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Abstract—Virtual Power Plant (VPP) is a cloud-based
software-controlled distributed power plant that aggregates het-
erogeneous distributed generation units into a single operating
profile to participate in the energy trading with the wholesale
energy market. The concept of VPP is mainly employed to
deal with the uncertain nature of RESs. This paper discourses
an electricity trading scheme involving VPP, consisting of a
photo-voltaic (PV), wind turbine, and a micro-turbine (MT) unit
in addition to load. The VPP participates in the Day-Ahead
Market (DAM) with an objective of profit maximization. The
generation scheduling is performed using different evolutionary
optimization techniques to maximize the profit of VPP and its
participants. Particle Swarm Optimization (PSO), Artificial Bee
Colony (ABC), Manta Ray Foraging optimizer (MRFO) and
RUNge Kutta Optimizer (RUN) are the four algorithms being
considered and compared in this study. The results show a
comparative study in terms of maximum profit of VPP and
execution time of optimization techniques. The optimal result
is obtained consistently by MRFO.

Index Terms—Virtual Power Plant (VPP), Day Ahead Mar-
ket, Energy Trading, Renewable Energy Sources, Evolutionary
Algorithms

I. INTRODUCTION

In this era of the 21° century, the level of penetration of
Distributed Energy Resources (DER) into the main grid has
become very high. The capacity of the wind power generation
has been increased from 220 GW to 733 GW and for solar it
has increased from 73 GW to 713 GW [1] from 2011 to 2020.
However, the problem arises because of the intermittency of
the DERs like wind, solar, etc. Virtual Power Plants (VPP) are
set up by aggregating a large number of DERs with traditional
units or flexible loads so that they behave like a single entity
and exhibit more robust and predictable characteristics [2].
DER can not replace the capacity of the conventional energy
units because without active management and participation,
it cannot perform system supporting activities . VPP is de-
ployed to avoid problems like over-capacity issues, efficiency
reduction which in turn enhance visibility and controllability
of the DERs [3]. Besides working as an aggregator, VPP
participates in the trading of electricity with the main energy
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market. The main idea of the smart grid is to deliver power
from generators to end users using digital technology to
improve reliability and transparency. This reduces cost not
only from the generation end but also from the consumer
end [3]. This concept of making the grid smart will be more
efficient if VPP is deployed. According to the FENIX project,
the VPP combines the volume of several DER by creating
a single entity and feeding the network with an aggregated
DER output. Being a single profile, VPP can participate to
make contracts with the wholesale market and serve system
operators. Two types of VPP are there: Technical VPP (TVPP)
is more into technical management of the system by examining
balancing and ancillary services and Commercial VPP (CVPP)
is more into participation in energy market and maximization
of profits. The operator of TVPP needs to consider the detailed
information i.e. Real-Time (RT) influence of local network on
the portfolio of DER. Enabling small capacity DERs to take
part in the electricity market is one of the important roles of
VPP [4].

The aim of VPP’s introduction into the electricity market
is to get better results in the electricity market in terms
of revenue. A solar power plant (SPP) and a wind power
plant (WPP), are aggregated along with a conventional gas
power plant (CPP) to act as a single profile in the electricity
market. The VPP profit is modeled as a mixed-integer linear
programming model (MILP) and the aim is to maximize it [5].
The forecasted power output for WPP and SPP is considered to
be known. These power plants are scheduled according to the
forecast and CPP comes into the consideration to compensate
for the mismatch that happens due to the uncertainty of DERs
. In [6], a stochastic programming method is deployed for self-
scheduling of the VPP. Similarly, in [7], the profit of multiple
microgrids is maximized which are participating in energy
trading.

A three-stage model of VPP to take part in the bidding
process of the wholesale market is introduced in [8]. Here
VPP behaves as a price-taker, not a price-maker as it does
not affect the market price. In the first stage, VPP enters the
DAM, and all the units in VPP should send the forecasted



power output data to the VPP control center. Based on the
forecasted value in the DAM, VPP schedules and forecasts
the bidding output of each unit in Real-Time Market (RTM)
based on forecasted price. In general, the DAM opens a day
before the actual trading day for 3 hours. The Day-Ahead
(DA) bidding output of each unit is obtained which has less
mismatch than the previous ones. In [9], a robust optimization
approach is used to cope up with the fluctuating market price.

In [10], the objective function is the VPP profit. As this
is a maximization problem, an Artificial Bee Colony (ABC)
algorithm is applied to optimize it. The parameters associated
are DAM bidding output and RT forecasted output. In [11],
Particle Swarm Optimization (PSO) technique is implemented
to maximize the revenue function. Different optimization tech-
niques are discussed in [12].

In this paper, a rigid load profile is considered, and the
generation is taken as flexible. VPP consists of a solar energy
unit, a wind energy unit, and a MT unit in this case study. This
paper deals with proper scheduling between RESs and the MT
to have the maximum profit from the VPP and reduce the cost
of electricity generation. An optimization problem is modeled
by building a revenue function and maximizing it. PSO, ABC,
Manta-Ray algorithm, and Runge Kutta method — optimization
techniques are implemented for solving the problem. Results
obtained through these techniques are compared.

This paper has following sections, section II, discusses the
optimization algorithms in brief. In section III, the problem
formulation is explained. Results for profit maximization of
VPP are discussed in section IV. In section V, conclusions
have been derived. In this paper four different algorithms have
been applied and the obtained results are compared.

II. EVOLUTIONARY OPTIMIZATION TECHNIQUES

The firm-level research on VPP scheduling leads to an
optimization problem having multiple parameters. This paper
compares four different optimization techniques to solve this
non-linear problem. An algorithm is developed, consisting of
VPP and wholesale market to optimize the bidding strategy
assuring no unit is overloaded.

A. Particle Swarm Optimization (PSO)

PSO is a population-based stochastic technique that mimics
bird flocking, fish schooling and swarming theory in particular.
A basic variant of the PSO algorithm consists of a swarm 1i.e.
population of solutions in the feasible region. Each solution is
considered as a particle, which flies through the search space
with a particular velocity. The path of the particle depends
upon its inertia, the local best, and the global best position
[13]. Updation of the solution is performed as eq (1) and (2).

Vigr =w - Ui +c1-mi(pp —x5) Fea-ra- (g — i) (1)

Tipl = Ti +Viq1 (2)

where v; and z; are particle velocity and position in ‘"

iteration respectively. w, c1, co are inertia weight, weight

associated to local and global best respectively. r1,ro are two
random values between [0,1].

B. Artificial Bee Colony Algorithm (ABC)

ABC is a population-based meta-heuristic technique in-
spired by the collective behavior bees. A colony of bees
consists of three types of bees: employed, onlooker and scouts.
At first, the employed bees explore and give details regarding
the food stock to the onlookers. Then the same number of
onlookers waiting in the dancing area, decide and explore the
food sources. The task of the scouts is to discover a new food
source [14]. ABC uses the eq (3) to update food position:

ki 3)

where ¢ is index of employed bees whose food source is to be
updated and % is a random index and j € {1,2...D}, where
D is the extent of problem.

vij = Tij + (i — Thg)

C. Manta Ray Foraging Optimization (MRFO)

In [15], a new meta-heuristic algorithm named as Manta
Ray Foraging Optimizer (MRFO) is proposed. MRFO imitates
the foraging behavior of manta rays. The foraging operators
introduced in this method are: chain foraging, cyclone foraging
and somersault foraging. The acceptability of the solution
is decided based on the concentration of plankton (food).
At first, manta rays line up head-to-tail to form a foraging
chain. Now the manta rays move towards the best solution
and also towards the solution in front of it, except the first
manta ray. In cyclone foraging, they spirally move towards the
food. Individuals, except the first, follow the one in front of
it and also traverses spirally towards the food. To improve the
exploration, they search for new solutions far from the current
best. In somersault foraging, the food sources are observed as
a pivot and individuals swim to and fro around it and come
up with a new solution.

D. Runge Kutta Optimizer (RUN)

In [16], a new swarm-based optimizer with stochastic
components named Runge Kutta optimizer (RUN) is briefly
discussed. RUN uses the basic concept of Runge Kutta (RK)
technique along with population-based evolution of swarms.
This algorithm uses the concept of slope calculation which has
been proposed in the RK method. A search mechanism which
finds its basics in RK method is used in the RUN algorithm.
The exploitation or exploration phase in the search process is
decided by the condition rand < 0.5, where rand is a random
number.

if rand < 0.5, the exploration phase starts which is given
as eq (4):

Tpt1 = (@e+r-SE-g-x.)+SF-SM+p-randn(z,—z.) (4)
else, the exploitation phase starts which is given as eq (5):

Tni1 = (@ A7-SF-g-2)+SF-SM+prandn- (2,1 —wr2)
5)
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where g is random number in [0,2], r is integer, having
value of 1 or -1, p is a random number and SF is an adaptive
factor. A special operation Enhanced Solution Quality (ESQ)
is utilised to avoid being stuck in a local optima as shown in
eq (6) and (7):

if rand < 0.5
ifw<1

Tpew2 = Tnewl + 7 W - |(xnew1 - xavg) + rcmdn| (6)

else

— Zaug) +randn

(7

where ¢ is a random number in [0,5], random number w

decreases with the iteration, r is an integer, which can have

values of 1, O or 1 and, » is a parameter to increase the
diversity.

Tnew2 = (xnewl - xavg) +r-w- |(u *Tnewl

III. PROBLEM FORMULATION

In this research work, the bidding strategy of VPP does not
affect the market price. The basic objective of the bidding
model is maximization of VPP’s profit by trading energy in
wholesale market. The VPP is configured by aggregating a
SPP and WPP as RESs and an MT plant as conventional unit
as shown in Fig.1.
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Fig. 1. VPP Configuration

A. Objective Function

The formulation of objective function representing VPP’s
profit, is performed in this section. The loss due to line flow
is neglected i.e., assumed to be 0, as the physical distance
between the generating units and the loads is taken as small.
The profit function is developed by summing all the earnings
of each unit and then subtracting the cost of generation and
trading from it is as follows:
maxz EDAM Eﬁ,thM + Enle;]LV[) —

(VhDA]\/I + Vrﬁﬁth)

®)

where EDMM, EDAM and EDAM s the forecast bidding

earnings of wind, solar and mictroturbine plant in DAM at

R*" hour respectively. V,PAM is the trading cost of DAM and

VftAhM is the MT plant cost in DAM.

In eq (8):

o The cost of generation from the SPP is assumed to be
zero, and only earning component is considered. The
forecasted earning of SPP in DAM is derived as follows:

By =Bl QA+ B - 9)

In eq (9), BP9 and BE% is the WPP bidding output in

DAM and forecasted bidaing output in RTM respectively.

And QP4 and QFT are the forcasted price of DAM and

RTM respectively.

o The cost of generation of the WPP is also assumed to be
zero and only earning of WPP is considered in the profit
function. The forecasted earning of WPP in DAM is as
follows:

DAM DA RT
Epv h pr h’ Qh B Qh

(10)

pvh

In eq (10), Bﬁf‘h and Bﬁfh is the SPP bidding output in
DAM and forecasted bidding output in RTM respectively.

o For MT both the forecasted earning and output cost in
DAM are taken into account. The forecasted earning of
MT in DAM is as follows:

EDAJ\/I

DA
mt,h Qh

(1)

Bmth

In eq(11), BY h is the MT bidding output in DAM.

e In case of a shortage or surplus of power in the VPP, it
has to trade with the wholesale electricity market to annul
the load - generation imbalance. The mismatch between
the load and generation is derived as:

BMARKET LDAM (BDA _'_BR'J;L + pr 3 (12)
+By + Boin)

eq (12) shows, if BMARKET jg positive, the generation
of VPP units does not meet the demand of the loads
associated with it i.e. VPP has to buy electricity from the
external market. And negative B/ ARKET jpdicates that
there is a surplus amount of generation in VPP and extra
power is to be sold to the external market.

o The parameter BMARKET consists of the DA and RT
component of trading power between the VPP and the
wholesale market.

Bmarket Bmarket + Bmarket
h

RT,h (13)

In eq (13), BMARKET and BMARKET are the trading
power of VPP and wholesale market in the DAM and
RTM, respectively.

o The VPP will incur costs due to energy trade with the
external wholesale market. The forecasted trading cost in
the DAM at h!" hour is derived in eq (14):

VhDAM Bmarket Q?A +Bmarket . (14)

RT
Eron S,
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V.DAM indicates MT’s operational cost at h'" hour.

The output cost of MT in DAM comprises of four
components: MT running cost, MT starting / stopping
cost, environmental penalty on MT and MT base cost
under operating condition. The MT operational cost is
derived as:

Vn%?hM = (5h - 5h71) : Csta'r’t/stop + Cye - (Bgéh_

Bii™) + 0n - Coase + Bhiy Zﬁi 2
i=1
15)

In eq (15), 6y, is the MT status co-efficient at h!" hour,
Cstart/stop 18 the MT starting / stopping cost, Cy. is MT
dynamic cost coefficient, B;;" is MT minimal power
output, Cpese is MT fixed cost. The value of J; is 1
when MT is in ON condition and 0 when MT is in OFF
condition. 3; and Z; are the environmental penalty factors
of the MT. The environmental penalty and technical
parameters of the MT are presented in Tables I and II
respectively.

TABLE I
TECHNICAL PARAMETERS OF MT
ngz Bm;n Cdc Cstu/rt shut Cbase B:y?tmp
5.6IMW | 25MW | 6.31$/MW 30% 30$ 3MW/H
TABLE II
ENVIRONMENTAL PENALTY OF MT
[ Pollutant [ NO, [ CO; [ CO [ SO |
Emission(8;)(kg/MWh) 0.6188 | 184.0829 | 0.1702 | 0.000928
Environmental Value(E;)($/kg) 1 0.002875 0.125 0.75
Penalty(p;)($/kg) 0.25 0.0125 0.02 0.125

B. Constraints

The constraints of the bidding output parameters of each
unit are given as follows:

0< BRh + By, < Bipp (16)
0< By + Byt < BSjp (17)

BRf, < B (18)
BRA 1 — BRf, < B (19)

e eq (16) and (17) limit the bidding output powers of
WPP and SPP to less than the DAM forecasting output
respectively.

e eq (18) ensures that MT’s output can not be greater than
the maximum output.

e eq (19) ensures the MT can neither ramp up nor ramp
down beyond the ramp limit.

IV. RESULTS

In order to analyze the dispatch of each unit of VPP in
DAM, the bidding output parameters of each unit in DAM are
discussed in this paper. A comparison between the forecasted
price of the DAM and RTM is done in Fig. 2. It can be
seen that the energy price values are almost same for the
first 10 hours but an unavoidable variation comes after 10"
hour for the remaining part of the day. The VPP system being
considered in this study, has to schedule the RESs properly
so that it can achieve maximum profit by participating in
the wholesale energy market. Fig. 3. and Fig. 4 shows the
maximum DA forecasting output data of WPP and SPP which
are taken from Nordpool. Fig. 5. represents the load profile of
the VPP.
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Fig. 2. Forecasted Price Details of DAM and RTM
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Fig. 3. Output of WPP in VPP

In this paper, the maximization problem is solved using four
different optimization algorithms: PSO, ABC, MRFO, RUN.
Each algorithm is executed 40 times. A comparison between
the best objective function values and the average values is
shown in Fig. 6. The scheduled bidding output of each unit in
VPP corresponding to their respective best objective function
values is shown in Fig. 7, 8, 9 and 10 respectively. In PSO
and ABC algorithm there is a peak at 24*" hour for the WPP
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bidding output in DAM. But in MRFO and RUN algorithm It is evident from Fig. 11 that the ABC algorithm takes
there is a peak at the 237% hour for the WPP output in DAM. about 15 seconds to give result, which is the fastest of all
For all methods it can be observed that the MT output in DAM  the algorithms used. Anyway, Fig. 6. shows the profit value
is staying almost minimum for all hours. The comparison of obtained using MRFO is $37497.86, which is the highest profit
the execution time for each algorithm is shown in Fig.11. value obtained by any optimization technique.

V. CONCLUSION
37497.86

770.83 3623723 o120, A study on a VPP profile participating in the DAM is
analyzed in this research work. The objective of the research
is to maximize the profit of the VPP by properly scheduling

e WPP bidding output in DAM e WPP forecasted bidding output in RTM
e SPP bidding output in DAM SPP forecasted bidding outputin RTM
== Microturbine bidding output in DAM
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A comparison of standard deviation between different Time (Hrs)
algorithms is presented in Fig. 12.
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the RESs and MT. PSO, ABC, MRFO and RUN optimization
techniques have been implemented to maximize the profit and

= WPP bidding output in DAM e \WPP forecasted bidding output in RTM a Comparative Study iS performed. In terms Of execution time,
SPP bidding output in DAM SPP forecasted bidding outputin RTM . . . .
ot b_g bt:d_( R ' soset ABC is taking lesser time due to less computational burden.
o However, MRFO is able to obtain the optimal result in terms

Power Generation (MW)

s of profit value. The standard deviation is also minimum for
“0 the MRFO technique.
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