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Abstract

The statistical theory of extremes has been widely used in scientific fields including
hydrology, water resources engineering, environmental sciences, finance, public health and so
on. As a foundation concept, the statistical methods based on the extreme value theory require
the assumption of stationarity in extreme event time series. It means that the occurrence
probability of extreme event is not expected to change over time. In recent years, changes in
rainfall characteristics and hydrological cycle have been reported for many places of the
world due to the change in global climate related to human activities. These changes propose
that the assumption of stationarity in hydro-meteorological time series becomes doubtful and
may not be suitable in engineering design applications.

As the biggest economic city in the South of Vietham, Ho Chi Minh City (HCMC) is
an example of an emerging coastal megacity dressing the increases of exposure levels to
climate risks. In HCMC, heavy rainfall, which is considered as a main cause of floods,
witnessed an increase in frequency and magnitude during the last few decades. Although
nonstationarity in extreme rainfall has been proved in many places of the world, research into
nonstationarity feature in extreme rainfall in HCMC has not been paid attention thoroughly.
The covariate Time is usually chosen in previous studies in the literature which aim to model
nonstationary extreme rainfall. However, directly using time covariate based linear form in
nonstationary modelling may create more bias. Further, it is documented that heavy rainfall in
HCMC is influenced by the physical processes. Therefore, in this thesis, Multi-Objective
Genetic Algorithm (MOGA) based method is used for modelling nonstationary extreme
rainfall over HCMC. From the study results, it is observed that the MOGA based method can
be used to develop less bias and good quality nonstationary models which can be used to

model spatial variation of extreme rainfall over HCMC.

Recently, human intervention and climate change have been suggested to be the causes
of changes in extreme water level which impacts on the likelihood of flooding, especially in
coastal areas. In many studies, extreme water level frequency analysis has been developed
under nonstationary condition, in which the parameters of a given distribution vary with time

or several climatological variables. However, the water level shows unique characteristic as



they are strongly impacted by local influences, therefore the covariates used for nonstationary
extreme water level modelling should be chosen with respect to the area of interest. With the
above reasons, it is important to consider local variables which have strong physical
associations with the process of floods for studying nonstationary extreme water level.
Therefore, in this thesis, four local covariates, i.e. rainfall, sea level, urbanization growth and
outflows from upstream reservoirs are used to develop nonstationary extreme water level
models. The results from this thesis indicate that the nonstationary approach using local
covariates is suitable for modelling extreme water level for HCMC. Additionally, based on
the best chosen statistical models, sea level and urbanization are found to be the significant
influences on nonstationarity in extreme water level at all surveyed stations. Moreover, it
could be found that the extreme water level values derived from the stationary models are

underestimated relative to the best nonstationary models for all stations.

Flood hazard maps provide essential information for flood risk management and
mitigation purposes. Basically, the inputs for flood modelling used to create the flood hazard
maps are based on the assumption of data stationarity for flood frequency analysis. However,
the changes in the behavior of the climate system can lead to the nonstationarity in extreme
events as well as flood series. Therefore, two flood sources, i.e. extreme rainfall and sea level
are modelled under nonstationary condition before entering into the flood simulation model as
initial inputs. MIKE FLOOD, which is a coupled hydrodynamic model, is used to simulate
the flood regime. The coupled hydrodynamic model has been developed for cross-sections
based on channel modelling with one-dimensional model and linking these floodplain
modelling with two-dimensional model. The high-resolution topographical data derived from
Light Detection and Ranging (LIiDAR) data and flexible meshes generation are used as the
input data for hydrodynamic model to simulate the flood regime for the study area. From the
results, the spatial variation of flood hazards indicates that the regions located along both
sides of riverbanks are expected to experience a significant increase in the area flooded.
Besides, it is also noted that the floodplain extent is larger based on the assumption of

nonstationarity.

Univariate frequency analysis can be effective if the infrastructure design is based on a
single flood variable. Otherwise, univariate frequency analysis may not provide the complete

behavior of flood characteristics. Recently, multivariate frequency analysis has proven to be a



practical approach by researches, especially in flood frequency analysis. Till date, the use of
nonstationary approach in flood frequency analysis could be found in many studies which
mainly focused on a single random variable, but only a few studies available related to
nonstationary multivariate frequency analysis. Therefore, a part of this thesis is to model the
multivariate based on nonstationary copula approach for flood variables, i.e rainfall and water
level. Copulas are applied to overcome the restriction of classical multivariate flood frequency
analysis by choosing the marginal distribution from different types of the probability
distribution function. Furthermore, the joint probability of rainfall and water level are
constructed using different approaches, which provide more options in choosing appropriate
data sample for analysis. From the results, it is noticed that the Generalized Extreme Value
(GEV) distribution is suggested as the most appropriate marginal distribution for modeling
the flood variables. The joint return periods of rainfall and water level obtained through the
optimal copula and marginal distribution show the significant differences between the
samples. It means that a reciprocal situation can be found, when a higher value of rainfall

corresponds to a lower value of water level and vice versa.

Overal, the findings of this thesis is that the nonstationary approach using local
covariates is suitable for modelling extreme hydrologic water level for HCMC. Furthermore,
it is observed that the MOGA based method can be used to develop less bias and good quality
nonstationary models which can be used to model spatial variation of extreme rainfall over
HCMC. In the flood hazard analysis, the result indicated that the regions located along both
sides of riverbanks are expected to experience a significant increase in the area flooded.
Besides, it is also noted that the floodplain extent is larger based on the assumption of
nonstationarity. In addition, it is noticed that the GEV distribution is suggested as the most
appropriate marginal distribution for modeling the flood variables in the multivariate flood

frequency analysis.
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Chapter 1

Introduction

1.1 Urban flood

Floods could be considered as one of the most devastating natural disasters, impacting
on the social economy, human life and natural environment. For the period of 1980 to 20009,
floods were responsible for approximately 540,000 deaths, and have affected about 2.8 billion
people across the world (Doocy et al., 2013). Flood exposure can be acute significantly in
coastal cities, especially coastal cities in developing countries undergoing population,
economic growth and urban expansion are experiencing more flooding (Hallegatte et al.,
2013, Nicholls et al., 2008, Lasage et al., 2014, Adikari et al., 2010). Globally, seventeenth
out of the twenty most vulnerable cities in 2005 are from developing countries (Figure 1. 1)

which might not possess the flood defense systems as good as the richer ones.

Currently, urban flooding continues to be a problematic concern worldwide with
complicated changes in frequency and magnitude of events due to both the natural processes
and human activities (Birikundavyi et al., 2002, Ishak et al., 2013, Badrzadeh et al., 2015).



The increases in extreme events (e.g. heavy rainfall and coastal storm surges) and rapid
urbanization have been widely recognized for their significant contribution in exacerbating
urban flood (Badrzadeh et al., 2015, Biswas and Jayawardena, 2014, Bergstrom, 1976).
Unfortunately, based on the recent flooding damages recorded in many places across the
world, it seems likely that the increasing unpredictability of natural disasters and floods are
now exceeding present-day design considerations (Perrin et al., 2003).
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Figure 1. 1: The twenty most vulnerable cities in 2005 according to the ratio of average
annual losses (AAL) to the city’s gross domestic product (GDP) (Hallegatte et al., 2013)

1.2 Extreme value theory

Extreme value theory (EVT) is unique as a statistical tool since it develops techniques
and models to describe the unusual rather than the usual (Coles, 2001). The distinguishing
feature of extreme value analysis (EVA) is the ability to quantify the behavior of unusually
large (or small) values even when those values are scarce. Particularly, EVA usually requires



levels of a process event that are more extreme than that have been already observed. For
example, a dam is normally required to protect against all flood events that it is likely to
experience within its lifespan of 100 years. Unfortunately, the observed flood data might only
be available for a shorter period, say 30 years. Therefore, it seems impossible to estimate what
floods might happen over the next 100 years when providing only 30 years of historical data.
Fortunately, EVT provides a framework that enables to extrapolate data from historically
observed levels to unobserved levels as such type (Coles, 2001, Mockler et al., 2016). EVT
has already become one of the most important statistical disciplines for modelling extreme
events over the last few decades. The applications of EVT have been found in various
scientific fields including hydrology, environmental sciences, finance, public health and so

on.

It is a fact that the frequency analysis of extreme events (e.g. water level and rainfall)
plays an essential role in engineering practice, especially in flood structure defense design or
flood risk management. As a foundation concept, the statistical methods based on the extreme
value theory require the assumption of stationarity in extreme event time series. It means that
the occurrence probability of extreme event is not expected to change over time. Nevertheless,
it is recently suggested by many scientists that stationarity may no longer be suitable in

hydro-meteorological frequency analysis.
1.3 Nonstationarity in extreme events

In the most intuitive sense, stationary means that the statistical properties of a process
do not change over time while nonstationary time series shows the trends, seasonal effects and
other structures depend on time. In recent years, changes in rainfall characteristics and
hydrological cycle have been reported for many places of the world due to the change in
global climate related to human activities (Berg et al., 2013, Trenberth, 2011, Groisman et al.,
2005, Milly et al., 2008). These changes propose that the assumption of stationarity in hydro-
meteorological time series becomes doubtful (Sugahara et al., 2009, Khalig et al., 2006).

Also, it is stated that “Stationarity is dead” (Milly et al., 2008).

In fact, the atmosphere and ocean have warmed over decades, and human intervention
has been condemned to be partly responsible for global warming (Min et al., 2011, Petheram

et al., 2012). For every 1°C warming, the atmosphere’s water holding capacity increases by
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7%, which results in more extreme rainfall (Berg et al., 2013, Trenberth, 2011). Besides, the
characteristics of rainfall such as intensity, frequency and duration are also changed due to the
influence of global warming (Trenberth et al., 2003). In the other hand, the recent studies have
reported that extreme rainfall is influenced by the physical processes such as the El Nino-
Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the Indian Ocean Dipole
(10D) or the Pacific Decadal Oscillation (PDO) (Villafuerte et al., 2015, Mondal and
Mujumdar, 2015, Agilan and Umamahesh, 2015, Kenyon and Hegerl, 2010, Cai and Rensch,
2012). That is a reason why the large-scale climate variables have been commonly used in
frequency analysis as the factors causing nonstationarity in extreme rainfall. For example,
Villafuerte et al. (2015) found that ENSO has a significant impact on the changes in extreme
rainfall in the Philippines. Mondal and Mujumdar (2015) reported that global warming, local
temperature changes and ENSO play a significant role in causing nonstationarity in rainfall

extremes over India.

Similar to extreme rainfall, low-flow patterns in many places are also proved to have
nonstationary features in it. To be more specific, in urban areas, natural land surfaces have
been replaced by artificial surfaces to meet the requirement of residential and industrial
purposes, thereby results in increasing the magnitude and frequency of floods (Li et al., 2015).
Prosdocimi et al. (2015) also indicated that increasing urban levels affect significantly on high
flows. Also, recent studies demonstrate the impacts of meteorological patterns and catchment
conditions on the low-flows series (Du et al., 2015, Shin and Kim, 2017). In addition to the
effects of local processes, the global processes (e.g. ENSO, NAO, PDO and so on) also
possibly contribute to the changes in extreme water level as well as flood series (Li et al.,
2015, Menéndez and Woodworth, 2010, L6pez and Francés, 2013). To sum up, the stationary
condition may no longer suitable, and the concept of nonstationarity should be used in the

frequency analysis of extreme water level.
1.4 Flood hazard mapping

In last few decades, the effects of climatic changes and sea level rise have been putting
an additional pressure which could increase flood vulnerability by effecting magnitude and
frequency of floods (Bates et al., 2005, Nicholls and Cazenave, 2010, Purvis et al., 2008,
Karamouz et al., 2017). In reducing damages and losses, flood hazard mapping becomes



priority information since it significantly contributes to the flood warning systems as well as
the flood risk management scheme. However, assessing the flood risk at the river basin is not
a simple task, because of the complex nature of flood generation caused by a combination of
precipitation, river basin characteristics and human activities. Fortunately, the development of
numerical flood modelling in recent years, namely the availability of advanced flood
modelling and modern survey techniques for collection of high-quality input data for those
models, allows to simulate flood behavior and to also study the characteristics of future floods
(Alkema, 2007).

Till now, a variety of models have been developed for providing flood information. A
methodology that combines the advantageous features of one-dimensional (1D) and two-
dimensional (2D) hydraulic models and also the high-resolution of topographic data, are
typically applied. Flood hazard maps show the intensity of floods and their associated
exceedance probability (Di Baldassarre et al., 2010). One of the common approaches of flood
inundation modelling is the use of deterministic based on single simulation (Ali, 2018). In the
deterministic approach, three main issues in developing the flood hazard maps using
hydrodynamic models such as the topography data resolution, the hydrodynamic model

simulation and the design flood hydrograph estimation are commonly considered.

In most of the flood hazard studies, flood depth is widely used to classify the hazard
index (Sharif et al., 2016, Komi et al., 2017, Garrote et al., 2016, Alfieri et al., 2014).
Nevertheless, flood hazard includes many elements such as the stability of human body,
buildings and vehicles in floodwaters (Xia et al., 2011). Therefore, a single parameter cannot
completely assess the potential damage of flood flows on people, buildings and vehicles. In
previous studies, the combination of the flood depth (D) and velocity (V) has been used as a
proxy for the force of the floodwaters to access the instability of human body, vehicles as well
as the failure of buildings in floodwaters (Xia et al., 2011, Xia et al., 2014, Kreibich et al.,
2009). Therefore, it is suggested that the flood hazard maps can be classified using the
combined flood hazard curves derived from the flood depth and velocity thresholds.

1.5 Nonstationary multivariate frequency analysis

It is a fact that univariate frequency analysis can be effective if the infrastructure

design is based on a single flood variable. Otherwise, univariate frequency analysis may not
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provide the complete behavior of flood characteristics (Chebana and Ouarda, 2011). Recently,
multivariate frequency analysis has proven to be a practical approach by researches,

especially in flood frequency analysis.

Till date, the use of nonstationary approach in flood frequency analysis could be found
in many studies which mainly focused on a single random variable, but only a few studies
available related to nonstationary multivariate frequency analysis. However, most of these
studies used time as the explanatory variable of the marginal distribution and dependence
parameters. As a matter of fact, the change of paradigm from stationarity to nonstationarity
can be affected by many causes (e.g. land use and land cover change or climate change). The
effects of these factors may not exactly follow the passage of time. More importantly, the
changes in the climate or watershed characteristics have affected not only in the
nonstationarity of individual hydrological series but also in the dependence structure between
the different hydrological series. Therefore, using time as a covariate in nonstationary
modelling may suffer some limitations. The physical processes which reflect the physical
relationship to hydro-meteorological events should be considered in nonstationary

multivariate frequency analysis.
1.6 Motivation for the study

Floods could be considered as one of the most devastating natural disasters, impacting
millions of people every year across the world (Jongman et al., 2012, Hallegatte et al., 2013,
Lasage et al., 2014, Karamouz et al., 2017). Recently, human intervention and climate change
have been suggested to be the causes of changes in extreme events such as rainfall and water
level which impact on the likelihood of flooding, especially in coastal areas. Since flood
exposure is continuously increasing in coastal zones, there is a growing demand of
estimations of the magnitude and frequency of extreme events for the design of coastal
defense structure as well as flood risk management purpose. Also, as is stated in the previous
section, the nonstationary behavior in hydro-meteorological time series has recently been
studied and developed. Therefore, it is necessary to take nonstationarity into account when

modelling extreme events.

One of the key factors in preventing and reducing flood damages and a number of lives

lost is to provide flood risk assessment information through flood hazard maps. Basically, the
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inputs for flood modelling used to create the flood hazard maps base on the assumption of
data stationarity for flood frequency analysis. However, the changes in the behavior of the
climate system can lead to the nonstationarity in flood series, hence stationary assumption
may lead to incorrect flood risk information. Hence, a part of this thesis is dedicated to

develop flood hazard maps under nonstationary condition.

Coastal zones are commonly vulnerable to floods caused by the combination of
multiple sources. In such areas, floods can result in massive damage when heavy rainfalls
occur concurrently with coastal storm surges, thereby resulting in huge socio-economic losses
(Karamouz et al., 2014, Hunt, 2005). For these regions, univariate frequency analysis may no
longer be effective to describe floods that are characterized by several correlated variables. It
is, therefore, necessary to consider the joint probability of flood-caused sources in the
evaluation and management of flood risk. Therefore, part of this thesis is dedicated to model
the joint probability using the copula-based bivariate frequency analysis, which considers the

nonstationary behavior in the flood series.
1.7 Objectives of the study

With this background and appreciating the significance of the studies on extreme
hydrologic events, flood hazard mapping and flood frequency analysis, the objectives of the
study have been formulated. The objectives of this study are listed as follows: (i) Detecting
and analyzing the trend in the extreme hydrologic variables; (ii) Modelling spatial variation of
extreme precipitation for the study area under nonstationary condition; (iii) Modelling the
flood frequency estimation under nonstationary condition; (iv) Developing inundation maps
for study area considering the changes in environment; and (v) Modelling the multivariate

based on nonstationary copula approach for flood variables.
1.8 Scope of the Study

It is a fact that, extreme rainfall occurrence is controlled by not only one but also many
physical processes. Besides, extreme rainfall is recently proved to have nonstationary feature
in time series and continuously result in severe floods. It is therefore suggested that extreme
rainfall should be analyzed under nonstationary condition before using as initial information

of infrastructure design purpose or making decision purpose. This study suggests an
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appropriate method which considers the impact of physical processes to model extreme
rainfall under nonstationary condition and investigates the spatial variation of extreme rainfall

over a study area.

Recently, human intervention and climate change have been suggested to be the causes
of changes in extreme water level which impacts on the likelihood of flooding, especially in
coastal areas. In many studies, extreme water level frequency analysis has been developed
under nonstationary condition, in which the parameters of a given distribution vary with time
or several climatological variables. However, incorporating all of the physical processes may
increase the bias of nonstationary modelling. Moreover, water level shows unique
characteristic as they are strongly impacted by local influences, therefore the covariates used
for nonstationary extreme water level modelling should be chosen with respect to the area of
interest. With the above reasons, it is important to consider local variables which have strong
physical associations with the process of floods for studying nonstationary extreme water
level. Thus, in this study, the most significant physical processes for modelling extreme water

level are identified.

As an important role of flood hazard mapping and floodplain extent in making
decision, or establishing flood warning systems, it is suggested that the flood sources (e.g.
rainfall, water level, upstream outflows and sea level rise) should be analysed under both
stationary and nonstationary conditions before using as initial inputs of hydrological and
hydrodynamic models since the global climate is continuously changing and unpredictable.
The surveyed cross-sections and high-resolution topographical data are used as the input data
for the coupled hydrodynamic model to simulate the flood regime. Furthermore, the multi-
scale mesh modelling approach, where fine resolution is applied for channel and raised
embankment areas and coarser resolution is developed for uniform topographic height are
used to develop the hydrodynamic model in this study. The coupled hydrodynamic model in
which channel flow is linked to floodplain flow using lateral connection is used to improve
accuracy the flood inundation results without the significant increasing computational
requirement of the hydraulic model. The flood depth and velocity obtained from the
hydrodynamic model are used to develop high-resolution flood hazard maps for the study

area.



Single variable flood frequency analysis does not give a comprehensive understanding
and assessment of the actual behavior of flood phenomena. This approach can lead to high
uncertainty or failure of guidelines in water resources planning, operation and design of
hydraulic structure and floodplain zoning. Therefore, it is essential to study the multivariate
probability behavior of flood correlated variables, especially under the changing environment.
Copulas are widely used for multivariate analysis in various fields. The main advantage of
copulas is that the dependence structure is independently modeled with the marginal
distribution that allows for multivariate distribution with different margins and full coverage
of dependence structure. The essential step in the modelling processing copula is the selection
of copula function, which is the best fit for the data sample. This study suggests that the
copula function should be selected based on the dependence structure of the variable.
Furthermore, the performances of Frank, Clayton, Gaussian and Plackett copulas for an

asymptotic independent variable are also assessed.

1.9 Outline of the thesis

Literature review related to modelling nonstationary extreme events, nonstationary
approach in multivariate frequency analysis, hydrological and hydraulic modelling and flood

hazard mapping are briefly presented in Chapter 2.

Chapter 3 presents the trends analysis in extreme rainfall for eighteen locations in the
study area. Besides, the modelling the spatial variation of extreme precipitation under
nonstationary condition is also introduced in this chapter.

The most significant physical processes which cause the nonstationarity in extreme
water level series are identified and presented in Chapter 4. Besides, the comparison of the
estimated extreme water level corresponding to different return periods between the stationary

and nonstationary cases is also presented.

In Chapter 5, the analysis of hydro-meteorological events under the nonstationary
condition which is used as the input of flood modelling is computed. The developed flood
inundation model using the coupled 1D-2D hydrodynamic model with high-resolution
topography data is also presented. Furthermore, the high-resolution flood hazard maps, which



are quantified by considering the flood depth and velocity in combination, are also established
in this chapter.

Chapter 6 presents the joint probability of correlated flood variables (i.e. water level
and rainfall) using nonstationary copula-based bivariate frequency analysis. As such, the
nonstationary behavior is modelled for dependence structure and marginal distributions by
using local physical processes as covariates. The estimated joint return period of selected

variables using the optimal copula and marginal distribution is introduced in this chapter.

Chapter 7 presents the summary of the study, the conclusions arrived and some
recommendation for further research activities based on the conclusions from study on

modelling nonstationary extreme events.
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Chapter 2

Literature review

2.1 Introduction

In this chapter, literature related to modelling nonstationary extreme events,
nonstationary multivariate frequency analysis, hydrological and hydraulic modelling and
flood hazard mapping are briefly discussed. In detail, the nonstationarity in extreme events
time series, i.e. rainfall and water level due to the changes in various physical processes which
are diving extreme occurrences is discussed. Then, the studies related to nonstationary
multivariate frequency analysis is presented. Hydrological and hydraulic modelling and the
flood hazards estimation based on the deterministic approach are presented in the next two

sections.

The overview of the entire study is organized as follows. The trend of time series is
firstly tested using statistical test. Then the nonstationary univariate and bivariate frequency
anlsysis are developed for extreme hydrologic events. In the nonstationary univariate

frequency analysis, extreme rainfall and water level are modeled using time and local physical
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components as covariates. And then, the return level of these extreme hydrologic events are

used as input
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for hydrodynamic model to develop the high-resolution flood hazard for the study area. The
marginal distributions and dependence structures are also modeled under nonstationary
condition in the nonstationary bivariate frequency analysis part. The joint return period of
each sample from the combination of these extreme hydrologic events are assessed. The

general methodology flowchart is shown in Figure 2.1.
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Figure 2.1: Overal methodology in this study
2.2 Modelling nonstationary extreme events

Although the nonstationarity in the hydrological regime has been widely accepted in

recent years by hydrologists, it is not easy to provide adequate evidence for supporting it due
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to measurement bias, shortage in data and the high variability of hydrological processes in
nature (Strupczewski et al., 2001). When having statistical evidence of nonstationarity in time
series and having identified a time trend, it can be considered as the resultant of various
external and internal long-lasting actions in a basin such as human activities, natural variation
of climate and so on. Once the time series are nonstationary, modelling the statistical
characteristic of the nonstationarity is needed. There are two main methods for hydro-
meteorological frequency analysis, namely non-parametric and parametric methods. While
non-parametric methods show their limitations for hydraulic design due to the requirement of
sample size, parametric methods have become widely used methods for fitting probability
distribution to data since they can produce asymptotically efficient and unbiased estimated
(Strupczewski et al., 2001). During the last few years, the nonstationarity in extreme hydro-
meteorological events is modelled by many researchers for different applications. In this sub-

section, such studies are briefly discussed.

Sugahara et al. (2009) assessed the frequency of nonstationary extreme rainfall in the
Sao Paulo City, Brazil, for the period of 1933- 2005. In that study, authors used the
Generalized Pareto Distribution (GPD) to fit extreme rainfall series extracted using the peak
over threshold (POT). Besides, different percentiles of rainfall are used to define a threshold
for extracting POT series. Then, four GDP models, including one stationary and three
nonstationary models, are constructed for each extracted time series. Three covariates, i.e. the
annual cycle, linear trend and both annual cycle and linear trend, were used in constructing
nonstationary models. In that study, the corrected version of Akaike Information Criterion
(AlICc) was used to identify the best model among the four models. The results from that
study showed that the nonstationary model with a linear trend in the scale parameter is found
to be the best model. In addition, 0.99 quantiles of daily rainfall amount have increased by 40
mm between 1933 and 2005.

Villafuerte et al. (2015) modeled the nonstationarity in extreme rainfall in the
Philippines over the period 1911-2010. In particular, authors used GEV distribution and
linked the location parameter of GEV distribution with two covariates (i.e. global mean
temperature and ENSO). The best fitting model is selected using the Akaike Information
Criterion (AIC) and the likelihood ratio test. The significant changes in extreme rainfall in the

study area were found to be related to the near-surface global mean temperature and ENSO.
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The results also imply a potential intensification and an increase in the occurrence of extreme

rainfall in the future since the global mean temperature continues to rise.

Agilan and Umamahesh (2016b) developed nonstationary rainfall Intensity- Duration-
Frequency (IDF) curves for the Hyderabad City, India. In that study, authors modeled the
character of rainfall using GEV distribution and allowed the parameters of GEV distribution
to vary with five physical covariates (i.e. urbanization, ENSO, 10D, local temperature
changes and global warming) and Time covariate. Authors used AIC and the likelihood ratio
test to choose the best model. In addition, to develop the nonstationary rainfall IDF curves,
authors used 95™ percentile of location and scale parameters values in historical observed.
The results showed that urbanization and local temperature changes are the best covariates for
short duration rainfall, and global processes are the best covariates for long duration rainfall.
Moreover, the findings also indicated that the covariate Time never qualified as the best
covariate. Similar to above discussed studies, there are many studies which model
nonstationarity in extreme rainfall in different parts of the world include, but are not limited to
Begueria et al. (2011), Villafuerte and Matsumoto (2015), Panagoulia et al. (2014), Agilan
and Umamahesh (2015), Mondal and Mujumdar (2015),Wi et al. (2016), Yilmaz et al. (2016).

Mudersbach and Jensen (2010) analyzed the frequency of nonstationary extreme water
level of the German North Sea. First, authors used the non-parametric Mann-Kendall (M-K)
test to detect significant trends in annual maximum water level and found that time series
have a significant trend on the basis of the 95% significant level. Further, authors modeled the
annual maximum water level series using GEV distribution. In details, authors allowed the
location and scale parameter of GEV distribution to vary with time. The results showed that
the nonstationary GEV approach is suitable for determining coastal design water level.

Masina and Lamberti (2013) investigated the spatial and temporal changes in extreme
water level in the North Adriatic based on historical data from the Trieste, Venice, Porto
Corsini and Rimini tide gauges. In that study, authors modeled the extreme water level series
using GEV distribution and allowed the distribution parameters to vary nonlinearly. In
particular, the regional climate indices such as the NAO and Arctic Oscillation (AO) are used

in analyzing the variability of the extreme water level along the Northern Adriatic coast. The
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findings indicated that the AO is found to be more influential than NAO on extreme sea level

in the study area.

Razmi et al. (2017) modeled the nonstationary extreme water level in a coastal part of
New York City for a period of 1920-2015. In that study, authors used annual maxima (AM)
and POT approaches to extract data time series. The extracted time series were checked for
potential trend and nonstationarity using statistical tests including M-K, Augmented Dickey-
Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) testes and were found to be
significantly increasing. The GEV distribution and GPD distribution were applied as the
probability distribution functions on the extracted data under nonstationary approach. Authors
allowed the location and scale parameters to vary with time, while the shape parameter was
considered to be constant. Ten stationary and nonstationary GEV models were fitted to the
selected data. The results showed that the design values of extreme water level under
nonstationary condition were significantly different from those obtained under the stationary
assumption. Authors also recommended that nonstationary frequency analysis should be used
to estimate values of hydrologic variables in different design periods. Similar efforts to model
extreme water level under nonstationary condition include, but are not limited to Méndez et
al. (2007), Menéndez and Woodworth (2010), Masina and Lamberti (2013), Skjong et al.
(2013), Serafin and Ruggiero (2014).

2.3 Nonstationary approach in multivariate frequency analysis

Multivariate parametric distributions which have been extended from univariate
distribution have been commonly used to model multivariate extreme events (e.g. flood,
rainfall, wind and wave). Traditionally, multivariate frequency analysis is based on stationary
approach. However, as mentioned earlier, due to the changing environments and human
activities, the statistical characteristics of hydrological series in watersheds may be altered,
hence leading to nonstationary feature in times series. Therefore, the use of nonstationary
approach in multivariate frequency analysis has now become more and more essential for

hydrology design under changing environments.

Bender et al. (2014) used bivariate nonstationary approach to investigate the time-
dependent behavior of bivariate hydrological design parameters. In that study, the flood peak

and volume time series of the Rhine River providing 191 years of data are used for analysis.
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Authors used GEV distribution to model the marginals and Archimedean copulas to model
the dependence structure between flood peak and flood volume. The authors found that the
influence of trends in the marginal distribution parameters on the corresponding design values

is substantially larger than trends in the dependence measure.

Karamouz et al. (2017) suggested an integrated framework to delineate floodplain and
assessment of flood damage for Manhattan in New York City by considering the joint effect
of inland and coastal flooding. In that study, rainfall and water level data rea tested for
frequency analysis considering data stationarity and nonstationarity. Authors used GEV
distribution to obtain and compare extreme rainfall and water level magnitudes in different
return periods. The bivariate Gaussian, t, Clayton and Gumbel copulas are used to model
dependence structure between rainfall and water level in that study. A geographic information
system (GIS)-based model, using depth-damage functions, land use data, digital elevation
model (DEM) and raster maps, is used to estimate flood damage. The results from that study
show that floodplain extent and estimation of flood damage are increased when data
nonstationarity is considered. Similar efforts using nonstationary approach in multivariate
frequency analysis include, but are not limited to Jiang et al. (2015), Sarhadi et al. (2016),
Ahn and Palmer (2016).

2.4 Hydrological and hydraulic modelling

2.4.1 Hydrological model

Hydrological modelling involves formulating the mathematical models to describe the
hydrological processes such as surface flow, rainfall, infiltration, snowmelt, interception,
evapotranspiration as well as their interactions. Hydrological modelling is considered as a
valuable tool for researchers in the field of water resources planning and management. Till
date, various hydrological models have been developed and applied in small, large or very
complex basins across the world to access the effects of climate change on water resources in

general and floods in particular.

Rainfall-runoff models can be classified according to the physical processed involved
into modelling as well as model input and parameters. It can be classified as lumped and

distributed model based on the model parameters as a function of space and time. Model is
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deterministic if a set of input values will always produce the same output values, while a
model is stochastic if the input values need not produce the same output values. Besides,
Models can also be classified as static and dynamic models based on time factors. As such, a
static model excludes time while a dynamic model includes time. In a nutshell, the most
popular and important classifications are empirical, conceptual and physically-based models
(Devia et al., 2015). This sub-section is devoted to introduce briefly the characteristics of

these three hydrological models.

Empirical models (Metric models) are primarily based on observations and seek to
characterize system response from those data, without considering the changes in the
catchment. In details, the mathematical equations in these models are derived from concurrent
input and output data and not from the physical processes within catchment. Unit hydrograph,
statistical models (i.e. linear and non-linear regressions) and machine learning techniques (e.g.
artificial neural network, fuzzy regression and k nearest neighbor) are commonly used in the
empirical models. The machine learning techniques are widely used and proved to be
appropriate tools for hydrological modelling, especially in stream-flow prediction. However,
the models derived from the machine learning techniques seem not to add any scientific

knowledge or improved understanding in the field of hydrology.

Badrzadeh et al. (2015) developed models applied for real-time runoff forecasting at
Casino station on Richmond River, Australia based on four different approaches, namely
traditional artificial neural network (ANN), adaptive neuro-fuzzy inference systems (ANFIS),
wavelet neural networks (WNN) and hybrid ANFIS with multi-resolution analysis using
wavelets (WNF). The results confirmed the robustness of hybrid wavelet-based models
compared to ANN, adaptive neuro-fuzzy inference systems, wavelet neural networks. Yaseen
et al. (2016) forecasted the monthly stream-flow discharge rate in the Tigris River, Irag using
the extreme learning machine (ELM) method. The results from that study showed a good
improvement using ELM model than support vector regression and generalized regression
neural network in hydrological forecasting problems. Similar efforts using empirical models
in hydrological events prediction include, but are not limited to Birikundavyi et al. (2002),
Chang and Chang (2006), Biswas and Jayawardena (2014), Badrzadeh et al. (2015).
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Conceptual models (Parameter models) mimic the hydrological processes by
conceptualizing the catchment as a number of interconnected storages. Conceptual models
also considered physical law but in profoundly simplified form. The mathematic functions are
used in this method to describe the movement of water within the catchment. The model
parameters are assessed not only from field data but also through calibration. Conceptual
models are useful for various purposes and they can be used to infill the lost data or

reconstruction of flow sequences.

One of the well-known conceptual models is the Stanford Watershed Model (SWM)
elaborated by Crawford and Linsley (1966). The Sacramento model (Bergstrom, 1976) and
the GR4J model (Perrin et al., 2003) are other well-known conceptual rainfall-runoff models
with different complexities. Vaze et al. (2011) investigated the implications of different
rainfall inputs on the calibration and simulation of four conceptual models using data from
240 catchments across southeast Australia. Four rainfall-runoff models including Simplified
Hydrolog (SIMHYD) (Porter and McMahon, 1971), Sacramento, Soil Moisture Accounting
and Routing Model ( SMARG) (Kachroo, 1992), and Identification of Unit Hydrographs and
Component Flows from Rainfall, Evaporation and Streamflow Data (IHACRES) (Jakeman et
al., 1990) were used. In that study, the results indicated that the better spatial rainfall
representation gives better estimates of mean annual runoff for the SMARG, SIMHYD and
the Sacramento models. Similar to that study, there are many studies which show that
applications of conceptual models on river flow predictions. These include, but are not limited
to Petheram et al. (2012), Shin et al. (2015), Mockler et al. (2016), Shin and Kim (2017),
Onyutha (2019).

Physically-based models are based on physical law and theoretical principles. These
models are characterized by parameters derived by field measurements and have a direct
physical significance. The models use a spatial discretization based on grid, hillslopes or
some hydrologic response units. Therefore, these models can be highly appropriate when a
high level of spatial discretization is needed in modelling. The physically-based models can
have many advantages compared to other models because of the use of parameters having a
physical interpretation. The limitation of these models is that large data needed, scale-related

problems and overparameterization.
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MIKE SHE is one of the best-known models, which was developed by a consortium of
European institutes such as Danish Hydraulic Institute (DHI), British Institute of hydrology
and French consulting agency SOGREAH. MIKE SHE is a fully distributed, physically-
based, distributed model capable of both single event and continuous simulations. The model
can able to simulate hydrology in plot field and watershed scale The physical based on nature
for the model lends inclusion of topography and watershed characteristics (i.e. soil, vegetation
and weather parameter sets). Besides, physically-based models such as SWAT and the
Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS) are also used
universally to estimate runoff in both gauged and ungauged watersheds. SWAT is a complex
physically-based, continuous model and was designed to forecast the impact of watershed
management practices on hydrology, sediment, water quality and agriculture production on
the gauge and ungauged basins. The model simulates a watershed by dividing it into sub-
basins which are further subdivided into Hydrologic Response Units (HRU). For each HRU in
every sub-basin, SWAT simulates the soil water balances, groundwater flow, lateral flow,
channel routing, evapotranspiration, crop growth and nutrient uptake, pond and wetland
balances, soil pesticide degradation and in-stream transformation nutrients and pesticides.
HEC-HMS model is a physically-based distributed model, designed to simulate the rainfall-
runoff process of dendritic watershed systems. This model has been widely used to simulate

and forecast streamflows in humid, tropical, subtropical and arid watersheds.

Golmohammadi et al. (2014) used MIKE SHE, Soil and Water Assessment Tool
(SWAT) and Agricultural Policy Environment extender models to simulate the streamflows
of the Canagagigue watershed in the Grand River basin, Canada. The results indicated that the
mean daily and monthly flow simulated by MIKE SHE was much better than other models.
Three hydrological models, i.e. NAM, SWAT and MIKE SHE, used to model the combined
impact of climate change and land use change on hydrology for a catchment in Denmark in a
study of Karlsson et al. (2016). The results indicated that substantial changes in discharge
extreme due to the changing of land use. Similar efforts using physically-based models in
simulating rainfall-runoff include, but are not limited to Larsen et al. (2014), Lin et al. (2015),
Kabiri et al. (2015), Cibin et al. (2016), Teng et al. (2018).
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2.4.2 Hydraulic model

Hydraulic modelling of surface water is an important element for hydrological and
geomorphological applications, especially in floodplain flow simulation. Hydraulic models
can be classified by spatial dimension, namely one-dimensional (1D), two-dimensional (2D)
and three-dimensional (3D) hydraulic models. The 1D models are the most widespread
approach due to numerical stability and computational efficiency. The 1D models can solve
the problems of flood flows in open channel with the assumption that the water level is
confined within its riverbanks. In contrast, when water is over the riverbank, the 2D models
may be the most appropriate solution for flood simulation. The 2D models can solve full
shallow water equations which are able to simulate timing and duration of flooding with high
accuracy. The water flows can be simulated by 3D models. However, 3D models are time-

consuming with relatively low efficiency compared to 1D and 2D models (Liu et al., 2015).

HEC-RAS and MIKE 11 are two of the worldwide-known 1D hydraulic models. HEC-
RAS has been developed by the Hydrologic Engineering Centre (HEC) of United States
Army Corps of Engineers (USACE), while MIKE 11 was developed by the Danish Hydraulic
Institute. HEC-RAS can simulate steady and unsteady flows in the river channels and
floodplains, while MIKE 11 is applied for unsteady flow simulation in rivers and floodplains.
Other 1D models were developed for flow simulation including FLDWAYV and FLUCOMP
(Fread and Lewis, 1988, Ervine and MacLeod, 1999). Ahmed (2010) developed a watershed
model using MIKE 11 for the Rideau Valley Watershed, Ontario. In that study, a detailed
model including 532 km of rivers and lakes, 106 basins, 122 bridges and culverts and 20
water control structures were developed. Authors used observed streamflow data for a period
of 5 years for calibration and an additional 5 years of data for validation. The results showed
that the developed model could simulate the hydrological processes with a reasonable to high
degree of accuracy. Timbadiya et al. (2011) simulated unsteady flows of Tapi River from
Ukai dam to Surat city by HEC-RAS model using field surveyed geometric data of the
stream. In particular, authors used the flood flows of the year 1998, 2003 and 2006 for model
simulation. The performance statistics from that study revealed that the simulated flood flows
are in close agreement with the observed flows, therefore the model can be used for flood

forecasting in lower Tapi River. Similar efforts using 1D models in flow simulation include,
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but are not limited to Yoshida and Dittrich (2002), Zhang and Shen (2007), Mu and Zhang
(2007), Paz et al. (2009), Timbadiya et al. (2014b).

In recent years, a variety of 2D hydraulic models have been developed for providing
flood information. Among these models, TELEMAC-2D, MIKE 21, TUFLOW, Delft3D-
FLOW and SOBEK are the most widespread models used for flood-prone areas modelling
and mapping. Teng et al. (2015) developed inundation maps for the Murrumbidgee region and
Macquarie-Castlereagh region, Australia. In details, authors used MIKE 21 hydraulic model
and airborne laser altimetry digital elevation model to derive the floodplain storages. The
results from MIKE 21 model (i.e. inundation extent, volume and water depth) showed a good
agreement (above 85% agreement) with those obtained from high satellite imageries. Authors
suggested that the model is suitable for practical floodplain inundation simulation as well as
scenario modelling under both current and future climate conditions. Similar to that study,
there are many studies which show that applications of 2D hydraulic models in flood
inundation simulation. These include, but are not limited to Bates et al. (2005), Dutta et al.
(2007), Abu-Aly et al. (2014), Karim et al. (2015), Costabile and Macchione (2015), Shen et
al. (2015), Ticehurst et al. (2015).

2.5 Flood hazard mapping

In the last few decades, the effects of climatic change and sea level rise have been
creating additional pressure which could increase flood wvulnerability by affecting the
magnitude and frequency of floods (Bates et al., 2005, Nicholls and Cazenave, 2010, Purvis et
al., 2008, Karamouz et al., 2017). In terms of reducing damages and losses, flood hazard
mapping has become a priority, since the information significantly contributes to flooding

warning systems, as well as flood risk management schemes.

There are two main approaches to develop the flood hazard maps, namely
deterministic and probability approaches. The most common representation of simulation
results is a deterministic flood inundation map based on a single simulation. Probabilistic
flood mapping designed to incorporate uncertainty from input data and model parameters,
represent spatial and temporal risk and present flood maps in terms of probabilities and

percentages.
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2.5.1 Probabilistic approach

In the probabilistic approach, the process of floodplain mapping requires certain steps.
These steps include: (i) the setting up of flood inundation models; (ii) sensitivity analysis of
the model using historical flood data and (iii) ensemble simulation using an uncertainty
design event. The probabilistic approach, which is based on ensemble simulation, does not
necessarily require the use of physical behavior of the river and floodplain models. Di
Baldassarre et al. (2010) compared two different methods (i.e. deterministic and probabilistic)
for flood hazard mapping using 2D hydrodynamic model. Their study indicated that flood
hazard mapping using probability approach seems to be more reliable. Kalyanapu et al. (2012)
used Monte Carlo based 2D flood inundation framework for estimating flood hazard
mapping. Their study showed that the probability-weighted flood risk approach provides
improved accuracy of flood risk estimation.

However, the main disadvantages of using physically-based 2D hydraulic models in
probability frameworks, have been the simulation time required for each simulation.
Simulating hundreds of flood events with these computational speeds would take large
computer time making 2D model application counterproductive (Timbadiya et al., 2014a). A
probability analysis with 2D hydraulic models has been limited to a smaller number of
scenarios and smaller spatial domains. Besides, Aronica et al. (2012) suggested that flood
inundation probability alone may be insensitive to discharge in relatively steep urban
catchments and maybe a limited measure of flood hazard. Moreover, Thompson and Frazier
(2014) supposed that a few probabilistic flood hazard maps were limited with respect to the
hazard behavior they modelled. These models could also be computationally expensive and

parameterization was difficult to compute for forces that were not fully predictable.
2.5.2 Deterministic approach

In a deterministic approach, floodplain maps consist of the construction of a
physically-based fully 2D hydraulic model, calibration and validation of the model using
historical flood event, using the best-fit statistical model to generate the design flood
hydrograph and elaboration of the model results to generate flood hazard maps. Deterministic
modelling tools have widely been applied because they are capable of translating changes in

input parameters into a change in flood characteristics.
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Flood inundation depth and inundation extent can be computed using computational
models based on solutions of the full or approximate form of the shallow water equations. 2D
hydrodynamic models are identified as the appropriate tools for simulating the flow of water
over flat terrain and complex topography. 2D hydrodynamic model results provide further
opportunity to develop more meaningful hazard maps by incorporating additional hazard

parameters.

The high-resolution flood hazard maps, which was developed using the advanced
deterministic and probability approaches, can provide complete information about the
physical hazard and reduce uncertainty found in traditional approaches. Masood and Takeuchi
(2012) developed flood hazard maps using 1D hydrodynamic model for the city of Dhaka in
Bangladesh. Their studies used a simple form of deterministic approach in establishing flood
hazard maps. Mazzoleni et al. (2013) suggested a semi-probabilistic approach to develop the
hazard map due to embankment-overtopping for the Po River basin. They used 1D and 2D
hydrodynamic models to simulate the hydrodynamic regime (i.e. water depth and flow
velocity) and the flood hazard maps were obtained using the hazard curves, which combined
different flood parameters (i.e. flood extent, water depth and flow velocity). Similar efforts
using deterministic approach combined to high-resolution data in flood and inundation
mapping include, but are not limited to Moore (2011), Sampson et al. (2012), Shen et al.
(2015), Papaioannou et al. (2016).

2.6 Conclusions

In this chapter, an overview of the literature on statistical modelling nonstationary
extreme events, hydrological modelling, hydraulic modelling and flood hazard mapping are
presented. It seems that the extreme events are increasing in frequency, duration and
magnitude in many places across the world, and are likely to cause more intense and frequent
floods. Therefore, modelling characteristic of extreme events is essential and has been paid

more attention from many researchers over the last few years.

It is the fact that the atmosphere and ocean have warmed over decades, and human
intervention has been condemned to be partly responsible for global warming (Min et al.,
2011, Petheram et al., 2012). For every 1°C warming, the atmosphere’s water holding
capacity increase by 7%, which results in more extreme rainfall (Berg et al., 2013, Trenberth,
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2011). In addition, natural land surfaces have been replaced by artificial surfaces to meet the
requirement of residential and industrial purposes, thereby results in increasing the magnitude
and frequency of floods (Li et al., 2015). Prosdocimi et al. (2015) also indicated that the
increases in urban levels affect significantly on high-flows. Also, recent studies demonstrate
the impacts of meteorological patterns and catchment conditions on the low-flows series (Du
et al., 2015, Shin and Kim, 2017). Moreover, the global processes (e.g. ENSO, NAO, PDO
and so on) also possibly contribute to the changes in extreme events as well as flood series.
However, incorporating all of physical processes may increase the bias of nonstationary
extremes modelling. Hence, most of this thesis focuses on modelling extreme events

concerning covariates of the nonstationary models.

One of the measures to mitigate the flood damage is providing useful information
through floodplain areas, the spatial distribution of flood hazard. Therefore, it is of great
importance for understanding flood hazard at river scale. Flood modelling inputs that are used
to create flood hazard maps are normally based on the assumption of data stationarity for
flood frequency analysis. However, changes in the behavior of climate systems can lead to
nonstationarity in flood series. Hence, a part of this thesis is dedicated to develop flood hazard

maps for HCMC, Vietnam, under nonstationary condition.

Coastal flooding is predicted to be increasing significantly in developing-country cities
that are undergoing urban extension and economic growth. In such areas, floods can result in
massive damage when heavy rainfalls occur concurrently with coastal storm surges, thereby
resulting in huge socio-economic losses. Under the changing environments, multivariate flood
frequency analysis, which carefully considered the nonstationary behavior in the flood series,
can provide more information for flood mitigation. Hence, a part of this thesis focuses on a
nonstationary bivariate approach and its application for HCMC where there has been

increasing vulnerability to floods from multiple sources.
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Chapter 3

Modelling spatial variation of extreme precipitation over

Ho Chi Minh City under nonstationary condition

3.1 Introduction

In recent years, changes in rainfall characteristics and hydrological cycle have been
reported for many places of the world, especially increasing in rainfall extremes, due to the
change in global climate related to human activities (Berg et al., 2013, Trenberth, 2011,
Groisman et al., 2005, Milly et al., 2008). These changes propose that the assumption of
stationarity in hydro-meteorological time series may be no longer suitable (Sugahara et al.,
2009, Khaliq et al., 2006). As such, the concept of nonstationary extreme value analysis has
been well developed and used in modelling the behavior of rainfall extremes in many regions
as Taiwan, China, West Central Florida, South Korea and Greece and so on (Chu et al., 2013,
Feng et al., 2007, Nadarajah, 2005, Park et al., 2011, Kioutsioukis et al., 2010, Westra et al.,
2013).
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In other hand, the previous studies have reported that extreme rainfall is influenced by
the physical processes such as the ENSO, NAO, IOD or PDO (Villafuerte et al., 2015,
Mondal and Mujumdar, 2015, Agilan and Umamahesh, 2015, Kenyon and Hegerl, 2010, Cai
and Rensch, 2012). That is a reason why the large-scale climate variables have been
commonly used in frequency analysis as the factors causing nonstationarity in extreme
rainfall. For example, Villafuerte et al. (2015) found that ENSO has a significant impact on
the changes in extreme rainfall in the Philippines. Mondal and Mujumdar (2015) reported that
global warming, local temperature changes and ENSO play a significant role in causing
nonstationarity in rainfall extremes over India. Hence, the physical processes associated with
extreme rainfall have a periodicity component in it (Agilan and Umamahesh, 2016a).
Introducing periodicity feature in extreme rainfall frequency analysis is therefore needed,

which could significantly impact on the chosen design values.

Most of the studies in modelling extreme rainfall under nonstationary condition, the
linear trend was commonly adopted to express the function of parameters of chosen
distribution. In particular, Wi et al. (2016) constructed nonstationary GEV distribution and
GPD models by introducing linear trend in location and scale parameters. Villafuerte et al.
(2015) investigated the changes in extreme rainfall in the Philippines using GEV distribution
with linear form of location parameter. Cheng and AghaKouchak (2014) used a nonstationary
GEV distribution with linear trend in location parameter to develop the rainfall intensity-
duration-frequency curves. However, Agilan and Umamahesh (2016a) recommended that
using time covariate based linear form could lead to increase the bias of nonstationary model.
Um et al. (2017) suggested that nonlinear function could be a useful option when applied to
the nonstationary frequency analysis of extreme rainfall. And the use of flexible nonlinear
forms to model nonstationarity in extreme rainfall could be found in many researches
(Sugahara et al., 2009, Panagoulia et al., 2014, Agilan and Umamahesh, 2016b, Yilmaz et al.,
2016). Thus, among many nonlinear forms that were established and used in the past,
choosing an appropriate form for modelling nonstationary extreme rainfall mimicking all

involved physical processes is essential.

The main objective of this study is to model the spatial variation of extreme rainfall
over HCMC, a flood-prone city in the South of Vietnam, using appropriate nonstationary

GEV model. In order to address this objective, the observed data is firstly checked for the
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possible trend by using the M-K test. The nonlinear trend in the extreme rainfall time series is
developed by the use of MOGA. The best model is chosen by the AICc and the likelihood
ratio test. Finally, the best nonstationary model is used to investigate the spatial variation of

extreme rainfall corresponding to different return periods.
3.2 Study area

HCMC is located in the South of Vietnam and belongs to a transitional region between
the southeastern and Mekong River Delta regions. This city is considered as a typical example
of a vulnerable coastal city. Much of HCMC is located in low-lying lands of the Saigon-
Dongnai River basin that are prone to frequent flooding (World Bank, 2010, Lasage et al.,
2014). Total 154 of the city’s 322 communes and wards have a history of regular flooding,
affecting 12 percent of the HCMC population (around 971,000 people) (ADB, 2010).
Governed by a tropical monsoon climate, the annual average temperatures in HCMC range
from 26°C to 27°C, and seasons are separated into wet and dry. Annual average rainfall is
around 2,000 mm which mainly occurs in the wet season from May to October. The heavy
rainfall in a short period is considered as the main cause of floods in rainy season (Le Vo,
2007, ADB, 2010).

In last few decades, beside huge challenges related to fast-growing population,
urbanization and industrialization (Le Vo, 2007, World Bank, 2010), HCMC also has to cope
with climate problems such as increases in frequency and magnitude of extreme rainfall
events (ADB, 2010). In addition, the impacts of ENSO and PDO on rainfall regimes in
Vietnam has been investigated by recent studies (Gobin et al., 2015, Yen et al., 2011, Chan
and Zhou, 2005, Nguyen et al., 2014, Chen et al., 2013), which partly influence the extreme
rainfall in HCMC. Since extreme rainfall continuously result in severe floods and inundations,
it is necessary to detect the trends and develop the spatial variation of extreme rainfall over
the entire HCMC, which can be used for the city government in urban planning or

infrastructure design purpose.
3.3 Data

In this study, the daily rainfall data are carefully selected from the National Hydro—

Meteorological Service (NHMS) of Vietnam. The stations which had numerous days of
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missing data in a year are excluded from this study. Only rain gauges with longer rainfall
records are selected for this study because the length of data records has a significant
influence on the accuracy of parameter estimation of the extreme value distribution (Yilmaz et
al., 2016). In particular, the dataset contains 8 stations within HCMC and 10 stations outside
HCMC (i.e. Binh Duong, Dong Nai, Ba Ria Vung Tau, Long An and Tay Ninh provinces)
that have long-term precipitation observations and spread over the entire study area (Figure 3.
1) is used. The average record length is 40 years. The details of selected stations, including

name, location and the length of data, are shown in Table 3. 1.
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Figure 3. 1: Study area and locations of selected rainfall stations
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Table 3. 1: Details of selected rain gauges for the study

Degrees, minutes and seconds

Region Station name Longitude | atitude Data period
Cuchi 106°29'00" 10°58'00" 1980-2014
Hocmon 106°36'00" 10°53'00" 1980-2014
Thuduc 106°45'00" 10°50'00" 1980-2014
Macdinhchi (MDC) ~ 106%42'01" 10°47'02" 1980-2014
HCMC ] )
Tansonnhat (TSN) 106°40'00" 10°49'00" 1956-2014
Binhchanh 106°44'00" 10°44'00" 1980-2014
Nhabe 106°47'00" 10°41'00" 1980-2014
Cangio 106°59'00" 10°24'00" 1980-2014
Binh Duong  S0sa0 106°37'07" 11°02'33" 1958-2013
TayNinh  Godau 106°12/00" 11°09'36" 1980-2014
Bienhoa 106°49'30" 10°57'25" 1958-2015
Longthanh 106°35'00" 11°49'00" 1980-2014
DongNai  Tuctrung 107°12/00" 11°05'00" 1978-2015
Xuanloc 107°1400" 10°56'00" 1949-2015
Trian 107°02'22" 11°05'15" 1980-2014
Benluc 106°25'00" 10°38'00" 1980-2014
Long An
Tanan 106°25'00" 10°32'00" 1980-2014
.E;ZUR""‘ VUNG  \/ungtau 107°05'00" 10°22'00" 1949-2015
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Figure 3. 2a provides the average annual rainfall of all selected stations. It can be seen
that there is a wide variation in the average annual rainfall amount between rain gauges. The
stations located in Dong Nai province have the high values of annual rainfall, around 2,000
mm (e.g. Longthanh, Trian, Tuctrung and Xuanloc). Whilst the stations located within HCMC
have the lower values of annual rainfall, especially in Cangio station. Figure 3. 2b shows the
maximum daily rainfall over the surveyed period of all stations. It is observed that the highest
daily rainfall above 300 mm occurred in Xuanloc station, whereas the lowest value of 140
mm occurred in Hocmon station. Figure 3. 3 shows the maximum annual daily rainfall time
series with the linear trends of Tansonnhat (TSN) and Hocmon stations during the observed
period. Through this figure, time variability of mean and standard deviation of the two series
from neighboring stations can be seen. The dates of maximum daily rainfall of both these

stations for a period of 1980-2014 are also provided in Figure A. 1.
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Figure 3. 3: The maximum annual daily rainfall time series with the linear trends

(dotted lines) of Tansonnhat (TSN) and Hocmon stations during the observed period

3.4 Methodology

The methodology of this study is organized as follows. The nonstationarity in rainfall
time series is firstly detected using statistical test. Then the nonstationary GEV models are
developed in which location parameter is expressed as a function of non-linear trend. The best
model for each station could be found by the AICc and the likelihood ratio test. Based on the
best models, the spatial variation of extreme rainfall over in HCMC and adjacent areas are

mapped corresponding to the return periods of 5, 25 and 50 years. The methodology flowchart
is shown in Figure 3. 4.
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Figure 3. 4: Flowchart to determine the return levels

3.4.1 Trend test

Climatic extremes, particularly heavy rainfall events, have significantly increased in

34

the past few decades due to human activities, urbanization and global climate change (Cheng
and AghaKouchak, 2014, Berg et al., 2013, Trenberth, 2011, Min et al., 2011). Hence, the
rainfall time series may have a nonstationary component. Normally, trend analysis is used to
detect the nonstationarity signal in the rainfall time series. The M-K test (Mann, 1945,
Kendall, 1962), a non-parametric statistical test, is widely used to analyze the monotonic
trends in series of environmental data, climate data or hydrological data (Katz, 2013, Pohlert,
2016). The resultant M-K test statistic (Tau) indicates how strong the trend is and whether it

is increasing or decreasing. It has been used by a number of researchers to access significant



trends in the extreme precipitation data (Rakhecha and Soman, 1994, Guhathakurta et al.,
2011, Pingale et al., 2014, Zhang et al., 2008, Douglas and Fairbank, 2010, Westra et al.,
2013). In addition, Sen’s slope estimator is also used to validate the trend analysis in this

study.
3.4.2 GEV model development

The asymptotic distribution of extreme rainfall series extracted using the annual
maximum method is the GEV distribution and it has been previously used to model the
extreme rainfall series under nonstationary condition (Agilan and Umamahesh, 2016a, Cheng
et al., 2014, Villafuerte et al., 2015, Yilmaz et al., 2016). Therefore, in this study, the GEV
distribution is used to model extreme rainfall series. Suppose X = X, X2, X3, ..., X, denote the
annual maximum rainfall of n independent and identically distributed random variables. The
cumulative distribution function of the GEV is given by Eqg. (3.1) (Coles, 2001, Katz et al.,
2002):

F(x;p,0,8) =exp {— [1 + E(’C?T”)]_l/f}, 1+ ¢ (x?T”) >0,6>0 (3.1)

where u, o and ¢ denote the location, scale and shape parameters. The location parameter (1)
specifies the center of the distribution, the scale parameter (o) represents the size of deviations
around the location parameter, and the shape parameter (&) governs the tail behavior of the
GEV distribution. The GEV has three types of distribution determined by the sign of the
shape parameter, i.e. Fréchet-type (&> 0), Weibull type (¢ < 0), and Gumbel type (¢ = 0).

Nonstationary GEV model

In the nonstationary case, the parameters of the models are allowed to vary with
covariates (e.g. time or climate variables) (Coles, 2001). In this study, nonstationary models
are developed considering time as covariate. In particular, the parameters of the GEV
distribution are expressed as a function of time, known as p(t), o(2), &(t), and t=1,2,...n. For
this study, the nonstationarity did not consider in scale (o) and shape parameter (£). Because
the precise estimation of £ is difficult, and it is unrealistic to assume it as a smooth function of
time (Coles, 2001). Besides, modelling temporal changes in ¢ and ¢ reliably requires long-

term observations which are usually unavailable for practical applications (Cheng et al.,
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2014). Hence, under nonstationary condition, the parameters of GEV model are expressed as
a function of the covariate [f(t)] (Eq. 3.2):

() = Mo + py x F(1); o(t) = o; &) =¢ (3.2)

where u; denotes as the slope parameter and it represents the trend in the location parameter

due to covariate f (t).
3.4.3 Parameters estimation

The method of maximum-likelihood has been widely used for estimating the
parameters of nonstationary GEV model. The maximum-likelihood estimates of u, o and ¢ are
taken to be those values which maximize the likelihood function (Katz, 2013). For the
nonstationary model, the likelihood function can be represented as a function of parameters
(i.e. Mo, M1, 7, ). Let Xq, Xa,..., Xy be annual maximum precipitation series of n years. The log-

likelihood function can be written as follows:

For &£0,

L(u,0,é|X) = —nlogo — (1 + l) * . log [1 + E(—xi_(”°+ule(T))] -, [1 +

3 g
Sxi—(O+AX A7) o—1¢, 1+ sxi— O+ A X (7)) >0
(3.3
For{=0,

L(wolX) = —nlogo — ¥, (xi—(ﬂoﬂhxf(T)) — Y exp [_ (xi—(#o+aﬂle(T))] (3.4)

g

For the purpose of optimization, minimization of negative log-likelihood (Katz, 2013)
can be adopted to arrive at the estimates of parameters instead of maximizing log-likelihood.
Therefore, minimization the negative log-likelihood function is used for parameters

estimation in this study.

As mentioned earlier, extreme rainfall events are affected by global climate change and
many physical processes which have a different periodicity. Besides, directly using time
covariate based linear form in nonstationary modelling may create more bias. Agilan and

Umamahesh (2016a) suggested a non-linear form which is based on time and concerns the
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incorporation of both long-term trend and periodicity concurrently. The covariate equation is
given as follows (Agilan and Umamahesh, 2016a):

f(t) = t* + sin(a, Xt)+ cos(az Xt) (3.5)

where a; is the variable that controls the magnitude of the long-term trend, and variables a,
and as control the periodicity. The estimation of a;, a, and a3 values is implemented by the
MOGA. The genetic algorithm (GA), one of the efficient global search methods, is a
computerized search and optimization algorithm based on the mechanics of natural genetics
and natural selection. Unlike single objective problem, multi-objective problem based on
multiple objectives functions is usually considered for estimating robust solution. In this
study, MOGA is used to estimate the value of aj, a, and as. As such, AICc, a distance
function based on correlation coefficient (r) and root mean square error (RMSE) are
considered as three objective functions of the GA is used to identify the best solution. They
are given equations (3.6), (3.7) and (3.8). The AICc will measure the bias of the nonstationary
model while other two functions wil quantify the quality. Minimizing all three objective

functions will produce optimal values of variables a;,a; and as.

F, = AlCc (3:6)_

Z?:l(Ei_E)(Mi_M

JERa B B2 [T gy

F,=(1—-r)x100=[1- x 100 (3.7)

Fy =1y (B — M)? (3.8)

n

where, E; and M; are empirical and model quantile, E and M are the mean of empirical and

model quantiles, respectively.

The flowchart of optimizing the values of a;,a; and az is presented in Figure 3. 5.The package

nsga2R in R programming language is used to perform MOGA in this study.
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Figure 3. 5: Flowchart for optimizing the values of a;,a; and az (Agilan and
Umamahesh, 2016a)

3.4.4 Model selection

Selection of the best model is a complex process and need to consider several different

measures. A single measure may fail to determine an appropriate model, which lead to
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underestimate or overestimate the probability of extreme rainfall. In this part of thesis, two
measures are used to identify the best model for annual maximum extreme rainfall. Besides,
the graphical approach (The probability-probability and quantile-quantile plots) is also used to
check the quality of fitted model.

The Akaike Information Criterion

The AIC has been used commonly to select the best model among candidate models.
Since there is a tendency for a model with more number of parameters to perform better. AIC
is normally used as a performance measure when models with different number of parameters
are being compared. In the comparison of AIC values between various models, the model
with the lowest AIC value is considered to be the most efficient, and hence should be
selected. However, Hurvich and Tsai (1995) showed that the AIC may have serious
deficiencies, and they recommend a corrected version, namely AICc, which was developed
for small samples to mitigate the bias and avoid overfitting the data. Thus, AlCc is used for

selecting the appropriate model in this study. The AICc is given by Eq. 3.9:

AlCc = —2L(8|X) + 2k + & (3.9)

n—k—1

where n is the sample size, k is the number of parameters in a given model, -logL(®|X) is the
minimized negative log-likelihood function. In addition, Burnham and Anderson (2004)
suggested a corrected version of AICc, (denoted A; ) which is used in this work for ranking

and comparison among the GEV models.
Ai = AlCc — min(AlCc) (3.10)

where min(AICc) is the smallest value of AICc among candidate models. The model having
Ai = 0 is considered as the best model, whereas the model with larger A; is less plausible. The
model which has A; <2 is considered reasonable selection for the given time series (Burnham
and Anderson, 2004, Agilan and Umamahesh, 2016a).

The likelihood ratio test

The likelihood ratio test allows to determine the significance of the trend parameter in

the nonstationary model by comparing negative log-likelihood of stationary and nonstationary
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models (Katz, 2013). For example, if the stationary model and nonstationary model are
denoted by (Mo) and (M;) respectively, the negative log-likelihood of model (M) and (My)

can be written:
lO(MO) = _logl‘(xl;xZ; ---;xn; U, o, E) (311)
Li(My) = —log L(xy, Xz, .., Xpn; @y, Az, A3, fo, 1,0, ) (3.12)

Under null hypothesis of no trend (p1 = 0), the likelihood ratio test statistic, based on
twice the difference between Io(Mg) and 1:(M;) (Egs. (3.11) and (3.12)), approximately
follows Chi-square distribution with four degree of freedom [denoted by y* (4)] as the
different between number of parameters in model (Mg) and (M;) (Katz, 2013). The test is
given by:

2{lo(Mo}-l:(M1)}~* (4) (3.13)
The graphical diagnostics

In order to check the quality of fitting for a chosen model, the graphical approach of
the probability—probability plot (P-P) and quantile-quantile plot (Q-Q) can be used. To
develop the P-P and Q-Q plots, it is necessary to transform the data into a standardized form
(Coles, 2001). Here, the standard Gumbel distribution is used, and the transformed variable is
defined by (Katz, 2013, Coles, 2001):

=1 log(l rE(2t “)) (3.14)

where /i, &, € are estimated location, scale and shape parameter. Let £ is order value of , the
P-P plot points and the Q-Q plot points are given by Eq. (3.15) and Eq. (3.16) respectively
(Coles, 2001)

(— exp(—exp(— e))) (3.15)

S—— 619
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3.4.5 Return level estimation

Once the best model for the given extreme rainfall series is determined, the T-year
return level z, corresponding to the T-year return period can be obtained. Here, the location
parameter value in the nonstationary model varies over time. Some authors suggested the low-
risk approach for calculating location parameter by taking the 95 percentiles of the location
parameter values in historical observation (Cheng and AghaKouchak, 2014, Agilan and
Umamahesh, 2016a). However, in this study, two ways are used to compute return levels by
using the mean value of location parameter for the years 1980-1984, say first five years, and
the period of 2010-2014, say last five years. It is the fact that the rainfall process has
periodicity as it is controlled by many physical processes (such as the ENSO cycle). As
mentioned earlier, the rainfall of the study area is controlled by one of the dominant
teleconnections, i.e. ENSO cycle. The El Nino and La Nina events (positive and negative
phases of the ENSO cycle) will occur once in 2 to 5 years. In other words, the periodicity of
the ENSO cycle is less than 5 years. Besides, a study related to nonstationarity analysis of
Chawla and Mujumdar (2018) suggested that the hydrologic cycle in a river catchment can
change every 5-year period. Consequently, the average of 5 years is calculated thereby the
interannual variations in the rainfall can be eliminated. This concept allows comparing the
difference between the first and the last periods of rainfall values at a certain station.
Estimation of the T-year return level for the first (last) five-year period can be given by Eq.
(3.17):

Asr(sLy — g[l - {—log (1 - %)}_gl , foré=0

fsesry = Blog{~log (1-37)},  foré=0

Zpp— (3.17)

where fisr and fis; are the mean value of the location parameter of first five years and last five
years respectively. By substituting the values of estimated parameters into Eq. (3.17), the

estimates of the return levels can be obtained.

41



3.5 Results and discussions

3.5.1 Trends in extreme rainfall

As mentioned earlier, the M-K test is applied to indicate the increasing or decreasing
trend in the rainfall data. In Table 3. 2, the results of the M-K test with all rain gauges are
shown. The negative value of Tau indicates decreasing trend, in contrast, the positive value of
Tau indicates increasing trend. The decreasing trend has been found in 8 stations, of which 2
stations are inside HCMC (i.e. Thuduc and MDC) and 6 stations outside HCMC (i.e. Sosao,
Godau, Tuctrung, Benluc, Tanan and VVungtau). The increasing trend is observed in the annual

maximum precipitation series of remaining stations.
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Table 3. 2: Results of M-K test for trend for all gauging stations

Stations Tau value p-value Stations Tau value p-value
Cuchi 0.08 0.504 Godau -0.15 0.227
Hocmon 0.02 0.898 Bienhoa 0.07 0.497
Thuduc -0.15 0.218 Longthanh 0.17 0.156
MDC -0.22 0.080 Tuctrung -0.06 0.597
TSN 0.15 0.110 Xuanloc 0.16 0.071
Binhchanh 0.08 0.514 Trian 0.07 0.580
Nhabe 0.24 0.057 Benluc -0.02 0.865
Cangio 0.38 0.001 Tanan -0.05 0.660
Sosao -0.12 0.221 Vungtau -0.03 0.727

In addition, the p-value shown in Table 3. 2 points out that only 1 station in the
Southeast side (i.e. Cangio) has a significant trend at 5% significant level. The trends in
annual maximum series of Macdinhchi, Nhabe, Xuanloc stations are significant at 10%
significance level. None of the test statistics of remaining stations is significant at 10%

significant level. The results from Sen’s slope estimator (Table 3.3) is almost similar to M-K

test.
Table 3. 3: Results of Sen’s slope estimator for all gauging stations

Stations Sen'sslope value  p-value  Stations Sen's slope value  p-value
Cuchi 0.41 0.50 Godau -0.46 0.22
Hocmon 0.08 0.89 Bienhoa 0.08 0.89
Thuduc -0.77 0.22 Longthanh 0.78 0.16
MDC -0.84 0.08 Tuctrung -0.56 0.15
TSN -0.04 0.89 Xuanloc 0.03 0.98
Binhchanh 0.29 0.51 Trian 0.25 0.58
Nhabe 0.84 0.06 Benluc 0.06 0.89
Cangio 2.16 0.001 Tanan -0.75 0.20
Sosao 0.07 0.79 Vungtau -0.96 0.06
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Some researchers found that the characteristic of rainfall is changing (Westra et al.,
2013, Min et al., 2011). It includes the increases in extreme rainfall in most places of the
world, although only limited rain gauges indicate a statistically significant nonstationary
behavior. Cheng and AghaKouchak (2014) also mentioned that ignoring the nonstationarity
may lead to remarkable underestimation of extreme events, which may result in the increase
in the risk of infrastructure design and construction. Besides, these authors also suggested that
the nonstationary condition can be applied to all datasets regardless of their trend, avoiding a
subjective significance measure. Hence, the nonstationary GEV model is constructed for all

18 stations in this study.
3.5.2 Nonstationary GEV model

Before developing the stationary and nonstationary GEV models for extreme rainfall
analysis, it is required to determine the value of variables a;, a, and az in Eq. (3.5). Upon
estimating the value of variables a;, a; and az by MOGA, the stationary and nonstationary
GEV models are constructed for each station. The values of a;, a, and az are shown in Table

3.4 for all stations.

Table 3. 4: Estimated values of a;, a, and a3

Variables Variables
Stations Stations
a a as a a, as

Cuchi -1.87 5.13 8.31 Godau -0.92 -5.94 6.04
Hocmon -4.01 2.99 2.45 Bienhoa -0.75 7.24 9.83
Thuduc -0.67 -5.24 6.44 Longthanh -1.87 6.76 1.40
MDC -2.35 9.31 251 Tuctrung -10.00 7.61 0.43
TSN 0.15 -0.48 9.18 Xuanloc -3.77 -4.92 8.30
Binhchanh -8.32 -8.86 1.85 Trian -0.87 -9.13 8.00
Nhabe -0.88 4.76 4.10 Benluc -10.00 -5.11 1.44
Cangio -0.29 -6.14 6.16 Tanan -1.84 1.34 6.02
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Sosao -9.28 7.03 7.83 Vungtau -1.56 6.50 3.49

Table 3.5 shows the estimated parameters value of two models along with A; value and
likelihood ratio test results. The results show that the nonstationary GEV model is the best
model for all stations. Further, as mentioned in the methodology section, the P-P and Q-Q
plots are used to check the quality of a fitted model. The diagnostic plots of TSN station are
shown in Figure 3.6. It is observed that the nonstationary model shows a better match (Figure
3. 6b) than the stationary model (Figure 3. 6a). The P-P and Q-Q plots for Benluc, Cangio,
Nhabe and Xuanloc which are shown in Figure A. 2, A. 3, A. 4 and A. 5 respectively, also
indicate a good fit of extreme rainfall data by nonstationary GEV models.
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Table 3. 5: Parameter estimates, likelihood ratio test results and A; values

Parameters value of stationary Parameters value of nonstationary Likelihood
Stations model model ratio test
H o ¢ A Ho M1 o ¢ A p-value
Cuchi 8432 2480 0.09 3.08 83.66 19.01 1753 035 0.00 5.97E-03
Hocmon 77.74 22.93 -0.22 3.09 7955 1393 18.78 -0.26 0.00 5.95E-03
Thuduc 79.28 29.18 -0.07 4.62 79.92 2023 20.75 0.11 0.00 2.85E-03
MDC 92.32 23.15 -0.04 5.65 9406 1456 16.48 0.08 0.00 1.58E-03
TSN 85.27 19.42 0.01 15.84 8451 10.23 1312 0.31 0.00 3.68E-05
Binhchanh 71.07 21.97  0.07 5.07 7020 1406 1436 039 0.00 2.33E-03
Nhabe 77.27 23.80 0.06 0.32 7472 -10.06 15.87 0.44 0.00 1.52E-02
Cangio 41.67 30.25 0.17 11.29 4514 -22.58 20.17 0.32 0.00 1.48E-04
Sosao 87.66 2567 0.01 9.47 8745 -13.70 19.32 0.18 0.00 6.48E-04
Godau 75.03 20.78 -0.13 18.72 7347 -16.71 10.03 039 0.00 4.68E-06
Bienhoa 86.02 2034 0.10 10.76 86.66 -10.82 1526 0.25 0.00 3.45E-04
Longthanh  90.00 29.56 0.03 1.79 91.66 -16.51 23.20 0.11 0.00 1.05E-02
Tuctrung 98.63 22.83 0.10 7.92 97.46 -12.01 1499 0.40 0.00 8.04E-04
Xuanloc 88.79 24.23 0.15 10.54 8721 1102 18.01 0.39 0.00 4.62E-04
Trian 91.65 17.45 -0.02 1.82 91.98 -11.24 1327 0.12 0.00 1.04E-02
Benluc 88.88 2463 0.12 5.65 8755 -10.63 1747 039 0.00 1.91E-03
Tanan 78.28 24.12 0.08 4.52 76.30 -17.06 15.79 0.40 0.00 3.12E-03
Vungtau 80.66 24.10 0.16 12.56 81.21 1123 1876 0.30 0.00 1.91E-04
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Figure 3. 6: P-P and Q-Q plots of Tansonnhat (TSN) station

3.5.3 Spatial variation of rainfall extremes

Figure 3. 7 shows the annual maximum daily rainfall return levels corresponding to 5,

25 and 50 years return periods over HCMC. In the nonstationary case, extreme rainfall values
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of each station are estimated for the periods of first five years and last five years by using
mean value of location parameter for the years of 1980-1984 and 2010-2014 respectively.

Under the nonstationary condition, there is a large variation among rain gauges for the
first five years’ period compared to current years (the last five years’ period). For instance, the
estimated return levels corresponding to the 5-year return period vary between 55 to 210 mm
per day for the first five years’ period, whereas those values for the last five years’ period are

within range of 100-144 mm per day.

Figure 3. 7 also shows that the differences in estimate rainfall values derived from
nonstationary models are more significant in Tanan, Cangio, Thuduc, Godau when comparing
first five years and last five years periods. In more detail, the difference in extreme rainfall
estimates between these periods reaches 66.5 mm for Tanan station corresponding to 50-year
return period, while those values for Cangio, Godau and Thuduc are approximately 53 mm,
37 mm and 20 mm respectively. Remaining stations do not show significant differences in

estimated extreme rainfall between concerned periods.

Besides, it can be seen that the values of the return levels based on the best
nonstationary models have a significant difference compared with stationary models. In other
word, the magnitudes of extreme rainfall under the stationary condition are much lower than
those under the nonstationary condition for most of the stations, especially in the South and
Northeast of the study area. Considering Tanan station as an example, the 50-year annual
maximum daily rainfall values are 189 and 260 mm per day under stationary and
nonstationary (for last five years’ period) conditions respectively. These results point out that
the assumption of stationarity could lead to underestimation of extreme rainfall events, hence
choosing the design value for hydraulic structures under stationary or nonstationary condition

should be considered thoroughly.

48



106°30'0"E 107°0'0"E 106°30'0"E 107°0'0"E 106°30'0"E 107°0'0"E

. @)

100N 1OUN  11000°N 11°0'0°N 100N 11°00°N

Return level
(mm/day)

- High : 210
- Low : 50

[10°30'0'N

N
10°300°N A

0510 20 30

10°30'0"N 10°30'0"N: 10°300N 10°300°N

40
Kilometers *

106°30'0"E 107°0'0"E 106°30'0"E 107°0'0"E 106°30'0"E 107°0'0"E

106°30'0"E 107°0'0"E 106°30'0"E 107°0'0"E 106°30'0"E 107°0'0"E

(b)

11°0'0'N 100N 11°0'0°N. 11°00°N 11°0'0'N 11°00°N

Return level
(mm/day)

- High : 280
— Low : 110

10°30'0"N 10°300°N 10°30/0°N: 10°300°N  10°300°N 10°300°N

a a

106°30'0"E 107°0'0"E 106°300"E 107°0'0"E 106°30'0"E 107°0'0"E

106°30'0"E 107°0'0"E 106°30'0"E 107°0'0"E 106°30'0"E 107°0'0"E

(©)

10N 100N 11°00°N 11°00"N 10N 11°00"N

Return level
(mm/day)

- High : 330
- Low : 120

10°30'0"N: 10°30'0"N 10°30'0"N: F10°300°N  10°30'0"N F10°30'0"N

a

106°30'0"E 107°0'0"E 106°30'0"E 107°0'0"E 106°30'0"E 107°0'0"E

Stationary model return levels  Nonstationary model return levels (first 5 years) Nonstationary model return levels (last 5 years)
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3.6 Summary and conclusions

Under the influence of global climate change and physical processes as ENSO and
PDO, extreme rainfall in HCMC has been proven to increase in frequency and magnitude in
the last few decades. Therefore, the reality of nonstationary extreme rainfall should be paid
more attention in the design of water infrastructure and flood mitigation projects since the
extreme value distribution models with constant parameters may no longer be suitable. This
present paper is aimed to model the spatial variation of extreme precipitation at HCMC and
adjacent areas under nonstationary condition. In particular, the trend in time series is firstly
determined by the non-parametric method, known as M-K test, before constructing
nonstationary GEV model. In order to introduce nonstationarity into extreme rainfall
frequency analysis, a nonlinear trend representing the long-term trend and periodicity of
physical processes is suggested for the location parameter, whereas the scale and shape
parameters (o and £) are kept constant. The best nonstationary model for each station is found
based on AICc value and likelihood ratio test. Based on the results of M-K test, only one
station has a significant trend at the 5% significant level, and three stations have significant
trend at 10% significant level. The remaining stations do not show a significant trend in the

annual maximum precipitation data.

The findings indicate that the nonstationary model can be considered as the best model
for modelling extreme rainfall when comparing to stationary model. The chosen
nonstationary GEV model also has better goodness of fit performance. Moreover, the extreme
rainfall estimates under the stationary condition are much lower than those under the

nonstationary condition in a major part of study area.

Regarding two concerned periods, first five years and last five years, it can be seen
that the differences in estimate rainfall values derived from nonstationary models are

significant, especially in Tanan, Cangio, Thuduc, Godau stations.

In a nutshell, the present study is regarded as an important step towards flood
mitigation projects and flood risk management in HCMC. Not only because it is the first of
its kind, as authors’ knowledge, but also because of the proposed method, which considers
the impact of global climate change and physical processes on extreme rainfall of study area.

In other word, it is suggested that extreme rainfall should be analysed under both stationary
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and nonstationary condition before using as initial inputs of hydrological and hydrodynamic
models since the global climate is continuously changing and unpredictable. The findings are
also able to provide useful information on nonstationary extreme rainfall of HCMC for
decision makers in choosing appropriate design values.
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Chapter 4

Modelling nonstationary extreme water level considering

local covariates

4.1 Introduction

Coastal cities are vulnerable to flood risk which has dramatically increased over the
past decades, impacting millions of people every year across the world (Jongman et al., 2012,
Hallegatte et al., 2013, Lasage et al., 2014). Especially, coastal cities in developing countries
experiencing population, economic growth and urban expansion are experiencing more
flooding (Hallegatte et al., 2013, Nicholls et al., 2008, Lasage et al., 2014, Adikari et al.,
2010). Since flood exposure is continuously increasing in coastal areas, there is a growing
demand of estimations of the magnitude and frequency of extreme water level for the design

of coastal defense structure as well as flood risk management purpose.
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As is shown in many papers, understanding the stochastic behavior of extreme water
level is an essential need for planning and design flood defense structures (Arns et al., 2013b,
Katz, 2013). And the assessment of extreme water level commonly included some form of
statistical analysis based on the extreme value theory (Arns et al., 2015, Bulteau et al., 2015,
Mudersbach and Jensen, 2010). The extreme value analysis can be based both on AM which
normally utilize the GEV distribution, and POT in which the GPD is commonly
recommended (Katz, 2013). The AM approach consists of modelling a sequence of maximum
values taken from blocks or periods of equal value such as maximum daily rainfall (Sugahara
et al., 2009). However, it seems an inappropriate approach if other data on extremes are
available or one block happens to contain more extreme events than others (Coles, 2001).
Moreover, a small sample is a critical problem in parameter estimation (Sugahara et al.,
2009). In contrast, the POT approach is much more efficient as it considers all values
exceeding a certain threshold, instead of simply choosing the maximum value. It means that a
POT derived sample may not comprise only one or fixed number of events per year. Besides,
since the water level objectives are normally expressed in term of certain critical thresholds
(e.g. flood alarming rate), the POT method is apparently more suitable and better interpretable

in the flood risks context.

Traditionally, these statistical methods based on the extreme value theory require the
assumption of stationarity in hydrologic time series. However, under climate variability
related to human activities, the extreme events in many places are proved to have
nonstationary features in it. That is why the stationary condition may no longer be suitable,
and the concept of nonstationary extreme value analysis has been improved and is used more
frequently in analysis of extreme water level in low-land areas (Skjong et al., 2013, Serafin
and Ruggiero, 2014, Arns et al., 2015, Mudersbach and Jensen, 2010, Méndez et al., 2007,
Menéndez and Woodworth, 2010).

However, introducing nonstationarity into hydrologic frequency analysis should be
performed with care, especially under environment changes due to the influences of climate
change and human activities (Yan et al.,, 2017). The nonstationarity can be applied after
careful testing using statistical or empirical analysis. Detection of trend is a critical issue as it

has a significant impact on the nonstationary analysis results (Strupczewski et al., 2001, Sraj
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et al., 2016). Once the trend in time series is detected, extreme water level can be modelled

under nonstationary condition.

In most of the studies focusing extreme water level analysis under nonstationary
approach, the parameters of the chosen distribution functions are commonly dependent on
time (Coles, 2001, Obeysekera and Park, 2012, Mudersbach and Jensen, 2010). Some other
papers showed that the parameters could vary in both time and several climatological
variables (Katz et al., 2002, Méndez et al., 2007, Coles, 2001, Menéndez and Woodworth,
2010). Masina and Lamberti (2013) used regional climate indices such as the NAO and AO in
analyzing the variability of the extreme water level along the Northern Adriatic coast. Serafin
and Ruggiero (2014) conducted covariates analysis considering some climate indices, such as
the Pacific/North American Pattern (PNA); the Southern Oscillation Index (SOI), and the
Multivariate ENSO Index (MEI). Nevertheless, the water level shows unique characteristic as
they are strongly impacted by local influences (Arns et al., 2013a). In other word, climate and
catchment characteristics play an important role in generating water flows. Yan et al. (2017)
suggested that the covariates selected for nonstationary modelling should have strong physical
associations with the process of events (e.g. flood). Besides, the selected covariates for a
particular area may have different effects in other geographical areas, hence covariates should
be chosen with respect to the area of interest (Agilan and Umamahesh, 2016b). Therefore,
instead of using global climatological variables, local variables which reflect the physical

relationship to water level are used in this study area.

As is stated in previous chapter, HCMC is an example of an emerging coastal
megacity dressing the increases of exposure levels to climate risks (Storch and Downes,
2011). HCMC appeared amongst the top ten most risk cities in term of exposure population
(Lasage et al., 2014, Nicholls et al., 2008, Hallegatte et al., 2013, Storch and Downes, 2011,
ADB, 2010, Dasgupta et al., 2011, World Bank, 2010). By 2070, this flood-prone city is
expected to be in the top five cities in terms of population exposed to coastal flooding
(Hanson et al., 2011, Storch and Downes, 2011). Although the city’s government has made a
lot of efforts to solve flooding and inundation issues, the situation has not improved

significantly.
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Located in the downstream of the Saigon-Dongnai River system, HCMC’s topographic
and geographic conditions make it extremely sensitive to various flood sources. Most of the
studies showed that the common causes of flooding in this city are high tide, heavy rain, rapid
urbanization growth and high discharge released from upstream reservoirs (Lasage et al.,
2014, Storch and Downes, 2011, ADB, 2010, World Bank, 2010). The impact of each
component on flooding is clearly different, and the way in which the components combine to

generate water extremes also differs for different parts of HCMC.

There are several studies on flooding analysis in HCMC. However, the main limitation
of previous studies is the focus on sea level and urbanization, hence normally ignoring the
causes of rainfall and discharge released from the upstream. For example, Storch and Downes
(2011) quantified current and future flood risks in HCMC by the combinations of urban
development and sea level rise scenarios. Lasage et al. (2014) similarly focused on future
scenarios concerning the sea level rise and urban growth, then suggested some different
adaptive measures with benefit-cost analyses for only District 4 in HCMC. The Asian
Development Bank (ADB, 2010) reported the systematical assessment climate-related risks at
HCMC and suggested some adaptation plans for this city without analyzing the causes of
floods thoroughly. Therefore, without a proper assessment of the causes of floods, quantifying
inundation levels and managing these risks will be a problematic challenge for the local
government once the flood risks in HCMC are increasing and are expected continuously.

Till now, flooding has become one of the most pressing issues such as in HCMC, it is
necessary to investigate the best information on extreme water level, which may effectively
help for engineering design and flood risk-based management. However, most existing flood
control structures in HCMC have been built based on the assumption of stationary flood
frequency analysis which may no longer be suitable for design purpose. In addition, in the
authors' knowledge, the application of statistical distribution in analysis of variability of
extreme water level events under nonstationary condition and their linkage to the causes of

floods in HCMC could not be found in any papers so far.

The main objective of this study is to model the nonstationarity in the extreme water
level in HCMC and identify the most significant physical processes which cause the

nonstationarity in the series. Four local covariates (i.e. precipitation, mean sea level,
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urbanization growth and outflows from upstream reservoirs) are considered due to their close
relationship with extreme water level events. In addition, the stationary models for selected
gauging stations are also constructed for comparison. The best model which comprises the
most significant covariate(s) for each station is chosen based on the AICc and the likelihood
ratio test. Finally, based on the best models, estimated extreme water level corresponding to
different return periods are computed and compared with stationary case.

4.2 Data

4.2.1 Water level

In this study, the hourly water level data from four sites located along Saigon-Dongnai
River (i.e. Phuan, Nhabe, Bienhoa, and Thudaumot) are used in the present analysis. The
Phuan and Nhabe stations are located in HCMC, while the Bienhoa and Thudaumot (TDM)
stations belong to adjacent areas. These data were provided by the NHMS of Vietnam and are
not publicly available. These time series span through 34 years from 01-01-1981 to 31-12-
2014 and there is no missing data. Figure 4. 1 shows HCMC and locations of these gauges. To
give a visual change in extreme water level over time, the plots for annual maximum hourly
water level over the period of 1981 to 2014 at four stations are shown in Figure 4. 2. It can be
seen that the annual maximum hourly water level at all stations has positive trend toward the

end of surveyed period.
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Figure 4. 2: Annual maximum hourly water level at (a) Phuan, (b) Nhabe, (c) Bienhoa,
(d) TDM

4.2.2 Data for covariates
Precipitation

HCMC has a tropical monsoon climate with explicit wet and dry season variations in

rainfall. Annual average rainfall is around 2,000 mm which mainly occurs in the rainy season
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from May to October (approximate 90% of yearly rainfall). Rainfall with more intensity is
estimated to become a major threat to the city (ADB, 2010).

Climate variability causes flood nonstationarity via the direct influence on
precipitation patterns (Li et al., 2015). Besides, it is widely accepted by previous studies that
using meteorological variables as covariates could be more effective and have clearer physical
meaning for modelling nonstationary extreme hydrological events, especially for flood risk
analysis (Du et al., 2015, Gilroy and McCuen, 2012, Sraj et al., 2016). For this reason,
precipitation, a meteorological variable, is chosen as the first covariate in modelling extreme
water level because of the close physical relationship between precipitation and water level.
The daily precipitation data was provided by NHMS, and was chosen corresponding selected
daily water level data. The selected gauge is the same or nearest corresponding to each water
level station. Four selected rain gauges, i.e. Bienhoa, Hocmon, TSN, Cangio, with their

locations are shown in Figure 4. 1.
Sea level

Major parts of HCMC are located in low-lying lands that are crossed by a complex
network of canals and rivers connected to the South China Sea. This makes the city
particularly prone to regular flooding and inundation linked to even just high tide (World
Bank, 2010). In addition, the situation has become more serious since the mean sea level
increased by 0.20 m during the past 50 years (Storch and Downes, 2011) and is expected to
rise continuously in the future. Therefore, the choice of sea level as a covariate for extreme
water level characteristics assessment is reasonable. The hourly observed sea level data is
obtained from NHMS for the period of 1981 to 2014. This data is recorded at VVungtau station
(107.05°E and 10.22°N), and it is not published.

Urbanization

In 2008, more than half of world’s population lived in urban areas (UN-Habitat, 2011),
and it is estimated that the towns and cities will make up 80 percent of the human population
(UNFPA, 2007). As a result of urbanization, the citizens are now facing numerous
problematic environment challenges such as floods, landslides and other natural disasters
(UN-Habitat, 2011, UNFPA, 2007).
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In last few decades, HCMC has become the most populous settlement and an
important port city for Southeast Asia. The population of HCMC was approximately 7.1
million in 2010, that number is estimated to reach 10 million by 2020 (Labaeye et al., 2012,
Storch and Downes, 2011). In order to meet the requirement of residential and industrial
purposes, natural land surfaces have been replaced by artificial surfaces that may result in
increasing the air temperature in urban areas (Shepherd et al., 2002) as well as magnitude and
frequency of floods (Li et al., 2015). Moreover, the storage capacity of the city’s water
network has also reduced by construction activities which are particularly changing the
natural flow of rivers and narrowing floodplain areas. Consequently, HCMC already
experiences climate-related environment hazards caused by unsustainable urban development
(Gravert and Wiechmann, 2016).

In this study, the built-up land of HCMC is determined from an urban structure type
classification for the entire city, which is modeled from high-resolution Landsat remote
sensing data captured from 1975 to 2016. The Landsat images used in this study were
obtained from the U.S Geological Survey, with one Landsat 2 Multispectral Scanner (MSS)
image, six Landsat 5 Thematic Mapper (TM) images and one Landsat 8 Operational Land
Imager (OLI) image (Table 4.1). The Semi-Automatic Classification Plugin (Congedo, 2016)
for QGIS (QGIS, 2015) is used for the purpose of the classification. In more detail, the Land
Cover Signature Classification combined with the Spectral Angle Mapping algorithm are
applied for classifying the satellite images. The land use land cover (LULC) maps created
from satellite images are shown in Figure 4. 3. The LULC maps of 1988, 1995, 2004 and
2016 are shown in this thesis.
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Table 4. 1: The results from satellite image classification

Satellite Date of capture Sensor Resolution (m) Built-up land (km?)
Landsat 2 01-04-1975 MSS 60 37.34
Landsat 5 30-01-1988 ™ 30 43.82
Landsat 5 02-02-1995 ™ 30 60.38
Landsat 5 21-06-1999 ™ 30 144.08
Landsat 5 11-12-2004 ™ 30 179.17
Landsat 5 03-02-2007 ™ 30 217.24
Landsat 5 04-02-2010 ™ 30 238.88
Landsat 8 28-02-2016 OLl 30 278.96
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Figure 4. 3: LULC map of (a) 1988, (b) 1995, (c) 2004, (d) 2016
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From the list of satellite images used and built-up land area extracted from the LULC
maps (Table 4. 1), the growth of the urban area is modeled by a function as follows:

B = 7.023E -44¢005212x (4.1)

where B is built-up land (km?) and x is the corresponding year. In Eq. (4.1), the root mean
square error (RMSE) of the model is 27.96 and the coefficient of determination (R?) is 0.924.
Based on Eq. (4.1), the built-up area of HCMC is calculated for each year between 1975 and
2016.

Upstream flows

The Saigon-Dongnai river, being one of the largest rivers in the south of Vietnam,
plays an important role in social and economic development in HCMC. The upper watershed
of the Saigon-Dongnai river which drains HCMC, is well-regulated with dams and reservoirs,
i.e. the man-made Dautieng and Trian reservoirs. These reservoirs are the main source of
energy and water supply for HCMC and surrounding areas (World Bank, 2010, Minh et al.,
2007). Outflows from these reservoirs are connected to urban canals and then empty into the
South China Sea.

In recent years, many authors have studied the possible effects of human activities on
hydrological regimes in a certain river basin using statistical methods. To be more specific,
they tried to develop nonstationary models to analyze flood characteristics in river basins
considering the presence of reservoirs as a covariate (LOpez and Francés, 2013, Zhang et al.,
2015, Machado et al., 2015). Here, the released discharge from Dautieng and Trian reservoirs
are considered as covariates to analyze extreme water level of downstream in our study. The
outflow from Trian hydropower connects directly to three water level locations, i.e. Bienhoa,
Phuan and Nhabe. Meanwhile, the outflow starting from Dautieng reservoir has relative
influences on TDM, Phuan and Nhabe water level stations. The daily released discharge data
is provided from Trian Hydropower Joint Stock Company and Dautieng-Phuochoa Limited
Company for the period of 01-01-1981 to 31-12-2014.
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4.3 Methodology

The flowchart of methodology used in this study is presented in Figure 4. 4. Firstly,
extreme water level in four station are selected using peak over threshold technique. After
that, nonstationarity in hourly water level time series identified using statistical test. Thirdly,
based on four physical processes, i.e. rainfall, sea level, urbanization growth, outflows from
upstream reservoirs and their combinations, the nonstationary models are developed. The
stationary models are also developed for comparison purpose. And then, the best model which
comprises the most significant covariate(s) for each selected location could be found based on
the AICc and the likelihood ratio test. Finally, based on the best models, the extreme water

level is estimated corresponding different return periods for all selected stations.

Extreme water level

Yes

Stationary detecting Stationary GDP model

Physical covariates
(Rainfall, sea level, .| Nonstationary
urbanization and upstream GDP model
discharge)

A 4

.| Model selection (AlCc,
PP and QQ plots)

Return level estimation

Figure 4.4: Flowchart for methodology
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4.3.1 Trend detection

Currently, the concept of nonstationarity in hydrological time series is widely accepted
by researchers and the society as well (Strupczewski et al., 2001). Checking nonstationarity
should be a prior consideration due to its essential role which has a significant impact on the
nonstationary analysis. In this study, the M-K test with a significant level of 0.05 is used to

identify the possible trend in the extreme water level.
4.3.2 GPD models for extreme water level

As mentioned earlier, POT approach is apparently more suitable and better
interpretable than AM approach in modelling the extreme water level values. Therefore, POT

approach is chosen in this study based on its advantage.

The use of POT approach which is linked to the GPD is described as follow. Consider
a sequence of n independent and identically distributed random variable X;, X, ..., Xj
conditioned on X > u, where u is a given high threshold. For sufficient high threshold (u), the
excess Yi = Xj — u, conditional on X; > u, has an approximate GPD with cumulative
distribution function (CDF) defined as (Coles, 2001)

1—(1+ﬁ§)7 ,a>0, 1+ 8(y/a)>0

Fly;a,B) =
e 1—exp(_7y),a>0,ﬁ=0

(4.2)

where o and f are the scale and shape parameters in that order. The scale parameter (o) is a
function of chosen threshold u. Here, the nonstationarity is introduced only in scale
parameter. Whereas, the shape parameter is kept constant because precise estimation of f is

difficult, and it is unrealistic to assume that it is a smooth function of time (Coles, 2001).

In the nonstationary setting, the parameters are expressed as a function of covariate(s)

in the general form

loga(i) =ao+ a1 R+ S + a3 U + a4 ResT + asResD (4.3)
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pi)=p

where i denotes the hour; and R, S, U, ResT, ResD denote physical covariates, i.e. Rainfall
(R), Sea level (S), Urbanization (U), Upstream discharge released from Trian reservoir (ResT)
and Upstream discharge released from Dautieng reservoir (ResD). In the stationary model, the
values of covariates R, S, U, ResT, ResD equal zero. The logarithm in Eq. (4.3) is taken to
ensure the positive values of the scale parameter. The slope parameter a1, az, as, a4 and as
represent the trend due to effects of covariates R, S, U, ResT, ResD in that order. Based on
five covariates and their combinations, thirty-one nonstationary models are constructed for
Phuan and Nhabe stations, while fifteen nonstationary models are constructed for Bienhoa and
TDM stations (Table 4. 2). In addition, an individual covariate or a combination which has

significant impacts on the extreme water level in the study area can be found out.
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Table 4. 2: Detail of GPD models constructed for extreme water level at the selected locations

Model Description Model Description

Phuan and Nhabe stations
GPD-0 Y ~GP(a, B) GPD-16 Y ~GP(exp(a, +aR+aS+al), B)
GPD-1 Y ~GP(exp(a, +R),B) GPD-17 Y ~GP(exp(a, + @R +a,S +a,ResT), B)
GPD-2 Y~ GP( p(a,+aS),p) GPD-18 Y ~GP(exp(a, + R +a,S +a,ResD), B)
GPD-3 ~GP(exp(a, +aJ), B) GPD-19 Y ~GP(exp(a, +@R+aU +a,ResT), B)
GPD-4 ~ GP(exp(a, + @, ResT), B) GPD-20 Y ~GP(exp(a, +aR+aU +a,ResD), B)
GPD-5 ~GP(exp(a, +, ResD), ) GPD-21 Y ~GP(exp(e, + R +a, ResT+a, ResD), B)
GPD-6 ~GP(exp(e, +¢R+a,5),8) GPD-22 Y ~GP(exp(a, +,S+aU +a,ResT), B)
GPD-7 ~GP(exp(a, +aR+aU),p) GPD-23 Y ~GP(exp(a, + @S +aU +a,ResD), B)
GPD-8 P(exp(ao +aR+a,ResT), ) GPD-24 Y ~GP(exp(a, +a,S +a,ResT+a, ResD), B)
GPD-9 GP(exp(a, +@,R+a, ResD), B) GPD-25 Y ~GP(exp(a, +aU +a, ResT+a, ResD), A)
GPD-10 ~GP(exp(a, +aS+aVl),B) GPD-26 Y ~GP(exp(a, +aR+aS+eU +a,ResT), B)
GPD-11 ~GP(exp(a, + S +a,ResT), B) GPD-27 Y ~GP(exp(a, +a,R+a,S +aVU +a, ResD), B)
GPD-12 ~GP(exp(a, +aS +a,ResD), B) GPD-28 Y ~GP(exp(a, + R +a,S +a,ResT+a, ResD), B)
GPD-13 ~GP(exp (e, + U +a, ResT), B) GPD-29 Y ~GP(exp(a, + @R+ aU +a,ResT+a, ResD), B)
GPD-14 ~GP(exp(a, +@U +a, ResD), B) GPD-30 Y ~GP(exp(o, +a,S+aU +a, ResT+a, ResD), B)
GPD-15 Y ~GP(exp(, + o, ResT+a, ResD), ) GPD-31 Y =GP (exp(a, +aR+a,S+aU +a,ResT+a, ResD), j
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(Table 4. 2 continued)

Model Description Model Description

Bienhoa station

GPD-0 Y ~GP(a,p GPD-8 Y~ GP(exp(ao +aS+ayl),p)
GPD-1 Y ~GP(exp(a, +aR),B) GPD-9 ~GP(exp(a, +a,S +a,ResT), )
GPD-2 Y ~GP(exp(a, +S),8) GPD-10 ~GP(exp(a, +aU +a, ResT), B)
GPD-3 Y ~GP(exp(e, +aJ), B) GPD-11 ~GP(exp(a, +,R+a,S+a V), B)
GPD-4 Y ~ GP(exp(a, + o, ResT), B) GPD-12 ~GP(exp(a, +a,R+a,S +a,ResT), B)
GPD-5 Y ~GP(exp(e, +¢R+a,5),8) GPD-13 ~GP(exp(o, +aR+aU +a,ResT), B)
GPD-6 Y ~GP(exp(a, +a,R+a V), B) GPD-14 ~GP(exp(a, + oS +aU +a,ResT), B)
GPD-7 Y ~GP(exp(a, + R +a,ResT), B) GPD-15 Y~ GP(exp(ao +aR+a,S+aU +a,ResT),p)
TDM station
GPD-0 Y ~GP(a,p GPD-8 Y ~GP(exp(a, +a,S+aV),B)
GPD-1 Y ~GP(exp(a, +aR),B) GPD-9 Y ~GP(exp(a, +,S +a, ResD), )
GPD-2 Y ~GP(exp(a, +S),B) GPD-10 Y ~GP(exp(a, +aU +a, ResD), B)
GPD-3 Y ~GP(exp(e, +aJ), B) GPD-11 Y ~GP(exp(a, +aR+a,S+al),B)
GPD-4 Y ~ GP(exp(a, +a, ResD), ) GPD-12 Y ~GP(exp(a, + R +a,S +a,ResD), B)
GPD-5 Y ~GP(exp(a, +@R+a,5), B) GPD-13 Y ~GP(exp(a, +a,R+aU +a,ResD), B)
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GPD-6 Y ~GP(exp(a, +a,R+a V), B) GPD-14 Y ~GP(exp(a, +,S+aU +a,ResD), )
GPD-7 Y ~GP(exp(a, +a,R+a,ResD), B) GPD-15 Y ~GP(exp(a, + R +a,S +aU +a, ResD), B)
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The choice of an adequate threshold is a critical step for extreme value analysis in the
POT method. If the selected threshold is too low, it is likely to violate the asymptotic basis of
the model, leading to bias. If the threshold is too high, it will generate few excesses which
may lead to high variance in the model estimate. Thus, threshold choice involves balancing
bias and variance (Scarrott and MacDonald, 2012). Lang et al. (1999) mentioned about two
different methods that can be adopted for threshold selection: the first one is based on
physical criteria whereas the second one is based on mathematical and statistical
considerations. The physical approach is usually used in river engineering in which the
threshold is defined as the flood level for a specific river. Meanwhile, mathematical and
statistic approaches are often recommended for coastal waters (Arns et al., 2013b). In this
study, the thresholds for different water-level stations are chosen considering physical
approach. For physical approach, the threshold values are selected based on flood alarming

rate at each station. These rates are regulated by the Vietnam’s government (PMV, 2011).

Water level series can exhibit dependencies, which are mostly related to the same
meteorological forcing (Arns et al., 2013b). Therefore, in order to remove these temporal
dependencies, some form of de-clustering is necessary (Coles, 2001). Firstly, for a given
threshold u, a cluster is defined whenever there are consecutive exceedances of this threshold.
These clusters are separated from each other by setting a minimum interval which is typically
selected to be representative of storm duration on the site under study area (can be one or
more days). Then the clustered extreme water level is de-clustered by retaining maximum

values of each cluster.
4.3.3 Estimation of parameters

The method of maximum likelihood is used for estimating the parameters of GPD
model in this study because it can be easily extended to the nonstationary case (Coles, 2001).
Suppose that the values yi, Yo, ..., yn are the n excesses of a threshold u. The log-likelihood
function is given by (Coles, 2001) as Eq. (4.4).
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L(a,p) = —nlog(a) — (1 +%)zn: log (1 +%>,ﬁ 0
i=1

i} (4.4)
1
L(@) = ~nlog(@) =~ Y yi,6 =0
i=1

Katz (2013) suggested that minimization of negative log-likelihood, for the purpose of
optimization, can be adopted to arrive at the estimates of parameters instead of maximization.
Therefore, minimization the negative log-likelihood function is used for estimating

parameters a, oo, 01, 02, a3, as, as and B in this study.
4.3.4 Model selection

As discussed in Section 3.4.4, the best model among different candidate models can be
selected by the AlICc value. Upon identifying the best model among candidate models (Table
4.2), the significance of the best model against the stationary model can be checked by the
likelihood ratio test as shown in Section 3.4.4. Here, the AICc and the likelihood ratio test are

used to identify the best model for extreme water level.
4.3.5 Estimation of return levels

The T-year return level is the level expected to be exceeded once every T years.
Because scale parameter in nonstationary model varies with time, a low-risk approach (more
conservative) is used by taking the 95 percentiles of the scale parameter values in historical
observation (@gs= Qgs(@;1, Az, .-, Asy)) t0 calculate the return level (Cheng et al., 2014). Let

ny be the number of observations per year. The T-year return level (Coles, 2001) is given by

u +%[(Tny{u)ﬁ — 1] , for B #0
u + g5 log (Tny{u) , forB=0

Zr=

(4.5)

for a given threshold u, where ¢,,= Pr {Y > u} is the rate of the data exceeding u. The rate
parameter has a natural estimator simply given by the number of exceeding observations

divided by the total number of observations.
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4.4 Results and discussions

4.4.1 Test of nonstationarity for extreme water level time series

As mentioned earlier, test for nonstationarity is performed by checking the water level
time series against a linear trend. The significance of this trend is investigated by M-K test
and the result is shown in Table 4. 3. It can be seen that the M-K test shows a statistically
significant increasing trend (p<< 0.05) of the water level time series for all selected stations.
This also indicates the presence of nonstationarity in water level time series. Hence, the

nonstationary condition is used to model extreme water level for all stations in this study.

Table 4. 3: The results of M-K test for all considered stations. The p-value < 0.05
indicates a significant trend

Stations Tau p-value
Phuan 0.174 2.22E-16
Nhabe 0.104 0.00049
Bienhoa 0.076 0.00049
TDM 0.381 2.22E-16

4.4.2 Threshold selection and de-clustering

In this study, the value of threshold for each water level station is interpreted through
physical approach based on flood alarming rate regulated by Vietnam’s government. As such,
the water level of 1.6 m may be chosen as the threshold for Bienhoa station. However, due to
the topography of Bienhoa station and adjacent areas, the water level of 1.5 m can inundate
this area. The number of exceedances corresponding the threshold of 1.5 m is 181 compared
with 102 for the threshold of 1.6 m. As reported by Bezak et al. (2014), the threshold value
should be high enough, so that the model assumption is not violated, but the truncation level
should be as low as possible, so that the highest number of exceedances is selected and more
reliable parameter estimates can be made. Hence 1.5 m is selected as the threshold value for

Bienhoa station.
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Based on typical storm duration on the HCMC’s coast, a minimal duration of 3 days is
chosen to ensure the independence between two peaks. As such, the extreme water level is
automatically separated by 3 days. The threshold values and the number of exceedance after
de-clustering are shown in Table 4. 4. The relationships between observed extreme water
level after de-clustering and local covariates are represented by scatter plots. The scatter plots
for Nhabe station are shown in Figure 4. 5. In Figure 4. 5, the correlation coefficients between
extreme water level and covariates are 0.91, 0.50, 0.37, -0.31 and 0.12 for urbanization, sea
level, rainfall, outflow from Trian reservoir and outflow from Dautieng reservoir respectively.
The scatter plots for Phuan, Bienhoa and TDM are shown in Figure A. 6, A. 7 and A. 8
respectively. It can be seen that the relations between extreme water level and local covariates

are statistically significant for most cases.

Table 4. 4: Threshold values for water level gauges

Flood alarming rate  Selected threshold Number of exceedance

Station (m) (m) (after de-clustering)
Phuan 1.30 1.30 147
Nhabe 1.28 1.28 172
Bienhoa 1.60 1.50 181
TDM 1.10 1.10 150
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Figure 4. 5: Scatter plots of observed de-clustered extreme water level against the

covariate of (a) rainfall, (b) sea level, (c) outflows from Dautieng reservoir, (d) outflows from

Trian reservoir and (e) urbanization for Nhabe station
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4.4.3 The best models for selected locations

The results for all GPD models fitted to the extreme water level data for the four
locations are represented in Table 4. 5. It can be noted that the models with lower AICc
should be preferred to models with higher AICc, and the best model is identified as the model
which has A;j equal to zero. The GPD-26 is found to be the best model for water level
extremes for Phuan station. It can be seen that the best model (GPD-26) is based on four
covariates such as rainfall, sea level, urbanization and discharge released from Trian reservoir.
Moreover, in Phuan station, the stationary model is placed 22nd, and the value of A; between
GPD-0 and GPD-26 is 126.1.

For the Nhabe station, the GPD-22 can be considered as the best model for extreme
water level. In GPD-22, the linear trend is represented in scale parameter with three covariates
of sea level, urbanization and outflow from Trian reservoir. The stationary model is ranked 22
among 32 models.

Regarding Bienhoa station which is closest to Trian reservoir, the model (GPD-14)
considering three covariates (i.e. sea level, urbanization and outflow from Trian reservoir) is
found to be the best model based on A; value. Including GPD-14, there are seven
nonstationary models which are superior to GPD-O0. It is also noted that apart from GPD-1, all

those superior models are based on outflow released from Trian reservoir.

The GPD-8 is found to be the best model for water level extremes for TDM station.
This model included sea level and urbanization as covariates. And the value of A; between
GPD-0 and GPD-8 is 95.2. In nine nonstationary models which are superior to GPD-0, sea

level and urbanization appear in six models as covariates.
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Table 4. 5: The performance of GPD models for extreme water level for all stations

Model AICc A Model AICc A Model AICc A

Phuan station

GPD-26 -486.5 0.0 GPD-28 -407.8 78.7  GPD-30 -394.9 91.6

GPD-22 -479.8 6.7 GPD-17  -407.0 79.5 GPD-0  -360.4 126.1

GPD-16 -479.5 7.1 GPD-12  -406.8 79.7 GPD-5  -359.7 126.8

GPD-23 -473.2 13.3 GPD-25 -406.7 79.8 GPD-4  -359.7 126.9

GPD-10 -466.1 20.5 GPD-2  -406.2 804 GPD-15 -3590.1 127.4

GPD-27 -415.1 714  GPD-29 -404.7 81.8 GPD-9  -358.1 128.5

GPD-24 -409.2 77.3 GPD-3  -404.3 82.2 GPD-8  -357.7 128.8

GPD-18 -408.7 77.9 GPD-7  -402.3 84.2 GPD-21  -357.0 129.5

GPD-6 -408.4 78.1 GPD-13  -402.3 84.3 GPD-31 -317.8 168.7

GPD-11 -408.0 78.5 GPD-19  -400.3 86.2 GPD-1  -268.9 217.6

GPD-14 -407.9 78.6 GPD-20 -398.1 88.4

Nhabe station

GPD-22 -515.1 0.0 GPD-19  -441.7 73.4 GPD-21  -404.7 110.4

GPD-30 -511.2 3.8 GPD-25 -4415 73.6 GPD-5  -404.0 1111

GPD-10 -500.1 14.9 GPD-3  -432.1 82.9 GPD-1  -403.1 111.9

GPD-16 -498.3 16.8 GPD-14  -430.3 84.8 GPD-9  -402.1 113.0

GPD-23 -498.1 17.0 GPD-7  -430.0 85.0 GPD-27 -397.9 117.2

GPD-11 -450.4 64.7 GPD-20 -428.1 86.9 GPD-18 -382.2 132.9

GPD-12 -449.6 654  GPD-24 -414.8 100.3 GPD-26 -3725 142.6

GPD-2 -449.0 66.1 GPD-4  -407.3 107.8 GPD-17 -360.8 154.3

GPD-6 -448.1 67.0 GPD-15 -406.8 108.3 GPD-29 -300.0 215.1

GPD-31 -445.7 69.4 GPD-8  -405.2 1099 GPD-28 -276.8 238.3

GPD-13 -443.2 71.9 GPD-0  -404.9 110.1
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Model AICc A Model AICc A Model AICc A
Bienhoa station

GPD-14 -417.6 0.0 GPD-1  -343.6 74.0 GPD-11  -340.6 77.1
GPD-10 -411.6 6.1 GPD-0  -3434 74.3 GPD-8  -339.8 77.8
GPD-9 -386.0 317 GPD-6  -342.4 752  GPD-15 -294.2 1235
GPD-4 -384.9 328 GPD-3  -341.9 757  GPD-13 -289.4 128.2
GPD-12 -383.8 3338 GPD-5 -34138 75.8

GPD-7 -382.8 34.8 GPD-2  -341.3 76.3

TDM station

GPD-8 -519.1 0.0 GPD-9  -443.3 75.8 GPD-7  -421.3 97.8
GPD-11 -517.6 15 GPD-5 -4414 7.7 GPD-12  -4155 103.6
GPD-10 -482.5 36.6 GPD-15 -429.7 89.4 GPD-14 -414.1 105.0
GPD-3 -476.0 43.1 GPD-0  -423.9 95.2 GPD-13  -394.0 125.1
GPD-6 -473.9 45.3 GPD-4  -4235 95.7

GPD-2 -443.5 75.6 GPD-1  -4219 97.2

Note: Models are sorted based on A;values. The bold letters indicate the best GPD models.

To sum up, sea level and urbanization are attributed to be the most significant factors
causing nonstationarity in time series since those factors appear in all the best nonstationary
models. The outflow from Trian reservoir also has a significant impact on extreme water level

in all water level stations located in its downstream. In contrast, the stationary model is not

considerable in all cases. The summary of nonstationary analysis is given in Table 4. 6.
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Table 4. 6: Summary of nonstationary analysis. The best nonstationary model for each

station is shown based on the lowest value of AlCc, along with the significant covariate(s)

Station Best nonstationary model Significant covariate(s) Stationary model
Phuan GPD-26 Rainfall, sea level, urbanization and 24"
discharge released from Trian
reservoir
Nhabe GPD-22 Sea level, urbanization and discharge 22"

released from Trian reservoir

Bienhoa GPD-14 Sea level, urbanization and discharge g"
released from Trian reservoir

TDM GPD-8 Sea level and urbanization 10"

Maximume-likelihood estimates for scale and shape parameters in the stationary and
best nonstationary models are shown in Table 4. 7. This table also demonstrates the likelihood
ratio test result (p-value). Based on p-value, it is clear that the best nonstationary GPD models
show superiority over the stationary GPD models for extreme water level of all surveyed
locations. Besides, the residual probability and quantile plots for the best nonstationary GPD
models for Phuan, Nhabe, Bienhoa and TDM stations are given in Figure 4. 6. It can be seen
that the best nonstationary models show a satisfactory fitting the quantiles of extreme water

level.

78



Table 4. 7: Maximum likelihood estimates for parameters of the stationary and best nonstationary models for all stations (SE = standard

error of the parameter estimation)

Stationary model Best nonstationary model L::t?g?s;d
Station a B Model 0o oy oo 03 o4 B p-value
(SE) (SE) (SE) (SE) (SE) (SE) (SE) (SE)
Phuan 0.1433 -0.3041 GPD-26  -6.9909 0.0017 3.0355 0.0073 0.0002 -0.8517 3.8E-28
(0.0153)  (0.0726) (0.1800) (2.0E-06) (0.1609)  (0.0001)  (0.0001)  (0.0811)
Nhabe 0.1439 -0.2706 GPD-22  -6.1185 2.5076 0.0053 0.0006 -0.7457 4.4E-25
(0.0140)  (0.0635) (0.1296) - (0.0724)  (0.0001)  (0.0001)  (0.0748)
Bienhoa 0.1585 -0.1237 GPD-14  -5.2591 0.9482 0.0085 0.0009 -0.3083 2.3E-17
(0.0154)  (0.0633) (0.3607) - (0.3067) (2.0E-06) (2.0E-06) (0.0427)
TDM 0.1053 -0.1829 GPD-8  -6.5477 2.1684 0.0095 -0.4940 2.6E-22
(0.0111)  (0.0685) (0.1857) _ (0.1435)  (2.0E-06) _ (0.0512)
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Figure 4. 6: Residual probability and quantile plots for the best nonstationary model for (a) Phuan, (b) Nhabe, (c) Bienhoa and (d) TDM
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4.4.4 Extreme water level estimation for different return periods

Figure 4. 7 shows the results from extreme water frequency analysis under stationary
and nonstationary conditions for the return period of 100-year. The results for all stations
show that the return levels from the best nonstationary model experience significant
variability, whereas the stationary model remains unchanged. Taking TDM as an example, a
clear increase in extreme water level can be seen over the period of 1981-2014 based on the
best nonstationary model (GPD-8) with sea level and urbanization as covariates. Meanwhile
the stationary model shows a fixed return level for the same period (Figure 4. 7d). In addition,
it can be seen that the stationary model underestimates extreme water level compared to the
nonstationary model in recent years (Figure 4. 7d), which could be the result of strong
urbanization and rising sea level for this specific example. In a similar way for remaining
stations, the 100-year extreme water level is underestimated under stationary condition in
recent years, which is shown more apparent for Nhabe and Bienhoa stations (Figure 4. 7b and

c).
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Figure 4. 7: The time series of observed extreme water level after de-clustering (‘o’
markers) in the period 1981-2014, along with 100-year return levels obtained from the
stationary model (dashed line) and the best nonstationary model (‘+’ markers) for (a) Phuan,

(b) Nhabe, (c) Bienhoa and (d) TDM
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In addition, a comparison of the return levels based on the best nonstationary model
and common stationary model is shown in Figure 4. 8. It can be seen that the values of the
return levels in the best nonstationary models (red curves) shown for all stations have a
significant difference compared with stationary models (blue curves). In other word, the
extreme water level derived from the stationary models are underestimating for all stations

and for all return periods.

In more detail, taking Phuan station as an example, the extreme water level for 1-year
period under nonstationary condition (1.69 m) is corresponding to a 100-year return period
under stationary condition. In case of Nhabe station, the estimated extreme water level of 100-
year return period under nonstationary and stationary conditions are 2.31 m and 1.71 m
respectively. With sea level and urbanization as covariates, the estimated extreme water level
corresponding to the 100-year return period is 1.9 m for TDM station. While the extreme
water level in Bienhoa station is estimated under nonstationary condition to reach a value of
3.23 m (T = 100). To sum up, the difference in extreme water level estimates between
stationary and nonstationary models reaches 47% for Bienhoa station, while those values for
the remaining stations of Nhabe, Phuan and TDM are 35%, 31% and 25% respectively. The
result also emphasizes that choosing the design flood for hydraulic structures using stationary
or nonstationary model should be considered thoroughly.
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Figure 4. 8: Comparison of return levels between the stationary model and the best

nonstationary model for all stations at extreme water level: (a) Phuan; (b) Nhabe; (c) Bienhoa;
(d) TDM

4.5 Summary and conclusions

In this study, the modelling of nonstationary extreme water level in HCMC is carried

out considering the influences of local physical processes, namely rainfall, sea level,

urbanization and outflows from upstream reservoirs due to their relationship to water level. In

particular, after detecting the trend in time series by using M-K test, ninety-two nonstationary
GPD models (for four stations) are developed based on local physical covariates and their
combinations. Besides, the stationary models are also constructed for comparison purpose of

showing the dominance of nonstationarity in the extreme water level. The best nonstationary

model for each station is found based on AICc value and likelihood ratio test.
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The findings from the present study exhibit the significant impacts of local variables
on the extreme water level in HCMC. Two factors, sea level and urbanization, are found to be
associated with the nonstationarity in extreme water level since those covariates appear in all
the best nonstationary models for all considered locations. The impact of outflow from Trian
reservoir on extreme water level is more significant than outflow from Dautieng reservoir. In

contrast, the stationary model is not superior in all selected locations.

The results also indicate that there are significant differences in the estimated extreme
water level between stationary and nonstationary cases. In particular, the extreme water level
values derived from the stationary models are underestimated for all stations relative to the
best nonstationary models. For instance, the extreme water level for 1-year period under
nonstationary condition is corresponding to a 100-year return period under stationary
condition. This implies that the existing structures based on stationary assumption of design

flood could be likely unsuitable for current level of protection.

Since flooding continues to be considered as a major threat to HCMC and the extreme
water level is proved to have nonstationary feature in time series, it poses a huge challenge in
term of prevention and mitigation infrastructure design. Our proposed method provides more
possible choice for decision makers in selecting appropriate design flood for HCMC as well
as for other areas belonging to the Saigon-Dongnai River basin. Although, this study
successfully introduces nonstationarity in extreme water level by using local physical
processes, it contains some limitations. For instance, the selection of the thresholds is
objective, and only GPD is introduced to model the extreme water level. Therefore, it is

suggested that more appropriate distributions can be considered for further studies.
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Chapter 5

High-resolution flood hazard mapping based on

nonstationary frequency analysis

5.1 Introduction

Floods may be considered as among the most devastating natural disasters, impacting
millions of people every year across the world (Jongman et al., 2012, Hallegatte et al., 2013,
Lasage et al., 2014, Karamouz et al., 2017). In the last few decades, the effects of climatic
change and sea level rise have been creating additional pressure which could increase flood
vulnerability by effecting the magnitude and frequency of floods (Bates et al., 2005, Nicholls
and Cazenave, 2010, Purvis et al., 2008, Karamouz et al., 2017). In terms of reducing
damages and losses, flood hazard mapping has become a priority, since the information
significantly contributes to flood warning systems, as well as flood risk management schemes.
Traditionally, flood control structures have been built based on the assumption of data

stationarity for flood frequency analysis (Mudersbach and Jensen, 2010, Salas and
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Obeysekera, 2013, Katz, 2013, Sraj et al., 2016, Yilmaz et al., 2016). However, flood series,

as recently suggested by many
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researchers, have a nonstationary nature due to climate variability (Milly et al., 2008, Gilroy
and McCuen, 2012, Ishak et al., 2013). Thus stationary conditions may no longer be
appropriate, and the concept of nonstationarity has been improved and used more frequently
in analyzing flood events in lowland areas (Binh et al., 2018, Lopez and Francés, 2013, Li et
al., 2015, Prosdocimi et al., 2015, Sraj et al., 2016). As such, flood frequency analysis can be

performed by taking nonstationarity into account.

Unlike the stationary approach, nonstationary flood frequency analysis, the parameters
of the chosen distribution functions are commonly expressed as a function of covariates.
Previous studies have commonly used time as a covariate (Sraj et al., 2016, Salas and
Obeysekera, 2013). Some other studies have shown that the parameters could vary with
several climatological variables, such as ENSO, NAO, AO, PDO, North Pacific Oscillation
(NPO), and human-induced environmental factors (Lopez and Francés, 2013, Li et al., 2015,
Zhang et al., 2015, Machado et al., 2015, Gilroy and McCuen, 2012). Overall, it can be
suggested that the covariates selected for nonstationary modelling should have strong physical
associations with the process of flood events and should be able to provide reliable future
predictions (Agilan and Umamahesh, 2016b, Yan et al., 2017, Nash and Sutcliffe, 1970).

As mentioned in two previous chapters, HCMC city has been facing climate problems
from last few decades, such as increases in frequency and magnitude of extreme rainfall
events (ADB, 2010), which have resulted in increasing severe floods and inundation. In
addition, sea level rise is likely to have an important influence on the inland reach of tidal
flooding, which is expected to be more severe in HCMC in the future (ADB, 2010, World
Bank, 2010). However, in most of the studies on flood forecasting in HCMC, rainfall and sea
level rise have not been analyzed and assessed thoroughly before being entered into flood
simulation models as initial inputs. In other words, they did not use a nonstationary approach
to modelling rainfall and sea level that significantly impact on flooding in HCMC. Therefore,
without proper assessment of the causes of floods, it is difficult to investigate the best
information on flood hazards, which becomes a problematic challenge for local governments

as the flood risks in HCMC are increasing continuously.

To date, various models have been developed for providing flood information. Among

these, the 1D hydrodynamic model is the most widespread approach, due to its numerical
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stability and computational efficiency (Papaioannou et al., 2016, Moore, 2011). However, it
may not come up with an accurate result for a complex topography and depends largely on the
correct placement of cross-sections (Moore, 2011). In contrast, the 2D hydrodynamic model
can accurately model complex topography, geomorphological and sedimentological
processes, and has become a standard in flood prediction (Shen et al., 2015, Timbadiya et al.,
2014a). Nevertheless, the 2D model is not computationally efficient and may not be suitable
for a large area in case of urgent need (Timbadiya et al., 2014a). To combine the advantages
of the 1D and 2D hydrodynamic models, an alternative approach has been developed by
coupling these models. The coupled 1D-2D hydrodynamic models with their advantages have
been widely applied in flood inundation mapping or flood risk estimation (Leandro et al.,
2009, Yin et al., 2013, Timbadiya et al., 2014a, Papaioannou et al., 2016).

Furthermore, the flow structure is quite complex in populated areas; therefore, the flow
simulation results greatly depend on accurate and high-resolution topographical data (Tsubaki
and Fujita, 2010). Among new techniques developed in recent years, the LIDAR technique
could improve the accuracy of the DEM for use as model input. The application of high-
resolution LiDAR-derived DEM data in flood and inundation simulation can be found in
several papers (Moore, 2011, Sampson et al., 2012, Shen et al., 2015, Papaioannou et al.,
2016).

The main objective of this study is to address the following issues: (i) modelling the
extreme value frequency analysis (i.e. rainfall, sea level and discharge) under nonstationary
conditions by considering global and local processes and their possible combinations as
covariates; (ii) developing an appropriate flood simulation model based on a coupled 1D-2D
hydrodynamic model with high-resolution topography data; (iii) establishing flood hazard
maps for different scenarios in a selected area within HCMC, and classifying them based on a
combination of flood depth and flood velocity; and (iv) comparison of floodplain extent

between the stationary and the nonstationary cases.
5.2 Study area and datasets

As one of the largest river basins in the South of Vietnam, the Saigon-Dongnai River
basin provides important sources of water for people in the catchment areas in general and

HCMC in particular. The total catchment covers an area of 48,471 km?, with a mean water
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discharge of approx. 47.065 x 10° m*/year (Merz et al., 2011). The annual average rainfall is
2,000 mm, and the rainy season (April-November) receives 85% of the total annual rainfall.
The Saigon-Dongnai River system contains five main rivers: the Dongnai, Saigon, Be,
Vamcodong and Vamcotay. The river system drains HCMC before emptying into the South
China Sea. The hydrological regime of the Saigon-Dongnai River basin is influenced by a

semi-diurnal tide, rainfall and outflows from upstream reservoirs.
5.2.1 Rainfall, Sea level and Discharge

To estimate the values of extreme rainfall, as well as sea level for different flood
scenarios, rainfall and sea level data for the period 1980-2014 were collected from 22 rainfall
stations which cover the entire catchment area, and one sea level station. In particular, the
daily rainfall data was recorded at eight stations located within HCMC and 14 stations outside
HCMC (belonging to Binh Duong, Dong Nai, Ba Ria Vung Tau, Long An and Tay Ninh
provinces). The hourly observed sea level data was recorded at Vungtau station. These
observed data were provided by the NHMS of Vietnam. The estimates of extreme rainfall and
sea level for different return periods were used, respectively, as input data for the hydrological
model and as downstream boundary conditions for the hydrodynamic model. The locations of

the selected gauging stations are shown in Figure 5. 1.
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Figure 5. 1: Location of the gauging stations in the Saigon-Dongnai River basin and

the wider study area

In addition, water discharge data from upstream areas was also collected and used in
the frequency analysis. The daily water discharge data from Go Dau gauging station and three
upstream reservoirs, i.e. Trian, Dautieng, Phuochoa, were provided by Trian Hydropower
Joint Stock Company and Dautieng-Phuochoa Limited Company for the period 01-01-1980 to
31-12-2014. For the Mochoa station, discharge data is not available; therefore, hourly water-
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level data provided by NHMS were used in this study. These data (i.e. water discharge and
water level) were used for statistical analysis and to estimate return levels before entering into
the hydrodynamic model as upstream boundary conditions. Figure 5. 2 shows the annual
maximum daily discharge, annual maximum hourly water level and annual maximum daily

rainfall at selected gauges in the Saigon-Dongnai River basin.
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Figure 5. 2: Boxplot of (a) annual maximum daily discharge, (b) annual maximum hourly

water level and (c) annual maximum daily rainfall at selected gauges
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5.2.2 Data for covariates

In this study, five physical covariates, namely ENSO, PDO, local mean temperature,
global warming and global mean sea level rise, were considered, to show the impacts of

global and local processes on the nonstationarity of extreme events (i.e. rainfall and sea level).

The ENSO cycle has had a significant impact at local and regional scales through
teleconnections influencing the coupled ocean-atmosphere and land systems (Wang et al.,
2006). The influences of this pattern on extreme rainfall and flooding have also been indicated
in many parts of the world (Gobin et al., 2016, Mondal and Mujumdar, 2015, Villafuerte et
al., 2015, Agilan and Umamahesh, 2016b, Li et al., 2015, Ishak et al., 2013). In Vietnam,
ENSO has proved to play an important role in climate and to contribute to the inter-annual
variation in rainfall in many regions (Yen et al., 2011, Nguyen et al., 2014, Gobin et al.,
2016). In this study, monthly sea-surface temperature (SST) anomaly series over the Nino 3.4
region were used as ENSO indicator; this was obtained from the US National Oceanic and
Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) (available

at https://www.esrl.noaa.gov/psd/gcos wagsp/Timeseries/Nino34/).

The PDO, a pattern of Pacific climate variability, has been shown to have significant
climatic and environmental impacts across the Pacific Basin (Deng et al., 2013). Together
with ENSO, PDO has been investigated by many authors and found to have an influence on
the East Asian monsoon, as well as seasonal rainfall patterns (Chan and Zhou, 2005, Chen et
al., 2013, Wu, 2013). The PDO index was also extracted from NOAA ESRL (available at

https://www.esrl.noaa.gov/psd/data/climateindices/list/), and is used in the nonstationary

frequency analysis as a covariate.

Increases in extreme rainfall have been documented in many regions across the world
(IPCC, 2012) and human-influenced global warming may be partly responsible (Min et al.,
2011). Kunkel et al. (2013) indicated that rising temperatures and subsequent rises in
atmospheric moisture content might increase the probable maximum precipitation values.
Nevertheless, the physical mechanisms linking local temperatures with rainfall may not be the
same as those linking global warming to extreme rainfall changes (Trenberth, 2011, Mondal
and Mujumdar, 2015). Therefore, global temperature and local temperatures are chosen as

separate covariates for analyzing the extreme rainfall characteristic in this study.
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The HadCRUT4 annually observed global average surface air temperature anomaly
series (available at http://www.metoffice.gov.uk/hadobs/hadcrut4/) with respect to the 1961

1990 mean was used as an indicator of global warming. The yearly mean temperature data for
the period 1980-2014 was provided by the Southern Institute for Water Resources Planning.
This data was recorded at four stations located in HCMC: TSN, Bienhoa, Dongphu, Vungtau,
and three in adjacent regions (Figure 5. 1). The yearly mean temperature anomaly series based

on the 1980-2014 mean was calculated and considered as a covariate.

In recent decades, extreme sea level has been found to have increased in various
regions worldwide (Woodworth et al., 2011). Many studies have reported that long-term
changes in extreme sea level are generally associated with corresponding increases in mean
sea level (Lowe et al., 2010, Letetrel et al., 2010, Weisse et al., 2014, Feng and Tsimplis,
2014). As a coastal city, HCMC is expected to be severely influenced by sea level rise.
Hence, using global mean sea level as a covariate in extreme sea level statistical analysis is
reasonable. The global mean sea level (GMSL) data used in this study is the up-to-date
version of reconstructed GMSL from Church and White (2011) for the period 1980-2014.

This data is available at http://www.cmar.csiro.au/sealevel/sl data cmar.html.

5.2.3 Soil, land use and DEM

LULC maps, soil maps and 1-m resolution LiDar data were used as input in the
hydrological and hydrodynamic models. These data were provided by Ho Chi Minh City
Department of Science and Technology and are not publicly available. The main types of soils
in the Saigon-Dongnai River basin are alluvial, basalt, grey, black and soft soil. The main
types of LULC in the study area are built-up areas, vegetation, bare soil and wetland. These

data were used to estimate the parameters in the hydrological and hydrodynamic models.
5.3 Methodology

A flowchart of the proposed methodology for developing flood hazard maps is shown
in Figure 5. 3. The flowchart consists of four main sections. Apart from data preparation

mentioned in Section 5. 2, the three remaining sections are described as follows:
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(i)

(i)

(iii)

Annual maximum daily rainfall and hourly sea level time series were used for
frequency analysis. The GEV distribution was chosen with the assumption of
stationarity and nonstationarity in the time series. The magnitude of extreme
rainfall from the best GEV model was used as input data for the hydrological
model and, similarly, extreme sea level was used as downstream boundary
condition for the hydrodynamic model. Meanwhile, the values of upstream
water level and discharge from the stationary GEV model were used as the
upstream boundary conditions in the hydrodynamic model

Estimation of runoff from sub-basins is based on the lumped conceptual
rainfall-runoff model. The result from the rainfall-runoff model was used in 1D
flow simulation

Development of the 1D flow model, the 2D flow model and coupling of the
1D-2D maodels for the river system and identification of the spatial variation of
flood hazards corresponding to three flood scenarios derived from a
combination of extreme rainfall, sea level and discharge for different return
periods (i.e. 25-, 50- and 100-year).
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Figure 5. 3: Proposed methodology flowchart for developing flood hazard maps
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5.3.1 The GEV model

In this study, the GEV distribution is used for the frequency analysis of extreme
events. In the nonstationary setting, the parameters are expressed as a function of covariates in

the general form:
Case 1: For extreme rainfall analysis

H(t) = Mo + 1, C

(5.1)
o(t) = exp (oo + 61 C)
Case 2: For extreme sea level analysis
M) = Mo+ 1 C
(5.2)
o(t) = exp (oo + 01 C)
Case 3: For extreme discharge and water-level analysis
() = Ho
(5.3)
o(t) = oo

where C represents any physical covariate, i.e. the ENSO cycle (E), PDO cycle (P), mean
temperature anomaly (GT), local temperature (LT) or global sea level rise (GS). In the
stationary model (GEV-0), the values of C equal zero. The exponential in Egs. (5.1) and (5.2)
is taken to ensure positive values of the scale parameter. Based on four covariates and their
combinations, 25 nonstationary models were constructed for each rain gauge in the extreme
rainfall statistical analysis (Table A. 1). For extreme sea level analysis 13 nonstationary
models were constructed based on three covariates and their combinations (for only Vungtau
station) (details provided in Table A. 2). Based on these models, individual covariates or
combinations that had significant impacts on the extreme rainfall and extreme sea level in the
study area were derived. In the case of extreme discharge and extreme water level from

upstream, only the stationary condition was used for statistical analysis in this study.

The distribution parameters are estimated by maximum likelihood method. The AlICc
is used to identify the best fitting distribution for rainfall and sea level. Once the best model

for extreme rainfall (or water level or discharge) is determined, the T-year return level zt
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corresponding to the T-year return period can be obtained. Unlike in the stationary model, the
location and scale parameters of the nonstationary model vary over time. Here, a low-risk
approach (more conservative) suggested by Cheng et al. (2014) is used, by taking the 95th
percentiles of u(t) and o(t) in historical observations to calculate return level in this study, as

follows:

figs = Qos(flt1, fitz, -, fitn) (5.4)
695 = Qos(011, 012, ..., Otn) (5.5)

Estimation of the T-year return level can be given by (Coles, 2001) as Eq. (5.6):

a— gll — {—log(l - %)}_El for§ #0
f — olog {—log (1 — %)} foré =0

Zre (5.6)

By substituting the values of estimated parameters into Eq. (5.6), the estimates of the

return levels can be obtained.
5.3.2 Hydrological model

The lumped conceptual rainfall-runoff model is developed by conceptualizing the
catchment as a number of interconnected storages, with a set of mathematical equations used
to describe the process of the water flow lumped over them (Chiew, 2010). Due to its
simplicity, the lumped conceptual rainfall-runoff model has been widely used in previous
studies to mimic hydrological processes in catchments (Madsen, 2000, Brirhet and
Benaabidate, 2016, Anh et al., 2008). In this study, to estimate the generated runoff in the
whole Saigon-Dongnai River basin, it was divided into 216 sub-basins based on land
topography. With 22 rain gauges scattered throughout the sub-basins, the Thiessen polygons
method was used as an interpolation method to calculate the average depth of rainfall on the
area of these sub-basins. The storm runoff was estimated by the Soil Conservation Service
(SCS) method (Hjelmfelt Jr, 1991) which is available in the MIKE 11 Unit Hydrograph
Model (UHM) developed by the Danish Hydraulic Institute (DHI, 2003). The MIKE 11 UHM
is a lumped conceptual rainfall-runoff model that simulates the runoff from a single rainstorm

by using the unit hydrograph technique.
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The SCS loss method is used to estimated the losses of model. Analysis of storm event
rainfall and runoff indicates that there is a threhold which must be exceeded before runoff
occurs. It is expresses by Eq. (5.7).

F Q

—=— 7

S P-I (5.7)
where F is actual retention after runoff begins (mm), S is watershed storage (mm), Q is actual

direct runoff (mm), P is total rainfall (mm) and I is initial abstraction (mm).

The SCS dimensionless unit hydrograph is used to transform the excess precipitation
into a flow hydrograph at the outlet of each basin. The lag time (Tiyg) is the main parameter
for this method. Lag time is the time difference between the centroid of rainfall excess and the
centroid of the Direct Runoff Hydrograph (DRH). Lag time can be estimated from the
watershed characteristics using Curve Number (CN) by the standard SCS formula and it is
given by Eq. (5. 8).

(5.8)

T _((L><3.28x103)°'8x(1000><CN—9)0'7)
lag — 1900xY 05

where, T4 is the catchment lag time in hours, L is the hydraulic length measured along the

main river in km and Y is the average catchment slope in percent.

The model runs on 24-h rainfall records and potential evaporation. For the flood
scenarios, once the extreme rainfall is calculated through the best (non)stationary model for
each station, this value is assumed to be uniformly distributed and used as input data for the
rainfall-runoff model. The output from the rainfall-runoff model can be used as lateral inflow
for the 1D hydrodynamic model.

5.3.3 Hydrodynamic model

1D-2D models are dynamiclly linked in a package called MIKE-FLOOD. The model
was developed by the Danish Hydraulic Institute (DHI, 2007). The 1D-2D coupled technique
is suitable becauce the study area is reprensented by complex floodplains and river channel.
MIKE 11 and MIKE 21 are coupled through of links. There are several type of link can be

used in numerous situations. A lateral link is one of the most link which widely used in flood
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modelling. Schematisation of lateral links is illustarted in Figure 5.4. It allows a string of
MIKE 21 elements to be laterally linked to a given reach in MIKE 11, either a section of a
branch or entire branch. Flow through the lateral link is calculated using a structure equation.
This type of link is particularly useful for simulating from river channel onto a floodplain
(DHI, 2007) . Therefore, in this study, the coupled 1D-2D model MIKE FLOOD was used to
simulate the flood inundation for HCMC in the Saigon-Dongnai River basin. To set up the 1D
hydrodynamic model which represents the entire river system of the Saigon-Dongnai River
basin, the input data included cross-sections, the Manning’s n roughness coefficients and
boundary conditions. There are six boundaries. The hourly sea level data (Vungtau station)
was used as a downstream boundary condition, while daily discharge time series from Trian,
Dautieng, and Phuochoa reservoirs, daily discharge data from Godau streamflow gauge
located in the Vamcotay River, and hourly water level data from Moc Hoa water level gauge
located in the Vamcodong River were used as upstream boundary conditions. Besides, five
main rivers, i.e. Dongnai, Saigon, Be, Vamcotay and Vamcodong, together with 251 small
streams were established, and the details of 300 observed cross-sections were used in this

study.

Specify flow over

either left or . | .
right banks / ~— \§<\ ’ /.o—/
Mz > ,z/‘
Network _ o=
r// A |
| [ \ Lateral Link: Lateral weir flow from
| \  river channel (M11) to floodplan
- (M21). Link from evesy h pointin
\ branch to every linked M21 cell.

Figure 5.4: Sketch repesenting the application of lateral links; Source: (DHI, 2007, FLOOD,
2011)
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The 1D model (MIKE 11) was calibrated for the year 2012 and validated for the year
2011. In the calibration procedure, the Manning’s roughness coefficient values were adjusted
manually to produce the smallest deviations between the observed and modelled values. The
initial Manning’s n values for channels were chosen from the study of Razmi et al. (2017).
Ritter and Mufioz-Carpena (2013) suggested that, in the model performance assessment, one
should include at least one absolute value error indicator, one dimensionless index and a
graphical technique, which provide a visual comparison between observed data and model

calculated values.

In this study, the following statistical criteria were used to assess model performance:
the coefficient of determination (R?), the ratio of root mean square error to standard deviation
observations (RSR), the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe 1970), and a
graphical representation of the relationship between observations and model estimates. The R?
describes the proportion of the variance in measured data explained by the model, where R? =
1 is considered as the perfect match, and values greater than 0.5 are acceptable (Moriasi et al.,
2007, Jeong et al., 2010). The RSR incorporates the benefits of error index statistics and
includes a normalization factor so that the resulting statistic can apply to various constituents
(Moriasi et al., 2007). Values of RSR range from the optimal value of O to a large positive
value. The NSE, ranging between —oo and 1.0, is commonly used to access the predictive
power of the model (Nguyen et al., 2016). Normally, NSE of 0.65 is considered good for
daily results. However, the criteria may be lower for sub-daily outputs and higher for monthly
and annual outputs since performance improves as the time interval increases (Jeong et al.,
2010). The RSR and NSE are calculated as follows:

Zi\l_ Xiobs_Xisim 2
RSR = \/ =i ) (5.9)
[
N obs_ysim 2
NSE =1 -— i, (0 x0) (5.10)

S, (xpbs—xmean)’

where X?PS and X$'™ are the ith observed and simulated data, X™¢2" is the mean of observed

data, and N is the total number of observations.
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The developed 2D model comprises a flexible mesh with 686,173 elements and
343,498 nodes, which covers study area (16 km?) mentioned in Section 5.3.5. The Manning’s
n values for floodplain areas are referred to (Timbadiya et al., 2014a). In particular, the
Manning’s n values for the residential areas, agriculture areas and water bodies are 0.2, 0.07
and 0.03, respectively. The surface elevations for the study area were derived from 1-m
resolution LIDAR data. Due to the lack of detailed historical data of inundation events,

calibration and validation for the 2D model was not carried out.
5.3.4 Flood scenario simulations

Three sets of model simulations were carried out for different flood scenarios derived
from a combination of extreme rainfall, sea level and discharge. For the upstream boundary
conditions in each scenario, the estimated daily discharge from the frequency analysis (Trian,
Dautieng, Phuochoa and Godau) was assumed to be at a constant value. Similarly, the only
upstream boundary condition in the Vamcodong River was assigned as estimated water level
(Mochoa), which is considered as constant. For the downstream boundary, hourly sea level
time series from 24-12-1999 are used, when the highest water level station was recorded at
Vungtau. The observed hourly sea level was then amplified until the tidal peak matched the
value of extreme sea level gained from the best GEV model. The hourly sea level time series
after amplifying were used as downstream boundary conditions for the hydrodynamic model.

It is to be noted that the impacts of waves were not considered.
5.3.5 Case study

Located in the downstream of the Saigon-Dongnai River systems, the topographic and
geographic conditions of HCMC make it extremely sensitive to various flood sources. HCMC
is subject to both regular and extreme flooding. In 2050, 61% of urban land use and 67% of
industrial land use are expected to be flooded in an extreme event if the proposed flood
control measures are not implemented (World Bank, 2010). However, generating detailed
flood hazard maps based on high-resolution topographical data for the whole HCMC, which
covers a very large area (approx. 2,095 km?), requires high computational resources. Our
study is limited to the area located close to the Saigon River branch, a distributary of the
Saigon-Dongnai River system, covering an area of 16 km?. This area belongs to Binh Thanh

district and District 2 (Figure 5. 1), and is an example of low-lying lands that are prone to
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frequent flooding caused by high tide, heavy rainfall and high-water discharge released from
the upstream reaches of the river basin. Binh Thanh district represents an urban district with a
very high population density, while District 2 represents a semi-urban district, and is
considered to become the most strategic metropolitan area in HCMC in the near future.
District 2 and Binh Thanh district are estimated to be severely impacted by extreme floods in
2050, with approximately 94% and 82% of their area flooded, respectively (World Bank,
2010). The main land use in this area is residential buildings (i.e. built-up land), intermingled
with a few areas of fallow lands. The width of the Saigon River in this area varies between

250 and 350 m, while its average depth is about 20 m.
5.3.6 Flood hazard classification

Flood hazard maps provide essential information for flood risk management and
mitigation purposes. In most flood hazard studies, floodwater depth is widely used to classify
a hazard index (Sharif et al., 2016, Komi et al., 2017, Garrote et al., 2016, Alfieri et al., 2014).
Nevertheless, flood hazard includes many elements, such as the stability of human bodies,
buildings and vehicles in floodwaters (Xia et al., 2011). Therefore, a single parameter cannot
completely assess the potential damage of flood flows on people, buildings and vehicles. In
previous studies, a combination of flood depth and velocity has been used as a proxy for the
force of floodwaters to access the instability of the human body and vehicles, as well as the
failure of buildings in floodwaters (Xia et al., 2011, Xia et al., 2014, Kreibich et al., 2009).
Furthermore, Smith et al. (2014) and AEMI (2014) have indicated that the level of
vulnerability of a community is dependent on the strength of the floodwaters, which can be
simply described by the depth and speed of floodwaters. They also suggested that flood
hazard maps may be classified using combined flood hazard curves derived from flood depth
and velocity thresholds. This method provides a basis for categorizing flood hazard based on
the intensity of DxV, and it was used in this study. As such, the classification of flood hazard
was based on a six-grade scale, ranging from H1 to H6. The class H1 represents a very low
hazard, which is generally safe for people, vehicles and buildings, whereas H6 is unsafe for
people, vehicles and buildings. The flood hazard classification limits (AEMI, 2014) are
presented in Table 5. 1. For further details about flood hazard classification, the reader is
referred to Smith et al. (2014) and AEMI (2014).
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Table 5. 1: Limits for the flood hazard classification

Hazard Flood depth, Velocity, Classification Description
class D \ limit (DxV)
(m) (m/s) (m?/s)

H1 0.3 2.0 <03 Generally safe for vehicles, people and
buildings

H2 0.5 2.0 <0.6 Unsafe for small vehicles

H3 1.2 2.0 <0.6 Unsafe for vehicles, children and the
elderly

H4 2.0 2.0 <1.0 Unsafe for vehicles and people

H5 4.0 4.0 <40 Unsafe for wvehicles and people; all
buildings types vulnerable to structural
damage

H6 - - >4.0 Unsafe for wvehicles and people; all

buildings types vulnerable to failure

5.4 Results and discussions

5.4.1 Flood frequency analysis

The best GEV models were fitted to annual maximum daily rainfall, annual maximum
daily water level and annual maximum daily discharge for all gauging stations and the results
are presented in Table 5. 2, which also shows the parameter values of appropriate GEV
models from the results of frequency analysis. The models with lower AICc should be
preferred to those with higher AlICc, and the best model is identified as the model with A;

equal to zero.
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Table 5. 2: Results of the best GEV models and parameter estimation. The best model
for each station is based on the lowest value of AICc

Station Model Mo M1 Mo M3 0o o1 07 é A*
Rainfall

Ben luc GEV-2 90.98 -9.66 - - 22.47 - - 0.17 1.50
Bienhoa GEV-0 86.43 - - - 21.56 - - 0.10 -
Binhchanh GEV-1 68.67 -12.27 - - 17.51 - - 0.31 3.25
Candang GEV-0 85.45 - - - 21.86 - - 0.05 -
Cangio GEV-7 44.00 -10.81 45.15 - 20.83 - - 0.35 14.12
Chonthanh GEV-0 90.56 - - - 23.30 - - 0.05 -
Cuchi GEV-1 84.78 -19.00 - - 21.86 - - 0.14 4.48
Dautieng GEV-0 90.26 - - - 22.14 - - 0.13 -
Dongphu GEV-0 97.41 - - - 2531 - - 0.26 -
Godau GEV-4 75.88 -12.30 - - 2041 - - -0.18 0.39
Hocmon GEV-0 77.74 - - - 22.93 - - -0.22 -
Longthanh GEV-5 9231 16.16 - - 23.52 - - 0.22 2.71
Macdinhchi GEV-3 102.38 -35.12 - - 21.43 - - 0.02 0.02
Nhabe GEV-20 77.85 3.65 -5.30 - 3.32 1.28 -0.79 -0.27 4.20
Phuochoa GEV-0 95.87 - - - 29.05 - - 0.10 -
Sosao GEV-0 87.15 - - - 21.31 - - -0.10 -
Tanan GEV-23 84.12 -15.28 -21.93 - 2.88 0.72 -1.24 0.32 12.61
Tayninh GEV-2 94.78 -6.91 - - 17.86 - - 0.28 131
Thuduc GEV-10 130.55 -174.18 59.32 - 21.34 - - 0.26 3.33
Trian GEV-0 91.65 - - - 17.45 - - -0.02 -
TSN GEV-12 88.20 15.37 -6.68 -18.58 13.17 - - 0.34 2.83
Vungtau GEV-0 86.17 - - - 22.65 - - 0.31 -
Water level

Vungtau GEV-3 1.24 0.002 - - 0.06 - - -0.03 10.07
Mochoa GEV-0 1.82 - - - 0.47 - - -0.16 -




Station Model Ho M1 M2 [VE () 01 (2] 5 Ai*

Discharge

Godau GEV-0 69.83 - - - 22.79 - - -0.10
Dautieng GEV-0 113.72 - - - 97.73 - - 0.18
Phuochoa GEV-0 949.74 - - - 263.06 - - -0.11
Trian GEV-0 2091.25 - - - 500.60 - - -0.09

*Denotes A; between the best model and GEV-0.

The results presented in Table 5. 2 show that the nonstationary GEV models are
superior to the stationary GEV models at 12 of the 22 stations studied, while there was no
evidence of nonstationarity at the remaining rainfall stations. Taking TSN station as an
example, the GEV-12 model was found to be the best model for extreme rainfall based on A;.
In the GEV-12 model, the linear trend is represented by the location parameter with three
covariates of ENSO, PDO and local temperature, with a value of A; between GEV-0 and
GEV-12 is 2.83.

For Vungtau station (sea level), the GEV-3 model that considered global sea level rise
as a covariate was found to be the best model. The stationary model is ranked eight among the
15 models, and the value of A; for GEV-3 is 10.07.

The discharge time series at Godau, Dautieng, Phuochoa, Trian stations and the water
level time series at Mochoa were assumed to be under stationary conditions, and the
maximume-likelihood estimates for location, scale and shape parameters in the stationary

models for these stations are also given in Table 5. 2.

Based on the best models, the estimated values of rainfall, sea/water level and
discharge corresponding to return periods of 2, 5, 10, 25, 50, and 100 years are provided in
Table 5. 3. It can be seen from Table 5.3 that there is a huge difference in the magnitudes of
extreme rainfall between gauging stations in the surveyed basin. For example, the extreme
rainfall for the 100-year return period at Hocmon station is even lower than the 5-year return
period value at Tanan station. Three flood scenarios based on the values of rainfall, sea/water
level and discharge corresponding to 25-, 50- and 100-year return periods, presented in Table

5. 3, were used in flood simulation.
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Table 5. 3: Variation in return levels for different return periods

Station Return period (years)

2 5 10 25 50 100
Rainfall (mm)
Benluc 110.54 140.51 163.83 197.94 227.11 259.78
Bienhoa 94.48 121.31 140.83 167.67 189.29 212.31
Binhchanh 86.00 112.72 136.43 175.56 213.10 259.51
Candang 93.54 119.54 137.61 161.46 179.91 198.91
Cangio 107.24 140.17 170.37 221.81 272.64 337.11
Chonthanh 99.18 126.86 146.08 171.42 191.01 211.16
Cuchi 110.53 138.79 160.13 190.52 215.81 243.51
Dautieng 98.57 126.93 148.15 178.10 202.83 229.73
Dongphu 107.14 143.86 174.87 223.81 268.78 322.37
Godau 92.14 111.79 122.80 134.78 142.46 149.20
Hocmon 85.82 107.12 118.61 130.70 138.19 144.59
Long thanh 116.97 149.80 176.52 217.24 253.46 295.40
Macdinhchi (MDC) 110.27 135.04 151.78 173.30 189.55 205.92
Nhabe 105.61 164.81 195.11 225.54 24357 258.37
Phuochoa 106.72 142.98 169.40 205.84 235.26 266.64
Sosao 94.82 116.87 130.17 145.64 156.22 166.03
Tanan 110.23 176.09 234.99 332.99 427.69 545.52
Tayninh 109.59 135.98 158.69 195.12 229.14 270.24
Thuduc 109.54 140.58 166.86 208.42 246.70 292.40
Trian 98.02 117.37 129.91 145.44 156.74 167.78
TSN 106.87 127.42 146.02 177.33 207.91 246.32
Vungtau 94.96 129.51 160.11 210.59 258.97 318.75
Water level (m)
Vungtau 1.40 1.47 1.51 1.56 1.60 1.64
Mochoa 1.99 2.45 2.72 3.01 3.20 3.37
Discharge (m*/s)
Godau 78.03 101.55 115.71 132.14 143.35 153.72
Dautieng 150.74 281.86 384.51 535.57 665.41 811.51
Phuochoa 1044.26 1313.85 1474.94 1660.57 1786.44 1902.23
Trian 2271.68 2792.79 3109.19 3479.07 3733.43 3970.20

5.4.2 Model calibration and validation

The hourly water level data for the rainy period (from 01-09-2012 t024-09-2012) at
four gauging stations (Benluc, Bienhoa, Nhabe, TDM) were used to calibrate the
hydrodynamic model. The results of the simulations are presented in Table 5. 4. It may be

seen that the RSR for hourly water level varies from 0.32 to 0.66, while R? values vary from
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0.88 to 0.97. The hourly NSE values range between 0.61 and 0.89, with an average value of
0.71.

Table 5. 4: Calibration and validation results — 1D model

Station Calibration (hourly water level) Validation (hourly water discharge)
R? RSR NSE R? RSR NSE
Benluc 0.97 0.55 0.7 0.91 0.4 0.84
Bienhoa 0.88 0.66 0.61 0.77 0.7 0.51
Nhabe 0.96 0.32 0.89 0.81 0.65 0.58
TDM 0.97 0.59 0.65 0.93 0.42 0.82

Validation of the model was performed using hourly discharge data for the period 19-
09-2011 to 04-10-2011. The model performance at Benluc and TDM stations was good, with
NSE values of 0.84 and 0.82, respectively (Table 5. 4), while the NSE values for Bienhoa and
Nhabe were much lower (0.51 and 0.58, respectively).

Figure 5. 5 shows the comparison of observed and simulated hourly water level under
calibration (Figure 5. 5a) as well as hourly discharge under validation (Figure 5. 5b) There is
a good level of agreement between the observed and simulated water level and discharge at all
the gauging stations. Therefore, the model can be used appropriately for the subsequent

simulation.
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Figure 5. 5: Results of (a) calibration and (b) validation of the flood simulation model
at, from top to bottom: Benluc, Bienhoa, Nhabe and TDM stations

5.4.3 Flood hazard maps

Based on the developed model, the flood hazard maps derived from the combination of

extreme rainfall, water level and upstream outflows are presented in Figure 5. 6. The maps
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represent three different scenarios, 1, 2 and 3 for 25-, 50- and 100-year return period,
respectively. The enlarged views are shown in Figure 5. 7a-c, focusing on the large flooded
areas (denoted by Al, A2 and A3). It can be seen that areas where the river is surrounded by
houses and buildings, or where the riverbed is narrow, the flood inundation extent is wider.
Taking a closer look at areas Al, A2 and A3, the floodwater flows freely over the riverbank

along roads and alleyways.
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Figure 5. 6: Comparison of flood hazard maps between flood scenarios, with return periods of (a) 25 years, (b) 50 years and (c) 100 years.

Flood hazard is classified by considering the combination of flood depth and velocity, ranging from H1 to H6 (see Table 5. 1)
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The flood hazard is classified based on six levels (refers to Table 5. 1 in Section 5.3.6),
and the area of each flood hazard zone in relation to the entire study area is presented in
Figure 5. 7d. However, as the area of H6 flood hazard zone mostly covers the main river
surface, it is not shown in Figure 5. 7d. It is clear that the total flooded area increases
corresponding to flood events. In particular, the H1 flood hazard zone, which is generally safe
for all people, vehicles and infrastructure, covers areas of 0.15, 0.19 and 0.27 km? under
scenarios 1, 2 and 3, respectively. The cumulative area of H2, H3 and H4 flood hazard zones,
where the water depth varies from 0.5 to 2.0 m under Scenario 1, is 0.73 km?, while for
scenarios 2 and 3, the corresponding areas are 0.77 and 0.82 km?, respectively. Finally, the H5
flood hazard zone, which is unsafe for people, vehicles and buildings, covers 0.49, 0.56 and

0.60 km? under scenarios 1, 2 and 3, respectively.
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Figure 5. 7: Enlarged view of areas A1, A2 and A3 (Figure 5.5) for different flood scenarios, with return periods of: (a) 25 years, (b) 50
years, and (c) 100 years. (d) Area of each flood hazard zone corresponding to each flood scenario
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Furthermore, a floodplain area based on the combination of 50-year extreme rainfall,
extreme sea level and extreme discharge under stationary conditions (denoted Sta-50) was
developed for comparison purposes and is shown in Figure 5. 8. It can be seen that the flood
extent under nonstationary conditions is larger than under stationary condition. The flooded
area under Scenario 2 is 0.29 km? larger than that under Sta-50. The enlarged views (Figure 5.
8a and b) show two areas in which the difference in flooded area between the two scenarios

(Scenario 2 and Sta-50) is particularly remarkable.

The results demonstrate how flood potential can influence human settlements in the
study area. Compared to the flood simulation methods used in previous studies (Dang and
Kumar, 2017, Lasage et al., 2014), the current method has applicability in flood simulation
when considering the nonstationary behavior in time series of extreme events. In comparison
with Storch and Downes (2011), ADB (2010) and World Bank (2010), our results show that
the flooded areas are discrete and concentrated mainly on both sides of the Saigon River
rather than covering entire study area. More importantly, the high-resolution images from our
study provide a clear and detailed view of the flooded area, which can contribute to efficient
flood risk management, as well as the provision of mitigation strategies by the local

government.
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Figure 5. 8: Comparison of floodplain extents of 50-year return period and Sta-50,
with (a) and (b) showing zoom-in images of the flooded areas. Sta-50: 50-year extreme

rainfall, extreme sea level and extreme discharge under stationary conditions
5.5 Summary and conclusions

One of the key factors in preventing and reducing flood damage and the number of
lives lost is the provision of flood risk assessment information through flood hazard maps. In
HCMC, extreme rainfall and extreme sea level are considered as the main factors impacting
significantly on floodplain extent. These factors are currently proved to have nonstationarity
in their time series. It is believed that this study is the first study to develop a flood simulation
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model considering nonstationarity in two time series of flood components, i.e. extreme
rainfall and extreme sea level; this is different from other research on flooding in HCMC.
Moreover, the effects of upstream outflows on flood inundation in HCMC was also
considered, which contributed to the model development process. For this purpose, climate
indices (ENSO and PDO), global and local temperature, and global mean sea level were used
for frequency analysis to investigate the nonstationarity in the extreme rainfall and sea level.
The covariates in the best statistical model were attributed as the most significant physical
processes causing nonstationarity in the time series. The results of the frequency analysis
show that ENSO and PDO are present in the best nonstationary models, hence they can be
considered as the main causes of nonstationary behavior in extreme rainfall in the study area.
Another finding indicates that global sea level rise has a significant effect on nonstationarity

in extreme sea level at Vungtau station.

Flood scenarios were developed based on the results of frequency analysis
corresponding to 25-, 50- and 100-year return periods. The calibration and validation results
of the MIKE FLOOD model show that the model performs satisfactorily in simulating water
flow for the study area. Another notable highlight in this thesis is the use of high-resolution
data (i.e. LIDAR) in developing the flood hazard maps of HCMC, which has not been done in
previous studies. In this way, the floodplain extent can be defined, and the passage of
floodwater can be detected clearly, even at the scale of street networks. The results from the
spatial variation of flood hazards indicate that locations along both riverbanks are expected to
experience a significant increase in flooded area, with the intensity of DxV reaching 4.0 m%s.
The percentages of flooded area classified as zones H1-H5 are 8.54%, 9.43% and 10.51% for
scenarios 1, 2 and 3, respectively. It is also to be noted that the floodplain extent is larger

when based on the assumption of nonstationarity.

Considering the important role of flood hazard mapping and estimating floodplain
extent in decision making, or establishing flood warning systems, it is suggested that the flood
sources (e.g. rainfall, water level, upstream outflow and sea level rise) are analyzed under
both stationary and nonstationary conditions before being used as initial inputs of
hydrological and hydrodynamic models, since the global climate is continuously changing
and unpredictable. The present work has successfully introduced nonstationarity into flood

frequency analysis, thereby influencing the appearance of flood hazard maps. Nevertheless,
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several limitations have to be acknowledged. First, the use of 35 years of data might raise
concerns about the uncertainty associated with parameter estimation, hence impacts on the
extreme value estimates. Second, the missing calibration and validation of the 2D model
might lead to an imperfect flood simulation model. However, it could be a suitable option for
flood simulation in HCMC since data is not available for a longer duration in this large river
basin. The study provides a new approach for flood simulation in HCMC that can be referred
to by managers and decision makers, especially for purposes relating to the construction of
buildings and infrastructure in flood hazard areas. Moreover, the proposed flood simulation
model may be used not only for HCMC but also for other practical cases within the Saigon-
Dongnai River basin, where insufficient attention has been paid to detailed flood maps.
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Chapter 6

Copula-based bivariate flood frequency analysis under

nonstationary condition

6.1 Introduction

Coastal zones are commonly vulnerable to floods caused by the combination of
multiple sources. In such areas, heavy precipitation can coincide with coastal storm surges
then flooding could be twice as severe, thereby resulting in massive damage to the coastal
inhabitants and infrastructures (Karamouz et al.,, 2014, Hunt, 2005). For these regions,
univariate frequency analysis may no longer be effective to describe floods that are
characterized by several correlated variables. It is, therefore, necessary to consider the joint
probability of flood-caused sources in the evaluation and management of flood risk.

Multivariate parametric distributions have been widely used to model multivariate
extreme events (i.e. flood). Nevertheless, this approach contains some limitations since the

correlated variables have the same type of marginal distribution, and the dependence structure
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could not be described differently from the marginal distribution (Zhang and Singh, 2007).
Therefore, the copula theory has been paid more attention and increasingly employed for
simulating joint distribution due to its flexibility. The main advantage of using copula
functions is that multivariate random events could be described by different family of
distributions, and the dependence structure is freely modeled without concerning the marginal
distributions. The application of copulas in the fields of hydrology and water engineering
could be found in many studies (Renard and Lang, 2007, Zhang and Singh, 2007, Sraj et al.,
2015, Masina et al., 2015).

Frequency analysis of hydro-meteorological events has been commonly based on the
assumption of stationarity in time series. However, under climate variability related to human
activities, changes in rainfall characteristics and hydrological cycle have been reported for
many places of the world, which proposes that the assumption of stationarity in hydro-
meteorological time series may not valid anymore (Sugahara et al., 2009, Khaliq et al., 2006,
Milly et al., 2008, Berg et al., 2013, Sraj et al., 2016, Mudersbach and Jensen, 2010). Till
now, the use of nonstationary approach in hydro-meteorological frequency analysis could be
found in many studies which mainly focused on a single random variable, but only a few
studies available related to nonstationary multivariate frequency analysis. For example, the
time-dependent behavior of bivariate hydrological design parameters is investigated by
Bender et al. (2014) using nonstationary copula approach. Sarhadi et al. (2016) applied the
nonstationary copula analysis to estimate the time-varying joint return period of drought
characteristics under nonstationary condition. Jiang et al. (2015) used nonstationary copula to
estimate the joint return period of low-flow at two neighboring hydrological stations on the
Hanjiang River. Similarly, Ahn and Palmer (2016) performed the nonstationary bivariate

frequency analysis for low-flow characteristics in the Connecticut river basin.

However, most of these studies used time as the explanatory variable of the marginal
distribution and dependence parameters. As a matter of fact, the change of paradigm from
stationarity to nonstationarity can be affected by many causes (e.g. LULC change or climate
change). The effects of these factors may not exactly follow the passage of time. More
importantly, the changes in the climate or watershed characteristics have affected not only in

the nonstationarity of individual hydrological series but also in the dependence structure
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between the different hydrological series. In addition, the dependence relationship between
different variables could be varied over time, if there is a change in the meteorological forcing
processes. Indeed, the study of De Michele et al. (2007) indicated that the dependence of
wave height and duration as a function of storm magnitude. Similarly, Corbella and Stretch
(2013) showed that the dependence of wave height and period as a function of peak wave

power.

Therefore, using time as a covariate in nonstationary modelling may suffer some
limitations (Ahn and Palmer, 2016). Agilan and Umamahesh (2016b) indicated that using
time as a covariate in nonstationary models is increasing the bias of nonstationarity analysis.
Lépez and Francés (2013) also suggested that only time is considered as a covariate may not
be entirely correct because the trends can change in the short and long term caused by climate
variability and the intensification of human activities. Besides, Sraj et al. (2016) showed the
problem with time-varying distribution parameters is that it is difficult to explain why time-
varying distribution parameters would change continually in the future in the same way that
they did in the past. Jiang et al. (2015) also suggested that physical covariates may be more
effective in nonstationary modelling than using time as a covariate. Furthermore, the physical
meaning of the estimated parameters will be ambiguous if time is used as covariates in the

nonstationary setting.

Recently studies indicated that the hydro-meteorological patterns are strongly affected
by local influences within the catchment, hence the covariates selected for nonstationary
modelling should have strong physical associations with the process of events (Arns et al.,
2013a, Yan et al., 2017). Furthermore, Agilan and Umamahesh (2016b) suggested that
covariates should be chosen with respect to the area of interest because the selected covariates
for a particular area may have different effects in other geographical areas. Therefore, local
variables which reflect the physical relationship to hydro-meteorological events should be

considered in nonstationary multivariate frequency analysis.

In hydro-meteorology frequency analysis, the AM and POT approaches have been
usually used to extract data sample in extreme values analysis. The AM approach in which
considers the maximum value of each year is regarded to be better and safer for the sampling

of hydro-meteorological events (Porter and McMahon, 1971). However, flood events can
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occur more than once within a year, and a short sample is a critical problem in parameter
estimation (Sugahara et al., 2009). Unlike the AM approach, the POT approach considers
wider range of events by selecting all excesses over a certain threshold. For low-land areas,
especially coastal zones, heavy rainfall can occur several times within any year and coincide
with coastal storm surges, which results in flooding. Hence, the extremes may not be missed
when POT approach is adopted. In this study, the comparison between different sampling

selection approaches is carried out, which may provide more information for analysis.

The main objective of this study is model the joint probability using nonstationary
copula-based bivariate frequency analysis for HCMC. To obtain the objective, the
nonstationary behavior is modeled for dependence structure and marginal distributions by
using local physical processes as covariates. The joint return period (i.e. OR and AND) of
selected variables is estimated by the optimal copula and marginal distribution. The results of
the joint return periods are presented for three samples to provide important information in
choosing appropriate data time series for flood defense design.

6.2 Data

6.2.1 Water level and rainfall

Hourly observed water level data covering a period of 1981- 2014 at Nhabe station
along the Saigon-Dongnai River basin are used in this study. Daily rainfall data for the period
of 1981 to 2014 collected from Cangio meteorological station. The locations of Nhabe and

Cangio stations can be seen in Figure 5.1 in Chapter 5.

In this study, to assess the sensitivity of results to different sampling selections, three
samples are extracted, comprising AM and POT approaches as shown below:

- Sample 1: the annual maximum daily rainfall and the annual maximum daily water
level for each year are selected

- Sample 2: the annual maximum daily rainfall is firstly obtained, and then the highest
water level is chosen within the day of this event

- Sample 3: the POT series of 97.5™ percentile daily rainfall is used, and then the

highest water level is selected within the day of this event.
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For Sample 3, the threshold value of 97.5™ percentile of daily events is used to ensure
that the threshold should be high enough for the values to be extreme, but not so high to avoid
high variance in the model estimates. The duration of 3 days is used to ensure independent
events based on typical storm duration on the HCMC’s coast. It means that the selected event

is automatically separated by 3 days.
6.2.1 Covariates

In this study, to reduce the uncertainty in modelling extreme events, only local
variables (i.e. local temperature, urbanization and local sea level) which have a strong
relationship to the events (rainfall and water level) are considered as covariates. The
temperature data during the period 1981-2014 recorded at TSN was provided by the Southern
Institute for Water Resources Planning. Hourly sea level was recorded at Vungtau station
from 1981 to 2014 and was provided by the NHMS of Vietnam. The data for urbanization is
selected as mentioned in Section 4.2.2 in Chapter 4.

6.3 Methodology

In this study, the time series of rainfall and water level are firstly tested for stationarity
by M-K non-parametric test. The dependence between rainfall and water level are evaluated
using the Kendall, Spearman and Pearson correlation coefficients. Four probability
distributions comprising GEV, Gumbel (GUM), Log-normal (LN) and Weibull (WEI) are
used to model rainfall and water level processes within the contexts of nonstationarity. Next,
nonstationary copulas are developed to simulate the relationship between rainfall and water
level. Finally, the joint return periods of rainfall and water level of the three samples are
estimated by the optimal copulas and marginal distributions.

6.3.1 Detecting the nonstationary component in time series

As mentioned earlier, testing nonstationarity in time series should be firstly
considered, which crucially influences the statistical analysis result. In this study, the M-K
trend test with a significant level of 0.05 is used to identify the trends in rainfall and water

level time series.
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6.3.2 The dependence analysis for selected variables

The Kendall, Spearman and Pearson correlation coefficients are employed to assess the
dependence between the pairs of variables, while K plot (Genest and Boies, 2003) is used for
graphical presentation purpose. The correlation coefficient varies between -1 to +1, where -1
and +1 represent a monotonic association between the two variables, and 0 corresponds to the
independence. Kendall’s 7 and Spearman’s p are two widely used non-parametric tests of
detecting the dependence between random variables, and they are not based on any
assumptions about the distribution of the data. Meanwhile, Pearson correlation test is based
on the assumption of normal distribution of the variables. Besides, the pair of extremal
measures (x and jy) (Coles et al., 1999) is also used to detect asymptotical dependence
between rainfall and water level. For more details about two measures of extreme dependence

(x and J), the reader is referred to Coles et al. (1999).

6.3.3 Modelling the marginal distributions for both stationary and

nonstationary

The probability distribution functions commonly used in hydro-meteorology, namely
GEV, GUM, LN and WElI, are chosen for modelling the marginal distribution for both rainfall
and water level. The three parameters, namely location, scale and shape, of the marginal
distribution are demoted as U, ¢ and & The nonstationarity is introduced only in location
parameter, while the scale and shape parameters are kept constant. As such, the location

parameter can be expressed as a linear function of covariates as follows:
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For rainfall frequency analysis

MO =Ho+ U+ [T
oit)=c (6.1)

) =¢

For water level frequency analysis

MO =Ho+ U + S
o) =0 (6.2)

) =¢

where U, T and S denote Urbanization, Temperature, and Sea level respectively. In the
stationary model, the coefficients of covariates U, T, and S equal zero. Apart from stationary
model, based on two covariates and their combination, three nonstationary models are
constructed for each candidate distribution in rainfall/water level frequency analysis. List of
marginal distributions and considered covariates used for rainfall and water level frequency

analysis is shown in Table A. 3.

The distribution parameters, W, M1, M2, o and &, are estimated by maximum likelihood method.
The AlCc is used to identify the best fitting distribution for rainfall and water level. Once the
best fitting distribution is selected, the T-year return level is calculated based on the low-risk

approach mentioned in Section 5.3.1 in Chapter 5.

6.3.4 Modelling the dependence structure for both stationary and

nonstationary

Copulas are defined as multivariate distribution functions which link joint probability
distributions to their one-dimensional marginal distributions (Badrzadeh et al., 2015). For a

bivariate case, a copula function can be expressed as Eq. (6.3) (Chang and Chang, 2006)

F(x,y) = CLF(x), F(y)] = C(u,v) (6.3)
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where F(x,y) is the joint cumulative distribution function for X (rainfall) and Y (water level)
with marginal distribution F(x) and F(y) respectively. C (u,v) is the copula function of the
marginal distribution of rainfall and water level, u = F(x) and v = F(y) refer to the cumulative

frequency distribution respectively.

In order to find the appropriate copulas that best fit to the data sample, several copula
functions (i.e. Frank, Clayton, Gaussian and Plackett) are used to model the dependence
structure between rainfall and water level in this study. The descriptions of these copula
functions along with their parameter are briefly introduced in Table 6. 1. For more detailed

description of copulas, the reader is referred to Badrzadeh et al. (2015) and Vaze et al. (2011).

Table 6. 1: Description of the four candidate copulas

Copula Co(u,v) Parameter
Frank _% ln[1+(e‘9“—1e)_(ge‘9”—1)] B € (-0, 0)\{0}
Clayton U+ 1)1 6 € (0, )
Gaussian ®[o™(u) o ()] e(-1,1)
Plackett %ﬁ{l +O—-Du+v)—[1+ 8 € (0, )

6—1u+v2—400—1uvl2

Co(u,v): copula function, 8: copula parameter, ¢: cumulative density function of the standard normal

distribution and ®: cumulative density function of the multivariate normal distribution

Similar to the marginal distribution modelling, the copula parameters are modeled
using a linear function of covariates of urbanization, local temperature and local sea level as

follows:
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9(t)200+91U+32T+938 (64)

where slope parameters 6y, 61, 62, 03 represent the trend in the dependent parameter of copula
function. The parameters of copulas are estimated by the pseudo maximum likelihood
approach. The most appropriate copula is selected using AICc value. Based on three
covariates, thirty-two copula functions are developed, the list of these copulas are shown in
Table A. 4.

6.3.5 The joint return periods estimation

The joint return period can be defined based on: (i) the probability of rainfall and water
level both exceeding certain threshold values (denoted AND); (ii) the probability that rainfall
or water level exceeds its threshold values (denoted OR). The joint return period (i.e. AND

and OR) is estimated in this study, and these probabilities can be given as (Vaze et al., 2011):

A A

TAND _ —
PX=2xandY >y) 1-Fx(x)—F )+ Co(uv)

(6.5)

A A
T PX=xo0rY>=y) 1-Cg(u,v)

TOR

where A is the mean interarrival time, typically given in years. In case of block maxima, A
equals 1. When applying POT approach, the mean interarrival time can be defined by the

observed events.
6.4 Results

6.4.1 Detecting nonstationarity component in time series

The significant trends in rainfall and water level time series are investigated by M-K
test for three samples. The test results are shown in Table 6. 2. From the results, the
significant increasing trends (p<< 0.05) have been found in rainfall and water level series for
all samples. Therefore, the nonstationary condition is used to model rainfall and water level in

this study.
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Table 6. 2: M-K test results

Samples Variables Tau p-value
Rainfall 0.414 0.0006
Sample 1
Water level 0.694 2.22E-16
Rainfall 0.414 0.0006
Sample 2
Water level 0.413 0.0006
Rainfall 0.105 0.0205
Sample 3
Water level 0.249 2.22E-16

6.4.2 Assessing the dependence of selected variables

The dependence between rainfall and sea level are evaluated by the Kendall, Spearman
and Pearson correlation coefficients. The variables of rainfall and water level present a
moderate correlation between each other when considering AM Samples. In detail, the values
of Kendall’s tau for Sample 1 and Sample 2 are 0.317 and 0.319 respectively (Table 6. 3).
Conversely, when POT series is considered, rainfall and water level show a weaker

dependence.
Table 6. 3: Correlation coefficients between rainfall and water level
Correlation coefficients Pearson's r Kendall's tau Spearman’s rho
Sample 1 0.372 0.317 0.429
Sample 2 0.305 0.319 0.423
Sample 3 0.103 0.058 0.091
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Figure 6. 1 provides the K plots, the Chi and Chi bar plots for the three pairs of
observed rainfall and water level corresponding to three samples. Regarding K plots, there is a
possible dependence for Sample 1 and Sample 2, with points locate above the line. In
contrast, the dependence for Sample 3 is very weak, with points close to the line. Similarly,
the Chi and Chi bar plots also show that the dependence between rainfall and water level for
Sample 1 and 2 is stronger than for Sample 3. For example, the value of y (Figure 6. 1c) is

nearly equal to O, it means that the variables rainfall and water level are independent in many
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Figure 6. 1: The dependent relationship between rainfall and water level for (a) Sample
1, (b) Sample 2 and (c) Sample 3
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6.4.3 Modelling marginal distribution

The values of estimated parameters, along with best fitted marginal distributions for
rainfall and water level based on AICc, are presented in Table 6. 4. It can be noted that the
model with the lowest value of AlICc is identified as the best model for extreme events. The
findings show that the nonstationary GEV model based on urbanization covariate (NSGEV-

U) is the best model for rainfall for all three samples.

For water level, the nonstationary GUM based on urbanization covariate (NSGUM-U)
is considered as the best model for annual maximum daily water level time series (Sample 1).
Meanwhile, the NSGEV-US is found to be the most appropriate model for other samples of
water level (Sample 2 and 3). In NSGEV-US, the location parameter is expressed as a linear
function of urbanization and sea level. For more information about the AICc values for all

marginal distributions, reader is referred to Table A. 5.

Figure 6. 2 shows the graphical approach of P-P and Q-Q plots which are used to
check the quality of fitting for a chosen model. The P-P and Q-Q plots of stationary GEV
(SGEV) and stationary GUM (SGUM) for annual maximum daily rainfall and water level
respectively are plotted in Figure 6. 2a and 6. 2c respectively, while those plots of the best
nonstationary models (NSGEV-U and NSGUM-U) are shown in Figure 6. 2b and 6. 2d in that
order. As can be seen, the best nonstationary models show a better match than the stationary

models.
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Table 6. 4: The marginal distribution parameters and model selection

Samples  Variables Best model  Significant covariate(s) Mo 1 Mo o & AlCc
Rainfall NSGEV-U  Urbanization 44,811 21.644 - 19.278 0.351 331.40
Sample 1
Water level NSGUM-U  Urbanization 1.385 0.116 - 0.042 - -102.21
Rainfall NSGEV-U  Urbanization 44,811 21.644 - 19.278 0.351 331.40
Sample 2
Water level NSGEV-US Urbanization, sea level 0.925 0.074 0.210 0.075 -0.354 -70.73
Rainfall NSGEV-U  Urbanization 32.181 0.732 - 10.046 0.543 1849.09
Sample 3
Water level NSGEV-US Urbanization, sea level 0.930 0.072 0.201 0.074 -0.299 -520.24
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Figure 6. 2: P-P and Q-Q plots of (a) SGEV, (b) NSGEV-U, (c) SGUM and (d) NSGUM-U models for Sample 1
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To assess the impact of selection data sample on the marginal distribution modelling,
the different return periods are estimated in this study. Table 6. 5 shows the comparison of the
return levels based on the best model between the three samples. It is clear that the values of
rainfall considering AM series are higher than those values under POT approach. For
example, the estimated rainfall level of 2-year return period for Sample 1 corresponds to the
25-year return period for Sample 3. Also for water level, with urbanization as covariate, the
nonstationary water level of 2-year return period for Sample 1 is 1.66 m and it is higher than

the nonstationary water level of 100-year return level for Sample 3.

Table 6. 5: The return levels based on the best model for rainfall and water level

Rainfall (mm) Water level (m)
Return period
Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

2 122.25 122.25 56.68 1.66 1.43 1.39
10 150.26 150.26 77.71 1.69 1.46 1.42
25 198.03 198.03 120.04 1.73 1.49 1.45
50 245.29 245.29 168.97 1.76 1.50 1.47
100 305.27 305.27 240.05 1.79 1.51 1.49

6.4.4 Modelling the dependence structure

As mentioned earlier, the most appropriate copula is selected based on the AlCc value.
Table 6. 6 shows the chosen copula followed by its estimated parameters for every sample. As
such, nonstationary Clayton copula (NSClayton-US) is most appropriate for Sample 1, with
the copula parameter expressed as a linear function of urbanization and sea level. Whilst,
stationary Plackett copula (SPlackett) and stationary Gaussian copula (SGaussian) are
selected to estimate the joint return period of rainfall and water level for Sample 2 and 3

respectively. The AICc values for copulas are provided in Table A. 6.
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Table 6. 6: Parameter estimation and AICc values for selected copulas

Samples

Selected copula

Significant covariate(s) g, 0, 0, AlCc
Sample 1 NSClayton-US Urbanization, sea level ~ -3.308 4.247  -4.137 -7.77
Sample 2 SPlackett - 1704 - - -6.30
Sample 3 SGaussian - 0.098 - - 0.07

6.4.5 Joint return period estimation

The best copula function and marginal distribution are selected to calculate the joint
return periods (AND and OR) of rainfall and water level for 5, 10, 50, 100-year periods.
Figure 6. 3 provides the joint return periods for Sample 1 which are derived from the best
model (Figure 6. 3a) compared to the stationary model (Figure 6. 3b). It is clear that for all
return periods, OR-joint return period is higher than AND-joint return period, which occurs
for both models. Besides, values of rainfall and water level derived from the stationary model

are less than those derived from the best model for almost return periods of AND.
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Figure 6. 3: The joint return periods AND (pink color) and OR (blue color) based on:

(@) best model (solid lines) and (b) stationary model (dash lines) for Sample 1
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Figure 6. 4 shows the comparison of the joint return period of rainfall and water level
(OR) between various models for Sample 1. For the more frequent return period (< 10 years),
the return levels of rainfall and water level derived from nonstationary marginal distribution
in which the parameters are expressed as a function of covariates, are higher than those
derived from other models. However, during the less frequent return period, particularly 50-
year, values of rainfall and water level are not much different between models. These results
indicate that more attention should be focused on nonstationary marginal distribution

modelling than dependence structure modelling.
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The comparison of the joint return periods (OR) of rainfall and water level from the
best models corresponding to three samples is also carried out (Figure 6. 5). It is observed that
the estimated water level values for Sample 1 are much higher than those for the remaining
samples. For the more detailed, the value of rainfall (mm) - water level (m) from the best
model are approximately (800 mm -1.80 m) for Sample 1 for the 100-year return period.
Meanwhile, those values for Sample 2 and 3 are (800 mm — 1.515 m) and (800 mm — 1.525
m) respectively. In addition, when comparing Sample 1 and Sample 3, a significant difference
for the pairs of rainfall and water level occurred for a given return period can be found, with a

higher value of rainfall corresponding to a smaller value of water level and vice versa.
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6.5 Summary and conclusions

In this present study, a nonstationary bivariate approach is introduced and exemplarily
applied to HCMC where there has been increasing vulnerability to floods from multivariate
sources. Urbanization, temperature and sea level are used as local covariates for modelling
nonstationary the marginal distribution (i.e. GEV, GUM, LN, WEI distributions) and the
dependence structure (i.e. Frank, Clayton, Gaussian and Plackett copulas) for extreme rainfall
and water level. Since many physical processes control the extreme event occurrence,
incorporating all of them may increase the accuracy of modelling, but it may increase the bias
of modelling. In this study, local physical processes have proved that they are mostly
associated with extreme events in the study area. Besides, among all candidate distributions,
GEV seems the most suitable marginal distribution for modelling the flood variables in
HCMC by always presenting its lowest value of AICc. It is recommended that GEV can be

used as a default distribution for modelling extreme rainfall and water level in HCMC.

The nonstationary copula-based bivariate frequency analysis is conducted based on
three samples. The POT approach is commonly considered as a default approach in case of
shorter observed data. However, the results of this study indicate that, when considering AM
approach (i.e. maximum rainfall and water level), the joint return levels are estimated higher
than using other approaches, which may be better and safer for flood design. Therefore, for
the river basin with scarce data and affected by several sources of floods, it is necessary to
consider both AM and POT approaches, which can provide more choices for stakeholders’

decisions.

Our findings also indicate that modelling nonstationarity in the marginal distribution
by choosing appropriate covariates, is more important than concentrating on modelling the
dependence between rainfall and water level by using nonstationary copulas. These findings
support the findings of (Bender et al., 2014) who also concluded that more attention should be

paid for modelling the marginal distributions rather than for modelling the dependence.

The proposed method presented in this study provides an overall framework for
nonstationary bivariate frequency analysis for HCMC. This method can be applied to other

river basins as well as other fields related to water resources management to identify the
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appropriate solutions and adaptation strategies under nonstationary behavior of extreme

events.

138



Chapter 7

Summary and conclusions

7.1 Summary

This research shows that the time series of extreme hydrologic events (i.e. rainfall and
water level) in HCMC has been proven to increase in frequency and magnitude in last few
decades due to the influence of global climate change and physical processes. Besides, this
thesis contributes towards modelling extreme events under nonstationary condition by using
local physical process as covariates. In addition, the spatial variation of extreme precipitation
is also developed from stationary and nonstationary flood frequency analysis. Further, the
flood simulation model is developed based on. The high-resolution flood hazard maps, which
are quantified by considering the flood depth and velocity in combination, are established
using nonstationary frequency analysis and coupled 1D-2D hydrodynamic model with high-
resolution topography data. Finally, the last part of this thesis contributes towards

investigating the joint probability of flood correlated variables using nonstationary copula-
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based bivariate frequency analysis. Furthermore, the performance for an asymptotic

independent variable
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also assessed. The following paragraphs give the summary and conclusions of this thesis:

Extreme rainfall in HCMC has been proven to increase in frequency and
magnitude in last few decades due to the influence of global climate change
and physical processes. Although nonstationarity in extreme rainfall has been
proved in many places of the world, research into nonstationarity feature in
extreme rainfall in HCMC has not been paid attention thoroughly. Therefore,
in Chapter 3, the spatial variation of extreme precipitation over HCMC is
modelled under nonstationary condition. However, finding the most significant
physical processes which have a close relationship with extreme rainfall is
problematic since extreme events are controlled by many physical processes.
The study results show that the nonstationary GEV model is found to be
superior in capturing extreme precipitation events when compared to the
stationary GEV model.. It is also found that the extreme rainfall estimates
under the stationary condition are lower than those under the nonstationary
condition in most stations.

The best local covariates for modelling nonstationary extreme water level are
studied in Chapter 4. In details, four local covariates, namely rainfall, sea level,
urbanization growth and outflows from upstream reservoirs are used to
develop ninety-two nonstationary extreme water level models. The stationary
models are also developed for comparison purpose. The results indicate that
the nonstationary approach using local covariates is suitable for modelling
extreme water level in HCMC. Additionally, based on the best chosen
statistical models, the significant influences of sea level and urbanization on
nonstationarity in extreme water level are found at all surveyed stations.
Moreover, it could be found that the extreme water level values derived from
the stationary models are underestimated relative to the best nonstationary
models for all stations.

In Chapter 5, flood hazard maps are developed for HCMC under nonstationary
conditions using extreme value analysis, a coupled model and high-resolution
topographical data derived from LiDAR data. In details, climate indices

(ENSO and PDO), global temperature, local temperature and global mean sea
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level are used for frequency analysis to investigate the nonstationarity in the
extreme rainfall and sea level. The covariates in the best statistical model are
attributed as the most significant physical processes causing nonstationarity in
the time series. The results of frequency analysis show that ENSO and PDO
are present in the best nonstationary models, hence they can be considered as
the main causes of nonstationary behavior in extreme rainfall in the study area.
Another finding indicates that global sea level rise has a significant effect on
nonstationarity in extreme sea level. . The results from the spatial variation of
flood hazards indicate that locations along both riverbanks are expected to
experience a significant increase in flooded area, especially where the river is
surrounded by houses and buildings. It is also to be noted that the floodplain
extent is larger when based on the assumption of nonstationarity.

In the last chapter, urbanization, temperature and sea level are used as local
covariates for modelling nonstationarity in the marginal distribution (i.e. GEV,
GUM, LN and WEI distributions) and the dependence structure (i.e. Frank,
Clayton, Gaussian and Plackett copulas) for extreme rainfall and water level.
The nonstationary copula-based bivariate frequency analysis is conducted
based on three samples, which may provide more options in choosing
appropriate data for analysis. The findings of the study indicate that the GEV
distribution is suggested as the most appropriate marginal distribution for
modelling the flood variables. The nonstationary Clayton copula, stationary
Plackett copula and stationary Gaussian copula are suitable to estimate the
joint return period of rainfall and water level for three considered samples.
Besides, the results indicate that urbanization is a significant covariate causing
nonstationarity. The joint return periods of rainfall and water level obtained
through the optimal copula and marginal distribution show the significant
differences between the samples. It means that a reciprocal situation can be
found, when a higher value of rainfall corresponds to a lower value of water

level and vice versa.
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7.2 Scopes for future studies

The work presented in this thesis could be further extended if both relevant data were

available and time is not a constraint. Hence, following would be possible future works:

e Assessing covariate and parameter uncertainty extreme events modelling

e Quantifying the uncertainty of the flood hazard maps

Development of flood hazard management system, including a flood
evacuation strategy.
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Figure A. 6 Scatter plots of observed de-clustered extreme water level against the
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Figure A. 7 Scatter plots of observed de-clustered extreme water level against the
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Figure A. 8 Scatter plots of observed de-clustered extreme water level against the
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urbanization for TDM station
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Table A. 1: Details of GEV models constructed for extreme rainfall analysis

Model Description

GEV-0 X ~ GEV( 5)

GEV-1 X ~ GEV((yO +E4),0p,€)

GEV-2 X ~GEV (1, +Pt4),00,¢)

GEV-3 X ~GEV (1, +GT14),04,¢)

GEV-4 X ~GEV (1 +LT14),04,¢)

GEV-S X ~GEV ((t +Et +Pp,),04,¢)

GEV-6 X ~GEV (4, +Ep, +GT 1,),0,,¢)

GEV-7 X ~GEV (1, +Ep +LT1,),0,¢)
GEV-S X ~GEV (14, +Pu +GT 11,),0,,¢)
GEV-9 X ~GEV ((t +Puy+LT 1), 0, 5)
GEV-10 X ~GEV (4, +GT g4 +LT 11,),0,€)
GEV-11 X ~GEV (4, +Ept + Pt +GT 11, ), 05, €)
GEV-12 X ~GEV ((p +Epy +Pp, +LT 1), 0, &)
GEV-13 X ~GEV (4, +Ep4 +GT g, + LT ,),05,¢)
GEV-14 X ~GEV ((pt +Piy +GT g, +LT 1), 0, €)
GEV-15 X ~GEV (4, + Ept + Pty +GT s, +LT 11,), 04, &)
GEV-16 X ~ GEV (4, +Esg), e &)

GEV-17 X ~ GEV (4, +Pp,), e, &)

GEV-18 X ~ GEV (4, +GT 41, &), )

GEV-19 X ~ GEV (g, + LT sg,),el%" 7™ &)

GEV-20 X ~ GEV (1, + Epy + Pty ), 67757, &)
GEV-21 X ~ GEV ((ﬂo +Eg, +GT#2) a(os 01 +6To,) §)
GEV-22 X ~GEV ((p, + Epgy + LT p1,) e =17 &)
GEV-23 X ~ GEV ((t, +Pay +GT p,), %7 5T%) &)
GEV-24 X ~ GEV (s + Py, + LT 11,), 6777577 )
GEV-25 ((

X ~GEV (( g, +GT gy, + LT:Uz) (o +GT61+LTUZ)’§)
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Table A. 2: Details of GEV models constructed for extreme sea level analysis

Model Description

GEV-0 X ~GEV (1y,0,,¢)

CEV-1 X ~GEV ((t+Ent).00:¢)

GEV-2 X ~GEV (4, +Pu,),04.€)

GEV-3 X ~GEV (4, +GSu,),04.&)

GEV-4 X ~GEV (1, +Epy +Pps, ), 00,)

GEV:S X =GRV (s +En+G5).07.¢)
GEV:S X -GEV((s+Pu+0Su) 0.6)

GEV-7 X ~GEV (1, +Es, +Pp, +GSps,), 04, )
GEV-8 X ~GEV ((u, +Epy),e"% &)

GEV-9 X ~GEV (4 +Ppy). ", &)

GEV-10 X ~ GEV (4, +GSp,), 6% &)

GEV-11 X ~GEV (4 +Epty + P, ), 5w £)
GEV-12 X ~ GEV( (1, +Eu, +GSu,), e<%+Eca+GSaz>,§)
GEV-13 X ~GEV ((u, + P, +GSp, ) e 77 &)
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Table A. 3: List of marginal distributions and considered covariate(s) used for rainfall

and water level frequency analysis

Rainfall Water level

Considered covariate(s) Considered covariate(s)

Model Urbanization Temperature Model Urbanization
SGEV SGEV
NSGEV-U NSGEV-U X
NSGEV-T NSGEV-S
NSGEV-UT NSGEV-US X
SGUM SGUM
NSGUM-U NSGUM-U X
NSGUM-T NSGUM-S
NSGUM-UT NSGUM-US x
SLN SLN

NSLN-U NSLN-U X
NSLN-T NSLN-S
NSLN-UT NSLN-US X
SWEI SWEI

NSWEI-U NSWEI-U X
NSWEI-T NSWEI-S
NSWEI-UT NSWEI-US X
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Table A. 4: List of copulas and considered covariate(s) used for modelling the

dependence between rainfall and water level

Considered covariate(s)

Copulas Urbanization =~ Temperature Sea level
SClayton

NSClayton-U X

NSClayton-T X

NSClayton-S X
NSClayton-UT X X

NSClayton-US X X
NSClayton-TS X X
NSClayton-UTS X X X
SFrank

NSFrank-U X

NSFrank-T X

NSFrank-S X
NSFrank-UT X X

NSFrank-US X X
NSFrank-TS X X
NSFrank-UTS X X X
SGaussian

NSGaussian-U X

NSGaussian-T X

NSGaussian-S X
NSGaussian-UT X X

NSGaussian-US X X
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Considered covariate(s)

Copulas Urbanization ~ Temperature Sea level
NSGaussian-TS X X
NSGaussian-UTS X X X
SPlackett

NSPlackett-U X

NSPlackett-T X

NSPlackett-S X
NSPlackett-UT X X

NSPlackett-US X X
NSPlackett-TS X X
NSPlackett-UTS X X X
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Table A. 5: AlCc values for all marginal distributions

Rainfall Water level

Models Sample 1 Sample2  Sample 3 Models Sample1 Sample2 Sample 3
SGEV 353.024 353.024 1850.206 SGEV -43.745  8.483 -25.648
SGUM 351.451 351.451 1908.258 SGUM -46.158  8.246 7.795
SLN 348.185 348.185 1892.357 SLN -43.808  7.403 -3.542
SWEI 347.365 347.365 1972.834 SWEI -36.084 7.246 -24.268
NSGEV-U 331.403 331.403 1849.094 NSGEV-U -99.750  -2.604 -52.654
NSGUM-U 333.418 333.418 1905.505 NSGUM-U -102.209  0.505 -11.888
NSLN-U 334.475 334.475 1889.877 NSLN-U -98.824 -2.768 -28.158
NSWEI-U 342.621 342.621 1974411 NSWEI-U -88.706 -4.687 -53.807
NSGEV-T 346.805 350.819 1852.260 NSGEV-S -49.777 -53.867 -373.241
NSGUM-T 344.984 349.675 1910.056 NSGUM-S -52.270 -52.139 -334.005
NSLN-T 340.904 345.841 1894.370 NSLN-S -51.905 -50.916 -326.345
NSWEI-T 346.281 348.153 1973.844 NSWEI-S -45.579 -48.691 -331.725
NSGEV-UT 334.132 333.932 1849.744 NSGEV-US -97.744 -70.731 -520.239
NSGUM-UT  335.559 335.983 1907.312 NSGUM-US  -100.325 -64.926  -489.369
NSLN-UT 336.954 336.698 1891.268 NSLN-US -97.508  -60.225  -432.603
NSWEI-UT 344.134 345.176 1974.194 NSWEI-US -86.196 -68.309 -452.994
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Table A. 6: AICc values for all copulas

Copulas Samplel Sample2 Sample3 Copulas Sample1l Sample2 Sample 3
SClayton -1.969 -3.114 1.926 NSClayton-UT -2.537 0.335 2.884
SFrank -4.860 -5.182 0.335 NSFrank-UT -2.268 -0.735 4.065
SGaussian -2.883 -1.758 0.068 NSGaussian-UT -0.807 2.434 4.040
SPlackett -5.214 -6.298 0.406 NSPlackett-UT -1.907 -1.638 4.165
NSClayton-U -4.817 -2.032 2.661 NSClayton-US -7.767 0.371 2.269
NSFrank-U -4.631 -3.050 2.061 NSFrank-US -5.247 -1.015 3.378
NSGaussian-U  -3.029 0.048 2.066 NSGaussian-US -4.743 2.461 3.302
NSPlackett-U -4.200 -4.036 2.163 NSPlackett-US -4.247 -2.634 3.477
NSClayton-T -4.587 -0.983 3.923 NSClayton-TS -2.195 0.896 5.415
NSFrank-T -4.460 -3.125 2.199 NSFrank-TS -3.828 -0.806 3.832
NSGaussian-T  -3.216 0.424 2.066 NSGaussian-TS -2.601 2.593 3.303
NSPlackett-T ~ -3.764 -4.049 2.277 NSPlackett-TS -2.307 -2.588 3.861
NSClayton-S 0.263 -0.883 3.411 NSClayton-UTS  -5.190 2.454 0.452
NSFrank-S -2.619 -3.082 1.832 NSFrank-UTS -3.797 1.590 5.445
NSGaussian-S  -0.982 0.465 1.249 NSGaussian-UTS  -4.293 2.691 5.370
NSPlackett-S ~ -3.041 -4.973 1.840 NSPlackett-UTS ~ -3.678 -0.242 5.542
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