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Abstract—In today's economy, energy is an essential 

commodity. Every individual and business use energy for their 

needs. Electricity is the most common form in which energy is 

consumed. Thus, accurately predicting electricity prices could aid 

businesses in planning their finances and logistics and have a 

better long-term vision of their company. In this paper, the next-

day directional change of the electricity prices of the German and 

Austrian areas of the European Energy Exchange (EEX) 

wholesale market is predicted based on several parameters, 

including the daily Phelix index, the volume of trade, coal prices, 

Title Transfer Facility (TTF), wind power production, and many 

others. High Dimensionality Reduction techniques (Principal 

Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA)) are used in conjunction with Machine Learning (ML) 

classification algorithms; Support Vector Machines (SVM), and 

Artificial Neural Networks (ANN), in particular. The software 

employed for this research was Python 3, used on Google 

Collaboratory. The maximum forecast accuracy achieved by our 

model was 75.00%. 

Keywords—Machine Learning, Support Vector Machines, 

Artificial Neural Networks, Principal Component Analysis, Linear 

Discriminant Analysis, Energy Price 

I. INTRODUCTION  

In the 1990s, electricity started being considered a 
commodity [1]. This caused the transition from regulated 
regional electricity monopolies (typically controlled by 
governments) to unregulated private electric energy markets. 
The European Energy Exchange (EEX) was established in 2002. 
It offers a platform for trading energy, natural gas, freight, and 
metals, to stabilize and regularize energy trading in free markets 
[2]. 

The Phelix day base and Phelix day peak power indices 
represent the power derivatives market in the German/Austrian 
region in this paper. The day peak refers to the peak hours of the 
power grid, which are anticipated to be between 8:00 AM and 
8:00 PM. The baseload relates to the overall demand on the 
power grid daily. Power market behavior is influenced by the 
unique characteristics of electricity usage, such as multiple 
seasonality, the calendar impact (consumption behavior on 
weekends and holidays), high volatility, and non-stationarity. 
These qualities combine to create a complicated environment in 

which electricity price prediction is a challenging undertaking 
[3]. 

This paper uses SVM and ANN in conjunction with High 
Dimensionality Techniques (PCA and LDA) to anticipate the 
directional change in electricity prices in the EEX wholesale 
market for the German and Austrian regions. Daily-average spot 
price delays (the dependent variable) are utilized as input 
variables, along with other critical explanatory factors such as 
liquid and solid fuel costs and the total volume-of-trade of 
electric energy. After a thorough search for the optimal input 
variables and parameter values, the best classification model was 
chosen. 

The paper is organized in the following manner: In Section 
II, there is a brief discussion about ML, followed by a description 
of the ML algorithms used in the research. Section III explains 
High Dimensionality Reduction and elaborates upon PCA and 
LDA. Section IV provides details related to the dataset. Section 
V describes the methodology, while Sections VI and VII provide 
the Results and Discussion, the conclusion, and future work. 

II. MACHINE LEARNING AND DEEP LEARNING 

ML is a cutting-edge approach to problem-solving in 
prediction, classification, clustering, and modeling. It is a subset 
of Artificial Intelligence (AI) that has exponentially increased in 
prominence during the last few decades. The basic premise of 
ML is that a computer, or machine, "learns" from data provided 
to it, i.e., finds patterns and correlations in a dataset to accurately 
forecast or model the output. As more data is fed into the 
computer, it discovers more insights, improving the accuracy of 
the output. Unlike prior optimization techniques, most ML 
models do not contain coded rules. ML often employs implicit 
learning and develops its own modeling rules by minimizing the 
difference between the expected and true outputs (ground truth) 
until saturation. For decades, ML has been used to analyze 
massive datasets and uncover and extract patterns from within 
the data. 

Deep learning is a subset of a large family of ML techniques 
based on representation learning and ANN [4]. There are three 
types of learning: supervised, semi-supervised, and 
unsupervised. Deep-learning architectures such as deep neural 
networks, deep belief networks, deep reinforcement learning, 
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recurrent neural networks, and convolutional neural networks 
have been used in fields such as computer vision, speech 
recognition, natural language processing, machine translation, 
bioinformatics, drug design, medical image analysis, material 
inspection, and board game programs, with results comparable 
to, and in some cases exceeding, human performance [5]. 

The current problem statement is classification. Several 
state-of-the-art ML algorithms are extensively used for 
classification, including Naive-Bayes, Decision Trees, Random 
Forests, SVM, ANN, Logistic Regression, and many others [6]. 
There have been many applications of ML techniques to energy 
forecasting in recent years. Some of these will be explained in 
the next section. 

A. Machine Learning Applied to Energy Forecasting 

There have been many approaches to energy price 
forecasting using statistical models and ML. Cuaresma et al. 
looked at the effectiveness of univariate models in projecting 
energy prices in the German market [7]. They employed two sets 
of autoregressive (AR) and autoregressive moving average 
(ARMA) models with various settings: single time series models 
and separate hour-by-hour time series models, to evaluate the 
forecasting abilities of univariate models. They concluded that 
the distinct time series ARMA models, which account for price 
spikes, outperform the single time series models and AR models 
using out-of-sample comparisons. In [8], Erlwein et al. 
suggested a hidden Markov model estimate pricing for the next 
day, considering buyer and seller bidding strategies, unforeseen 
weather fluctuations, and concerns with the manufacturing 
process. Pao presented an ANN for price forecasting in the EEX 
market over the long term. For three distinct periods, the authors 
compared the out-of-sample forecasting performance of an ANN 
with an autoregressive model. They found that the ANN model 
outperformed the autoregressive model [9].  

B. Support Vector Machines 

A common ML-based categorization technology, SVM, is 
widely utilized for a range of predictive analytics. An SVM is a 
supervised ML model for two-group classification problems 
based on the usage of classification techniques [10]. They would 
be able to categorize fresh data after training an SVM model 
with labeled data. Compared to newer algorithms such as neural 
networks, SVM is preferable because of its faster processing 
speed and performance with fewer samples [11]. SVM is most 
commonly employed as a binary classifier, where data is sorted 
into one of two classes: class 0 or class 1. A hyperplane is chosen 
in the vector machine to do this. A hyperplane is defined as a 
function that may participate in variable space [12]. The vector 
machine learning computation uses a hyperplane to identify the 
coefficients that result in the best separation of the classes. The 
procedure is known as SVM when the hyperplane takes on a 
linear shape. On the other hand, the hyperplane can assume any 
shape based on the best fit for the separation margin between 
two classes: polynomial, Gaussian, Radial Basis Function 
(RBF), Laplace RBF, or sigmoid function. Whenever the 
hyperplane takes on a nonlinear function, we call it Kernel SVM. 

The linear SVM formulation is the simplest, with the 
hyperplane on the space of the input data x. The hypothesis space 
in this example is a subset of all hyperplanes of the form: 

f(x) = w.x + b                   (1) 

SVMs, in their most basic form, look for a hyperplane in a 
space other than the input data x. They look for a hyperplane 
produced by a kernel K in the feature space (the kernel defines a 
dot product in that space). The hypothesis space is defined as a 
set of "hyperplanes" in the feature space created by K. This space 
can formally be referred to as: 

{f : ||f ||2K < ∞ } 

Where K is the kernel that defines the RKHS, and ||f||2K is 
the function's Reproducing Kernel Hilbert Space (RKHS) norm. 
SVM consider subsets of this space, namely sets of the form: 

{f : ||f ||2K ≤ A
2} 

For some constant A, the constant A defines a hypothesis 
space structure (the larger A is, the more complex the hypothesis 
space is). SVM aims to discover the solution that has the "best" 
RKHS norm, i.e. the best A. 

The next choice we must make is that of the loss function. 
The real loss function used for SVM classification is 

 |y - f(x)|+  

(that is, 0 if y - f(x) is 0, and y - f(x) otherwise). Here, y is 
the ground truth value of the output, and f(x) is the value 
predicted by the SVM. This is done to deal with scaling and 
computational concerns [13]. 

C. Artificial Neural Networks 

ANN is a commonly used Deep Learning algorithm. ANNs 
may be used to solve problem statements centred on prediction 
and categorization. The neuron in the human brain is imitated in 
this Deep Learning model, and an elaborate lattice of such 
neurons is formed, capable of extraordinarily high performance. 
A backpropagation network, which operates on a multi-layer, 
feed-forward neural network, is the most often used ANN 
algorithm [14]. The input, hidden, and output layers are the three 
layers that neurons can have. The feature-designed inputs from 
the dataset being worked on make up the input layer of an ANN. 
The output layer contains the outputs needed to solve the 
research challenge. The hidden layers are layers of neurons that 
help the model's performance but are the neurons' weights, as 
determined by the backpropagation process. Recurrent Neural 
Network (RNN), Convolutional Neural Network (CNN), Long 
Short Term Memory Network (LSTM), and the Multilayer 
Perceptron (MLP) are some more neural network architectures. 

Let a single input be defined as xj. An artificial neuron 
(represented by ai) passes its inputs through a set of synaptic 
weights (represented by wij), which get adjusted as the algorithm 
iterations go on. The synaptic weights adjust themselves based 
on the loss function to minimize it. The artificial neuron 
computes the weighted sum of its inputs, to which it adds a bias 
(represented by bi). This value is then passed through an 
activation function, defined as f. The final output of each neuron 
is shown in Equation 2: ܽ݅ = ݂ (∑ ݆ݔ݆݅ݓ + ܾ݆݅݊=1 )                    (2) 
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The structure of an artificial neuron is given in Fig. 1: 

 
Fig 1. Structure of a Standard Artificial Neuron 

A simple, feed-forward multi-layer neural network is 
depicted in Figure 2: 

 
Fig 2. Simple Feed-Forward Neural Network  

Between Figs. 1 and 2, the whole structure of an ANN can 
be visualized. Three sorts of parameters are commonly used to 
define an ANN [15]: 

1. The pattern of connectivity between the several layers of 
neurons; 

2. The learning procedure for changing the 
interconnectivity weights; 

3. The activation function is used to transform the weighted 
input of a neuron into its output. 

III. HIGH DIMENSIONALITY REDUCTION 

The most fundamental and widely used approach for 
removing unnecessary characteristics from datasets is 
dimensionality reduction. It is primarily divided into two sub-
categories: feature extraction and feature selection. Numerous 
features are combined to create a new feature with a smaller 
feature area using the feature extraction approach. PCA, 
Canonical Correlation Analysis (CCA), and LDA are examples 
of feature extraction techniques [16]. On the other hand, the 

feature selection strategy selects a subset of features from the 
dataset to feature redundancy and increases feature relevance to 
the target class label. Chi-square [17], Fisher score [18], Gain 
[19], Relief [20], and minimal redundancy and maximum 
relevance [21] are some examples of feature selection 
algorithms. Feature extraction and feature selection strategies 
can increase learning performance in accuracy, model 
interpretability, computational complexity, and storage needs. In 
terms of interpretability and readability, feature selection is 
preferred over feature extraction. Maintaining the original 
characteristics in the subset resulting from feature selection is 
vital in various study domains, such as finding relevant genes to 
target diseases in the medical sector [22]. 

A. Principal Component Analysis 

In several fields, large datasets are becoming more common. 
To analyze large datasets, approaches must dramatically 
decrease their dimensionality in an interpretable manner. This 
preserves the majority of the data's content. Various techniques 
have been developed for this goal, but PCA is one of the oldest 
and most commonly utilized. Its goal is to minimize a dataset's 
dimensionality while keeping as much 'variability' (i.e. statistical 
information) feasible [23]. 

Simply speaking, there are six steps to conduct PCA on a 
dataset. These are as follows [24]: 

 

1. Take the entire dataset with d+1 dimensions and remove 
the labels, resulting in a d dimensional dataset. 

2. Calculate the mean for each of the dataset's dimensions. 
3. Compute the entire dataset's covariance matrix. 

,ܺ)ݒ݋ܿ  ܻ) =  1݊ − 1 ෍( ௜ܺ − )( ݔ̅ ௜ܻ − ത )௡ݕ
௜ୀଵ       (3) 

 
4. Calculate the eigenvalues for each eigenvector. The 

eigenvalues of A are the roots of the characteristic 
equation given below: 

det(A-ߣI) = 0 

5. To build a d  k dimensional matrix W, we need to sort 
the eigenvectors by decreasing eigenvalues and pick k 
eigenvectors with the most significant eigenvalues. 

6. Transform the data onto the new subspace using this d  
k eigenvector matrix. 

 

B. Linear Discriminant Analysis 

LDA is a robust classification approach as well as a 
dimension reduction tool. We can get the same LDA features 
with or without the data normality assumption, which explains 
its resilience [25]. LDA is a technique for classifying, reducing 
dimensions, and visualizing data. It has been in existence for 
quite some time. LDA frequently yields reliable, reasonable, and 
understandable classification results [26]. When it comes to real-
world classification challenges, LDA is commonly used as a first 
and benchmarking approach before moving on to more intricate 
and flexible methods. 
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Simply speaking, there are five steps to conduct PCA on a 
dataset. These are as follows: 

1. Calculate the d-dimensional mean vectors for each of the 
dataset's classes. 

2. The scatter matrices must be computed (in-between-class 
and within-class scatter matrices). 

3. Calculate the scatter matrices' eigenvectors (e1, e2, ..., 
ed) and corresponding eigenvalues (λ1, λ2, ..., λd). 

4. To build a d × k dimensional matrix W, sort the 
eigenvectors by decreasing eigenvalues and choose k 
eigenvectors with the largest eigenvalues (where every 
column represents an eigenvector). 

5. This d × k eigenvector matrix can now be used to 
transform the samples onto the new subspace. Let X be 
an n × d dimensional matrix representing the n samples 
and let Y be the transformed matrix in the new space of 
n × k dimensions. This step can be summarized as the 
matrix multiplication, Y = X  × W. 

IV.  DATASET COLLECTION 

The dataset can be found in [3]. There were a total of sixty 
input variables, including the Phelix spot lag, Phelix volume, 
various power indices (Amsterdam Power Exchange (APX), 
Zeebrugge Gas Index, Net Connect Germany (NCG), Brent 
Index), coal prices in Rotterdam and Richards Bay, and wind 
power consumed by Germany, to name a few. The output was 
the directional change of the electricity price (1 for an increase 
in price compared to the previous day and 0 for a decrease). The 
data were considered from 1 October 2008 to 22 Feb 2013. 

An exploratory data analysis found that increased power 
indices directly correlated with increased electricity prices. 
Similarly, an increase in coal prices also showed a corresponding 
rise in electricity prices. We also found that an increase in the 
use of wind power caused a decrease in electricity prices. 
However, the correlation between the Phelix index and the 
directional change in electricity prices was ambiguous. 
Similarly, every input feature was analyzed with respect to the 
output, and the features which showed the highest correlation 
were considered in the final modified dataset. 

V.  METHODOLOGY 

This section presents our approach for using ML 
classification techniques to predict the directional change of the 
electricity price for German and Austrian areas in the EEX 
market using High Dimensionality Reduction, followed by SVM 
and ANN. 

The data was cleaned and pre-processed. An exploratory data 
analysis was conducted, where we analyzed which of the input 
features had the most significant correlation with the output. The 
most relevant components were selected, thereby reducing the 
size of the dataset to reduce the computational power required. 
We selected fifty out of the sixty input features present in the 
original dataset based on the correlation between the inputs and 
the output class. First, SVM and ANN techniques were directly 
used to predict the directional change in the electricity price. As 
the number of parameters was quite significant, High 
Dimensionality Reduction techniques were used to reduce the 
dataset's size further. First, PCA was performed, followed by 

SVM and ANN. We then performed LDA on the dataset, 
followed by SVM and ANN. 

The dataset was split into a training set and a testing set to 
perform SVM and ANN. The data was divided using Python 3's 
randomization functionality, with 80% of the data going to the 
training set and 20% to the test set. The algorithms were run with 
the help of a probabilistic binary classifier. These algorithms 
classify any hypothesis with a probability of 0.5 or higher as 
positive and any hypothesis with a probability of less than 0.5 as 
negative.  

In the case of ANN, there were more than a hundred 
structures of neural networks considered, with up to ten hidden 
layers, with varying numbers of neurons in each layer. The final 
structure, which gave us the best result, contained four hidden 
layers. The first layer contained eight neurons with a Rectified 
Linear Unit (ReLU) activation function. The second layer 
contained ten neurons with a Sigmoid activation function. The 
third layer contained six neurons with a Sigmoid function. The 
final hidden layer had the same structure as the second hidden 
layer. The Adam optimizer was used, along with the binary 
cross-entropy loss function. The accuracy provided by this 
neural network was 66.84%. 

Similarly, with PCA, experimentation was done regarding 
the number of principal components. The results were similar, 
and it was shown that PCA was not a good high dimensionality 
reduction approach for this dataset. After trying various 
combinations, the best hyperplane shape for SVM was linear. 
We obtained the confusion matrix for each result. Based on these 
matrices, the accuracies of the various combinations were 
calculated. 

VI.  RESULTS AND DISCUSSION 

To calculate the goodness of prediction, the following 
exactness measures were used: 

1. Accuracy: It is defined as the sum of the True Positives 
(TP) and True Negatives (TN) divided by the sum of 
TP, TN, False Positives (FP), and False Negatives 
(FN). 

2. Precision is defined as the fraction of TP to the sum of 
TP and FP, i.e., the total number of positive values 
predicted. ݕܿܽݎݑܿܿܣ =  ܶܲ + ܶܰܶܲ + ܶܰ + ܲܨ +  ܰܨ

݊݋݅ݏ݅ܿ݁ݎܲ =  ܶܲܶܲ +  ܲܨ

3. The recall is defined as the fraction of TP to the sum of 
the TP and FN. ܴ݈݈݁ܿܽ =  ܶܲܶܲ +  ܲܨ
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The results of our research are summarized in the Table below: 

TABLE I.  ACCURACY, PRECISION, AND RECALL OF COMBINATIONS 

CONSIDERED 

Combination Of High 

Dimensionality Reduction 

Technique And ML Classifier 

Accuracy Precision Recall 

SVM without High Dimensionality 

Reduction 
71.70% 76.67% 87.12% 

SVM with PCA 71.70% 71.74% 100% 

SVM with LDA 75.00% 83.59% 81.06% 

ANN without High Dimensionality 

Reduction 
66.84% 73.84% 78.05% 

ANN with PCA 66.84% 68.02% 95.12% 

ANN with LDA 66.30% 75.89% 69.11% 

 
 The most common metric to evaluate the goodness of an ML 
classifier is accuracy. Thus, in the following figures, we 
graphically represented the accuracy comparison of each 
combination considered. 

  
 Fig 3. Accuracy of the Various Combinations Considered 

Fig 4. Comparison of Accuracy, Precision, and Recall 

 Table I can conclude that SVM was a better classification 
technique for this dataset than ANN. PCA did not improve the 

accuracy of the SVM and ANN classifiers. It reduced the 
precision of the two classifiers but improved the recall 
significantly. As for LDA, it performed excellently with SVM, 
increasing the accuracy significantly, from 71.70% to 75.00%, 
as shown in Fig. 3. It also improved the precision of the SVM 
classifier and reduced the recall by a small amount. With ANN, 
LDA reduced the accuracy by a minuscule amount, improved 
the precision slightly, and reduced the recall significantly. From 
Fig. 4, we can say that SVM, in conjunction with LDA, 
performed the best overall combinations. 

 PCA did not affect the accuracy of the classifiers. Upon 
further investigation, we found that a possible reason for this 
could be that PCA is strongly aligned to the input parameters 
with the highest variance, not necessarily those with the highest 
correlation to the output. It is an unsupervised algorithm and 
does not consider the labels of the training data during the 
transformation. LDA performed well in conjunction with SVM. 
Being a supervised algorithm, it considers the labels of the 
training data during the transformation. When there is a 
relatively small amount of data, PCA outperforms LDA. 
However, our dataset was relatively large; LDA outperformed 
PCA. 

 As one of the most widely used ML-based classifications 
approaches, SVM has many applications. Due to their more 
extraordinary performance versus limited data, SVMs 
outperform newer ML algorithms. Because anomalous data is 
given a lesser "say" in prediction based on how big of an outlier 
it is, the usage of a hyperplane provides great prediction 
accuracy. The total amount of the subtleties achieved by Deep 
Learning has not been realized due to the essentially linear form 
of the data since most synaptic connections in the network were 
straightforward. 

VII.  CONCLUSION AND FUTURE WORK 

 Various neural network structures, principal components, 
and hyperplane functions were explored. The best results were 
obtained from an ANN with four hidden layers, with the first 
layer containing eight neurons with a ReLU activation function, 
the second layer containing ten neurons with a Sigmoid 
activation function, the third layer containing six neurons with a 
Sigmoid function, and the final hidden layer having the same 
structure as the second hidden layer. The accuracy provided by 
this neural network was 66.84%. SVM outperformed ANN, 
giving an accuracy of 71.70%. The best function to use for the 
SVM hyperplane was linear. PCA did not affect the accuracies 
of the ML classifiers, although it did increase the recall in both 
cases. LDA performed best with SVM and slightly reduced the 
ANN classifier's accuracy. From Table I and Fig. 4, the best 
combination of ML classifier and High Dimensionality 
Reduction algorithm was SVM and LDA, giving the highest 
accuracy of 75.00%, with a precision of 83.59% and a recall of 
81.06%. SVM significantly outperformed ANN in all three 
combinations, so we conclude that SVM is a better classification 
algorithm than ANN for this volume of data. 

 Future work will include exploring more High 
Dimensionality Reduction techniques, ML algorithms, and 
genetic algorithms to classify the direction of change in 
electricity prices in the German and Austrian regions of the EEX 
market.  
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