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Abstract— In this paper, the effect of parameter variation on
the operation performance of the permanent magnet
synchronous motor (PMSM) considered. The model which
includes the parameter variation as a function of the operating
condition is developed in MATLAB/Simulink. A non- linear
control fuzzy logic control is used to dynamically change the
control gain to regulate the toque dynamics while the fault
information symptoms obtained from average park
transformation is supplied to the fuzzy system to reveal the fault
information. The simulation result indicates that the motor
performance figure like ripple torque, ripple current and speed
highly affected with parameter when parameter variation is
considered.
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L. INTRODUCTION

Due to many advantages in terms of operational performance
and reduction in loss due to no supply is required for rotor part
permanent magnet synchronous motor attracts the researchers
in different applications.

In [1] different control strategy like direct torque control
(DTC) and phase variable approach is compared with vector
control of PMSM. Techniques of control of PMSM has been
discussed in [2] based on their significance for a specific
application. Different control strategy is suited for different
application. In a system where the overshoot, transient period
and settling time is minimum, field-oriented control (FOC) is
not the best option. A nonlinear control system was preferred
compared to the linear control system. Model predictive
control is the finest method of control from the existing
nonlinear control system. When optimal segment to pole pitch,
depth of air gap well designed, the AF-IPMSM has better
performance compared to AF-SMPMSM in terms of ripple
torque, total harmonic and power or torque ratio to volume
[3]. Asymmetrical arranged wounded PMSM has a better
performance in terms of cogging toque, harmonic and toque
ripples compared to symmetrical arrangement [4]. The
consequent pole magnet permanent motor has better
performance than surface-mounted permanent magnet motor
[5]. Induction machine has better performance in terms of
cogging torque but the efficiency, power density and torque
production of PMSM is improved [6]. Instantaneous voltage
control scheme has good dynamic compared to direct torque
control (DTC) as there is no sector identification is required
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[7]. For maximization of the drive performance and improved
reliability due to switches failure, the redundant switches can
be used [8]. Control of PMSM by field-oriented control
(FOC), based on linear quadratic regulator (LQR)
optimization has a good disturbance rejection with a
considerable oscillation [9]. Fault detection by wavelet and
Fourier analysis for the motor with a magnetic defect is
performed in [10]. Open-end permanent magnet becomes the
best option for high power electric drive due to its reliability
and fault-tolerant operation [11]. Optimal current control that
depends upon motor data is chosen to implement maximum
torque per ampere (MTPA) [12]. Temperature affects both the
resistance of stator and the demagnetization property of
magnet [13].PI controller has a bottleneck like optimal
coefficient setting that paves the way to look for non-linear
control [14]. MTPA is mainly focused on minimization of
input given, that the motor should produce a reference torque.
When d axis and q axis inductance are not equal, d axis
current is contributing to a torque dynamics [15]. Nonlinear
controller is proposed to solve the difficult with the non-linear
system [16]. Switching state, current ripple and measured
current base predictive control of PMSM is done in [17]. In
simple duty ratio regulated PMSM, switching period
determines the magnitude of ripple and torque produced [18].
PMSM control using a nonlinear fuzzy logic to address the
problem of torque ripple above synchronous speed operation
area is considered in [19]. Fault diagnosis of PMSM of a
machine based on fuzzy logic is covered in [20]. The simplest
and easy way to detect the fault in the PMSM drive is using an
average park vector by partitioning the range of fault
symptoms, different fault was detected in [21], [22].

IL MATHEMATICAL MODEL OF PMSM
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For generating a switching signal, the SVPWM is used. To
reduce the effect of one axis flux on others voltage, the feed-
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forward component is added externally so that the parameters
were detached from each other.

Vdff= —P# wr=* Lq*iq (7)
Ve =P #wr(Lg *ig + Af) ®)
For supplying the drive the diode is used. Phase to neutral

voltage is obtained from the pole voltage.

Van 2 Vao 1 Vho 1 Vco
Von = 3 Voo | =2 * | Vao| — 3" Veo (9)
Vcn Vc‘o Va Vho

From the pole voltage the three phase to neutral voltage
obtained by using the equation (9).

jq:Lif[Vq—R*iq—ms*)\d)dt (10)
q

id=Lidf(Vd—R*id+m5*lq)dt (11)

Torque developed by the PMSM, the speed and rotor angle is

obtained by using the equations given below from equation
(12) to equation (15).

T, = 1.5 *P(Ag * ig + (Lg — Lg) *ig * iq) (12)
wrz%I(Te_TL_B*mr)dt (13)
0, = [w.dt (14)
w, =P*w, (15)

When the magnitude of iy is zero, the equation forVy, V; and
T. is reduced to a simple equation given below.

Vg =Rrig+ws*(2) (16)
Vg =—wg* (Lq * iq) (17)
T, = L5 #P(Ag =iy) (18)

By comparing equation 12 and equation 18, taking the

magnitude of i_, = —=i—
& qo0 1.5=P=Ag

flux under at different current magnitude of current is
estimated as it is given below.

, the magnitude of the magnetic

M= (220 4 Ly~ Lodia) (19
R, = Varig+Va.iaVansdge (20)
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III. CURRENT CONTROLLERS AND FAULT INFORMATION
PROCESSING
The magnitude of the constant of controller for a current is
obtained as it is written below [19].
kpd _ kpq = wcc+L
kid kig=wcc#R
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Fig 1 Current controller and fault information processing
For simplicity, the d-axis parameter is taken as it is. But for
the g-axis, the gain is dynamically changed using the rate of

current change and level of current deviation. The level of
current deviation is taken from zero to maximum current (I,,,)
and rate of change is also taken as from zero to maximum
current per second. Under normal operating condition the
current of each phase approach to a sinusoidal wave. So the
average current over one period is approximately 63.6% of the
peak value of the current.

Lo = 2= Jy Imsinotde (22)

A. Fuzzification And Inference System

The fuzzification procedure is completed by using a linguistic
variable like negative giant (NG), negative average (NA),
negative minor (NMI), null (NU), positive minor (PMI),
positive average (PA), positive giant (PG). One symptom for
fault occurrence is the change between nominal average value
and real average value of a current. The second input to the
fuzzy system is the parameter which indicates the place of the
switch as the lower part of inverter or upper part of the
inverter. Controller gain for q axis current is based on change
and rate of change of current, when kpg and k;, are variable
defined by equation (21) [20].

TABLE 1 EXPERT SYSTEM FOR CHANGING K4

:'?:‘ (rate of change of iq)
Value NG NA NMI NU PMI PA PG
NG | VVPG | VVPG | VPG | VPG PG PA PA
NA | VVPG | VPG | VPG | VPG PG PA PA
A, NMI | VVPG VPG VPG PG PA VPMI | VPMI
: NU VPG VPG PG PA PMI | VPMI | VPMI
PMI VPG PG PG PMI PMI VPMI NU
PA PA PA PMI PMI VPMI | VPMI NU
PG PA PA PMI | VPMI | VPMI NU NU
TABLE 2 EXPERT SYSTEM FOR CHANGING kjq
d(Ai,)
Cde
Value NG NA NMI NU PMI PA PG
NG NU NU VPMI | VPMI PMI PA PA
NA NU VPMI | VPMI PMI PMI PA PA
,ﬂiq NMI VPMI | VPMI | VPMI | VPMI PA PG PG
NU VPMI | VPMI PG PG VPG VPG VPG
PMI PMI PMI PA PG PG VPG VPG
PA PMI PA PMI VPG PA VPG VVPG
PG PA PA VPG VPG PA VVPG | VVPG

B. Fault Information Processing

For a fault diagnosing, the fault symptom is required. For this
purpose, the average park vector is used to drive fault
symptoms. Fault symptoms which are used for detection
purpose are an average current error (ACE) and average
current (AC).

(23)
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To simplify the diagnostic system, the three phase’s current is
normalized by taking the ratio of phase current by magnitude
of Park’s current.

sin[ms*t—i-cb)

lna

iy = 1.5 ml sm(ms*t+¢1——4]'[) (25)
inc sm(ms*t+¢1+§4 m
{|1nl|)— 3“ |1nj|dt (26)

From the average current and the nominal average under
normal operating condition, the first fault symptom is obtained
by taking their difference. During normal operation, the
magnitude of ACE is near zero. So that the value approaches
to zero is recommended to effectively identify the fault
information. In addition to the first fault symptom, the average
current is used as the second fault symptom to detect the

location of a faulted switch.
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Fig 2 Fuzzy feed-forward FIS model of a system

By taking K1=0.06, K2 = 0.2, KO =0.2 and dividing a range
according to the equation given below the fuzzy rule is
developed for fault detection.

A, ACEj < —K1
— i=

psi o )B  —Kl<ACEj<KL 27
B, KI<ACEj<<K2
D, ACEj = K2
E, (inj) < —KO

Fs2={F,  —KO < {inj) < K0 (28)
G, (inj) > KO

The fault detection parameter can be arranged as it is stated in
the table below [20], [21]. By taking the value of the controller

constant (kp ki) obtained from equation 21, and limiting the

value of ﬂ.l between -1, to I, and rate of —ttl between -1, to

I, , the rules that relate the input to gain is developed. In
addition by taking both the value of ACE (FSI) and AC (FS2)
between -1 to 1 the rules that relate symptoms with fault
information and fault point is developed.

TABLE 3 FAULTED SWITCHES AND SYMPTOMS COMBINATION

5 g 50 %‘“ é é’ Faulted switches
R R R R TS 83 ] S4 ] S5 ] S6
ClA|A|E]| -] -X

ClA|A|G]| - |- X
A|lC|A|-|E] - X
AlC|A|-]G] - X
A|lA|C| - -1E X
A|lA|lC|-|-]G X
D | - | - X | X

D | -] -] -- X | X

- D -] - - X | X
C|C|A|E]|E|G|X X
Clc|A|G]|G]|E X X
A|lC|C|G|E]|E X X
A|C|C|E|G]|G X X
ClA|C|E|G]|E[X X
ClA|C|P|E]|G X X
ClC|A|E|G]|E|X X
Cl|C|A|G|E]|G X | X
ClA|C|E]|G|G|X X
C|A|C|G]|E]|E X X
A|C|C|E|E]|G X X
A|lC|C|G|G]|E X | X

C. Simulation Results
PMSM model is developed in MATLAB/Simulink by
considering parameter variation. The magnitude of controller

constant for iq is changed to obtain good torque dynamic.
TABLE 4 SIMULATION PARAMETERS

Parameter Magnitude

Resistor (ohm) 0.25
Inductance (mH) 5
Maximum current (A) 1.7
Controller bandwidth (rad/second) 1000
Frequency (Hz) 1000
Pole 10
Magnet flux (wb) 0.5
Torque (NM) 1

The Figure below demonstrates the simulation result
considering a fixed magnetic flux and armature resistance
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Fig 3 Simulation result without parameter variation: (a) Shows the torque, (b)
shows the g-axis current, (c) shows direct axis current and (d) shows speed.

As it has appeared above on Fig 3(a), the torque is ripple is
mainly affected by q axis current. Fig 3 (c) and 3(d) delineate
that both d axis and speed settle quickly to steady-state.

Fig 4 depicted below shows a simulation by considering
parameter variation as it is written in equation 19 and 20.
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Fig 4 Simulation result with parameter: (a) Shows the torque, (b) shows the g-
axis current, (¢) shows direct axis current and (d) shows speed

As shown on Fig 4 (a) the magnitude of harmonic on torque is
high when parameter variation is considered. From Fig 4(c)
and Fig 4(d), it can be observed that both d axis current and
speed is highly affected by variation that occurs in magnetic
flux and armature resistance.

high. In addition to this, the current ripple and speed ripple is
also high compared to the fixed-parameter model.
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