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ABSTRACT 

The growing industrialization needs techniques to diagnose the incipient faults in 
induction motor at inception stage itself for avoiding the downtime of the production. 
In this regard detecting the faults in a 3-phase induction motor at an early stage is a 
vital component in process industries. The condition of the supply unbalance, under 
voltage and sudden load changes are other involuntary issues which may tend to 
exhibit current signature similar to the stator winding insulation faults. This paper 
proposes a robust technique to detect, classify various stator winding insulation faults 
and severity of stator inter-turn faults when an induction motor works under various 
operating conditions. In the present work, disturbance features are extracted from 
three phase residues which are obtained from wavelet multiresolution analysis. Three 
modular neural networks are implemented, in which one is used to classify various 
disturbances such as single phasing, supply unbalance, under voltage, stator inter-turn 
faults, sudden load change and phase faults, second one is used for classifying the stator 
winding phase faults and third one is used for identifying the faulty phase and severity 
level of stator inter-turn faults. Simulation and Experimental data demonstrate the 
validity of the proposed method and improvement in classification accuracy as 
compared to traditional method.  

   Index Terms - Discrete wavelet transform, stationary wavelet transform, stator 
winding insulation faults, modular neural network, multilayer neural network, 
sensitivity, specificity. 

 
1   INTRODUCTION 

DEPLOYMENT of an induction motor in process industry is 
growing day by day due to their low cost, ruggedness, reasonably 
small size, low maintenance, and operation of an easily available 
power supply. Even though induction machines are reliable, they 
are subjected to some undesirable stresses, resulting in faults 
eventually leading to failures [1]. Several studies have shown 

that 30%–40% of induction motor failures are due to the stator 
winding breakdown [2-3]. The requirement for condition 
monitoring has increased recently because of the widespread use 
of automation and consequent reduction in direct man-machine 
interface to supervise the system operation. Condition monitoring 
is a good graphical trend of the machine parameters for the 
purpose of detection, analysis, and correction of the machine 
problems before the failure takes place. This may help to increase 
the machine availability and performance, reducing 
consequential damage, increasing machine life, reducing spare Manuscript received on 1 August 2015, in final form 20 June 2016, accepted 
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DOI: 10.1109/TDEI.2016.005576

IEEE Transactions on Dielectrics and Electrical Insulation    Vol. 23, No. 5; October 2016 2543

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 03,2025 at 10:27:00 UTC from IEEE Xplore.  Restrictions apply. 



 

parts inventories, and reducing breakdown time [4]. Normally, 
the deterioration of stator winding insulation usually begins with 
an inter-turn fault which produces a high circulating current 
between adjacent coils and hence burns the insulation in adjacent 
windings. This insulation failure expands to the core very fast 
leading to stator to core insulation failure.  Hence, reliable 
detection techniques are essential for detecting the stator 
insulation failure at the earliest to avoid catastrophic motor 
failures [5].  A well-known technique to detect inter-turn short 
circuits in time domain analysis is based on the presence of 
negative sequence components of stator currents [6], which is the 
first developed technique for detecting the stator winding failure. 
Detection of stator faults using dq0 components [7], the envelope 
of the stator currents [8], the stator currents in multiple reference 
frames [9] and wavelet transform of the stator currents [10] are 
just alternative representations of the same current components. 
Fault detection using induced voltage at motor terminals when 
the power supply is turned off is proposed in [11], but this 
method cannot provide continuous monitoring and protection. In 
[12] a review and summary of various online inter-turn fault 
diagnosis strategies for electrical machines with a focus on PM 
machines is presented. The stator winding faults create 
unbalancing in the line currents, and similar unbalancing is also 
created due to asymmetrical winding resistances and supply 
unbalances [2, 3, 5, 13, 14]. Some work has been done to 
distinguish the unbalancing due to faults and the unbalancing due 
to the inherent asymmetry in the winding and supply [15, 16]. 
However, the distinction between these two phenomena is highly 
challenging under no-load conditions. This is one of the major 
issues in recent times and another is the identification of low-
level severity of stator inter-turn faults (1 or 2 turn failures) under 
various operating conditions. Recently, significant efforts have 
been made to the use of artificial intelligence tools to develop 
condition monitoring and fault diagnostic techniques for electric 
machines to segregate the faults. Artificial intelligence 
techniques are considered significant in condition monitoring and 
fault diagnosis of electrical machines as reviewed in [17]. Neural 
network and fuzzy logic techniques have their own shortcomings 
as discussed in [18] and thus a specific combination of these two 
techniques, known as Adaptive Neuro-Fuzzy Inference System 
(ANFIS), have been developed as a better alternative solution 
[19]. The ANFIS technique offers the best training feature of the 
neural network and heuristic interpretation of the process results 
similar to fuzzy logic theory, thus providing a powerful tool that 
can be employed in conjunction with the condition monitoring 
and fault diagnostic applications. The use of ANFIS is growing 
in popularity in this niche application area and a significant 
amount of literature is available [20-22]. Bearing fault and inter-
turn insulation failure of main winding of a single-phase 
induction motor is considered in [23]. Stator current, rotor speed, 
temperature of the winding, bearing temperature and motor noise 
are considered as inputs to the ANFIS. However, additional 
noise sensors are not very reliable and the data collected from 
such sensors is not very accurate. Classification of more faults 
with a single parameter is more complicated than multiple 
parameters. Modular Neural networks (MNN) have remarkable 
ability to derive meaning from complicated or imprecise data and 

can be used to extract patterns and detect trends that are too 
complex. Such an approach has noticeable advantages of 
simple and reduced architecture and better learning capability 
[24-25]. The work reported so far in the literature has 
confined to detection and classification of only two or three 
types of faults. However, a single reliable procedure for any 
type of stator winding faults and supply side faults based on 
non-invasive signals is not in the literature. 

This paper proposes the application of Wavelet and MNN 
based fault detection and classification scheme for stator 
winding insulation faults. Unbalancing condition at the motor 
could be due to stator winding insulation faults or due to other 
conditions. In this paper, a robust diagnosis procedure is 
proposed to classify the stator winding insulation faults from 
other disturbances such as single phasing, supply unbalance, 
under voltage and sudden load change. The proposed method 
requires only three measurements and thirteen features. The 
three phase stator currents are the three measurements and are 
sensed for each of the disturbance and normal cases. These 
three phase currents are analyzed with wavelet transform to 
detect the disturbance instant. Three statistical features of 
second level approximate coefficients of three phase values 
are considered as inputs to the first classifier for classifying 
the various disturbances on a 3-phase induction motor. To 
identify the faulty phase and severity level of stator inter-turn 
faults another modular neural network is considered. To make 
the identifier insensitive to the operating conditions the 
network is trained with input features of three-phase detail 
level coefficients and ratio of the post and pre-fault mean 
values of 4th level approximate coefficients. To classify the 
stator phase faults one more modular neural network is 
considered and trained with inputs of three-phase detail 
coefficients only for making the proposed scheme more 
generalized. The proposed detection and classification scheme 
is effective in classifying and identifying the stator winding 
insulation faults. 

2  MODELLING AND SIMULATION 
Conducting numerous experiments on a practical machine 

to study the behavior of faults is not feasible, as it can lead to 
the destruction of the machine. To study the behavior of the 
motor under stator inter-turn fault conditions requires a simple 
and reliable model. In this paper, a low to high-frequency 
model is considered, to analyze the stator inter-turn faults. In 
medium to high-frequency ranges, a distributed parameter 
model is the best for analyzing the motor behavior. Compared 
to low-frequency model, the distributed parameter model 
requires extra elements as shown in Figure 1. The additional 
parameters of the distributed model are calculated from the 
differential mode and common mode tests which have been 
discussed in [26]. In general, distributed parameters are 
determined by measuring the frequency response from 
differential mode (DM) test setup and common mode (CM) 
test setup.  A three-phase, 3-hp, 440 V, 4 pole 50 Hz 
Induction Motor with 36 slots, 6 coils per phase and 72 turns 
per coil is considered in the present study. The DM test was 
performed by connecting an LCR meter between phase A and 
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tied leads of phase B and phase C. This test procedure is 
recommended for an ungrounded motor frame and LCR meter 
in Z-θ mode. The CM test was performed with ground frame 
as one probe and phase A, phase B and phase C motor leads 
tied together to form the second probe to LCR meter in Z-θ 
mode. Figure 2 shows the experimental setup of a three-phase 
3-hp induction motor. Table 1 presents the low to high-
frequency parameters of a 3-hp induction motor.  To validate 
the model, the frequency responses obtained from the 
experimental setup are compared with those from simulation. 
Figures 3a and 3b show the comparison between measured  
and simulated frequency responses in both DM and CM. These 
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isw

dx
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Figure 1. Distributed parameter model of a three-phase induction motor. 

 
Figure 2. Experimental setup of a 3-hp three-phase induction motor 

Table 1. Low and High Frequency Parameters of a three-phase 3-hp Induction 
Motor. 

Parameters Values  
Obtained 

from 

Stator Resistance (Rs) 9.1   
Stator Leakage Inductance (Lls) 41.38 mH  
Rotor Resistance (Rr) 8.08  No load and 
Rotor leakage inductance (Llr) 31.83 mH Blocked rotor  
Magnetizing Inductance (Lm) 904.44 mH Test 
Core Resistance (Rcore) 2842.8    
Stator to frame capacitance (Csf ) 0.253 nF  
Anti-resonance resistance (μRs) 2.667  Differential  
Anti-resonance leakage inductance (Lls) 3.547 μH Mode and 
Stator turn to turn capacitance (Csw) 0.853 nF Common  
Stator turn to turn damping resistance (Rsw) 17356  mode test 

figures demonstrate that the frequency response observed in 
simulation closely matches with response measured on the 
practical machine. Hence, the model is valid for transient 
studies. 

 
(a) 

 
(b) 

Figure 3. Frequency responses in DM and CM (a) measured and simulated 
magnitude responses in DM and CM (b) measured and simulated phase 
responses in DM and CM. 

3  SIMULATION MODEL FOR STATOR 
FAULTS  

To simulate the stator inter-turn faults a 3-phase, 3-hp, 
415V, 50 Hz induction motor with a star connected stator 
winding is considered. The stator winding corresponding to 
the phase in which the fault is created is divided into two 
parts. An additional branch is connected in parallel to the rotor 
resistance to simulate the disturbance component due to stator 
inter-turn fault. The fault is created by closing three switches 
as shown in Figure 4 and it illustrates the stator inter-turn fault 
in R-phase of a 3-phase induction motor. In this figure Part 1 
refers to a healthy portion of the winding and Part 2 refers to 
the shortened turns of the winding. The resistance, inductance, 
and insulation capacitance are divided in proportion to the 
number of short-circuited turns. The various percentages of 
turn level short circuits in different phases have been 
simulated in the MATLAB/Simulink environment. In the case 
of stator turn-turn faults, the switches S1 and S2 are connected 
between phases and if it is a stator turn to ground fault the 
switches S1 and S2 are connected between phase and ground. 
To bring the simulation model more close to practical 
scenarios, Gaussian noise is injected in each phase. The noise 
level to be injected is calculated from the captured three-phase 
stator currents in the experimental setup. Totally 9 types of 
stator faults are considered for simulation such as stator inter-
turn fault in R phase, Y phase, B phase, stator turn-turn fault 
between RY phases, YB phases, BR phases and stator turn-
ground fault in R phase, Y phase, B phase. 
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Figure 4. Stator inter-turn fault simulation model for a 3-phase induction 
motor. 

4  EXPERIMENTAL SETUP  
An experimental setup was prepared with a 3-phase, 3-hp,  

4 pole, 50 Hz, 415 V induction motor with 36 slots, 6 coils per 
phase and 72 turns per coil. In order to create the inter-turn 
short circuit, two tapping points are taken out per phase from 
the neutral of the stator winding. Each tapping is having a 
resistance of 0.8 ohms. The stator inter-turn faults are created 
experimentally by connecting a suitable resistance between 
tapping point and ungrounded neutral [6-7]. If the fault is a 
turn-turn or turn to ground then suitable resistance is 
connected between tapping point of one phase to another or 
phase to ground. Another rating of 10-hp induction motor is 
also considered for creating various stator faults for a level of 
2 turns to 8 turns in steps of 2 turns without connecting any 
resistance between tapping point and neutral of the stator 
winding as in this case tapping points are directly taken to the  
level of 2 turns. Totally 6 types of disturbances are created make 

 

   
      (a)           (b) 

Figure 5. Experimental setup for creating the faults on (a) 10-hp induction 
motor (b) 3-hp induction motor. 

use these machines. Figures 5a and 5b show the experimental 
setup for creating various disturbances on a 3-hp and 10-hp 
induction motors respectively. In the proposed method, three-
phase stator currents are captured in 1 Sec with a sampling 
frequency of 6.6 kHz by using UNIPOWER DIP 8000 
network analyzer. To acquire the signals the network analyzer 
is connected to a personal computer. 

5  NOISE ELIMINATION USING SWT 

Wavelet Transform (WT) is an efficient means of analyzing 
transient currents and voltages. Discrete Wavelet Transform 
(DWT) is the most popular wavelet transform. It is widely 
used in power engineering applications, especially in 
protection systems for detection, identification, classification 
and localization of the power system disturbances both in time 
and frequency domains [27]. A threshold is used in wavelet 
domain to smooth out or to eliminate some coefficients of WT 
of the measured signal. The noise content of the signal is 
reduced effectively under the non-stationary environment, but 
the results obtained from it are not the optimal mainly due to 
the loss of the invariant translation property [28]. To 
overcome this deficiency of DWT, Stationary wavelet 
transform (SWT) can be used. The SWT is also similar to the 
DWT in that the low-pass and high-pass filters are applied to 
the input signal at each level, in which the downsampling 
stage at each scale is replaced by an upsampling of the filter 
before the convolution. 

 
Figure 6. Variation in SNR and MSE values for different mother wavelets of 
biorthogonal family. 

In the proposed technique, Bior5.5 wavelet has been used 
as the wavelet basis function for fault detection and 
identification. Initially DWT with different mother wavelets is 
applied for signal reconstruction and the best performance is 
observed by using biorthogonal family of mother wavelet. 
Hence, the advantage of SWT over the DWT in signal 
reconstruction is explained by applying different wavelets of 
biorthogonal family and calculating mean square error (MSE) 
and signal to noise ratio (SNR) between the reference signal 
and reconstructed signal of stator current in phase R. Figure 6 
show the MSE and SNR for different wavelets of bi-
orthogonal family. Results clearly demonstrate that SWT is far 
better than DWT in the application of noise elimination or 
signal reconstruction and Bior5.5 mother wavelet has less 
MSE compared to others. 
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6  PROPOSED DETECTION AND 
CLASSIFICATION TECHNIQUE  

The proposed fault detection and classification technique 
starts with data acquisition and then application of wavelet 
analysis and classification. This is illustrated in Figure 7. The 
threshold based reconstruction of the three-phase stator 
currents should compensate the effects due to supply 
unbalance and machine unbalance. The reconstructed three 
phase current signals are obtained by using stationary wavelet 
denoising technique of level based threshold. The three-phase 
currents of the motor are decomposed with SWT of Bior5.5 to 
obtain approximate and detail level coefficients up to 6th 
level. The thresholds of d1 coefficients to d4 coefficients are 
made maximum while threshold value of d5 coefficients is set 
to a high value as this band of frequency components is 
sensitive to the supply unbalances. The threshold value of d6 
is calculated based on its peak value in the 1st cycle and 
multiplied with a distortion factor which is calculated from 
RMS value of the current signal during start-up (preferably in 
the 1st cycle). The threshold value of d6 coefficient may 
enhance the fault signature because the pre-fault value is 
subtracted from the captured signal. Therefore, the 
reconstructed signals are called as fault residues. This type of 
reconstruction is essential especially if fault feature is very 
close to the noise level.  

Data 
acquisition 

Pre-processing 
using SWT

Feature extraction 
using DWT

Disturbance 
classifier using 

MNN
Single phasing

Supply Unbalance

Under Voltage

Sudden load change Stator Phase faults

Stator inter-turn 
fault  severity 

identifier using MNN

Stator phase fault 
classifier using MNN

2-turn fault in R phase

RG fault

RY fault

Stator inter-turn fault

YG fault BG fault

YB fault

BR fault

8-turn fault in R phase

2-turn fault in Y phase

2-turn fault in B phase 8-turn fault in B phase

8-turn fault in Y phase

 
Figure 7. Proposed stator fault detector and classifier 

6.1 FEATURE EXTRACTION 

A short circuit between the turns in a stator winding causes 
an unbalance in stator currents. These unbalances cannot be 
seen directly from the three-phase stator currents if the level 
of turn short circuit is too small i.e. 1 or 2 turns. Figures 8a 
and 8b show the three-phase stator currents for 2-turn short 
circuit in R-phase of a 3-hp induction motor under 
experimental and simulation cases respectively. From these 
figures, the unbalance due to stator inter-turn short circuit is 
not predictable by eye due to the noise and supply or machine 
unbalances. Hence, an efficient pre-processing method is 
required for extracting the fault residues and instant of fault 
even though the motor is operated under noisy environment. 
In this regard, time-frequency domain analysis of SWT  
is considered and carried out in MATLAB/Simulink 
environment for predicting the fault residues. Figures 9a and 
9b, show the three-phase residues based on minimax method 
and proposed threshold based method (mentioned in above 
section) for 2-turn short circuit in R-phase under 
experimentation. Similarly, Figures 9c and 9d show the 
simulation cases of three-phase residues based on minimax method 

 
(a) 

 
(b) 

Figure 8. Three-phase stator currents for 2-turn short circuit in R-phase of  
3-hp induction motor under (a) experimentation (b) simulation. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Three-phase residues for 2-turn short circuit in R-phase (a) level 
based minimax method applied for experimental case (b) proposed threshold 
method applied for experimental case (c) level based minimax method applied 
for simulation case (d) proposed threshold method applied for simulation case. 
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(a) 

 
(b) 

 
(c) 

 
Figure 10. Variation in detail level coefficients for 2-turn short circuit in R-
phase (a) level based minimax method applied for experimental case (b) 
proposed threshold method applied for experimental case (c) level based 
minimax method applied for simulation case (d) proposed threshold method 
applied for simulation case. 

and proposed method respectively. From the waveforms, the 
identification of the fault instant is not possible. Hence, once 
again the reconstructed signals are decomposed by using 
DWT of Bior5.5 mother wavelet. To extract the fault features 
the three-phase residues are decomposed up to 4th level. 
Figures 10a and 10b demonstrate the experimental cases of 
detail coefficients of residues based on minimax method and 
proposed method respectively. Similarly, Figures 10c and 10d 
show the simulation cases of detail coefficients of residues 
based on minimax method and proposed method. The 
variation in detail level coefficients in Figures 10b and 10d 
have clearly demonstrated that the proposed wave 
reconstruction and decomposition is superior than the existing 
method to extract the fault features and its instant. The 
variation in three-phase detail level coefficients exists 
throughout the interval if decomposed signal is reconstructed 
with minimax method. Hence, fault feature extraction and 
instant of fault identification are not possible by using 
minimax method. In this paper, the abnormal condition of the 
induction motor can be detected by checking three 
consecutive fault indices values with an adaptive threshold Th 
and count value of these fault indices over a window of 10 
samples should be greater than 6. The fault index (If) is 
described mathematically as follows.  

)1()(1_)(1_)(1_)( nIdslopenIdslopenIdslopenI BYRf   

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 11. Variations in fault indices and count values of a 3-hp induction 
motor for (a) experimental case of healthy (b) experimental case of 2-turn 
short circuit (c) simulation case of healthy (d) simulation case of 2-turn short 
circuit. 
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Table 2. Comparison of detection criteria for stator inter-turn faults in    
R-phase of experimental and simulation cases on a 3-hp induction motor 

Type of Disturbance 
Experimental Simulation 

RMFI RTH RMFI RTH 

2-turn fault in R-phase 34.33 1.35 23.20 0.86 

4-turn fault in R-phase 76.40 3.33 84.78 1.79 

6-turn fault in R-phase 133.81 4.31 124.39 3.27 

8-turn fault in R-phase 282.12 3.27 217.55 2.98 

2-turn fault in R-phase with 2% SUB 19.59 0.84 10.33 0.72 

4-turn fault in R-phase with 2% SUB 69.67 3.18 61.09 3.68 

6-turn fault in R-phase with 2% SUB 121.13 7.59 114.86 4.12 

8-turn fault in R-phase with 2% SUB 170.34 4.11 127.25 4.11 

2-turn fault in R-phase with 50% load 31.09 9.03 34.09 3.96 

4-turn fault in R-phase with 50% load 99.45 6.35 81.17 3.57 

6-turn fault in R-phase with 50% load 74.25 8.34 75.36 3.29 

8-turn fault in R-phase with 50% load 126.07 2.75 189.12 2.69 

RMFI: Relative value of maximum fault index (w.r.t. normal) 
RTH: Relative value of adaptive threshold (w.r.t. normal) 

 
Table 3. Comparison of detection criteria for various abnormalities of 
experimental and simulation cases on a 3-hp induction motor 

Type of Disturbance 
Experimental Simulation 

RMFI RTH RMFI RTH 

4-turn phase fault between RY phases 206.44 3.01 469.02 2.28 

6-turn phase fault between RY phases 379.92 4.69 356.28 0.96 

8-turn phase fault between RY phases 269.48 8.20 603.89 5.02 

4-turn ground fault in R-phase 74.07 10.8 107.02 4.24 

6-turn ground fault in R-phase 143.52 6.83 356.11 5.76 

8-turn ground fault in R-phase 169.30 4.68 304.53 4.10 

Single phasing in R-phase 812.78 3.66 899.34 3.67 

Single phasing in Y-phase 474.06 5.16 624.59 6.48 

Single phasing in B-phase 551.00 4.42 573.86 8.67 

3% Supply unbalance in R-phase 144.57 5.23 81.74 2.82 

3% Supply unbalance in Y-phase 166.19 5.50 84.01 0.35 

3% Supply unbalance in B-phase 159.20 4.31 93.30 2.78 

RMFI: Relative value of maximum fault index (w.r.t. normal) 
RTH: Relative value of adaptive threshold (w.r.t. normal) 
 

To validate the proposed detection criteria, a 3-hp induction 
motor is considered and various abnormalities are simulated in 
MATLAB/Simulink environment. The same abnormalities are 
also created on a 3-hp induction motor using experimental 
setup. Especially, stator inter-turn faults are created under 
certain loaded conditions such as 0%, 50% and 100%. Stator 
inter-turn faults are also created experimentally on no-load 
condition with minor supply unbalances like 1%, 2%, and 3%. 
In case of simulation that is extended up to 5% due to 
numerous data required for classification. Figures 11a, 11b, 
11c and 11d represent the variation in fault indices and count 
values for healthy and 2-turn short circuit in R-phase of 
experimental and simulation cases respectively. The results 
illustrate that the fault indices are below the adaptive 
threshold when the motor is under healthy condition. Apart 
from healthy condition, the fault indices are above the 
adaptive threshold and count values are also more than 6. The 
detection criteria for both experimental and simulation cases 
of different levels of stator inter-turn short circuits under 

balanced supply, 3% of supply unbalance and 50% of loaded 
conditions are illustrated in Table 2. Table 3 shows the 
detection criteria for remaining abnormal conditions of both 
experimental and simulation cases. The results of Table 2 and 
Table 3 depict the correctness of proposed detection criteria 
for various abnormalities of experimental and simulation cases 
of a three-phase 3-hp induction motor. To check the reliability 
of the proposed detection criteria, another rating of 10-hp 
induction motor is also considered. Figures 12a 12b, 12c and 
12d demonstrate fault indices along with adaptive threshold 
Th under various experimental cases on a 10-hp induction 
motor of healthy, 2-turn fault, under voltage and supply 
unbalance conditions respectively. From these results it is 
clear that the proposed algorithm has successfully detected the 
abnormal conditions of the motor. To classify all these 
abnormalities certain features are essential for separating 
them. In this totally 9 features of 2nd level approximate 
coefficients are taken over a window of 1 cycle from the fault 
instant to classify the disturbances. Figure 14 illustrates the 
variation levels of feature 1, feature 2 and feature 3 for 
various disturbances. For further classification, four more 
features of detail level coefficients are required for classifying 
the stator winding insulation faults along with faulty phase 
and severity level of stator inter-turn faults. The following 
section explains the various classifications.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. Variations in fault indices and count values of a 10-hp induction 
motor for various experimental cases: (a) healthy (b) 2-turn short circuit (c) 
under voltage (d) supply unbalance 
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Figure 13. Variation in features for various disturbances. 

6.2  ANN STRUCTURES FOR STATOR FAULTS 
CLASSIFICATION 

Artificial neural networks are divided into two main 
categories viz monolithic networks and modular ones. In 
canonical implementations, most systems employ a monolithic 
network in order to solve the given task. However, when a 
system needs to process large amounts of data or when the 
problem is highly complex, then it is not trivial, and sometimes 
unfeasible, to establish a good architecture and topology for a 
single network that can solve the problem. In order to overcome 
some of the aforementioned shortcomings of monolithic ANNs, 
many researchers have proposed modular approaches [29-30]. 
One of the major benefits of a modular neural network is the 
ability to reduce a large, unwieldy neural network to smaller, 
more manageable components. Other benefits of these networks 
are their efficiency, lower required training time and robustness. 
In this paper, three modular multilayer neural networks are 
implemented to classify various faults on a three-phase 
induction motor, identify various stator winding insulation faults 
and severity level of stator inter-turn faults. The performance is 
compared with artificial neural network (ANN) of a single 
multilayer neural network and double multilayer neural network 
through the simulation and experimentation. Figure 14 shows 
the schematic diagram for classification of stator faults using 
ANN. In this paper three ANNs are constructed for classifying 
the stator winding insulation faults and severity of the fault in 
case of stator inter-turn faults. In this the first one is for 
classification of type of disturbance (ANN-1), the second one is 
for identification of faulty phase and severity level of stator 
inter-turn faults (ANN-2) and the third one is for classification 
of stator winding phase faults (ANN-3). Figure 15 shows the 
schematic representation of classifiers using ANN. This 
approach decreases the training time as ANN-2 and ANN-3 
train only when the disturbance classifier recognizes the 
disturbance as related to the stator winding insulation faults 
which means that the faults are related to stator inter-turn and 
stator phase faults only. In this paper, each ANN is modeled as a 
feed forward multilayer back propagation network. The inputs 
to the ANN-1 are the statistical features of second level 
approximate coefficients of three-phase residue currents, which 
are standard deviation, maximum value and mean value 
obtained over a window of one cycle from the fault instant. The 
output of ANN-1 gives 6 classes (C1–C6) of different types of 
induction motor disturbances and these are as follows: 

C1→Single phasing    C2→Supply unbalance 

C3→Under voltage    C4→Sudden load change 

C5→Stator inter-turn fault C6→Stator phase fault 

The slope of detail level coefficients of absolute peak 
values of three phase residue currents are fed as inputs to the 
ANN-2 and ANN-3 when it is activated. One more additional 
input is required for ANN-2 for identifying the severity of the 
stator inter-turn fault. The output of ANN-2 gives 12 classes 
(F1–F12) of stator inter-turn faults and ANN-3 gives 6 classes 
of phase faults and these are as follows: 

F1→ 2-turns short circuit in R phase 

F2→ 4-turns short circuit in R phase  

F3→ 6-turns short circuit in R phase  

F4→ 6-turns short circuit in R phase 

F5→ 2-turns short circuit in Y phase  

F6→ 4-turns short circuit in Y phase  

F7→ 6-turns short circuit in Y phase  

F8→ 8-turns short circuit in Y phase 

F9→ 2-turns short circuit in B phase  

F10→ 4-turns short circuit in B phase  

F11→ 6-turns short circuit in B phase  

F12→ 8-turns short circuit in B phase 

P1→Stator turn-turn fault between RY phases 

P2→Stator turn-turn fault between YB phases 

P3→Stator turn-turn fault between BR phases 

P4→Stator turn-ground fault in R phase 

P5→Stator turn-ground fault in Y phase 

P6→Stator turn-ground fault in B phase  

For the simulation of ANN-1, ANN-2 and ANN3 in 
MATLAB, a tangent sigmoid (tansig)’ and log sigmoid 
(logsig) activation functions are used and training goal is set  
at 10−6. First, the performance of single multilayer NN of 
ANN-1 is demonstrated. Various training and testing patterns 
are generated by using simulation and experimentation. The 
break up of experimental and simulation data sets of training 
and testing are given in Table 4. Totally 1287 patterns are 
carried out to train and test the ANN-1, out of 1287 sets 858 
data sets are utilized for training i.e. two third of the total data 
sets and remaining are used for testing. The training 
performance of single multilayer NN with respect to number 
of neurons variation in hidden layer is depicted in Table 5. 
From Table 5, it is observed that the training accuracy for 12 
hidden neurons and 14 hidden neurons are nearly same but 
number of epochs in 14 neurons is less than 12 neurons. 
Therefore, for this problem 14 hidden neurons are considered 
in ANN1. 
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Figure 14. Schematic representation of ANN classifiers. 

Table 4. Training and testing data sets for various disturbances. 

Type of Disturbance 

No. of training 
patterns 

No. of testing 
patterns 

Exp Sim Exp Sim 

Single Phasing 24 13 12 8 
Supply Unbalance 60 54 30 27 
Under Voltage 24 23 12 11 
Stator Inter-turn fault 72 444 36 222 
Sudden load change 18 - 8 - 
Phase Faults 18 108 9 54 

Total 
216 642 107 322 

858 429 

Table 5. Training performance of single multilayer ANN-1 

Number of 
neurons in 
hidden layer 

Learning 
epochs  

Training 
accuracy 

11 200 96.4% 

12 219 97.5% 
13 198 97.2% 

14 104 97.59% 

15 108 97.13% 
16 120 97.4% 

In any classifier, the performance evaluation requires 
specific measures which include accuracy, sensitivity and 
specificity. Four additional terms are need to know which are 
used as building blocks in computing many evaluation 
measures. These are TP (True positives), TN (True negatives), 
FP (False positives) and FN (False negatives). The confusion 
matrix is a useful tool for analyzing how well your classifier 
can recognize tuples of different classes. The accuracy, 
sensitivity and specificity measures can be used, respectively, 

for identifying the performance of the classifier. These 
measures are defined as follows: 
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Table 6. Testing performance of single multilayer ANN-1. 

Learning 
rate 

Momentum  
Testing 
accuracy 

Training 
time in sec 

0.3 

0.67 

86.95% 19 
0.4 90.21% 14 
0.5 88.11% 17 
0.6 86.71% 4.07 
0.3 

0.68 

86.95% 16 
0.4 87.65% 17 
0.5 90.61% 7 
0.6 88.11% 7 
0.3 

0.69 

86.48% 26 
0.4 90.68% 11 
0.5 89.51% 9 
0.6 89.74% 9 
0.3 

0.7 

85.05% 18 
0.4 85.55% 8 
0.5 87.65% 9 
0.6 89.04% 16 

Table 7. Testing performance of multilayer ANN-1. 

No. of 
neurons in 

hidden 
layer1 & 2 

Learning 
rate 

Momentum 
Testing 

accuracy 
Training 

time in sec 

14, 10 0.4 
0.69 

92.31% 37 
14, 20 0.4 90.68% 54 
14, 10 
14,20 

0.5 
0.68 

88.81% 30 
0.5 91.38% 86 

The testing performance of ANN-1 is illustrated in Table 6 
by making use of different learning rates and different values 
of momentums. From Table 6 it is observed that for 
momentum value of 0.69, 0.68 and learning rate of 0.4, 0.5 
better accuracy is obtained compared to the remaining. 
Similarly, same data is used to train and test the multilayer 
neural network with two hidden layers also and these results 
are shown in Table 7. From the results, it is proved that the 
testing accuracy of multilayer neural network is better than 
single multilayer neural network but the time taken to train the 
network is more. The output of ANN-1 specifies the stator 
inter-turn faults, stator phase faults and other faults but not the 
fault involved phase and severity level. Hence, two more 
ANNs are used to classify the stator faults along with 
participated fault phase and to identify the level of fault 
severity. When the output of ANN-1 indicates the stator inter-
turn fault then the classifier two (ANN-2) is activated, if the 
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fault is a stator phase fault then classifier three (ANN-3) is 
activated and for other cases ANN-2 and ANN-3 are in an 
inactive mode. ANN-2 identifies totally 12 types of stator 
inter-turn faults which are 2, 4, 6 and 8 turn short circuits in 
R, Y and B phases. The third classifier ANN-3 classifies  
6 phase faults such as turn-turn fault between RY phases, 
turn-turn fault between YB phases, turn-turn fault between BR 
phases, turn-ground fault in R phase, turn-ground fault in Y 
phase and turn-ground fault in B phase. Table 8 and Table 9 
show the number of training and testing patterns, considered 
to check the performance of ANN-2 and ANN-3 respectively. 
Numerous multilayer neural network configurations are 
carried out by using MATLAB/Simulink software. Among all, 
the best performance configuration of multilayer network of 
ANN-2 is 4 (input neurons), 5(hidden neurons), 9 (hidden  
neurons) and 12 (output neurons). Similarly, for ANN-3 the 
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Figure 14. Proposed MNN-1 for disturbance classification. 

 

Figure 15. Proposed MNN-2 for classifying the stator phase faults. 

best performance configuration of multilayer neural network 
is 3 (input neurons), 5 (hidden neurons), 7 (hidden neurons) 
and 6 (output neurons). The obtained overall accuracy of the 
proposed ANN-2 and ANN-3 are 95.74% and 89.39% 
respectively. 

 

Figure 16. Proposed MNN-3 for identifying the severity level 

Table 8. Training and testing patterns for ANN-2 

Type of stator inter-turn 
fault 

No. of 
training 
patterns 

No. of testing 
patterns 

Exp Sim Exp Sim 
2-turns short in R phase 6 36 3 18 
4-turns short in R phase 6 36 3 19 
6-turns short in R phase 6 36 3 19 
8-turns short in R phase 6 36 3 18 
2-turns short in Y phase 6 36 3 18 
4-turns short in Y phase 6 36 3 19 
6-turns short in Y phase 6 36 3 19 
8-turns short in Y phase 6 36 3 18 
2-turns short in B phase 6 36 3 18 
4-turns short in B phase 6 36 3 19 
6-turns short in B phase 6 36 3 19 
8-turns short in B phase 6 36 3 18 

Total 
72 432 36 222 

504 258 

Table 9. Training and testing patterns for ANN-3. 

Type of stator phase fault 

No. of 
training 
patterns 

No. of testing 
patterns 

Exp Sim Exp Sim 
Stator turn-ground fault in R phase 6 18 2 9 
Stator turn-ground fault in Y phase 6 18 2 9 
Stator turn-ground fault in B phase 6 18 2 9 
Stator turn-turn fault between RY phase 2 19 2 9 
Stator turn-turn fault between YB phase 2 19 2 9 
Stator turn-turn fault between BR phase 2 19 2 9 
Total 24 111 12 54 

In the proposed work, three modular structures of neural 
networks (NN) are implemented for classification of various 
disturbances, classification of stator winding insulation faults 
and identification of severity level of stator inter-turn faults 
which are shown in Figure 14, Figure 15 and Figure 16 
respectively. Same training and testing data sets are used to 
check the performance of the modular neural network. Six 
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types of disturbances have been considered for classification, 
6 modules of NN are required to form a modular neural 
network one (MNN-1). Each module of MNN-1 classifier 
classifies one class. During training process, features of a 
particular disturbance signal are applied to all modules with 
target as “1” to the corresponding neural module and target as 
“0” to the rest of the modules. During testing, outputs of all 
the NN modules are compared. The NN modules having 
largest output will represent the corresponding disturbance 
class. The performance of classifier of MNN-1 is shown in 
Table 10. From this table the overall accuracy of the modular 
classifier of MNN-1 is 94.64% and this performance is 
achieved within 4 sec. Hence, the results proved that the 
performance of MNN-1 is significantly higher (2.4%) as 
compared to multilayer neural network classifier of ANN-1. 
The output of MNN-1 specifies the stator inter-turn faults, 
stator phase faults and other faults but not the fault involved 
phase and severity. Hence, two more modular structures of 
NNs are used to classify the stator winding insulation faults 
along with participated fault phase and severity level. When 
the output of MNN-1 indicates the stator inter-turn fault (C5 
becomes 1) then MNN-2 is activated. If the output of MNN-1 
indicates stator phase fault, then MNN-3 is activated. Each 
module of MNN-2 classifier indicates the 4 levels of inter-turn 
severities in R-phase, Y-phase and B phase. The other stator  
 

Table 10. Confusion matrix for MNN-1. 

 C1 C2 C3 C4 C5 C6 

C1 21 0 0 0 0 0 

C2 2 50 0 0 3 1 

C3 0 0 22 0 0 1 

C4 0 0 0 9 1 0 

C5 1 4 2 2 246 1 

C6 0 2 0 2 1 58 

Overall accuracy = 94.64 % 

Table 11. Confusion matrix for MNN-2. 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

F1 21 0 0 0 0 0 0 0 0 0 0 0 

F2 0 21 1 0 0 0 0 0 0 0 0 0 

F3 0 0 22 0 0 0 0 0 0 0 0 0 

F4 0 0 0 21 0 0 0 0 0 0 0 0 

F5 0 0 0 0 20 0 0 0 0 1 0 0 

F6 0 0 0 0 0 22 0 0 0 0 0 0 

F7 0 0 0 0 0 2 20 0 0 0 0 0 

F8 0 0 1 0 0 0 0 20 0 0 0 0 

F9 0 0 0 0 0 1 0 0 20 0 0 0 

F10 0 0 0 0 0 0 0 0 0 22 0 0 

F11 0 0 0 0 0 0 0 0 0 2 20 0 

F12 0 0 0 0 0 0 0 0 0 0 0 21 

Overall accuracy = 96.9% 

Table 12. Confusion matrix for MNN-3 

 P1 P2 P3 P4 P5 P6 

P1 11 0 0 0 0 0 

P2 0 11 0 0 0 0 

P3 2 0 11 0 0 0 

P4 0 0 0 10 0 0 

P5 0 0 0 0 10 0 

P6 0 0 0 2 0 9 

Overall accuracy = 93.94% 

 

Table 13. Performance for ANN-1 and MNN-1 in disturbance classification 

Type of 
network 

Type of 
disturbance 

Sensitivity Specificity 
Average 
Values

 C1 0.952 0.995 
Sensitivity: 

0.858 

ANN-1 

C2 0.804 0.989 

C3 0.913 0.980 

C4 0.961 0.942 
Specificity:

0.98 
C5 0.6 0.998 

C6 0.921 0.978 

 C1 1 0.993 
Sensitivity: 

0.939 

MNN-1 
 

C2 0.893 0.984 

C3 0.957 0.995 

C4 0.961 0.971 
Specificity:

0.987 
C5 0.9 0.99 

C6 0.921 0.992 

 

winding insulation faults such as ground and phase-phase faults 
are classified by MNN-3. The testing performance of MNN-2 
and MNN-3 are illustrated make use of confusion matrix. 
Tables 11 and 12 demonstrate the overall accuracy of the 
MNN-2 and MNN-3 respectively. The results demonstrate 
that the overall accuracy of the classifiers of MNN-2  
and MNN-3 are improved by 1.16% and 4.55% respectively 
when compared with multilayer neural network classifiers. 
The number of iterations required for archiving the best 
accuracy in ANN-2, ANN-3, MNN-2 and MNN-3 are 609, 
453, 192, and 47 iterations respectively. All the modular 
classifiers together has to be taken within 6 sec for training the 
networks. 

The other performance measures associated with classifier 
are the sensitivity and specificity. Table 13 demonstrates the 
values of sensitivity and specificity for ANN-1 and MNN-1 
based classifiers corresponding to 6 types of disturbances. 
Similarly Tables 14 and 15 show the values of sensitivity and 
specificity of the classifiers ANN-2 vs MNN-2 and ANN-3 vs 
MNN-3 respectively. From the Tables 13, 14 and 15, it is 
clear that the modular structure of neural network has more 
capability to classify the disturbances, types of stator winding 
insulation faults and severity level of stator inter-turn faults. 
Hence the modular based classifiers are significantly far better 
than the multilayer neural network classifier. 
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Table 14. Performance for ANN-2 and MNN-2 in stator faults classification. 

Type of 
network 

Type of 
fault 

Sensitivity Specificity 
Average 
Values

ANN-2 

F1 1 1 

Sensitivity: 
0.958 

F2 0.956 0.996 

F3 1 1 

F4 1 1 

F5 0.952 1 

F6 1 0.987 

F7 0.909 1 

Specificity:
0.996 

F8 1 0.996 

F9 0.905 0.996 

F10 0.954 0.983 

F11 0.864 0.995 

F12 0.952 1 

MNN-2 

F1 1 1 

Sensitivity: 
0.969 

F2 0.956 1 

F3 1 0.992 

F4 1 1 

F5 0.952 1 

F6 1 0.987 

F7 0.909 1 

Specificity:
0.997 

F8 0.952 1 

F9 0.952 1 

F10 1 0.987 

F11 0.909 1 

F12 1 1 

Table 15. Performance for ANN-3 and MNN-3 in stator phase faults 
classification 

Type of 
network 

Type of 
stator 

phase fault 
Sensitivity Specificity 

Average 
Values 

ANN-3 

P1 0.909 0.964 
Sensitivity: 

0.896 
P2 1 0.964 

P3 0.846 0.981 

P4 1 0.964 
Sensitivity: 

0.979 
P5 0.8 1 

P6 0.818 1 

MNN-3 
 

P1 1 0.964 
Sensitivity: 

0.944 
P2 1 1 

P3 0.846 1 

P4 1 0.964 
Sensitivity: 

0.988 
P5 1 1 

P6 0.818 1 

7  CONCLUSION 
In this paper an attempt has been made to extract efficient 

features of the induction motor disturbances using SWT and 

DWT. The observations made from the results indicate that 
the SWT has clear advantage over the DWT to extract the 
fault residues in the presence of noise and supply unbalances. 
The developed simulation model is validated through 
experimental setup and the frequency responses obtained from 
the simulated model closely matches with the experimental 
setup. The instant at which disturbance starts can be identified 
by comparing the fault indices with adaptive threshold and 
count value. The threshold based reconstruction and adaptive 
threshold logic have improved the effectiveness of the 
proposed detection scheme. By introducing modular concept 
to NN for disturbance classification, stator winding insulation 
faults classification and level of severity identification, the 
task complexity is reduced and learning capability is 
increased. It is observed from the results that the performance 
of MNN-1 is significantly higher as compared to that of ANN-
1 and the same trend is followed in both the cases of MNN-2 
and MNN-3 classifiers. Similarly, the training time required 
for modular neural network is less compared with ANN. This 
diagnosis approach improves the efficacy as the features 
required for detection and classification are obtained over a 
window of one cycle from the point of disturbance. Hence the 
proposed technique is effective in detecting and classifying 
the stator winding insulation faults and severity level of inter-
turn faults with a minimum time.  
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