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1 | INTRODUCTION

Electricity has been playing the pivotal part in human life. With the increase in earnings and the adding of extra 1.7
billion population to urban areas in developing countries, global electricity demand will rise by more than a quarter by
2040 (as per the world energy outlook by international energy agency).! Economical renewable energy technologies and
digital applications have come together from different directions to meet the rising global electricity demand. Enhanced
integration of wind and solar with the grid results in reliable operation of power systems, as reported by Jiang et al.? By
2023, it will be predicted that renewable energy sources (RES) will meet more than 70% of global electricity generation
growth, led by solar and wind. As wind has been a source of clean energy, its production cost has been cheaper, and
sustained evolution of wind energy has been taking part in energy transition around the globe.3

According to the global wind energy council report, total global installed capacity is 651 GW with 60.4 GW of new
wind energy installations in 2019.* Figure 1 shows world-wide wind installations (in GW) chronologically from 2015
to 2019. An accurate wind speed and wind power forecasting (WF) is necessary for desired control of wind turbines,
reducing uncertainty, and also for minimizing the probability of overloading as mentioned by Wang et al.> The main
motive behind WF is to estimate as precisely as possible wind power output in very short-term (15-minutes, 30-minutes
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TABLE 1 E 1
Reference Forecasting data Forecasting horizon Error . .rror vaues .
reported in the literature against
Yona et al® Wind speed 10-s 1.6047 m/s MAE forecasting horizon
Browell et al’ Wind speed 1-h 0.9300 m/s RMSE
Karakus et al® Wind speed 12-h 0.0984 NRMSE
24-h 0.1291 NRMSE
Barbounis et al'! Wind speed 72-h 1.9755 m/s MAE
Wind power 72-h 1.2117 m/s MAE
Azad et al? Wind speed 30-days 0.8000 m/s MAE
1-year 0.9400 m/s MAE

Abbreviations: MAE, mean absolute error, RMSE, root mean square error.

ahead), short-term (day-ahead), medium-term (week, month ahead), and long-term ( more than a month ahead) time
periods as per Dobschinski et al.® Table 1 provides quantitative information for comparing the reported methods in terms
of the statistical measures. Very short-term WF helps grid stability operations and voltage regulation actions. Short-term
predictions support economic load dispatch planning, load increment or decrement decisions, operational security in
the day-ahead electricity market, management of reserve power, and generator online/offline decisions as mentioned by
Fang and Chiang.” Medium-term predictions are essential for maintenance scheduling, and unit commitment decisions.
Long-term forecasts are needed for wind farm optimal design and restructured electricity markets.

1.1 | Predicting wind speed vs wind power

The wind turbine power output relay on wind speed, which alters with time. Wind speed is also determined by the type
of the terrain and regional weather patterns. A small error in wind speed prediction can result in large (cubic) error
in wind power. Figure 2 depicts the typical wind power curve. Wind power P (W) of a wind turbine is as shown in
Equation (1)

P= %pAv3, ey
where p is the density of air (kg/m?), swept area A (m?) of wind turbine, and wind speed v (m/s).
The best way to obtain wind power from wind speed as Brown et al'? presented the generated wind power curve by
utilizing the measured wind speed values. It can reduce the forecast error by 20%. The Rayleigh distribution function as
expressed in Equation (2) has a single parameter c.

2V o~ (V]

f(v) = 0<V < oo. )
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Figure 3 shows the Weibull distribution functions. The Weibull distribution function as expressed in Equation (3) has
two parameters k and c.

k-1
f(V)=%<%) eV 0KV < . (3)

By setting k = 2, the Weibull distribution becomes the Rayleigh distribution. For both distributions, Vi, = 0 and
Vmax = o0. Figure 3 shows the Weibull distribution for various valuables of the parameters k (shape parameter) and ¢
(scale parameter).

The cumulative Weibull distribution function is expressed in Equation (4)

b b k-1
F(b) = / fav = / E(K) VI qy =1 — e O/ @)
x 0o C\cC

‘min

By setting k = 2, the cumulative Weibull distribution becomes cumulative Rayleigh distribution and is expressed in
Equation (5).

F(b)=1—e /9, (5)
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Figure 4 depicts variation of wind speed vs wind power. Steps involved in formulating wind power generation from
wind speed in a sample case are as follows:

Step 1: Wind speed interpolated to site from Meso Scale Forecast
Step 2: Gross production estimate from turbine power curve
Step 3: Subtract wind farm losses

« Wake losses strong direction dependence
« Availability losses

« Environmental losses

First, in 1984, Brown et al'® developed a simple time-series based approach by employing utility's power curve for
wind power prediction. Since then, a variety of prediction approaches and models have been employed for WF with
different success rates. These approaches include physical approaches, statistical approaches, and artificial intelligence
(AI)-based approaches. Physical approaches utilize meteorological data of wind farms such as atmospheric temperature,
pressure, surface coarseness, obstacles, and so on for wind speed prediction. The wind power generated is mapped using
power curves of wind turbines. But these physical approaches require profound calculation and much time. Statistical
approaches and Al-based approaches have been data-driven models that can forecast utilizing recorded wind values of any
site as reported by Hao et al.} Statistical model using a time-series based approach can give forecast value as a function of
past wind speed. Al-based approaches have constructed the network for the relationship between input data and output
data. The network is trained with historical data based on various learning algorithms. Therefore, the superior qualities
of the above-mentioned prediction approaches have been combined to form hybrid models for enhanced accuracy of
forecasting and broader prediction horizons as reported by Fend et al.'®

Accordingly, many utilities and researchers have been investigating systematically numerous WF approaches. Each
approach has employed distinct techniques and has given the best test results based on the size of the datasets and forecast
horizons. From all these investigations, when compared with individual forecasts, hybrid forecasts have demonstrated
outstanding forecasting results in terms of forecasting accuracy, computational burden, and reducing uncertainty in fore-
casts. However, hybrid forecasts have been based on only two or three individual forecasts. Therefore, to make full use
of the advantages of individual forecasts while not increasing the simulation difficulties, combination of individual fore-
casts have been proposed. Nowadays most of the hybrid models have been based on Al techniques and machine learning
algorithms. Enormous solutions have been made available in the area of WF. However, articles with captivating and
well-ordered review of the literature are lacking. An attempt has been made in this article to crisply and constructively
outline fundamental information about the subject area.

This article is arranged systematically in six sections: Section 2 presents bibliometric analysis. Section 3 classifies
the prediction approaches and details about basic statistics of the most extensively used approaches available in the
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literature. Section 4 is dedicated to a detailed examination of the performance evaluation criteria of different forecast-
ing approaches. Section 5 explains about the proposed hybrid deep learning model. Section 6 details advancements in
accuracy of forecasting and major research problems in the area of WF. Finally, concluding remarks are provided in
Section 7.

2 | BIBLIOMETRIC ANALYSIS
There are primarily two procedures for solving a novel research problem.

a) Carry out literature survey with the help of recognized databases such as Scopus, and Google Scholar, and so on then
gather trending topics where the most cited articles in that trending topic are identified for a better understanding of
the research problem.

b) Study relevant review articles covering a broad research area and get acquainted with the technologies employing to
solve the research problem.

First, bibliometric analysis was carried out using Scopus database and detailed results were presented. The chrono-
logical distribution of the number of articles from the year 2000 to 2018 is shown in Figure 5. The trend of publishing WF
started increasing in 2004. This trend has risen with the deregulation of power systems and with the evolution of Al tech-
niques such as use of artificial neural networks (ANNSs) and time-series based methods. In 2013, the trend fell slightly
but from 2014 interest in WF was clearly seen raising up to 2018. From the total number of articles published, it was
observed that the majority (a) 580 (53.8%) of research articles were published in journals in comparison with articles (b)
454 (42.1%) published in conferences (see Figure 6). The top ten countries with the most number of WF publications are
as shown in Table 2. It was clear that China is a major contributor with 421 publications followed by the USA (137) and
India (67). Chinese researchers were publishing a lot of work in all the fields but there was a growing interest for wind
in China in terms of wind installations. Table 3 shows the top ten journals which published WF articles. From Table 3,
it is clear that Renewable Energy journal published 64 articles followed by Wind Energy (38), and Energy Conversion And
Management (35).

Second, very few review articles and books have been available for researchers in WF area. The review of WF mod-
els and their application to power system operations were reported by Monteiro et al.'” and Qian et al.'®* Wind field
deterministic and probabilistic approaches for numerical weather prediction (NWP) were detailed by Oliver et al.!® and
Hong et al.?*2! From the available review articles, one can find the best review of wind resource assessment in Murthy
and Rahi.?? Validation of a single ANN, single support vector machines (SVM), and hybrid forecasting technique was
performed by employing mean absolute error (MAE) and root mean square error (RMSE) as statistical measures for
forecasting accuracy as per Shi et al.?*> One can acquire knowledge about NWP, ensemble, and statistical approaches
implemented for WF from Foley et al.?* and Ahmed and Khalid.?> Comprehensive review of combined approaches and
their future trends was presented by Tascikaraoglu and Uzunoglu? and Xiao §.%7
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TABLE 2 Top 10 countries ranked by number of WF publications

Rank Country No. of publications

1 China 421

2 USA 137

3 India 67

4 UK 60

5 Spain 58

6 Canada 50

7 Germany 48

8 Denmark 39

9 Australia 36

10 Turkey 29

Rank Journal No. of publications :LﬁaneI; oEf \?VF ;zilf jt(i);llr;;als ranked by
1 Renewable energy 64
2 Wind energy 38
3 Energy conversion and management 35
4 Energies 27
5 Applied energy 23
6 Wind engineering 16
7 Energy 15
8 Renewable and sustainable energy reviews 13
9 IEEE transactions on sustainable energy 10
10 Journal of applied meteorology and climatology 10

3 | CLASSIFICATION OF FORECASTING APPROACHES

Based on the time-horizon, WF techniques are classified into four kinds as shown in Table 4. The most widely used
approaches are physical, statistical, and Al-based approaches.

Persistence approach is the renowned benchmark approach. Accuracy of persistence method is very high for very
short-term forecasts which range from a few seconds to 6-hour ahead (intraday forecasts) as mentioned by Nielsen
et al.3? As the time horizon increases, forecasting accuracy will decrease for long-term forecasts. According to Persistence
approach, wind speed at future time step is estimated as P, 5 and should be equal to the observations of the current time
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TABLE 4 Time horizon classification of forecasting techniques®
Time-scale Applications Reference

Very short-term (from a few seconds to
30-minutes ahead )

- Grid stability operations

- Voltage regulation actions

Short-term (from 30 minutes to
day-ahead)

- Economic load dispatch planning

- Load increment or decrement decisions
- Power reserve management
- Operational security in day-ahead electricity market

- Generator Online/Offline decisions

10-seconds ahead?®

1-hour ahead®?°

3-hour ahead®
5-hour ahead®
6-hour ahead’®

24-hour ahead!®3¢

Medium-term (from day-ahead to - Unit commitment decisions 72-hour ahead!!

month-ahead)
- Maintenance scheduling

Long-term (more than month-ahead) - Wind farm optimal design 30-days ahead!?

- Restructured electricity markets 1-year ahead!?

4-years ahead’!

step P, Nielsen et al.3? (as shown in Equation (6)).
Pys = Py, (6)

where P, is calculated wind power at time step t, which constitutes the average of wind power above the past time.

3.1 | NWP approaches

Physical approach uses past wind power data and NWP. Figure 7 shows the framework of the physical approach. The
main standard measures to develop an NWP approach are the choice of geographical site of a wind farm, spatial reso-
lution, temporal resolution, and the prediction horizon as per Allen et al.3* These are the typical characteristics of NWP
and they are common to all wind prediction models. But these characteristics will vary with the location of wind farm.
These NWP predictions are not only particularly meant for electric utilities but also used for various services, fields, and
government firms. NWP approaches are satisfactory for long-term forecasts. NWP is sensitive to initial conditions and to
tackle this, NWP ensemble prediction was employed by Landberg.3* Typhoon ensemble NWP model is implemented by
Japan meteorological agency to detect storms in the Pacific ocean. To the greatest extent, NWP models are multistep and
give look-ahead times for innumerable horizons but a large number of these approaches only yield a single anticipated
value for each forecast time scale. Hence their use in stochastic optimization and risk assessment is limited. Figure 8
shows illustrative framework of NWP model.

3.2 | Statistical approaches

Statistical approaches utilize only one-step for WF based on historical data and weather conditions as per Karakus
et al.'% Shukur and Lee® developed autoregressive moving average (ARMA) and Kalman filter (KF)-based model for
time-series prediction. Statistical models give best results for short-term prediction applications, given by Li and Hu.3¢
The ARMA-based approach is represented by Equation (7)

p q
Xy = z @iXe—i + z Oig—i +k + g, 7

i=1 i=1

85UB01 SUOWIWOD SAERID (dedl|dde ayy Aq peusenob afe saie YO ‘s Jo SNl 1oy Afeiq1T8UlUO 8|1 UO (SUONIPUOD-pUE-SWBI W00 A8 1M AReq Ul UO//:SdNy) SUONIPUOD pue SWS | 841 88S *[5202/TT/9z] Uo ARigiTauljuo Aim IO emninsu| euolieN Ag 8/TZT ZBUS/Z00T 0T/10p/wod A8 im Areiq1jpul|uo//sdny wouy pepeojumod ‘9 ‘0202 ‘96T8225Z



MADASTHU ET AL.

FIGURE 7 General architecture of physical approach
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where x; is the forecasting parameter at time instant t, ¢ represents the auto regression (AR) parameter,  is the moving
average parameter, k is a constant and ¢; models the random white noise. p and q are the orders of the AR and moving
average models, respectively. Figure 9 shows the flow diagram of ARMA model.

3.2.1 | ANN-based models

ANN models are most commonly used for short-term wind speed forecasting (STWSF). Appropriate selection of ANN
model is based on the characteristics of the problem and demands cautious analysis. Figure 10 shows the general frame-
work of ANN. This is capable of mapping actual nonlinear input data into forecasted output data. The structure and
number of neurons of NN depends on the STWSF problem. The algorithm employed for training the multilayer percep-
tron ANN is back-propagation algorithm.3® During training, with minimization of error between actual input values and
target output values, this network will adjust the weights and biases which are present in ANN.

85UB01 SUOWIWOD SAERID (dedl|dde ayy Aq peusenob afe saie YO ‘s Jo SNl 1oy Afeiq1T8UlUO 8|1 UO (SUONIPUOD-pUE-SWBI W00 A8 1M AReq Ul UO//:SdNy) SUONIPUOD pue SWS | 841 88S *[5202/TT/9z] Uo ARigiTauljuo Aim IO emninsu| euolieN Ag 8/TZT ZBUS/Z00T 0T/10p/wod A8 im Areiq1jpul|uo//sdny wouy pepeojumod ‘9 ‘0202 ‘96T8225Z



MADASTHU ET AL. WILEY— 2oz
FIGURE 9 Flow diagram of autoregressive moving Input
average models Data

Model order
Identification (p, q & d),
Estimation and fitting

Input Data
Stationary?

Stationarisation
(Detrending) the model Mod.el orc-‘ler
modification
adequate?
Run forecast as per
desired horizon
Final prediction
results
FIGURE 10 General architecture of artificial neural Input Hidden Output
network?’ layer layers layer
Neurons
Xo Wijk
z|r Wijk
X1 % Neuron
s|r — Y
X2 zé E; /
X3 / 2|0
Bias ¢ ®
Inputs 1 1 1

The input vector [x;,x,,Xs, ... .,X;] and the corresponding target value is applied to ANN. The output at jth hidden
layer neuron is given by Equation (8):

Ni
Yj = z wi;x; + b;, ®)

i=1

where N; is the number of neurons in the input layer,

[wyj, Wy, Wy, ... ., W] is connection weight vector of ith input layer neuron to jth hidden layer neuron and b is bias
value connected to jth hidden layer neuron.

Then Y; is processed by transfer function f(-) into Z;. Hence, the output at kth output layer neuron is represented by
Equation (9)

Ny,

Zi=f() = ), wiY; + b, )
k=1
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where N}, is hidden layer neurons, [wix, Wag, W3, ... ., W] is connection weight vector of jth hidden layer neuron to kth

output layer neuron and by is bias value connected to kth output layer neuron. The output of the kth output layer neuron
is calculated with the generalized formulae as shown in Equation (10).

N, N,
Zk =1 (2 wich (2 Wy + bj) + bk> : (10)
k=1

i=1

Not only traditional time-series approaches were used for determining statistical relationship among the historical
data, but also SVM, ANNSs, and fuzzy systems have been utilized. Advancement of Al technology has given raise of ANNS.
As reported by Amjady et al.,>” ANN uses data and learns from experience through the training process. ANNs such as
feed-forward back propagation NN, radial basis function NN (RBF), and so on have been employed to handle the non-
linearity present in wind speed, as implemented by Sun and Wang.* The capability of fuzzy logic to model the wind
system behavior utilizing a set of simple fuzzy rules and self-learning capability of ANNs have been employed to develop
the fuzzy neural network (FNN) and adaptive neuro-fuzzy inference system (ANFIS) for investigating wind speed pre-
diction applications. The number of neurons needed by ANNs to handle different problems has been more, as reported
by Ali et al.?” and Shao et al.*> Wavelets have been combined with ANNs to form wavelet neural networks (WNNs) and
to solve this issue. The choice of wavelet transforms (WTs) is the main problem with WNN. The prediction performance
of the model has been enhanced that means accuracy is enhanced with the best choice of WTs. For example, Aghajani
et al.*! proposed a hybrid model which consists of WTs, RBF, and ANN for wind power prediction and achieves mod-
erate accuracy in comparison with benchmark models thanks to the fine tuning of weights and biases using imperialist
competitive algorithm (ICA). But the hybrid model is achieved moderate accuracy because the ICA may trap in local
minimum. Next, Chitsaz et al.*? developed 6-hour ahead WF hybrid method by combining the improved clonal selection
(ICS) algorithm with WNNs but ICS has problem of low accuracy and slow convergence rate. Furthermore, Xiao et al.*?
proposed a hybrid approach for 1- and 3-hour ahead WF that merges singular spectrum analysis and general regression
neural network with CG-BA (SSA-CG-BA-GRNN). Furthermore, Shukur and Lee3 reported a hybrid approach which
consists of ANN, ARIMA model, and KF. In the Iraq and Malaysia test cases, MAPE errors of ANN-ARIMA-KF model
has been reported as 37.17% and 11.29%, respectively. In the china case study, Wang et al.** implemented and validated
the performance of a hybrid approach by mixing the superior qualities of Elman recurrent neural network and support
vector regression (SVR) for day-ahead wind speed prediction. Osorio et al.*> and Liu et al.*® have developed ANFIS-based
models for 3-hour ahead and 48-hour ahead wind power prediction, respectively. Both the models achieved the best accu-
racy in comparison with the benchmark models. The comprehensive comparison of fundamental models is reported
in Table 5.

4 | PERFORMANCE EVALUATION CRITERIA OF DIFFERENT
FORECASTING APPROACHES

The data size required for prediction always depends on the model utilized for forecasting as mentioned by Hannikainen.%
The benchmark Persistence model takes very low amount of data, whereas the NWP model will take a huge amount
of data for forecasting. The statistical approaches and ANN models depend on historical meteorological data at wind
farms as mentioned by Fischer et al.®® The principal statistical measures, MAPE and RMSE are utilized for the per-
formance evaluation of implemented prediction technique. Other error parameters like mean bias error (MBE) and
Skill Score are also employed for performance evaluation as reported by Shaker et al.”® The frequently used sta-
tistical error parameters considered for performance evaluation are as follows: The mean square error is given by
Equation (11)

N
1
MSE = ﬁ Z (Pforecasted,i - Pactual,i)2~ (11)

i=1

Here N is number of samples, whereas Pactyar; and Prorecasted,; are actual and predicted values, respectively.
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TABLE 5 Comprehensive comparison of wind speed prediction techniques

Forecasting approach

Persistence method

Time-series based approaches
(Example: ARIMA,

GARCH, and so on)!0:3234.3547

NWP approach??

SVM-based approaches#8:49

ANN-based approaches*’-0-52

Fuzzy-logic approaches®>7

Artificial intelligence

approaches3828-¢7

Advantages
Highly accurate for very short-term forecasts

which are ranging from few seconds to 6-hour ahead

- Most reliable forecasting approach because
it utilizes readily available meteorological data

- No need of expert skill

- Determination of prediction intervals are
very simple, accurate for short-term forecasts.

Best suitable for long-term forecasting

- Exhibits better generalization capabilities.

- Adaptable to wide range of parameters

- Highly nonlinear models like wind speeds

- Knowledge-based systems and learns through

the training process

- ANNs will react to even the smallest change in data.

- Easy to implement and have the ability

to deal with uncertainties and nonlinearities

- Improves the accuracy of forecasts by rule-based
learning process
- Comparatively less complex approaches and

acceptable for models that are tough to design
precisely.

- These approaches will use best features

of the above single forecasting approaches in order to

minimize the effect of drawbacks, computational
complexity,

and obtain accurate forecasts

- These methodologies are implemented for larger
systems.

Disadvantages
Time horizon increases because of overcast and
intermittent nature of wind speed, forecasting

accuracy will be decreased for long-term
forecasts

- These approaches requires
large number of past input values

- Intermittent behavior of prediction
parameter (wind speed

or wind power) cannot capture perfectly

- Less accurate for long-term forecasts.

- Not applicable for short-term forecasting
due to computational complexities.

- Difficult to get physical input data.

- Requires longer training time

- Consists of complex optimization structure

- Accuracy rely on genuine tuning of
parameters.

- Majority of the models are shallow in nature

- Wind uncertainty properties extraction is
indirect

- Need huge training dataset and optimal
training algorithm

- Need monotonous hand-engineered features

- Very difficult to design and needs large
amount of

computational resources.
- Exhibits weak learning ability

- Model becomes complex and computational
time also

increases.

- Designing and training of these types of
forecasting

approaches are challenging

- The input data must be preprocessed for
enhanced

generalization capability.

Abbreviations: ANN, artificial neural networks; NWP, numerical weather prediction; SVM, support vector machines.
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RMSE (as shown in Equation (12)) is the most suitable for WF applications because it gives extra weight for large
changes between actual and predicted values in comparison with small changes as given by Staid et al.”

N
1
RMSE = J Nv Z (Pforecasted,i - actua],i)z- (12)

i=1

The MAE and MAPE (as shown in Equations (13) and (14), respectively) are regularly used statistical errors as
mentioned by Kim and Jung.”?

N
z |P forecasted,i — P actual,i|
MAE = = , 13
= 13
1 o | Pactuati — P, :
MAPE = — Z actual,i forecasted,i £100. (14)
N i=1 P actual,i

MBE as shown in Equation (15) indicates that the forecast value is under-estimated or over-estimated. For statistical
approaches and physical approaches with model output statistics, it gives low results.

N
Z(P forecasted,i — actual,i)

MBE = = . 15
= as)

The effectiveness of the forecasting approaches is found by considering the uncertainty and variability of forecasts as
reported by Barcons et al.”® Skill Score as shown in Equation (16) is known as the ratio of the model's RMSE (RMSE,,) to
RMSE of persistence model (RMSE,). The higher Skill Score values are an indication of the best prediction quality.

RMSE,,

Skill score =1 — .
RMSE,

(16)

5 | THE PROPOSED HYBRID DEEP LEARNING MODEL

In this section, real case study of short-term wind speed prediction is elaborated. The hybrid deep learning model is pro-
posed by combining ensemble empirical mode decomposition (EEMD) technique and long short-term memory network
(LSTM). The dataset includes the period between July 01, 2016 and July 31, 2016 and it has been captured from the
National Institute of Wind Energy website.'* Figure 11 shows the hourly wind input data of historical values acquired from
the wind farm in Telangana, Southern India. The general framework of hybrid EEMD-LSTM model is shown in Figure 12.
The EEMD®! technique is employed to decompose the original wind speed data into subseries (As shown in Figure 13).

Table 6 reports the RMSE and MAPE values of proposed hybrid EEMD-LSTM and existing benchmark models. The
RMSE and MAPE values of proposed hybrid EEMD-LSTM method are 0.2509 and 5.2253. The deep learning network
LSTM?7S is effective in tracing the uncertainty of wind speed (As depicted in Figure 14). The effectiveness of the prediction
with and without employing the EEMD technique is shown in Figure 15. From Figure 15, it is clear that by employing the
decomposition algorithm, EEMD, the models are successfully followed the original wind speed values. Hence, the data
preprocessing technique is playing a vital role in developing the hybrid methods for WF.

6 | ADVANCEMENTS IN ACCURACY OF FORECASTING

The evolution of forecasting approaches gives us the best improvements in the robustness of approach and also notably
enhances forecasting accuracy. Hybrid approaches that have combined the best features of individual approaches and
optimization techniques resulted in improving the forecasting accuracy as reported by Zhang and Zhang.””
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FIGURE 12

General framework of hybrid EEMD-LSTM
modal. EEMD, ensemble empirical mode decomposition; LSTM,
long short-term memory network
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Ensemble Empirical Mode Decomposition (EEMD):

Step 1: From x(t) produce the new noise-added signal using x'(t)=x(t)+€'(t), Where £\(t) is
a Gaussian white noise.

Step 2: D p the new noise-added signal x'(t) by executing the standard EMD to
Obtain their corresponding IMF modes IMF/'. (t) using

X(ty=0 IMF; () + Ry, (¢)

Step 3: Repeat Step 1 and Step 2 with distinct Gaussian white noise every time.

N
Step 4: Compute the average of the corresponding series [MFI‘: (t) 25%2 [MF}’

=1
Intrinsic Mode Functions (IMFs)
+ One Residue

v

Remove the high frequency IMF1

!

Form the new data without noise

| Hybrid EEMD-LSTM model

¥

| Final wind speed predictions

6.1 | Current advances used for forecasting

For improved forecasting performance, other current approaches used for forecasting are fuzzy logic approaches, WTs,
spatial correlation and ensemble predictions developed by Ren et al.”® These approaches are amalgamated with statistical
models like ANNs and time-series models for obtaining high accurate predictions.

ANNSs are the most commonly employed in building hybridized approaches for WF purpose as mentioned by Li and
Liao.” Shao et al.®® developed an accurate hybrid short-term prediction model by mixing AdaBoost NN and wavelet
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FIGURE 13 The decomposed subseries of original wind speed data®!

TABLE 6 RMSE and MAPE values obtained by proposed hybrid EEMD-LSTM and existing methods

Proposed
FFBP ENN EEMD-FFBP EEMD-ENN EEMD-LSTM
Error value method*’ method”* method”> method®? method
RMSE (m/s) 00.4483 00.4665 00.2799 00.2718 00.2509
MAPE (%) 08.8214 09.2727 05.9351 05.5645 05.2253
CPU time (s) 02.9800 02.9900 30.2500 30.6900 30.8800

Abbreviations: EEMD, ensemble empirical mode decomposition; ENN, elman neural network; FFBP, feed-forward back propagation; LSTM,
long short-term memory network.

decomposition (WD). Wind speed decomposition using wavelet analysis helps to find the wind pattern features at any
given frequency. The hybrid model was based on the model structure selection, AdaBoost back propagation NN, and
‘WD. This model has outperformed other methods in terms of accuracy. WT was used for implementing accurate hybrid
models for forecasting such as a hybrid intelligent algorithm that combines the features of fuzzy ARTMAP network
and WT. By using meteorological inputs like wind speed, its direction, and temperature from Canadian kent hill wind
farm, the algorithm can forecast output power as implemented by Haque et al.’! In the performance evaluation which
involves a comparison of statistical parameters such as NRMSE, MAPE, and NMAE, this hybrid fuzzy ARTMAP-WT
method has given better results than other conventional methods. Similar to the above hybrid approach, there were sev-
eral other approaches such as a combination of NNs and Gaussian mixture model developed by Chang et al.,%? a mix of
NNs and Fuzzy Logic models implemented by Zheng et al.3* One can find thoroughly reviewed literature of WF using
combined approaches reported by Tascikaraoglu and Uzunoglu.?® For enhancing the accuracy of the forecasts nowadays,
the appropriate optimization algorithms were utilized by Baharvandi et al.3*

Taking into account wind power and its uncertainty, a probabilistic model was developed for payment cost mini-
mization (PCM). The ARMA model was utilized for reducing wind forecast error in time-series wind speed prediction
as reported by Xu et al.35 The PCM model gave a better financially viable consumer payment than bid cost minimization
model.

Another current approach for forecasting is ensemble prediction. Wang et al.3¢ proposed the hybridized prediction
model which integrates the best features of EEMD, GA, adaptive particle swarm optimization, and WNN. Forecasting
performance was evaluated using MAE, MAPE, and MSE for four wind farms in eastern china and it was better when
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compared with some conventional models such as BPNN, FNN, SVM, and WNN. Independent of the location under
consideration, SVM-based approaches exhibited better generalization capabilities. Ali et al.?® has developed the WF model
by mixing EMD and SVR methods. By utilizing this approach, computational complexity was reduced and accuracy was
increased.

Accurate WF is possible with available small-volume of historical data and one needed to utilize the features of NWP
approach for developing hybrid models as mentioned by James et al.” Fang and Chiang®® has implemented an accurate
hybrid prediction method that consists of Gaussian processes (GP) and composite covariance functions (CF) employing
NWP inputs. This model has given the significant NRMSE error drop compared with automatic relevance determination
squared exponential CF model. Because of the irregular behavior of wind, accurate WF was difficult. Day-ahead WF can
be performed by utilizing the combination of GP and NWP model developed by Chen et al.?® With fewer datasets, this
model gave a notable reduction in MAE than ANN model. Ozkan and Karagoz®® has developed another hybrid method
for short-term time-scale prediction that was developed using a statistical hybrid wind power prediction technique. This
prediction technique utilized fewer amounts of past data and combined three distinct NWP power forecast results in
Turkey. Day-ahead forecasting of power is drawing interest from researchers and utilities these days because of the need
for economic scheduling, unit commitment, and load dispatch planning.

6.2 | Besides point prediction

Probabilistic prediction and interval prediction are the other methods utilized for time-series prediction by the researchers
to overcome the disadvantages of point predictions, as reported by De Gooijer and Hyndman.”!

6.2.1 | Interval prediction and probabilistic prediction

Point prediction is deterministic in nature. Prediction intervals (PIs) forecasting is preferred over point prediction because
it gives an anticipated range of wind speed with corresponding confidence level. An accurate PIs are helpful for critical
analysis by utility planners of power system, as reported by Naik et al.®? Most of the forecasting applications of PIs contain
true values of future observations with a specified probability.

There are number of research articles and review articles of wind speed point prediction approaches available in
the literature but there are very few comprehensive hybrid wind speed probabilistic interval prediction research articles
before three recent articles by Afrasiabi et al,®® Lucheroni et al,* and Jiang et al.*> An extensive research article presents
the review of probabilistic prediction techniques to validate the uncertainty associated with the wind predictions Pinson
et al.”® In near future, PIs and probabilistic prediction will expectantly invade the WF literature as mentioned by Wang
etal.”’
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FIGURE 15 Comparison of forecasting results effectiveness without EEMD technique and with EEMD technique. EEMD, ensemble
empirical mode decomposition

6.3 | Major research problems and evaluation through comparison

The forecasting approaches like NNs or fuzzy models are not suitable for any two wind farms in the world because of
the “generalization capability” of forecasting approach as reported by Staid et al.”® To improve generalization capability,
the input data must be preprocessed by dividing input so that the forecasting approach is designed for each subclass and
the functions such as standard deviation, mean, variance, slope calculated for the model. This preprocessing refines the
nature of uncertainty in the data as reported by Shi et al.”® Reliable and efficient forecasting models can be built using
this concept.

The designing and training of WF models such as ARMA, fuzzy, and NNs are most challenging these days. WF model
designed for one site is not suitable for another site because of distinct wind speed patterns, change in terrain, distinct
atmospheric parameters such as temperature, pressure, humidity as provided by Browell et al.” and Safarishahrbijari.'®
By proper selection of input and output nodes after designing the robust forecasting model, over-fitting of input data is
avoided, given by Bebis and Georgiopoulos.!®! Then implementation and validation of the forecasting model are neces-
sary. Implementation of the NN model can be performed by determining the optimal number of model parameters using
trial and error, Box method and selecting the best learning algorithm (BP, LM, and so on). Validation of NNs is attained
through the calculation of statistical measures such as significant RMSE, MBE, MAPE, MSE, and pair-wise comparison
with other existing models. The major challenge for WF is that prediction accuracy in the immediate future is given by
Fluck and Crawford.'%?

7 | CONCLUSIONS AND FUTURE SCOPE

An extensive review of existing forecasting approaches, current advances, and hybrid forecasting models utilized for WF
are presented. Physical approaches like NWP techniques are initially employed for WF. These physical models utilize
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historical meteorological data for forecast and best suitable for long-term wind forecasts. Due to computational com-
plexities involved in the approaches, these are not suitable to short-term prediction. Hence, statistical approaches like
ANNs and time-series based approaches are implemented for accurate short-term predictions. These models are difficult
to design and these models require a huge volume of historical data for training. These approaches are quite easy to use
and adaptable for a wide range of parameters.

The advancement in the prediction accuracy is necessary for enhanced RES integration. The increase in accuracy can
be achieved through hybrid approaches, which combine the strengths of individual approaches and optimization tech-
niques. Therefore, utilities and researchers developed new approaches and hybrid methods to obtain high accuracy and
reduction in systematic error. And these methods can be implemented for larger power systems. The hybrid approach per-
formance rely on the main objective of forecasting and features of historical wind data. If the error processing technique
is included in the hybrid model, it will take more computational time. The major research issues like how to improve
generalization capability using data preprocessing, the implementation and validation of the forecasting models through
performance evaluation criteria are focused in this review article for the benefit of future researchers in the area of WF.
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