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� A new MPPT using Grey Wolf optimized adaptive fuzzy logic controller is proposed.

� Grey Wolf optimization is used for tuning the scaling factors of MFs of FLC.

� The objective of the optimization of scaling factors is for better MPPT.

� The test system is examined under different shading patterns.

� It improves global MPP tracking speed and efficiency of solar PV system.
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As the solar PV system (SPVS) suffered from an unavoidable complication that it has

nonlinearity in IeV curves, the optimum maximum power point (MPP) measurement is

difficult under fluctuating climatic conditions. For maximizing SPVS output power, MPP

tracking (MPPT) controllers are used. In this paper, a new adaptive fuzzy logic controller

(AFLC) based MPPT technique is proposed. In this proposed AFLC, the membership func-

tions (MFs) are optimized using the Grey Wolf Optimization (GWO) technique to generate

the optimal duty cycle for MPPT. Four shading patterns are used to experiment with the

performance of the proposed AFLC. The proposed approach tracks the global MPP for all

shading conditions and also enhances the tracking speed and tracking efficiency with

reduced oscillations. The effectiveness and robustness of proposed AFLC based tracker

results over P&O and FLC are validated using Matlab/Simulink environment. The proposed

AFLC overcome the drawbacks of the classical P&O, and FLC approaches.

© 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

Due to the conventional sources limitations and the issues of

environment, the world is motivating towards renewable

energy (RE) based microgrid system development. Microgrids

are the systems consists of micro-sources, loads, storage

systems with at least one distributed generation (DG) source
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and should be operated in grid-connected or islanded modes

[1e3]. Microgrids offer enhanced local reliability, curtailed

feeder losses, increased efficiency, and deliver uninterruptible

supply function to the consumers [4,5]. The commonly used

DG sources in microgrids are wind and solar for the reason

that these are sustainable sources, ecologically friendly, and

should be constructed at the utility or consumer side [6,7]. Out
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Fig. 1 e Electrical model of PV cell.
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of various RE sources, solar energy became the primary

alternative source because it can be harnessed in all areas and

is available every day. It became a leading renewable source

due to its simple structure, having less pollution, less or zero-

carbon greenhouse emission, and less maintenance cost.

Currently, solar power is the envisaged alternative source by

the world [8]. Nevertheless, the solar PV system (SPVS) suf-

fered from an unavoidable complication that it has nonline-

arity among the current and voltage predominantly under

partially shaded conditions (PSC). In addition to PSCs, SPVS is

affected by climatic conditions viz. hazy atmosphere and

forest fire. The authors assessed the analysis of haze impact

on solar PV systems. The haze particles prevent solar irradi-

ance to reach PV panels which leads to a reduction in PV

power. There are 15e20 hazy days for every year. The average

PV power loss during the haze period is around 18% compared

to a normal day [9]. Forest fires can play a vital role in climate

change. During the forest fires period, the haze and smoke

effects as pollution on the light intensity. Hence, SPVS has a

power loss of up to 12.5% [10]. The authors also presented the

works on the improvement of photocatalytic performance to

utilize the enhanced visible light [11e13]. As the solar PV

electrical characteristics having nonlinearity, optimum per-

formance measurement assurance is not possible for fluctu-

ating climatic conditions. To maximize SPVS output under

fluctuating climate conditions, solar PV systems take account

of MPPT controllers. These MPPT techniques use dc-dc con-

verters for continuous MPP tracking.

A study of partial shadowing effects on SPVS characteris-

tics for non-uniform insolation is designed in Ref. [14]. Based

on this, G. Lijun et al. [15] proposed the construction of a series

and parallel combination of SPVS and their MPP tracking. The

comparison of many conventional MPPT techniques is pre-

sented [16,17]. Such techniques are hill-climbing/P&O, frac-

tional open circuit voltage, fractional short circuit current,

incremental conductance (INC), ripple correlation control

(RCC) and these controllers could fails global MPP tracking.

The P&O technique functions by perturbing voltage, and it has

poor tracking time with constant vacillation at MPP [18].

Owing to the fact the INC method is commonly used because

of easy implementation and enhanced efficiency. It functions

based on the value of derivation of power against voltage

presence positive on the left of MPP, zero at MPP, and negative

on the right of MPP. The drawback of INC is a slow tracking

time to reachMPP [16]. RCC takes converter signals to ripple to

achieve the optimal point of MPP with the variation of oper-

ating current according to its location. It enhances tracking

time but poorer MPP accuracy than other MPPTs.

The author in Ref. [19] proposed an FLC to track MPP and

elevated the drawbacks of the P&O search method that the

performance of FLC is fast converging and accurate

tracking. The PV system has been tested for changing

temperature and insolation levels [20,21] using FLC. Also

compared the results for various performance parameters

that are response time and tracking efficiency over con-

ventional P&O. Jaw-KuenShiau et al. [22] presented the

investigation on the design of FLC algorithms for solar MPPT

using multiple fuzzy input variables. Some research works

[23e25] conceded MPP tracking using the FLC technique by

adding an extra gain block to the fuzzy system to tune the
output. This drawback has been removed, and the duty

cycle is achieved directly using the fuzzy rule-based system

[26]. Moreover, this algorithm tracks MPP with expedient

speed and better response for abrupt change with special

conditions. The FLCs commonly used are built using type 1

fuzzy sets that have complications in diminishing the effect

of uncertainties. Type 2 FLC [27] reduces this effect of un-

certainties. Neural network-based MPP [28] tracking claims

that enhanced efficiency over the FLC technique.

In this work, Grey Wolf optimized adaptive fuzzy logic

controlled approach is proposed to extract the global MPP.

The objective is to improve the efficiency and GMPP

tracking of SPVS in all uniform and non-uniform irradi-

ances. In proposed AFLC, Grey Wolf optimization (GWO)

technique used for tuning the scaling factors of MFs of FLC.

The objective of the optimization of scaling factors is to

achieve quick response and reduce the steady state error.

To exhibit the effectiveness and robustness of AFLC based

tracker, results are validated using Matlab Simulink.

The leftover of this paper is summarized as follows: the

next section describes the modeling of SPVS and its charac-

teristics under PSC. And section 3 provides the gestalt of FLC

approach to track MPPT. In Section 4 the proposed AFLC and

GWO algorithm to optimize the FLC parameters are presented.

The results and discussionswith the performance of Proposed

AFLC are shown in section 5. Finally, the last section provides

conclusions.
Solar PV system under PSCs

PV cell model

The conventional single diode electrical model of PV cell

comprises a light-current with an anti-parallel diode, one

resistor in shunt, and a resistor in series across the load [29,30]

shown in Fig. 1.

Applying KCL, The PV cell output current, IPV_C obtained as:

IPV C ¼ IL C � Id � VPV C þ Rs*IPV C

Rsh
(1)

where IL_C is light produced current, Id is diode current. The

light-current, IL_C of a PV cellbe subject to insolation and

temperature is expressed as:
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IL C ¼ G
Gref

�
IL Cref þmsc

�
Tcell �Tref

��
(2)

Also the diode current, Id is;

Id ¼ Io

�
e
VPV CþRs*IPV C

Vt �1

�
(3)

The Io, diode saturation dark current is proportional to

temperature can be obtained as:

Io ¼ Io;ref

�
Tcell

Tref

�3

exp

�	qεG
A:K


� 1
Tref

� 1
Tcell

��
(4)

PV module model

By and large, a PV cell generates a lesser amount of power less

than 2W. To enhancemore power generation, the PV cells are

configured as series-parallel [SP] combination. This SP com-

bination of PV cells is termed as PVmodule. Thus a PVmodule

consists Np cells in parallel and Ns cells in series depicted in

Fig. 2. As a result, The PV module output current, IPV_M ob-

tained as:

IPV M ¼NpIL M �NpIo

�
exp

�
VPV M þ IPV M*RsL

NsVt

�
�1

�

� VPV C þ LRs*IPV C

LRsh
(5)

where,

L¼Ns

Np
(6)

SPVS under PSC

The SPVS is a solar array which is comprised of PV modules

arranged in SP manner to come across energy demand. The

choice of SP arrangement of modules in an array depends on

factors that are PV material, performance, complexity, and

energy demand. A common abnormal condition occurs in a PV

array due to environmental conditions is called partial shad-

owing. To demonstrate SPVS under PSCs and its significance

effects, a string of three modules (3S) in series with four

different types of shading patterns is considered. The repre-

sentation of 3S configuration with blocking and the by-pass

diode is depicted in Fig. 3. The diodes are blocking, and by-
RsΛ  

RshΛ
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Fig. 2 e PV module.
pass is used to protect the module and to prevent “current

reversal” and “hotspot” formation. Moreover, in uniform illu-

minated SPVS, the individual IeV curves added up and gives

the only peak in the PeV curve. Further, the non-uniform

illuminated modules in SPVS causes to produce multiple

peaks in VeP curves. In this work different shading patterns

considered, that are pattern 1: 1000, 1000, and 1000 w/m2,

pattern 2: 1000, 1000, and 500 w/m2, pattern 3: 1000, 800, and

800 w/m2, and pattern 4: 700, 800, and 600 w/m2. Fig. 4 (a) and

(b) shows VeI and VeP characteristics of SPVS under PSCs.
Fuzzy logic based MPPT controller

The FLC method and conventional MPPTs are trapped at

local MPP (LMPP) under shaded conditions. For avoiding

LMPP tracking, a technique proposed [3] which has scan,

store, perturb, and observe the operating power of the SPVS

shown in Fig. 5 and flow chart shown in Fig. 6. This method

tracks MPP under any climatic conditions, exclusively

partially shadowing where global and local MPPs occur. For

the period of initial state and fluctuating climatic condi-

tions, it allows a wide range of search for scanning and

storing the MPP value. A predetermined value that signifies

the acceptable difference among the operating power and

the recognized maximum power is stored to choose the

controller rules. The duty cycle increases, if this difference

among these two powers is higher than the predetermined

value; or else, FLC based MPPT is applied. In this case, global

MPP (GMPP) recovers quickly from fluctuating climatic

conditions.

The FLC based MPPT using scan and the stored proced-

ure designed for rapidly recover the global MPP. The FLC is

formulated using MFs with input variables defined in Eqs.

(7)e(9) are:

DI¼ IðkÞ � Iðk�1Þ (7)

DP¼PðkÞ � Pðk�1Þ (8)

DPM ¼PmðkÞ � PðkÞ (9)

And the output variable is;

DD¼DðkÞ �Dðk� 1Þ (10)

where DI and DP denotes the change in output current and

change in output power of PV array, respectively, DPM is the

difference between stored peak power (Pm) and currently

operated power, and DD is the change in duty cycle. Table 1

shows the fuzzy rules in which the two input variables, DI

andDP, and the output variable DD distributed into five fuzzy

subsets expressed in linguistic labels. The input variable, DPM
is distributed into two linguistic variables that are PS and PL.

The membership function for linguistic labels of input and

output variables presented in Fig. 7. To work the fuzzy com-

bination, Min-max method of Mamdani used. The ending

stage of FLC is the defuzzification where the fuzzy singleton

output transformed into an equal crisp control value [31]. Here

the center of area method is used for the defuzzification.

The defuzzified output denoted as:

https://doi.org/10.1016/j.ijhydene.2020.12.158
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Fig. 3 e 3S configuration of SPVS with different shading patterns (a) Pattern1: 1000, 1000, and 1000 w/m2. (b) Pattern2: 1000,

1000, and 500 w/m2. (c) Pattern3: 1000, 800, and 800 w/m2. (d) Pattern4: 700, 800, and 600 w/m2.

Fig. 4 e (a) The VeI curves of SPVS for different Shading patterns and (b) The VeP curves of SPVS for various shading

patterns.
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DD¼
Pn

j ε
�
Dj

�
DjPn

j Dj
(11)

where DD, the change is in duty cycle is an output of FLC, and

Dj denotes the center of max-min method composition at the

output MF.
Adaptive fuzzy logic based MPPT controller

The increasing complexity of MPPT tracking under partial

shading conditions needs an accurate and fast tuning of

control parameters for a better MPPT tracking. In light of this

issue, in literature, authors proposed various optimization

techniques for MPPT tracking. The inherent features of these
algorithms are; independent on the model of the plant and

derivative-free. Few of them like ACO, GA and PSO. According

to theorem, no single Meta heuristic technique is suitable for

solving all engineering optimization problems and scope of

improvement is always persists [32e35]. Due to advantages in

fast convergence, easy implementation structure, less num-

ber of controlling parameters and simplicity the GWO suc-

cessfully implemented to various engineering problems. By

considering this as motivation, a recently developed and

powerful GWO is presented for accurate MPPT tracking.

The conventional FLC may produce some depicts due to

improper selection of MFs. To improve the performance of

FLC, the scaling factors of inputs and output parameters of

FLC are optimized using swarm techniques. There are many

approaches to tune fuzzy parameters [32e35]. In this, based

on requirements and complexity of MPPT of SPVS, a novel

https://doi.org/10.1016/j.ijhydene.2020.12.158
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Fig. 5 e Solar PV system with MPPT controller.

Table 1 e Fuzzy logic Rules.

DP DI

NL NS ZE PS PL DPM

NL ZE ZE NL NL NL PS

NS ZE ZE NS NS NS

ZE NS ZE ZE ZE PS

PS PS PS PS ZE ZE

PL PL PL PL ZE ZE

NL PB PB

NS

ZE

PS

PL
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Grey Wolf optimization (GWO) technique used for tuning the

scaling factors of MFs of FLC. S. Mirjalili et al. [36] presented

the detailed explanation of GWO. The erection of the proposed

controller is depicted in Fig. 8. The reason for tuning of scaling

factors of MFs instead of fuzzy set ranges is the number of

variables for optimization is reduced [31]. The objective of the

optimization of scaling factors is to achieve quick response
V

A

IPV
VPVPV ARRAY

X

Store
MPP

P(

P

Sun

Fig. 6 e Flow
and reduce the steady state error. The integral time absolute

error (ITAE) criteria are used for the cost function and

expressed as:

ITAE¼
Z∞

0

t*jeðtÞjdt (12)

Grey Wolf Optimization

GWO was developed by Mirjali et al., in 2015, which mimics

the collective behavior of grey wolves [36]. In general, grey

wolves preferred to live in a pack consist of 5e12 wolves, and

they have a strict dominant hierarchy presented in Fig. 9.

Based on the ability to hunt the prey, the grey wolves are

classified into four categories viz. alpha, beta, delta, and

omega. The Alphawolves are leaders in the pack, and they can

be male or female, who are responsible for making decisions

regarding sleeping place, time to wake, migration, hunting,

and so on. All the wolves in the pack strictly follow the orders

of the alpha wolf (dominant wolf). The only alpha wolves in

the pack are allowed for mating. In general, the alpha wolves
D(k)
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Cin

L

Vout

Boost Converter

( )( )
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Controller

k)
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chart.
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are very efficient in managing the pack, but they may not be

the fittest member of the grey wolf pack. It means that the
β

ω

α

δ 

Fig. 9 e Grey wolf’s hierarchy (dominance increasing from

down to top).
discipline and organization of the grey wolf pack are most

important compared to their strengths.

The beta wolves are in the second level of the hierarchy,

and they can assist and help alpha wolves in making the de-

cisions and other activities in the pack. These betawolves lead

the pack when the alpha wolf passes away or becomes old. In

this case, the betas command the other lower-level wolves,

but they should respect the alpha. They play a disciplinary

role for the pack and an advisor to the alpha. The delta is the

third level, and omega is the last level category in the hierar-

chy. The delta dominates omega but submits to betas and

alphas. Scouts, hunters, elders, caretakers, and sentinels

belong to the delta category. As omegas are ranked on the last

level, they always have to submit to other dominant wolves in

the pack. The omega wolves play the scapegoat role and are

lastly allowed to eat in the pack.

In addition to the grey wolves social hierarchy, they have

another interesting behavior in their hunting process. The

https://doi.org/10.1016/j.ijhydene.2020.12.158
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Fig. 10 e Flow chart of GWO optimized scaling factors of FLC.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 6 ( 2 0 2 1 ) 1 0 6 5 3e1 0 6 6 5 10659
main steps involved in grey wolves hunting for prey are as

follows:

a) Social hierarchy

b) Encircling prey

c) Hunting

d) Attacking prey
Social hierarchy

In this GWO optimization technique, the alpha (a) wolves are

considered as the best solution in the pack. In the same way,
the beta (b) category wolf is second best, and the delta (d)

category is considered as the third-best solution. The leftover

candidate solutions are grouped as omega (u) wolves. In this

GWO, the wolves a, b, and d guide the hunting (optimization)

process, and the omega wolves always follow them.

Encircling prey
The following equations present the encircling greywolves for

prey during their hunt. Here n represents the current iter-

ation.X
!

and X
!

p are the positions of a grey wolf and prey, A
!

and C
!

represents the coefficients vectors.

https://doi.org/10.1016/j.ijhydene.2020.12.158
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Fig. 11 e (a) VeP curves (b) The power output of SPVS for P&O, FLC, AFLC techniques for first, second, third, and fourth

shading Patterns.
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D
!¼

����C!:X
!n

p � X
!n

���� (13)

X
!nþ1 ¼ X

!n þ A
!
:D
!

(14)

The coefficient vectorsA
!
, C
!

are obtained as:

A
!¼ 2 a!: r!1 � a! (15)

C
!¼ 2: r!2 (16)

where r!1; r
!

2 are the random values in [0, 1], a! is linearly

varied from 2 to 0 based on iteration.
Hunting
Grey wolves have prey location recognizing ability and

encircling them. In general, the hunt is guided by the alpha

wolf, later beta and deltawolves join in the hunting process. In

the mathematical model of grey wolves hunting behavior, all

the search agents update their position based on the position

of best candidate solution (a, b and d). Grey wolves hunting

behavior is follows as:

D
!

a ¼
����C!1:X

!
a � X

!����; D
!

b ¼
����C!1:X

!
b � X

!����; D!d ¼
����C!1:X

!
d � X

!���� (17)

X
!

1 ¼ X
!

a � A
!

1:
	
D
!

a



; X
!

2 ¼ X
!

b � A
!

2:
	
D
!

b



; X
!

3 ¼ X
!

d � A
!

3:
	
D
!

d




(18)
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Fig. 12 e Simulated Power, Voltage and Current curves for shading pattern 1: 1.0, 1.0, 1.0 kW/m2 (a) P&O based tracking, (b)

FLC based tracking, and (c) Proposed AFLC based tracking.

Fig. 13 e Simulated Power, Voltage and Current curves for shading pattern 2: 1.0, 1.0, 0.5 kW/m2 (a) P&O based tracking, (b)

FLC based tracking, and (c) Proposed AFLC based tracking.
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Fig. 14 e Simulated Power, Voltage and Current curves for shading pattern 3: 1.0, 0.8, 0.8 kW/m2 (a) P&O based tracking, (b)

FLC based tracking, and (c) Proposed AFLC based tracking.

Fig. 15 e Simulated Power, Voltage and Current curves for shading pattern 4: 0.7.0, 0.8, 0.6 kW/m2 (a) P&O based tracking, (b)

FLC based tracking, and (c) Proposed AFLC based tracking.
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X
!nþ1 ¼ X

!
1 þ X

!
2 þ X

!
3

3
(19)
Attacking prey
As stated above, the grey wolves hunting process finishes by

attacking the prey when it stops moving. The value of a! is

linearly decreased from 2 to 0 in order to model the mathe-

matical modeling of approaching the prey. Here the fluctua-

tion range of A
!

is decreases with a!. In the GWO algorithm, all

https://doi.org/10.1016/j.ijhydene.2020.12.158
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Table 2 e Quantitative Comparison of MPPT techniques.

Shading
Pattern

Method Power at MPP
(W)

Voltage at MPP
(V)

Current at MPP
(A)

Tracking time
(sec)

Maximum
Power

Efficiency

Pattern1 P&O [16] 106.75 36.8 2.095 0.05 106.81 99.94

FLC [21] 106.77 36.15 2.95 0.05 99.96

AFLC [proposed] 106.78 36.5 2.92 0.038 99.97

Pattern2 P&O [16] 68.4 23.7 2.885 0.043 68.48 99.88

FLC [21] 68.4 23.5 2.92 0.038 99.88

AFLC [proposed] 68.43 23.3 2.94 0.035 99.92

Pattern3 P&O [16] 89.48 37.1 2.41 0.073 89.52 99.95

FLC [21] 89.45 37.6 2.38 0.045 99.92

AFLC [proposed] 89.5 37.7 2.37 0.04 99.97

Pattern4 P&O [16] 70.4 38.25 1.845 0.056 70.45 99.92

FLC [21] 70.35 38.8 1.82 0.05 99.85

AFLC[proposed] 70.42 38.2 1.84 0.046 99.95

Table 3 e A qualitative comparison of MPPT techniques.

Creteria P&O FLC ACO-FLC [32] Fuzzy-PSO [35] Proposed GWO-FLC

Tracking speed Slow Moderate Moderate Moderate Fast

Complexity Less Less Moderate Moderate Less

Tracking efficiency Less Medium Medium Medium High

Reliability Low Moderate Low High High

Oscillations at MPP High Medium moderate (constant oscillations at MPP) High Less

Tracking accuracy Medium Medium Medium Medium Accurate
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the search agents update their position to attack the prey

based on the location of a, b, and d wolves.

Search for prey
Grey wolves search based on the location of alpha, beta, and

delta wolves. To search for the prey the grey wolves diverge

from each other and converge while attacking the prey. The

exploration behavior is emphasized when the random value

A
!

is greater than 1, or lesser than �1. This allows the GWO

algorithm to globally search. In addition to A
!

, the GWO al-

gorithm has another component favoring exploration is C
!
.

The value of C
!

randomly varies in [0 2]. When this component

is greater than 1 the search agents are more attracted to the

prey. This assists the GWO in favoring more exploration and

avoidance of local optima.

GWO algorithm to tune the scaling factors of FLC
parameters

The MPP tracking starts with an initial duty cycle. The input

current IPV and voltage VPV of boost converter are measured

to calculate the SPVS power PPV(k). Now, based on initial

changes in power, the controller increases the duty cycle. At

this stage, new IPV and VPV are measured to calculate new

power PPV (kþ1). Based on present and past information of

SPVS power, the controller decides to decrease or increase

the duty cycle. This process of tracking continuous until the

MPP reaches.

Fig. 10 depicts the flowchart of GWO based tuning of

scaling factors of FLC Parameters. The sequential steps

illustrated in Fig. 10 are summarized as follows:
Step 1: Inialization: Initialize the population size of GWO

using the equation:

X
!

ij ¼ l b
!þ rand*ðu b

!� l b
!Þ (20)

where, l b
! ¼ ½0 0 0 0�; u b

! ¼ ½1 1 1 1�;
The maximum iterations, number of control vectors,

scaling factors, and position vectors are also initialized.

Step 2: Fitness Evaluation: Estimate fitness value of every

individual wolf using Eq. (12)

Step 3: Selection: Rank the wolves in descending order

according to their fitness value. Identify the best three

wolves as a, b and d in population.

Step 4: Update the position of each wolf: Update the wolf

population positions using Eqs. (13)e(19).

Step 5: Termination criteria: If the termination criterion

attains, record optimum scaling factors, else go for step 2.
Results and discussions

The time domain simulations for SPVS MPPT under four

shading patterns is carried out using Matlab/Simulink. To

illustrate the supremacy of Proposed AFLC technique, results

are compared with FLC and conventional P&O methods. The

performance of three MPPT methods is analyzed concerning

tracking efficiency, tracking speed, and steady-state perfor-

mance under each shading pattern. Four shading patterns,

which includes different shading effects, were considered in

the present work. The shading patterns considered to have

different global MPP positions, such as first, second, and third

peaks. The output power of SPVS for P&O, FLC, AFLC tech-

niques under various irradiance patterns is depicted in Fig. 11.
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Pattern 1: The solar irradiances for PV modules considered

are 1.0, 1.0 and 1.0 kW/m2. The VeP curve is depicted in

Fig. 11(a) has only peaked with MPP of 106.81 W. Fig. 11 (b) il-

lustrates the output power of SPVS using three MPPT tech-

niques. From this figure, all themethods track GMPPwith high

efficiency. The total simulated results (power, voltage, and

current) of SPVS for various MPPT techniques under this

pattern are depicted in Fig. 12. AFLC and FLC achieveMPPwith

tracking time 0.038s and 0.05s. From the simulation results, it

proves that the proposed AFLC decreases 24% tracking time

compared to FLC.

Pattern 2: In this case, the solar irradiances for PVmodules

considered are 1.0, 1.0 and 0.5 kW/m2. The VeP curve is

depicted in Fig. 11(a). In this pattern, there are two peaks with

MPP of 68.48W and GMPP located at first peak. From Fig. 11 (b),

all the techniques track GMPP with high efficiency. The total

simulated results of SPVS for various MPPT techniques under

this pattern are depicted in Fig. 13. AFLC and FLC achieve MPP

with tracking time 0.035s, 0.038 and 0.043s andmeans that the

proposed AFLC decreases 7.9% and 18.6% tracking time

compared to FLC and P&O.

Pattern 3: For this, the solar irradiances of PV modules are

1.0, 0.8 and 0.8 kW/m2. The VeP curve is depicted in Fig. 11(a).

In this pattern, there are two peaks with MPP of 89.52 W and

GMPP located at the second peak. The total simulation results

of SPVS for various MPPT techniques under this pattern are

depicted in Fig. 14. AFLC, FLC, and P&O achieve MPP with

tracking time 0.04s, 0.045 and 0.073s. This means that the

proposed AFLC decreases 11.12% and 45.1% tracking time

compared to FLC and P&O.

Pattern 4: For this, the solar irradiances of PV modules are

0.7, 0.8, and 0.6 kW/m2. The VeP curve is depicted in Fig. 11(a).

In this pattern, there are three peaks with MPP of 70.45 W and

GMPP located at third peak. The total simulation results of

SPVS for various MPPT techniques under this pattern are

depicted in Fig. 15. AFLC, FLC, and P&O achieve MPP with

tracking time 0.046s, 0.05 and 0.056s. This means that the

proposed AFLC decreases 8% and 17.9% tracking time

compared to FLC and P&O. A comparative study of different

MPPTmethods is itemized in Table 2. From this table, it shows

that the superiority of AFLC based tracking among the FLC and

P&O.

The GWO optimized FLC MPPT performance evaluation

with other established methods stated in literature has been

presented in Table 3. The proposed MPPT technique has high

tracking efficiency, reduced oscillations at MPP, fast-tracking

speed, and more reliable compared to the traditional FLC

and P&O methods. In comparison with the Ant colony opti-

mized (ACO) fuzzy controller discussed in Ref. [32], the pro-

posed GWO optimized FLC MPPT tracks MPP with fast-

tracking speed and fewer oscillations. Additionally, the

complexity with ACO-FLC MPPT is more due to more algo-

rithmic parameters which may lead to converging at local

best. In the Fuzzy-PSO [35], the PSO algorithm is used to adjust

the scaling factors of MFs of FLC to track global MPP. But the

PSO algorithm has slow convergence because of the more

number of parameters to be initialized (r1, r2, c1, c2), and it

may lead to divergence with the improper selection of

initialization parameters. Hence, the PSO requires more

computational time compared to Grey wolf optimization.
Therefore, the proposed GWO optimized FLC MPPT has a fast-

tracking speed, fewer oscillations, and fast response under

partial shading conditions.
Conclusion

In this paper, an adaptive fuzzy based MPPT technique is

proposed for smooth and efficient tracking under partial

shading conditions. Four shading patterns are employed to

experiment with the performance of the proposed AFLC

controller. The comparative studies and the evaluations

confirmed that the proposed controller obtains a trade-off

solution between low oscillations and high tracking speed

while compared with other controllers in literature. In

particular, the proposed controller shows its supremacy in

tracing over the P&Omethod and the fuzzy method under the

various partial shading conditions. Moreover, the proposed

AFLC controller does not require the complete mathematical

model of the system. Hence it will be a solution under the

challenging environmental conditions for the PV systems.
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