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Abstract
In this paper, a Bayesian fusion technique (BFT) based on maximum power point tracking (MPPT) is developed for the 
photovoltaic (PV) system that can exhibit faster and accurate tracking under partially shaded conditions (PSCs). Although 
the conventional hill-climbing algorithms have fast tracking capabilities, they are prone to steady-state oscillations and 
may not guarantee global peak under partially shaded conditions. Contrarily, the meta-heuristic-based techniques may 
promise a global peak solution, but they are computationally inefficient and take significant time for tracking. To address 
this problem, a BFT is proposed which combines the solutions obtained from conventional incremental conductance 
algorithm and Jaya optimization algorithm to produce better responses under various PSCs. The effectiveness of the 
proposed BFT-based MPPT is evaluated by comparing it with various MPPT methods, viz. incremental conductance, 
particle swarm optimization (PSO), and Jaya optimization algorithms in MATLAB/Simulink environment. From the vari-
ous case studies carried, the overall average tracking speed with more than 99% accuracy is less than 0.25 s and having 
minimum steady-state oscillations. Even under the wide range of partially shaded conditions, the proposed method 
exhibited superior MPPT compared to the existing methods with tracking speed less than 0.1 s to achieve 99.8% track-
ing efficiency. A detailed comparison table is provided by comparing with other popular existing MPPT methodologies.

Highlights

•	 A Bayesian fusion technique (BFT)-based MPPT tech-
nique is proposed for PV system

•	 The BFT technique takes the best tracking solution by 
proper decision making on input data uncertainties

•	 The proposed technique is tested under different irradi-
ance and shaded conditions of the PV system
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1  Introduction

Photovoltaic (PV)-based power generation has gained 
immense attention over the past few decades. With 
advancements in PV technology, the PV cells have 
shown improved efficiency with reduced manufacturing 
costs [1]; also, PV systems have nonlinear characteristics 
dependent on various parameters such as irradiance, 
temperature, series, and parallel resistance. The power 
extracted from the PV panel is dependent on its out-
put voltage for a given irradiance and temperature. This 
output voltage of the PV panel is usually varied using a 
power electronic converter that interfaces with load or 
grid. For full utilization of the installed PV panel, a proper 
maximum power point tracking (MPPT) technique that 
extracts maximum possible power from PV systems for 
a particular irradiance and temperature is needed. Con-
ventionally, the MPPT technique such as perturb and 
observe (P&O) [2], incremental conductance [3] is used 
for PV power plants as appropriate for single peak charac-
teristics to get MPPT and its improved strategies [4]. The 
main drawback of conventional methods is steady-state 
oscillations. Typically, the PV power plants are extended 
over a wide area by series and parallel combinations of 
multiple PV panels to increase the operating voltages and 
the capacity of the PV system. Due to the presence of 
multiple PV panels, there is a possibility of partial shading 
[5] where few PV panels get full irradiance and whereas 
others may be shaded due to passing clouds, shading 
effect of trees and buildings which in turn can lead to 
partial shading conditions (PSCs). The PV power plant 
under partially shaded conditions may exhibit multiple 
local peaks (MLPs) characteristics which include a global 
peak (GP) [6]. The conventional MPPT techniques based 
on the “hill-climbing” algorithm may not guarantee a 
global peak under these conditions and may be stuck at 
the local MPP. The multiple global maximum power point 
tracking (GMPPT) algorithms available in literature can 
be broadly categorized as (a). Two-stage algorithms for 
GMPPT and (b). Soft computing optimization algorithms.

A two-stage algorithm for GMPPT is explained in [7], 
in which the phenomena of PSC are detected in PV array 
using respective MLP voltage levels; the algorithm com-
pares the power level of every MLPs to locate the GMPP. 
This method, however, requires more voltage sensors 
across every bypass diode thereby increasing the overall 
cost of the system. A modified hill-climbing technique 
is proposed in [8], where the currents at multiples of 
80% of the open-circuit voltage of each panel are meas-
ured and used to estimate the P–V curve with MLPs. The 
modified hill-climbing technique identifies all the MLPs 
and compares their respective peak-power to get GMPP. 

Although this method can achieve GMPP, PVs are oper-
ated at a wide range of voltage levels for obtaining at 
MLPs before reaching GMPP.

A meta-heuristic particle swarm optimization (PSO)-
based MPPT is used for the PSCs to guarantee conver-
gence of the GMPP [9], but tuning of parameters such 
as initial weight factor and cognitive parameters plays 
a key role in successful tracking of the GMPP. Improper 
tuning of optimization parameters may either lead to 
sub-optimal MLP tracking or may lead to slow tracking 
speed along with steady-state oscillatory behaviour in 
the PV output power.

Many other meta-heuristic algorithms [10], such as 
genetic algorithm [11], artificial bee colony [12], grey wolf 
optimization (GWO) [13], ant colony optimization [14], 
flower pollination algorithm [15], overall distribution of 
PSO[16], Leader Particle Swarm Optimization [17], Fibo-
nacci search (FS) [18], extremum seeking control (ESC) 
[19], Artificial Neural network (ANN) [20] and improved 
cuckoo search [21], hybrid adaptive P&O and PSO [22], the 
Hybrid Enhanced Leader PSO-P&O [23], are proposed to 
track GMPP for a PV system that has MLPs during partially 
shaded conditions. But all these algorithms optimize tun-
ing parameters that need to be properly selected; other-
wise the optimization algorithm may increase the tracking 
time or may be stuck at any local peak point. In [24], Jaya 
algorithms are proposed which do not require any param-
eter tuning for tracking the GMPP. This method is proved 
to track speed faster and exhibits less oscillatory behav-
iour steady-state at GMPP compared to PSO. Nevertheless, 
this method may still take significant time compared to 
the conventional methods and highly dependent on the 
initial candidate. Meta-heuristic-based modified butterfly 
algorithm (MBOA) [25] and a radial movement optimiza-
tion (ARMO) [26] MPPT tracking algorithm were proposed 
optimal tracking under partial shading conditions and 
fast varying loads. But the tracking speed and accuracy of 
these methods are highly sensitive for the optimization 
parameter which should be properly selected for best 
results.

Under soft computing, optimization algorithms are 
used to implement the GMPP [27]. All these soft com-
puting GMPPT techniques are favourable in finding the 
GMPPT for most PSCs, but they are computationally inef-
ficient [28]. Consequently, these methods are executed at 
a predetermined time that may lead to inefficient tracking 
performance under fast irradiance variation.

In addition to this, machine learning-based approaches 
are developed for the accurate tracking of MPPT. A neural 
network is designed to track MPP for the PV system [29]. 
The main drawback of this method is that it needs exact 
data to give the optimal values, but the Bayesian fusion 
technique [30] mainly quantifies the uncertainty of the 
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parameters (maximum values); this gives the distribution 
of parameter values (uncertainty), whereas neural network 
gives only optimal value with respect data, that is when 
the data is available, both neural network and BFT give 
accurate results, whereas, in the region where the data 
is insufficient or unavailable, BFT gives its confidence 
interval. A technique, which has not been considered for 
MPPT already, yet which is more popular in the section of 
machine learning, is the Bayesian fusion technique. This 
technique can detect global optimum as an insignificant 
function in very few evaluations. One well-known method 
is to design the undefined consequence as a Gaussian 
process (GP) [31]. The GP designs provide an expected 
estimate and uncertainty information, it is used as fea-
ture vectors function assessments to the position that are 
instructive regarding the maximum [32].

This paper proposes a Bayesian fusion technique (BFT) 
for tracking GMPP under PSCs. In this method, the Bayes’ 
theorem is applied to obtain a proper GMPP solution by 
combining the information obtained from two methods 
[33–35], i.e., incremental conductance and Jaya algorithm for 
different partially shaded conditions. As the solutions from 
both conventional method and meta-heuristic algorithms 
are used, based on previous probabilities, the BFT technique 
can reduce the overall convergence time, increase tracking 
accuracy, and reduce steady-state oscillation. For this reason, 
the BFT method is more satisfactory than the distribution-
based techniques. The BFT adopts its solution based on the 
inputs obtained from incremental conductance and Jaya 
algorithm-based tracking information and is a step towards 
the best solution in the search domain.

The article is organized as follows. Section 2 explains the 
basics of solar PV modelling and its characteristics under 
PSCs, Sect. 3 briefs about incremental conductance, and 
Jaya MPPT techniques. The mathematics for basic Bayesian 
fusion and the proposed BFT-based MPPT tracking and the 
proposed method is evaluated in Sect. 4, various simulation 

case studies are outlined in Sect. 5, results of comparative 
studies are reported in Sect. 6, and 7 concludes the paper.

2 � Modelling of solar PV and its 
characteristics

PV module takes part in assembling by the number of solar 
PV cells. Accordingly, single diode model representation 
and its characteristics of the solar PV cell have been shown 
in Fig. 1, the mathematical outline equations for the [36] 
modelling of PV module have been given below, and the 
parameters are shown in Table 1. The solar PV module con-
nected to the boost converter to gain the output power is 
shown in Fig. 2a.

where Vpv,Ipv are the output voltage, the current of the PV 
cell, q is the electron charge 1.602 × 10−19C, Iph is the solar 
photocurrent generated, RS, Rsh are series and shunt resist-
ance, A is diode ideality factor,IO flows through diode it 
depends on the PV cell reverse saturation current Io1 that 
mainly depends on the temperature, K is the Boltzmann’s 
constant, i.e., 1.38 × e−23 , ISC_STC is the short circuit current 

(1)Ipv = Iph − IO −

(
Vpv + IpvRS

)

Rsh
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Fig. 1   Single diode model for solar PV and its characteristics

Table 1   Rating of the PV module

Pmax Voc Isc Vmax Imax

60 W 21 V 3.8 A 17.1 V 3.5 A
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at STC. GSTC is the standard solar irradiation quantity on a 
solar PV cell (i.e.,1000 W/m2),Vt is the thermal voltage of 
the diode, G is the solar irradiation quantity ( W/m2 ), T is the 
ambient temperature and Tr is the reference temperature.

Here, the output voltage of a Boost converter depends 
upon the duty cycle for balanced utilization of the MPPT 
procedure [37]. The interconnection for that input and out-
put voltage as the results of the duty cycle can be com-
municated as (4)

where VO = Output Voltage ,  Vin = Input Voltage and 
D = Duty cycle.

This paragraph discusses the Solar PV under partially 
shaded condition (PSC) and discusses a PV array which 
accommodates the various PV modules that are associated 
in series and parallel [38]. The combination of every mod-
ule generates power, which implies the PV array power. 
Out of the PV module, any single PV module is shaded 
instead of inadequate solar irradiation to achieve output 

(4)
VO

Vin
=

1

1 − D

power, assume as the shaded module in different levels are 
shown in Table 2 and shaded modules are shown in Fig. 2b, 
In every PSC combination, the number of PV modules is 
associated with a series arrangement called the patterns. 
The remaining modules generate the power and dissipate 
power to the load. The PV array works like a current Ia , but 
shaded modules are forced to operate the reverse-biased 
operating region, and the PV array behaves as a load rather 
than the power source [39]. This indicates more localized 
power loss and the hotspot will appear on an object with 
irreversible damage of the shaded PV module. Hence to 
avoid the hotspot by bypass diode is added into the PV 
modules under the PSC condition [40]. Bypass diode has 
been added in the configuration as shown in Fig. 2b, to 
protect from hotspot during PSC [41], under uniform irra-
diation plane, the bypass diodes are in forwarding biased 
as well as the current flow the diode in place of the mod-
ule. Because of the bypass diodes, the multiple local peaks 
of the P–V curve appear under the PSC. For the simulation 
studied, three partially shaded patterns are considered, 
i.e., GMPP at the left side of the PV curve, the middle global 
peak of the PV curve, and GMPP at the right side of the 
PV curve. For the partially shaded condition, 4 series PV 
modules configuration are used as shown in Fig. 3.

Under normal conditions, conventional MPPT methods, 
which are P&O, incremental conductance methods [2, 42] 
track the maximum power. But under the PSC it is difficult 
to differentiate in the middle of local maximum power point 
and global maximum power point (GMPP). Hence, in this 
paper, some modifications are made to eminent tracking 
about the GMPP under PSCs.
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Fig. 2   a Schematic diagram of PV with boost converter. b Three dif-
ferent arrangement of array configuration exposed to different lev-
els of partially shaded condition (i) pattern-1 (GMPP on the left side 

of the PV curve) (ii) Pattern-2 (middle global peak of the PV curve) 
(iii) pattern-3 (GMPP at right side of the PV curve)

Table 2   different patterns of the Irradiance (w/m2) value

Module (PV) Pattern-1 (W/
m2)

Pattern-2 (W/
m2)

Pattern-3 
(W/m2)

PV1 1000 1000 1000
PV2 1000 900 900
PV3 400 800 800
PV4 300 500 600
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3 � GMPPT methods

3.1 � Incremental conductance method

The incremental conductance MPPT method is the most 
frequently utilized method because its performance has 
precise regulation with less steady-state oscillation under 
sudden change in weather conditions. In this method, the 
incremental conductance 

(
dI

dV

)
 is compared to instantane-

ous conductance 
(

I

V

)
 [4]. The operating point at which the 

difference between incremental conductance and instanta-
neous conductance will be zero is considered to be MPP are 
shown in Fig. 4.  [42]. The detailed expressions that govern 
the incremental conductance MPPT are given by (5)–(9).

The above equation can be changed into the subsequent 
equation

A system to track the MPP by using an incremental 
conductance with a Cuk converter is presented [43]. 

(5)
dP

dV
=

d(IV )

dV
= I + V ⋅

dI

dV
= 0

(6)−
I

V
=

dI

dV
=

ΔI

ΔV

(7)
dI

dV
= −

I

V
, at MPP

(8)
dI

dV
> −

I

V
, left of MPP

(9)
dI

dV
< −

I

V
, right of MPP

The solar PV system operates under different environ-
mental changes and is implemented by using simula-
tion [44]. With a variable step, incremental conductance 
is implemented [45]. The effect of the IC parameter on 
the output is estimated, and the difference between the 
other algorithms is presented in [46]. A differentiation 
between IC and P&O is introduced [47]. The significant 
disadvantage of the above conventional technique has 
deviated from the maximum power point if there should 
be an occurrence of quickly changing weather condi-
tions. More slow assembly, complex control hardware, 
and steady-state tracking oscillations around MPP are 
because of fixed step size. Anyway, these disadvantages 
are dispensed with if there is an occurrence of the Jaya 
method.
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3.2 � Jaya algorithm

Jaya algorithm is latterly developed as the meta-heuristic 
technique for solving optimization under constrained and 
unconstrained problems [48]. This method differs in algo-
rithmic specific parameters compared to other heuristic 
techniques in that it has only two common parameters 
such as iteration and population size, and these paramet-
ric values are easily initialized. This critical improvement 
makes the utilization of the Jaya algorithm simple and 
proficient.

Let us consider P = F(X ) as the objective function, to 
maximize the P , F(X )best and F(X )worst is the description 
of the best values and worst values of the F(X ) out of all 
candidate solutions during every iteration [49, 50]. First 
the n number of candidate solutions are initialized and 
the next iteration of the Jaya algorithm is updated. Let k is 
the candidate solution under the ith iteration, the modi-
fied value of ki+1 is calculated by using the Jaya algorithm 
given below in Eq. (10)

where xk
i
 and xk+1

i
 are the present and updated values, Xbest 

and Xworst are the best and worst solution among all the 
candidates, r1and r2 are the arbitrary numbers in between 
U[0, 1] , the term r1

(
Xbest − Xk

i

)
 is the solution of closer to 

the best, and r2
(
Xworst − Xk

i

)
 is the avoid the worst solu-

tion. This method also observes fewer oscillations while 
tracking the GMPP, and it takes more iteration to reach 
the GMPP. This proposed technique combined the recent 
meta-heuristic Jaya algorithm and incremental conduct-
ance to improve the maximum power point tracking with 
less oscillation and less iteration.

4 � Proposed Bayesian fusion technique 
for MPPT

This proposed work is based on the concept of Bayesian 
decision theory [35], to grow a mathematical fusion struc-
ture. This conceptualization enhances the integration of 
two or more MPPT tracking methods based on feature vec-
tor construction. Because of its probabilistic approach this 
proposed, approach can easily handle the uncertainties in 
irradiance and temperature [51].

4.1 � Bayesian fusion formulation

The Bayesian technique has the provision of a reverse 
probability that models uncertainty based on available 
observations (likelihood and prior knowledge). There 
are two different interpretations of probability theory, 

(10)xk+1
i

= xk
i
+ r1

(
Xbest − Xk

i

)
− r2

(
Xworst − Xk

i

)

in which one is a frequentist interpretation that provides 
the probability about the frequencies of events or trials. 
The other one is Bayesian interpretation that provides the 
probability to quantify the uncertainty about some param-
eters [52].

The most commonly used statistical interpretation 
method is the frequentist (or classical) method. In this 
interpretation, the unknown parameters are assumed as 
constant, and they define probability based on relative 
frequencies of event occurrence. This limits the decision-
making capabilities on uncertain parametric conditions.

Bayesian fusion optimization techniques offer an alter-
native strategy; they treat as random parameters, and 
they define probability as “degrees of belief” has regard 
from these proposes that probabilities are instinctive and 
that can make probability explanations about parameters 
utilizing Bayes’ theorem. Using Bayes’ theorem. The Bayes 
theorem is intended to solve the problem after collecting 
the observed data events by using inverse probability.

Suppose an unknown state “S” which needs to be identi-
fied from the data set a =

{
a1,….an

}
 by utilizing a statisti-

cal model characterized by a probability P(a|S) . Bayesian 
philosophy is used where uncertainty concerning the 
parameter limitation is expressed during the probability 
evidence and distributions. The following steps illustrate 
the essential fundamentals of Bayesian inference:

1.	 For the probability distribution “S” is a construct as P(S) 
which is named as the prior distribution. This distribu-
tion communicates the probabilities (for example, on 
the mean, the skewness, the spread, etc.) about the 
given parameter before examining the given informa-
tion.

2.	 For the given particular data a , the statistical model is 
represented as P(a|S) is obtained to describe the dis-
tribution of S in given data.

3.	 The probabilities about S are updated by combining 
data information from the given prior distribution, 
and calculation the data through posterior distribu-
tion P(S|a).

Simply, Bayes’ theorem updates existing knowledge 
with new information. In the concept of Bayesian fusion, 
methods provide simple alternatives for the statistical 
inference all the inferences muster against the posterior 
probability distribution p(S|a).

Practically, the posterior probability distribution can be 
obtained with simple analytical solutions for most rudi-
mentary problems. Sophisticated computations with the 
inclusion of simulation methods are a part of most Bayes-
ian analyses. The posterior distribution from the given 
sample data is defined as (11)
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For n number of independent random variables, vary 
from n = 1 to 2 N

This Eq. (12) can be written as the product of the con-
ditional probabilities

For n number of independent random variables, the 
posterior probability is given by

where 1
Z
=

1
∑3N

n=1 P(an�S)
, P
(
an|S

)
 is the likelihood, P(S) is the 

marginal distribution, and P
(
S||an

)
 is the conditional 

probability.

4.2 � Maximum power point tracking using Bayes 
fusion technique

The BFT-based MPP tracking technique is designed using 
a Bayesian network [34]. A Bayesian network is a high-
powered tool derived from the Bayes theorem that is used 
for the joint probability distribution of statistics fusion. In 
Bayes theorem, the posterior probabilities depend on 
prior probability distribution. The prior probability distri-
bution is obtained from the statistical inference collected 
using a set of available prior information. Using current 
system information, a best rational assessment is applied 
to obtain the posterior probability. The prior probabilities 
are continuously updated based on the previous infor-
mation available and thereby estimate the new posterior 
probabilities using Bayes’ theorem. These posterior prob-
abilities will help in identifying if the set of information 
passed is either new event-information or existing event 
information. This complete BFT process can be segmented 
into two parts.

(1)	 Feature vector production
(2)	 Decision making

(11)P(S|a) = P(a|S)P(S)
P(a)

(12)P
�
S|an

�
=

P
�
an|S

�
P(S)

∑2N
n=1 P

�
an|S

�

(13)=
1

∑2N
n=1 P

�
an|S

�
�
P
�
an|S

�
P(S)

�

(14)
1

Z
=

1
∑2N

n=1 P
�
an|S

�

(15)P
(
S|an

)
=

1

Z

2N∏

n=1

P
(
an|S

)
P(S),

4.2.1 � Feature vector production

For multiple random variables, a Bayesian network is 
used to move in the direction of obtaining GMPP under 
the PSCs for PV array. The proposed work was done based 
on the joint probability distribution of statistics fusion of 
incremental conductance and Jaya algorithm. For better 
understanding, consider a PV system with four modules 
connected in series with each module having an input 
combination of voltages and currents pairs at 1000 W/m2 , 
and the total open-circuit voltage of the PV system will 
be Voc = nVOCM . Now, a Bayesian network is designed and 
observations input nodes, i.e.L =

{
a1,… an

}
 , are equally 

divided into two parts named, left nodes 
{
a1,… , an

}
 

and right nodes R =
{
an+1,… , a2n

}
 , respectively. The 

left nodes L =
{
a1, ..., an

}
 are assigned with the volt-

age information of individual panels when operated 
at MPP obtained by incremental conductance under 
a partially shaded condition. Similarly, the right nodes 
R =

{
an+1,… , a2n

}
 are assigned with input voltages 

obtained across individual panels when the PV system 
operates using the Jaya MPP algorithm for similar par-
tially shaded conditions. The network arrangement for 
the Bayesian network is shown in Fig. 5, in this network 
the output node is defined as “ S ”. After assigning values 
to all observation nodes, the individual nodes of the left 
nodes are compared with the all right node to identify the 
matching nodes. Then the feature vector a is formulated 
using (16)

If any two nodes on the left and right nodes are 
matched, then condition that “1” placed in the feature 
vector otherwise “0” placed. Such that feature a vector is 
signified by a(t) =

{
a1(t),… ..an(t)

}
, where ai(t) represents 

to the condition of ith node at time t.

(16)

a(i) = a(j) =

{
1 ifLi = Rj

0 ifLi ≠ Rj

∀i = 1, 2, ..
n

2
;j = 1, 2,… .

n

2

S

Incremental conductance
algorithm

Jaya algorithm

a1 aN aN+1 a2N

Fig. 5   Bayesian fusion structure for MPPT information



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:539 | https://doi.org/10.1007/s42452-021-04538-z

4.2.2 � Decision making

The sample training data sets, i.e., input combination of 
voltages and currents pairs ( V , I ) of solar cell module with 
different irradiance and temperature, are noted and the 
output at each training data sets the GMPP (output) for 
both Jaya and incremental conductance method noted. 
This input data set (voltage, current, and corresponding 
output (GMPP)) serves as data set, 80% of samples are 
randomly picked as training data set, and 20% samples 
are picked as the testing set. The training data set (input, 
output) is utilized to train the BFT.

As mentioned above input nodes to be stated as 
{0 or 1} , and “S” has output nodes, i.e. NS + 1 = 527 + 1 
states, states: S = {s1, ..… .SNS , No Event}. Every state {
s1,… sNs

}
 compares to an expected point on the I-V 

curve. The location of the output point “S” (maximum 
power point) is estimated from the feature vector by 
appropriately tuned by the BFT.

When values of “S” are given, then the values of ai 
are conditionally independent on “S”. Hence condi-
tional probability distribution based on the Bayes rule, 
P(S|a1, ..., aNP

(
S|aN+1,...a2N

)
, this distribution can be 

written as the product of the conditional probabilities 
P
(
an∕S

)
 by using Eq. (17)

By using BFT is trained to estimate the prior and likeli-
hood distribution and the constant value “Z” is calculated 
from the training data set. These distributions are used 
to predict the output “S” from the trained BFT.

Where 1
Z
=

1
∑2N

n=1 P(an�S)
, P
(
an|S

)
 the likelihood, P(S) is the 

marginal distribution, and P
(
S∕a1,…… , a2N

)
 is the con-

ditional probability approximate from the training data 
sets. For every feature vector, the output “S” is given as a 

(17)P
(
S∕a1,…… , a2N

)
=

1

Z
P(S)

2N∏

n=1

P(an∕S).

tag. The calculated conditional probability data saved in 
a particular table is called the conditional probability 
table (CPT). In this method, I-V curve points are stored 
under different irradiation, the temperature under par-
tially shaded conditions. Hence, these are used as train-
ing sets. Irradiation values were changed from 
1000 W∕m2 to 200 W∕m2 with a difference of 50W∕m2 , 
with temperature changed from − 10 to 50  °C with a 
range of 2  °C in each combination in between these 
groups was considered for PV modules, the MPP values 
of voltages and current combinations are taken. These 
samples are used to deploy as a governor to the CPT 
training. The block diagram of the Bayesian fusion opti-
mized proposed controller is shown in Fig. 6. As well as 
in the flowchart shown in Fig. 7.

At this point, once the PV array system is under operat-
ing conditions, the feature vectors were determined each 
time as evidence. By using evidence obtaining the con-
ditional probability as above (17), conditional probability 
determined to the most credible state of “S” was acquired, 
i.e. the most probable maximum output power with less 
steady-state oscillation, more tracking speed, with less 
iteration with more efficiency is observed by combining 
the incremental conductance and Jaya algorithm com-
pared to individual meta-heuristics techniques.

5 � Simulations and discussion

A PV system with 4 PV modules configured in series is con-
nected to the standalone loads using a boost converter 
shown in Fig. 2a which is considered for simulation stud-
ies. The parameters of the boost converter and algorithms 
data values have to be shown in Table 3. The simulation 
outcome is executed by applying the proposed Bayes-
ian fusion optimization technique (BFT) to get the global 
maximum power point (GMPP) in MATLAB/SIMULINK for 
three possible patterns shown in Table 1 under the PSCs. 

Fig. 6   Block diagram of 
proposed Bayesian fusion 
optimized controller

Conditional
Probability
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The performance of the proposed method is evaluated 
by comparing it with the existing methods such as the 
incremental conductance method, PSO method, and Jaya 
method. Three different case studies are performed with 
three different partially shaded conditions of the PV sys-
tem as detailed below.

1.	 Simulation results with GMPP at the left side of the PV 
curve.

2.	 Simulation results with the middle global peak of the 
PV curve.

3.	 Simulation results with GMPP at the right side of the 
PV curve.

Yes

No

Maximum state is
reached i .e .(S)

Measure the PV irradiance
and temperature values

Generate the feature vectors
by using incremental

conductance and Jaya MPPT
Methods

Find out the conditional
probability by using Bayesian

network

Compare the Training Table

Calculate the
maximum value

i.e( S) of

probability by using

BFOT

Conditional Probability Table
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conductance
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Maximum
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Fig. 7   Flow chart of the proposed Bayesian fusion method

Table 3   Utilized algorithm and 
boost converter parameters 
are given below

Particulars Specifications

Bayesian Fusion Total set of data = 527, training data = 80% of 527(421), 
testing data = 20% of 527 (106)

Jaya Maximum iteration = 100, population size = 3
Incremental conductance Dinitial = 0.15, Delta D = 0.0051
Boost converter L = 5.20 mH,C1 = C2 = 10 �F = 10 kHz, Switch (MOSFET)
Sampling period (Ts) For simulation Ts=0.0023 Sec
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5.1 � Case. 1: simulation results with GMPP at left 
side of the PV curve

In this scenario, the irradiance on each PV module is shown 
in Table 2. Here, PV module—1 and PV module—2 are con-
sidered to have the same irradiance values thus leading to 
three different characteristics that are generated from that 
PV module, and the complete pv—characteristics of the 
PV system are shown in Fig. 3a. It can be observed that the 
maximum global peak lies on the left side of the PV curve 
with the maximum power being 114.1 W, while the other 

peaks—middle and right peak—are local peaks (LPs) of 
the PV array for the considered PV configuration. The time 
response of the PV output while reaching maximum peak 
point using incremental conductance, PSO, Jaya, and the 
proposed method is shown in Fig. 8a. The incremental con-
ductance algorithm was able to track a maximum power 
of 110.5 W with the tracking time being 0.39 s. Moreover, 
a significant steady-state oscillation and power loss while 
tracking MPP were observed while using incremental 
conductance. The PSO-based MPPT method was able to 
extract a maximum power of 111 W in 63 iterations with a 
tracking time of 0.43 s. With PSO, the steady-state oscilla-
tions are significantly reduced compared to incremental 
conductance, but there were increased oscillations dur-
ing the tracking period. The power extracted by the Jaya 
algorithm was 111 W and took around 28 iterations with 
a tracking time of 0.19 s and there were fewer oscillations.

The proposed method was also able to extract 113 W 
with a tracking time of 0.3 s global peak of the left side 
peak. In the proposed technique, the tracking time, 
steady-state power oscillations are fewer compared to 
other methods as observed in Fig. 8. There is almost no 
oscillatory behaviour observed while tracking MPP as 
compared to incremental conductance, PSO, and Jaya 
technique indicating the superior performance of the 
proposed Bayesian fusion technique. The relative wave-
forms of the voltage and current are shown in Fig. 8b, c, 
and analytic comparison is provided in Table 4

(a)

(b)

(c)

Fig. 8   Simulation performance with GMPP at left side of the PV 
curve

Table 4   Simulation analysis of proposed Bayesian fusion along with incremental conductance, PSO and Jaya algorithms as for PV array sys-
tem of 4 series configurations

Methods to use produce maximum 
Power

Rated power (W) Power 
at MPP, 
(W)

Voltage 
at MPP, 
(V)

Current at MPP, (A) Tracking 
Time at MPP, 
(sec)

Maximum efficiency 
produce from PV %

Incremental conductance method 114.1 (pattern-1) 110.5 34.06 3.3367 0.39 96.84
PSO method 111 34.08 3.176 0.44 97.2
Jaya method 111 34.08 3.262 0.29 97.2
MBOA 111 33.99 3.27 0.24 97.2
Proposed method 113 41.22 3.621 0.23 99.03
Incremental conductance method 148.2 (Pattern-2) 147 50.59 2.889 0.24 99.19
PSO method 147.6 49.65 2.85 0.55 99.59
Jaya method 147.6 49.65 2.975 0.53 99.59
MBOA 147.6 49.75 2.98 0.53 99.59
Proposed method 147.5 38.16 3.628 0.27 99.52
Incremental conductance method 155 (Pattern-3) 153.8 72.5 2.13 0.19 99.22
PSO method 154.4 74.18 1.957 0.18 99.61
Jaya method 154.4 74.18 2.084 0.17 99.61
MBOA 144.6 53.47 2.71 0.89 93.29
Proposed method 154.7 45.7 3.43 0.07 99.80
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5.2 � Case.2: simulation results with middle global 
peak of the PV curve

In this scenario, the irradiance on each PV module is shown 
in Table 2. While the four peaks are available in the P–V 
curve, as shown in Fig. 3b, it can be observed that a global 
peak exists in the middle of the PV curve, whereas the rest 
of the peaks lift the side of the PV curve and the right side 
of the PV curve has been considered as local peaks, maxi-
mum power is being 148.2 W. The time response of the PV 
output while reaching maximum peak point using incre-
mental conductance, PSO, Jaya, and the proposed method 
is shown in Fig. 9a. The incremental conductance was able 
to track the maximum power of 147 W, with tracking time 
being 0.24 s. Moreover, a significant steady-state oscilla-
tion and power loss while tracking MPP were observed 
while using incremental conductance. The PSO-based 
MPPT method was able to extract a maximum power of 
147.6 W, in 79 iterations with tracking time being 0.55 s. 
With PSO, the steady-state oscillations are significantly 
reduced compared to incremental conductance, but there 
were increased oscillations during the tracking period. The 
power extracted by the Jaya algorithm was 147.6 W and 
took around 28 iterations with a tracking time of 0.58 s and 
there were fewer oscillations. The proposed method was 
able to extract 147.5 W with a tracking time of 0.27 s global 
peak of the left side peak. In the proposed technique, the 
tracking time, steady-state power oscillations are fewer 
compared to other methods as observed in Fig. 9. There 
is almost no oscillatory behaviour observed while track-
ing MPP as compared to incremental conductance, PSO, 
and Jaya technique indicating the superior performance 
of the proposed Bayesian fusion technique. The relative 

waveforms of the voltage and current are shown in Fig. 9b, 
c, and analytic comparison is provided in Table 4.

5.3 � Case. 3: simulation results with GMPP at right 
side of the PV curve.

In this scenario, the irradiance on each PV module is 
shown in Table 2. While the four peaks are available in 
the P–V curve, as shown in Fig. 3c, it can be observed 
that a global peak exists at the middle of the PV curve, 
whereas the rest of the peaks lift side of the PV curve 
and right side of the PV curve has been considered as 
local peaks, maximum power is being 155 W. The time 
response of the PV output while reaching to maxi-
mum peak point using incremental conductance, PSO, 
Jaya, and the proposed method is shown in Fig. 10a. 
The incremental conductance was able to track the 
maximum power of 153.8 W, with tracking time being 
0.19 s. Moreover, a significant steady-state oscillation 
and power loss while tracking MPP were observed 
while using incremental conductance. The PSO-based 
MPPT method was able to extract a maximum power of 
154.4 W, in 26 iterations with tracking time being 0.17 s. 
With PSO, the steady-state oscillations are significantly 
reduced compared to incremental conductance, but 
there were increased oscillations during the tracking 
period. The power extracted by the Jaya algorithm was 
154.4 W and took around 26 iterations with a tracking 
time of 0.18 s and there were fewer oscillations. The pro-
posed method was able to extract 154.7 W with a track-
ing time of 0.07 s global peak of the left side peak. In 
the proposed technique, the tracking time, steady-state 

(a)

(b)

(c)

Fig. 9   Simulation performance with middle global peak of the PV 
curve

(a)

(b)

(c)

Fig. 10   Simulation performance with GMPP at right side of the PV 
curve
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power oscillations are fewer compared to other meth-
ods as observed in Fig. 10. There is almost no oscillatory 
behaviour observed while tracking MPP as compared 
to incremental conductance, PSO, and Jaya technique 
indicating the superior performance of the proposed 
Bayesian fusion technique. The relative waveforms of the 
voltage and current are shown in Fig. 10b, c, and analytic 
comparison is provided in Table 4.

6 � Comparative study

The proposed method portrayed and improved tracking 
accuracy and speed to achieve the GMPP under dynamic 
response, there are minimal oscillations tracking oscil-
lations with almost negligible steady-state oscillation, 
and execution time is quicker compared to incremental 
conductance of [4], Jaya algorithm [23], and PSO [9] to 
achieve the global maximum power point tracking of the 

PV system. The problems in the incremental conductance 
algorithm are step size, and instability when there is a 
change in irradiance due to PSC. But PSO and Jaya algo-
rithms show more oscillations during the tracking period 
and PSO needs comparatively larger time and more itera-
tions to reach the GMPP. The proposed method compares 
with MBOA [25], as MBOA depends on one tunning param-
eter and one random number, whereas the proposed 
method does not require any tunning parameters and 
the random number, this makes the proposed algorithm 
more robust in implementation. Moreover, the average 
efficiency of the proposed method is almost near to that 
of MBOA, which is 99.45% and the response is fast to the 
sudden load variations. When compared with ARMO [26], 
the proposed method has GMPP tracking capability, simple 
with high efficiency, more tracking speed, and less steady-
state oscillation with high reliability are shown in Table 5. 
The proposed BFT method is ideally suited to track the 
maximum power under PSC conditions. The performance 
of the proposed algorithm in terms of simulation results 
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of incremental conductance, PSO, and Jaya is explained 
clearly. Three patterns are reviewed for comparing the gen-
eration of current (I), voltage (V), and power (P) of all four 
algorithms on similar time measures, shown in Figs. 8, 9, 
and 10. Efficiency, tracking time, tracking power, and itera-
tions against many patterns of the peak of the PV array of 
the entire four algorithms have to be shown in Fig. 11. In 
the Incremental conductance, tracking speed is very slow 
and tracking accuracy may track local MPP, where efficiency 
is very low and oscillation is very high compared to the pro-
posed Bayesian fusion algorithm. When compared to PSO 
and Jaya algorithm, the iterations and dynamic oscillation 
are more compared to the proposed system, comparison 
of the proposed method with the existing method shown 
in Table 4. 

7 � Conclusion

In this paper, a Bayesian fusion technique-based control-
ler for solar PV systems was designed for improved global 
maximum power point tracking under partially shaded 
conditions. The proposed method is simple to imple-
ment, highly cost-effective, and could achieve quicker 
and highly effective tracking performance compared to 
PSO, Jaya, and incremental conductance-based track-
ing methods. BFT is established to assist the controller 
in overcoming the stagnancy at the local peak position 
under a partially shaded condition. BFT has the provision 
of a reverse probability that models uncertainty based on 
available observations. To reach the GMPP, the proposed 
technique depicts enhanced tracking time, reduces the 
number of iterations, and is more efficient compared to 
many existing state-of-the-art techniques. This research 
could be expanded to cover different aspects within 
renewable energy areas, such as using machine learning 
to make a quick distinction in temperature difference(s), 
enabling efficient control of different hybrid renewable 
energy sources like solar energy, wind energy, etc.
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