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Abstract— Harmonic estimation plays a vital role in 

maintaining power system, and for reliable measurement of the 

harmonics, Windowed Interpolated Fast Fourier Transform 

(WIFFT) has been used. In this paper, supply voltage harmonics 

are analysed by Triangular Self-Convolution Window (TSCW), 

Hanning and Hamming WIFFT. TSCW is ameliorated window 

than previously existing Hanning and Hamming windows. By 

comparing these three windows it is observed that TSCW 

reduces the measurement errors and gives more precise results 

while estimating the harmonics. One more advantage with 

TSCW is that it is also able to detect the weak harmonics, which 

is not possible with Hanning and Hamming Window. Narrow 

main lobe and high side lobe decaying rate make TSCW capable 

of compressing the spectral leakage. The validity of the proposed 

comparison was confirmed by simulation and practical 

experiment of the supply voltage harmonic signal as input. 
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I.  INTRODUCTION  

With the exponential growth of the nonlinear loads in 
scientific and engineering applications, harmonic estimation 
becomes a serious issue in the power system. The presence of 
these harmonics impairs the power quality and affects 
adversely the economic operation of the power system [1]. 
Harmonic estimation includes reliable estimation of the 
frequency, amplitude and phase of each component of the 
frequency present in the harmonic signal.  

In recent years several methods have been introduced for 
the estimation of the harmonics, among them, the application 
of zero crossing technique, Kalman filter, Wavelet transform 
and S-transform are discussed in [2]. Nevertheless, FFT is the 
well-known estimation tool for harmonic analysis. Under 
synchronous sampling, estimation of the harmonics using FFT 
can be accurate. But in the case of non-synchronous sampling 
FFT has certain limitation such as spectral leakage and picket 
fencing [3].  

The unexpected effect of spectral leakage can be reduced 
by weighting the signal time samples with proper time 
window [4]. The picket fencing effect can be minimised by 
interpolation algorithm [5]. Many windows have been 
introduced to suppress spectral leakage such as Rectangular, 
Hanning, Hamming, Nuttall, Blackman etc... [6]. Spectral 

leakage can be reduced by using proper window function. It is 
illustrated in [7] that narrow main lobe width results to better 
frequency resolution. Whereas peak side lobe, higher side lobe 
decaying rate are suggestive of low spectral leakage. Hence, 
the Triangular window with narrow main lobe width and basic 
function in both time and frequency domains are considered as 
the main window. Triangular Self Convolution Window 
(TSCW) is obtained by convolving the triangular window as 
presented in [8]. Side lobe behaviour of the TSCW is able to 
sufficiently reduce the spectral leakage. TSCW with the 
proper order (number of convolution) of the triangular 
window exhibits a good deal of lower peak side lobe and 
higher sidelobe decaying rate as discussed in [8,9]. 
 

In this paper the 8th order TSCW with sampling frequencies 
of 1.5 kHz and 3 kHz are presented for harmonic parameter 
estimation, especially supply voltage harmonics of the 
distribution system using National Instruments (NI)-cRIO [10] 
based data acquisition system and it is compared with 4th order 
TSCW [9], the widely adopted Hanning and Hamming 
window based interpolated FFT results. TSCW has reasonable 
accuracy for frequency and amplitude estimation as well as the 
ability of the TSCW to detect a weak harmonics, which is not 
possible with Hanning and Hamming, makes it more suitable 
for distribution system harmonic estimation. Initially, 
simulation studies are carried out on the supply voltage 
harmonic signal using LabVIEW programming to estimate the 
amplitude and frequency errors of the typical voltage signal. 
After estimating the error, a real supply voltage signal is 
considered for the test using NI-cRIO. 

II. OUTLINE OF TSCW  

TSCW is obtained by convolution of the triangular window. 

A. TSCW function  

Triangular Window function is defined by [8] 
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Here L is the length of the window, which is equal to the set of 
2

i where i is a natural number. By taking the convolution of 
Triangular window, TSCW can be obtained. p

th order self-
convolution can be obtained by the p-1 self-convolution of p 

instances of TSCW as follows 
 

wT-p(n)=wt(m)* wt(m) ……… * wt(m)  (2) 
 

where m= 0,1….L-1,for pth-order TSCW. 

B. TSCW in frequency domain 

The Triangular window function derived from Discrete-Time 
Fourier Transform (DTFT) can be represented by  
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where w is continuous angular frequency and is given by  
w=2π/T. The DTFT of the TSCW is given by 
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Fig. 1. Frequency response of TSCW 

 
From the Fig. 1, it can be seen that side lobe decaying rate, the 
peak of the side lobe level is proportion to the order of TSCW. 
It means that  higher will be the order than accuracy also will 
be higher. 

III. ESTIMATION OF HARMONIC PARAMETERS 

A. Interpolation Methodology 

Harmonic parameter estimation through WIFFT includes 
discrete signal truncating weighting of the signal by the 
suitable window, interpolation for correction and then signal 
parameter estimation [11]. A time sampled multi-frequency 
voltage harmonic signal x(n) in distribution system composed 
of different harmonics, can be expressed as 
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where n=0,1,2,…..N-1 and N are acquisition length; K is the 
frequency components number; fs is the sampling frequency; 
Ak, fk,Φk  are amplitude, frequency, and phase  of kth  harmonics  
respectively. FFT of the windowed sample signal x(n)*w(n) on 
N sample points  can be given by 
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where λ∈(1:K) and W2p represents the FFT of the window 
function. Ignoring the effect of the component part of the 
negative frequency, the DFT X2p(λ) is modified as 
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Fig. 2. Flow Chart of TSCW based interpolated FFT method 
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The spectral line related to the k
th order harmonic should 

recline between the two highest amplitude spectral lines. [11] 
If two maximum points are obtained at lk1 and lk2(=lk1+1)  and 
magnitudes y1=|Xp(lk1)| and yk2=|Xp(lk2)|. Consider β derived 
from [11]. 
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From the value of β value of α can be calculated by 
polynomial curve fitting technique as discussed below. 
Algorithm for evaluation of coefficients of β for α calculation 
[11] 

a) Take a group of random values of  α between -0.5 to 
0.5. Evaluate the value of  β  for different α using:       
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b) Use polyfit (β, α, J), for inverse curve fitting and the 

coefficients of β, can be obtained. 

α=r0 β+r1 β
2
+r2 β

3
+............ +rJ-1 β

J               (10) 

where J is the order of the fitting polynomial 
approximation and its value is selected on the basis of 
accuracy. In this paper, J equals to 7 is considered.   

c) Here α value is derived for 4th and 8th order as 
follows. 

 α4th=0.1538β
7
+0.2377β

5
+0.4273β

3
+4.8582β      (11)  

α8th=0.3024β
7
+0.4782β

5
+0.7486β

3
+9.9090β      (12)      

                      

Once α is calculated, and then by using its value, harmonic 

parameter fk and Ak can be estimated by using following 
formula 

fk =(lk1+α+0.5)fs /N         (13) 
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IV. SIMULATION RESULTS  

 In this section performance of the 4th order, 8th order 
TSCW are compared with Hanning and Hamming Windows. 
A multi-harmonic voltage signal is simulated in LabVIEW, 
which is given by 

         ∑
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where k is the order of harmonics,  Ak is the amplitude of the 
k

th order of harmonics and f is fundamental frequency. Here 
the sampling frequency (fs) =1.5 kHz and 3 kHz and number 
of sample N=1024 are considered.   

TABLE I.  AMPLITUDE OF HARMONICS 

 
Harmonics 

Order k 
1 2 3 4 5 6 7 9 11 

Amplitude 
Ak  in volts 

240 0.6 9 0.08 3.2 0.06 1.9 0.09 0.1 

Phase in 
degrees 

0 10 20 30 40 50 60 70 80 

 

 The 4th and 8th order TSCW based interpolated FFT results 
are compared with Hanning and Hamming window based 
interpolated FFT. It illustrates that frequency estimation with 
8th order TSCW is more accurate than 4th order TSCW, 
Hanning and Hamming windowed interpolated FFT. In the 
case of amplitude estimation, the performance of the TSCW is 
identical with Hanning and Hamming WIFFT based on the 
tabulation of Table II and Table III. But for weak harmonics, 
the performance of the TSCW is better.  

 The simulation studies are performed for 1.5 kHz and 3 
kHz sampling frequencies. For 1.5 kHz sampling frequency 
mean of the relative error in frequency estimation with 8th 
order TSCW is 1.5938E-4 while with 3 kHz, it is 2.746E-4. 
The mean of the relative frequency estimation error with the 
Hanning window is equals to 0.0092 for 1.5 kHz and 0.0187 
for 3 kHz. The mean of the relative frequency estimation error 
with the Hamming window is equals to 0.01 for 1.5 kHz and 
0.022 for 3 kHz.   

 In the case of amplitude, the mean of relative error with 8th 
order TSCW is 0.05 for 1.5 kHz and 0.0375 for 3 kHz, 

whereas with Hanning window mean of relative error is 
0.0372 for 1.5 kHz and 0.0392 for 3 kHz. With Hamming 
window mean of relative error is 0.022 for 1.5 kHz and 0.35 
for 3 kHz.   Table II and Table III shows that 8th order TSCW 
has reasonable improvement in measurement of harmonics 
when compared to the Hanning and Hamming windowed 
interpolated FFT. Further, the TSCW based interpolated FFT 
is implemented in an NI-cRIO based data acquisition and 
estimation system. 

 

 

Fig. 3. Snapshot of supply voltage signal captured from NI-cRIO 
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TABLE II.  RELATIVE ERROR IN FREQUENCY ESTIMATION  

Sampling frequency =1.5kHz Sampling frequency =3kHz 

Order of 

Harmonic 

(k) 

4
th
 order 

TSCW 

WIFFT 

8
th
 order 

TSCW  

WIFFT 

Hanning    

WIFFT 

Hamming    

WIFFT 

4
th
 order 

TSCW 

WIFFT 

8
th
 order 

TSCW  

WIFFT 

Hanning    

WIFFT 

Hamming 

WIFFT 

1 0.001958 0.000453 0.029318 0.026981 0.004629 0.001071 0.058644 0.053245 

2 0.000623 0.000144 0.015138 0.029223 0.001071 0.000453 0.033491 0.062699 

3 0.000178 0.000041 0.009768 0.009483 0.001068 0.000247 0.019543 0.018234 

4 0.001292 0.000300 0.007337 0.009390 0.000623 0.000144 0.014672 0.027485 

5 0.000891 0.000207 0.005868 0.005316 0.000356 0.000082 0.011723 0.010829 

6 0.000623 0.000144 0.004889 0.006752 0.000178 0.000041 0.009845 0.015582 

7 0.000432 0.000100 0.004190 0.003593 0.000051 0.000012 0.008371 0.008232 

9 0.000178 0.000041 0.003257 0.002762 0.001069 0.000248 0.006521 0.003977 

11 0.000016 0.000004 0.002668 0.002324 0.000745 0.000173 0.005334 0.004057 

 

TABLE III.  RELATIVE ERROR IN AMPLITUDE ESTIMATION 

Sampling frequency =1.5kHz Sampling frequency =3kHz 

Order of 

Harmonic 

(k) 

4
th
 order 

TSCW 

WIFFT 

8
th
 order 

TSCW  

WIFFT 

Hanning    

WIFFT 

Hamming    

WIFFT 

4
th
 order 

TSCW 

WIFFT 

8
th
 order 

TSCW  

WIFFT 

Hanning    

WIFFT 

Hamming    

WIFFT 

1 0.020945 0.022243 0.023152 0.091352 0.023236 0.023560 0.023082 0.101250 

2 0.011830 0.016990 0.021820 1.683920 0.020930 0.022240 0.176260 1.605350 

3 0.003178 0.008290 0.023319 0.067339 0.017140 0.020050 0.023214 0.083012 

4 0.168470 0.104500 0.022260 0.651800 0.011830 0.016990 0.023380 0.399020 

5 0.189630 0.115941 0.022485 0.118401 0.005052 0.013065 0.023285 0.079420 

6 0.203940 0.123640 0.022720 0.086380 0.003180 0.008280 0.015280 0.100720 

7 0.023236 0.127502 0.022910 0.147529 0.012821 0.002675 0.023330 0.065262 

9 0.017140 0.020050 0.023207 0.129493 0.179887 0.110680 0.022293 0.632930 

11 0.012822 0.002675 0.022090 0.187308 0.197658 0.120263 0.022565 0.288545 

V. EXPERIMENTAL RESULTS  

The harmonic analysis of a supply voltage feeding 
different linear and nonlinear loads, such as lamp load and 
computer loads are performed using the 8th order TSCW in the 
LabVIEW real-time environment. The supply voltage driving 
the linear and non-linear loads are sensed with the help of NI 
c-RIO analogue I/O module and processed to the 8th order 
TSCW based interpolated FFT algorithm. The obtained results 
have been compared with the results of power quality analyser 
measured values.  

The relative errors of the amplitude and frequency of the 
supply voltage with the help of 8th order TSCW are tabulated 
in Table IV. The measurement accuracy of the harmonic 
frequency is improved in the case of 8th order TSCW when 
compared to 4th order TSCW, Hanning and Hamming 
window. From the Tabulated values, it can be observed that 
the 8th order TSCW based Interpolated FFT is accurately 
measured the harmonic components that are present in the 
supply voltage that is being analysed. The snapshot of the 
front panel indicating the analysis of supply voltage is shown 
in Fig.3. 

 
 

TABLE IV.  RELATIVE ERROR SUMMARY  

Order of 

Harmonic 

(k) 

Amplitude Frequency 

1 3.474E-3 4.379E-3 

5 1.18431E-1 2.92E-4 

7 2.0576E-1 7.81E-5 

8 2.1255E-1 9.63E-5 

9 1.68254E-1 9.15E-5 

10 9.101E-2 8.09E-5 

11 2.228E-1 1.81E-5 

12 1.271E-2 4.18E-5 

13 4.43E-3 1.09E-5 

15 1.4382E-1 6.3E-5 

16 4.6216E-1 6.97E-5 

 

VI. CONCLUSIONS 

The major problems with the harmonic analysis using 
window function based interpolated FFT is spectral leakage 
and picket fencing. This paper has chosen a TSCW with 
narrow main lobe and high side lobe decaying rate for 
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minimization of error due to spectral leakage and picket 
fencing. Results of simulation show that 8th order TSCW is 
accurate than 4th order TSCW, Hanning and Hamming based 
interpolated FFT for harmonic frequency and amplitude 
estimation. The performance of the 8th order TSCW based 
interpolated FFT for distribution system supply voltage 
harmonic estimation is presented. 
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