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ABSTRACT

The growing industrialization needs techniques to diagnose the incipient faults in
induction motor at inception stage itself for avoiding the downtime of the production.
In this regard detecting the faults in a 3-phase induction motor at an early stage is a
vital component in process industries. The condition of the supply unbalance, under
voltage and sudden load changes are other involuntary issues which may tend to
exhibit current signature similar to the stator winding insulation faults. This paper
proposes a robust technique to detect, classify various stator winding insulation faults
and severity of stator inter-turn faults when an induction motor works under various
operating conditions. In the present work, disturbance features are extracted from
three phase residues which are obtained from wavelet multiresolution analysis. Three
modular neural networks are implemented, in which one is used to classify various
disturbances such as single phasing, supply unbalance, under voltage, stator inter-turn
faults, sudden load change and phase faults, second one is used for classifying the stator
winding phase faults and third one is used for identifying the faulty phase and severity
level of stator inter-turn faults. Simulation and Experimental data demonstrate the
validity of the proposed method and improvement in classification accuracy as
compared to traditional method.

Index Terms - Discrete wavelet transform, stationary wavelet transform, stator
winding insulation faults, modular neural network, multilayer neural network,
sensitivity, specificity.

1 INTRODUCTION that 30%—40% of induction motor failures are due to the stator
winding breakdown [2-3]. The requirement for condition
monitoring has increased recently because of the widespread use
of automation and consequent reduction in direct man-machine
interface to supervise the system operation. Condition monitoring
is a good graphical trend of the machine parameters for the
purpose of detection, analysis, and correction of the machine
problems before the failure takes place. This may help to increase
the machine availability and performance, reducing
consequential damage, increasing machine life, reducing spare

DEPLOYMENT of an induction motor in process industry is
growing day by day due to their low cost, ruggedness, reasonably
small size, low maintenance, and operation of an easily available
power supply. Even though induction machines are reliable, they
are subjected to some undesirable stresses, resulting in faults
eventually leading to failures [1]. Several studies have shown
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parts inventories, and reducing breakdown time [4]. Normally,
the deterioration of stator winding insulation usually begins with
an inter-turn fault which produces a high circulating current
between adjacent coils and hence burns the insulation in adjacent
windings. This insulation failure expands to the core very fast
leading to stator to core insulation failure. Hence, reliable
detection techniques are essential for detecting the stator
insulation failure at the earliest to avoid catastrophic motor
failures [5]. A well-known technique to detect inter-turn short
circuits in time domain analysis is based on the presence of
negative sequence components of stator currents [6], which is the
first developed technique for detecting the stator winding failure.
Detection of stator faults using dq0 components [7], the envelope
of the stator currents [8], the stator currents in multiple reference
frames [9] and wavelet transform of the stator currents [10] are
just alternative representations of the same current components.
Fault detection using induced voltage at motor terminals when
the power supply is turned off is proposed in [11], but this
method cannot provide continuous monitoring and protection. In
[12] a review and summary of various online inter-turn fault
diagnosis strategies for electrical machines with a focus on PM
machines is presented. The stator winding faults create
unbalancing in the line currents, and similar unbalancing is also
created due to asymmetrical winding resistances and supply
unbalances [2, 3, 5, 13, 14]. Some work has been done to
distinguish the unbalancing due to faults and the unbalancing due
to the inherent asymmetry in the winding and supply [15, 16].
However, the distinction between these two phenomena is highly
challenging under no-load conditions. This is one of the major
issues in recent times and another is the identification of low-
level severity of stator inter-turn faults (1 or 2 turn failures) under
various operating conditions. Recently, significant efforts have
been made to the use of artificial intelligence tools to develop
condition monitoring and fault diagnostic techniques for electric
machines to segregate the faults. Artificial intelligence
techniques are considered significant in condition monitoring and
fault diagnosis of electrical machines as reviewed in [17]. Neural
network and fuzzy logic techniques have their own shortcomings
as discussed in [18] and thus a specific combination of these two
techniques, known as Adaptive Neuro-Fuzzy Inference System
(ANFIS), have been developed as a better alternative solution
[19]. The ANFIS technique offers the best training feature of the
neural network and heuristic interpretation of the process results
similar to fuzzy logic theory, thus providing a powerful tool that
can be employed in conjunction with the condition monitoring
and fault diagnostic applications. The use of ANFIS is growing
in popularity in this niche application area and a significant
amount of literature is available [20-22]. Bearing fault and inter-
turn insulation failure of main winding of a single-phase
induction motor is considered in [23]. Stator current, rotor speed,
temperature of the winding, bearing temperature and motor noise
are considered as inputs to the ANFIS. However, additional
noise sensors are not very reliable and the data collected from
such sensors is not very accurate. Classification of more faults
with a single parameter is more complicated than multiple
parameters. Modular Neural networks (MNN) have remarkable
ability to derive meaning from complicated or imprecise data and
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can be used to extract patterns and detect trends that are too
complex. Such an approach has noticeable advantages of
simple and reduced architecture and better learning capability
[24-25]. The work reported so far in the literature has
confined to detection and classification of only two or three
types of faults. However, a single reliable procedure for any
type of stator winding faults and supply side faults based on
non-invasive signals is not in the literature.

This paper proposes the application of Wavelet and MNN
based fault detection and classification scheme for stator
winding insulation faults. Unbalancing condition at the motor
could be due to stator winding insulation faults or due to other
conditions. In this paper, a robust diagnosis procedure is
proposed to classify the stator winding insulation faults from
other disturbances such as single phasing, supply unbalance,
under voltage and sudden load change. The proposed method
requires only three measurements and thirteen features. The
three phase stator currents are the three measurements and are
sensed for each of the disturbance and normal cases. These
three phase currents are analyzed with wavelet transform to
detect the disturbance instant. Three statistical features of
second level approximate coefficients of three phase values
are considered as inputs to the first classifier for classifying
the various disturbances on a 3-phase induction motor. To
identify the faulty phase and severity level of stator inter-turn
faults another modular neural network is considered. To make
the identifier insensitive to the operating conditions the
network is trained with input features of three-phase detail
level coefficients and ratio of the post and pre-fault mean
values of 4™ level approximate coefficients. To classify the
stator phase faults one more modular neural network is
considered and trained with inputs of three-phase detail
coefficients only for making the proposed scheme more
generalized. The proposed detection and classification scheme
is effective in classifying and identifying the stator winding
insulation faults.

2 MODELLING AND SIMULATION

Conducting numerous experiments on a practical machine
to study the behavior of faults is not feasible, as it can lead to
the destruction of the machine. To study the behavior of the
motor under stator inter-turn fault conditions requires a simple
and reliable model. In this paper, a low to high-frequency
model is considered, to analyze the stator inter-turn faults. In
medium to high-frequency ranges, a distributed parameter
model is the best for analyzing the motor behavior. Compared
to low-frequency model, the distributed parameter model
requires extra elements as shown in Figure 1. The additional
parameters of the distributed model are calculated from the
differential mode and common mode tests which have been
discussed in [26]. In general, distributed parameters are
determined by measuring the frequency response from
differential mode (DM) test setup and common mode (CM)
test setup. A three-phase, 3-hp, 440 V, 4 pole 50 Hz
Induction Motor with 36 slots, 6 coils per phase and 72 turns
per coil is considered in the present study. The DM test was
performed by connecting an LCR meter between phase A and
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tied leads of phase B and phase C. This test procedure is
recommended for an ungrounded motor frame and LCR meter
in Z-0 mode. The CM test was performed with ground frame
as one probe and phase A, phase B and phase C motor leads
tied together to form the second probe to LCR meter in Z-8
mode. Figure 2 shows the experimental setup of a three-phase
3-hp induction motor. Table 1 presents the low to high-
frequency parameters of a 3-hp induction motor. To validate
the model, the frequency responses obtained from the
experimental setup are compared with those from simulation.
Figures 3a and 3b show the comparison between measured
and simulated frequency responses in both DM and CM. These
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Figure 1. Distributed parameter model of a three-phase induction motor.
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Figure 2. Experimental setup of a 3-hp three-phase induction motor

Table 1. Low and High Frequency Parameters of a three-phase 3-hp Induction
Motor.
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Obtained
Parameters Values from
Stator Resistance (Rs) 9.1Q
Stator Leakage Inductance (L;s) 41.38 mH
Rotor Resistance (R;) 8.08 Q) No load and
Rotor leakage inductance (L) 31.83 mH Blocked rotor
Magnetizing Inductance (L,,) 904.44 mH Test
Core Resistance (Reore) 2842.8 O
Stator to frame capacitance (Cyr) 0.253 nF
Anti-resonance resistance (UR;) 2.667 Q Differential
Anti-resonance leakage inductance (nLj) 3.547 uH Mode and
Stator turn to turn capacitance (Cgy) 0.853 nF Common
Stator turn to turn damping resistance (Ry) 17356 Q mode test
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figures demonstrate that the frequency response observed in
simulation closely matches with response measured on the
practical machine. Hence, the model is valid for transient
studies.
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Figure 3. Frequency responses in DM and CM (a) measured and simulated

magnitude responses in DM and CM (b) measured and simulated phase
responses in DM and CM.

3 SIMULATION MODEL FOR STATOR
FAULTS

To simulate the stator inter-turn faults a 3-phase, 3-hp,
415V, 50 Hz induction motor with a star connected stator
winding is considered. The stator winding corresponding to
the phase in which the fault is created is divided into two
parts. An additional branch is connected in parallel to the rotor
resistance to simulate the disturbance component due to stator
inter-turn fault. The fault is created by closing three switches
as shown in Figure 4 and it illustrates the stator inter-turn fault
in R-phase of a 3-phase induction motor. In this figure Part 1
refers to a healthy portion of the winding and Part 2 refers to
the shortened turns of the winding. The resistance, inductance,
and insulation capacitance are divided in proportion to the
number of short-circuited turns. The various percentages of
turn level short circuits in different phases have been
simulated in the MATLAB/Simulink environment. In the case
of stator turn-turn faults, the switches S1 and S2 are connected
between phases and if it is a stator turn to ground fault the
switches S1 and S2 are connected between phase and ground.
To bring the simulation model more close to practical
scenarios, Gaussian noise is injected in each phase. The noise
level to be injected is calculated from the captured three-phase
stator currents in the experimental setup. Totally 9 types of
stator faults are considered for simulation such as stator inter-
turn fault in R phase, Y phase, B phase, stator turn-turn fault
between RY phases, YB phases, BR phases and stator turn-
ground fault in R phase, Y phase, B phase.
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Figure 4. Stator inter-turn fault simulation model for a 3-phase induction
motor.

4 EXPERIMENTAL SETUP

An experimental setup was prepared with a 3-phase, 3-hp,
4 pole, 50 Hz, 415 V induction motor with 36 slots, 6 coils per
phase and 72 turns per coil. In order to create the inter-turn
short circuit, two tapping points are taken out per phase from
the neutral of the stator winding. Each tapping is having a
resistance of 0.8 ohms. The stator inter-turn faults are created
experimentally by connecting a suitable resistance between
tapping point and ungrounded neutral [6-7]. If the fault is a
turn-turn or turn to ground then suitable resistance is
connected between tapping point of one phase to another or
phase to ground. Another rating of 10-hp induction motor is
also considered for creating various stator faults for a level of
2 turns to 8 turns in steps of 2 turns without connecting any
resistance between tapping point and neutral of the stator
winding as in this case tapping points are directly taken to the
level of 2 turns. Totally 6 types of disturbances are created make

Figure 5. Experimental setup for creating the faults on (a) 10-hp induction
motor (b) 3-hp induction motor.
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use these machines. Figures 5a and 5b show the experimental
setup for creating various disturbances on a 3-hp and 10-hp
induction motors respectively. In the proposed method, three-
phase stator currents are captured in 1 Sec with a sampling
frequency of 6.6 kHz by using UNIPOWER DIP 8000
network analyzer. To acquire the signals the network analyzer
is connected to a personal computer.

5 NOISE ELIMINATION USING SWT

Wavelet Transform (WT) is an efficient means of analyzing
transient currents and voltages. Discrete Wavelet Transform
(DWT) is the most popular wavelet transform. It is widely
used in power engineering applications, especially in
protection systems for detection, identification, classification
and localization of the power system disturbances both in time
and frequency domains [27]. A threshold is used in wavelet
domain to smooth out or to eliminate some coefficients of WT
of the measured signal. The noise content of the signal is
reduced effectively under the non-stationary environment, but
the results obtained from it are not the optimal mainly due to
the loss of the invariant translation property [28]. To
overcome this deficiency of DWT, Stationary wavelet
transform (SWT) can be used. The SWT is also similar to the
DWT in that the low-pass and high-pass filters are applied to
the input signal at each level, in which the downsampling
stage at each scale is replaced by an upsampling of the filter
before the convolution.
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Figure 6. Variation in SNR and MSE values for different mother wavelets of
biorthogonal family.

In the proposed technique, Bior5.5 wavelet has been used
as the wavelet basis function for fault detection and
identification. Initially DWT with different mother wavelets is
applied for signal reconstruction and the best performance is
observed by using biorthogonal family of mother wavelet.
Hence, the advantage of SWT over the DWT in signal
reconstruction is explained by applying different wavelets of
biorthogonal family and calculating mean square error (MSE)
and signal to noise ratio (SNR) between the reference signal
and reconstructed signal of stator current in phase R. Figure 6
show the MSE and SNR for different wavelets of bi-
orthogonal family. Results clearly demonstrate that SWT is far
better than DWT in the application of noise elimination or
signal reconstruction and Bior5.5 mother wavelet has less
MSE compared to others.
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6 PROPOSED DETECTION AND
CLASSIFICATION TECHNIQUE

The proposed fault detection and classification technique
starts with data acquisition and then application of wavelet
analysis and classification. This is illustrated in Figure 7. The
threshold based reconstruction of the three-phase stator
currents should compensate the effects due to supply
unbalance and machine unbalance. The reconstructed three
phase current signals are obtained by using stationary wavelet
denoising technique of level based threshold. The three-phase
currents of the motor are decomposed with SWT of Bior5.5 to
obtain approximate and detail level coefficients up to 6th
level. The thresholds of d1 coefficients to d4 coefficients are
made maximum while threshold value of d5 coefficients is set
to a high value as this band of frequency components is
sensitive to the supply unbalances. The threshold value of d6
is calculated based on its peak value in the 1% cycle and
multiplied with a distortion factor which is calculated from
RMS value of the current signal during start-up (preferably in
the 1% cycle). The threshold value of d6 coefficient may
enhance the fault signature because the pre-fault value is
subtracted from the captured signal. Therefore, the
reconstructed signals are called as fault residues. This type of
reconstruction is essential especially if fault feature is very
close to the noise level.

2-turn faultin R phase  8-turn fault in R phase

N |— 2-turn fault in Y phase
Stator inter-turn .

Pre-processing || Feature extraction —v|  fault severity :
using SWT [V using DWT ——»| identifier using MNN [— 8-turn faultin Y phase
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Stator phase fault
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! |

Sudden load change ~ Supply Unbalance ~ Stator Phase faults RG fault YG fault BG fault
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Data . MNN
acquisition
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Figure 7. Proposed stator fault detector and classifier

6.1 FEATURE EXTRACTION

A short circuit between the turns in a stator winding causes
an unbalance in stator currents. These unbalances cannot be
seen directly from the three-phase stator currents if the level
of turn short circuit is too small i.e. 1 or 2 turns. Figures 8a
and 8b show the three-phase stator currents for 2-turn short
circuit in R-phase of a 3-hp induction motor under
experimental and simulation cases respectively. From these
figures, the unbalance due to stator inter-turn short circuit is
not predictable by eye due to the noise and supply or machine
unbalances. Hence, an efficient pre-processing method is
required for extracting the fault residues and instant of fault
even though the motor is operated under noisy environment.
In this regard, time-frequency domain analysis of SWT
is considered and carried out in MATLAB/Simulink
environment for predicting the fault residues. Figures 9a and
9b, show the three-phase residues based on minimax method
and proposed threshold based method (mentioned in above
section) for 2-turn short circuit in R-phase under
experimentation. Similarly, Figures 9c and 9d show the
simulation cases of three-phase residues based on minimax method
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Figure 8. Three-phase stator currents for 2-turn short circuit in R-phase of
3-hp induction motor under (a) experimentation (b) simulation.
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Figure 9. Three-phase residues for 2-turn short circuit in R-phase (a) level
based minimax method applied for experimental case (b) proposed threshold
method applied for experimental case (c) level based minimax method applied
for simulation case (d) proposed threshold method applied for simulation case.
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Figure 10. Variation in detail level coefficients for 2-turn short circuit in R-
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proposed threshold method applied for experimental case (c) level based
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applied for simulation case.
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and proposed method respectively. From the waveforms, the
identification of the fault instant is not possible. Hence, once
again the reconstructed signals are decomposed by using
DWT of Bior5.5 mother wavelet. To extract the fault features
the three-phase residues are decomposed up to 4™ level.
Figures 10a and 10b demonstrate the experimental cases of
detail coefficients of residues based on minimax method and
proposed method respectively. Similarly, Figures 10c and 10d
show the simulation cases of detail coefficients of residues
based on minimax method and proposed method. The
variation in detail level coefficients in Figures 10b and 10d
have clearly demonstrated that the proposed wave
reconstruction and decomposition is superior than the existing
method to extract the fault features and its instant. The
variation in three-phase detail level coefficients exists
throughout the interval if decomposed signal is reconstructed
with minimax method. Hence, fault feature extraction and
instant of fault identification are not possible by using
minimax method. In this paper, the abnormal condition of the
induction motor can be detected by checking three
consecutive fault indices values with an adaptive threshold 7/
and count value of these fault indices over a window of 10
samples should be greater than 6. The fault index (I) is
described mathematically as follows.

I,(n)= |slope_d Uy (n)| + |slope_d Uy (n)| + |slope_d Uy (n)| @]
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Figure 11. Variations in fault indices and count values of a 3-hp induction
motor for (a) experimental case of healthy (b) experimental case of 2-turn
short circuit (c) simulation case of healthy (d) simulation case of 2-turn short
circuit.
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Table 2. Comparison of detection criteria for stator inter-turn faults in
R-phase of experimental and simulation cases on a 3-hp induction motor

Vol. 23, No. 5; October 2016

Experimental Simulation
Type of Disturbance
RMFI RTH RMFI RTH
2-turn fault in R-phase 34.33 1.35 | 2320 0.86
4-turn fault in R-phase 76.40 3.33 84.78 1.79
6-turn fault in R-phase 133.81 4.31 124.39 3.27
8-turn fault in R-phase 282.12 [ 327 | 217.55 | 2.98
2-turn fault in R-phase with 2% SUB 19.59 0.84 | 10.33 0.72
4-turn fault in R-phase with 2% SUB 69.67 3.18 | 61.09 3.68
6-turn fault in R-phase with 2% SUB 12113 | 7.59 | 11486 | 4.12
8-turn fault in R-phase with 2% SUB 170.34 | 4.11 12725 | 4.11
2-turn fault in R-phase with 50% load | 31.09 9.03 | 34.09 3.96
4-turn fault in R-phase with 50% load | 99.45 6.35 | 81.17 3.57
6-turn fault in R-phase with 50% load | 74.25 834 | 7536 3.29
8-turn fault in R-phase with 50% load | 126.07 | 2.75 | 189.12 [ 2.69

RMFT: Relative value of maximum fault index (w.r.t. normal)
RTH: Relative value of adaptive threshold (w.r.t. normal)

Table 3. Comparison of detection criteria for various abnormalities of
experimental and simulation cases on a 3-hp induction motor

Experimental Simulation
Type of Disturbance
RMFI [ RTH | RMFI | RTH
4-turn phase fault between RY phases | 206.44 [ 3.01 [ 469.02 [ 2.28
6-turn phase fault between RY phases | 379.92 | 4.69 | 356.28 [ 0.96
8-turn phase fault between RY phases | 269.48 | 8.20 | 603.89 | 5.02
4-turn ground fault in R-phase 74.07 10.8 | 107.02 | 4.24
6-turn ground fault in R-phase 143.52 | 6.83 [ 356.11 | 5.76
8-turn ground fault in R-phase 169.30 | 4.68 [ 304.53 | 4.10
Single phasing in R-phase 812.78 | 3.66 899.34 | 3.67
Single phasing in Y-phase 474.06 | 5.16 624.59 | 6.48
Single phasing in B-phase 551.00 | 4.42 573.86 | 8.67
3% Supply unbalance in R-phase 144.57 | 5.23 81.74 2.82
3% Supply unbalance in Y-phase 166.19 | 5.50 84.01 0.35
3% Supply unbalance in B-phase 159.20 | 4.31 93.30 2.78

RMFI: Relative value of maximum fault index (w.r.t. normal)
RTH: Relative value of adaptive threshold (w.r.t. normal)

To validate the proposed detection criteria, a 3-hp induction
motor is considered and various abnormalities are simulated in
MATLAB/Simulink environment. The same abnormalities are
also created on a 3-hp induction motor using experimental
setup. Especially, stator inter-turn faults are created under
certain loaded conditions such as 0%, 50% and 100%. Stator
inter-turn faults are also created experimentally on no-load
condition with minor supply unbalances like 1%, 2%, and 3%.
In case of simulation that is extended up to 5% due to
numerous data required for classification. Figures 11a, 11b,
11c and 11d represent the variation in fault indices and count
values for healthy and 2-turn short circuit in R-phase of
experimental and simulation cases respectively. The results
illustrate that the fault indices are below the adaptive
threshold when the motor is under healthy condition. Apart
from healthy condition, the fault indices are above the
adaptive threshold and count values are also more than 6. The
detection criteria for both experimental and simulation cases
of different levels of stator inter-turn short circuits under
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balanced supply, 3% of supply unbalance and 50% of loaded
conditions are illustrated in Table 2. Table 3 shows the
detection criteria for remaining abnormal conditions of both
experimental and simulation cases. The results of Table 2 and
Table 3 depict the correctness of proposed detection criteria
for various abnormalities of experimental and simulation cases
of a three-phase 3-hp induction motor. To check the reliability
of the proposed detection criteria, another rating of 10-hp
induction motor is also considered. Figures 12a 12b, 12¢ and
12d demonstrate fault indices along with adaptive threshold
Th under various experimental cases on a 10-hp induction
motor of healthy, 2-turn fault, under voltage and supply
unbalance conditions respectively. From these results it is
clear that the proposed algorithm has successfully detected the
abnormal conditions of the motor. To classify all these
abnormalities certain features are essential for separating
them. In this totally 9 features of 2" level approximate
coefficients are taken over a window of 1 cycle from the fault
instant to classify the disturbances. Figure 14 illustrates the
variation levels of feature 1, feature 2 and feature 3 for
various disturbances. For further classification, four more
features of detail level coefficients are required for classifying
the stator winding insulation faults along with faulty phase
and severity level of stator inter-turn faults. The following
section explains the various classifications.
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Figure 12. Variations in fault indices and count values of a 10-hp induction
motor for various experimental cases: (a) healthy (b) 2-turn short circuit (c)
under voltage (d) supply unbalance
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Figure 13. Variation in features for various disturbances.

6.2 ANN STRUCTURES FOR STATOR FAULTS
CLASSIFICATION

Artificial neural networks are divided into two main
categories viz monolithic networks and modular ones. In
canonical implementations, most systems employ a monolithic
network in order to solve the given task. However, when a
system needs to process large amounts of data or when the
problem is highly complex, then it is not trivial, and sometimes
unfeasible, to establish a good architecture and topology for a
single network that can solve the problem. In order to overcome
some of the aforementioned shortcomings of monolithic ANNSs,
many researchers have proposed modular approaches [29-30].
One of the major benefits of a modular neural network is the
ability to reduce a large, unwieldy neural network to smaller,
more manageable components. Other benefits of these networks
are their efficiency, lower required training time and robustness.
In this paper, three modular multilayer neural networks are
implemented to classify various faults on a three-phase
induction motor, identify various stator winding insulation faults
and severity level of stator inter-turn faults. The performance is
compared with artificial neural network (ANN) of a single
multilayer neural network and double multilayer neural network
through the simulation and experimentation. Figure 14 shows
the schematic diagram for classification of stator faults using
ANN. In this paper three ANNs are constructed for classifying
the stator winding insulation faults and severity of the fault in
case of stator inter-turn faults. In this the first one is for
classification of type of disturbance (ANN-1), the second one is
for identification of faulty phase and severity level of stator
inter-turn faults (ANN-2) and the third one is for classification
of stator winding phase faults (ANN-3). Figure 15 shows the
schematic representation of classifiers using ANN. This
approach decreases the training time as ANN-2 and ANN-3
train only when the disturbance classifier recognizes the
disturbance as related to the stator winding insulation faults
which means that the faults are related to stator inter-turn and
stator phase faults only. In this paper, each ANN is modeled as a
feed forward multilayer back propagation network. The inputs
to the ANN-1 are the statistical features of second level
approximate coefficients of three-phase residue currents, which
are standard deviation, maximum value and mean value
obtained over a window of one cycle from the fault instant. The
output of ANN-1 gives 6 classes (C;—Cs) of different types of
induction motor disturbances and these are as follows:

N. R. Devi et al.: Diagnosis and Classification of Stator Winding Insulation Faults on a Three-phase Induction Motor

C,—Single phasing C,—Supply unbalance

C;—Under voltage C4—Sudden load change

Cs—Stator inter-turn fault Cs—Stator phase fault

The slope of detail level coefficients of absolute peak
values of three phase residue currents are fed as inputs to the
ANN-2 and ANN-3 when it is activated. One more additional
input is required for ANN-2 for identifying the severity of the
stator inter-turn fault. The output of ANN-2 gives 12 classes
(F\—Fy,) of stator inter-turn faults and ANN-3 gives 6 classes
of phase faults and these are as follows:

F,— 2-turns short circuit in R phase

F,— 4-turns short circuit in R phase

F;— 6-turns short circuit in R phase

F4— 6-turns short circuit in R phase

Fs— 2-turns short circuit in Y phase

F¢— 4-turns short circuit in Y phase

F;— 6-turns short circuit in Y phase

Fg— 8-turns short circuit in Y phase

Fy— 2-turns short circuit in B phase

Fyp— 4-turns short circuit in B phase

Fy,— 6-turns short circuit in B phase

Fi,— 8-turns short circuit in B phase
P,—Stator turn-turn fault between RY phases
P,—Stator turn-turn fault between YB phases
P;—Stator turn-turn fault between BR phases
P,—Stator turn-ground fault in R phase
Ps—Stator turn-ground fault in Y phase

P¢—Stator turn-ground fault in B phase

For the simulation of ANN-1, ANN-2 and ANN3 in
MATLAB, a tangent sigmoid (tansig)’ and log sigmoid
(logsig) activation functions are used and training goal is set
at 10°°. First, the performance of single multilayer NN of
ANN-1 is demonstrated. Various training and testing patterns
are generated by using simulation and experimentation. The
break up of experimental and simulation data sets of training
and testing are given in Table 4. Totally 1287 patterns are
carried out to train and test the ANN-1, out of 1287 sets 858
data sets are utilized for training i.e. two third of the total data
sets and remaining are used for testing. The training
performance of single multilayer NN with respect to number
of neurons variation in hidden layer is depicted in Table 5.
From Table 5, it is observed that the training accuracy for 12
hidden neurons and 14 hidden neurons are nearly same but
number of epochs in 14 neurons is less than 12 neurons.
Therefore, for this problem 14 hidden neurons are considered
in ANNI.
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Figure 14. Schematic representation of ANN classifiers.

Table 4. Training and testing data sets for various disturbances.

No. of training No. of testing
. patterns patterns
Type of Disturbance

Exp Sim Exp Sim
Single Phasing 24 13 12 8
Supply Unbalance 60 54 30 27
Under Voltage 24 23 12 11
Stator Inter-turn fault 72 444 36 222
Sudden load change 18 - 8 -
Phase Faults 18 108 9 54

216 642 107 322
Total 858 429

Table 5. Training performance of single multilayer ANN-1

Number of . -

neurons in Learning Training

hidden layer epochs accuracy
11 200 96.4%
12 219 97.5%
13 198 97.2%
14 104 97.59%
15 108 97.13%
16 120 97.4%

In any classifier, the performance evaluation requires
specific measures which include accuracy, sensitivity and
specificity. Four additional terms are need to know which are
used as building blocks in computing many evaluation
measures. These are TP (True positives), TN (True negatives),
FP (False positives) and FN (False negatives). The confusion
matrix is a useful tool for analyzing how well your classifier
can recognize tuples of different classes. The accuracy,
sensitivity and specificity measures can be used, respectively,

Vol. 23, No. 5; October 2016

2551

for identifying the performance of the classifier. These
measures are defined as follows:

Sensitivit y :2 (2)
P
Specificity =ﬂ (3)
N
Accuracy = Sensitivit P + Specificit _N 4)
g TS M T
_ (TP +1N)
(P+N)

where P =TP + FN and N = FP + TN

Table 6. Testing performance of single multilayer ANN-1.

Learning Momentum Testing Training

rate accuracy time in sec
0.3 86.95% 19
04 90.21% 14
0.5 0-67 88.11% 17
0.6 86.71% 4.07
0.3 86.95% 16
0.4 87.65% 17
0.5 0.68 90.61% 7
0.6 88.11% 7
0.3 86.48% 26
0.4 90.68% 11
0.5 0.69 89.51% 9
0.6 89.74% 9
0.3 85.05% 18
0.4 07 85.55% 8
0.5 ’ 87.65% 9
0.6 89.04% 16

Table 7. Testing performance of multilayer ANN-1.

No. of
neurons in Learning Momentum Testing Training
hidden rate accuracy | time in sec
layerl & 2
14,10 0.4 0.69 92.31% 37
14, 20 0.4 : 90.68% 54
14,10 0.5 0.68 88.81% 30
14,20 0.5 ) 91.38% 86

The testing performance of ANN-1 is illustrated in Table 6
by making use of different learning rates and different values
of momentums. From Table 6 it is observed that for
momentum value of 0.69, 0.68 and learning rate of 0.4, 0.5
better accuracy is obtained compared to the remaining.
Similarly, same data is used to train and test the multilayer
neural network with two hidden layers also and these results
are shown in Table 7. From the results, it is proved that the
testing accuracy of multilayer neural network is better than
single multilayer neural network but the time taken to train the
network is more. The output of ANN-1 specifies the stator
inter-turn faults, stator phase faults and other faults but not the
fault involved phase and severity level. Hence, two more
ANNs are used to classify the stator faults along with
participated fault phase and to identify the level of fault
severity. When the output of ANN-1 indicates the stator inter-
turn fault then the classifier two (ANN-2) is activated, if the
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fault is a stator phase fault then classifier three (ANN-3) is
activated and for other cases ANN-2 and ANN-3 are in an
inactive mode. ANN-2 identifies totally 12 types of stator
inter-turn faults which are 2, 4, 6 and 8 turn short circuits in
R, Y and B phases. The third classifier ANN-3 classifies
6 phase faults such as turn-turn fault between RY phases,
turn-turn fault between YB phases, turn-turn fault between BR
phases, turn-ground fault in R phase, turn-ground fault in Y
phase and turn-ground fault in B phase. Table 8 and Table 9
show the number of training and testing patterns, considered
to check the performance of ANN-2 and ANN-3 respectively.
Numerous multilayer neural network configurations are
carried out by using MATLAB/Simulink software. Among all,
the best performance configuration of multilayer network of
ANN-2 is 4 (input neurons), 5(hidden neurons), 9 (hidden
neurons) and 12 (output neurons). Similarly, for ANN-3 the
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Figure 15. Proposed MNN-2 for classifying the stator phase faults.

N. R. Devi et al.: Diagnosis and Classification of Stator Winding Insulation Faults on a Three-phase Induction Motor

best performance configuration of multilayer neural network
is 3 (input neurons), 5 (hidden neurons), 7 (hidden neurons)
and 6 (output neurons). The obtained overall accuracy of the
proposed ANN-2 and ANN-3 are 95.74% and 89.39%
respectively.

|Max_slope_d1IRg|

|[Max_slope_d1IRy|

|Max_slope_d1IRg|

Type of stator
phase fault

|Max_slope_d1IRg|
|[Max_slope_d1TRy|

|Max_slope_d1IRg|

Figure 16. Proposed MNN-3 for identifying the severity level

Table 8. Training and testing patterns for ANN-2

No. of .
. . No. of testing
Type of stator inter-turn traming
patterns
fault patterns
Exp Sim Exp Sim
2-turns short in R phase 6 36 3 18
4-turns short in R phase 6 36 3 19
6-turns short in R phase 6 36 3 19
8-turns short in R phase 6 36 3 18
2-turns short in Y phase 6 36 3 18
4-turns short in Y phase 6 36 3 19
6-turns short in Y phase 6 36 3 19
8-turns short in Y phase 6 36 3 18
2-turns short in B phase 6 36 3 18
4-turns short in B phase 6 36 3 19
6-turns short in B phase 6 36 3 19
8-turns short in B phase 6 36 3 18
Total 72 432 36 222
504 258

Table 9. Training and testing patterns for ANN-3.

tii(i)ﬁiz; No. of testing
Type of stator phase fault patterns patterns

Exp | Sim Exp Sim

Stator turn-ground fault in R phase 6 18 2 9
Stator turn-ground fault in Y phase 6 18 2 9
Stator turn-ground fault in B phase 6 18 2 9
Stator turn-turn fault between RY phase 2 19 2 9
Stator turn-turn fault between YB phase 2 19 2 9
Stator turn-turn fault between BR phase 2 19 2 9
Total 24 111 12 54

In the proposed work, three modular structures of neural
networks (NN) are implemented for classification of various
disturbances, classification of stator winding insulation faults
and identification of severity level of stator inter-turn faults
which are shown in Figure 14, Figure 15 and Figure 16
respectively. Same training and testing data sets are used to
check the performance of the modular neural network. Six
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types of disturbances have been considered for classification, Table 12. Confusion matrix for MNN-3

6 modules of NN are required to form a modular neural P, P, P, P, Ps Pe
network one (MNN-1). Each module of MNN-1 classifier P, 1 0 0 0 0 0
classifies one class. During training process, features of a

particular disturbance signal are applied to all modules with P: 0 1 0 0 0 0
target as “1” to the corresponding neural module and target as Py 2 0 11 0 0 0
“0” to the rest of the modules. During testing, outputs of all P, 0 0 0 10 0 0
the NN modules are compared. The NN modules having P. 0 0 0 0 10 0
largest output will represent the corresponding disturbance

class. The performance of classifier of MNN-1 is shown in P 0 0 0 2 0 i

Table 10. From this table the overall accuracy of the modular Overall accuracy = 93.94%

classifier of MNN-1 is 94.64% and this performance is

achieved within 4 sec. Hence, the results proved that the

performance of MNN-1 is significantly higher (2.4%) as Table 13. Performance for ANN-1 and MNN-1 in disturbance classification

compared to multilayer neural network classifier of ANN-1. Type of Type of Sensitivit Specificit Average
The output of MNN-1 specifies the stator inter-turn faults, network | disturbance ey pectialy Values
stator phase faults and other faults but not the fault involved G 0.952 0.995
phase and severity. H.ence, two more rn.odul.ar structures of C 0804 0989 Sef(l)sgi_\gtyi
NNs are used to classify the stator winding insulation faults :
. .. . C; 0.913 0.980
along with participated fault phase and severity level. When
the output of MNN-1 indicates the stator inter-turn fault (Cs ANN-1 Cs 0.961 0.942 o
becomes 1) then MNN-2 is activated. If the output of MNN-1 Cs 0.6 0.998 Speglgglty'
indicates stator phase fault, then MNN-3 is activated. Each Ce 0921 0978 '
module of MNN-2 classifier indicates the 4 levels of inter-turn C | 0993
severities in R-phase, Y-phase and B phase. The other stator ! i o
Sensitivity:
C, 0.893 0.984 0.939
Table 10. Confusi ix for MNN-1 < 0957 0995
abple . Confusion matrix for -1.
MNN-1 Cy 0.961 0.971
C, C, Cs Cy Cs Cs C 0.9 0.9 Specificity:
G 21 0 0 0 0 0 ° . i 0.987
G, P 50 0 3 1 Cs 0.921 0.992
Cs 0 0 22 0 0 1
winding insulation faults such as ground and phase-phase faults
G ol o 9 1 0 d lation faults such d and phase-phase fault
s are classifie -3. The testing performance o -
\ 1 4 2 246 1 lassified by MNN-3. The testing perft f MNN-2
Cs 0 2 0 2 1 58 and MNN-3 are illustrated make use of confusion matrix.
Overall accuracy = 94.64 % Tables 11 and 12 demonstrate the overall accuracy of the
MNN-2 and MNN-3 respectively. The results demonstrate
Table 11. Confusion matrix for MNN-2. that the overall accuracy of the classifiers of MNN-2

and MNN-3 are improved by 1.16% and 4.55% respectively

F F F F F F F F F F F F . ) .

S M i S i W M Wi when compared with multilayer neural network classifiers.
Fol20p 0 0fp 0 0Of 0 O] 0] 0} 0] 0] 0  The number of iterations required for archiving the best
F, 21 11 ol ol ol ol ol o ol o 0 accuracy in ANN-2, ANN-3, MNN-2 and MNN-3 are 609,

453, 192, and 47 iterations respectively. All the modular
F; 0| 22 0 0 0 0 0 0 0 0 0 . c. ..
classifiers together has to be taken within 6 sec for training the
Fy 0 0 21 0 0 0 0 0 0 0 0 networks_
Fs O 0 020 O] Of O} O 1] 0} 0 The other performance measures associated with classifier
0

ol ol ol ol o are the sensitivity and specificity. Table 13 demonstrates the
values of sensitivity and specificity for ANN-1 and MNN-1
based classifiers corresponding to 6 types of disturbances.
200 0 0] 0} 0 Similarly Tables 14 and 15 show the values of sensitivity and
ol20l ol ol o specificity of the classifiers ANN-2 vs MNN-2 and ANN-3 vs
MNN-3 respectively. From the Tables 13, 14 and 15, it is
clear that the modular structure of neural network has more
0] of 221 0 capability to classify the disturbances, types of stator winding
ol ol ol of 21 insulation faults and severity level of stator inter-turn faults.
Hence the modular based classifiers are significantly far better
than the multilayer neural network classifier.

20 0 0 0 0 0

0 0 0 0 0

=
S|l | |||l lo|e
(=]
=]
(=]
(=]
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(=3
(=3
(=)
(=]
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Overall accuracy = 96.9%
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Table 14. Performance for ANN-2 and MNN-2 in stator faults classification.
Igtl;:o?'i ;l;}:ll;: of Sensitivity Specificity A‘;]:ll;l aegse
F, 1 1
F, 0.956 0.996
Fs ! ! Sensitivity:
F, 1 1 0.958
Fs 0.952 1
Fe 1 0.987
ANN-2
F; 0.909 1
Fs 1 0.996
Fo 0.905 0.996 Specificity:
Fio 0.954 0.983 0.996
Fu 0.864 0.995
Fi, 0.952 1
F, 1 1
F, 0.956 1
F3 1 0.992 Sensitivity:
F, 1 1 0.969
Fs 0.952 1
Fs 1 0.987
MNN-2
F; 0.909 1
Fs 0.952 1
Fy 0.952 1 Specificity:
Fio 1 0.987 0.997
Fii 0.909 1
Fiz 1 1

Table 15. Performance for ANN-3 and MNN-3 in stator phase faults
classification

Type of
Type of stator Sensitivity Specificity Average
network Values
phase fault
Py 0.909 0.964
Sensitivity:
P, 1 0.964 0.896
P; 0.846 0.981
ANN-3
Py 1 0.964
Sensitivity:
Ps 08 ! 0.979
Ps 0.818 1
Py 1 0.964
Sensitivity:
P, 1 ! 0.944
MNN-3 P; 0.846 1
P, 1 0.964
Sensitivity:
Ps ! ! 0.988
Pg 0.818 1

7 CONCLUSION

In this paper an attempt has been made to extract efficient
features of the induction motor disturbances using SWT and
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DWT. The observations made from the results indicate that
the SWT has clear advantage over the DWT to extract the
fault residues in the presence of noise and supply unbalances.
The developed simulation model is validated through
experimental setup and the frequency responses obtained from
the simulated model closely matches with the experimental
setup. The instant at which disturbance starts can be identified
by comparing the fault indices with adaptive threshold and
count value. The threshold based reconstruction and adaptive
threshold logic have improved the effectiveness of the
proposed detection scheme. By introducing modular concept
to NN for disturbance classification, stator winding insulation
faults classification and level of severity identification, the
task complexity is reduced and learning capability is
increased. It is observed from the results that the performance
of MNN-1 is significantly higher as compared to that of ANN-
1 and the same trend is followed in both the cases of MNN-2
and MNN-3 classifiers. Similarly, the training time required
for modular neural network is less compared with ANN. This
diagnosis approach improves the efficacy as the features
required for detection and classification are obtained over a
window of one cycle from the point of disturbance. Hence the
proposed technique is effective in detecting and classifying
the stator winding insulation faults and severity level of inter-
turn faults with a minimum time.
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