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ABSTRACT

Smart grid is providing new opportunities and techniques for
supplying high energy demand of the ever growing energy
industry. One-third of the total energy demand comes from the
residential sector. A new frontier in this field is the Energy
Management Systems being designed for the futuristic smart
homes. A smart home is a home that shall be able to decide,
control and optimize the operation of its equipments, on its own
with minimal interference from its master, a human. One of the
major factors for the successful development of a smart home is
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its ability to manage the energy resources including generation energy source

and storage. The recent smart home energy management
publications have been reviewed in detail in this paper. The paper
also elaborates on different demand response strategies used and
the various equipments considered along with renewable energy
generation and plug in electric vehicles (EV) employed in smart
home energy management process. The literature is categorized
based on various factors like tariff, storage, trading, monitoring,
etc. affecting the performance of a smart home. These factors are
mentioned, discussed and analysed in depth. Objective functions,
constraints and communication models involved in smart home
energy management models are also surveyed.

1. Introduction

The twenty-first century is marked with unprecedented growth in human inventions and
standard of living. The improvement in the standard of living results in high consumption
of electricity thus leading to high energy demand from the utilities. The per capita energy
consumption in Norway and the USA is approximately 2.6 and 1.4 kW compared to 5-11
watts in some African countries (Energy Consumption By Country 2020, 2020). On devel-
opment of these underdeveloped countries, more energy will be demanded certainly.

The residential consumption lies in the range of around 13-37% (CEA, 2020) of the total
load. The implementation of demand response techniques will help reduce the consump-
tion of electricity and provide other benefits like providing high utility factors for gener-
ation plants, improved reliability, balanced peak and base loads, etc.

The residential load is made of homes. The users of these homes have a preference
(pattern) for power consumption (Chen et al., 2017; Jin et al, 2017). This preference
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usually depends on factors like temperature, humidity, holiday, etc. (Chawda et al,, 2017;
Chen et al., 2017). Based on the analysis of these factors, the consumption of a particular
home can be forecasted. This load forecasting can be used to suit the scheduling of appli-
ances and implementation of demand response techniques. Hence, forecasting can also
play a very important factor in the optimal working of SHEMS.

The homes consist of two types of loads, viz. controllable and uncontrollable (Basit et al.,
2017; Yao et al., 2017; Zunnurain & Maruf, 2017). The controllable loads are those whose
demand over the time can be managed whereas for uncontrollable loads the timings
cannot be controlled. For example, in washing machine the timings of its operation can
be managed whereas lighting load cannot be delayed. The controllable loads are the
ones which shall be used for appliance scheduling in an SHEMS and which will implement
the demand response techniques. The uncontrollable loads are a part of the total load of a
home but their working cannot be scheduled.

The reduction of cost of renewable energy sources has opened new opportunity for the
consumers to produce their own electricity. This means that while considering a smart
home, the renewable energy sources will also have to be included. The renewable
energy sources bring with them calculations related to their generation forecasting,
storage strategies, etc.

Other than these considerations, a smart home energy management system could also
consist of battery/storage management, Electric Vehicle (EV) charging along with Vehicle
to Grid (V2G), forecasting, appliance scheduling, etc.

The review paper aims to present different objectives, constraints, models, etc. from a
wide variety of literature on SHEMS. These research work/publications have discussed and
proposed solutions for different factors which affect the optimal operation of SHEMS.
These factors are mentioned, discussed, classified and analysed in depth in this paper,
thus bringing forth the shortcomings or research areas which require more consideration.
Tables and graphs are used for better representation purposes.

Some of the factors affecting the performance of SHEMS are: tariff, interaction of mul-
tiple SHEMS for creating a neighbourhood energy management system, distributed gen-
eration, etc. This paper is organized as follows: Section Il presents an insight into SHEMS,
Section Il deals with SHEMS Architecture, Section IV presents SHEMS Modelling and For-
mulation which encompasses different mathematical equations related to SHEMS, Section
V discusses different Optimization Techniques and Solution Methods, Section VI presents
SHEMS Communication models of different research papers, Section VIl discusses the Fore-
casting of residential load for an SHEMS, Section VIl introduces Energy Trading and Tariff
for SHEMS environment and Section IX presents a summary through Conclusion.

2. Smart Home Energy Management System

Smart Home Energy Management System (SHEMS) requires the development of a framework
to handle the energy needs, demands and resources of a home to reduce the energy costs
without compromising the comfort levels of the user. The framework should be developed
in such a way to take decisions on its own without much involvement of the user.

To optimize the system, initially the problem is formulated. This exercise gives infor-
mation about the parameters being input to the system and their relationship with the
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output. The output is usually the energy costs. Various input parameters can be tariff rates,
load forecasting, appliances and their level of importance, etc.

Optimization is required after the problem has been formulated. Various mathematical
based and meta-heuristic techniques can be applied for this purpose. The selection of optim-
ization technique shall be dependent on the examined problem and its ability to meet certain
objectives such as reducing energy bill, maximizing User Comfort (UC), reducing load during
peak hours, reducing peak to average ratio and optimizing appliance operating time.

SHEMS framework shall normally be based on the following process: data collection
and monitoring, data processing and analysing, forecasting/estimation (if needed), optim-
ization and execution. Other than these processes, some communications are also
required between the SHEMS framework and the grid or other third parties for related
data exchange (such as energy tariffs, base load determination, etc.) at a future time.
SHEMS needs to also communicate for controlling the working of appliances, storage
system and generation from renewable energy sources (RES).

Monitoring the energy usage of a home is of prime importance. It helps in understand-
ing the pattern of energy consumption in a home. This can be used for forecasting energy
usage at a later date and thus utilizing demand response (DR) techniques to optimize
energy consumption. There are two major approaches of load monitoring: Intrusive
Load Monitoring and Non Intrusive Load Monitoring (Abubakar et al., 2017; Zhai et al,,
2018). Intrusive Load Monitoring is when the load consumption of a home is monitored
directly by observing the ON/OFF conditions of the appliance as is done in Zhai et al.
(2018) with the help of smart plugs. Non Intrusive Load Monitoring deals with different
methods of estimating the appliances that are consuming a certain amount of load at a
given time in a home. These are indirect methods of monitoring the load consumption
pattern. Intrusive Load Monitoring is based on distributive sensing while Non Intrusive
Load Monitoring is single point sensing (Abubakar et al., 2017). Techniques related to
these methods are surveyed in Faustine et al. (2017) for Non Intrusive Load Monitoring
and Ridi et al. (2014) for Intrusive Load Monitoring.

Analysis of stored data along with its application to attain the objective of SHEMS is
reached through different algorithms. Forecasting of different parameters plays a very
important role in the implementation of SHEMS. Forecasting might be required for
different purposes such as load consumption or RES determination.

Another important factor affecting the performance of SHEMS is the inclusion of
storage systems. Storage systems help in easily rescheduling the usage of various home
appliances. It provides reliability in energy supply. Storage systems can also play an impor-
tant role in bringing down energy bills. Different energy storage systems considered are:
batteries, thermal energy storage and EVs.

3. SHEMS architecture

In Zhai et al. (2018), a very simple architecture of a smart home is presented as shown in
Figure 1. The SHEMS unit is connected to each and every equipment through a smart plug.
The smart plug can be used to monitor and control the usage of the equipment. The
SHEMS unit also communicates with the gateway to receive the DR commands from
the utility. The RESs are not considered in this architecture.



ADVANCES IN BUILDING ENERGY RESEARCH 121

—> Communications

Communication
and Control Signal

Smart Plug
Demand
Air Conditioner TV Response
Signal
@ \: . ”))
= L’ =
— .
Electric — Gateway
Vehicle

[
s

Microwave ==

) Oven | ‘
Fridge

‘4
A\

Controllable Appliances

Figure 1. Architecture of SHEMS in Zhai et al. (2018).

The structure presented by Pawar and Vittal (2017) as shown in Figure 2 is quite similar
to the one presented in Zhai et al. (2018), except that in Pawar and Vittal (2017), the RES
and storage systems are also shown as a part of SHEMS. The structure used by Killian et al.
(2018) as shown in Figure 3 further adds capacitors into the SHEMS environment. Figure 3
shows the possible flow of electric power.

The model predictive control (MPC) proposed in Jin et al. (2017) is placed in the centre
as shown in Figure 4. This MPC is supposed to interact with utility as well as different
equipments in the smart home. Each equipment in the home has its own controller or
meter and can interact with the MPC. The examined system also includes a PhotoVoltaic
(PV) array and a battery system. Another block is placed to represent the measurement
and learning process of the system based on the history of energy usage. This block
also helps identify various patterns in which the appliances were used. The system identifi-
cation block is used to sense the current usage pattern in the home. These patterns will
depend on various factors like weather, etc. The MPC is also responsible to gather data
related to weather and user’s preferences. There is an interface with utility for forecasting
of load and to receive information related to any DR events initiated by the utility. The MPC
shall be required to implement any DR event.

The architecture of a smart home detailed in Zunnurain and Maruf (2017) and shown in
Figure 5 represents an SHEMS system which is connected to the utility through a smart
meter. The smart home itself does not have any RES, however, it employs a storage
system. The appliances in the smart home are clearly classified into critical and non-critical
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Figure 2. Structure of SHEMS in Pawar and Vittal (2017).

loads. Priority allotment to an appliance shall depend on this classification. The SHEMS uti-
lizes load shifting technique algorithm which is embedded onto the centralized HEMS con-
troller. User preferences are, however, not considered in this model.

The SHEMS as part of a whole grid is shown in Figure 6. Authors in Yener et al. (2017)
present a whole grid system which has smart homes as a part of it. The main grid centre is
connected to its own database and control server along with client home server. The client
home server in turn is connected to RES and loads within the smart home. The client home
server is controlled by the client through a mobile device. The methodology implemented
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Figure 3. Structure of SHEMS in Killian et al. (2018).
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aims to gather information related to DR events for end users and system operators. It also
allows the end user to monitor the implementation of the DR event. The main server is
connected to the control centre and the database. This main server is required to interact
with the client server for controlling of appliances and implementation of the DR events.
The client/user groups are connected with the main server as well as the client server. The
model assumes the presence of RES in the system.

A comprehensive SHEMS is presented in Luo et al. (2019). Figure 7 presents the pro-
posed architecture. The SHEMS takes into consideration a wide variety of inputs for an
optimal management of energy usage. The dashed line represents the controlling
action of SHEMS. The inputs to the SHEMS consist of

o Natural Aggregation Algorithm: It is used to search for an optimal solution in the pro-
vided search space.

» Solar database: The solar database provides for the forecasted solar power generation.
It takes into consideration the current weather conditions and the historical data from
its database to forecast the power that shall be generated from the PV panels.

e Home Database: The home database is used to suggest the historical usage of
uncontrollable load of the home and the peak power usage of the home. This data is
useful in scheduling of the controllable load of the home.

e Constraints: There are various operational constraints in an SHEMS which are taken care
of by this input. The appliance dependent constraints are also considered in the pro-
posed structure.

e Tariff: The real-time pricing and the other charges are input to the SHEMS. The
tariff is responsible for real-time pricing and demand charge tariff-related information.
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¢ Controllable Appliance Models: The data related to the controllable appliances in the home
is also provided to the SHEMS. It is a two-way communication with this input as the control-
lable appliances are also required to be scheduled for realizing optimal operating costs.
o Energy Storage: The energy storage is another input in the SHEMS which has a two-way
communication with the SHEMS. The Energy storage model shall provide details related
to the available energy storage facilities in the home while the SHEMS controls the char-
ging/discharging of the Battery Energy Storage System (BESS).

Another SHEMS architecture with a difference is presented in Lokeshgupta and Sivasu-
bramani (2019). The architecture also introduces a dump load in combination with RES as
shown in Figure 8. Dump load is introduced for the wind power in the system.
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4. SHEMS modelling and formulation

The problem statement of SHEMS depends on various constraints and objectives based on
factors being considered. In this section, a number of objectives and constraints from
various research papers are presented. The objective function for a smart home energy



126 A. Q. H.BADAR AND A. ANVARI-MOGHADDAM

Central DSM
Consumer
Controller
Preferences
Utility

L Smart Meter :
k > and ECS <:> Appliances

RES

u Storage System

Dump Load

Figure 8. Structure of SHEMS in Lokeshgupta and Sivasubramani (2019).

management system in Celik et al. (2017a) is given as

T

min (C,) = Z (P (t) — P (1)) - Alt, Pn(t)) (m
t=1
The above equation (1) signifies the minimization of the user’s utility bill defined as the
product of the difference between the load profile of the home and energy sold by a
smart home and the energy price. The terms used in the equation are: C, is the daily elec-
tricity bill, T is the maximum value in the time set, P](t) is the home net power profile at
time interval 't', P; (t) is the power sole through the discharge of the battery at time interval
‘' and A(t, P,(t)) is the electricity price scheme. Equation (1) is also used for the optimiz-
ation of SHEMS in Celik et al. (2017b).
Authors in Killian et al. (2018) present a complex objective function for a smart home
having thermal synchronization as

Np

min (J) = Y [0 — 9% Q9" — 9§
k=0 )
+ AURDU A+ (G2 Sk + Pope — gl Sipdie, ]

Equation (2), takes care of user’'s comfort (Qk), manipulated variables (R), cost of per unit of
energy bought from the grid (S¢), maximizing cost of energy produced by RES (Py), flexible
price for buying and selling (g) and power taken and supplied to the grid (p), over the
given period of time given by n,. Equation (2) presents a more elaborated objective
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function while considering for UC, and separating the factors involved as compared to the
earlier equation.

The cost of electricity consumption is optimized in Jeddi et al. (2017). The equation is
simple in its construct and only deals with the cash received and paid along with
battery-related costs. It does not consider UC as a part of the equation. The equation
used is

;
CoEC = ) "[CP(t) + CR(t) + Cop(Psess(1))] 3)

t=1

In the above equation, CP signifies cash paid while cash received is given by CR. Cgp
signifies the cost of BESS degradation and Pggss gives the power of BESS.

A detailed modelling of battery and its inclusion in the main objective function for redu-
cing overall electricity cost is presented in Wei et al. (2017) as

[« -I . 2
DV m(CPey) +m; (EB,k —5E" + EL““)>

k=0

+ m3(PeLx — (Prex + Pasx))?)

(4)

y is the discount factor in the above equation, whereas m;, m, and mjs are positive con-
stants. C provides for the electricity rate for each unit, Pg« is the power supplied by the
grid, Pk is the power supplied by the battery to the load, Pggx is the power supplied
to the battery by the grid and Prgx is the power supplied by the RES to the battery. For
battery energy Egx is used, whereas E{,“‘” and EJ'™ represent the minimum and
maximum energy storage in the battery. The equation considers various factors which
contribute to the costs and earnings in an SHEMS. A number of factors are introduced
in the equation, whose values will play a major part in the evaluation of the objective func-
tion. These factors shall also be helpful to distinguish various conditions affecting SHEMSs.

Some of the other important components of an SHEMS are the heating, ventilation and
air conditioning (HVAC) load. These components are considered in Y. Liu et al. (2017) and
given in the equation as

K M
J_m|n<ZD RKPHIAG + Y Y wis| Tk +1) - T,d(k+1)|> (5)

= k=1 i=1

Equation (5) is a single time scale optimization of SHEMS, where all terms are related to fast
time scale. D(k) represents dynamic price and P> gives the power consumption over a
time interval At. Discomfort level of the user is given by w;, s gives the switch position
of HVAC, T is for indoor temperature and T9 gives the desired temperature. Equation
(5) introduces terms related to temperature and relates the UC through it, while consider-
ing dynamic pricing of electricity. The RES as well as BESS are not a part of the equation. In
Y. Liu et al. (2017), multi-time scale optimization is presented. The time period of optimiz-
ation for an SHEMS is first divided into slow time scale. Now each interval in slow time scale
is considered as a period and is further distributed into fast time scale.

EVs will also be forming an important part of SHEMS, whose modelling is accomplished
with the help of Markov chain model in Wu et al. (2016). The equation for optimization is
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formulated as
Pgrid,k = SkPevc,k + Pdem,k - va,k (6)

The electric power from the grid (Pgig), power demand of the home (Pgem), Plug in Electric
Vehicle (PEV) battery charger power (Pe,c) and power supplied from the PV array (P,,) form
the part of the equation. The state of PEV is given by S. Equation (6) is a very simplistic
representation of an objective function for an SHEMS involving PEV. However, the
equation misses out on BESS as a separate entity in the SHEMS as well as there is no
representation for UC level.

A variety of appliances are considered in Yao et al. (2017), where some of the appliances
can be controlled. The objective function also considers reducing the waiting time for the
operation of the appliance. The appliances are marked to signify whether they can be
controlled or not. The objective function is subjected to different constraints and is
expressed as

min Z AT (7)

In above equation, ‘p’ represents electricity price, ‘w’ represents cost of waiting time, ‘P’

represents power consumed by an appliance, ‘a’ represents individual appliances being
considered in the smart home and ‘AT’ represents available slot in each hour. Also '
gives the time step whereas ‘k’ represents current time step. The objective function in
Yao et al. (2017) is totally dedicated to reducing appliance waiting time. In many of the
references, appliance waiting time is directly related to UC, and thus we can state that
the primary objective in this case is only UC. The RES, BESS and PEV are not a part of
the objective function.

Foresee is a user-centric SHEMS presented in Jin et al. (2017). The SHEMS is supposed to
cater a multi-objective model along with predictive control framework. The concerns in
the research are user needs, energy efficiency, reliability and energy costs. The minimiz-
ation of objective function is given as

H-1
J(xo, U) = min Y~ BT (x(z), U(1)) (8)
t=0

In the above equation, J' presents a linear combination of multiple objectives for the
horizon used in prediction. ‘H" is the horizon for prediction. The objective function is
the combination of initial equipment status ‘xo’ and control actions ‘U'. ‘B’ represents
a set of weighting factors for user preferences required for individual objectives. ‘®’
is a row matrix representing the functions used for obtaining the cost of individual
objectives. A set of time-dependent variables representing the equipment status is
given by ‘x(t)’ and control actions by ‘U(t). The paper considers various factors like
thermal discomfort, energy cost, carbon emission, user inconvenience and equipment
degradation. Constraints considered in this study are: battery, HVAC, water heater,
schedulable appliance, PV and power balance. The equation is a combination of mul-
tiple actions, however, the RES and PEV do not appear to be a part of the objective
function.
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The impact of data quality on SHEMS is studied in Kang et al. (2018). The objective func-

tion presented in this study is
H net
min J ;} ; mPE + ;} €, ; Bur 9)

In the above equation, the first term gives the daily electricity cost where ‘m’ is the
electricity price and ’P{}ﬁ“ is the net consumption. The second term gives the amount
of user discomfort where ‘€’ gives the penalty parameter and ‘5, is a relaxation
variable that gives the deviation in temperature. The equation is very simplistic yet
accommodative in its presentation. The first part of the equation can be used
to inculcate all kinds of costs including RES and PEV as well as different tariff
structures.

In Lokeshgupta and Sivasubramani (2019), SHEMS is modelled as a multiobjective
problem. Cooperative game theory is used to get the optimal operating conditions. The
SHEMS consists of two objective functions given by Equation (10).

.

minFy =Y Pl 7 plt) (10a)
t=1

min F, = EPL (10b)

Fy is used to reduce the energy bill of the consumer and F; is for optimizing Electric Peak
Load (EPL) demand. In the first subequation, P;”d is power consumed from the grid at a
given time, T is the time slot which is of 0.5 h and p(t) is the electricity price per unit at
a given time ‘t. In the second subequation, EPL is to be minimized with a condition
that it should be less than the total load demand of the home.

The most common constraints considered over a number of research papers for SHEMS
are enlisted below along with some selected ones.

In Celik et al. (2017a), an equation for finding load profile of a smart home is presented
as given below:

Lu
PAD =) Pt) VtET (11)
1=1

In the above equation, the smart home load profile is equated to the sum of load profiles
of individual appliances. This equation is also considered as an equality constraint in some
papers. Similar equations appear in Killian et al. (2018), Celik et al. (2017b), Yassein (2018)
and Lorestani et al. (2017).

Another equality constraint is presented in Dong and Chen (2018), showing the balance
of power in an SHEMS:

Pc + Pre = PL + Pgr (12)

The power entering the SHEMS is given by Pg from the grid and Pge from the RESs. The
load in the SHEMS is given by P, for the load and Pgr for the battery.

The other most commonly used constraint for battery charging as well as discharging in
an SHEMS framework is

Socmin =< SOC(T) =< SOcmax (1 3)
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The state of charging (SOC) of battery at a given time is given by SOC(t), whereas
SOCpin and SOCpax give the minimum and maximum SOC of the battery. The above
equation can also be used for batteries within EVs, however, timing constraint needs
to be introduced. The above equation is utilized by Killian et al. (2018), Jin et al.
(2017), Celik et al. (2017a, 2017b), Jeddi et al. (2017), Kang et al. (2018), Lorestani
et al. (2017), Dong and Chen (2018), Lokeshgupta and Sivasubramani (2019) and
Monyei et al. (2018).

Some of the other constraints presented by various authors are as follows. In Killian
et al. (2018), a constraint is introduced for charging and discharging rate of batteries as

PRl — PR < 0 (142
PR — (1 — 8P < 0 (14b)

In the above equations, Pfjﬂ;k and Pﬁﬁ( give the power going out and coming in the battery,
respectively. A binary variable Bfat is used to signify whether charging or discharging of a
battery is possible. The maximum discharging rate and charging rate of the battery is
given by pbatdis and patch respectively.

In Jin et al. (2017), another constraint for batteries is included as presented below:

0 < Uch (t), UdiS

bat bat(t) =1 (1 5)

This constraint defines the range of normalized battery control variables. A similar con-
straint is also introduced for HVAC control variables. This paper also introduces a constraint
for curtailment of power from PV as

0=<Up =1 (16)

The power curtailment from PV panels is given by a continuous variable Up, which is
bounded between 0 and 1, representing no and full curtailment, respectively. Scheduling
of appliances is also subjected to a similar constraint. The author introduces another con-
straint to make sure that the battery power is consumed within the meter as

Ugh (pghmax _ ydis (g)pdismax 1 py . 4(6) > 0 (17)

In the above equation, ‘U’ represents control variable and ‘P’ represents power, ‘ch’ is used
for charging and ‘dis’ is for discharging, while ‘bat’ represents battery.

A very simple constraint/equation that should be a part of SHEMS by default is that the
energy in BESS at the end of the time period should be the energy of BESS at the begin-
ning of the next time period. In Hemmati (2017), this relation is mentioned as

EI(S)ESS = Egé?s (18)

Many more constraints are presented in a variety of ways in different research papers,
however due to space constraints, the listing has been restricted to above-mentioned
equations.

5. Optimization techniques and solution methods

Home agents are used for optimizing the implementation of the SHEMS in Celik et al.
(2017a). For shiftable appliances, a scheduling interval is defined by the user and appliance
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operation is optimized by the home agent. The home agent is also responsible for char-
ging/discharging of storage systems as well as EVs.

Home agents are used in Celik et al. (2017b) to optimize a decentralized SHEMS
problem. The home agents try to optimize the social benefits through scheduling of appli-
ances and controlling the use of energy storage systems. The energy of a smart home is
shared within the neighbourhood. One of the objectives of the home agents is also to
reduce the aggregated peak load in the neighbourhood. The home agents solve the
problem through the use of genetic algorithm.

An MPC-based scheme is designed as mixed integer quadratic programming (MIQP) in
Killian et al. (2018). The input values to MIQP-MPC are weather forecast, occupancy predic-
tion, reference temperature set by user, weights defined by user, prices and constraints of
smart grid. The weights chosen by the user signify a trade-off between comfort, cost and
energy efficiency. The variables generated using MIQP — MPC are input to the electric plant
and thermal pump. These variables are classified as continuous, semi continuous and
discrete.

Dynamic programming breaks down large problem into several simpler subproblems in
a recursive manner such that optimal solutions of these subproblems can be calculated in
steps. The advantage of dynamic programming is that it can be used to solve linear, non-
linear, convex or non-convex problems. In Jeddi et al. (2017), state variables are used to
represent a given state, which are optimized through dynamic programming. The algor-
ithm ends when the initial state is reached. Dynamic Programming technique is also
used by Wei et al. (2017).

In optimizing SHEMS in Dong and Chen (2018), it is assumed that the surplus power is
known in advance. The optimization process is classified into offline and online. In offline
optimization, the objective function is known whereas in online optimization the objective
function is not known. To handle time varying terms in the objective function, a time
varying coefficient is introduced. Three problem functions are formulated to handle
different situations. Single grid connected home microgrid optimization is proposed in
Dong and Chen (2018) through Bayesian Optimization Algorithm.

Dijkstra Algorithm is used for SHEMS optimization in Basit et al. (2017). Another sub-
optimal algorithm is also proposed. It attempts to optimize hourly performance by
controlling schedulable and real-time appliances, while keeping total demand under
limits.

In Yao et al. (2017), authors utilize Mixed Integer Linear Programming (MILP) for solving
the problem of SHEMS. The objective is to reduce the electricity cost and waiting time for
schedulable appliances while prioritizing power consumption from RESs. This optimization
is achieved while classifying appliances into interruptible, uninterruptible and variable
loads. MILP is also used in a number of research papers like Melhem et al. (2017), Marzband
et al. (2017), Hao et al. (2017), Nizami and Hossain (2017), however, due to the lack of avail-
ability of space they are not discussed individually.

Heuristic optimization techniques like Harmony Search Algorithm (HSA), Bacterial Fora-
ging Optimization (BFO) and Enhanced Differential Evolution(EDE) are utilized for SHEMS
optimization in Zafar et al. (2017), whereas Javaid et al. (2017) apply BFO, Genetic Algor-
ithm (GA), Binary Particle Swarm Optimization (BPSO), Wind Driven Optimization (WDO)
and Genetic BPSO (GBPSO). Similar techniques are presented along with a hybrid tech-
nique in Ahmad et al. (2017).
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Table 1. Comparative performance of optimization techniques for various
SHEMS factors from Zafar et al. (2017).

Energy consumption (kWh) Peak to Avg ratio User comfort (UC)
HSA EDE BFA
EDE BFA EDE
BFA HSA HSA

Table 2. Optimization methods applied for SHEMS.

S. No. Optimization technique References

1 Multi Agent/Home Agents Celik et al. (2017a, 2017b)

2 Dynamic Programming Jeddi et al. (2017), Wei et al. (2017)

3 Dijkstra Algorithm Basit et al. (2017)

4 Bayesian Optimization Algorithm Dong and Chen (2018)

5 Mixed Integer Quadratic Programming Killian et al. (2018)

6 Mixed Integer Linear Programming Yao et al. (2017), Melhem et al. (2017), Marzband et al.
(2017), Hao et al. (2017), Nizami and Hossain (2017)

7 Harmony Search Algorithm (HSA) Zafar et al. (2017)

8 Bacterial Foraging Optimization (BFO) Zafar et al. (2017), Javaid et al. (2017)

9 Enhanced Differential Evolution(EDE) Zafar et al. (2017)

10 Genetic Algorithm Javaid et al. (2017)

1 Binary Particle Swarm Optimization (BPSO) Javaid et al. (2017)

12 Wind Driven Optimization (WDO) Javaid et al. (2017)

13 Genetic BPSO (GBPSO) Javaid et al. (2017)

14 Mixed Integer Non Linear Programming Multi Objective Home Energy Management (MOHEM)

using Cooperative Game Theory Lokeshgupta and
Sivasubramani (2019), Cumulative Algorithm
Hemmati (2017)

15 Natural Aggregation Algorithm Luo et al. (2019), Li et al. (2017)

In Table 1, a comparison of performance between HSA, EDE and BFA for different
factors is presented from Zafar et al. (2017). The optimization techniques are placed
according to their performance for the respective factors.

In Lokeshgupta and Sivasubramani (2019), cooperative game theory approach is pro-
posed for optimizing a multiobjective SHEMS problem. The proposed SHEMS model
deals with the optimization of two functions viz. reducing the cost of electricity purchased
from the grid and reducing the peak load demand of the home.

Table 2 gives a summary of the optimization techniques implemented in the literature
for scheduling the appliances in the smart home.

6. SHEMS communications

An SHEMS framework is supposed to communicate with various entities like internet, grid
and appliances. This communication is required to forecast, analyse and predict the load of
the smart home for reducing the energy costs. Communication in smart home can also be
utilized for actuation or controlling, data exchange for trading, etc.

SHEMS utilizes internet for acquiring the environmental forecast of the next day. It also
communicates with utilities to read price signals (Keshtkar & Arzanpour, 2017).

The appliance state at a given time is sensed and communicated to SHEMS by smart
plugs in Zhai et al. (2018). The appliance state can be a single value (ON/OFF) or multistate
(Zhai et al., 2018). Within the smart home, the communication technology used in Keshtkar
and Arzanpour (2017) are Zigbee or Wifi, based on their performance, however, other
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technologies can also be utilized. The different communication techniques which can be
used within SHEMS are mentioned and compared in Guang et al. (2017).

Other than these, the SHEMS needs to also communicate with renewable energy
sources within the home and other SHEMS framework in the neighbourhood for neigh-
bourhood energy management as presented in Celik et al. (2017a) and Monyei et al.
(2018).

The SHEMS physical architecture has been discussed earlier, however, SHEMS can also
have a communication-based architecture (Mokhtari et al., 2019) as shown in Figure 9.

In Mokhtari et al. (2019), similar to a Supervisory Control and Data Acquisition (SCADA)
protocol system, the SHEMS communication system is layered into: Physical Layer, Fog
Computing Layer, Network Layer, Cloud Computing Layer, Service Layer, Session Layer
and Application Layer.

In Jaouhari et al. (2019), authors utilize the Representational State Transfer (REST) com-
munication architecture for SHEMS communications. The smart home is able to commu-
nicate with various entities like health providers, energy providers, etc. The
communication architecture in this paper constitutes Device Layer, Gateway Layer and
Application and Service Layer.

A practical smart home application is presented in Karimi et al. (2019). A smart phone is
used to control the working of the home through the use of sensors and actuators. The
research work includes the use of Internet of Things (loT), Web services and Android
App. The three main aspects presented are: (1) Arduino Uno Wi-Fi platform is used for
interoperability amongst actuators, sensors and communication protocols, (2) REST frame-
work is used for accessing appliances and for exchange of data, and (3) Android App for
the user to control home appliances from anywhere.

A machine to machine communication in SHEM is discussed in Niyato et al. (2011). The
machine to machine communication is standardized by European Telecommunications Stan-
dards Institute (ETSI). The communication network is divided into device domain, network
domain and application domain. The appliance status and power consumption in the
smart home is introduced. Dynamic Programming is used to optimize SHEMS traffic concen-
tration. Wireless communication technologies are proposed in Niyato et al. (2011).

A remote smart home management concept is introduced through mPower Remote
Manager (mPRM) in Valtchev and Frankov (2002). The paper presents and discusses the
mPRM architecture along with a practical application of Open Service Gateway Initiative
(OSGi). It discusses various protocols and communication technologies.

7. Forecasting

Forecasting plays a very important role in optimal working of SHEMS. Forecasting can be
done for RESs, appliance scheduling/load forecasting, trading, energy storage, etc.

RES forecasting along with a model to predict is presented in Celik et al. (2017b), Kiku-
sato et al. (2018) and Elma et al. (2017). In Celik et al. (2017b), error in prediction is also
modelled. Power from RES is generally predicted based on data available from internet
through weather forecasts.

The forecasting of appliance scheduling or load consumption in a smart home is pre-
sented in Zhai et al. (2018), Jin et al. (2017), Chen et al. (2017) and Collotta and Pau
(2017). Prediction of load consumption is covered in Killian et al. (2018). Load forecasting
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Figure 9. SHEMS Communication Layers in Mokhtari et al. (2019).

is combined with tariff prediction in Y. Liu et al. (2017). Tariff forecasting is also discussed in
Najafi-Ghalelou et al. (2018) and Feron and Monti (2017).

In Jeddi et al. (2017) and Lorestani et al. (2017), RES as well as load predictions models
are used. Thermal load prediction is also covered in Lorestani et al. (2017). Power gener-
ation from PV is forecasted for trading purposes in El-Baz et al. (2019).

Energy storage systems can be optimally utilized in an SHEMS through forecasting. The
storage system may be batteries, EV, thermal, etc. The storage system is utilized in an
SHEMS to implement the DR techniques and for shifting appliance schedule. Storage
system is useful for improving reliability of power supply, storing excess power generated
by RES, providing power for trading during peak tariff hours, etc. In some papers like Lor-
estani et al. (2017), it is assumed that the electrical energy can supply for thermal loads.

A simple battery storage system or EV used as storage is considered in Killian et al.
(2018), Jin et al. (2017), Zunnurain and Maruf (2017), Celik et al. (2017a, 2017b), Jeddi
et al. (2017), Wei et al. (2017), Yassein (2018), Lorestani et al. (2017), Dong and Chen
(2018), Kikusato et al. (2018), Mondal et al. (2017), whereas thermal storage is also con-
sidered in Killian et al. (2018).

8. Energy trading and tariff

The renewable energy sources and energy storage systems will be an essential part of a
smart home. The energy generated or stored can be utilized to reduce the energy bill
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through appliance scheduling or trading of energy. The smart home consumer plays an
active role in the electric grid and is therefore now termed as prosumer (Morstyn & McCul-
loch, 2018; Sousa et al., 2019). It is more attractive now for a prosumer to trade electricity
through a peer-to-peer (P2P) model rather than peer-to-grid (P2G) model (Long et al.,
2018a, 2018b). The P2P trading also introduces a collective smart home environment
aggregating into a neighbourhood energy management system. These neighbourhoods
can be a building or locality, etc. The objectives of these neighbourhood energy manage-
ment systems are to optimize the use and generation of RES, storage capabilities,
reduction of overall cost of energy or alike for the neighbourhood.

The RES installations can be provided/created at the community level itself. The optimal
appliance scheduling or EV charging can also be extended to the neighbourhood such
that the load profile of the neighbourhood is flat. The tariff profile can also be generated
for a particular locality, based on their mutual usage of energy. The control of these neigh-
bourhood energy management systems is usually considered as decentralized in majority
of research papers with each SHEMS trying to optimize its own benefit while still trying to
achieve a common goal. Some of the research papers considering implementation of
SHEMS into neighbourhood are Celik et al. (2017a, 2017b), Monyei et al. (2018), Kikusato
et al. (2018), Mondal et al. (2017), Long et al. (2018b). A review on various markets
related to community based trading is presented in Sousa et al. (2019).

The introduction of blockchain technique in energy trading at P2P level is considered in
Mengelkamp et al. (2018) for opening up of decentralized markets. The blockchain
business model along with Internet of Things (IoT) for prosumers is also discussed in
Hwang et al. (2017). Different P2P business models are evaluated in Zhou et al. (2018)
which are based on multiagent simulation framework. A blockchain-based P2P electricity
trading amongst households is presented in Murkin et al. (2016).

An improved PV energy consumption is realized in N. Liu et al. (2017) through a
business model based on economic cost and user’s willingness. A real-time and forward
market prosumer market is presented in El-Baz et al. (2019) in which consumer preference
and privacy is considered. A decentralized SHEMS and device-oriented bidding strategy
helps easy integration of appliances from various manufacturers. The power generation
from PV is forecasted and integrated into the trading market which helps commitment
from prosumers in forward markets. In Morstyn and McCulloch (2018), a receding
horizon model is implemented for trading based on wholesale energy price, renewable
energy generation and load forecasting. An energy sharing coordinator is supposed to
control the energy resources of a smart home for trading of energy in Long et al. (2018b).

The energy trading market is based on different market models like bill sharing (Long
et al.,, 2017), mid-market rate (Long et al., 2017), bilateral contract (Y. Liu et al., 2019) and
auction-based pricing strategy (Y. Liu et al,, 2019; Long et al., 2017). A customer to custo-
mer energy trading model is introduced in Zhang et al. (2016).

Tariff plays a very important role in optimizing the SHEMS framework. There are various
tariff structures in place like simple rate, block rate, time of use, dynamic pricing, etc. Out of
these some tariff structures do not play a part when energy trading is considered or when
battery storage optimization is the objective.

The research papers using various tariff structures are:

¢ simple tariff — Jeddi et al. (2017), Monyei et al. (2018)
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o dynamic pricing - Killian et al. (2018), Celik et al. (2017a, 2017b), Jeddi et al. (2017), Dong
and Chen (2018), Basit et al. (2017), Keshtkar and Arzanpour (2017), Mondal et al. (2017)

e time of use — Yener et al. (2017), Jeddi et al. (2017), Yao et al. (2017), Kikusato et al.
(2018),

¢ maximum demand - Ertugrul et al. (2017)

The variations between dynamic/real time pricing and time of use tariff is explained in
Hogan (2014).

9. Discussion and analysis of factors in SHEMS

In this section, an analysis of different factors which are connected with the performance
of SHEMS is performed. A large number of research papers have been summarized includ-
ing those papers which are not listed in the references. Since SHEMS has a large number of
reference and research papers, it is not possible to include all of them as references,
however, many of the papers were referred for the analysis presented in this section.
Table 3 shows the percentage of papers addressing different factors of SHEMS. The first
factor Tariff’ stands for all the different types of tariffs except the simple rate tariff. The
second factor is the ‘BESS’ that shows whether the SHEMS has BESS or not. The third
factor points to the use of ‘EV’ as a part of SHEMS. EV could have been used as a storage
or a load in the SHEMS. The fourth and fifth factors deal with the availability of renewable
energy sources, i.e. ‘PV' and ‘Wind’ in SHEMS respectively. The sixth factor is the consider-
ation of ‘UC" in SHEMS. The UC can be the privacy of the user, appliance waiting time,
thermal comfort, etc. The seventh and eighth factors deal with the forecasting of load
and generation in the SHEMS. The forecasting should be required for the operation of
SHEMS, even though it may not have been calculated in the research paper to be included
in these factors. The ninth factor introduces the usage of trading between the household
and the grid. The last factor deals with monitoring of load in the home. This monitoring
could be done through equipments, i.e. hardware or through the proposed software.
From Table 3, it can be concluded that Wind as a renewable source of energy in the
SHEMS is not being considered in a wide variety of publications. The presence of BESS,
PV and a non-simple rate Tariff system is the most widely researched topic, with more
than 50% of the papers including these factors as part of their research applications. It
was also observed that around 4% of papers also included fuel cells in some or the

Table 3. Factors affecting SHEMS in percentage of publications.

S. No. Factor Percentage
1 Tariff 72.54902
2 BESS 64.70588
3 EV 33.33333
4 PV 68.62745
5 Wind 19.60784
6 User Comfort(UC) 35.29412
7 Load 33.33333
8 Gen 23.52941
9 Trading 37.2549
10 Monitoring Load 39.21569
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Table 4. Combination of factors affecting SHEMS in percentage of publications.

S. no. Factor combinations Percentage
1 BESS but ‘NO' EV 43137255
2 EV but ‘NO’ BESS 11.764706
3 Neither BESS ‘NOR’ EV 17.6471
4 Both BESS and EV 21.5686
4 PV but ‘NO’ WIND 50.9804
5 WIND but ‘NO’ PV 1.9608
6 ‘NO’ RES 23.5294
7 Both PV and Wind 17.6471
8 Load Forecast but ‘NO" Generation Forecast 9.8039
9 Generation Forecast but ‘NO' Load Forecast 3.9216
10 ‘NO’ Forecast 62.7451
1 Both Load and Generation Forecast 17.6471

other way. A similar percentage of publications had electrical energy price forecasting in
their proposed models. Another factor which needs mention here is thermal storage
which made up around 10% with hardware models also accounting for similar percentage.

An interesting analysis of the combination of these factors present in the SHEMS
models is shown in Table 4. It can be observed that the majority of the SHEMS models
are void of the forecasting feature. SHEMS have more PV panels with negligible Wind com-
ponents. However, one very important feature that can be observed is that the presence of
variation in SHEMS is less than a quarter strong, like both BESS and EV (21.6%), both PV and
Wind (17.6%) and both Load and Generation Forecasting (17.6%).

The maximum number of factors that were a part of SHEMS structure were 8 in which
UC and monitoring were not present, whereas the minimum number of factors included in
a research work were 2 with UC and Tariff and another one with BESS and PV. The average
factors covered in a publication were 4.27.

For better understanding and representation, the factors were reduced to 6, namely:
Tariff, Storage, RES, UC, Forecast and Trading. Storage includes BESS and EV, RES
covered any kind of renewable generation source, Forecast includes any type forecasting
and Monitoring was removed as it mainly featured with hardware models. Table 5 presents
a short analysis for the combination amongst these factors. Approximately 6% publi-
cations cover all the factors now. It was found that if a research work has forecasting in
its SHEMS model then it would also have storage and the same applied for trading as
well. For around 25.5% publications, they had a combination of Storage, Forecasting
and Trading, with RES being in all of them by default.

An overlapping combination of Tariff, Storage, RES and UC in percentage is presented in
Figure 10.

Table 5. Combination of reduced factors in SHEMS publications.

S. no. Reduced factor combinations Percentage
1 Tariff + RES + Storage + UC + Forecasting + Trading 5.8824
2 Forecast + Storage 37.2549
3 Trading + Storage 37.2549
4 Storage + Forecast + Trading (+ RES) 25.4902
5 Tariff + RES + Storage 52,9412
6 RES + Storage 68.6275
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The objectives of the literature under consideration were classified into four categories:
UG, Cost Reduction, Cost Reduction and UC and Others. The distribution of these objectives
across the collection of research papers is presented in Figure 11. The publications having
only UC as their objective accounted for around 2% while cost optimization was the main
objective of around 63% of the publications. Another 23% of the publications have put in
their efforts to optimize a multiobjective problem of Cost and UC. Other objectives like accu-
rate monitoring/forecasting, etc. of SHEMS measured up to approximately 12%.
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Figure 11. Objective distribution.
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10. Conclusion

Electrical energy is the most important entity in our daily lives. Its demand has been increas-
ing exponentially over a period now. The solution to more demand of energy is not to
increase the power generation, but smart consumption of energy. The residential load
can be smartly handled by placing a proper and adaptable SHEMS for handling these loads.

There are multiple factors that affect the optimal working of an SHEMS. The paper men-
tions, discusses and analyses these factors in depth, while trying to indicate the areas of
research in SHEMS which require more attention. The SHEMS should be adaptable accord-
ing to the location, occupant behaviour, environment, tariff, etc. The main objective of an
SHEMS may vary from cost of energy consumed to UC and going on to create a multiob-
jective optimization problem including both.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Altaf Q. H. Badar © http://orcid.org/0000-0002-1572-3717
Amjad Anvari-Moghaddam © http://orcid.org/0000-0002-5505-3252

References

Abubakar, I., Khalid, S. N., Mustafa, M. W., Shareef, H., & Mustapha, M. (2017). Application of load
monitoring in appliances’ energy management: A review. Renewable and Sustainable Energy
Reviews, 67, 235-245. https://doi.org/10.1016/j.rser.2016.09.064

Ahmad, A, Khan, A, Javaid, N., Hussain, H. M., Abdul, W., Aimogren, A., Alamri, A., & Azim Niaz, |.
(2017). An optimized home energy management system with integrated renewable energy and
storage resources. Energies, 10(4), 549-583. https://doi.org/10.3390/en10040549

Basit, A., G. A. S. Sidhu, Mahmood, A., & Gao, F. (2017). Efficient and autonomous energy management
techniques for the future smart homes. IEEE Transactions on Smart Grid, 8(2), 917-926. https://doi.
org/10.1109/TSG.2015.2504560

CEA. 2020. Growth of electricity sector in India from 1947-2019. http://www.cea.nic.in/reports/
others/planning/pdm/growth_2019.pdf

Celik, B., Roche, R., Bouquain, D., & Miraoui, A. (2017a). Coordinated home energy management in
community microgrids with energy sharing among smart homes. In Electrimacs 2017 (p. 6p).

Celik, B., Roche, R., Bouquain, D., & Miraoui, A. (2017b). Decentralized neighborhood energy manage-
ment with coordinated smart home energy sharing. IEEE Transactions on Smart Grid. https://doi.
org/10.1109/T5G.2017.2710358

Chawda, K., Paul, T., Waris, J., & Badar, A. (2017). Fuzzy logic based short-term load forecasting.
International Journal of Innovative Research in Science, Engineering and Technology, 6(2), 1594—
1599. https://doi.org/10.15680/1JIRSET.2017.0602024

Chen, S,, Liu, T., Gao, F., Ji, J,, Xu, Z,, Qian, B., Wu, H., & Guan, X. (2017). Butler, not servant: A human-
centric smart home energy management system. [EEE Communications Magazine, 55(2), 27-33.
https://doi.org/10.1109/MCOM.2017.1600699CM

Collotta, M., & Pau, G. (2017). An innovative approach for forecasting of energy requirements to
improve a smart home management system based on BLE. IEEE Transactions on Green
Communications and Networking, 1(1), 112-120. https://doi.org/10.1109/TGCN.2017.2671407


http://orcid.org/0000-0002-1572-3717
http://orcid.org/0000-0002-5505-3252
https://doi.org/https://doi.org/10.1016/j.rser.2016.09.064
https://doi.org/https://doi.org/10.3390/en10040549
https://doi.org/https://doi.org/10.1109/TSG.2015.2504560
https://doi.org/https://doi.org/10.1109/TSG.2015.2504560
http://www.cea.nic.in/reports/others/planning/pdm/growth_2019.pdf
http://www.cea.nic.in/reports/others/planning/pdm/growth_2019.pdf
https://doi.org/https://doi.org/10.1109/TSG.2017.2710358
https://doi.org/https://doi.org/10.1109/TSG.2017.2710358
https://doi.org/https://doi.org/10.15680/IJIRSET.2017.0602024
https://doi.org/https://doi.org/10.1109/MCOM.2017.1600699CM
https://doi.org/https://doi.org/10.1109/TGCN.2017.2671407

140 A. Q. H.BADAR AND A. ANVARI-MOGHADDAM

Dong, G., & Chen, Z. (2018). Data driven energy management in a home microgrid based on Bayesian
optimal algorithm. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/Tl.2018.
2820421

El-Baz, W., Tzscheutschler, P., & Wagner, U. (2019). Integration of energy markets in microgrids: A
double-sided auction with device-oriented bidding strategies. Applied Energy, 241, 625-639.
https://doi.org/10.1016/j.apenergy.2019.02.049

Elma, O., Tascikaraoglu, A, ince, A. T,, & Selamogullari, U. S. (2017). Implementation of a dynamic
energy management system using real time pricing and local renewable energy generation fore-
casts. Energy, 134, 206-220. https://doi.org/10.1016/j.energy.2017.06.011

Energy Consumption By Country 2020 [Computer software manual]l. 2020. https://
worldpopulationreview.com/countries/energy-consumption-by-country/

Ertugrul, N., McDonald, C. E., & Makestas, J. (2017). Home energy management system for demand-
based tariff towards smart appliances in smart grids. In 2017 IEEE 12th international conference on
power electronics and drive systems (PEDS) (pp. 511-517). IEEE.

Faustine, A, Mvungi, N. H., Kaijage, S., & Michael, K. (2017). A survey on non-intrusive load monitoring
methods and techniques for energy disaggregation problem. Preprint arXiv:1703.00785.

Feron, B., & Monti, A. (2017). Integration of space heating demand flexibility in a home energy man-
agement system using a market-based multi agent system. In Power & energy society general
meeting, 2017 IEEE (pp. 1-5). IEEE.

Guang, N. L. L, Logenthiran, T., & Abidi, K. (2017). Application of Internet of Things (IoT) for home
energy management. In Asia-pacific power and energy engineering conference (APPEEC), 2017
IEEE PES (pp. 1-6). IEEE.

Hao, Y., Wang, W., & Qi, Y. (2017). Optimal home energy management with PV system in time of use
tariff environment. In Chinese automation congress (CAC), 2017 (pp. 2693-2697). IEEE.

Hemmati, R. (2017). Technical and economic analysis of home energy management system incorpor-
ating small-scale wind turbine and battery energy storage system. Journal of Cleaner Production,
159, 106-118. https://doi.org/10.1016/j.jclepro.2017.04.174

Hogan, W. W. (2014). Time-of-use rates and real-time prices. John F. Kennedy School of Government,
Harvard University.

Hwang, J., Choi, M i, Lee, T,, Jeon, S., Kim, S., Park, S., & Park, S. (2017). Energy prosumer business
model using blockchain system to ensure transparency and safety. Energy Procedia, 141, 194-
198. https://doi.org/10.1016/j.egypro.2017.11.037

Jaouhari, S. E., Palacios-Garcia, E. J., Anvari-Moghaddam, A., & Bouabdallah, A. (2019). Integrated man-
agement of energy, wellbeing and health in the next generation of smart homes. Sensors, 19(3),
481. https://doi.org/10.3390/519030481

Javaid, N., Naseem, M., Rasheed, M. B., Mahmood, D., Khan, S. A, Alrajeh, N., & Igbal, Z. (2017). A new
heuristically optimized Home Energy Management controller for smart grid. Sustainable Cities and
Society, 34, 211-227. https://doi.org/10.1016/j.s¢cs.2017.06.009

Jeddi, B., Mishra, Y., & Ledwich, G. (2017). Dynamic programming based home energy management
unit incorporating PVs and batteries. In Power & energy society general meeting, 2017 IEEE (pp. 1-5).
IEEE.

Jin, X., Baker, K., Christensen, D., & Isley, S. (2017). Foresee: A user-centric home energy management
system for energy efficiency and demand response. Applied Energy, 205, 1583-1595. https://doi.
org/10.1016/j.apenergy.2017.08.166

Kang, J. W,, Xie, L., & Choi, D. H. (2018). Impact of data quality in home energy management system
on distribution system state estimation. IEEE Access, 6, 11024-11037. https://doi.org/10.1109/
Access.6287639

Karimi, K., Oudani, H., & Krit, S. (2019). RESTful web services based communication for smart home
smartphone systems. Journal of Advanced Research in Dynamical and Control Systems, 11
(Special Issue 02), 1660-1667.

Keshtkar, A., & Arzanpour, S. (2017). An adaptive fuzzy logic system for residential energy manage-
ment in smart grid environments. Applied Energy, 186, 68-81. https://doi.org/10.1016/j.apenergy.
2016.11.028


https://doi.org/10.1109/TII.2018.2820421
https://doi.org/10.1109/TII.2018.2820421
https://doi.org/https://doi.org/10.1016/j.apenergy.2019.02.049
https://doi.org/https://doi.org/10.1016/j.energy.2017.06.011
https://worldpopulationreview.com/countries/energy-consumption-by-country/
https://worldpopulationreview.com/countries/energy-consumption-by-country/
https://doi.org/https://doi.org/10.1016/j.jclepro.2017.04.174
https://doi.org/https://doi.org/10.1016/j.egypro.2017.11.037
https://doi.org/https://doi.org/10.3390/s19030481
https://doi.org/https://doi.org/10.1016/j.scs.2017.06.009
https://doi.org/https://doi.org/10.1016/j.apenergy.2017.08.166
https://doi.org/https://doi.org/10.1016/j.apenergy.2017.08.166
https://doi.org/https://doi.org/10.1109/Access.6287639
https://doi.org/https://doi.org/10.1109/Access.6287639
https://doi.org/https://doi.org/10.1016/j.apenergy.2016.11.028
https://doi.org/https://doi.org/10.1016/j.apenergy.2016.11.028

ADVANCES IN BUILDING ENERGY RESEARCH 141

Kikusato, H., Mori, K., Yoshizawa, S., Fujimoto, Y., Asano, H., Hayashi, Y., & Suzuki, T. (2018). Electric
vehicle charge-discharge management for utilization of photovoltaic by coordination between
home and grid energy management systems. IEEE Transactions on Smart Grid, 10, 3186-3197.
https://doi.org/10.1109/75G.2018.2820026

Killian, M., Zauner, M., & Kozek, M. (2018). Comprehensive smart home energy management system
using mixed-integer quadratic-programming. Applied Energy, 222, 662-672. https://doi.org/10.
1016/j.apenergy.2018.03.179

Li, C, Luo, F., Chen, Y., Xu, Z,, An, Y., & Li, X. (2017). Smart home energy management with vehicle-to-
home technology. In 2017 13th IEEE international conference on control & automation (ICCA)
(pp. 136-142). IEEE.

Liu, N,, Yu, X., Wang, C, Li, C, Ma, L., & Lei, J. (2017). Energy-sharing model with price-based demand
response for microgrids of peer-to-peer prosumers. IEEE Transactions on Power Systems, 32(5),
3569-3583. https://doi.org/10.1109/TPWRS.2017.2649558

Liu, Y., Wy, L., & Li, J. (2019). Peer-to-peer (P2P) electricity trading in distribution systems of the future.
The Electricity Journal, 32(4), 2-6. https://doi.org/10.1016/j.tej.2019.03.002

Liu, Y., Zhang, Y., Chen, K, Chen, S. Z., & Tang, B. (2017). Equivalence of multi-time scale optimization
for home energy management considering user discomfort preference. IEEE Transactions on Smart
Grid, 8(4), 1876-1887. https://doi.org/10.1109/T5SG.2015.2510222

Lokeshgupta, B., & Sivasubramani, S. (2019). Cooperative game theory approach for multi-objective
home energy management with renewable energy integration. IET Smart Grid, 2(1), 34-41. https://
doi.org/10.1049/iet-stg.2018.0094

Long, C,, Wu, J., Zhang, C,, Thomas, L., Cheng, M., & Jenkins, N. (2017). Peer-to-peer energy trading in a
community microgrid. In 2017 IEEE power & energy society general meeting (pp. 1-5). IEEE.

Long, C., Wu, J,, Zhou, Y., & Jenkins, N. (2018a, January). Aggregated battery control for peer-to-peer
energy sharing in a community Microgrid with PV battery systems. Energy Procedia, 145, 522-527.
https://doi.org/10.1016/j.egypro.2018.04.076

Long, C,, Wu, J,, Zhou, Y., & Jenkins, N. (2018b, February). Peer-to-peer energy sharing through a two-
stage aggregated battery control in a community Microgrid. Applied Energy, 226, 261-276. https://
doi.org/10.1016/j.apenergy.2018.05.097

Lorestani, A., Aghaee, S. S., Gharehpetian, G. B., & Ardehali, M. M. (2017). Energy management in
smart home including PV panel, battery, electric heater with integration of plug-in electric
vehicle. In Smart grid conference (SGC), 2017 (pp. 1-7).

Luo, F., Kong, W., Ranzi, G., & Dong, Z. Y. (2019). Optimal home energy management system with
demand charge tariff and appliance operational dependencies. IEEE Transactions on Smart Grid,
11(1), 4-14. https://doi.org/10.1109/TSG.5165411

Marzband, M., Alavi, H., Ghazimirsaeid, S. S., Uppal, H., & Fernando, T. (2017). Optimal energy manage-
ment system based on stochastic approach for a home Microgrid with integrated responsive load
demand and energy storage. Sustainable Cities and Society, 28, 256-264. https://doi.org/10.1016/j.
5¢s.2016.09.017

Melhem, F. Y., Grunder, O.,, Hammoudan, Z.,, & Moubayed, N. (2017). Optimization and energy
management in smart home considering photovoltaic, wind, and battery storage system with
integration of electric vehicles. Canadian Journal of Electrical and Computer Engineering, 40(2),
128-138. https://doi.org/10.1109/CJECE.2017.2716780

Mengelkamp, E., Notheisen, B., Beer, C,, Dauer, D., & Weinhardt, C. (2018). A blockchain-based smart
grid: Towards sustainable local energy markets. Computer Science - Research and Development, 33
(1-2), 207-214. https://doi.org/10.1007/s00450-017-0360-9

Mokhtari, G., Anvari-Moghaddam, A., & Zhang, Q. (2019). A new layered architecture for future big
data-driven smart homes. leee Access, 7, 19002-19012. https://doi.org/10.1109/ACCESS.2019.
2896403

Mondal, A., Misra, S., & Obaidat, M. S. (2017). Distributed home energy management system with
storage in smart grid using game theory. IEEE Systems Journal, 11(3), 1857-1866. https://doi.
org/10.1109/JSYST.2015.2421941


https://doi.org/10.1109/TSG.2018.2820026
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.03.179
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.03.179
https://doi.org/https://doi.org/10.1109/TPWRS.2017.2649558
https://doi.org/https://doi.org/10.1016/j.tej.2019.03.002
https://doi.org/https://doi.org/10.1109/TSG.2015.2510222
https://doi.org/https://doi.org/10.1049/iet-stg.2018.0094
https://doi.org/https://doi.org/10.1049/iet-stg.2018.0094
https://doi.org/https://doi.org/10.1016/j.egypro.2018.04.076
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.05.097
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.05.097
https://doi.org/https://doi.org/10.1109/TSG.5165411
https://doi.org/https://doi.org/10.1016/j.scs.2016.09.017
https://doi.org/https://doi.org/10.1016/j.scs.2016.09.017
https://doi.org/https://doi.org/10.1109/CJECE.2017.2716780
https://doi.org/https://doi.org/10.1007/s00450-017-0360-9
https://doi.org/https://doi.org/10.1109/ACCESS.2019.2896403
https://doi.org/https://doi.org/10.1109/ACCESS.2019.2896403
https://doi.org/https://doi.org/10.1109/JSYST.2015.2421941
https://doi.org/https://doi.org/10.1109/JSYST.2015.2421941

142 A. Q. H.BADAR AND A. ANVARI-MOGHADDAM

Monyei, C. G, Adewumi, A. O, Akinyele, D., Babatunde, O. M., Obolo, M. O., & Onunwor, J. C. (2018). A
biased load manager home energy management system for low-cost residential building low-
income occupants. Energy, 150, 822-838. https://doi.org/10.1016/j.energy.2018.03.016

Morstyn, T., & McCulloch, M. (2018). Multi-class energy management for peer-to-peer energy trading
driven by prosumer preferences. IEEE Transactions on Power Systems, 34, 4005-4014, https://doi.
org/10.1109/TPWRS.2018.2834472

Murkin, J., Chitchyan, R., & Byrne, A. (2016). Enabling peer-to-peer electricity trading. In ICT for sustain-
ability 2016. Atlantis Press. https://doi.org/10.2991/ict4s-16.2016.30

Najafi-Ghalelou, A, Nojavan, S., & Zare, K. (2018). Information gap decision theory-based risk-con-
strained scheduling of smart home energy consumption in the presence of solar thermal
storage system. Solar Energy, 163, 271-287. https://doi.org/10.1016/j.solener.2018.02.013

Niyato, D., Lu, X., & Wang, P. (2011). Machine-to-machine communications for home energy manage-
ment system in smart grid. [EEE Communications Magazine, 49(4), 53-59. https://doi.org/10.1109/
MCOM.2011.5741146

Nizami, M. S. H., & Hossain, J. (2017). Optimal scheduling of electrical appliances and DER units for
home energy management system. In Universities power engineering conference (AUPEC), 2017
Australasian (pp. 1-6). |IEEE.

Pawar, P., & Vittal, K. (2017). Design of smart socket for power optimization in home energy manage-
ment system. In 2017 2nd IEEE international conference on recent trends in electronics, information &
communication TECHNOLOGY (rteict) (pp. 1739-1744). |EEE.

Ridi, A., Gisler, C,, & Hennebert, J. (2014). A survey on intrusive load monitoring for appliance recog-
nition. In 2074 22nd international conference on pattern recognition (pp. 3702-3707). IEEE.

Sousa, T., Soares, T., Pinson, P., Moret, F., Baroche, T., & Sorin, E. (2019). Peer-to-peer and community-
based markets: A comprehensive review. Renewable and Sustainable Energy Reviews, 104, 367-378.
https://doi.org/10.1016/j.rser.2019.01.036

Valtchev, D., & Frankov, |. (2002). Service gateway architecture for a smart home. [EEE
Communications Magazine, 40(4), 126-132. https://doi.org/10.1109/35.995862

Wei, Q,, Lewis, F. L., Shi, G., & Song, R. (2017). Error-tolerant iterative adaptive dynamic programming
for optimal renewable home energy scheduling and battery management. IEEE Transactions on
Industrial Electronics, 64(12), 9527-9537. https://doi.org/10.1109/TIE.2017.2711499

Wu, X., Hu, X,, Moura, S., Yin, X., & Pickert, V. (2016). Stochastic control of smart home energy manage-
ment with plug-in electric vehicle battery energy storage and photovoltaic array. Journal of Power
Sources, 333, 203-212. https://doi.org/10.1016/j.jpowsour.2016.09.157

Yao, L., Damiran, Z,, & Lim, W. H. (2017). Energy management optimization scheme for smart home
considering different types of appliances. In 2017 IEEE international conference on environment and
electrical engineering and 2017 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS
Europe) (pp. 1-6). IEEE.

Yassein, M. B. (2018). Enhanced home energy management scheme (EHEM) in smart grids.
International Journal of Communication Networks and Information Security (IJCNIS), 10(1), 85-90.
Kohat University of Science and Technology (KUST).

Yener, B., Tascikaraoglu, A, Erding, O., Baysal, M., & Cataldo, J. P. (2017). Design and implementation of
an interactive interface for demand response and home energy management applications.
Applied Sciences, 7(6), 641. https://doi.org/10.3390/app7060641

Zafar, A., Shah, S., Khalid, R, Hussain, S. M., Rahim, H., & Javaid, N. (2017). A meta-heuristic home
energy management system. In 2017 31st international conference on advanced information net-
working and applications workshops (WAINA) (pp. 244-250). |EEE.

Zhai, S., Wang, Z,, Yan, X., & He, G. (2018). Appliance flexibility analysis considering user’s behavior in
home energy management system using smart plugs. IEEE Transactions on Industrial Electronics,
66, 1391-1401, https://doi.org/10.1109/TIE.2018.2815949

Zhang, C., Wy, J., Cheng, M,, Zhou, Y., & Long, C. (2016). A bidding system for peer-to-peer energy
trading in a grid-connected microgrid. Energy Procedia, 103, 147-152. https://doi.org/10.1016/j.
egypro.2016.11.264


https://doi.org/https://doi.org/10.1016/j.energy.2018.03.016
https://doi.org/https://doi.org/10.1109/TPWRS.2018.2834472
https://doi.org/https://doi.org/10.1109/TPWRS.2018.2834472
https://doi.org/https://doi.org/10.2991/ict4s-16.2016.30
https://doi.org/https://doi.org/10.1016/j.solener.2018.02.013
https://doi.org/https://doi.org/10.1109/MCOM.2011.5741146
https://doi.org/https://doi.org/10.1109/MCOM.2011.5741146
https://doi.org/https://doi.org/10.1016/j.rser.2019.01.036
https://doi.org/https://doi.org/10.1109/35.995862
https://doi.org/https://doi.org/10.1109/TIE.2017.2711499
https://doi.org/https://doi.org/10.1016/j.jpowsour.2016.09.157
https://doi.org/https://doi.org/10.3390/app7060641
https://doi.org/10.1109/TIE.2018.2815949
https://doi.org/https://doi.org/10.1016/j.egypro.2016.11.264
https://doi.org/https://doi.org/10.1016/j.egypro.2016.11.264

ADVANCES IN BUILDING ENERGY RESEARCH 143

Zhou, Y., Wu, J., & Long, C. (2018). Evaluation of peer-to-peer energy sharing mechanisms based on a
multiagent simulation framework. Applied Energy, 222, 993-1022. https://doi.org/10.1016/j.
apenergy.2018.02.089

Zunnurain, |, & Maruf, M. N. I. (2017). Automated demand response strategies using home energy
management system in a RES-based smart grid. In 2077 4th international conference on advances
in electrical engineering (ICAEE) (pp. 664—668). IEEE.


https://doi.org/https://doi.org/10.1016/j.apenergy.2018.02.089
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.02.089

	Abstract
	1. Introduction
	2. Smart Home Energy Management System
	3. SHEMS architecture
	4. SHEMS modelling and formulation
	5. Optimization techniques and solution methods
	6. SHEMS communications
	7. Forecasting
	8. Energy trading and tariff
	9. Discussion and analysis of factors in SHEMS
	10. Conclusion
	Disclosure statement
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.245 841.846]
>> setpagedevice


