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Abstract This paper proposes an hybrid method to compute locational marginal price
at distributed generation (DG) buses in order to improve reliability in radial distribu-
tion system (RDS). This method consists of optimal power flow based on hybrid
genetic dragonfly algorithm which provides incentives to each DG unit based on its
contribution to reliability improvement. In this paper expected energy not supplied
has been used as a reliability measuring index. The proposed method enables the dis-
tribution company (DISCO) to operate the network with more reliability by providing
proper incentives to DG owners. The proposed method has been implemented on 38
bus RDS and pacific gas and electric company (PG&E) 69 bus RDS under MATLAB
environment. It has been observed from the analytical study on both test systems that
by providing proper incentives to DG units, reliability of the network can be vastly
improved.
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Nomenclature

ωinv, ωemis, ωlos Weights corresponding to DISCO’s investment,emission and loss
respectively

ωi Weight corresponding to type ‘i’ loads
ai , bi , ci Fuel cost coefficients of DG unit i
ALi Actual load supplying to all type i buses in kW
ALLL

i Lower limit of actual load supplying to all type i buses
ALUL

i Upper limit of actual load supplying to all type i buses

DISCOpart-I I
inv DISCO’s investment to purchase power from DG units in part-II

of network in $
DISCOpart-I

inv DISCO’s investment to purchase power from grid and DG units in
part-I of network in $

DISCOinv
max DISCO’s investment to purchase maximum power from DG units

in part-II of network in $
EENSlbase EENS value due to outage of line ‘l’ under base case
EENSl EENS value due to outage of line l with DG
EENSnorml Normalized EENS value due to outage of line l with DG
Emispart-I I Emission released from part-II of network in kg
Emispart-I Emission released from part-I of network in kg
Emispart-I Imax Maximum emission released from part-II of network in kg
LDren Matrix which has line and bus information of part-I of network

after renumbering
LDsub Matrix which has line and bus information of part-I of network
LDws Matrix which has line and bus information of part-II of network
LDren

ws Matrix which has line and bus information of part-II of network
after renumbering

Lineout Outaged line
LMPi LMP value of DG unit i
LMPRb

i LMP value of DG unit i which is located at bus ’Rb’
Losspart-I I Active power loss in part-II of network
Losspart-I Active power loss in part-I of network
Losspart-I Imax Base case active power loss in part-II of network
LPws Vector having sending end nodes of each line in part-II of network
LQws Vector having receiving end nodes of each line in part-II of network
n Number of buses in network
N part-I I
DG Number of DG units in part-II of network

nline Number of lines in network
nsub Number of buses in part-I of network
N part-I I
t ype Different type of buses in part-II of network

nws Number of buses in part-II of network
nlinesub Number of lines in part-I of network
nlinews Number of lines in part-II of network
Nodepart-ISorted Matrix containing all buses in part-I of network in ascending order
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Hybrid genetic dragonfly algorithm based optimal . . . 711

Pi
gen Scheduled generation of DG unit i in kW

Pi
gen(Rb) Scheduled active power of DG unit ’i’ which is located at bus ’Rb’

PLL
gen(i) Lower generation limit of DG unit i

Pmax
gen (Rb) Maximim capacity of DG unit which is located at bus ’Rb’

PUL
gen (i) Upper generation limit of DG unit i

PAct
Load Vector having actual loads at each bus

PAlloc
Load (i) Allocated load to each bus i

PCom
Load Total commercial load in part-II of network

P Ind
Load Total industrial load in part-II of network

Pi
Load Active power load at bus i

PMod
Load Vector having modified loads at each bus

P part-I I
load Total active power load in part-II of network

P part-I
load Total active power load in part-I of network

PRes
Load Total residential load in part-II of network

Pmin Minimum withdrawal of active power
PBus
min Bus which has minimum withdrawal active power

Pi
net Net active power load at bus i

Rb Receiving end bus of outage line
Sl Apparent power flowing through line l
Smax
l Thermal limit of line l
T Li Total load at all type i buses in kW
Vi Voltage at bus i
V LL
i Lower limit for voltage at bus i

VUL
i Upper limit for voltage at bus i

CO2
DGi CO2 released by DG unit i (kg/MW)

CO2
sub CO2 released based on load at substation bus (kg/MW)

CODGi CO released by DG unit i (kg/MW)
COsub CO released based on load at substation bus (kg/MW)
NOx

DGi NOx released by DG unit i (kg/MW)
NOx

sub NOx released based on load at substation bus (kg/MW)
SO2

DGi SO2 released by DG unit i (kg/MW)
SO2

sub SO2 released based on load at substation bus (kg/MW)
LP Vector having sending end nodes of each line
LQ Vector having receiving end nodes of each line

1 Introduction

The distribution networks are prone to failure [1] and hence the supply from power
generation plants to the distribution networks will be interrupted [2,3]. Statistics
emphasize the necessity of reassessment of available strategies to improve the electri-
cal services by improving reliability of network [4].

Most of the radial distribution systems (RDSs) have been operated in a radial
structure as the operation is simple and coordinating the protecting devices can be
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easy. In order to improve reliability, loop systems concept has been introduced to
support uninterrupted power flow to the load by including the inherent complexity of
coordinating simple protection devices [5].

Some of the most significant methods [6–8] to improve reliability of the system are
as follows:

– Adding protective devices
– Having fewer equipment failures to avoid contingency
– Improving the accuracy of available protection methods
– Re-closing and switching
– Network automation
– Fast fault prediction techniques
– Fast team to accelerate the repair process
– Reconfiguration

In the last decade, the penetration of distributed generation resources in distribution
network has increased globally. Themain reasons [9,10] for increasing the penetration
are as follows:

– Reliability improvement
– Emission reduction
– Improvement of electrical distribution network reinforcement horizon
– Energy resources optimization
– Supply for future load demand
– Service quality
– Utilization of non-conventional energy resources
– Loss reduction
– Avoiding the investment in large power plants and transmission lines
– Voltage support

DG units can serve the loads of radial distribution system (RDS) during planned and
unplanned network outages [11]. Islanding operation improves system reliability by
preventing the loss of load during outage period. Thus when any outage occurs either
due to maintenance or failure, formation of islands will improve system reliability
[12].

In deregulated electricitymarket environment, DISCODecisionMaker (DM) needs
to take technical decisions like deployment of DG and taking decisions that make
economic sense like development of retail competition. DISCO’s DM role is very
important for the efficient operation from a technical and financial point of view as
these decisions improve market operation like competition and technical operations
like reliability and service quality [13].

With the integration of DG units, distribution network has been transformed from
passive state to active state as in transmission network. A few operating methods
like nodal pricing [14] which are employed in transmission network in deregulated
environment could also be applied in active distribution network. Nodal pricing is one
of the mechanisms for financial incentive used by DISCO to control privately owned
DGunits and to encourageDGowners to carry out technical decisions [15]. Locational
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Table 1 Comparison of LMP computation features

Research
contribution

Different features addressed by
researchers

Approach

A B C D E F

[14]
√ √

Marginal loss coefficients

[17]
√ √

Reconciliated marginal loss coefficients

[18]
√ √ √

Power flow sensitivities

[19]
√ √ √

Genetic algorithm

[15]
√ √

Shapley value method

[13]
√ √ √

Nucleolus theory

[20]
√ √ √

Nucleolus theory and 2-point estimation

[21]
√ √ √

Shapley value and 2-point estimation

Proposed
method

√ √ √ √ √ √
Hybrid genetic dragonfly algorithm
(HGDA)

marginal price (LMP) is the most effective method to determine nodal price in practice
[16].

Several researchers have addressed the different features of LMP computation in
RDS and their contributions have been listed in Table 1.

A: Loss reduction
B: Emission reduction
C: Changing DG benefit
D: Congestion
E: Voltage limits
F: Reliability improvement

None of the researchers have addressed the issue of reliability improvement by
computing LMP so far. When any line outage occurs due to either failure or main-
tenance [22] then the network splits into two parts. Part-I corresponds to network
connected to substation whereas part-II corresponds to network disconnected from
substation. There is no encouragement to DG owners from DISCO for supplying the
load in part-II of the network.

In addition to the above, Mixed integer linear programming model [23] was devel-
oped for volt/var control and energy loss minimization in electric power distribution
network with DG units. It also provides optimal solution for placement of capaci-
tor banks by considering energy loss, voltage deviation and acquisition, installation
and maintenance costs of capacitors as objectives. Another mixed integer linear
programming model has been proposed in [24] to solve the short term expansion
problem in RDS. The solutions which were considered for this problem are con-
struction/reconductoring of circuits and allocation of capacitor banks and voltage
regulators. These two methodologies provide valuable contribution to improve opera-
tion of electric power RDS. However the authors have not discussed about incentives
provided to private DG owners in terms of LMP in RDS.
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The problems related to RDS planning are non linear, non-convex, non-differenti-
able and constrained optimization problems with integer and continuous decision
variables. Conventional optimization techniques have some flaws like curse of dimen-
sionality and non-differentiability [25]. In addition to these, conventional techniques
usually suffer from the problem of convergence at local minimum instead of at global.
Hence these methods are not suggestible for solving problems which have a large
number of local minimum points. Whereas heuristic and evolutionary algorithms are
powerful and effective for solving complex real time problems [26]. Genetic algo-
rithm (GA) simultaneously evaluates more number of points in search space and is
most effective among existing evolutionary algorithms. Authors in [27] proposed a
new swarm algorithm called dragonfly algorithm (DA) based on swarming behavior
of dragonfly for hunting and migration.

In this paper hybrid genetic dragonfly algorithm (HGDA) based optimal power flow
(OPF) has been proposed to compute LMP at DG buses for reliability improvement.
In the proposed method, the state of the part-II of the network can be observed by
computing LMP at each DG bus. It is assumed that, LMP at DG bus in the part-I of
the network will be at market price.

The proposed method enables DISCO to plan for scheduling the load or the gener-
ation in part-II of the network. Load scheduling is being done if load is more than the
available generation in part-II of network else generation scheduling is initiated. The
proposed method provides generation and LMP for each DG unit and load that can be
supplied at each bus in part-II of the network.

In the proposed method, the weighted sum of expected energy not supplied (EENS)
for each type of bus in part-II of network has been considered as objective for load
scheduling. However the weighted sum of objectives like DISCO’s investment to
purchase power from DG owners, emission and loss in part-II of network has been
considered as single objective function for generation scheduling.

The original contributions of this paper are as follows:

– Considered LMP computation for improving the reliability for the first time
– Employed hybridization of the GA and DA for improved results for the first time
– Enabled DISCO’s Decision Maker to handle tradeoff among the customers
– Enabled DISCO’s Decision Maker to handle tradeoff among objectives like
DISCO’s investment cost, emission and active power loss during generation
scheduling

– Estimate the state of the network with single contingency
– Developed algorithms to locate the buses beyond each line and to renumber the
buses in both parts of the network

The remainder of the paper has been organized as follows. Section 2 presents prob-
lem formulation. Section 3 presents methodology used to compute LMP at DG buses.
Section 4 reports the analysis of simulated results and Sect. 5 provides conclusion of
this paper.
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2 Problem formulation

The main aim of optimal power flow is either to schedule the load in case the total load
is more than available generation or to schedule the generation in case the available
generation is more than load in part-II of network. It is assumed that LMP at DG buses
in the part-I of the network will be at market price. Generation of each DG unit ’i’ is
computed as shown in Eq. (1) such that the DG owner will receive maximum profit at
a given LMP. The bus which has more injection in part-II of the network is considered
as slack bus. Slack bus position will not change during load scheduling. The position
of slack bus may shuffle between DG buses in part-II of network during generation
scheduling. If there exists only one DG unit whose generation is more than the local
load then the DG unit bus is considered as a slack bus.

Pi
gen = LMPi − bi

2ai
. (1)

2.1 Load scheduling

The optimal power flow is trying to optimize an objective by controlling power flow
within an electrical network without violating network power flow constraints or
system and equipment operating limits [28]. Minimization of Expected Energy Not
Supplied (EENS) is considered as an objective function for load scheduling. In order
to improve the reliability of network, all loads have to be served with out interrup-
tion. Reliability of RDS has been evaluated in terms of several indices such as System
Average Interruption Frequency Index (SAIFI), SystemAverage InterruptionDuration
Index (SAIDI) and Customer Average Interruption Duration Index (CAIDI). These
indices are more helpful in operational perspective rather than planning [29] and are
not adequate to evaluate reliability of industrial and commercial RDSs [30]. In this
paper EENS [31] has been considered as network reliability evaluation parameter.
Objective and fitness functions are as represented in Eqs. (2) and (3) respectively.

min EENSl =
N part−I I
t ype∑

i=1

ωi ∗ (T Li − ALi ) ∗ OTl

min EENSnorml =
N part−I I
t ype∑

i=1

ωi ∗ (T Li − ALi ) ∗ OTl
T Li ∗ OTl

i = 1 : Residential Loads
i = 2 : Commercial Loads

i = 3 : I ndustrial Loads (2)

max FitnessFunction = 1

1 + EENSnorml
(3)
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Subject to the following equality and inequality constraints as in Eq. (4).

N part−I I
DG∑

i=1

Pi
gen −

N part−I I
t ype∑

i=1

ALi − Loss part−I I ≈ 0

Voltage limits : V LL
i ≤ Vi ≤ VUL

i

T hermal limits : Sl ≤ Smax
l

Load limits : ALLL
i ≤ ALi ≤ ALUL .

i

(4)

ALUL
i value depends on maximum capacity of DG units (Pmax

gen ) which are located
on type i buses and T Li . Assume bus ’b’ is type ’i’. If the maximum capacity of DG
unit (Pmax

gen ) is more than the load on the bus ’b’ where it is located then ALUL
i and

T Li are updated using Eq. (5) else using Eq. (6) by setting ALLL
i always to zero.

ALUL
i = T Li − Pb

Load

T Li = T Li − Pb
Load (5)

ALUL
i = T Li − Pmax

gen

T Li = T Li − Pmax
gen (6)

Let PAct
Load be vector which represents load on each bus of network containing ’n’

number of buses as in Eq. (7). If the maximum capacity of DG unit (Pmax
gen ) is more

than the load on bus ’i’ where it is located then modify load on that bus ’i’ using Eq.
(8) else modify load on that bus ’i’ using Eq. (9).

PAct
Load = {P1

Load , P
2
Load , ..., P

i
Load , ..., P

n
Load} (7)

PMod
Load = {P1

Load , P
2
Load , ..., P

i
Load = 0, ..., Pn

Load} (8)

PMod
Load = {P1

Load , P
2
Load , ..., P

i
Load = Pi

Load − Pmax
gen , ..., Pn

Load} (9)

The various type of loads considered in this paper are residential loads, commercial
loads and industrial loads. Length of variable string depends on number of variables.
If part-II of network contains all type of loads then N Part−I I

t ype = 3 and variable string
is as shown in Eq. (10). Initial value of each element in variable string is randomly
generated. This randomly generated loads were allocated proportionally among buses
in part-II of network using Eqs. (11), (12), and (13).

{PRes
Load , P

Com
Load , P

Ind
Load}. (10)

If bus ’i’ is a residential load bus then

PAlloc
Load (i) = PMod

Load(i)

T L1
PRes
Load . (11)
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If bus ’i’ is a commercial load bus then

PAlloc
Load (i) = PMod

Load(i)

T L2
PCom
Load . (12)

If bus ’i’ is a industrial load bus then

PAlloc
Load (i) = PMod

Load(i)

T L3
P Ind
Load . (13)

If the maximum capacity Pmax
gen of DG unit is more than the load on bus ’i’ where

DG is located then PAlloc
load (i) is modified using Eq. (14) else PAlloc

load (i) is modified using
Eq. (15).

PAlloc
load (i) = PAlloc

load (i) + Pi
Load (14)

PAlloc
load (i) = PAlloc

load (i) + Pmax
gen . (15)

LMP at each DG bus where DG unit i is located in part-II of network is computed
using Eq. (16) so that the DG owner receives maximum profit to generate Pi

gen .

LMPi = 2ai P
i
gen + bi . (16)

2.2 Generation scheduling

Generation scheduling has been opted for if the total load is less than available gen-
eration in part-II of network. The objective function and constraints which have been
considered for generation scheduling are shown in Eqs. (17) and (18) respectively.

min Obj = ωinv

DI SCO part−I I
inv

DI SCOinv
max

+ ωemis
Emis part−I I

Emis part−I I
max

+ ωlos
Loss part−I I

Loss part−I I
max

(17)

Power balance :
N part−I I
DG∑

i=1

Pi
gen − P part−I I

load − Loss part−I I ≈ 0

Generation limits : PLL
gen(i) ≤ Pi

gen ≤ PUL
gen (i)

Voltage limits : V LL
i ≤Vi ≤VUL

i

T hermal limits : Sl ≤ Smax
l

(18)

PLL
gen of DG depends on load on the bus where it is located. Assume DG unit i is

located at bus ’b’ then PLL
gen(i) and PUL

gen (i) are determined from the limits represented
in Table 2.
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Table 2 Limits on DG
generation

Condition PLL
gen(i) PUL

gen (i)

Pb
Load ≤ Pmax

gen (i) Pb
Load Pmax

gen (i)

Pmax
gen (i) ≤ Pb

Load Pmax
gen (i) Pmax

gen (i)

DI SCO part-I I
inv and DI SCOinv

max have been computed based on cost coefficients
of DG units using Eq. (19). Similarly, emission from part-I and part-II of network
have been computed using Eqs. (20) and (21) respectively. However Loss part-I I and
Loss part-I Imax are computed using backward and forward sweep load flow method [32].
This algorithm utilizes complete advantage of ladder structure of distribution network
to achieve high speed, robust convergence and low memory requirements [33,34]. In
this load flow solution, a simultaneously controlled PQ modeled [35] DG has been
used.

DI SCO part−I I
inv =

N part−I I
DG∑

i=1

(2 ∗ ai ∗ Pi
gen + bi ) ∗ Pi

gen

DI SCOinv
max =

N part−I I
DG∑

i=1

(2 ∗ ai ∗ Pmax
gen (i) + bi ) ∗ Pmax

gen (i) (19)

Emis part−I =
N part−I
DG∑

i=1

(SO2
DGi + CO2

DGi + CODGi

+ NOx
DGi ) ∗ Pi

gen + (SO2
sub + CO2

sub + COsub

+ NOx
sub) ∗

(
P part−I
load + loss part−I −

N part−I
DG∑

i=1

Pi
gen

)
(20)

Emis part−I I =
N part−I I
DG∑

i=1

(SO2
DGi + CO2

DGi + CODGi

+ NOx
DGi ) ∗ Pi

gen

Emis part−I I
max =

N part−I I
DG∑

i=1

(SO2
DGi + CO2

DGi + CODGi

+ NOx
DGi ) ∗ Pmax

gen (i) (21)

3 Methodology

Distribution system load flow study is employed for getting the state of network.
Proper numbering for each line and bus of the network is required for successfully
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Table 3 The values of GA parameters

Parameter Value

Control variable ALi iε{1, 2, 3} For load scheduling
Pi
gen iε{1, 2, ..., N part−I I

DG } For generation scheduling
Population 80

Cross over probability (Pc) 0.9

Mutation probability (Pm ) 0.01

Elitism probability (Pm ) 0.05

Maximum iterations 300

implementing any load flow algorithm. If line outage has occurred in a RDS then there
is no guarantee that all lines and buses have sequential numbering. Even if they have
sequential numbering for a particular slack bus, the sequential number of buses and
lines will be modified when slack bus is shuffled between other buses. To avoid these
difficulties the following algorithms have been developed.

– Identification of nodes beyond a particular bus
– RDS at single contingency
– Renumbering of buses in part-I of RDS
– Identification of Slack bus and position of each bus from slack bus in part-II of
RDS

– Renumbering of buses in part-II of RDS

All these algorithms have been implemented on IEEE 15 bus RDS for enabling
legible understanding by considering the outage of the line between buses 2 and 3 in
the Appendix of the paper.

3.1 Genetic algorithm and dragonfly algorithm

3.1.1 Genetic algorithm

Genetic algorithm (GA) was first introduced by John Holland and further developed
by Goldberg [36]. In GA an array of all control variables is represented by chromo-
somes and the number of chromosomes generated depends on population size. New
generations have been evaluated from old generations using genetic operators like
reproduction, cross over and mutation. Elitism operator has been used to keep better
individuals of previous generation. The binary-coded genetic algorithm has Hamming
cliff problems [37]. Sometimes it creates difficulty for coding of continuous variables
and GA requires more computation time and memory. In order to overcome such dif-
ficulties, real coded genetic algorithm has been used in this paper. The Step by step
procedure for solving a problem using GA is shown in Algorithm 1. The values of GA
parameters considered in this paper are as represented in Table 3.
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Table 4 The values of DA parameters

Parameter Value

Control variable ALi iε{1, 2, 3} For load scheduling
Pi
gen iε{1, 2, ..., N part-I I

DG } For generation scheduling

Population 80

Weight (w) 0.9–0.4

Separation factor (s) 0.2–0

Alignment factor (a) 0.2–0

Cohesion factor (c) 0.2–0

Food factor (f) 0–2

Enemy factor (e) 0.1–0

Maximum iterations 300

Algorithm 1 Real coded genetic algorithm

Inputs
1: Read number of variables (n)
2: Read population size (pop)
3: Read cross over probability (Pc)
4: Read mutation over probability (Pm )
5: Read elitism over probability (Pe)

Steps
1: Initialization � Randomly generate a matrix of size popsize rows and n columns, all elements

represented in floating values
2: Set iter=1
3: while i ter ≤ i termax do
4: Evaluation � Evaluate objective function for each chromosome
5: Elitism � Selecte most fitted Pe ∗ pop chromosomes
6: Selection � Roulette wheel selection [38]
7: Crossover � Using probability distribution P(β) [38]
8: Mutation � Polynomial Mutation [39]
9: Replace worst chromosomes of new generation with new chromosomes due to elitism
10: iter=iter+1
11: end while
12: Print optimal solution and corresponding objective values

3.1.2 Dragonfly algorithm (DA)

Dragonfly algorithm (DA) was developed by Seyedali Mirjalili [27] based on static
(hunting) and dynamic (migration) behavior of Dragonflies. Dragonflies form sub-
swarms and fly over different areas in a static swarm for hunting which is the main
objective of the exploration phase. In dynamic stage swarm dragonflies form big
swarms and fly in one direction formigrationwhich is favorable for exploitation phase.
While swarming Dragonflies exhibit some characteristics like separation, alignment,
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cohesion, getting attracted towards food source and distracting enemy for survival.
Weights corresponding to the above characteristics (s,a,c,f,e) and inertia weight (w)
are adaptively tuned for maintaining exploration and exploitation. The step by step
procedure for solving a problem using DA is shown in Algorithm 2. The values of DA
parameters considered in this paper are as represented in Table 4.

Algorithm 2 Dragonfly Algorithm

Inputs
1: Read number of variables (n)
2: Read population size (pop)
3: Read lower bound (lb) and upper bound (ub) for each variable
4: Read maximum step �xmax = ub−lb

4

Steps
1: Initialization � Randomly generate a position (X) matrix and step (�X) matrix between lb and ub
2: Set iter=1
3: while i ter ≤ i termax do
4: Set r = �xmax + ((ub − lb) ∗ i ter

i termax ∗ 2); � Radius

5: Set w=0.9-iter* 0.9−0.4
i termax ; � Inertia Weight

6: Set f=2*rand � food factor
7: if iter < i termax

2 then

8: Set s=2*rand*(0.1-iter* 0.2
i termax ) � Separation weight

9: Set a=2*rand*(0.1-iter* 0.2
i termax ) � Alignment weight

10: Set c=2*rand*(0.1-iter* 0.2
i termax ) � Cohesion weight

11: Set e=(0.1-iter* 0.2
i termax ) � enemy factor

12: else
13: set s=a=c=e=0
14: end if
15: Evaluation � Evaluate objective function for each individual
16: Update food fitness, food position (X+), enemy fitness and enemy position (X−) among all indi-

viduals in X
17: Identify number of neighboring individuals (Ni ) for each individual i � If distance between Xi and

X j is less than ’r’ then individuals i and j are neighbors
18: Compute separation (Si ), alignment (Ai ) and cohesion (Ci ) for each individual i using Eqs. (22),

(23), and (24) if neighbors exist else set all these values to zero

Si = −
Ni∑

j=1

(Xi − X j ) (22)

Ai =
∑Ni

j=1 �X j

Ni
(23)

Ci =
∑Ni

j=1 X j

Ni
− Xi (24)

� j belongs to set of neighboring individuals of i
19: Compute distance (D f i ) between Xi and X+ and distance (Dei ) between Xi and X− for each

individual ’i’
20: if all (D f i )≤ r then � Checking whether individual ’i’ is neighbor for X+ or not
21: Set Fi = X+ − Xi
22: else
23: Set Fi = 0
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24: end if
25: if all (Dei )≤ r then � Checking whether individual ’i’ is neighbor for X− or not
26: Ei = X− + Xi
27: else
28: Set Ei = 0
29: end if
30: if any (D f i )> r then � Checking whether individual ’i’ is neighbor for X+ or not
31: if Ni > 1 then � Checking whether individual ’i’ has neighbors or not
32: Set �Xi = w ∗ �Xi + rand ∗ A(i) + rand ∗ C(i) + rand ∗ S(i) � Updating step vector

(�Xi ) of individual i
33: Set X(i)=X(i)+�Xi � Updating position vector (Xi ) of individual i
34: else
35: X(i)=X(i)+Levy(d)*X(i); � Updating position vector (Xi ) of individual i
36: Set �Xi=0 � Updating step vector (�Xi ) of individual i
37: end if
38: else
39: Set �Xi=(a*A(i)+c*C(i)+s*S(i)+f*F(i)+e*Enemy(i)) + w*�Xi � Updating step vector (�Xi )

of individual i
40: X(i)=X(i)+�Xi ; � Updating position vector (Xi ) of individual i
41: end if
42: end while
43: Print optimal solution and corresponding objective values

3.2 Hybrid genetic dragonfly algorithm (HGDA)

In order to achieve a global optimal solution by any population based algorithm, proper
balancing is required between exploration and exploitation of the search space. Explo-
ration related to global search in search space and exploitation related to local search
in search space are based on current best solution. Too much of diversification and
intensification will result in increasing convergence time and increasing the possibility
of the solution getting trapped into local optimum point [40].

Genetic Algorithm has a problem in finding the exact solution but it is good at
reaching towards global region and slow convergence. GA works based on evolution
from generation to generation by not considering individual in the same generation.
Basic GA has no memory which means previous knowledge of the problem stands
destroyed once the population changes [41]. But this problem can be overcome by
including elitism concept. This means that GA with elitism concept has memory
which stores best individual from previous population.

However in contrast with GA, DA has fast convergence and its performance is
increased as best individuals are available but it does not have internal memory. Due
to absence of internalmemoryDAnevermaintains tracking on possible set of solutions
which have the potential to converge to global optimum that may result in trapping
the solution towards local optimum point [42].

To overcome the above drawbacks a novel hybrid algorithm based on GA and
DA has been proposed in this paper to exploit the advantages of both GA and DA
algorithms. This hybridization includes two additional features to DA like internal
memory and improvise searching capability. The proposed hybrid genetic dragonfly
algorithm acquires good local and global searching capability to avoid the problem
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of trapping the solution towards local optimum point. The step by step procedure for
HGDA is shown in Algorithm 3.

Algorithm 3 Hybrid Genetic Dragonfly Algorithm (HGDA)

Inputs
1: Read number of variables (n)
2: Read population size (pop)
3: Read cross over probability (Pc)
4: Read mutation over probability (Pm )
5: Read elitism over probability (Pe)
6: Read lower bound (lb) and upper bound (ub) for each variable
7: Read maximum step �xmax

Steps
1: Initialize X � Randomly initialize population
2: Initialize �X � Randomly initialize step vector of size pop

2 rows and n columns
3: Set iter=1
4: while i ter ≤ i termax do
5: Evaluation � Evaluate objective function for each individual of X
6: Sort population (X) based on objective function value and choose top half population (Xhal f ) � Sort

either in ascending order for minimization problem or in descending order for maximization problem
7: Implement steps 5, 6, 7, 8 and 9 of Algorithm 1 on Xhal f population and generate new population

XGA
8: Implement steps 4 to 41 of Algorithm 2 on Xhal f population and generate new population XDA
9: Form new population X consisting of pop individuals by vertically concatinating XGA and XDA
10: end while
11: Print optimal solution and corresponding objective values

3.3 Computation of LMP using hybrid genetic dragonfly algorithm based
optimal power flow (HGDA-OPF)

The hybrid genetic dragonfly algorithm based optimal power flow for computing
LMP value for each DG unit for load scheduling by employing Algorithm 4 and for
generation scheduling by employing Algorithm 5 respectively. Complete flowchart
for computing LMP using HGDA-OPF is presented in Appendix.
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Algorithm 4 LMP computation using HGDA-OPF for load scheduling

Inputs
1: Read linedata of RDS
2: Read DG units size (Pmax

gen (i)), power factor and location
3: Read outage line (Lineout )
4: Read cross over probability (Pc)
5: Read mutation over probability (Pm )
6: Read elitism over probability (Pe)
7: Read population size (pop)
8: Read maximum step �xmax

Steps

1: Set Pi
gen=P

max
gen (i) for i=1,2,..N part-I I

DG
2: Split the network data based on Lineout and renumber buses using flowcharts in Figs.11, 12, 14 and 15

3: Set number of control variables ncv=N part-I I
t ype � Control variables are ALi for iε1,2,3

4: Update ALUL
i and T Li using Eq. (5) or Eq. (6)

5: Update PMod
Load of part-II of network using Eq. (8) or Eq. (9).

6: Initialize X of size [pop,n] � Randomly initialize ALi for iε 1,2,3 between ALLL
i and ALUL

i
7: Initialize step vector �X of size [ pop2 ,n] � Randomly initialize ALi for iε 1,2,3 between ALLL

i and

ALUL
i

8: Set iter=1
9: while i ter ≤ i termax do
10: Update load data of part-II of network for each individual in X as shown in Eqs. (11),(12),(13),(14),

and (15).
11: Evaluation � Evaluate objective function for each individual of X
12: Apply steps 6, 7, 8 and 9 in Algorithm 3. Use step 10 of this Algorithm 4 as and when required.
13: end while
14: Compute LMP value for each DG using Eq. (16)
15: Print optimal solution and corresponding objective values

Algorithm 5 LMP computation using HGDA-OPF for generation scheduling

Inputs
1: Read linedata of RDS
2: Read DG units size (Pmax

gen (i)), power factor and location
3: Read outage line (Lineout )
4: Read cross over probability (Pc)
5: Read mutation over probability (Pm )
6: Read elitism over probability (Pe)
7: Read population size (pop)
8: Read maximum step �xmax

Steps
1: Split the network data based on Lineout and renumber buses using flowcharts in Figs. 11 and 12

2: Set number of control variables ncv=N part-I I
DG � Control variables are Pi

gen for i ε 1,2,..,N part-I I
DG

3: Update PLL
gen(i) and PUL

gen (i) as shown in Table 2

4: Initialize X of size [pop,ncv] � Randomly initialize Pi
gen for iε 1,2,..,N part-I I

DG between PLL
gen(i) and

PUL
gen (i)
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5: Initialize step vector �X of size [ pop2 ,ncv] � Randomly initialize Pi
gen for iε 1,2,..,N part-I I

DG between

PLL
gen(i) and PUL

gen (i)
6: Set iter=1
7: while i ter ≤ i termax do
8: Provide renumbering to each line and bus in part-II of network using flowcharts in Figs. 14 and 15

for each individual in X (if required)
9: Evaluation � Evaluate objective function shown in Eq. (19) based on constraints shown in Eq. (20)

for each individual of X
10: Apply steps 6, 7, 8 and 9 in Algorithm 3. Use step 8 of this Algorithm 5 as and when required.
11: end while
12: Compute LMP value for each DG using Eq. (16)
13: Print optimal solution and corresponding objective values

4 Analytical studies

4.1 Case study-1

The proposed HGDA based OPF has been implemented on 38 bus RDS to compute
LMP values at DG buses in part-II of network under MATLAB [43] environment. The
system data for 38 bus RDS was taken from [44]. Location and type of each DG unit
of capacity 50MW operating at 0.9 lagging power factor are shown in Table 5. Cost
function coefficients of each type of DG unit is considered from the paper in [13].
The duration of each line l outage OTl is assumed as 1 hour, and the market price for
active power generation is assumed as 32.38 $/MWh.

4.1.1 Load scheduling

The line between buses 5 and 6 was considered as an outage line. As the total load is
more than the available generation in part-II of network, LMP values of each DG unit
in part-II of network is computed by scheduling the load. The Proposed HGDA based
OPF has been implemented 10 times on part-II of 38 bus RDS. Out of 10 runs the
best objective function (EENS) value is considered for estimating the state of part-II
of RDS. Best, worst and average objective function values are shown in Table 6 for
ω1=0.333, ω2=0.333 and ω3=0.333.

Table 5 Type and location of DG units in 38 bus RDS

DG unit Type Location Engine type

DG1 1 5 Combined cycle gas turbines

DG2 1 11 Combined cycle gas turbines

DG3 2 19 Gas internal combustion engines

DG4 3 23 Diesel internal combustion engines

DG5 3 27 Diesel internal combustion engines

DG6 2 29 Gas internal combustion engines
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Table 6 HGDA-OPF
performance in terms of EENS
(MWh)

Best Average Worst

56.4 56.6 57.1

Table 7 DG units generation
(MW) and LMP ($/MWh) for 38
bus RDS

Unit DG1 DG2 DG3 DG4 DG5 DG6

LMP 32.38 601 32.38 32.38 520 550

Generation 0.98 50 1.17 1.24 50 50

Fig. 1 Scheduled load at each bus in part-II of 38 bus RDS after the line outage between buses 5 and 6

Table 7 presents active power generation and LMP of each DG unit in 38 bus RDS
for ω1 = 0.333, ω2 = 0.333 and ω3=0.333. As the total generation in part-II of
network is 150MW which is less than total load 205.5MW, all DG units in part-II of
network can dispatch a maximum capacity of 50MW. The corresponding LMPs are
601 $/MWh, 520 $/MWh and 550 $/MWh. However DG units in part-I of network
do not have any contribution in reliability improvement and so no incentive has been
provided over and above the market price of 32.38 $/MWh. DG units in part-I of
network generate power as represented in Table 7 such that DG owners get maximum
profit for given LMP.

Figure 1 shows the scheduled load at each bus in part-II of network using proposed
HGDA based OPF method while considering equal priority among all type of loads.
There is no load curtailment at buses 11, 27 and 29 as DG units which were installed
at these buses supply total load. Total curtailed load on part-II of network is 56.4 MW.
As repair time is considered as 1 hour, EENS value is 56.4 MWh.

Figure 2 shows the actual voltage (Vact ) at each bus in part-II of network at
ω1=0.333,ω2=0.333 andω3=0.333.All bus voltages arewithinmaximum limit (Vmax )
1.02 pu and minimum limit (Vmin) 0.9 pu. It means that the proposed HGDA based
OPF method will schedule the loads such that all voltages are within the limits.
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Fig. 2 Voltage at each bus in part-II of 38 bus RDS after the line outage between buses 5 and 6

Table 8 Impact of ω1, ω2 and ω3 on EENS in 38 bus RDS

ω1 ω2 ω3 EENS1(MWh) EENS2(MWh) EENS3(MWh) EENS(MWh)

0.6 0.3 0.1 10.3 30.8 15.5 56.6

0.3 0.6 0.1 17.4 14.4 25.2 57.0

0.1 0.6 0.3 26.6 26.5 3.5 56.6

0.1 0.3 0.6 24.7 31.7 0.00 56.5

0.6 0.1 0.3 0.00 50.8 5.6 56.4

The impact of weights corresponding to residential, commercial and industrial
loads on EENS is shown in Table 8. As weight ω1 corresponding to residential load
increases, EENSvalue corresponding to residential load decreases. Similarly asω2 and
ω3 increases EENS value corresponding to commercial and industrial loads decreases
respectively. EENS value for overall system remains almost constant as the generation
does not change. However small changes in EENS value for the overall system are
due to variations in loss.

4.1.2 Generation scheduling

Consider the line between buses 6 and 26 as an outage line. The proposed HGDA
based OPF computes LMP and generation of each DG unit in part-II of network using
generation scheduling as the total load of 0.92 pu is less than the generated power of
1.0 pu in part-II of network. The computed values of LMP and the generation of each
DG unit by the proposed method is presented in Table 9 after assigning same weights
to all objectives. As there is no contribution from DG units in part-I of network, no
incentive has been provided over and above the market price.

Generation of each DG unit in part-II of network has been scheduled using the
proposed HGDA based OPF method so that voltage at each bus in part-II of network
must be between Vmax and Vmin . Computed voltage (Vact ) at each bus in part-II of
network for equal weights among the objectives is shown in Fig. 3.
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Table 9 DG units generation (MW) and LMP ($/MWh) in 38 bus RDS

Unit DG1 DG2 DG3 DG4 DG5 DG6

LMP 32.38 32.38 32.38 32.38 457.5 543.1

Generation 0.98 0.98 1.17 1.24 43.75 49.35

Fig. 3 Voltage at each bus in part-II of 38 bus RDS after the line outage between buses 6 and 26

Table 10 Impact of ωinv , ωemis and ωlos in 38 bus RDS

ωinv ωemis ωlos DI SCO part−I I
inv

($) Emis part-I I (kg) Loss part-I I (kW)

0.6 0.3 0.1 46735 51019 1115.7

0.3 0.3 0.3 46824 50922 1106.7

0.3 0.6 0.1 46856 50890 1103.734

0 0 1 46857 50891 1103.73

Table 10 shows the impact of ωinv , ωemis and ωlos values on DISCO’s investment
in purchasing power from DG owners, the emission released from part-II of network
and the loss in part-II of network respectively. DISCO’s decision maker can increase
the ωinv to supply total load by purchasing more power from low cost coefficients
generator. As the value of ωinv increases, DISCO’s investment in purchasing power
from DG owners decreases.

Similarly DISCO’s decision maker can supply a total load at less emission by
increasing ωemis . As the value of ωemis is increases, DISCO gets power from low
emission coefficient generators which leads to reduction in emission. It can be inferred
from Table 10 that the weights combination of [0,0,1] has reduced emissions in com-
parison with the weights combinations of [0.6 0.3 0.1] and [0.3 0.3 0.3] despite the
value of ωemis is reduced to zero. It is due to the huge positive impact of DG6 on loss
reduction. Further it can be inferred from the Table 10 that the weights combination of
[0.6 0.3 0.3] has increased emissions in comparison with weights combination of [0.3

123



Hybrid genetic dragonfly algorithm based optimal . . . 729

Table 11 Impact of ωinv , ωemis and ωlos on generation and LMP in 38 bus RDS

ωinv ωemis ωlos Generation (kW) LMP ($/MWh)

DG5 DG6 DG5 DG6

0.6 0.3 0.1 44380 48740 463.777 536.618

0.3 0.3 0.3 43754 49352 457.541 543.136

0.3 0.6 0.1 43551.6 49551.6 455.516 545.247

0 0 1 43552.1 49552.1 455.521 545.252

0.3 0.3] despite the value of ωemis remains same. It is due to the influence of low cost
and high emission generator DG5 over high cost and low emission generator DG6.

DISCO can reduce active power loss of network by increasing ωlos . Active power
loss in part-II of network having the weights combination of [0.6 0.3 0.1] is more
in comparison with weights combination of [0.3 0.6 0.1] despite the value of ωlos is
the same in both cases. It is due to high positive impact of low emission coefficients
generator (DG6) on active power loss reduction. Active power loss of network is
less having the weights combination of [0.3 0.6 0.1] in comparison with weights
combination of [0.3 0.3 0.3] despite the weight corresponding to ωlos is increased. It
is due to increasing priority for DG6 generation that has a huge positive impact on
loss reduction.

Table 11 presents the impact ofωinv ,ωemis andωlos on active power generation and
LMP values of DG units in part-II of network. As ωinv increases, DISCO’s decision
maker is willing to get power from low fuel cost coefficients generator which leads
to an increase in the generation and LMP value of DG5 (low fuel cost coefficients
generator). However with the weights combination of [0,0,1] the generation and LMP
of DG5 are more in comparison with the weights combination of [0.3 0.6 0.1] despite
the value of ωinv is increased. It is also due to contribution of DG5 in active power
loss reduction.

Similarly if ωemis increases at lower ωlos values then generation and LMP value
of DG6 (low emission coefficients generator) increases. However, at ωlos=1, high
priority is given to loss reduction, generation and LMP value of DG6 are more even
when ωemis=0. It is due to the high impact of DG6 on loss reduction. With the weights
combination of [0 0 1] active power generation of DG6 is more than DG5. It is due
to the positive impact of DG6 on active power loss reduction which is more than
DG5.

State of part-I of network has been observed in terms of active power loss and
voltage magnitude. No DG units in part-I of network have any impact on reliability
improvement. DISCO does not provide any incentives over the market price to these
units. Hence LMP value for each DG unit in part-I of network is equal to market price
i.e 32.38 ($/MWh). DG units in part-I of network will dispatch generation such that
the DG owner gets maximum profit at a given LMP. Voltage at each bus in part-I of
network while considering line outage between 5 and 6 are shown in Fig. 4 and the
active power loss is 1.78MW. Similarly Fig. 5 shows voltage at each bus in part-I of
network while considering line outage between buses 6 and 26 and the active power
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Fig. 4 Voltage at each bus in part-I of 38 bus RDS after line outage between buses 5 and 6

Fig. 5 Voltage at each bus in part-I of 38 bus RDS after line outage between buses 6 and 26
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Fig. 6 Shuffling of slack bus position in part-II of 38 bus RDS

loss in part-I of network is 7.05MW. Shuffling of slack bus between buses 27 and 29
in part-II of network is shown in Fig. 6. This shuffling occurred due to change of bus
which has maximum injection.
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Table 12 LMP values for different line outages in 38 bus RDS

Line LMP in $/MWh HGDA Basecase

DG1 DG2 DG3 DG4 DG5 DG6 EENS(MWh) EENS(MWh)

1 601 601 550 520 520 550 73.6 371.5

3 32.38 32.38 32.38 32.38 32.38 32.38 27 27

4 32.38 32.38 32.38 32.38 32.38 32.38 18 18

6 601 601 32.38 520 520 550 76.9 325.5

14 32.38 32.38 32.38 32.38 457.54 543.14 0 92

Table 12 presents LMP value of each DG unit in test system for different line
outages and at equal weights among objectives. As there is no DG unit in part-II of
network for outage of line 3 or 4, EENS value provided by the proposed method is
equal to base case EENS value. As all DG units are located in part-I of network and
there is no contribution from these units on reliability improvement, no incentive has
been provided over the market price. Hence LMP value of each DG unit for outage
of line 3 or 4 is equal to market price of 32.38 $/MWh. For the outage of remaining
lines such as 1, 6 and 14, the EENS value by proposed method is less compared to
base case. This is due to the presence of DG units in part-II of network. LMP values
shown in Table 12 are based on DG unit’s contribution on EENS reduction and fuel
cost coefficients. LMP of DG3 for outage of line 6 and, DG1, DG2, DG3 and DG4
for outage of line 14 is equal to the market price of 32.38 $/MWh as these units are
located in part-I of network.

Table 13 presents active power generation of each DG unit for different line outages
and at equal priorities among objectives. All DG units in part-I of network due to the
outage of any line generate active power such that the owners will receive maximum
profit at the market price of 32.38$/MWh. All DG units in part-II of the network due to
outage of either line 1 or 6 dispatchmaximum capacity as the total load in part-II of the
network ismore than available generation. DG units in part-II of network due to outage
of line 14 such as DG5 and DG6 generate 43.75 MW and 49.35 MW respectively
based on DISCO’s priority on DISCO’s investment purchase power from DG owners,
emission and loss of part-II network. EENS value for each type of customers is the
same as base case in case of no DG in part-II of network; otherwise EENS value for
each type of customers is less than base case values as DG units supply load in part-II
of network.

Table 14 presents DISCO’s investment to purchase power from DG owners and
grid, emission and active power loss in part-I and part-II of network for different
line outages and equal priorities among stated objectives. The values of DISCO’s
investment, emission and loss in part-I of network are zero as no load exists in part-I
of network while considering line 1 as an outage line. Similarly these values are zero
in part-II of the network for outage of line 3 or 4 as no DG exists in part-II of network.
The values of DI SCO part-I

inv and Emis part-I are obtained based on the amount of
power purchased from grid and DG owners. However the values in part-II of network
are based on power purchased from DG owners only.
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Table 15 Comparison of reliability in 38 bus RDS for line outage between bus 5 and bus 6

EENS in kWh

HGDA GA [38] DA [27] Uniform price method [15] Base case

EENS (kWh) 56399.7 56489.6 56421.3 202110 205500

Time (s) 317 240 150 – –

Table 16 Comparison of objective function values and EENS in 38 bus RDS for line outage between buses
6 and 26

HGDA GA [38] DA [27] Uniform price
method[15]

Base case

Objective function value 0.75369 0.75493 0.75432 0.00854 0

EENS (kWh) 0 0 0 89590 92000

Time (S) 148 118 99.6 – –

Table 15 shows comparison of the proposed method with GA, DA and uniform
price method in terms of EENS value for outage of line between buses 5 and 6. The
proposed method provides least EENS value in comparison with other methods. It can
be inferred that the proposed method effectively improves reliability of network by
providing proper incentives to DG units in terms of LMP.

Table 16 shows comparison of the proposed method with GA, DA and uniform
pricing method by considering line outage between buses 6 and 26. Proposed method,
GA and DA provides better results compared to uniform pricing method in terms of
EENS value. As all iterative methods have the same EENS value, the effectiveness of
the proposed method has been compared with objective function value. The proposed
method provides better objective function value compared to GA and DA.

Figure 7 presents the comparison between convergence characteristics of HGDA,
DA andGA. GA takes more number of iterations to converge, and as it gives minimum
value of objective function at 300th iteration. It can be inferred that there is noguarantee
that this solution is close to global solution. DA converges at around 230th iteration. It
shows that DA is converging at fewer number of iterations compared toGA.AsHGDA
is hybridization of GA and DA, the number of iterations taken by HGDA to converge
is between GA and DA. As HGDA has good local and global searching capability, it
provides better solution close to global as compared to DA and GA.

4.2 Case study-2

The proposed HGDA based OPF has been implemented on Pacific Gas and Electric
Company (PG&E) 69 bus RDS to verify the performance. The line data and bus data
of PG&E 69 bus RDS as shown in Table 25 is drawn from the paper in [45]. It is
assumed that all the DG units have the capacity of 1MW at 0.9 lagging power factor.
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Fig. 7 Convergence characteristics of HGDA, DA and GA in 38 bus RDS

Table 17 Type and Location of DG units in PG & E 69 bus RDS

DG unit Type Location Engine type

DG1 1 61 Combined cycle gas turbines

DG2 2 53 Gas internal combustion engines

DG3 3 11 Diesel internal combustion engines

The location and type of each DG is shown in Table 17. In this study, the market price
for active power generation is considered as 21.59 $/MWh.

4.2.1 Load scheduling

The performance of the proposed method during load scheduling on PG & E 69 bus
RDS has been observed by considering the line between buses 3 and 4 as an outage
line. The obtained results in terms of EENS, generation and LMP values are presented
in Table 18. EENS value for each type of loads is changed based on combination of
priorities (in terms of weights ω1, ω2 and ω3 ) considered. EENS value of any type of
load is reduced to zero by keeping priority 1 (high priority ) for that type of load. Small
change in overall EENS value at different weight combinations even when generation
remains constant is due to variation in active power loss in network. As total load in
part-II of network is more than available generation, all three DG units injecting power
in to the network up to maximum capacity of 1 MW and corresponding LMP values
are 32.6 $/MWh, 30.6 $/MWh and 30 $/MWh respectively. These LMP values have
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Table 18 Impact of ω1, ω2 and ω3 on EENS, DG units generation and LMP in PG&E 69 bus RDS

ω1 ω2 ω3 EENSR EENSC EENSI EENS Generation in kW LMP in $/MWh

DG1 DG2 DG3 DG1 DG2 DG3

1 0 0 0 0.09 0.46 0.55 1000 1000 1000 32.6 30.6 30

0.6 0.3 0.1 0 0 0.55 0.55 1000 1000 1000 32.6 30.6 30

0.3 0.1 0.6 0 0.5 0.19 0.69 1000 1000 1000 32.6 30.6 30

0.1 0.3 0.6 0.56 0 0 0.56 1000 1000 1000 32.6 30.6 30

0 0 1 0.4 0.47 0 0.87 1000 1000 1000 32.6 30.6 30

0 1 0 0.02 0 0.53 0.55 1000 1000 1000 32.6 30.6 30

Table 19 DG units generation, LMP and EENS at different line outages in PG&E 69 bus RDS

Line Generation in kW LMP in $/MWh EENSl EEN Slbase
DG1 DG2 DG3 DG1 DG2 DG3 (kW) (kW)

1 1000 1000 1000 32.6 30.6 30 823.06 3802.29

2 1000 1000 1000 32.6 30.6 30 822.71 3802.29

8 1000 884.3 663.1 32.6 29.4 26.6 0 2514.65

52 1000 737.8387 159 32.6 27.82 21.59 0 1717.15

been computed such that DG owners receive maximum profit for generating 1 MW
active power.

DG units generation, LMP and EENS for different line outages by considering
equal priorities among objectives are presented in Table 19. While considering either
line 1 or line 2 as an outage line, all DG units injecting power into the system up to a
maximum capacity of 1000 kW have been considered. It was happening due to excess
load over the available generation in part-II of network. LMP values for DG1, DG2
and DG3 that correspond to 1000 kW generation are 32.6$/MWh, 30.6$/MWh and
30$/MWh respectively. While considering line 8 as an outage line, DG2 and DG3
generations have been curtailed as available generation is more than load in part-II of
network. Similarly while considering line 52 as an outage line, DG2 generation has
been curtailed. These generation curtailments are based on priorities considered among
DISCO’s investment, emission and active power loss. However the DG1 is injecting
up to a maximum capacity 1000 kW as local load is more than DG unit capacity.
While considering line 52 as an outage line, DG3 is located in part-I of network and it
does not have any contribution in reliability improvement. Hence there is no incentive
given to DG3 over market price of 21.59$/MWh. For all tested outages the proposed
method improves the reliability of network by decreasing the EENS value.

DISCO’s investment to purchase power from grid and DG owners, emission and
active power loss for various outages by considering equal priorities among objectives
are presented in Table 20. As no load exists in part-I of network, while considering
either line 1 or line 2 as an outage line, DISCO’s investment to purchase power from
grid, emission and active power loss are zero. DISCO’s investment and emission

123



Hybrid genetic dragonfly algorithm based optimal . . . 737

Table 20 DISCO’s investment, emission and active power loss at different outages in PG&E 69 bus RDS

Line Part-I of network Part-II of network

DI SCO part-I
inv

Emis part-I Loss part-I DI SCO part-I I
inv

Emis part-I I Loss part-I I

($) (kg) (kW) ($) (kg) (kW)

1 0 0 0 93.2 1803.96 21.27

2 0 0 0 93.2 1803.96 20.92

8 54.35 2447.9 2.718 76.2 1517.9 33.18

52 37.47 1632.7 18.46 53.13 1152.6 21.19

in part-I of network are computed based on load at substation bus and DG units
generation. However these parameters computed in part-II of network are based on
DG units generation only.

4.2.2 Generation scheduling

The performance of the proposed method during generation scheduling has been
observed by considering line between buses 4 and 5 as an outage line. Impact of
weights ωinv , ωemis and ωlos on DG units generation, LMP, DISCO’s investment to
purchase power from DG owners, emission released from network and network active
power loss have been presented in Table 21. As increasing the weight corresponds
to emission reduction ωemis , generation and LMP values of the low emission coeffi-
cient generator DG2 increases. Which means that low emission coefficient generators
receivemore incentive fromDISCOas andwhenDISCO increases priority to emission
reduction by increasing ωemis . This further results in reduction of network emission.
The DG1 is placed at bus 61 where the total load is 1244kW, more than local DG unit
(DG1) capacity. Hence DG1 injects the power into the network up to its rated capacity.
Hence generation of DG1 at each combination of weights is equal to 1000 kW and
the corresponding LMP value is 32.60($/MWh).

DG3 is responsible for both loss reduction and DISCO’s investment cost reduction
due to its low cost coefficients. Hence DG3 generation and LMP, network active power
loss and DISCO’s investment cost vary based on net weight that corresponds to both
loss reduction and investment cost reduction. Net weight (ωnet ) is equal to sum of
weights corresponding to active power loss reduction and DISCO’s investment cost
reduction. As DG3 generation and LMP values increase, the active power loss of
network and DISCO’s investment cost decrease with ωnet as shown in Table 22.

The proposed method has been compared in terms of objective function value and
EENSwith somemeta heuristic techniques existing in literature, likeGA [38], DA [27]
and conventional method to compute LMP in RDS such as uniform Price Method [15]
in order to demonstrate accuracy andvalidity.Comparisonof the proposedmethodwith
other methods have been presented in Table 23. For generation scheduling, uniform
price method provides least objective function value but it has more EENS value
which is not acceptable from a reliability point of view. However the proposed method
provides minimum objective function value compared to GA [38] and DA [27]. The
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Table 22 Impact of weights ωnet on DG3 generation, LMP, DISCO’s investment and loss in PG & E 69
bus RDS

ωinv ωlos ωnet DI SCO part-I I
inv

Loss part-I I Generation LMP
($) (kW) (kW) ($/MWh)

0 0 0 82.43 33.29 709.5 27.1

0.6 0.1 0.7 81.98 33.11 791 27.91

0.3 0.6 0.9 81.86 33.06 833.4 28.33

0 1 1 81.83 33.04 874.7 28.75

1 0 1 81.82 33.04 881.3 28.81

Table 23 Comparison of proposed HGDA based opf method with other methods on PG&E 69 bus RDS

Scheduling Parameters Proposed
method

DA[27] GA [38] Uniform
price method
[15]

Base case

Generation Objective function 0.6450146 0.6450147 0.6451 0.18393 0

EENS (kW) 0 0 0 2316.95 2676.75

Load Objective function 0.0818 0.08991 0.11236 0.20232 0.999

EENS (kW) 550.5 550.8 551.2 3165.2 3525.15

proposed method provides EENS value which is the same as GA [38] and DA [27] for
generation scheduling as available generation is more than load in part-II of network.
Objective function value in base case is zero as no generation is available in part-II
of network. For load scheduling, proposed method provides least EENS value and
objective function value in comparison with GA [38], DA [27] and uniform Price
Method [15].

5 Conclusion

This paper proposed a hybrid genetic dragonfly algorithm (HGDA) based optimal
power flow (OPF) to compute LMP at each DG bus for reliability improvement. This
paper enables DISCO to improve system reliability by controlling the private DG
owners using financial incentives in terms of LMP. This method has been developed
based on consideration that there is no control onDGunits located in part-II of network
under outage. So this method is developed to specify financial incentives to encourage
private DG owners in part-II of network to operate in such a way that reliability is
improved. This method can estimate LMP values at any hour of the day and at any
line outage. It has been formulated by incorporating voltage limits, line flow limits,
generation and load limits. The results show that the DG units which have impact on
reliability improvement receive better incentives than the market price. This method
also provides information on emission, loss and DISCO’s investment to purchase
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power from grid and DG owners. This method can estimate state of part-I of network
in terms of voltage magnitude and active power loss.

In this paper, the hybridization of the GA and DA for improved results has been
implemented for the firts time. This process extracts the advantages of both methods
and provides better results in comparison with individual method. The computation
of LMP at DG buses for improving the reliability of the system has been considered
for the first time in this paper.

As integration of DG units in distribution network is bound to increase in future,
this work can contribute significantly to the problems related to planning and operation
of RDS

Appendix

38 bus RDS

The single line diagram of 38 bus RDS as shown in Fig. 8 is drawn from [44] and line
data and bus data is represented in Table 24.

Fig. 8 Single line diagram of 38 bus RDS [44]
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PG & E 69 bus RDS

The single line diagram of PG & E 69 bus RDS as shown in Fig. 9 is drawn from [45]
and line data and bus data is represented in Table 25.

Fig. 9 Single line diagram of PG&E 69 bus RDS [45]
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Prerequisite algorithms

The single line diagram of IEEE 15 bus RDS is shown in Fig. 10 and the line data and
bus data are represented in Table 26.

Fig. 10 IEEE 15 Bus RDS [46]

Table 26 IEEE 15 bus RDS
data [46]

Line From To P Q R X
(pu) (pu) (pu) (pu)

1 1 2 0.2205 0.2249 0.002237 0.002188

2 2 3 0.35 0.357 0.001934 0.001892

3 3 4 0.7 0.7141 0.00139 0.00136

4 4 5 0.2205 0.2249 0.002518 0.001699

5 2 9 0.35 0.357 0.003328 0.002244

6 9 10 0.2205 0.2249 0.002788 0.00188

7 2 6 0.7 0.7141 0.004227 0.002851

8 6 7 0.7 0.7141 0.001799 0.001213

9 6 8 0.35 0.357 0.002068 0.001395

10 3 11 0.7 0.7141 0.002968 0.002002

11 11 12 0.35 0.357 0.004047 0.00273

12 12 13 0.2205 0.2249 0.003328 0.002244

13 4 14 0.35 0.357 0.003687 0.002487

14 4 15 0.7 0.7141 0.001979 0.001335

Base KVA=200 Power factor of load =0.7 Base kV=11

Active power load = 1.2264MW Reactive power load = 1.2510MVar
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Start

Read nline, n, LP and LQ

Set i=n and count=1

Set bntagf(i)=count and cnode(bntagf(i))=i

set l=1

if LP(l)=i Set q=LQ(l)
Yes

if LQ(l)=i Set q=LP(l)
Yes

Set l=l+1

if l ≤ nline

if q > i

Set k= bntagf(q)+1,
count=count+1
and cnode(count)=q

set count=count+1 and
cnode(count)=cnode(k)

set k=k+1

if
k >

bntagto(q)

Set bntagto(i)=count,
count=count+1

Set i=i-1

if i=0

Stop

No

No

Yes

No

No

Yes

NoYes

Yes

No

Fig. 11 Flowchart to identify nodes beyond a particular bus

Identification of nodes beyond a particular bus

The process of identifying nodes connected beyond a particular bus is presented in the
flowchart as shown in Fig. 11. The proposed algorithm can be helpful to distribution
network decision maker to get information about nodes which are disconnected from
substation bus due to outage. This method can also be helpful to implement some
of the load flow methods in RDS where information of nodes connected beyond a
particular node is required as in [46,47].
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Table 27 bntagf and bntagto matrices of IEEE 15 bus RDS

Bus 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bntagf 44 30 22 18 17 14 13 12 10 9 6 4 3 2 1

bntagto 58 43 29 21 17 16 13 12 11 9 8 5 3 2 1

Table 28 Information of cnode vector of IEEE 15 bus RDS

Bus 15 14 13 12 11 10 9 8 7 6

cnode 15 14 13 12 13 11 12 13 10 9 10 8 7 6 7

Bus 6 5 4 3 2

cnode 8 5 4 5 14 15 3 4 5 14 15 11 12 13 2

Bus 2 1

cnode 3 4 5 14 15 11 12 13 9 10 6 7 8 1 2

Bus 1

cnode 3 4 5 14 15 11 12 13 9 10 6 7 8

The flowchart as shown in Fig. 11 has been developed in such a way that ’cnode’
vector stores information of buses connected beyond each bus. The vectors ’bntagf(i)’
and ’bntagto(i)’ stores starting and ending locations in ’cnode’ vector, where buses
beyond bus ’i’ are stored. The vectors ’cnode’, ’bntagf’ and ’bntagto’ have been
developed by extracting information of sending end and receiving end nodes of each
line in RDS. The values of bntagf and bntagto for each bus in IEEE 15 bus RDS are
presented in Table 27 and cnode information is presented in Table 28.

IEEE 15 bus RDS at single contingency

The flowchart as shown in Fig. 12 provides line and bus data of each part of network
when a single line outage has taken place. OPF requires line data of part-II of network
in order to compute scheduled load and generation. Line data information in part-I
and part-II of the network are stored in LDsub and LDws matrices respectively.

Line data information of part-I (LDsub) and part-II (LDws) of IEEE 15 bus RDS
by considering the line outage between buses 2 and 3 are shown in Tables 29 and 30
respectively.
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Start

Read linedata,lineout,Rb,bntagf, bntagto, cnode ans LQ

Set bnstart=bntagf(Rb),bnstop=bntagto(Rb),
LDsub=linedata, count=1 and col=7

if
(bnstart=
bnstop)

LDws(1,1)=0
LDws(1,6)=0
LDws(1,7)=0
LDws(1,2)=cnode(bnstart)
LDws(1,3)=cnode(bnstop)
LDws(1,4)= linedata(Lineout,4)
LDws(1,5)= linedata(Lineout,5)

Set LDws=zeros(bntagto(Rb)-bntagf(Rb), col),
Set b=bnstart+1

Set line number k=1

if
LQ(k)=
cnode(b)

set
LDws(count,:)=
linedata(k,:)
, set count=count+1

Set line number k=k+1

if(k>nline)

Set b=b+1

if
(b>
bnstop)

Remove row corresponding to outage line
in LDsub and set nl=nline-1,i=1

Set j=1

if
LDsub (j,1)=
LDws(i,1))

Set
j=j+1 if(j>nl)

Remove row corresponding to row
number j in LDsub and set nl=nl-1

Set i=i+1

if i=count

Stop

No
Yes

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

No

Yes

Fig. 12 Flowchart for line data selection of network at single contingency

123



Hybrid genetic dragonfly algorithm based optimal . . . 749

Table 29 Line and Bus data of
part-I of IEEE 15 bus RDS
before renumbering after the line
outage between buses 2 and
3 (LDsub)

Line From To P(pu) Q(pu) R(pu) X(pu)

1 1 2 0.2205 0.2249 0.0022 0.0022

5 2 9 0.3500 0.3570 0.0033 0.0022

7 2 6 0.7000 0.7141 0.0042 0.0029

8 6 7 0.7000 0.7141 0.0018 0.0012

9 6 8 0.3500 0.3570 0.0021 0.0014

6 9 10 0.2205 0.2249 0.0028 0.0019

Table 30 Line and Bus data of
part-II of IEEE 15 bus RDS
before renumbering after the line
outage between buses 2 and
3 (LDws )

Line From To P(pu) Q(pu) R(pu) X(pu)

10 3 11 − 0.5500 0.1087 0.0030 0.0020

14 4 15 − 3.0500 −1.1021 0.0020 0.0013

4 4 5 0.2205 0.2249 0.0025 0.0017

12 12 13 0.2205 0.2249 0.0033 0.0022

13 4 14 0.3500 0.3570 0.0037 0.0025

11 11 12 0.3500 0.3570 0.0040 0.0027

3 3 4 0.7000 0.7141 0.0014 0.0014

Renumbering of buses in part-I of IEEE 15 bus RDS

Bus numbers whichwere stored in LDsub fromFig. 12may not be in sequence as some
of buses were moved to LDws . In order to run any distribution load flow successfully
on any part of network, it requires proper numbering of each line and bus. The process
of renumbering of all buses in part-I of network is depicted in the flowchart as shown
in Fig. 13.

Part-I of IEEE 15 bus RDS after renumbering is shown in Table 31.
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Fig. 13 Flowchart for
Renumbering buses in part-I of
network

Start

Read LDsub, nlinesub, nsub and Nodepart−I
Sorted

Adjust rows in LDsub based on ascending order
of sending buses. Set LDrec=LDsub.

set i=1

set j=1

set k=2

if(LDsub(j,k)=
Nodepart−I

Sorted (i))

set
LDrec(j,k)=
i

Set k=k+1

if(k>3)

Set j=j+1

if(j> nlinesub)

Set i=i+1

if(i> nsub)

Set LDrec(:,1)=[1:nlinesub]’

Stop

Yes

No

Yes

Yes

Yes

No

No

No

Identification of Slack bus and position of each bus from slack bus in part-II of IEEE
15 bus RDS

Anew algorithm has been developed to identify slack bus and position of remaining
buses from slack bus. In this method the bus which has highest power injection has
been considered as slack bus. This method also provides information about position

123



Hybrid genetic dragonfly algorithm based optimal . . . 751

Table 31 Renumbered line and Bus data of part-I of IEEE 15 bus RDS after line outage between buses 2
and 3 LDrec

Line From To P(pu) Q(pu) R(pu) X(pu)

1 1 2 0.2205 0.2249 0.0022 0.0022

2 2 6 0.3500 0.3570 0.0033 0.0022

3 2 3 0.7000 0.7141 0.0042 0.0029

4 3 4 0.7000 0.7141 0.0018 0.0012

5 3 5 0.3500 0.3570 0.0021 0.0014

6 6 7 0.2205 0.2249 0.0028 0.0019

of remaining buses from slack bus and this information is stored in Nodepos . The
flowchart as shown in Fig. 14 has employed the following logic:

– Identify the bus which has maximum injection and consider it as slack bus and
keep that bus as first element in vector Nodepos

– Identify the position of each bus from slack bus in part-II of network and update
Nodepos

Information about slack bus and position of remaining buses from slack bus in
part-II of IEEE 15 bus RDS are shown in Tables 32. Index represents location of bus
in Nodepos .

Renumbering of buses in part-II of IEEE 15 bus RDS

In order to run any distribution load flow successfully on part-II of network, proper
numbering of each line and bus is required.The flowchart as shown in Fig. 15 is
employed for renumbering the line and buses in part-II of network. Part-II of IEEE 15
bus RDS after renumbering is shown in Table 33.

The basic logic used for renumbering the buses and lines in part-II of network is as
follows:

– Identify sending end and receiving end buses of each line of part-II of network
(LDren

ws ).
– If any of these two buses exist in Nodepos , then replace that bus number in LDren

ws
with index of that bus in Nodepos matrix.

Flowchart for computing LMP using HGDA-OPF

Flowchart of the proposed HGDA-OPF method to compute LMP value of each DG
unit in part-II of network based on reliability improvement and also to observe the
state of the network connected to the substation is presented in Fig. 16.
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Fig. 14 Flowchart for Slack bus
and position of each bus from
slack bus in part-II of network

Start

Read LDws, nws, nlinesub, Rb, LP and LQ

Identify (Pmin) and (PBus
min )

if Rb is
one of DG location

Pnet(Rb)=
PLoad(Rb)-Pgen(Rb)
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min

if Pmin >
Pnet(Rb)
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Set Nodepos=zeros(1,nws),count1=1,
Nodepos(1,1)= Slackbus

Set i=1

Set node=Nodepos(1,i)

set l=1

if
LP(l)=
node

Set q=LQ(l) and count2=0
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if
LQ(l)=
node

No

Set q=LP(l) and count2=0

Set l=l+1
No

if l ≤ nlinesub
Yes

No

Yes

No

Yes

Yes

Set k=1

if
(Nodepos(1,k)
=q

Set k=k+1
Set

count2 =
count2 + 1

Yes

if(k>count1)

if(count2=0))

No

Yes

Set
Nodepos(1,count1+1)=q,

count1=count1+1

Yes

Set i=i+1
No

if(i> nws)

Stop

Yes

No

No

No
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Table 32 Nodepos matrix
Index 1 (Slack bus) 2 3 4 5 6 7 8

Nodepos 15 4 3 5 14 11 12 13

Fig. 15 Flowchart for
Renumbering of buses in part-II
of network

Start

Read LDws, nws, nlinews, Nodepos,LQws and LPws

Set LDren
ws =LDws

Set k2=1

Set k1=1

if(LPws(k1)=
Nodepos(1,k2))

Set
LDren

ws (k1,2)
=k2

if(LQws(k1)=
Nodepos(1,k2))

Set
LDren

ws (k1,3)
=k2

k1=k1+1

if(k1>nlinews)

k2=k2+1

if(k2>nws)
if(LP>
LQ

Interchange sending node and receiving node
for corresponding row in LDws. Update power
corresponding to receiving node

Stop

Yes

No

Yes

No

Yes

Yes

Yes

NoNo

No
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Start

Read Line Data, DG data, OTl,
Rb and Smax

l

Develop data for part-II of network using Fig.11 and Fig.12

Compute EENSl
base

Is DG in
part-II?

Set EENSl=
EENSl

base

Is line
in part-II?

Implement Algorithm 4
if load is more than
generation in part-II of network
else implement Algorithm 5

Is
Pmax
gen (Rb) ≤
P

Rb
Load

Set EENSl=(PRb
Load-P

max
gen (Rb))*OTl

LMP
Rb
i =2aiPmax

gen (Rb)+ bi

Set EENSl=0 and
P i
gen(Rb) = P

Rb
Load

LMP
Rb
i =2aiP i

gen(Rb)+ bi

Observe state of part-I of network interms of voltages.
Assume LMP values of DG units equal to market price

Stop

No

Yes

Yes

No

No

Yes

Fig. 16 Flowchart for computation of LMP at DG buses
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