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Wind energy is one of the emerging sustainable sources of electricity. Wind is intermittent in nature. The typical
grid operation of wind energy is complex. The significance of wind energy generation and integration with the
grid is increasing day by day. An accurate wind speed forecasting method will help the utility planners and
operators to meet the balance of supply and demand by generating wind energy. In this paper, a statistical-based
wind speed prediction is implemented without utilizing the numerical weather prediction inputs. This analytical
study proposes a hybrid short-term prediction approach that can successfully preprocess the original wind speed
data to enhance the forecasting accuracy. The most efficient signal decomposition algorithm, Ensemble
Empirical Mode Decomposition is used for preprocessing. This ensemble empirical mode decomposition tech-
nique decomposes the original wind speed data. Each decomposed signal is regressed to forecast the future wind
speed value by utilizing the Adaptive Wavelet Neural Network model. The proposed hybrid approach is sub-
sequently investigated with respect to the wind farm of South India. The results from a real-world case study in
India are reported along with comprehensive comparison. The prediction performance delivered high accuracy,
less uncertainty and low computational burden in the forecasts attained. The developed hybrid model outper-
forms the six other benchmark models such as persistence method, back propagation neural network, radial basis
function neural network, Elman neural network, Gaussian regression neural network, and wavelet neural net-

work.

1. Introduction

Renewable sources must play a vital part in reaching the goals set by
Paris agreement in December 2015. And the year 2016 was one of the
best years for wind energy production field. In this year, global wind
power industry installed 54.6 GW with 12.6% growth in cumulative
capacity. As per the Global Wind Energy Council (GWEC) report, the
new worldwide total wind installed capacity was 486.8 GW by the end
of 2016 [1]. Distributed energy resources (DER) technologies are
helpful in reduction in greenhouse gas emissions, reduction in damages
to human health, and conservation of resources [2]. And the large-scale
grid integration of renewable energy sources like wind and solar im-
poses challenges to the electric power utility industry in terms of
technical and economical point of view [3]. In order to address these
challenges, an accurate and reliable forecasting is regarded as one of
the best ways. This accurate wind speed prediction is useful for bundled
generation and transmission expansion planning under wind generation
and demand uncertainties[4]. While considering the non-linear features
of the generator such as prohibited operating zone and non-smooth
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functions, an accurate prediction of wind speed is essential for optimal
economic load dispatch planning in power systems [5]. It is very sig-
nificant to determine the proper uncertainty level of the wind forecast
for operational security in the day-ahead electricity market [6]. For
effective unit commitment decisions with wind energy integration is
possible only by optimizing the utilization of the forecast error and
reserve decision [7]. Further, spatio-temporal forecasting approaches
are useful for regulation actions, and maintenance scheduling for ac-
quiring optimal operating cost [8].

Presently, many researchers and utilities have zeal for wind speed
prediction investigations. These wind speed forecasting techniques are
classified into three types as follows: physical approach, statistical ap-
proach, and hybrid approach [9]. Physical approach utilizes the his-
torical data obtained from weather stations such as power and Nu-
merical Weather Predictions (NWP). It is suitable for long-term
predictions as modeling of these are complex. Statistical approach such
as autoregressive moving average (ARMA) model, variants of ARMA
[10] and artificial neural network (ANN) models will employ historical
time-series data for modeling and forecasting the future values. These
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approaches are most accurate for short-term forecasting. And hybrid
approaches are combinations of two or more of the forecasting ap-
proaches [11].

The fast growth in artificial intelligence techniques has been pro-
moting ANN models [12]. These ANN models have been extensively
used in wind speed time-series prediction due to their capability to deal
with non-linearities, predominantly including back propagation neural
network (BPNN) [13]. Further, the learning ability of the neural net-
work and fuzzy system’s expert knowledge is utilized for accurate
forecasting using fuzzy neural network (FNN) [14]. The neural net-
works require a number of neurons to tackle the various problems [15].
To overcome this problem, wavelets are incorporated into them [16].
Currently, hybrid approaches such as wavelet neural networks (WNN)
that combines the wavelet transforms (WT) and artificial neural net-
works (ANN) have drawn a lot of attention and have been extensively
employed for wind speed forecasting [17]. The principal difficulty of
WNN is that of the selection of wavelet transforms [18]. The translation
and dilation parameters of the wavelet basis are fixed and only weights
are adjustable during the training of WNN [19]. But with proper se-
lection of wavelet transforms one can improve the forecasting accuracy
and computational complexity [20]. Many other hybrid approaches
have been implemented to address these problems of WNN. In [21], a
hybrid approach which combines the wavelet transform (WT), radial
basis function (RBF), multi layer perceptron (MLP) neural networks and
imperialist competitive algorithm (ICA) for wind power production
forecasting. An RBF network has been utilized for primary prediction
with different learning algorithms are used for optimizing three MLP
networks. The ICA was employed to optimize the weights and biases of
the three MLP networks. The main demerit of this approach is that the
ICA has the problem of convergence to a local minima that affects
training accuracy and speed. For another case study, optimization al-
gorithm like improved clonal selection algorithm is utilized with wa-
velet neural networks for future 6-h ahead wind power forecasting [22].
The problem with this is that improved clonal selection algorithm has
low accuracy and slow convergence rate. Further, a hybrid model
consists of singular spectrum analysis and general regression neural
network with CG-BA (SSA-CG-BA-GRNN) employed to acquire 1-h and
3-h ahead forecasting [23]. Furthermore, a hybrid approach as reported
in [24] is the combination of kalman Filter (KF), artificial Neural Net-
work (ANN) and autoregressive integrated moving average (ARIMA)
model. This model can effectively handle nonlinearity and uncertainty
problems. The MAPE values of Iraq and Malaysia testing forecasts are
37.17% and 11.29% respectively. In [25], the authors proposed new
hybrid models by integrating the best features of Support Vector Re-
gression (SVR) with seasonal index adjustment (SIA) and Elman re-
current neural network (ERNN) model to forecast the daily wind speed
values. These hybrid models are validated by utilizing the three dif-
ferent wind farms data of the Xinjiang region of China. Authors in [26]
considered another hybrid method that is employed to achieve high
accuracy of the short-term wind power forecasting (48-h-ahead) based
on the adaptive neuro-fuzzy inference system (ANFIS). And a hybrid
evolutionary-adaptive (HEA) approach for short-term wind power
prediction (3-h-ahead) is presented in [27], which combined the wa-
velet transform, mutual information and evolutionary particle swarm
optimization with the adaptive neuro-fuzzy inference system. This HEA
approach was successfully tested on Portuguese system and the MAPE
and NRMSE values were 3.75% and 2.66% respectively. The review of
various hybrid models can be referred in [28].

To enhance the prediction accuracy, improved WNN is employed in
this study that is adaptive wavelet neural network (AWNN). This
AWNN is a combination of adaptive learning algorithm [29] and con-
ventional WNN. Due to this adaptive learning rate, this developed hy-
brid model delivers rapid convergence rate and also accuracy of fore-
casting performance is improved [30]. For further improving the
prediction accuracy, there is a need of data preprocessing technique
which is significant because it eliminates the noise from data. Wavelet
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transforms (WT) and empirical mode decomposition (EMD) technolo-
gies can be employed to eliminate the noisy data [31]. The hybrid
model for multiresolution analysis and for the future time-series pre-
diction is developed by employing WT and ANN [32].

EMD is another decomposition method of original wind data series
other than wavelet transforms. This EMD technique decomposes the
time-series into intrinsic mode functions (IMFs) and a residue. Then
each IMF and residue is easy to examine by SVR to forecast the 1 h, 3h,
and 5 h ahead wind speed [33]. Not only SVR there are so many models
such as ANN, ARMA etc. used for wind speed forecasting in combina-
tion with EMD. For instance, authors in [34] employed two hybrid
models which combines EMD, feature selection with ANN and SVM to
forecast future value of wind speed. In [35], authors developed hybrid
forecasting tool which combines the EMD, feed-forward neural network
(FNN). Partial autocorrelation function (PACF) is utilized for selecting
the inputs for EMD-FNN model. Short-term wind speed can be fore-
casted using a hybrid method of EMD and recursive autoregressive in-
tegrated moving average (RARIMA) algorithm [36]. This method was
applied for the real-time railway strong wind warning system. How-
ever, WT is sensitive to the choice of threshold, and The main dis-
advantage of EMD is the phenomenon of mode mixing problem.

Fortunately, Ensemble empirical mode decomposition (EEMD)
technique can overcome the limitation of EMD. And EEMD is the most
powerful and enhanced signal decomposition technique used for non-
linear or intermittent time-series analysis [37]. The wind speed fore-
casting tool which combines the EEMD technique, feature selection,
and error correction is utilized for short-time horizon prediction in
[38]. And unlike other reported methodologies the authors im-
plemented big multi-step wind speed forecasting. But this big multi-step
wind speed forecasting is more difficult and complicated due to the
complexity of mapping relationships. Whereas authors in [39] used fast
EEMD and multilayer perceptron (MLP) neural networks for prediction.
The mind evolutionary algorithm (MEA) and Genetic algorithm (GA)
are employed for optimizing the MLP neural networks. These algo-
rithms do not improve the performance of the MLP neural networks
notably due to their limitation of trapping in local minima. The hybrid
prediction model was built using EEMD, back propagation NN, and
genetic algorithm to forecast the 10 min ahead (very short-term) and
1 h ahead (short-term) wind speed [40]. The performance of this hybrid
model is not that good because the parameters such as amplitude of
noise and ensemble number are not properly chosen for decomposition.
An approach used for multi-step ahead forecasts which is mainly mix of
the wavelet packet decomposition (WPD), fast EEMD, and Elman neural
networks [41]. The forecasting performance is satisfactory in compar-
ison with other hybrid models. The main outcomes of all the reviewing
literature and comparisons, hybrid models are superior than individual
forecasting models. The main idea behind combining different in-
dividual models is to utilize the superior qualities of each individual
model and to optimize the developed hybrid model. As this EEMD is
able to overcome the problem of mode-mixing and decomposes the raw
wind time-series data into more stationary signals with different fre-
quencies.

In this paper, the hybrid EEMD-AWNN approach is developed,
which combines the EEMD technique and AWNN model. The EEMD
technique is employed to decompose the raw wind speed into a finite
and often small number of intrinsic mode functions (IMFs) and one
residue. Then based on the forecasting horizon the Adaptive Wavelet
Neural Network (AWNN) model is built. Finally, the hybrid EEMD-
AWNN model is used for forecasting the future values of wind speed
and analysed results proves that the proposed EEMD-AWNN model can
achieve the desired result with enhanced forecasting accuracy. The
principal objectives of this paper are as follows:

1. To propose a hybrid model for short-term wind speed prediction.
2. To enhance the prediction accuracy by comprehensive comparison.
3. To reduce the uncertainty in forecasting the future wind speed time-
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Fig. 1. Decomposed results of the original wind speed data [43] by the EEMD technique.

series.
. To minimize the computational burden for practical short-term
wind speed prediction.

The key technical contributions of this paper are as follows:

. Development of a new robust hybrid prediction approach: An
effective hybrid EEMD-AWNN model is developed to predict the
wind speed in South India. This proposed model is based on the
EEMD technique to remove the uncertainty nature of data and the
AWNN model is employed due to localized properties of wavelets
and the concept of adapting the wavelet shape according to the
training data set instead of adapting the parameters of the fixed
shape basis function.

. Focusing on statistical model without numerical weather pre-
diction inputs: A statistical-based wind speed prediction is im-
plemented without utilizing the numerical weather prediction
(NWP) inputs.

. Focusing on data preprocessing and adaptive learning: This
analytical study proposes a hybrid short-term prediction approach
that can successfully preprocess the original wind speed data to
enhance the forecasting accuracy. The most efficient signal decom-
position algorithm, Ensemble Empirical Mode Decomposition
(EEMD) is used for preprocessing. This ensemble empirical mode
decomposition technique decomposes the original wind speed data.
Then each decomposed signal is regressed to forecast the future
wind speed value by utilizing the Adaptive Wavelet Neural Network
(AWNN) model.

. Focusing on scientific and reasonable model validation system:
The proposed hybrid approach is subsequently investigated with
respect to the wind farm of South India. The results from a real-
world case study in India are reported along with comprehensive
comparison in terms of performance measures.

. Focusing on accuracy and computational time simultaneously:
The prediction performance delivered high accuracy, less un-
certainty and low computational burden in the forecasts attained.
This hybrid EEMD-AWNN model can performs better than both the
individual models and other hybrid models.
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This paper presents the effective approach for one-step ahead wind
speed prediction. And the remaining paper structure is as follows:
Section 2 explains in detail about principles of wind speed decom-
position techniques and the AWNN model. Section 3 briefs about the
architecture of hybrid EEMD-AWNN method. Section 4 presents the
analytical study of results obtained and the final conclusions were
summarised in Section 5.

2. Principles of wind speed decomposition techniques and
Adaptive Wavelet Neural Network model

Before formally introducing the hybrid EEMD-AWNN prediction
approach, it is essential to outline the needed fundamental concepts.

2.1. Empirical mode decomposition

This EMD (Empirical mode decomposition) method is adaptive and
highly efficient for analysing non-linear and non-stationary time series
data. It is employed for extracting several IMFs and one residue from
the raw wind speed data signal [42]. It is easy to analyse the IMFs
(IME) and residue (Ry) separately than analysing the original time
series data directly. But this EMD experiences the frequent appearance
of mode mixing problem and this problem can be solved by employing
ensemble EMD (EEMD).

The original time-series (x(t)) can be decomposed as shown in Eq.
(1) by using EMD technique

N
x(t) = 3 IME(t) + Ry (1)

i=1

@

2.2. Ensemble empirical mode decomposition

EEMD (Ensemble empirical mode decomposition) technique is a
truly noise-assisted data analysis approach and is used for overcoming
the disadvantages of EMD. Mainly, there are oscillations of very dis-
similar amplitudes in a mode or very similar oscillations in different
modes. This phenomenon is known as mode mixing problem. EEMD
[37] takes the full benefit of the statistical characteristics of Gaussian
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white noise to successfully avoid the mode mixing problem of EMD.
Fig. 1 presents the decomposed IMFs of raw data.
The procedure of EEMD is as follows:

1. From the given raw data signal (x(t)), produce the new noise-added
signal using Eq. (2)

xi(t) = x(t) + €(t) (2)

where ¢/(¢) is a Gaussian white noise.
2. Then decompose the new noise-added signal, x!(t) into several IMFs
and one residue using Eq. (3).

N
xi(t) = Y IMFi(t) + Ry (1)
=t 3)

3. Reiterate steps 1 and 2 with distinct Gaussian white noise every
time.

4. Finally, take the average of all the corresponding IMFs and arrive at
the final result.

2.3. Adaptive Wavelet Neural Network

ANNs are knowledge-based systems and these will learn from ex-
perience utilizing data in order to show their generalizing capabilities.
These ANNSs are data-driven learning approaches and are also called as
Artificial Intelligence (AI) approaches [44]. In order to resolve complex
problems, they can embrace the ability of the human brain’s cognitive
process. The ANNs are trained by employing historical wind sample
values to acquire knowledge about the relation between predicted
output and input samples. Besides these ANNs are capable of training,
adaptation and self-organising property [45]. Therefore, they are the
flexible and robust tool to forecast the wind speed. In ANNS, historical
data is fed to the Input layer for training. Hidden layer(s) and output
layer forecasts wind speed and power.

Wavelet is a mathematical function employed for image processing
and analysing time series data [46]. Length and breadth of a wavelet
are represented by translation parameter a and dilation parameter b
respectively. In this paper, the Mexican hat wavelet as shown in Fig. 2 is
used as mother wavelet in AWNN.

The general schematic structure of AWNN [30] with three layers is
as depicted in Fig. 3. It is almost same as that of FFNN. Here in FFNN
hidden layer comprises sigmoidal function. This AWNN structure con-
sists of input layer, the hidden layer with Mexican hat as mother wa-
velet and output layer. The detailed and smooth signals are individually
applied to AWNN model to forecast the day-ahead wind speed.

The second derivative of Gaussian function is called Mexican hat

Mexican hat function

05t 1

543-2-1012346%5

X

Fig. 2. Mexican Hat Wavelet adopted from [22].
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wavelet which is given by Eq. (4)
Px) = (1-xP)e 0 )

This wavelet is considered as mother wavelet in the hidden layer of the
network because of its special properties like symmetry in shape due to
this it allows exact time-frequency analysis. The input pattern vector to
train AWNN is U = [uy,ly,...,u,]” where n is wind speed sample number.
By using translation and dilation parameters of Mexican hat, wavelet
family is produced as given in Eq. (5)

s I

ienabeRa>0

(5)

The input wind speed sample data is directly passed on to wavelon
(hidden layer with Mexican hat wavelet). The hidden layer output z; is
equal to the tensor product of all 1-D wavelets as depicted in Eq. (6)

n
G =[] e, @)
i ®)
The output of AWNN can be calculated as the sum of three terms of
which the first term is representing hidden layer to output layer, the
second term is direct input and is mapped to output layer and the third
one is external bias. It is given as below in Eq. (7)

m n
y= Z w;z; + Z viu; + g
j=1 j=1 @)
where wj is connecting weight from j* hidden neuron to output neuron,
v; is connecting weight from i input neuron to output neuron, and g is
bias signal.

The standard back-propagation (BP) technique is employed for
training the AWNN [45]. This BP algorithm is based on the gradient
descent technique. The calculated output function by using AWNN is
differentiable w.r.t. translation and dilation coefficients, all unknown
coefficients, weights, and biases. As shown in Eq. (8) the minimization
of Mean Square Error (MSE), which acts as a cost function is a primary
goal of training the network

1 P
E=—Y [e@]P
N D ®)

where e(p) = y?(p)-y(p) and y(p), y?(p) are predicted and actual va-
lues for the p input pattern, respectively. And a free parameter can be
updated using Egs. (9) and (10)

f®+ 1) =f®) +nAf (p) + adf (p-1) ©)
OE
=g (10)

where 7 is the learning rate and « is the momentum factor. Then the
changes in the free parameters can be calculated employing all equa-
tions from (11)-(16)

Aw; = ez an
Av; = eu; (12)
Aay = — oE
2
o Pl [t ] o 5]
:eWiZj[L][u} 3_[2} e i
4]l Gy ij (14)
oby (15)
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Fig. 3. General structure of AWNN [30].
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Fig. 4. Framework of the hybrid EEMD-AWNN method.
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Fig. 5. Geographical location of the study site and original wind time-series [43].

Table 1
Statistical information of original wind time-series data.
Wind Minimum Maximum Mean Median Standard
input (m/s) (m/s) (m/s) (m/s) Deviation (m/
s)
x(t) 0.4845 12.5762 4.9734 4.8805 2.2411

xi_bij x,——bij

el

3. Architecture of hybrid wind speed prediction approach

@ @y (16)

The intermittent nature of wind speed is encouraged to use EEMD
technique, which is an efficient data preprocessing algorithm for
eliminating the noisy data. The individual AWNN model can predict the
wind speed but for enhancing the performance accuracy further this
hybrid EEMD-AWNN model is utilized. The framework of the EEMD-
AWNN approach is as shown in Fig. 4.

For this statistical-based model, historical wind speed time-series
data is collected from wind farm anemometer in southern India. So that
one can form original wind time-series data for this analytical study.
Then for preprocessing the data, the developed model employs the most

efficient signal decomposition algorithm which is Ensemble Empirical
Mode Decomposition (EEMD) algorithm is used to decompose the ori-
ginal wind speed data. This EEMD technique decomposes the original
data into finite number of independent IMFs and one residue. After
obtaining the decomposed sub-series, remove the high frequency IMF
that is first IMF to form the new time-series data without noise. Then
build the AWNN model to forecast the future wind speed time-series
data. Each decomposed signal is regressed to forecast the future wind
speed value by utilizing the Adaptive Wavelet Neural Network (AWNN)
model. Finally, aggregating all the sub-series predictions will give the
final predicted wind speed time-series. This hybrid EEMD-AWNN ap-
proach is applied to other fields such as power load forecasting, stream
flow forecasting, product sales forecasting, and traffic flow forecasting.
And this application of methodology is different compared to other
fields because it employs only statistical information without including
any NWP inputs for accurate prediction.

The main steps of novel hybrid EEMD-AWNN approach are as fol-
lows:

Step 1: De-noising: By employing EEMD technique, first decom-
position of raw wind data is carried out to find the several IMFs and
a residue.

Step 2: Build model: Establish the AWNN model for future wind
speed prediction.

Step 3: Apply the decomposed IMFs and residue sub-series
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Original wind speed time-series

x(t)

!

a Gaussian white noise.

J=1

Ensemble Empirical Mode Decomposition (EEMD):

Step 1: From x(t) produce the new noise-added signal using x'(t)=x(t)+€'(t), Where £\(t) is

Step 2: Decompose the new noise-added signal x'(t) by executing the standard EMD to
Obtain their corresponding IMF modes lMF]'. (t) using

N
xXi(ty=_ IMF | (1) + R (1)
Step 3: Repeat Step 1 and Step 2 with distinct Gaussian white noise every time.

N
Step 4: Compute the average of the corresponding series IMF; (t) asiz [MF}"

J=1

v

Intrinsic Mode Functions (IMFs)
+ One Residue

v

Remove the high frequency IMF1

v

Form the new data without noise

v

Adaptive Wavelet Neural Network
(AWNN)

v

EEMD-AWNN model

v

Final wind speed predictions

Fig. 6. The detailed flowchart of the hybrid EEMD-AWNN method.

Table 2

Comparison of performance indices between hybrid EEMD-AWNN model and benchmark models.

Performance Metrics Persistence model [10] BPNN model [12]

RBFNN model [13] ENN model [31] GRNN model [23] WNN model [22] Proposed model

RMSE (m/s) 01.2134 01.1938
MAE (m/s) 00.8721 00.8377
MAPE (%) 23.9041 23.6522
Time (s) - 02.8600

01.0507
00.7521
21.5713
03.1100

01.1455 01.4794 01.2602 00.5249
00.8067 01.1178 00.9130 00.4176
23.2732 29.2489 24.8214 14.0188
03.6500 03.7400 03.9900 32.1600

separately to selected AWNN models for forecasting.
Step 4: Addition of all the sub predictions from step 2 will be the

final forecast of wind time-series.

4. Analytical study

The wind speed data (Fig. 5) utilized for this work is collected from
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an anemometer installed at the site located in Melamandai, TamilNadu,
India [43]. This data has been captured between April 01, 2015 and
April 30, 2015 as 10 min samples of wind time series. The wind speed is
averaged over 1-h and the first 70% of the data was utilized for training
and remaining 30% of the data was employed for testing the selected
AWNN model. The statistical information about the data which is used
for this work is as shown in Table 1.
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The analytical study for predicting the future wind speed is con-
ducted by utilizing the MATLAB R2009b software on an Intel i3-4005U
CPU 1.70 GHz, 4 GB RAM computer.

4.1. Performance criteria

For improved renewable energy integration with the grid, the de-
pendable and error-free forecasting approaches have become necessary
and important [47]. The amount of data needed for forecasting relies on
the approach which is used for prediction. The efficacy of the fore-
casting depends upon the methodology used and the time-scale of
forecasting. The main statistical error parameters employed for as-
sessment of proposed approach accuracy are mean absolute percentage
error (MAPE) and root mean square Error (RMSE).
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N
1
MSE = N Z ()(forecasled,i_ acmal,i)2

i=1

a7

where in Eq. (17), N is wind data sample number, where as X, recasted,i
and X,.uq; are forecasted and actual values of wind data respectively.

Assessment of forecasting approaches is done by comparing the
normalized RMSE of each individual approach. The major advantage
with RMSE is that weightage for big variations between forecasted and
actual values is more than small variations. Because of this reason, this
is appropriate for wind power generation applications.

1 N
RMSE = \/ﬁ Zi:l (X}‘orecasted,i_ actual,i)z (18)

The Mean Absolute Percentage Error (MAPE) and mean absolute
error (MAE) are also commonly employed parameters for checking
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Fig. 9. Comparison of MAPE values of different prediction models.

Table 3 forecasting accuracy.
Comparison of performances in percentage of Hybrid EEMD-AWNN model over N
benchmark models. MAE = Zi:l |Xforecaszed,i— actual,i|
N (19)
Performance metrics Pryvise (%) Ppriae (%) Prrape (%)
1 | Xacwati=X; di
Hybrid EEMD-AWNN Vs Persistence [10] 56.7413 52.1156 41.3539 MAPE = — Z Lactuali™ orecasted |1y
Hybrid EEMD-AWNN Vs BPNN [12] 56.0304 50.1509 40.7294 N & Xactual,i (20)
Hybrid EEMD-AWNN Vs RBFNN [13] 50.0428 44.4755 35.0118
Hybrid EEMD-AWNN Vs ENN [31] 54.1792 48.2374 39.7642 In order to assess the forecasting model performance, the following
Hybrid EEMD-AWNN Vs GRNN [23] 64.5194 62.6409 52.0707 indices are also utilized. Percentage improvement of RMSE, MAE,
Hybrid EEMD-AWNN Vs WNN [22] 58.3505 54.2642 43.5212 MAPE errors between two models can be evaluated by using Egs. 000
(21)-(23) respectively.
l 5 T T T T T T T T
Actual
——— EEMD-BPNN
EEMD-RBFNN
EEMD-ENN
~——— EEMD-GRNN
g 10 - Proposed model
3 \
7
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Fig. 10. Comparison of Predicted values using EEMD based hybrid models with actual wind speed data.
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Table 4
Comparison of performance indices between hybrid EEMD-AWNN model and
EEMD based hybrid models.

Performance EEMD- EEMD- EEMD- EEMD- Proposed
Metrics BPNN RBFNN ENN GRNN model
Model Model Model Model
[35] [23] [41] [23]
RMSE (m/s) 00.7695 01.2359 00.7731 00.9811 00.5249
MAE (m/s) 00.5726 00.8617 00.5761 00.7244 00.4176
MAPE (%) 16.6304 25.1255 16.8295 20.1528 14.0188
Time (s) 30.2700 31.5100 31.7800 31.8400 32.1600
RMSE,—RMSE,
RMSE; 21
MAE,—MAE,
P, MAE = |— .~
MAE; (22)
MAPE,—MAPE,
P, MAPE = |—
MAPE; (23)

4.2. Forecasting results and discussions

In the proposed hybrid EEMD-AWNN model, the EEMD method is
utilized for extracting the decomposed components which are high
frequency to low frequency from the raw wind speed time-series as
depicted in Fig. 1. Then remove the highest frequency IMF from the
number of IMFs obtained by de-noising the original wind speed signal.
After that, aggregate the remaining IMFs and one residue to form the
new data. Too many IMFs may lead to computational burden and less
forecasting accuracy. These difficulties can be solved by simply ag-
gregating the new data.

In the next step, build the appropriate AWNN model. The number of
input nodes, hidden nodes and output nodes of this AWNN model are 4,
9, and 1 respectively. The procedure for constructing the AWNN
structure and principle of operation is explained in detail in Section 3.
For this AWNN model, apply the new data which is obtained by re-
moving the high-frequency IMF. The detailed flowchart of the hybrid
EEMD-AWNN forecasting method is shown in Fig. 6.

4.2.1. Performance evaluation through Comparison

For decreasing the intermittent nature of generated wind power,
accurate forecasting is the most important technique with growing
wind capacity. Validation of forecasting model is very important and
this can be achieved by performance evaluation criteria (like RMSE,
MAE, MAPE). Adopting distinct criteria for forecasting approach may
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lead to distinct results every time and this is avoided through validation
of the model. The performance evaluation in terms of RMSE (m/s),
MAE (m/s), MAPE (%), and computational time (s) of the individual
models in comparison with the proposed hybrid EEMD-AWNN model is
shown in Table 2. The forecasting results using these individual models
such as Persistence method, Back Propagation based Feed Forward NN
(BPNN), Radial Basis Function based NN (RBFNN), Elman NN (ENN),
General Regression NN (GRNN), and individual WNN are compared
with the original wind time-series in Fig. 7. And a zoom section is
added, from 160h to 180h in Fig. 7 to grasp the small differences
between the models.

The RMSE, MAE values of individual BPNN model are 1.1938,
0.8721 respectively and these RMSE, MAE values of hybrid EEMD-
BPNN model are 0.7695, 0.5726 respectively that means by combining
the EEMD technique with this BPNN model one can improve the fore-
casting accuracy (as shown in Fig. 8). This improvement in prediction
accuracy only because of the most efficient signal decomposition al-
gorithm which is EEMD is employed for preprocessing the original wind
speed data to remove the noise from the data. The hybrid EEMD-AWNN
model is further enhanced the prediction accuracy with 0.5249, 0.4176
values of RMSE, MAE measures. The main reason for this is that the
hybrid EEMD-AWNN model uses the best feature of adaptive learning
rate. The other statistical metric, MAPE value of proposed hybrid
EEMD-AWNN model is 14.0188 which is the best value when compared
with the all individual model MAPE values like 23.9041, 23.6522,
21.5713, 23.2732, 29.2489, and 24.8214 (as shown in Fig. 9). But the
computational time required for individual models is less than 4 s and
in case of the hybrid EEMD-AWNN model this computational time for
forecasting the future wind speed is a bit more in comparison with
reported individual models. By comparing the performance metrics
between the proposed hybrid EEMD-AWNN model and individual ap-
proaches, the hybrid approach outperformed all individual approaches
for the wind dataset under RMSE, MAE, and MAPE measures. The main
reason for this is simply the best features of EEMD are utilized for wind
speed forecasting. The proposed approach performance when compared
with individual WNN in terms of percentage is improved by 58.3505 %
as presented in Table 3. The MAE, MAPE values of the proposed hybrid
EEMD-AWNN model are 0.4176, 14.0188 respectively which are the
best values when compared with all other individual models. Therefore,
it is evident that the proposed approach is very effectively forecasting
than any other individual model.

Reliable forecasts play a vital role in the enhanced renewable en-
ergy integration into the electrical system. The enhanced approaches
like the combination of distinct forecasting methods are employed to
utilize the strengths and minimize the weaknesses of each method. The
forecasting performance of hybrid approaches such as EEMD-BPNN,
EEMD-RBFNN, EEMD-ENN, and EEMD-GRNN have plotted along with

1.4 T T

1.2+

0.8

0.6
0.4 -
0.2 -
0 1 1

1

I RMSE (m/s)
[ IMAE (m/s)

1 1

EEMD-BPNN [35] EEMD-RBFNN [23]

EEMD-ENN [41]

EEMD-GRNN [23] P':;’S;’::’d

Fig. 11. Comparison of RMSE and MAE values of different EEMD based hybrid prediction models.
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Fig. 12. Comparison of MAPE values of different EEMD based hybrid prediction models.

Table 5
Comparison of performances in percentage of Hybrid EEMD-AWNN model over
EEMD based hybrid models.

Performance Hybrid Hybrid Hybrid Hybrid

metrics EEMD-AWNN  EEMD-AWNN EEMD- EEMD-AWNN
Vs EEMD- Vs EEMD- AWNN Vs Vs EEMD-
BPNN [35] RBFNN [23] EEMD-ENN GRNN [23]

[41]

Pryvise (%) 31.7829 57.5299 32.1066 46.4967

Pyag (%) 27.0655 51.5402 27.5152 42.3559

Ppape(%) 15.7035 44.2049 16.7008 30.4374

original wind time-series in Fig. 10. And a zoom section is added, from
30h to 50 h in Fig. 10 to grasp the small differences between the EEMD
based models. The RMSE value of the proposed hybrid EEMD-AWNN
model is 0.5249 is the best value when compared with combinational
model RMSE values such as 0.7695, 1.2359, 0.7731, and 0.9811 (as
shown in Table 4). The developed hybrid EEMD-AWNN model can
predict with enhanced accuracy and less uncertainty in future wind
speed time-series since it can overcome the disadvantages of mode
mixing problem of signal decomposition using EEMD technique and
slow convergence by employing the AWNN model. In comparison with
four EEMD based combinational models, it is observed that the pro-
posed EEMD-AWNN model has shown best performance for the wind
dataset prediction under RMSE, MAE, and MAPE measures as presented
in Figs. 11 and 12. And the MAPE error percentage improved by em-
ploying proposed hybrid EEMD-AWNN model with 15.7035 % in
comparison with hybrid EEMD-BPNN model (as shown in Table 5).
Similarly, among all other EEMD based hybrid models, the proposed
hybrid EEMD-AWNN model is giving the best performance in terms of
MAE, MAPE values. This best performance of the hybrid EEMD-AWNN
model is because of the proposed model exploits the merits of the EEMD
technique and the AWNN model.

5. Conclusion

The prominence of wind energy generation and integration with the
Grid has encouraged reliable and most accurate forecasting approaches.
Virtual Power Plants (VPP) and Smart grid concepts have raised the
worth of accurate forecasts. Encouraged by this requirement of accurate
forecasting techniques, in this paper a statistical-based approach
without employing NWP inputs is developed and tested with Indian
wind farm data successfully. This hybrid approach which combines
EEMD technique and AWNN model to deliver high accuracy, less un-
certainty and low computational burden. The most efficient signal de-
composition algorithm EEMD is utilized for preprocessing the original

wind speed data and enhances the forecasting accuracy by eliminating
the noisy data. The AWNN model delivers faster convergence and im-
proved forecasting accuracy by using adaptive learning rate. The de-
veloped hybrid model is investigated with regard to the wind farm of
southern India. The RMSE, MAE and MAPE values of the hybrid EEMD-
AWNN model are 0.5249,0.4176 and 14.0188% are best performance
measures in comparison with all individual and hybrid models. This
implemented model also reduced the MAPE value by 43.5212% when
compared to individual WNN model. Hence, the performance evalua-
tion among the proposed model and all other ten models (individual
and hybrid models) have shown that the hybrid EEMD-AWNN approach
outperformed all other approaches in terms of performance measures
such as RMSE, MAE, and MAPE. This prediction method would be ap-
plied to larger power system for better forecasts in terms of robustness
and accuracy. This hybrid approach can be applied in other parts of the
world as a generalized statistical model in forecasting aspects by in-
corporating past meteorological and technical characteristics, including
wind power, wind direction, temperature, pressure, and air humidity
for enhanced accuracy. In the future work, the wind direction can be
incorporated in the forecasting method to optimize the proposed hybrid
model. The implementation of the proposed hybrid model for very
short-term and long term forecasting cases would be investigated. And
the proposed hybrid method can be applied in many different fields,
such as power load forecasting, product sales prediction, and traffic
flow forecasting.
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