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Abstract— In the existing power system, the penetration
of renewable energy sources (RES) is very low. In future,
RES is expected to play a key role in meeting the vast power
demand. This will result in a risk to stability and reliability
of the power system, owing to the intermittent nature of RES.
They introduce significant errors in forecasting, depending on
which Distribution Company’s (DISCOMs) will purchase energy
to meet the demand. Any difference between the real time
demand and forecasted demand is to be met by the DISCOMs
in the real time market (RTM) at extra prices, thus exposing
them to the risk of price volatility. In this paper, an optimal
operation strategy using battery energy storage system (BESS) is
proposed, along with which optimization of placement and sizing
of BESS is done using a novel optimization technique called
teacher learning based optimization (TLBO) algorithm. The
results show that this optimal operation strategy is able to yield
significant savings for the DISCOMs and TLBO performs better
than other heuristic algorithms. The entire work is carried
out on an IEEE modified 15 bus radial distribution system,
in both regulating and locational marginal price (LMP) markets.

Keywords- Renewable energy integration, optimal operation
strategy, battery energy storage system, teacher learning based
optimization, distribution company, locational marginal price,
real time market

I. INTRODUCTION

As on March 31, 2016, the contribution of renewable
energy sources (RES) to the total installed power capacity
in India is only 13%, while that of thermal power plants
is 70.1% [1]. In future, there will be high integration of
RES due to several reasons like pollution by conventional
power plants, transmission corridor constraints, availability
of abundant RES, etc. But this integration poses a serious
risk to the stability and reliability of the system, due to the
fact that they are highly intermittent, which leads to power
quality issues. In such a case, the system operation should be
tackled such that it remains intact. Apart from this, economic
issues also arise in a deregulated power system. There are
many works which address the issues faced by Generation
Companies (GENCOs) [2].

In a vertically integrated power system, the main aim
of the DISCOMs is to ensure reliability and stability of the
system, and to maximize their profit. With high renewable
integration, there may be significant errors in forecasting of de-
mand, according to which it makes energy purchase decisions,
which exposes DISCOMs to the risk of price volatility. Thus,

there is a need for the DISCOMs to adopt an operation strategy
which yields them savings as well as help them maintain the
system reliability and stability.

One potential solution is the use of energy storage
systems (ESS). The aim of the present work is to form an
energy acquisition model for the DISCOMs using ESS, such
that the forecasted demand curve is traced, thus reducing the
interaction of DISCOMs with the real time market (RTM).
Meanwhile, optimization of placement and size of ESS is
done and a cost-benefit analysis is performed to evaluate the
economy of ESS.

ESS has been used for a number of applications like
electric energy time-shift, load following, voltage support,
etc [3]. There are many types of ESS like batteries, super
capacitors, flywheel, etc. A comparison of their characteristics
is given in [4]. However, due to space constraints, low cost,
and being a mature technology, battery energy storage systems
(BESS) are used in this work. Many works have addressed
optimal placement and sizing of BESS. In [5], the loss
payment of DISCOM is minimized by optimal scheduling
of RES and ESS. But the author has not considered the
economics of ESS. In [6], optimal placement and sizing of
BESS is done using a loss sensitivity based algorithm, It
takes into account only the loss minimization, ignoring the
cost of BESS and the deregulated structure of power system.
In [7], a bi-level optimization model is used to determine the
optimal installation site and size of BESS. However, it does not
consider the benefits of DISCOMs. [8] deals with the voltage
fluctuation problems arising from high penetration of RES by
using customer side ESS.

As the sizing and placement of BESS has a signifi-
cant effect on the system losses, energy purchase decisions
and economy of the system, it is a non-linear optimization
problem subjected to many constraints like voltage limits,
battery charge limits etc. This requires efficient optimization
algorithms. In [9], optimal sizing of super magnetic energy
storage system (SMES) is carried out using simplex method
which is an unconstrained optimization technique and a local
search technique. Many works have used genetic algorithm
(GA), particle swarm optimization (PSO) to address the
same problem [7], [10]. However, these algorithms require
optimization of the parameters, otherwise they lead to local
minima or maxima. In order to improve the performance
of PSO, parameters like weight factor, social and cognitive978-1-4799-5141-3/14/$31.00 © 2016 IEEE
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factors are optimized using fuzzy logic controller, thus leading
to an algorithm called Fuzzy particle swarm optimization
(FPSO) [11]. It is expected to give better performance than
PSO and GA.

In [12], a novel algorithm called Teacher learning based
optimization (TLBO) is used for distributed generator (DG)
placement with the aim of loss minimization. It is an algorithm
free of parameters and thus expected to give better results
than other heuristic algorithms. In [13], TLBO is used for
DG placement for minimization of loss, capacity release of
transmission lines, and voltage profile improvement. Neither
of them focuses on the troubles faced by DISCOMs in the
deregulated power system in the presence of RES.

In this paper, an optimal operation strategy using
battery energy storage system is proposed, along with which
optimization of placement and sizing of BESS is done using
a novel optimization technique called teacher learning based
optimization (TLBO).

II. OPERATION OF DISCOM

The assumptions [11] made in this work are:
• DISCOM is the sole system operator and electricity

retailer.
• DG units are owned and operated by the DISCOMs and

they are dispatchable both in the day ahead and real time
operation.

• The day ahead procurement energy is set according to
the forecasted net demand.
When there are RESs in the system, the net demand is

forecasted as,

PNetfore(t, day) = PPred(t, day)− PRES(t, day) (1)

where PNetfore is the forecasted net demand, in MW
PPred is the forecasted consumer demand, in MW
PRES is the forecasted power from RES, in MW
day is the specific day in a year
t denotes specific time in a day
The equation (1) shows that RES introduced more uncertainty
into the forecasted demand. The cost spent in purchasing the
day ahead power [11] is,

πDA(t, day) = λDA(t, day)PNetfore(t, day)∆t (2)

where λDA(t, day) is the purchasing cost in day ahead market
(DAM), in $/MWh
Because of errors in forecasting, the real time net demand
will be different from the forecasted value and this difference
is met by the DISCOMs at real time price called regulating
price [14] or penalty [15]. In this paper, both markets are
analyzed. In regulating price mechanism, the cost of energy
required in RTM is,

πRT (t, day) = λRPRT | (PNetreal(t, day)− PNetfore(t, day)) |
(3)

where λRPRT is the penalty price, in $/MWh
PNetreal is the real time net demand, in MW

For LMP mechanism,

πRT (t, day) = λRPRT | (PNetreal(t, day)−PNetfore(t, day)) | +

λLMP
Cong | (PNetreal(t, day)−PNetfore(t, day)) |

(4)
where λLMP

Cong is the congestion price in LMP market, in
$/MWh Now, the total energy purchasing cost [11] is given
by,

πtotal(t, day) =
24∑
t=1

(πDA(t, day) + πRT (t, day)) (5)

III. BESS OPERATION STRATEGY

In this work, BESS is operated in such a way that the
system losses are minimized, DISCOMs profits are maximized
and the ESS is better utilized. The BESS operation strategy
is the same in both types of markets being dealt in this work.
The BESS is triggered by the demand gap as shown below.

PESS(t, day) = PNetfore(t, day)− PNetreal(t, day) (6)

The entire BESS operation strategy is reflected in Fig 1.The
real time demand is greater than the forecasted demand from
hours 12 to 16. During this period, there is a shortage of power
as the DISCOM has already purchased PNetfore(t, day) from
DAM, and hence, the DISCOM should obtain that power from
any source. There are two ways that the DISCOM can resort
to: Energy can be bought from the RTM or the BESS can
be discharged. But when there is more demand, the price in
RTM will be more than the day ahead price, thus there is
a price risk. So, it is advisable for the DISCOM to derive
the required power by discharging the BESS. Before giving
a discharge signal, the capacity available with the BESS has
to be known. The state of charge (SOC) of the BESS at node
i [11] is calculated as,

SOCi(t, day) =
Ei(t, day)

Er,i
(7)

The remaining energy available with the BESS for discharg-
ing [11] is calculated as,

EDisrest,i(t, day) = (SOCi(t, day)− SOCmin)Er,i (8)

where i denotes the bus number
Er,i is the energy rating of the battery at bus i, in MWh
Ei is the energy stored in the battery at bus i, in MWh
There can be more than a single BESS. Each of them have
to be discharged according to the discharging energy available
with them. Thus, the amount of power for each battery [11]
is allocated as,

PDisi (t, day) =
PESS(t, day)EDisrest,i(t, day)∑n

i=1E
Dis
rest,i(t, day)

(9)

If the available BESS are not able to supply the required
power, the remaining power has to be bought from the RTM.
If the real time demand is less than the forecasted demand as
during hours 17 to 20, there is excess power available with the
DISCOM, which can be sold in the RTM or can be used to

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 01,2025 at 09:33:15 UTC from IEEE Xplore.  Restrictions apply. 



charge the BESS. But when the demand is less, the real time
price will be lesser than the day ahead price. Therefore, it is
advisable for the DISCOM to use the excess energy to charge
the BESS. Before doing so, the charging capacity available
with the BESS [11] should be calculated. It is given by,

EChrrest,i(t, day) = (SOCmax − SOCi(t, day))Er,i (10)

The amount of power for each BESS [11] is allocated as,

PChri (t, day) =
PESS(t, day)EChrrest,i(t, day)∑n

i=1E
Chr
rest,i(t, day)

(11)

where n denotes the number of buses.

Figure 1. BESS operation strategy [11]

If the excess energy available is more than the capacity of
BESS, the remaining energy is sold in the RTM.

Now that BESS is available, the DISCOM need not buy
the entire forecasted demand from the DAM. The DISCOM
has the electricity price forecasted. When this price is lower
than a predetermined threshold, the DISCOM should buy
more energy from the DAM. If the price is higher than a
predetermined threshold, less energy should be procured from
DAM. This amount is calculated according to the capacity of
BESS. The change in the amount of energy purchased in DAM
is given by [11] ,

Let a =
λDA(t, day)− kupλmeanDA∑

λDA(t,day)>kupλmean
DA

(λDA(t, day)− kupλmeanDA )

Let b =
−(λDA(t, day)− kdownλmeanDA )∑

λDA(t,day)<kdownλmean
DA

(λDA(t, day)− kdownλmeanDA )

∆Ppred(t, day) = a∗
n∑
i=1

Er,i∆SOC if λDA > kupλ
mean
DA

∆Ppred(t, day) = 0

if kdownλ
mean
DA < λDA < kupλ

mean
DA

else

∆Ppred(t, day) = b ∗
n∑
i=1

Er,i∆SOC

where
λmeanDA is the average electricity price in DAM, in $/MWh
kup is the upper price threshold
kdown is the lower price threshold.

IV. MATHEMATICAL FORMULATION

The operation of BESS, its placement and sizing should be
carried out such that the system losses, the total procurement
cost of the DISCOM and the BESS cost are minimized. The
objective function is given as [11],

J =
365∑

day=1

Πtotal(day) +
365∑

day=1

24∑
t=1

∑
ij∈L

(Iij(t, day))2rijλs

+
n∑
i=1

CBESS,i (12)

where CBESS,i is the cost function of the battery at node i,
which includes investment cost, maintenance cost, operation
cost and residual value.

CBESS = CI + CO + CM − CD

The objective function is subject to various oper-
ating constraints as mentioned below.
• Power balance constraint

Psolar(t, day) + Pwind(t, day) + PESS(t, day)

+Ppowermarket(t, day) = Pload(t, day) (13)

where Ppowermarket indicates the net amount of power
bought or sold in the power market.

• Voltage constraint

V min ≤ Vi(t, day) ≤ V max (14)

• Current constraint

Iij(t, day) ≤ Imaxij (15)

This is to ensure thermal stability of the system.
• SOC limits

SOCMin ≤ SOCi(t, day) ≤ SOCMax (16)

• BESS charging-discharging power limits

P
Dis/Chr,Min
ESS,i ≤ PDis/Chri (t, day) ≤ PDis/Chr,Max

ESS,i

(17)
• DG operation limit constraints

PMin
i,RE ≤ PREi (t, day) ≤ PMax

i,RE (18)

It is clear that the above problem is a highly non-linear
optimization problem, which cannot be solved by traditional
optimization methods. Hence, heuristic methods are used. In
this paper, TLBO is used and the results are compared against
FPSO, GA, and PSO.

V. TEACHER LEARNING BASED OPTIMIZATION

This method is based on the learning process of students
in a class, who are mimicked as learners in TLBO. They are
analogous to population in other heuristic algorithms. Firstly,
the students learn from the teacher, which constitutes teacher
phase and then, they learn from their peers, forming learner
phase in TLBO.
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A. Teacher phase

The extent to which the students learn depends upon the
knowledge of the teacher. And the knowledge of the teacher is
evaluated by the performance of the class, i.e. the mean of their
marks. Thus, the teacher tries to impart his/her knowledge to
the students, bringing their knowledge on par with the teacher.
This can be mathematically represented [16] as,

Xnew = Xi + r(Xteacher − TF .Xmean) (19)

where Xi is the learner
Xteacher is the best performer in the class
TF is the teaching factor taken as either 1 or 2
Xmean is the mean of all learners
r is a random number between 0 and 1.
The best performer in the initial population is taken as the
teacher. The new individuals thus formed are retained only if
they are better than the previous learners.

B. Learner phase

The learning process of the students does not stop with the
teacher. They further learn from their peers. So, each learner
chooses another student randomly. If learner Xii has chosen
learner Xi, Xi may have more knowledge or less knowledge
than Xii. If Xi has more knowledge, then Xi learns from Xii

and thus moves close to Xii [16].

Xnew = Xi + r ∗ (Xii −Xi) (20)

else, Xi is moved away from Xii

Xnew = Xi − r ∗ (Xii −Xi) (21)

The algorithm for TLBO is given in Fig 2.

VI. RESULTS AND DISCUSSION

The whole method discussed above is implemented on
an IEEE modified 15 bus radial distribution system [11] whose
data is drawn from [17] and the power factor is taken as 0.7.
The power factor for the wind units is taken as 0.93. The
load data, wind power data, solar power data, price data, both
forecasted and real time, for a period of 1 year are taken from
PJM website pertaining to PJM RTO [18]. The electricity price
(λs) is taken as 0.2 $/kWh and the discount rate for BESS is
taken as 5%. kup is taken as 1.2 and kdown is taken as 0.5 [11].
The rule base required for FPSO is taken from [11]. The pa-
rameters for the various algorithms are taken as, GA: crossover
probability=0.8, mutation probability=0.01. In PSO and FPSO,
weight factor=0.796 and social and cognitive parameters are 2
each. The fitness function is taken as 1/(1+objective function)
. The population size is taken as 20 for all the algorithms and
convergence criteria is fitness error of 0.0001. As lead acid
and lithium ion BESS are well matured, they are used for
the analysis. The parameters of BESS are shown in Table I.
Minimum SOC for the BESS is taken as 0.2 and maximum
SOC is taken as 0.8.

For the given system, without BESS, the penalty cost
is obtained as 65,786 $ for the considered year and the cost of

Start

Read no. of students,
convergence criterion

Initialize the position of learners

Evaluate objective function and sort the
learners according to their knowledge

Is the convergence criterion satisfied? Stop

Select the best solution as teacher,XTeacher

Modify the solutions as per Equation 19

Is Xnew better than X? Replace X with Xnew

Retain X

Select two learners randomly

Modify them acoording to Eqn. 20 and 21

Is Xnew better than X? Replace X with XnewRetain X

YES

NO

YES

NO

YESNO

Figure 2. Flowchart for TLBO

Table I
PARAMETERS REQUIRED FOR BESS

Entry Lithium ion BESS Lead acid BESS

Lifecycle 1500 times 1000 times
Investment cost 300Er 80Er

Operation cost 10Er 10Er

Maintenance cost 5Er 10Er

Energy efficiency 85% 80%
Self discharge 2% per month 3% per month

energy loss is obtained as 65,704 $. The optimization result
with BESS is shown in the subsequent tables. The savings
in each case are calculated as the difference of the cost
incurred before placement of BESS and the cost incurred after
placement of BESS. The losses are calculated by performing
load flow on the test system as described in [19]. From Table
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II, it can be observed that the Lithium ion BESS is not able
to fetch any savings for DISCOM because of its high cost.
From Table III, it is clear that, lead acid BESS is able to fetch
significant savings for the DISCOM. So, further analysis is
carried out only with lead acid BESS. Under LMP market, It
can be observed from Table IV that the capacity of BESS
required is only 0.72 MWh with TLBO, 0.83 MWh with
FPSO, 0.85 MWh with PSO and 0.89 MWh with GA. Thus,
TLBO performs better than the other algorithms. This is due
to the fact that each iteration involves checking of optimality
with three different solutions, which means the search space
is better covered compared to the other algorithms. Moreover,
TLBO is devoid of the parameters to be optimized, where
other algorithms may involve errors due to use of sub-optimum
parameters.

Table II
BESS OPTIMIZATION RESULT FOR LITHIUM ION BESS UNDER

REGULATING MARKET

Entry GA PSO Fuzzy PSO TLBO

Location 5,6,12 1, 9, 12 4, 6,10 4,6,9

Capacity
(MWh)

0.22,0.42,0.54 0.28,0.37,0.52 0.21,0.38,0.55 0.34,0.32,0.48

Total
capacity
required
(MWh)

1.188 1.173 1.159 1.154

Loss
cost($)

65,588 65,008 65,207 65,122

Penalty($) 21,822 21,325 20,868 20,792

BESS
cost($)

3,56,400 3,21,000 3,17,880 3,46,200

Residual
value($)

2,15,986 2,17,825 2,16,140 2,16,124

Savings($) - - - -

Time(sec) 3864 1987 1286 4912

Table III
BESS OPTIMIZATION RESULT FOR LEAD ACID BESS UNDER REGULATING

MARKET

Entry GA PSO Fuzzy PSO TLBO

Location 3,5,9 1 ,9,11 4 ,6 ,9 3, 6, 9

Capacity
(MWh)

0.52,0.98,0.97 0.39,1.03,0.88 0.73,0.79,0.68 0.44,0.98,0.61

Total
capacity
required
(MWh)

2.47 2.3 2.2 2.03

Loss
cost($)

65,868 65,318 65,162 64,903

Penalty($) 2206.6 1998.3 1983.15 1825.58

BESS
cost($)

1,81,360 1,83,680 1,76,960 1,62,080

Residual
value($)

1,20,938 1,20,950 1,21,320 1,27,350

Savings($) 9,242.4 15,402.7 17,503.85 19,659

Time(sec) 4166 1564 1252 5576

Table IV
BESS OPTIMIZATION RESULT UNDER LMP MARKET

Entry GA PSO Fuzzy PSO TLBO

Location 3, 4, 9 4, 9, 11 4, 6, 9 4, 6, 11

Capacity
(MWh)

0.25,0.36,0.28 0.38,0.12,0.35 0.19,0.41,0.23 0.24,0.38,0.1

Total
capacity
required
(MWh)

0.89 0.85 0.83 0.72

Loss
cost($)

65,486 65,422 65,387 64,964

Penalty($) 10,846 9998.3 8910.25 7841.20

BESS
cost($)

71,840 68,480 66,400 58,080

Residual
value($)

38,562 38,684 38,526 38,498

Savings($) 34,068 39,179.7 41,866 54,731

Time(sec)) 4834 1452 986 5982

To illustrate that the given operation strategy is successful
in tracing the forecasted demand and reducing the interaction
of DISCOM with RTM, the demand gap is shown with and
without BESS in Fig 3 for a period of 1 week, in the regulating
market. To illustrate that this method results in significant loss

Figure 3. Demand gap graph with BESS and without BESS

reduction, power losses for a period of 1 week is shown in
Fig 4.

It is clear that demand gap is zero for most of the time

Figure 4. Losses comparison with and without BESS

under the considered period, with BESS. And the use of BESS
also improved the voltage profile of the system. The minimum
voltage without using BESS is 0.9529 p.u., whereas that with
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using BESS is 1.0225 p.u. To illustrate the advantage of this
method over other methods in literature, let us place BESS
at the DG locations i.e. 6, 9, 11. Now the total capacity of
BESS required is obtained as 2.86 MWh, which is obtained
as 0.72 MWh with this method in LMP mechanism, which is
less than 30% of the rated renewable energy.

VII. CONCLUSION

In this work, an optimal BESS operation strategy
is presented for the reduction of risk of DISCOMs with
high renewable integration. Thus, an optimization problem is
formed to optimally size and place the BESS. And the method
is implemented on both regulating and LMP markets, with
both lead acid and lithium ion BESS. From the studies, the
operating strategy is robust and it can help the DISCOMs to
reduce the risk of price volatility. Further, this method yielded
savings for the DISCOMs with lead acid BESS in both the
markets. With the development of technology, lithium ion
BESS may become cost effective in future and may be used
by the DISCOMs to make more savings, owing to its high
energy density. Also, this method lead to reduced capacity
requirement of BESS, reduced system losses and improved
voltage profile. Four different optimization algorithms are used
to optimally place and size the BESS. GA, PSO, Fuzzy PSO
need some parameters to be optimized. On the contrary, TLBO
is an algorithm specific parameter less algorithm and thus
performed better than the other algorithms in terms of results,
but the convergence rate is low which may lead to much better
algorithms in future. Moreover, the lifetime of BESS is taken
as a function of only depth of discharge and energy usage,
independent of atmospheric conditions like temperature which
can be included in future work.
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