

Fuzzy Logic Approach Based Novel Frequency Control Strategy by Wind Turbine Generator in a Wind-Diesel Autonomous Microgrid

Laxman Bhukya

Department of Electrical Engineering
National Institute of Technology
Warangal, Warangal-506004(T.S.),
India
blaxman@student.nitw.ac.in

Anil Annamraju

Department of Electrical Engineering
National Institute of Technology
Warangal, Warangal-506004(T.S.),
India
ani223kumar@gmail.com

Nadiraju Srikanth

Department of Electrical Engineering
National Institute of Technology
Warangal, Warangal-506004(T.S.),
India
nvs@nitw.ac.in

Abstract—Intermittency in the wind turbine generator (WTG) output power is affecting the microgrid parameters significantly, principally on the frequency of the microgrid (MG). As a result, MG experiences large frequency excursions and becomes unstable. Considering this as problem, this paper introduces a novel control strategy for WTG output power to mitigate the frequency excursions in the wind-diesel autonomous MG. In the proposed method, a conventional fixed wind power command is replaced by an optimum adaptive wind power command based on power system condition. To perform this task, fuzzy logic approach is employed by considering frequency deviation and wind velocity as inputs and change in power as output. A real time wind-diesel hybrid model is considered as test system to examine the proposed strategy. The dynamic model is developed in MATLAB and, the superiority of proposed approach in mitigating the frequency deviation is alleviated by comparing with constant wind power command based WTG.

Keywords—frequency control, fuzzy logic approach, adaptive wind power command, microgrid, frequency excursions.

I. INTRODUCTION

Diesel engine generators (DEGs) are main power sources for isolated islands and remote locations. These DEGs require heavy oil which is very costly (fuel cost + storage cost + transport cost) and hazardous to the environment. With concerns to environment pollution & cost issues, renewable energy sources (REs) are an attractive solution. Among REs, wind power is most promising one because of present technologies allows for large-scale power generation. Substantial growth in wind power installation whole over the world, introducing new challenges and technical issues in the secure operation of power system, especially in microgrids(MGs)[1-2]. Active power control of WTG side and frequency control of MG are key issues concern to MG stability[3].

WTG output power is highly intermittent in nature, due to its output which is proportional to the cube of wind speed. When this fluctuating power is fed to MG, it may cause large frequency deviations [4-6]. Several authors proposed energy storage system (ESS) based approaches [7-9] for smoothing the wind power before feeding to the grid for frequency control. But, ESS approach is costly and frequent charging and discharging reduces the battery life cycle. This paper focuses on frequency control of MG through output power control of WTG, without using ESS with using the frequency deviations of MG and wind

speed deviations. For frequency control in MG, three control levels are employed. Two control levels from WTG side and one is from diesel engine generator side. Out of these two controllers in WTG, one is central controller, which is used to determine the WTG power command by considering wind speed & frequency deviation of MG. To mitigate the frequency deviations in MG through optimized wind power command, few authors proposed different strategies [10-12]. In [4 & 10-12] authors' proposed novel fuzzy logic approach (FLA) based power command signal for WTG /PV in a MG for leveling output power by accounting power system conditions. But, it uses two fuzzy logic controllers for generating power command signal and it increases the complexity in the calculation. In this work, a new approach is proposed with only one fuzzy controller to generate the WTG power command.

Second controller in WTG is local controller i.e. pitch angle controller. Which is required to follow the WTG power command. In general, the function of this controller is to keep WTG output power to its rated value, when its speed is above the rated wind speed. In [13-15] authors proposed conventional PI/PID controllers for pitch angle control of a WTG. The drawback of this method is, it operates in predetermined operating conditions. For sudden change in operating condition, conventional PI controllers may not provide optimal performance.

In [16-17] authors proposed tuning of PI/PID controllers with different meta-heuristic techniques. Problem with these meta-heuristic techniques is, their performance highly depends on algorithmic specified parameters; improper selection of these parameters may not get optimal performance. In [6&18] few authors proposed variety of predictive control approaches for pitch angle control in WTG. In [19-20] authors proposed FLC based pitch angle controller. From the literature it can be found that fuzzy approach is providing better performance compared to conventional and Meta heuristic based controllers. This paper proposes frequency control of an autonomous MG through WTG output power control. In order to control the WTG output power according to power command signal, it requires an intelligent and efficient controller. Proposed FLC based pitch angle controller is found to be suitable.

Third controller is in the diesel engine generator (DEG) side. Even though energy storage systems employed in the MG in different studies, several authors demonstrated the inability of fixed gain PI/PID controllers

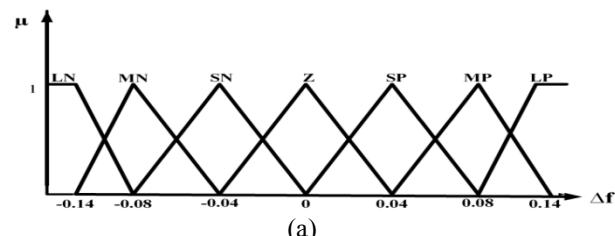
$$\overline{\Delta V_w} = \Delta V_w(k-1) - \Delta V_w(k) \quad (7)$$

Where, 'T' is integral time interval which is 20seconds. 't' is present time and V_w is instantaneous wind velocity. Fuzzy membership functions (MFs) and rule base of proposed approaches is show in Fig.5 and Table.1

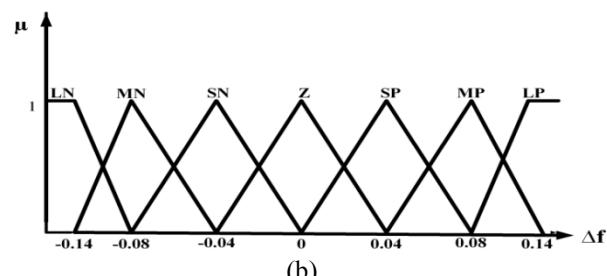
Here, ΔP_{go} is controlled according to MG condition by considering frequency deviation as one of the input (Δf). MFs & rule base are selected in such a manner, to stop the further rise in frequency deviation by using trail & error method. The sample fuzzy rule is described below:

Rule j: if Δf is MN & ΔV_w is MP then ΔP_{go} is Z

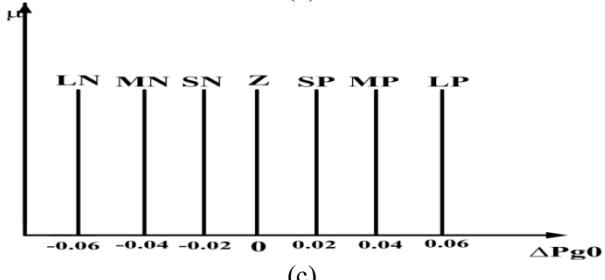
TABLEI: RULESFOROUTPUTPOWERCOMMANDSYSTEM


ΔP_{go}		Δf						
		LN	MN	SN	Z	SP	MP	LP
ΔV_w	LN	LP	LP	LP	LN	MP	SP	Z
	MN	LP	LP	LP	MP	SP	Z	SN
	SN	LP	LP	MP	SP	Z	SN	MN
	Z	LP	MP	SP	Z	SN	MN	LN
	SP	MP	SP	Z	SN	MN	LN	LN
	MP	SP	Z	SN	MN	LN	LN	LN
	LP	Z	SN	MN	SN	LN	LN	LN

In rule j, if part is called antecedent (ζ_j) and then part is called consequent (Q_l). Equivalent crisp value (defuzzified value) from fuzzy reasoning is calculated by using Eq. (8):


$$\Delta P_{go} = \frac{\sum_{j=1}^{49} \zeta_j Q_l}{\sum_{j=1}^{49} Q_l} \quad (8)$$

From the output of FLC ΔP_{go} , The WTG power command can be defined as:


$$P_{go}^* = P_{rated} - \Delta P_{go} \quad (9)$$

(a)

(b)

(c)

Fig.5a),b)MFs of inputs &c) output of FLC of power command system.

3.2 FLC based WTG pitch angle controller

Fig.6 depicts FLC based pitch angle controller system. FLC is employed because it can handle effectively with non-linear systems .Here; the WTG power output is highly non-linear and uncertain by nature. So, proposed controller able to follow output power command efficiently. In Fig.6 'e' is output power error, Δe is change in error and β_{cmd} is pitch angle command.

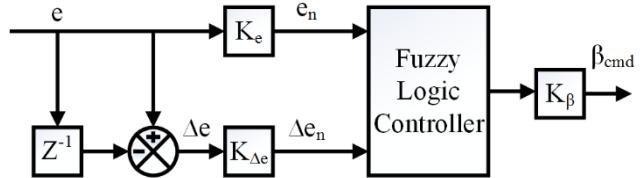


Fig.6 Structure of FLC based pitch angle controller

The FLC is formulated using MFs for the input parameters such as e & Δe , which are defined as:

$$e = P_{go}(k) - P_{go}^*(k) \quad (10)$$

$$\Delta e = e(k) - e(k-1) \quad (11)$$

The MFs for the inputs and output of FLC are shown in Fig. 7.

Fig.7 MFs for e , Δe and β_{cmd}

Two inputs with five fuzzy sets (5^2), FLC is consists of 25 rules to resemble different operating Conditions as mentioned in Table 2. The sample control rule is described below.

If 'e' is NM and ' Δe ' is PS then β_{cmd} is NS

Equivalent crisp value (β_{cmd}) from fuzzy reasoning is calculated by using Eq. (12):

$$\beta_{cmd} = \frac{\sum_{i=1}^{25} \mu_i w_i}{\sum_{i=1}^{25} \mu_i} \quad (12)$$

Table II: Rules for pitch control mechanism

β_{cmd}		Δe				
		NB	NS	Z	PS	PB
e	NB	NB	NB	NS	NS	Z
	NS	NB	NS	NS	Z	PS
	Z	NS	NS	Z	PS	PS
	PS	NS	Z	PS	PS	NB
	PB	Z	PS	PS	PB	NB

IV. SIMULATION RESULTS

In order to demonstrate the performance of the proposed approach in minimizing the frequency deviations of MG, a real-time test system mentioned in [10] is considered for this study. Table 3 shows the various parameters of micro grid. In result analysis proposed approach is compared& contrasted with traditional approach. A 300 seconds sample data of wind

speed and load are shown in Fig. 8 & 9 respectively. To demonstrate the compatibility of the proposed approach, in Fig. 9 from $t=0$ to 180 seconds, it is considered that wind speed is above the rated speed and for $t=181$ to 300 seconds it is below the rated wind speed.

4.1 Simulation results with traditional approach

Fig. 10 depicts the outcomes with traditional method. Fig. 10(a) shows the WTG output power P_{go} , Fig. 10(b) shows the constant power command signal P_g^* and Fig. 10(c) shows the corresponding pitch angle. In conventional approach, wind power command P_g is kept constant at 0.4pu and also pitch angle is in between 2° - 90° , as shown in (b) & (c). It is observed in [c], when wind speed is above the rated speed [i.e. 12-28 m/sec] from $t=0$ -180 s, pitch angle is efficiently operated by fuzzy logic based pitch angle controller. In this range i.e. from $t=0$ -180 s frequency deviation in MG is almost near the acceptable limit (except at initial stage) as shown in [d]. From $t = 180$ -280 s wind speed is in between cut in and the rated speed (6-12 m/s) and pitch angle is kept constant at 2° , resulting in large WTG output power fluctuations (according to Eq. (1)). This fluctuating power fed to MG, creating large frequency deviations as shown in [d]. The diesel power fluctuations shown in [e], which are high in conventional approach.

TABLE III MG PARAMETERS

WTG Parameters	
R(Radius of Blade)	14m
V(Phase Voltage)	400v
R_s	0.00397 Ω
R_f	0.00443 Ω
X_s	0.0376 Ω
X_f	0.0536 Ω
J	62,999 Kg-m ²
ρ	1.225 Kg/m ²
P_g	275 kw
DEG Parameters	
T_1, T_2 (Time constants of governor)	0.1,0.25s
T_3 (Time constant of Diesel generator)	5s
D(Damping coefficient)	0.012 puMW/Hz
M(Inertia Constant)	0.1 puMW/Hz

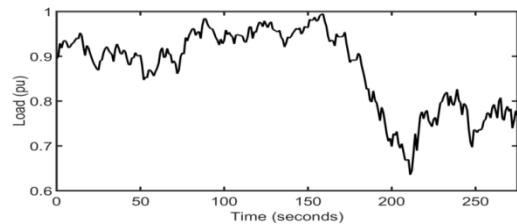
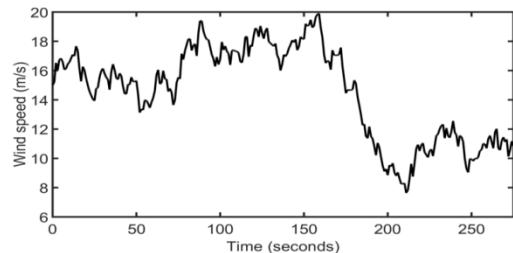
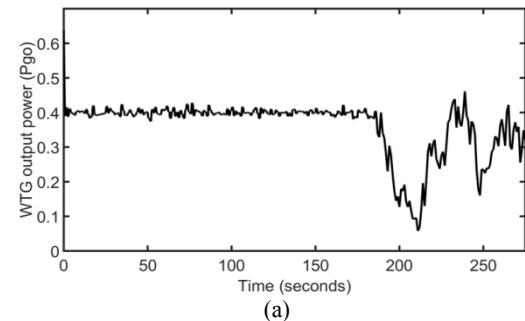
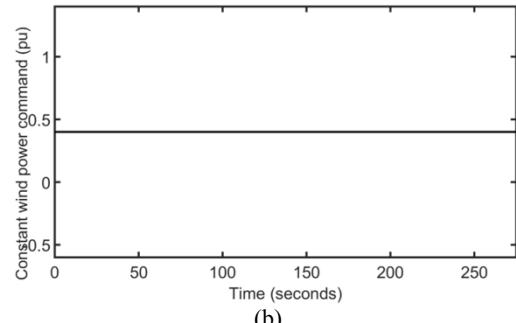
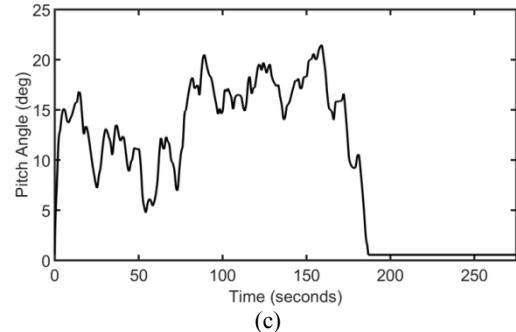
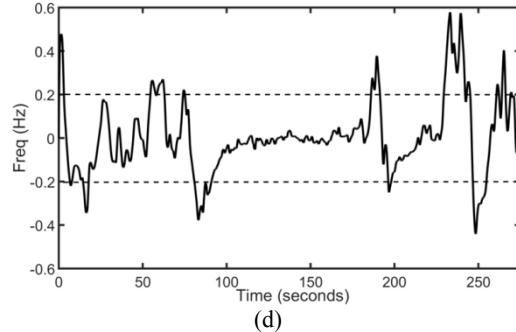
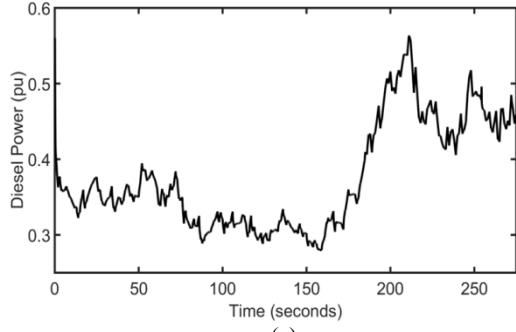


Fig. 8 Load pattern


Fig. 9 Wind Speed


(a)


(b)

(c)

(d)

(e)

Fig.10 Simulation outcomes with traditional control strategy (a) WTG power (P_g) (b) WTG power command signal (c) Pitch angle (d) frequency deviation of MG & (e) DEG output power

4.2 Simulation results with the proposed approach

Fig.11 shows the outcomes with the proposed approach. Fig.11 [a] shows the WTG power command signal. This power command is generated based on MG condition and wind speed, prioritizing to stop large excursion in MG frequency deviation. In Fig. 10[d], it is observed that, for $t=0-90$ sec, there is considerable frequency deviation due to WTG output and load fluctuations P_L . So, WTG power command signal (P_{go}) is reduced which can be observed in Fig. 11(a). From $t=100-180$ seconds, frequency deviation is significantly less as shown in Fig. 10 [d]. Hence, power command is increased to maximum extent i.e. $P_{go}=0.4$ pu (note that $t=0-180$ s wind speed is above the rated speed so that rated power available is maximum i.e. 0.4pu) so that, the full output power of WTG can be used. From $t=180-280$ s wind speed is in between cut-in and rated speed which is creating huge power fluctuations and at that time load variations also high. These two situations creating huge frequency deviations as shown in Fig. 10 [d], so to stop the further rise in frequency deviation, WTG power command is decreased as shown in Fig.11 [a].Fig. 11 [b] shows the pitch angle (β) of WTG, it is observed that in the proposed method of pitch angle control is extended to two operating regions (i.e. proposed method operates in cut in-rated & rated- cut out range, earlier in conventional method pitch angle control operates only when wind speed is in between rated and cut out range) for frequency control in MG. Fig.11[c] shows the frequency deviation of MG, which is within the range of ± 0.2 Hz. Fig.11 [d] shows DEG output power(ΔP_d) &DEG output power is controlled according to load variations P_L . It is observed that,DEG fluctuations are reduced significantly compared with the conventional method as shown in Fig. 11[e]. This is achieved through output power control of WTG.

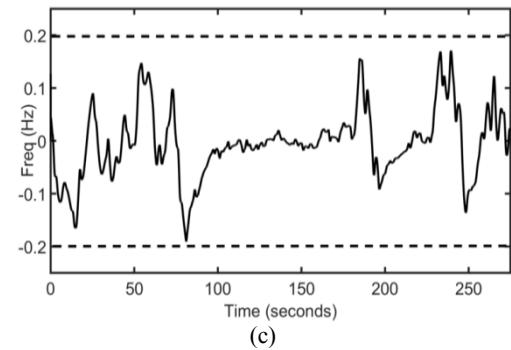
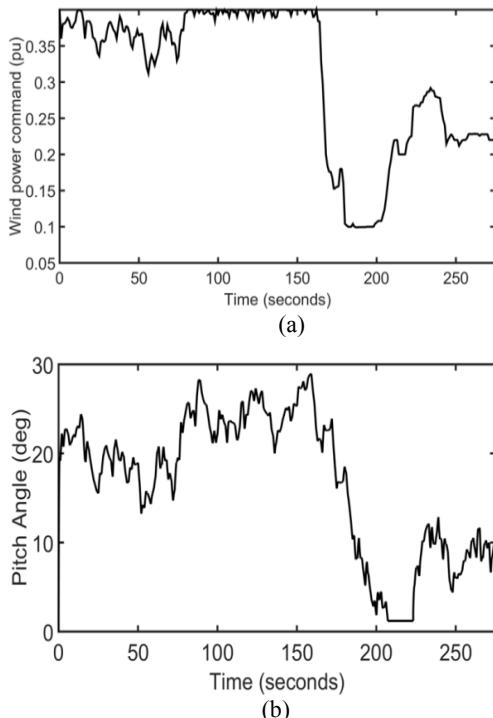



Fig.11 Simulation outcomes with proposed approach (a) WTG power command signal (c) Pitch angle (d) frequency deviation of MG & (e) DEG output power

V. CONCLUSION

In this work, FLA based novel frequency regulation method is proposed for an autonomous wind-diesel MG, by considering wind speed and MG frequency deviations. Fuzzy sets (MFs parameters) and rules are designed and tuned heuristically till the further rise in frequency deviations are minimized. Simulation results are demonstrating that the proposed approach is fruitful in minimizing the frequency excursions remarkably in comparison with the traditional method. In general, the usual practice to minimize the frequency excursions is done by smoothing the WTG output power with ESS. In this work, a novel frequency regulation approach without using ESS is proposed. The technical merit of this paper is, the frequency can be controlled to within the acceptable range in wind-rich MG without any energy storage systems. Moreover, when this MG is connected to main grid proposed approach can share the frequency control duties by considering the wind-diesel system as a distributed source.

REFERENCES

- [1] Zhikang Shuai, Yingyun Sun,et al. , "Microgrid stability: Classification and a review," Renewable and sustainable Energy Reviews, Elsevier, vol58, pp.167-179,2016.
- [2] IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, IEEE Standard,1547.4-2011.
- [3] S.Muyeen,J.Tamura, T.Murata"Stability augmentation of grid - connected wind farm," Book, Springer-USA,october 2009.
- [4] Z. Wei, F. Kailun, "Controlling active power of wind farms to participate in load frequency control of power systems," IET GTD , vol 11, pp.2194-2203,2017.
- [5] H. Bevarani, R. Mohammad, A. Sirwan,"Robust frequency control in an islanded microgrid: H_∞ and μ synthesis approaches," IEEE transactions Smart grid, vol 7(2), pp.706-717,2016.
- [6] T.Senjuu, T.Kaneko, A.Yona, A.Uhera, H.Sekine, Ch.Kim,Output power control for large wind power penetration in small power system," Renewable energy,vol 34, pp.2334-2343,2009.
- [7] L. Xiangjun, H. Dong,L. Xicokang, "Battery energy storage station (BESS)- based smoothing control of photovoltaic (PV) and wind

power generation fluctuations",IEEE Transactions on sustainable energy, vol 4(2), pp.464-473,2013.

[8] R. Sebastián, "Application of a battery energy storage for frequency regulation and peak shaving in a wind diesel power system," IET GTD,vol 10(3),pp.764-770,2016.

[9] L. Guo, Z. Yu, C. Wang, F. Li, J Schietekatte, J. Deslauriers and L. Bai, "Optimal design of battery energy storage system for a winddiesel offgrid power system in a remote Canadian community," in IET Generation, Transmission & Distribution, vol. 10, no. 3, pp. 608-616, 2016.

[10] A. Uehara , T. Senju, T. Kaneko, A.Yona, E. Muhando, Urasaki N, C. Kim,"Output power dispatch control for a wind farm in a small power system", Wind Energ, pp.671–684,2010.

[11] T. Senju, R. Sakamoto, N.Urasaki, T. Funabashi, H.Sekine,"Output power leveling of wind turbine generator for all operating regions by pitch angle control",IEEE Trans. Energy Convers , Vol 21(2),pp.467–475,2016.

[12] M. Datta, T. Senju, A.Yona, T.Funabashi, C.Kim, "A frequency control approach by photovoltaic generator in a PV-diesel hybrid power system", IEEE Trans. Energy Convers, vol 26(2),pp.559-571,2011.

[13] C. Jauch, T. Cronin, P. Sørensen, B. Jensen, "Design of a wind turbine pitch angle controller for power system stabilization", Renewable Energy, vol 32, pp.2334-2349,2007.

[14] Y. Vidal , L. Acho , N. Luo , M. Zapateiro, F. Pozo," Power control design for variable-speed wind turbines", Energies, vol 5,pp. 3033–3050,2012.

[15] M. Ben, A. Sakly, "Different conventional strategies of pitch angle control for variable speed wind turbines" , International conference on science and techniques of automatic control and computer engineering, Hammamet, Tunisia, 21–23 December,2014.

[16] B. Ouissam, C. Mohamed"Pitch angle control for variable speed wind turbines using genetic algorithm controller",JATIT ,vol 39,pp:6-10,2012.

[17] J. Perng, G.Y. Chen,S.C. Hsieh,"Optimal pid controller design based on PSO-RBFNN for wind turbine systems", Energies Hill New York NY USA, vol 7(1),pp. 191–209,2014.

[18] J. Han, S.K. Solanki, J. Solanki,"Coordinated predictive control of a wind/battery microgrid system",IEEE Emerging Sel Topics Power Electron, vol 1(4), pp.296-305,2013.

[19] T. Van, T. Nguyen, D. Lee,"Advanced Pitch Angle Control Based on Fuzzy Logic for Variable-Speed Wind Turbine Systems", IEEE Transactions on Energy Conversion , vol 30(2),pp.578-587,2015.

[20] B. Han., L. Zhou, F.Yang, Z. Xiang "Individual pitch controller based on fuzzy logic control for wind turbine load mitigation",IET Renewable power generation, Vol 10(5),pp.687-693,2016.

[21] A.Anil, N.Srikanth, " Robust frequency control in an autonomous microgrid- a two-stage adaptive fuzzy approach", vol 46 (1),pp.83-94,2018.

[22] J. Pahasa, I. Ngamroo, "Coordinated control of wind turbine blade pitch angle and PHEVS using MPCs for load frequency control of microgrid", IEEE Systems journal, vol 10(1),pp.97-105,2016.

[23] S.Ganguly, T. Mahoto , V.Mukarjee "Integrated frequency and power control of an isolated hybrid power system considering scaling factor based fuzzy logic controller", Energy reports, pp.94-108,2017.

[24] M.H. Khooban et.al "A robust adaptive load frequency control for microgrids", ISA Transactions, vol 65, pp.220-229,2016.