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ELECTRICAL & ELECTRONIC ENGINEERING | RESEARCH ARTICLE

Hardware implementation of Predictive Torque
Controlled Open-end winding induction motor drive
with self-tuning algorithm

Kunisetti V. Praveen Kumar, K. M. Ravi Eswar® and Thippiripati Vinay Kumar!

Abstract: Predictive Torque Control (PTC) is an acceptable alternate to Direct Torque
Control (DTC) of induction motors. The limitation of classical PTC is selection of
weighting factor, improper selection of weighting factors lead to distortions in
current, voltage, high torque and flux ripple. In classical PTC, to reduce torque and
flux ripples manual tuning of weighting factors is needed and weighting factors are
selected empirically. To circumvent tedious tuning process of weighting factor, this
article proposes a new self-tuned PTC algorithm to Open End Winding Induction
Motor (OEWIM) drive. OEWIM’s are more popular in electric vehicles, ship propulsion
but they require ripple free torque. A new self-tuned PTC algorithm is implemented
to OEWIM with multi-level inversion to reduce torque and flux ripples. The effective-
ness of proposed PTC algorithm was tested by applying it to multi-level inverter fed
OEWIM drive through simulation and experimental verification.

Subjects: Power Electronics; Power & Energy; Electrical & Electronic Engineering; Power
Engineering

Keywords: Predictive Torque Control; induction motor drives; Open end winding induction;

Motor; self-tuning; weighting factor; multi-level inversion; Direct Torque Control
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PUBLIC INTEREST STATEMENT

The variable speed drives are became more
popular in industries. The Variable speed drives
(VSD) generally employed with induction motors.
Nowadays, PTC and DTC schemes are most
popular for VSD’s. PTC and DTC of induction motor
drives suffer from higher ripple in torque and flux.
OEWIM fed with multi-level inversion is a better
alternate to reduce torque and flux ripples. The
PTC of OEWIM is an interesting research areq,
since it has own features: it provides multi-level
inversion, lower ripple in torque and flux, less
current distortions, faster dynamic response, easy
inclusion of constrains in cost function. This article
gives the limitations of DTC and PTC and introduces
an algorithm to eliminate tedious tuning process
involved in implementation of PTC. This article
helps the researchers toward the implementation
PTC of multi-lever inverter fed OEWIM drives.
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1. Introduction

Open-end winding induction motors are used in ship propulsion, hybrid electric vehicles and renew-
able energy interfacing. The speed control of OEWIM drives can be done by using field oriented
control (FOC) or Direct Torque Control (DTC). The problems of FOC can be addressed by DTC and it is
introduced by Takahashi and Nogouchi (1986). Classical DTC has several limitations: Higher ripples in
torque and flux, variable switching frequency and possible problems during start-up. The problems
associated with classical DTC can be addressed by different control algorithms (Abdelli, Rekioua, &
Rekioua, 2011; Habetler, Profumo, Pastorelli, & Tolbert, 1992; Jun-Koo Kang & Seung-Ki Sul, 1999;
Mukherjee & Poddar, 2010; Vinay & Srinivasa, 2014). To abate some of limitations of classical DTC,
Predictive Torque Control (PTC) was implemented. PTC is the combination of model predictive control
and direct torque control. In 1970s model predictive control was limited to petro-chemical applica-
tions. Inventions of high-speed digital signal processors lead to implementation of PTC algorithm by
using mathematical models in discrete form (Miranda, Cortes, Yuz, & Rodriguez, 2009). Till date, a
vast research has been implemented in the area of PTC towards its improvisation and also to reduce
torque and flux ripples. In initial stages PTC algorithm was implemented with dead-beat controllers
and PI controllers (Correa, Pacas, & Rodriguez, 2007). Dead-beat controllers improve transient re-
sponse whereas PI controllers improve steady-state performance. Immediate flux control was im-
plemented in (Nemec, Nedeljkovic, & Ambrozic, 2007), to reduce switching frequency and also to
track stator flux space vector accurately. Model predictive DTC (MPDTC) algorithm was initially devel-
oped with the combination of hysteresis controllers to reduce average switching frequency (Beerten,
Verveckken, & Driesen, 2010; Geyer, Papafotiou, & Morari, 2009; Papafotiou, Kley, Papadopoulos,
Bohren, & Morari, 2009).

In lateral stages, PTC was implemented with discrete nature of power converters and it is known
as finite-control set predictive torque control (FCS-PTC) (Rodriguez & Cortes, 2012). In PTC, selection
of suitable voltage vector depends on optimization of cost function. The selected voltage vector was
applied over sampling interval, which in turn generate higher ripples in torque and flux. The ripples
in torque and flux can be effectively reduced by using duty ratio control. The concept of duty ratio
control is to allow more than one switching in between the sampling period (Davari, Khaburi, &
Kennel, 2012). Optimal switching scheme is developed to reduce torque and flux ripples (Zhang &
Yang, 2014). The calculation of optimal switching point was tedious. The optimization of cost func-
tion with variable switching point is introduced to overcome problems of fixed point optimal switch-
ing scheme (Karamanakos, Stolze, Kennel, Manias, & du Toit Mouton, 2014).

The optimization of cost function also involves in selection of suitable weighting factors to reduce
torque and flux errors. In classical PTC, the cost function comprises torque error and flux error.
Torque and flux are different quantities to optimize the cost function suitable weighting factors are
needed. The selection and tuning of weighting factors is tedious. Improper selection of weighting
factors lead to distortions in stator current, voltage which in turn develops increased ripple in torque
and flux. In order to find optimal weighting factor the control period is divided into two intervals for
better torque ripple reduction (Zhang & Yang, 2013). The division of control period and equations
used to find optimal weighting factors are much complex. A similar algorithm was implemented in
(Zhang & Yang, 2015), for selection of optimal weighting factors. In Vishnu Prasad, Anil Kumar, and
Srinivasa Rao (2016, 2017), multi-criterion decision-making algorithms are introduced to enhance
the selection of weighting factors. By using this method the computational burden and complexity
of PTC algorithm may increase. In Rojas et al. (2013), a novel algorithm was introduced to eliminate
weighting factors with multi-objective optimization. This algorithm is based on ranking approach.

From the literature survey, torque and flux ripples can be reduced by using multi-level inversion or
duty cycle control or proper selection of weighting factors to optimize the cost function. In this arti-
cle, multi-level fed induction motor drive was implemented with the help of OEWIM configuration. It
uses two two-level voltage source inverters (VSI), if two VSI’s are operated with equal DC-link volt-
age (1:1 ratio) two and three-level output voltage can be obtained. By operating the two VSI’s with
unequal DC-link (2:1 ratio) voltage four-level output voltage can be obtained (Suresh, Nagarjun, &
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Figure 1. Dual inverter fed
OEWIM.

Somasekhar, 2017). In Praveen Kumar and Vinay Kumar (2016), DTC of OEWIM is implemented with
two-level inversion and it describes clearly about switching states used to obtain two-level configu-
ration. Space vector modulated DTC of OEWIM was implemented in (Arbind Kumar, Fernandes, &
Chatterjee, 2004), it is only implemented for three-level inversion. In space vector modulated DTC
calculation of reference voltage space vector is required which is complex.

This article proposes predictive torque controlled OEWIM with two-level and four-level inversion
schemes. Classical PTC suffers from higher ripples in torque and flux due to improper weighting fac-
tors. The weighting factors are selected empirically; it causes uncertainties and affects the perfor-
mance of system (Cortés et al., 2009; Formentini, Trentin, Marchesoni, Zanchetta, & Wheeler, 2015;
Praveen Kumar & Vinay kumar, in press; Zhou, Zhao, & Liu, 2015). In Praveen Kumar and Vinay ku-
mar (in press), PTC of OEWIM with multi-level inversion and it uses branch-bound algorithm to select
weighting factors. The effect of weighting factors on performance of induction motor drive was de-
scribed (Rodriguez et al., 2004). These are the motivating factors to implement this control algo-
rithm. The objective of this article is to eliminate trial and error method used to estimate weighting
factors. The proposed algorithm is tested for two-level and four-level inversion. It is well known fact
that torque and flux ripples can be decreased by using multi-level inversion and it is observed with
simulation and hardware results. The proposed control algorithm uses online optimization for selec-
tion of weighting factors and provides all benefits of classical PTC. The effectiveness of proposed al-
gorithm was verified with simulation and hardware implementation. The proposed control algorithm
was implemented using dSPACE DS-1104 controller board with MATLAB/SIMULINK real time
interface.

This article has five sections. In this section the features of proposed algorithm is described in
contrast to existing methodologies. Section II describes discrete model of OEWIM and dual inverter
configuration of OEWIM drive. Section III describes the problem formulation and implementation of
proposed PTC of self-tuning algorithm. The validity of proposed algorithm is described by verifying
the simulation results with experimental results in section IV. Finally, section V provides the sum-
mary and gives conclusions of the present work.

2. Discrete model of OEWIM and its power circuit

The power circuit diagram used for OEWIM is shown in Figure 1. It uses two isolated DC sources. In
power circuit diagram, if x =y then it delivers two and three level output voltage. When x#y, then it
delivers four-level output voltage. If x = 2/3 and y = 1/3, then it generates “64” space vector combi-
nations, out of these “37” space vector locations “36” vectors are called as active vectors and one
null vector. Different switching combinations used to realize “37” voltage space vector locations are
shown in Table 1.
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Table 1. Locations of voltage space vectors for OEWIM

VSI-1 VSI-2 Space vector Realization

: Sy S, S, Sy S, v) (Complex form)
v, 0
v, V,(0.222)
v, V,(0.11 +0.193i)
v, V,(-0.11+0.19))
v, V,(-0.222)
v, V,(-0.11-0.193i)
v, V,(0.11 - 0.193i)
w, V, (0.444)
v, V,(0.33 +0.193))
v V, (0.2 +0.385i)

©

1S5

v, (03850)

V, (022 +0.38i)

~

V, (-0.33+0.19))

)

V, (-0.444)

=

V,(-0.33-0.193))

&

V,(-0.22 - 0.385i)
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v, (-0.385))

i~

V, (0.22 - 0.385)

o

V, (033 -0.193)

o

V,(0.667)

™
S

%

dc

0.55 +0.193i

~

%

dc

0.44 +0.385i

~

%

dc

0.33+0.577i

i
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( )
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( )
( )
( )
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>3

V, (-0.667)

~
)
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w
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w
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w
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w
&
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IS
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c
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dc
Ve
Ve
%

dc

9|©|O| 9| Z|Z|Z2|Z2|Z2|Z2|Z2|Z2|Z2|9|©|©0|0|0 |0 |0 |Z(|Z|Z|Z2|Z2|Z2|Z|9|0 |0 |0 |Z2|Z|Z|9|T0|Z|wm
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zZz|Zz|Z2|v9v|Z2|9|UV9|©Yv|©W|O|O|O0|Z2|0|Z2|Z2|Z2|Z2|9|0|Z|Y|©O|0|O0|OU|Z|0|0|0O|0|Z2|Z2|Z|T0|T0|Z2
U|v|UW|OV|O|O|Z2|0 | Z2|Z2|Z2|Z2|Z2|Z2|Z2|9|Z|0U|©U|UO|0D|OU|Z2|0|0U|O|O|O0|Z2|0|Z|Z|0|0O|0|Z2|Z2

Z|lv|lZz2|Z2|Z2|Z2|2|2|2|9v|Z2|9|U9|UW|UY|U©W|O©|O©|Z2|U9|U|UOU|U|UOU|Z2|UW|U|UO|OU|UO|O|O|O|Z2|Z2|Z2|Z2

< I < I f I f 8 ]f I 8 8 8| 8| 8N 8| 8 8N 8Nl 8N 8| | x| x x|

w
&

( )
( )
(0.44 - 0.385i)
( )

V,(0.55-0.193i

dc

The pole voltages (V

ro’

V.,) per phase of OEWIM with respect to inverter-1 and 2 can be written as

(1) and (2). In (1), “S,” indicates switching pulse applied to R-phase of VSI-1, whereas in (2), “S.” in-

dicated switching pulse of R’-phase of VSI-2.
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Figure 2. Discrete model of
OEWIM in stationary reference
frames.

Vro = (X*Vdc)sr (1)

Vr/o/ = (-y*vdc)sr/ (2)

The difference of pole voltages per phase can be written as (3)

AVrr/ = vro - Vrm/ (3)
Common mode voltage can be written from the difference of pole voltages and it is shown in (4)

1
Ve=3 (aV,, +AV,, +AV,,) (4)

To write the phase voltages of OEWIM, it is assumed that the points OO’ are shorted and its ex-
pression is given by

Vrr/ = AVrr/ - Vc (5)

On simplification of (5) for phase voltage in terms of difference of pole voltages can be written as

2 1
Vrrl = <§> (Avm) - <§> (Avyyl + AVbb/) (6)

2.1. Discrete model of OEWIM
Detailed discrete model of OEIWM used for simulation and hardware implementation is shown in
Figure 2.V ,V , V,, V... V,, and V,  are the pole voltages of VSI-1 and VSI-2. AV, , Av, and AV,

ro’> “yo’ "bo’ "ro?

are difference of pole voltages. V_is common-mode voltage. V, , V,, and V,,, are the phase voltages
or input voltage to OEWIM.

In (7)-(11) describe discrete model of OEWIM implemented in stationary reference frames. Stator
and rotor voltage of OEWIM described by (7) and (8)

V, (k) = Ri (k) + pLi, (k) 7)

0 =R, (k) + pL,i, (k) — jow, (k) 8
Stator flux and rotor flux in terms of stator and rotor currents are given by (9) and (10)

wy (k) = Lii (k) + Li, (k) 9)

v (k) =L, (k) + Ly,ig (k) (10

By considering y, and i_ as state variables, the torque equation of OEWIM is given by

Ttk = <%><g)<mx:s(—k)) (11)

() *Vde Vro AVrr’ ,/:O\V"’ . T
Sr —> Vyo §>/
VSI-1 Induction | 8
Sy AVYY’ V00’ R nduction | 1S
Sh —>| Vbo @ ¥y 9&;’ W Vyy Motor in ®
T Stationary [
Vr’o’ reference Is
*Vdc —s»] —
v Sf’—» Vy’o’ (B AVbb’| (1 bb’| frames
Sy* VSI-2 A Vs
Sly) Vb’o’ 1
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Figure 3. Block diagram of
proposed PTC of OEWIM with
self-tuning algorithm.

ing States Fo o
™| Torque, Flux| 7 (k+1)7 OPt‘:?:::ttmn
Dref 4o Trer | Prediction .
—’Q—-—' L P! & Switching o | s
Om P — Frefquel.lcy ws (k+1) Taning Sy
estimation | o Sb
V ge—> gorithm >
4 Y
T ia <%
i |RYB-ap|
Dm

In (7)-(11), R, R, are stator and rotor resistance, “p” is derivative (d/dt), “P” number of poles. L, L
and L, are stator, rotor and mutual inductance respectively. ¥ (k), ¥ (k) are stator and rotor flux link-
ages at kth instant. i (k), i (k) are stator and rotor currents. V (k) is stator is voltage vector and T(k) is
electromagnetic torque at kth instant.

3. Proposed PTC of OEWIM with self tuning algorithm

The block diagram of Proposed PTC strategy with self tuning algorithm is shown in Figure 3. In the
block diagram shown, VSI-1 and VSI-2 are used to feed OEWIM drive. If x =y = 1/2, then dual in-
verter delivers two-level voltage, it delivers four-level voltage when x#y (x = 2/3 and y = 1/3). In four-
level configuration it has 64 switching combinations distributed over 37 space vector locations.

Switching combinations used to obtain 37 space vector locations for four-level inversion is shown
in Table 1. In Table 1 “P” indicates upper switch in the respective leg of VSI is “ON”, whereas “N” in-
dicates lower switch is “ON”. The switching combinations of inverters are “64”, out of these only 37
space vector locations are considered to reduce switching losses. The space vector locations used for
two-level inversion (Praveen Kumar & Vinay Kumar, 2016) is described. The resultant voltage space
vector is derived from (12) and (13). The output voltage of VSI-1 and VSI-2 is given by (12) and (13).

i25/3

V= 2(xsV) (5, 45,6 +5,¢™) (12)

vV, = %(y*vdc)(sr/ +Sy/ei2”/3 +Sb/e’w) (13)

The voltage space vector is given by (14)

Vo = (Vsl - VSZ) (14)

[o]

In (12)-(14), “V_,” indicates voltage space phasor of VSI-1, “V,,” indicates voltage space phasor of
VSI-2, “V_” represents resultant voltage space phasor. Figure 4(a) and (b) shows locations of active
voltage space vectors. Vectors V-V, can deliver two-level output voltage, V-V, delivers three-level
voltage and V,,-V,, can give four-level output voltage.

In classical DTC, to operate OEWIM drive with four-level inversion it requires more than seven
hysteresis controllers for its operation and it needs complex look-up table. These problems can be
easily limited by using PTC algorithm, in this article PTC of OEWIM is implemented and in addition
self-tuning algorithm. By adding self-tuning algorithm to classical PTC, the problems associated with
manual selection of weighting factors can be eliminated. The proposed PTC algorithm can be imple-
mented using five steps: (1) Measurement of variables at kth instant. (2) Estimating the variables
(stator flux), this can’t be measurable. (3) Prediction of control variables. (4) Formulation of cost
function and (5) Optimization of cost function.
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Figure 4. Locations of voltage
space vectors: (a) Two-Level
Inversion and (b) Four-Level

inversion.

Vs —axis V3
Vas v
22
P—axis
v
Va6 10 M
v Vit Vo
3
)
Va7 Vi2 » vz V20
Vs
v, a—axis
:4 > Vag Vi3 Y Vs Vlst
\,(V) v] ) |2} a—axis
V14
V29 Vs v
6 18 Ve
Vs
Vs Vis
V3o Vig
v
Vis »
Vi1
V. v
Viy 33 34
(a) (b)

3.1. Prediction model

The prediction model can be implemented by measuring the variables; the measured variables are
used to estimate the variables which can’t be measurable. With the help of measured variables and
estimated variables at kth instant the prediction model is implemented. The prediction model is
implemented by considering OEWIM dynamics in discrete form. The discrete model of OEWIM is
shown from (7)-(11).

By considering the control variables at kth instant, the prediction algorithm (k + 1 instant) used in
this article is shown from (15)-(19).

py/s(k) = Rsis(k) - vs(k) (15)

The prediction model was developed by considering stator flux and stator current as control varia-
bles. Well known forward Euler’s approach (16), is used to predict stator flux and stator current.

pF(k) = w (16)

S

The predicted stator flux was derived by using (16) and (15)

w(k+1) =T (py, (k) + v, (k) (17)

The stator current (18) can be predicted by eliminating rotor flux and rotor current.
A k) —A,i (k) +jwA k

ij(k+1) =T A, ?WS(_l), o (K) +jo "WS(,) +i(k) (18)
_JwAl ’s(k) +A4(Vs(k) - Rs’s(k))

From (17) and (18), the expression used to find predicted torque is given by (19)

3P -

§§<ws(k+1))><:s(k+ 1)) (19)
3.2. Formulation of cost function

The cost function is used to generate gating pulses required to turn “on” the VSI-1 and VSI-2, to real-
ize respective voltage space vector for its operation. Optimization of cost function involves

T(k+1)=
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minimization of torque and flux ripples. The switching states, which can reduce both torque and flux
ripples, are considered as switching states for VSI-1 and VSI-2. The cost function used in this article
is same as classical PTC (Zhang & Yang, 2013) and it is given by (20). The cost function consists of two
terms: the first term used to minimize torque error and the second term used to minimize flux error.
The terms used in cost function are T which is generated from speed PI controller, T(k + 1) is pre-
dicted torque (19), . is reference flux and y,(k + 1) is predicted stator flux (17).

g=’1T(Tref_T(k+1))+'1w(wsref_ws(k+1)) (20)

In (20), 4, AW are torque and flux weighting factors. Cost function (20) contains two different
quantities; in order to optimize cost function torque error and flux errors should multiplied by weight-
ing factors.

3.3. Problem formulation and proposed self-tuned PTC

The cost function (20) optimized by proper selection of weighting factors. Improper selection of
weighting factors may results distortions in phase-current, voltage, increased ripples in torque and
flux, which may causes acoustic noise and vibration. To circumvent this problem weighting factors
should be tuned properly. There is no specific method to find weighting factors, most of the control
algorithms described (Cortés et al., 2009; Formentini et al., 2015; Zhou et al., 2015) will use empirical
method for selection of weighting factors. The process of tuning and selection of weighting factors
to reduce torque and ripples is cumbersome. In this article, an attempt is made to eliminate tuning
of weighting factors. In this article, the procedure to select weighting factors is described.

The weighting factors used in classical PTC for OEWIM in two-level and four-level inversion modes
are A, = land AW = 75. The value of torque weighting factor used for simulation and experimenta-
tion are “1” and the flux weighting factor is obtained from several offline simulations, to find out an
approximate value of /1w it is formulated as (21) and the value of “k” is determined empirically from
branch and bound algorithm.

T

A, = k=" (1)
Wnom

In (21), T, is rated torque of OEWIM, y, s rated flux of OEWIM and “k” is an integer. The value

of “k” is selected empirically by performing several simulations; from simulations it is observed that
the range of “k” is 1 to 5. Finally the value of “k” is taken as “3”, therefore the value of AW =75.

From various simulations and experimental verifications, it is observed that selection of weighting
factors plays a vital role on performance of OEWIM drive. These problems can be easily addressed by
self-tuning algorithm. This is the motivational factor to implement the proposed control algorithm.
The procedure to implement self-tuning algorithm is clearly explained in Figure 5. The self-tuning
algorithm is applied to find flux weighting factor. In order to find “AW” the flux error is optimised
separately and it is initialized as g,. The value of g, is set to a low value, if the value of g, exist in a
specified bound given by § then it delivers AW =1

If this condition is violated then, 5 varies as a multiple of specified iteration count “m”. For simula-
tion and experimental verification the value of “m” is chosen to be 100. The value of /lw varies for
each iteration to optimize the flux error and the same value has been stored and applied into the
cost function. The values of /1w varies continuously, to improve voltage and current profile and also
reduce torque and flux ripples. This is called as self-tuning algorithm and the value of flux weighting
factor is selected from online optimisation.

4. Simulation and hardware results
The block diagram of proposed PTC algorithm for OEWIM was shown in Figure 3 was implemented

with MATLAB/SIMULINK. The simulated algorithm was verified experimentally using dSPACE
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Figure 5. Flow chart of PTC to
generate switching pulses with

self tuning algorithm.
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A

DS-1104 controller. The parameters of OEWIM used for simulation and experimentation are shown
in Table 2. The simulation and experimental results are shown from Figures 6-11. The OEWIM is
operated with two-level and four-level inversion for various speeds. On interest of brevity, the results
are shown only for three speeds of operation. The DC-link voltage used for VSI-1 and VSI-2 are 270
and 270V then dual inverter configuration delivers two-level output voltage, four-level inversion
was obtained by operating VSI-1 and VSI-2 with voltages 360 and 180 V respectively. The total DC
link voltage used for both configurations is 540 V.

4.1. Simulation results

The proposed PTC algorithm was simulated with MATLAB. The simulation results are shown for vari-
ous speeds of operation. The simulation results of OEWIM were shown for 50, 100 and 125 rad/s in
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Figure 6. Simulation results of
OEWIM in forward motoring
for speeds of 50, 100 and

125 rad/s: (a) Two-level PTC,

(b) Proposed two-level PTC, (c)
Four-level PTC and (d) Proposed
Four-level PTC.

Table 2. Parameters of OEWIM used for simulation and experiment

Name Symbol Quantity
Stator resistance g 420
Rotor resistance R 2.67940Q
Stator inductance L, 0.54H
Rotor inductance L, 0.54H
Mutual inductance L., 0.512H
Poles P 4
Inertia J 0.031 kg/m?
Power p 3.7 kW
Rated torque o 24.48 N-m
Rated flux Yoo 1Wb
Nominal speed N, 1,440 RPM

forward and reverse motoring. The sampling time used for simulation and experimentation is 100 ps.
Figure 6 shows simulation results of OEWIM in forward motoring for classical PTC and proposed self-

tuned PTC algorithms.

Figure 6 demonstrates torque, flux and phase voltage of OEWIM in forward motoring for step
change in speed. Figure 6(a) and (b) shows classical PTC and proposed PTC algorithms for OEWIM in
forward motoring for two-level inversion. Figure 6(c) and (d) shows classical and proposed PTC
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Figure 7. Simulation results of
OEWIM in reverse motoring for
50, 100 and 125 rad/s: (a) two-
level PTC, (b) proposed two-
level PTC, (c) four-level PTC and
(d) Proposed four-level PTC.
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algorithms of OEWIM for four-level inversion. From Figure 6 it is observed that proposed PTC algo-
rithms give same characteristics as classical PTC, when compared to classical PTC proposed self-
tuning PTC gives less ripple in torque and flux. Figure 7 demonstrates torque, flux and phase voltage
of OEWIM for step change of speed in reverse motoring. Figure 7(a) and (b) shows simulation results
of classical PTC and proposed PTC algorithms for OEWIM in forward motoring for two-level inversion,
whereas Figure 7(c) and (d) shows simulation results of classical and proposed PTC algorithms of
OEWIM for four-level inversion. Figure 8 demonstrates torque, flux and stator phase currents for
OEWIM for step changes in speed variation from forward motoring (125 rad/s) to reverse motoring
(=125 rad/s). Figure 8(a) and (b) shows simulation results for classical and proposed PTC for two-level
inversion, whereas Figure 8(c) and (d) shows simulation results for classical and proposed PTC for two-
level inversion Figure 8(e) and (f) gives variation of flux weighting factor for proposed self-tuned PTC
for speeds of 50, 100 and 125 rad/s. From 8(e) and (f) it is clear that weighting factor of flux is not
constant, it will vary continuously to optimise cost function and speed ripple is less in four-level PTC
on comparison to two-level PTC. The proposed algorithm uses an adjustable weighting factor rather
than fixed weighting factors used in classical PTC. As the weighting factor is fixed in classical PTC it
influences the performance of OEWIM drive and in proposes self-tuned PTC the weighting factor is
adjusted to minimise the torque and flux ripples, hence it maintains lesser torque and flux ripples. The
proposed algorithm was tested by applying sudden change in speed to operate OEWIM in accelera-
tion or deceleration mode. During the sudden change in speed OEIWM maintains constant flux and
the accelerated or decelerated speeds are obtained by proper selection of voltage vectors.
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Figure 8. Simulation results of
OEWIM in forward and reverse
motoring: (a) two-level PTC,
(b) proposed two-level PTC, (c)
four-level PTC, (d) proposed
four-level PTC, (e) variation

of flux weighting factor for

50, 100 and 125 rad/s and (f)
variation of flux weighting
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4.2. Experimental results
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The proposed algorithm was implemented with dSPACE-1104, to verify its effectiveness. The experi-
mental results are shown for forward motoring, reverse motoring. Figures 9-11 shows experimental
results of OEWIM for speeds of 50, 100 and 125 rad/s.

Figure 9 shows experimental response of OEWIM for forward motoring and it exhibits speed,
torque and flux characteristics for 50, 100 and 125 rad/s. Figure 9(a) and (b) shows forward motoring
for classical two-level PTC and proposed PTC respectively. Figure 9(c) and (d) represents forward
motoring of OEWIM for four-level PTC and Proposed four-level PTC respectively.

Figure 10 demonstrates forward and reverse motoring of OEWIM at 100 rad/s. Figure 10(a) and (b)
demonstrates speed, torque and flux characteristics of OEWIM for two-level PTC and proposed PTC.
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Figure 9. Experimental results
of OEWIM in forward motoring
for speed variations of 50, 100
and 125 rad/s: (a) Two-level PTC
(b) Proposed two-level PTC (c)
Four-level PTC and (d) Proposed
four-level PTC.

Figure 10. Experimental results
of OEWIM for speed variation
from forward motoring

(100 rad/s) to reverse motoring
(=100 rad/s): (a) Two-level PTC
(b) Proposed two-level PTC (c)
Four-level PTC and (d) Proposed
four-level PTC.
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Figure 10(c) and (d) represents speed, torque and flux characteristics of OEWIM for four-level PTC
and proposed self-tuned PTC.

From Figures 9 and 10, it is observed that the proposed self tuned PTC can give same characteris-
tics as that of classical PTC. From Figures 9 and 10 it is also observed that torque and flux ripples of
proposed self-tuned PTC are less when compared to classical PTC. Figure 11 shows speed, phase
current and phase voltage of OEWIM at a steady-speed of 125 rad/s. Figure 11(a) and (b) represents
phase current and voltage of OEWIM for two-level PTC and proposed PTC, whereas Figure 11(c) and
(d) represents phase current and voltage for four-level PTC and proposed self-tuned PTC. Figure 12 is
test bench used for experimentation. Figure 12 contains OEWIM, two two-level voltage source in-
verters, current transducers, voltage transducers and personnel computer with MATLAB synchro-
nised to dSPACE-1104 controller board.
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Figure 11. Steady state currents
of OEWIM at 125 rad/s: (a) Two-
level PTC (b) Proposed two-level
PTC (c) Four-level PTC and (d)
Proposed four-level PTC.

Figure 12. Experimental set-up
used to test proposed self-
tuned PTC algorithms.
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Table 3. Steady-state torque and flux ripples of proposed and classical PTC

Control Speed (rad/s) 2-level inversion 4-level inversion
algorithm Torque ripple | Fluxripple | Torqueripple | Fluxripple
(N-m) (Wb) (N-m) (Wb)
Classical PTC 50 3.8 0.032 2.85 0.025
Proposed PTC 3.5 0.03 2.8 0.023
Classical PTC 100 2.8 0.026 2.25 0.016
Proposed PTC 2.5 0.024 2 0.014
Classical PTC 125 2.2 0.018 1.75 0.012
Proposed PTC 2.0 0.015 1.5 0.01
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The simulation and experimental results of OEWIM configuration with classical PTC and proposed
PTC algorithms for two-level configuration and proposed self-tuned PTC algorithms were shown
from Figures 7-12. The simulation and experimental results shows the proposed algorithm can be
implementable for multi-level inversion scheme.

The overall execution time required for classical PTC and Proposed PTC algorithms were nearly
same. The execution time of classical PTC strategy is 60 ps and the proposed PTC strategy is 65 ps.
Table 3 shows steady-state torque and flux ripple of OEWIM drive with classical and proposed PTC
algorithms for two-level and proposed four-level inversion schemes. From simulation and experi-
mental results, it is evident that the proposed PTC algorithm features all benefits of classical PTC.

5. Conclusion

In this article, self-tuned predictive torque of OEWIM for two-level and four-level inversion schemes
were implemented to reduce torque and flux ripples. This study introduces a novel PTC of OEWIM
with self-tuning approach to select the weighting factors using online optimisation. Self-tuning of
weighting factors eliminate the process of manual selection and time consuming online and offline
simulations. This article describes the implementation of PTC algorithms for OEWIM with multi-level
inversion. The simulated and experimental results are presented to verify the effectiveness of the
proposed algorithm for two-level and multi-level configuration. Proposed self-tuned PTC algorithm
can be implementable for multi-variable cost function optimization. The objectives in this study are:
(i) discrete implementation dual inverter fed OEWIM (ii) implementation of PTC algorithm for OEWIM
(iii) introduces a novel self tuned PTC strategy (iv) enhanced weighting factor selection (v) obtains
features of classical PTC without increasing the computational burden. The future scope of this arti-
cle is to extend the proposed algorithm towards switching frequency reduction and common-mode
voltage suppression. In this article, only torque and flux errors are optimised in cost function.
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