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In the recent past, significant growth in renewable generation and integration with grid have resulted
in diversified experiences for planning and operation of modern electric power systems. Electrical
power system planners and operators have to work with technical issues of photovoltaic and wind
resources integration into the grid to provide clean, reliable, safe, and affordable energy for people
around the globe and also to minimize the use of fossil fuels. Wind energy is a fairly dependable source
of renewable energy for generating electricity in spite of its highly non-linear and chaotic nature. But
the prediction of such data demands highly non-linear temporal features. A new robust hybrid deep
learning strategy (HDLS) is developed for enhanced prediction accuracy by preprocessing the raw input.
The most effective signal decomposition technique, ensemble empirical mode decomposition (EEMD)
is used for preprocessing. This technique decomposes the input into finite intrinsic mode functions and
a residue after which training input matrices are established. In the next step, each Deep Boltzmann
Machine (DBM) model is constructed by stacking four restricted Boltzmann machines (RBM). The
training input matrices formed by each of the extracted intrinsic mode functions and a residue are
applied to each DBM. Then the summation of all the predicted results is evaluated to attain the final
result of time-series. For adequate performance assessment, hybrid deep learning strategy is developed
for analyzing wind farms in Telangana and Tamilnadu. Finally, the proposed deep learning strategy is

found to give more accurate results in comparison with existing approaches.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Renewable energy sources (RES) have been playing a vital role
in advanced power systems [1]. These renewable sources such
as hydro, solar, wind, and geothermal are capable of reducing
greenhouse gases emission to meet the primary objectives of
the Paris agreement [2]. To facilitate the enhanced integration
of RES, it is necessary to deal with vulnerabilities caused to the
grid because of the intermittent and uncertain nature of these
resources. Wind energy has been emerging rapidly in the renew-
able energy generation technologies around the world [3]. As per
the global wind statistics-2018 released by global wind energy
council (GWEC), industry installed wind power was 51.3 GW in
2018 [4]. This brings the total global wind installed capacity to
591 GW. Fig. 1 shows changes in new installations from year
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2017 to 2018. Electricity dealers and grid engineers need to know,
hour-ahead and day-ahead RES power generation for system
balancing, reserve management, scheduling and commitment of
generating units [5,6]. This has encouraged many utilities and re-
searchers to develop accurate and reliable prediction techniques
for wind speed and power forecasting [7].

For acquiring comprehensive knowledge about wind speed
forecasting approaches in literature, a brief comparison of fun-
damental approaches is presented in Table 1. Based on the time-
horizon, wind speed forecasting is categorized into four types:
very short-term (less than 30 min), short-term (from 30 min
to 6 h), medium-term (from 6 h to 24 h) and long-term fore-
casting (from 1 day to 7 days). The current wind speed pre-
diction methods are broadly categorized into five approaches:
persistence method, physical method, statistical method, arti-
ficial intelligence (AI) models, and hybrid models. Persistence
method is most popularly used as a benchmark method among all
prediction techniques. This method is the most straightforward
approach and states that future wind speed value (w(t+1)) is
the same as the past hour predicted wind speed value (w(t)) [8].
It can exhibit the best performance for short-term forecasting
applications but as the forecasting time horizon increases, its
error value also increases rapidly. Physical method depends upon
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Fig. 1. The changes in new installations from year 2017 to 2018 [4].

Table 1
Crisp comparison of main forecasting approaches of wind speed in literature.

Forecasting approach Advantages

Disadvantages

Time-series models
(Persistence, AR, ARMA,
ARX, ARIMA, GARCH
etc.) [8-11]

available meteorological data

- No need of expert skill

- Determination of prediction intervals are very simple,

accurate for short-term forecasts.

- Most reliable forecasting approach because it utilizes readily

- These approaches requires large number of past input values

- Intermittent behavior of prediction parameter cannot
captured perfectly
- Less accurate for long-term forecasts.

NWP approach [2] Best suitable for long-term forecasting

- Not applicable for short-term forecasting due to
computational complexities
- Difficult to get physical input data.

SVM-based approaches
[12,13]

- Exhibits better generalization capabilities.

- Requires longer training time

- Consists of complex optimization structure
- Model accuracy rely on the proper tuning of parameters.

ANN-based approaches
[14-19]

- Adaptable to wide range of parameters

- Highly non-linear models like wind speeds

- Knowledge based systems and learns through the training

process

- ANNs will react to even the smallest change in data.

- Majority of the models are shallow in nature

- Wind uncertainty properties extraction is indirect
- Need huge training data-set and optimal training algorithm

- Very difficult to design and needs large amount of
computational resources.
- Need monotonous hand-engineered features

Fuzzy-logic approaches

[20-23] uncertainties and non-linearities

- Improves the accuracy of forecasts by rule-based learning

process

- Easy to implement and have the ability to deal with

- Exhibits weak learning ability

- Model becomes complex and computational time also
increases.

- Comparatively less complex approaches and acceptable for

models that are tough to design precisely.

Artificial intelligence
based hybrid approaches
[24-37]

- These approaches will utilize the superior features of the
above individual forecasting methods in order to reduce the
effect of limitations, computational complexity and obtain
better forecasts in terms of robustness and accuracy

- These methodologies can be applied to larger systems.

- Designing and training of these type of forecasting
approaches are challenging

- The input data must be preprocessed for enhanced
generalization capability.

parametrization that utilizes historical meteorological data such
as wind speed, wind direction, temperature, pressure, humidity,
surface roughness, and obstacles. Numerical weather prediction
(NWP) is a simplified physical prediction technique. Prediktor
is the first physical wind forecasting model implemented by
national laboratory for sustainable energy, Denmark. Previento,
LocalPred, and HIRPOM (HIRlam POwer prediction Model) are
the other physical models which have also utilized NWP inputs.
Physical methods require complex mathematical modeling that
needs considerable computational resources and high execution
time. Therefore, physical methods are most suitable for medium-
term and long-term predictions [20]. Statistical method desires
no mathematical modeling and utilizes available past measured
time-series data along with NWP inputs for forecasting. This
method is fairly straightforward and easy to develop and can pre-
dict accurately in comparison with the physical method. The most
extensively used statistical models are auto-regressive moving

average (ARMA) model and its variants like auto-regressive in-
tegrated moving average (ARIMA), recursive-ARIMA [9,38]. These
statistical models can produce the best performance for short-
term wind speed forecasting. In [10], an accurate wind speed
prediction model is implemented based on ARIMA, Kalman filter
(KF), and artificial neural network (ANN). This KF-ANN model
outperforms other reported conventional ANN, ARIMA based
models. A computational intelligence approach is developed
in [21] using ARIMA and neuro-fuzzy system (NFS). The parame-
ters of NFS-ARIMA model are tuned by employing hybrid learning
algorithm. In the Cesme and Bandon case study [11], the authors
have presented the results of polynomial auto-regressive (PAR)
models for day-ahead prediction. The results have shown that
PAR models outperformed all other reported models.

Recently, artificial intelligence (Al) techniques have gained
global attention in providing solutions to solve real-world prob-
lems [41]. The principal merits of Al techniques are their potential
to elicit patterns and detect the trends from nonlinear data [14].
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Table 2
Comparison between different decomposition techniques.

Decomposition technique Merits

Demerits Reference number

Wavelet decomposition e Able to decompose complex signals better
(WD) than conventional filters

e Non-adaptive in nature

e WD can only decomposes lower frequency [36]
subseries

Wavelet packet
decomposition (WPD)

e WPD can decompose both lower frequency
subseries and higher frequency subseries

e Non-adaptive in nature

e Basic wavelet and decomposition level [28]
should be carefully selected based on the
application
EMD e Adaptive in nature e Mode-mixing problem [39]
EEMD e Adaptive in nature and effective e Requires more computational resources [40]

e Able to solve mode mixing problem

Because of the above reasons, most of the utilities and global
researchers are using Al techniques for wind speed time-series
prediction applications. Artificial intelligence (Al) is also called
as machine intelligence. Many approaches and tools are used in
Al includes ANN, fuzzy logic approach, evolutionary computa-
tion, and machine learning. ANNs are widely accepted models
among all Al techniques for wind speed time-series prediction
applications because they can handle non-linearity more con-
structively [15]. The most commonly used ANNs are feed-forward
neural network (FFNN), recurrent neural network (RNN), radial
basis function neural network (RBFNN), elman neural network
(ENN) and fuzzy neural network (FNN) [16,26].

For improving prediction accuracy further, data decomposition
techniques are combined with these ANNs [42,43]. For instance,
the hybrid model based on the wavelet packet decomposition
(WPD), density-based spatial clustering of applications with noise
(DBSCAN), and ENN is implemented and investigated. The re-
sults have shown that WPD-DBSCAN-ENN approach outperforms
WPD-ENN and single ENN models [28]. The EEMD method was
reported in the literature for improving the forecasting perfor-
mance of SVM. Case studies show the EEMD-SVM hybrid model
is superior to EMD-SVM hybrid model and single SVM model
for monthly wind speed forecasting [39]. Combination of EEMD,
WNN, and Kernel-based fuzzy c-means clustering has been eval-
uated in [40]. The authors have removed residue component,
the first IMF component (IMF1) and considered only remaining
IMF components which can lead to poor forecasting performance.
Table 2 gives the differences between the EEMD method and
other decomposition techniques such as EMD, wavelet decompo-
sition, and WPD. The ANNs need a number of neurons to handle
the diversified problems. As the number of neurons increases,
the forecasting accuracy is reduced. For accurate forecasts and
reliable operation of power system, fuzzy logic approaches are
combined with the ANNs to establish the hybrid soft comput-
ing techniques like FNN, adaptive neuro-fuzzy inference system
(ANFIS) [29]. In a case study, wind forecasting was performed
using a combination of empirical mode decomposition (EMD)
and ANFIS model. The hybrid method thus implemented out-
performed AR model, support vector regression (SVR) model,
and individual ANFIS model based on the root mean squared
error (RMSE) values [23]. Apart from these models, evolutionary
optimization techniques such as genetic algorithm (GA), particle
swarm optimization (PSO) etc. have been employed for tuning
the weights and biases of ANN model to enhance the learning
of the network and to reduce computational time of the imple-
mented model [30,44]. For example, in a case study of predicting
emergency supply-demand time-series, RBFNN architecture was
determined by GA, and modified adaptive PSO algorithm initiated
the training parameters of the network. The type-2 fuzzy infer-
ence systems were optimized using GA and PSO for solving the
Mackey-Glass time-series problem in [31]. The above-reported

model may trap local minima for chaotic wind speed prediction
applications.

The Al based models reviewed in the literature possess the fol-
lowing disadvantages: (1) The majority of the models are shallow
in nature. In other words, most of the ANNs possess only one
single hidden layer in the network architecture [45]. (2) Wind
uncertainty properties extraction is indirect in a majority of the
approaches. (3) Some of the models need monotonous hand-
engineered features and prior awareness of that particular field.
In order to deal with demerits of ANNs, machine learning tech-
niques and deep learning architectures such as deep belief net-
work (DBN), denoising auto-encoder (DAE), stacked auto-encoder
(SAE), stacked DAE (SDAE), and extreme learning machine (ELM)
have been developed [46,47]. Further, deep learning techniques
were employed for numerous real-world applications in the re-
cent past [32]. On the other hand, hybrid models have also
attained global attention in recent years. Nowadays, around 90%
of the developed wind speed and power forecasting approaches
are hybrid models. These hybrid models can be implemented by
combining the superior features of the above mentioned individ-
ual models [33]. The deep neural network and transfer learning
algorithms are combined for enhanced short-term wind power
prediction. The developed model is tested against existing ap-
proaches in terms of RMSE, MAE and standard deviation error
(SDE) [34]. A deep learning strategy employing long short-term
memory neural network, ENN and empirical wavelet transform
is implemented for wind speed forecasting. The results obtained
are compared with eleven different models for validation of the
developed model [35]. In the China and Australia case study, the
hybrid model was implemented based on the combination of WT,
DBN, and spine quantile regression (QR). Through this developed
hybrid approach, the nonlinear feature of wind speed series is
separated using layer-wise pre-training rule [36]. Developing the
wind speed prediction model is a complex practice as it depends
mainly on the unpredictable nature of wind flow. And most wind
farms are relatively new and sufficient performance analysis of
these wind farms is needed for building a robust forecasting
tool. Although there are numerous approaches available for wind
speed forecasting as reported in the literature, there is still a
tremendous need for a method that promises high prediction
accuracy, and low computational burden.

In this paper, an approach for short-term wind speed forecast-
ing is developed, which combines the improved data decomposi-
tion technique that is ensemble EMD (EEMD) method and deep
learning architecture such as deep boltzmann machine (DBM).
EEMD technique is used for decomposing the original input data
into several IMFs and a residue. Then deep learning model is built
based on the prediction horizon. After that, hybrid deep learning
strategy (HDLS) is employed for predicting the final time-series
forecasts. Performance evaluation is done based on the results
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Fig. 2. Acquired IMFs and a residue of EEMD technique for one month window in Telangana wind farm [48].

from the real-world datasets and in comparison with the eleven
benchmark models.

The main technical contributions of this paper employing hy-
brid EEMD-DBM model are outlined as below:

o Evolution of the powerful hybrid deep learning strategy
(HDLS): The powerful HDLS for time-series prediction is
developed for enhanced accuracy forecasts. This approach
is implemented using EEMD method and DBM network.
With EEMD technique, better decomposition of raw wind
speed data is attained. DBM networks are utilized for their
ability to extract high-level abstractions from non-linear
input dataset.

e Focusing on the better extraction of features from
dataset: A combination of EEMD technique and DBM net-
work is employed for time-series prediction. In the earliest
stage of this hybrid approach, the accurate noise-assisted
data decomposing technique of EEMD is used for decom-
posing the original data into finite IMFs and one residue.
After de-noising the data using EEMD, the training input
matrices for different DBMs utilizing each IMF and residue
are established. This DBM networKk is trained by fast deep
learning algorithm which is contrastive divergence (CD)
algorithm. This deep learning algorithm can extract useful
features in the training dataset for enhanced time-series
prediction.

o Efficient performance assessment criteria: The efficacy
of the HDLS is analyzed through experimental validation
using the original data from wind farms in Telangana
and Tamilnadu, India. The experimental results of hybrid
EEMD-DBM method are extensively compared with exist-
ing approaches in terms of statistical indices.

e Enhanced accuracy centric strategy: The proposed HDLS
is easy to develop and it delivers more accurate results in
comparison with the existing approaches.

The paper is organized as follows: Section 2 describes wind
speed de-noising technique. Section 3 reports all aspects of deep
Learning Model. Section 4 presents a brief outline of hybrid
deep learning strategy for time-series prediction. Section 5 gives
thorough experimental evaluation based on original data and the
conclusions are summarized in Section 6.

2. Ensemble empirical mode decomposition

Empirical mode decomposition is the main part of the Hilbert-
Huang transform (HHT) that was developed in 1998 [49]. The

wind is random, non-stationary and intermittent in nature be-
cause of external aspects such as weather, season, day, time,
and random factors. EMD is used for decomposing the raw wind
speed signal into finite intrinsic mode functions (IMF;) and a
residue (r,), which indicates the trend of original wind. An IMF
is a function such that in the whole dataset, there is only one
extreme between zero crossings and at any point the mean value
must be zero. But EMD technique encounters the mode mixing
phenomenon too often. To overcome this mode mixing problem,
ensemble EMD (EEMD) technique is developed. EEMD technique
can limit the mode mixing phenomenon of EMD, Gaussian white
noise is appended to raw wind speed time-series data [50]. In this
accurate noise-assisted data decomposing technique of EEMD,
better decomposed IMFs are attained and the smoothness of IMFs
is significantly increased so as to enhance prediction accuracy.
The decomposed wind speed time-series signal is as shown in
Fig. 2.
The EEMD procedure is outlined below:

Step 1 Compute new noise-added time-series signal by append-
ing Gaussian noise signal to raw wind speed signal em-
ploying equation (1) is as follows:

Xi(t) = x(t) + &'(t) (1)

where ¢i(t) is Gaussian white noise. 4
Step 2 The generated new time-series signal (x'(t)) is decom-
posed into finite IMFs and a residue using Eq. (2) .

N
X(t) =Y IMF(t) + 1(t) 2)
i=1

Step 3 Then repeat steps (1) and (2) using different Gaussian
white noises to acquire corresponding IMFs. The number
of reiterations is called an ensemble number of EEMD.

Step 4 Finally, evaluate average of all IMFs and average of
residues to get final result.

3. Deep learning model

Recently, Al models such as ANNs have been employed on a
large-scale for wind speed forecasting because of their general-
ized ability of learning from historical data. These ANNs may not
deliver the accuracy that may be needed as most of the ANN
architectures are shallow in nature. To overcome the disadvan-
tages of the ANNs, deep learning architectures are developed.
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Visible layer (v)

Fig. 3. The architecture of restricted boltzmann machine [36].

Deep learning can extract high-level abstractions from the non-
linear input dataset provided for learning. The primary objective
of deep learning is that monotonous hand-engineered features
can be easily substituted by effective deep learning algorithms in
an unsupervised way.

Restricted boltzmann machine (RBM) is a stochastic generative
NN which comprises a visible layer (v) and a hidden layer (h)
as shown in Fig. 3. As the name suggests, RBM is a restricted
NN which has no visible-visible and hidden-hidden connections.
W;; is the weight connectivity matrix between visible and hid-
den nodes. b and c are the biases of visible and hidden layers
respectively. RBM can learn the probability distribution over the
input data training through unsupervised learning. Hence, RBM
is used for real-time applications like data classification, pat-
tern recognition, feature extraction, etc. The deep belief network
(DBN) belongs to the family of deep neural network (DNN) which
consists of multiple layers of hidden nodes. The nodes in each of
these hidden layers are not connected with each other. The DBN
is stacked by multiple RBMs and it embraces a layer-wise training
algorithm to find a solution to a problem. This DBN is employed
for separating different features from input data in unsupervised
training. Fig. 4 represents the general structure of the DBN. The
total training process of DBN is mainly divided into two parts.
(a) Pre-training, (b) Fine-tuning.

In pre-training, the primary objective is to initialize the net-
work parameters employing layer-by-layer greedy pre-training
technique. Network parameters which need to be initialized are
connecting weights between layers and bias values of each layer
nodes. The pre-training algorithm considers each successive pair
of layers in the DBM as a RBM (Fig. 3) whose energy function
value is determined by Eq. (3)

E(v,h|0)= —Zbivi_zcjhj_zzviwijh] (3)

i=1 j=1

where 6 = {wjy, b;, ¢j} is the parameter of RBM, v; is state of
ith visible node, h; is state of jth hidden node. wy; is connection
weight between v; and h;; b; is bias of v;; ¢ is bias of h;.

From energy function, the joint probability distribution of (v,

h) is computed using Eq. (4)

o—E(v.hI0)
PR 0)= = (4)
where Z(6) is partition function or the normalized factor.

But only the visible variables (v) are actually observed, there-
fore, the marginal distribution (also known as likelihood function)
of the joint probability distribution P(v | ) can be calculated
from Eq. (5)

—E(v,h|6)

e
P(vw):;W (5)

hi (Vi)
RBM Layer k
hir (Vi)
w' W .
hl (VZ) ..........
W' |wW RBM Layer 1
hy (v1) >
wT w RBM Layer 0

Fig. 4. General structure of the deep boltzmann machine with k number of
RBMs stacked.

The RBM parameters are efficiently trained and updated by
minimizing the negative data log-likelihood function on the train-
ing dataset, which is given by Eq. (6)

min 1(6,D)=— ) logP(v.0) (6)
veD

where 6 = {wjy, b;, ¢j} is the parameter of RBM and D is the
training dataset.

The gradients of the negative log-likelihood over the training
samples are given by Egs. (7), (8), and (9)

d logP(v | 0
M = <vihj)dam - (Uihj>model (7)
d Wij
0 logP(v | 9)
a1 — \Vildata — \Vi/model 8
3b: (Viddata — (Vi)model (8)
0 logP(v | 9)
gai = <hj)data - (hj>model (9)
G

where ( - )4qq is the expectation over the dataset, and ( - )moger iS
the expected value determined in the model.

The main objective of the RBM learning algorithm is to com-
pute the value of the parameter 6 that decreases the energy
function. For solving the problem of long training time, an effi-
cient and fast learning approach for training the RBM parameters
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Fig. 5. Gibbs sampling on CD algorithm [51].

is employed. It is called contrastive divergence (CD) algorithm.
The CD is an unsupervised learning algorithm that uses an iter-
ative process called Gibbs sampling (Fig. 5). The principal idea
of CD algorithm is initializing the visible layer with the training
data and then executing the Gibbs sampling. For training the
multiple layers, the first layer is trained and freezes weights
initially. Then it employs the conditional distribution of output
as input to adjacent layer and this process is carried on to train
the subsequent layers in the network.

The parameters of RBM are updated during CD learning pro-
cess as below:

AW = (v - h® — v h(V) (10)
Ab — ,}(Vtm _ vm) (11)
Ac = n(h<°> - h(”> (12)

where 7 is the learning rate. By employing a fast learning CD algo-
rithm, the updated values of (w, b, ¢) and remaining parameters
are obtained swiftly. Therefore, the pre-training of RBM network
is completed with this.

After completion of the pre-training phase, all the parameters
are well-initialized for each RBM network so as to form the initial
framework of DBN. Then the next phase is fine-tuning of the
DBN for optimizing the parameters furthermore to achieve better
performance. The back-propagation (BP) algorithm is employed
to fine-tune the network parameters. The fine-tuning is a super-
vised learning approach and this process utilizes labeled data for
training the DBN. Eventually, this fine-tuning phase drives the
network to attain the global optima.

4. Hybrid deep learning strategy for time-series prediction

The hybrid deep learning strategy (HDLS) is a combination
of EEMD method and Deep Boltzmann Machine (DBM). DBM is
formed by combining DBN and RBM. The wind speed data of
the 2014 year is totally recorded from distinct wind measuring
channels in the wind power plant. The dataset comprises of 52
560 wind speed data samples that were recorded every 10 min
of which around 144 samples are present on each day. At the
time of short-term forecasting, 52 374 samples are used for train-
ing the DBM while the remaining 186 samples are utilized for
testing. The wind data need to exclude outliers or unreasonable
data. The missing data points in dataset are interpolated by a
moving average filter for better accuracy. In the developed model
of HDLS, the wind speed time-series data is decomposed into
finite IMFs and one residue by employing EEMD method. DBM
is constructed using four RBMs. Each IMF and residue constitutes
the training matrices for each DBM. Then each DBM is trained by
a training matrix corresponding to each IMF and residue. Final
one-step prediction of wind speed is attained by summing up
all sub-series forecasts from each DBM. The developed HDLS can

effectively forecast the wind speed and is mainly inspired by two
features. (a) RBM and DBN are used for their ability to capture
the hidden characteristics of wind input data and for reducing
the dimensionality of the data. (b) RBM is utilized for its good
classification accuracy capabilities to infer part of its knowledge
from incomplete training data. Due to the above advantages of
HDLS, this model can be employed for prediction of other datasets
but the structure of the DBM may vary based on the type of the
problem. The general framework of the HDLS for time-series pre-
diction is presented in Fig. 6. The detailed step-by-step strategy
is presented below:

Step 1 De-noising: EEMD technique is employed for decompos-
ing the historical wind speed into several IMFs and a
residue.

Step 2 Establish training input: From each IMF and residue, es-
tablish one training matrix as the input for the DBM.

Step 3 Build model: Construct each DBM model stacking four
RBMs for time-series prediction.

Step 4 Then each DBM is trained to attain the forecasted sub-
series result for each of the applied IMF and residue.

Step 5 Finally, evaluate the summation of all the predicted re-
sults to get the final result of time-series.

In this paper, wind speed forecasting has been performed
using two major case studies:

1. One-step ahead prediction using Molala gutta, Telangana
wind farm data with sampling period of 10 min

2. One-step ahead prediction using Kalimandayam, Tamil-
nadu wind farm data which are hourly samples

5. Analytical study using real time-series data

The original historical data is provided by wind farm located in
south India and it is used for training and testing the HDLS model.
The training, validation and testing dataset sizes required to
predict the wind speed are always different for different models.
But the same testing dataset is utilized for uniform comparison
purpose.

5.1. Model configuration and evaluation criteria

The four RBMs with the size of [50 50] are stacked for imple-
menting the DBM model. The HDLS model structure used for wind
speed prediction is 10-50-50-10-1. The best and optimal structure
of DBM is decided based on the problem; in other words, different
problems need distinct optimal structures of DBM and deter-
mining the structure of the network is an intellectual challenge
for all researchers. The deep learning toolbox is employed for
developing the DBM model. The learning rate of gradient descent
technique in the pre-training and back propagation (BP) tech-
nique in fine-tuning is assigned as 0.001. The number of epochs
for the BP algorithm is set as 500.

Performance evaluation of the developed HDLS model is de-
termined by employing two statistical error indices, such as the
mean absolute percentage error (MAPE) and root mean square
error (RMSE). They are expressed in Egs. (13), (14), and (15):

N
Zi:] |Xforecasted,i - Xactual,i|

MAE = (13)
N
1 o | Xectuati — X ;
MAPE = — Z actual,i \forecasted, i + 100 (14)
N i Xﬂctual,i
1 N
RMSE = N Z(Xforecasted,i - Xactual,i)2 (15)
i=1
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Fig. 6. General framework of hybrid

where N is wind data sample number, whereas Xorecasted,i and
Xactuar,i are forecast and actual wind speed respectively.

Performance improvement of RMSE, MAE, MAPE measures
between two approaches are assessed using Egs. (16), (17), and
(18) respectively.

RMSE{ — RMSE,
Pruse = T RMSE. (16)
1
MAE| — MAE,
Pyag = 'I]VIN:' (17)
1
MAPE; — MAPE,
Pyape = T MAPE. (18)
1

The accuracy of HDLS forecasting model is investigated in
pair-wise comparison with various benchmark models includ-
ing persistence method (PR), back propagation NN (BPNN), ENN,
wavelet NN (WNN), ensemble empirical mode decomposition
technique based BPNN (EEMD-BPNN), EEMD-ENN, EEMD-WNN,
support vector machines for regression (SVR), DAE, SAE, and deep
boltzmann machine (DBM). The implementation and analytical

sedalo WNdd-dINHA PLIqAH

?g*( Gutta :'\
74
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i (Virr)
RBM Layer k
hir (Vi)
>
)
. &“b
Q

deep learning strategy (HDLS).

study of all the above approaches are performed using MAT-
LAB R2012b software on an i7-3770 CPU 3.40 GHz, 8 GB RAM
computer [52].

5.2. Prediction results and discussion

The HDLS model is a combination of EEMD technique and DBM
network, which is employed for wind speed prediction. EEMD
technique is employed for decomposing the historical wind speed
into several IMFs and a residue. One input training matrix for each
DBM is established using each IMF and residue sub-series signals.
After establishing the training input, the four RBMs are stacked to
form the DBM model. After that, the hybrid HDLS model is built
using DBMs for prediction. Then each DBM is trained to obtain
forecast sub-series result for each IMF and residue. Finally, the
summation of all the predicted results are calculated to attain the
final result of time-series. The flowchart of HDLS is as shown in
Fig. 7.

The wind speed time-series prediction is significant for eco-
nomic and reliable operation of wind power plants. Although
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finite IMFs and a residue N

EEMD.
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Fig. 7. Schematic flow chart of hybrid deep learning strategy.

there are numerous approaches available for forecasting as re-
ported in literature, there is still a tremendous need for a model
that gives high prediction accuracy, and low computational bur-
den. Further, the validation of the implemented model is a sig-
nificant task and it is attained by performance validation (such as
MAPE, RMSE). Adopting distinct criteria for forecasting approach

may lead to distinct results every time and this is avoided through
validation of the model.

e Case study 1: Molala Gutta, Telangana wind farm data
with sampling period of 10 min

From the 10 min sampled original historical data, which is col-
lected from Molala gutta (Telangana) flat area wind farm located
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Table 3 Table 7
Statistical data of original wind speed for Telangana wind farm. Performance improvements by proposed model for Telangana wind farm.
Wind Minimum Maximum Mean Median Standard Performance Hybrid Hybrid Hybrid
input (m/s) (m/s) (m/s) (m/s) deviation metrics EEMD-DBM Vs.  EEMD-DBM Vs.  EEMD-AWNN
(m/s) EEMD-BPNN EEMD-ENN Vs.
X(0) 0.8400 15.8212 58899 57905 2.4309 (18] (28] FIE;\;'D‘WNN
Prvse (%) 73.5558 67.6170 71.8059
Table 4 Pua (%) 86.3222 84.0027 86.2779
Comparison of statistical indices, computation time between individual models Puiape (%) 86.2977 83.4076 85.9328
and proposed model for Telangana wind farm.
Performance metrics RMSE (m/s) MAE (m/s) MAPE (%) Time (s) Table 8
- able
Persistence model [8] ~ 00.6863 00.5269 11.258 N Statistical data of original wind speed for Tamilnadu wind farm.
BPNN model [12] 00.6624 00.5047 10.8329 02.6594 ind — - i dard
ENN model [28] 00.6566 00.5069 105600  03.4428 Win Minimum  Maximum  Mean  Median Standar
WNN model [17] 007018 005403 115273 03.8377 input  (m/s) (m/s) (mfs)  (mfs) deviation
SVR model [53] 00.6232 00.4660 100251  03.1561 (m/s)
DAE model [33] 00.5150 00.3790 08.1123 02.9643 x(t) 0.5486 13.3698 5.7420 5.3142 2.8891
SAE model [37] 00.4782 00.3451 07.3744 03.0005
DBM model [36] 00.3018 00.2044 04.3851 03.0549
Proposed model 00.1238 00.0466 00.9941 31.6400

Table 5
Performance improvements by proposed model for Telangana wind farm.

Performance metrics Pruse (%) Py (%) Piape (%)
Hybrid EEMD-DBM Vs. Persistence [8] 81.9612 91.1558 91.1698
Hybrid EEMD-DBM Vs. BPNN [12] 81.3103 90.7667 90.8233
Hybrid EEMD-DBM Vs. ENN [28] 81.1452 90.8068 90.5861
Hybrid EEMD-DBM Vs. WNN [17] 82.3596 91.3752 91.3761
Hybrid EEMD-DBM Vs. SVR [53] 80.6162 90.0000 90.0839
Hybrid EEMD-DBM Vs. DAE [33] 75.9611 87.7044 87.7457
Hybrid EEMD-DBM Vs. SAE [37] 74.1112 86.4967 86.5195
Hybrid EEMD-DBM Vs. DBM [36] 58.9794 77.2015 77.3300

Table 6
Comparison of statistical indices performance between hybrid models and
proposed model for Telangana wind farm.

Performance EEMD-BPNN  EEMD-ENN EEMD-WNN Proposed
metrics model [18] model [28] model [17] model
RMSE (m/s) 00.4682 00.3823 00.4391 00.1238
MAE (m/s) 00.3407 00.2913 00.3396 00.0466
MAPE (%) 07.255 05.9913 07.0668 00.9941
Time (s) 31.0500 31.4200 32.7300 31.6400

in southern India, the cycles and hidden patterns are identified.
The statistical details of data utilized for this work is presented
in Table 3.

One-step ahead forecasting error values attained from Per-
sistence method, BPNN, ENN, WNN, SVR, DAE, SAE, DBM, and
developed hybrid EEMD-DBM model for Telangana wind farm
data are presented in Table 4. As shown in Table 4, the statistical
indices using the proposed HDLS have better performance values
when compared with other individual benchmark approaches.
The prediction results employing benchmark individual models
are depicted in Figs. 8 and 9. It is evident that prediction re-
sults using hybrid EEMD-DBM model and the actual wind speed
time-series values nearly coincide with each other. The RMSE,
MAE indices obtained by proposed model are 0.1238 and 0.0466
respectively. Hence, these values show the improvement in per-
formance by at least 58% employing the proposed hybrid model.
Also, the MAPE index of proposed model is 0.9941 and it shows
the improvisation in performance by at least 70% using proposed
model (shown in Table 5). Furthermore, the better performance
of implemented EEMD-DBM approach is presented through bar
charts in Figs. 10, and 11.

Wind speed time-series prediction is a significant task for
reliable and economic operation of power systems. The improved
models such as the combination of different prediction
approaches employ the strengths and reduce the weaknesses of

each approach. The prediction results using developed hybrid
approaches are shown in Fig. 12. The statistical indices values
attained from EEMD based models are tabulated in Table 6.
The values of statistical indices like RMSE and MAE using hy-
brid EEMD-BPNN approach are 0.4682 and 0.3407 respectively.
These RMSE and MAE indices of individual BPNN model are
0.6624 and 0.5047 respectively. The accurate noise-assisted data
decomposing technique of EEMD is combined with traditional
BPNN model to enhance the prediction accuracy as shown in
Fig. 13. The MAPE value of the BPNN is 10.8329 and MAPE of
EEMD-BPNN model is 7.255, which is enhanced by removing
the noise from the time-series data by utilizing most efficient
signal decomposition technique EEMD and these statistical in-
dices are further improved by utilizing the features of the deep
learning technique. The RMSE of developed EEMD-DBM approach
is 0.1238. From Table 7, the RMSE index value is improved by
the proposed approach to 73.5558%, 67.6170%, and 71.8059%.
Similarly, better MAE value is obtained by using the developed
EEMD-DBM approach, which is 0.0466. Also, MAE is enhanced by
86.3222%, 84.0027%, and 86.2779% respectively. In addition, the
least MAPE value attained through the developed hybrid EEMD-
DBM model is 0.9941. This MAPE index value is promoted by
86.2977%, 83.4076%, and 85.9328% respectively. The CPU time
needed for all individual models is fewer than 4 s as shown
in Table 4 but the CPU time of the developed hybrid EEMD-
DBM model is a little longer compared with individual models.
Despite high computational time, the best and most accurate
statistical performance values are obtained using the developed
hybrid EEMD-DBM model. Furthermore, the better performance
of the proposed EEMD-DBM model is depicted as bar charts in
Figs. 13, and 14. Therefore, prediction results and performance
comparison criteria show that the proposed hybrid EEMD-DBM
model gives best point prediction capability in overall individual
and EEMD based models. These prediction results are attained
because deep learning is capable of extracting effectively high
non-linearity and complexity presented in actual wind speed, but
this is not possible with shallow NN models such as BPNN, ENN,
WNN, and EEMD based NN models.

e Case study 2: Kalimandayam, Tamilnadu wind farm data
which are hourly samples

From the hourly sampled original historical data, which is
collected from Kalimandayam (Tamilnadu) flat area wind farm
located in southern India, the cycles and hidden patterns are
identified. The statistical details of data utilized for this work is
presented in Table 8.

The decomposed Tamilnadu wind speed time-series data sig-
nal is as shown in Fig. 15. One-step ahead forecasting error
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Fig. 8. Comparison of prediction results between four benchmark individual models and proposed model for Telangana wind farm.
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Fig. 9. Comparison of prediction results between another four benchmark individual models and proposed model for Telangana wind farm.
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Fig. 10. Comparison of RMSE and MAE measures between distinct individual forecasting models and proposed model for Telangana wind farm.

values attained from Persistence method, BPNN, ENN, WNN, SVR,
DAE, SAE, DBM, and developed hybrid EEMD-DBM model for
Tamilnadu wind farm data are presented in Table 9. As shown
in Table 9, the statistical indices using the proposed HDLS have
better performance values when compared with other individual
benchmark approaches. The prediction results employing bench-
mark individual models are depicted in Figs. 16 and 17. It is
evident that prediction results using hybrid EEMD-DBM model

and the actual wind speed time-series values nearly coincide with
each other. The RMSE, MAE indices obtained by proposed model
are 0.2064 and 0.1298 respectively. Hence, these values show the
improvement in performance by at least 47% employing the pro-
posed hybrid model. Also, the MAPE index of proposed model is
1.7298 and it shows the improvisation in performance by at least
54% using proposed model (shown in Table 10). Furthermore,
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Fig. 11. Comparison of MAPE between distinct individual forecasting models and proposed model for Telangana wind farm.
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Fig. 12. Comparison of one-step ahead wind speed time-series prediction results between hybrid models and proposed model for Telangana wind farm.
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Fig. 13. Comparison of RMSE and MAE measures between hybrid models and proposed model for Telangana wind farm.

the better performance of implemented EEMD-DBM approach is
presented through bar charts in Figs. 18, and 19.

The prediction results using developed hybrid approaches are
shown in Fig. 20. The statistical indices values attained from
EEMD based models are tabulated in Table 11. The values of
statistical indices like RMSE and MAE are improved by utilizing
the features of the deep learning technique. The RMSE of devel-
oped EEMD-DBM approach is 0.2064. From Table 12, the RMSE
index value is improved by the proposed approach at least 82%.

Similarly, better MAE value is obtained by using the developed
EEMD-DBM approach, which is 0.1298. Also, MAE is enhanced by
at least 86%. In addition, the least MAPE value attained through
the developed hybrid EEMD-DBM model is 1.7298. This MAPE
index value is promoted by 85%. The CPU time needed for all in-
dividual models is fewer than 4 s as shown in Table 9 but the CPU
time of the developed hybrid EEMD-DBM model is a little longer
compared with individual models. Despite high computational
time, the best and most accurate statistical performance values
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Fig. 15. Comparison of IMFs and a residue using EEMD technique for Tamilnadu wind farm data [48].
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Fig. 16. Comparison of prediction results between four benchmark individual models and proposed model for Tamilnadu wind farm.
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Fig. 17. Comparison of prediction results between another four benchmark individual models and proposed model for Tamilnadu wind farm.
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Fig. 19. Comparison of MAPE between distinct individual forecasting models and proposed model for Tamilnadu wind farm.

are obtained using the developed hybrid EEMD-DBM model. Fur-
thermore, the better performance of the proposed EEMD-DBM
model is depicted as bar charts in Figs. 21, and 22. Therefore,
prediction results and performance comparison criteria show that
the proposed hybrid EEMD-DBM model gives best point pre-
diction capability in overall individual and EEMD based models.

These prediction results are attained because deep learning is
capable of extracting effectively high non-linearity and complex-
ity presented in actual wind speed, but this is not possible with
shallow NN models such as BPNN, ENN, WNN, and EEMD based
NN models.
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Fig. 20. Comparison of One-step ahead wind speed time-series prediction results between hybrid models and proposed model for Tamilnadu wind farm.
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Fig. 22. Comparison of MAPE between hybrid model and proposed model for Tamilnadu wind farm.

6. Conclusion

Modern electric power systems have been utilizing wind en-
ergy forecasts to predict the challenging load operating problems,
for reducing the risk and increasing the efficiency. Recently, deep

learning techniques have emerged as powerful tools for advanced
prediction. The necessity for accurate prediction models moti-
vated the authors of this paper to implement a statistical-based
model without employing NWP inputs. In this paper, a hybrid
deep learning strategy (HDLS) model based on EEMD technique
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Table 9
Comparison of statistical indices, computation time between individual models
and proposed model for Tamilnadu wind farm.

Performance metrics RMSE (m/s) MAE (m/s) MAPE (%) Time (s)
Persistence model [8] 01.1748 00.9409 12.5446 -

BPNN model [12] 01.2194 00.9713 12.6646 02.4862
ENN model [28] 01.2609 00.9977 12.7242 03.0197
WNN model [17] 01.2001 00.9368 12.2999 03.1559
SVR model [53] 01.1606 00.9133 11.9165 02.9434
DAE model [33] 01.4142 01.1200 13.8863 02.7231
SAE model [37] 01.2873 00.9880 13.1402 02.9672
DBM model [36] 00.3906 00.2890 03.8234 02.9553
Proposed model 00.2064 00.1298 01.7298 29.4728

Table 10
Performance improvements by proposed model for Tamilnadu wind farm.

Performance metrics Pruse (%) Py (%) Pyape (%)
Hybrid EEMD-DBM Vs. Persistence [8] 82.4310 86.2046 86.2107
Hybrid EEMD-DBM Vs. BPNN [12] 83.0736 86.6364 86.3415
Hybrid EEMD-DBM Vs. ENN [28] 83.6307 86.9900 86.3715
Hybrid EEMD-DBM Vs. WNN [17] 82.8014 86.1443 85.9365
Hybrid EEMD-DBM Vs. SVR [53] 82.2160 85.7878 85.4840
Hybrid EEMD-DBM Vs. DAE [33] 85.4052 88.4107 87.5431
Hybrid EEMD-DBM Vs. SAE [37] 83.9664 86.8623 86.8358
Hybrid EEMD-DBM Vs. DBM [36] 47.1582 55.0865 54.7575

Table 11
Comparison of statistical indices performance between hybrid models and
proposed model for Tamilnadu wind farm.

Performance EEMD-BPNN  EEMD-ENN EEMD-WNN  Proposed
metrics model [18] model [28] model [17] model
RMSE (m/s)  01.3162 01.1769 01.1814 00.2064
MAE (m/s) 01.0402 00.9426 00.9342 00.1298
MAPE (%) 13.3640 12.2124 12.1727 01.7298
Time (s) 29.4557 29.0592 29.1166 29.2351
Table 12
Performance improvements by proposed model for Tamilnadu wind farm.
Performance Hybrid Hybrid Hybrid
metrics EEMD-DBM Vs. EEMD-DBM Vs. EEMD-AWNN
EEMD-BPNN EEMD-ENN Vs.
[18] [28] EEMD-WNN
[17]
Pruse (%) 84.3185 82.4624 82.5292
Puae (%) 87.5216 86.2296 86.1058
Puare (%) 87.0563 85.8357 85.7895

and DBM network was developed. The effective de-noising tech-
nique EEMD was employed for input preprocessing and which
enhanced prediction accuracy significantly by removing noisy
data. DBM network was provided with better extraction of highly
non-linear and complex features of data from the actual input
time-series dataset for further enhanced wind speed prediction.
This hybrid model was reliably validated using Indian wind farms
(Telangana and Tamilnadu) data. The RMSE, MAE, and MAPE
indices attained using hybrid EEMD-DBM approach were 0.1238,
0.0466, and 0.9941 respectively for Telangana wind farm. The
hybrid EEMD-DBM model enhanced on the whole RMSE index
value by 58.9794% in comparison with the DBM model. The
proposed hybrid EEMD-DBM method gives 0.2064, 0.1298, and
1.7298 as RMSE, MAE, and MAPE index values respectively for
Tamilnadu wind farm. Therefore, proposed model delivers better
performance in comparison with all eleven models reported in
the literature. The future job of researchers would be to utilize
wind direction with input time-series data for optimizing the
developed approach. The mode mixing problem of decomposition

technique should be executed more productively, which requires
profound study. The number of hidden layers in the network can
be increased for better extraction of time-series features.
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