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1 | INTRODUCTION

Induction heating (IH) applications are widely spreading in different domains like domestic, industrial and medical
applications due to contact-less and fast operation, non-polluting nature and high efficiency. Compared to conventional
heating methods induction heating is simple and economical. IH operates based on Faraday's laws of electromagnetic
induction, like a two winding transformer with secondary shorted. High-frequency alternating currents (ACs) are
required for induction heating. Series resonant converters are more popular for induction heating because of their
advantages compared to other resonant converters.? Generally, single switch, half-bridge and full-bridge series resonant
inverters® are used for high-frequency AC voltage generation in induction heating.

One of the most popular applications of IH is domestic induction cooking (IC). It is because of safe and rapid
heating, cleanliness and controllability. In the literature, a good number of multi-stage and single-stage inverter topolo-
gies have been proposed for ferromagnetic material vessels.* Control of output power can be achieved by different tech-
niques’ such as asymmetric duty cycle control (ADC),® asymmetric voltage cancelation control(AVC),” pulse frequency
control,*® phase-shift control (PSC), pulse density modulation and hybrid power control techniques.'®'* In Lucia
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et al."® a load-adaptive control is presented for large range of output power control for induction heating. All these con-
trol techniques are having their own merits and demerits.

In the past literature, some inverter topologies have been suggested for multi-load induction heating applications.
The main requirements of this applications are independent control of the individual load, low component count and
high efficiency. An inverter topology with three legs has been proposed in Burdio et al.'* for powering two IH loads.
One leg is common for both loads. It offers less component count, high efficiency and independent control with AVC.
In Forest et al.'® a multi-output inverter configuration is proposed for IC applications. It is suitable for low power appli-
cations as it uses a half-bridge configuration. Independent power control of multiple loads is obtained through variable
frequency control method. Electromechanical switches are used to connect the loads and resonant capacitors. The use
of mechanical switches and more number of capacitors are the major limitations of this method. A multiple load
inverter configuration with dual-frequency operation for IC is proposed in Papani et al.'® The advantage of this topol-
ogy is the elimination of massive capacitors compared to the half-bridge configuration. Independent power control of
loads are obtained with ADC control technique. In Kumar et al.'” half-bridge resonant converter with buck-boost oper-
ation is proposed for multiple vessel IC. In this configuration, two half-bridges are operated with constant switching fre-
quency and both load powers are controlled using the ADC modulation technique. In Lucia et al.'® a matrix converter
is proposed for multiple IH systems. It has low component count, higher efficiency but complex control. All the above
mentioned configurations are having their own advantages and limitations and are suitable for only ferromagnetic
material load.

There are few topologies proposed in literature for non-ferromagnetic vessel induction heating. In Millan et a
first and third harmonic resonant inverter tolopogy is proposed for all-metal IH applications. In Hirokawa et al.***' a
high-frequency time-sharing dual resonant inverter is proposed for domestic all-metal induction cooking applications.
In Yonemori and Kobayashi** double heating coil drive induction heating cooker is proposed. In these topologies due
to frequency selection and time sharing, additional switching losses occur, which will reduce the heating efficiency. A
dual-layer coil topology is proposed in Han et al.>* for different IH load application. Each coil has half of the total turns
density. Hence, it reduces the effective ampere turns available from each winding. In Millan et al.** selective harmonic
operation is used in half-bridge inverter-based topology. The limitations of this topology are low power factor and high
conduction losses in body diode of the switching device. In Park and Jung,® series resonant converter with load-
adaptive control is proposed for all-metal induction cooking. This method suffers from the drawback of unbalanced
switching losses. All these converter topologies are having their own merits and demerits. Single-stage resonant AC-AC
converter topologies have been proposed for induction heating applications in the literature.?*™>! Totem pole bridge-less
PFC boost rectifier is used in these topologies. They offer advantages of less component count, high efficiency, power
factor correction and boost operation but most of these topologies are half-bridge and full-bridge configurations suitable
for single load. In Sarnago et al.>* a three-leg AC-AC boost converter is proposed to power two similar TH loads. The
loads are operated at same frequency and optimum AVC control is employed. Wide band gap devices are used to
increase the efficiency. In Pérez-Tarragona et al.>* single-phase boost-type PFC rectifier is analyzed with different mod-
ulation strategies for domestic IH applications. In Sarnago et al.>** a multiple output boost resonant inverter is proposed.
In Sarnago et al.*> ZVS multi-output resonant inverter Architecture for IH is proposed. However, the above mentioned
single-stage topologies are limited to heating of only ferromagnetic vessels. Low relative permeability and low specific
resistance of nonmagnetic vessels pose a challenge in the induction heating of non-ferromagnetic vessels.

In this paper, a single-stage AC-AC resonant converter configuration, suitable for IC with different material
vessels has been proposed. It is capable of powering multiple loads of steel and aluminum vessels. Independent
power control is achieved through pulse frequency modulation technique. It offers high efficiency, less component
count and high power factor. The block diagram of the conventional IC system is shown in Figure 1A. It contains
a rectifier for conversion of utility AC supply to DC, a power factor correction unit and separate inverter circuits
for each load. The IH loads are of ferromagnetic material.Block diagram of the proposed configuration is shown
in Figure 1B, which contains single-stage AC-AC converter which powers steel and aluminum vessels. The IH
load equivalent circuit is shown in Figure 1C. R, is equivalent resistance and L., is equivalent inductance of the
IC load as referred to the coil side. It contains a rectifier for conversion of utility AC supply to DC, a power fac-
tor correction unit and separate inverter circuits for each load. The IH loads are of ferromagnetic material. This
paper is organized as follows. Section 2 presents circuit configuration, principle of operation of the proposed topol-
ogy. Section 3 explains control technique and different modes of operation. Section 4 describes prototype imple-
mentation and experimental results. Independent power control of multi-load is presented in Section 5. Section 6
summarizes this paper with conclusions.
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FIGURE 1 Structure of multi-load induction cooking. (A) Two-stage conventional converter. (B) Proposed multi-load single-stage AC-
AC converter. (C) Load equivalent circuit

2 | PROPOSED CONVERTER CONFIGURATION
2.1 | Circuit description

The proposed single-stage resonant converter configuration suitable for two different material vessels is shown in
Figure 2. The proposed configuration consists of bridge-less boost rectifier and integrated half-bridge resonant
inverter circuit. A boost inductor L, is connected in series with utility frequency AC supply and a DC-link capaci-
tor Cp is connected across inverter leg to ensure the smooth operation of resonant converter. The voltage across
Cp is the DC-link voltage v,. The boost inductor L, contributes to boosting of utility frequency source voltage V..
Diodes D; and D, form the rectifier branch. In this multi-frequency converter, one leg operates at low-frequency Iy
which is suitable for a steel vessel and another leg operates at high-frequency h; which is suitable for an alumi-
num vessel. Switching devices S; and S, are connected in low-frequency leg, switching devices S; and S, are con-
nected in high-frequency leg. Switching pulses of these inverter devices, corresponding output voltage v, and both
vessel load currents i and i, are shown in Figure 3. Low-frequency leg switches S; and S, are common for both
rectification as well as inverter operation. This common leg devices duty cycle (d) is fixed at 0.5 to get maximum
voltage across DC-link due to its boost operation. Lossless snubber capacitors Cs—-Csy are connected across
switching devices S;-S,, respectively, which help in ZVS operation. D;-D, are anti-parallel diodes of the devices
S1-S4, respectively. The inverter output voltage is supplied to two IH loads. Ry and Ly are the equivalent resis-
tance and equivalent inductance of steel IH load. C, is the external resonant capacitor. R, and Ly, are the equiva-
lent inductance and resistance of aluminum IH load and C,, is the external resonant capacitor. The corresponding
resonant frequencies are f; and f,;,, respectively. The switching frequencies are selected as f;=20kHz and f), =160
kHz. The admittance curves of two IH resonant loads are shown in Figure 4. As shown in Figure 3, v, is sum of low-
and high-frequency voltage components. Low-frequency current iy, flows through the steel IH load and high-frequency
current i, flows through the aluminum IH load.
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FIGURE 2 Proposed converter configuration
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FIGURE 3 Inverter switching pulses and output voltage and load currents

2.2 | Selection of switching frequencies

In general, for IH with ferromagnetic material, switching frequency is selected above 20 kHz. Whereas non-
ferromagnetic materials need high switching frequencies due to their low relative permeability and low specific
resistance. Equation (1) shows the expression for skin depth (6), where f; is the switching frequency, p is the specific
resistivity and u is permeability of the material. Operation at high frequencies helps in reducing the skin depth and
thereby increases effective resistance. By increasing effective resistance of non-ferromagnetic material, the current

drawn from the source is reduced to a safe value.
P
s5= |- (1)
\ 7ufs
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In induction cooking applications, the high-frequency range is normally selected as 100-200 kHz, to limit the
inverter switching losses.Characteristics of different IH loads are plotted in Figure 5. Frequency characteristics of steel
and aluminum vessel loads are shown in Figure 5A,B. From these figures it is observed that there is a change in induc-
tance and resistance of IH load with frequency. For steel vessel IH load, the switching frequency (f;) is selected as
20 kHz. From Figure 5B, it is observed that beyond 140 kHz, the equivalent resistance of aluminum vessel IH load
increases above 1Q. Hence, the switching frequency (f},) is selected as 160 kHz which is an even multiple of low
switching frequency (f}). This frequency ratio of eight will help in independent control of different loads. At switching
frequency of 20 kHz, equivalent resistance is 2.2 Q and equivalent inductance is 68.2 pH for steel vessel IH load. At
160 kHz, equivalent resistance is 1.35 Q and equivalent inductance is 50.7 pH for aluminum vessel IH load. To facilitate
ZVS operation, L ratio has to be selected closer to 1.1. Hence fn and f;, are selected as 18.4 and 158 kHz, respectively.

The expressions for f,; and f,,, are f,, = T Llfcl =3 \/L—C respectively. Admittance characteristics of different ITH

loads are shown in Figure 4. It shows that steel vessel IH resonant load offers maximum admittance to low-frequency
current and aluminum vessel IH resonant load offers maximum admittance to high-frequency current.

2.3 | Operating principle

The proposed single AC-AC converter configuration is the combination of series resonant load inverter and boost con-
verter. In this configuration, as shown in Figure 2, one inverter leg is common for both boost and series inverter
operation.
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The volt-sec balance across boost inductor L,Expression of I peqr-The boost operation is described through Equa-
tions (1)-(5)*?

VdTs+ (Vs —vp)(1—d) Ty =0 2)

where T is the time period corresponding to the common leg (leg-1) frequency, that is, I Expression of L; for continu-
ous conduction is

Vb—vs

Ly> (1—d)T, (3)
Ipreak
where
Al
Ipreak =Irp+ TLb (4)

By neglecting the source current ripple, the average value of DC-link voltage v;, can be expressed as

(5)

From Equation (5), it is observed that due to boost operation there is an increase in DC-link voltage v, which leads
to increase in v, also. Two IH resonant loads are connected across low- and high-frequency legs of the inverter.
At low frequency, steel vessel load impedance can be expressed as

Zogif =Ry +j( Xy — Xcir) (6)

where

Xy = 21f,Lig, Xop = ————
v =2xf Ly, Xey 27f,Cn

At high frequency, aluminum vessel load impedance can be expressed as
Zegh = Ruf +j(Xrnr —Xcnf) (7)
where

1

Xinp = 21fp Lty Xcnf = Xep =————

thf = 270f y Ling, X g = Xap 27, Con

Inverter output voltage across load v, is the combination of low- and high-frequency voltage components, v; and v,y as

shown in Figure 3. Hence, v, can be represented as a series connection of two voltage sources vy and vy as shown in
Figure 6A.

Vo = Vi + Uy (8)

Figure 6B shows the load equivalent circuit for low-frequency component of v,. At f;, the reactance of C,, is very
high, and hence, it behaves like open circuit. However, the low-frequency load offers low impedance at this frequency
and iy flows through this load as shown in Figure 6B. Figure 6C shows the load equivalent circuit for high-frequency
component of v,. At f,, the reactance of Ly is very high, and hence, it behaves as an open circuit. However, the high-
frequency load offers low impedance, and hence, i, flows through this load as shown in Figure 6C. Hence, in response
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to the output voltage v,, only a low-frequency current iy flows through steel vessel load and a high-frequency current iy,
flows through aluminum vessel load. Figure 6A. shows the waveforms and FFT of these currents.
2.4 | Output power analysis
The output power to steel vessel is calculated as I @le, that is, real power consumption by equivalent resistance of steel
vessel load. The output power to aluminum vessel is calculated as I ﬁthf’ that is, real power consumption by equivalent
resistance of aluminum vessel load. I;r is RMS value of low-frequency current and I is RMS values of high-frequency
currents. The output power(P,) of the inverter is expressed as

Py =Py + Py (9)

where

Py = steel load output power = I} Ry

Py = aluminium load output power = I} Ry

3 | MODES OF OPERATION

The proposed converter operation can be described in eight different modes. Modes 1 to 8 are obtained for positive
(+ve) half cycle of the utility frequency AC supply voltage and modes 9 to 16 are obtained with negative(—ve) half cycle
of the source voltage.

i, LF IHload HF IH load

Iig

inf
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FIGURE 6 Load equivalent circuit, load currents and FFT. (A) Load equivalent circuit of multi-frequency converter, load currents, and
FFT. (B) Load equivalent circuit for v/f and load current FFT. (C) Load equivalent circuit for v,f and load current FFT
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Mode 1: During this mode, the supply voltage is positive (+ve) and the devices S; and S, are ON. Figure 7A shows the
corresponding equivalent circuit. Source current i; flows through the path of Vs-D,-S;-L;, and boost inductor
L, stores the energy. During this interval, the output current i, is positive and flows through the path of S;-
load-S,-Cp. DC-link capacitor C, discharges. The inverter output voltage is +v,. Expression for load voltage
and load currents are expressed through Equations (10)-(17)*°

Vo=Vp+Vei(t=0o0r t,_1) (10)
vo =Ly dizgt) +Ciﬂjilf(t)dt Ve (t=00r ty_1) + iy (£)Rys (11)
low-frequency current
iy (t) = Yo = Verl (;n:L(; or tn-1) e~“'sin wpt + ipe”™ <cos wpyt — winsin a)nt) (12)
Vert(£) = Verto +Vo — Verr(t =0 0r t,,_1) (1 —e <cos wut — winsin a)nt)> +W€msm Wt (13)

f he

D,/ D37 Ca T Ca

Cb == C, =

D/ l | 1

SJ:‘: D, TCx S4 | Dy TCu S, D, 1 Co D, Cyu
F3 C53 D3 CsS

Cb T Ch==
S, D, Cq D, 1 Cy + D, ::C54

© (D)

FIGURE 7 Single-stage resonant converter equivalent circuits for mode 1 to mode 4 for V> 0 (positive half cycle). (A) Model S, and S,
are ON. (B) Mode2 S; and S; are ON. (C) Mode3 S5 and S; are ON. (D) Mode4 S, and S; are ON
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FIGURE 8 Single-stage resonant converter equivalent circuits mode 5 to mode 8 for V> 0 (positive half cycle) (A) Modes5 S; and S, are
ON. (B) Mode6 S, and S, are ON. (C) Mode7 S, and S, are ON. (D) Mode8 S, and S; are ON
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FIGURE 9 Prototype of experimental setup
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similarly

Vo=Vp+Ven(t=00rt,_1)

dips(t 1
MU+__
dt Cwn

Vo = Lps Jihf(t)dt +vcrh(t =0or tnfl) + ihf([)Rhf

low-frequency current

Vo —Vern(t=0o0r ty_1)

. . a .
inf(t) = e~'sin wyt + ippe” " <cos Wt ——sin a)nt>

Wy

a)nth

a . inr(t=0ort,_ .
Vern () =Verno +Vo —Vern(t=00r t,_1) | 1 —e ¥ [ cos w,t ——sin w,t +Me’“‘smwnt
C
n WnCrh

where

Hence, the instantaneous value of load current

io(£) = i (£) +inr (1)

Equations (10)—(17) are applicable for all remaining modes where the final quantities of previous mode become initial

values of the next mode.
At the end of mode-1, i, becomes positive(+ve).

Parameter Value
prototype
AC input voltage (V;) 40 V (max)
Boost inductor 400 pH
DC-link capacitor 6.8 pF
Low-frequency IC load equivalent inductance (L) 68.2 pH
Low-frequency IC load equivalent resistance (Ryy) 2.09 Q
Low-frequency load resonant capacitor (C,;) 1.205 pF
High-frequency IC load equivalent inductance (Lyy) 50.737 pH
High-frequency IC load equivalent resistance (Rps) 1.35Q
High-frequency load resonant capacitor (C,;) 0.0202 pF
Leg-1 switching frequency (f;) 20 kHz
Low-frequency IH load resonant frequency(f,;) 18.4 kHz
Leg-2 switching frequency (f},) 160 kHz
High-frequency IH load resonant frequency (f,;,) 158 kHz
MOSFETS used IRFB4227pbf
Rds,on 19 mQ
Control board arduino
Diodes used VS60EPS
Snubber capacitors 2 nF

(18)

TABLE 1 Parameters of hardware
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Mode 2: During this mode, devices S; and S; are ON and Figure 7B shows the corresponding equivalent circuit. Source
current is flows through the path of Vs-D,—S;-L,. The output current is positive and freewheels through S;
and S;. Inverter output voltage v, is 0.

Mode 3: During this mode, devices S; and S; are ON and Figure 7C shows the corresponding equivalent circuit. Source
current ig flows through the path of Vs-D,—S;-L,. The output current is negative and flowing through D, S,
and load. The load voltage v, is 0.

Mode 4: During this mode, devices S; and S, are ON. Figure 7D shows the corresponding equivalent circuit. Source
current i; flows through the path of Vs-D,—S;-L, and boost inductor L, stores the energy. During this interval,
the output current i, is negative and flows through the path of S;-load-S;-C, and DC-link capacitor C,
charges. The inverter output voltage is +vy,.

Mode 5: During this mode, the supply voltage is positive and the devices S, and S; are ON and Figure 8A shows the
corresponding equivalent circuit. Source current iy flows through the path of V-D;,-S;-load-L;, and boost
inductor L, releases magnetic energy to load. DC-link capacitor C, discharges through S;,load,S,. The
inverter output voltage is —v, and i, is negative.
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FIGURE 10 Simulated and experimental waveforms of Vj, i, v,, ij; and ins (A) Simulated waveforms of source voltage and source
current. (B) Experimental waveforms of source voltage and source current. (C) Simulated waveforms of output voltage and low- and high-
frequency load currents at f; =20kHz and at f, = 160 kHz. (D) Experimental waveforms of load voltage and low- and high-frequency load
currents at f; =20kHz and at f,, =160 kHz
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Mode 6: During this mode, devices S, and S, are ON and Figure 8B shows the corresponding equivalent circuit. Source
current is flows through the path of V-D;,-C,—S,-L,. i, is negative and flows through the path of load-S,-D,.
DC-link capacitor Cj, is charging. Inverter output voltage v, is 0.

Mode 7: During this mode, devices S, and S, are ON and Figure 8C shows corresponding equivalent circuit. Source
current i flows through the path of Vi-D;,—Cp,—-S,-L,,. i, is positive and flows through the path of load-S,-D,.
DC-link capacitor Cp, discharges. Inverter output voltage v, is 0.
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FIGURE 11 Simulated and experimental waveforms of DC-link capacitor Voltage. (A) Simulated waveform of DC-link capacitor
voltage. (B) Experimental waveform of DC-link capacitor voltage
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FIGURE 12 Simulated and experimental waveforms of i, and its FFTs for f; = 20kHz and f}, = 160 kHz. (A) Simulated waveform of
total output current and its FFT. (B) Experimental waveform of total output current and its FFT
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Mode 8: During this mode, devices S, and S; are ON and Figure 8D shows corresponding equivalent circuit. Source
current i flows through the path of V-D,-C,-S,-L,. i, is positive and flows through the path of load-S;-Cj-
S,. DC-link capacitor C,, charges. The inverter output voltage is —vj,.

During the supply voltage negative half cycle (V; < 0), the operation consists of 8 modes which are similar to that of
the modes existing for the positive half cycle with changes in conducting elements due to polarity reversal. Dy, is off and
D, is on during this negative half cycle.

4 | SIMULATION AND EXPERIMENTAL RESULTS

A 316 W prototype of a single-stage resonant converter has been implemented for induction cooking with two different
material vessels. The implemented prototype is shown in Figure 9. The converter circuit parameters are described in
Table 1. The AC input voltage V=40V (max) and frequency f = 50 Hz. The load parameters are measured from the
coil side with the practical domestic cooking vessels of steel and aluminum kept over the IH coils. Switching frequen-
cies of converter legs 1 and 2 are selected as 20 and 160 kHz, respectively. The low and high resonant frequencies are
set as 18.4 and 158 kHz, respectively, by using suitable values of resonant capacitors. The simulation and experimental
results at different switching frequencies are shown in Figures 10-16). Figure 10 shows the simulated and experimental
results of source voltage (Vj), source current (is), inverter output voltage v,, low-frequency output current iy, high-
frequency output current iy at f; = 20 kHz and f}, = 160 kHz. The simulated and experimental results are in good agree-
ment with each other. Figure 10A,B shows, respectively, simulated and experimental waveforms of V; and i;. From
these waveforms it can be observed that supply voltage V; and current i; are in phase and the proposed converter
operates at unity power factor. Figure 10C,D show, respectively, simulated and experimental waveforms of v,, ijr and iy
Figure 11A,B show the simulated and experimental waveforms of DC-link voltage v, at f;=20kHz and f;, =160 kHz. It
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Simulated and experimental waveforms of i;r and its FFTs for f; = 20 kHz. (A) Simulated waveform of low-frequency load
current and its FFT. (B) Experimental waveform of low-frequency load current and its FFT
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is observed that the peak value of the DC-link voltage is 80 V when the peak value of source voltage is 40V, which indi-
cates the boost operation of the converter. Figure 12 shows simulated and experimental waveforms of total output load
current i, and its FFT with f; =20 kHz and f, =160 kHz. Figure 12A show simulated waveforms of total output load
current i, and its FFT. Figure 12B show experimental waveforms of total output load current i, and its FFT. Figures 13
and 14 show simulated and experimental waveforms of individual load currents FFT with f; =20 kHz and f), =160
kHz. Figure 13A show simulated waveforms of low-frequency load current i) and its FFT, Figure 13B show experimen-
tal waveforms of low-frequency load current iy and its FFT, Figure 14A show simulation waveforms of high-frequency
load current iy Figure 14B show experimental waveforms of high-frequency load current i, From these figures, it is
observed that inverter output current contains only low- and high-frequency components of current and the respective
frequency current component flows through the corresponding IH load. The low-frequency current component flows
through the steel vessel IH load and high-frequency current component flows through the aluminum vessel IH load.
From FFTs, it is observed that low-frequency IH load RMS current is iy =9.6 A and the same for high-frequency IH
load is ipy = 9.56 A. Output power control is achieved using pulse frequency control. Figures 15 and 16 show the simu-
lated and experimental waveforms of total output current i, and its FFT for different combinations of f; and f;,.
Figure 15A,B show simulation and experimental waveforms of i, and its FFT at ;=25 kHz and f;, =160 kHz. It is
observed that low-frequency load RMS current is reduced to Ijy =4.2 A and high-frequency load RMS current remains
unchanged at Iy = 9.56 A as only low switching frequency is increased. Figure 16A,B show simulated and experimental
waveforms of i, and its FFT at f; =20 kHz and f; =165 kHz. From these figures it can be observed that high-frequency
load RMS current is reduced to Iy =4.2 A and low-frequency load RMS current remains at the rated value of I;r =9.6
A. These results depict independent load power control. Low- and high-frequency output powers ( Py and Pyy) are con-
trolled by varying corresponding switching frequency. The above results are tabulated in Table 2. The simulated and
experimental results are in good agreement with each other. Hence, the proposed converter provides a single-stage AC-
AC converter with unity power factor, boost operation, multi-frequency output and independent output power control.
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FIGURE 14 Simulated and experimental waveforms of i,rand its FFTs for f, = 160 kHz. (A) Simulated waveform of high-frequency
load current and its FFT. (B) Experimental waveform of high-frequency load current and its FFT
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FIGURE 15 Simulated and experimental waveforms of i, and its FFTs for f; = 25kHz and f), = 160 kHz. (A) Simulated waveform of
total output current and its FFT at f; = 25kHz and f), = 160 kHz. (B) Experimental waveform of total output current and its FFT at f; =25
kHz and f), =160 kHz

5 | ANALYSIS OF RESULTS AND CONVERTER EFFICIENCY

In the proposed single-stage AC-AC converter, power control is obtained through pulse frequency control due its
advantages like symmetrical quasi-square wave output voltage, higher conversion efficiency for low and medium range
loads and does not require any control-loop-compensation network.’ Figure 17 shows low- and high-frequency output
currents and power control with frequency. Figure 17A shows the variation of simulated and experimental load cur-
rents with variation of low switching frequency of leg-1 devices. Figure 17C shows the low- and high-frequency IH load
powers with variation of the low switching frequency of leg-1 devices. It can be observed that the low-frequency load
current and corresponding output power, that is, of steel vessel, decrease with increase in low switching frequency. The
corresponding high-frequency components remain constant. Figure 17B shows the variation of simulated and
experimental load currents with variation of high switching frequency of leg-2 devices. Figure 17D shows the low- and
high-frequency IH load powers with variation of high switching frequency of leg-2 devices. It can be observed that the
high-frequency load current and corresponding power, that is, of aluminum vessel IH load power, decrease with
increase in high switching frequency, where the corresponding low-frequency components remain constant. These
characteristics prove the independent power control of both low- and high-frequency vessel loads with pulse frequency
modulation. The simulated and experimental results are also in good agreement. Hence, the proposed inverter is suit-
able for heating steel and aluminum vessels simultaneously with independent control. The low- and high-frequency
output powers are obtained using Equations (19) and (20)

Plf = Volf,rmsIolf,rms Cos ¢olf zli’le <19)
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FIGURE 16 Simulated and experimental waveforms of i, and its FFTs for f; = 20kHz and f}, = 165kHz. (A) Simulated waveform of
total output current and its FFT at f; = 20kHz and f;, = 165 kHz. (B) Experimental waveform of total output current and its FFT at f; =20
kHz and f, =165 kHz

TABLE 2 Output power and

Vi(V) Py (W) fi(kHz) fu(kHz) Pyp(W) Pu(W) Po(W) Efficiency ) ) -
efficiency for different combinations of

40 340 20 160 192.6 1234 316 93.2% fiand f,
40 173.2 25 160 37 123.4 160.4 92.5%
40 235 20 165 192.6 23.8 216.4 92.2%
2
Prr =V ong rmslonf,rms COS ¢ohf ~1I thhf (20)

The total output power is the sum of output powers of steel vessel load (Py) and aluminum vessel load (Py).
Py =Py + Py (21)

The input power of the converter is calculated (Equation (22)) as product of RMS input voltage (V;, rms) and RMS
input current (I, rms) of the converter as the power factor is closer to unity.

Py, = s,rmsIs,rms Cos ¢in ~ s,rmsIs,rms (22)

Overall converter efficiency is calculated as
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=5 (23)
in

The overall efficiency versus low and high switching frequencies are shown in Figure 18A,B, respectively. The over-
all efficiency of the proposed converter topology remains significantly high for both switching frequency variations.
Thermal images of steel and aluminum vessels at different load currents are shown in Figures 19 and 20. Thermal
imager (CHAUVIN ARNOUX-C.A1950 ) has been used. Thermal images of steel vessel at low-frequency currents of
4, 5, and 6.92 A are shown in Figure 19A-C, respectively. However these low-frequency currents cannot generate heat
in aluminum vessel due to its lower values of permeability and equivalent resistance. Hence, the proposed inverter con-
figuration powers the aluminum vessel load with high-frequency currents. Thermal images of aluminum vessel at high-
frequency currents of 4, 5, and 6.96 A are shown in Figure 20A-C, respectively. From these figures, it is observed that
aluminum vessel also gets heated, and hence, the proposed converter configuration is suitable for both steel and alumi-
num vessels.
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(A) (B)

FIGURE 19 Steel vessel thermal images at f; = 20 kHz. (A) ijyms =4 A. (B) iffrms = 5A. (C) ijfrms = 6.92A

(A) (B) ©)

FIGURE 20 Aluminum vessel thermal images at f), = 160 kHz. (A) infrms =4 A. (B) infrms = 5 A. (C) infrms = 6.96 A

In the proposed converter configuration, as integrated leg is used for both rectification and inversion, the number of
diodes is reduced. The power factor is almost unity and the output voltage is boosted. It has higher conversion efficiency
and the converter configuration can be extended for more number of loads, with one additional inverter leg per load. In
Sarnago et al.** also the component count is similar. However, in Sarnago et al.** mechanical relays are used which
increases the system cost and reducing the performance. Hence, with reduced component count, high efficiency and
two different IH load powering capability the proposed converter is cost-effective.

6 | CONCLUSIONS

The proposed single-stage AC-AC resonant converter for different material induction cooking applications has been
implemented. Inverter legs are operated at two different frequencies suitable for two different material cooking vessels.
The low-frequency leg is common for both rectification and inversion operation. Low frequency of 20 kHz is used for
steel vessel and high frequency of 160 kHz is used for aluminum vessel. Independent output power control is achieved
by pulse frequency control. The number of switching devices is two per load. In this configuration, overall efficiency of
>93% is achieved at full load. Output power control is achieved using pulse frequency control modulation technique.
The salient features of the proposed converter are suitability for different material IH loads, single-stage AC-AC conver-
sion, boost operation, high power factor, independent power control, soft switching operation and high efficiency. This
converter offers advantages like single-stage AC-AC conversion, high power factor, DC-link voltage boost operation,
low component count, suitability for different material vessels, independent power control and high efficiency.
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