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A B S T R A C T   

Uncertainties in the forecasted load and generation can have a catastrophic impact on power system stability. For 
a reliable power supply, a sufficient dynamic stability margin is always desired. This paper introduces a novel 
boundary eigenvalue-based approach for the determination of Hopf Bifurcation Stability Margin (HBSM), which, 
explicitly, accounts for the impact of uncertainties in specified renewable generation and loads. Since the Hopf 
bifurcation stability problem is nondeterministic, it requires large computational efforts to determine the HBSM. 
Most of the available methods are based on statistical data, which are computationally less efficient for such 
applications. In this paper, a non-statistical uncertainty based control rescheduling strategy is proposed to 
enhance the stability margin of the system. To balance the trade-off between solution quality and computation 
time, the proposed approach is composed of two stages: i) determination of boundaries of critical eigenvalues; 
and ii) optimal setting of the controllers by minimization of a boundary active power loss based objective 
function under the given range of uncertainties. The proposed approach is demonstrated on standard IEEE test 
systems with promising results to show the importance and its reliability.   

1. Introduction 

1.1. Motivation 

The oscillatory stability problem is an inherent non-linear phenom
enon that relates to Hopf Bifurcation (HB) of dynamic power systems. 
Modern power systems are forced to operate with substantially small 
stability margins due to financial, environmental, and other constraints. 
Such a power system can be driven to one of the most prominent 
oscillatory instability problems due to successively increase or decrease 
in loads, especially, when systems are integrated with intermittent 
Renewable Energy Sources (RES). HB instability is detected before the 
Saddle Node Bifurcation (SNB) point. Therefore, assessment and 
enhancement of HBSM are essential for a reliable and secure power 
system operation. HB instability is caused by several reasons, including 
variation in operating conditions, load/ generation information, and 
setting of power system controllers. Therefore, it is necessary to ensure 
the sufficient HBSM in the large and uncertain power system [1]. 

1.2. Literature review 

In the last few decades, various methods have been proposed to 
enhance the oscillatory stability margin of the interconnected power 
system. An online line switching method has been proposed for the 
enhancement of small-signal stability margin. Though the switching 
method has a good trade-off between speed and solution quality, it had 
not accounted for the uncertainties in input data [2]. Recently, Rekasius 
substitution-based an efficient method has been proposed for computing 
the delay margins of power system [3]. Taking advantage of the quan
titative relationship between stability margin and the control variables, 
an online preventive control method for static voltage stability is pro
posed in [4]. The computation time of this method is quite good for 
finding the trajectory of eigenvalues with deterministic data. In [5]-[6], 
the authors propose to use power system controllers for the enhance
ment of oscillatory stability. Moreover, a coordinated robust control 
method has been proposed in[7] to enhance the dynamic stability of RES 
integrated power system. In [8], a machine learning-based approach has 
been proposed for quantifying the stability margin of power systems 
reflecting dynamics of wind power generation. These controllers are 
mostly designed offline with consideration of one or few operating 
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points, which may fail to damp out the system oscillations for other 
operating conditions reached under uncertainties. HB point of the sys
tem under forecasted load/generation data is the best indicator to 
identify the worst-case scenario of the system which can occur and 
should be used for enhancement of Small-Signal Stability Margin 
(SSSM). 

In the last years, the tasks of monitoring and enhancing the stability 
margin related to SNB and HB have been done in proposed methods that 
deal with uncertainties in the direction of load growth. In [9–11], the 
authors proposed various methodologies to evaluate the loading margin 
related to voltage instability (SNB). To improve the HB limits/SSSM, and 
hence loadability of dynamic power systems, rescheduling of control pa
rameters is one of the most effective ways[2]. In [12], controller 
rescheduling and generation re-dispatch have been used for minimization 
of power losses and enhancement of the system loading capability, where 
uncertainties are ignored. However, uncertainty must be considered in any 
power system analysis and control. In the literature, two different ap
proaches, statistical and non-statistical, have been reported to deal with 
uncertainties in the forecasted/estimated data. In some of the recent re
searches presented in [13–15] have been assessed the small-signal stability 
of the uncertain power system, where, the slowest form of stability and the 
snapshot scenario of the system is considered in a direction of load in
crease.In[16], authors have been developed a promising stability margin 
monitoring system related to both SNB and HB based on load growth di
rections of the power system. However, deterministic models are used 
which requires a continuous stability margin assessment to capture the 
uncertainties in the estimated load growth direction. Statistical un
certainties in the load/generation data have been considered in these 
papers which requires a cumbersome computation [17] in the evaluation 
of stability margin. Therefore, these methods are less efficient for online 
implementation. Whereas non-statistical uncertainties-based approaches 
are computationally more efficient [18], [19], and can be used for online 
applications. Eigenvalue analysis being an important tool for assessing and 
improving the HB stability, it should be modified to consider these un
certainties to ensure the stable operation of power systems [1]. 

In [20],[21], probabilistic methods have been used for HBSM of an 
uncertain power system, whereas the Monte Carlo Method has been used 
in [22]. Analytical methods, such as cumulant-based methods and 
collocation methods have been presented in [23],[24] which are more 
efficient than the probabilistic methods. However, these traditional 
methods of Small Signal Stability Analysis (SSSA) are based on deter
ministic (crisp) load/generation data. The power system oper
ator/designer is never sure of the exact load/generation scenario for the 
analysis. However, it is comparatively easy to give a reasonably accurate 
range of data for the analysis, operation, and control. This range of 
uncertainties has been used for different applications of the power sys
tem in [25],[26]. For the secure operation of the power system under the 
forecasted load/generation data, evaluation of dynamic loadability/HB 
stability limit is very important, as modern power systems are generally 
operated with very little stability margin. This problem can be mitigated 
by knowing the effective HB margin and rescheduling the available 
controls. Hence, the need to develop an effective control technique to 
avoid the instability caused by a small disturbance in the presence of 
various uncertainties is realized. The method to identify worst-case 
scenarios which can occur under a given range of uncertainty and 
their impact on HB point are given in [1]. Here, a sensitivity-based 
boundary eigenvalue approach is used to analyze the worst instability 
cases in advance. 

1.3. Contribution and paper organization 

In fact, related works over the last two-three decades reveal the 
effectiveness of re-dispatching of voltages and transformer taps in 
providing the promising solution for various power system challenges 
like reducing transmission loss, generation cost, assisting voltage sta
bility and relieving line overloading etc. [27–30]. Most of the methods 

available in the literature are based on crisp data. These controllers are 
very less discussed in the past research for HBSM/HB limits enhance
ment especially with non-deterministic parameters. This paper seeks to 
fill the gap by considering the possible range of uncertainties in esti
mated power system parameters. In this paper, the authors propose an 
approach for the assessment and enhancement of HBSM via reschedul
ing of control settings in uncertain power systems. The major contri
butions of this paper are:  

1. A rigorous formulation of the look-ahead assessment of worst-case 
scenarios for estimated/predicted/ forecasted loads using boundary 
eigenvalue approach.  

2. A promising formulation of HBSM enhancement problem as an 
optimization problem using boundary active power loss evaluation 
and look-ahead approach, where, optimal rescheduling of power 
system controllers is carried out under non-statistical load/genera
tion uncertainties of the interconnected power system.  

3. The proposed approach has been applied and evaluated with 
different standard IEEE test systems. 

This formulated optimization problem is solved by Gray Wolf Opti
mization (GWO) algorithm because it is less dependent on algorithmic 
parameters. Also, due to the leader selection-based mechanism, this 
algorithm has good convergence [31]. However, any other suitable 
optimization algorithm can also be used. 

The organization of the remaining paper is as follows: In Section 2, 
theoretical background of the proposed approach, critical mode, and 
HBSM are discussed. The non-statistical uncertainty modelling of the 
electrical power system is discussed in Section 3. Boundary eigenvalue 
analysis and consideration of system uncertainties are also described in 
this section. Section 4 describes the problem formulation, boundary 
active power loss (BAPL) calculation, and optimization algorithm. Re
sults and discussions for standard test systems are given in Section 5. 
Conclusions and future works are drawn in the Section 6. 

2. Background of the proposed formulation 

Hopf Bifurcation instability is mainly concerned with gradual vari
ation either in operating parameters or in system parameters. These 
parameters are known as HB parameters. This paper aims at the HB 
stability analysis of large power systems subject to forecasted un
certainties in load/generation. In the proposed approach, concerns 
related to secure operation and design of the real-time power system 
having critical HBSM are addressed through the optimal control action 
to postpone the oscillatory instability due to change in parameters under 
an uncertain environment. 

For a given change in control parameters i.e. generator re-dispatch, 
generator excitation (voltage control), and tap settings of tap changing 
transformers, there is a considerable impact on Hopf Bifurcation sta
bility and Saddle Node Bifurcation (related to voltage instability). 
Rescheduling of the control parameters provides the stability margin 
change for any perturbation in the HB parameters. The solution to the 
rescheduling problem is always on the bifurcation boundaries. However, 
load-generation in modern power systems is not known with the com
plete certainties, there is always a chance of error in input parameters. 

With the increase in load demand, power losses are increased and 
system operating points change accordingly. This change in operating 
point can affect the oscillatory stability margin (HB limit). The mini
mization of loss to enhance the HB limits gives more or less the same 
results obtained by minimization of the rightmost electromechanical 
eigenvalue-based objective function with simple calculations.Modern 
power systems are forced to operate near the critical loading with a very 
small stability margin. In such a stressed operating scenario, monitoring 
of HB limits and their enhancement become a big challenge for the 
system operator. In this critical zone, power system behaviour is highly 
non-linear, and the HB limit enhancement problem becomes quite 

R. Krishan and A. Verma                                                                                                                                                                                                                     



Electric Power Systems Research 206 (2022) 107783

3

difficult. Reactive power limits are known to cause SNB stability prob
lems in the power system. Generally, reactive power optimization 
problems are solved for the local requirement [12]. Moreover, the 
setting of power system control variables, generator voltages, and taps 
can be rescheduled optimally within their limits for enhancement of the 
HB limit. Hence, the effective utilization of available controls may allow 
accommodating the next predicted load without any cost augmentation. 
The philosophy of the look-ahead concept is used in this paper to 
enhance the HBSM via control rescheduling. To achieve a realistic so
lution, forecast uncertainties in load and solar photovoltaic generation 
are accounted for using the boundary eigenvalue approach. In this 
paper, only reactive controls are rescheduled. However, when it is 
ascertained that the system cannot serve predicted load due to imminent 
oscillatory instability, generation rescheduling can be used to enhance 
the HB limit and check the possibility to accommodate the next pre
dicted load demands. It is important to mention that, as generation 
rescheduling influences the cost of operation, it is generally preferred 
when reactive controls are insufficient. Further, when rescheduling of 
active and reactive power is insufficient, load shedding can also be 
initiated to prevent instability. The real power control and load shedding 
scenarios have not been discussed in this paper. 

2.1. Critical mode and HB Stability margin 

Oscillatory stability of the dynamic power system can be analyzed by 
eigenvalues (μ) of the system matrix ‘Asys’ at a specified operating state. 
In S-domain, critical eigenvalues (μ) are evaluated to numerically 
identify the stability margin of the system. The critical electromechan
ical mode (rightmost eigenvalue), say μcritical, is important to study the 
stability behaviour and HB margin[32]-[33]. In heavily stressed power 
systems, Hopf bifurcations occur when the eigenvalue of the system 
matrix cross over the imaginary axis (right half plan) due to a small 
deviation in the HB parameter(s). An illustration of eigenvalue move
ment with respect to change in HB parameter ‘λ’ is shown in Fig. 1a. At 
HB point (λHB), the system may lead to undamped oscillations. Load 
versus voltage profile of the system is also depicted in Fig. 1b to show the 
effect of loading on system operating points. 

HB stability margin (λHBSM)in terms of the loading capacity of the 
system can be measured by 

λHBSM = λHB − λ; ∀σcrit ≤ 0 (1) 

Where λHB is the critical loading at the given operating point and σcrit 

is the real part of the critical mode (μcritical). If the real part of critical 
eigenvalue is greater than zero (i.e. σcrit > 0), the system is unstable with 
zero or negative stability margin. To ensure the dynamic stability of the 
stressed power system, it is important to keep the sufficient HBSM in all 
operating scenarios including the case of system uncertainties. 

3. Mathematical modeling of power system 

3.1. Power system DAE model 

For oscillatory stability analysis, power system can be mathemati
cally modelled by a set of nonlinear differential algebraic equations 
(DAE) including load flow equations. A non-statistical uncertainty based 
DAE model for HB stability analysis can be given as 

Ẋ = f (X,Y, λ,L )

0 = g(X, Y, λ,L )
(2) 

Where,f and g are the set of non-linear differential and network 
algebraic equations respectively.The X ∈ Rnand Y ∈ Rm are the vector of 
state and algebraic variable respectively; λ ≥ 0 is the parameter to 
represent the load/generation level in the system. It is also known as the 
hopf bifurcation parameter. The range of uncertainty is denoted by L in 
percentage. Here, L = 0% (no uncertainty) indicates the crisp load/ 
generation data. The effect of on-load tap changer and generator exci
tation control is accounted in (2) by rescheduling the taps and excitation 
control points during equilibrium testing using a look-ahead approach. 
Although other dynamic devices such as active power control, HVDCs, 
flexible ac transmission system (FACTS) are not explicitly considered 
here, they could be easily included in (2). 

3.2. State Space Model 

State-space model is obtained by linearization of (2) for power sys
tem SSSA at specified operating point (λ) and it can be given as [5]. 

A(λ,L ) =

[
fx(λ,L ) fy(λ,L )

gx(λ,L ) gy(λ,L )

]

(3) 

Where augmented matrix A(λ,L ) is a sparse matrix which, elements 
are varied with operating point λ and specified level of uncertainty L . 
Further, if gy is a nonsingular matrix, reduced system matrix Asys can be 
derived as 

Asys(λ,L ) = fx(λ,L ) − fy(λ,L )g− 1
y (λ,L )gx(λ,L ) (4)  

Eigenvalues of Asys determine the dynamic stability and HB limits of the 
system. For large power system, (4) is widely accepted [34] for eigen
value analysis. 

3.3. Boundary eigenvalue [1] 

Worst case scenario of the uncertain power system can be investi
gated with the results of boundary eigenvalue analysis (BEA). A brief 
description of BEA is given in this section; however, a detailed 
description can be found in [1]. Using the power system model derived 
in section 3, λHB is evaluated by increasing loading factor λ in small steps 
till critical eigenvalue (lower boundary) crosses the imaginary axis. At 
each loading step and specified control settings, the lower boundary of 
the critical eigenvalue is calculated. At normal small signal stability, the 
real part of right most eigenvalue (σcrit) must lies in the left half of the 
s-plane i.e σcrit < 0 for all λ < λHB. At λHB, σcrit is very close to the 
imaginary axis (σcrit = 0). If the control setting is altered so that σcrit < 0, 
then the HBSM of the system will be increased. For the obtained control 
settings, sensitivity of critical eigenvalue with respect to uncertain pa
rameters PL is evaluated by 

C =
∂σcrit

∂PL
(5) 

Where C is the matrix of critical eigenvalue sensitivity. The limit 
(lower/upper) at which a variable of concern denoted by σcrit is con
strained, dictates whether the lower/upper boundary value is of interest. 
For desired boundary value of σcrit under the specified range of 

Fig. 1. Movement of eigenvalues (μ) and voltage drop with consecutive load 
steps λ1 and λ2 
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uncertainty, input vector Pselect,j
′ is selected according to the sign of the 

associated sensitivity element, Cj, that can be given as 
If upper value of σcrit is desired then 

σ(crit,upper) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ0
crit +

∑n

j=1
Cj

(
Pmax

select,j − P0
Lj

)
; if Cj is negative

σ0
crit +

∑n

j=1
Cj

(
Pmin

select,j − P0
Lj

)
; if Cj is positive

(6) 

Similarly, for desired lower value of σcrit 

σ(crit,lower) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ0
crit +

∑n

j=1
Cj

(
Pmax

select,j − P0
Lj

)
; if Cj is positive

σ0
crit +

∑n

j=1
Cj

(
Pmin

select,j − P0
Lj

)
; if Cj is negative

(7) 

Where, σ0
crit is the critical eigenvalue calculated at P0

L and P0
L is the 

vector of load specifications at the base case. Pmax
select,jand Pmin

select,j are the 
elements of selected vector Pselect,j

′ from the specified range of input 
variable (i.e. [PLmin, PLmax]). In the proposed approach, the lower 
boundary of σcrit would be of interest and it must satisfy the inequality 
constraints in (13). Therefore, (7) has an important role in the calcula
tions of λHB. 

3.4. Uncertainties Consideration 

In the power system, loads are neither controlled nor can be fore
casted with complete certainty. However, it is much easier to specify the 
forecasted data in a certain range rather than the deterministic value. 
Here, uncertain loads are specified in the reasonable range [PLmin,PLmax]

by considering a few percent of forecast uncertainty in the given load 
data. 

In this paper, uncertainty in distributed solar photovoltaic genera
tions (SPVGs) is also considered. We assume that concentrated SPVGs 
are integrated at a few buses in the network where lumped loads are 
connected. Tamimi and Bhattacharya have advocated in [35] that 
distributed SPVG less efficient to voltage control at the point of common 
coupling. Therefore, this SPVG output can be taken as a negative load to 
account for the effect of SPVG in the operation. If the specified range of 
uncertainty in SPVG output is given as 

Pmin
SPVG ≤ PSPVG ≤ Pmax

SPVG (8) 

Then the uncertainty range at the SPVG connected bus is modified as 
{

P′

Lmin = PLmin − Pmax
SPVG

P′

Lmax = PLmax − Pmin
SPVG

(9) 

Therefore, the effective uncertainty range may differ at load bus 
having SPVG. 

3.5. Load Parameters and Generator participation 

In the realistic power system, some of the generator units have 
capability to continuously modify their active power generation and 
participated in the generation re-dispatch. Such units are referred as 
load following generators. It is assumed that all conventional generators 
connected in the system are load following generators which are able to 
supply power in their participation factor. In the assessment of HBSM, 
an uniform increase in loading factor λ is taken for simplicity. However, 
non-uniform load increase scenario can also be accounted. For the given 
load factor ‘λ’, load and generation at ith node can be calculated as 

PLi(λ) = Pp
Li × (1+ λ) (10)  

QLi(λ) = Qp
Li × (1+ λ) (11)  

PGj(λ) = Pp
Li +

Pp
Gi∑m

j Pp
Gi
×
∑n

i
Pp

Li(λ) (12) 

Where, PLi and QLi are the active and reactive power loads at node i; 
PGj is the generator connected at node j. Base case operating point is 
denoted by super subscripts ‘p’. Incremental load is distributed among 
generators using the generation participation factor which is given in 
(12). ’m’ and ‘n’ denote the number of generators and loads connected in 
the system. 

4. Problem formulation 

4.1. Objective function 

For the Hopf bifurcation study, it is necessary to perform a series of 
load flows and eigenvalue analysis of the system (3) as the parameters 
slowly vary. The look-ahead method is formulated for the effective 
setting of the control parameters including Automatic Voltage Regula
tors (AVR) set point and Online Tap Changing (OLTC) transformer’s 
taps. In this section, rescheduling of generator AVRs and OLTC taps 
under their specified limits is formulated as an optimization problem for 
the maximization of HBSM (λHBSM). The proposed rescheduling strategy 
can effectively respond to power system uncertainties due to forecasted 
load and RES. Optimal control rescheduling is achieved by solving the 
minimization of boundary power loss problem as in (13). Modelling of 
boundary power loss PBLoss is derived in the subsequent subsections. 

Min PBLoss = P(y,U,L ) (13)  

Subject to 

g(y,U) = 0 (13a)  

Pmin
G (I) ≤ PG(I) ≤ Pmax

G (I); I ∈ generator − bus (13b)  

Qmin
G (I) ≤ QG(I) ≤ Qmax

G (I); I ∈ generator − bus (13c)  

Vmin
load(I) ≤ Vload(I) ≤ Vmax

load(I); I ∈ load − bus (13d)  

Umin(k) ≤ U(k) ≤ Umax(k); k ∈ controller (13e)  

Re{μc} ≤ 0 (13f) 

Where, P(y,U,L ) is the total boundary active power loss, calculated 
at optimal settings of control variables U. The power balance equality 
constraints are enforced in  (13a). The active and reactive powers 
generated by individual generators are bounded using (13b) and (13c), 
respectively. The Vload(I) is the voltage magnitude at Ith load bus. QG(I) is 
the reactive power supplied by Ith generator. U(k) is the kth control 
variable. Subscripts ‘min’ and ‘max’ show the minimum and maximum 
permissible values of the associated parameters. In this paper generator 
voltages and taps of OLTC are selected as the reactive power control 
variables. System dynamics are considered in (13f), where  μc is the 
lower boundary value of right-most critical mode. The problem formu
lation, however, can be solved using any meta-heuristic algorithm. Here, 
it is solved by a simple GWO algorithm [36]. 

Boundary values of both active power loss and eigenvalues for the 
specified range of forecasted load/generation data are required in the 
solution of (13). Formulation of the boundary power loss calculation is 
proposed in the following subsection. Note that boundary value calcu
lation starts with deterministic solutions [14]. 

4.2. Deterministic active power loss calculation 

Deterministic Load Flow (DLF) solution of the power system is ob
tained by solving set of non-linear power flow equations (14) using 
Newton Raphson (NR) method. 
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u = g(y,U) (14)  

where u is the vector of predefined input variable and y is the vector of 
unknown load flow state variable. U is set of control parameters. 
Equation (14) is linearised and solved iteratively as follows 
{

Δy = J− 1Δu

Δu = usp − uc

(15)  

Where J is the Jacobian matrix. Δy is the correction vector. usp is the 
specified input vector and uc is the vector of function value u calculated 
at updated voltages. Vector y is updated through Δy in each iteration. 
Iteration is continued till the convergence value Δu became less than the 
specified tolerance ϵ. With the final value y, crisp active power loss can 
be evaluated as 

PLoss = Re

(
∑n

i
V∗

i

∑n

j=1
VjYij

)

∀ i, j = 1, 2, 3...n (16) 

Where Vi and Vj are voltage at ith and jth bus respectively in the ‘n’ bus 
power system. Yij is the element of Ybus. 

4.3. Boundary Active Power Loss (BAPL) calculation 

For the specified range of load ([PLmin, PLmax]) at each bus, extreme 
boundaries of active power loss are obtained. Evaluation of boundary 
active power loss (BAPL) is based on boundary load flow which always 
starts with deterministic load flow solutions and Ploss. Details of the 
deterministic solutions and boundary power flow are not given here 
however one can find it in [18]. Generations corresponding to load 
vector can be obtained using generator participation factors as given in 
(12). 

The upper/lower value of BAPL (PBloss) for a given range of uncer
tainty is obtained as follows. 

PBloss = Pe
Loss + L ×

(
PLsp − PLe

)
(17) 

Where, L is the sensitivity matrix of active power loss with respect to 
load PL at a bus. Sensitivity matrix L is calculated in (18). PLsp is the 
selected load vector from the pre-specified interval (upper and lower) 

which depends on the sign of the associated element of L. PLe is the 
current estimate of loads. Pe

Loss is the current estimate of PLoss evaluated at 
PL = PLe. 

L =
∂PLoss

∂PL
=

[
∂PLoss

∂δ

]

×

[
∂δ

∂PL

]

+

[
∂PLoss

∂V

]

×

[
∂V
∂PL

]

(18) 

If the upper bound of PLoss is of interest, then PLossi = PLmaxi when Li is 
positive. Similar logic holds true if the lower bound of PLoss is of interest. 
It is important to note that role of (17) is only for input vector selection 
using loss sensitivity and not for calculation of actual PBloss. With the 
selected input, actual PBloss is evaluated from (16). This completes one 
execution of BAPL. 

BAPL is minimized via the optimal set of controls. With obtained 
BAPL solution and set of controls, critical boundary eigenvalues for the 
current loading are calculated. Similar calculations are made for every 
load steps till σcrit < 0. The values of load step where σcrit crosses the 
imaginary axis are noted as λHB for the selected setting. This boundary- 
value calculation helps to evaluate the HBSM. 

4.4. Gray Wolf Optimization Algorithm 

4.4.1. Overview 
In this problem, controls are varying in discrete steps, so a meta- 

heuristic technique will be more feasible for the optimization process. 
The control variables are optimized using a grey wolf optimization 
(GWO) algorithm developed by Mirjalili and Lewis [36] in 2014. This 
algorithm is inspired by two interesting behaviours, group hunting and 
leadership hierarchy of grey wolves (Canis Lumps) pack. Pack of four 
types of wolves such as Alpha (α), Beta (β), Delta (δ), and Omega (Ω) is 
dictated by alphas. The strict leadership hierarchy is shown in Fig. 2. All 
social and hunting decisions are taken by the pack leaders (α). The three 
phases of group hunting mechanism are given as-  

• Tracking, chasing and approaching the prey.  
• Pursuing, encircling, and harassing the prey until it stops moving.  
• Attack towards the prey. 

4.4.2. Mathematical model and algorithm of GWO 
In order to develop the GWO algorithm, the social and hunting 

behaviour of the grey wolves is mathematically modelled. 

D→= |C→⋅ z→p(t)|− z→(t) (19)  

z→(t + 1) = z→p(t) − A→c⋅D→ (20)  

Where, t is the iteration number. z→ and z→p are the vector of position of 

grey wolves and the prey respectively. Coefficient vectors ” A→c” and ” C→” 
can be calculated by the following equations. 

A→c = 2 a→⋅ r→1 − a→ (21)  

C→= 2⋅ r→2 (22) 

Random vectors r1 and r2 are in [0,1]. In order to simulate the hunting 
(optimizing) behaviour of grey wolves (solution candidates), the three 
best solution candidates are selected as α, β, and δ. The rest of the so
lution candidates (Ω) are allowed to update their positions according to 
the position of the best solution candidates. Mathematically it can be 
expressed as- 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D→α = |C→1⋅ z→α − z→|,

D→β = |C→2⋅ z→β − z→|

D→δ = |C→3⋅ z→δ − z→|

(23) 

Fig. 2. Hierarchy of grey wolf in their pack  
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

z→1 = | z→α − A→c1⋅
(

D→ℵ

)
|,

z→2 = | z→β − A→c2⋅
(

D→β

)

|,

z→3 = | z→δ − A→c3⋅
(

D→δ

)
|,

(24)  

z(t+ 1) =
z→1 + z→2 + z→3

3
(25) 

GWO algorithm starts with generating random positions of grey 
wolves in the candidate solution space. Over the progress of iterations, 
the position of prey (optimum solution) is estimated by α, β, and δ 
wolves. Each wolf (solution candidate) updates its distance according to 
the estimated position of prey. Exploration and exploitation can be 
handled by decreasing the value of ‘a’ in (21) from 2 to 0. Convergence/ 
divergence of candidate solution depends on the value of ‘ Ac

̅→’. That 
means the adaptive value of the ‘a’ and Ac

̅→ allow GWO to have a smooth 
transition between exploration and exploitation. For | Ac

̅→
| < 1, it is 

converged towards the prey. Whereas, it is diverged from the prey if 
| Ac
̅→

| > 1. Finally, the algorithm is terminated by specified termination 
conditions. The flow chart of the GWO algorithm is given in Fig. 3. 

4.5. Look-ahead approach for updating control settings 

The flow chart of the proposed approach is given in the Fig. 4. The 
important steps in this algorithm are described as follows- 

Step 1: Read the operating and dynamic data of the system with a 
specified range of uncertainties 

Step 2: Using load/generation forecast predict the next load step 
Step 3: Specify the range of forecasted load/generation uncertainties 

at each node. 
Step 4: Solve boundary power loss optimization for setting an 

effective control parameters and references using boundary value 
approach explained in the subsection 4.3. 

Step 5: Compute the critical eigenvalue and evaluate HB point (λHB) 
using boundary eigenvalue approach as described in subsection 3.3. 

Step 6: If λHB is greater than predicted load, wait for the next 

Fig. 3. GWO algorithm flow chart  

Fig. 4. Flow Chart  
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predicted load and go to step 1. 
Step 7: If the predicted load is more than λHB, check whether the 

difference in margin of two successive steps is greater than the specified 
tolerance. If yes, update the controls and repeat the process from step 3. 
Otherwise, go to next step. 

Step 8: Ready for emergency control action like active power 
rescheduling and /or load shedding if required. 

In the proposed approach, uncertainties are considered in loads and 
SPVGs only. It is assumed that conventional generators are capable to 
meet the required power demand as all generators in the system are load 
following generators and can be rescheduled for each operating time 
interval. The generation participation factors evaluated in (10) at crisp 
data are utilized to distribute the demanded loads among the conven
tional generators. Since it is difficult to derive the relationship between 
control settings and HBSM due to discussed non-linearities, it appears 
that the proposed method is a simple and alternate solution to prevent or 
postpone the HB instability even in presence of load/generation un
certainties. The main concept of this approach is to obtain the optimal 
schedule of controls for the next predicted load with possible un
certainties. This approach requires little more computing time than the 
deterministic approach because of the additional sensitivity calculations 
to accommodate the uncertainties in the evaluation of boundary values 
of active power loss and critical eigenvalue. However, this approach 
gives a realistic HBSM to the system analyst and helps it to prepare 
measures for the worst-case scenarios. 

5. Results and Discussions 

Proposed stability enhancement approach has been demonstrated 
with IEEE standard test systems: (i) Western System Coordinating 
Council (WSCC), 3-machine, 9-bus [32] and (ii) New England, 10-ma
chine, 39-bus system [37] and (iii) 24-Machine 203-bus system [38]. 
In the simulation studies, two different cases, without and with solar 
photovoltaic (PV) integration, are considered at few buses to account for 
the generation uncertainties. The generators equipped with IEEE type-I 
exciter adopt the detailed DAE model (7th order). All loads adopt the 
classical static model. In terms of size, complexity, and SPVG penetra
tion, each test system has different operating characteristics which is 
sufficient to examine the generalized effects of control rescheduling 
under various uncertainties. All simulation works are performed in 
MATLAB software. 

5.1. WSCC system (3-machine, 9-bus) 

This test system consists of 3 machines connected with OLTC trans
formers, 3 loads, and 6 transmission lines. The system has a total of 9- 
buses. In the base case, the total active and reactive power load in the 
system is 315 MW and 115 MVAr, respectively. Detailed dynamic data of 
generator, exciter, and network is given in Appendix-A. For simplicity, 
the uncertainty range in forecasted data at each node is considered to be 
±5%. However, different uncertainty range at each node can be 
considered. Settings of static controllers, generator voltage reference 
(V), and taps of OLTC transformers (T) are optimized to improve the 
HBSM. All load demand and the scheduled real power generation of 

Table 1 
OPTIMAL CONTROL SETTING OF WSCC, 9 BUS SYSTEM WITHOUT SPVG   

Optimal values of control parameters   

Line 
No. 

Taps Gen. 
Bus 

Gen. Volt. 
(p.u) 

Critical loading & eigenvalue with proposed optimal control Critical loading & eigenvalue without 
optimization [1] 

Without 
uncertainties 

1-4 0.95 1 1.10 λHB = 1.2, σcrit = − 0.0097  λHB = 0.87, σcrit = − 0.0055  
2-7 0.96 2 1.094 
3-9 0.99 3 1.096 

With±5 % 
uncertainty 

1-4 0.97 1 1.072 λHB = 0.995, σcrit = − 0.1931σcrit lower b = −

0.0087σcrit lower b = − 0.0083  
λHB = 0.78, σcrit = − 0.1955  

2-7 0.98 2 1.072 
3-9 0.99 3 1.074  

Fig. 5. Modified WSCC, 3-machine, 9-bus test system  
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look-ahead forecasting point are the same percentages. The bifurcation 
parameter λ is used to model the power load variation at all nodes i.e., 
given in (3)-(10). The Hopf bifurcation of the look-ahead point is 
directly calculated from the state-space model of the system given in (2), 
(11)-(12) using the selected control parameters and reference settings. 
Dynamics of the system are accounted in this DAE model, and hence in 
the critical eigenvalues. The results for two different cases are presented 
with IEEE 9-bus system. 

5.1.1. WSCC system without SPVG 
In this case, the BAPL and critical eigenvalues of the system without 

SPVG penetration are evaluated. Reactive power generation limits of the 
generators connected in the WSCC system are considered as 0.9 lead/lag 
power factor of the specified capacity of associated generators. Mini
mum and maximum generated voltages are bounded by excitation sys
tem from 0.9 to 1.1 pu respectively for each voltage-controlled bus. The 
tap setting of OLTC transformers can be adjusted between 0.95 to 1.05 
pu. The permissible minimum and maximum voltages at load buses are 
assumed to be 0.9 and 1.10 pu, respectively. 

The optimized reference values of generator voltage and OLTC tap 
settings are enumerated in Table 1. It can be seen that when un
certainties are not considered (deterministic approach), HB point (λHB) 
and critical eigenvalue of the system with optimal control setting is 

obtained as 1.2 and -0.0097, respectively. Whereas, with forecasted 
uncertainties of ± 5 %, critical value of λHB and boundary eigenvalue 
(σcrit,lower b) are evaluated as 0.995 and -0.0087, respectively. λHB with 
uncertainties is lesser than the value without uncertainties. This HB limit 
is more realistic to use for the power system operation & design so that 
system can handle even worst-case scenarios in the uncertain power 
system. The results obtained in this table are also compared with the 
results in [1], which are calculated on nominal values of references 
voltages and taps. It can be seen that rescheduling of control settings 
within their limits significantly improves the loadability of the system. It 
can be observed that without uncertainty, HBSM is enhanced from 0.87 
to 1.2, and also, with uncertainties, a significant HBSM enhancement 
has been achieved from 0.78 to 0.995. 

5.1.2. WSCC system with SPVG 
An SPVG of 20 MW is assumed at the 8th node in the WSCC system as 

shown in Fig. 5. Thus, the peak penetration level of the system is up to 
7%. The range of uncertainty in SPVG and loads is assumed to be ± 5 %. 
With the integration of SPVG, the stability margin of the system has 
increased, and accordingly, the uncertainty level of the system has also 
increased. Obtained results for the system are given in Table 2. It shows 
that HBSM with uncertainty is reduced to 1.05 (i.e. 21.34 % of the case 
without uncertainty) from λHB = 1.335. The real part of critical 

Table 2 
CONTROLLER PARAMETER SETTINGS OF WSCC, 9 BUS SYSTEM WITH SPVG   

Optimal values of control parameters   

Line 
No. 

Taps Gen. 
Bus 

Gen. Volt. (p. 
u) 

Critical loading & eigenvalue with proposed optimal 
control 

Critical loading & eigenvalue without 
optimization [1]      

with proposed optimal control without optimization [1] 
Without 

uncertainties 
1-4 0.95 1 1.10 λHB = 1.335, σcrit = − 0.0075  λHB = 0.95, σcrit = − 0.0221   

2-7 0.95 2 1.098    
3-9 0.99 3 1.10   

With±5 % 
uncertainty 

1-4 0.97 1 1.07 λHB = 1.05, σcrit = − 0.2034  λHB = 0.85, σcrit = − 0.2215σcrit = − 0.0221   

2-7 0.96 2 1.054 σcrit lower b = − 0.0028    
3-9 0.97 3 1.049    

Fig. 6. Modified New England, 10-machine, 39-bus test system  
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Table 3 
OPTIMAL CONTROL OF NEW ENGLAND, 39 BUS SYSTEM WITHOUT SPVG   

Optimal values of control parameters   

Line 
No. 

Taps Gen. 
Bus 

Gen. Volt. (p. 
u) 

Critical loading & eigenvalue with proposed optimal 
control 

Critical loading & eigenvalue without 
optimization [1] 

Without 
uncertainties 

12-11 0.96 30 1.045 λHB = 0.757, σcrit = − 0.0041  λHB = 0.553, σcrit = − 0.007  
12-13 0.95 31 1.092 
6-31 1.07 32 1.096 
10-32 1.07 33 1.089 
19-33 1.04 34 1.082 
20-34 1.01 35 1.053 
22-35 1.08 36 1.09 
23-36 1.01 37 1.087 
25-37 1.02 38 1.099 
2-30 1.04 39 1.076 
29-38 0.99 – – 
19-20 1.02 – – 

With±5 % 
uncertainty 

12-11 0.96 30 0.936 λHB = 0.646, σcrit = − 0.3285σcrit lower b = − 0.0042  λHB = 0.48, σcrit = − 0.3212σcrit lower b = −

0.0007  12-13 1.06 31 1.071 
6-31 1.05 32 1.071 
10-32 1.02 33 1.091 
19-33 1.02 34 1.095 
20-34 1.08 35 1.038 
22-35 1.00 36 1.1 
23-36 1.00 37 1.093 
25-37 1.09 38 1.099 
2-30 0.97 39 1.077 
29-38 1.00 – – 
19-20 0.96 – –  

Table 4 
OPTIMAL CONTROL OF NEW ENGLAND, 39 BUS SYSTEM WITH SPVG   

Optimal values of control parameters   
Line 
No. 

Taps Gen. 
Bus 

Gen. Volt. (p. 
u) 

Critical loading & eigenvalue with proposed optimal 
control 

Critical loading & eigenvalue without 
optimization [1] 

Without 
uncertainties 

12-11 0.98 30 0.971 λHB = 0.873, σcrit = − 0.0088  λHB = 0.7, σcrit = − 0.0607  
12-13 0.99 31 1.067 
6-31 1.07 32 1.028 
10-32 1.09 33 1.098 
19-33 1.01 34 1.089 
20-34 0.99 35 1.038 
22-35 1.07 36 1.067 
23-36 1.04 37 1.008 
25-37 1.07 38 1.099 
2-30 0.99 39 1.073 
29-38 0.97 – – 
19-20 1.02 – – 

With±5 % 
uncertainty 

12-11 0.96 30 0.961 λHB = 0.774, σcrit = − 0.1473σcrit lower b = − 0.0051  λHB = 0.61, σcrit = − 0.3474σcrit lower b = −

0.008  12-13 0.97 31 1.080 
6-31 1.09 32 1.044 
10-32 1.07 33 1.088 
19-33 1.01 34 1.083 
20-34 0.97 35 1.054 
22-35 1.06 36 1.011 
23-36 1.08 37 1.096 
25-37 0.99 38 1.073 
2-30 0.98 39 1.068 
29-38 1.00 – – 
19-20 1.05 – –  

Table 5 
HB STABILITY ASSESSMENT OF 24-MACHINE 203 BUS SYSTEM  

Cases Critical loading & 
eigenvalue 
with normal control 
settings  

Critical loading & 
eigenvalue 
with optimal 
control settings 

Elapsed 
Time (s) 

Without  
Uncertainties 

λHB = 4.57, σcrit = −

0.0009   
λHB = 5.53, σcrit =

− 0.0017  
41.286 

With  
Uncertainties 

λHB = 3.95, σcrit = −

0.1988  
σcrit lower b = −

0.006   

λHB = 4.73, σcrit =

− 0.1268 
σcrit lower b = −

0.0013  

58.879  

Table 6 
ELAPSED TIME OF ALL TEST SYSTEMS  

S. 
No 

System 
description 

Elapsed Time (In seconds) 

Identification 
of  
critical mode 

Assessment of HBSM 
with 
Optimal setting of 
controllers 

Total 
time 

1 3-machine 9-bus 0.131 1.386 1.517 
2 10-machine 39- 

bus 
0.162 2.239 2.401 

3 24-machine 203- 
bus 

0.462 58.417 58.879  
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eigenvalues with crisp and forecasted data at critical loadings are also 
given in the table as - 0.2024 and -0.0028 respectively.Impact of the 
proposed control setting is verified by comparing HBSM values obtained in 
Table 2 with the corresponding results discussed in [1] where fixed control 
parameters were taken. In presence of SPVG, HBSM is considerably improved 
from 0.85 to 1.05 under specifies ± 5 % load/generation uncertainties. 

5.2. New England system(10-machine, 39-bus) 

The interconnected New England, 39-bus test system contains 10 
generators, 46 lines, and 20 loads. A two-axis model of the generators 
connected in the system is adopted in the DAE modelling. Detailed test 
system data is taken from [37]. A single line diagram of the test system is 
depicted in Fig. 6. Total 195 variables including 70 state variables for 
the system are investigated under a specified range of uncertainties. The 
uncertainty range at each bus is assumed to be ± 5 % to demonstrate the 
effectiveness of the proposed approach. Limits of various power system 
parameters are accounted during the optimal setting of generator 
voltage reference and OLTC taps settings. Considered reactive power 
limits of the generators connected in 39 bus systems are calculated from 
0.9 lead/lag power factor of the specified capacity of associated gener
ators. Generator reference voltages are controlled between 0.9 to 1.1 pu. 
Whereas, tap control of OLTC transformers is adjusted between 0.95 to 
1.15 pu. In the simulation, load bus voltages are bounded to be between 
0.9 to 1.10 pu. 

5.2.1. New England system without SPVG 
For this system, the optimal settings of the generator reference 

voltage and OLTC taps with and without consideration of uncertainties 
are given in Table 3. The maximum value of HBSM is found to be 0.757 
when uncertainties are not considered. As we already discussed that 
under the uncertainties, the operating point of the system may change. 
In this scenario, the optimal setting of the controllers is required to be 
rescheduled to achieve the maximum HBSM. Optimal settings of volt
ages and taps under ± 5 % uncertainties are also given in the table. With 
this control setting, HBSM is achieved to be 0.646. Due to uncertainties, 
this value is less than the value obtained without uncertainties, but it is 
more realistic to take control actions keeping uncertainties in mind. 
Critical boundary and crisp eigenvalues for specified ± 5 % uncertainties 
in forecasted data are given in Table 3. System dynamics are accounted 
in the calculation of critical eigenvalues. The results with the proposed 
approach are compared with results in [1] where fixed control param
eters and voltage references were considered. It is found that the sta
bility margin λHB of the system is enhanced by 34.58 % (i.e. λHB=0.48 to 
0.646) by the optimal setting of the static controllers. 

5.2.2. New England system with SPVG 
In this section, three SPVG units having 200 MW capacity (each) at 

unity power factor are integrated at three different buses 14th, 16th, and 
17th, in the modified 39-bus system depicted in Fig. 6. These SPVG units 
are considered as negative loads as explained in[35]. Similar to the 
previous cases, the level of uncertainties in load and SPVG forecast are 
specified at ± 5%. Results of two different optimization cases are given 
in Table 4. Critical loading scenarios at optimal settings of the control 
parameters are presented. 

For the case (λ = 0) optimal control setting is effective to minimize 
the system active power loss under the specified range of uncertainty at 
each bus. Moreover, this control setting significantly improved the 
HBSM of the system. The results obtained with the proposed approach 
are given in Table 4. Critical loading of the system with and without 
uncertainties are evaluated as 0.774 and 0.873, respectively. As un
certainties in data are always present, the operator must use the HB limit 

as 0.774 instead of 0.873 for the secure and stable operation of the 
power systems. Boundary value of critical eigenvalue (σcrit,lower b) at 
critical loading λHBSM is also given in the Table 4 as -0.0051. In this case, 
obtained critical loading of the system with SPVG is enhanced to λHB =

0.774 from corresponding value 0.61 given in [1] under various data 
uncertainties. 

From the above results and discussions, we can observe that the 
stability of the system is increased with the integration of SPVG because 
loads are supplied locally. Due to locally available SPVG, the power 
supplied over the transmission lines and effective active power losses in 
the system is reduced. The operating scenario of the system with SPVGs 
is changed and the HBSM of the system is considerably increased. This 
approach can be also used to maximize the solar PV penetration in the 
power system under HB stability limit constraints. 

5.3. 24-machine, 203-bus test system 

The objective of this case study is to show the calculation efficiency 
and requirement of consideration of estimated/forecasted data un
certainties in HBSM assessment. The proposed approach has been 
demonstrated with a large-scale 203-bus power system composed of 159 
transmission lines, 35 line-transformer, 37 load-transformer, 24-genera
tors, and 111-loads. This system has 14 areas. All generators adopt a 
comprehensive 7-order DAE model. In this case study, It is assumed that 
a total of 35-OLTC transformers and 24 voltage-controlled buses are 
available for rescheduling. Detailed dynamic data of generator, exciter, 
and transmission lines parameters are given in [38]. The DAE model of 
the system is the one presented in the above section respecting the 
characteristics of this system at different operating points. The bifur
cation parameter λ is used to model the load variation at all buses. For 
the demonstration, a uniform increase in load factor λ is considered in 
the HBSM assessment. For the predicted loading (λ) at the given 
look-ahead step, load and generation at each bus can be evaluated using 
(10)-(12). 

In this case, BAPL and critical eigenvalues are calculated without 
SPVG consideration. The worst-case scenario is evaluated using 
boundary eigenvalues with the specified uncertainty range of ± 5% at 
all. The setting of static controllers, generator voltage control, and taps 
of OLTC transformers are optimized to enhance the BHSM. Minimum 
and maximum generated voltages are bounded by excitation system 
from 0.9 to 1.1 pu respectively for each voltage-controlled bus. The tap 
setting of OLTC transformers can be adjusted between 0.95 to 1.05 pu. 
Other equality and inequality constraints are accounted during evalua
tion of the optimal setting of the controllers. 

The results of a comprehensive study with four different cases are 
presented in Table 5. It can be seen that without consideration of un
certainties (Deterministic approach), HB loading (λHB) and critical 
eigenvalue (σcrit) with nominal control setting are obtained as 4.57 and 
-0.0009 respectively. With the optimal setting of the controllers, λHB is 
enhanced to 5.53. Whereas, with forecasted uncertainties of ± 5 % and 
normal control settings, critical value of λHB and boundary eigenvalue 
(σcrit,lower b) are evaluated as 3.95 and -0.1988, respectively. It is 
important to note that the value of λHB with uncertainties is lesser than 
the value without uncertainties. This HB limit is more realistic to use for 
the power system operation & design so that the system can handle even 
worst-case scenarios in the uncertain power system. The results obtained 
in this table are also compared with the results calculated on nominal 
values of references voltages and taps. It can be seen that rescheduling of 
control settings within their limits significantly improves the loadability 
of the system. It can be observed that without uncertainty, HBSM is 
enhanced from 4.57 to 5.53, and also, with uncertainties, a significant 
HBSM enhancement has been achieved from 3.95 to 4.73 by the 
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rescheduling of the controller’s settings. Optimal settings of generator 
bus voltages and taps are given in Appendix-B 

5.4. Discussion 

Simulation work for all test systems was performed on a desktop 
computer with a 64-bit operating system, Intel®CoreTM i5 CPU@1.70 
GHz, 8 GB RAM, and 64-bit operating system. Calculation time for all the 
test systems is presented in Table 6. For identification of critical mode, 
the rightmost eigenvalues of the system matrix are calculated by 
increasing system loading λ in steps. As we discussed, in any power 
system analysis system parameter uncertainness must be accounted. 
Therefore, a boundary eigenvalue method is used for critical mode 
identification instead of a deterministic eigenvalue approach. This 
analytical method to account for the specified range of uncertainties is 
fast enough for online applications. 

In addition, compared to a deterministic method, the proposed 
method has an obvious advantage in computing time and a realistic 
stability margin assessment. Taking the 10-machine, 39-bus system 
example, the total elapsed time for an online switching method pre
sented in [2] is 1.73 without accounting for the parameter uncertainties. 
Whereas the proposed method without uncertainty takes only 1.29 
seconds which is considerably less than the time taken in [2]. It is dis
cussed in the above sections, parameters uncertainties must be consid
ered in any power system analysis. The proposed method in presence of 
parameters uncertainties takes 2.401 seconds in the assessment and 
enhancement of HBSM which is reasonably acceptable for the online 
implementation. 

The effectiveness of the boundary value-based look-ahead approach 
to enhance the HBSM depends on the accuracy of the estimated/fore
casted load-generation data and rescheduling of static controllers. The 
proposed approach can be used for both deterministic and non- 
deterministic (uncertain) power system data. Comparatively a non- 
deterministic stability assessment takes little more calculation time 
but gives realistic HBSM information for operation and control. 

6. Conclusions 

In this paper, a boundary value-based look-ahead method is pro
posed for the enhancement of HBSM under the specified range of un
certainties in the forecasted/estimated load-generation data. An 
optimization algorithm has been used for rescheduling of the static 
controllers such as generator voltage references and taps of OLTC 
transformers. An active power loss-based optimization function has been 
developed for the uncertain power system where boundary load flow 
and boundary eigenvalue analysis methods are used accounting for the 
non-statistical uncertainties. This approach is inspired by boundary 

eigenvalue analysis to identify the worst-case scenario in the uncertain 
power system. It is an economical and effective approach to enhance the 
HB limits/HBSM. Indirectly minimization of BAPL makes the controllers 
focus on controlling the critical oscillatory modes of the system. The 
proposed method is capable of determining the HB limits of the stressed 
power system with simple calculations, which allows using this method 
for the real-time operation of the system. Case studies on 9-Bus, 39-Bus, 
and 203-Bus systems have been done to justify the potential benefits of 
the proposed approach. HBSM assessment and enhancement of uncer
tain power system are illustrated via numerical tests on 9-bus, 39-bus, 
and 203 bus power systems integrated with different sizes of distributed 
SPVGs. 

Hopf bifurcation stability analysis in presence of uncertainty can be 
used for the optimal design of power system controllers and further can 
be used for the minimum power plant re-despatch to supply uninter
rupted power. Hence it can be useful for the power system security 
assessment. Future research will evaluate the proposed method for 
power systems with network topologies such as online switching and 
contingency screening. 
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Appendix A. WSCC 3-machine 9-bus test system data [32] 

Network parameters, load flow data and dynamic data of the ma
chines of the 3-machine, 9-bus system are given in Table A.1, A.2, A.3, 
A.4 

Table A.1 
Load and generation data of the WSCC 9-bus system  

Bus 
No. 

Bus  
Type 

Voltage 
(pu) 

Load  
(MW) 

Load  
(MVAr) 

Generation 
(MW) 

Qmax  

(MVAr)  
Qmin 

(MVAr)  

1 Slack 1.04 0 0 0 100 -100 
2 PV 1.025 0 0 163 100 -100 
3 PV 1.025 0 0 85 100 -100 
4 PQ 1 0 0 0 0 0 
5 PQ 1 125 50 0 0 0 
6 PQ 1 90 30 0 0 0 
7 PQ 1 0 0 0 0 0 
8 PQ 1 1 35 0 0 0 
9 PQ 1 0 0 0 0 0  
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Appendix B. 24-machine 203-bus system controllers 

Optimal settings of generator bus voltages and taps in the 24-ma
chine, 203 bus system is given in table-B.1. 

Table A.2 
Transmission line data of WSCC 9-bus system  

Line 
No. 

Bus Line 
resistance 
(pu) 

Line 
reactance 
(pu) 

B/2 
(pu) 

Transformers 
tap  

From To    

1 1 4 0 0.0576 0 1 
2 2 7 0 0.0625 0 1 
3 3 9 0 0.0586 0 1 
4 4 5 0.01 0.085 0.088 1 
5 4 6 0.017 0.092 0.079 1 
6 5 7 0.032 0.161 0.153 1 
7 6 9 0.039 0.17 0.179 1 
8 7 8 0.0085 0.072 0.0745 1 
9 8 9 0.0119 0.1008 0.1045 1  

Table A.3 
Generator parameter of WSCC, 3-machine 9-bus system  

Machine Bus No H (sec) Xd(pu) X′

d(pu) Xq(pu) X′

q(pu) T′

d0(sec) T′

q0(sec)

G1 1 23.64 0.146 0.0608 0.0969 0.0969 8.96 0.31 
G2 2 6.4 0.8958 0.1198 0.8645 0.1969 6 0.535 
G3 3 3.01 1.3125 0.1813 1.2578 0.25 5.89 0.6  

Table A.4 
Exciter data of WSCC, 3-machine 9-bus system  

Generator KA  TA(sec) KE  TE(sec) Kf  Tf (sec)

G1 20 0.2 1 0.314 0.063 0.35 
G2 20 0.2 1 0.314 0.063 0.35 
G3 20 0.2 1 0.314 0.063 0.35  

Table B.1 
OPTIMAL CONTROL OF 24- MACHINE 203 BUS SYSTEM  

Optimal Taps setting Optimal Voltage setting 

Line No. Deterministic analysis Uncertainty analysis Gen. Bus Deterministic analysis Uncertainty Analysis 

1-149 0.95 0.97 1 1.05 1.07 
5-149 0.95 0.97 2 1.04 1.041 
13-135 0.95 1.02 3 1.04 1.04 
20-156 0.988 1.01 4 1.04 1.05 
25-157 0.988 1.01 5 1.05 1.051 
36-201 1.05 1.034 6 1.043 1.047 
39-194 1.05 1.04 7 1.02 1.024 
53-162 1.05 1.047 8 1.00 1.03 
54-195 1.05 1.05 9 1.02 1.022 
55-199 1.05 1.048 10 1.00 1.013 
55-199 1.05 1.048 11 1.01 1.01 
64-196 1.05 1.039 12 1.00 0.991 
64-196 1.05 1.039 13 1.01 1.01 
77-197 1.05 1.042 14 1.02 1.030 
77-197 1.05 1.042 15 1.02 1.033 
86-198 1.05 1.045 16 1.02 1.033 
92-200 1.05 1.04 17 1.04 1.053 
111-164 1.05 1.043 18 1.03 1.04 
116-27 0.95 0.98 19 1.03 1.04 
123-125 1.00 1.01 20 1.04 1.046 
128-36 0.95 0.97 21 1.02 1.029 
145-115 0.95 0.95 22 1.02 1.026 
146-116 0.95 0.95 23 1.02 1.021 
150-119 1.05 1.048 24 1.00 1.023 
155-143 1.05 1.04 * The maximum and minimum limits of the load bus voltages are ± 10% i.e. 1.10 p.u. and 0.9 p.u.  
164-163 1.00 0.99 
177-120 1.00 0.95 
180-124 1.00 0.97 ** The minimum and maximum limits of the transformer’s tap is 0.95 p.u. and 1.05 p.u, respectively 
183-127 1.00 1.01 
191-137 1.00 1.00  
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