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Abstract- The intricate domain of pox diseases, including chickenpox, cowpox, monkeypox, hand, foot, and 
mouth disease (HFMD), and measles, and their profound influence on human health is the focal point of 
extensive research. In response to the compelling demand for precise disease classification, an exploration 
is undertaken in this study, delving into the intersection of machine learning (ML) methodologies and the 
pursuit of interpretability through the application of explainable artificial intelligence (XAI). In this study, 
we use ML methods for pre-processing, then train the data and apply the XAI approach to those trained 
models. First, ML methods scikit-image were used to segregate the 15,000 images into train (70%), test 
(20%) and valid (10%). Then, we used 8 CNN models, namely AlexNet, LeNet, SeNet, GoogleNet, 
SpinalNet, MobileNetV1, VGG, and ZFNet, to train the model. The accuracy of GoogleNet is 82%, which 
is much better than that of other CNN models. 
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1. INTRODUCTION 
 
Pox disease encompasses a range of highly contagious viral infections [1-3]. The earliest evidence of skin 
lesions resembling smallpox being one of them is found on the faces of Egyptian mummies [4-8]. It 
originated in 1350 BC, with cases found in Egyptian mummies. It is also known as variola or "la variole". 
Pox disease is a widespread health concern, but vaccination protects humans today. Pox is a complex of 
viral diseases in humans and other animals, marked primarily by skin and mucous membrane eruptions [9]. 
Pox diseases are prevalent globally and stem from various virus species. Such ailments include sheep pox, 
horse pox, fowl pox, cow pox, goat pox, and swine pox [10-15]. The mode of transmission varies according 
to the specific virus involved. It mainly influences individuals and children, manifesting signs and 
symptoms of regular itchy skin rashes, low-grade fever, and a feeling of preferred soreness. It causes an 
itchy rash, moderate fever and soreness. It spreads without difficulty through the air and by touching the 
rash. Although reasonable, it could cause problems for a few people. Recovering from chickenpox gives 
immunity. However, the virus can return later in the shape of shingles. Cases have reduced due to 
vaccination [16-20]. Studying chickenpox allows us to recognize and manipulate the ailment and improve 
vaccines. 
 
In this work, we have used the Asus Tuf A17, which has 8 GB RAM and 512 GB SSD. It has an AMD 
Ryzen 4600H processor, an Nvidia GeForce GTX 1650 graphic processor, and a 64-bit operating system. 
We used Python 3.11 in the Jupyter Notebook integrated development environment (IDE) to embed our 
work. We have collected the data from Kaggle [21] and saved it in our local directory. We classified the 
images into three sub domains: train, test and valid. We used 8 CNN architectures to train the model. Then, 
we used the 5 XAI approach to get the result. We choose the ROC curve, F1 score, and accuracy as the 
performance matrices. The remainder of this paper is listed as follows. Section 2 shows the related work. 



 

Section 3 presents the methodology. Section 4 shows the environmental setup and results. Section 5 
concludes the work. 
 
2. RELATED WORK 
 
Saleh et al. [1] presented an approach for identifying individuals with monkey pox through image data 
analysis, marking the debut of the initial public monkey pox image classification. The procedural stages of 
its implementation were thoroughly discussed. Thieme et al. [6] proposed one skin lesion. They observed a 
high detection method to demonstrate the accuracy and receiver operating characteristic (ROC) curve of 
predicting an instance of several strategies in image processing, model selection and XAI technique. 
Chadaga et al. [10] proposed chicken pox and monkey pox detection using skin lesion images. Deep 
learning models were shown to be highly effective.  
 
Nayak et al. [11] offered an image classification modality. They have used the four-way classification of 
skin lesion images, including monkey pox. The XAI techniques can also aid medical image classification. 
They proposed pre-trained deep-learning networks to diagnose monkey pox. XAI techniques local 
interpretable model-agnostic explanations (LIME) and GradCAM enable the visual interpretation. 
Campana et al. [20] proposed a deep learning-based m-health solution to detect monkey poxes from the 
skin lesion field of CNN for medical image analysis and, in particular, into XAI techniques to make AI 
more predictable. 
 
3. METHODOLOGY 
 
3.1 DATA COLLECTION AND PRE-PROCESSING 
 
We have collected 15000 images from Kaggle source [21]. These images belong to different pox sub 
domains like chicken, monkey, cow, measles, HFD, and healthy as shown in Figure 1. All the images have 
other characteristics and properties like height, width and quality. We use Scikit-image for the 
classification of the images. Scikit-image is an open-source image processing library designed for the 
Python programming language. The library encompasses a range of algorithms tailored for tasks such as 
segmentation, geometric transformations, color space manipulation, analysis, filtering, morphology, feature 
detection, and beyond. 
 
We set the height and width in all images as 224 x 224. We segregate the images into train, test, and valid 
subdirectories. After the successful segregation, it is seen that the train contains 10000 images, the test 
contains 3000 images, and the valid one contains 2000 images as listed in Table 1. They are saved in our 
local directory with train, test, and valid names.  

 
Table 1: Tabulation data model for image classification 
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Test: 3000 
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Figure 1: Image 

3.3 MODEL TRAINING  
 

In the model training phase, we used 8 CNN architectures described as follows.
CNN architecture designed for handwritten digit recognition. It extracts features and pooling layers to 
reduce dimensionality, enabling efficient pattern recognition in images using 
for handwritten digit recognition, image classification, and pattern recognition.
learning model for image recognition. It utilizes multiple layers to enhance accuracy, making it a powerful 
tool in computer vision applications. It is used in image recognitio
innovative convolution layer configurations.
efficient and accurate image recognition, making it ideal for various real
and other portable gadgets. It is used in mobile apps for object detection and image recognition tasks.
 
ZF Net is a deep learning architecture that introduced deeper neural networks, improving image recognition 
accuracy and paving the way for advanced co
enhance accuracy, making it valuable in computer vision applications like object detection and facial 
recognition. Alex Net is a pioneering 
recognition tasks. It showcases deep learning's potential to revolutionize computer vision applications. It is 
widely used for tasks like object recognition; its deep layers enhance accuracy, enabling advanced 
applications in computer vision. Spinal
formulate predictions. It begins with input data intake, proceeds to generate a prediction, and concludes by 
comparing the prediction with the desired output.
learning model characterized by its simplicity and depth. It excels in image recognition tasks, utilizing deep 
convolution layers to capture intricate patterns, enhancing accuracy. It accurately identifies objects, making 
it indispensable in healthcare, robotics, and autonomous vehicles.
focusing on essential features. Its adaptive recalibration technique improves accuracy in various computer 
analysis tasks, ensuring efficient image recognition. It
object detection and image classification tasks.
got different results. However, we predict the ROC curve and accuracy as the performance matrix.

(a) Chicken pox

(d) HFMD 

1: Image classification of data pre-processing
 

In the model training phase, we used 8 CNN architectures described as follows.
CNN architecture designed for handwritten digit recognition. It extracts features and pooling layers to 
reduce dimensionality, enabling efficient pattern recognition in images using convolution

ecognition, image classification, and pattern recognition.
learning model for image recognition. It utilizes multiple layers to enhance accuracy, making it a powerful 
tool in computer vision applications. It is used in image recognition and optimizing accuracy through 

layer configurations. Mobile Net is a deep learning architecture that provides 
efficient and accurate image recognition, making it ideal for various real-time applications on 
and other portable gadgets. It is used in mobile apps for object detection and image recognition tasks.

Net is a deep learning architecture that introduced deeper neural networks, improving image recognition 
accuracy and paving the way for advanced computer vision applications. Its advanced 
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recognition tasks. It showcases deep learning's potential to revolutionize computer vision applications. It is 
widely used for tasks like object recognition; its deep layers enhance accuracy, enabling advanced 
applications in computer vision. Spinal Net operates as a learning system that undergoes a series of steps to 
formulate predictions. It begins with input data intake, proceeds to generate a prediction, and concludes by 
comparing the prediction with the desired output. Visual geometry group (VGG
learning model characterized by its simplicity and depth. It excels in image recognition tasks, utilizing deep 
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le in healthcare, robotics, and autonomous vehicles. Se Net enhances deep learning models by 

focusing on essential features. Its adaptive recalibration technique improves accuracy in various computer 
analysis tasks, ensuring efficient image recognition. It emphasizes crucial features, boosting accuracy in 
object detection and image classification tasks. We use five XAI approaches. In the CNN architecture, we 
got different results. However, we predict the ROC curve and accuracy as the performance matrix.
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4. ENVIRONMENTAL SETUP AND
 
In this experiment, we used 15000 pox images downloaded from Kaggle. These images belong to different 
pox sub domains like chicken, monkey
different characteristics and properties, like height, width, and quality. We use scikit
images into three categories, with the names train, test, and valid and set the image size as 224 x 224. Then 
we got 10000 images for training, 3000 for testing, and 2000
architectures, such as Spinal Net, Alex Net, Google
Net, to train our model. We moved to the XAI approach, called LIME, for analysis. We got results by 
measuring the CNN and XAI, i.e., explanations for model predictions, which helps understand why a 
model makes a specific prediction for a particular data instance.
specific decision for a particular input, such as classifying an 
explanations for model predictions.
 

 

 
In the Lime XAI model, we took eight models, i.e., Le Net, Alex Net, Google Net, Mobile Net, ZF 
Spinal Net, VGG, and Se Net. The values of all eight models are defined based on the following 
parameters: test accuracy, test loss, XAI accuracy, precision, recall, and F1 score. Le Net achieves test 
accuracy of 35.54%, test loss of 2.6808, XAI accur
and F1 score of 0.3401. Alex Net achieves a test accuracy of 34.06%, test loss of 2.6808, XAI accuracy of 
31.92%, precision of 0.9368, recall of 0.2676, and F1 score of 0.4103. Google Net achieves a tes
of 81.69%, test loss of 1.5867, XAI accuracy of 83.27%, precision of 0.9809, recall of 0.8617 and F1 score 
of 0.6532. Mobile net achieves test accuracy of 46.04%, test loss of 2.7584, XAI accuracy of 50.92%, 
precision of 0.9434, recall of 0.0758
 
ZF net produces test accuracy of 18.69%, test loss of 1.9637, XAI accuracy of 22.82%, precision of 0.9040, 
recall of 0.2792 and F1 score of 0.1745. Spinal Net achieves test accuracy of 42.84%, test loss of 1.6438, 
XAI accuracy of 39.45%, precision of 0.9630, recall of 0.4833 and F1 score of 0.4263. VGG produces test 
accuracy of 41.48%, test loss of 1.6384, XAI accuracy of 43.48%, precision of 0.9620, recall of 0.1834 and 
F1 score of 0.2463. Se Net produces a test accuracy of 23.74%,
22.76%, precision of 0.9268, recall of 0.2179 and F1 score of 0.1896. We got the best test accuracy in the 
Google Net model, i.e., 81.69%. The results are summarized in Table 2.
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explanations for model predictions. The ROC curve of LIME is shown in Figure 2.

 

Figure 2: ROC curve of LIME. 
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Table 2: Comparison of results in various models with XAI 
 

XAI Model 
Test 

Accuracy 
Test 
Loss 

XAI 
Accuracy 

Precision Recall 
F1 

Score 

LIME 

Le Net 35.54% 2.6808 37.36% 0.9316 0.1865 0.3401 
Alex Net 34.06% 2.5957 31.92% 0.9368 0.2676 0.4103 
Google Net / Inception Net 81.69% 1.5867 83.27% 0.9809 0.8617 0.6532 
Mobile Net V1 46.04% 2.7584 50.92% 0.9434 0.0758 0.1256 
ZF Net 18.69% 1.9637 22.82% 0.9049 0.2792 0.1745 
Spinal Net 42.84% 1.6438 39.45% 0.9630 0.4833 0.4263 
VGG 41.48% 1.6384 43.48% 0.9620 0.1834 0.2463 
Se Net (Squeeze and 
Excitation Network) 

23.74% 1.8248 22.76% 0.9268 0.2179 0.1896 

 
 
5. CONCLUSION 

 
In this work, we used Python 3.11 language to experiment with our work and used Jupyter Notebook IDE 
and different XAI approaches to classify the diseases. We collected the dataset from the Kaggle source, 
downloaded it, and saved it in our directory. We trained the model using 8 CNN architecture and also re-
trained the model using the Tensor flow/Pytorch. We used an XAI approach, namely LIME. It is seen that 
Google Net shows a high accuracy of 82% concerning other CNN models. LIME provides local and 
interpretable explanations for model predictions. 
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