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Abstract—Modern distribution network with trends of growing
penetration of renewable energy systems involve uncertainty and
variability. This results in the use of battery energy storage
technologies to mitigate the uncertainty and variability associated
along the renewable energy resources and enhance network
performance. This paper presents the optimal siting and sizing of
battery energy storage systems (BESS) in an electrical network.
The objective is to reduce total network power losses and provide
voltage support to the network. Multiple optimization techniques
are applied to reduce the time taken to obtain the proper site and
size of battery energy storage systems. The optimal siting and
sizing are necessary to avoid huge investments in power systems.
Optimization Techniques such as particle swarm optimization
(PSO), reducing variable trend search (RVTS) and differential
evolution (DE) are discussed briefly. In the first stage, we apply
the proposed optimization techniques for obtaining the optimal
sizing and siting of BESS. Then in second stage, we connect
BESS according to the solution obtained from the first stage and
load flow analysis is done using MATLAB. The IEEE 33 bus
radial distribution system is implemented and results of siting
and sizing along with reduced losses and voltage support across
each bus using various optimization techniques are compared.

Index Terms—Battery Energy Storage System (BESS), Siting,
Sizing, Artificial Intelligence (AI), Particle Swarm Optimization
(PSO), Differential Evolution (DE), Reducing Variable Trend
Search (RVTS).

I. INTRODUCTION

Varying demand profiles and increased integration of renew-
able energy systems into the power system, guide towards the
incorporation of BESS as a fast-acting measure to maintain the
variability in the demand and generation [1]. The BESS with
the ability to handle renewable energy fluctuations, to incor-
porate peak shaving so as to reduce higher investment cost in
new equipment, postpone up-gradation of network, capability
to handle voltage and frequency variations and potential for
improvement of power quality makes it a significant part in
power system to enhance reliability and stability of grid [2].

The BESS is associated with huge capital investment,
installing them at each bus is not viable, also inappropriate
location effects the losses. Inappropriate sizing at an optimal
location would lead to voltage and power flow violations [3].
Hence, optimal siting and sizing of BESS are crucial.

In literature, optimal siting and sizing are performed by
using different analytical, mathematical optimization and Al
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methods for meeting various objectives. In [4], heuristic
method based on voltage sensitivity is suggested for finding an
ideal number, size and location of ESSs by making different
clusters so as to reduce the under-voltage and over-voltage in
the distribution network, then overall cost is considered for
determining the best optimal solution. Irrespective of number
of clusters formed, ESSs are positioned at critical buses.
In [5], network reconfiguration is proposed. The exact convex
model of optimal power flow and Benders decomposition are
utilized for determining the optimal size and site of BESS,
for minimizing the voltage deviations, line congestion, cost of
supplying loads and investment costs of ESSs. This is achieved
by dividing the problem as Master problem and a number of
subproblems. In [6], the optimal placement of BESS to reduce
reverse power flow by using voltage profile analysis for differ-
ent scenarios of PV installation cases is discussed. In [7], the
optimal allocation of BESS with integration of solar generation
is considered. In this network impedance matrix is utilized, for
improving voltage profile. In this, the solar source is modeled
as a current source and BESS current is modeled as a function
of solar current. The time taken for optimal allocation is also
justified. In [8], backward forward sweep optimal power flow
is proposed for solving the problem, in this non-linear AC
power flow equations are transformed into linear power flow
by linear programming problem. Then an economic assess-
ment is provided for distributed and centralized energy storage
in low voltage grids. In [9], mixed-integer linear programming
is utilized for obtaining an optimal size of ESS and Monte
Carlo simulation is used for interpreting random uncertainties
to determine ESS investment cost, microgrid operating cost
and its reliability.

In [10], Genetic Algorithm (GA) based bi-level optimiza-
tion method is proposed for minimizing voltage fluctuations
raised by the inclusion of PV. In [11], at first stage GA
optimization, is used to find the allocation parameters and
in the second stage, the AC power flow is evaluated for the
combined voltage deviation and total power losses. In [12],
for obtaining more profits in Discos the siting and sizing
of ESS and DG are determined simultaneously. The active
and reactive power are included during planning. Modified
PSO is used for solving the problem. In [13], a two-layer
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problem is presented, in the first stage power and energy
capacities of BESS calculated using Mesh Adaptive Direct
Search, these calculated values are used in the second stage for
finding the operation costs of microgrid with improved PSO.
In [14], siting and sizing are modeled as a multi-objective
model and weighted minimum module ideal point based on
PSO are proposed to find the optimal solution. In [15], three
algorithms improved firefly, original firefly and gravitational
search are applied and compared, to obtain the site and size
of BESS. The optimization techniques are used to mitigate
voltage fluctuations caused with the integration of photovoltaic
based distribution generation.

In [10] — [15], a number of optimization techniques are
proposed for optimal location and sizing of BESS.

This paper emphasizes on applying three different opti-
mization techniques PSO, RVTS and DE for optimal siting
and sizing of BESS. The total power losses and voltage
deviations are minimized, by formulating this suitably as a
multi-objective problem of optimization.

The paper is organized in the following sections, section
2, discusses PSO, RVTS and DE in brief. In section 3, the
problem formulation and methodology are discussed. Results
for optimal siting and sizing of BESS for IEEE 33 bus
system are presented in Section 4. In section 5, the results
are discussed and conclusions are derived.

II. OPTIMIZATION TECHNIQUES PROPOSED FOR SITING
AND SIZING

A. Particle Swarm Optimization (PSO)

The siting and sizing of BESS in the network to reduce
losses without variation in the voltage are considered to
be a nonlinear complex problem. PSO is used to address
multiple optimization problems such as reactive power flow
and voltage control, economic dispatch, state estimation, fuel
cost minimization and power loss minimization [16].

PSO is a population-based stochastic optimisation approach,
motivated from flocking of birds or fish schooling that are
looking for food. Each particle of PSO applies the concept
of social interaction such that they get to benefit from the
personal experience and findings of the other particles in
the population [17]. Every particle is a potential solution,
which is flying throughout multidimensional space based on
its own flying experience and that of neighbouring particle
experience such that each particle can fly only in feasible areas,
by saving in memory their personal best position and best
position attained by any particle in the population as global
best [18]. The movement of particles from one position to
other is controlled by its velocity.

viy1 = w * v; + c1 k rand() * (pig — Tiq)

+cp # rand() * (Pgd — Zid)

(D

Tidy1 = Tid + Vit1 )

where
v; — velocity

w — inertia constant

c1,co — acceleration constants

pia — personal best position

DPga — global best position

T;q — current particle position

rand() — random function this generates a random
value between [0 1].

The inertia constant influences the particle movements in
the same direction and with the same velocity in order to ob-
tain convergence. Also, values considered for inertia constant
determine the search process of particles. The value of inertia
constant could be constant or dynamically changing. A higher
value of inertia leads to global search and lesser value leads to
local search, so at the start of PSO, inertia value is considered
to be 1 reducing it to 0.4 during the process [19]. But in this
paper, we use a constant value for inertia. The acceleration
constants (c; and co) depict speed of flying particles towards
the optimal location. ¢; and c; are considered to be 2 for
obtaining optimal solutions [20].

B. Reducing Variable Trend Search (RVTS)

RVTS is a multi-dimension search optimization technique
which depends on a number of control variables. It attains an
optimal solution by reducing the search space while assigning
a certain value to the control variables or by varying limits of
control variable.

RVTS mimics the modified decision-making methodology
of the Delphi process. Delphi is a structured communication
technique, where it requires panel of experts for decision
making [21]. In [22] for RVTS, a group of experts is shortlisted
related to the field, based on a criterion, these experts are
sorted and top experts are selected to discover an optimal
solution after consultation. Based on the opinions of these
experts, the search proceeds in the direction of a common idea.
An analysis is performed on views provided by experts for
finding an optimal solution. Based on consent and difference
of views we derive to two possible results for different control
variables. Firstly, the control variable on which all the expert
views coincide, that variable is assigned the common value
given by experts and is discarded from the further process.
Secondly, the control variable on which consensus does not
arrive. Then the limits of the control variable are varied based
on the values provided by experts. The values of the control
variable can also maximize instead of minimizing, but should
not exceed the limits considered initially.

One iteration of RVTS is complete and the complexity of
the problem is reduced because some of the control variables
are assigned a certain value and eliminated from the further
process, where other remaining variables limits are minimized.
This process is repeated again until all the variables are
eliminated with a certain value allotted to them so that views
of all experts consent to an optimal solution.

C. Differential Evolution (DE)

DE finds a number of applications in power system like
reactive power optimization, losses minimization and voltage
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regulation [23]. DE is a population-based direct search method
similar as GA with an ability to handle non-linear and non-
differential functions [24].

DE utilizes the three GA operators viz: selection, crossover
and mutation with some variations. After random generation
of "N’ number of vectors, in mutation, the difference of two
population vectors is multiplied with a mutation weight factor
(F) and then added to a third population vector to generate a
new mutated vector according to equation 3 [24]. This mutated
vector is now mixed with initial vectors to form a new vector
called a trial vector using equation 4, this process is crossover.
For selection, any method which utilizes the greedy selection
criterion is used.

Si.c41 = Tr1,¢ + F * (zr2,¢ — Tr3,6) 3)

Where

F — mutation weight factor

F>0and Fel02.

T1,72,13 — are random indexes of vectors
ri,rars € {1,2,..,N}.

- _ { vji,at1  if(randb(j) < CR) or j = rnbr(i)
Ui Gl = zji,c  tf(randb(j) > CR) or j # rnbr(i)
“)
Where
j=1,2,..,D.

CR — is the crossover constant € [0 1].
randb(j) — random number generator in j" iteration
randb(j) € [0 1]
rnbr(i) — is the randomly chosen index € 1,2, ..., D.
Different comparison’s mentioned in [25] with respect to
amount of time, diversification, premature convergence by
each method and advantage of using analogy of human in-
telligence in [22] lead to selection of above techniques. Some
changes are introduced in the DE technique so that the ideal
placement of BESS is not on the same bus. Mutation weight
factor (F) in equation (3) is taken as 0.5 and the crossover
constant (CR) in equation (4) is considered as 0.55.

III. PROBLEM FORMULATION AND METHODOLOGY

The aim of the problem is to optimize the site and size
of BESS in the power network, such that total losses in the
network are minimized with optimum voltage control. The
proposed problem is solved in two stages, in first stage the
optimal allocation of the BESS is acquired by using multiple
optimization techniques mentioned above. In second stage,
we run the distribution load flow until the constraints are
satisfied for obtained locations and size. BESS connected to
grid are associated with power electronic converters. These
power electronic converters are usually of high efficiencies.
So generation and absorption of reactive power will not effect
the energy-reservoir level : this assumption is followed [26].

Voltage and total power losses, these two variables are
considered to determine the objective in order to handle the
distribution network. The objective function is formulated as
shown equation (5). The first part of the equation considers the

voltage variation at all nodes in the network and defines impact
of BESS on voltage deviation. The second part considers the
impact of BESS on total power losses.

0bj(F) = w1 Y (Vi = Vyes)? + w2 Pries (5)

where
V; — voltage magnitude across bus i
Vier — voltage magnitude across reference bus
n — total number of bus in system
Prioss — total power loss
w1 and wy are the objective function weights such
that sum of wi + we = 1.

The values of w; and ws are considered to be 1 and 0.003,
such that both voltage deviation and power loss have same
weightage to normalize the objective function.

A. Constraints

The following are two optimization constraints which are
to be satisfied along with objective function:

1) Voltage constraint
The voltage across all the buses must lie within the
maximum and minimum limits.

Vmin S Vz S Vm,ax (6)

Where V; is the voltage across the corresponding bus,
Vmin 1s considered to be the minimum voltage across the
bus as 0.89 and V,,,,, is considered to be the maximum
voltage across the bus as 1.0

2) Total power loss constraint
The total power loss in the network after installing BESS
should be less than before installing BESS.

PTloss < 1OO%)P)actual (7)

Where
Prioss — total power loss with BESS
P,ctvai — total power loss without BESS

In MATLAB programming respectively, the optimization
methods PSO, RVTS, DE with the above-mentioned lim-
itations, the backward/forward sweep load flow for radial
distribution system is applied and solved.

IV. CASE STUDY

The IEEE 33 bus radial distribution system, implemented
in MATLAB environment, is shown above in Fig. 1. This
system is considered to illustrate the proposed optimization
techniques. It consists of 33 buses and 32 lines with current
carrying capability of 400A for lines between node-1 to node-
9 and other lines with capability of 200 A. The base voltage
is taken as 11KV. The total active and reactive power load
of 33 bus system is 3,715 KW and 2,300 KVAr, respectively.
Corresponding to the total load on the system, the bounds
of BESS is considered to be in between 60MW to 70MW.
Without including BESS the total losses in the network are

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 27,2025 at 10:55:07 UTC from IEEE Xplore. Restrictions apply.



H
o
3
o

006

Fig. 1. IEEE 33 bus radial distribution system

281.5691 MW and the voltage magnitude range is between
0.88 to 1.0 for all the buses.

On applying PSO, RVTS, DE algorithms for obtaining
the ideal location and size of BESS, the results for the
aforementioned study case is provided in table I. From table I,
the total losses are reduced significantly and voltage support
is also provided with placement of BESS. The DE algorithm
provides the optimal solution with objective function value
0.9056 and success rate of 100% in comparison with other
two optimization techniques.

TABLE I
OPTIMAL SITING AND SIZING RESULTS FOR PSO, RVTS AND
DE

Method Bus No | Average Voltage Average
(BESS total range Objective
Capacity) losses Function

value

PSO 17(68MW) | 246.25 0.89-1.0 | 0.9192
32(6TMW)
14(70MW)

RVTS 18(70MW) | 254.9844 | 0.89-1.0 | 0.9580
9(66MW)
31(62MW)

DE 16(70MW) | 243.6149 | 0.89-1.0 | 0.9056
17(70MW)
18(70MW)

Each optimization technique is executed 10 times. Compar-
ison of time taken by the optimization techniques is shown in
table II. From table I, it can be observed that the DE algorithm
takes minimum time to determine optimal location and size.

TABLE 11
TIME COMPARISON OF PSO, RVTS, DE. FOR OPTIMAL
LOCATION AND SIZING

Method | Average time | Minimum Time
PSO 13.4622282 12.889543

RVTS 173.3954766 56.162711
DE 4.1832028 3.994318

Initially, the optimal siting and sizing of BESS was obtained
through different optimization techniques. As DE algorithm
gave optimal solution for sizing of BESS, the other optimiza-
tion techniques were again executed to find the optimal siting

only with obtained results. The optimization techniques were
applied only for obtaining the optimal location. Nodes 16,
17, 18 were obtained as optimal locations by all optimization
techniques with an objective function value of 0.9056. After
including BESS at the optimal nodes, the total network power
losses reduced to 243.6149 MW and voltage magnitude at all
nodes was in the range of 0.89 pu and 1.0 pu, for PSO, RVTS
and DE respectively. The comparison of the average time and
the minimum time taken for siting of BESS for 10 executions
is presented in Table III.

TABLE III
TIME COMPARISON OF PSO, RVTS, DE. FOR OPTIMAL
LOCATION
Method | Average time | Minimum Time
PSO 13.8431308 12.856147
RVTS 6.6577493 6.124815
DE 5.0251901 4.694045

V. CONCLUSION

A performance analysis of PSO, RVTS and DE in siting and
sizing of BESS application for reduction of total power losses
along with voltage support to the network is assessed. Then
considering the optimal size obtained from DE was applied
as an input to find optimal BESS location through different
optimization techniques. For this two-stage method is applied,
with optimization techniques being applied in the first stage to
achieve the location and size of BESS. The second stage, as-
sesses the objective function, through backward/forward sweep
distribution load flow based on stage one. The optimization
techniques and backward/forward sweep distribution load flow
are performed in MATLAB.

The IEEE 33 bus system is utilized for case study. The al-
gorithms have been compared based on the objective function
value and the amount of time taken for providing the optimal
solution. From, case study, DE takes minimum amount of time
and provides a optimal solution compared to the other two
optimization techniques.
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