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Abstract 

The statistical theory of extremes has been widely used in scientific fields including 

hydrology, water resources engineering, environmental sciences, finance, public health and so 

on. As a foundation concept, the statistical methods based on the extreme value theory require 

the assumption of stationarity in extreme event time series. It means that the occurrence 

probability of extreme event is not expected to change over time. In recent years, changes in 

rainfall characteristics and hydrological cycle have been reported for many places of the 

world due to the change in global climate related to human activities. These changes propose 

that the assumption of stationarity in hydro-meteorological time series becomes doubtful and 

may not be suitable in engineering design applications. 

As the biggest economic city in the South of Vietnam, Ho Chi Minh City (HCMC) is 

an example of an emerging coastal megacity dressing the increases of exposure levels to 

climate risks. In HCMC, heavy rainfall, which is considered as a main cause of floods, 

witnessed an increase in frequency and magnitude during the last few decades. Although 

nonstationarity in extreme rainfall has been proved in many places of the world, research into 

nonstationarity feature in extreme rainfall in HCMC has not been paid attention thoroughly. 

The covariate Time is usually chosen in previous studies in the literature which aim to model 

nonstationary extreme rainfall. However, directly using time covariate based linear form in 

nonstationary modelling may create more bias. Further, it is documented that heavy rainfall in 

HCMC is influenced by the physical processes. Therefore, in this thesis, Multi-Objective 

Genetic Algorithm (MOGA) based method is used for modelling nonstationary extreme 

rainfall over HCMC. From the study results, it is observed that the MOGA based method can 

be used to develop less bias and good quality nonstationary models which can be used to 

model spatial variation of extreme rainfall over HCMC. 

Recently, human intervention and climate change have been suggested to be the causes 

of changes in extreme water level which impacts on the likelihood of flooding, especially in 

coastal areas. In many studies, extreme water level frequency analysis has been developed 

under nonstationary condition, in which the parameters of a given distribution vary with time 

or several climatological variables. However, the water level shows unique characteristic as 
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they are strongly impacted by local influences, therefore the covariates used for nonstationary 

extreme water level modelling should be chosen with respect to the area of interest. With the 

above reasons, it is important to consider local variables which have strong physical 

associations with the process of floods for studying nonstationary extreme water level. 

Therefore, in this thesis, four local covariates, i.e. rainfall, sea level, urbanization growth and 

outflows from upstream reservoirs are used to develop nonstationary extreme water level 

models. The results from this thesis indicate that the nonstationary approach using local 

covariates is suitable for modelling extreme water level for HCMC. Additionally, based on 

the best chosen statistical models, sea level and urbanization are found to be the significant 

influences on nonstationarity in extreme water level at all surveyed stations. Moreover, it 

could be found that the extreme water level values derived from the stationary models are 

underestimated relative to the best nonstationary models for all stations. 

Flood hazard maps provide essential information for flood risk management and 

mitigation purposes. Basically, the inputs for flood modelling used to create the flood hazard 

maps are based on the assumption of data stationarity for flood frequency analysis. However, 

the changes in the behavior of the climate system can lead to the nonstationarity in extreme 

events as well as flood series. Therefore, two flood sources, i.e. extreme rainfall and sea level 

are modelled under nonstationary condition before entering into the flood simulation model as 

initial inputs. MIKE FLOOD, which is a coupled hydrodynamic model, is used to simulate 

the flood regime. The coupled hydrodynamic model has been developed for cross-sections 

based on channel modelling with one-dimensional model and linking these floodplain 

modelling with two-dimensional model. The high-resolution topographical data derived from 

Light Detection and Ranging (LiDAR) data and flexible meshes generation are used as the 

input data for hydrodynamic model to simulate the flood regime for the study area. From the 

results, the spatial variation of flood hazards indicates that the regions located along both 

sides of riverbanks are expected to experience a significant increase in the area flooded. 

Besides, it is also noted that the floodplain extent is larger based on the assumption of 

nonstationarity. 

Univariate frequency analysis can be effective if the infrastructure design is based on a 

single flood variable. Otherwise, univariate frequency analysis may not provide the complete 

behavior of flood characteristics. Recently, multivariate frequency analysis has proven to be a 



v 

 

practical approach by researches, especially in flood frequency analysis. Till date, the use of 

nonstationary approach in flood frequency analysis could be found in many studies which 

mainly focused on a single random variable, but only a few studies available related to 

nonstationary multivariate frequency analysis. Therefore, a part of this thesis is to model the 

multivariate based on nonstationary copula approach for flood variables, i.e rainfall and water 

level. Copulas are applied to overcome the restriction of classical multivariate flood frequency 

analysis by choosing the marginal distribution from different types of the probability 

distribution function. Furthermore, the joint probability of rainfall and water level are 

constructed using different approaches, which provide more options in choosing appropriate 

data sample for analysis. From the results, it is noticed that the Generalized Extreme Value 

(GEV) distribution is suggested as the most appropriate marginal distribution for modeling 

the flood variables. The joint return periods of rainfall and water level obtained through the 

optimal copula and marginal distribution show the significant differences between the 

samples. It means that a reciprocal situation can be found, when a higher value of rainfall 

corresponds to a lower value of water level and vice versa. 

Overal, the findings of this thesis is that the nonstationary approach using local 

covariates is suitable for modelling extreme hydrologic water level for HCMC. Furthermore, 

it is observed that the MOGA based method can be used to develop less bias and good quality 

nonstationary models which can be used to model spatial variation of extreme rainfall over 

HCMC. In the flood hazard analysis, the result indicated that the regions located along both 

sides of riverbanks are expected to experience a significant increase in the area flooded. 

Besides, it is also noted that the floodplain extent is larger based on the assumption of 

nonstationarity. In addition, it is noticed that the GEV distribution is suggested as the most 

appropriate marginal distribution for modeling the flood variables in the multivariate flood 

frequency analysis. 
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Chapter 1 

Introduction 

 

 

 

 

1.1 Urban flood 

Floods could be considered as one of the most devastating natural disasters, impacting 

on the social economy, human life and natural environment. For the period of 1980 to 2009, 

floods were responsible for approximately 540,000 deaths, and have affected about 2.8 billion 

people across the world (Doocy et al., 2013). Flood exposure can be acute significantly in 

coastal cities, especially coastal cities in developing countries undergoing population, 

economic growth and urban expansion are experiencing more flooding (Hallegatte et al., 

2013, Nicholls et al., 2008, Lasage et al., 2014, Adikari et al., 2010). Globally, seventeenth 

out of the twenty most vulnerable cities in 2005 are from developing countries (Figure 1. 1) 

which might not possess the flood defense systems as good as the richer ones. 

Currently, urban flooding continues to be a problematic concern worldwide with 

complicated changes in frequency and magnitude of events due to both the natural processes 

and human activities (Birikundavyi et al., 2002, Ishak et al., 2013, Badrzadeh et al., 2015). 
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The increases in extreme events (e.g. heavy rainfall and coastal storm surges) and rapid 

urbanization have been widely recognized for their significant contribution in exacerbating 

urban flood (Badrzadeh et al., 2015, Biswas and Jayawardena, 2014, Bergstrom, 1976). 

Unfortunately, based on the recent flooding damages recorded in many places across the 

world, it seems likely that the increasing unpredictability of natural disasters and floods are 

now exceeding present-day design considerations (Perrin et al., 2003). 

 

Figure 1. 1: The twenty most vulnerable cities in 2005 according to the ratio of average 

annual losses (AAL) to the city’s gross domestic product (GDP) (Hallegatte et al., 2013) 

1.2 Extreme value theory 

Extreme value theory (EVT) is unique as a statistical tool since it develops techniques 

and models to describe the unusual rather than the usual (Coles, 2001). The distinguishing 

feature of extreme value analysis (EVA) is the ability to quantify the behavior of unusually 

large (or small) values even when those values are scarce. Particularly, EVA usually requires 
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levels of a process event that are more extreme than that have been already observed. For 

example, a dam is normally required to protect against all flood events that it is likely to 

experience within its lifespan of 100 years. Unfortunately, the observed flood data might only 

be available for a shorter period, say 30 years. Therefore, it seems impossible to estimate what 

floods might happen over the next 100 years when providing only 30 years of historical data. 

Fortunately, EVT provides a framework that enables to extrapolate data from historically 

observed levels to unobserved levels as such type (Coles, 2001, Mockler et al., 2016). EVT 

has already become one of the most important statistical disciplines for modelling extreme 

events over the last few decades. The applications of EVT have been found in various 

scientific fields including hydrology, environmental sciences, finance, public health and so 

on. 

It is a fact that the frequency analysis of extreme events (e.g. water level and rainfall) 

plays an essential role in engineering practice, especially in flood structure defense design or 

flood risk management. As a foundation concept, the statistical methods based on the extreme 

value theory require the assumption of stationarity in extreme event time series. It means that 

the occurrence probability of extreme event is not expected to change over time. Nevertheless, 

it is recently suggested by many scientists that stationarity may no longer be suitable in 

hydro-meteorological frequency analysis. 

1.3 Nonstationarity in extreme events 

In the most intuitive sense, stationary means that the statistical properties of a process 

do not change over time while nonstationary time series shows the trends, seasonal effects and 

other structures depend on time. In recent years, changes in rainfall characteristics and 

hydrological cycle have been reported for many places of the world due to the change in 

global climate related to human activities (Berg et al., 2013, Trenberth, 2011, Groisman et al., 

2005, Milly et al., 2008). These changes propose that the assumption of stationarity in hydro-

meteorological time series becomes doubtful (Sugahara et al., 2009, Khaliq et al., 2006). 

Also, it is stated that “Stationarity is dead” (Milly et al., 2008). 

In fact, the atmosphere and ocean have warmed over decades, and human intervention 

has been condemned to be partly responsible for global warming (Min et al., 2011, Petheram 

et al., 2012). For every 1
o
C warming, the atmosphere’s water holding capacity increases by 
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7%, which results in more extreme rainfall (Berg et al., 2013, Trenberth, 2011). Besides, the 

characteristics of rainfall such as intensity, frequency and duration are also changed due to the 

influence of global warming (Trenberth et al., 2003). In the other hand, the recent studies have 

reported that extreme rainfall is influenced by the physical processes such as the El Nino-

Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the Indian Ocean Dipole 

(IOD) or the Pacific Decadal Oscillation (PDO) (Villafuerte et al., 2015, Mondal and 

Mujumdar, 2015, Agilan and Umamahesh, 2015, Kenyon and Hegerl, 2010, Cai and Rensch, 

2012). That is a reason why the large-scale climate variables have been commonly used in 

frequency analysis as the factors causing nonstationarity in extreme rainfall. For example, 

Villafuerte et al. (2015) found that ENSO has a significant impact on the changes in extreme 

rainfall in the Philippines. Mondal and Mujumdar (2015) reported that global warming, local 

temperature changes and ENSO play a significant role in causing nonstationarity in rainfall 

extremes over India. 

Similar to extreme rainfall, low-flow patterns in many places are also proved to have 

nonstationary features in it. To be more specific, in urban areas, natural land surfaces have 

been replaced by artificial surfaces to meet the requirement of residential and industrial 

purposes, thereby results in increasing the magnitude and frequency of floods (Li et al., 2015). 

Prosdocimi et al. (2015) also indicated that increasing urban levels affect significantly on high 

flows. Also, recent studies demonstrate the impacts of meteorological patterns and catchment 

conditions on the low-flows series (Du et al., 2015, Shin and Kim, 2017). In addition to the 

effects of local processes, the global processes (e.g. ENSO, NAO, PDO and so on) also 

possibly contribute to the changes in extreme water level as well as flood series (Li et al., 

2015, Menéndez and Woodworth, 2010, López and Francés, 2013). To sum up, the stationary 

condition may no longer suitable, and the concept of nonstationarity should be used in the 

frequency analysis of extreme water level. 

1.4 Flood hazard mapping 

In last few decades, the effects of climatic changes and sea level rise have been putting 

an additional pressure which could increase flood vulnerability by effecting magnitude and 

frequency of floods (Bates et al., 2005, Nicholls and Cazenave, 2010, Purvis et al., 2008, 

Karamouz et al., 2017). In reducing damages and losses, flood hazard mapping becomes 
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priority information since it significantly contributes to the flood warning systems as well as 

the flood risk management scheme. However, assessing the flood risk at the river basin is not 

a simple task, because of the complex nature of flood generation caused by a combination of 

precipitation, river basin characteristics and human activities. Fortunately, the development of 

numerical flood modelling in recent years, namely the availability of advanced flood 

modelling and modern survey techniques for collection of high-quality input data for those 

models, allows to simulate flood behavior and to also study the characteristics of future floods 

(Alkema, 2007). 

Till now, a variety of models have been developed for providing flood information. A 

methodology that combines the advantageous features of one-dimensional (1D) and two-

dimensional (2D) hydraulic models and also the high-resolution of topographic data, are 

typically applied. Flood hazard maps show the intensity of floods and their associated 

exceedance probability (Di Baldassarre et al., 2010). One of the common approaches of flood 

inundation modelling is the use of deterministic based on single simulation (Ali, 2018). In the 

deterministic approach, three main issues in developing the flood hazard maps using 

hydrodynamic models such as the topography data resolution, the hydrodynamic model 

simulation and the design flood hydrograph estimation are commonly considered. 

In most of the flood hazard studies, flood depth is widely used to classify the hazard 

index (Sharif et al., 2016, Komi et al., 2017, Garrote et al., 2016, Alfieri et al., 2014). 

Nevertheless, flood hazard includes many elements such as the stability of human body, 

buildings and vehicles in floodwaters (Xia et al., 2011). Therefore, a single parameter cannot 

completely assess the potential damage of flood flows on people, buildings and vehicles. In 

previous studies, the combination of the flood depth (D) and velocity (V) has been used as a 

proxy for the force of the floodwaters to access the instability of human body, vehicles as well 

as the failure of buildings in floodwaters (Xia et al., 2011, Xia et al., 2014, Kreibich et al., 

2009). Therefore, it is suggested that the flood hazard maps can be classified using the 

combined flood hazard curves derived from the flood depth and velocity thresholds. 

1.5 Nonstationary multivariate frequency analysis 

It is a fact that univariate frequency analysis can be effective if the infrastructure 

design is based on a single flood variable. Otherwise, univariate frequency analysis may not 
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provide the complete behavior of flood characteristics (Chebana and Ouarda, 2011). Recently, 

multivariate frequency analysis has proven to be a practical approach by researches, 

especially in flood frequency analysis. 

Till date, the use of nonstationary approach in flood frequency analysis could be found 

in many studies which mainly focused on a single random variable, but only a few studies 

available related to nonstationary multivariate frequency analysis. However, most of these 

studies used time as the explanatory variable of the marginal distribution and dependence 

parameters. As a matter of fact, the change of paradigm from stationarity to nonstationarity 

can be affected by many causes (e.g. land use and land cover change or climate change). The 

effects of these factors may not exactly follow the passage of time. More importantly, the 

changes in the climate or watershed characteristics have affected not only in the 

nonstationarity of individual hydrological series but also in the dependence structure between 

the different hydrological series. Therefore, using time as a covariate in nonstationary 

modelling may suffer some limitations. The physical processes which reflect the physical 

relationship to hydro-meteorological events should be considered in nonstationary 

multivariate frequency analysis. 

1.6 Motivation for the study 

Floods could be considered as one of the most devastating natural disasters, impacting 

millions of people every year across the world (Jongman et al., 2012, Hallegatte et al., 2013, 

Lasage et al., 2014, Karamouz et al., 2017). Recently, human intervention and climate change 

have been suggested to be the causes of changes in extreme events such as rainfall and water 

level which impact on the likelihood of flooding, especially in coastal areas. Since flood 

exposure is continuously increasing in coastal zones, there is a growing demand of 

estimations of the magnitude and frequency of extreme events for the design of coastal 

defense structure as well as flood risk management purpose. Also, as is stated in the previous 

section, the nonstationary behavior in hydro-meteorological time series has recently been 

studied and developed. Therefore, it is necessary to take nonstationarity into account when 

modelling extreme events. 

One of the key factors in preventing and reducing flood damages and a number of lives 

lost is to provide flood risk assessment information through flood hazard maps. Basically, the 
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inputs for flood modelling used to create the flood hazard maps base on the assumption of 

data stationarity for flood frequency analysis. However, the changes in the behavior of the 

climate system can lead to the nonstationarity in flood series, hence stationary assumption 

may lead to incorrect flood risk information. Hence, a part of this thesis is dedicated to 

develop flood hazard maps under nonstationary condition. 

Coastal zones are commonly vulnerable to floods caused by the combination of 

multiple sources. In such areas, floods can result in massive damage when heavy rainfalls 

occur concurrently with coastal storm surges, thereby resulting in huge socio-economic losses 

(Karamouz et al., 2014, Hunt, 2005). For these regions, univariate frequency analysis may no 

longer be effective to describe floods that are characterized by several correlated variables. It 

is, therefore, necessary to consider the joint probability of flood-caused sources in the 

evaluation and management of flood risk. Therefore, part of this thesis is dedicated to model 

the joint probability using the copula-based bivariate frequency analysis, which considers the 

nonstationary behavior in the flood series. 

1.7 Objectives of the study 

With this background and appreciating the significance of the studies on extreme 

hydrologic events, flood hazard mapping and flood frequency analysis, the objectives of the 

study have been formulated. The objectives of this study are listed as follows: (i) Detecting 

and analyzing the trend in the extreme hydrologic variables; (ii) Modelling spatial variation of 

extreme precipitation for the study area under nonstationary condition; (iii) Modelling the 

flood frequency estimation under nonstationary condition; (iv) Developing inundation maps 

for study area considering the changes in environment; and (v) Modelling the multivariate 

based on nonstationary copula approach for flood variables. 

1.8 Scope of the Study 

It is a fact that, extreme rainfall occurrence is controlled by not only one but also many 

physical processes. Besides, extreme rainfall is recently proved to have nonstationary feature 

in time series and continuously result in severe floods. It is therefore suggested that extreme 

rainfall should be analyzed under nonstationary condition before using as initial information 

of infrastructure design purpose or making decision purpose. This study suggests an 
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appropriate method which considers the impact of physical processes to model extreme 

rainfall under nonstationary condition and investigates the spatial variation of extreme rainfall 

over a study area. 

Recently, human intervention and climate change have been suggested to be the causes 

of changes in extreme water level which impacts on the likelihood of flooding, especially in 

coastal areas. In many studies, extreme water level frequency analysis has been developed 

under nonstationary condition, in which the parameters of a given distribution vary with time 

or several climatological variables. However, incorporating all of the physical processes may 

increase the bias of nonstationary modelling. Moreover, water level shows unique 

characteristic as they are strongly impacted by local influences, therefore the covariates used 

for nonstationary extreme water level modelling should be chosen with respect to the area of 

interest. With the above reasons, it is important to consider local variables which have strong 

physical associations with the process of floods for studying nonstationary extreme water 

level. Thus, in this study, the most significant physical processes for modelling extreme water 

level are identified. 

As an important role of flood hazard mapping and floodplain extent in making 

decision, or establishing flood warning systems, it is suggested that the flood sources (e.g. 

rainfall, water level, upstream outflows and sea level rise) should be analysed under both 

stationary and nonstationary conditions before using as initial inputs of hydrological and 

hydrodynamic models since the global climate is continuously changing and unpredictable. 

The surveyed cross-sections and high-resolution topographical data are used as the input data 

for the coupled hydrodynamic model to simulate the flood regime. Furthermore, the multi-

scale mesh modelling approach, where fine resolution is applied for channel and raised 

embankment areas and coarser resolution is developed for uniform topographic height are 

used to develop the hydrodynamic model in this study. The coupled hydrodynamic model in 

which channel flow is linked to floodplain flow using lateral connection is used to improve 

accuracy the flood inundation results without the significant increasing computational 

requirement of the hydraulic model. The flood depth and velocity obtained from the 

hydrodynamic model are used to develop high-resolution flood hazard maps for the study 

area. 
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Single variable flood frequency analysis does not give a comprehensive understanding 

and assessment of the actual behavior of flood phenomena. This approach can lead to high 

uncertainty or failure of guidelines in water resources planning, operation and design of 

hydraulic structure and floodplain zoning. Therefore, it is essential to study the multivariate 

probability behavior of flood correlated variables, especially under the changing environment. 

Copulas are widely used for multivariate analysis in various fields. The main advantage of 

copulas is that the dependence structure is independently modeled with the marginal 

distribution that allows for multivariate distribution with different margins and full coverage 

of dependence structure. The essential step in the modelling processing copula is the selection 

of copula function, which is the best fit for the data sample. This study suggests that the 

copula function should be selected based on the dependence structure of the variable. 

Furthermore, the performances of Frank, Clayton, Gaussian and Plackett copulas for an 

asymptotic independent variable are also assessed. 

1.9 Outline of the thesis 

Literature review related to modelling nonstationary extreme events, nonstationary 

approach in multivariate frequency analysis, hydrological and hydraulic modelling and flood 

hazard mapping are briefly presented in Chapter 2. 

Chapter 3 presents the trends analysis in extreme rainfall for eighteen locations in the 

study area. Besides, the modelling the spatial variation of extreme precipitation under 

nonstationary condition is also introduced in this chapter. 

The most significant physical processes which cause the nonstationarity in extreme 

water level series are identified and presented in Chapter 4. Besides, the comparison of the 

estimated extreme water level corresponding to different return periods between the stationary 

and nonstationary cases is also presented. 

In Chapter 5, the analysis of hydro-meteorological events under the nonstationary 

condition which is used as the input of flood modelling is computed. The developed flood 

inundation model using the coupled 1D-2D hydrodynamic model with high-resolution 

topography data is also presented. Furthermore, the high-resolution flood hazard maps, which 
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are quantified by considering the flood depth and velocity in combination, are also established 

in this chapter. 

Chapter 6 presents the joint probability of correlated flood variables (i.e. water level 

and rainfall) using nonstationary copula-based bivariate frequency analysis. As such, the 

nonstationary behavior is modelled for dependence structure and marginal distributions by 

using local physical processes as covariates. The estimated joint return period of selected 

variables using the optimal copula and marginal distribution is introduced in this chapter. 

Chapter 7 presents the summary of the study, the conclusions arrived and some 

recommendation for further research activities based on the conclusions from study on 

modelling nonstationary extreme events. 

 



11 

 

Chapter 2  

Literature review 

 

 

 

 

2.1 Introduction 

In this chapter, literature related to modelling nonstationary extreme events, 

nonstationary multivariate frequency analysis, hydrological and hydraulic modelling and 

flood hazard mapping are briefly discussed. In detail, the nonstationarity in extreme events 

time series, i.e. rainfall and water level due to the changes in various physical processes which 

are diving extreme occurrences is discussed. Then, the studies related to nonstationary 

multivariate frequency analysis is presented. Hydrological and hydraulic modelling and the 

flood hazards estimation based on the deterministic approach are presented in the next two 

sections. 

The overview of the entire study is organized as follows. The trend of time series is 

firstly tested using statistical test. Then the nonstationary univariate and bivariate frequency 

anlsysis are developed for extreme hydrologic events. In the nonstationary univariate 

frequency analysis, extreme rainfall and water level are modeled using time and local physical 
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components as covariates. And then, the return level of these extreme hydrologic events are 

used as input 
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for hydrodynamic model to develop the high-resolution flood hazard for the study area. The 

marginal distributions and dependence structures are also modeled under nonstationary 

condition in the nonstationary bivariate frequency analysis part. The joint return period of  

each sample from the combination of these extreme hydrologic events are assessed. The 

general methodology flowchart is shown in Figure 2.1. 

 

Figure 2.1: Overal methodology in this study 

2.2 Modelling nonstationary extreme events 

Although the nonstationarity in the hydrological regime has been widely accepted in 

recent years by hydrologists, it is not easy to provide adequate evidence for supporting it due 
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to measurement bias, shortage in data and the high variability of hydrological processes in 

nature (Strupczewski et al., 2001). When having statistical evidence of nonstationarity in time 

series and having identified a time trend, it can be considered as the resultant of various 

external and internal long-lasting actions in a basin such as human activities, natural variation 

of climate and so on. Once the time series are nonstationary, modelling the statistical 

characteristic of the nonstationarity is needed. There are two main methods for hydro-

meteorological frequency analysis, namely non-parametric and parametric methods. While 

non-parametric methods show their limitations for hydraulic design due to the requirement of 

sample size, parametric methods have become widely used methods for fitting probability 

distribution to data since they can produce asymptotically efficient and unbiased estimated 

(Strupczewski et al., 2001). During the last few years, the nonstationarity in extreme hydro-

meteorological events is modelled by many researchers for different applications. In this sub-

section, such studies are briefly discussed. 

Sugahara et al. (2009) assessed the frequency of nonstationary extreme rainfall in the 

Sao Paulo City, Brazil, for the period of 1933- 2005. In that study, authors used the 

Generalized Pareto Distribution (GPD) to fit extreme rainfall series extracted using the peak 

over threshold (POT). Besides, different percentiles of rainfall are used to define a threshold 

for extracting POT series. Then, four GDP models, including one stationary and three 

nonstationary models, are constructed for each extracted time series. Three covariates, i.e. the 

annual cycle, linear trend and both annual cycle and linear trend, were used in constructing 

nonstationary models. In that study, the corrected version of Akaike Information Criterion 

(AICc) was used to identify the best model among the four models. The results from that 

study showed that the nonstationary model with a linear trend in the scale parameter is found 

to be the best model. In addition, 0.99 quantiles of daily rainfall amount have increased by 40 

mm between 1933 and 2005. 

Villafuerte et al. (2015) modeled the nonstationarity in extreme rainfall in the 

Philippines over the period 1911-2010. In particular, authors used GEV distribution and 

linked the location parameter of GEV distribution with two covariates (i.e. global mean 

temperature and ENSO). The best fitting model is selected using the Akaike Information 

Criterion (AIC) and the likelihood ratio test. The significant changes in extreme rainfall in the 

study area were found to be related to the near-surface global mean temperature and ENSO. 
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The results also imply a potential intensification and an increase in the occurrence of extreme 

rainfall in the future since the global mean temperature continues to rise. 

Agilan and Umamahesh (2016b) developed nonstationary rainfall Intensity- Duration- 

Frequency (IDF) curves for the Hyderabad City, India. In that study, authors modeled the 

character of rainfall using GEV distribution and allowed the parameters of GEV distribution 

to vary with five physical covariates (i.e. urbanization, ENSO, IOD, local temperature 

changes and global warming) and Time covariate. Authors used AIC and the likelihood ratio 

test to choose the best model. In addition, to develop the nonstationary rainfall IDF curves, 

authors used 95
th

 percentile of location and scale parameters values in historical observed. 

The results showed that urbanization and local temperature changes are the best covariates for 

short duration rainfall, and global processes are the best covariates for long duration rainfall. 

Moreover, the findings also indicated that the covariate Time never qualified as the best 

covariate. Similar to above discussed studies, there are many studies which model 

nonstationarity in extreme rainfall in different parts of the world include, but are not limited to 

Beguería et al. (2011), Villafuerte and Matsumoto (2015), Panagoulia et al. (2014), Agilan 

and Umamahesh (2015), Mondal and Mujumdar (2015),Wi et al. (2016), Yilmaz et al. (2016). 

Mudersbach and Jensen (2010) analyzed the frequency of nonstationary extreme water 

level of the German North Sea. First, authors used the non-parametric Mann-Kendall (M-K) 

test to detect significant trends in annual maximum water level and found that time series 

have a significant trend on the basis of the 95% significant level. Further, authors modeled the 

annual maximum water level series using GEV distribution. In details, authors allowed the 

location and scale parameter of GEV distribution to vary with time. The results showed that 

the nonstationary GEV approach is suitable for determining coastal design water level. 

Masina and Lamberti (2013) investigated the spatial and temporal changes in extreme 

water level in the North Adriatic based on historical data from the Trieste, Venice, Porto 

Corsini and Rimini tide gauges. In that study, authors modeled the extreme water level series 

using GEV distribution and allowed the distribution parameters to vary nonlinearly. In 

particular, the regional climate indices such as the NAO and Arctic Oscillation (AO) are used 

in analyzing the variability of the extreme water level along the Northern Adriatic coast. The 
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findings indicated that the AO is found to be more influential than NAO on extreme sea level 

in the study area. 

Razmi et al. (2017) modeled the nonstationary extreme water level in a coastal part of 

New York City for a period of 1920-2015. In that study, authors used annual maxima (AM) 

and POT approaches to extract data time series. The extracted time series were checked for 

potential trend and nonstationarity using statistical tests including M-K, Augmented Dickey-

Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) testes and were found to be 

significantly increasing. The GEV distribution and GPD distribution were applied as the 

probability distribution functions on the extracted data under nonstationary approach. Authors 

allowed the location and scale parameters to vary with time, while the shape parameter was 

considered to be constant. Ten stationary and nonstationary GEV models were fitted to the 

selected data. The results showed that the design values of extreme water level under 

nonstationary condition were significantly different from those obtained under the stationary 

assumption. Authors also recommended that nonstationary frequency analysis should be used 

to estimate values of hydrologic variables in different design periods. Similar efforts to model 

extreme water level under nonstationary condition include, but are not limited to Méndez et 

al. (2007), Menéndez and Woodworth (2010), Masina and Lamberti (2013), Skjong et al. 

(2013), Serafin and Ruggiero (2014). 

2.3 Nonstationary approach in multivariate frequency analysis 

Multivariate parametric distributions which have been extended from univariate 

distribution have been commonly used to model multivariate extreme events (e.g. flood, 

rainfall, wind and wave). Traditionally, multivariate frequency analysis is based on stationary 

approach. However, as mentioned earlier, due to the changing environments and human 

activities, the statistical characteristics of hydrological series in watersheds may be altered, 

hence leading to nonstationary feature in times series. Therefore, the use of nonstationary 

approach in multivariate frequency analysis has now become more and more essential for 

hydrology design under changing environments. 

Bender et al. (2014) used bivariate nonstationary approach to investigate the time-

dependent behavior of bivariate hydrological design parameters. In that study, the flood peak 

and volume time series of the Rhine River providing 191 years of data are used for analysis. 
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Authors used GEV distribution to model the marginals and Archimedean copulas to model 

the dependence structure between flood peak and flood volume. The authors found that the 

influence of trends in the marginal distribution parameters on the corresponding design values 

is substantially larger than trends in the dependence measure. 

Karamouz et al. (2017) suggested an integrated framework to delineate floodplain and 

assessment of flood damage for Manhattan in New York City by considering the joint effect 

of inland and coastal flooding. In that study, rainfall and water level data rea tested for 

frequency analysis considering data stationarity and nonstationarity. Authors used GEV 

distribution to obtain and compare extreme rainfall and water level magnitudes in different 

return periods. The bivariate Gaussian, t, Clayton and Gumbel copulas are used to model 

dependence structure between rainfall and water level in that study. A geographic information 

system (GIS)-based model, using depth-damage functions, land use data, digital elevation 

model (DEM) and raster maps, is used to estimate flood damage. The results from that study 

show that floodplain extent and estimation of flood damage are increased when data 

nonstationarity is considered. Similar efforts using nonstationary approach in multivariate 

frequency analysis include, but are not limited to Jiang et al. (2015), Sarhadi et al. (2016), 

Ahn and Palmer (2016). 

2.4 Hydrological and hydraulic modelling 

2.4.1 Hydrological model 

Hydrological modelling involves formulating the mathematical models to describe the 

hydrological processes such as surface flow, rainfall, infiltration, snowmelt, interception, 

evapotranspiration as well as their interactions. Hydrological modelling is considered as a 

valuable tool for researchers in the field of water resources planning and management. Till 

date, various hydrological models have been developed and applied in small, large or very 

complex basins across the world to access the effects of climate change on water resources in 

general and floods in particular. 

Rainfall-runoff models can be classified according to the physical processed involved 

into modelling as well as model input and parameters. It can be classified as lumped and 

distributed model based on the model parameters as a function of space and time. Model is 
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deterministic if a set of input values will always produce the same output values, while a 

model is stochastic if the input values need not produce the same output values. Besides, 

Models can also be classified as static and dynamic models based on time factors. As such, a 

static model excludes time while a dynamic model includes time. In a nutshell, the most 

popular and important classifications are empirical, conceptual and physically-based models 

(Devia et al., 2015). This sub-section is devoted to introduce briefly the characteristics of 

these three hydrological models. 

Empirical models (Metric models) are primarily based on observations and seek to 

characterize system response from those data, without considering the changes in the 

catchment. In details, the mathematical equations in these models are derived from concurrent 

input and output data and not from the physical processes within catchment. Unit hydrograph, 

statistical models (i.e. linear and non-linear regressions) and machine learning techniques (e.g. 

artificial neural network, fuzzy regression and k nearest neighbor) are commonly used in the 

empirical models. The machine learning techniques are widely used and proved to be 

appropriate tools for hydrological modelling, especially in stream-flow prediction. However, 

the models derived from the machine learning techniques seem not to add any scientific 

knowledge or improved understanding in the field of hydrology. 

Badrzadeh et al. (2015) developed models applied for real-time runoff forecasting at 

Casino station on Richmond River, Australia  based on four different approaches, namely 

traditional artificial neural network (ANN), adaptive neuro-fuzzy inference systems (ANFIS), 

wavelet neural networks (WNN) and hybrid ANFIS with multi-resolution analysis using 

wavelets (WNF). The results confirmed the robustness of hybrid wavelet-based models 

compared to ANN, adaptive neuro-fuzzy inference systems, wavelet neural networks. Yaseen 

et al. (2016) forecasted the monthly stream-flow discharge rate in the Tigris River, Irag using 

the extreme learning machine (ELM) method. The results from that study showed a good 

improvement using ELM model than support vector regression and generalized regression 

neural network in hydrological forecasting problems. Similar efforts using empirical models 

in hydrological events prediction include, but are not limited to Birikundavyi et al. (2002), 

Chang and Chang (2006), Biswas and Jayawardena (2014), Badrzadeh et al. (2015).  
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Conceptual models (Parameter models) mimic the hydrological processes by 

conceptualizing the catchment as a number of interconnected storages. Conceptual models 

also considered physical law but in profoundly simplified form. The mathematic functions are 

used in this method to describe the movement of water within the catchment. The model 

parameters are assessed not only from field data but also through calibration. Conceptual 

models are useful for various purposes and they can be used to infill the lost data or 

reconstruction of flow sequences. 

One of the well-known conceptual models is the Stanford Watershed Model (SWM) 

elaborated by Crawford and Linsley (1966). The Sacramento model (Bergstrom, 1976) and 

the GR4J model (Perrin et al., 2003) are other well-known conceptual rainfall-runoff models 

with different complexities. Vaze et al. (2011) investigated the implications of different 

rainfall inputs on the calibration and simulation of four conceptual models using data from 

240 catchments across southeast Australia. Four rainfall-runoff models including Simplified 

Hydrolog (SIMHYD) (Porter and McMahon, 1971), Sacramento, Soil Moisture Accounting 

and Routing Model ( SMARG) (Kachroo, 1992), and Identification of Unit Hydrographs and 

Component Flows from Rainfall, Evaporation and Streamflow Data (IHACRES) (Jakeman et 

al., 1990) were used. In that study, the results indicated that the better spatial rainfall 

representation gives better estimates of mean annual runoff for the SMARG, SIMHYD and 

the Sacramento models. Similar to that study, there are many studies which show that 

applications of conceptual models on river flow predictions. These include, but are not limited 

to Petheram et al. (2012), Shin et al. (2015), Mockler et al. (2016), Shin and Kim (2017), 

Onyutha (2019). 

Physically-based models are based on physical law and theoretical principles. These 

models are characterized by parameters derived by field measurements and have a direct 

physical significance. The models use a spatial discretization based on grid, hillslopes or 

some hydrologic response units. Therefore, these models can be highly appropriate when a 

high level of spatial discretization is needed in modelling. The physically-based models can 

have many advantages compared to other models because of the use of parameters having a 

physical interpretation. The limitation of these models is that large data needed, scale-related 

problems and overparameterization. 
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MIKE SHE is one of the best-known models, which was developed by a consortium of 

European institutes such as Danish Hydraulic Institute (DHI), British Institute of hydrology 

and French consulting agency SOGREAH. MIKE SHE is a fully distributed, physically-

based, distributed model capable of both single event and continuous simulations. The model 

can able to simulate hydrology in plot field and watershed scale The physical based on nature 

for the model lends inclusion of topography and watershed characteristics (i.e. soil, vegetation 

and weather parameter sets). Besides, physically-based models such as SWAT and the 

Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS) are also used 

universally to estimate runoff in both gauged and ungauged watersheds. SWAT is a complex 

physically-based, continuous model and was designed to forecast the impact of watershed 

management practices on hydrology, sediment, water quality and agriculture production on 

the gauge and ungauged basins. The model simulates a watershed by dividing it into sub-

basins which are further subdivided into Hydrologic Response Units (HRU). For each HRU in 

every sub-basin, SWAT simulates the soil water balances, groundwater flow, lateral flow, 

channel routing, evapotranspiration, crop growth and nutrient uptake, pond and wetland 

balances, soil pesticide degradation and in-stream transformation nutrients and pesticides. 

HEC-HMS model is a physically-based distributed model, designed to simulate the rainfall-

runoff process of dendritic watershed systems. This model has been widely used to simulate 

and forecast streamflows in humid, tropical, subtropical and arid watersheds. 

Golmohammadi et al. (2014) used MIKE SHE, Soil and Water Assessment Tool 

(SWAT) and Agricultural Policy Environment extender models to simulate the streamflows 

of the Canagagigue watershed in the Grand River basin, Canada. The results indicated that the 

mean daily and monthly flow simulated by MIKE SHE was much better than other models. 

Three hydrological models, i.e. NAM, SWAT and MIKE SHE, used to model the combined 

impact of climate change and land use change on hydrology for a catchment in Denmark in a 

study of Karlsson et al. (2016). The results indicated that substantial changes in discharge 

extreme due to the changing of land use. Similar efforts using physically-based models in 

simulating rainfall-runoff include, but are not limited to Larsen et al. (2014), Lin et al. (2015), 

Kabiri et al. (2015), Cibin et al. (2016), Teng et al. (2018). 
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2.4.2 Hydraulic model 

Hydraulic modelling of surface water is an important element for hydrological and 

geomorphological applications, especially in floodplain flow simulation. Hydraulic models 

can be classified by spatial dimension, namely one-dimensional (1D), two-dimensional (2D) 

and three-dimensional (3D) hydraulic models. The 1D models are the most widespread 

approach due to numerical stability and computational efficiency. The 1D models can solve 

the problems of flood flows in open channel with the assumption that the water level is 

confined within its riverbanks. In contrast, when water is over the riverbank, the 2D models 

may be the most appropriate solution for flood simulation. The 2D models can solve full 

shallow water equations which are able to simulate timing and duration of flooding with high 

accuracy. The water flows can be simulated by 3D models. However, 3D models are time-

consuming with relatively low efficiency compared to 1D and 2D models (Liu et al., 2015). 

HEC-RAS and MIKE 11 are two of the worldwide-known 1D hydraulic models. HEC-

RAS has been developed by the Hydrologic Engineering Centre (HEC) of United States 

Army Corps of Engineers (USACE), while MIKE 11 was developed by the Danish Hydraulic 

Institute. HEC-RAS can simulate steady and unsteady flows in the river channels and 

floodplains, while MIKE 11 is applied for unsteady flow simulation in rivers and floodplains. 

Other 1D models were developed for flow simulation including FLDWAV and FLUCOMP 

(Fread and Lewis, 1988, Ervine and MacLeod, 1999). Ahmed (2010) developed a watershed 

model using MIKE 11 for the Rideau Valley Watershed, Ontario. In that study, a detailed 

model including 532 km of rivers and lakes, 106 basins, 122 bridges and culverts and 20 

water control structures were developed. Authors used observed streamflow data for a period 

of 5 years for calibration and an additional 5 years of data for validation. The results showed 

that the developed model could simulate the hydrological processes with a reasonable to high 

degree of accuracy. Timbadiya et al. (2011) simulated unsteady flows of Tapi River from 

Ukai dam to Surat city by HEC-RAS model using field surveyed geometric data of the 

stream. In particular, authors used the flood flows of the year 1998, 2003 and 2006 for model 

simulation. The performance statistics from that study revealed that the simulated flood flows 

are in close agreement with the observed flows, therefore the model can be used for flood 

forecasting in lower Tapi River. Similar efforts using 1D models in flow simulation include, 
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but are not limited to Yoshida and Dittrich (2002), Zhang and Shen (2007), Mu and Zhang 

(2007), Paz et al. (2009), Timbadiya et al. (2014b). 

In recent years, a variety of 2D hydraulic models have been developed for providing 

flood information. Among these models, TELEMAC-2D, MIKE 21, TUFLOW, Delft3D-

FLOW and SOBEK are the most widespread models used for flood-prone areas modelling 

and mapping. Teng et al. (2015) developed inundation maps for the Murrumbidgee region and 

Macquarie-Castlereagh region, Australia. In details, authors used MIKE 21 hydraulic model 

and airborne laser altimetry digital elevation model to derive the floodplain storages. The 

results from MIKE 21 model (i.e. inundation extent, volume and water depth) showed a good 

agreement (above 85% agreement) with those obtained from high satellite imageries. Authors 

suggested that the model is suitable for practical floodplain inundation simulation as well as 

scenario modelling under both current and future climate conditions. Similar to that study, 

there are many studies which show that applications of 2D hydraulic models in flood 

inundation simulation. These include, but are not limited to Bates et al. (2005), Dutta et al. 

(2007), Abu-Aly et al. (2014), Karim et al. (2015), Costabile and Macchione (2015), Shen et 

al. (2015), Ticehurst et al. (2015). 

2.5 Flood hazard mapping 

In the last few decades, the effects of climatic change and sea level rise have been 

creating additional pressure which could increase flood vulnerability by affecting the 

magnitude and frequency of floods (Bates et al., 2005, Nicholls and Cazenave, 2010, Purvis et 

al., 2008, Karamouz et al., 2017). In terms of reducing damages and losses, flood hazard 

mapping has become a priority, since the information significantly contributes to flooding 

warning systems, as well as flood risk management schemes. 

There are two main approaches to develop the flood hazard maps, namely 

deterministic and probability approaches. The most common representation of simulation 

results is a deterministic flood inundation map based on a single simulation. Probabilistic 

flood mapping designed to incorporate uncertainty from input data and model parameters, 

represent spatial and temporal risk and present flood maps in terms of probabilities and 

percentages. 
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2.5.1 Probabilistic approach 

In the probabilistic approach, the process of floodplain mapping requires certain steps. 

These steps include: (i) the setting up of flood inundation models; (ii) sensitivity analysis of 

the model using historical flood data and (iii) ensemble simulation using an uncertainty 

design event. The probabilistic approach, which is based on ensemble simulation, does not 

necessarily require the use of physical behavior of the river and floodplain models. Di 

Baldassarre et al. (2010) compared two different methods (i.e. deterministic and probabilistic) 

for flood hazard mapping using 2D hydrodynamic model. Their study indicated that flood 

hazard mapping using probability approach seems to be more reliable. Kalyanapu et al. (2012) 

used Monte Carlo based 2D flood inundation framework for estimating flood hazard 

mapping. Their study showed that the probability-weighted flood risk approach provides 

improved accuracy of flood risk estimation. 

However, the main disadvantages of using physically-based 2D hydraulic models in 

probability frameworks, have been the simulation time required for each simulation. 

Simulating hundreds of flood events with these computational speeds would take large 

computer time making 2D model application counterproductive (Timbadiya et al., 2014a). A 

probability analysis with 2D hydraulic models has been limited to a smaller number of 

scenarios and smaller spatial domains. Besides, Aronica et al. (2012) suggested that flood 

inundation probability alone may be insensitive to discharge in relatively steep urban 

catchments and maybe a limited measure of flood hazard. Moreover, Thompson and Frazier 

(2014) supposed that a few probabilistic flood hazard maps were limited with respect to the 

hazard behavior they modelled. These models could also be computationally expensive and 

parameterization was difficult to compute for forces that were not fully predictable. 

2.5.2 Deterministic approach 

In a deterministic approach, floodplain maps consist of the construction of a 

physically-based fully 2D hydraulic model, calibration and validation of the model using 

historical flood event, using the best-fit statistical model to generate the design flood 

hydrograph and elaboration of the model results to generate flood hazard maps. Deterministic 

modelling tools have widely been applied because they are capable of translating changes in 

input parameters into a change in flood characteristics. 
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Flood inundation depth and inundation extent can be computed using computational 

models based on solutions of the full or approximate form of the shallow water equations. 2D 

hydrodynamic models are identified as the appropriate tools for simulating the flow of water 

over flat terrain and complex topography. 2D hydrodynamic model results provide further 

opportunity to develop more meaningful hazard maps by incorporating additional hazard 

parameters. 

The high-resolution flood hazard maps, which was developed using the advanced 

deterministic and probability approaches, can provide complete information about the 

physical hazard and reduce uncertainty found in traditional approaches. Masood and Takeuchi 

(2012) developed flood hazard maps using 1D hydrodynamic model for the city of Dhaka in 

Bangladesh. Their studies used a simple form of deterministic approach in establishing flood 

hazard maps. Mazzoleni et al. (2013) suggested a semi-probabilistic approach to develop the 

hazard map due to embankment-overtopping for the Po River basin. They used 1D and 2D 

hydrodynamic models to simulate the hydrodynamic regime (i.e. water depth and flow 

velocity) and the flood hazard maps were obtained using the hazard curves, which combined 

different flood parameters (i.e. flood extent, water depth and flow velocity). Similar efforts 

using deterministic approach combined to high-resolution data in flood and inundation 

mapping include, but are not limited to Moore (2011), Sampson et al. (2012), Shen et al. 

(2015), Papaioannou et al. (2016). 

2.6 Conclusions 

In this chapter, an overview of the literature on statistical modelling nonstationary 

extreme events, hydrological modelling, hydraulic modelling and flood hazard mapping are 

presented. It seems that the extreme events are increasing in frequency, duration and 

magnitude in many places across the world, and are likely to cause more intense and frequent 

floods. Therefore, modelling characteristic of extreme events is essential and has been paid 

more attention from many researchers over the last few years. 

It is the fact that the atmosphere and ocean have warmed over decades, and human 

intervention has been condemned to be partly responsible for global warming (Min et al., 

2011, Petheram et al., 2012). For every 1
o
C warming, the atmosphere’s water holding 

capacity increase by 7%, which results in more extreme rainfall (Berg et al., 2013, Trenberth, 
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2011). In addition, natural land surfaces have been replaced by artificial surfaces to meet the 

requirement of residential and industrial purposes, thereby results in increasing the magnitude 

and frequency of floods (Li et al., 2015). Prosdocimi et al. (2015) also indicated that the 

increases in urban levels affect significantly on high-flows. Also, recent studies demonstrate 

the impacts of meteorological patterns and catchment conditions on the low-flows series (Du 

et al., 2015, Shin and Kim, 2017). Moreover, the global processes (e.g. ENSO, NAO, PDO 

and so on) also possibly contribute to the changes in extreme events as well as flood series. 

However, incorporating all of physical processes may increase the bias of nonstationary 

extremes modelling. Hence, most of this thesis focuses on modelling extreme events 

concerning covariates of the nonstationary models. 

One of the measures to mitigate the flood damage is providing useful information 

through floodplain areas, the spatial distribution of flood hazard. Therefore, it is of great 

importance for understanding flood hazard at river scale. Flood modelling inputs that are used 

to create flood hazard maps are normally based on the assumption of data stationarity for 

flood frequency analysis. However, changes in the behavior of climate systems can lead to 

nonstationarity in flood series. Hence, a part of this thesis is dedicated to develop flood hazard 

maps for HCMC, Vietnam, under nonstationary condition. 

Coastal flooding is predicted to be increasing significantly in developing-country cities 

that are undergoing urban extension and economic growth. In such areas, floods can result in 

massive damage when heavy rainfalls occur concurrently with coastal storm surges, thereby 

resulting in huge socio-economic losses. Under the changing environments, multivariate flood 

frequency analysis, which carefully considered the nonstationary behavior in the flood series, 

can provide more information for flood mitigation. Hence, a part of this thesis focuses on a 

nonstationary bivariate approach and its application for HCMC where there has been 

increasing vulnerability to floods from multiple sources. 
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Chapter 3 

Modelling spatial variation of extreme precipitation over 

Ho Chi Minh City under nonstationary condition 

 

 

 

 

3.1 Introduction 

In recent years, changes in rainfall characteristics and hydrological cycle have been 

reported for many places of the world, especially increasing in rainfall extremes, due to the 

change in global climate related to human activities (Berg et al., 2013, Trenberth, 2011, 

Groisman et al., 2005, Milly et al., 2008). These changes propose that the assumption of 

stationarity in hydro-meteorological time series may be no longer suitable (Sugahara et al., 

2009, Khaliq et al., 2006). As such, the concept of nonstationary extreme value analysis has 

been well developed and used in modelling the behavior of rainfall extremes in many regions 

as Taiwan, China, West Central Florida, South Korea and Greece and so on (Chu et al., 2013, 

Feng et al., 2007, Nadarajah, 2005, Park et al., 2011, Kioutsioukis et al., 2010, Westra et al., 

2013).
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In other hand, the previous studies have reported that extreme rainfall is influenced by 

the physical processes such as the ENSO, NAO, IOD or PDO (Villafuerte et al., 2015, 

Mondal and Mujumdar, 2015, Agilan and Umamahesh, 2015, Kenyon and Hegerl, 2010, Cai 

and Rensch, 2012). That is a reason why the large-scale climate variables have been 

commonly used in frequency analysis as the factors causing nonstationarity in extreme 

rainfall. For example, Villafuerte et al. (2015) found that ENSO has a significant impact on 

the changes in extreme rainfall in the Philippines. Mondal and Mujumdar (2015) reported that 

global warming, local temperature changes and ENSO play a significant role in causing 

nonstationarity in rainfall extremes over India. Hence, the physical processes associated with 

extreme rainfall have a periodicity component in it (Agilan and Umamahesh, 2016a). 

Introducing periodicity feature in extreme rainfall frequency analysis is therefore needed, 

which could significantly impact on the chosen design values. 

Most of the studies in modelling extreme rainfall under nonstationary condition, the 

linear trend was commonly adopted to express the function of parameters of chosen 

distribution. In particular, Wi et al. (2016) constructed nonstationary GEV distribution and 

GPD models by introducing linear trend in location and scale parameters. Villafuerte et al. 

(2015) investigated the changes in extreme rainfall in the Philippines using GEV distribution 

with linear form of location parameter. Cheng and AghaKouchak (2014) used a nonstationary 

GEV distribution with linear trend in location parameter to develop the rainfall intensity-

duration-frequency curves. However, Agilan and Umamahesh (2016a) recommended that 

using time covariate based linear form could lead to increase the bias of nonstationary model. 

Um et al. (2017) suggested that nonlinear function could be a useful option when applied to 

the nonstationary frequency analysis of extreme rainfall. And the use of flexible nonlinear 

forms to model nonstationarity in extreme rainfall could be found in many researches 

(Sugahara et al., 2009, Panagoulia et al., 2014, Agilan and Umamahesh, 2016b, Yilmaz et al., 

2016). Thus, among many nonlinear forms that were established and used in the past, 

choosing an appropriate form for modelling nonstationary extreme rainfall mimicking all 

involved physical processes is essential.  

The main objective of this study is to model the spatial variation of extreme rainfall 

over HCMC, a flood-prone city in the South of Vietnam, using appropriate nonstationary 

GEV model. In order to address this objective, the observed data is firstly checked for the 
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possible trend by using the M-K test. The nonlinear trend in the extreme rainfall time series is 

developed by the use of MOGA. The best model is chosen by the AICc and the likelihood 

ratio test. Finally, the best nonstationary model is used to investigate the spatial variation of 

extreme rainfall corresponding to different return periods. 

3.2 Study area 

HCMC is located in the South of Vietnam and belongs to a transitional region between 

the southeastern and Mekong River Delta regions. This city is considered as a typical example 

of a vulnerable coastal city. Much of HCMC is located in low-lying lands of the Saigon-

Dongnai River basin that are prone to frequent flooding (World Bank, 2010, Lasage et al., 

2014). Total 154 of the city’s 322 communes and wards have a history of regular flooding, 

affecting 12 percent of the HCMC population (around 971,000 people) (ADB, 2010). 

Governed by a tropical monsoon climate, the annual average temperatures in HCMC range 

from 26
o
C to 27

o
C, and seasons are separated into wet and dry. Annual average rainfall is 

around 2,000 mm which mainly occurs in the wet season from May to October. The heavy 

rainfall in a short period is considered as the main cause of floods in rainy season (Le Vo, 

2007, ADB, 2010). 

In last few decades, beside huge challenges related to fast-growing population, 

urbanization and industrialization (Le Vo, 2007, World Bank, 2010), HCMC also has to cope 

with climate problems such as increases in frequency and magnitude of extreme rainfall 

events (ADB, 2010). In addition, the impacts of ENSO and PDO on rainfall regimes in 

Vietnam has been investigated by recent studies (Gobin et al., 2015, Yen et al., 2011, Chan 

and Zhou, 2005, Nguyen et al., 2014, Chen et al., 2013), which partly influence the extreme 

rainfall in HCMC. Since extreme rainfall continuously result in severe floods and inundations, 

it is necessary to detect the trends and develop the spatial variation of extreme rainfall over 

the entire HCMC, which can be used for the city government in urban planning or 

infrastructure design purpose. 

3.3 Data 

In this study, the daily rainfall data are carefully selected from the National Hydro–

Meteorological Service (NHMS) of Vietnam. The stations which had numerous days of 
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missing data in a year are excluded from this study. Only rain gauges with longer rainfall 

records are selected for this study because the length of data records has a significant 

influence on the accuracy of parameter estimation of the extreme value distribution (Yilmaz et 

al., 2016). In particular, the dataset contains 8 stations within HCMC and 10 stations outside 

HCMC (i.e. Binh Duong, Dong Nai, Ba Ria Vung Tau, Long An and Tay Ninh provinces) 

that have long-term precipitation observations and spread over the entire study area (Figure 3. 

1) is used. The average record length is 40 years. The details of selected stations, including 

name, location and the length of data, are shown in Table 3. 1. 

 

Figure 3. 1: Study area and locations of selected rainfall stations 
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Table 3. 1: Details of selected rain gauges for the study 

Region Station name 
Degrees, minutes and seconds 

Data period 
Longitude Latitude 

HCMC 

Cuchi 106
o
29'00" 10

o
58'00" 1980-2014 

Hocmon 106
o
36'00" 10

o
53'00" 1980-2014 

Thuduc 106
o
45'00" 10

o
50'00" 1980-2014 

Macdinhchi (MDC) 106
o
42'01" 10

o
47'02" 1980-2014 

Tansonnhat (TSN) 106
o
40'00" 10

o
49'00" 1956-2014 

Binhchanh 106
o
44'00" 10

o
44'00" 1980-2014 

Nhabe 106
o
47'00" 10

o
41'00" 1980-2014 

Cangio 106
o
59'00" 10

o
24'00" 1980-2014 

Binh Duong Sosao 106
o
37'07" 11

o
02'33" 1958-2013 

Tay Ninh Godau 106
o
12'00" 11

o
09'36" 1980-2014 

Dong Nai 

Bienhoa 106
o
49'30" 10

o
57'25" 1958-2015 

Longthanh 106
o
35'00" 11

o
49'00" 1980-2014 

Tuctrung 107
o
12'00" 11

o
05'00" 1978-2015 

Xuanloc 107
o
14'00" 10

o
56'00" 1949-2015 

Trian 107
o
02'22" 11

o
05'15" 1980-2014 

Long An 

Benluc 106
o
25'00" 10

o
38'00" 1980-2014 

Tanan 106
o
25'00" 10

o
32'00" 1980-2014 

Ba Ria Vung 

Tau 
Vungtau 107

o
05'00" 10

o
22'00" 1949-2015 
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Figure 3. 2a provides the average annual rainfall of all selected stations. It can be seen 

that there is a wide variation in the average annual rainfall amount between rain gauges. The 

stations located in Dong Nai province have the high values of annual rainfall, around 2,000 

mm (e.g. Longthanh, Trian, Tuctrung and Xuanloc). Whilst the stations located within HCMC 

have the lower values of annual rainfall, especially in Cangio station. Figure 3. 2b shows the 

maximum daily rainfall over the surveyed period of all stations. It is observed that the highest 

daily rainfall above 300 mm occurred in Xuanloc station, whereas the lowest value of 140 

mm occurred in Hocmon station. Figure 3. 3 shows the maximum annual daily rainfall time 

series with the linear trends of Tansonnhat (TSN) and Hocmon stations during the observed 

period. Through this figure, time variability of mean and standard deviation of the two series 

from neighboring stations can be seen. The dates of maximum daily rainfall of both these 

stations for a period of 1980-2014 are also provided in Figure A. 1. 
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(a) 

 

(b) 

Figure 3. 2: Diagram of a) average annual rainfall and b) maximum daily rainfall of all 

surveyed stations 
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Figure 3. 3: The maximum annual daily rainfall time series with the linear trends 

(dotted lines) of Tansonnhat (TSN) and Hocmon stations during the observed period 

3.4 Methodology 

The methodology of this study is organized as follows. The nonstationarity in rainfall 

time series is firstly detected using statistical test. Then the nonstationary GEV models are 

developed in which location parameter is expressed as a function of non-linear trend. The best 

model for each station could be found by the AICc and the likelihood ratio test. Based on the 

best models, the spatial variation of extreme rainfall over in HCMC and adjacent areas are 

mapped corresponding to the return periods of 5, 25 and 50 years. The methodology flowchart 

is shown in Figure 3. 4. 
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Figure 3. 4: Flowchart to determine the return levels 

3.4.1 Trend test 

Climatic extremes, particularly heavy rainfall events, have significantly increased in 

the past few decades due to human activities, urbanization and global climate change (Cheng 

and AghaKouchak, 2014, Berg et al., 2013, Trenberth, 2011, Min et al., 2011). Hence, the 

rainfall time series may have a nonstationary component. Normally, trend analysis is used to 

detect the nonstationarity signal in the rainfall time series. The M-K test (Mann, 1945, 

Kendall, 1962), a non-parametric statistical test, is widely used to analyze the monotonic 

trends in series of environmental data, climate data or hydrological data (Katz, 2013, Pohlert, 

2016). The resultant M-K test statistic (Tau) indicates how strong the trend is and whether it 

is increasing or decreasing. It has been used by a number of researchers to access significant 
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trends in the extreme precipitation data (Rakhecha and Soman, 1994, Guhathakurta et al., 

2011, Pingale et al., 2014, Zhang et al., 2008, Douglas and Fairbank, 2010, Westra et al., 

2013). In addition, Sen’s slope estimator is also used to validate the trend analysis in this 

study. 

3.4.2 GEV model development 

The asymptotic distribution of extreme rainfall series extracted using the annual 

maximum method is the GEV distribution and it has been previously used to model the 

extreme rainfall series under nonstationary condition (Agilan and Umamahesh, 2016a, Cheng 

et al., 2014, Villafuerte et al., 2015, Yilmaz et al., 2016). Therefore, in this study, the GEV 

distribution is used to model extreme rainfall series. Suppose x = x1, x2, x3, …, xn denote the 

annual maximum rainfall of n independent and identically distributed random variables. The 

cumulative distribution function of the GEV is given by Eq. (3.1) (Coles, 2001, Katz et al., 

2002): 

                      
    

 
  

    

 ,          
    

 
  > 0, σ > 0 (3.1) 

where µ, σ and ξ denote the location, scale and shape parameters. The location parameter (µ) 

specifies the center of the distribution, the scale parameter (σ) represents the size of deviations 

around the location parameter, and the shape parameter (ξ) governs the tail behavior of the 

GEV distribution. The GEV has three types of distribution determined by the sign of the 

shape parameter, i.e. Fréchet-type (ξ > 0), Weibull type (ξ < 0), and Gumbel type (ξ = 0). 

Nonstationary GEV model 

In the nonstationary case, the parameters of the models are allowed to vary with 

covariates (e.g. time or climate variables) (Coles, 2001). In this study, nonstationary models 

are developed considering time as covariate. In particular, the parameters of the GEV 

distribution are expressed as a function of time, known as µ(t), σ(t), ξ(t), and t = 1,2,…n. For 

this study, the nonstationarity did not consider in scale (σ) and shape parameter (ξ). Because 

the precise estimation of ξ is difficult, and it is unrealistic to assume it as a smooth function of 

time (Coles, 2001). Besides, modelling temporal changes in σ and ξ reliably requires long-

term observations which are usually unavailable for practical applications (Cheng et al., 
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2014). Hence, under nonstationary condition, the parameters of GEV model are expressed as 

a function of the covariate [f(t)] (Eq. 3.2): 

µ(t) = µ0 + µ1 × f (t);  σ(t) = σ;  ξ(t) = ξ   (3.2) 

where    denotes as the slope parameter and it represents the trend in the location parameter 

due to covariate f (t). 

3.4.3 Parameters estimation 

The method of maximum-likelihood has been widely used for estimating the 

parameters of nonstationary GEV model. The maximum-likelihood estimates of µ, σ and ξ are 

taken to be those values which maximize the likelihood function (Katz, 2013). For the 

nonstationary model, the likelihood function can be represented as a function of parameters 

(i.e. µ0, µ1, σ, ξ). Let x1, x2,…, xn be annual maximum precipitation series of n years. The log-

likelihood function can be written as follows: 

For ξ ≠ 0, 
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For ξ = 0, 

                   
              

 
  

           
              

 
   

    (3.4) 

For the purpose of optimization, minimization of negative log-likelihood (Katz, 2013) 

can be adopted to arrive at the estimates of parameters instead of maximizing log-likelihood. 

Therefore, minimization the negative log-likelihood function is used for parameters 

estimation in this study. 

As mentioned earlier, extreme rainfall events are affected by global climate change and 

many physical processes which have a different periodicity. Besides, directly using time 

covariate based linear form in nonstationary modelling may create more bias. Agilan and 

Umamahesh (2016a) suggested a non-linear form which is based on time and concerns the 



37 

 

incorporation of both long-term trend and periodicity concurrently. The covariate equation is 

given as follows (Agilan and Umamahesh, 2016a): 

                                      (3.5) 

where a1 is the variable that controls the magnitude of the long-term trend, and variables a2 

and a3 control the periodicity. The estimation of a1, a2 and a3 values is implemented by the 

MOGA. The genetic algorithm (GA), one of the efficient global search methods, is a 

computerized search and optimization algorithm based on the mechanics of natural genetics 

and natural selection. Unlike single objective problem, multi-objective problem based on 

multiple objectives functions is usually considered for estimating robust solution. In this 

study, MOGA is used to estimate the value of a1, a2 and a3. As such, AICc, a distance 

function based on correlation coefficient (r) and root mean square error (RMSE) are 

considered as three objective functions of the GA is used to identify the best solution. They 

are given equations (3.6), (3.7) and (3.8). The AICc will measure the bias of the nonstationary 

model while other two functions wil quantify the quality. Minimizing all three objective 

functions will produce optimal values of variables a1,a2 and a3. 

                (3.6)_ 

            =   
               

   

           
              

   

   00  (3.7) 

   
 

 
        

  
          (3.8) 

where, Ei and Mi are empirical and model quantile,    and    are the mean of empirical and 

model quantiles, respectively. 

The flowchart of optimizing the values of a1,a2 and a3 is presented in Figure 3. 5.The package 

nsga2R in R programming language is used to perform MOGA in this study. 
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Figure 3. 5: Flowchart for optimizing the values of a1,a2 and a3 (Agilan and 

Umamahesh, 2016a) 

3.4.4 Model selection 

Selection of the best model is a complex process and need to consider several different 
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underestimate or overestimate the probability of extreme rainfall. In this part of thesis, two 

measures are used to identify the best model for annual maximum extreme rainfall. Besides, 

the graphical approach (The probability-probability and quantile-quantile plots) is also used to 

check the quality of fitted model. 

The Akaike Information Criterion 

The AIC has been used commonly to select the best model among candidate models. 

Since there is a tendency for a model with more number of parameters to perform better. AIC 

is normally used as a performance measure when models with different number of parameters 

are being compared. In the comparison of AIC values between various models, the model 

with the lowest AIC value is considered to be the most efficient, and hence should be 

selected. However, Hurvich and Tsai (1995) showed that the AIC may have serious 

deficiencies, and they recommend a corrected version, namely AICc, which was developed 

for small samples to mitigate the bias and avoid overfitting the data. Thus, AICc is used for 

selecting the appropriate model in this study. The AICc is given by Eq. 3.9: 

                  
       

     
                                             (3.9) 

where n is the sample size, k is the number of parameters in a given model, -logL(Θ|X) is the 

minimized negative log-likelihood function. In addition, Burnham and Anderson (2004) 

suggested a corrected version of AICc, (denoted Δi ) which is used in this work for ranking 

and comparison among the GEV models. 

Δi = AICc – min(AICc)        (3.10) 

where min(AICc) is the smallest value of AICc among candidate models. The model having 

Δi = 0 is considered as the best model, whereas the model with larger Δi is less plausible. The 

model which has Δi ≤ 2 is considered reasonable selection for the given time series (Burnham 

and Anderson, 2004, Agilan and Umamahesh, 2016a). 

The likelihood ratio test 

The likelihood ratio test allows to determine the significance of the trend parameter in 

the nonstationary model by comparing negative log-likelihood of stationary and nonstationary 
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models (Katz, 2013). For example, if the stationary model and nonstationary model are 

denoted by (M0) and (M1) respectively, the negative log-likelihood of model (M0) and (M1) 

can be written: 

                              )      (3.11) 

                                          )    (3.12) 

Under null hypothesis of no trend (µ1 = 0), the likelihood ratio test statistic, based on 

twice the difference between l0(M0) and l1(M1) (Eqs. (3.11) and (3.12)), approximately 

follows Chi-square distribution with four degree of freedom [denoted by χ
2
 (4)] as the 

different between number of parameters in model (M0) and (M1) (Katz, 2013). The test is 

given by: 

2{l0(M0)–l1(M1)}~χ
2
 (4)        (3.13) 

The graphical diagnostics  

In order to check the quality of fitting for a chosen model, the graphical approach of 

the probability–probability plot (P-P) and quantile–quantile plot (Q-Q) can be used. To 

develop the P-P and Q-Q plots, it is necessary to transform the data into a standardized form 

(Coles, 2001). Here, the standard Gumbel distribution is used, and the transformed variable is 

defined by (Katz, 2013, Coles, 2001): 

    
 

  
         

     

  
                                                   (3.14) 

where   ,   ,    are estimated location, scale and shape parameter. Let    is order value of ɛ, the 

P-P plot points and the Q-Q plot points are given by Eq. (3.15) and Eq. (3.16) respectively 

(Coles, 2001) 
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3.4.5 Return level estimation 

Once the best model for the given extreme rainfall series is determined, the T-year 

return level zp corresponding to the T-year return period can be obtained. Here, the location 

parameter value in the nonstationary model varies over time. Some authors suggested the low-

risk approach for calculating location parameter by taking the 95 percentiles of the location 

parameter values in historical observation (Cheng and AghaKouchak, 2014, Agilan and 

Umamahesh, 2016a). However, in this study, two ways are used to compute return levels by 

using the mean value of location parameter for the years 1980-1984, say first five years, and 

the period of 2010-2014, say last five years. It is the fact that the rainfall process has 

periodicity as it is controlled by many physical processes (such as the ENSO cycle). As 

mentioned earlier, the rainfall of the study area is controlled by one of the dominant 

teleconnections, i.e. ENSO cycle. The El Nino and La Nina events (positive and negative 

phases of the ENSO cycle) will occur once in 2 to 5 years. In other words, the periodicity of 

the ENSO cycle is less than 5 years. Besides, a study related to nonstationarity analysis of 

Chawla and Mujumdar (2018) suggested that the hydrologic cycle in a river catchment can 

change every 5-year period. Consequently, the average of 5 years is calculated thereby the 

interannual variations in the rainfall can be eliminated. This concept allows comparing the 

difference between the first and the last periods of rainfall values at a certain station. 

Estimation of the T-year return level for the first (last) five-year period can be given by Eq. 

(3.17): 

      
          

  

  
            

 

 
  

   

                 

                       
 

 
                           

   (3.17) 

where      and      are the mean value of the location parameter of first five years and last five 

years respectively. By substituting the values of estimated parameters into Eq. (3.17), the 

estimates of the return levels can be obtained. 
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3.5 Results and discussions 

3.5.1 Trends in extreme rainfall 

As mentioned earlier, the M-K test is applied to indicate the increasing or decreasing 

trend in the rainfall data. In Table 3. 2, the results of the M-K test with all rain gauges are 

shown. The negative value of Tau indicates decreasing trend, in contrast, the positive value of 

Tau indicates increasing trend. The decreasing trend has been found in 8 stations, of which 2 

stations are inside HCMC (i.e. Thuduc and MDC) and 6 stations outside HCMC (i.e. Sosao, 

Godau, Tuctrung, Benluc, Tanan and Vungtau). The increasing trend is observed in the annual 

maximum precipitation series of remaining stations. 
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Table 3. 2: Results of M-K test for trend for all gauging stations 

Stations Tau value p-value Stations Tau value p-value 

Cuchi 0.08 0.504 Godau -0.15 0.227 

Hocmon 0.02 0.898 Bienhoa 0.07 0.497 

Thuduc -0.15 0.218 Longthanh 0.17 0.156 

MDC -0.22 0.080 Tuctrung -0.06 0.597 

TSN 0.15 0.110 Xuanloc 0.16 0.071 

Binhchanh 0.08 0.514 Trian 0.07 0.580 

Nhabe 0.24 0.057 Benluc -0.02 0.865 

Cangio 0.38 0.001 Tanan -0.05 0.660 

Sosao -0.12 0.221 Vungtau -0.03 0.727 

In addition, the p-value shown in Table 3. 2 points out that only 1 station in the 

Southeast side (i.e. Cangio) has a significant trend at 5% significant level. The trends in 

annual maximum series of Macdinhchi, Nhabe, Xuanloc stations are significant at 10% 

significance level. None of the test statistics of remaining stations is significant at 10% 

significant level. The results from Sen’s slope estimator (Table 3.3) is almost similar to M-K 

test. 

Table 3. 3: Results of Sen’s slope estimator for all gauging stations 

Stations Sen's slope value p-value Stations Sen's slope value p-value 

Cuchi 0.41 0.50 Godau -0.46 0.22 

Hocmon 0.08 0.89 Bienhoa 0.08 0.89 

Thuduc -0.77 0.22 Longthanh 0.78 0.16 

MDC -0.84 0.08 Tuctrung -0.56 0.15 

TSN -0.04 0.89 Xuanloc 0.03 0.98 

Binhchanh 0.29 0.51 Trian 0.25 0.58 

Nhabe 0.84 0.06 Benluc 0.06 0.89 

Cangio 2.16 0.001 Tanan -0.75 0.20 

Sosao 0.07 0.79 Vungtau -0.96 0.06 
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Some researchers found that the characteristic of rainfall is changing (Westra et al., 

2013, Min et al., 2011). It includes the increases in extreme rainfall in most places of the 

world, although only limited rain gauges indicate a statistically significant nonstationary 

behavior. Cheng and AghaKouchak (2014) also mentioned that ignoring the nonstationarity 

may lead to remarkable underestimation of extreme events, which may result in the increase 

in the risk of infrastructure design and construction. Besides, these authors also suggested that 

the nonstationary condition can be applied to all datasets regardless of their trend, avoiding a 

subjective significance measure. Hence, the nonstationary GEV model is constructed for all 

18 stations in this study. 

3.5.2 Nonstationary GEV model 

Before developing the stationary and nonstationary GEV models for extreme rainfall 

analysis, it is required to determine the value of variables a1, a2 and a3 in Eq. (3.5). Upon 

estimating the value of variables a1, a2 and a3 by MOGA, the stationary and nonstationary 

GEV models are constructed for each station. The values of a1, a2 and a3 are shown in Table 

3.4 for all stations. 

Table 3. 4: Estimated values of a1, a2 and a3 

Stations 

Variables 

Stations 

Variables 

a1 a2 a3 a1 a2 a3 

Cuchi -1.87 5.13 8.31 Godau -0.92 -5.94 6.04 

Hocmon -4.01 2.99 2.45 Bienhoa -0.75 7.24 9.83 

Thuduc -0.67 -5.24 6.44 Longthanh -1.87 6.76 1.40 

MDC -2.35 9.31 2.51 Tuctrung -10.00 7.61 0.43 

TSN 0.15 -0.48 9.18 Xuanloc -3.77 -4.92 8.30 

Binhchanh -8.32 -8.86 1.85 Trian -0.87 -9.13 8.00 

Nhabe -0.88 4.76 4.10 Benluc -10.00 -5.11 1.44 

Cangio -0.29 -6.14 6.16 Tanan -1.84 1.34 6.02 
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Sosao -9.28 7.03 7.83 Vungtau -1.56 6.50 3.49 

Table 3.5 shows the estimated parameters value of two models along with Δi value and 

likelihood ratio test results. The results show that the nonstationary GEV model is the best 

model for all stations. Further, as mentioned in the methodology section, the P-P and Q-Q 

plots are used to check the quality of a fitted model. The diagnostic plots of TSN station are 

shown in Figure 3.6. It is observed that the nonstationary model shows a better match (Figure 

3. 6b) than the stationary model (Figure 3. 6a). The P-P and Q-Q plots for Benluc, Cangio, 

Nhabe and Xuanloc which are shown in Figure A. 2, A. 3, A. 4 and A. 5 respectively, also 

indicate a good fit of extreme rainfall data by nonstationary GEV models.  
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Table 3. 5: Parameter estimates, likelihood ratio test results and Δi values 

Stations 

Parameters value of stationary 

model  

Parameters value of nonstationary 

model  

Likelihood 

ratio test 

µ σ ξ Δi  µ0 µ1 σ ξ Δi  p-value 

Cuchi 84.32 24.80 0.09 3.08  83.66 19.01 17.53 0.35 0.00  5.97E-03 

Hocmon 77.74 22.93 -0.22 3.09  79.55 13.93 18.78 -0.26 0.00  5.95E-03 

Thuduc 79.28 29.18 -0.07 4.62  79.92 20.23 20.75 0.11 0.00  2.85E-03 

MDC 92.32 23.15 -0.04 5.65  94.06 14.56 16.48 0.08 0.00  1.58E-03 

TSN 85.27 19.42 0.01 15.84  84.51 10.23 13.12 0.31 0.00  3.68E-05 

Binhchanh 71.07 21.97 0.07 5.07  70.20 14.06 14.36 0.39 0.00  2.33E-03 

Nhabe 77.27 23.80 0.06 0.32  74.72 -10.06 15.87 0.44 0.00  1.52E-02 

Cangio 41.67 30.25 0.17 11.29  45.14 -22.58 20.17 0.32 0.00  1.48E-04 

Sosao 87.66 25.67 0.01 9.47  87.45 -13.70 19.32 0.18 0.00  6.48E-04 

Godau 75.03 20.78 -0.13 18.72  73.47 -16.71 10.03 0.39 0.00  4.68E-06 

Bienhoa 86.02 20.34 0.10 10.76  86.66 -10.82 15.26 0.25 0.00  3.45E-04 

Longthanh 90.00 29.56 0.03 1.79  91.66 -16.51 23.20 0.11 0.00  1.05E-02 

Tuctrung 98.63 22.83 0.10 7.92  97.46 -12.01 14.99 0.40 0.00  8.04E-04 

Xuanloc 88.79 24.23 0.15 10.54  87.21 11.02 18.01 0.39 0.00  4.62E-04 

Trian 91.65 17.45 -0.02 1.82  91.98 -11.24 13.27 0.12 0.00  1.04E-02 

Benluc 88.88 24.63 0.12 5.65  87.55 -10.63 17.47 0.39 0.00  1.91E-03 

Tanan 78.28 24.12 0.08 4.52  76.30 -17.06 15.79 0.40 0.00  3.12E-03 

Vungtau 80.66 24.10 0.16 12.56  81.21 11.23 18.76 0.30 0.00  1.91E-04 
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(a) Stationary model 

 

(b) Nonstationary model 

Figure 3. 6: P-P and Q-Q plots of Tansonnhat (TSN) station 

3.5.3 Spatial variation of rainfall extremes 

Figure 3. 7 shows the annual maximum daily rainfall return levels corresponding to 5, 

25 and 50 years return periods over HCMC. In the nonstationary case, extreme rainfall values 
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of each station are estimated for the periods of first five years and last five years by using 

mean value of location parameter for the years of 1980-1984 and 2010-2014 respectively. 

Under the nonstationary condition, there is a large variation among rain gauges for the 

first five years’ period compared to current years (the last five years’ period). For instance, the 

estimated return levels corresponding to the 5-year return period vary between 55 to 210 mm 

per day for the first five years’ period, whereas those values for the last five years’ period are 

within range of 100-144 mm per day. 

Figure 3. 7 also shows that the differences in estimate rainfall values derived from 

nonstationary models are more significant in Tanan, Cangio, Thuduc, Godau when comparing 

first five years and last five years periods.  In more detail, the difference in extreme rainfall 

estimates between these periods reaches 66.5 mm for Tanan station corresponding to 50-year 

return period, while those values for Cangio, Godau and Thuduc are approximately 53 mm, 

37 mm and 20 mm respectively. Remaining stations do not show significant differences in 

estimated extreme rainfall between concerned periods. 

Besides, it can be seen that the values of the return levels based on the best 

nonstationary models have a significant difference compared with stationary models. In other 

word, the magnitudes of extreme rainfall under the stationary condition are much lower than 

those under the nonstationary condition for most of the stations, especially in the South and 

Northeast of the study area. Considering Tanan station as an example, the 50-year annual 

maximum daily rainfall values are 189 and 260 mm per day under stationary and 

nonstationary (for last five years’ period) conditions respectively. These results point out that 

the assumption of stationarity could lead to underestimation of extreme rainfall events, hence 

choosing the design value for hydraulic structures under stationary or nonstationary condition 

should be considered thoroughly. 



49 

 

 

Figure 3. 7: The variation of return levels for the return period of (a) 5-year; (b) 25-year; (c) 50-year
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3.6 Summary and conclusions 

Under the influence of global climate change and physical processes as ENSO and 

PDO, extreme rainfall in HCMC has been proven to increase in frequency and magnitude in 

the last few decades. Therefore, the reality of nonstationary extreme rainfall should be paid 

more attention in the design of water infrastructure and flood mitigation projects since the 

extreme value distribution models with constant parameters may no longer be suitable. This 

present paper is aimed to model the spatial variation of extreme precipitation at HCMC and 

adjacent areas under nonstationary condition. In particular, the trend in time series is firstly 

determined by the non-parametric method, known as M-K test, before constructing 

nonstationary GEV model. In order to introduce nonstationarity into extreme rainfall 

frequency analysis, a nonlinear trend representing the long-term trend and periodicity of 

physical processes is suggested for the location parameter, whereas the scale and shape 

parameters (σ and ξ) are kept constant. The best nonstationary model for each station is found 

based on AICc value and likelihood ratio test. Based on the results of M-K test, only one 

station has a significant trend at the 5% significant level, and three stations have significant 

trend at 10% significant level. The remaining stations do not show a significant trend in the 

annual maximum precipitation data. 

The findings indicate that the nonstationary model can be considered as the best model 

for modelling extreme rainfall when comparing to stationary model. The chosen 

nonstationary GEV model also has better goodness of fit performance. Moreover, the extreme 

rainfall estimates under the stationary condition are much lower than those under the 

nonstationary condition in a major part of study area. 

Regarding two concerned periods, first five years and last five years, it can be seen 

that the differences in estimate rainfall values derived from nonstationary models are 

significant, especially in Tanan, Cangio, Thuduc, Godau stations. 

In a nutshell, the present study is regarded as an important step towards flood 

mitigation projects and flood risk management in HCMC. Not only because it is the first of 

its kind, as authors’ knowledge, but also because of the proposed method, which considers 

the impact of global climate change and physical processes on extreme rainfall of study area. 

In other word, it is suggested that extreme rainfall should be analysed under both stationary 
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and nonstationary condition before using as initial inputs of hydrological and hydrodynamic 

models since the global climate is continuously changing and unpredictable. The findings are 

also able to provide useful information on nonstationary extreme rainfall of HCMC for 

decision makers in choosing appropriate design values. 
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Chapter 4  

Modelling nonstationary extreme water level considering 

local covariates 

 

 

 

 

4.1 Introduction 

Coastal cities are vulnerable to flood risk which has dramatically increased over the 

past decades, impacting millions of people every year across the world (Jongman et al., 2012, 

Hallegatte et al., 2013, Lasage et al., 2014). Especially, coastal cities in developing countries 

experiencing population, economic growth and urban expansion are experiencing more 

flooding (Hallegatte et al., 2013, Nicholls et al., 2008, Lasage et al., 2014, Adikari et al., 

2010). Since flood exposure is continuously increasing in coastal areas, there is a growing 

demand of estimations of the magnitude and frequency of extreme water level for the design 

of coastal defense structure as well as flood risk management purpose. 
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As is shown in many papers, understanding the stochastic behavior of extreme water 

level is an essential need for planning and design flood defense structures (Arns et al., 2013b, 

Katz, 2013). And the assessment of extreme water level commonly included some form of 

statistical analysis based on the extreme value theory (Arns et al., 2015, Bulteau et al., 2015, 

Mudersbach and Jensen, 2010). The extreme value analysis can be based both on AM which 

normally utilize the GEV distribution, and POT in which the GPD is commonly 

recommended (Katz, 2013). The AM approach consists of modelling a sequence of maximum 

values taken from blocks or periods of equal value such as maximum daily rainfall (Sugahara 

et al., 2009). However, it seems an inappropriate approach if other data on extremes are 

available or one block happens to contain more extreme events than others (Coles, 2001). 

Moreover, a small sample is a critical problem in parameter estimation (Sugahara et al., 

2009). In contrast, the POT approach is much more efficient as it considers all values 

exceeding a certain threshold, instead of simply choosing the maximum value. It means that a 

POT derived sample may not comprise only one or fixed number of events per year. Besides, 

since the water level objectives are normally expressed in term of certain critical thresholds 

(e.g. flood alarming rate), the POT method is apparently more suitable and better interpretable 

in the flood risks context. 

Traditionally, these statistical methods based on the extreme value theory require the 

assumption of stationarity in hydrologic time series. However, under climate variability 

related to human activities, the extreme events in many places are proved to have 

nonstationary features in it. That is why the stationary condition may no longer be suitable, 

and the concept of nonstationary extreme value analysis has been improved and is used more 

frequently in analysis of extreme water level in low-land areas (Skjong et al., 2013, Serafin 

and Ruggiero, 2014, Arns et al., 2015, Mudersbach and Jensen, 2010, Méndez et al., 2007, 

Menéndez and Woodworth, 2010). 

However, introducing nonstationarity into hydrologic frequency analysis should be 

performed with care, especially under environment changes due to the influences of climate 

change and human activities (Yan et al., 2017). The nonstationarity can be applied after 

careful testing using statistical or empirical analysis. Detection of trend is a critical issue as it 

has a significant impact on the nonstationary analysis results (Strupczewski et al., 2001, Šraj 
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et al., 2016). Once the trend in time series is detected, extreme water level can be modelled 

under nonstationary condition. 

In most of the studies focusing extreme water level analysis under nonstationary 

approach, the parameters of the chosen distribution functions are commonly dependent on 

time (Coles, 2001, Obeysekera and Park, 2012, Mudersbach and Jensen, 2010). Some other 

papers showed that the parameters could vary in both time and several climatological 

variables (Katz et al., 2002, Méndez et al., 2007, Coles, 2001, Menéndez and Woodworth, 

2010). Masina and Lamberti (2013) used regional climate indices such as the NAO and AO in 

analyzing the variability of the extreme water level along the Northern Adriatic coast. Serafin 

and Ruggiero (2014) conducted covariates analysis considering some climate indices, such as 

the Pacific/North American Pattern (PNA); the Southern Oscillation Index (SOI), and the 

Multivariate ENSO Index (MEI). Nevertheless, the water level shows unique characteristic as 

they are strongly impacted by local influences (Arns et al., 2013a). In other word, climate and 

catchment characteristics play an important role in generating water flows. Yan et al. (2017) 

suggested that the covariates selected for nonstationary modelling should have strong physical 

associations with the process of events (e.g. flood). Besides, the selected covariates for a 

particular area may have different effects in other geographical areas, hence covariates should 

be chosen with respect to the area of interest (Agilan and Umamahesh, 2016b). Therefore, 

instead of using global climatological variables, local variables which reflect the physical 

relationship to water level are used in this study area. 

As is stated in previous chapter, HCMC is an example of an emerging coastal 

megacity dressing the increases of exposure levels to climate risks (Storch and Downes, 

2011). HCMC appeared amongst the top ten most risk cities in term of exposure population 

(Lasage et al., 2014, Nicholls et al., 2008, Hallegatte et al., 2013, Storch and Downes, 2011, 

ADB, 2010, Dasgupta et al., 2011, World Bank, 2010). By 2070, this flood-prone city is 

expected to be in the top five cities in terms of population exposed to coastal flooding 

(Hanson et al., 2011, Storch and Downes, 2011). Although the city’s government has made a 

lot of efforts to solve flooding and inundation issues, the situation has not improved 

significantly. 
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Located in the downstream of the Saigon-Dongnai River system, HCMC’s topographic 

and geographic conditions make it extremely sensitive to various flood sources. Most of the 

studies showed that the common causes of flooding in this city are high tide, heavy rain, rapid 

urbanization growth and high discharge released from upstream reservoirs (Lasage et al., 

2014, Storch and Downes, 2011, ADB, 2010, World Bank, 2010). The impact of each 

component on flooding is clearly different, and the way in which the components combine to 

generate water extremes also differs for different parts of HCMC. 

There are several studies on flooding analysis in HCMC. However, the main limitation 

of previous studies is the focus on sea level and urbanization, hence normally ignoring the 

causes of rainfall and discharge released from the upstream. For example, Storch and Downes 

(2011) quantified current and future flood risks in HCMC by the combinations of urban 

development and sea level rise scenarios. Lasage et al. (2014) similarly focused on future 

scenarios concerning the sea level rise and urban growth, then suggested some different 

adaptive measures with benefit-cost analyses for only District 4 in HCMC. The Asian 

Development Bank (ADB, 2010) reported the systematical assessment climate-related risks at 

HCMC and suggested some adaptation plans for this city without analyzing the causes of 

floods thoroughly. Therefore, without a proper assessment of the causes of floods, quantifying 

inundation levels and managing these risks will be a problematic challenge for the local 

government once the flood risks in HCMC are increasing and are expected continuously. 

Till now, flooding has become one of the most pressing issues such as in HCMC, it is 

necessary to investigate the best information on extreme water level, which may effectively 

help for engineering design and flood risk-based management. However, most existing flood 

control structures in HCMC have been built based on the assumption of stationary flood 

frequency analysis which may no longer be suitable for design purpose. In addition, in the 

authors' knowledge, the application of statistical distribution in analysis of variability of 

extreme water level events under nonstationary condition and their linkage to the causes of 

floods in HCMC could not be found in any papers so far. 

The main objective of this study is to model the nonstationarity in the extreme water 

level in HCMC and identify the most significant physical processes which cause the 

nonstationarity in the series. Four local covariates (i.e. precipitation, mean sea level, 
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urbanization growth and outflows from upstream reservoirs) are considered due to their close 

relationship with extreme water level events. In addition, the stationary models for selected 

gauging stations are also constructed for comparison. The best model which comprises the 

most significant covariate(s) for each station is chosen based on the AICc and the likelihood 

ratio test. Finally, based on the best models, estimated extreme water level corresponding to 

different return periods are computed and compared with stationary case. 

4.2 Data 

4.2.1 Water level 

In this study, the hourly water level data from four sites located along Saigon-Dongnai 

River (i.e. Phuan, Nhabe, Bienhoa, and Thudaumot) are used in the present analysis. The 

Phuan and Nhabe stations are located in HCMC, while the Bienhoa and Thudaumot (TDM) 

stations belong to adjacent areas. These data were provided by the NHMS of Vietnam and are 

not publicly available. These time series span through 34 years from 01-01-1981 to 31-12-

2014 and there is no missing data. Figure 4. 1 shows HCMC and locations of these gauges. To 

give a visual change in extreme water level over time, the plots for annual maximum hourly 

water level over the period of 1981 to 2014 at four stations are shown in Figure 4. 2. It can be 

seen that the annual maximum hourly water level at all stations has positive trend toward the 

end of surveyed period. 
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Figure 4. 1: HCMC and locations of gauging stations 
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Figure 4. 2: Annual maximum hourly water level at (a) Phuan, (b) Nhabe, (c) Bienhoa, 

(d) TDM 

4.2.2 Data for covariates 

Precipitation 

HCMC has a tropical monsoon climate with explicit wet and dry season variations in 

rainfall. Annual average rainfall is around 2,000 mm which mainly occurs in the rainy season 
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from May to October (approximate 90% of yearly rainfall). Rainfall with more intensity is 

estimated to become a major threat to the city (ADB, 2010). 

Climate variability causes flood nonstationarity via the direct influence on 

precipitation patterns (Li et al., 2015). Besides, it is widely accepted by previous studies that 

using meteorological variables as covariates could be more effective and have clearer physical 

meaning for modelling nonstationary extreme hydrological events, especially for flood risk 

analysis (Du et al., 2015, Gilroy and McCuen, 2012, Šraj et al., 2016). For this reason, 

precipitation, a meteorological variable, is chosen as the first covariate in modelling extreme 

water level because of the close physical relationship between precipitation and water level. 

The daily precipitation data was provided by NHMS, and was chosen corresponding selected 

daily water level data. The selected gauge is the same or nearest corresponding to each water 

level station. Four selected rain gauges, i.e. Bienhoa, Hocmon, TSN, Cangio, with their 

locations are shown in Figure 4. 1. 

Sea level 

Major parts of HCMC are located in low-lying lands that are crossed by a complex 

network of canals and rivers connected to the South China Sea. This makes the city 

particularly prone to regular flooding and inundation linked to even just high tide (World 

Bank, 2010). In addition, the situation has become more serious since the mean sea level 

increased by 0.20 m during the past 50 years (Storch and Downes, 2011) and is expected to 

rise continuously in the future. Therefore, the choice of sea level as a covariate for extreme 

water level characteristics assessment is reasonable. The hourly observed sea level data is 

obtained from NHMS for the period of 1981 to 2014. This data is recorded at Vungtau station 

(107.05
o
E and 10.22

o
N), and it is not published.  

Urbanization 

In 2008, more than half of world’s population lived in urban areas (UN-Habitat, 2011), 

and it is estimated that the towns and cities will make up 80 percent of the human population 

(UNFPA, 2007). As a result of urbanization, the citizens are now facing numerous 

problematic environment challenges such as floods, landslides and other natural disasters 

(UN-Habitat, 2011, UNFPA, 2007). 
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In last few decades, HCMC has become the most populous settlement and an 

important port city for Southeast Asia. The population of HCMC was approximately 7.1 

million in 2010, that number is estimated to reach 10 million by 2020 (Labaeye et al., 2012, 

Storch and Downes, 2011). In order to meet the requirement of residential and industrial 

purposes, natural land surfaces have been replaced by artificial surfaces that may result in 

increasing the air temperature in urban areas (Shepherd et al., 2002) as well as magnitude and 

frequency of floods (Li et al., 2015). Moreover, the storage capacity of the city’s water 

network has also reduced by construction activities which are particularly changing the 

natural flow of rivers and narrowing floodplain areas. Consequently, HCMC already 

experiences climate-related environment hazards caused by unsustainable urban development 

(Gravert and Wiechmann, 2016). 

In this study, the built-up land of HCMC is determined from an urban structure type 

classification for the entire city, which is modeled from high-resolution Landsat remote 

sensing data captured from 1975 to 2016. The Landsat images used in this study were 

obtained from the U.S Geological Survey, with one Landsat 2 Multispectral Scanner (MSS) 

image, six Landsat 5 Thematic Mapper (TM) images and one Landsat 8 Operational Land 

Imager (OLI) image (Table 4.1). The Semi-Automatic Classification Plugin (Congedo, 2016) 

for QGIS (QGIS, 2015) is used for the purpose of the classification. In more detail, the Land 

Cover Signature Classification combined with the Spectral Angle Mapping algorithm are 

applied for classifying the satellite images. The land use land cover (LULC) maps created 

from satellite images are shown in Figure 4. 3. The LULC maps of 1988, 1995, 2004 and 

2016 are shown in this thesis. 
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Table 4. 1: The results from satellite image classification 

Satellite Date of capture Sensor Resolution (m) Built-up land (km
2
) 

Landsat 2 01-04-1975 MSS 60 37.34 

Landsat 5 30-01-1988 TM 30 43.82 

Landsat 5 02-02-1995 TM 30 60.38 

Landsat 5 21-06-1999 TM 30 144.08 

Landsat 5 11-12-2004 TM 30 179.17 

Landsat 5 03-02-2007 TM 30 217.24 

Landsat 5 04-02-2010 TM 30 238.88 

Landsat 8 28-02-2016 OLI 30 278.96 
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Figure 4. 3: LULC map of (a) 1988, (b) 1995, (c) 2004, (d) 2016 
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From the list of satellite images used and built-up land area extracted from the LULC 

maps (Table 4. 1), the growth of the urban area is modeled by a function as follows: 

                              (4.1) 

where B is built-up land (km
2
) and x is the corresponding year. In Eq. (4.1), the root mean 

square error (RMSE) of the model is 27.96 and the coefficient of determination (R
2
) is 0.924. 

Based on Eq. (4.1), the built-up area of HCMC is calculated for each year between 1975 and 

2016. 

Upstream flows 

The Saigon-Dongnai river, being one of the largest rivers in the south of Vietnam, 

plays an important role in social and economic development in HCMC. The upper watershed 

of the Saigon-Dongnai river which drains HCMC, is well-regulated with dams and reservoirs, 

i.e. the man-made Dautieng and Trian reservoirs. These reservoirs are the main source of 

energy and water supply for HCMC and surrounding areas (World Bank, 2010, Minh et al., 

2007). Outflows from these reservoirs are connected to urban canals and then empty into the 

South China Sea. 

In recent years, many authors have studied the possible effects of human activities on 

hydrological regimes in a certain river basin using statistical methods. To be more specific, 

they tried to develop nonstationary models to analyze flood characteristics in river basins 

considering the presence of reservoirs as a covariate (López and Francés, 2013, Zhang et al., 

2015, Machado et al., 2015). Here, the released discharge from Dautieng and Trian reservoirs 

are considered as covariates to analyze extreme water level of downstream in our study. The 

outflow from Trian hydropower connects directly to three water level locations, i.e. Bienhoa, 

Phuan and Nhabe. Meanwhile, the outflow starting from Dautieng reservoir has relative 

influences on TDM, Phuan and Nhabe water level stations. The daily released discharge data 

is provided from Trian Hydropower Joint Stock Company and Dautieng-Phuochoa Limited 

Company for the period of 01-01-1981 to 31-12-2014. 
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4.3 Methodology 

The flowchart of methodology used in this study is presented in Figure 4. 4. Firstly, 

extreme water level in four station are selected using peak over threshold technique. After 

that, nonstationarity in hourly water level time series identified using statistical test. Thirdly, 

based on four physical processes, i.e. rainfall, sea level, urbanization growth, outflows from 

upstream reservoirs and their combinations, the nonstationary models are developed. The 

stationary models are also developed for comparison purpose. And then, the best model which 

comprises the most significant covariate(s) for each selected location could be found based on 

the AICc and the likelihood ratio test. Finally, based on the best models, the extreme water 

level is estimated corresponding different return periods for all selected stations. 

 

Figure 4.4: Flowchart for methodology 
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PP and QQ plots)
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4.3.1 Trend detection 

Currently, the concept of nonstationarity in hydrological time series is widely accepted 

by researchers and the society as well (Strupczewski et al., 2001). Checking nonstationarity 

should be a prior consideration due to its essential role which has a significant impact on the 

nonstationary analysis. In this study, the M-K test with a significant level of 0.05 is used to 

identify the possible trend in the extreme water level. 

4.3.2 GPD models for extreme water level 

As mentioned earlier, POT approach is apparently more suitable and better 

interpretable than AM approach in modelling the extreme water level values. Therefore, POT 

approach is chosen in this study based on its advantage.  

The use of POT approach which is linked to the GPD is described as follow. Consider 

a sequence of n independent and identically distributed random variable X1, X2, …, Xn 

conditioned on X > u, where u is a given high threshold. For sufficient high threshold (u), the 

excess Yi = Xi – u, conditional on Xi > u, has an approximate GPD with cumulative 

distribution function (CDF) defined as (Coles, 2001) 

          
      

 

 
 

 
 

 
                 

      
  

 
                                       

     (4.2) 

where α and   are the scale and shape parameters in that order. The scale parameter (α) is a 

function of chosen threshold u. Here, the nonstationarity is introduced only in scale 

parameter. Whereas, the shape parameter is kept constant because precise estimation of   is 

difficult, and it is unrealistic to assume that it is a smooth function of time (Coles, 2001). 

In the nonstationary setting, the parameters are expressed as a function of covariate(s) 

in the general form 

log α(i) = αo + α1 R + α2 S + α3 U + α4 ResT + α5 ResD   (4.3) 
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 (i) =   

where i denotes the hour; and R, S, U, ResT, ResD denote physical covariates, i.e. Rainfall 

(R), Sea level (S), Urbanization (U), Upstream discharge released from Trian reservoir (ResT) 

and Upstream discharge released from Dautieng reservoir (ResD). In the stationary model, the 

values of covariates R, S, U, ResT, ResD equal zero. The logarithm in Eq. (4.3) is taken to 

ensure the positive values of the scale parameter. The slope parameter α1, α2, α3, α4 and α5 

represent the trend due to effects of covariates R, S, U, ResT, ResD in that order. Based on 

five covariates and their combinations, thirty-one nonstationary models are constructed for 

Phuan and Nhabe stations, while fifteen nonstationary models are constructed for Bienhoa and 

TDM stations (Table 4. 2). In addition, an individual covariate or a combination which has 

significant impacts on the extreme water level in the study area can be found out. 
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Table 4. 2: Detail of GPD models constructed for extreme water level at the selected locations 

Model Description Model Description 

Phuan and Nhabe stations 

GPD-0  ~ ,Y GP    GPD-16   
0 1 2 3

~ exp ,Y GP R S U        

GPD-1   
0 1

~ exp ,Y GP R    GPD-17   
0 1 2 3

~ exp ResT ,Y GP R S        

GPD-2   
0 1

~ exp ,Y GP S    GPD-18   
0 1 2 3

~ exp ResD ,Y GP R S        

GPD-3  
0 1

~ exp( ),Y GP U    GPD-19   
0 1 2 3

~ exp ResT ,Y GP R U        

GPD-4  
0 1

~ exp( ResT),Y GP     GPD-20   
0 1 2 3

~ exp ResD ,Y GP R U        

GPD-5  
0 1

~ exp( ResD),Y GP     GPD-21   
0 1 2 3

~ exp ResT ResD ,Y GP R        

GPD-6   
0 1 2

~ exp ,Y GP R S      GPD-22   
0 1 2 3

~ exp ResT ,Y GP S U        

GPD-7   
0 1 2

~ exp ,Y GP R U      GPD-23   
0 1 2 3

~ exp ResD ,Y GP S U        

GPD-8   
0 1 2

~ exp ResT ,Y GP R      GPD-24   
0 1 2 3

~ exp ResT ResD ,Y GP S        

GPD-9   
0 1 2

~ exp ResD ,Y GP R      GPD-25   
0 1 2 3

~ exp ResT ResD ,Y GP U        

GPD-10   
0 1 2

~ exp ,Y GP S U      GPD-26   
0 1 2 3 4

~ exp ResT ,Y GP R S U          

GPD-11   
0 1 2

~ exp ResT ,Y GP S      GPD-27   
0 1 2 3 4

~ exp ResD ,Y GP R S U          

GPD-12   
0 1 2

~ exp ResD ,Y GP S      GPD-28   
0 1 2 3 4

~ exp ResT ResD ,Y GP R S          

GPD-13   
0 1 2

~ exp ResT ,Y GP U      GPD-29   
0 1 2 3 4

~ exp ResT ResD ,Y GP R U          

GPD-14   
0 1 2

~ exp ResD ,Y GP U      GPD-30   
0 1 2 3 4

~ exp ,ResT ResDY GP S U          

GPD-15   
0 1 2

~ exp ResT ResD ,Y GP       GPD-31 
  

0 1 2 3 4 5
~ exp ResT ResD ,Y GP R S U          
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(Table 4. 2 continued) 

Model Description Model Description 

Bienhoa station 

GPD-0  ~ ,Y GP    GPD-8   
0 1 2

~ exp ,Y GP S U      

GPD-1   
0 1

~ exp ,Y GP R    GPD-9   
0 1 2

~ exp ResT ,Y GP S      

GPD-2   
0 1

~ exp ,Y GP S    GPD-10   
0 1 2

~ exp ResT ,Y GP U      

GPD-3  
0 1

~ exp( ),Y GP U    GPD-11   
0 1 2 3

~ exp ,Y GP R S U        

GPD-4  
0 1

~ exp( ResT),Y GP     GPD-12   
0 1 2 3

~ exp ResT ,Y GP R S        

GPD-5   
0 1 2

~ exp ,Y GP R S      GPD-13   
0 1 2 3

~ exp ResT ,Y GP R U        

GPD-6   
0 1 2

~ exp ,Y GP R U      GPD-14   
0 1 2 3

~ exp ResT ,Y GP S U        

GPD-7   
0 1 2

~ exp ResT ,Y GP R      GPD-15   
0 1 2 3 4

~ exp ResT ,Y GP R S U          

TDM station 

GPD-0  ~ ,Y GP    GPD-8   
0 1 2

~ exp ,Y GP S U      

GPD-1   
0 1

~ exp ,Y GP R    GPD-9   
0 1 2

~ exp ResD ,Y GP S      

GPD-2   
0 1

~ exp ,Y GP S    GPD-10   
0 1 2

~ exp ResD ,Y GP U      

GPD-3  
0 1

~ exp( ),Y GP U    GPD-11   
0 1 2 3

~ exp ,Y GP R S U        

GPD-4  
0 1

~ exp( ResD),Y GP     GPD-12   
0 1 2 3

~ exp ResD ,Y GP R S        

GPD-5   
0 1 2

~ exp ,Y GP R S      GPD-13   
0 1 2 3

~ exp ResD ,Y GP R U        
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GPD-6   
0 1 2

~ exp ,Y GP R U      GPD-14   
0 1 2 3

~ exp ResD ,Y GP S U        

GPD-7   
0 1 2

~ exp ResD ,Y GP R      GPD-15   
0 1 2 3 4

~ exp ResD ,Y GP R S U          
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The choice of an adequate threshold is a critical step for extreme value analysis in the 

POT method. If the selected threshold is too low, it is likely to violate the asymptotic basis of 

the model, leading to bias. If the threshold is too high, it will generate few excesses which 

may lead to high variance in the model estimate. Thus, threshold choice involves balancing 

bias and variance (Scarrott and MacDonald, 2012). Lang et al. (1999) mentioned about two 

different methods that can be adopted for threshold selection: the first one is based on 

physical criteria whereas the second one is based on mathematical and statistical 

considerations. The physical approach is usually used in river engineering in which the 

threshold is defined as the flood level for a specific river. Meanwhile, mathematical and 

statistic approaches are often recommended for coastal waters (Arns et al., 2013b). In this 

study, the thresholds for different water-level stations are chosen considering physical 

approach. For physical approach, the threshold values are selected based on flood alarming 

rate at each station. These rates are regulated by the Vietnam’s government (PMV, 2011).  

Water level series can exhibit dependencies, which are mostly related to the same 

meteorological forcing (Arns et al., 2013b). Therefore, in order to remove these temporal 

dependencies, some form of de-clustering is necessary (Coles, 2001). Firstly, for a given 

threshold u, a cluster is defined whenever there are consecutive exceedances of this threshold. 

These clusters are separated from each other by setting a minimum interval which is typically 

selected to be representative of storm duration on the site under study area (can be one or 

more days). Then the clustered extreme water level is de-clustered by retaining maximum 

values of each cluster. 

4.3.3 Estimation of parameters 

The method of maximum likelihood is used for estimating the parameters of GPD 

model in this study because it can be easily extended to the nonstationary case (Coles, 2001). 

Suppose that the values y1, y2, …, yn are the n excesses of a threshold u. The log-likelihood 

function is given by (Coles, 2001) as Eq. (4.4). 
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Katz (2013) suggested that minimization of negative log-likelihood, for the purpose of 

optimization, can be adopted to arrive at the estimates of parameters instead of maximization. 

Therefore, minimization the negative log-likelihood function is used for estimating 

parameters α, α0, α1, α2, α3, α4, α5 and   in this study. 

4.3.4 Model selection 

As discussed in Section 3.4.4, the best model among different candidate models can be 

selected by the AICc value. Upon identifying the best model among candidate models (Table 

4.2), the significance of the best model against the stationary model can be checked by the 

likelihood ratio test as shown in Section 3.4.4. Here, the AICc and the likelihood ratio test are 

used to identify the best model for extreme water level. 

4.3.5 Estimation of return levels 

The T-year return level is the level expected to be exceeded once every T years. 

Because scale parameter in nonstationary model varies with time, a low-risk approach (more 

conservative) is used by taking the 95 percentiles of the scale parameter values in historical 

observation (    = Q95(                )) to calculate the return level (Cheng et al., 2014). Let 

ny be the number of observations per year. The T-year return level (Coles, 2001) is given by 

     
  

    

  
        

  
               

                                   

       (4.5) 

for a given threshold u, where   = Pr {Y > u} is the rate of the data exceeding u. The rate 

parameter has a natural estimator simply given by the number of exceeding observations 

divided by the total number of observations. 
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4.4 Results and discussions 

4.4.1 Test of nonstationarity for extreme water level time series 

As mentioned earlier, test for nonstationarity is performed by checking the water level 

time series against a linear trend. The significance of this trend is investigated by M-K test 

and the result is shown in Table 4. 3. It can be seen that the M-K test shows a statistically 

significant increasing trend (p<< 0.05) of the water level time series for all selected stations. 

This also indicates the presence of nonstationarity in water level time series. Hence, the 

nonstationary condition is used to model extreme water level for all stations in this study. 

Table 4. 3: The results of M-K test for all considered stations. The p-value < 0.05 

indicates a significant trend 

Stations Tau p-value 

Phuan 0.174 2.22E-16 

Nhabe 0.104 0.00049 

Bienhoa 0.076 0.00049 

TDM 0.381 2.22E-16 

4.4.2 Threshold selection and de-clustering 

In this study, the value of threshold for each water level station is interpreted through 

physical approach based on flood alarming rate regulated by Vietnam’s government. As such, 

the water level of 1.6 m may be chosen as the threshold for Bienhoa station. However, due to 

the topography of Bienhoa station and adjacent areas, the water level of 1.5 m can inundate 

this area. The number of exceedances corresponding the threshold of 1.5 m is 181 compared 

with 102 for the threshold of 1.6 m. As reported by Bezak et al. (2014), the threshold value 

should be high enough, so that the model assumption is not violated, but the truncation level 

should be as low as possible, so that the highest number of exceedances is selected and more 

reliable parameter estimates can be made. Hence 1.5 m is selected as the threshold value for 

Bienhoa station. 
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Based on typical storm duration on the HCMC’s coast, a minimal duration of 3 days is 

chosen to ensure the independence between two peaks. As such, the extreme water level is 

automatically separated by 3 days. The threshold values and the number of exceedance after 

de-clustering are shown in Table 4. 4. The relationships between observed extreme water 

level after de-clustering and local covariates are represented by scatter plots. The scatter plots 

for Nhabe station are shown in Figure 4. 5. In Figure 4. 5, the correlation coefficients between 

extreme water level and covariates are 0.91, 0.50, 0.37, -0.31 and 0.12 for urbanization, sea 

level, rainfall, outflow from Trian reservoir and outflow from Dautieng reservoir respectively. 

The scatter plots for Phuan, Bienhoa and TDM are shown in Figure A. 6, A. 7 and A. 8 

respectively. It can be seen that the relations between extreme water level and local covariates 

are statistically significant for most cases. 

Table 4. 4: Threshold values for water level gauges 

Station 
Flood alarming rate 

(m) 

Selected threshold 

(m) 

Number of exceedance 

(after de-clustering) 

Phuan 1.30 1.30 147 

Nhabe 1.28 1.28 172 

Bienhoa 1.60 1.50 181 

TDM 1.10 1.10 150 
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Figure 4. 5: Scatter plots of observed de-clustered extreme water level against the 

covariate of (a) rainfall, (b) sea level, (c) outflows from Dautieng reservoir, (d) outflows from 

Trian reservoir and (e) urbanization for Nhabe station 
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4.4.3 The best models for selected locations 

The results for all GPD models fitted to the extreme water level data for the four 

locations are represented in Table 4. 5. It can be noted that the models with lower AICc 

should be preferred to models with higher AICc, and the best model is identified as the model 

which has Δi equal to zero. The GPD-26 is found to be the best model for water level 

extremes for Phuan station. It can be seen that the best model (GPD-26) is based on four 

covariates such as rainfall, sea level, urbanization and discharge released from Trian reservoir. 

Moreover, in Phuan station, the stationary model is placed 22nd, and the value of Δi between 

GPD-0 and GPD-26 is 126.1. 

For the Nhabe station, the GPD-22 can be considered as the best model for extreme 

water level. In GPD-22, the linear trend is represented in scale parameter with three covariates 

of sea level, urbanization and outflow from Trian reservoir. The stationary model is ranked 22 

among 32 models. 

Regarding Bienhoa station which is closest to Trian reservoir, the model (GPD-14) 

considering three covariates (i.e. sea level, urbanization and outflow from Trian reservoir) is 

found to be the best model based on Δi value. Including GPD-14, there are seven 

nonstationary models which are superior to GPD-0. It is also noted that apart from GPD-1, all 

those superior models are based on outflow released from Trian reservoir. 

The GPD-8 is found to be the best model for water level extremes for TDM station. 

This model included sea level and urbanization as covariates. And the value of Δi between 

GPD-0 and GPD-8 is 95.2. In nine nonstationary models which are superior to GPD-0, sea 

level and urbanization appear in six models as covariates.  
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Table 4. 5: The performance of GPD models for extreme water level for all stations 

Model AICc Δi Model AICc Δi Model AICc Δi 

Phuan station 

GPD-26 -486.5 0.0 GPD-28 -407.8 78.7 GPD-30 -394.9 91.6 

GPD-22 -479.8 6.7 GPD-17 -407.0 79.5 GPD-0 -360.4 126.1 

GPD-16 -479.5 7.1 GPD-12 -406.8 79.7 GPD-5 -359.7 126.8 

GPD-23 -473.2 13.3 GPD-25 -406.7 79.8 GPD-4 -359.7 126.9 

GPD-10 -466.1 20.5 GPD-2 -406.2 80.4 GPD-15 -359.1 127.4 

GPD-27 -415.1 71.4 GPD-29 -404.7 81.8 GPD-9 -358.1 128.5 

GPD-24 -409.2 77.3 GPD-3 -404.3 82.2 GPD-8 -357.7 128.8 

GPD-18 -408.7 77.9 GPD-7 -402.3 84.2 GPD-21 -357.0 129.5 

GPD-6 -408.4 78.1 GPD-13 -402.3 84.3 GPD-31 -317.8 168.7 

GPD-11 -408.0 78.5 GPD-19 -400.3 86.2 GPD-1 -268.9 217.6 

GPD-14 -407.9 78.6 GPD-20 -398.1 88.4 

   
Nhabe station 

GPD-22 -515.1 0.0 GPD-19 -441.7 73.4 GPD-21 -404.7 110.4 

GPD-30 -511.2 3.8 GPD-25 -441.5 73.6 GPD-5 -404.0 111.1 

GPD-10 -500.1 14.9 GPD-3 -432.1 82.9 GPD-1 -403.1 111.9 

GPD-16 -498.3 16.8 GPD-14 -430.3 84.8 GPD-9 -402.1 113.0 

GPD-23 -498.1 17.0 GPD-7 -430.0 85.0 GPD-27 -397.9 117.2 

GPD-11 -450.4 64.7 GPD-20 -428.1 86.9 GPD-18 -382.2 132.9 

GPD-12 -449.6 65.4 GPD-24 -414.8 100.3 GPD-26 -372.5 142.6 

GPD-2 -449.0 66.1 GPD-4 -407.3 107.8 GPD-17 -360.8 154.3 

GPD-6 -448.1 67.0 GPD-15 -406.8 108.3 GPD-29 -300.0 215.1 

GPD-31 -445.7 69.4 GPD-8 -405.2 109.9 GPD-28 -276.8 238.3 

GPD-13 -443.2 71.9 GPD-0 -404.9 110.1 
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Model AICc Δi Model AICc Δi Model AICc Δi 

Bienhoa station 

GPD-14 -417.6 0.0 GPD-1 -343.6 74.0 GPD-11 -340.6 77.1 

GPD-10 -411.6 6.1 GPD-0 -343.4 74.3 GPD-8 -339.8 77.8 

GPD-9 -386.0 31.7 GPD-6 -342.4 75.2 GPD-15 -294.2 123.5 

GPD-4 -384.9 32.8 GPD-3 -341.9 75.7 GPD-13 -289.4 128.2 

GPD-12 -383.8 33.8 GPD-5 -341.8 75.8 
   

GPD-7 -382.8 34.8 GPD-2 -341.3 76.3 

   
TDM station 

GPD-8 -519.1 0.0 GPD-9 -443.3 75.8 GPD-7 -421.3 97.8 

GPD-11 -517.6 1.5 GPD-5 -441.4 77.7 GPD-12 -415.5 103.6 

GPD-10 -482.5 36.6 GPD-15 -429.7 89.4 GPD-14 -414.1 105.0 

GPD-3 -476.0 43.1 GPD-0 -423.9 95.2 GPD-13 -394.0 125.1 

GPD-6 -473.9 45.3 GPD-4 -423.5 95.7 
   

GPD-2 -443.5 75.6 GPD-1 -421.9 97.2 

   
Note: Models are sorted based on Δi values. The bold letters indicate the best GPD models. 

To sum up, sea level and urbanization are attributed to be the most significant factors 

causing nonstationarity in time series since those factors appear in all the best nonstationary 

models. The outflow from Trian reservoir also has a significant impact on extreme water level 

in all water level stations located in its downstream. In contrast, the stationary model is not 

considerable in all cases. The summary of nonstationary analysis is given in Table 4. 6. 
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Table 4. 6: Summary of nonstationary analysis. The best nonstationary model for each 

station is shown based on the lowest value of AICc, along with the significant covariate(s) 

Station Best nonstationary model Significant covariate(s)  Stationary model 

Phuan GPD-26 Rainfall, sea level, urbanization and 

discharge released from Trian 

reservoir 

 24
th
 

Nhabe GPD-22 Sea level, urbanization and discharge 

released from Trian reservoir 

 22
nd

 

Bienhoa GPD-14 Sea level, urbanization and discharge 

released from Trian reservoir 

 8
th
 

TDM GPD-8 Sea level and urbanization  10
th
 

Maximum-likelihood estimates for scale and shape parameters in the stationary and 

best nonstationary models are shown in Table 4. 7. This table also demonstrates the likelihood 

ratio test result (p-value). Based on p-value, it is clear that the best nonstationary GPD models 

show superiority over the stationary GPD models for extreme water level of all surveyed 

locations. Besides, the residual probability and quantile plots for the best nonstationary GPD 

models for Phuan, Nhabe, Bienhoa and TDM stations are given in Figure 4. 6. It can be seen 

that the best nonstationary models show a satisfactory fitting the quantiles of extreme water 

level.
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Table 4. 7: Maximum likelihood estimates for parameters of the stationary and best nonstationary models for all stations (SE = standard 

error of the parameter estimation) 

Station 

Stationary model 
 

Best nonstationary model  
Likelihood 

ratio test 

α 

(SE) 

  

(SE) 

 Model α0 

(SE) 

α1 

(SE) 

α2 

(SE) 

α3 

(SE) 

α4 

(SE) 

  

(SE) 

 

p-value 

Phuan 0.1433 

(0.0153) 

-0.3041 

(0.0726) 

 GPD-26 -6.9909 

(0.1800) 

0.0017 

(2.0E-06) 

3.0355 

(0.1609) 

0.0073 

(0.0001) 

0.0002 

(0.0001) 

-0.8517 

(0.0811) 

 

3.8E-28 

Nhabe 0.1439 

(0.0140) 

-0.2706 

(0.0635) 

 GPD-22 -6.1185 

(0.1296) 

- 

2.5076 

(0.0724) 

0.0053 

(0.0001) 

0.0006 

(0.0001) 

-0.7457 

(0.0748) 

 

4.4E-25 

Bienhoa 0.1585 

(0.0154) 

-0.1237 

(0.0633) 

 GPD-14 -5.2591 

(0.3607) 

- 

0.9482 

(0.3067) 

0.0085 

(2.0E-06) 

0.0009 

(2.0E-06) 

-0.3083 

(0.0427) 

 

2.3E-17 

TDM 0.1053 

(0.0111) 

-0.1829 

(0.0685) 

 GPD-8 -6.5477 

(0.1857) 

- 

2.1684 

(0.1435) 

0.0095 

(2.0E-06) 

- 

-0.4940 

(0.0512) 

 

2.6E-22 
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Figure 4. 6: Residual probability and quantile plots for the best nonstationary model for (a) Phuan, (b) Nhabe, (c) Bienhoa and (d) TDM
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4.4.4 Extreme water level estimation for different return periods 

Figure 4. 7 shows the results from extreme water frequency analysis under stationary 

and nonstationary conditions for the return period of 100-year. The results for all stations 

show that the return levels from the best nonstationary model experience significant 

variability, whereas the stationary model remains unchanged. Taking TDM as an example, a 

clear increase in extreme water level can be seen over the period of 1981-2014 based on the 

best nonstationary model (GPD-8) with sea level and urbanization as covariates. Meanwhile 

the stationary model shows a fixed return level for the same period (Figure 4. 7d). In addition, 

it can be seen that the stationary model underestimates extreme water level compared to the 

nonstationary model in recent years (Figure 4. 7d), which could be the result of strong 

urbanization and rising sea level for this specific example. In a similar way for remaining 

stations, the 100-year extreme water level is underestimated under stationary condition in 

recent years, which is shown more apparent for Nhabe and Bienhoa stations (Figure 4. 7b and 

c). 
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Figure 4. 7: The time series of observed extreme water level after de-clustering (‘o’ 

markers) in the period 1981-2014, along with 100-year return levels obtained from the 

stationary model (dashed line) and the best nonstationary model (‘+’ markers) for (a) Phuan, 

(b) Nhabe, (c) Bienhoa and (d) TDM 

  



83 

 

In addition, a comparison of the return levels based on the best nonstationary model 

and common stationary model is shown in Figure 4. 8. It can be seen that the values of the 

return levels in the best nonstationary models (red curves) shown for all stations have a 

significant difference compared with stationary models (blue curves). In other word, the 

extreme water level derived from the stationary models are underestimating for all stations 

and for all return periods. 

In more detail, taking Phuan station as an example, the extreme water level for 1-year 

period under nonstationary condition (1.69 m) is corresponding to a 100-year return period 

under stationary condition. In case of Nhabe station, the estimated extreme water level of 100-

year return period under nonstationary and stationary conditions are 2.31 m and 1.71 m 

respectively. With sea level and urbanization as covariates, the estimated extreme water level 

corresponding to the 100-year return period is 1.9 m for TDM station. While the extreme 

water level in Bienhoa station is estimated under nonstationary condition to reach a value of 

3.23 m (T = 100). To sum up, the difference in extreme water level estimates between 

stationary and nonstationary models reaches 47% for Bienhoa station, while those values for 

the remaining stations of Nhabe, Phuan and TDM are 35%, 31% and 25% respectively. The 

result also emphasizes that choosing the design flood for hydraulic structures using stationary 

or nonstationary model should be considered thoroughly. 
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Figure 4. 8: Comparison of return levels between the stationary model and the best 

nonstationary model for all stations at extreme water level: (a) Phuan; (b) Nhabe; (c) Bienhoa; 

(d) TDM 

4.5 Summary and conclusions  

In this study, the modelling of nonstationary extreme water level in HCMC is carried 

out considering the influences of local physical processes, namely rainfall, sea level, 

urbanization and outflows from upstream reservoirs due to their relationship to water level. In 

particular, after detecting the trend in time series by using M-K test, ninety-two nonstationary 

GPD models (for four stations) are developed based on local physical covariates and their 

combinations. Besides, the stationary models are also constructed for comparison purpose of 

showing the dominance of nonstationarity in the extreme water level. The best nonstationary 

model for each station is found based on AICc value and likelihood ratio test. 
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The findings from the present study exhibit the significant impacts of local variables 

on the extreme water level in HCMC. Two factors, sea level and urbanization, are found to be 

associated with the nonstationarity in extreme water level since those covariates appear in all 

the best nonstationary models for all considered locations. The impact of outflow from Trian 

reservoir on extreme water level is more significant than outflow from Dautieng reservoir. In 

contrast, the stationary model is not superior in all selected locations.  

The results also indicate that there are significant differences in the estimated extreme 

water level between stationary and nonstationary cases. In particular, the extreme water level 

values derived from the stationary models are underestimated for all stations relative to the 

best nonstationary models. For instance, the extreme water level for 1-year period under 

nonstationary condition is corresponding to a 100-year return period under stationary 

condition. This implies that the existing structures based on stationary assumption of design 

flood could be likely unsuitable for current level of protection. 

Since flooding continues to be considered as a major threat to HCMC and the extreme 

water level is proved to have nonstationary feature in time series, it poses a huge challenge in 

term of prevention and mitigation infrastructure design. Our proposed method provides more 

possible choice for decision makers in selecting appropriate design flood for HCMC as well 

as for other areas belonging to the Saigon-Dongnai River basin. Although, this study 

successfully introduces nonstationarity in extreme water level by using local physical 

processes, it contains some limitations. For instance, the selection of the thresholds is 

objective, and only GPD is introduced to model the extreme water level. Therefore, it is 

suggested that more appropriate distributions can be considered for further studies. 
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Chapter 5  

High-resolution flood hazard mapping based on 

nonstationary frequency analysis 

 

 

 

 

5.1 Introduction 

Floods may be considered as among the most devastating natural disasters, impacting 

millions of people every year across the world (Jongman et al., 2012, Hallegatte et al., 2013, 

Lasage et al., 2014, Karamouz et al., 2017). In the last few decades, the effects of climatic 

change and sea level rise have been creating additional pressure which could increase flood 

vulnerability by effecting the magnitude and frequency of floods (Bates et al., 2005, Nicholls 

and Cazenave, 2010, Purvis et al., 2008, Karamouz et al., 2017). In terms of reducing 

damages and losses, flood hazard mapping has become a priority, since the information 

significantly contributes to flood warning systems, as well as flood risk management schemes. 

Traditionally, flood control structures have been built based on the assumption of data 

stationarity for flood frequency analysis (Mudersbach and Jensen, 2010, Salas and 
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Obeysekera, 2013, Katz, 2013, Šraj et al., 2016, Yilmaz et al., 2016). However, flood series, 

as recently suggested by many
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researchers, have a nonstationary nature due to climate variability (Milly et al., 2008, Gilroy 

and McCuen, 2012, Ishak et al., 2013). Thus stationary conditions may no longer be 

appropriate, and the concept of nonstationarity has been improved and used more frequently 

in analyzing flood events in lowland areas (Binh et al., 2018, López and Francés, 2013, Li et 

al., 2015, Prosdocimi et al., 2015, Šraj et al., 2016). As such, flood frequency analysis can be 

performed by taking nonstationarity into account. 

Unlike the stationary approach, nonstationary flood frequency analysis, the parameters 

of the chosen distribution functions are commonly expressed as a function of covariates. 

Previous studies have commonly used time as a covariate (Šraj et al., 2016, Salas and 

Obeysekera, 2013). Some other studies have shown that the parameters could vary with 

several climatological variables, such as ENSO, NAO, AO, PDO, North Pacific Oscillation 

(NPO), and human-induced environmental factors (López and Francés, 2013, Li et al., 2015, 

Zhang et al., 2015, Machado et al., 2015, Gilroy and McCuen, 2012). Overall, it can be 

suggested that the covariates selected for nonstationary modelling should have strong physical 

associations with the process of flood events and should be able to provide reliable future 

predictions (Agilan and Umamahesh, 2016b, Yan et al., 2017, Nash and Sutcliffe, 1970). 

As mentioned in two previous chapters, HCMC city has been facing climate problems 

from last few decades, such as increases in frequency and magnitude of extreme rainfall 

events (ADB, 2010), which have resulted in increasing severe floods and inundation. In 

addition, sea level rise is likely to have an important influence on the inland reach of tidal 

flooding, which is expected to be more severe in HCMC in the future (ADB, 2010, World 

Bank, 2010). However, in most of the studies on flood forecasting in HCMC, rainfall and sea 

level rise have not been analyzed and assessed thoroughly before being entered into flood 

simulation models as initial inputs. In other words, they did not use a nonstationary approach 

to modelling rainfall and sea level that significantly impact on flooding in HCMC. Therefore, 

without proper assessment of the causes of floods, it is difficult to investigate the best 

information on flood hazards, which becomes a problematic challenge for local governments 

as the flood risks in HCMC are increasing continuously. 

To date, various models have been developed for providing flood information. Among 

these, the 1D hydrodynamic model is the most widespread approach, due to its numerical 
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stability and computational efficiency (Papaioannou et al., 2016, Moore, 2011). However, it 

may not come up with an accurate result for a complex topography and depends largely on the 

correct placement of cross-sections (Moore, 2011). In contrast, the 2D hydrodynamic model 

can accurately model complex topography, geomorphological and sedimentological 

processes, and has become a standard in flood prediction (Shen et al., 2015, Timbadiya et al., 

2014a). Nevertheless, the 2D model is not computationally efficient and may not be suitable 

for a large area in case of urgent need (Timbadiya et al., 2014a). To combine the advantages 

of the 1D and 2D hydrodynamic models, an alternative approach has been developed by 

coupling these models. The coupled 1D-2D hydrodynamic models with their advantages have 

been widely applied in flood inundation mapping or flood risk estimation (Leandro et al., 

2009, Yin et al., 2013, Timbadiya et al., 2014a, Papaioannou et al., 2016).  

Furthermore, the flow structure is quite complex in populated areas; therefore, the flow 

simulation results greatly depend on accurate and high-resolution topographical data (Tsubaki 

and Fujita, 2010). Among new techniques developed in recent years, the LiDAR technique 

could improve the accuracy of the DEM for use as model input. The application of high-

resolution LiDAR-derived DEM data in flood and inundation simulation can be found in 

several papers (Moore, 2011, Sampson et al., 2012, Shen et al., 2015, Papaioannou et al., 

2016). 

The main objective of this study is to address the following issues: (i) modelling the 

extreme value frequency analysis (i.e. rainfall, sea level and discharge) under nonstationary 

conditions by considering global and local processes and their possible combinations as 

covariates; (ii) developing an appropriate flood simulation model based on a coupled 1D-2D 

hydrodynamic model with high-resolution topography data; (iii) establishing flood hazard 

maps for different scenarios in a selected area within HCMC, and classifying them based on a 

combination of flood depth and flood velocity; and (iv) comparison of floodplain extent 

between the stationary and the nonstationary cases. 

5.2 Study area and datasets 

As one of the largest river basins in the South of Vietnam, the Saigon-Dongnai River 

basin provides important sources of water for people in the catchment areas in general and 

HCMC in particular. The total catchment covers an area of 48,471 km
2
, with a mean water 
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discharge of approx. 47.065  10
9
 m

3
/year (Merz et al., 2011). The annual average rainfall is 

2,000 mm, and the rainy season (April–November) receives 85% of the total annual rainfall. 

The Saigon-Dongnai River system contains five main rivers: the Dongnai, Saigon, Be, 

Vamcodong and Vamcotay. The river system drains HCMC before emptying into the South 

China Sea. The hydrological regime of the Saigon-Dongnai River basin is influenced by a 

semi-diurnal tide, rainfall and outflows from upstream reservoirs. 

5.2.1 Rainfall, Sea level and Discharge 

To estimate the values of extreme rainfall, as well as sea level for different flood 

scenarios, rainfall and sea level data for the period 1980–2014 were collected from 22 rainfall 

stations which cover the entire catchment area, and one sea level station. In particular, the 

daily rainfall data was recorded at eight stations located within HCMC and 14 stations outside 

HCMC (belonging to Binh Duong, Dong Nai, Ba Ria Vung Tau, Long An and Tay Ninh 

provinces). The hourly observed sea level data was recorded at Vungtau station. These 

observed data were provided by the NHMS of Vietnam. The estimates of extreme rainfall and 

sea level for different return periods were used, respectively, as input data for the hydrological 

model and as downstream boundary conditions for the hydrodynamic model. The locations of 

the selected gauging stations are shown in Figure 5. 1. 
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Figure 5. 1: Location of the gauging stations in the Saigon-Dongnai River basin and 

the wider study area 

In addition, water discharge data from upstream areas was also collected and used in 

the frequency analysis. The daily water discharge data from Go Dau gauging station and three 

upstream reservoirs, i.e. Trian, Dautieng, Phuochoa, were provided by Trian Hydropower 

Joint Stock Company and Dautieng-Phuochoa Limited Company for the period 01-01-1980 to 

31-12-2014. For the Mochoa station, discharge data is not available; therefore, hourly water-
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level data provided by NHMS were used in this study. These data (i.e. water discharge and 

water level) were used for statistical analysis and to estimate return levels before entering into 

the hydrodynamic model as upstream boundary conditions. Figure 5. 2 shows the annual 

maximum daily discharge, annual maximum hourly water level and annual maximum daily 

rainfall at selected gauges in the Saigon-Dongnai River basin. 

 

Figure 5. 2: Boxplot of (a) annual maximum daily discharge, (b) annual maximum hourly 

water level and (c) annual maximum daily rainfall at selected gauges 
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5.2.2 Data for covariates  

In this study, five physical covariates, namely ENSO, PDO, local mean temperature, 

global warming and global mean sea level rise, were considered, to show the impacts of 

global and local processes on the nonstationarity of extreme events (i.e. rainfall and sea level). 

The ENSO cycle has had a significant impact at local and regional scales through 

teleconnections influencing the coupled ocean-atmosphere and land systems (Wang et al., 

2006). The influences of this pattern on extreme rainfall and flooding have also been indicated 

in many parts of the world (Gobin et al., 2016, Mondal and Mujumdar, 2015, Villafuerte et 

al., 2015, Agilan and Umamahesh, 2016b, Li et al., 2015, Ishak et al., 2013). In Vietnam, 

ENSO has proved to play an important role in climate and to contribute to the inter-annual 

variation in rainfall in many regions (Yen et al., 2011, Nguyen et al., 2014, Gobin et al., 

2016). In this study, monthly sea-surface temperature (SST) anomaly series over the Niňo 3.4 

region were used as ENSO indicator; this was obtained from the US National Oceanic and 

Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) (available 

at https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/). 

The PDO, a pattern of Pacific climate variability, has been shown to have significant 

climatic and environmental impacts across the Pacific Basin (Deng et al., 2013). Together 

with ENSO, PDO has been investigated by many authors and found to have an influence on 

the East Asian monsoon, as well as seasonal rainfall patterns (Chan and Zhou, 2005, Chen et 

al., 2013, Wu, 2013). The PDO index was also extracted from NOAA ESRL (available at 

https://www.esrl.noaa.gov/psd/data/climateindices/list/), and is used in the nonstationary 

frequency analysis as a covariate. 

Increases in extreme rainfall have been documented in many regions across the world 

(IPCC, 2012) and human-influenced global warming may be partly responsible (Min et al., 

2011). Kunkel et al. (2013) indicated that rising temperatures and subsequent rises in 

atmospheric moisture content might increase the probable maximum precipitation values. 

Nevertheless, the physical mechanisms linking local temperatures with rainfall may not be the 

same as those linking global warming to extreme rainfall changes (Trenberth, 2011, Mondal 

and Mujumdar, 2015). Therefore, global temperature and local temperatures are chosen as 

separate covariates for analyzing the extreme rainfall characteristic in this study. 

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/
https://www.esrl.noaa.gov/psd/data/climateindices/list/
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The HadCRUT4 annually observed global average surface air temperature anomaly 

series (available at http://www.metoffice.gov.uk/hadobs/hadcrut4/) with respect to the 1961–

1990 mean was used as an indicator of global warming. The yearly mean temperature data for 

the period 1980–2014 was provided by the Southern Institute for Water Resources Planning. 

This data was recorded at four stations located in HCMC: TSN, Bienhoa, Dongphu, Vungtau, 

and three in adjacent regions (Figure 5. 1). The yearly mean temperature anomaly series based 

on the 1980–2014 mean was calculated and considered as a covariate. 

In recent decades, extreme sea level has been found to have increased in various 

regions worldwide (Woodworth et al., 2011). Many studies have reported that long-term 

changes in extreme sea level are generally associated with corresponding increases in mean 

sea level (Lowe et al., 2010, Letetrel et al., 2010, Weisse et al., 2014, Feng and Tsimplis, 

2014). As a coastal city, HCMC is expected to be severely influenced by sea level rise. 

Hence, using global mean sea level as a covariate in extreme sea level statistical analysis is 

reasonable. The global mean sea level (GMSL) data used in this study is the up-to-date 

version of reconstructed GMSL from Church and White (2011) for the period 1980–2014. 

This data is available at http://www.cmar.csiro.au/sealevel/sl_data_cmar.html. 

5.2.3 Soil, land use and DEM 

LULC maps, soil maps and 1-m resolution LiDar data were used as input in the 

hydrological and hydrodynamic models. These data were provided by Ho Chi Minh City 

Department of Science and Technology and are not publicly available. The main types of soils 

in the Saigon-Dongnai River basin are alluvial, basalt, grey, black and soft soil. The main 

types of LULC in the study area are built-up areas, vegetation, bare soil and wetland. These 

data were used to estimate the parameters in the hydrological and hydrodynamic models. 

5.3 Methodology 

A flowchart of the proposed methodology for developing flood hazard maps is shown 

in Figure 5. 3. The flowchart consists of four main sections. Apart from data preparation 

mentioned in Section 5. 2, the three remaining sections are described as follows: 

http://www.metoffice.gov.uk/hadobs/hadcrut4/
http://www.cmar.csiro.au/sealevel/sl_data_cmar.html
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(i) Annual maximum daily rainfall and hourly sea level time series were used for 

frequency analysis. The GEV distribution was chosen with the assumption of 

stationarity and nonstationarity in the time series. The magnitude of extreme 

rainfall from the best GEV model was used as input data for the hydrological 

model and, similarly, extreme sea level was used as downstream boundary 

condition for the hydrodynamic model. Meanwhile, the values of upstream 

water level and discharge from the stationary GEV model were used as the 

upstream boundary conditions in the hydrodynamic model 

(ii) Estimation of runoff from sub-basins is based on the lumped conceptual 

rainfall-runoff model. The result from the rainfall–runoff model was used in 1D 

flow simulation 

(iii) Development of the 1D flow model, the 2D flow model and coupling of the 

1D-2D models for the river system and identification of the spatial variation of 

flood hazards corresponding to three flood scenarios derived from a 

combination of extreme rainfall, sea level and discharge for different return 

periods (i.e. 25-, 50- and 100-year). 
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Figure 5. 3: Proposed methodology flowchart for developing flood hazard maps 
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5.3.1 The GEV model 

In this study, the GEV distribution is used for the frequency analysis of extreme 

events. In the nonstationary setting, the parameters are expressed as a function of covariates in 

the general form: 

Case 1: For extreme rainfall analysis 

µ(t) = µ0 + µ1 C  
(5.1) 

σ(t) = exp (σ0 + σ1 C) 

Case 2: For extreme sea level analysis 

µ(t) = µ0 + µ1 C  
 (5.2) 

σ(t) = exp (σ0 + σ1 C)  

Case 3: For extreme discharge and water-level analysis 

µ(t) = µ0  
(5.3) 

σ(t) = σ0 

where C represents any physical covariate, i.e. the ENSO cycle (E), PDO cycle (P), mean 

temperature anomaly (GT), local temperature (LT) or global sea level rise (GS). In the 

stationary model (GEV-0), the values of C equal zero. The exponential in Eqs. (5.1) and (5.2) 

is taken to ensure positive values of the scale parameter. Based on four covariates and their 

combinations, 25 nonstationary models were constructed for each rain gauge in the extreme 

rainfall statistical analysis (Table A. 1). For extreme sea level analysis 13 nonstationary 

models were constructed based on three covariates and their combinations (for only Vungtau 

station) (details provided in Table A. 2). Based on these models, individual covariates or 

combinations that had significant impacts on the extreme rainfall and extreme sea level in the 

study area were derived. In the case of extreme discharge and extreme water level from 

upstream, only the stationary condition was used for statistical analysis in this study. 

The distribution parameters are estimated by maximum likelihood method. The AICc 

is used to identify the best fitting distribution for rainfall and sea level. Once the best model 

for extreme rainfall (or water level or discharge) is determined, the T-year return level zT 
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corresponding to the T-year return period can be obtained. Unlike in the stationary model, the 

location and scale parameters of the nonstationary model vary over time. Here, a low-risk 

approach (more conservative) suggested by Cheng et al. (2014) is used, by taking the 95th 

percentiles of μ(t) and σ(t) in historical observations to calculate return level in this study, as 

follows: 

  95 = Q95(  t1,   t2, …,   tn)        (5.4) 

  95 = Q95( t1,  t2, …,  tn)        (5.5) 

Estimation of the T-year return level can be given by (Coles, 2001) as Eq. (5.6): 

     
    

  

  
            

 

 
  

   

              

                 
 

 
                           

      (5.6) 

By substituting the values of estimated parameters into Eq. (5.6), the estimates of the 

return levels can be obtained. 

5.3.2 Hydrological model  

The lumped conceptual rainfall-runoff model is developed by conceptualizing the 

catchment as a number of interconnected storages, with a set of mathematical equations used 

to describe the process of the water flow lumped over them (Chiew, 2010). Due to its 

simplicity, the lumped conceptual rainfall-runoff model has been widely used in previous 

studies to mimic hydrological processes in catchments (Madsen, 2000, Brirhet and 

Benaabidate, 2016, Anh et al., 2008). In this study, to estimate the generated runoff in the 

whole Saigon-Dongnai River basin, it was divided into 216 sub-basins based on land 

topography. With 22 rain gauges scattered throughout the sub-basins, the Thiessen polygons 

method was used as an interpolation method to calculate the average depth of rainfall on the 

area of these sub-basins. The storm runoff was estimated by the Soil Conservation Service 

(SCS) method (Hjelmfelt Jr, 1991) which is available in the MIKE 11 Unit Hydrograph 

Model (UHM) developed by the Danish Hydraulic Institute (DHI, 2003). The MIKE 11 UHM 

is a lumped conceptual rainfall-runoff model that simulates the runoff from a single rainstorm 

by using the unit hydrograph technique. 
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The SCS loss method is used to estimated the losses of model. Analysis of storm event 

rainfall and runoff indicates that there is a threhold which must be exceeded before runoff 

occurs. It is expresses by Eq. (5.7). 

 

 
 

 

   
                                                         (5.7) 

where F is actual retention after runoff begins (mm), S is watershed storage (mm), Q is actual 

direct runoff (mm), P is total rainfall (mm) and I is initial abstraction (mm). 

The SCS dimensionless unit hydrograph is used to transform the excess precipitation 

into a flow hydrograph at the outlet of each basin. The lag time (Tlag) is the main parameter 

for this method. Lag time is the time difference between the centroid of rainfall excess and the 

centroid of the Direct Runoff Hydrograph (DRH). Lag time can be estimated from the 

watershed characteristics using Curve Number (CN) by the standard SCS formula and it is 

given by Eq. (5. 8). 

      
                              

               (5.8) 

where, Tlag is the catchment lag time in hours, L is the hydraulic length measured along the 

main river in km and Y is the average catchment slope in percent. 

The model runs on 24-h rainfall records and potential evaporation. For the flood 

scenarios, once the extreme rainfall is calculated through the best (non)stationary model for 

each station, this value is assumed to be uniformly distributed and used as input data for the 

rainfall-runoff model. The output from the rainfall-runoff model can be used as lateral inflow 

for the 1D hydrodynamic model. 

5.3.3 Hydrodynamic model  

1D-2D models are dynamiclly linked in a package called MIKE-FLOOD. The model 

was developed by the Danish Hydraulic Institute (DHI, 2007). The 1D-2D coupled technique 

is suitable becauce the study area is reprensented by complex floodplains and river channel. 

MIKE 11 and MIKE 21 are coupled through of links. There are several type of link can be 

used in numerous situations. A lateral link is one of the most link which widely used in flood 
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modelling. Schematisation of lateral links is illustarted in Figure 5.4. It allows a string of 

MIKE 21 elements to be laterally linked to a given reach in MIKE 11, either a section of a 

branch or entire branch. Flow through the lateral link is calculated using a structure equation. 

This type of link is particularly useful for simulating from river channel onto a floodplain 

(DHI, 2007) . Therefore, in this study, the coupled 1D-2D model MIKE FLOOD was used to 

simulate the flood inundation for HCMC in the Saigon-Dongnai River basin. To set up the 1D 

hydrodynamic model which represents the entire river system of the Saigon-Dongnai River 

basin, the input data included cross-sections, the Manning’s n roughness coefficients and 

boundary conditions. There are six boundaries. The hourly sea level data (Vungtau station) 

was used as a downstream boundary condition, while daily discharge time series from Trian, 

Dautieng, and Phuochoa reservoirs, daily discharge data from Godau streamflow gauge 

located in the Vamcotay River, and hourly water level data from Moc Hoa water level gauge 

located in the Vamcodong River were used as upstream boundary conditions. Besides, five 

main rivers, i.e. Dongnai, Saigon, Be, Vamcotay and Vamcodong, together with 251 small 

streams were established, and the details of 300 observed cross-sections were used in this 

study. 

Figure 5.4: Sketch repesenting the application of lateral links; Source: (DHI, 2007, FLOOD, 

2011) 
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The 1D model (MIKE 11) was calibrated for the year 2012 and validated for the year 

2011. In the calibration procedure, the Manning’s roughness coefficient values were adjusted 

manually to produce the smallest deviations between the observed and modelled values. The 

initial Manning’s n values for channels were chosen from the study of Razmi et al. (2017). 

Ritter and Muñoz-Carpena (2013) suggested that, in the model performance assessment, one 

should include at least one absolute value error indicator, one dimensionless index and a 

graphical technique, which provide a visual comparison between observed data and model 

calculated values. 

In this study, the following statistical criteria were used to assess model performance: 

the coefficient of determination (R
2
), the ratio of root mean square error to standard deviation 

observations (RSR), the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe 1970), and a 

graphical representation of the relationship between observations and model estimates. The R
2
 

describes the proportion of the variance in measured data explained by the model, where R
2 

= 

1 is considered as the perfect match, and values greater than 0.5 are acceptable (Moriasi et al., 

2007, Jeong et al., 2010). The RSR incorporates the benefits of error index statistics and 

includes a normalization factor so that the resulting statistic can apply to various constituents 

(Moriasi et al., 2007). Values of RSR range from the optimal value of 0 to a large positive 

value. The NSE, ranging between    and 1.0, is commonly used to access the predictive 

power of the model (Nguyen et al., 2016). Normally, NSE of 0.65 is considered good for 

daily results. However, the criteria may be lower for sub-daily outputs and higher for monthly 

and annual outputs since performance improves as the time interval increases (Jeong et al., 

2010). The RSR and NSE are calculated as follows: 

    
     

      
    

  
   

     
          

  
   

         (5.9) 

      
    

      
    

 
 
   

    
          

  
   

        (5.10) 

where   
    and   

    are the ith observed and simulated data,       is the mean of observed 

data, and N is the total number of observations. 
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The developed 2D model comprises a flexible mesh with 686,173 elements and 

343,498 nodes, which covers study area (16 km
2
) mentioned in Section 5.3.5. The Manning’s 

n values for floodplain areas are referred to (Timbadiya et al., 2014a). In particular, the 

Manning’s n values for the residential areas, agriculture areas and water bodies are 0.2, 0.07 

and 0.03, respectively. The surface elevations for the study area were derived from 1-m 

resolution LiDAR data. Due to the lack of detailed historical data of inundation events, 

calibration and validation for the 2D model was not carried out. 

5.3.4 Flood scenario simulations  

Three sets of model simulations were carried out for different flood scenarios derived 

from a combination of extreme rainfall, sea level and discharge. For the upstream boundary 

conditions in each scenario, the estimated daily discharge from the frequency analysis (Trian, 

Dautieng, Phuochoa and Godau) was assumed to be at a constant value. Similarly, the only 

upstream boundary condition in the Vamcodong River was assigned as estimated water level 

(Mochoa), which is considered as constant. For the downstream boundary, hourly sea level 

time series from 24-12-1999 are used, when the highest water level station was recorded at 

Vungtau. The observed hourly sea level was then amplified until the tidal peak matched the 

value of extreme sea level gained from the best GEV model. The hourly sea level time series 

after amplifying were used as downstream boundary conditions for the hydrodynamic model. 

It is to be noted that the impacts of waves were not considered. 

5.3.5 Case study  

Located in the downstream of the Saigon-Dongnai River systems, the topographic and 

geographic conditions of HCMC make it extremely sensitive to various flood sources. HCMC 

is subject to both regular and extreme flooding. In 2050, 61% of urban land use and 67% of 

industrial land use are expected to be flooded in an extreme event if the proposed flood 

control measures are not implemented (World Bank, 2010). However, generating detailed 

flood hazard maps based on high-resolution topographical data for the whole HCMC, which 

covers a very large area (approx. 2,095 km
2
), requires high computational resources. Our 

study is limited to the area located close to the Saigon River branch, a distributary of the 

Saigon-Dongnai River system, covering an area of 16 km
2
. This area belongs to Binh Thanh 

district and District 2 (Figure 5. 1), and is an example of low-lying lands that are prone to 
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frequent flooding caused by high tide, heavy rainfall and high-water discharge released from 

the upstream reaches of the river basin. Binh Thanh district represents an urban district with a 

very high population density, while District 2 represents a semi-urban district, and is 

considered to become the most strategic metropolitan area in HCMC in the near future. 

District 2 and Binh Thanh district are estimated to be severely impacted by extreme floods in 

2050, with approximately 94% and 82% of their area flooded, respectively (World Bank, 

2010). The main land use in this area is residential buildings (i.e. built-up land), intermingled 

with a few areas of fallow lands. The width of the Saigon River in this area varies between 

250 and 350 m, while its average depth is about 20 m. 

5.3.6 Flood hazard classification 

Flood hazard maps provide essential information for flood risk management and 

mitigation purposes. In most flood hazard studies, floodwater depth is widely used to classify 

a hazard index (Sharif et al., 2016, Komi et al., 2017, Garrote et al., 2016, Alfieri et al., 2014). 

Nevertheless, flood hazard includes many elements, such as the stability of human bodies, 

buildings and vehicles in floodwaters (Xia et al., 2011). Therefore, a single parameter cannot 

completely assess the potential damage of flood flows on people, buildings and vehicles. In 

previous studies, a combination of flood depth and velocity has been used as a proxy for the 

force of floodwaters to access the instability of the human body and vehicles, as well as the 

failure of buildings in floodwaters (Xia et al., 2011, Xia et al., 2014, Kreibich et al., 2009). 

Furthermore, Smith et al. (2014) and AEMI (2014) have indicated that the level of 

vulnerability of a community is dependent on the strength of the floodwaters, which can be 

simply described by the depth and speed of floodwaters. They also suggested that flood 

hazard maps may be classified using combined flood hazard curves derived from flood depth 

and velocity thresholds. This method provides a basis for categorizing flood hazard based on 

the intensity of DV, and it was used in this study. As such, the classification of flood hazard 

was based on a six-grade scale, ranging from H1 to H6. The class H1 represents a very low 

hazard, which is generally safe for people, vehicles and buildings, whereas H6 is unsafe for 

people, vehicles and buildings. The flood hazard classification limits (AEMI, 2014) are 

presented in Table 5. 1. For further details about flood hazard classification, the reader is 

referred to Smith et al. (2014) and AEMI (2014). 
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Table 5. 1: Limits for the flood hazard classification 

Hazard 

class 

Flood depth, 

D 

(m) 

Velocity, 

V 

(m/s) 

Classification 

limit (DV) 

(m
2
/s) 

Description 

H1 0.3 2.0 ≤ 0.3 Generally safe for vehicles, people and 

buildings 

H2 0.5 2.0 ≤ 0.6 Unsafe for small vehicles 

H3 1.2 2.0 ≤ 0.6 Unsafe for vehicles, children and the 

elderly 

H4 2.0 2.0 ≤ 1 .0 Unsafe for vehicles and people 

H5 4.0 4.0 ≤ 4.0 Unsafe for vehicles and people; all 

buildings types vulnerable to structural 

damage 

H6 - - > 4.0 Unsafe for vehicles and people; all 

buildings types vulnerable to failure 

5.4 Results and discussions 

5.4.1 Flood frequency analysis 

The best GEV models were fitted to annual maximum daily rainfall, annual maximum 

daily water level and annual maximum daily discharge for all gauging stations and the results 

are presented in Table 5. 2, which also shows the parameter values of appropriate GEV 

models from the results of frequency analysis. The models with lower AICc should be 

preferred to those with higher AICc, and the best model is identified as the model with Δi 

equal to zero.  
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Table 5. 2: Results of the best GEV models and parameter estimation. The best model 

for each station is based on the lowest value of AICc 

Station Model µ0 µ1 µ2 µ3 σ0 σ1 σ2 ξ Δi * 

Rainfall 

          

Ben luc GEV-2 90.98 -9.66 - - 22.47 - - 0.17 1.50 

Bienhoa GEV-0 86.43 - - - 21.56 - - 0.10 - 

Binhchanh GEV-1 68.67 -12.27 - - 17.51 - - 0.31 3.25 

Candang GEV-0 85.45 - - - 21.86 - - 0.05 - 

Cangio GEV-7 44.00 -10.81 45.15 - 20.83 - - 0.35 14.12 

Chonthanh GEV-0 90.56 - - - 23.30 - - 0.05 - 

Cuchi GEV-1 84.78 -19.00 - - 21.86 - - 0.14 4.48 

Dautieng GEV-0 90.26 - - - 22.14 - - 0.13 - 

Dongphu GEV-0 97.41 - - - 25.31 - - 0.26 - 

Godau GEV-4 75.88 -12.30 - - 20.41 - - -0.18 0.39 

Hocmon GEV-0 77.74 - - - 22.93 - - -0.22 - 

Longthanh GEV-5 92.31 16.16 - - 23.52 - - 0.22 2.71 

Macdinhchi GEV-3 102.38 -35.12 - - 21.43 - - 0.02 0.02 

Nhabe GEV-20 77.85 3.65 -5.30 - 3.32 1.28 -0.79 -0.27 4.20 

Phuochoa GEV-0 95.87 - - - 29.05 - - 0.10 - 

Sosao GEV-0 87.15 - - - 21.31 - - -0.10 - 

Tanan GEV-23 84.12 -15.28 -21.93 - 2.88 0.72 -1.24 0.32 12.61 

Tayninh GEV-2 94.78 -6.91 - - 17.86 - - 0.28 1.31 

Thuduc GEV-10 130.55 -174.18 59.32 - 21.34 - - 0.26 3.33 

Trian GEV-0 91.65 - - - 17.45 - - -0.02 - 

TSN GEV-12 88.20 15.37 -6.68 -18.58 13.17 - - 0.34 2.83 

Vungtau GEV-0 86.17 - - - 22.65 - - 0.31 - 

Water level 

 

         

Vungtau GEV-3 1.24 0.002 - - 0.06 - - -0.03 10.07 

Mochoa GEV-0 1.82 - - - 0.47 - - -0.16 - 
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Station Model µ0 µ1 µ2 µ3 σ0 σ1 σ2 ξ Δi * 

Discharge 

 

         

Godau GEV-0 69.83 - - - 22.79 - - -0.10 - 

Dautieng GEV-0 113.72 - - - 97.73 - - 0.18 - 

Phuochoa GEV-0 949.74 - - - 263.06 - - -0.11 - 

Trian GEV-0 2091.25 - - - 500.60 - - -0.09 - 

*Denotes Δi between the best model and GEV-0. 

The results presented in Table 5. 2 show that the nonstationary GEV models are 

superior to the stationary GEV models at 12 of the 22 stations studied, while there was no 

evidence of nonstationarity at the remaining rainfall stations. Taking TSN station as an 

example, the GEV-12 model was found to be the best model for extreme rainfall based on Δi. 

In the GEV-12 model, the linear trend is represented by the location parameter with three 

covariates of ENSO, PDO and local temperature, with a value of Δi between GEV-0 and 

GEV-12 is 2.83. 

For Vungtau station (sea level), the GEV-3 model that considered global sea level rise 

as a covariate was found to be the best model. The stationary model is ranked eight among the 

15 models, and the value of Δi for GEV-3 is 10.07. 

The discharge time series at Godau, Dautieng, Phuochoa, Trian stations and the water 

level time series at Mochoa were assumed to be under stationary conditions, and the 

maximum-likelihood estimates for location, scale and shape parameters in the stationary 

models for these stations are also given in Table 5. 2. 

Based on the best models, the estimated values of rainfall, sea/water level and 

discharge corresponding to return periods of 2, 5, 10, 25, 50, and 100 years are provided in 

Table 5. 3. It can be seen from Table 5.3 that there is a huge difference in the magnitudes of 

extreme rainfall between gauging stations in the surveyed basin. For example, the extreme 

rainfall for the 100-year return period at Hocmon station is even lower than the 5-year return 

period value at Tanan station. Three flood scenarios based on the values of rainfall, sea/water 

level and discharge corresponding to 25-, 50- and 100-year return periods, presented in Table 

5. 3, were used in flood simulation. 
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Table 5. 3: Variation in return levels for different return periods 

Station Return period (years) 

 

2 5 10 25 50 100 

Rainfall (mm) 

   

 

  Benluc 110.54 140.51 163.83 197.94 227.11 259.78 

Bienhoa 94.48 121.31 140.83 167.67 189.29 212.31 

Binhchanh 86.00 112.72 136.43 175.56 213.10 259.51 

Candang 93.54 119.54 137.61 161.46 179.91 198.91 

Cangio 107.24 140.17 170.37 221.81 272.64 337.11 

Chonthanh 99.18 126.86 146.08 171.42 191.01 211.16 

Cuchi 110.53 138.79 160.13 190.52 215.81 243.51 

Dautieng 98.57 126.93 148.15 178.10 202.83 229.73 

Dongphu 107.14 143.86 174.87 223.81 268.78 322.37 

Godau 92.14 111.79 122.80 134.78 142.46 149.20 

Hocmon 85.82 107.12 118.61 130.70 138.19 144.59 

Long thanh 116.97 149.80 176.52 217.24 253.46 295.40 

Macdinhchi (MDC) 110.27 135.04 151.78 173.30 189.55 205.92 

Nhabe 105.61 164.81 195.11 225.54 243.57 258.37 

Phuochoa 106.72 142.98 169.40 205.84 235.26 266.64 

Sosao 94.82 116.87 130.17 145.64 156.22 166.03 

Tanan 110.23 176.09 234.99 332.99 427.69 545.52 

Tayninh 109.59 135.98 158.69 195.12 229.14 270.24 

Thuduc 109.54 140.58 166.86 208.42 246.70 292.40 

Trian 98.02 117.37 129.91 145.44 156.74 167.78 

TSN 106.87 127.42 146.02 177.33 207.91 246.32 

Vungtau 94.96 129.51 160.11 210.59 258.97 318.75 

Water level (m) 

   

 

  Vungtau 1.40 1.47 1.51 1.56 1.60 1.64 

Mochoa 1.99 2.45 2.72 3.01 3.20 3.37 

Discharge (m
3
/s) 

   

 

  Godau 78.03 101.55 115.71 132.14 143.35 153.72 

Dautieng 150.74 281.86 384.51 535.57 665.41 811.51 

Phuochoa 1044.26 1313.85 1474.94 1660.57 1786.44 1902.23 

Trian 2271.68 2792.79 3109.19 3479.07 3733.43 3970.20 

5.4.2 Model calibration and validation 

The hourly water level data for the rainy period (from 01-09-2012 to24-09-2012) at 

four gauging stations (Benluc, Bienhoa, Nhabe, TDM) were used to calibrate the 

hydrodynamic model. The results of the simulations are presented in Table 5. 4. It may be 

seen that the RSR for hourly water level varies from 0.32 to 0.66, while R
2
 values vary from 
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0.88 to 0.97. The hourly NSE values range between 0.61 and 0.89, with an average value of 

0.71. 

Table 5. 4: Calibration and validation results – 1D model 

Station Calibration (hourly water level) 

 

Validation (hourly water discharge) 

 

R
2
 RSR NSE 

 

R
2
 RSR NSE 

Benluc 0.97 0.55 0.7 

 

0.91 0.4 0.84 

Bienhoa 0.88 0.66 0.61 

 

0.77 0.7 0.51 

Nhabe 0.96 0.32 0.89 

 

0.81 0.65 0.58 

TDM 0.97 0.59 0.65 

 

0.93 0.42 0.82 

Validation of the model was performed using hourly discharge data for the period 19-

09-2011 to 04-10-2011. The model performance at Benluc and TDM stations was good, with 

NSE values of 0.84 and 0.82, respectively (Table 5. 4), while the NSE values for Bienhoa and 

Nhabe were much lower (0.51 and 0.58, respectively). 

Figure 5. 5 shows the comparison of observed and simulated hourly water level under 

calibration (Figure 5. 5a) as well as hourly discharge under validation (Figure 5. 5b) There is 

a good level of agreement between the observed and simulated water level and discharge at all 

the gauging stations. Therefore, the model can be used appropriately for the subsequent 

simulation. 
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Figure 5. 5: Results of (a) calibration and (b) validation of the flood simulation model 

at, from top to bottom: Benluc, Bienhoa, Nhabe and TDM stations 

5.4.3 Flood hazard maps 

Based on the developed model, the flood hazard maps derived from the combination of 

extreme rainfall, water level and upstream outflows are presented in Figure 5. 6. The maps 
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represent three different scenarios, 1, 2 and 3 for 25-, 50- and 100-year return period, 

respectively. The enlarged views are shown in Figure 5. 7a-c, focusing on the large flooded 

areas (denoted by A1, A2 and A3). It can be seen that areas where the river is surrounded by 

houses and buildings, or where the riverbed is narrow, the flood inundation extent is wider. 

Taking a closer look at areas A1, A2 and A3, the floodwater flows freely over the riverbank 

along roads and alleyways. 
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Figure 5. 6: Comparison of flood hazard maps between flood scenarios, with return periods of (a) 25 years, (b) 50 years and (c) 100 years. 

Flood hazard is classified by considering the combination of flood depth and velocity, ranging from H1 to H6 (see Table 5. 1) 



112 

 

The flood hazard is classified based on six levels (refers to Table 5. 1 in Section 5.3.6), 

and the area of each flood hazard zone in relation to the entire study area is presented in 

Figure 5. 7d. However, as the area of H6 flood hazard zone mostly covers the main river 

surface, it is not shown in Figure 5. 7d. It is clear that the total flooded area increases 

corresponding to flood events. In particular, the H1 flood hazard zone, which is generally safe 

for all people, vehicles and infrastructure, covers areas of 0.15, 0.19 and 0.27 km
2
 under 

scenarios 1, 2 and 3, respectively. The cumulative area of H2, H3 and H4 flood hazard zones, 

where the water depth varies from 0.5 to 2.0 m under Scenario 1, is 0.73 km
2
, while for 

scenarios 2 and 3, the corresponding areas are 0.77 and 0.82 km
2
, respectively. Finally, the H5 

flood hazard zone, which is unsafe for people, vehicles and buildings, covers 0.49, 0.56 and 

0.60 km
2 

under scenarios 1, 2 and 3, respectively. 
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Figure 5. 7: Enlarged view of areas A1, A2 and A3 (Figure 5.5) for different flood scenarios, with return periods of: (a) 25 years, (b) 50 

years, and (c) 100 years. (d) Area of each flood hazard zone corresponding to each flood scenario 



114 

 

Furthermore, a floodplain area based on the combination of 50-year extreme rainfall, 

extreme sea level and extreme discharge under stationary conditions (denoted Sta-50) was 

developed for comparison purposes and is shown in Figure 5. 8. It can be seen that the flood 

extent under nonstationary conditions is larger than under stationary condition. The flooded 

area under Scenario 2 is 0.29 km
2
 larger than that under Sta-50. The enlarged views (Figure 5. 

8a and b) show two areas in which the difference in flooded area between the two scenarios 

(Scenario 2 and Sta-50) is particularly remarkable. 

The results demonstrate how flood potential can influence human settlements in the 

study area. Compared to the flood simulation methods used in previous studies (Dang and 

Kumar, 2017, Lasage et al., 2014), the current method has applicability in flood simulation 

when considering the nonstationary behavior in time series of extreme events. In comparison 

with Storch and Downes (2011), ADB (2010) and World Bank (2010), our results show that 

the flooded areas are discrete and concentrated mainly on both sides of the Saigon River 

rather than covering entire study area. More importantly, the high-resolution images from our 

study provide a clear and detailed view of the flooded area, which can contribute to efficient 

flood risk management, as well as the provision of mitigation strategies by the local 

government. 
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Figure 5. 8: Comparison of floodplain extents of 50-year return period and Sta-50, 

with (a) and (b) showing zoom-in images of the flooded areas. Sta-50: 50-year extreme 

rainfall, extreme sea level and extreme discharge under stationary conditions 

5.5 Summary and conclusions 

One of the key factors in preventing and reducing flood damage and the number of 

lives lost is the provision of flood risk assessment information through flood hazard maps. In 

HCMC, extreme rainfall and extreme sea level are considered as the main factors impacting 

significantly on floodplain extent. These factors are currently proved to have nonstationarity 

in their time series. It is believed that this study is the first study to develop a flood simulation 
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model considering nonstationarity in two time series of flood components, i.e. extreme 

rainfall and extreme sea level; this is different from other research on flooding in HCMC. 

Moreover, the effects of upstream outflows on flood inundation in HCMC was also 

considered, which contributed to the model development process. For this purpose, climate 

indices (ENSO and PDO), global and local temperature, and global mean sea level were used 

for frequency analysis to investigate the nonstationarity in the extreme rainfall and sea level. 

The covariates in the best statistical model were attributed as the most significant physical 

processes causing nonstationarity in the time series. The results of the frequency analysis 

show that ENSO and PDO are present in the best nonstationary models, hence they can be 

considered as the main causes of nonstationary behavior in extreme rainfall in the study area. 

Another finding indicates that global sea level rise has a significant effect on nonstationarity 

in extreme sea level at Vungtau station. 

Flood scenarios were developed based on the results of frequency analysis 

corresponding to 25-, 50- and 100-year return periods. The calibration and validation results 

of the MIKE FLOOD model show that the model performs satisfactorily in simulating water 

flow for the study area. Another notable highlight in this thesis is the use of high-resolution 

data (i.e. LiDAR) in developing the flood hazard maps of HCMC, which has not been done in 

previous studies. In this way, the floodplain extent can be defined, and the passage of 

floodwater can be detected clearly, even at the scale of street networks. The results from the 

spatial variation of flood hazards indicate that locations along both riverbanks are expected to 

experience a significant increase in flooded area, with the intensity of DV reaching 4.0 m
2
/s. 

The percentages of flooded area classified as zones H1–H5 are 8.54%, 9.43% and 10.51% for 

scenarios 1, 2 and 3, respectively. It is also to be noted that the floodplain extent is larger 

when based on the assumption of nonstationarity. 

Considering the important role of flood hazard mapping and estimating floodplain 

extent in decision making, or establishing flood warning systems, it is suggested that the flood 

sources (e.g. rainfall, water level, upstream outflow and sea level rise) are analyzed under 

both stationary and nonstationary conditions before being used as initial inputs of 

hydrological and hydrodynamic models, since the global climate is continuously changing 

and unpredictable. The present work has successfully introduced nonstationarity into flood 

frequency analysis, thereby influencing the appearance of flood hazard maps. Nevertheless, 
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several limitations have to be acknowledged. First, the use of 35 years of data might raise 

concerns about the uncertainty associated with parameter estimation, hence impacts on the 

extreme value estimates. Second, the missing calibration and validation of the 2D model 

might lead to an imperfect flood simulation model. However, it could be a suitable option for 

flood simulation in HCMC since data is not available for a longer duration in this large river 

basin. The study provides a new approach for flood simulation in HCMC that can be referred 

to by managers and decision makers, especially for purposes relating to the construction of 

buildings and infrastructure in flood hazard areas. Moreover, the proposed flood simulation 

model may be used not only for HCMC but also for other practical cases within the Saigon-

Dongnai River basin, where insufficient attention has been paid to detailed flood maps.
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Chapter 6  

Copula-based bivariate flood frequency analysis under 

nonstationary condition 

 

 

 

 

6.1 Introduction 

Coastal zones are commonly vulnerable to floods caused by the combination of 

multiple sources. In such areas, heavy precipitation can coincide with coastal storm surges 

then flooding could be twice as severe, thereby resulting in massive damage to the coastal 

inhabitants and infrastructures (Karamouz et al., 2014, Hunt, 2005). For these regions, 

univariate frequency analysis may no longer be effective to describe floods that are 

characterized by several correlated variables. It is, therefore, necessary to consider the joint 

probability of flood-caused sources in the evaluation and management of flood risk. 

Multivariate parametric distributions have been widely used to model multivariate 

extreme events (i.e. flood). Nevertheless, this approach contains some limitations since the 

correlated variables have the same type of marginal distribution, and the dependence structure 
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could not be described differently from the marginal distribution (Zhang and Singh, 2007). 

Therefore, the copula theory has been paid more attention and increasingly employed for 

simulating joint distribution due to its flexibility. The main advantage of using copula 

functions is that multivariate random events could be described by different family of 

distributions, and the dependence structure is freely modeled without concerning the marginal 

distributions. The application of copulas in the fields of hydrology and water engineering 

could be found in many studies (Renard and Lang, 2007, Zhang and Singh, 2007, Sraj et al., 

2015, Masina et al., 2015). 

Frequency analysis of hydro-meteorological events has been commonly based on the 

assumption of stationarity in time series. However, under climate variability related to human 

activities, changes in rainfall characteristics and hydrological cycle have been reported for 

many places of the world, which proposes that the assumption of stationarity in hydro-

meteorological time series may not valid anymore (Sugahara et al., 2009, Khaliq et al., 2006, 

Milly et al., 2008, Berg et al., 2013, Šraj et al., 2016, Mudersbach and Jensen, 2010). Till 

now, the use of nonstationary approach in hydro-meteorological frequency analysis could be 

found in many studies which mainly focused on a single random variable, but only a few 

studies available related to nonstationary multivariate frequency analysis. For example, the 

time-dependent behavior of bivariate hydrological design parameters is investigated by 

Bender et al. (2014) using nonstationary copula approach. Sarhadi et al. (2016) applied the 

nonstationary copula analysis to estimate the time-varying joint return period of drought 

characteristics under nonstationary condition. Jiang et al. (2015) used nonstationary copula to 

estimate the joint return period of low-flow at two neighboring hydrological stations on the 

Hanjiang River. Similarly, Ahn and Palmer (2016) performed the nonstationary bivariate 

frequency analysis for low-flow characteristics in the Connecticut river basin. 

However, most of these studies used time as the explanatory variable of the marginal 

distribution and dependence parameters. As a matter of fact, the change of paradigm from 

stationarity to nonstationarity can be affected by many causes (e.g. LULC change or climate 

change). The effects of these factors may not exactly follow the passage of time. More 

importantly, the changes in the climate or watershed characteristics have affected not only in 

the nonstationarity of individual hydrological series but also in the dependence structure 
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between the different hydrological series. In addition, the dependence relationship between 

different variables could be varied over time, if there is a change in the meteorological forcing 

processes. Indeed, the study of De Michele et al. (2007) indicated that the dependence of 

wave height and duration as a function of storm magnitude. Similarly, Corbella and Stretch 

(2013) showed that the dependence of wave height and period as a function of peak wave 

power. 

Therefore, using time as a covariate in nonstationary modelling may suffer some 

limitations (Ahn and Palmer, 2016). Agilan and Umamahesh (2016b) indicated that using 

time as a covariate in nonstationary models is increasing the bias of nonstationarity analysis.  

López and Francés (2013) also suggested that only time is considered as a covariate may not 

be entirely correct because the trends can change in the short and long term caused by climate 

variability and the intensification of human activities. Besides, Šraj et al. (2016) showed the 

problem with time-varying distribution parameters is that it is difficult to explain why time-

varying distribution parameters would change continually in the future in the same way that 

they did in the past. Jiang et al. (2015) also suggested that physical covariates may be more 

effective in nonstationary modelling than using time as a covariate. Furthermore, the physical 

meaning of the estimated parameters will be ambiguous if time is used as covariates in the 

nonstationary setting. 

Recently studies indicated that the hydro-meteorological patterns are strongly affected 

by local influences within the catchment, hence the covariates selected for nonstationary 

modelling should have strong physical associations with the process of events (Arns et al., 

2013a, Yan et al., 2017). Furthermore, Agilan and Umamahesh (2016b) suggested that 

covariates should be chosen with respect to the area of interest because the selected covariates 

for a particular area may have different effects in other geographical areas. Therefore, local 

variables which reflect the physical relationship to hydro-meteorological events should be 

considered in nonstationary multivariate frequency analysis. 

In hydro-meteorology frequency analysis, the AM and POT approaches have been 

usually used to extract data sample in extreme values analysis. The AM approach in which 

considers the maximum value of each year is regarded to be better and safer for the sampling 

of hydro-meteorological events (Porter and McMahon, 1971). However, flood events can 
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occur more than once within a year, and a short sample is a critical problem in parameter 

estimation (Sugahara et al., 2009). Unlike the AM approach, the POT approach considers 

wider range of events by selecting all excesses over a certain threshold. For low-land areas, 

especially coastal zones, heavy rainfall can occur several times within any year and coincide 

with coastal storm surges, which results in flooding. Hence, the extremes may not be missed 

when POT approach is adopted. In this study, the comparison between different sampling 

selection approaches is carried out, which may provide more information for analysis. 

The main objective of this study is model the joint probability using nonstationary 

copula-based bivariate frequency analysis for HCMC. To obtain the objective, the 

nonstationary behavior is modeled for dependence structure and marginal distributions by 

using local physical processes as covariates. The joint return period (i.e. OR and AND) of 

selected variables is estimated by the optimal copula and marginal distribution. The results of 

the joint return periods are presented for three samples to provide important information in 

choosing appropriate data time series for flood defense design. 

6.2 Data 

6.2.1 Water level and rainfall 

Hourly observed water level data covering a period of 1981- 2014 at Nhabe station 

along the Saigon-Dongnai River basin are used in this study. Daily rainfall data for the period 

of 1981 to 2014 collected from Cangio meteorological station. The locations of Nhabe and 

Cangio stations can be seen in Figure 5.1 in Chapter 5. 

In this study, to assess the sensitivity of results to different sampling selections, three 

samples are extracted, comprising AM and POT approaches as shown below: 

- Sample 1: the annual maximum daily rainfall and the annual maximum daily water 

level for each year are selected 

- Sample 2: the annual maximum daily rainfall is firstly obtained, and then the highest 

water level is chosen within the day of this event 

- Sample 3: the POT series of 97.5
th

 percentile daily rainfall is used, and then the 

highest water level is selected within the day of this event. 
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For Sample 3, the threshold value of 97.5
th

 percentile of daily events is used to ensure 

that the threshold should be high enough for the values to be extreme, but not so high to avoid 

high variance in the model estimates. The duration of 3 days is used to ensure independent 

events based on typical storm duration on the HCMC’s coast. It means that the selected event 

is automatically separated by 3 days. 

6.2.1 Covariates 

In this study, to reduce the uncertainty in modelling extreme events, only local 

variables (i.e. local temperature, urbanization and local sea level) which have a strong 

relationship to the events (rainfall and water level) are considered as covariates. The 

temperature data during the period 1981-2014 recorded at TSN was provided by the Southern 

Institute for Water Resources Planning. Hourly sea level was recorded at Vungtau station 

from 1981 to 2014 and was provided by the NHMS of Vietnam. The data for urbanization is 

selected as mentioned in Section 4.2.2 in Chapter 4. 

6.3 Methodology 

In this study, the time series of rainfall and water level are firstly tested for stationarity 

by M-K non-parametric test. The dependence between rainfall and water level are evaluated 

using the Kendall, Spearman and Pearson correlation coefficients. Four probability 

distributions comprising GEV, Gumbel (GUM), Log-normal (LN) and Weibull (WEI) are 

used to model rainfall and water level processes within the contexts of nonstationarity. Next, 

nonstationary copulas are developed to simulate the relationship between rainfall and water 

level. Finally, the joint return periods of rainfall and water level of the three samples are 

estimated by the optimal copulas and marginal distributions.  

6.3.1 Detecting the nonstationary component in time series 

As mentioned earlier, testing nonstationarity in time series should be firstly 

considered, which crucially influences the statistical analysis result. In this study, the M-K 

trend test with a significant level of 0.05 is used to identify the trends in rainfall and water 

level time series. 
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6.3.2 The dependence analysis for selected variables  

The Kendall, Spearman and Pearson correlation coefficients are employed to assess the 

dependence between the pairs of variables, while K plot (Genest and Boies, 2003) is used for 

graphical presentation purpose. The correlation coefficient varies between -1 to +1, where -1 

and +1 represent a monotonic association between the two variables, and 0 corresponds to the 

independence. Kendall’s τ and Spearman’s ρ are two widely used non-parametric tests of 

detecting the dependence between random variables, and they are not based on any 

assumptions about the distribution of the data. Meanwhile, Pearson correlation test is based 

on the assumption of normal distribution of the variables. Besides, the pair of extremal 

measures (χ and   ) (Coles et al., 1999) is also used to detect asymptotical dependence 

between rainfall and water level. For more details about two measures of extreme dependence 

(χ and   ), the reader is referred to Coles et al. (1999). 

6.3.3 Modelling the marginal distributions for both stationary and 

nonstationary 

The probability distribution functions commonly used in hydro-meteorology, namely 

GEV, GUM, LN and WEI, are chosen for modelling the marginal distribution for both rainfall 

and water level. The three parameters, namely location, scale and shape, of the marginal 

distribution are demoted as µ, σ and ξ. The nonstationarity is introduced only in location 

parameter, while the scale and shape parameters are kept constant. As such, the location 

parameter can be expressed as a linear function of covariates as follows: 
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For rainfall frequency analysis 

µ(t) = µ0 + µ1 U + µ2 T 

σ(t) = σ 

ξ(t) = ξ 

(6.1) 

For water level frequency analysis 

µ(t) = µ0 + µ1 U + µ2 S 

σ(t) = σ 

ξ(t) = ξ 

(6.2) 

where U, T and S denote Urbanization, Temperature, and Sea level respectively. In the 

stationary model, the coefficients of covariates U, T, and S equal zero. Apart from stationary 

model, based on two covariates and their combination, three nonstationary models are 

constructed for each candidate distribution in rainfall/water level frequency analysis. List of 

marginal distributions and considered covariates used for rainfall and water level frequency 

analysis is shown in Table A. 3. 

The distribution parameters, µ0, µ1, µ2, σ and ξ, are estimated by maximum likelihood method. 

The AICc is used to identify the best fitting distribution for rainfall and water level. Once the 

best fitting distribution is selected, the T-year return level is calculated based on the low-risk 

approach mentioned in Section 5.3.1 in Chapter 5. 

6.3.4 Modelling the dependence structure for both stationary and 

nonstationary 

Copulas are defined as multivariate distribution functions which link joint probability 

distributions to their one-dimensional marginal distributions (Badrzadeh et al., 2015). For a 

bivariate case, a copula function can be expressed as Eq. (6.3) (Chang and Chang, 2006) 

F(x,y) = C[ F(x), F(y)] =  C(u,υ)      (6.3) 
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where F(x,y) is the joint cumulative distribution function for X (rainfall) and Y (water level) 

with marginal distribution F(x) and F(y) respectively. C (u,υ) is the copula function of the 

marginal distribution of rainfall and water level, u = F(x) and υ = F(y) refer to the cumulative 

frequency distribution respectively.  

In order to find the appropriate copulas that best fit to the data sample, several copula 

functions (i.e. Frank, Clayton, Gaussian and Plackett) are used to model the dependence 

structure between rainfall and water level in this study. The descriptions of these copula 

functions along with their parameter are briefly introduced in Table 6. 1. For more detailed 

description of copulas, the reader is referred to Badrzadeh et al. (2015) and Vaze et al. (2011). 

Table 6. 1: Description of the four candidate copulas 

Copula   (u,υ) Parameter  

Frank 
-
 

 
  [1+

             υ   

   ] 
θ ∈  -     \{0} 

Clayton (u
-Ɵ

+υ
-Ɵ

-1)
-1/Ɵ

 θ ∈        

Gaussian Ф[ϕ
-1

(u),ϕ
-1

(υ)] θ ∈  -1, 1) 

Plackett  

 

 

   
                 

  1u+ 2 4   1u 12  

θ ∈        

  (u,υ): copula function, θ: copula parameter, ϕ: cumulative density function of the standard normal 

distribution and Φ: cumulative density function of the multivariate normal distribution 

Similar to the marginal distribution modelling, the copula parameters are modeled 

using a linear function of covariates of urbanization, local temperature and local sea level as 

follows: 



126 

 

θ(t) = θ0 + θ1 U + θ2 T + θ3 S        (6.4) 

where slope parameters θ0, θ1, θ2, θ3 represent the trend in the dependent parameter of copula 

function. The parameters of copulas are estimated by the pseudo maximum likelihood 

approach. The most appropriate copula is selected using AICc value. Based on three 

covariates, thirty-two copula functions are developed, the list of these copulas are shown in 

Table A. 4. 

6.3.5 The joint return periods estimation  

The joint return period can be defined based on: (i) the probability of rainfall and water 

level both exceeding certain threshold values (denoted AND); (ii) the probability that rainfall 

or water level exceeds its threshold values (denoted OR). The joint return period (i.e. AND 

and OR) is estimated in this study, and these probabilities can be given as (Vaze et al., 2011): 

     
 

              
 

 

                     
 

(6.5) 

    
 

            
 

 

         
 

where λ is the mean interarrival time, typically given in years. In case of block maxima, λ 

equals 1. When applying POT approach, the mean interarrival time can be defined by the 

observed events. 

6.4 Results 

6.4.1 Detecting nonstationarity component in time series 

The significant trends in rainfall and water level time series are investigated by M-K 

test for three samples. The test results are shown in Table 6. 2. From the results, the 

significant increasing trends (p<< 0.05) have been found in rainfall and water level series for 

all samples. Therefore, the nonstationary condition is used to model rainfall and water level in 

this study. 
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Table 6. 2: M-K test results 

Samples Variables Tau p-value 

Sample 1 

Rainfall 0.414 0.0006 

Water level 0.694 2.22E-16 

Sample 2 

Rainfall 0.414 0.0006 

Water level 0.413 0.0006 

Sample 3 

Rainfall 0.105 0.0205 

Water level 0.249 2.22E-16 

6.4.2 Assessing the dependence of selected variables 

The dependence between rainfall and sea level are evaluated by the Kendall, Spearman 

and Pearson correlation coefficients. The variables of rainfall and water level present a 

moderate correlation between each other when considering AM Samples. In detail, the values 

of Kendall’s tau for Sample 1 and Sample 2 are 0.317 and 0.319 respectively (Table 6. 3). 

Conversely, when POT series is considered, rainfall and water level show a weaker 

dependence. 

Table 6. 3: Correlation coefficients between rainfall and water level 

Correlation coefficients Pearson's r Kendall's tau Spearman's rho 

Sample 1 0.372 0.317 0.429 

Sample 2 0.305 0.319 0.423 

Sample 3 0.103 0.058 0.091 
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Figure 6. 1 provides the K plots, the Chi and Chi bar plots for the three pairs of 

observed rainfall and water level corresponding to three samples. Regarding K plots, there is a 

possible dependence for Sample 1 and Sample 2, with points locate above the line. In 

contrast, the dependence for Sample 3 is very weak, with points close to the line. Similarly, 

the Chi and Chi bar plots also show that the dependence between rainfall and water level for 

Sample 1 and 2 is stronger than for Sample 3. For example, the value of χ (Figure 6. 1c) is 

nearly equal to 0, it means that the variables rainfall and water level are independent in many 

cases.

 

Figure 6. 1: The dependent relationship between rainfall and water level for (a) Sample 

1, (b) Sample 2 and (c) Sample 3 
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6.4.3 Modelling marginal distribution 

The values of estimated parameters, along with best fitted marginal distributions for 

rainfall and water level based on AICc, are presented in Table 6. 4. It can be noted that the 

model with the lowest value of AICc is identified as the best model for extreme events. The 

findings show that the nonstationary GEV model based on urbanization covariate (NSGEV-

U) is the best model for rainfall for all three samples. 

For water level, the nonstationary GUM based on urbanization covariate (NSGUM-U) 

is considered as the best model for annual maximum daily water level time series (Sample 1). 

Meanwhile, the NSGEV-US is found to be the most appropriate model for other samples of 

water level (Sample 2 and 3). In NSGEV-US, the location parameter is expressed as a linear 

function of urbanization and sea level. For more information about the AICc values for all 

marginal distributions, reader is referred to Table A. 5.  

Figure 6. 2 shows the graphical approach of P-P and Q-Q plots which are used to 

check the quality of fitting for a chosen model. The P-P and Q-Q plots of stationary GEV 

(SGEV) and stationary GUM (SGUM) for annual maximum daily rainfall and water level 

respectively are plotted in Figure 6. 2a and 6. 2c respectively, while those plots of the best 

nonstationary models (NSGEV-U and NSGUM-U) are shown in Figure 6. 2b and 6. 2d in that 

order. As can be seen, the best nonstationary models show a better match than the stationary 

models.
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Table 6. 4: The marginal distribution parameters and model selection 

Samples Variables Best model Significant covariate(s) µ0 µ1 µ2 σ ξ AICc 

Sample 1 

Rainfall NSGEV-U Urbanization 44.811 21.644 - 19.278 0.351 331.40 

Water level NSGUM-U Urbanization 1.385 0.116 - 0.042 - -102.21 

Sample 2 

Rainfall NSGEV-U Urbanization 44.811 21.644 - 19.278 0.351 331.40 

Water level NSGEV-US Urbanization, sea level 0.925 0.074 0.210 0.075 -0.354 -70.73 

Sample 3 

Rainfall NSGEV-U Urbanization 32.181 0.732 - 10.046 0.543 1849.09 

Water level NSGEV-US Urbanization, sea level 0.930 0.072 0.201 0.074 -0.299 -520.24 
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Figure 6. 2: P-P and Q-Q plots of (a) SGEV, (b) NSGEV-U, (c) SGUM and (d) NSGUM-U models for Sample 1
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To assess the impact of selection data sample on the marginal distribution modelling, 

the different return periods are estimated in this study. Table 6. 5 shows the comparison of the 

return levels based on the best model between the three samples. It is clear that the values of 

rainfall considering AM series are higher than those values under POT approach. For 

example, the estimated rainfall level of 2-year return period for Sample 1 corresponds to the 

25-year return period for Sample 3. Also for water level, with urbanization as covariate, the 

nonstationary water level of 2-year return period for Sample 1 is 1.66 m and it is higher than 

the nonstationary water level of 100-year return level for Sample 3. 

Table 6. 5: The return levels based on the best model for rainfall and water level 

Return period 

Rainfall (mm)   Water level (m) 

Sample 1 Sample 2 Sample 3   Sample 1 Sample 2 Sample 3 

2 122.25 122.25 56.68   1.66 1.43 1.39 

10 150.26 150.26 77.71   1.69 1.46 1.42 

25 198.03 198.03 120.04   1.73 1.49 1.45 

50 245.29 245.29 168.97   1.76 1.50 1.47 

100 305.27 305.27 240.05   1.79 1.51 1.49 

6.4.4 Modelling the dependence structure  

As mentioned earlier, the most appropriate copula is selected based on the AICc value. 

Table 6. 6 shows the chosen copula followed by its estimated parameters for every sample. As 

such, nonstationary Clayton copula (NSClayton-US) is most appropriate for Sample 1, with 

the copula parameter expressed as a linear function of urbanization and sea level. Whilst, 

stationary Plackett copula (SPlackett) and stationary Gaussian copula (SGaussian) are 

selected to estimate the joint return period of rainfall and water level for Sample 2 and 3 

respectively. The AICc values for copulas are provided in Table A. 6. 
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Table 6. 6: Parameter estimation and AICc values for selected copulas 

Samples Selected copula Significant covariate(s) θ0 θ1 θ2 AICc 

Sample 1 NSClayton-US Urbanization, sea level -3.308 4.247 -4.137 -7.77 

Sample 2 SPlackett - 1.704 - - -6.30 

Sample 3 SGaussian - 0.098 - - 0.07 

6.4.5 Joint return period estimation 

The best copula function and marginal distribution are selected to calculate the joint 

return periods (AND and OR) of rainfall and water level for 5, 10, 50, 100-year periods. 

Figure 6. 3 provides the joint return periods for Sample 1 which are derived from the best 

model (Figure 6. 3a) compared to the stationary model (Figure 6. 3b). It is clear that for all 

return periods, OR-joint return period is higher than AND-joint return period, which occurs 

for both models. Besides, values of rainfall and water level derived from the stationary model 

are less than those derived from the best model for almost return periods of AND. 

 

Figure 6. 3: The joint return periods AND (pink color) and OR (blue color) based on: 

(a) best model (solid lines) and (b) stationary model (dash lines) for Sample 1 
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Figure 6. 4 shows the comparison of the joint return period of rainfall and water level 

(OR) between various models for Sample 1. For the more frequent return period (< 10 years), 

the return levels of rainfall and water level derived from nonstationary marginal distribution 

in which the parameters are expressed as a function of covariates, are higher than those 

derived from other models. However, during the less frequent return period, particularly 50-

year, values of rainfall and water level are not much different between models. These results 

indicate that more attention should be focused on nonstationary marginal distribution 

modelling than dependence structure modelling. 

 

Figure 6. 4: The joint return periods (OR) of rainfall and water level from various 

models for Sample 1 (* denoted the best model for Sample 1) 

0 100 200 300 400 500

1
.2

1
.4

1
.6

1
.8

2
.0

W
a

te
r 

le
v
e

l
m

Rainfall mm

0 100 200 300 400 500

1
.2

1
.4

1
.6

1
.8

2
.0 Observed

S-GEV (µ, s, ξ), S-GUM (µ, s), S-Clayton (θ)

NS-GEV (µ(t), s, ξ), NS-GUM (µ(t), s), NS-Clayton (θ(t))

S-GEV (µ, s, ξ), S-GUM (µ, s), NS-Clayton (θ(t))

NS-GEV (µ(t), s, ξ), NS-GUM (µ(t), s), S-Clayton (θ)

Observed

SGEV (µ, σ, ξ), SGUM (µ, σ), SClayton (θ)

NSGEV-U (µ(t), σ, ξ), NSGUM-U (µ(t), σ), NSClayton-US (θ(t)) *

SGEV (µ, σ, ξ), SGUM (µ, σ), NSClayton-US (θ(t))

NSGEV-U (µ(t), σ, ξ), NSGUM-U (µ(t), σ), SClayton (θ)



135 

 

The comparison of the joint return periods (OR) of rainfall and water level from the 

best models corresponding to three samples is also carried out (Figure 6. 5). It is observed that 

the estimated water level values for Sample 1 are much higher than those for the remaining 

samples. For the more detailed, the value of rainfall (mm) - water level (m) from the best 

model are approximately (800 mm -1.80 m) for Sample 1 for the 100-year return period. 

Meanwhile, those values for Sample 2 and 3 are (800 mm – 1.515 m) and (800 mm – 1.525 

m) respectively. In addition, when comparing Sample 1 and Sample 3, a significant difference 

for the pairs of rainfall and water level occurred for a given return period can be found, with a 

higher value of rainfall corresponding to a smaller value of water level and vice versa. 
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Figure 6. 5: Comparison of the joint return periods of rainfall and water level (OR) from the best models for (a) Sample 1, (b) Sample 2 

and (c) Sample 3 
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6.5 Summary and conclusions 

In this present study, a nonstationary bivariate approach is introduced and exemplarily 

applied to HCMC where there has been increasing vulnerability to floods from multivariate 

sources. Urbanization, temperature and sea level are used as local covariates for modelling 

nonstationary the marginal distribution (i.e. GEV, GUM, LN, WEI distributions) and the 

dependence structure (i.e. Frank, Clayton, Gaussian and Plackett copulas) for extreme rainfall 

and water level. Since many physical processes control the extreme event occurrence, 

incorporating all of them may increase the accuracy of modelling, but it may increase the bias 

of modelling. In this study, local physical processes have proved that they are mostly 

associated with extreme events in the study area. Besides, among all candidate distributions, 

GEV seems the most suitable marginal distribution for modelling the flood variables in 

HCMC by always presenting its lowest value of AICc. It is recommended that GEV can be 

used as a default distribution for modelling extreme rainfall and water level in HCMC. 

The nonstationary copula-based bivariate frequency analysis is conducted based on 

three samples. The POT approach is commonly considered as a default approach in case of 

shorter observed data. However, the results of this study indicate that, when considering AM 

approach (i.e. maximum rainfall and water level), the joint return levels are estimated higher 

than using other approaches, which may be better and safer for flood design. Therefore, for 

the river basin with scarce data and affected by several sources of floods, it is necessary to 

consider both AM and POT approaches, which can provide more choices for stakeholders’ 

decisions. 

Our findings also indicate that modelling nonstationarity in the marginal distribution 

by choosing appropriate covariates, is more important than concentrating on modelling the 

dependence between rainfall and water level by using nonstationary copulas. These findings 

support the findings of (Bender et al., 2014) who also concluded that more attention should be 

paid for modelling the marginal distributions rather than for modelling the dependence. 

The proposed method presented in this study provides an overall framework for 

nonstationary bivariate frequency analysis for HCMC. This method can be applied to other 

river basins as well as other fields related to water resources management to identify the 
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appropriate solutions and adaptation strategies under nonstationary behavior of extreme 

events.
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Chapter 7  

Summary and conclusions 

 

 

 

 

7.1 Summary 

This research shows that the time series of extreme hydrologic events (i.e. rainfall and 

water level) in HCMC has been proven to increase in frequency and magnitude in last few 

decades due to the influence of global climate change and physical processes. Besides, this 

thesis contributes towards modelling extreme events under nonstationary condition by using 

local physical process as covariates. In addition, the spatial variation of extreme precipitation 

is also developed from stationary and nonstationary flood frequency analysis. Further, the 

flood simulation model is developed based on. The high-resolution flood hazard maps, which 

are quantified by considering the flood depth and velocity in combination, are established 

using nonstationary frequency analysis and coupled 1D-2D hydrodynamic model with high-

resolution topography data. Finally, the last part of this thesis contributes towards 

investigating the joint probability of flood correlated variables using nonstationary copula-
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based bivariate frequency analysis. Furthermore, the performance for an asymptotic 

independent variable 
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also assessed. The following paragraphs give the summary and conclusions of this thesis: 

 Extreme rainfall in HCMC has been proven to increase in frequency and 

magnitude in last few decades due to the influence of global climate change 

and physical processes. Although nonstationarity in extreme rainfall has been 

proved in many places of the world, research into nonstationarity feature in 

extreme rainfall in HCMC has not been paid attention thoroughly. Therefore, 

in Chapter 3, the spatial variation of extreme precipitation over HCMC is 

modelled under nonstationary condition. However, finding the most significant 

physical processes which have a close relationship with extreme rainfall is 

problematic since extreme events are controlled by many physical processes. 

The study results show that the nonstationary GEV model is found to be 

superior in capturing extreme precipitation events when compared to the 

stationary GEV model.. It is also found that the extreme rainfall estimates 

under the stationary condition are lower than those under the nonstationary 

condition in most stations. 

 The best local covariates for modelling nonstationary extreme water level are 

studied in Chapter 4. In details, four local covariates, namely rainfall, sea level, 

urbanization growth and outflows from upstream reservoirs are used to 

develop ninety-two nonstationary extreme water level models. The stationary 

models are also developed for comparison purpose. The results indicate that 

the nonstationary approach using local covariates is suitable for modelling 

extreme water level in HCMC. Additionally, based on the best chosen 

statistical models, the significant influences of sea level and urbanization on 

nonstationarity in extreme water level are found at all surveyed stations. 

Moreover, it could be found that the extreme water level values derived from 

the stationary models are underestimated relative to the best nonstationary 

models for all stations. 

 In Chapter 5, flood hazard maps are developed for HCMC under nonstationary 

conditions using extreme value analysis, a coupled model and high-resolution 

topographical data derived from LiDAR data. In details, climate indices 

(ENSO and PDO), global temperature, local temperature and global mean sea 



142 

 

level are used for frequency analysis to investigate the nonstationarity in the 

extreme rainfall and sea level. The covariates in the best statistical model are 

attributed as the most significant physical processes causing nonstationarity in 

the time series. The results of frequency analysis show that ENSO and PDO 

are present in the best nonstationary models, hence they can be considered as 

the main causes of nonstationary behavior in extreme rainfall in the study area. 

Another finding indicates that global sea level rise has a significant effect on 

nonstationarity in extreme sea level. . The results from the spatial variation of 

flood hazards indicate that locations along both riverbanks are expected to 

experience a significant increase in flooded area, especially where the river is 

surrounded by houses and buildings. It is also to be noted that the floodplain 

extent is larger when based on the assumption of nonstationarity. 

 In the last chapter, urbanization, temperature and sea level are used as local 

covariates for modelling nonstationarity in the marginal distribution (i.e. GEV, 

GUM, LN and WEI distributions) and the dependence structure (i.e. Frank, 

Clayton, Gaussian and Plackett copulas) for extreme rainfall and water level. 

The nonstationary copula-based bivariate frequency analysis is conducted 

based on three samples, which may provide more options in choosing 

appropriate data for analysis. The findings of the study indicate that the GEV 

distribution is suggested as the most appropriate marginal distribution for 

modelling the flood variables. The nonstationary Clayton copula, stationary 

Plackett copula and stationary Gaussian copula are suitable to estimate the 

joint return period of rainfall and water level for three considered samples. 

Besides, the results indicate that urbanization is a significant covariate causing 

nonstationarity. The joint return periods of rainfall and water level obtained 

through the optimal copula and marginal distribution show the significant 

differences between the samples. It means that a reciprocal situation can be 

found, when a higher value of rainfall corresponds to a lower value of water 

level and vice versa. 
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7.2 Scopes for future studies 

The work presented in this thesis could be further extended if both relevant data were 

available and time is not a constraint. Hence, following would be possible future works: 

 Assessing covariate and parameter uncertainty extreme events modelling 

 Quantifying the uncertainty of the flood hazard maps 

 Development of flood hazard management system, including a flood 

evacuation strategy. 
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b) 

 

 

Figure A. 1: Dates of maximum daily rainfall of (a) Hocmon station and (b) TSN station for the period of 1980-2014
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Figure A. 2 P-P and Q-Q plots of Benluc station 
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Figure A. 3 P-P and Q-Q plots of Cangio station 
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Figure A. 4 P-P and Q-Q plots of Nhabe station 
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Figure A. 5 P-P and Q-Q plots of Xuanloc station 
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Figure A. 6 Scatter plots of observed de-clustered extreme water level against the 

covariate of (a) rainfall, (b) sea level, (c) outflows from Dautieng reservoir, (d) outflows from 

Trian reservoir and (e) urbanization for Phuan station 
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Figure A. 7 Scatter plots of observed de-clustered extreme water level against the 

covariate of (a) rainfall, (b) sea level, (c) outflows from Trian reservoir and (d) urbanization 

for Bienhoa station 
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Figure A. 8 Scatter plots of observed de-clustered extreme water level against the 

covariate of (a) rainfall, (b) sea level, (c) outflows from Dautieng reservoir and (d) 

urbanization for TDM station 
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Table A. 1: Details of GEV models constructed for extreme rainfall analysis 

Model 

ID 

Description 

GEV-0  
0 0

~ , ,X GEV     
GEV-1   0 1 0~ , ,X GEV E     

GEV-2   0 1 0~ , ,X GEV P      

GEV-3   0 1 0~ , ,X GEV GT      

GEV-4   0 1 0~ , ,X GEV LT    

GEV-5   0 1 2 0~ , ,X GEV E P       

GEV-6   0 1 2 0~ , ,X GEV E GT       

GEV-7   0 1 2 0~ , ,X GEV E LT       

GEV-8   0 1 2 0~ , ,X GEV P GT       

GEV-9   0 1 2 0~ , ,X GEV P LT       

GEV-10   0 1 2 0~ , ,X GEV GT LT       

GEV-11   0 1 2 3 0~ , ,X GEV E P GT         

GEV-12   0 1 2 3 0~ , ,X GEV E P LT         

GEV-13   0 1 2 3 0~ , ,X GEV E GT LT         

GEV-14   0 1 2 3 0~ , ,X GEV P GT LT         

GEV-15   0 1 2 3 4 0~ , ,X GEV E P GT LT           

GEV-16     0 1

0 1
~ , ,

E
X GEV E e

 
  


  

GEV-17     0 1

0 1
~ , ,

P
X GEV P e

 
  


   

GEV-18     0 1

0 1
~ , ,

GT
X GEV GT e

 
  


   

GEV-19     0 1

0 1
~ , ,

LT
X GEV LT e

 
  


  

GEV-20     0 1 2

0 1 2
~ , ,

E P
X GEV E P e

  
   

 
   

GEV-21     0 1 2

0 1 2
~ , ,

E GT
X GEV E GT e

  
   

 
   

GEV-22     0 1 2

0 1 2
~ , ,

E LT
X GEV E LT e

  
   

 
   

GEV-23     0 1 2

0 1 2
~ , ,

P GT
X GEV P GT e

  
   

 
   

GEV-24     0 1 2

0 1 2
~ , ,

P LT
X GEV P LT e

  
   

 
   

GEV-25     0 1 2

0 1 2
~ , ,

GT LT
X GEV GT LT e

  
   

 
   
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Table A. 2: Details of GEV models constructed for extreme sea level analysis 

Model 

ID 

Description 

GEV-0  
0 0

~ , ,X GEV     

GEV-1   0 1 0~ , ,X GEV E     

GEV-2   0 1 0~ , ,X GEV P      

GEV-3   0 1 0~ , ,X GEV GS      

GEV-4   0 1 2 0~ , ,X GEV E P      

GEV-5   0 1 2 0~ , ,X GEV E GS       

GEV-6   0 1 2 0~ , ,X GEV P GS       

GEV-7   0 1 2 3 0~ , ,X GEV E P GS         

GEV-8     0 1

0 1
~ , ,

E
X GEV E e

 
  


  

GEV-9     0 1

0 1
~ , ,

P
X GEV P e

 
  


   

GEV-10     0 1

0 1
~ , ,

GS
X GEV GS e

 
  


   

GEV-11     0 1 2

0 1 2
~ , ,

E P
X GEV E P e

  
   

 
   

GEV-12     0 1 2

0 1 2
~ , ,

E GS
X GEV E GS e

  
   

 
   

GEV-13     0 1 2

0 1 2
~ , ,

P GS
X GEV P GS e

  
   

 
   
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Table A. 3: List of marginal distributions and considered covariate(s) used for rainfall 

and water level frequency analysis 

Rainfall  Water level 

Model 

Considered covariate(s)  

Model 

Considered covariate(s) 

Urbanization Temperature  Urbanization Sea level 

SGEV      SGEV     

NSGEV-U x    NSGEV-U x   

NSGEV-T   x  NSGEV-S   x 

NSGEV-UT x x  NSGEV-US x x 

SGUM      SGUM     

NSGUM-U x    NSGUM-U x   

NSGUM-T   x  NSGUM-S   x 

NSGUM-UT x x  NSGUM-US x x 

SLN      SLN     

NSLN-U x    NSLN-U x   

NSLN-T   x  NSLN-S   x 

NSLN-UT x x  NSLN-US x x 

SWEI      SWEI     

NSWEI-U x    NSWEI-U x   

NSWEI-T   x  NSWEI-S   x 

NSWEI-UT x x  NSWEI-US x x 
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Table A. 4: List of copulas and considered covariate(s) used for modelling the 

dependence between rainfall and water level 

Copulas 

Considered covariate(s) 

Urbanization Temperature Sea level 

SClayton       

NSClayton-U x     

NSClayton-T   x   

NSClayton-S     x 

NSClayton-UT x x   

NSClayton-US x   x 

NSClayton-TS   x x 

NSClayton-UTS x x x 

SFrank       

NSFrank-U x     

NSFrank-T   x   

NSFrank-S     x 

NSFrank-UT x x   

NSFrank-US x   x 

NSFrank-TS   x x 

NSFrank-UTS x x x 

SGaussian       

NSGaussian-U x     

NSGaussian-T   x   

NSGaussian-S     x 

NSGaussian-UT x x   

NSGaussian-US x   x 
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Copulas 

Considered covariate(s) 

Urbanization Temperature Sea level 

NSGaussian-TS   x x 

NSGaussian-UTS x x x 

SPlackett       

NSPlackett-U x     

NSPlackett-T   x   

NSPlackett-S     x 

NSPlackett-UT x x   

NSPlackett-US x   x 

NSPlackett-TS   x x 

NSPlackett-UTS x x x 
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Table A. 5: AICc values for all marginal distributions 

Rainfall  Water level 

Models Sample 1 Sample 2 Sample 3  Models Sample 1 Sample 2 Sample 3 

SGEV 353.024 353.024 1850.206  SGEV -43.745 8.483 -25.648 

SGUM 351.451 351.451 1908.258  SGUM -46.158 8.246 7.795 

SLN 348.185 348.185 1892.357  SLN -43.808 7.403 -3.542 

SWEI 347.365 347.365 1972.834  SWEI -36.084 7.246 -24.268 

NSGEV-U 331.403 331.403 1849.094  NSGEV-U -99.750 -2.604 -52.654 

NSGUM-U 333.418 333.418 1905.505  NSGUM-U -102.209 0.505 -11.888 

NSLN-U 334.475 334.475 1889.877  NSLN-U -98.824 -2.768 -28.158 

NSWEI-U 342.621 342.621 1974.411  NSWEI-U -88.706 -4.687 -53.807 

NSGEV-T 346.805 350.819 1852.260  NSGEV-S -49.777 -53.867 -373.241 

NSGUM-T 344.984 349.675 1910.056  NSGUM-S -52.270 -52.139 -334.005 

NSLN-T 340.904 345.841 1894.370  NSLN-S -51.905 -50.916 -326.345 

NSWEI-T 346.281 348.153 1973.844  NSWEI-S -45.579 -48.691 -331.725 

NSGEV-UT 334.132 333.932 1849.744  NSGEV-US -97.744 -70.731 -520.239 

NSGUM-UT 335.559 335.983 1907.312  NSGUM-US -100.325 -64.926 -489.369 

NSLN-UT 336.954 336.698 1891.268  NSLN-US -97.508 -60.225 -432.603 

NSWEI-UT 344.134 345.176 1974.194  NSWEI-US -86.196 -68.309 -452.994 
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Table A. 6: AICc values for all copulas 

Copulas Sample 1 Sample 2 Sample 3 Copulas Sample 1 Sample 2 Sample 3 

SClayton -1.969 -3.114 1.926 NSClayton-UT -2.537 0.335 2.884 

SFrank -4.860 -5.182 0.335 NSFrank-UT -2.268 -0.735 4.065 

SGaussian -2.883 -1.758 0.068 NSGaussian-UT -0.807 2.434 4.040 

SPlackett -5.214 -6.298 0.406 NSPlackett-UT -1.907 -1.638 4.165 

NSClayton-U -4.817 -2.032 2.661 NSClayton-US -7.767 0.371 2.269 

NSFrank-U -4.631 -3.050 2.061 NSFrank-US -5.247 -1.015 3.378 

NSGaussian-U -3.029 0.048 2.066 NSGaussian-US -4.743 2.461 3.302 

NSPlackett-U -4.200 -4.036 2.163 NSPlackett-US -4.247 -2.634 3.477 

NSClayton-T -4.587 -0.983 3.923 NSClayton-TS -2.195 0.896 5.415 

NSFrank-T -4.460 -3.125 2.199 NSFrank-TS -3.828 -0.806 3.832 

NSGaussian-T -3.216 0.424 2.066 NSGaussian-TS -2.601 2.593 3.303 

NSPlackett-T -3.764 -4.049 2.277 NSPlackett-TS -2.307 -2.588 3.861 

NSClayton-S 0.263 -0.883 3.411 NSClayton-UTS -5.190 2.454 0.452 

NSFrank-S -2.619 -3.082 1.832 NSFrank-UTS -3.797 1.590 5.445 

NSGaussian-S -0.982 0.465 1.249 NSGaussian-UTS -4.293 2.691 5.370 

NSPlackett-S -3.041 -4.973 1.840 NSPlackett-UTS -3.678 -0.242 5.542 
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