shown in Figure 3.7. The clear

separation between genuine and imposter scores for different databases are shown in Fig-

ure 3.8. The separability measures (d’ & KS-test values) and EER on encrypted data for

different databases are shown in Figure 3.9.
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Figure 3.8: Genuine and Imposter distributions of PIAHC for (a) CASIA-V 1.0 (b) CASIA-
V3-Interval (c) IITD and (d) SDUMLA-HMT databases
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Figure 3.9: EER, Separability Measures (d′ and KS test) for CASIA-V 1.0, CASIA-V3-
Interval, IITD and SDUMLA-HMT databases

3.3.2 Security Analysis of PIAHC

The template protection method must satisfy the requirements of irreversibility, revocability

and unlinkability to ensure the privacy of the iris templates. The vulnerability of attacks in

PIAHC can occur in the following entries:

1. The server database.

2. The client device.

3. The communication channel between the server and the client device.

The client device extracts the features of the iris image, and the secret key is also stored in

the client device. Hence, security is to be ensured for the client device. As, PIAHC assume

the client device is a trusted entity, the keys and features of iris image are secure. Since the

security of PIAHC depends on the apparent hardness of Ring Learning with Errors (RLWE)

problem, the iris templates stored in the server database are secure. It is difficult to decrypt

the encrypted iris templates without the secret key. As a result, the communication channel

is also reliable.

Ring Learning with Errors (RLWE) [108]: Problems like integer factorization & discrete

logarithm are considered as the basis for many asymmetric cryptographic algorithms in

the early 1980s. But these algorithms will have serious problems in the near future with

the existence of Quantum computers [135]. RLWE is a computational problem which
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serves as the support of advanced cryptographic algorithms constructed to defend against

cryptanalysis by Quantum computers. The advancement to Learning with Errors (LWE)

problem is referred to as RLWE and is specialized to polynomial rings over finite fields.

The security of many prominent homomorphic encryption schemes relies on the LWE [136]

and RLWE [108]. The RLWE problem is to solve n(x) from a random noisy system.



p0(x)n(x) + t0(x) = q0(x) mod rA

p1(x)n(x) + t1(x) = q1(x) mod rA

.

.

where pi(x) - uniformly random polynomials, ti(x) - unknown small random polynomials,

r is a prime and is given as r ≡ 1(mod 2n), n is a power of 2 and A = Z[x]/(xn+1). Given

pi(x) and qi(x), it is computationally infeasible to find the polynomial n(x). The difficulty

of solving RLWE problem is similar to solving NP-Hard Shortest Vector Problem (SVP).

Irreversibility Analysis: Irreversibility refers to obtaining the original template from the

encrypted template. The client device sends the encrypted reference and encrypted probe

iris templates of a user to the server for distance computation. The server computes the

Hamming distance on the encrypted templates and returns the encrypted result to the client

device. As the PIAHC uses BFV scheme to protect the templates, and the security of BFV

scheme relies on solving the RLWE problem, it is computationally infeasible to decrypt the

templates by the server or an imposter without secret key (Sk). Therefore, PIAHC satisfies

the irreversibility property.

Revocability Analysis: Revocability ensures that a new protected template should be gen-

erated by the protection method if the old template is compromised or stolen. In PIAHC,

Revocability can be achieved by re-encrypting the samples in the database with a new key

pair (P ′k, S ′k) instead of acquiring the new samples from the users.

Unlinkability Analysis: Unlinkability ensures that there won’t be any correlation between
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the protected templates used in different applications. BFV scheme used in PIAHC is based

on probabilistic encryption. Due to the randomness involved in BFV scheme, different ci-

phertexts can be generated even if the same message is encrypted multiple times with the

same key, and there won’t exist any similarity between the generated ciphertexts.

Table 3.4: Total time taken in PIAHC (with & without batching scheme)

λ1 M2 NFT3 Parameters Batching Time(Seconds) NBT(Seconds)4

n q
(bits)

x Enc Score Dec Total Enc Score DecTotal

128-
bit

640 0.0075 1024 29 40961 0.0014 0.0026 0.0008 0.0048 0.7 1.5 0.1 2.3

1024 0.014 2048 56 40961 0.0026 0.0052 0.0016 0.0094 2.1 4.8 0.5 7.4

1280 0.019 2048 56 40961 0.0027 0.0053 0.0016 0.0096 2.6 6.0 0.6 9.2

1707 0.021 2048 56 40961 0.0028 0.0053 0.0018 0.0099 3.5 8.0 0.8 12.3

2048 0.035 4096 110 40961 0.0060 0.018 0.0039 0.0279 10.0 35.2 3.2 48.4

2560 0.044 4096 110 40961 0.0058 0.019 0.0038 0.0286 12.5 44.0 4.1 60.6

192-
bit

640 0.0075 1024 20 40961 0.0013 0.0027 0.0009 0.0049 0.7 1.4 0.1 2.2

1024 0.014 2048 39 40961 0.0026 0.0053 0.0015 0.0094 2.3 5.2 0.5 8.0

1280 0.019 2048 39 40961 0.0027 0.0055 0.0016 0.0098 2.8 6.5 0.6 9.9

1707 0.021 2048 39 40961 0.0029 0.0053 0.0016 0.0098 3.8 8.7 0.9 13.4

2048 0.035 4096 77 40961 0.0063 0.018 0.0041 0.0284 10.9 34.8 3.5 49.2

2560 0.044 4096 77 40961 0.0059 0.019 0.0040 0.0289 13.6 43.5 4.4 61.5
1λ refers to security.
2M refers to size of iris template.
3NFT refers to Time in seconds without FHE.
4NBT refers to Time in seconds without Batching.
Enc, Score and Dec stands for time taken to perform encryption, hamming distance between probe and
reference templates, and decryption.

3.3.3 Computational Analysis of PIAHC

The security parameters used in PIAHC are polynomial modulus (an+1), coefficient mod-

ulus (q), plaintext modulus (x) and security level (λ). PIAHC considered two different

values for λ. From Table. 3.4, it can be inferred that the higher security level has nearly

no influence on the execution time. an + 1 must be a power-of-2 cyclomatic polynomial.

The security level is directly proportional to the polynomial modulus. On the other hand,
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Table 3.5: Comparison Analysis in terms of Time

Method Iris Bit
Size

Total time
(in secs)

Homomorphic Encryp-
tion Scheme

Barni, M, et al. [76] 6400
Bits

0.12 Damgard-Jurik cryp-
tosystem (SHE)

Alberto Torres, W. A et al.
[137]

2048
Bits

645.049 Lattice-based-FHE

Cheon, Jung Hee, et al. [138] 2400
Bits

0.57 BGV Scheme (SHE)

Kulkarni, Rohan et al. [139] 2048
Bits

58 BGN Cryptosystem
(SHE)

Yasuda, Masaya, et al. [66] 2048
Bits

0.01243
(HD=0.05)

Polynomial-LWE (SHE)

PIAHC 2560
Bits

0.0286
(HD=0.019)

BFV Scheme (FHE)

larger an + 1 makes ciphertext size larger, and all operations become slower. n value must

be a power of 2 and greater than the size of the iris template. So, PIAHC choose different

n values for different sizes of iris templates. The default q values for different n values are

mentioned in [128]. x can be any positive integer, and mostly it is a power of two. But,

batching encoding only works when a is chosen to be a prime number and congruent to

1 (mod 2n). So, PIAHC considered plaintext modulus as 40961.

For a given desired security level (λ), Table. 3.4 illustrates the time taken (in seconds) to

encrypt, decrypt and to compute the Hamming distance on the encrypted data for different

security parameter values (n, x and q) and iris code sizes. PIAHC considered the average

time in seconds by running the experiments ten times. The table also shows the time taken

to compute the Hamming distance on original values. The iris template size is proportional

to the computational time. PIAHC converts 1 × 10240 into 1 × 640, 1 × 1024, 1 × 1280,

1 × 1707, 1 × 2048 and 1 × 2560 respectively. Even though the total time taken for iris

code of size 640, 1024, 1280, 1707 and 2048 is less when compared to iris code of size

2560, but the optimal accuracy is achieved with iris template of size 1 × 2560.
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Table 3.6: Comparison of PIAHC with existing approaches (EER in terms of %)

Database EER

CASIA-V 1.0

Dwivedi, R. et al. [140] 0.37

Punithavathi, P et al. [141] 1.2

Mahesh, M. et al. [142] 0.57

Gad, R. et al. [143] 0.299

Barni, M. et al. [76] 2.08

PIAHC 0.19

CASIA-V3-Interval

Dwivedi, R. et al. [140] 0.43

Lai, Y.L. et al. [144] 0.54

Punithavathi, P et al. [141] 1.9

Soliman, R.F et al. [145] 0.63

Zhao, D. et al. [146] 1.03

Barpanda, S.S et al. [147] 11.75

Sadhya, D. et al. [148] 0.105

Soliman, R.F et al. [149] 0.36

PIAHC 0.39

IITD

Punithavathi, P et al. [141] 3.3

Barpanda, S.S et al. [147] 12.69

Gomez-Barrero, M. et al. [150] 0.7

Sadhya, D. et al. [148] 1.4

PIAHC 0.88

SDUMLA-HMT
Gad, R. et al. [143] 0.300

Kamalskar, C et al. [151] 2.5947

PIAHC 0.28

Table 3.7: Comparison of PIAHC with other approaches (in terms of Separability measure
(d’))

CASIA-V 1.0 CASIA-V3-Interval IITD

Barpanda, S.S et al. [147] - 1.71 1.76

Sadhya, D. et al. [148] 2.39 2.92

Walia, G.S. et al. [152] 2.6053 - 1.9578

PIAHC 5.3664 3.9263 3.8141
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3.3.4 Comparison Analysis

PIAHC is compared with other state-of-the-works (in terms of computational time) and is

given in Table 3.5. The batching scheme used in PIAHC makes the system to give a fair

performance when compared to other works. On the other hand, PIAHC uses a higher

bit security level, i.e., 128-bit & 192-bit, whereas the other methods use 80-bit security.

From Table 3.5, we can observe the performance of Yasuda et al. is better when compared

to PIAHC. The reason for the degradation of performance is that they used SHE whereas

PIAHC uses FHE.

The EER comparison of PIAHC with state-of-the-art works is shown in Table 3.6. We

can infer that PIAHC shows better EER value when compared to other existing works. The

comparison of d’ with the existing approaches is shown in Table 3.7. We can infer from

Table 3.7 that the genuine and imposter scores are well separated when compared to other

works.

3.4 Summary

In this chapter, a privacy-preserving iris authentication system using FHE (PIAHC) is pro-

posed to preserve the privacy of iris templates by performing the matching on the encrypted

iris templates. PIAHC solves the rotational inconsistency problems occurred due to the

head tilt of a person by generating the rotation-invariant iris templates. These templates

help to improve recognition accuracy. The rotation-invariant iris template is first com-

pressed and then encoded using the batching scheme to improve the performance of the

system in terms of the computational time. A procedure to compute the Hamming distance

is proposed, which helps to check whether the user is genuine or not. PIAHC consumes

0.0185 seconds only with no performance degradation. Experimental results prove the

significance and validity of PIAHC.
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Chapter 4

Privacy-preserving Multi-Instance Iris

Authentication on Untrusted Cloud

Server using PHE schemes

A brief introduction, advantages and types of multi-biometric systems are explained in sec-

tion 1.8. In particular, the multi-instance systems have many benefits like cost-effective

and do not require the additional sensors, need of matching algorithms, and feature extrac-

tion methods. On the other hand, the literature reveals that the privacy-preserving schemes

based on HE assume that the server/cloud server is Honest-but-curious. However, due to

financial or timing reasons, the server/cloud server assigned to a task may not honestly per-

form the computation. The cloud server may return an arbitrary result which leads to false

accept or false reject. The main contributions of this chapter are described below:

• Proposed a Blockchain-based multi-instance iris authentication system (BMIAE),

which integrates ElGamal HE [39] with Blockchain technology to achieve privacy of

iris templates and trust on the comparator result. The challenges of using Blockchain

in biometrics are also addressed in BMIAE.

• Proposed a secure and verifiable multi-instance iris authentication using public audi-

tor (SviaPA), which not only provides privacy for the iris templates but also includes

a verification procedure to check whether the comparator result is correct or not.
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• A method for secure and verifiable multi-instance iris authentication using Blockchain

(SviaB) is proposed. SviaB combines Blockchain technology with Paillier HE [42].

Paillier HE provides confidentiality for the iris templates. The Blockchain provides

the integrity of the encrypted reference iris templates as well as the trust of the com-

parator result. In addition, SviaB reduces the time taken to authenticate a person

when compared to BMIAE.

4.1 BMIAE: Blockchain-based Multi-Instance Iris Authen-

tication using Additive ElGamal Homomorphic En-

cryption

The flow diagram for BMIAE is shown in Figure. 4.1. BMIAE involves three entities,

namely client device, server and a Blockchain network. The steps involved during the en-

rollment & authentication phases of BMIAE are described in Algorithm 4.1 and Algorithm

4.2.

Assumptions of BMIAE:

BMIAE assume the following:

• During the enrollment/authentication phase, the client device is fully trusted and

stores the user’s secret key securely at its local storage.

• The client device has limited memory and computational resources.

• The server & client device need not store the entire ledger of the Blockchain network.

• The consensus algorithm of the Blockchain is secure & robust against security attacks

of the Blockchain.

• The contract address of the smart contract is shared with the server & the client device

before the enrollment phase.
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Figure 4.1: BlocK diagram of Blockchain-based Multi-Instance Iris Authentication using
Additive ElGamal Homomorphic Encryption (BMIAE).

4.1.1 Generation of Integer vector from iris templates

This section comprises of three phases:

1. Fusion of left and right iris template

2. Compression of fused iris template.

3. Mapping of compressed iris template to integer vector.

The left & right iris templates extracted from the iris images using University of Salzburg

tool kit [58] are fused in the first phase to achieve better recognition accuracy. The fused

iris template is compressed in the second phase to improve the performance of the system in

terms of computational time. In general, a number to be encrypted using ElGamal HE must

present in the group Z∗Q, Q is a prime number. Therefore, the compressed fused template

is mapped to an integer vector in the third phase.
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Algorithm 4.1 Enrollment phase of BMIAE
Input: Reference images of both left & right eye

Identity label, id

1: Client device generates the iris templates from the reference left & right iris images
using University of Salzburg tool kit [58].

2: Client device generates the reference fused iris template, Xi as described in section
4.1.1.1. It further reduces the dimensions of Xi as defined in section 4.1.1.2 and map
the fused compressed iris template to an integer vector as described in section 4.1.1.3.

3: Client device generates the secret key (Sk) and public key (Pk). //Refer section 4.1.2.1
4: Client device encrypts the mapped iris template using Pk and generates the encrypted

reference fused compressed iris template, ε(Xi). //Refer section 4.1.2.2
5: The client device send (ε(Xi), id) to the Blockchain & server.
6: The Blockchain calculates the hash value of ε(Xi), Hr and stores (Hr, id). (BMIAE

stores onlyHr in Blockchain & ε(Xi) in the server to overcome the storage limitations
of Blockchain).

4.1.1.1 Fusion of left and right iris template

The dimension of the extracted left (Li) and right (Ri) iris templates is 1 × 10240. The

concatenation of Li and Ri as shown in equation (4.1) gives the fused iris template.

Z =

 Li

Ri

 (4.1)

The dimension of the fused iris template, Z is 1 × 20480.

4.1.1.2 Compression of fused iris template

The size of the iris template determines the performance of the system. The fusion phase

produces an iris template of size 1× 20480. The computational performance of the overall

system can be improved by reducing the size of the iris template. So, the 20480-bit binary

vector is grouped into blocks of size v by using equation (4.2). v denotes the size of the

block, and BMIAE consider 2, 4, 8, 16 and 32 as v values. The v bits obtained in each block

is converted to integers and perform modulo operation on each integer by 2. The resultant

binary vector is considered as the compressed fused iris template. The compression process
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Algorithm 4.2 Authentication phase of BMIAE
Input: Probe images of both left & right eye

Identity label, id
Output: Accept/Reject

1: Client device generates the iris templates from the probe left and right iris images using
University of Salzburg tool kit [58].

2: Client device generates the probe fused iris template, Y . It further reduces the dimen-
sions of Y as described in section 4.1.1.2 and map the fused compressed iris template
as described in section 4.1.1.3.

3: The client device encrypts the mapped fused probe iris template and generates the
encrypted probe fused compressed iris template, ε(Y ). //Refer section 4.1.2.2

4: The client device sends (ε(Y ), id) to the Blockchain.
5: The Blockchain retrieves ε(Xi) with the same identity label from the server.
6: The hash value of retrieved ε(Xi), Hp is computed by the Blockchain and compares
Hr, Hp. The Blockchain computes the distance ε(s) if the hash values are same
otherwise it will send an “integrity failed” message to the client device.

7: The client device decrypts ε(s) by using Sk, and obtains the decrypted result, Y . The
client device computes the number of zeros in Y and obtains D. The client device
compares D with a threshold τ , and returns accept/reject.

is shown in Figure. 4.2.

Size of compressed iris template =
Total number of bits

v
(4.2)

The EER obtained for the original 20480-bit binary vector, and different sizes of iris tem-

plate are shown in Figure. 4.3. From Figure. 4.3, we can infer that the 20480-bit binary

vector is divided into blocks of 16-bits for CASIA-V3-Interval, 8-bits for IITD and 8-bits

for SDUMLA-HMT iris databases to achieve better performance.

4.1.1.3 Mapping of compressed iris template to integer vector

The number to be encrypted using ElGamal HE must present in the group ZQ, Q is a prime

number. So, the compressed fused template obtained in the section 4.1.1.2 is mapped to

integers which belong to ZQ. On the other hand, an additive HE scheme must be used to

compute the distance. Generally, ElGamal is a multiplicative HE scheme but if we consider

gm instead of m, where m and g denotes the number to be encrypted and generator of the

group then it satisfies the additive property. The steps involved in the conversion of binary
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Figure 4.2: Compression of Bits in Blockchain-based Multi-Instance Iris Authentication
using Additive ElGamal Homomorphic Encryption

Figure 4.3: Comparison of Equal Error Rate for various sizes of iris template
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to integer vector are mentioned below:

Step 1: Select a large prime Q.

Step 2: Let g be the generator of the group ZQ.

step 3: Two different prime numbers a1 & a2 such that a1 & a2 < Q, a1 > a2 are chosen

randomly. The ones and zeros in the binary vector obtained in section 4.1.1.2 are replaced

with ga1 & ga2 .

The mapping process is explained with an example. Consider Q = 131. g = 2 is the

generator of the group Z131. Choose a1 = 5 & a2 = 2 are the two primes. Then, the ones

and zeros in the binary vector are replaced with ga1 = 25 = 32 and ga2 = 22 = 4.

4.1.2 Ensuring the Confidentiality of Iris templates using ElGamal

Homomorphic Encryption

During the enrollment and authentication phase, ElGamal HE [39] is used to ensure the

confidentiality of the iris templates. The security of the ElGamal HE depends on the hard-

ness of solving the discrete logarithm problem on a cyclic group. Generally, ElGamal HE

satisfies the multiplicative property. An additive HE scheme must be used to compute the

distance. In the literature, there exist various PHE schemes which satisfy the additive prop-

erty. Due to its advantages over other HE schemes [39, 153], BMIAE uses a modified

version (i.e., consider the message (m) to be encrypted as gm instead of m) of ElGamal HE

which satisfies the additive property. The template obtained in section 4.1.1.3 is encrypted

using the Enc function given in Figure. 4.5.

ElGamal HE scheme consists of four functions, namely Key Generation (KeyGen),

Encryption (Enc), Evaluation (Eval) and Decryption (Dec). The steps involved in each

function are explained in the following sections:

4.1.2.1 Key Generation

The function to generate the public key, secret key of ElGamal scheme [39] is shown in

Figure. 4.4. The function takes a prime number (Q) as input and produces Pk, Sk as

output.
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(Pk, Sk)←− KeyGen(Q)

Input: Prime number Q

Output: Secret key (Sk) and Public key (Pk)

• Let g be the generator of the cyclic group Z∗Q and f be the number of elements

in Z∗Q.

• An element r ∈ {1, 2, ...., f -1} is chosen randomly.

• Calculate q = gr (mod Q)

(Sk) : [r].

(Pk) : [Z∗Q, r, g, q].

Figure 4.4: Key Generation function in ElGamal Homomorphic Encryption

4.1.2.2 Encryption

The function to encrypt the value in ElGamal scheme [39] is shown in Figure. 4.5. It takes

the plaintextm and public key Pk as input and produces the encrypted value ofm i.e., ε(m)

as output.
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ε(m)←− Enc(Pk, m)

Input: Public key (Pk), message m

Output: Encrypted message ε(m) = [ct0, ct1]

• An element a ∈ {1, 2, ...., f -1} is chosen randomly.

• Calculate ct0 = ga (mod p)

• s = qa is the shared secret key.

• Compute ct1 = gm × s (mod Q)

ε(m) = [ct0, ct1] = [ga (mod Q), gm × s (mod Q)]

Figure 4.5: Encryption function in ElGamal Homomorphic Encryption

4.1.2.3 Evaluation (Add)

The steps required to perform addition of two original values in ElGamal scheme [39] is

shown in Figure. 4.6. The addition of two original values can be obtained by the decryption

of multiplication of two encrypted values.

ε(R)←− Eval(ε(a), ε(b), Q)

Input: Prime number Q, ε(a) = (ga1 , ga · qa1), ε(b) = (ga2 , gb · qa2), where a1, a2 are

the random values chosen during encryption.

Output: Computed result ε(C)

The addition of two values can be computed as

ε(C) = add(a, b) = ε(a) · ε(b) mod Q

Figure 4.6: Evaluation function in ElGamal Homomorphic Encryption
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4.1.2.4 Decryption

The function to decrypt the encrypted value in ElGamal scheme [39] is shown in Figure.

4.7. It takes the encrypted value ε(m) and secret key Sk as input and produces the original

value m as output.

m←− Dec(Sk, ε(m))

Input: Secret key (Sk), Encrypted message ε(m)

Output: message m′

m′ = (ct1 × (ct0)
Q−1−r) mod Q) mod Q

Since, we considered the message as gm instead of m to achieve the additive property.

So, discrete logarithm has to be applied on m′ to obtain m.

Figure 4.7: Decryption function in ElGamal Homomorphic Encryption

Additive Property of ElGamal:

Let ε(a) = Enc(Pk, a) & ε(b) = Enc(Pk, b) be the encrypted values for messages ga and

gb. As defined in section 1.7.1, the additive property states that the addition of two original

values can be obtained by the decryption of multiplication of two encrypted values and is

given in equation (4.3).

DSk
(ε(a) · ε(b)) = a+ b (4.3)

proof:

ε(a) · ε(b) = (ga1 , ga · qa1) · (ga2 , gb · qa2)

= (ga1+a2 , ga · gb · qa1+a2)

= (ga1+a2 , ga+b · qa1+a2)

= ε(a+ b)
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4.1.3 Ensuring the integrity of encrypted reference templates and trust

on computed distance using Smart contract

The smart contract running on a Blockchain network helps the BMIAE to address the

override comparator attack of BRS (Refer Figure. 1.3). Therefore, the user or client device

can ensure the computed distance is correct without including any third party or centralized

server. The integrity of the encrypted reference iris templates is also ensured in BMIAE by

comparing the hash values in Blockchain. The formal smart contract to ensure the trust on

the computed distance & integrity of encrypted reference iris template is given in Figure.

4.8.

Contract-EIRTDC
Init: Set refer := [ ], Buff := Null, δc = 0

Enrollment: //Computation of Hash value

Upon receiving (“reference”, ε(Xi), id) from Client device

set refer[id] := H(ε(Xi))

Verification: Upon receiving (“verify”, ε(Y ), id) from Client device

set Buff := ε(Y )

set δc := δ +D (Threshold time)

send (retrieve ε(Xi)”, id) to server.

Computation: Upon receiving (“computation”, ε(Xi), id) from Server

require δ < δc

if H(ε(Xi)) == refer[id]

//Distance computation

set ε(s) := ε(Xi) ∗Buff
send ε(s) to client device

else

send(“Integrity failed”) to client device

Timer: if δ > δc

Send(“Session Expired”) to Client device

Figure 4.8: Contract-Ensuring the Integrity of Reference templates and Trust on Distance
Computation (EIRTDC)
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4.1.3.1 Ensuring the integrity of encrypted reference iris templates

The client device sends (ε(Xi), id) to server & smart contract during the enrollment phase

and invokes the Enrollment function of a smart contract. The server stores (ε(Xi), id).

The hash value of ε(Xi), Hr = H(ε(Xi)) is computed and stores Hr in refer[id] by the

smart contract. The limitations of using Blockchain in biometrics like expensive storage

cost and privacy are described in [119]. To solve expensive storage cost limitation, BMIAE

stores only hash value of encrypted reference iris template instead of ε(Xi). To overcome

the privacy limitation, BMIAE encrypts the fused templates using ElGamal HE before

sending the template to Blockchain.

The client device sends (ε(Y ), id) to a smart contract and invokes the V erification

function during the authentication phase. The smart contract requests the server for ε(R)

with the same identity label id. If the server sends ε(Y ) within a stipulated time, δc then the

Computation function of a smart contract is invoked otherwise Timer function of smart

contract gets executed. It sends “Session Expired” message to the client device. When the

computation function is invoked, the smart contract computes hash value Hp = H(ε(Y )).

The smart contract computes the distance between ε(Xi) & ε(Y ), if the values ofHr &Hp

are same otherwise it indicates that ε(Xi) is modified by the intruder. Therefore, a smart

contract helps to check the integrity of the encrypted reference template.

4.1.3.2 Encrypted distance computation in the Blockchain

The smart contract computes the distance; as a result, the trust on the distance is achieved.

The smart contract computes the distance only if Hr and Hp are same. The distance

between Xi and Y can be computed by using equation (4.4).

Dman = |Xi − Y | (4.4)

The distance between encrypted reference and probe iris templates can be calculated by

using equation 4.3.
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Dman = |Xi − Y |

= |Xi + (−Y )|

ε(Dman) = ε(Xi) · ε(−Y )

ε(Dman) = ε(Xi) · ε(−Y ) (4.5)

The smart contract computes the distance between ε(Xi) & ε(Y ) by using equation (4.5).

ε(s) = (ε(Xi[1])·ε(Y [1]), ε(Xi[2])·ε(Y [2]), ..., ε(Xi[M ])·ε(Y [M ])) = (ε(s1), ε(s2), ..., ε(sM))

The smart contract send ε(s) to the client device.

4.1.4 Computation of Hamming distance (from ε(s)) (HDM)

Step 1: Client device decrypts ε(s) by using Sk and obtains P = (s1, s2, . . ., sM ).

Step 2: Compute a vector, R consisting of remainder values obtained by performing mod-

ulus operation on P with ga1 × ga2 . Ri = Pi mod a where i = 1, 2, 3,..., M and a =

(ga1)× (ga2)

R = [r1, r2, r3, ...., rM ].

Step 3: A binary vector H is computed by using equation (4.6).

Hi =

0, if ri=0.

1, otherwise.
(4.6)

Step 4: Client device computes the number of zeros in the vector, H . Number of zeros

helps in calculation of Hamming distance between the reference and probe templates.

Hamming distance (D) = 1− Number of zeros in H

Total number of bits in H
(4.7)
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Step 5: The result D is compared with τ to decide whether the user is genuine or not.

Authentication =

Accept, if D > τ.

Reject, otherwise.
(4.8)

4.1.5 Limitations of BMIAE

In BMIAE, the Blockchain computes the distance between the encrypted reference iris

template and encrypted probe iris template to ensure the trust on the computed result. The

limitations of BMIAE are as follows:

• The computational cost and execution time required to authenticate a person is more.

• The size of the iris template varies from each database in BMIAE to obtain optimal

accuracy. Therefore, BMIAE needs to find the size of the iris template for every

database, which is a cumbersome process.

4.2 SviaPA: Secure and Verifiable Multi-Instance Iris Au-

thentication using Public Auditor

SviaPA is the first known multi-instance iris authentication system which provides privacy

to the user data, i.e., iris templates as well as trust on the computed result. The flow diagram

of the SviaPA is shown in Figure. 4.9. SviaPA consists of four entities, namely client de-

vice, trusted authenticator, cloud server and public auditor. The role of trusted authenticator

is to 1) Generate the public (Pk) and secret (Sk) keys used in the encryption. 2) Reduce the

dimensions of fused iris template by using autoencoders and 3) Send accept/reject decision

to the client device. The cloud server provides the storage and computation resources to

the client device. If the cloud server is malicious, then the imposter may get access to the

system, which is a severe problem. So, we introduce a public auditor as a third party who

helps to check the correctness of the result returned by the cloud server and send the verifi-

cation result to the trusted authenticator. The trusted authenticator determines whether the
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user is genuine or not based on the verification result. The steps involved in the enrollment

and authentication phases are shown in Algorithm 4.3 and Algorithm 4.4.

Left	Iris

Client	Device

ε(Xi)

Sk

Auto-
encoder

Key
Generation

Xi	

Y	 Pk

Trusted
Authenticator

Enrollment	Phase

(Xi,	Pk)

Public	Auditor

6.	
ε(s
)

Client	Device

4.	ε(Y)
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3.	(ε(Zn+1),	ε(V))	
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Encryption
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Right	Iris
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Left	Iris Fusion	of
Iris	Codes

Encryption
using	Paillier

Right	Iris

Fusion	of
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l	i	=	1	
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7.	Result,	ε(s)8.	Accept	(or)
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Figure 4.9: Block diagram of SviaPA. The dashed line, Dotted line and Solid line indicates
the steps during enrollment, after the enrollment and during the authentication phases.

4.2.1 Preliminaries and Assumptions of SviaPA

4.2.1.1 Autoencoder

Autoencoder is an unsupervised neural network method; which optimizes a rebuilding of

the input data in the output layer through a hidden layer with chosen dimensions. Simi-

lar to the state-of-the-art dimensionality reduction techniques such as principal component

analysis (PCA), linear discriminant analysis (LDA), isometric mapping (ISOMAP), etc.,

autoencoder can be used to reduce the high-dimensional feature vector [154]. Autoencoder

consists of three layers, namely input, hidden and output. The dimensions of input and out-

put layers are the same, whereas the hidden layer contains fewer dimensions. Autoencoder
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Algorithm 4.3 Enrollment Phase of SviaPA
Input: Reference left and right iris images of ith user.

1: Client device generates the left and right iris templates from the reference left and right
iris images using University of Salzburg tool kit [58].

2: Client device performs the fusion of iris codes, Fi and send Fi to trusted authenticator.
//Refer section 4.1.1.1

3: Trusted authenticator reduces the dimensions of Fi to improve the performance of the
system and send the compressed template, Xi to the client device. //Refer section 4.2.2

4: Trusted authenticator generates the public key, Pk and secret key Sk. //Refer section
4.2.3.1

5: Client device encrypts Xi and sends the encrypted reference fused compressed iris
template, ε(Xi) to the cloud server. //Refer section 4.2.3.2

6: Once all the enrollment phase is completed, the cloud server send ε(Xi), i ∈ [1, N ]
to trusted authenticator.

7: The trusted authenticator generates the encrypted verification vector, ε(Zn+1) using
encrypted random vector ε(V ), ε(Xi) and send (ε(Zn+1), ε(V )) to the public auditor.
//Refer section 4.2.4.2

consists of two phases, 1) encoder and 2) decoder. An encoder converts the input data into

a hidden code, and the decoder reconstructs the original input data from the hidden code.

The input and output for an autoencoder are I ∈ [0, 1]d and O ∈ [0, 1]d, where d is the

number of dimensions. Firstly, the encoder maps the input into hidden (or) latent code, h

∈ [0, 1]d
′ , d′ < d using the transformation given in equation (4.9).

h = S(W × I + b) (4.9)

Where S is a sigmoid function, W is a weight matrix, and b is the bias. By using the

decoder, the hidden code, h is then converted back into O with the same dimension as I .

The conversion occurs through the transformation given in equation (4.10).

O = S(W
′ × h+ b

′
) (4.10)

Where S is a sigmoid function, W ′ is a weight matrix of the reverse mapping, and b is

the bias. The average reconstruction error is maximized by optimizing the parameters

(W, b, b′). The reconstruction error can be measured by either squared error, L(I, O) =

||I −O||2 or binary cross-entropy, L(I, O) = −
∑d

k=1[IklogOk + (1− Ik)log(1−Ok)].
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Algorithm 4.4 Authentication Phase of SviaPA
Input: Probe left and right iris images, User identifier id of the end user U
Output: Accept or Reject

1: The client device generates the left and right iris templates from the probe left and right
iris images using University of Salzburg tool kit [58]. It also acquires the identifier id
of the end-user.

2: Client device performs the fusion of iris codes, G and send (G, id) to trusted authen-
ticator. //Refer section 4.1.1.1

3: Trusted authenticator reduces the dimensions of G to improve the performance of the
system and send the fused compressed template, Y to the client device. //Refer section
4.2.2

4: The client device encrypts Y and sends the encrypted probe fused compressed iris
template, ε(Y ) to the cloud server. //Refer section 4.2.3.2

5: The cloud server computes the Manhattan distances, ε(d) between ε(Y ) & ε(Xi), i ∈
[1, N ] and send ε(d) to the public auditor. //Refer section 4.2.4.1

6: The public auditor checks the correctness of the computed result ε(d) by using ε(Zn+1),
ε(V ), ε(Y ) and sends the verification result to trusted authenticator. //Refer section
4.2.4.2

7: If the verification succeeds, then the trusted authenticator considers the Manhattan
distance value for the corresponding id given by the end-user to determine whether
the user is genuine or not.

To use the autoencoder as a dimensionality reduction technique, use the data obtained in

hidden layer and discard the decoder phase.

4.2.1.2 Assumptions

SviaPA assume the following:

• The client device is fully trusted in the enrollment/authentication phase and has lim-

ited memory and computational resources.

• The cloud server is malicious as opposed to Honest-but-curious.

• The trusted authenticator is a trusted entity which generates the secret and public

keys differently for each user. The secret keys of the users are stored securely and

broadcast the public keys to the client device.

• The public auditor is only trusted to check the correctness of ε(d).
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4.2.2 Fusion & Reducing the dimensions of Iris code using Autoen-

coder

This section consists of two phases, namely Fusion and reducing the dimensions of the iris

code. In the fusion phase, the iris codes obtained from left and right irises are fused as

discussed in section 4.1.1.1. The size of the fused iris code is reduced by using a non-linear

dimensionality reduction technique, autoencoder in the reduction phase.

The performance of the system depends on the size of the iris code vector. The fused

iris code vector, Z obtained from section 4.1.1.1 is of dimension 1 × 20480. Reduction

in the size improves the overall computational performance of the system. SviaPA uses

the autoencoder as a technique to reduce the dimensions of the iris code. Autoencoder is

a neural network-based reduction technique and is more efficient than other state-of-the-

art linear dimensionality reduction technique such as PCA or non-linear dimensionality

reduction techniques such as LDA, ISOMAP, etc [155]. Firstly, the trusted authenticator

train the autoencoder using both encoder and decoder phases, but after training, the data

obtained after the encoder phase, i.e., in the hidden layer is considered as the reduced

feature vector and discard the decoder phase. As the iris code, i.e., the input data to auto-

encoder contains 1’s and 0’s, SviaPA use the cross-entropy as an error function. The 20480-

bit binary vector is given as an input to auto-encoder and compressed into 64, 128, 256 and

512-bit respectively.

SviaPA considered 64, 128, 256 and 512 nodes in the hidden layer and computed the

EER. Table 4.1 represents the EER values for different sizes of iris code. From Table 4.1,

experimentally, we found that there is no loss in the accuracy (EER) if we compress the

original iris template of size 20480-bit to 128-bit. Thus, SviaPA reduces the dimensions to

128-bit using the autoencoder and use the 128-bit iris template for further operations.

4.2.3 Ensuring Confidentiality for the Iris templates using Paillier Ho-

momorphic Encryption

Paillier HE [42] is used to ensure the confidentiality of the iris templates during enrollment

and authentication phase. The security of the Paillier HE relies on the decisional composite
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Table 4.1: EER obtained for databases CASIA-V3-Inerval, IITD and SDUMLA-HMT with
different sizes of iris template

Size of
iris code

EER (in %)

CASIA-
V3-Interval

IITD SDUMLA-
HMT

Compressed Iris template

64-bit 1.38 1.62 0.28

128-bit 0.31 0.86 0.13
256-bit 0.43 1.12 0.17

512-bit 0.47 1.16 0.19

Uncompressed Iris template 20480-
bit

0.31 0.86 0.13

residuosity assumption (DCRA). HE must satisfy additive property for distance function

computation. Paillier HE is an additive homomorphic cryptosystem and is more efficient

than other algorithms (e.g., RSA and ElGamal) in terms of encryption and decryption effi-

ciency [42, 153].

Paillier HE scheme consists of four PPT (Probabilistic Polynomial-Time) functions,

namely Key Generation (KeyGen), Encryption (Enc), Evaluation (Eval) and Decryption

(Dec). The steps involved in each function are explained in the following sections:

4.2.3.1 Key Generation

The function to generate the public key, secret key of Paillier scheme [42] is shown in

Figure. 4.10. The function takes two prime numbers m & n as inputs and produces Pk &

Sk as output.

78



CHAPTER 4. PRIVACY-PRESERVING MULTI-INSTANCE IRIS AUTHENTICATION ON UNTRUSTED CLOUD SERVER USING PHE SCHEMES

(Pk, Sk)←− KeyGen(m, n)

Input: Two large prime numbers, m & n randomly and independently such that

gcd(mn, (m− 1)(n− 1))=1

Output: Public key (Pk) and Secret key (Sk)

• Compute p = m · n and λ = lcm(m,n).

• Choose a random integer g, g ∈ Z∗p2 such that p divides the order of g.

• Compute k = I(gλ (mod p2)), where function I is defined as I(u) =
(u− 1)

p
.

• Compute φ = k−1 (mod p).

Public key (Pk) : [p, g] Secret key (Sk) : [λ, φ].

Figure 4.10: Key Generation function in Paillier Homomorphic Encryption

4.2.3.2 Encryption

The function to encrypt the value in Paillier scheme [42] is shown in Figure. 4.11. It takes

the plaintext msg and public key Pk as input and produces the encrypted value of msg i.e.,

ε(msg) as output.

ε(msg)←− Enc(Pk, msg)

Input: Public key (Pk), message msg

Output: Encrypted message, ε(msg)

• Choose a random element r such that gcd(r, p) = 1, r ∈ (0, p) and r ∈ Z∗p .

• Compute ε(msg) = gmsg · rp mod p2.

Figure 4.11: Encryption function in Paillier Homomorphic Encryption
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4.2.3.3 Evaluation

The steps required to perform addition of two original values in Paillier scheme [42] is

shown in Figure. 4.12. The addition of two original values can be obtained by the decryp-

tion of multiplication of two encrypted values.

ε(R)←− Eval(ε(a), ε(b), k)

Input: p, encrypted values ε(a), ε(b), constant k

Output: Computed result ε(R)

The addition of two values can be computed as

ε(R) = add(a, b) = ε(a) · ε(b) mod p2

where r1, r2 are the random values considered in encryption function.

The multiplication of the original value with a constant can be computed by raising

the encrypted value to the constant.

ε(R) = ε(a)k mod p2

Figure 4.12: Evaluation function in Paillier Homomorphic Encryption

4.2.3.4 Decryption

The function to decrypt the encrypted value in Paillier scheme [42] is shown in Figure.

4.13. It takes the encrypted value ε(msg) and secret key Sk as input and produces the

original value msg as output.
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msg←− Dec(Sk, ε(msg))

Input: Secret key (Sk), Encrypted message ε(msg)

Output: message msg

Compute msg = I(ε(msg)λ mod p2) · φ mod p

Figure 4.13: Decryption function in Paillier Homomorphic Encryption

The random number introduced in the encryption process provides the randomness to

the encryption result of Paillier. Therefore, Paillier resists chosen plaintext attacks (CPA).

The template obtained in section 4.2.2 is encrypted using the Enc function given in Figure.

4.11.

Properties of Paillier HE:

Property 1: Given two encrypted values ε(m1) = Enc(Pk,m1) and ε(m2) = Enc(Pk,m2)

for messages m1 and m2, decryption of multiplication of the two encrypted values, results

in the addition of two original messages and is given in the equation (4.11).

DSk
(ε(m1) · ε(m2) mod p

2) = m1 +m2 mod p (4.11)

Property 2: Given an encrypted value ε(m) = Enc(Pk,m) for a message m and a constant

k, decryption of encrypted value raised to a constant results in the multiplication of the

original message and the constant and is given in the equation (4.12).

Dsk(ε(m)k mod p2) = m · k mod p (4.12)

4.2.4 Encrypted Distance Computation & Verifying the Correctness

of Result

This section describes the computation of Manhattan distance on the encrypted values and

a verification procedure to check the correctness of the result returned by the cloud server.
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4.2.4.1 Encrypted Distance Computation

SviaPA considered Manhattan distance to compare the reference and probe iris templates.

The distance Sman = dman(X , Y ) can be precisely calculated on the original values by using

equation (4.13)

Sman = |X − Y | (4.13)

The cloud server calculates the distance on the encrypted values by using equation (4.11)

& equation (4.12) and send to the public auditor.

Sman =
M∑
i=1

|X[i]− Y [i]|

=
M∑
i=1

|X[i] + (−1) · Y [i])|

ε(Sman) =
M∏
i=1

ε(X[i]) · ε(Y [i])−1 mod p2

ε(Sman) =
M∏
i=1

ε(X[i]) · ε(Y [i])−1 mod p2 (4.14)

ε(Y )−1 represents the multiplicative inverse of ε(Y ) in the integers modulo p. If the vector

Y contains smaller values than X , then after decryption the correct subtraction result will

come. On the other hand, if the vector Y contains larger values than X , then after decryp-

tion, the result lies in between 0 and p-1. The obtained result will be subtracted from p to

get the correct subtraction result. For example, if the result is -1, then we will get p-1 as a

result after decryption. So, to get -1 as a result, return p-1-p as a result after decryption.

4.2.4.2 Verifying the Correctness of Result

The distances between Xi and Y are given by

d = {ri/ri =
M∑
j=1

(Xi[j] + Y [j]),∀ i = 1 to N} (4.15)
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Y [j] is the multiplicative inverse integers in the modulo p. The cloud server computes

the Manhattan distances on the encrypted values, ε(d) = ε(ri),∀ i = 1 to N between

ε(Xi) ∀ i = 1 to N and ε(Y ) by using the properties of Paillier. The distances on the

encrypted values are given in equation (4.16).

ε(d) = {ε(ri)/ε(ri) =
M∏
j=1

(ε(Xi[j]) · ε(Y [j])),∀ i = 1 to N} (4.16)

Since both the reference and the probe templates are in encrypted form, the privacy of iris

templates, i.e., user privacy is maintained. The verification scheme allows the public audi-

tor to check the correctness of ε(d) returned by the cloud server.

Generation of encrypted verification vector (ε(Zn+1)): After the enrollment phase, the

trusted authenticator constructs the encrypted verification vector using ε(Xi),∀ i = 1 to N

returned by the cloud server. The encrypted verification vector helps the public auditor to

check the correctness of the Manhattan distances. Let ε(Zn+1) be the encrypted verification

vector and is computed on the encrypted values by using equation (4.11).

Zn+1[j] =
N∑
i=1

(Xi[j] + vi), ∀ j = 1 to M

ε(Zn+1[j]) =
N∏
i=1

(ε(Xi[j]) · ε(vi)), ∀ j = 1 to M

(4.17)

where, vi ∀ i = 1 to N are the random integers, and ε(V ) = (ε(v1), ε(v2), ..., ε(vN)).

As long as the secret key is secure, encrypted verification vector is also secure and its

security relies on the hardness of DCRA. The steps involved in the generation of encrypted

verification vector are given in Algorithm 4.5. The trusted authenticator implements the

Algorithm 4.5 after the training phase. The verification vector denoted as Zn+1 with same

dimension of Xi is initialized to (1, 1, ..., 1). Encrypt Zn+1 using the public key Pk. The

function randomInteger() generates a random value vi. Encrypt vi using the public key Pk.

The random value generated in each and every iteration is encrypted with different public

keys. The keys used to encrypt vi are completely different from the keys used to encrypt iris
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Algorithm 4.5 Generation of Encrypted Verification Vector in SviaPA
Input: ε(X1), ε(X2), . . . , ε(XN),
Output: ε(Zn+1), ε(V )

1: begin
2: Zn+1 = (1, 1, ..., 1)
3: for i← 1 to N do
4: vi ← randomInteger()
5: ε(vi)← Enc(Pk, vi)
6: end for
7: for j ← 1 to M do
8: ε(Zn+1[j])← Enc(Pk, Zn+1[j])
9: for i← 1 to N do

10: ε(tmp)← multiply(ε(Xi[j]), ε(vi))
11: ε(Zn+1[j])← multiply(ε(Zn+1[j]), tmp)
12: end for
13: end for
14: ε(Zn+1) = (ε(Zn+1[1]), ε(Zn+1[2]), ..., ε(Zn+1[M ]))
15: ε(V ) = (ε(v1), ε(v2), ..., ε(vN))
16: return (ε(Zn+1), ε(V ))
17: end

templates by client device. multiply function is used to achieve the property 1 of Paillier.

The function multiply is called to perform the multiplication between jth value of en-

crypted reference template ε(Xi) and encrypted random value ε(vi), where i varies from 1

to N . ε(tmp) stores the multiplication result. The function multiply is called to perform

the multiplication between ε(Zn+1) and ε(tmp). After the completion of M iterations, the

encrypted verification vector ε(Zn+1) which is shown in equation (4.17) is obtained. TheN

random values are assigned to ε(V ). After the enrollment phase, the trusted authenticator

send ε(Zn+1) and ε(V ) to the public auditor.

Ensuring the correctness of Manhattan distance: The public auditor checks the cor-

rectness of Manhattan distances ε(d) using the ε(Zn+1), ε(Y ) and ε(V ). The verification

scheme checks the correctness of the result on the encrypted values itself; as a result, any-

one can perform the correctness of the ε(d) without the private information of the user. The

steps involved to check the correctness of Manhattan distances are described in Algorithm

4.6.
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Algorithm 4.6 Correctness of result in SviaPA
Input: ε(Zn+1), ε(V ), ε(Y ), ε(d)
Output: Zero or Non-Zero

1: begin
2: D1 = 1
3: ε(D1)← Enc(Pk, D1)
4: for j ← 1 to M do
5: ε(tmpj)← mul const(ε(Y [j]), N)
6: ε(tempj)← multiply(ε(Zn+1[j]), ε(tmpj))
7: ε(D1)← multiply(ε(D1), ε(tempj))
8: end for
9: D2 = 1

10: ε(D2)← Enc(Pk, D2)
11: for i← 1 to N do
12: ε(ti)← mul const(ε(vi),M)
13: ε(tei)← multiply(ε(ri), ε(ti))
14: ε(D2)← multiply(ε(D2), ε(tei))
15: end for
16:
17: D1← Dec(Sk, ε(D1))
18: D2← Dec(Sk, ε(D2))
19: return (ε(D1)− ε(D2))
20: end

The steps (4-8) of Algorithm 4.6 computes ε(D1) =
∏M

j=1(ε(Zn+1[j]) · ε(Y [j])N).

The steps (11-15) of Algorithm 4.6 computes ε(D2) =
∏N

i=1(ε(ri) · ε(vi)M). The public

auditor decrypt ε(D1) and ε(D2). The keys used to encrypt/decrypt D1 & D2 by pub-

lic auditor are completely different from the keys used to encrypt iris templates by client

device. mul const is called to perform encrypted value raised to a constant value which

results in multiplication of constant and corresponding plaintext value. Finally, compute

D1 − D2 and send the result to trusted authenticator. If the result is a zero value, the

Manhattan distances ε(d) returned by the cloud server are considered to be correct. For

better clarity, First, we prove that the D1 and D2 are same in the normal domain by using

the equation (4.16), equation (4.17) and some algebraic properties of vectors. Later, we

use the properties of Paillier, i.e., equation (4.11) and equation (4.12) to achieve the same

on the encrypted values. If the verification succeeds then the Manhattan distances ε(d) is

considered correct. So, the trusted authenticator finds the value with index id given by the
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end-user from ε(d). The value is compared with a threshold, τ to determine whether the

user is genuine or not.

The time required to compute the N Manhattan distances between iris templates Xi

and Y , each of dimension M is O(NM). We excluded the time required to compute Zn+1

as it is computed only once after the enrollment phase. The time required to compute D1

and D2 are O(M) and O(N). The total time required for verification of computed result

returned by the cloud server isO(N +M), which is less than the time required to compute

the distances. The steps to check whether D1 and D2 are given below.

D1 =
M∑
j=1

(Zn+1[j]) +NY [j])

=
M∑
j=1

(
N∑
i=1

(Xi[j] + vi) +NY [j]) //Using equation(4.17)

=
M∑
j=1

(
N∑
i=1

Xi[j] +
N∑
i=1

vi +NY [j])

=
M∑
j=1

N∑
i=1

Xi[j] +
M∑
j=1

N∑
i=1

vi +
M∑
j=1

N∑
i=1

Y [j]

=
N∑
i=1

(
M∑
j=1

Xi[j] +
M∑
j=1

Y [j] +
M∑
j=1

vi)

=
N∑
i=1

(
M∑
j=1

(Xi[j] + Y [j]) +Mvi)

=
N∑
i=1

(ri +Mvi) //Using equation(4.15)

= D2

D1 and D2 can be realized on the encrypted values by using equation (4.11) and (4.12) as

follows.

ε(D1) =
M∏
j=1

(ε(Zn+1[j])) · ε(Y [j])N)

ε(D2) =
N∏
i=1

(ε(ri)) · ε(vi)M)
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The proof to check ε(D1) = ε(D2) are similar to the steps in the normal domain.

4.2.5 Limitations of SviaPA

In SviaPA, we introduce a public auditor as a third party to check the correctness of result

returned by the cloud server. The limitations of SviaPA are as follows:

• SviaPA assume that the public auditor is Honest-but-Curious, means the public au-

ditor follows the verification protocol honestly but curious to know the information.

Our verification scheme performs on the encrypted data; as a result, it is difficult for

the public auditor to know the original data. However, if the public auditor is a ma-

licious entity and returns an incorrect verification result, then the imposter may get

access into the system.

• The trusted authenticator compute ε(Zn+1) by using ε(Xi), as a result the number

of users are fixed in SviaPA. If a new user wants to authenticate using SviaPA, then

ε(Zn+1) need to be recomputed by including the new user template.

• SviaPA require extra time to verify the correctness of the Manhattan distances re-

turned by the cloud server.

4.3 SviaB: Secure and Verifiable Multi-Instance Iris Au-

thentication using Blockchain

SviaB leverage emerging technologies like Blockchain and smart contract to overcome the

limitations of SviaPA discussed in section 4.2.5. Blockchain has been developed to allow

decentralized consensus between two non-trusting agents. Autoencoder is used in SviaB as

a dimensionality reduction technique to overcome the limitations of BMIAE discussed in

section 4.1.5. SviaB is the first multi-instance iris authentication system to combine Paillier

HE and Blockchain technology to achieve privacy and integrity against malicious comput-

ing server. SviaB focuses on achieving both the confidentiality of fused iris templates and

integrity of fused reference iris templates as well as the trust of the matching result. The
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privacy of iris templates is achieved by encrypting the iris templates using Paillier HE [42].

The smart contract running on a Blockchain network computes the distance between the

encrypted reference template and encrypted probe template; hence, the integrity of compu-

tation is achieved.

Assumptions of SviaB:

SviaB assume the following:

• During the enrollment/authentication phase, the client device is fully trusted and has

limited memory and computational resources.

• The trusted authenticator is a trusted entity which generates the secret and public

keys differently for each user. The secret keys of the users are stored securely and

broadcast the public keys to the client device.

• The server & client device need not store the entire ledger of the Blockchain network.

• The consensus algorithm of the Blockchain is secure & robust against security attacks

of the Blockchain.

• The contract address of the smart contract is shared with the server & the client device

prior to the enrollment phase.

Since the data present in the Blockchain is visible to all the nodes present in the

Blockchain, privacy problem may exist. To overcome this limitation, SviaB encrypts the

fused templates using Paillier HE before sending to the Blockchain. As long as the secret

key used to decrypt the template is secure, even if the encrypted templates are exposed,

SviaB is secure due to the hardness of computation of DCRA. In Blockchain, the stor-

age cost is expensive when compared to computation [119]. To overcome this limitation,

SviaB stores only the hash value of the encrypted reference templates in the Blockchain

and stores the encrypted reference templates in the server itself.

The flow diagram for SviaB is shown in Figure. 4.14. SviaB consists of two phases,

namely enrollment phase and authentication phase whose participants are a client device,

a centralized server and a Blockchain network. The steps involved in the enrollment and
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Figure 4.14: Block diagram of SviaB. The dashed line and Solid line indicates the steps
during enrollment and the authentication phases.

authentication phases for SviaB are described in Algorithm 4.7 and Algorithm 4.8. The

phases like Fusion, Reducing the dimensions of the iris template and ensuring the con-

fidentiality for the iris templates are the same as SviaPA. The formal smart contract to

achieve the integrity of encrypted reference iris template and trust on the computed dis-

tance is shown in Figure. 4.8.

4.4 Implementation details and Security Analysis

The following measures are used to evaluate the efficiency of a biometric system according

to biometric information protection [23].

1. Performance evaluation in terms of EER, d’ and KS-test.

2. Irreversibility and Unlinkability Analysis.
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Algorithm 4.7 Enrollment Phase of SviaB
Input: Reference left and right iris images of ith user.

1: Trusted authenticator generate the public key, Pk and secret key Sk.
2: Client device generates the left & right iris templates from the reference left & right iris

images using University of Salzburg tool kit [58]. It also acquires the corresponding
user identifier, id of the end user U .

3: Client device performs the fusion of iris codes, Fi and send Fi to trusted authenticator.
//Refer section 4.1.1.1

4: Trusted authenticator reduces the dimensions of Fi to improve the performance of the
system and send the reference fused compressed template, Xi to the client device.
//Refer section 4.2.2

5: Client device encrypts Xi and sends the encrypted reference fused compressed iris
template, ε(Xi) along with id to cloud server and Blockchain. //Refer section 4.2.3.2

6: The Blockchain computes the hash value of ε(Xi), Hr and stores Hr along with id.
(Since the storage in the Blockchain is more expensive than computation, SviaB stores
the hash value of encrypted reference templates in Blockchain and encrypted reference
templates in the server.)

Algorithm 4.8 Authentication Phase of SviaB
Input: Probe left and right iris images, User identifier id of the end user U
Output: Accept or Reject

1: Client device generates the left & right iris templates from the probe left & right iris
images using University of Salzburg tool kit [58]. It also acquires the identifier, id of
the end-user.

2: Client device performs the fusion of iris codes, G and send G to trusted authenticator.
//Refer section 4.1.1.1

3: Trusted authenticator reduces the dimensions of G to improve the performance of the
system and send the compressed template, Y to the client device. //Refer section 4.2.2

4: Client device encrypts Y and sends the encrypted probe fused compressed iris tem-
plate, ε(Y ) along with id to the Blockchain. //Refer section 4.2.3.2

5: The Blockchain retrieves ε(Xi) from server using id.
6: The Blockchain computes the hash value of retrieved ε(Xi), Hp.
7: The Blockchain comparesHr andHp. If the hash values are differ then the Blockchain

will inform to the client device that the server database is compromised otherwise it
computes the distance, ε(s) and send to the trusted authenticator.

8: The trusted authenticator decrypts the distance, ε(s) using the secret key Sk and ob-
tains R. The trusted authenticator compares R with τ and decides whether the user is
genuine or not.
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3. Computational cost in terms of time taken to perform operations.

4.4.1 Performance Evaluation of BMIAE, SviaPA and SviaB

The EER obtained for only left iris (OLI), only right iris (ORI), fused iris (FT) and fused

compressed iris template (FCT) in unprotected and protected systems for BMIAE, SviaPA

and SviaPB are shown in Table 4.2 & Table 4.3. We observe that there is no loss of accuracy

in the protected system from Table 4.2 & Table 4.3.

Table 4.2: EER obtained in unprotected system for BMIAE, SviaPA and SviaB

Database OLI ORI FT FCT

BMIAE SviaPA SviaB

CASIA-V3-Interval 3.26 4.41 0.31 0.13 0.31 0.31

IITD 4.41 4.15 0.86 0.88 0.86 0.86

SDUMLA-HMT 2.10 1.28 0.13 0.0002 0.13 0.13

Table 4.3: EER obtained in protected system for BMIAE, SviaPA and SviaB

Database OLI ORI FT FCT

BMIAE SviaPA SviaB

CASIA-V3-Interval 3.26 4.41 0.31 0.13 0.31 0.31

IITD 4.41 4.15 0.86 0.88 0.86 0.86

SDUMLA-HMT 2.10 1.28 0.13 0.0002 0.13 0.13

The baseline comparison of EER, storage cost and time for BMIAE, SviaPA & SviaB

are shown in Table 4.4, Table 4.5. The unprotected and uncompressed template (UUT)

indicates the template without compression and encryption, compressed and unprotected

template (CUT) indicates the template with compression and without encryption, and com-

pressed and protected template (CPT) indicates the template with compression and encryp-

tion. We can infer from Table 4.4 and Table 4.5 that there is no degradation of accuracy

with BMIAE, SviaPA/SviaB. The same EER can be obtained if the distance is computed

either in the Blockchain or in a server. So, the DET curves, EER, d′, & KS-test values are

same for SviaPA and SviaB.
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Table 4.4: Baseline Comparison in terms of Storage cost (in Kilo Bytes (KB)), EER and
Time (Average in seconds) for BMIAE

Database Template type Template
size

Storage
cost

EER
(%)

Time

CASIA-
V3-
Interval

UUT and distance computation in
server

20480 228 0.31 0.035

CUT and distance computation in
server

1280 25 0.13 0.009

CPT and distance computation in
server

1280 25 0.13 0.062

CPT and distance computation in
Blockchain

1280 - 0.13 6.0254

IITD

UUT and distance computation in
server

20480 413 0.86 0.054

CUT and distance computation in
server

2560 88 0.88 0.023

CPT and distance computation in
server

2560 88 0.88 0.12729

CPT and distance computation in
Blockchain

2560 - 0.88 10.0472

SDUMLA-
HMT

UUT and distance computation in
server

20480 207.5 0.13 0.048

CUT and distance computation in
server

2560 23 0.0002 0.021

CPT and distance computation in
server

2560 23 0.0002 0.1163

CPT and distance computation in
Blockchain

2560 - 0.0002 10.0462

The DET curves of BMIAE for different databases are shown in Figure. 4.15. The sepa-

rability measures (d’ & KS-test values) and EER on encrypted data of BMIAE for differ-

ent databases are shown in Figure. 4.16. The DET curves of SviaPA/SviaB for different

databases are shown in Figure. 4.17. The separability measures (d’ & KS-test values) and

EER on encrypted data of SviaPA/SviaB for different databases are shown in Figure. 4.18.

The clear separation between genuine and imposter scores of BMIAE and SviaPA/SviaB

for different databases are shown in Figure. 4.19 and Figure. 4.20.
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Table 4.5: Baseline Comparison in terms of Storage cost (in Kilo Bytes (KB)), EER and
Time (Average in seconds) for SviaPA and SviaB

Database Template type Template
size

Storage
cost

EER
(%)

Time

CASIA-
V3-
Interval

UUT and distance computation in
server

20480 228 0.31 0.035

CUT and distance computation in
server

128 12 0.31 0.0094

CPT and distance computation in
server (SviaPA)

128 58 0.31 0.33

CPT and distance computation in
Blockchain (SviaB)

128 - 0.31 1.33

IITD

UUT and distance computation in
server

20480 413 0.86 0.054

CUT and distance computation in
server

128 88 0.88 0.094

CPT and distance computation in
server (SviaPA)

128 88 0.86 0.33

CPT and distance computation in
Blockchain (SviaB)

128 - 0.86 1.33

SDUMLA-
HMT

UUT and distance computation in
server

20480 207.5 0.13 0.048

CUT and distance computation in
server

128 10.5 0.13 0.0094

CPT and distance computation in
server (SviaPA)

128 40 0.13 0.33

CPT and distance computation in
Blockchain (SviaB)

128 - 0.13 1.33

4.4.2 Security Analysis of BMIAE, SviaPA and SviaB

The template protection method must satisfy the requirements of irreversibility, revocability

and unlinkability to ensure the privacy of the iris templates. The vulnerability of attacks in

BMIAE can occur in the following entries:

1. The server.
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Figure 4.15: DET curves of BMIAE for (a) CASIA-V3-Interval, (b) IITD, (c) SDUMLA-
HMT databases

2. The client device.

3. The communication channel between the server/Blockchain network and the client

device.

4. Blockchain network

In BMIAE, the client device extracts the features of the iris image, and the secret key is

also stored in the client device. Hence, security is to be ensured for the client device.

As, we assume the client device is a trusted entity, the keys and features of iris image are

secure. The server only stores the templates which are encrypted using ElGamal and the

hash value of the encrypted templates is stored in smart contract. Since the security of

ElGamal depends on the apparent hardness of solving the discrete logarithm problem on

a cyclic group, the iris templates stored in the server database are secure. It isn’t easy to

decrypt the encrypted iris templates without the secret key. As a result, the communication

channel is also reliable.

The vulnerability of attacks in SviaPA and SviaB can occur in the following entries:
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Figure 4.16: EER, Separability Measures (d′ and KS test) of BMIAE for CASIA-V3-
Interval, IITD and SDUMLA-HMT databases
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Figure 4.17: DET curves of SviaPA or SviaB for (a) CASIA-V3-Interval, (b) IITD, (c)
SDUMLA-HMT databases
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Figure 4.18: EER, Separability Measures (d′ and KS test) of SviaPA or SviaB for CASIA-
V3-Interval, IITD and SDUMLA-HMT databases

1. The cloud server.

2. The client device.

3. The communication channel between the server and the client device.

4. Blockchain network.

5. The trusted authenticator

6. The public auditor.

In SviaPA/SviaB, the client device extracts the features from the iris image. Hence, security

is to be ensured for the client device. SviaPA/SviaB assume that the client device is a trusted

entity. The trusted authenticator generates the keys needed for encryption and decryption.

SviaPA and SviaB assume that the trusted authenticator is also a trusted entity. In SviaB, the

server only stores the templates which are encrypted using Paillier and the smart contract

only stores the hash of the encrypted templates. The security of the Paillier HE relies on

the hardness of solving the decisional composite residuosity assumption (DCRA). The data

is always secure even if an attacker attacks the communication channel because encrypted

iris template cannot be decrypted without a secret key. The encrypted iris templates in

the cloud server are secure since the security of both SviaPA and SviaB depends on the
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Figure 4.19: Genuine and Imposter distributions of BMIAE for (a) CASIA-V3-Interval (b)
IITD and (c) SDUMLA-HMT databases
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Figure 4.20: Genuine and Imposter distributions of SviaPA/SviaB for (a) CASIA-V3-
Interval (b) IITD and (c) SDUMLA-HMT databases
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DCRA. The public auditor in SviaPA verifies the computation result without using the

private information of the user.

Irreversibiltiy Analysis: Irreversibility refers to obtaining the original template from the

encrypted template.

In BMIAE and SviaB, the client device sends the encrypted reference template of a user

to the server and the smart contract during the enrollment phase. The encrypted reference

template is stored in the server wheres hash value of the encrypted reference template is

stored in the smart contract. The client device sends the encrypted probe template to the

Blockchain during the authentication phase. The smart contract retrieves the encrypted

reference template from the server and computes the distance between encrypted reference

and encrypted probe iris templates. The smart contract sends the computed encrypted result

to the client device. Only the client device has the secret key (Sk) to decrypt the result. As

the BMIAE uses ElGamal HE scheme [39] to protect the templates, and the security of

ElGamal scheme relies on solving the discrete logarithm problem, it is computationally

infeasible to decrypt the templates by the server or an imposter without secret key (Sk).

Therefore, BMIAE satisfies the irreversibility property. As the SviaB uses Paillier HE

scheme [42] to protect the templates, and the security of Paillier scheme relies on solving

the DCRA, it is computationally infeasible to decrypt the templates by the server or an

imposter without secret key (Sk). Therefore, SviaB satisfies the irreversibility property.

In SviaPA, during the enrollment phase, the cloud server stores the encrypted reference

templates. During the authentication phase, the client device sends the encrypted probe

template to the server to calculate the distances. The server computes the Manhattan dis-

tances and sends the computed encrypted result to the public auditor. The trusted authenti-

cator sends the ε(Zn+1) and ε(V ) to the public auditor; as a result, the reference templates

cannot be accessed by the auditor. The public auditor checks the correctness of the com-

puted result without using the secret information of the user. The trusted authenticator can

decrypt the result with the secret key (Sk). As mentioned earlier, it is computationally in-

feasible to decrypt the templates without secret key (Sk). The security of SviaPA depends

on solving the DCRA, which is an NP-Hard. Hence SviaPA satisfies the property of irre-

versibility requirement standards.
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Revocability: Revocability ensures that a new protected template should be generated by

the protection method if the old template is compromised or stolen. In BMIAE, SviaPA &

SviaB, Revocability can be achieved by re-encrypting the samples in the database with a

new key pair (P ′k, S ′k) instead of acquiring the new samples from the users.

Unlinkability: Unlinkability ensures that there won’t be any correlation between the pro-

tected templates used in different applications. Elgamal, Paillier schemes used in BMIAE,

SviaPA/SviaB are based on probabilistic encryption. Due to the randomness involved in

bothe ElGamal & Paillier schemes, different ciphertexts can be generated even if the same

message is encrypted multiple times with the same key, and there won’t exist any similarity

between the generated ciphertexts.

4.4.3 Computational Analysis of BMIAE, SviaPA and SviaB

The computational cost in terms of time, cost and number of the operations is discussed in

the following sections.

4.4.3.1 Computational cost in terms of time & cost

The time required to perform the encryption/decryption of BMIAE, SviaPA/SviaB on dif-

ferent databases is shown in Table 4.6. The computation cost & time required to execute

operations in a smart contract in units of gas & dollars and in units of seconds are shown

in Table 4.7. The reduced iris code size is the same for all considered databases in Svi-

aPA/SviaB, whereas the iris code size varies for each database in BMIAE to obtain optimal

accuracy. Therefore, in Table 4.6, the encryption/decryption time is same for all databases

in SviaPA/SviaB. The comparison of time to compute the distance in the Blockchain and

the server is illustrated in Table 4.4 & Table 4.5. The increase in the computation provides

an enhanced functionality (i.e., trust on the computed distance without any third party) to

SviaB & BMIAE.
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Table 4.6: Computational cost (for encryption and decryption (Average in secs)

Method Database Template size Encryption Decryption

BMIAE

CASIA-V3-Interval 1280 0.0184 0.007

IITD 2560 0.03521 0.012

SDUMLA-HMT 2560 0.03519 0.011

SviaPA/SviaB - 128 0.00242 0.00001

4.4.3.2 Computational cost in terms of number of operations

The privacy of the fused reference and probe iris templates in BMIAE, SviaPA and SviaB

are ensured by performing the encryption using Pk before sending to the server/Blockchain.

The client device or trusted authenticator needs to perform only one encryption and de-

cryption in BMIAE or SviaPA/SviaB. The number of exponentiation, multiplications, and

encryptions/decryptions required in BMIAE, SviaPA and SviaB for different databases are

shown in Table 4.8.

• As, BMIAE and SviaB are verification systems, they need to compute the distance

between the probe & corresponding reference template associated with id only.

• SviaPA need to compute N Manhattan distances between the probe and each refer-

ence template. So, a single distance is multiplied by the number of reference tem-

plates. We include the computational cost of distance computation only and exclude

the cost required to check the correctness of the result.

4.4.4 Comparison Analysis of BMIAE, SviaPA and SviaB with exist-

ing methods

The EER comparison of BMIAE, SviaPA/SviaB with state-of-the-art works is shown in Ta-

ble 4.9. We can infer that BMIAE, SviaPA/SviaB shows better EER value when compared
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Table 4.8: Computational cost in terms of number of operations

Compute
distance

CASIA-
V3-Interval

IITD SDUMLA-HMT

BMIAE
Enc/Dec 1/1 1/1 1/1 1/1

Multiplications 2M -1 2559 5119 5119

Exponentiations 0 0 0 0

SviaPA
Enc/Dec 1/1 1/1 1/1 1/1

Multiplications 2MN -1 29,339 53,247 27,135

Exponentiations MN 14,720 26,624 13,568

SviaB
Enc/Dec 1/1 1/1 1/1 1/1

Multiplications 2M -1 255 255 255

Exponentiations M 128 128 128

Table 4.9: Comparison of BMIAE, SviaPA & SviaB with existing approaches (EER in
terms of %)

CASIA-
V3-Interval

Dwivedi, R. et al., [140] 0.43

Lai, Y.L. et al., [144] 0.54

Punithavathi, P et al., [141] 1.9

Soliman, R.F et al., [145] 0.63

Zhao, D. et al., [146] 1.03

Sadhya, D. et al., [148] 0.105

BMIAE 0.13
SviaPA (or) SviaB 0.31

IITD

Rathgeb, C., Busch, C. [156] 0.43

Punithavathi, P et al., [141] 3.3

Gomez-Barrero, M. et al., [150] 0.7

Sadhya, D. et al., [148] 1.4

BMIAE 0.88
SviaPA (or) SviaB 0.86

SDUMLA-
HMT

Gad, R et al. [143] 0.300

Kamalskar, C et al. [151] 2.5947

BMIAE 0.0002
SviaPA (or) SviaB 0.13
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to other existing works. The d’ comparison of BMIAE, SviaPA/SviaB with the existing

approaches are shown in Table 4.10. We can infer from Table 4.10 that the genuine and im-

poster scores are well separated when compared to other works. The advantage of BMIAE,

SviaPA and SviaB when compared to other template protection schemes is shown in Table

4.11. BMIAE, SviaPA and SviaB satisfies the properties of template protection schemes

and also provides trust to the user that the cloud server/Blockchain computes the distance

honestly.

Table 4.10: Comparison of BMIAE, SviaPA & SviaB with other approaches (in terms of
Separability measure (d’))

CASIA-V3-Interval IITD

Sadhya, D. et al., [148] 2.39 2.92

Walia, G.S. et al., [152] - 1.9578

BMIAE 4.3784 4.3786
SviaPA (or) SviaB 4.3257 4.3877

Table 4.11: Comparison of biometric template protection schemes with BMIAE, SviaPA
& SviaB

Scheme Irreversibility Diversity Accuracy Verification
of Result

Cancelable Biometrics + + - ×
Biometric cryptosystems - - - ×

Homomorphic Encryption + ± + ×
BMIAE + + + +

SviaPA + + + +

SviaB + + + +

+, -, and × indicates strongly achieved, weakly achieved and not achieved
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4.5 Summary

In this chapter, three multi-instance iris authentication systems, namely BMIAE, SviaPA

& SviaB are proposed to provide privacy to the iris templates and trust on the comparator

result. Two different partial HE schemes, namely Paillier and ElGamal, are used to provide

the privacy of the iris templates. In BMIAE & SviaB, a smart contract is used to check

the similarity between encrypted reference & probe iris templates. The comparator result

returned by the cloud server is verified by the public auditor in SviaPA to check whether

the cloud server performs computation correctly or not. The privacy & expensive storage

limitations of Blockchain for biometrics are addressed in BMIAE & SviaB. The limitations

of BMIAE & SviaPA are addressed in SviaB. Experimental results prove the significance

& validity of BMIAE, SviaPA & SviaB.
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Chapter 5

Privacy-preserving Machine Learning

based Iris Authentication on untrusted

Cloud Server using FHE Scheme

The literature study about machine learning classification on encrypted data reveals that

either training or classification is performed on unencrypted data leads to loss of privacy in

user’s data. The main contributions of this chapter are described below:

• A secure and verifiable machine learning-based iris authentication method (SvaS)

is proposed. SvaS performs both privacy-preserving (PP) training & classification

phases on the encrypted data. The public verifier can verify the correctness of the

classification result computed by the cloud server by using a verification proce-

dure. The nearest neighbor & multi-class perceptron classification algorithms are

implemented on encrypted data and proposed two algorithms, namely private nearest

neighbor (PNN) and private multi-class perceptron (PMCP).

• Proposed a feature level fusion technique, namely Contradistinguish Similarity Anal-

ysis (CSA) which increases the correlations between samples of different class and

reduces the correlations between samples of the same class. It also includes a ver-

ification procedure by using polynomial factorization algorithm to verify the result

returned by the cloud server.
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5.1 Preliminaries

5.1.1 Classification in machine learning algorithms:

Suppose the user possess d-dimensional feature vector x, x=(xi)i=0,1,2,...,d−1, where xi ∈

Rd. To classify the input x, the classification algorithm Cw(x) : Rd 7 −→ Ck∗ is evaluated

using the model w, where k∗ ∈ [ 0, c ) c is the number of classes. The formal definitions

of two most popular classifiers namely Nearest Neighbor and Multi-class Perceptron on

unencrypted data are described in the following sections.

5.1.1.1 Nearest Neighbor (NN):

NN is a non-parametric supervised classification algorithm [157, 158, 159]. During the

training phase, the model stores all the training instances to make future predictions. During

the classification phase, to predict the class of the probe instance, a distance measure is used

between the test instance and each training instance. The most commonly used distance

measures are Manhattan, Hamming, Minkowski, Chebyshev or Euclidean distance [160].

SvaS used the Manhattan distance as a distance measure which is widely used. The Model

(w) selects the instance among the training instances, which is nearer to the test instance.

The class label of the nearest instance will be the class label of the test instance. Suppose

X1,X2, . . .,XN are theN training reference templates with eachXi having d features, and

Y is the probe template with d dimensions. Equation (5.1) gives the classification result of

the probe template (Y ).

Ck∗ = argmini∈[0,N)

d∑
j=1

|Xij − Yj| (5.1)

where argmin outputs the index i1, i2, .., iN that makes
∑d

j=1 |Xij − Yj| as small as possi-

ble.
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Figure 5.1: Perceptron for Multi-class Classification. wi:1, wi:2, ..., wi:d is the weight vector
for the ith class and x1, x2, ..., xd is the feature vector.

5.1.1.2 Multi-class Perceptron (MCP):

The MCP classifier [161, 162] is based on the biological model of a neuron, and it’s activa-

tion value. The feature vector is multiplied (dot product) with many weight vectors. Each

weight vector belongs to a class. The class label of a weight vector which yields the highest

product value is the class label of the test instance. The equation to find the dot product

between a feature vector and weight vector is given in the equation (5.2), where xj , Wi:j

are the feature vector, ith weight vector, j ∈ [1, d] and Bias is a constant which helps the

model in a way that it can fit best for the given data.

Ci =
d∑
j=1

xj.Wi:j +Bias (5.2)

The classification result of the test instance in MCP is given in the equation (5.3). The

example of MCP is shown in Figure. 5.1.

Cw = argmaxi∈[0,N)Ci (5.3)

where argmax function produces the value of i with the highest Ci value as output.
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5.2 SvaS: Secure and Verifiable Machine Learning based

Iris Authentication System

SvaS uses the machine learning classification to authenticate a person. The block diagram

of SvaS is shown in Figure. 5.2. SvaS involves four entities, namely authentication server,

cloud server, client device and public verifier. The role of authentication server is to 1) Gen-

erate secret (Sk) and public (Pk) keys. 2) Send accept/reject decision to the client device.

The cloud server provides the classification service and storage to the client device. The

cloud server builds a private machine learning model in the training phase and classifies

the end-user using the generated model in the testing phase. The false accept/reject may

happen if the cloud server doesn’t perform the computations honestly. So, the correctness

of the classification result computed by the cloud server is verified by the public verifier to

avoid false acceptances/rejections. SvaS consists of enrollment and authentication phases.

The steps involved in these phases are illustrated in Algorithm 5.1 & Algorithm 5.2.

Assumptions of SvaS

SvaS assume the following

• The client device is a trusted entity and has limited memory and computational re-

sources.

• The authentication server is a trusted entity and generates the public, secret keys. The

public and secret keys are different for each user. It broadcasts the public keys to the

system, and the secret keys of the users are stored securely.

• The cloud server doesn’t perform the computations honestly.

• The public verifier is only trusted to check the correctness of ε(R).

5.2.1 Generation of Iris Code

This section consists of two phases, namely compression of iris template and encoding

scheme. The iris template is first compressed and then encoded using the batching scheme
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Figure 5.2: Block diagram of Secure and Verifiable Machine Learning based Iris Authenti-
cation System (SvaS)

to improve the performance of the system in terms of computational time. The size of the

iris code is reduced by using the compression technique discussed in section 4.1.1.2. So,

the 10240-bit binary vector is grouped into blocks of size v by using equation (4.2). v

denotes the size of the block, and SvaS consider 4, 8, and 16 as v values. We can infer

from Figure. 5.3 that there is a slight variation of accuracy between the actual iris code

of size 1 × 10240 and compressed iris code of size 1 × 2560 for both MCP and NN. The

computational time is less for compressed iris code when compared to original iris code.

Hence, SvaS considers the 2560-bit iris template as a feature vector instead of the original

iris code for further operations.

The compressed iris templates are encoded using the batching scheme described in

section 3.1.3. The encoded polynomial is encrypted using the BFV scheme [72] described

in section 3.2.1.2 to ensure the confidentiality of iris templates.
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Algorithm 5.1 Enrollment Phase of SvaS
Input: Reference iris image of ith user, Corresponding class label l

1: Client device generates the iris template from the reference iris image using University
of Salzburg tool kit [58].

2: Client device generates the compressed iris template, Xi as described in section 5.2.1
and encode the reduced iris template as described in section 3.1.3.

3: Authentication server generate the public key, Pk and secret key Sk. //Refer section
3.2.1.1

4: Client device encrypts the encoded iris template and sends the encrypted reference iris
template, ε(Xi) along with a class label to server. //Refer section 3.2.1.2

5: The cloud server applies PP training on encrypted reference iris templates ε(Xi), i ∈
[1, N ] using PMCP or PNN and generates a model. //Refer section 5.2.2.1 for PNN &
section 5.2.2.3 for PMCP

6: The cloud server sends the model parameters of PMCP, ε(w[i]), i ∈ [1, c] i.e., weight
vectors and parameters of PNN, ε(Xi), i ∈ [1, N ] to authentication server.

7: The authentication server generates the encrypted verification vector, ε(Zn+1), en-
crypted random vector, ε(V ) separately for each classifier using the model parameters.
//Refer section 5.2.2.2 & section 5.2.2.4

5.2.2 Secure and Verifiable Machine Learning Classification

Two private machine learning classification algorithms, namely private nearest neighbor

(PNN) & private multi-class perceptron (PMCP) are implemented on encrypted data by

using the homomorphic properties of BFV [72] FHE scheme. The advantage of PNN &

PMCP classifiers is that they provide privacy not only to iris templates but also to the model

by implementing both training & classification on the encrypted data. The model is only

accessible to the server and the templates are known only to the client device.

5.2.2.1 Private Nearest Neighbor

The NN algorithm for the multi-class classification on unencrypted data is described in

section 5.1. Instead of returning the class label, PNN returns the Manhattan distances

between ε(Xi) and ε(Y ).

R = {ri/ri =
M∑
j=1

(Xi[j]− Y [j]),∀ i = 1 to N} (5.4)
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Algorithm 5.2 Authentication Phase of SvaS
Input: Probe iris image, Identifier or class label id of the end user
Output: Accept or Reject

1: Authentication server sends ε(Zn+1) and ε(V ) to the public verifier.
2: Client device generates the iris template from probe iris image using University of

Salzburg tool kit [58]. It also acquires the identifier id of the end-user and sends id to
the authentication server.

3: Client device generates the compressed iris template, Y as described in section 5.2.1
and encode the reduced iris template as described in section 3.1.3.

4: Client device encrypts Y and sends the encrypted probe iris template, ε(Y ) to the cloud
server. // Refer section 3.2.1.2

5: The cloud server compute the classification result, ε(R) and send to public verifier. (In
stead of returning the class label, our private classifiers returns the encrypted Manhattan
distance between ε(Y ) and ε(Xi) for PNN and dot product results between ε(Y ) and
ε(w[i]), i ∈ [1, c] for PMCP). // Refer section 5.2.2.1 for PNN & section 5.2.2.3 for
PMCP

6: The public verifier checks the correctness of the computed result ε(R) by using
ε(Zn+1), ε(V ), ε(Y ) and sends the verification result to authentication server. // Refer
section 5.2.2.2 & section 5.2.2.4

7: If the verification succeeds, then the authentication server computes the predicted class
label and compares with id given by the end-user to determine whether the user is
genuine or not.

The server doesn’t learn either ε(Xi) or ε(Y ). In particular, we show how the server can ex-

ecute equation (5.4) when both the testing & training instances are encrypted. The detailed

procedure to find the NN on the encrypted data is given in Algorithm 5.3. The inputs to

the PNN are the class labels of the templates, encrypted reference templates, and encrypted

probe template, respectively. PNN returns the Manhattan distances, ε(R) between ε(Xi)

and ε(Y ) as an output which is given in equation (5.5).

ε(R) = {ri/ri = (ε(Xi)− ε(Y )),∀ i = 1 to N} (5.5)

Since both the reference and the probe templates are in encrypted form, the privacy of iris

templates, i.e., user privacy is maintained.

Let ε(Xi) and ε(Y ) are the encrypted vectors. The aim is to achieve equation (5.5)

i.e., find the Manhattan distances between ε(Xi) and ε(Y ) without decryption. ri is the

variable to store the subtracted result of ith encrypted reference template, ε(Xi) and probe
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Figure 5.3: Comparison of accuracy between iris code of sizes 10240, 2560, 1280 and 640
for MCP and NN

template, ε(Y ). Batching scheme is used as the encoding scheme before encrypting the

reference and probe templates to improve the performance of the system. Hence, with the

computational cost of just one operation, we can accomplishM homomorphic subtractions.

The disadvantage of batching is that it is not possible to access the individual elements of

the encrypted vector. Hence, it restricts to compute the sum of elements after the subtract

operation (equation (5.4)). This problem can be solved by using the observation made

by Gentry et al. [163], particularly, it is likely to rotate the encrypted vectors cyclically

without decryption. As a result, if the encrypted vectors are rotated cyclically and adding

the encrypted vectors p = logqw times then the first slot of the resultant vector gives the

sum value. The steps (5-7) of Algorithm 5.3 describes the process of cyclically rotating

and adding the ri. The operation is illustrated in Figure. 5.4 with an example. The ith

Manhattan result is stored in ri. The steps (3-7) of Algorithm 5.3 repeat for N reference

templates yields N Manhattan distances which are assigned to ε(R). The cloud server

computes the Manhattan distance on the encrypted data. So, the privacy of the iris templates

is achieved. If the cloud server did not perform the Manhattan distance honestly and return

a random result to minimize the use of its computational resources, then false accept/reject

may happen. To overcome this limitation, the public verifier checks the correctness of the

result returned by the cloud server.
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Algorithm 5.3 Nearest Neighbor on Encrypted data (PNN)
Input: ε(X1), ε(X2), . . . , ε(XN), Corresponding class labels cls1, cls2, . . . , clsN ,

ε(Y )
Output: ε(R)

1: begin
2: for i← 1 to N do
3: ri ← sub(ε(Xi), ε(Y ))
4: for j ← 0 to p do // where p = logqw
5: ri ← ri + kgj(ri)
6: end for //The element in the first slot is the desired Manhattan distance

result
7: ri ← ri
8: end for
9: ε(R) = (r1, r2, ....., rN)

10: return ε(R)
11: end

Figure 5.4: Homomorphic computation of Manhattan distance between vectors when vec-
tors are encoded using batching scheme

5.2.2.2 Verification Scheme for Nearest Neighbor

The cloud server computes the Manhattan distances ε(R) = ri,∀ i = 1 to N between

ε(Xi) ∀ i = 1 to N and ε(Y ). The verification scheme allows the public verifier to check

the correctness of ε(R) returned by the cloud server.

Generation of encrypted verification vector: After the enrollment phase, the authentica-

tion server constructs the encrypted verification vector using the model parameters returned

by the cloud server. In the case of PNN, model parameters are simply the encrypted refer-

ence iris templates, ε(Xi),∀ i = 1 to N . The encrypted verification vector helps the public

verifier to check the correctness of the Manhattan distances. Let ε(Zn+1) be the encrypted
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Algorithm 5.4 Nearest Neighbor Verification Vector
Input: ε(X1), ε(X2), . . . , ε(XN),
Output: ε(Zn+1), ε(V )

1: begin
2: Zn+1 = (0, 0, ..., 0)
3: ε(Zn+1)← Enc(Zn+1, Pk)
4: for i← 1 to N do
5: vi ← randomInteger()
6: ε(vi)← Enc(vi, Pk)
7: tmpi ← sub(ε(Xi), ε(vi))
8: ε(Zn+1)← add(ε(Zn+1), tmpi)
9: end for

10: ε(V ) = (ε(v1), ε(v2), ..., ε(vN))
11: return (ε(Zn+1), ε(V ))
12: end

verification vector and is defined as

ε(Zn+1) = (ε(X1)− ε(v1)) + (ε(X2)− ε(v2)) + ....+ (ε(XN)− ε(vN))

=
N∑
i=1

(ε(Xi)− ε(vi))
(5.6)

where, vi ∀ i = 1 to N is the random integer and ε(V ) = (ε(v1), ε(v2), ..., ε(vN)). As

long as the secret key is secure, encrypted verification vector is also secure and its security

relies on the hardness of RLWE described in section 3.3.2. Algorithm 5.4 explains the steps

involved in the generation of encrypted verification vector for PNN.

The authentication server implements the Algorithm 5.4 after the training phase. The

verification vector denoted as Zn+1 with same dimension of Xi is initialized to (0, 0, ...,

0). Encrypt Zn+1 using Pk. The function randomInteger() generates a random integer vi.

Encrypt vi using Pk. The random integer generated in each and every iteration is encrypted

with different public keys. The function sub is called to perform the subtraction between

ε(Xi) and ε(vi). tmpi stores the subtraction result. The function add is called to perform

the addition between Zn+1 and tmpi. After the completion of N iterations, the encrypted

verification vector ε(Zn+1) which is shown in equation (5.6) is obtained. The N random

integers are assigned to ε(V ). During the authentication phase, the authentication server

send ε(Zn+1) and ε(V ) to the public verifier.
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Ensuring the correctness of Manhattan distance: The public verifier checks the cor-

rectness of Manhattan distances, ε(R) using ε(Zn+1), ε(Y ) and ε(V ). The verification

scheme checks the correctness of the result on the encrypted data itself; as a result, anyone

can perform the correctness of ε(R) without the secret key. The steps involved to check the

correctness of Manhattan distances are described in Algorithm 5.5.

Algorithm 5.5 Nearest Neighbor Correctness
Input: ε(Zn+1), ε(V ), ε(Y ), ε(R)
Output: Zero (or) Non zero

1: begin
2: D2 = 0
3: ε(D2)← Enc(D2, Pk)
4: tmp← multiply(N, ε(Y ))
5: D1 = sub(ε(Zn+1), tmp)
6: ε(D1)← Enc(D1, Pk)
7: for i← 1 to N do
8: tmp1← sub(ri, ε(vi)), ri ∈ ε(R), ε(vi) ∈ ε(V )
9: ε(D2)← add(ε(D2), tmp1)

10: end for
11: return sub(ε(D1), ε(D2))
12: end

The steps (4-5) of Algorithm 5.5 computes ε(D1) = (ε(Zn+1) − Nε(Y )). The steps

(7-11) of Algorithm 5.5 computes ε(D2) =
∑N

i=1(ri − ε(vi)). Finally, compute (ε(D1)−

ε(D2)). If the result is zero, the Manhattan distances ε(R) returned by the cloud server is

considered to be correct. The below proof uses the equation (5.5), equation (5.6) and some

algebraic properties of vectors and explains how ε(D1) and ε(D2) are same.
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ε(D1) = (ε(Zn+1)−Nε(Y ))

=
N∑
i=1

(ε(Xi)− ε(vi))−Nε(Y )

=
N∑
i=1

ε(Xi)−
N∑
i=1

ε(vi)−Nε(Y )

=
N∑
i=1

ε(Xi)−Nε(Y )−
N∑
i=1

ε(vi)

=
N∑
i=1

ε(Xi)−
N∑
i=1

ε(Y )−
N∑
i=1

ε(vi)

=
N∑
i=1

(ε(Xi)− ε(Y ))−Nε(vi)

=
N∑
i=1

ri −
N∑
i=1

ε(vi)

=
N∑
i=1

(ri − ε(vi)) = ε(D2)

If the verification succeeds then the Manhattan distances ε(R) are considered to be correct.

So, the authentication server finds the predicted class by computing the index of the min-

imum value among ε(R). The computed predicted class is compared with id given by the

end-user to determine whether the user is genuine or not.

5.2.2.3 Private Multi-class Perceptron (PMCP)

The MCP algorithm for the multi-class classification on unencrypted data is described in

section 5.1. Instead of returning the class label, PMCP:classification returns the dot prod-

ucts between ε(wi),∀ i = 1 to c and ε(Y ).

ε(R) = {ri/ri = ε(Y ).ε(w[i]),∀ i = 1 to c} (5.7)
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Homomorphic Comparison Protocol: The procedure to compare two cipher text val-

ues without decryption is given in Algorithm. 5.6. Consider C1, C2 and Ca are the cipher

texts for the plain texts m1, m2 and plain text modulus (a) are encrypted by using BFV

scheme [72] respectively. The authentication server calculates Cb = Ca+C1−C2 by using

the homomorphic properties of BFV scheme [72]. The authentication server decrypts Cb

and obtains the decryption result, b using Sk. The gth bit, bg of b is the comparison result,

where g = log2a + 1 returned to the cloud server. If bg = 0 then m1 < m2 otherwise

m1 ≥ m2. The cmpsn protocol is secure because the protocol returns only one bit to the

Algorithm 5.6 Homomorphic Comparison (cmpsn)
Procedure cmpsn(C1, C2)

Input: Ciphertexts C1, C2

Output: bg
1: begin
2: Compute Cb = Ca + C1 − C2

3: b = Dec(Sk, Cb)
4: return bg //bg is the gth bit of b, where g = log2 a+ 1
5: end

cloud server. Therefore, even in an attack scenario, the cloud server can only learn at most

one single bit of the secret key. On the other hand, each time cmpsn protocol is invoked by

PMCP:training protocol, the authentication server uses a new secret key. So, there won’t

exist any leakage of secret keys to the cloud server.

This section describes about how cloud server can execute equation (5.2) and equation

(5.3) when both the training and testing instances are encrypted. PMCP consists of two

phases namely training phase (PMCP:training) and classification phase (PMCP:classificat-

ion). The detailed procedure to find the weight vectors using MCP on encrypted data i.e.,

PMCP:training is given in Algorithm 5.7. The inputs to the PMCP:training are the class

labels of iris templates, encrypted reference iris templates, iterations T (not encrypted) and

Bias. PMCP:training returns the encrypted weight vectors as an output. The process during

training phase is explained below. Let ε(X1), ε(X2), ..., ε(XN) are the encrypted reference

templates. The PMCP requires multiple training iterations to fully learn the model.

During each iteration, the jth encrypted reference template is multiplied with each

unique weight vector and stores in ct. As explained in section 5.2.2.1, the problem with
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Figure 5.5: Homomorphic computation of dot product between vectors when vectors are
encoded using batching scheme

batching occurs here as well while performing the sum of the elements after the multi-

plication. The problem can be solved by the process of cyclically rotated and adding the

encrypted vectors [163]. The steps (20-22) of Algorithm 5.7 describes the process of cycli-

cally rotating and adding the ct. The element in the first slot is the desired product. This

operation is explained with an example in Figure. 5.5. The class of the jth encrypted tem-

plate is the class that gives the highest product result. If the calculated class, p cls and

the actual class, clsj of the jth encrypted reference template are not equal then the weight

vector is updated as follows: feature vector, ε(Xj) is added to the actual weight vector,

ε(w[clsj]) and subtracted from the predicted weight vector, ε(w[p clsj]). After the final

iteration, the final encrypted weight vectors should be stable.

The detailed procedure to achieve ε(R) is given in Algorithm 5.8. The inputs to the

PMCP:classification are the encrypted probe template ε(Y ) and encrypted weight vectors

ε(w[i]),∀ i = 1 to c respectively. PMCP:classification returns the dot product ε(R) be-

tween ε(w[i]),∀ i = 1 to c and ε(Y ) as an output which is given in equation (5.7). In

Algorithm 5.8, ri stores the multiplication result of ε(Y ) and ε(w[i]),∀ i = 1 to c. As ex-

plained in section 5.2.2.1, the problem with batching occurs here as well while performing

the sum of the elements after the multiplication. The problem can be solved by the process

of cyclically rotated and adding the encrypted vectors [163]. The steps (4-6) of Algorithm

5.8 describes the process of cyclically rotating and adding the ri. The element in the first

slot is the desired dot product. The operation is explained with an example in Figure. 5.5.

The steps (3-7) of Algorithm 5.8 repeats for c times yields c dot products which are as-

signed to ε(R). The advantage of PMCP is that the client device is not able to learn the in-

formation about the model parameters, i.e., weight vectors and the server is unable to learn
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Algorithm 5.7 Perceptron for multi-class classification on encrypted data (PMCP:training)
Input: ε(X1), ε(X2), . . . , ε(XN), Corresponding class labels cls1, cls2, . . . ,clsN ,

Iteration number T (Not Encrypted), BIAS=1 (Not Encrypted)
Output: The encrypted weight vectors for each class, ε(w[i]) where i ranges from 1

to c
1: begin
2: for i← 1 to c do
3: classes[i]← i
4: end for
5: for i← 1 to c do
6: for j ← 1 to d+1 do
7: wi,j ← 1
8: end for
9: end for

10: for i← 1 to c do
11: ε(w[i])← Enc(wi, Pk) //Batch Encryption of weight vectors
12: end for
13: for T iterations do
14: for j ← 1 to N do
15: arg max← 0
16: p cls← classes[0]
17: ε(arg max)← Enc(arg max, Pk)
18: for i← 1 to c do
19: ct← multiply(ε(Xj), ε(w[i]))
20: for i← 0 to l do // where l = logqw
21: ct← ct+ kgi(ct)
22: end for //The element in the first slot is the desired dot product

result
23: b← cmpsn(ct, ε(arg max))
24: if bz = 1 then //where z = log2 a+ 1,
25: ε(arg max)← ct
26: p cls← i
27: end if
28: end for
29: if clsj 6= p cls then
30: ε(w[clsj])← add(ε(w[clsj]), ε(Xj))
31: ε(w[p clsj])← sub(ε(w[p clsj]), ε(Xj))
32: end if
33: end for
34: end for
35: end
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Algorithm 5.8 Perceptron for Multi-class Classification on encrypted data
(PMCP:classification)

Input: ε(Y ), ε(w[i]) from training phase where i ranges from 1 to c
Output: ε(R)

1: begin
2: for i← 1 to c do
3: ri ← multiply(ε(Y ), ε(w[i]))
4: for j ← 0 to p do // where p = logqw
5: ri ← ri + kgj(ri)
6: end for //The element in the first slot is the desired dot product result
7: ri ← ri
8: end for
9: ε(R) = (r1, r2, ....., rc)

10: return ε(R)
11: end

any information of reference templates or probe template as they are in encrypted form.

Hence the privacy of both client device and model are preserved. The cloud server com-

putes the dot products on encrypted data. So, the privacy of the iris templates is achieved.

Consider a scenario; if the cloud server did not perform the dot product result honestly and

return a random result to minimize the use of its computational resources, then imposter

may get access into the system. To overcome this limitation, the public verifier checks the

correctness of the result returned by the cloud server.

5.2.2.4 Verification Scheme for Multi-class Perceptron

The cloud server computes the dot products ε(R) = ri,∀ i = 1 to c between encrypted

weight vectors ε(w[i])∀ i = 1 to c and ε(Y ). The verification scheme allows the public

verifier to verify the correctness of ε(R) computed by the cloud server.

Generation of encrypted verification vector: After the enrollment phase, the authenti-

cation server constructs the encrypted verification vector using the model parameters com-

puted by the cloud server. In PMCP, model parameters are weight vectors ε(w[i]),∀ i =

1 to c. The encrypted verification vector helps the public verifier to check the correctness

of the dot product results.

Let ε(Zn+1) be the encrypted verification vector and is defined as
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Algorithm 5.9 Multi-class Perceptron Verification Vector
Input: ε(w[1]), ε(w[2]), . . . , ε(w[c]),
Output: ε(Zn+1), encrypted random integers, ε(V )

1: begin
2: Zn+1 = (0, 0, ..., 0)
3: ε(Zn+1)← Enc(Zn+1, Pk)
4: for i← 1 to c do
5: vi ← randomInteger()
6: ε(vi)← Enc(vi, Pk)
7: tmpi ← multiply(ε(w[i]), ε(vi))
8: ε(Zn+1)← add(ε(Zn+1), tmpi)
9: end for

10: ε(V ) = (ε(v1), ε(v2), ..., ε(vc))
11: return (ε(Zn+1), ε(V ))
12: end

ε(Zn+1) = ε(w[1]).ε(v1) + ε(w[2]).ε(v2) + ....+ ε(w[c]).ε(vc)

=
c∑
i=1

(ε(w[i]).ε(vi))
(5.8)

where, vi ∀ i = 1 to c are the random integers and ε(V ) = (ε(v1), ε(v2, ..., ε(vc)). As

long as the secret key is secure, encrypted verification vector is also secure and its security

relies on the hardness of RLWE. The steps involved in the generation of encrypted verifi-

cation vector for PMCP are given in Algorithm 5.9. The authentication server implements

the Algorithm 5.9 after the training phase. The verification vector denoted as Zn+1 with

same dimension of Xi is initialized to (0, 0, ..., 0). Encrypt Zn+1 using the public key Pk.

The function randomInteger() generates a random integer which is assigned to vi. Encrypt

vi using the public key Pk. The random integer generated in each and every iteration is

encrypted with different public keys. The function multiply is called to perform the mul-

tiplication between encrypted weight vector ε(w[i]) and encrypted random integer ε(vi).

tmpi stores the multiplication result. The function add is called to perform the addition

between Zn+1 and tmpi. After the completion of c iterations, the encrypted verification

vector ε(Zn+1) which is shown in equation (5.8) is obtained. The c random integers are

assigned to ε(V ). During the authentication phase, the authentication server send ε(Zn+1)
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Algorithm 5.10 Multi-class Perceptron Correctness
Input: ε(Zn+1), ε(V ), ε(Y ), ε(R)
Output: Zero (or) Non zero

1: begin
2: D2← 0
3: ε(D2)← Enc(D2, Pk)
4: ε(D1) = multiply(ε(Zn+1), ε(Y ))
5: for j ← 0 to p do // where p = logqw
6: ε(D1)← ε(D1) + kgj(ε(D1))
7: end for //The element in the first slot is the desired result
8: for i← 1 to c do
9: tmp1← multiply(ri, ε(vi)), ri ∈ ε(R), ε(vi) ∈ ε(V )

10: ε(D2)← add(ε(D2), tmp1)
11: end for
12: return sub(ε(D1), ε(D2))
13: end

and ε(V ) to the public verifier.

Ensuring the correctness of dot product: The public verifier checks the correctness

of dot products ε(R) using ε(Zn+1), ε(Y ) and ε(V ). Our verification scheme checks the

correctness of the result on the encrypted data itself as a result anyone can perform the

correctness of the ε(R) without the private information. The steps involved to check the

correctness of dot products are described in Algorithm 5.10.

The steps (4-7) of Algorithm 5.10 computes ε(D1) = ε(Zn+1).ε(Y ). The steps (8-11)

of Algorithm 5.10 computes ε(D2) =
∑c

i=1(ri.ε(vi)). Finally, compute (ε(D1)−ε(D2). If

the result is zero, then the dot product values ε(R) returned by the cloud server is considered

to be correct. Equation (5.9) uses the equation (5.7), equation (5.8) and some algebraic

properties of vectors and explains how ε(D1) and ε(D2) are same. If the verification

succeeds then the dot products ε(R) are correct. So, the authentication server computes the

predicted class by computing the index of the maximum value among ε(R). The computed

predicted class is compared with id given by the end user to determine whether the user is

genuine or not.
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ε(D1) = ε(Y ).ε(Zn+1)

= ε(Y ).
c∑
i=1

(ε(w[i]).ε(vi))

=
c∑
i=1

(ε(w[i]).ε(Y ).ε(vi))

=
c∑
i=1

ε(vi).(ε(w[i].ε(Y ))

=
c∑
i=1

ε(vi).ri

= ε(D2)

(5.9)

5.3 Multi-instance Iris Remote Authentication using pri-

vate multi-class perceptron on Malicious Cloud Server

(MIRAMCS)

MIRAMCS uses the multi-class perceptron classification to authenticate a person. The

block diagram of MIRAMCS is shown in Figure. 5.6. MIRAMCS involves four entities,

namely authentication server, client device, cloud server and public verifier. The role of au-

thentication server is to 1) Generate secret (Sk) and public (Pk) keys. 2) Send accept/reject

decision to the client device. The classification service and storage to the client device

is provided by the cloud server. During the training phase, the cloud server builds a pri-

vate machine learning model & classifies the end-user using the developed model in the

classification phase. The false accept/reject may happen if the cloud server doesn’t per-

form the computations honestly. So, the correctness of the classification result computed

by the cloud server is verified by the public verifier to avoid false acceptances/rejections.

MIRAMCS consists of enrollment and authentication phases. The steps involved in these

phases are illustrated in Figure. 5.7 and Figure. 5.8.
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Figure 5.6: Block diagram of Multi-instance Iris Remote Authentication using private
multi-class perceptron on Malicious Cloud Server (MIRAMCS)

Assumptions of MIRAMCS

MIRAMCS assume the following

• The client device is a trusted entity and has limited memory and computational re-

sources.

• The authentication server is a trusted entity and generates the public, secret keys. The

public and secret keys are different for each user. It broadcasts the public keys to the

system, and the secret keys of the users are stored securely.

• The cloud server doesn’t perform the computations honestly.

• The public verifier is only trusted to check the correctness of ε(R).
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Enrollment Phase

Authentication
Server

Client Device Malicious Cloud Server

Key Generation

(Pk, Sk) 1. Acquire the reference left
and right iris images of s sep-
arate users and generate corre-
sponding iris codes El, Er.

2. Apply CSA on the sam-
ples in the data matrix which
are collected from s separate
classes to obtain transforma-
tion matrices Tl, Tr and trans-
formed iris codes Rl, Rr.

3. Apply fusion and encod-
ing on Rl, Rr to get the fused
reference template Xi which
contains discriminative infor-
mation.

4. ε(Xi) = Enc(Pk, Xi) and
send ε(Xi) to the cloud server

Store ε(Xi) in database. Apply
the PP training on ε(Xi) using
PMCP and generates a secure
model.

Figure 5.7: Enrollment Phase of Multi-instance Iris Remote Authentication using private
multi-class perceptron on Malicious Cloud Server (MIRAMCS)

5.3.1 Contradistinguish Similarity Analysis (CSA)

CSA maximizes the pair-wise correlations & minimizes the between-class correlations.

CSA also includes the class structure similar to discriminant correlation analysis (DCA).

The difference between DCA and CSA is in the way of defining the between-class scatter

matrix and covariance matrix. Assume the data matrix consists of N samples belong to c

different classes. The feature vector of kth sample in lth class is represented by alk. The

nearest neighbor to alk belongs to kth class & not belongs to kth class denoted by (alk)w

& (alk)b. The weight vector corresponding to (alk) is denoted as v(k, l) and is defined in
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Authentication Phase

Client Device Authentication
Server

Public Verifier Malicious Cloud
Server

1. Acquire the probe left and right iris
image and generate corresponding iris
codes Ql, Qr.

2. Multiply the transformation matri-
ces Tl, Tr with Ql, Qr to obtain trans-
formed iris code Pl, Pr

3. Apply fusion and encoding on Pl,
Pr to get the fused probe template Y
which contains discriminative informa-
tion.

4. Encrypt the probe template. ε(Y ) =
Enc(Pk, Y ) and send ε(Y ) to the cloud
server.

5. Compute the
classification result,
ε(p cls) using PMCP.

6. Send ε(p cls),
ε(Y ), ε(w[c]) to the
public verifier.

7. Prepare Parameters for Verification
(Explained in section 5.3.3) and send
these parameters to the public verifier.

8. Result Ver-
ification using
ε(bj(RM)

c
j=1),

ε(RND), H ,
ε(p cls), ε(Y ),
ε(w[c]) (Ex-
plained in
section 5.3.3)
and send verfica-
tion result to the
authentication
server

9. If the verifi-
cation succeeds,
then decrypt the
classification
result to deter-
mine whether the
user is genuine
or not and send
accept/reject to
the client device

Figure 5.8: Authentication Phase of Multi-instance Iris Remote Authentication using pri-
vate multi-class perceptron on Malicious Cloud Server (MIRAMCS)
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equation (5.12). The between-class scatter matrix (BCSM) is defined as

Bsr =
c∑

k=1

Nk∑
l=1

v(k, l)(akl − (akl )b)(a
k
l − (akl )b)

T = δsrδ
T
sr (5.10)

where

δcr = [
√
v(1, 1)(a11 − (a11)b,

√
v(1, 2)(a12 − (a12)b, ...,

√
v(c,N)(acN − (acN)b] (5.11)

and

v(k, l) =
min{d(alk, (a

l
k)w), d(alk, (a

l
k)b)

d(alk, (a
l
k)w) + d(alk, (a

l
k)b)

(5.12)

The euclidean distance between two vectors m & n is denoted as d(m,n). The BCSM can

be diagonalized as follows:

XTBsrX = φ (5.13)

WhereX represents the right eigenvectors ofBsr and φ represents the diagonal matrix con-

taining eigenvalues in decreasing order corresponding to the eigenvectors. The dimensions

are reduced to c-1 in DCA [164] whereas in CSA, the top t eigen values & their correspond-

ing eigen vectors are chosen to preserve the significant dimension of the feature vector for

correlation analysis.

XT
(t×d)BsrX(d×t) = φ(t×t) (5.14)

The size of the data matrix R reduces from d to t.

R′(t×N) = XT
(t×d)R(d×N) (5.15)

Similarly, the other feature vector is solved & find the transformed feature vector that di-

agonalizes the BCSM Bsp. The P is transformed to P ′.

P ′(t×N) = XT
(t×d)P(d×N) (5.16)
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The diagonal & non-diagonal elements of δ′sr
T
δ
′
sr & δ

′
sp

T
δ
′
sp are nearer to one and zero.

This indicates the matrices are strict diagonally dominant. Therefore, the classes are well

separated because of less correlation between the centroid of the classes.

A class matrix Z ∈ RN×c, where each row of Z denotes the class label. class 1, class 2,

... , class s are represented as [1 0 0 0..], [0 1 0 0..], ..., [0 0 0...1]. The covariance matrix

of R′ & P ′ are given as:

Vc = (R′DZ)(P ′DZ)T (5.17)

where D ∈ RN×N & is given as D = I − N−1iiT , i is an identity vector. Vc is diagonal-

ized by using singular value decomposition (SVD) to obtain non-zero correlation between

corresponding features in both the feature vectors.

Vc = I AJT (5.18)

where A is a diagonal matrix of singular values

I & J contains left & right singular vectors corresponding to singular values of A.

Equation (5.18) can be rewritten as

IT Vc J = A (5.19)

Assume Lr = I A−1/2 & Lp = J A−1/2, then Vc can be unitized as

(I A−1/2)T Vc(J A
−1/2) = I ⇒ (Lr)

T Vc (Lp) = I (5.20)

The dimension of both Lr & Lp are t×t. Since, c-1 dimensions only contribute for transfor-

mation the dimensions are reduced from t to c-1. So, the feature vectors can be transformed

as follows:

R′′ = LTr R
′ = LTr X

T
r R = Wr R (5.21)

P ′′ = LTp P
′ = LTp X

T
p P = Wp P (5.22)

CSA produces the transformed matrices and transformed features sets as outputs which is

shown in Figure. 5.6. During the enrollment phase, CSA takesEl,Er as input and produces
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transformed reference iris templates Rl, Rr & transformed matrices Tl, Tr. The probe iris

templates Ql, Qr are multiplied with Tl, Tr to produce transformed probe iris templates Pl,

Pr.

5.3.2 Fusion & Encoding

The transformed iris templates obtained in CSA are fused using the technique discussed in

section 4.1.1.1. The fused iris template is encoded using the batching scheme discussed in

section 3.1.3 to improve the performance of the system. The batching scheme encodes a

group of integers into a single polynomial but the fused iris template contains non-integer

values. So, the scaling of fused feature sets has to be done before encoding. Min-Max

normalization is used for feature scaling. The comparison of accuracy between before nor-

malization and after normalization for CASIA-V3-Interval and IITD iris database is shown

in Figure. 5.9. The accuracies obtained after normalization are less when compared to

accuracies obtained before normalization, but batching helps to reduce the time complex-

ity and improves the performance of the system. So, MIRAMCS considered the values

obtained after normalization for further operations.

The cloud server classifies the encrypted fused probe iris template by using PMCP

discussed in section 5.2.2.3. If the cloud server doesn’t perform the classification honestly

then false accept/reject may happen. So, a verification procedure is described in section

5.3.3, in which a public verifier checks the classification result returned by the cloud server.

5.3.3 Verification Procedure

The public verifier & the authentication server receives ε(pcls) from the cloud server. To

save the computational time & other resources, the cloud server may send arbitrary clas-

sification result without performing the desired computation results in false accept/reject.

The public verifier helps to check the correctness of the classification result computed by

the cloud server. The verification parameters, classification parameters & encrypted probe

template are used by the public verifier to check the correctness of the classification result.

The authentications server receives the verification result from the public verifier. The pre-
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Figure 5.9: Comparison of before-normalization (BN) and after-normalization (AN) accu-
racies with different train-test split ratios (S1, S2 and S3 are described in Section 5.4.1) for
a) CASIA-V3-Interval b) IITD database
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dicted class, ε(pcls) is correct if the verification succeeds. Later, ε(pcls) is decrypted by the

authentication server using Pk & send the result to the client device. The predicted class is

not computed correctly by the cloud server if the verification fails.

Multivariate Polynomial Factorization (MVPF):

Consider h(x) = h(a1, a2, ..., an) ∈ Znp [y] as a m-variable polynomial. According to

MVPF, h(x) − h(a) can be expressed as h(x) − h(a) =
∑m

j=1(xj − aj)bj(x) ∀a ∈

Znp∃bi(x) ∈ Znp [x]. A polynomial-time algorithm exists to find bi(x).

Construction of Verification Parameters:

Consider Mk = (akl, bl), where k ∈ [1, c] and j ∈ [1, M ]. The client device decom-

poses H ′(y) = H(y) − H(N1, N2, . . ., Nc) into
∑c

j=1(yj − Nj)bj(y) by using the

MVPF, and y ∈ Zcp and bj(y)cj=1 are the polynomials generated by the MVPF. Client

device selects a set of random data at the same time, RMk = (RAkl, RBl), k ∈ [1,

c] & j ∈ [1, M ]. This random data is refreshed periodically. The client device calcu-

lates RND = H(RM1, RM2, . . ., RMc) and bi(RM)ci=1. The client device sends

(ε(bj(RM)cj=1), ε(RND), H) to the public verifier.

Verification of predicted result (ε(p cls))

The public verifier collects ((ε(Dj) = (ε(wj), ε(Y ))), ε(p cls)) from the cloud server and

(ε(bj(RM)cj=1), ε(RND), H) from the client device. The main operation of the verifi-

cation process is to calculate the polynomial factorization formula in a fully homomorphic

manner. Our verification procedure reduces the difficulty of the user by allowing anyone

can check the correctness of the classification result without the need for user’s secret keys

by using FHE. The public verifier checks whether equation (5.23) holds or not.

Eval{ε(RND)− ε(p cls)} ?
= Eval{

c∑
j=1

(ε(RMj)− ε(Dj))ε(bj(RM)} (5.23)
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5.4 Implementation details and Security Analysis of SvaS,

MIRAMCS

The following measures are used to evaluate the efficiency of a biometric system according

to biometric information protection [23].

1. Performance evaluation in terms of EER, d’ and KS-test.

2. Irreversibility and Unlinkability Analysis.

3. Computational cost in terms of time taken to perform operations.

5.4.1 Performance Evaluation of SvaS and MIRAMCS

The classification accuracy of SvaS with PNN & PMCP for different databases with differ-

ent train-test split ratios are shown in Figure. 5.10. The comparison of accuracy between

protected & unprotected templates of SvaS for different databases when train-test split ratio

is 60-40 is shown in Figure. 5.11. From Figure. 5.11, we infer that there is no degradation

of accuracy between protected & unprotected templates in SvaS.

The accuracy, training & classification time on normal data for only left iris (OLI),

only right iris (ORI), fusion without CSA (FWCSA) & fusion using CSA (FUCSA) for

MIRAMCS is shown in Table 5.1. The accuracies of canonical correlation analysis (CCA),

DCA & CSA with different train-test ratios for CASIA-V3-Interval, IITD iris databases are

shown in Figure. 5.12. From Figure. 5.12, we infer that CSA performs better than CCA

& DCA. The comparison of accuracy between protected & unprotected templates of MI-

RAMCS for different databases for different train-test split ratios is shown in Figure. 5.13.

From Figure. 5.13, we infer that there is no degradation of accuracy between protected &

unprotected templates in MIRAMCS.
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Figure 5.10: Accuracy of SvaS (PMCP & PNN with different train-test split ratio) obtained
for a) CASIA-V 1.0 b) CASIA-V3-Interval c) IITD d) SDUMLA-HMT iris databases
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Figure 5.11: Comparison of accuracy of SvaS between protected and unprotected templates
for a) MCP b) NN; DB1: CASIA-V 1.0, DB2: CASIA-V3-Interval, DB3: IITD & DB4:
SDUMLA-HMT
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Figure 5.12: Average classification accuracy of MIRAMCS obtained for a) CASIA-V3-
Interval b) IITD iris databases
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Table 5.1: Accuracy obtained in unprotected system for MIRAMCS (MCP classifer with
80-20 train-test ratio)

Instance
CASIA-V3-Interval IITD

T f TRT
(secs)

TST
(secs)

Accuracy
(%)

T f TRT
(secs)

TST
(secs)

Accuracy
(%)

OLI 100 10240 170.66 0.005 94.09 100 10240 368.37 0.01 91.79

ORI 100 10240 170.66 0.005 93.22 100 10240 368.37 0.01 93.14

FWCSA 100 20480 325.89 0.008 96.21 100 20480 695.08 0.009 95.34

FUCSA 400 228 35.39 0.0006 98.15 400 414 79.37 0.0007 97.15
f refers to size of iris template.
TRT refers to training time (in seconds).
TST refers to testing time (in seconds).
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Figure 5.13: Comparison of accuracy of MIRAMCS between protected and unprotected
templates
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5.4.2 Security Analysis of SvaS & MIRAMCS

The template protection method must satisfy the requirements of irreversibility, revocability

and unlinkability to ensure the privacy of the iris templates. The vulnerability of attacks in

SvaS and MIRAMCS can occur in the following entries:

1. The cloud server.

2. The client device.

3. The communication channel between the cloud server and the client device.

4. The authentication server.

5. The public verifier.

The client device extracts the features of the iris image. Hence, security is to be ensured

for the client device. As, SvaS and MIRAMCS assume the client device is a trusted entity,

the features of iris image are secure. The authentication server generates the keys needed

for encryption and decryption. SvaS & MIRAMCS assume that the authentication server

is also a trusted entity. Since the security of SvaS & MIRAMCS depends on the apparent

hardness of Ring Learning with Errors (RLWE) problem, the iris templates stored in the

server database are secure. It is difficult to decrypt the encrypted iris templates without

the secret key. As a result, the communication channel is also reliable. The description of

RLWE is given in section 3.3.2.

Irreversibility Analysis: Irreversibility refers to obtaining the original template from the

encrypted template. The client device sends the encrypted reference templates to the cloud

server during the enrollment phase, and encrypted probe iris template of a user to the server

for classification result. The server classifies the encrypted probe template and returns the

encrypted classification result to the authentication server. As the SvaS & MIRAMCS uses

BFV scheme to protect the templates, and the security of BFV scheme relies on solving

the RLWE problem, it is computationally infeasible to decrypt the templates by the server

or an imposter without secret key (Sk). Therefore, SvaS & MIRAMCS satisfies the irre-

versibility property.
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Revocability Analysis: Revocability ensures that a new protected template should be gen-

erated by the protection method if the old template is compromised or stolen. In SvaS &

MIRAMCS, Revocability can be achieved by re-encrypting the samples in the database

with a new key pair (P ′k, S ′k) instead of acquiring the new samples from the users.

Unlinkability Analysis: Unlinkability ensures that there won’t be any correlation between

the protected templates used in different applications. BFV scheme used in SvaS & MI-

RAMCS is based on probabilistic encryption. Due to the randomness involved in BFV

scheme, different ciphertexts can be generated even if the same message is encrypted mul-

tiple times with the same key, and there won’t exist any similarity between the generated

ciphertexts.

5.4.3 Computational Analysis of SvaS & MIRAMCS

For a given desired security level (λ), the time taken (in seconds) to encrypt, decrypt and to

classify the encrypted probe template for different security parameter values and iris code

sizes of SvaS is given in Table 5.2. The average time in seconds by running the experiments

ten times is considered. The table also shows the time taken to perform classification on

unencrypted values. From Table 5.3, we infer that the reduction in the size of the iris

template and batching scheme can speed-up homomorphic iris computation over element-

wise (without batching scheme). The iris template size is proportional to the computational

time. SvaS converts 1 × 10240 into 1 × 640, 1 × 1280, 1 × 2560 respectively. Even

though the total time taken for iris code of size 640, and 1280 is less when compared to iris

code of size 2560, but the optimal accuracy is achieved with iris template of size 1× 2560.

For a given desired security level (λ), the time taken (in seconds) to encrypt, decrypt and

to classify the encrypted fused probe template in MIRAMCS for n = 4096 & a = 40961 is

given in Table 5.3.
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Table 5.4: Comparison Analysis in terms of Accuracy for CASIA-V3-Interval & IITD
database

Method CASIA-V3-Interval IITD
Rathgeb et al. [165] - 97%

Sardar et al. [166] 97.12% 97.19%

Barpanda et al. [147] 91.65% 89.72%

Arsalan et al. [90] 99.10% 98.41%

Zhao et al. [91] 96.92% 96.80%

Noruzi et al. [167] 98.80% 99.57%

SvaS (MCP) 91.52% 90.89%
SvaS (NN) 98.12% 97.35%
MIRAMCS 98.15% 97.95%

Table 5.5: Comparison of biometric template protection schemes with SvaS and MI-
RAMCS

Scheme Irreversibility Diversity Accuracy Verification
of Result

Cancelable Biometrics + + - ×
Biometric cryptosystems - - - ×

Homomorphic Encryption + ± + ×
SvaS + + + +

MIRAMCS + + + +

+, -, and × indicates strongly achieved, weakly achieved and not achieved

5.4.4 Comparison Analysis of SvaS & MIRAMCS

The accuracy comparison of SvaS and MIRAMCS with state-of-the-art works is shown in

Table 5.4. We can infer that SvaS & MIRAMCS shows better performance when compared

to [165, 166, 147, 91] and lesser performance when compared to [90, 167], which are

devoid of guarantee the properties of BTP schemes. The accuracies obtained in SvaS with

MCP and NN are mentioned in Table 5.4. We also observe from Table 5.4 that MIRAMCS

performs better when compared to SvaS. The increase in the performance is due to feature

level fusion technique (CSA) involved in MIRAMCS.
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The advantage of SvaS & MIRAMCS when compared to other template protection

schemes is shown in Table 5.5. SvaS & MIRAMCS satisfies the properties of template

protection schemes and also provides trust to the user that the cloud server computes the

distance honestly.

5.5 Summary

In this chapter, two iris authentication systems, namely SvaS & MIRAMCS, are proposed

to provide the privacy to the iris templates and trust on the comparator result. SvaS &

MIRAMCS uses the machine learning classification methods to authenticate a person. MI-

RAMCS is a multi-instance iris authentication system. The BFV FHE scheme is used to

provide the privacy of the iris templates. Two private machine learning classification algo-

rithms, namely private nearest neighbor & private multi-class perceptron are implemented

on encrypted data by using the homomorphic properties of BFV scheme. In MIRAMCS, a

feature-level fusion technique, named CSA is proposed, which increases the correlation be-

tween samples belongs to different classes and decreases the correlation between samples

belongs to the same class. The recognition rate of MIRAMCS is better when compared

to SvaS due to CSA. Experimental results prove the significance and validity of SvaS &

MIRAMCS.
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Chapter 6

Conclusion and Future Scope

6.1 Conclusions

This thesis investigates the reliable and privacy-preserving iris remote authentication tech-

niques to solve the modify templates, intercept channel, and override comparator attacks of

biometric recognition system.

In chapter 3, we assume that the server is “honest-but-curious” and proposed a privacy-

preserving iris authentication system (PIAHC) using Fan-Vercauteren scheme. PIAHC

avoids the rotational inconsistencies occured due to the head tilt of a person during the

authentication phase results in the improvement of recognition accuracy. An algorithm to

compute the Hamming distance between the encrypted reference and probe templates is

proposed.

In chapter 4, a Blockchain-based Multi-instance Iris Authentication (BMIAE) method

which combines Blockchain technology and ElGamal homomorphic encryption is pro-

posed. Most of the existing template protection works based on homomorphic encryption

rely on an implication that the server is “Honest-but-curious”. Therefore, the compromise

of such server fails to address override comparator attack of BAS results in the entire sys-

tem vulnerability. This fact motivated us to design a method which not only provides the

confidentiality of iris templates but also trust on the matching result. ElGamal encryption

technique is used to achieve the confidentiality of iris templates and to perform matching

in the encrypted domain. The Blockchain can emulate the functionality of an honest entity
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as it is trusted for the correctness of execution and cannot be compromised. Additionally,

the integrity of iris templates are also guaranteed by the Blockchain due to its immutability

property.

Paillier homomorphic encryption is used for privacy-preserving and proposed two meth-

ods, namely secure and verifiable multi-instance iris authentication using public auditor

(SviaPA), secure and verifiable multi-instance iris authentication using (SviaB). Reduction

in the size of the iris template improves the overall computational performance. So, Auto-

encoders are used to reduce the dimension size of iris template in SviaPA and SviaB. The

correctness of comparator result is ensured by a public auditor in SviaPA and Smart con-

tract running on a Blockchain in SviaB. The computational cost and time to authenticate

a person are less in SviaB when compared to BMIAE. The limitations of Blockchain for

biometrics like privacy and expensive storage cost are described in [119]. These limitations

are also addressed in BMIAE and SviaB.

In chapter 5, a secure and verifiable machine learning based iris authentication method,

namely SvaS is proposed. SvaS aims to achieve both privacy-preserving training and

privacy-preserving classification of two classification algorithms, namely nearest neighbor

and multi-class perceptron. SvaS includes a verification procedure to check the correctness

of classification result returned by the cloud server. SvaS allows public verification i.e.

anyone can verify the correctness of the computed result without the user’s private infor-

mation. A Privacy-preserving multi-instance iris authentication system is proposed to solve

the modify templates and override comparator attacks of biometric recognition system. A

feature-level fusion technique, Contradistinguish Similarity Analysis (CSA) which maxi-

mizes the pair-wise correlations and minimizes the between-class correlations is proposed.

Fan-Vercauteran scheme is used to achieve the confidentiality of the fused iris templates.

Polynomial factorization algorithm is used to check the correctness of the result returned

by the cloud server.

All the techniques in chapter 3, 4, 5 satisfy all the requirements specified in the ISO/IEC

24745 standard. The proposed methods achieves better performance in terms of EER,

d′, KS-test. The proposed methods are experimented on publicly available iris databases

and a comparative study of the proposed methods has been presented and discussed to
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demonstrate their merits and capabilities.

6.2 Future Scope

• Most of the existing works assumed that the server is “Honest-but-curious”. There-

fore, the compromise of server results into the entire system vulnerability. So, a

biometric remote authentication system needs to be developed in such a way that the

system addresses not only privacy-preserving but also trust to the comparator result

by maintaining the trade-off between time and cost.

• Multi-modal template protection schemes have to be developed to make use of ben-

efits of multi-biometrics.

• Most of the iris template protection schemes have been evaluated on small and mid-

size databases. However, these schemes have to be evaluated on large scale databases

to prove their significance.

• The fully homomorphic encryption with more security and consumes less execution

time need to be explored or developed, use it in BAS to make the template more

secure.

• In BMIAE and SviaB, the encrypted reference templates are stored in server and only

the hash values of encrypted reference templates are stored in the Blockchain. So, in

future the template information has to be stored in the Blockchain itself in an optimal

way.
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[114] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Proceed-
ings of the forty-fourth annual ACM symposium on Theory of computing, pages
1219–1234, 2012.

[115] Tong Li, Zhengan Huang, Ping Li, Zheli Liu, and Chunfu Jia. Outsourced privacy-
preserving classification service over encrypted data. Journal of Network and Com-
puter Applications, 106:100–110, 2018.

157



[116] Chen Wang, Andi Wang, Jian Xu, Qiang Wang, and Fucai Zhou. Outsourced
privacy-preserving decision tree classification service over encrypted data. Journal
of Information Security and Applications, 53:1–13, 2020.

[117] Shafi Goldwasser and Silvio Micali. Probabilistic encryption &amp; how to play
mental poker keeping secret all partial information. In Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing, pages 365–377, 1982.
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