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HIGHLIGHTS

e A new MPPT using Grey Wolf optimized adaptive fuzzy logic controller is proposed.
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o It improves global MPP tracking speed and efficiency of solar PV system.
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ABSTRACT

As the solar PV system (SPVS) suffered from an unavoidable complication that it has
nonlinearity in I-V curves, the optimum maximum power point (MPP) measurement is
difficult under fluctuating climatic conditions. For maximizing SPVS output power, MPP
tracking (MPPT) controllers are used. In this paper, a new adaptive fuzzy logic controller
(AFLC) based MPPT technique is proposed. In this proposed AFLC, the membership func-
tions (MFs) are optimized using the Grey Wolf Optimization (GWO) technique to generate
the optimal duty cycle for MPPT. Four shading patterns are used to experiment with the
performance of the proposed AFLC. The proposed approach tracks the global MPP for all
shading conditions and also enhances the tracking speed and tracking efficiency with
reduced oscillations. The effectiveness and robustness of proposed AFLC based tracker
results over P&O and FLC are validated using Matlab/Simulink environment. The proposed
AFLC overcome the drawbacks of the classical P&O, and FLC approaches.

© 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

and should be operated in grid-connected or islanded modes
[1-3]. Microgrids offer enhanced local reliability, curtailed
feeder losses, increased efficiency, and deliver uninterruptible

Due to the conventional sources limitations and the issues of
environment, the world is motivating towards renewable
energy (RE) based microgrid system development. Microgrids
are the systems consists of micro-sources, loads, storage
systems with at least one distributed generation (DG) source
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supply function to the consumers [4,5]. The commonly used
DG sources in microgrids are wind and solar for the reason
that these are sustainable sources, ecologically friendly, and
should be constructed at the utility or consumer side [6,7]. Out
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of various RE sources, solar energy became the primary
alternative source because it can be harnessed in all areas and
is available every day. It became a leading renewable source
due to its simple structure, having less pollution, less or zero-
carbon greenhouse emission, and less maintenance cost.
Currently, solar power is the envisaged alternative source by
the world [8]. Nevertheless, the solar PV system (SPVS) suf-
fered from an unavoidable complication that it has nonline-
arity among the current and voltage predominantly under
partially shaded conditions (PSC). In addition to PSCs, SPVS is
affected by climatic conditions viz. hazy atmosphere and
forest fire. The authors assessed the analysis of haze impact
on solar PV systems. The haze particles prevent solar irradi-
ance to reach PV panels which leads to a reduction in PV
power. There are 15—20 hazy days for every year. The average
PV power loss during the haze period is around 18% compared
to a normal day [9]. Forest fires can play a vital role in climate
change. During the forest fires period, the haze and smoke
effects as pollution on the light intensity. Hence, SPVS has a
power loss of up to 12.5% [10]. The authors also presented the
works on the improvement of photocatalytic performance to
utilize the enhanced visible light [11-13]. As the solar PV
electrical characteristics having nonlinearity, optimum per-
formance measurement assurance is not possible for fluctu-
ating climatic conditions. To maximize SPVS output under
fluctuating climate conditions, solar PV systems take account
of MPPT controllers. These MPPT techniques use dc-dc con-
verters for continuous MPP tracking.

A study of partial shadowing effects on SPVS characteris-
tics for non-uniform insolation is designed in Ref. [14]. Based
on this, G. Lijun et al. [15] proposed the construction of a series
and parallel combination of SPVS and their MPP tracking. The
comparison of many conventional MPPT techniques is pre-
sented [16,17]. Such techniques are hill-climbing/P&O, frac-
tional open circuit voltage, fractional short circuit current,
incremental conductance (INC), ripple correlation control
(RCC) and these controllers could fails global MPP tracking.
The P&O technique functions by perturbing voltage, and it has
poor tracking time with constant vacillation at MPP [18].
Owing to the fact the INC method is commonly used because
of easy implementation and enhanced efficiency. It functions
based on the value of derivation of power against voltage
presence positive on the left of MPP, zero at MPP, and negative
on the right of MPP. The drawback of INC is a slow tracking
time to reach MPP [16]. RCC takes converter signals to ripple to
achieve the optimal point of MPP with the variation of oper-
ating current according to its location. It enhances tracking
time but poorer MPP accuracy than other MPPTs.

The author in Ref. [19] proposed an FLC to track MPP and
elevated the drawbacks of the P&O search method that the
performance of FLC is fast converging and accurate
tracking. The PV system has been tested for changing
temperature and insolation levels [20,21] using FLC. Also
compared the results for various performance parameters
that are response time and tracking efficiency over con-
ventional P&O. Jaw-KuenShiau et al. [22] presented the
investigation on the design of FLC algorithms for solar MPPT
using multiple fuzzy input variables. Some research works
[23—25] conceded MPP tracking using the FLC technique by
adding an extra gain block to the fuzzy system to tune the

output. This drawback has been removed, and the duty
cycle is achieved directly using the fuzzy rule-based system
[26]. Moreover, this algorithm tracks MPP with expedient
speed and better response for abrupt change with special
conditions. The FLCs commonly used are built using type 1
fuzzy sets that have complications in diminishing the effect
of uncertainties. Type 2 FLC [27] reduces this effect of un-
certainties. Neural network-based MPP [28] tracking claims
that enhanced efficiency over the FLC technique.

In this work, Grey Wolf optimized adaptive fuzzy logic
controlled approach is proposed to extract the global MPP.
The objective is to improve the efficiency and GMPP
tracking of SPVS in all uniform and non-uniform irradi-
ances. In proposed AFLC, Grey Wolf optimization (GWO)
technique used for tuning the scaling factors of MFs of FLC.
The objective of the optimization of scaling factors is to
achieve quick response and reduce the steady state error.
To exhibit the effectiveness and robustness of AFLC based
tracker, results are validated using Matlab Simulink.

The leftover of this paper is summarized as follows: the
next section describes the modeling of SPVS and its charac-
teristics under PSC. And section 3 provides the gestalt of FLC
approach to track MPPT. In Section 4 the proposed AFLC and
GWO algorithm to optimize the FLC parameters are presented.
The results and discussions with the performance of Proposed
AFLC are shown in section 5. Finally, the last section provides
conclusions.

Solar PV system under PSCs
PV cell model

The conventional single diode electrical model of PV cell
comprises a light-current with an anti-parallel diode, one
resistor in shunt, and a resistor in series across the load [29,30]
shown in Fig. 1.
Applying KCL, The PV cell output current, Ipy ¢ obtained as:
Vev_c +R*lrv ¢

Iy c=lc—1a— T (1)
S

where [} _c is light produced current, I4 is diode current. The
light-current, I} ¢ of a PV cellbe subject to insolation and
temperature is expressed as:

R,

MN—+

- Ipy C
Rsh

Iq
!l

I c Vv c

Fig. 1 — Electrical model of PV cell.
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G
LLc= Gf [IL,Cref =+ Msc (Tceﬂ - Tref)] (2)
ref
Also the diode current, I is;

% Rs*Ipy_
Li=1I, (eiw‘“vt g 1) 3)

The Io, diode saturation dark current is proportional to
temperature can be obtained as:

o (Tar\’ ec) (11
IO - Io.vef <Tref ) exp |:<H> Tref - Tceﬂ (4)

PV module model

By and large, a PV cell generates a lesser amount of power less
than 2 W. To enhance more power generation, the PV cells are
configured as series-parallel [SP] combination. This SP com-
bination of PV cells is termed as PV module. Thus a PV module
consists Np cells in parallel and Ns cells in series depicted in
Fig. 2. As a result, The PV module output current, Ipy u Ob-
tained as:

Ipv_M = NpIL_M — Nplo {exp(
_ Vpvc + 4R*Tpy ¢

Vevm + Ipv_m*Rs 4\ 1
NV,

AR, ©)
where,
N;
A= N, (6)

SPVS under PSC

The SPVS is a solar array which is comprised of PV modules
arranged in SP manner to come across energy demand. The
choice of SP arrangement of modules in an array depends on
factors that are PV material, performance, complexity, and
energy demand. A common abnormal condition occurs in a PV
array due to environmental conditions is called partial shad-
owing. To demonstrate SPVS under PSCs and its significance
effects, a string of three modules (3S) in series with four
different types of shading patterns is considered. The repre-
sentation of 3S configuration with blocking and the by-pass
diode is depicted in Fig. 3. The diodes are blocking, and by-

gt
O 1 §R“‘A Vev
i} .

Fig. 2 — PV module.

pass is used to protect the module and to prevent “current
reversal” and “hotspot” formation. Moreover, in uniform illu-
minated SPVS, the individual I-V curves added up and gives
the only peak in the P—V curve. Further, the non-uniform
illuminated modules in SPVS causes to produce multiple
peaks in V—P curves. In this work different shading patterns
considered, that are pattern 1: 1000, 1000, and 1000 w/m?,
pattern 2: 1000, 1000, and 500 w/m?, pattern 3: 1000, 800, and
800 w/m?, and pattern 4: 700, 800, and 600 w/m?. Fig. 4 (a) and
(b) shows V—I and V—P characteristics of SPVS under PSCs.

Fuzzy logic based MPPT controller

The FLC method and conventional MPPTs are trapped at
local MPP (LMPP) under shaded conditions. For avoiding
LMPP tracking, a technique proposed [3] which has scan,
store, perturb, and observe the operating power of the SPVS
shown in Fig. 5 and flow chart shown in Fig. 6. This method
tracks MPP under any climatic conditions, exclusively
partially shadowing where global and local MPPs occur. For
the period of initial state and fluctuating climatic condi-
tions, it allows a wide range of search for scanning and
storing the MPP value. A predetermined value that signifies
the acceptable difference among the operating power and
the recognized maximum power is stored to choose the
controller rules. The duty cycle increases, if this difference
among these two powers is higher than the predetermined
value; or else, FLC based MPPT is applied. In this case, global
MPP (GMPP) recovers quickly from fluctuating climatic
conditions.

The FLC based MPPT using scan and the stored proced-
ure designed for rapidly recover the global MPP. The FLC is
formulated using MFs with input variables defined in Egs.
(7)—(9) are:

Al=I(k) - I(k - 1) )
AP=P(k) - P(k—1) 8)
APy =Py (k) — P(K) )

And the output variable is;
AD=D(k) - D(k—1) (10)

where AI and AP denotes the change in output current and
change in output power of PV array, respectively, APy is the
difference between stored peak power (Pm) and currently
operated power, and AD is the change in duty cycle. Table 1
shows the fuzzy rules in which the two input variables, Al
andAP, and the output variable AD distributed into five fuzzy
subsets expressed in linguistic labels. The input variable, APy
is distributed into two linguistic variables that are PS and PL.
The membership function for linguistic labels of input and
output variables presented in Fig. 7. To work the fuzzy com-
bination, Min-max method of Mamdani used. The ending
stage of FLC is the defuzzification where the fuzzy singleton
output transformed into an equal crisp control value [31]. Here
the center of area method is used for the defuzzification.
The defuzzified output denoted as:


https://doi.org/10.1016/j.ijhydene.2020.12.158
https://doi.org/10.1016/j.ijhydene.2020.12.158

10656

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 46 (2021) 10653—10665

Ipv Ipv—»p

1000
w/m?

1000
w/m’

L |

(a) (b)

wo | AVpv | wo | A VoV | sw A Vpv | sm AVpv
w/m? w/m? w/m? w/m?

1000 I 500 I 800 I 600 I

w/m’ w/m? w/m? v w/m?

Ipy — Ipy —»

1000
w/m?

(c) (d)

Fig. 3 — 3S configuration of SPVS with different shading patterns (a) Pattern1: 1000, 1000, and 1000 w/m?. (b) Pattern2: 1000,
1000, and 500 w/m?. (c) Pattern3: 1000, 800, and 800 w/m?. (d) Pattern4: 700, 800, and 600 w/m?>.
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Fig. 4 — (a) The V-I curves of SPVS for different Shading patterns and (b) The V—P curves of SPVS for various shading

patterns.
n D;\D:
AD:% (11)
j

where AD, the change is in duty cycle is an output of FLC, and
Dj denotes the center of max-min method composition at the
output MF.

Adaptive fuzzy logic based MPPT controller

The increasing complexity of MPPT tracking under partial
shading conditions needs an accurate and fast tuning of
control parameters for a better MPPT tracking. In light of this
issue, in literature, authors proposed various optimization
techniques for MPPT tracking. The inherent features of these

algorithms are; independent on the model of the plant and
derivative-free. Few of them like ACO, GA and PSO. According
to theorem, no single Meta heuristic technique is suitable for
solving all engineering optimization problems and scope of
improvement is always persists [32—35]. Due to advantages in
fast convergence, easy implementation structure, less num-
ber of controlling parameters and simplicity the GWO suc-
cessfully implemented to various engineering problems. By
considering this as motivation, a recently developed and
powerful GWO is presented for accurate MPPT tracking.

The conventional FLC may produce some depicts due to
improper selection of MFs. To improve the performance of
FLC, the scaling factors of inputs and output parameters of
FLC are optimized using swarm techniques. There are many
approaches to tune fuzzy parameters [32—35]. In this, based
on requirements and complexity of MPPT of SPVS, a novel
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Measure va, Ipv
Calculate Pp\;Vp\-‘*va

v

Set \P.\I
and store Py

Increase D(k)

MPPT

Fig. 5 — Solar PV system with MPPT controller.

Grey Wolf optimization (GWO) technique used for tuning the
scaling factors of MFs of FLC. S. Mirjalili et al. [36] presented
the detailed explanation of GWO. The erection of the proposed
controller is depicted in Fig. 8. The reason for tuning of scaling
factors of MFs instead of fuzzy set ranges is the number of
variables for optimization is reduced [31]. The objective of the
optimization of scaling factors is to achieve quick response

Sun

Table 1 — Fuzzy logic Rules.

AP Al
NL NS ZE PS PL APy
NL ZE ZE NL NL NL PS
NS ZE ZE NS NS NS
ZE NS ZE ZE ZE PS
PS PS PS PS ZE ZE
PL PL PL PL ZE ZE
NL PB PB
NS
ZE
PS
PL

and reduce the steady state error. The integral time absolute
error (ITAE) criteria are used for the cost function and
expressed as:

ITAE= [ t*[e(t)|dt (12)
/

Grey Wolf Optimization

GWO was developed by Mirjali et al.,, in 2015, which mimics
the collective behavior of grey wolves [36]. In general, grey
wolves preferred to live in a pack consist of 5-12 wolves, and
they have a strict dominant hierarchy presented in Fig. 9.
Based on the ability to hunt the prey, the grey wolves are
classified into four categories viz. alpha, beta, delta, and
omega. The Alpha wolves are leaders in the pack, and they can
be male or female, who are responsible for making decisions
regarding sleeping place, time to wake, migration, hunting,
and so on. All the wolves in the pack strictly follow the orders
of the alpha wolf (dominant wolf). The only alpha wolves in
the pack are allowed for mating. In general, the alpha wolves

Boost Converter

Hu H
. .
. .
L P
. .
—=iCa == i3 Vou
: Cout I
H 2
| Lecococeccccscccccccnne 3
R
PVARRAY 1 | |Vyy D(k)'
L |
= X =
—=_ MPPT
— Y (9] Controller
—Store
“MPP‘ Py 'S

Fig. 6 — Flow chart.
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Fig. 7 — Fuzzymembership functions: (a) input AP (b) input Al (c) input APy, and (d) output AD.

Optimized scaling factors
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y
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Measurem Al »|Ku A AD
ents and

N DC-DC
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|k,

Fig. 8 — Block diagram proposed FLC.

are very efficient in managing the pack, but they may not be
the fittest member of the grey wolf pack. It means that the

A
B
AT
ARTER

Fig. 9 — Grey wolf’s hierarchy (dominance increasing from
down to top).

discipline and organization of the grey wolf pack are most
important compared to their strengths.

The beta wolves are in the second level of the hierarchy,
and they can assist and help alpha wolves in making the de-
cisions and other activities in the pack. These beta wolves lead
the pack when the alpha wolf passes away or becomes old. In
this case, the betas command the other lower-level wolves,
but they should respect the alpha. They play a disciplinary
role for the pack and an advisor to the alpha. The delta is the
third level, and omega is the last level category in the hierar-
chy. The delta dominates omega but submits to betas and
alphas. Scouts, hunters, elders, caretakers, and sentinels
belong to the delta category. As omegas are ranked on the last
level, they always have to submit to other dominant wolves in
the pack. The omega wolves play the scapegoat role and are
lastly allowed to eat in the pack.

In addition to the grey wolves social hierarchy, they have
another interesting behavior in their hunting process. The
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Fig. 10 — Flow chart of GWO optimized scaling factors of FLGC.

main steps involved in grey wolves hunting for prey are as the beta (B) category wolf is second best, and the delta (3)

follows: category is considered as the third-best solution. The leftover
candidate solutions are grouped as omega (w) wolves. In this

a) Social hierarchy GWO, the wolves o, B, and 3 guide the hunting (optimization)

b) Encircling prey process, and the omega wolves always follow them.

c) Hunting

d) Attacking prey Encircling prey

The following equations present the encircling grey wolves for
prey during their hunt. Here n represents the current iter-

Social hierarchy ation.X and X, are the positions of a grey wolf and prey, A

=4 .
In this GWO optimization technique, the alpha («) wolves are and C represents the coefficients vectors.
considered as the best solution in the pack. In the same way,
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Fig. 11 — (a) V—P curves (b) The power output of SPVS for P&O, FLC, AFLC techniques for first, second, third, and fourth

shading Patterns.

— — = —n
D=[CX,-X (13)
—n+l  —n — =
=X +A.D (14)
The coefficient vectorsX, C are obtained as:
A=20.7.,- 0 (15)
C=27, (16)

where 7,7, are the random values in [0, 1], @ is linearly
varied from 2 to 0 based on iteration.

Hunting

Grey wolves have prey location recognizing ability and
encircling them. In general, the hunt is guided by the alpha
wolf, later beta and delta wolves join in the hunting process. In
the mathematical model of grey wolves hunting behavior, all
the search agents update their position based on the position
of best candidate solution («, B and 3). Grey wolves hunting
behavior is follows as:

-
-X

ol
I

- = —
N ‘cl.xrx

— - =
;Da:‘cl.x

=Y
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Fig. 12 — Simulated Power, Voltage and Current curves for shading pattern 1: 1.0, 1.0, 1.0 kW/m? (a) P&O based tracking, (b)
FLC based tracking, and (c) Proposed AFLC based tracking.
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Fig. 13 — Simulated Power, Voltage and Current curves for shading pattern 2: 1.0, 1.0, 0.5 kW/m? (a) P&O based tracking, (b)
FLC based tracking, and (c) Proposed AFLGC based tracking.
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(19)

Attacking prey

As stated above, the grey wolves hunting process finishes by
attacking the prey when it stops moving. The value of @ is
linearly decreased from 2 to 0 in order to model the mathe-
matical modeling of approaching the prey. Here the fluctua-

tion range of A is decreases with @. In the GWO algorithm, all
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Table 2 — Quantitative Comparison of MPPT techniques.

Shading  Method Power at MPP  Voltage at MPP  Current at MPP Tracking time Maximum  Efficiency

Pattern (W) (V) (A) (sec) Power

Patternl P&O [16] 106.75 36.8 2.095 0.05 106.81 99.94
FLC [21] 106.77 36.15 2.95 0.05 99.96
AFLC [proposed] 106.78 36.5 2.92 0.038 99.97

Pattern2 P&O [16] 68.4 23.7 2.885 0.043 68.48 99.88
FLC [21] 68.4 235 2.92 0.038 99.88
AFLC [proposed] 68.43 233 2.94 0.035 99.92

Pattern3 P&O [16] 89.48 37.1 241 0.073 89.52 99.95
FLC [21] 89.45 37.6 2.38 0.045 99.92
AFLC [proposed] 89.5 37.7 2.37 0.04 99.97

Pattern4 P&O [16] 70.4 38.25 1.845 0.056 70.45 99.92
FLC [21] 70.35 38.8 1.82 0.05 99.85
AFLC[proposed] 70.42 38.2 1.84 0.046 99.95

Table 3 — A qualitative comparison of MPPT techniques.

Creteria P&O FLC ACO-FLC [32] Fuzzy-PSO [35] Proposed GWO-FLC
Tracking speed Slow Moderate Moderate Moderate Fast
Complexity Less Less Moderate Moderate Less

Tracking efficiency Less Medium Medium Medium High

Reliability Low Moderate Low High High
Oscillations at MPP High Medium moderate (constant oscillations at MPP) High Less

Tracking accuracy Medium Medium Medium Medium Accurate

the search agents update their position to attack the prey
based on the location of a, B, and 3 wolves.

Search for prey

Grey wolves search based on the location of alpha, beta, and
delta wolves. To search for the prey the grey wolves diverge
from each other and converge while attacking the prey. The
exploration behavior is emphasized when the random value

Ais greater than 1, or lesser than —1. This allows the GWO
algorithm to globally search. In addition to A , the GWO al-
gorithm has another component favoring exploration is C.

The value of C randomly varies in [0 2]. When this component
is greater than 1 the search agents are more attracted to the
prey. This assists the GWO in favoring more exploration and
avoidance of local optima.

GWO algorithm to tune the scaling factors of FLC
parameters

The MPP tracking starts with an initial duty cycle. The input
current Ipy and voltage Vpy of boost converter are measured
to calculate the SPVS power Ppy(k). Now, based on initial
changes in power, the controller increases the duty cycle. At
this stage, new Ipy and Vpy are measured to calculate new
power Ppy (k+1). Based on present and past information of
SPVS power, the controller decides to decrease or increase
the duty cycle. This process of tracking continuous until the
MPP reaches.

Fig. 10 depicts the flowchart of GWO based tuning of
scaling factors of FLC Parameters. The sequential steps
illustrated in Fig. 10 are summarized as follows:

Step 1: Inialization: Initialize the population size of GWO
using the equation:

Xj=1b +rand*(ub —1b) (20)

where, Ib =[0000]; ub =[1111];

The maximum iterations, number of control vectors,
scaling factors, and position vectors are also initialized.

Step 2: Fitness Evaluation: Estimate fitness value of every
individual wolf using Eq. (12)

Step 3: Selection: Rank the wolves in descending order
according to their fitness value. Identify the best three

wolves as «, p and 3 in population.

Step 4: Update the position of each wolf: Update the wolf
population positions using Egs. (13)—(19).

Step 5: Termination criteria: If the termination criterion
attains, record optimum scaling factors, else go for step 2.

Results and discussions

The time domain simulations for SPVS MPPT under four
shading patterns is carried out using Matlab/Simulink. To
illustrate the supremacy of Proposed AFLC technique, results
are compared with FLC and conventional P&O methods. The
performance of three MPPT methods is analyzed concerning
tracking efficiency, tracking speed, and steady-state perfor-
mance under each shading pattern. Four shading patterns,
which includes different shading effects, were considered in
the present work. The shading patterns considered to have
different global MPP positions, such as first, second, and third
peaks. The output power of SPVS for P&O, FLC, AFLC tech-
niques under various irradiance patterns is depicted in Fig. 11.
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Pattern 1: The solar irradiances for PV modules considered
are 1.0, 1.0 and 1.0 kW/m? The V-P curve is depicted in
Fig. 11(a) has only peaked with MPP of 106.81 W. Fig. 11 (b) il-
lustrates the output power of SPVS using three MPPT tech-
niques. From this figure, all the methods track GMPP with high
efficiency. The total simulated results (power, voltage, and
current) of SPVS for various MPPT techniques under this
pattern are depicted in Fig. 12. AFLC and FLC achieve MPP with
tracking time 0.038s and 0.05s. From the simulation results, it
proves that the proposed AFLC decreases 24% tracking time
compared to FLC.

Pattern 2: In this case, the solar irradiances for PV modules
considered are 1.0, 1.0 and 0.5 kW/m2 The V—P curve is
depicted in Fig. 11(a). In this pattern, there are two peaks with
MPP of 68.48 W and GMPP located at first peak. From Fig. 11 (b),
all the techniques track GMPP with high efficiency. The total
simulated results of SPVS for various MPPT techniques under
this pattern are depicted in Fig. 13. AFLC and FLC achieve MPP
with tracking time 0.035s, 0.038 and 0.043s and means that the
proposed AFLC decreases 7.9% and 18.6% tracking time
compared to FLC and P&O.

Pattern 3: For this, the solar irradiances of PV modules are
1.0, 0.8 and 0.8 kW/m?. The V—P curve is depicted in Fig. 11(a).
In this pattern, there are two peaks with MPP of 89.52 W and
GMPP located at the second peak. The total simulation results
of SPVS for various MPPT techniques under this pattern are
depicted in Fig. 14. AFLC, FLC, and P&O achieve MPP with
tracking time 0.04s, 0.045 and 0.073s. This means that the
proposed AFLC decreases 11.12% and 45.1% tracking time
compared to FLC and P&O.

Pattern 4: For this, the solar irradiances of PV modules are
0.7,0.8, and 0.6 kW/m? The V—P curve is depicted in Fig. 11(a).
In this pattern, there are three peaks with MPP of 70.45 W and
GMPP located at third peak. The total simulation results of
SPVS for various MPPT techniques under this pattern are
depicted in Fig. 15. AFLC, FLC, and P&O achieve MPP with
tracking time 0.046s, 0.05 and 0.056s. This means that the
proposed AFLC decreases 8% and 17.9% tracking time
compared to FLC and P&O. A comparative study of different
MPPT methods is itemized in Table 2. From this table, it shows
that the superiority of AFLC based tracking among the FLC and
P&O.

The GWO optimized FLC MPPT performance evaluation
with other established methods stated in literature has been
presented in Table 3. The proposed MPPT technique has high
tracking efficiency, reduced oscillations at MPP, fast-tracking
speed, and more reliable compared to the traditional FLC
and P&O methods. In comparison with the Ant colony opti-
mized (ACO) fuzzy controller discussed in Ref. [32], the pro-
posed GWO optimized FLC MPPT tracks MPP with fast-
tracking speed and fewer oscillations. Additionally, the
complexity with ACO-FLC MPPT is more due to more algo-
rithmic parameters which may lead to converging at local
best. In the Fuzzy-PSO [35], the PSO algorithm is used to adjust
the scaling factors of MFs of FLC to track global MPP. But the
PSO algorithm has slow convergence because of the more
number of parameters to be initialized (r1, r2, c1, c2), and it
may lead to divergence with the improper selection of
initialization parameters. Hence, the PSO requires more
computational time compared to Grey wolf optimization.

Therefore, the proposed GWO optimized FLC MPPT has a fast-
tracking speed, fewer oscillations, and fast response under
partial shading conditions.

Conclusion

In this paper, an adaptive fuzzy based MPPT technique is
proposed for smooth and efficient tracking under partial
shading conditions. Four shading patterns are employed to
experiment with the performance of the proposed AFLC
controller. The comparative studies and the evaluations
confirmed that the proposed controller obtains a trade-off
solution between low oscillations and high tracking speed
while compared with other controllers in literature. In
particular, the proposed controller shows its supremacy in
tracing over the P&O method and the fuzzy method under the
various partial shading conditions. Moreover, the proposed
AFLC controller does not require the complete mathematical
model of the system. Hence it will be a solution under the
challenging environmental conditions for the PV systems.
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