

Control of Permanent-Magnet Synchronous Motors Using Fuzzy Logic Considering Parameter Variation and Diagnostic Capability For Hostile Environment Applications

Berhanu Deggefa Lemma, Srinivasan Pradabane

Department of Electrical Engineering, National Institute of Technology, Warangal, India.

Abstract— In this paper, the effect of parameter variation on the operation performance of the permanent magnet synchronous motor (PMSM) considered. The model which includes the parameter variation as a function of the operating condition is developed in MATLAB/Simulink. A non- linear control fuzzy logic control is used to dynamically change the control gain to regulate the torque dynamics while the fault information symptoms obtained from average park transformation is supplied to the fuzzy system to reveal the fault information. The simulation result indicates that the motor performance figure like ripple torque, ripple current and speed highly affected with parameter when parameter variation is considered.

Keywords— permanent, magnet, synchronous, motor, fuzzy logic, parameter variation, diagnostic

I. INTRODUCTION

Due to many advantages in terms of operational performance and reduction in loss due to no supply is required for rotor part permanent magnet synchronous motor attracts the researchers in different applications.

In [1] different control strategy like direct torque control (DTC) and phase variable approach is compared with vector control of PMSM. Techniques of control of PMSM has been discussed in [2] based on their significance for a specific application. Different control strategy is suited for different application. In a system where the overshoot, transient period and settling time is minimum, field-oriented control (FOC) is not the best option. A nonlinear control system was preferred compared to the linear control system. Model predictive control is the finest method of control from the existing nonlinear control system. When optimal segment to pole pitch, depth of air gap well designed, the AF-IPMSM has better performance compared to AF-SMPMSM in terms of ripple torque, total harmonic and power or torque ratio to volume [3]. Asymmetrical arranged wounded PMSM has a better performance in terms of cogging torque, harmonic and torque ripples compared to symmetrical arrangement [4]. The consequent pole magnet permanent motor has better performance than surface-mounted permanent magnet motor [5]. Induction machine has better performance in terms of cogging torque but the efficiency, power density and torque production of PMSM is improved [6]. Instantaneous voltage control scheme has good dynamic compared to direct torque control (DTC) as there is no sector identification is required

[7]. For maximization of the drive performance and improved reliability due to switches failure, the redundant switches can be used [8]. Control of PMSM by field-oriented control (FOC), based on linear quadratic regulator (LQR) optimization has a good disturbance rejection with a considerable oscillation [9]. Fault detection by wavelet and Fourier analysis for the motor with a magnetic defect is performed in [10]. Open-end permanent magnet becomes the best option for high power electric drive due to its reliability and fault-tolerant operation [11]. Optimal current control that depends upon motor data is chosen to implement maximum torque per ampere (MTPA) [12]. Temperature affects both the resistance of stator and the demagnetization property of magnet [13]. PI controller has a bottleneck like optimal coefficient setting that paves the way to look for non-linear control [14]. MTPA is mainly focused on minimization of input given, that the motor should produce a reference torque. When d axis and q axis inductance are not equal, d axis current is contributing to a torque dynamics [15]. Nonlinear controller is proposed to solve the difficult with the non-linear system [16]. Switching state, current ripple and measured current base predictive control of PMSM is done in [17]. In simple duty ratio regulated PMSM, switching period determines the magnitude of ripple and torque produced [18]. PMSM control using a nonlinear fuzzy logic to address the problem of torque ripple above synchronous speed operation area is considered in [19]. Fault diagnosis of PMSM of a machine based on fuzzy logic is covered in [20]. The simplest and easy way to detect the fault in the PMSM drive is using an average park vector by partitioning the range of fault symptoms, different fault was detected in [21], [22].

II. MATHEMATICAL MODEL OF PMSM

$$V_q = R * i_q + \frac{d}{dt}(\lambda_q) + \omega_s * \lambda_d \quad (1)$$

$$\lambda_d = L_d * i_d + \lambda_f \quad (2)$$

$$V_d = R * i_d + \frac{d}{dt}(\lambda_d) - \omega_s * \lambda_q \quad (3)$$

$$\lambda_q = L_q * i_q \quad (4)$$

$$\frac{d}{dt}(\omega_r) = \frac{T_e - T_L - B * \omega_r}{I} \quad (5)$$

$$V_a = \begin{bmatrix} \cos(\theta_r) & \sin(\theta_r) & 1 \end{bmatrix} V_q \quad (6)$$
$$V_b = \begin{bmatrix} \cos(\theta_r - 2/3 * \pi) & \sin(\theta_r - 2/3 * \pi) & 1 \end{bmatrix} * V_d$$
$$V_c = \begin{bmatrix} \cos(\theta_r + 2/3 * \pi) & \sin(\theta_r + 2/3 * \pi) & 1 \end{bmatrix} * V_d$$

For generating a switching signal, the SVPWM is used. To reduce the effect of one axis flux on others voltage, the feed-

$$\begin{aligned} i_a &= i_m \left[\sin(\omega s * t + \Phi) \right] \\ i_b &= i_m \left[\sin(\omega s * t + \Phi - \frac{2}{3} * \Pi) \right] \\ i_c &= i_m \left[\sin(\omega s * t + \Phi + \frac{2}{3} * \Pi) \right] \end{aligned} \quad (24)$$

To simplify the diagnostic system, the three phase's current is normalized by taking the ratio of phase current by magnitude of Park's current.

$$\begin{aligned} i_{na} &= \sin(\omega s * t + \Phi) \\ i_{nb} &= 1.5 * \frac{i_m}{|i_s|} \left[\sin(\omega s * t + \Phi - \frac{2}{3} * \Pi) \right] \\ i_{nc} &= \sin(\omega s * t + \Phi + \frac{2}{3} * \Pi) \end{aligned} \quad (25)$$

$$\langle |i_{nj}| \rangle = \frac{\omega s}{2\Pi} \int_0^{2\Pi} |i_{nj}| dt \quad (26)$$

From the average current and the nominal average under normal operating condition, the first fault symptom is obtained by taking their difference. During normal operation, the magnitude of ACE is near zero. So that the value approaches to zero is recommended to effectively identify the fault information. In addition to the first fault symptom, the average current is used as the second fault symptom to detect the location of a faulted switch.

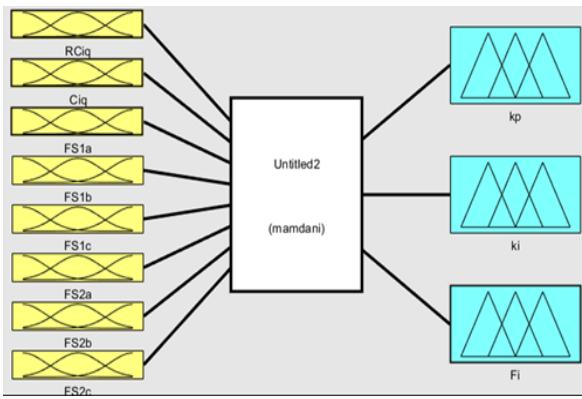


Fig 2 Fuzzy feed-forward FIS model of a system

By taking $K1=0.06$, $K2 = 0.2$, $K0 = 0.2$ and dividing a range according to the equation given below the fuzzy rule is developed for fault detection.

$$FS1 = \begin{cases} A, & ACEj \leq -K1 \\ B, & -K1 < ACEj \leq K1 \\ B, & K1 < ACEj \leq K2 \\ D, & ACEj \geq K2 \end{cases} \quad (27)$$

$$FS2 = \begin{cases} E, & \langle inj \rangle < -K0 \\ F, & -K0 < \langle inj \rangle \leq K0 \\ G, & \langle inj \rangle > K0 \end{cases} \quad (28)$$

The fault detection parameter can be arranged as it is stated in the table below [20], [21]. By taking the value of the controller constant (kp ki) obtained from equation 21, and limiting the value of Δi_q between $-I_m$ to I_m and rate of $\frac{di_q}{dt}$ between $-I_m$ to I_m , the rules that relate the input to gain is developed. In addition by taking both the value of ACE (FS1) and AC (FS2) between -1 to 1 the rules that relate symptoms with fault information and fault point is developed.

TABLE 3 FAULTED SWITCHES AND SYMPTOMS COMBINATION

FS1a	FS1b	FS1c	FS2a	FS2b	FS2c	Faulted switches					
						S1	S2	S3	S4	S5	S6
C	A	A	E	-	-	X					
C	A	A	G	-	-		X				
A	C	A	-	E	-			X			
A	C	A	-	G	-				X		
A	A	C	-	-	E					X	
A	A	C	-	-	G						X
D	-	-	-	-	-	X	X				
-	D	-	-	-	-			X	X		
-	-	D	-	-	-					X	X
C	C	A	E	E	G	X		X			
C	C	A	G	G	E		X		X		
A	C	C	G	E	E			X		X	
A	C	C	E	G	G				X		X
C	A	C	E	G	E	X				X	
C	A	C	P	E	G		X				X
C	C	A	E	G	E	X			X		
C	C	A	G	E	G		X	X			
C	A	C	E	G	G	X					X
C	A	C	G	E	E		X			X	
A	C	C	E	E	G			X			X
A	C	C	G	G	E				X	X	

C. Simulation Results

PMSM model is developed in MATLAB/Simulink by considering parameter variation. The magnitude of controller constant for i_q is changed to obtain good torque dynamic.

TABLE 4 SIMULATION PARAMETERS

Parameter	Magnitude
Resistor (ohm)	0.25
Inductance (mH)	5
Maximum current (A)	1.7
Controller bandwidth (rad/second)	1000
Frequency (Hz)	1000
Pole	10
Magnet flux (wb)	0.5
Torque (NM)	1

The Figure below demonstrates the simulation result considering a fixed magnetic flux and armature resistance

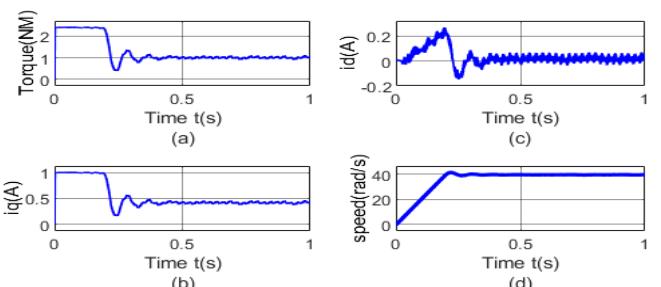


Fig 3 Simulation result without parameter variation: (a) Shows the torque, (b) shows the q-axis current, (c) shows direct axis current and (d) shows speed.

As it has appeared above on Fig 3(a), the torque is ripple is mainly affected by q axis current. Fig 3 (c) and 3(d) delineate that both d axis and speed settle quickly to steady-state.

Fig 4 depicted below shows a simulation by considering parameter variation as it is written in equation 19 and 20.

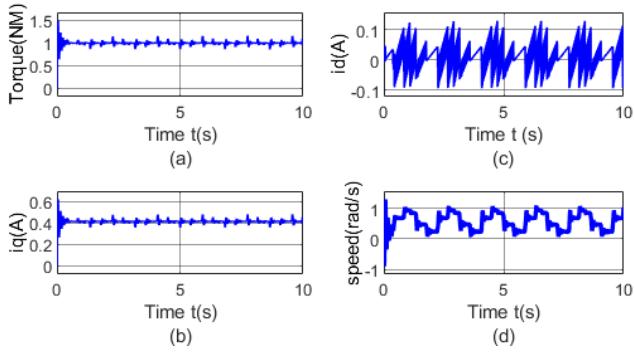


Fig 4 Simulation result with parameter: (a) Shows the torque, (b) shows the q-axis current, (c) shows direct axis current and (d) shows speed

As shown on Fig 4 (a) the magnitude of harmonic on torque is high when parameter variation is considered. From Fig 4(c) and Fig 4(d), it can be observed that both d axis current and speed is highly affected by variation that occurs in magnetic flux and armature resistance.

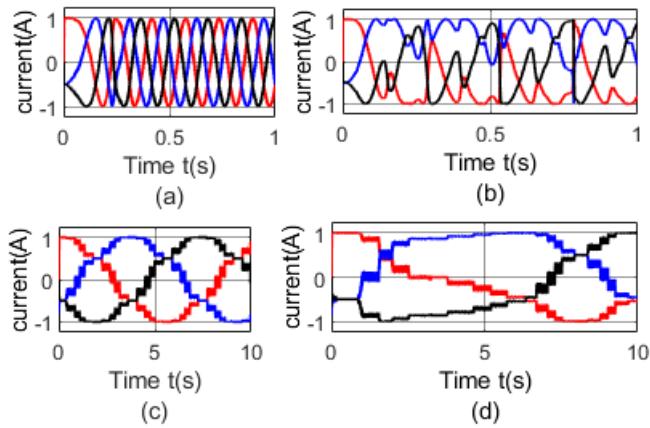


Fig 5. Normalized current: (a) is a current with a fixed parameter, (b) is current with a fixed parameter when S1 is opened, (c) is a current with parameter variation, and (d) is a current with parameters variation when S1 is opened.

From Fig 5(c), above diagram, it is clearly seen that even under normal operating condition, the voltage harmonics occur due to variation in a magnetic flux when the model with parameter variation is considered.

IV. CONCLUSION

Mathematical model of a PMSM developed including the magnetic nonlinearity in magnetic and resistance variation due to the current flowing through a winding. Per unit average obtained from park transformation is used for identifying and locating a fault. Fault identification rule is developed according to the table 3. The fault detection is done by using the fuzzy inference system using a Mamdani system. To control the motor torque, the controller constant of i_q is changed according deviation in average current and rate of deviation. When the parameter variation is included, the performance of a parameter is different from the model that developed assuming the fixed parameter. When the motor is modeled including the parameter variation, the torque ripple is

high. In addition to this, the current ripple and speed ripple is also high compared to the fixed-parameter model.

V. REFERENCE

- [1]. Veenam, V. S., Chari, S., Ravichandran, M. H., & Praveen, R. P. (2014, March). Vector control of three phase PMSM drive using power transformations for future spacecraft application. In 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014] (pp. 313-319). IEEE.
- [2]. Bida, V. M., Samokhvalov, D. V., & Al-Mahfuri, F. S. (2018, January). PMSM vector control techniques—A survey. In 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (pp. 577-581). IEEE.
- [3]. Aydin, M., & Gulec, M. (2016). A new coreless axial flux interior permanent magnet synchronous motor with sinusoidal rotor segments. IEEE Transactions on Magnetics, 52(7), 1-4.
- [4]. Demir, Y., & Aydin, M. (2016). A novel dual three-phase permanent magnet synchronous motor with asymmetric stator winding. IEEE Transactions on Magnetics, 52(7), 1-5.
- [5]. Onsal, M., Demir, Y., & Aydin, M. (2017). A new nine-phase permanent magnet synchronous motor with consequent pole rotor for high-power traction applications. IEEE Transactions on Magnetics, 53(11), 1-6.
- [6]. Dobzhanskyi, O., Amiri, E., & Gouws, R. (2016, October). Comparison analysis of electric motors with two degrees of mechanical freedom: PM synchronous motor vs induction motor. In 2016 II International Young Scientists Forum on Applied Physics and Engineering (YSF) (pp. 14-17). IEEE.
- [7]. Kumar, K. R., Nithin, K., & Kumar, T. V. (2016, November). Torque ripples reduction in PMSM drive based on instantaneous voltage control technique. In 2016 IEEE 7th Power India International Conference (PIICON) (pp. 1-6). IEEE.
- [8]. Kollu, A., Béthoux, O., De Bernardinis, A., Labouré, E., & Coquery, G. (2013). Space-vector PWM controls synthesis for an H-bridge drive in electric vehicles. IEEE Transactions on Vehicular Technology, 62(6), 2441-2452.
- [9]. Xia, C., Liu, N., Zhou, Z., Yan, Y., & Shi, T. (2018). Steady-state performance improvement for LQR-based PMSM drives. IEEE Transactions on Power Electronics, 33(12), 10622-10632.
- [10]. Ishikawa, T., Seki, Y., & Kurita, N. (2013). Analysis for fault detection of vector-controlled permanent magnet synchronous motor with permanent magnet defect. IEEE transactions on magnetics, 49(5), 2331-2334.
- [11]. Wang, J., & Wu, J. (2016, October). Space Vector Modulation Based on Lookup Table for a Dual-Inverter-Fed Open-End Winding PMSM Drive. In 2016 IEEE Vehicle Power and Propulsion Conference (VPPC) (pp. 1-6). IEEE.
- [12]. Jiang, W., Feng, S., Zhang, Z., Zhang, J., & Zhang, Z. (2018). Study of Efficiency Characteristics of Interior Permanent Magnet Synchronous Motors. IEEE Transactions on Magnetics, 54(11), 1-5.
- [13]. Zhang, Z., Li, G., Qian, Z., Ye, Q., & Xia, Y. (2016, June). Research on effect of temperature on performance and temperature compensation of interior permanent magnet motor. In 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA) (pp. 411-414). IEEE.
- [14]. Wang, Q., Yu, H., Wang, M., & Qi, X. (2019). An improved sliding mode control using disturbance torque observer for permanent magnet synchronous motor. IEEE Access, 7, 36691-36701.
- [15]. Li, K., & Wang, Y. (2018). Maximum torque per ampere (MTPA) control for IPMSM drives based on a variable-equivalent-parameter MTPA control law. IEEE Transactions on Power Electronics, 34(7), 7092-7102.
- [16]. Xue, Y., Yu, H., & Liu, X. (2019). Improved Fuzzy Backstepping Position Tracking Control for Manipulator Driven by PMSM. In 2018 Chinese Automation Congress (CAC) (pp. 3561-3565). IEEE.
- [17]. Zamma, T., Tozawa, S., Takagi, Y., Koiwa, K., & Liu, K. Z. (2020). Optimal voltage vector in current control of PMSM considering torque ripple and reduction of the number of switching operations. IET Power Electronics, 13(6), 1200-1206.
- [18]. Adase, L. A., Alsofyani, I. M., & Lee, K. B. (2019). Predictive Torque Control with Simple Duty-Ratio Regulator of PMSM for Minimizing Torque and Flux Ripples. IEEE Access.
- [19]. Wang, C., & Zhu, Z. Q. (2020). Fuzzy Logic Speed Control of Permanent Magnet Synchronous Machine and Feedback Voltage Ripple Reduction in Flux-Weakening Operation Region. IEEE Transactions on Industry Applications, 56(2), 1505-1517.
- [20]. Yan, H., Xu, Y., Cai, F., Zhang, H., Zhao, W., & Gerada, C. (2018). PWM-VSI fault diagnosis for a PMSM drive based on the fuzzy logic approach. IEEE Transactions on Power Electronics, 34(1), 759-768.
- [21]. Sital-Dahone, M., Saha, A., Sozer, Y., & Mpanda, A. (2017, March). Multiple device open circuit fault diagnosis for neutral-point-clamped inverters. In 2017 IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 2605-2609). IEEE.
- [22]. Ubale, M. R., Dhumale, R. B., & Lokhande, S. D. (2013). Open switch fault diagnosis in three phase inverter using diagnostic variable method. International journal of research in engineering and technology, 2(12), 636-641.