

Abstract—Recent trends of technology have explored a

numerous applications of cloud services, which require a
significant amount of energy. In the present scenario, most of
the energy sources are limited and have a greenhouse effect on
the environment. Therefore, it is the need of the hour that the
energy consumed by the cloud service providers must be
reduced and it is a great challenge to the research community to
develop energy-efficient algorithms. To design the same, some
researchers tried to maximize the average resource utilization,
whereas some researchers tried to minimize the makespan.
However, they have not considered different types of resources
that are present in the physical machines. In this paper, we
propose a task scheduling algorithm, which tries to improve
utilization of resources (like CPU, disk, I/O) explicitly, which in
turn increases the utilization of active resources. For this, the
proposed algorithm uses a fitness value, which is a function of
CPU, disk and I/O utilization, and processing time of the task.
To demonstrate the performance of the proposed algorithm,
extensive simulations are performed on both proposed
algorithm and existing algorithm MaxUtil using synthetic
datasets. From the simulation results, it can be observed that
the proposed algorithm is a better energy-efficient algorithm
and consumes less energy than the MaxUtil algorithm.

Index Terms—Cloud Computing, Task Scheduling, Energy
Conservation, Virtual Machine, Resource Utilization.

I. INTRODUCTION

In the era of modern technology, cloud computing has
gained huge popularity for providing services like
infrastructure as a service (IaaS), platform as a service (PaaS)
and software as a service (SaaS) [1, 2]. People who face a
shortage of resources to complete their required computation
work, they get benefit from the cloud services and pay a
marginal amount to use them [1, 3]. The services are
provided by the cloud service providers (CSPs) [1-3]. CSP
handles all the tasks submitted by the users by creating virtual
machines (VMs) on the physical machines (PMs) or using the
resources present at the datacenter [1-4]. It is required that the
resources present at the datacenter must be handled
efficiently by the CSP, so that maximum tasks can be
executed in minimum time. It is noteworthy to mention that
minimizing the processing time and maximizing the average
resource utilization does not guarantee the minimum
consumption of energy.

In the present situation, most of the industries and service
providers are relying on the non-renewable energy [5]. The
sources of the non-renewable energy are limited in nature,
which will exhaust one day and these resources have an
adverse effect on the environment [5]. Therefore, the need of
the hour is that the consumption of energy for different
computational work and services must be minimized. The

incurring cost of providing services will also reduce, if there
will be efficient energy management. Most of the recent
works are either focused on the minimizing the processing
time or maximizing the average resource utilization [3, 4].
Some of the works also focus on efficient energy utilization
by considering only the resource utilization and ignoring the
processing time [4-6]. Moreover, in the majority of works,
individual resource utilizations (like CPU, disk and I/O) are
not properly addressed. Therefore, in this paper, we consider
both the processing time and the average resource utilization
of CPU, disk and I/O to achieve efficient energy utilization
and propose a multi-criteria based energy-efficient task
scheduling (MCEETS) algorithm.

The proposed algorithm is a two-phase algorithm, where
the first phase deals with the ordering of the tasks arrived at
the same time for the execution purpose and the second phase
deals with the assignment of the task to a VM in which the
task can be accommodated with respect to the availability of
the different types of resources. While ordering the tasks in
the first phase, the fitness value for each task is calculated.
The fitness value depends on both the processing time and the
resource utilization. In this paper, we consider mainly three
types of resource utilization and they are (1) CPU utilization
(b) disk utilization and (c) I/O utilization. The final ordering
of the tasks is prepared by organizing the tasks in the
ascending order of their fitness value. In the second phase,
one task is selected from the list, which is prepared in the first
phase and that task is assigned to a suitable VM, where the
requirement of the task is fulfilled. If there are more than one
VMs suitable for that task, then the task is assigned to a VM,
where the maximum resource utilization is achieved. As a
result, energy consumed for executing the tasks is minimized.
Therefore, the main contributions of this paper are as follows.
(1) MCEETS considers both the processing time and the
average resource utilization to achieve energy-efficient
scheduling. (2) The proposed algorithm considers different
types of resource utilization (like CPU, disk and I/O). (3) The
simulation results of MCEETS are compared with the
existing algorithm MaxUtil using synthetic datasets.

The rest of the paper is structured as follows. Section II
contains the overview of the recent research works on
scheduling algorithms to achieve better energy efficiency and
resource utilization. The proposed cloud model and the
details of the problem is discussed in the section III.
MCEETS is explained with pseudo code in section IV.
Section V discuses about the simulation results and a
comparison with the existing algorithm MaxUtil. Section VI
contains the concluding remarks of the presented MCEETS
algorithm.

An Efficient Approach for Energy Conservation in
Cloud Computing Environment

Sohan Kumar Pande1, Sanjaya Kumar Panda2, Member, IEI, and Preeti Ranjan Sahu3
1,3Veer Surendra Sai University of Technology, Burla – 768018, Odisha, India

2National Institute of Technology, Warangal – 506004, India
{1ersohanpande, 2sanjayauce, 3preetiranjan.sahu}@gmail.com

II. RELATED WORK

Cloud computing is an evolving paradigm in the field of IT,
which gives services to the users facing shortage of resources
and the service providers are compensated by the users [1-5].
To provide different types of cloud services, datacenters of
the CSPs require a huge amount of energy. For example, the
electricity used by the Google datacenter is approximately
same as the electricity consumed by a big city. Most of the
energy sources are non-renewable and have an adverse effect
on the environment, which is an ultimate cause of greenhouse
effect [5]. Therefore, it is very much required by the
datacenters to adopt efficient scheduling algorithms, which
can minimize the energy consumption without compromising
in QoS promised to the users.

Many research works have shown that energy
consumption of the datacenter is linearly dependent on the
average resource utilization. Lee et al. [4] have proposed an
energy-conscious task consolidation algorithm, which
explicitly addresses the issue of energy consumed by the
ideal resources and active resources. Their proposed
algorithms assign the tasks to the VMs, such that minimum
energy is consumed. Panda et al. [3] have proposed three
algorithms, MCC, MEMAX and CMMN, which give better
makespan and maximum resource utilization. Minimizing
makespan directly reduces the total energy consumed by the
datacenters. Some research works show that VM in ideal
state or VM with low load also consumes a significant
amount of energy. Therefore, researchers have proposed
algorithms, which transfer tasks from overloaded VMs to
under loaded VMs and shares loads among the VMs [2,
6-10].

While some researchers try to balance the loads between
the VMs to achieve energy efficiency, some studies have
shown that VMs, with utilization more than 70%, also
consume a high amount of energy [6]. Therefore, Hsu et al. [6]
have proposed task consolidation techniques, which define a
threshold value and when the utilization of the VM crosses
that threshold value, some of the load from the overloaded
VM is migrated to some under loaded VM. The authors have
also considered utilization and network transmission for the
task consolidation purpose. Dabbagh et al. [2] have proposed
a resource management framework, which predicts accurate
number of VMs needed with required CPU and memory
resources. Then this framework accurately estimates PMs
needed and puts other PMs into sleep mode. Beloglazov et al.
[7] have found different challenges in cloud architecture to
gain better energy utilization. These research works have not
considered different types of resources like CPU, disk and
I/O, while assigning loads to the VMs. However, considering
individual resource can significantly increase the average
resource utilization, which will ultimately give better energy
utilization. In this research work, we consider different types
of resources along with the processing time to select a better
VM.

III. CLOUD MODEL AND PROBLEM STATEMENT

A. Cloud Model

We consider various cloud services, which is provided to
the users on-demand basis. In this model, users submit their
tasks (user requests) to the CSP and pay for the same. To

compute the tasks submitted by the users, VMs are created on
the PM in the datacenter of the CSP, so they can fulfil the
demand of the users. All these VMs are managed by the
datacenter in terms of computational capacity and it is
assumed that all the VMs are homogeneous irrespective of
the PM on which it is hosted. When the CSP receives the task,
it forwards the task to the datacenter and the datacenter in
turn assigns the task to one of the created VM. For executing
the task on the VM, energy is consumed by the respective PM
on which the VM is hosted. The energy consumed at a
particular time by the PM is directly proportional to the
current resource utilization of the VM. Here, we consider
three types of resource utilization, namely CPU, disk and I/O
utilization. One VM can execute more than one task at a time
as per the availability of the resources. At any point of time t,
utilization of CPU (UC) offered by a VM i is the total of the
utilization of the resource by all the tasks executing at that
time on that respective VM. Mathematically, it can be written
as

1

n

t t t
i j j

j

UC UC assign


  (1)

where
1 if task is assigned at time

0 Otherwise
t
j

j t
assign


 


and n is the number of tasks executing at time t. Similarly, we
calculate utilization of the disk as follows.

1

n

t t t
i j j

j

UD UD assign


  (2)

We calculate utilization of the I/O as follows.

1

n

t t t
i j j

j

UI UI assign


  (3)

The total utilization of the VM i can be represented as the

average of the CPU, disk and I/O utilization at time t, it can
be mathematically represented as

()

3

t t t
t i i i

i

UC UD UI
UV

 
 (4)

The average utilization of the VM i with a time period T

will be
1

1 T
t

i i
t

UV UV
T 

  . The energy consumed by the VM i

can be calculated as Ei = (Pmax – Pmin) × UVi + Pmin. The Total
energy consumed by the PM is the total energy consumed by
all VMs hosted on that PM, that can be expressed as

1

m

i
i

E E


 . Here, m is the number of VMs hosted on the PM.

B. Problem Statement

Let us consider that n number of tasks is submitted by the
users to the CSP and the datacenter of the CSP has to assign
these tasks to m number of VMs hosted on the PM. Each task
Tj, 1 ≤ j ≤ n is represented in 7-tuple as follows, {TID, TAT,
TPT, TFT, TCU, TDU, TIU}. These tuples denote task id,
task arrival time, task processing time, task finish time, task
CPU utilization, task disk utilization and task I/O utilization,
respectively. We can say TFT = TAT + TPT. Here, the

problem is to assign the tasks to the available VMs in such a
way that total energy consumption by all the VMs is
minimized. This assignment problem is subject to the
following constraints. (1) At a time t, a task j can only be
assigned to one VM i and the TAT ≤ t. (2) Task j can only be
assigned to VM i at time t only if t t

iCU TCU ≤ 100 and
t t
iDU TDU ≤ 100 and t t

iIU TIU ≤ 100.

IV. PROPOSED ALGORITHM

The proposed consolidation algorithm comprises of two
phases. The first phase of the algorithm finds the ordering of
the tasks for assigning them to the VMs if more than one task
arrives at the same time. The ordering of the tasks is decided
based on the fitness value of the tasks. The fitness value of
the task considers CPU utilization, disk utilization, I/O
utilization and processing time. Mathematically, it can be
represented as follows.

F = λ × NTPT + (1 - λ) × (NCU + NDU + NIU), here 0 ≤ λ ≤ 1 (5)

After finding the fitness values of the tasks, they are
arranged in the ascending order of their fitness value. In the
second phase, the tasks are assigned to the VMs, such that
resources (CPU, disk and I/O) utilization will be minimized,
which ultimately consume less energy for computation.

TABLE I. NOTATIONS AND THEIR DEFINITION

Notation Definition
Q Global queue
N Number of tasks
M Number of VMs
T Maximum time to compute all the task
TC(j, 1), TC(j,
2),…, TC(j, 6)

Task characteristics TAT, TPT, TFT,
TCU, TDU, TIU, respectively

NOTAT Number of unique arrival time
Maxtime Maximum of all the arrival time
NOT(t) Total number of tasks arrived at time t
TASK_LIST List of the tasks arrive at time t
Ct Current task to be executed
Novm Number of VMs available to execute

ct
dest_vm Destination VM
UV(i) Average resource utilization of VM i
TE Total energy

Algorithm: MCEETS

Input: 2-D matrix: TC, n: number of tasks, m: number of
VMs
Output: UV, TE
1. while Q ≠ NULL
2. maxtime = TC(1, 1)
3. for i = 1:n
4. NOTAT(TC(j, 1)) = NOTAT(TC(j, 1)) + 1
5. if maxtime < TC(j, 1)
6. maxtime = TC(j, 1)
7. endif
8. endfor
9. for t = 1:maxtime
10. if NOTAT(t) ≠ 0
11. for j = 1:n
12. if TC(j, 1) = t
13. NOT = NOT + 1

14. TASK_LIST(NOT) = j
15. endif
16. endfor
17. max_pt = TC(1, 2)
18. for j = 1:NOTAT(t)
19. if max_pt < TC(TASK_LIST(j, 2))
20. max_pt = TC(TASK_LIST(j, 2))
21. endif
22. endfor
23. for j = 1:NOTAT(t)
24. NPT(j) = TC(TASK_LIST(j), 2) / max_pt
25. endfor
26. NCU, NDU and NIU values are found in the

same way as NPT is found (Lines 17-25)
27. for j = 1:NOTAT(t)
28. fitness(j) = 0.5 × NPT(j) + 0.5 × (NCU(j) +

NDU(j) + NIU(j))
29. endfor
30. for j = 1:TOTAT(t) – 1
31. for jˈ = j:TOTAT(t)
32. if fitness(j) > fitness(jˈ)
33. temp = fitness(j)
34. fitness(j) = fitness(jˈ)
35. fitness(jˈ) = temp
36. temp1 = TASK_LIST(j)
37. TASK_LIST(j) = TASK_LIST(jˈ)
38. TASK_LIST(j) = temp1
39. endif
40. endfor
41. Call ASSIGN_TASK_VM(TASK_LIST, n, m)
42. endfor
43. endif
44. Call CALCULATE_UV_E(TC, assign_vm, m, n)
45. endwhile

Fig. 1. Pseudo code for MCEETS.

The pseudo code for the proposed algorithm is presented in
Fig 1. For this, notations and their definition are given in the
Table I. Let’s us now explain the pseudo code for the
proposed algorithm MCEETS with the help of an example.
Suppose there are 10 number of tasks to execute on the VMs
created by the datacenter of the CSP. All the VMs are
homogenous in terms of computing capacity and resource
availability. The detailed features of the tasks are presented in
the Table II.

TABLE II. DETAILED FEATURES OF TASKS

TID TAT TPT TFT TCU TDU TIU
T1 1 25 26 30 22 30
T2 1 29 30 31 21 31
T3 1 23 24 32 27 32
T4 2 32 34 24 25 25
T5 2 24 26 30 23 31
T6 2 28 30 30 31 31
T7 2 31 33 22 24 22
T8 3 34 37 21 24 21
T9 3 35 38 27 30 27
T10 3 28 31 35 30 25

After submission of the tasks to the datacenter, tasks are

put in queue Q (Fig 1, Line 1). Then number of tasks arrived
at different time is calculated (Lines 2-8). After this step, task
list is prepared, which are arrived at the same time (Lines
11-16). In our example, ten tasks (T1 to T10) are arrived at

different time. For instance, at time t = 1, T1, T2 and T3 have
arrived. Similarly, at time t = 2, T4, T5, T6 and T7 and at time t
= 3, T8, T9 and T10 have arrived. After finding the tasks which
have arrived at same time, we have to find the order in which
they will be assigned to the VMs. To find the ordering of the
tasks, fitness value is calculated. To find out the fitness value
of each task, first the normalized processing time (NPT) of
each task is calculated (Lines 17-25). Similarly, we calculate
NCU, NDU and NIU (Lines 26). Then fitness value is
calculated (Lines 27-29). In our example, at time t = 1, T1, T2
and T3 have arrived. For T1, fitness value is calculated as
fitness = 0.5 × (25/29) + 0.5 × [(30/32) + (22/27) + (30/32)] =
1.775. Similarly, the fitness value of T2 and T3 are found to be
1.857 and 1.896. Then the tasks are arranged in the ascending
order of their fitness value (Lines 30-40). In this example, at
time t = 1, the ordering of the task is T1, T2 and T3 by
following the fitness value. In the similar fashion, rest of the
tasks are processed in the first phase of MCEETS.

In the second phase of MCEETS, tasks are assigned to the
VMs in such a way that the total energy consumed to
compute all the tasks is minimized. In the second phase, the
number of iteration to be performed is found out. The total
number of iteration is the maximum of the TFT of all the
tasks present in the TASK_LIST. In our example, the total
number of iteration will be 30 as it is the maximum of the
TFT of T1, T2 and T3. Then from the current list of the tasks,
task present in the first position is selected. We can call it
current task (ct). Now, we have to find out the available VMs
to which the task can be accommodated. One task can only be
assigned to a VM, if the summation of the used resource of
the VM by previously assigned tasks and the percentage of
the resource required by the ct is less than 100% at time t. The
VMs, who satisfy the above mentioned condition, are found
out for the assignment purpose. If no VM is found out to
suitable for the task, then a new VM is awaked from the sleep
state. If more than one VMs are suitable for that task, then we
have to find the VM on which the total resource utilization
will be minimum. For this, we have to find the CPU
utilization of all the suitable VMs in which task ct can be
assigned. Then the normalized value of the CPU utilization
(norm_est_uc) of the VMs is determined. In the similar
fashion, norm_est_ud and norm_est_ui are calculated for
each suitable VM. Then total normalized utilization value for
each VM is found out. After finding out the total normalized
utilization value, the VM having the maximum value is found
out and the task ct is assigned. After the task is assigned to the
VM, CPU utilization, disk utilization and I/O utilization of
the respective VM is updated. Then total energy consumed
by all the VMs are calculated. These procedures are repeated
until all the task are assigned to the VMs. Note that the
procedures are not shown in this paper due to space
constraint. In our example, the tasks are assigned to the VMs
as shown in the Gantt chart (Fig. 4 to Fig. 12).

VM1 1~30 30~61 61~93 93~100
1~24

T1 T2

T3 *
24~26 * *
26~30 * * *
30~37 * * * *

Fig. 2. UC of VM1 for MCEETS.
VM2 1~22 22~46 46~76 76~97 97~100
2~3

T7
T4

T5

* *
3~26

T8

*
26~33 *
33~34 * * *
34~37 * * * *
37~38 * * * * *

Fig. 3. UC of VM2 for MCEETS.
VM3 1~30 30~65 65~92 92~100
2~3

T6
* * *

3~30
T10 T9

*
30~31 * *
31~38 * * *

Fig. 4. UC of VM3 for MCEETS.

VM1 1~22 22~43 43~70 70~100
1~24

T1 T2

T3 *
24~26 * *
26~30 * * *
30~37 * * * *

Fig. 5. UD of VM1 for MCEETS.

VM2 1~24 24~49 49~72 72~96 96~100
2~3

T7 T4

T5
* *

3~26

T8

*
26~33 * *
33~34 * * *
34~37 * * * *
37~38 * * * * *

Fig. 6. UD of VM2 for MCEETS.

VM3 1~31 31~61 61~91 91~100
2~3

T6
* * *

3~30
T10 T9

*
30~31 * *
31~38 * * *

Fig. 7. UD of VM3 for MCEETS.

VM1 1~30 30~61 61~93 93~100
1~24

T1 T2

T3 *
24~26 * *
26~30 * * *
30~37 * * * *

Fig. 8. UI of VM1 for MCEETS.

VM2 1~22 22~47 47~68 68~89 89~100
2~3

T7

T4

T5
* *

3~26

T8

*
26~33 * *
33~34 * * *
34~37 * * * *
37~39 * * * * *

Fig. 9. UI of VM2 for MCEETS.

VM3 1~31 31~56 56~83 83~100
2~3

T6
* * *

3~30
T10 T9

*
30~31 * *
31~38 * * *

Fig. 10. UI of VM3 for MCEETS.

The average CPU utilization of VM1 is calculated as UC1 =
(30 × 25 + 31 × 29 + 23 × 32)/29 = 82.24. Like this, UC2,
UC3, UD1, UD2, UD3, UI1, UI2 and UI3 are calculated. These
values are shown in the Table III.

TABLE III. RESOURCE UTILIZATION OF VM FOR MCEETS

VM UC UD UI
VM1 82.24 61.30 82.24
VM2 88.40 83.20 77.10
VM3 76.80 76.60 69.80

We have assumed pmax and pmin as 30 and 20. The energy

consumed by VM1 is calculated as E1 = (30 – 20) × ((82.24 +
61.30 + 82.24)/3) + 20 = 772.6. Similarly, energy consumed
by VM2 and VM3 is found to be 842.9 and 764, respectively.
Therefore, a total of 2379.5 energy units is used to compute
all the tasks.

We have compared the proposed algorithm with the
existing algorithm MaxUtil, which assigns the tasks in
chronological order to the VMs. The Gantt charts for the
existing algorithm is not shown due to space constraint. The
average resource utilization by the VMs for the existing
algorithm is given in the Table IV.

TABLE IV. RESOURCE UTILIZATION OF VM FOR MAXUTIL

VM UC UD UI
VM1 84.44 63.24 84.44
VM2 73.00 69.66 75.70
VM3 65.10 72.64 65.10
VM4 35.00 30.00 25.00

The energy consumed for existing algorithm MaxUtil is

793.7, 747.86, 696.13 and 320 for VM1, VM2, VM3 and VM4,
respectively. Therefore, the total energy consumed by
MaxUtil algorithm to compute all the tasks is 2557.69 energy
units, whereas the proposed algorithm takes 2379.5 energy
units. In this example, MCEETS consumes 6.96% less
energy than the existing algorithm MaxUtil. In the proposed
algorithm, a total of 3 number of VMs is used, whereas a total
of 4 numbers of VMs is used in the existing algorithm
MaxUtil. The detailed comparison between the proposed and
existing algorithms is given in Table V.

TABLE V. COMPARISON OF PERFORMANCE METRICS

Performance
Metrics

MCEETS MaxUtil

TE 2379.5 2557.69
UV [75.26, 82.29, 74.4] [77.37, 72.28,

67.61, 30]
VMs Used 3 4

TABLE VI. PARAMETER AND THEIR VALUES

Parameter Values
of Tasks 100, 500, 1000, 5000, 10000
of VMs 20, 100, 200, 1000, 2000
Instances i1, i2, i3, i4, i5, i6, i7, i8, i9, i10
TAT, TPT [1 ~ 50], [20 ~ 100]
TFT, TCU [1 ~ 150], [5 ~ 20]
TDU, TIU [5 ~ 20], [5 ~ 20]

TABLE VII. COMPARISON OF TE FOR MCEETS AND MAXUTIL

#Tasks
× #VMs

Inst
ance

MCE
ETS

MaxUtil Instance
MCE
ETS

MaxUtil

100 × 20

i1 8110 8218 i6 7424 7563
i2 8110 8219 i7 8032 8761
i3 8065 8093 i8 7637 8010
i4 7935 7996 i9 8077 8652
i5 8267 8383 i10 7944 7979

500 ×
100

i1 39898 43974 i6 40123 40668
i2 38549 38576 i7 39396 39746
i3 40304 41564 i8 38651 38772
i4 41511 42758 i9 39285 39485
i5 40375 42169 i10 38569 39764

1000 ×
200

i1 81107 81479 i6 78441 78652
i2 79695 80093 i7 80117 85764
i3 78704 78969 i8 78463 82345
i4 79151 79756 i9 80083 87562
i5 78136 78374 i10 79988 86357

5000 ×
1000

i1 397000 397112 i6 404073 446539
i2 402193 417643 i7 400959 417324
i3 400639 400901 i8 396002 397970
i4 402662 423562 i9 394798 395069
i5 396852 399201 i10 398811 399956

10000 ×
2000

i1 799748 805342 i6 805021 817324
i2 797279 798345 i7 795623 816432
i3 794357 805364 i8 799176 825194
i4 802634 817563 i9 785844 797828
i5 802340 823456 i10 785844 796801

V. SIMULATION RESULTS

 For better comparison of the proposed and existing
algorithms, we conducted extensive simulation using
MATLAB R2017a version 9.2.0.538062. The platform used
for this simulation is Intel(R) Core (TM) i5-4210U CPU @
2.70 GHz 2.70 GHz CPU and 8 GB RAM running on
Windows 10. We evaluated both the proposed and existing
algorithms using the synthetic datasets which is generated
using Monte Carlo simulation method on MATLAB. The
structure of the datasets is xx_yy_iz, where xx represents the
number of tasks to be executed, yy represents the numbers of
VMs and iz represents the instance. We considered a large
number of tasks, such as 100, 500, 1000, 5000 and 10000,
and a large number of VMs as 20, 100, 200, 1000 and 2000,
respectively. In each dataset, we considered 10 instances,
namely i1 to i10 for simulation. The details of the parameters
and their respective values of the generated datasets are
presented in Table VI. In the created environment, all the
datasets are simulated using both the MCEETS and MaxUtil
algorithms and the results are shown in Table VII. It can be
clearly observed that the MCEETS algorithm gives better
performance than the MaxUtil algorithm.

VI. CONCLUSION

In this paper, we proposed a novel task consolidation
algorithm MCEETS, which is an energy-efficient algorithm.
In MCEETS, different types of resources, such as CPU, disk
and I/O are considered to improve the average resource

utilization. For the ordering of the tasks, fitness value of the
tasks is calculated, which is dependent on both the processing
time of the task and the resource utilization, which minimizes
the energy consumption. To demonstrate the comparison of
the proposed and existing algorithms, we simulated both the
algorithms with synthetic datasets, where each datasets is
comprised of ten different instances. From the simulated
results, it can be concluded that the MCEETS performs better
than the MaxUtil.

REFERENCES

[1] Buyya, Rajkumar, Chee Shin Yeo, Srikumar Venugopal, James

Broberg, and Ivona Brandic. “Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as the 5th
utility.” Future Generation computer systems 25, no. 6 (2009):
599-616.

[2] Dabbagh, Mehiar, Bechir Hamdaoui, Mohsen Guizani, and Ammar
Rayes. “An energy-efficient VM prediction and migration framework
for overcommitted clouds.” IEEE Transactions on Cloud Computing 6,
no. 4 (2016): 955-966.

[3] Panda, Sanjaya K., and Prasanta K. Jana. “Efficient task scheduling
algorithms for heterogeneous multi-cloud environment.” The Journal
of Supercomputing 71, no. 4 (2015): 1505-1533.

[4] Lee, Young Choon, and Albert Y. Zomaya. “Energy efficient
utilization of resources in cloud computing systems.” The Journal of
Supercomputing 60, no. 2 (2012): 268-280.

[5] Toosi, Adel Nadjaran, and Rajkumar Buyya. “A fuzzy logic-based
controller for cost and energy efficient load balancing in
geo-distributed data centers.” In Proceedings of the 8th International
Conference on Utility and Cloud Computing, pp. 186-194. IEEE Press,
2015.

[6] Hsu, Ching-Hsien, Shih-Chang Chen, Chih-Chun Lee, Hsi-Ya Chang,
Kuan-Chou Lai, Kuan-Ching Li, and Chunming Rong. “Energy-aware
task consolidation technique for cloud computing.” In 2011 IEEE
Third International Conference on Cloud Computing Technology and
Science, pp. 115-121. IEEE, 2011.

[7] Beloglazov, Anton, Jemal Abawajy, and Rajkumar Buyya.
“Energy-aware resource allocation heuristics for efficient management
of data centers for cloud computing.” Future generation computer
systems 28, no. 5 (2012): 755-768.

[8] Xu, Xing, Hao Hu, Na Hu, and Weiqin Ying. “Cloud task and virtual
machine allocation strategy in cloud computing environment.”
In International Conference on Network Computing and Information
Security, pp. 113-120. Springer, Berlin, Heidelberg, 2012.

[9] Andreolini, Mauro, Sara Casolari, Michele Colajanni, and Michele
Messori. “Dynamic load management of virtual machines in cloud
architectures.” In International Conference on Cloud Computing, pp.
201-214. Springer, Berlin, Heidelberg, 2009.

[10] Chen, Gong, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin
Xiao, and Feng Zhao. “Energy-Aware Server Provisioning and Load
Dispatching for Connection-Intensive Internet Services.” In NSDI, vol.
8, pp. 337-350. 2008.

