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ABSTRACT 

An image-based methodology for condition assessment of Reinforced Cement Concrete (RCC) 

road bridge components is presented. The study consists of experiments on RCC rectangular 

beams and scaled (1:12) T-beams, validation of numerical models for T-beams and training of 

corresponding Artificial Neural Networks (ANN). In experimental work, Digital Image 

Correlation (DIC) is used as a virtual sensor for data extraction. Image processing was done 

using an open-source Ncorr v1.2.2 algorithm for the results obtained using a random speckle 

pattern and Quick Response (QR) code-based speckle pattern. A novel QR code-based speckle 

pattern is evaluated for 2D (two dimensional) DIC measurements and shows an improved 

correlation with conventional measurements when compared to the random speckle pattern. 

The ultimate Moment (M)-Curvature (κ) values computed from the QR code-based speckled 

pattern are found to be in good agreement with conventional measurements and Finite Element 

Method (FEM) results. QR code encrypts the structural information which enables integration 

with Building Information Modelling (BIM).     

Rectangular RCC beams of size 1800 mm x 150 mm x 200 mm and scaled (1:12) RCC                 

T-beams are tested under four-point flexural loading. Using the law of similitude, the small-

scale T-beams were designed, cast and tested under four-point bending so that the nonlinear 

constitutive behaviour can be correctly scaled up. A model concrete has been developed 

consisting of cement, water and fine aggregates based on geometrically scaling down the coarse 

aggregate. Load-deflection curves of RCC beams are plotted for the results obtained using both 

contact and non-contact (DIC) sensors, and further, Moment (M)-Curvature (κ) relationship of 

RCC beams is developed. The experimental stress-strain curves obtained from compression 

test on prism specimens at 28 days are used as input data for material model parameters for 

finite element analysis. Validation of FEM results with the scaled (1:12) experimental results 

enables further derivation of Moment (M)-Curvature (κ) backbone curve for full-scale bridge 

girders, which further enables quantification of damage and residual moment capacity of full-

scale bridges considered from Ministry of Road Transport and Highways (MoRTH). The 

correlation between the experimental, numerical and ANN was found to be very satisfactory. 

After validation of data obtained using QR code-based speckle pattern for different bridge 

girders ANNs, input data is obtained from experiments and validated simulations (Phase-I & 

Phase-II). To assess the condition of structural components, a Local Damage Index (LDI) is 

developed, which helps in the quantification of the damage.  
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CHAPTER 1 

Introduction 

1.0 General 

As our civil infrastructure ages, the challenge of keeping it operational grows. Hence the need 

for improved condition assessment on which to make cost-effective maintenance decisions. 

Indian Railways has more than 0.13 million bridges, out of which 800 are important, 11,000 

are major, and 0.12 million are minor bridges. Also, in India, there are 5174 large dams (with 

a maximum height of more than 15m) with more than half of these aged at least 30 years. The 

cost of monitoring these structures is astronomical.  

1.1 Motivation 

Currently, the most common methods of Structural Health Monitoring (SHM) in India are 

visual inspection and sounding. However, this is subjective and dependent on the skill level of 

the inspector. Methods utilizing the material properties of a structure, such as ultrasonic wave 

attenuation, electrical conductivity, as well as dynamic response based methods often have 

practical problems with cabling and difficulty in establishing reliable communication for data 

transmission and control, in field conditions. Gathering this condition information requires 

SHM and inspection on a grand scale, which must be accurate, inexpensive and easy to 

interpret. Moreover, the sheer number of critical facilities necessitates selective monitoring 

using sensors to reduce the cost to the exchequer. For large civil engineering structures, such 

as bridges, buildings and power generation infrastructure, manual inspection techniques are 

often used. This leads to inspections that can be influenced by subjectivity due to environmental 

and physical conditions.  

1.2 Overview of Digital Image Correlation (DIC) 

DIC is a full-field non-contact optical method for measuring displacements based on the 

correlation of the digital images taken during test execution. DIC can be used for monitoring 

by imaging a bridge periodically and computing strains and displacements from images 

recorded at different operating conditions. This data can track the deterioration history of a 

defect and inform its cause and suitable intervention. Structural health monitoring of different 

bridge components (local analysis) and an entire bridge (global analysis) can be studied using 

DIC.  
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A simple, cost-effective and practical imaging-based technique is adopted in this study for 

monitoring damage in bridges. The basic premise of this method is based on correlating the 

digital images associated with an object before and after deformation and, additionally 

identifying the displacement and strain field for an object, depending on the position of the 

image (Sutton et al. 2009). DIC enables determination of the surface deformation of an object 

(Mudassar and Butt 2016). Portable DIC and non-interferometric methods are widely used in 

the field of structural health monitoring (Antos et al. 2017). The non-interferometric method 

determines the surface distortion by evaluating the grey intensity variations of the object 

surface before as well as after deformation, and usually have less rigorous expectations under 

experimental conditions (Pan Bing et al. 2009). DIC technique has been extensively accepted 

and frequently used as an effective and versatile tool for surface distortion measurement as part 

of experimental solid mechanics.  

A portable DIC and photogrammetric data acquisition system using only digital cameras for 

SHM that is simple and robust enough to be used in the field without specialized training is 

proposed. The proposed device and procedure will enable the two dimensional (2D) DIC as 

well as out of plane measurements using photogrammetry, without sacrificing accuracy and at 

a lower cost. This system will enable global as well as localized measurements of structural 

deformation and provide data for periodic maintenance. The flowchart showing the image 

processing technique in Figure 1.1 explains the overall procedure adopted for DIC technique. 

 

Figure 1.1 Flowchart showing the typical image processing procedure for DIC 
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1.3 Reinforced Cement Concrete (RCC) Scaled (1:12) T-Beams 

Most of the bridges in India are constructed of RCC of which T-girder bridges are most 

common wherein the flange portion (slab) carries the compressive loads and the reinforcing 

bars placed at the bottom of the web (stem portion) bear tension. The T-beam girder bridge is 

most commonly adopted in a span range of 10 to 25 m.  

1.3.1 Law of similitude analysis for scaled concrete 

The requirement of developing small-scale reinforced concrete models came into existence 

with the increased use of reinforced concrete for various complex structures (White 1964). 

Physical modelling techniques for small-scale reinforced concrete T-beam subjected to a four-

point bending test presented. The field models are scaled down to reduced models which 

replicate full scale reinforced concrete structure with model concrete and reinforcement is the 

same as that of the full-scale model. Portland cement scale model, is adopted in this study 

because this model has the advantage of being made from the same material as a full-scale 

specimen.  

The laws of similitude (Harris and Sabnis 1999) place strict requirements on the relationship 

between full scale and reduced scale model, which need to remain constant in order to ensure 

complete similitude requirements. If concrete and steel are two materials used in reinforced 

concrete, then these two materials must maintain the scale ratios with their respective 

counterpart models. It is essential to find materials which will maintain the same stress-strain 

behaviour as full-scale models. The ideal condition would be to use the same materials in the 

model as in full-scale specimen (Harris et al. 1966). The difficulty in using this type of model 

lies in scaling the aggregate according to the law of similitude. If the standard aggregate size 

is reduced by 1:12, the maximum size of aggregate is that of sand, and the mixture compares 

to that of mortar (El-Ariss 2006). The idea is to develop a model which is similar in all the 

aspects right from reinforcing bar to deformations. The size of the model must be large enough 

to measure the deformations (Wolowicz et al. 1979) and assertion properties like compressive 

strength, stress-strain relationship and tensile strength (Simitses and Rezaeepazhand, 1992).  

In this study, small-scale T-beams are designed using the law of similitude and tested. 

Maintaining the law of similitude requirements in materials proposed by Harris and Sabnis is 

a crucial aspect of these type of models. In the current study, standard RCC Ministry of Road 

Transport and Highways (MoRTH) bridge dimensions are scaled-down. Image processing is 

done using an open-source Ncorr v1.2.2, a MATLAB R2018a based algorithm to obtain results 
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using random speckle pattern and QR code-based speckle pattern which is imposed on the 

beams. 

1.4 Damage Index (DI) Using Artificial Neural Networks (ANN) 

ANNs have been successfully implemented in damage identification of structural systems by 

several researchers. Hasançebi et al. (2013) presented an ANN based approach for damage 

detection in RCC T-beam bridges using Finite Element Analysis (FEA) based model updating 

method. Cao Vui V. et al. (2014) developed a methodology to find the residual moment 

capacity of the structure using the DI method. Jadid and Fairbairn (1996) proposed a model to 

predict the Moment (M)-Curvature (κ) relationship of a beam-column joint. Jeyasehar and 

Sumangala (2006) presented the damage assessment of prestressed concrete beams using the 

feed-forward back-propagation algorithm. Wu X Ghaboussi and Garrett (1992) proposed the 

self-organisation and learning capabilities of neural networks in both damaged and undamaged 

structural assessment. 

1.5 Thesis Organization 

The complete thesis is organized as follows: 

i. Chapter 1, of the thesis motivates the necessity of this study and discusses:                        

a) Advantages and disadvantages of DIC; b) Testing of scaled RCC T-beams using the 

law of similitude analysis; c) Development of a Damage Index (DI) suitable for flexure 

dominated bridge girders using ANN.  

ii. Chapter 2, reviews the literature on DIC speckle patterns, Scaled RCC T-beams, and 

existing DI developed using ANN. The gaps in the literature are summarized. 

iii. Chapter 3, details the scope and objectives of the investigation. 

iv. Chapter 4, establishes the QR code as a speckle pattern suitable for DIC based 

measurements of RCC beams and presents the validation of corresponding FEA 

models. 

v. Chapter 5, describes the experimental investigation of 1: 12 scaled RCC T-beams 

using DIC and comparison with experimental, numerical and analytical results. 

vi. Chapter 6, develops the DI based condition assessment methodology for RCC beam 

girders using ANN. 

vii. Chapter 7, presents the conclusions and the scope for further study. 

The literature review of the present study is presented in Chapter 2. 
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CHAPTER 2 

Review of Literature 

2.0 General  

In the previous chapters, the need for optimal speckle pattern in the field of Digital Image 

Correlation (DIC) was brought out. The need for similitude analysis regarding scaled 

Reinforced Cement Concrete (RCC) T-beam studies was discussed, and the necessity of deep 

learning techniques based on Artificial Neural Networks (ANN) were also addressed. In the 

present chapter, the details of literature available on the above are discussed. The extensive 

research that is being conducted in the field of Structural Health Monitoring (SHM) is 

delineated. In the present chapter studies that were reported earlier with regard to SHM, are 

reviewed. This section presents a state of art report on the development of SHM using DIC. A 

brief report of the literature study is presented below. 

2.1 Review of Literature on Digital Image Correlation (DIC) 

Lucas Bruce D and Takeo Kanade (1981), presented a new image registration technique 

using Newton-Raphson iteration method between consecutive images to find a good match 

among these images. This technique is fast because it inspects far fewer possible matches’ 

among the images. This registration technique can handle scaling, shearing and rotations of 

images. These type of techniques are used mainly in image processing fields. The strategy 

adopted in this algorithm is a combined coarse-fine method which is basically for low-

resolution matches. For better convergence of images in several iterations, image smoothening 

is adopted in this algorithm. The performance and implementation of the algorithm is also 

discussed in this study. 

Sutton M.A et al. (1983), determined an improved DIC method for full-field in-plane 

deformations of an object. The surface deformations are calculated based on selecting subsets 

from the deformed and undeformed images. After calculation of deformations, the 

corresponding strains were obtained using green Lagrangian function. In this algorithm, after 

several iterations, the iteration routine terminates once the acceptable correlation coefficient is 

reached. Several laboratory experiments were conducted using correlation method to check the 

suitability of employing the algorithm in DIC field. Using bilinear interpolation procedure, the 

computed displacements were approximately 0.10 pixels. Comparison of experimental with 

theoretical results shows good agreement with the algorithm. 
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Zyung et al. (1988), conducted experiments on poly methyl methacrylate (PMMA), commonly 

known as Plexiglas samples, for which the strains were recorded at various location using DIC. 

The experiment was conducted using two modes of loading. Mode-I was symmetric loading 

and Mode-II was unsymmetrical loading. The cracks were observed at mid-span, and strain 

measurements were calculated at a distance from the tip of the crack. The tip of the crack was 

taken as origin, and radial distances were taken in the form of (r, θ). DIC was developed in the 

1980s employing pixels for displacement and strain measurements. 

Lu and cary (2000), incorporated a process for refining DIC method by applying a 2nd order 

Taylor series approximation of the displacement field. It was observed that twelve parameters 

consisting of displacements, 1st and 2nd order displacement gradients represent a much wider 

range of deformation. A 13th parameter introduced in the form of grey-scale value offset of the 

bicubic spline interpolation (determines grayscale values at any location in the grey-scale 

image fields) for the deformed image allows us to make assumption that the grey-scale value 

“h” in the deformed image is nearly the same as grey-scale value “g” in the reference image. 

The above assumption was used in the approximation of Hessian matrix, which is used for the 

calculation of displacement parameters. In the case of 2nd order deformation test, the results 

showed that by measuring and accounting for higher-order gradients, displacements and 1st 

order gradients (used in the calculation of strains) could be measured more accurately.  

Hung et al. (2003), proposed a Fast and Simple (FAS) algorithm based on the DIC for the 

measurement of surface deformation of planar surfaces. Different specimens were investigated 

to check the feasibility of this algorithm. The algorithm uses fine search on the pixel level 

within the fixed region, and the position of the local minimum sub-pixel level is then obtained 

based on the fitting area to the range of discrete pixels surrounding the solution on the pixel 

level. An aluminium plate was subjected to uniaxial tension test. The strain results from strain 

gauges were compared, using Newton-Raphson and FAS methods. Similarly, a circular disk 

was subjected to a diametrical compression test, and the various strain results obtained from 

the test were compared. In the case of uniaxial tension test, there is good agreement with strain 

gauge results. On the contrary, limited accuracy was achieved in the latter case. Also, tests 

were conducted adopting various speckle sizes, and the optimal speckle size (2-10 pixels) was 

found out. 

Tong (2005), presented a study on the robustness, reliability, computational cost of commonly 

used four image correlation criteria by comparing strain mapping results of three sets of 
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digitally modified images (using paint shop pro, Eden prairie, etc.) with varying brightness, 

contrast, uneven local lighting and blurring. Only SSD correlation coefficients were evaluated 

as CC coefficients can be related to SSD correlation coefficients. It was observed that the fourth 

correlation criterion didn’t fail at any of the variable lighting and exposure conditions but took 

larger computational time for processing when compared with other three. The reliability and 

accuracy of strain mapping results were assessed at both global level and local level (average 

and standard deviation of local strains). The test results obtained using fourth correlation 

criterion were more robust. Point-to-point difference between test mapping results and 

reference ones for all three in-plane strain components (exx, exy, eyy) was made, and it was found 

that second correlation criterion was nearly as reliable as the second correlation criterion 

(though it fails at certain modified conditions) whereas first and third weren’t very much 

reliable (first correlation criterion being the least reliable).  

Kozicki and Tejchman (2007), conducted experiments for strain localization of concrete with 

the help of DIC. They measured surface displacements using digital images recorded at 

consecutive intervals of time while conducting experiments. They carried-out model tests with 

notched concrete specimens under three-point bending. Three different beam sizes and two 

different concrete mixes were used in the study. They determined load-deflection curves and 

evolution of fracture process during experiments. They also compared measured size effect in 

strength with the deterministic size effect law proposed by Bazant (1984) and experimental 

results reported by Bell et al. (2003). It was observed that strong size effect occurs in concrete 

beams subject to bending. The beam ductility and nominal strength increase with decreasing 

specimen size. It was also discovered that DIC is a very simple and effective method for 

determination of strains with large accuracy and without physical contact and the width of the 

fracture process zone increases during deformation and is equal to about 6-7 mm before the 

failure. The zone can be almost straight or strongly curved. He also informed that the current 

algorithm could be improved by applying Fast Fourier Transformation to accelerate the 

computation of strains and displacements. 

Yaofeng and Pang (2007), investigated the effect of subset size, which is related to image 

pattern quality and subset displacement functions, as well as on the accuracy of deformation 

estimations using DIC. A parameter, called subset entropy (average of absolute intensity 

divergences at any point in the subset from the neighbouring points normalised by the pixel 

depth of the image) was proposed to quantify the subset image quality for image correlation 

and therefore the interaction between subset entropy, and subset size was studied. DIC was 
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performed on the images with scattered subset entropies under rigid body translation test, and 

a plot of the standard deviation of displacement vs mean subset entropy was obtained. It was 

observed that the standard deviation of translation decreases when the subset entropy increases. 

Images with uniform subset entropy were studied under rigid body translation, and it was 

observed that the standard deviation of displacement decreases with respect to subset size. 

Then, the specimen was subjected to tensile test, and it was observed that with uniform subset 

entropy a significant error of more than 50% was observed in the mean strain compared to  

mean translation when a smaller subset was used. It was assumed that a larger subset has more 

mutual pixels involved in the correlation and can also reduce the influence of imaging noise 

and pixel intensity quantisation during image acquisition. In the case of non-homogenous 

deformation field, the systematic errors increase faster in displacement measurements of higher 

strain gradients due to mismatch of displacement functions and true deformation and 

equilibrium between the influence of systematic and random errors was observed at a smaller 

subset. 

Moon and Kim. (2011), developed a technique of classifying the image, whether it is cracked 

or uncracked beam. The test beams were cast and cured at room temperature. Then the testing 

of the beams was done in universal testing machine under laboratory conditions. As the load 

increases the beams starts deflecting. Photographs were taken, and the photos are in the form 

of RGB Images. To ensure better accuracy the images taken must be processed, i.e. they must 

be converted from RGB image to binary images. This process is called image processing. Once 

image processing is done, the images need to be trained in neural networks. After a sufficient 

amount of training, the neural network finally classifies the image into the cracked and un-

cracked images.   

Vassoler et al. (2010), investigated the accuracy of the displacement measurement for different 

sets of DIC algorithm using numerically simulated images for zero, 1st and 2nd order 

displacement fields considering only algorithm error. Images containing 256 x 256 pixels were 

numerically generated for three different deformations: rigid translation, 1st order displacement 

field and 2nd order displacement field. In the case of rigid translation, the maximum absolute 

error decreases with increase in speckle size (maximum up to 5 pixels in all the cases) for a 

given subset size and the mean error showed a sinusoidal shape with no dependency on subset 

size and a period of 1 pixel. In the case of 1st order displacement (analysed up to 10% 

stretching), maximum absolute error varied similarly as that of rigid translation for a given 
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subset size and the mean error varied randomly. In both the above cases, the maximum absolute 

error decreases with increase in subset size. In the last case, the observations suggest that 

absolute error may vary exponentially with respect to strains due to inappropriate relationship 

between the pattern and subset sizes. It was observed that for 2nd order displacements, under 

lower strains, larger subsets performed better and under higher strains while smaller subsets 

showed less absolute error. It was worth noting that though the evidence didn’t provide 

information about ideal granule or subset size, they lay emphasis on the choice of these 

parameters for high-order displacement field. 

Stoilov et al. (2012), studied random patterns that are used for DIC. They generated three 

random patterns with different textures for the work. He generated them numerically using a 

computer. They carried out several studies on the shape of autocorrelation functions and 

behaviour of cross-correlation functions under several degrees of tensile deformation. They 

introduced a criterion for evolution of random pattern quality. The characteristics of the 

proposed synthetic random pattern are obtained by applying a very sophisticated technique. A 

computer-generated random pattern is applied to the area of interest. Three groups of specimens 

with three artificial patterns are printed, and they are subjected to tensile test. The conventional 

tensile test shows the quality of patterns is good enough despite lower signal to noise ratio of 

respective patterns. From his observation, he added that the proposed synthetic patterns are 

best until real deformation reaches 20%. 

Salmanpour et al. (2013), reported the measurement procedure and the applicability of DIC 

for measuring strains and full-field displacements when testing large masonry walls at full-

scale. Eleven static-cyclic tests were performed in two phases (preliminary phase and main 

phase) on different wall types. Setup was built on thick concrete foundations, and the shear 

forces were applied through a steel beam connected to the walls by means of mortar. Two 

different cameras (Nikon D3 camera and Nikon D800E) were used during testing and 

processing was done using Vic2D commercial code. The confidence interval was calculated 

using covariance matrix of the correlation equation to estimate the accuracy of measurements 

which confirms expected displacement accuracy of 0.01 pixels. The test results proved that 2D 

DIC might be considered effective for displacement and strain measurements. 

Shih and Sung (2013), proposed a paper based on the feasibility of using DIC to observe 

cracks developed in reinforced concrete beams. Depending on the relative motion between the 

blocks on either side of the cracking line, crack width and dislocation length were calculated 
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theoretically. To study the feasibility of DIC for the purpose, two different specimens were 

subjected to a three-point bending test. From the displacement diagrams for 1st specimen, the 

occurrence of minor cracking on the specimen surface was observed using digital speckle 

images. Further, the angular displacement diagram showed the process of cracking extension 

and the angular degree revealed that cracking had infiltrated the test specimen. In addition to 

this, the strain concentration shown on Von Mises strain diagram was more obvious in slightly 

larger stages of loading, and the strain diagram revealed that the specimen rupture was shear 

based. From the displacement diagrams of 2nd specimen, it was observed that the rupture started 

from pre-laid defective notch without 45o displacement, which concludes that the mode of 

rupture was controlled by open tension fissure. Further, from Von Mises diagram, strain 

concentration was observed in the middle of the beam bottom with several cracks seen in the 

specimen but not obvious at 45o cracking, indicating the rupture to be flexural in nature. The 

results from the displacement and strain diagrams agreed with the digital images taken after 

the cracking of the specimens, which implies that identifying early crack development is 

possible through DIC.  

Pan (2014), proposed a paper on the convergence characteristics of IC-GN algorithm in terms 

of convergence speed and convergence radius. The influence of initial guess of deformation, 

subset size and interpolation scheme on the convergence criteria were also carefully examined 

using experimental images. Two sets of images, one from three-point bending test of rubber 

specimen and the other from the tensile test on aluminium sample were analysed under four 

different convergence criteria (in the ascending order of stringency). It was observed that 

quicker convergence with fewer iterations was obtained with a larger subset size. It was also 

observed that with the increase in offset distance, the number of iterations increased and the 

success rate of convergence decreased. It was worth noting that an efficient initial guess 

transfer scheme ensured rapid convergence of IC-GN algorithm at least iteration. The relative 

differences between displacements measured using 4th criterion and the other three criteria were 

depicted graphically along with maximum and standard deviation in each of the cases. Because 

the differences between displacements measured using 2nd and 4th criterion are small enough 

to be neglected, the 2nd criterion is highly recommended. 1st criterion may also be used with 

slightly lower accuracy compensated using proper smoothing methods. 

Liang et al. (2015), investigated on strain measurements of damaged areas using DIC. They 

found that DIC measurements for damaged areas differ from conventional DIC. In 

conventional DIC, calculation path is generally from left to right or top to bottom. Separate 
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methods were given for path calculation for damaged areas. From the method of path 

calculation (higher correlation to lower correlation), calculation errors are decreased by 35% 

compared to conventional DIC. To reduce calculation time, a threshold is set so that correlation 

stops automatically when the correlation result is lower than it. The efficiency of the proposed 

technique is compared with simulated images. He came to a conclusion based on the results 

that his method is useful for many applications such as crack opening, drilling measurement 

etc. 

Ab Ghani et al. (2016), studied DIC technique for calculating the strains and displacement. 

The test was conducted to measure the tensile strength of GFRP. The surface was first prepared, 

and speckle pattern was drawn on using paints. A high-resolution camera was used to take 

photographs of the specimen. Then the images were converted from RGB images to grayscale. 

Ncorr application in MATLAB was used to perform DIC. Firstly, the unloaded image was kept 

as reference image, and then the current images were loaded in the toolbox. Then the process 

of DIC was carried out using Ncorr, and finally, the output of the result was displacements and 

strains. The contour of the displacement and strain profile is also shown as output in Ncorr. 

The values of the output were compared with the actual values of the experiment, and the 

necessary graphs are plotted.  

Blaysat et al. (2016), proposed formulae for the displacement measurement while including 

and excluding the influence of sub-pixel interpolation. A noiseless DIC tangent operator was 

defined to minimise the noise propagation from images to displacement maps. When the two 

predictive formulas were validated with noisy simulated data, it was found that one of them 

provides reasonable global assessment for the displacement resolution, since on average there 

was a 16% deviation from the experimental resolution and, the other gave on average a 

predicted displacement resolution closer to the experimental one since the divergence was only 

4%. When these formulae were validated with experimental data, it was found that the ratio 

obtained between predicted and empirical resolutions was much higher than one. Generalised 

Anscombe Transform (GAT) was applied to transform a homoscedastic Gaussian noise into a 

heteroscedastic Poisson-Gaussian noise, and the scatter was much lower, but it was observed 

that resolution distribution still depends on the lighting intensity. The reason was the micro-

movements between camera and specimen were resolved by considering a pre-processing 

procedure called non-random signal reduction (applied only on regular markings). Thus, the 

formulae were verified satisfactorily. 
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Chen et al. (2018), presented a study concerned with the optimisation of Digital Speckle 

Pattern (DSP) for DIC by considering both accuracy and efficiency. The RMS error of IC-GN 

algorithm, average no. of iterations, influence of subset sizes and the noise level of images 

(noiseless, 1% noise level, 3% noise level, 5% noise level) were basic parameters in quality 

assessment formulations. In the design of 1-R and Multi-R speckle patterns, a pseudo-random 

function was defined so that a random DSP can be perturbed with a random factor ‘rand’ from 

the regular speckle array. The imaging of Gaussian speckle patterns was more realistic than 

binary images, but it’s challenging to obtain Gaussian patterns; therefore, the recorded DSPs 

were used as primary DSPs for optimisation. The four-step experimental procedure for 

optimisation consisted of shifting the recorded DSPs with a displacement step of 0.05 pixels, 

adding 1%, 3% and 5% noise using MATLAB, calculating the required data and giving 

statistical results in box plots to display the iteration distributions and RMSE of corresponding 

DSP. The RMSE of the displacements can be expected to decrease as the value of rand 

decreases, but the variation in number of iterative cycles isn’t obvious as the value of rand 

varies. With the noise-level fixed, it was observed that large subsets have fewer iterations and 

higher precision. It was concluded that on comparing multi-R DSPs with the smallest radius 

and 1-R with a radius of two, 1-R was superior in both precision and efficiency. The results 

obtained from downloaded and experimental DSPs indicated that experimental speckle patterns 

experience more significant fluctuations in both displacement error and number of iterative 

cycles. 

2.1.1 Review of literature on experimental RCC beam testing 

Srikanth et al. (2007), developed a relationship between Moment (M)-Curvature (κ) using 

experimentation and validated the result using six confinement models. The six confinement 

models of M-κ were compared with experimental data, and observations are made. Some 

assumptions were made such as the stress-strain relationship was assumed to be stress block of 

the beam, tensile strength of concrete was neglected, while strain profile across the section 

remains linear until failure, etc. For obtaining the relationship between discrete values of 

concrete strains. The concrete strain was assumed in the range of 0.0001 to 0.01, and the neutral 

axis was initially assumed to be 0.5 times effective depth. The experiment beams contained six 

beams, three are over reinforced, and other three are under reinforced. The predicted confined 

models were then compared with experimental data, both numerically and graphically. For 

numerical comparison, three points were selected, i.e. ultimate moment and corresponding 
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curvature (Mu, κu), moment corresponding to 85% of the ultimate moment (0.85Mu and 0.85κu) 

in ascending portion and 85% of the ultimate moment (0.85Mu and 0.85κu) in descending 

portion. 

Swamy Naga Ratna Giri et al. (2017), conducted several experiments in the laboratory on 

RCC beams under flexural testing and the corresponding Moment (M)-Curvature (κ) 

relationship was drawn. A comparative study was proposed for both wet-cured and self-cured 

in terms of Moment (M)-Curvature (κ) relationship. Analytical stress-strain model was 

proposed for different curing conditions using Saenz’s model, and after that, using stress block 

parameters, the corresponding analytical Moment (M)-Curvature (κ) was derived. The non-

dimensional stress-strain relationship was proposed in this study. A significant difference in 

strength was observed among the beams and the ultimate moment of self-cured beams were in 

good agreement with wet-cured beams. A high moment carrying capacity was observed in 

conventional water-cured beams when compared with self-cured beams. The Moment (M)-

Curvature (κ) relationship for both the ascending portion and the descending portion of the 

stress-strain curve are proposed. 

2.1.2 Review of literature on numerical modelling of RCC beams  

Jankowiak and Lodygowski (2005), presented a methodology for material parameter 

identification using Concrete Damage Plasticity (CDP) model in ABAQUS software. The 

constitutive parameters identified from the laboratory experiments are presented in this study. 

To test the constitutive model of concrete, two standard applications are shown here. The 

softening and hardening scalar damage variables for both tension and compression are 

presented. Mesh sensitivity analysis is done for accurate prediction of models. A single-edge 

notched concrete beam is used for both three-point and four-point bending tests in the 

laboratory under static loading condition. A comparative study is proposed based on crack 

patterns for both experimental and numerical investigations. The realistic behaviour of concrete 

from the experimental investigation is compared with numerical modelling. 

George et al. (2017), carried out an investigation regarding non-linear behaviour of concrete 

using CDP model in ABAQUS software. A modified Drucker-Prager criterion was adopted for 

tensile and compression plasticity of concrete to predict the inelastic behaviour of concrete in 

association with damaged elasticity. In this model, the concrete tensile cracking and concrete 

compression crushing were considered in this study. Based on experimental results, the load-
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deflection curves obtained from the three-point bending test are given as input parameters in 

ABAQUS software. In order to predict accurate behaviour, a mesh sensitivity analysis is done. 

Different elements are used in this study to predict the variations in terms of accuracy. CPS3 a 

two-node triangular element and CPS4R a four-node quadrilateral element is used in this 

investigation. By increasing the span to depth ratio, the load carrying capacity of the beam 

decreased. 

2.2 Review of Literature on Scaled RCC T-Beams Using Model Concrete 

Deniaud et al. (2003), studied the effect of shear strengthening of Reinforced Concrete T-

beams with Fiber Reinforced Polymer (FRP) Sheets. A total of four laboratory concrete T-

beams were cast, and eight tests were conducted on those specimens. A four-point bending test 

was performed on T-beam specimens. The maximum shear capacity increased from 15.4% to 

42.2% from the beams. The shear capacity increased due to the amount of internal shear 

reinforcement and corresponding FRP technique. 

El-Ariss (2006), reports the effects of reducing the coarse aggregate quantity in mix 

proportions on the compressive strength of concrete. For desert regions, the availability of 

coarse aggregate was very low in order to overcome this issue, the amount of coarse aggregate 

was reduced, and the empirical formula was framed for optimizing a concrete mix design for 

desert regions. Extensive laboratory experiments were performed, and about 1350 samples 

were tested with 30 different concrete mixes. Influence of coarse and fine aggregates, curing 

methods, and water/cement ratio on the compressive strength of concrete was analysed. Two 

separate formulas were developed for the quantity of coarse and fine aggregates as a function 

of compressive strength.  

Knappett et al. (2010), developed a model concrete which consists of water, fine sand as a 

geometrical scaled coarse aggregate, gypsum-based plaster can produce a model concrete 

having a range of compressive strength 25-80 MPa at very high scale factors. Reinforcement 

was modelled using wire mesh and roughened steel wire in order to satisfy similitude 

requirements. A series of laboratory experiments were conducted regarding four-point, and 

three-point bending tests on model beams of size 0.5*0.5 m2 section prototype beam of using 

a scale factor 1:40. However, using the law of similitude analysis, results show that this 

technique allows for strength, ductility and stiffness of structural element under bending tests, 

and failure modes are accurately reproduced.  
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Syed et al. (2012), conducted structural testing in the laboratory, which requires scaled models. 

In general, bridges have massive piers and heavy loads; so for these models, scale factors need 

to be applied by satisfying law of similitude requirements. A series of laboratory experiments 

were conducted on scaled bridge columns in which quasi-static cyclic testing was done with 

free vibration tests. A detailed explanation of several requirements of similitude analysis 

regarding dynamic and static tests are different from each other. Here the scale factor for bridge 

columns is considered as 1:4, which would be a reasonable and manageable test specimen for 

laboratory conditions. 

Petry and Beyer (2012), presented an overview of the difficulties related to scaling. Using 1:2 

scale factor, a modern four-story building with unreinforced masonry brick wall is tested using 

a shake table to investigate the interaction between structural elements. Generally, large 

dimension structures are difficult for testing, so scaling factors are applied uniformly based on 

the law of similitude requirements. A comparison of mechanical properties are made between 

full-scale and reduced-scale masonry models where using scaled model testing’s real size 

structures can be assessed correctly. The results obtained from the half-scale masonry structure 

and tested under proposed shake table test give desired results.     

Balawi et al. (2015), investigated scaling laws based on the law of similitude theory for plates 

and beams which are loaded statically and on low-velocity impact. An important aspect of 

scale-down models is about understating the relation between prototype and scaled model 

behaviour. Dimensional analysis was used to find similitude requirements between the scaled 

models. In most of the cases, it is not possible to satisfy the similarity between scaled models 

and corresponding prototype models due to environmental conditions, shape, size, material 

properties and boundary conditions. Theoretical prediction of a prototype was compared with 

the theoretical prediction of the scaled model. Numerical and experimental results were 

compared among the scaled models. Experimental and numerical results are in good agreement 

with similitude theory.    

WU and XIONG (2017), studied about thirty six-storey high-rise structure with a height of 

149 m. The main objective was to strengthen the hybrid structure as well as to evaluate the 

earthquake-resistant behaviour. A scaled model of the steel-concrete hybrid structure with a 

scale factor of 1/20 was tested on a shaking table. Based on the testing, the dynamic properties 

and seismic behaviour were analysed. The prototype structural component had a micro concrete 
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strength grade of M6, M8, M10 and M12. For different seismic actions, the model structure 

mainly remains bending deformation according to the damage in the model structure. 

Altunisik et al. (2018), investigated similitude requirements between prototype and scaled 

models for load-bearing systems. In this study, they considered different structural elements 

with different scale factors. The structural elements were frame, column, simple beam and 

cantilever beam with scale factors of 1/5, 1/2, and 1/10 scale factors. Using similarity 

relationship, one can model as scaling up and scaling down depending on the situation and 

available facilities. This similitude analysis can be adopted using dimensional analysis or by 

field equations of the system. For different load-bearing systems, the scale factors are constant 

depending on the scale type, and the corresponding results were examined. The experimental 

results were compared with numerical results obtained using SAP2000 software.  

2.3 Review of Literature on Damage Indices 

Stubbs and Kim (1996), developed a method of damage indices to quantify the damage done 

to the structure.  They assumed a beam can be considered as Euler Bernoulli beam. They started 

a research project on beams, and then they calculated damage indices as a function of strain 

energy. The beam is divided into N number of nodes, and the strain energy is calculated on 

each node. The strain energy was evaluated for both damaged and undamaged structure. The 

strain energy at a particular node is divided by the strain energy of the total beam and then 

calculated for damaged beams. The ratio of flexural rigidity of the undamaged structure to 

damaged structure will give the Damage Index (DI) at a particular node. Hence, DI was 

calculated at each node, and then with the help of statistical analysis, normalized DI was 

calculated. A threshold value of the DI was set, and if the obtained value of the damage must 

be lower than the threshold value to ensure safety of the structure.  

Fitzner and Henrichs (2001), analysed damage diagnosis, which is required for 

comprehensive characterization, interpretation and rating of the stone damage. They developed 

a comprehensive monument mapping method as a non-destructive procedure for in-situ studies 

on weathering damages at natural stones. This procedure allows the phenomenological 

response of the natural stones to weathering processes. New tools damage categories and 

damage indices have been introduced for consequent quantification and rating of stone damage 

as a significant scientific contribution to damage diagnosis and monument preservation. There 

are three steps in the control of damage due to weathering. These are Anamnesis, which deals 

with monument identification, location, art-historical portrayal, case history, utilization, and 
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environment. Diagnosis which deals with building materials, material properties, state of 

deterioration, factors and processes of deterioration, need/ urgency of preservation measures 

and therapeutically steps which deal with conception, calculation, test-application, execution 

and control certification of preservation measures long-term observation and maintenance of 

monuments. Out of these three steps, diagnosis is an essential and laborious procedure. It 

involves in situ investigations which deal with measurements, monument mapping, sampling, 

laboratory analysis, which consist of analysis of physical, chemical and mechanical material 

properties and weathering simulations, which consist of outdoor exposure chamber tests. They 

have also developed scales of deterioration, which consists of non-visible deterioration and 

visible deterioration. After the detail, description of cause and state of deterioration of damage 

is quantified in terms of DI. 

Sung et al. (2012), discussed SHM of large span bridges, especially cable-stayed bridges. They 

developed Finite Element Method (FEM) models, comparing different damage indices based 

on the frequency of load and designing a new DI denoted by the letter “W”, utilizing exited 

damage indices. The paper consists of the determination of DI of Wenhui Cable-Stayed Bridge 

and finding out the various damage indices and comparing it. The noise was also added to the 

data to check for variation, and which gives more reliable result. We know that noises are 

inevitable in measuring; the correction for noise was also taken care of by using the correction 

formula proposed by them. In the analysis of Wenhui Bridge, they have come out with eight 

cases out of which first four are the single damaged case, and other four are multiple damage 

case. The analysis has been done for all eight cases, and they came with the W damage index 

for all damage cases.  

Cao V. V. et al. (2014), reviewed the available concepts of DI in order to propose a new 

concept of DI, which is based on residual deformations. In general, DI are classified into two 

categories. The first category is about non-cumulative DI, which does not include the effect of 

cyclic loading. The second category is about cumulative DI, which produces a rational 

indication of the extent of damage in case of earthquakes. Generally, DI varies from 0 to 1, 

where 0 indicates no damage and 1 indicates a collapsed state of damage. A new DI is proposed 

based on energy for both cyclic and static loading conditions and compared with established 

DI proposed by several researchers. Most of the researchers widely use DI proposed by Park 

and Ang (1985). Damage classification proposed in this current investigation is as follows; 

 

 



18 
 

Table 2.1: Proposed damage indices for different states 

 

Wang et al. (2017), conducted experiments to find out the residual capacity of the bridge 

before and after collision. The main concern of the research is accidents between over height 

vehicles and Bridges. The damaged and undamaged results are plotted, and FEM analysis was 

done on the bridge, and the results were compared. Based on the experimentation and FEM 

analysis result, the damage coefficient was obtained, and the flexural capacity of the beam was 

calculated. The results of the research show that the typical section failure at mid-span arises 

from the edge position of the damaged region. FEM analysis was done using Abacus software. 

Concrete was simulated with solid element and rebar was simulated with bar element in 

Abaqus. FEM model shows the strain results at 1/4th, mid-span and 3/4th of the section. Both 

strains in concrete and rebar were calculated. Wang et al. provides us with the theoretical and 

experimental foundation for the evaluation of the technical state of RCC Bridge after a 

collision.  

Mechbal and Rebillat (2017), studied the behaviour of composite material for aeronautical 

industry. They worked extensively on SHM. Composite materials may be more appealing in 

aeronautical industry because of their advantages over conventional materials, but they are 

prone to damage, which is much more complicated. The damage to composite material was 

studied, and conclusions were made. The studies were made on composite stiffened plate, 

which is made up of monolithic carbon epoxy. The health monitoring is done using Lamb 

waves which propagate through the structure without any interferences if there is no damage 

to the structure. If there is any damage to the structure, Lamb waves interfere with the damage 

that can be recorded by receivers. The damage indexes are classified into several families, and 

then studies were carried out on different materials, and the corresponding damage indexes 

were calculated. The results in the above process can be tabulated, and effective SHM system 

was designed for stiffened composite structures. 

Hait et al. (2019), reviewed several available experimental and analytical methods for both 

global and local DI. These damage indices were reviewed for buildings and bridges, and their 

impact due to seismic loading and material deterioration are studied. For different levels of 
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seismicity, several case-studies were addressed for assessment of bridges and buildings to 

understand the variation of DI. The authors addressed the future scope of research in different 

aspects of damages like progressive development, damage estimation, and time-dependent 

damage assessment for various non-structural and structural components using different 

materials. He proposed the limitations of DI for various available methods. 

2.4 Review of Literature on Application of ANN 

Karamodin et al. (2008), carried out the investigation on SHM using experimental data, and 

used that data for training artificial neural networks for prediction of the DI. Two neural 

networks were designed separately at each time step to monitor storey damage. The input given 

to the first neural network was maximum drift of each story, and the next stories and damage 

due to maximum drift of the story as output. Second neural network identified damage due to 

energy dissipated at each story. From shear to drift story diagram, the input for the data was 

calculated, and it was appropriated to the energy dissipated. For the first neural network, a feed-

forward neural network with one hidden layer consisting of ten nodes was selected. Tangent 

sigmoid transfer function was used for hidden layer nodes, linear (purelin) is used for output 

nodes and Levenberg-Marquardt back-propagation for training. The training required 1000 

training epochs to achieve a Mean Square Error (MSE). For the second neural network, the 

training algorithm remains the same, but it had two hidden layers consisting of 10 nodes in 

each hidden layer. 

Abd et al. (2015), estimated the deflection of continuous deep beam using both experimental 

data and artificial neural networks. They did a comparative study on Statistical modelling and 

neural networks. Deep beams are beams, which have high depth when compared to its width. 

The depth of the beam can be compared with its span. According to IS 456:2000, in a simply 

supported beam, if l/d ratio is less than 2, it is considered as deep beam whereas in case of 

continuous beam its value must be less than 2.5. The behaviour of deep beam is different from 

that of a regular beam. The elastic solution is reliable if the beam is uncracked. If the cracks 

are formed in the beam, there will be redistribution of the stresses in the beam, and hence elastic 

principles cannot be applied to the beam. Non-elastic analysis of the beam must be done. Most 

importantly, ANN is capable of learning from examples. Multilayer ANN with a feed-forward 

algorithm with back-propagation is developed to model the nonlinear relationship between the 

deflections under the ultimate strength of deep beam. 75 samples were studied, which had two 

spans continuous beam, which was loaded by two-point load symmetric on both the spans.  
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Imam et al. (2015), determined the residual strength of the corroded reinforced beam subjected 

to various degrees of corrosion damage. The estimation of the residual flexural capacity of an 

RCC member was studied for more than three decades. The output of the study deals with the 

determination of factor Cf that gives residual strength on multiplying with the original capacity. 

Factor Cf is an empirical formula which depends on diameter (D) of the bar, corrosive current 

Icorr and T (time) in days for which the rebar was subjected to corrosive currents. We know in 

a corrosion process that corrosive current flows in a structural member in which water acts as 

an electrolyte and rebar act as an anode, which gets corroded. This type of corrosion is called 

galvanic corrosion. The value of the factor Cf always lies between 0 and 1. This means that 

when the value is close to 1, the damage due to corrosion is less and vice-versa. Experimental 

values were determined, and ANN model was developed. The input layer consists of diameter 

D and Icorr and T. The hidden layers consist of more than 50 neurons in each layer. Finally, in 

the output layer, we have Cf factor. The training epochs were 100, error goal was 0.001, training 

algorithm used was Levenberg-Marquardt, and transfer function was sigmoidal from input to 

the hidden layer and purelin from hidden layer to the output layer. 

S. Philip Bamiyo et al. (2016), discussed the complex behaviour of reinforced concrete slab, 

i.e. to study load-deflection of the two-way slab using artificial neural networks. A set of 30 

slabs were cast with dimensions of 700 mm x 600 mm x 75 mm and cured for 28 days. The 

load applied to the slabs ranged from 10 kN to 155 kN with 5 kN increments. The maximum 

deflection was 6.97 mm, which occurred at 155 kN producing a stress 369.05 kN/m2. As we 

know in neural networks, we need to have the training, testing and validating of experimental 

data. About 54% were used for training, 23% for testing and 23% for validation. The input 

layer consists of four input neurons. It had two layers of hidden layers consisting of five neurons 

in each layer and output layer consisting of two neurons, i.e. stress and deflection. In his study, 

the number of learning cycles used was 16. The activation function used was tan-sigmoidal 

function. The correlation factor was R2 = 0.9316, which is a good sign as the accuracy of ANN 

and experimental data was more than 95%. The maximum percentage error measured in 

deflection was only 0.23%. In linear regression model, the straight line passed maximum 

points.    
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2.5 Summary of Literature Review 

From a detailed literature review on SHM using DIC, it can be concluded that  

 Limited research is available in the context of Indian Bridges on the development of a 

framework for health monitoring of flexure dominated structural elements using DIC.  

 To achieve an effective correlation, the pattern must be random, isotropic, highly 

contrasting, and speckles should be neither too small nor too large. Correlation may fail 

with extremely large or small speckle patterns.  

 The accuracy of the measured displacement is influenced by the size of the speckle and 

the corresponding size of the used pixel subset. 

 Systematic experiments were performed by previous researchers to determine the 

properties of speckle patterns which have a dominant influence on the spatial resolution 

and accuracy of results.  

 The algorithms available in the literature are Curve Fitting Gradient-Based and 

Newton-Raphson Algorithms. Among these algorithms, Newton-Raphson Algorithm 

gives stable results with more accuracy. Based on the literature review, a QR code-

based speckle pattern is an innovative approach in the field of DIC. 

 The laws of similitude place strict requirements on the relationship between full scale 

and reduced scale model, which need to remain constant in order to ensure complete 

similitude requirements. 

 Literature review indicates that ANN is established as a vital tool in SHM. The accuracy 

of the network depends upon the consistency of the training data. 

 In comparison with ANN training algorithms, such as Bayesian Regularization, and 

Scaled Conjugate Gradient, the Levenberg-Marquardt algorithm gives acceptable 

results with fewer iterations and better accuracy. 

 Literature study indicates that there is no universally accepted DI scale is present. 

The objectives and scope of the investigation are defined in chapter 3. 
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CHAPTER 3 

Objectives and Scope of Investigation 

3.0 General 

This research work presents an innovative approach of using Quick Response (QR) code as a 

speckle pattern in the field of DIC. From the detailed literature review, it is clear that there is a 

lack of research available to develop QR code as a speckle pattern in the field of DIC. The main 

objective of the study is estimation of DI, and Condition Rating Number (CRN) based on 

curvature of flexurally dominated RCC members which are obtained using DIC. A framework 

is developed for bridge girder condition assessment using DIC based SHM. The study also 

compares the performance of the two different types of speckle patterns, i.e. QR Code based 

speckle pattern and Random speckle pattern on bridge deck components (rectangular and T-

beams).  

3.1 Scope of the Present Investigation 

 Experimental testing and validation of numerical models of rectangular flexure dominated 

RCC beams and scaled (1:12) T-beams under laboratory conditions. 

 Performance of two different types of speckle patterns, i.e. QR code-based speckle pattern 

and Random speckle pattern are compared.   

 Develop a framework for bridge girder condition assessment using DIC based SHM. 

3.2 Research Significance 

 An innovative approach to use QR code as a speckle pattern in the field of DIC is 

established with comparative results. QR code-based speckle pattern may be used as an 

integrated non-contact optical sensor for SHM and data embedment for BIM. (Patent 

Filed) 

 An image-based condition assessment methodology is developed to enable quantification 

of existing damage and residual moment capacity based on curvature for flexure 

dominated RCC Bridge T-girder. 

 Correlation between mechanistic based superstructure DI and bridge CRN is established. 
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3.3 Objectives of the Study 

 Determination of the suitability of QR code-based speckle patterns for obtaining local 

damage as well as global deformation of components. 

 Determination of the capacity of full-scale RCC T-beams based on experimental results 

obtained from scaled models and corresponding correlation with FE models. 

 Development of DI for RCC rectangular beams and T-beams based on ANN. 

3.4 Research Methodology 

In order to achieve the objectives of the investigation, detailed experimental work is planned 

in three phases: 

3.4.1 Phase-I: Determination of optimal speckle pattern 

The first phase of the study is aimed at investigating the performance of a proposed QR code-

based speckle pattern and its experimental validation. The QR code pattern is proposed as a 

replacement for the random speckle pattern generally used in the DIC method. To validate this 

new technique, flexural strength test using four-point loading is conducted for six different 

rectangular RCC beams. The deflection and curvature obtained from QR code-based speckle 

pattern is compared with the results obtained using speckle pattern-based DIC method as well 

as conventional dial gauges and Linear Variable Differential Transformer (LVDTs). The work 

involves testing of rectangular concrete beam specimens tested in flexure under a Universal 

Testing Machine (UTM). Strains and deformations were computed using both random speckle 

and QR code-based random speckle patterns applied to the specimens. MATLAB based open-

source DIC software package Ncorr v1.2.2 (Blaber et al. 2015) is employed for image 

processing. Ncorr is an open-source subset based Two Dimensional (2D) DIC software that 

includes modern DIC algorithms with some additional enhancements (Harilal 2014).   

The flexural performance of RCC beams, was investigated both experimentally and 

numerically. Different experimental methods are employed to measure the RCC beams flexural 

deformations and strengths, including traditional direct method by gauges/LVDTs, innovative 

noncontact methods by DIC (random speckle pattern and QR code speckle pattern). Results 

show that the data obtained from QR code-based speckle is closer to the values obtained from 

conventional methods (LVDT/dial gage) as compared to random speckle pattern. Then, 

ABAQUS is used to verify the experimental findings. Concrete Damage Plasticity (CDP) 
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model is applied for concrete. The related material parameters are calibrated and input into 

ABAQUS. Good agreement between experiment and numerical simulations are found.  

3.4.2 Phase-II: Investigation on scaled (1:12) RCC T-beams 

The second phase of the study is aimed at studying the behaviour of small scale (1:12) RCC 

flexure dominated T-beams using DIC technique. In the present investigation, an innovative 

QR code-based speckle pattern and Random speckle pattern are used. Using the law of 

similitude, the small-scale T-beams are designed, cast and tested under four-point bending so 

that the nonlinear constitutive behaviour can be correctly scaled to prototype. A model concrete 

consisting of cement, water and fine aggregates is developed by geometrically scaling the 

coarse aggregate and rebar. Load-Deflection and Moment (M)-Curvature (κ) curves for RCC 

beams obtained using conventional contact sensors and DIC are compared. Numerical analysis 

is carried out by using finite element-based software SAP2000. The identical component was 

simulated in SAP2000 and was found to be in good agreement with ABAQUS and 

experimental data  

3.4.3 Phase-III: Prediction of DI using ANN 

In the third phase, development of DI for both rectangular and T-beams using ANNs are 

investigated. ANN input data is obtained from experiments and validated simulations (Phase-I 

& Phase-II). The approach of Phase-III is using experimental data and artificial intelligence 

methods for the prediction of the damage state of RCC beams.  

Chapter 4 deals with the experimental, analytical and numerical programs of RCC scaled 

(1:12) T-beams using DIC. 
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CHAPTER 4 

Determination of Suitability of QR-Code Based Speckle Pattern Using DIC 

4.0 General 

This study presents QR code as a speckle pattern in the field of DIC. The objective is to 

compare the experimental results obtained from the readings of the deformations from the dial 

gauges and curvature meters with those obtained from the DIC technique and further, 

correlation with corresponding Finite Element (FE) models. An enhancement to random 

speckle pattern in DIC is developed, for the traditional four-point bending experiment using 

QR code as a speckle pattern. 

4.1 Experimental Programme 

The experimental program comprises of casting two beams each of three different concrete 

grades M30, M50 and M70 (M means Mix and 30, 50 and 70 implies the characteristic 

compressive of concrete in Mpa) with Under-Reinforced (UR) and Over-Reinforced (OR) 

sections (total 24 beams). For each grade, two different types of speckle-patterns are used; one 

each for UR and OR sections. The random speckle pattern and QR code-based speckle pattern 

are used for both UR and OR sections with normal, medium and high strength concretes. The 

schematic representation of experimental programme is shown in Figure 4.1. 

 

Figure 4.1 Schematic view of the experimental program 

4.1.1 Materials 

Locally available river sand is used as fine aggregate, whereas, crushed granite is used as coarse 

aggregate. Fine aggregate corresponds to Zone II, while coarse aggregate with a maximum size 

of aggregate 20 mm is used in this study. The physical properties of fine and coarse aggregates 

are shown in Table 4.1. 
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Table 4.1 Physical properties of fine and coarse aggregates 

Physical Properties Fine Aggregate Coarse Aggregate 

Specific Gravity 2.64 2.81 

Fineness Modulus 2.56 7.40 

Bulk density (gm/cc) 1.46 1.40 

 

4.1.2 Mix proportions 

The final mix proportions for different grades of RCC beams are presented in Table 4.2.  

Table 4.2 Mix proportions obtained for RCC beams 

Mix 
Coarse aggregate 

(kg/m3) 

Fine 

aggregate 

(kg/m3) 

Cement 

(kg/m3) 

Fly-ash 

(kg/m3) 

Silica 

fume 

SP430 

(ml/kg) 
W/B 

M30  1145 764 300 100 - 10 0.43 

M50 1004 669 430 100 - 20 0.37 

M70 945 650 500 110 40 30 0.30 

4.1.3 Specimen preparation and testing 

The reinforced concrete beams of three different grades of concrete M30, M50 and M70 for 

both UR and OR sections are cast and tested under four-point loading to failure with 

deformations measured using dial gauges and curvature meters simultaneously DIC technique 

is also used to obtain the deformations. The unsupported length of RCC beams is 1800 mm 

with a cross-section size of 150 mm width and 200 mm depth. The suitability of employing 

both random speckle pattern and QR based random speckle pattern for the beams is 

investigated. The details of test setup are shown in Figure 4.2. 

4.2 Digital Image Correlation (DIC) 

4.2.1 General principle  

DIC is based on comparing two images (reference image and deformed image) which are 

acquired at different states before and after deformations. After the acquisition, of the digitized 

images, and two subsets are picked respectively from the reference and deformed images for 

correlation in the form of a matrix (n×m). A fine pixel by pixel search is performed within the 

region of interest in the deformed image. The nearest location of the point of interest at the 

pixel level is selected based on the occurrence of the best-matched pattern, which has the 

minimum value of mutual cross-correlation coefficient. Ncorr v1.2.2 uses an algorithm for 

correlation, which is programmed to detect the local displacement of a particular point by 

comparing the two image subsets, and the result is in the form of pixel displacement. Pixel 
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displacement is then converted to engineering units by using Ncorr v1.2.2; the pixel blocks 

need to be random and unique with a range of contrast of 8-bit grayscale image intensity levels 

that vary from 0 to 255 shown in Figures 4.3 and 4.4. It doesn't require any special lighting, 

and in several cases, the natural surface of the structure or component has sufficient texture for 

DIC to work without the necessity of special surface preparation. The parameters for the low-

cost Digital Single-Lens Reflex (DSLR) camera employed in this study are shown in Table 4.3. 

 

(a) 

 

(b) 

Figure 4.2 Testing of beams using (a) Random speckle (b) QR code speckle patterns  

   

Figure 4.3 Surface histogram of mid-span RCC beam of gray intensity for random 

speckle  



28 

 

 
 

 

Figure 4.4 Surface histogram of mid-span RCC beam of gray intensity for QR code 

speckle  

The captured images are pre-processed from RGB colour to grayscale (8-bit) and then analyzed 

using ImageJ software. Grayscale images have distinct black and white colours. The grayscale 

value varies from 0 to 256 (0 indicates black; 256 indicates white, and the values in between 

represent different shades of gray). The gray image value of pixel is stored based on the 

intensity of light. Histogram is a graphical representation of a number of pixels with different 

intensity values of the image. Histogram can identify pixel values at each point in an image 

and show the total number of pixels in an image. 

Table 4.3 Camera parameters (Nikon DSLR Camera D5200) 

Width 6000 pixels 

Height 4000 pixels 

Horizontal resolution 300 dpi 

Vertical resolution 300 dpi 

Pixel depth 24 bit 

Manufacturer NIKON CORPORATION 

Model Nikon DSLR Camera 

D5200 Colour display sRGB 

Shutter speed 1/125 S 

Aperture f/3.5 

Iris Aperture w/o flash 

Focal length 18mm 

Focal ratio f/3.5 

Exposure time 1/125 S 

ISO speed ISO-400 

Exposure compensation 0 

Digital images are divided into a number of smaller regions which are termed subsets, and 

these subsets undergo deformations when the image distortion takes place. The deformation 

location of the subset might not be at the integer location. That is why interpolation functions 

need to be used to get the gray intensity value at a non-integer location.  
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The correlation function (C) is defined as the similarity between the deformed state and the 

undeformed state of the image subset. In general, the Pearson correlation coefficient lies 

between (-1 to +1) for optimal speckle patterns. To correlate the similarity index between the 

reference image subset and deformed image subset, a correlation analysis is done. In order to 

obtain the deformation subset, 2D DIC algorithm arrives at values of the extreme correlation 

cost function (Nguyen et al. 2017). This function can be written in the form: 

C= 
∫∆𝑀 (𝐹(𝑥,𝑦)) (𝐺(𝑥0+𝑈,𝑦0+𝑉)) 𝑑𝐴

[∫∆𝑀 
[𝐹(𝑥,𝑦)]2𝑑𝐴 ∫∆𝑀  

[𝐺(𝑥0+𝑈,𝑦0+𝑉)]2𝑑𝐴 ]
1/2     (4.1)  

Where F and G are respectively references and deformed images are having grayscale intensity 

functions at a specified location (x0, y0) and (x, y) a function of deformed location in              

(4.1). 

The maximum correlation coefficient can be easily calculated using a simple MATLAB 

function. The function “normxcorr2” available in MATLAB is used to find the correlation 

between two subsequent images (reference and deformed).  It is clear that the overall 

correlation is found to be higher in the case of QR code-based speckle pattern images from a 

three-dimensional graph plotted between calculated correlation value and pixels, as shown in 

Figure 4.5.  

  

(a) Random speckle pattern (b) QR code speckle pattern 

Figure 4.5 Subset tracking procedure using DIC 

The physical size of 1 pixel might range between 1 nanometer to 1 centimetre approximately. 

DIC compares digital photographs of the test piece or component at different stages of 
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deformation by identifying blocks of pixels. The system can also measure surface deformation 

and full-field 2D deformation vector fields and strain maps. 

4.2.2 Computation of strain  

In Cartesian coordinate system (x, y, z), the strain metrics can be calculated based on measured 

tangential displacement field (u, v, w) as expressed in (4.2), (4.3) and (4.4). Strains are 

calculated from displacement data, and the four displacement gradients are used to find the 

Lagrangian strains (Nguyen et al. 2017). Which are as follows: 

                                       𝐸𝑥𝑥 = 0.5 [2
𝜕𝑢

𝜕𝑥
+ (

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑥
)

2

]      (4.2) 

𝐸𝑥𝑦 = 0.5 [
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
]     (4.3) 

     𝐸𝑦𝑦 = 0.5 [2
𝜕𝑣

𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

]      (4.4) 

Schematic representation of subset deformation before and after deformation of subsequent 

images is shown in Figure 4.6. 

 

Figure 4.6 Schematic representation of subsets before and after deformation 
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The flowchart shown in Figure 4.7 briefly explains the procedure adopted for validation of DIC 

software along with the contact sensor devices. 

 

Figure 4.7 Flowchart showing the image processing technique 

This approach has also been utilized successfully for large deformation measurements. Due to 

its simplicity, the DIC technique has been further extended to deformation and curvature 

studies. According to the technique, if the specimen attains the natural texture of random gray 

intensity value, there is no necessity of specimen preparation for DIC.  

4.2.3 DIC system setup 

Two-dimensional DIC technique presented in this study involves three consecutive steps,                 

(i) Spraying black speckle pattern on the prepared white specimen surface in order to obtain 

the random gray colour intensity distribution; (ii) Capturing the digital images of both 

undeformed and deformed specimen surfaces using low-cost DSLR camera; (iii) Post-

processing with Ncorr v1.2.2 DIC software for obtaining full-field displacement and strain. 

The minimum deflections/strains measured is in the order of 0.01 mm/micro strains. The size 

of the QR code is 150 mm by 150 mm, which is sprayed on the flexural portion of the beam. 

The minimum radius of the subset considered in this study is 1.5 mm escribed circle with a 

step size of 1.5 mm up to 21 mm (as there was no significant difference in the results after 18 

mm until 21 mm). The optimal radius of subset was found to be 13 mm with a subset spacing 

of 6 based on the results obtained, which are in good agreement with conventional 

measurement technique (LVDTs/dial gauges). 

Getting the Image from the location

Key Point identification and formation of pixel area in 

two images

Matching the points in two images

Processing the data in Ncorr v1.2.2 algorithm using 

MATLAB R2018a 

Converting the Pixel displacement to engineering units to 

measure the deformation
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In view of the intricacy and the accuracy involved in the measurement of surface distortions, 

an important aspect of DIC is to create an appropriate pattern on the sample to be tested. This 

has a significant impact on the quality of results; hence, it is important to determine the optimal 

pattern at the very outset. Irrespective of length scales all patterns should be spatially random. 

The randomness of a speckle pattern will influence the DIC monitoring algorithm.  For DIC to 

work effectively, the pixel blocks need to be random and unique with a range of contrast and 

intensity levels. It requires no special lighting, and in many cases, the natural surface of the 

structure or component has sufficient image texture for DIC to work without the need for any 

special surface preparation. In general, the implementation of the DIC method comprises the 

following three steps: (i) specimen preparation; (ii) recording images of the specimen’s surface 

before and after deformation; (iii) processing the acquired images. The flowchart showing the 

image processing technique in Figure 1.1 explains the overall procedure adopted for DIC 

technique. 

4.2.4 Fundamentals of DIC 

Experimental solid mechanics includes surface deformation measurement of materials and 

structures under mechanical or thermal loading. Contact sensor devices are used to measure 

object distortion while loading the test. The most extensively adopted instruments are Linear 

Variable Differential Transformers (LVDTs), dial gauges and strain gauges, which measure 

displacement with respect to the rate of loading applied on the specimen (Carter et al. 2015). 

These devices are well established, with an accuracy of ±1μm or even lower, where real-time 

data can be captured. On the other hand, these contact sensors can measure in one dimension 

only, limited to the area where the sensor is fixed. Sensors, when used with a controller unit, 

are prone to damage during destructive tests (Yuan et al. 2015). Therefore, LVDTs or strain 

gauges are not suitable in case of extreme testing conditions. Contact sensors are used 

traditionally for measurement of deformations, but due to inherent difficulties in terms of 

accuracy, the necessity of flat surfaces and issues related to the attachment of these devices, 

non-contact methods of measurements are becoming popular. 

4.2.5 Advantages of 2D DIC: 

DIC has several advantages over conventional NDT methods. 

 Needs simple experimental test setup and specimen preparation. 

 Low requirements in field conditions during testing. 

 Wide range of measurement sensitivity and resolution. 
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4.2.6 Disadvantages of 2D DIC: 

 The test planar object surface must have random gray intensity distribution. 

 The measurements depend heavily on the quality of the imaging system. 

 At present, the strain measurement accuracy of the 2D DIC method is lower than the 

interferometric techniques. 

4.2.7 Speckle pattern studies 

The optical speckle pattern is very much important in DIC. Several studies have been 

conducted to understand the non-contact optical DIC method using different speckle patterns 

(Lecompte et al. 2006). Systematic experiments were performed by previous researchers to 

determine the quality of contrasting speckle patterns on the surface of test specimens that have 

a dominant influence on the spatial resolution and accuracy of results (Carter et al. 2015, 

Bossuyt 2013). It was concluded from the studies that to achieve an effective correlation, the 

pattern must be random, isotropic and highly contrasting.  

Further, speckles should neither be too small nor too large. Correlation may fail with extremely 

large or small speckle patterns. The size of the speckles, combined with the size of the used 

pixel subset influences the accuracy of the measured displacements (Salmanpour and 

Mojsilovic 2013, Lecompte et al. 2006). Consistent speckle sizes have to be maintained-ideally 

3-5 pixels in size. If the pattern is too large, certain subsets may be entirely on a black field or 

entirely on a white field. Conversely, very minute speckles can cause aliasing effect resulting 

in images that often show a pronounced Moire pattern in the measurement result (Mudassar 

and Butt 2016). 

It was proposed by (Hung Po-Chih et al. 2003) that the strain resolution increases with increase 

in speckle density from 23% to 58% of area fraction. Speckle patterns containing medium-

sized speckles and exhibiting a limited spectral content yield the most accurate displacement 

measurements. Patterns well-suited for DIC exhibit a sharp correlation peak, a broad 

correlation margin, and neither have features too small to be resolved by the imaging system 

to be used nor large featureless areas. Applying speckles on the surface of the specimen using 

a permanent marker can be a good technique for creating optimal speckle pattern (Pan Bing et 

al. 2009). This type of technique is used on the surface of the specimens which are involved in 

measuring very high strains. To achieve this, dots on the surface are marked off the desired 

size (Suryanto et al. 2017). A black marker provides excellent contrast on a white base coat. 

An optimal speckle pattern is necessary for using DIC with ease for practical applications.  
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4.2.7.1 Need for a good pattern 

 For the proper tracking of the subsets of the image. 

 Correlation can be made with high confidence and produce low noise. 

4.2.7.2 Pattern requirements (CSI application note AN-525) 

 High Contrast: Either black dots on a bright white background or bright white dots on 

a dark background. 

 50% coverage: Equal amounts of white and black on the surface.  

 Consistent speckle sizes: Ideally 3-5 pixels in size. Correlation may fail with extremely 

large or small speckle pattern.  

 Isotropic: Pattern shouldn’t exhibit bias in any particular orientation. 

 Random: Repeating patterns causes false matching hence speckle pattern should be 

random. 

4.2.7.3 Common application methods 

 Speckle pattern application kit: It contains an array of stamp rollers/rockers, spray 

paints and stencil tools to produce optimal speckle patterns. 

 Spray paint: The surface of the specimen is coated white in light coats and the speckles 

are applied.  

 Permanent marker patterns: Speckles are applied with a permanent marker on a white 

base coat.  

 Printed patterns: Pattern is printed onto vinyl appliqué or adhesive labels, making sure 

it adheres to the specimen well enough to deform with the surface. 

Standard paints and inks may crack or change at higher temperatures, therefore, paints designed 

for extreme temperature conditions are used (CSI application note AN-525). 

4.2.8 Implementation steps 

 Specimen and experimental preparations. 

 Recording images of the planar specimen surface before and after loading. 

 Processing the acquired images using a computer program to obtain the desired 

displacement and strain information. 

 Target specimen surface must be flat and remain in the plane parallel to the optic sensor 

during measurement. 
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 Corresponding distortion correction techniques should be used to remove the influence 

of distortion to provide accurate measurements. 

The estimated motion of each image point multiplied by the magnification of the imaging 

system will not accurately equal to that of the actual physical point on the specimen surface 

unless the following requirements are met. DIC is simple to implement while enabling cost-

effective measurements in a range of potential applications including examining the evolution 

and uniformity of strain in materials testing, crack tip and crack propagation studies, detecting 

damage development in composites, structural deflections, high-temperature strain mapping, 

and dynamic response analysis. 

The deformation components on the surface of an object are obtained using DIC algorithms by 

recording the images of the surface before as well as after loading (Feng et al. 2015). The 

algorithms available in the literature are Curve Fitting Gradient-Based and Newton-Raphson 

algorithms. Among these algorithms, Newton-Raphson algorithm gives stable results with 

more accuracy (Lu and Cary 2000, Vassoler and Fancello 2010, Cofaru et al. 2010, Yuan et al. 

2015). In the algorithms suspected by Su and Anand (2003), the accuracy and speed were not 

verified, while algorithms developed by Kozicki and Tejchman (2007) proved to be highly 

expensive. Some researchers have applied the Gradient-Based algorithm to DIC (Long et al. 

2013, Wittevrongel et al. 2015).   

4.2.9 Quick Response (QR) code as a speckle pattern in DIC 

The QR code was invented by Denso Corporation in 1994 and Affirmed as Automatic 

Identification Manufacturers (AIM) International standard along International Standards 

(ISO/IEC) in 2000. In DIC, two images of reference and deformed images are captured. After 

the acquisition, the images are digitized, and two subsets are chosen respectively from the 

reference and deformed images for correlation in the form of a matrix (n×m). A fine search 

routine, pixel by pixel, is performed within the specified range in the deformed image. The 

nearest location of the point of interest at the pixel level is selected based on the occurrence of 

the best-matched pattern, which has the minimum value of mutual cross-correlation coefficient. 

A correlation algorithm detects the local displacement of a particular point by comparing the 

two image subsets, and the result is in the form of pixel displacement. Pixel displacement is 

converted into engineering units by using camera calibration parameters. The converted 

displacement gives the deformation in the structures. The DIC-based non-contact 
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measurements can be compared directly with strains obtained from FE simulations as well as 

to inverse identification of test parameters at the structural level.  

4.2.10 Ncorr v1.2.2 workflow 

In order to assist a non-contact strain measurement system, an open-source DIC software 

“Ncorr” is used for computing the deformation from the initial unloaded stage to failure. This 

method is relatively easy to set up and deploys a cost-effective ordinary optical digital camera 

like a DSLR or smartphone camera, adapted according to the situations (Suryanto et al. 

2017).There are various commercial software available in the market, which uses 2D DIC as a 

tool to estimate displacement and strain fields. Ncorr is one such open-source 2D DIC code 

based on MATLAB software developed at Georgia Institute of Technology by Antonia 

Antoniou’s group. Ncorr is capable of estimating displacement and strain fields from the given 

input speckle images. 

Flexural behaviour of RCC beams are tested under four-point bending condition, 

corresponding displacement and strain fields are estimated using Ncorr. There are various 

contact and non-contact techniques in the fields of experiment mechanics for measurement of 

surface deformation and strain. The flowchart showing the image processing technique in 

Figure 4.8 explains the overall procedure adopted for Ncorr software. 

 

Figure 4.8 Flowchart showing the image processing technique used in Ncorr v1.2.2 
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4.3 Testing Procedure 

The experimental program is focused on the comparison of the flexural behaviour of RCC 

beams which is extracted using the DIC technique for different speckle patterns. A comparison 

of the conventionally measured moment and deformation/curvature obtained using a 

combination of both QR Code speckle pattern and random speckle pattern is conducted. Low-

cost off-the-shelf equipment (Nikon D5200 DSLR camera with 24.1 MEGAPIXEL DX-format 

CMOS sensor) is used to capture the images while testing the RCC beams. After capturing the 

sequence of images, image processing is done by Ncorr, an open-source DIC code using 

MATLAB R2015a. The parameters varied in the investigation are normal (M30), medium 

(M50) and high strength (M70) concretes as well as variation in the speckle patterns. Two 

different types of speckle patterns; random speckle pattern and QR Code based speckle pattern 

are used. The dimensions of the beams are 1800 mm × 150 mm × 200 mm. These beams are 

cast and tested for both UR and OR design category. Dial gauges (least count 0.01 mm) are 

used as conventional contact sensors and placed on the bottom surface of the beams to measure 

the deflections. The position of the dial gauges is shown in Figure 4.9. Curvature meters are 

used in compression zone as well as in tension zone and are 200 mm apart from the middle 

frame. The schematic drawing of the equipment, used for testing with a random speckle pattern 

applied throughout the cross-section is shown in Figure 4.9. 

 

Figure 4.9 Schematic diagram of random speckle pattern test set-up 

The beams are quasi-statically tested using a UTM having a capacity of 1000 kN with a strain 

rate loading of 1.5 mm/min. With the application of loading and as the testing starts, images 
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are captured at consecutive uniform intervals of loading using a DSLR camera. The 

consecutive images are considered to calculate the horizontal curvatures at top and bottom 

portion of the beam using Ncorr software. From the curvature readings, strain in concrete (εc) 

and strain in steel (εs) are calculated, using these strain values the corresponding M-κ values 

are calculated. The conventional results from the dial gauges and curvature meters are then 

compared with DIC results.  

A typical QR code pattern stencil, as shown in Figure 4.10 is applied at critical locations of the 

beam surface for different beams (grades of concrete, OR and UR). In order to attain 

randomness of the pattern, QR codes are rotated and applied at critical locations. QR code-

based speckle pattern finds applications in structural health monitoring (Meadati et al. 2015). 

As QR code is being used for numerous applications in data encryption, data transmission and 

as information carrier in web applications. Therefore, using QR code as a speckle pattern for 

DIC in real-time SHM provides us with certain advantages such as the QR code being 

encrypted with details of the structure helps in easy identification of the structure by scanning. 

DIC results obtained using QR, and random speckle is computed with deformation, curvature 

and strains obtained from conventional sensors. The schematic drawing of the equipment used 

for testing QR code random speckle pattern is shown in Figure 4.11. 

 

Figure 4.10 QR code pattern employed in this study 
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Figure 4.11 Schematic diagram of QR code with random speckle pattern test set-up 

4.4 Finite Element Method (FEM) 

FEM is one of several numerical simulation methods to obtain solutions to problems, which 

otherwise are difficult to obtain. In FEM, the solution to a problem is obtained by dividing a 

larger system into several smaller parts, which are called finite elements (discretization) (Grassl 

et al. 2013, Kalyana Rama et al. 2017). In this paper Concrete Damage Plasticity (CDP) 

constitutive model is used for modelling concrete, available in standard numerical tool 

ABAQUS v6.14/CAE (FEM software), which is a powerful engineering numerical simulation 

program. With the help of this tool, the results obtained from experimental tests on RCC beams 

for different grades of concrete are validated. A simple plasticity model is used to simulate the 

nonlinear monotonic behaviour of steel in concrete. The flexural response of RCC beams 

obtained using DIC is compared with those obtained from conventional tests and numerical 

simulations. 

4.4.1 Concrete Damage Plasticity (CDP) model 

Accurate material modelling is the most challenging aspect in finite element modelling of 

concrete structures and especially the modelling of concrete. The concrete beam is modelled 

using CDP constitutive model, available in ABAQUS v6.14/CAE software, which is suitable 

for modelling both plain and reinforced concrete, under varying types of static and dynamic 

loads such as monotonic, cyclic etc. The concrete behaviour in the axial concrete damaged 

plasticity model was given by Lubliner et al. (1989) and the yield surface of this model was 
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later modified by Lee and Fenves (1998). In this model, it is assumed that the concrete fails 

mainly due to tensile cracking and crushing of concrete due to compression. The combined 

behaviour of steel and concrete is replicated by using embedded element technique. CDP model 

assumes non-associated plastic flow. The flow potential G used in the present investigation is 

based on Drucker-Prager hyperbolic function as expressed in (4.5). 

                                    𝐺 = √(∈ 𝜎𝑡0  𝑡𝑎𝑛 𝛹)2 +  𝑞
2

− 𝑝 𝑡𝑎𝑛 𝛹       (4.5) 

Where, 

𝜎𝑡0 - Uniaxial tensile stress at failure 

𝑝  - Hydrostatic pressure stress 

𝑞 - Mises equivalent effective stress 

Ψ - Dilation angle  

∈ - Eccentricity  

The stress-strain behaviour of concrete (i.e., uniaxial tensile and compressive response of 

concrete) is characterized by damaged plasticity, as shown in Figure 4.12. 

  
(a) Uniaxial tension (b) Uniaxial compression 

Figure 4.12 The stress-strain behaviour of concrete (ABAQUS user’s manual, 2011) 

The strength of concrete under uniaxial tension and compression determines the shape of flow 

potential and the corresponding load surfaces. The changes made for the CDP model was that 

the failure surface considered in the deviatoric plane need not be a circle as shown in Figure 

4.13, and the shape of deviatoric plane is given by a parameter KC. As recommended by the 

user’s manual of ABAQUS, the failure surface for KC = 2/3 was used in the analysis. 
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Figure 4.13 CDP deviatoric plane for different values of KC (Jankowiak and 

Lodygowski, 2005) 

The input parameters used in the analysis by CDP constitutive models are shown in Tables 4.4 

and 4.5 Simulia ABAQUS user’s manual (2011). 

Table 4.4 Input parameters used in CDP 

Ψ dilation angle 35° 

e eccentricity 0.1 

F σbo/σco 1.12 

Κc qTM/qCM   0.67 

Viscosity parameter   0 

Table 4.5 Input parameters used for concrete damage in CDP 

Concrete compression damage Concrete tension damage 

Damage parameter 

(C) 
Inelastic strain 

Damage parameter  

(T) 
Cracking strain 

0 0.000828016 0 0 

0.81 0.003573541 0.99 0.001494322 

4.4.2 FE simulation 

Non-linear 3D solid finite element analysis is performed on RCC beam under four-point 

loading test to determine its ultimate moment capacity. The geometry of rebar sections and 

concrete beam sections are created in ABAQUS. These sections can be extruded in 3D space. 

A solid 3D deformable model of the reinforced concrete beam with 200 mm depth and 150 mm 

width with a length of 1800 mm is developed. Reinforcement of length 1800 mm and 

appropriate stirrups (dimensions are given in Table 6) for M30, M50, M70 (OR and UR) beams 
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are developed. Properties of both concrete and rebar materials used in simulations were created 

in property module and assigned to the respective parts and are shown in Tables 4.6-4.7. 

Table 4.6 Reinforcement details of RCC tested beams 

Beam Designation 
Top bars 

(mm) 

Bottom bars 

(mm) 
8ϕ stirrups spacing (mm) 

 M30 UR 2-8ϕ 3-10ϕ 130  

 M30 OR 2-8ϕ 2-16ϕ, 2-10ϕ 95 

 M50 UR 2-8ϕ 4-12ϕ 75 

 M50 OR 2-8ϕ 3-20ϕ 60 

 M70 UR 2-8ϕ 3-16ϕ 75  

 M70 OR 2-8ϕ 4-20ϕ 50 

In numerical simulation, concrete specimen is loaded by creating a rigid body surface 

(applicator) and imparting load to the applicator. Between rigid body surface and concrete 

beam specimen, where the load is applied, contact conditions are used. Hence, the pressure 

force applied on the specimen is distributed to replicate experimental conditions. Using an 

embedded region option in ABAQUS constraints tab, rebars are embedded in concrete with the 

same degrees of freedom, hence, creating a perfect bond between concrete and rebar. For 

concrete, an 8-noded linear brick element (C3D8R element) with reduced integration 

formulation is used. For rebar, T3D2 (Truss element) a 2-noded linear 3D truss element is used 

in modelling. The geometry of the meshed RCC beam is shown in Figure 4.14. 

Table 4.7 Concrete and reinforcement steel properties used in simulation model 

Grade of 

Concrete 

(MPa) 

Concrete Mechanical Properties Steel Properties 

Density 

(kg/m3) 

Elastic 

Modulus 

(MPa) 

Poisson’s 

ratio 

 Density 

(kg/m3) 

Poisson’s 

ratio 

M30 2400 27400 0.15 7850 0.3 

M50 2400 35350 0.15 7850 0.3 

M70 2400 41830 0.15 7850 0.3 
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Figure 4.14 Meshed RCC beam using ABAQUS software 

Pinned support boundary condition is prescribed on both the sides of RCC beam at 100 mm 

from the edges (in initial step). Also, applicator is constrained to move only in the direction of 

loading. Step1 is created, and load is assigned using displacement control. The deflections at 

the end of analysis for the entire beam and reinforcements within is shown in Figure 4.15. 

Comparison of simulation results with both DIC and conventional mid-span deflection is done. 

 

 

Figure 4.15 Deflection profile of RCC beam using ABAQUS software 
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DIC results are compared with standard numerical tool ABAQUS v6.14/CAE software and 

conventional results obtained using dial gauges and actuator data for both the specimens. A 3D 

solid finite element analysis ABAQUS 6.14/CAE numerical simulation tool is used to validate 

the results obtained from RCC beams of both conventional and DIC measurements. 

4.5 Results and Discussions 

The deflection curves are plotted with the corresponding loads obtained from the UTM using 

the results obtained from both conventional and DIC measurements. These curves are also 

compared with FEA results. The contour of X and Y axis deformations obtained from random 

speckle pattern (DIC) is shown in Figure 4.16. The load-deflection curves are plotted using 

DIC and compared with conventional crosshead motion of RCC beam and FEM results shown 

in Figures 4.17-4.22. The average load-deflection curves plotted are taken as the average of 

three beams. 

 

(a)  

 

(b)  

Figure 4.16 Contour obtained using random speckle pattern (a) Vertical displacement 

(mm) (b) Horizontal displacement (mm) 
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Figure 4.17 Load vs Mid-span deflection of M30 over-reinforced RCC beam  

 
Figure 4.18 Load vs Mid-span deflection of M30 under-reinforced RCC beam 
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Figure 4.19 Load vs Mid-span deflection of M50 over-reinforced RCC beam 

 
Figure 4.20 Load vs Mid-span deflection of M50 under-reinforced RCC beam 
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Figure 4.21 Load vs Mid-span deflection of M70 over-reinforced RCC beam 

 
Figure 4.22 Load vs Mid-span deflection of M70 under-reinforced RCC beam 

4.5.1 Moment (M)-Curvature (κ) relationship obtained from LVDTs/dial gauges 

The curvature of the beams is measured by placing curvature meters in both the compression 

as well as in tension zones. Curvature meters having least count of 0.001 mm are fixed between 

two rectangular frames, one at the top and another at the bottom. Schematic view of the test 

setup is shown in Figure 4.23. Based on the radius of the top and bottom curvature meters, the 
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average curvature is calculated. The deflections are measured using two load points, which is 

at the midpoint of the beam and at the points located midway between the supports and the 

midpoint, using dial gauges.  

 

Figure 4.23 Schematic view of the test setup for RCC beam 

4.5.2 Comparison of the measured flexural behaviour of concrete beams 

M-κ relationship developed with the results obtained using DIC is compared with results 

developed using conventionally obtained results and FEM results. The method adopted for 

developing M-κ relationship is similar (MLV Prasad and Rathish, 2012, Dutton et al. 2013, 

Swamy Naga Ratna Giri et al. 2018). It is observed that the moment carrying capacity of UR 

beams is less than OR beams. The grade of concrete increases with the moment carrying 

capacity, while the curvature of the beam at ultimate moment will decrease as shown in Figures 

4.24-4.26. It is observed that the conventional and numerical results are matching with those 

of DIC technique. Tables 4-6 show the ultimate M-κ values of both UR and OR concrete RCC 

beams obtained from both conventional measurements and DIC technique using different 

speckle patterns. 
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Figure 4.24 M-κ curve for M30 concrete grade 

 

Figure 4.25 M-κ curve for M50 concrete grade 
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Figure 4.26 M-κ curve for M70 concrete grade 

It is observed that the M-κ curves extracted using QR code speckle pattern closely match the 

curves obtained from conventional measurements. As expected, the moment carrying capacity 

of OR beams is higher compared to UR beams. However, with the increase in grade of concrete, 

the moment carrying capacity increases while the curvature of the beam at the ultimate moment 

(Mu) decreases.  

4.5.3 Conventionally measured M-κ at ultimate values: Table 4.8 shows the M-κ data for 

which ultimate values are compared between normal (M30), medium (M50) and high strength 

(M70) concretes for both UR and OR categories obtained from conventional measurements 

(LVDTs/Dial gauges). 

Table 4.8 Compression and tensile strains of ultimate M-κ 

Grade M (kN-m) κ × 10-6 Єc × 10-6 Єs × 10-6 

M30 UR 19.35 68.23 2416 9865 

M30 OR 37.5 52.5 5054 4410 

M50 UR 28.5 64.77 2865 8794 

M50 OR 57.24 47.52 5375 3178 

M70 UR 34.54 60.21 3168 7670 

M70 OR 76.28 43.35 5841 1965 
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(a)  M-κ obtained from DIC at ultimate values using random speckle pattern: Table 4.9 

shows the DIC M-κ data at ultimate values where the beam is tested with random speckle 

pattern throughout the cross-section of the beam.  

Table 4.9 Compression and tensile strains of ultimate M-κ obtained using DIC (random 

speckle pattern) 

Grade M (kN-m) κ × 10-6 Єc × 10-6 Єs × 10-6 

M30 UR 17.12 79.48 4333 9975 

M30 OR 34.51 57.33 6120 4200 

M50 UR 24.21 68.55 3760 8580 

M50 OR 52.21 55.18 5813 4120 

M70 UR 29.64 57.52 3121 7234 

M70 OR 71.55 51.65 7096 2201 

 

(b) M-κ obtained from DIC at ultimate values using QR code as speckle pattern             

Table 4.10 shows M-κ DIC data at ultimate values for which the beam is tested with QR Code 

based speckle pattern.  

Table 4.10 Ultimate M-κ results for compressive strain and tensile strain obtained using 

DIC (QR code) 

Grade M (kN-m) κ × 10-6 Єc × 10-6 Єs × 10-6 

M30 UR 18.26 73.45 4007 9215 

M30 OR 36.21 53.46 5755 3869 

M50 UR 26.23 70.76 3922 8815 

M50 OR 54.58 52.26 5422 3986 

M70 UR 31.65 58.24 3125 7269 

M70 OR 73.71 49.68 6932 2012 

 

Table 4.11 Comparison of ultimate M-κ results obtained from contact and non-contact 

sensors 

   

Specimens    

Designation 

Conventional Random speckle pattern QR code speckle pattern 

M κ M κ M1 κ1 M κ M1 κ1 

M30 UR 19.36 68.24 17.13 79.49 11.51 16.48 18.27 73.46 5.63 7.64 

M30 OR 37.52 52.51 34.52 57.34 7.99 9.19 36.22 53.47 3.46 1.82 

M50 UR 28.51 64.78 24.24 68.56 14.97 5.83 26.24 70.77 7.96 9.24 

M50 OR 57.25 47.53 52.22 55.19 8.78 16.11 54.59 52.27 4.64 9.97 

M70 UR 34.53 60.22 29.65 57.53 14.13 4.44 31.66 58.25 8.31 3.27 

M70 OR 76.29 43.36 71.56 51.66 6.20 19.14 73.72 49.69 3.36 14.59 

MAE 10.59 11.86  5.56 7.75 

MAE: Mean Absolute Error; M1: % error in moment (kN-m); κ1: % error in curvature 

From Table 4.11, it can be observed that higher moment capacities for RCC beams are 

consistently observed in case of QR code-based speckle pattern when compared to random 
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speckle pattern. The maximum percentage error in the ultimate moment is 15% in the case of 

random speckle pattern whereas it reduces to 8% in case of combined QR code and random 

speckle patterns. The maximum percentage error in ultimate curvature is 19% in the case of 

random speckle pattern whereas it reduces to 14% in case of combined QR code and random 

speckle patterns. The results obtained from the QR code speckle pattern are closer to the results 

obtained from conventional measurements using LVDT and dial gauges. 

Table 4.12 Comparison of ultimate M-κ results obtained from experimental and 

numerical 

Specimens 

Designation 

Conventional FEM results 

M κ M κ M1 κ1 

M30 UR 19.36 68.24 20.04 79.26 3.51 16.14 

M30 OR 37.52 52.51 38.87 61.72 3.59 17.53 

M50 UR 28.51 64.78 32.08 53.25 12.52 17.79 

M50 OR 57.25 47.53 61.24 48.42 6.96 1.87 

M70 UR 34.53 60.22 39.28 58.64 13.75 2.62 

M70 OR 76.29 43.36 81.46 39.65 6.77 8.55 

MAE 7.85 10.75 

MAE: Mean Absolute Error; M1: % error in moment (kN-m); κ1: % error in curvature 

From Table 4.12, it can be observed that the mean absolute error percentage in the ultimate 

moment is 7.85% in case of FEM results and it reduces to 5.56% for the results obtained from 

DIC using QR code-based speckle pattern. The mean absolute error percentage in ultimate 

curvature is 10.75% in case of FEM results, and it reduces to 7.75% for the results obtained 

from DIC using QR code-based speckle pattern. The results obtained from DIC using QR code-

based speckle pattern are in good agreement with both conventional measurements as well as 

FEM results. 

4.6 Summary  

The non-linear flexural behaviour of rectangular RCC beams for both Under-Reinforced (UR) 

and Over-Reinforced (OR) beams are tested using random speckle pattern as well as QR code-

based speckle pattern. Load-Deflection graphs are plotted for both specimens and Moment (M) 

– Curvature (κ) relationship is obtained using RCC beams for M30 (normal), M50 (medium) 

and M70 (high) compressive strengths. The following conclusions are drawn:  

 The non-linear constitutive modelling adopted herein is a CDP model applied in the 

finite element code, ABAQUS. This constitutive model is used to predict the realistic 

flexural non-linear behaviour of RCC beams. 
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 The more random the pattern is, the closer are the DIC results obtained from both FEM 

and conventional measurements. 

 QR code-based speckle pattern serves a dual purpose of having an additional advantage 

of data encryption and may be used as consistent non-contact optical sensor in real-time 

SHM techniques.  
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CHAPTER 5 

Flexural Behaviour of (1:12) Scaled RCC T-Beams 

5.0 General 

A scaled model which represents a reinforced concrete T-beam has the same geometrical shape 

as a full-scale model. The scaled T-beam specimens are quasi statically tested in flexure to 

determine the ultimate load and failure patterns. Four-Point bending tests were conducted on 

model beams of 2 m span designed to represent 24 m span full-scale beam at 1∶12 scale factor. 

The obtained results were used in the validation of the numerical and analytical models.  

DIC is used to validate the response of experimental, analytical and numerical validations of 

RCC T-beam response. An alternative to traditionally used random speckle pattern in DIC is 

developed, using QR code-based speckle pattern which encrypts the data for regular structural 

condition monitoring of critical infrastructure, as well as incorporating data for Building 

Information Modelling (BIM). The schematic representation of experimental programme is 

shown in Figure 5.1. 

 

Figure 5.1 Schematic view of the experimental program 
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5.1 Geometric Scale 

Experiment on the field scale models requires more time, sophisticated and substantial 

machinery and skilled personnel. If the size of the model is minimal, then the fabrication of the 

model and load application is complicated. To avoid the above complexities, one has to get 

optimal scale factors for the model prototype. The scaling factors given by Harris and Sabnis 

(1999) are used in the present work and presented in Table 5.1.  

Table 5.1 Geometric scale factors (Harris and Sabnis, 1999) 

Structural Type Strength Models Elastic Models 

Highway bridge 1/20 to 1/10 1/25 

Shell roof 1/30 to 1/10 1/200 to 1/50 

Dams 1/400 1/75 

Wind effects 1/300 to 1/50 Not applicable 

Reactor vessel 1/20 to 1/4 1/100 to 1/50 

Beam/slab structures 1/10 to 1/4 1/25 

Strength models of concrete structures have many dimensional parameters, such as cover, bar 

spacing, minimum thickness, etc. Law of similitude requirements in materials is a crucial part 

of this type of models. In this study, a standard Ministry of Road Transport and Highways 

(MoRTH) bridge with dimensions shown in Table 5.2, is considered for small scale model on 

which laboratory testing is performed. 

Table 5.2 Standard MoRTH Bridge dimensions (Ministry of Surface Transport, 1991) 

T-beam  

Dimensions (mm) 

Standard full-scale Model 

Dimensions (mm) 
Scale Factor 

Small Scale Model 

Dimensions (mm) 

Span (L)  24000 

1/12 

2000 

Flange (bf)  2880 240 

Flange (Df)  360 30 

Web (bw)  780 65 

Web (d)  2160 180 

Similitude requirements for true practical model are shown in Table 5.3. All scale factors are 

either unity or a function of Sl  (scale factor of linear dimension).  

5.2 Testing Program 

The testing program comprises of casting three T-beams (QR code-based and random) of M30 

grade of concrete and using two different types of speckle-patterns on two faces of the same 

beam with Under-Reinforced (UR) section.  

 

 



56 

 

5.2.1 Materials used 

53 grade Ordinary Portland Cement (OPC) confirming to IS 12269 (BIS, 1987) is used in this 

study. River sand corresponding to Zone-II according to IS 383 (BIS, 1970) is used as fine 

aggregate. The specific gravity of fine aggregate is 2.63 and fineness modulus is about 2.54 

with a bulk density of 1.46 gm/cc. The mortar specimens are prepared with a sand-cement ratio 

(S/C) of 2 and Water-Cement ratio (W/C) of 0.4. Standard steel cubical moulds having a 

dimension of 150 mm are used for casting the cubes. After curing for 28 days, the average 

quasi-static compressive strength of cement mortar specimens as stipulated by IS 2250-1981 is 

approximately 39 MPa. 

Table 5.3 Scale factors for RCC models (Harris and Sabnis, 1999)  

 Quantity Dimension Practical True Model 

M
at

er
ia

l-
R

el
at

ed
 P

ro
p

er
ty

 Concrete stress, σc FL-2 1 

Concrete strain, εc -- 1 

Young’s modulus, Ec FL-2 1 

Poisson’s ratio, ν -- 1 

Reinforcing stress, σt FL-2 1 

Reinforcing strain, εt  -- 1 

Modulus of reinforcing, Et FL-2 1 

Bond stress, u FL-2 1 

G
eo

m
et

ry
 Linear dimension, l L Sl 

Displacement, ᵟ L Sl 

Angular displacement, ᵝ -- 1 

Area of reinforcement, Ar L2 Sl
2 

L
o

ad
in

g
 Concentrated load, Q F Sl

2 

Line load, w FL-1 Sl 

Pressure, q FL-2 1 

Moment, M FL Sl
3 

5.2.2 Mix proportions 

Mix proportions are done based on information available from the literature review. The final 

mix proportions for M30 grade concrete are presented in proportions of 1:2. 

5.2.3 Specimen preparation and testing  

Under reinforced (UR) T-beams with 30Mpa of strength are cast and tested. Dial gauges and 

Linear Variable Differential Transformers (LVDTs) are used to determine the deformations in 

the beam. The suitability of QR code-based and random speckle pattern are investigated using 

the DIC technique. The cross-section size of T-beam is shown in Figure 5.2.  
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Figure 5.2 Cross-section of T-beam 

For the T-beam tested under simply supported condition (refer Figures 5.3a and 5.3b), the 

deformations are measured using QR based speckle pattern and random speckle pattern which 

are embossed on the two side faces of the beam. An experimental programme was designed to 

study the stress-strain behaviour of scaled concrete prism of size 100 mm x 100 mm x 200 mm 

under axial compression as shown in Figure 5.4. The stress-strain behaviour of scaled concrete 

is shown in Figure 5.5. Dial gauges and LVDTs are used as contact sensors placed at the bottom 

surface of the RCC T-beam to find out the deflections. The dial gauges having least count 0.01 

mm are used for deflection measurement. LVDTs are used in tension and compression zones 

and are 200 mm apart from the middle frames. The curvature is measured by placing LVDT at 

the top (compression) and bottom (tension) surfaces of tested beams. Figure 5.6 shows the test 

setup for reinforced T-beams.  

The beams are quasi-statically tested under 1000 kN Universal Testing Machine (UTM) with 

a strain rate of 1.0 mm/min. As soon as testing starts, images of the T-beam are taken 

continuously with the help of two commercially available low-cost DSLR cameras focusing on 

each side of the T-beam (Nikon D5200 and Nikon D3300) with a lens of  f =55mm (DSLR 

camera), without interrupting the testing process. The specifications of the two cameras used 

while testing the beams are shown in Table 5.4. The camera was used to capture the consecutive 

images while loading the specimen. These static images were used for DIC technique using 



58 

 

image processing Ncorr v1.2.2 MATLAB R2018a programming software. Using gray scale 

images, DIC analysis was done and then compared with conventional results obtained from 

dial gauges and LVDTs. 

 

 

(a) 

 

(b) 

Figure 5.3 Testing of beams using (a) QR code-based speckle pattern (b) Random 

speckle pattern 
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(a) 

 

(b) 

Figure 5.4 Test setup (a) Experimental (b) Schematic representation 

 

Figure 5.5 M30 stress-strain scaled concrete prism (1:2 ratio) 
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Figure 5.6 Typical flexural loaded T-beam test setup               

Table 5.4 Camera parameters (Nikon D5200 and D3300) 

Camera Specifications D5200 D3300 

Width 6000 pixels 6000 pixels 

Height 4000 pixels 4000 pixels 

Horizontal resolution 300 dpi 300 dpi 

Vertical resolution 300 dpi 300 dpi 

Pixel depth 24 bit 24 bit 

Manufacturer NIKON CORPORATION NIKON CORPORATION 

Model Nikon DSLR Camera D5200 Nikon DSLR Camera D3300 

Colour display sRGB sRGB 

Shutter speed 1/125 S 1/125 S 

Aperture f/3.5 f/4.5 

Iris Aperture w/o flash w/o flash 

Focal length 18mm 22mm 

Focal ratio f/3.5 f/3.5 

Exposure time 1/125 S 1/80 S 

ISO speed ISO-400 ISO-800 

Exposure compensation 0 0 

5.2.4 Surface histograms of T-beam 

Surface histograms for T-beams are obtained, as discussed in section 4.2.1, as shown in Figures 

5.7 and 5.8.  

   

Figure 5.7 Surface histogram of concrete beam showing grayscale intensity for random 

speckle pattern 
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Figure 5.8 Surface histogram of concrete beam showing grayscale intensity for QR 

code-based speckle pattern 

The intention behind using the DIC technique widely is the drop-down prices of Charge 

Coupled Device (CCD) and Complementary Metal-Oxide-Semiconductor (CMOS) sensor-

based cameras. DIC compares digital photographs of the test piece or component at different 

stages of deformation by identifying blocks of pixels, as shown in Figure 5.9. The system can 

also measure surface deformation and come up with full-field 2D deformation vector fields and 

strain maps. 

5.2.5 QR Code-based DIC technique 

DIC technique has been utilised successfully for large deformation measurements. Due to its 

simplicity, DIC technique has been extended to curvature studies as well. According to the 

technique, if the specimen attains the natural texture of random grey intensity value, there is 

no need to prepare the surface of the specimen. The use of QR code-based speckle pattern is 

for applications in structural health monitoring. QR code is used for numerous applications in 

data encryption, data transmission and also as information carrier in web applications. 

Therefore, using QR code as a speckle pattern for DIC in real-time structural health monitoring 

provides us with certain advantages, such as QR code encrypted with details of the structure 

enabling easy identification of the structure by scanning. RCC T-beams were examined using 

Ncorr v1.2.2, shown in Figure 5.10. 
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(a)  

 

(b) 

Figure 5.9 Subset tracking procedure using DIC (a) Random speckle (b) QR code-based 

speckle pattern 
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(a)  

 
(b) 

Figure 5.10 Deflection profile of QR pattern using Ncorr v1.2.2 for T-beams (a) Vertical 

displacement (mm) (b) Horizontal displacement (mm) 

The present work uses QR code-based speckle pattern, verify and validate its results with 

currently used random speckle pattern in DIC. From this study, it was observed that the results 

based on QR code-based speckle pattern is on par with those random speckle pattern. 

5.3 Finite Element Simulation 

T-beams are modelled using the Concrete Damage Plasticity (CDP) Model with same elements 

and boundary conditions as discussed in section 4.4 

5.3.1 T-beam FE simulation 

A solid 3D deformable model of reinforced concrete T-beam with a length of 1800 mm was 

developed. Reinforcement of length 1800 mm and appropriate stirrups (dimensions are given 
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in Table 5.6) for M30 UR beams were developed, as shown in Figure 5.11. Properties of both 

concrete and rebar materials used in simulations were created in property module and assigned 

to the respective parts, as shown in Table 5.5. 

Table 5.5 Reinforcement details of RCC T-beams  

Beam Designation 
Top bars 

(mm) 

Bottom bars 

(mm) 
6ϕ stirrups spacing (mm) 

 M30 UR 2-6ϕ 2-10ϕ 125  

 

Figure 5.11 Reinforcement details of T-section 

Material properties used in the simulation are shown in Table 5.6. The geometry of the meshed 

RCC beam is shown in Figure 5.12. 

Table 5.6 Concrete and reinforcement steel properties used in simulation model 

Grade of 

Concrete in  

(MPa) 

Concrete Mechanical Properties Steel Properties 

Density 

(kg/m3) 

Elastic 

Modulus 

(MPa) 

Poisson’s 

ratio 

Density 

(kg/m3) 

Poisson’s 

ratio 

M30 2400 27400 0.15 7850 0.3 

 

Figure 5.12 Meshed RCC beam using ABAQUS software 
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The deflections at the end of analysis for the entire beam and reinforcements within is shown 

in Figure 5.13. Comparison of simulation results with both DIC and conventional mid-span 

deflection was done. 

 

(a) 

 

(b) 

Figure 5.13 Deflection profile of (a) Solid RCC beam (b) Reinforcement 

5.4 Analytical Stress-Strain Model for Scaled Concrete T-Beam 

Before the analysis of scaled RCC T-beam, one should understand the stress-strain behaviour 

of the constitutive materials used in the beams, i.e. steel and scaled concrete. The steel is 
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manufactured from the industry so there should not be more variation of stress-strain, but 

concrete is manufactured on-site, so many variations impact the behaviour of concrete (Swamy 

Naga Ratna Giri et al. 2017). The stress-strain relationship of mortar prism was developed 

using Saenz’s model (1964), who proposed (5.1), given below, initially for ordinary concrete. 

F = 
 Aε+D

1+Bε+Cε2
          (5.1) 

To determine the stress-strain curve of scaled concrete, the stress ratio and strain ratio are 

considered as dependent and independent variables instead of stress and strain proposed by 

Saenz. Equation (5.2) was proposed for non-dimensional stress-strain curve of concrete in axial 

compression. 

f

fu
 = 

A(
ε

εu
)

1+B(
ε

εu
)+C(

ε

εu
)

2         (5.2) 

A, B, C are constants to be evaluated and to evaluate these constants, and the following 

boundary conditions need to be considered shown in Table 5.7.  

Table 5.7 Boundary conditions for scaled RCC T-beams 

Boundary 

condition 1 

Boundary 

condition 2 

For ascending 

portion 

For descending 

portion 

At 
𝜀

𝜀𝑢
  = 1,  

f

fu
 = 1 At 

𝜀

𝜀𝑢
=1,  

d(
f

fu
)

d(
𝜀

𝜀𝑢
)
 = 0 

At (
𝜀

𝜀𝑢
)=0.80, 

(
f

fu
)=0.85 

At (
𝜀

𝜀𝑢
)=1.07, 

(
f

fu
)=0.85 

Two sets of A,B, C values are to be proposed, in that one set is for ascending portion, and 

another set is for descending portion of the stress-strain curve. From the stress-strain curve, it 

was noticed that a single equation could not explain the entire behaviour of scaled concrete. 

Two separate equations were proposed based on Saenz’s model for ascending and descending 

portion of the stress-strain curve. The boundary conditions are different for ascending and 

descending portions of the stress-strain curve. By satisfying the boundary conditions, constants 

A, B, C are shown in Table 5.8, for ascending and descending portion of the stress-strain curve. 

The experimental and analytical stress ratio vs strain ratio are shown in Figure 5.14. 

Table 5.8 Constants for ascending and descending portion of the stress-strain curve 

Mortar A B C 

Ascending portion 1.2 0.1 0.1 

Descending portion -0.335 0.3 1.02 
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Figure 5.14 Stress ratio vs Strain ratio 

5.5 Analytical Moment (M)-Curvature (κ) for Scaled (1:12) T-Beams 

Analytical model detailed in section 5.4 describes the behaviour of scaled concrete prism in 

compression, and now it is proposed to predict the M-κ behaviour of scaled concrete. In 

deriving a moment-curvature relationship for scaled concrete T-beam section, following are 

the assumptions:  

5.5.1 Assumptions 

i. Stress-strain in the selected section is considered as stress block. 

ii. The tensile strength of concrete is neglected. 

iii. The variation of strain across the section is linear up to the point of failure. 

iv. The steel is perfectly bonded. 

v. Idealised stress-strain relation for the tension and compression steel is used. 

vi. The concrete compressive strain (εc) at extreme fibre was assumed to be in the range of 

0.0001 up to the failure strain (i.e. 0.01). 

vii. Initially, at 0.5 times the effective depth, neutral axis (nd) was assumed (i.e. 0.5d). 

viii. For the neutral axis depth values, the compressive force in concrete, Cc, is arrived based 

on the stress-strain model developed. 
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ix. The stress in tension and compression is calculated based on the assumption of strain 

compatibility. 

x. Based on the stress-strain curve of steel, the corresponding stresses will be considered. 

5.5.2 Procedure adopted for determining analytical M-κ 

i. The concrete compressive strain (εc) at extreme fibre is assumed to be in the range of 

0.0001 up to the failure strain (i.e. 0.01). 

ii. Initially, at 0.5 times the effective depth, neutral axis (nd) is assumed (i.e. 0.5d). 

iii. For the neutral axis depth values, the compressive force in concrete, Cc, is arrived based 

on the stress-strain model developed in section 5.4. 

iv. The stress in tension and compression is calculated based on the assumption of strain 

compatibility. 

v. Based on the stress-strain curve of steel, the corresponding stresses will be considered. 

vi. The total tensile force (T) is calculated as tension. 

vii. In order to calculate the compressive force (Cs) in compression steel, a similar 

procedure is adopted (as Cc is calculated).  

viii. From the expression C = Cc+Cs, the total compressive force (C) acting in the section is 

calculated. 

ix. If C = T, then the assumed value of the neutral axis depth (nd) is correct; otherwise, the 

neutral axis depth is modified until the condition C = T is achieved.  

x. After satisfying the condition (C = T), moment (M) and the corresponding curvature 

(Ø) is calculated.  

Now, the total moment at the neutral axis is given in (5.3). 

M = Mt+Mc+Mcs,     (5.3) 

Where Mt is the moment of force in steel subjected to tension, Mc is the moment of compressive 

force in concrete and Mcs is the moment of force in compression steel about the neutral axis. 

The MATLAB code for this analysis is included in Appendix-A. 

5.6 Results and Discussions 

T-beams of cross-section size (L=1800 mm, bf = 240 mm, df = 30 mm, bw = 65 mm and                

dw = 200 mm) are cast and tested to evaluate the load-deflection and Moment (M)-Curvature 

(κ) relationships for UR section. After completion of both conventional and DIC analysis, 

deflection profiles are plotted with the corresponding load obtained from Universal Testing 

Machine (UTM). DIC results are compared with standard numerical tool ABAQUS v6.14/CAE 
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software and conventional results obtained using DIC, LVDT’s, dial gauges and actuator data 

for all the specimens as shown in Figure 5.15.  

 

Figure 5.15 Experimental load vs deflection for scaled (1:12) RCC T-beam 

5.6.1 Moment (M)-Curvature (κ) relationship for scaled T-beams 

The curvature of the beams is measured by placing curvature meters in both the compression 

as well as in tension zones. Curvature meters having least count of 0.001 mm are fixed between 

two rectangular frames, one at the top and another at the bottom. Schematic view of the test 

setup is shown in Figure 5.2. Based on the radius of the top and bottom curvature meters, the 

average curvature is calculated. The deflections are measured using two load points, which is 

the midpoint of the beam and at the points located midway between the supports and the 

midpoint, using dial gages. 

A comparison of the Moment (M)-Curvature (κ) values obtained from conventional (dial 

gauge, curvature meter and crosshead motion) measurements and DIC with different speckle 

patterns is shown in Figures 5.16 and 5.17. The ultimate M-κ values of T-beams obtained from 

conventional, analytical and numerical measurements, along with DIC technique using 

different speckle patterns is shown in Tables 5.9 and 5.10. 
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Figure 5.16 M-κ curve for scaled (1:12) RCC T-beam 

 
Figure 5.17 Comparison of M-κ curve for scaled (1:12) RCC T-beam 

It is observed that M-κ curves extracted using QR code random speckle pattern closely match 

the curves obtained from conventional measurements. 
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5.6.2 M-κ results at ultimate values using random and QR speckle patterns 

Table 5.9 shows the DIC M-κ data at ultimate values where the beam is tested with both speckle 

patterns throughout the cross-section of the beam. After testing the beam, results are extracted 

using Ncorr. The results obtained from the software are compared with conventionally obtained 

data. Table 5.10 shows M-κ DIC data at ultimate values obtained using analytical and FEM 

with that of conventional method of testing. 

Table 5.9 Comparison of ultimate M-κ values of beams obtained using random and QR code 

speckle patterns with that of a conventional method of testing 

   

Specimens    

Designation 

Conventional Random speckle pattern QR code speckle pattern 

M κ M κ M1 κ1 M κ M1 κ1 

M30  20.76 10.12 18.15 11.025 12.57 8.94 19.31 10.5 6.98 3.74 

MAE 12.57 8.94  6.98 3.74 

   MAE: Mean Absolute Error; M1: % error in moment (kN-m); κ1: % error in curvature 

Table 5.10 Comparison of ultimate M-κ of beams obtained using analytical and FEM with 

that of the conventional method of testing 

   

Specimens    

Designation 

Conventional Analytical FEM results 

M κ M κ M1 κ1 M κ M1 κ1 

M30 20.76 10.12 19.41 10.52 6.47 4.01 22.14 10.7 5.63 5.73 

MAE 6.47 4.01  5.63 5.73 

     MAE: Mean Absolute Error; M1: % error in moment (kN-m); κ1: % error in curvature 

The maximum percentage error in ultimate moment is 12.57% in the case of random speckle 

pattern whereas it reduces to 6.98% in case of QR code speckle patterns. The maximum 

percentage error in ultimate curvature is 8.94% in the case of random speckle pattern whereas 

it reduces to 3.74% in case of QR code speckle patterns. Similarly, the maximum percentage 

error in ultimate moment is 6.47% in the case of analytical results, whereas it reduces to 5.63% 

with FEM based results. The maximum percentage error in ultimate curvature is 4% in the case 

of analytical results whereas it increases to 5.73% in case of FEM based results. The results 

obtained from the QR code-based random speckle pattern are closer to the results obtained 

from conventional measurements and also with analytical behaviour. Greater moment capacity 

was consistently observed when QR code-based random speckle pattern is used in comparison 

with random speckle pattern. 
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5.7 Conclusions Drawn from the Study 

The nonlinear flexural behaviour of RCC T-Beams for M30 UR beams are measured using 

random speckle pattern as well as QR code-based speckle pattern. Load-Deflection graphs are 

plotted for both specimens and Moment (M)-Curvature (κ) relationship is obtained using RCC 

beams for M30 compressive strengths. The following conclusions are drawn:  

 The M-κ relationships for T-beams obtained from conventional dial gauge and 

crosshead readings compare well with DIC results obtained using different speckle 

patterns.  

 The scaling factors are derived from the standard law of similitude procedure and their 

accuracy in satisfying the similarity conditions. 

 The designed scaled-down T-beam is cast and tested in a four-point bending test 

configuration under incremental loads while DIC cameras measured the displacement 

field and calculated the strain distribution of the T-beam. 

 Analytical stress-strain relationship for scaled (1:12) RCC T-beam is validated based 

on experimental results.  

 The QR code serves the dual purpose of embedding data in the structural component as 

well as functioning as a random pattern for DIC which is helpful for non-contact sensor-

based condition monitoring, as well as the integration of component-level data with 

BIM.  
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CHAPTER 6 

Development of Damage Index Using ANN 

6.0 General 

In this phase of the study, a feed-forward back-propagation algorithm is used for training the 

Artificial Neural Networks (ANNs) on experimental and numerical data. Separate ANNs are 

prepared for rectangular beams and T-beams. The output parameters of ANNs are i) Remaining 

capacity of the beam component, ii) Corresponding Damage Index (DI). To begin with, 

numerical simulations are validated with corresponding experimental results of tested scaled 

RCC beams. For identifying the damage in beams, validated experimental and numerical 

simulation results are given as input parameters into the ANN and damage status is obtained 

from the ANN output. Load-deflection curves of rectangular beams and T-beams obtained 

using both conventional and virtual (DIC) sensors are compared, and a normalized Moment 

(M)-Curvature (κ) relationship generally applicable for flexural dominated RCC beams is 

developed. 

6.1 Damage Index (DI) 

Damage identification is a critical issue in terms of safety and functionality of any engineering 

structure. DI has been recognised as a useful tool for quantitatively expressing the extent of 

damage in such structures. This study proposes a neural-network-based SHM scheme using 

geometric, material and load response (DIC) data as input parameters. MATLAB R2018a 

(fitting tool) software is employed for data processing. After that, samples of training data 

obtained from virtual sensors are tested and classified, to indicate the health condition of the 

monitored structure.  

Till date, there is no universally accepted DI, although several scales, usually varying between 

0 (no damage) to 1 (total collapse), have been proposed by Kappos (1997), Cao Vui (2014) and 

Kanwar et al. (2007). Among these, the damage index proposed by Cao Vui (2014) is employed 

in this study because it enables higher resolution of the damage states. Ideally, DI should range 

within a scale of 0 to 1, as shown in Table 6.1, with 0 representing the state of elastic response, 

and 1 referring to the state of total collapse. DI can be calculated using (6.1) given below. 
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                                    Damage Index (DI) = 1 −
Current Capacity

Original Capacity
  (6.1) 

Table 6.1 Proposed damage indices for different states (Cao Vui 2014) 

 

The DI is mapped to the corresponding Condition Rating Number (CRN) as proposed by 

Bridge inspection and maintenance by Indian Railways Pune. The proposed damage indices 

and corresponding CRN are shown in Table 6.2.  

Table 6.2 Proposed Condition Rating Number (CRN) (Bridge Inspection Manual, 2014) 

CRN Description 

1 A condition which warrants rebuilding/rehabilitation immediately 

2 A condition which requires rebuilding/rehabilitation on a programmed basis 

3 A condition which requires major/special repairs 

4 A condition which requires routine maintenance 

5 Sound condition 

6 Not applicable 

0 Not inspected 

 

6.2 Artificial Neural Networks (ANN) Modelling: 

ANN are non-linear multi-dimensional regression analysis tools, which may be used to model 

complex relationships between inputs and outputs (Onal and Ozturk 2010). This technique 

allows investigation of the relationship between the curvature of the test component and 

development of a corresponding DI by simulating the component. ANN are composed of 

several interconnected neurons or simple nodes. Weightage (synaptic weights) is assigned to 

each neuron. ANN are a family of self-adaptive, flexible computational tools with the 

capability of capturing non-linear behaviour of complex problems. Similar to a biological 

neuron in the human brain, the individual neuron in ANN gathers the information, processes 

and transmits it to other neurons; the input signals in ANN are multiplied by their 

corresponding synaptic weights and biases, and they are aggregated in a summation layer, 

which is excited by an activation function, after which the signal is transferred to other neurons. 

The input vector [x1, x2, x3……xk] is multiplied by synaptic weights which are fed to the 
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summing junction. The sum is a dot product of synaptic weight matrix and vector x. The bias 

µ is also added in the summation layer, which is subjected to an activation function, in order to 

excite or activate the neurons. The synaptic weight vector is given by (6.2). 

w = (

𝑤11 ⋯ 𝑤1𝑘

⋮ … ⋮
𝑤𝑖1 ⋯  𝑤𝑖𝑘

)         (6.2) 

The mathematical function for the output is given in (6.3).  

yi= f (∑ 𝑤𝑖𝑘𝑥𝑘 + µ𝑖𝑘 )        (6.3) 

Where xk is the input signal applied to the neurons, wik are the weights attached to the input 

neurons, µi is the offset or bias, f is a transfer function, and yi is the output. One of the most 

widely used function is the sigmoid transfer function. This transfer function adjusts the input 

(which may have any value between plus and minus infinity) to output values between the 

ranges 0 to 1. The sigmoid transfer function is extensively used in neural networks that are 

trained using the back-propagation algorithm because this function is differentiable. From (6.3) 

the output can be a non-linear, linear or sigmoidal function of the input. 

There are two phases for the ANN chosen in this study, i.e. feed-forward phase and back-

propagation phase. During the feed-forward phase, the synaptic weights (either defined or 

random) are applied to the input matrix and are propagated through hidden layers and from 

hidden layer to output layer. At the output layer, the model is evaluated as part of the training 

process, and the error between predicted versus actual values is determined. If the error is more 

than the targeted error, the back-propagation of the neural network takes place wherein 

readjustment of the weights takes place at every neuron. Then, after the weights are adjusted, 

the process repeats until the prescribed target error is achieved. 

In this study the feed-forward, back-propagation neural network has one input layer with four 

number of inputs variables, one hidden layer with ten number of neurons and an output layer 

with two number of output variables for rectangular beams. Whereas one input layer with eight 

number of inputs variables, one hidden layer with ten number of neurons and an output layer 

with two number of output variable for T-beams. The algorithm adopted for the training is 

Levenberg-Marquardt (trainlm). Training input parameters considered in the present 

investigation are shown in Table 6.3. 
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Table 6.3 Training input parameters used in ANNs  

Show Window true Min_grad 1e-07 

Show Command line false Max_fail 6 

Show 25 Mu 0.001 

epochs 1000 Mu_dec 0.1 

time inf Mu_inc 10 

goal 0 Mu_max 10000000000 

The number of hidden layers and the number of neurons in the hidden layers is determined by 

the complexity of the problem. The more complex the problem, more the number of neurons 

required. In fact, it is the most crucial part of ANN architecture. However, it has been observed 

from the literature that one hidden layer is sufficient for most problems (Hecht-Nielsen 1992, 

De Villiers & Barnard 1993, Cybenko 1989). For complex problems, where increasing the 

number of neurons in a single layer does not increase the predictive efficiency of the network 

two hidden layers may be required. 

In the present investigation, the necessary data was input into the MATLAB R2018a neural 

fitting toolbox. Among the input data, 70% are selected as training samples. 15% of the data 

are selected for testing, and the remaining 15% are selected for validation. MATLAB R2018a 

neural fitting toolbox automatically divides and arranges the input data in the input layers to     

[-1, 1], and output data in the output layer to [0, 1] and this process is called data pre-processing. 

Several iterations are required for the selection of hidden layer neurons based on minimum 

absolute training error. To calculate the performance of the trained model, statistical indices 

such as the Correlation coefficient (R), Mean Absolute Error (MAE), and Root Mean Square 

Error (RMSE) are used as given in (6.4), (6.5) and (6.6). Correlation coefficient (R) is used as 

the initial model evaluation criteria for different combinations of network architecture with a 

varying number of nodes in the hidden layer. Detailed performance measures of the ANNs 

architectures with different statistical indices are given in Tables 6.4, 6.5 and 6.6. 

RMSE =  √
1

N
∑(pi − oi)

2

N

i=1

 

 

 (6.4) 

R =  
∑ (pi − p)(oi − o)N

i=1

√∑ (pi − p)2 ∑ (oi − o)2N
i=1

N
i=1

 
 (6.5) 

MAE =
1

N
∑(pi − oi)

N

i=1

 
(6.6) 
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Table 6.4 Parametric study of ANN configurations for rectangular UR beam 

training data 

Hidden Neurons R MAE RMSE 

Nh= 2 0.99077 0.03599 0.05697 

Nh= 3 0.98963 0.04189 0.06131 

Nh= 4 0.98919 0.04163 0.06165 

Nh= 5 0.99305 0.03826 0.05697 

Nh= 6 0.99541 0.03515 0.05208 

Nh= 7 0.99576 0.02924 0.04994 

Nh= 8 0.99651 0.03601 0.05531 

Nh= 9 0.99875 0.03007 0.04652 

Nh=10 0.99953 0.02909 0.04376 

Nh= 11 0.99373 0.03739 0.05428 

Nh= 12 0.99109 0.04254 0.06013 

Nh= 13 0.99324 0.03321 0.0477 

Nh= 14 0.99226 0.03484 0.05139 

Nh= 15 0.99206 0.03706 0.05376 

Nh= 16 0.99285 0.03327 0.04982 

Nh= 17 0.99288 0.03379 0.0532 

   

Table 6.5 Parametric study of ANN configurations for rectangular OR beam training 

data 

Hidden Neurons R MAE RMSE 

Nh= 2 0.99577 0.04099 0.06197 

Nh= 3 0.99463 0.04289 0.06231 

Nh= 4 0.99419 0.04263 0.06265 

Nh= 5 0.99605 0.03926 0.05797 

Nh= 6 0.9974 0.03615 0.05308 

Nh= 7 0.99776 0.03024 0.05094 

Nh= 8 0.99651 0.03701 0.05631 

Nh= 9 0.99875 0.03107 0.04752 

Nh=10 0.99920 0.03009 0.04476 

Nh= 11 0.99673 0.03839 0.05528 

Nh= 12 0.99609 0.04354 0.06113 

Nh= 13 0.99824 0.03421 0.0487 

Nh= 14 0.99726 0.03584 0.05239 

Nh= 15 0.99706 0.03806 0.05476 

Nh= 16 0.99785 0.03427 0.05082 

Nh= 17 0.99788 0.03479 0.0542 
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Table 6.6 Parametric study of ANN configurations for scaled RCC T-beam training 

data 

Hidden Neurons R MAE RMSE 

Nh = 2 0.99177 0.03699 0.05797 

Nh = 3 0.99063 0.04289 0.06231 

Nh = 4 0.99019 0.04263 0.06265 

Nh = 5 0.99205 0.03926 0.05797 

Nh = 6 0.9934 0.03615 0.05308 

Nh = 7 0.99376 0.03024 0.05094 

Nh = 8 0.99251 0.03701 0.05631 

Nh = 9 0.99475 0.03107 0.04752 

Nh =10 0.99576 0.03009 0.04476 

Nh = 11 0.99273 0.03839 0.05528 

Nh = 12 0.99209 0.04354 0.06113 

Nh = 13 0.99424 0.03421 0.0487 

Nh = 14 0.99326 0.03584 0.05239 

Nh = 15 0.99306 0.03806 0.05476 

Nh = 16 0.99385 0.03427 0.05082 

Nh = 17 0.99388 0.03479 0.0542 

Based on the parametric study of ANN configurations, a network with 10 neurons is found to 

be optimum. The calculated and predicted values of DI are Oi and Pi. Where N is the number 

of validated samples. The average values of O and P are Oi and Pi values respectively. The very 

common choice for feed-forward neural networks is sigmoidal activation function which is 

shown in Figure. 6.1 and it is also expressed in (6.7). Network output values are restricted 

between 0 and 1. 

𝜙𝑥= 
1

1+𝑒−𝑥
 

 (6.7) 

 
Figure 6.1 Function used in ANNs  



79 
 

6.3 Validation of Rectangular Beams Using ANNs 

Simply supported RCC beams (24 no’s) of size 1800 mm x 150 mm x 200 mm are tested in 

flexure. DIC is used to extract Moment (M)-Curvature (κ) relationships using random speckle 

patterns and QR code-based random speckle patterns. A feed-forward, back-propagation neural 

network is employed. It has one input layer with four input variables, one hidden layer with ten 

neurons and an output layer with two output variables. The algorithm adopted for the training 

is Levenberg-Marquardt (trainlm). The input vectors for the rectangular beams are (grade, 

deflection, curvature, load), and the output vectors are (residual moment, damage index). The 

schematic neural network is shown in Figure 6.2. The transfer function between input and the 

hidden layer is sigmoidal function, and from hidden to output layer is purelin. Two separate 

neural networks are trained, one for Over-Reinforced (OR) and other for Under-Reinforced 

(UR) concrete. There are other input parameters which are also used in addition to these 

parameters for prediction of DI. By performing a number of trails with various input 

parameters. The predicted output mainly depends upon these four input vectors for the 

rectangular beams, for that reason, the authors have chosen these parameters. 

 

 

Figure 6.2 Schematic representation of ANNs architecture for rectangular beams                  

(Ref: MATLAB R2018a neural fitting toolbox) 
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In Figure 6.2, one of the input vectors is load. The load is a force (kN, N) applied on the beam 

specimen while performing the experimental testing, and corresponding images are captured 

at various loads up to failure. Using these images corresponding deflections and curvatures are 

obtained from the image-processing technique (DIC). The deflections and curvatures obtained 

from DIC are validated by comparison with conventionally obtained (LVDT & dial gauge) 

data. These deflections are given as input vectors, and the corresponding load has to be 

estimated by the trained ANNs. 

 
Figure 6.3 Schematic representation of performance graph for rectangular UR beam             

(Ref: MATLAB R2018a neural fitting toolbox) 

 

 
Figure 6.4 Regression graph for rectangular UR beams using ANN 
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From Figure 6.3, the neural network stops at 25th Epoch and error at that point is closer to         

10-1. The R²-value from the regression analysis is 0.9983, shown in Figure 6.4. 

 
 

Figure 6.5 Performance graph for rectangular OR beam (Ref: MATLAB R2018a neural 

fitting toolbox) 

 

 
Figure 6.6 Regression graph for rectangular OR beams using ANN 
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From Figure 6.5, the training of neural network stops at 12th Epoch at a mean squared error 

(mse) near 10-2. The R² value from the regression analysis is 0.999, shown in Figure 6.6.  

6.3.1 Results obtained for rectangular beams using ANNs approach 

From the experiment and imaged-based ANNs prediction, the following results are obtained 

for rectangular OR and UR sections, as shown in Figures 6.8-6.13. The results obtained from 

ANNs prediction are close to experimental results. For most of the specimens, the error is less 

than 5%. Experimentally examined RCC rectangular beam using Ncorr v1.2.2 is shown in         

Figure 6.7.  

 
(a) 

 
(b) 

Figure 6.7 Deflection profile using Ncorr v1.2.2 for rectangular beams (a) Vertical 

displacement (mm) (b) Horizontal displacement (mm) 
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Figure 6.8 Load vs Deflection for M30 OR section 

 
Figure 6.9 Load vs Deflection for M30 UR section 

 
Figure 6.10 Load vs Deflection for M50 OR section 
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Figure 6.11 Load vs Deflection for M50 UR section 

 
Figure 6.12 Load vs Deflection for M70 OR section 

 
Figure 6.13 Load vs Deflection for M70 UR section 
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DIC enables measurement of the deformation field and calculation of the strain distribution of 

the beam. The values extracted from DIC with QR code-based random speckle pattern compare 

well with conventionally obtained (LVDT & dial gauge) results. Only the QR code-based 

experimental data are used for the training of ANNs. From Figures 6.8-6.13 provided the 

legend with training data as input parameters and predicted as output parameters. In most of 

the specimens, it is observed that ANNs prediction results closely match experimental results. 

6.3.2 Moment (M)-Curvature (κ) results for rectangular beams 

 
Figure 6.14 Moment (M)-Curvature (κ) for M30 beams 

 

 
Figure 6.15 Moment (M)-Curvature (κ) for M50 beams 

0

5

10

15

20

25

30

35

40

0 30 60 90 120 150 180

M
o

m
e

n
t 

(k
N

-m
)

Curvature x10-3 (m-1)

M30 OR Curvature Meter

M30 OR Random Speckle

M30 OR QR Speckle

M30 UR Curvature Meter

M30 UR Random Speckle

M30 UR QR Speckle

M30 OR ANN Prediction

M30 UR ANN Prediction

0

10

20

30

40

50

60

70

0 50 100 150 200

M
o

m
en

t 
(k

N
-m

)

Curvature x10-3 (m-1)

M50 OR Curvature Meter

M50 OR QR Speckle

M50 OR Random Speckle

M50 UR Curvature Meter

M50 UR QR Speckle

M50 UR Random Speckle

M50 OR ANN Prediction

M50 UR ANN Prediction



86 
 

 
Figure 6.16 Moment (M)-Curvature (κ) for M70 beams 

Based on the curvature meter readings obtained at top and bottom portion of the beam from the 

experiment, the Moment (M)-Curvature (κ) relationship is calculated. In Moment (M)-

Curvature (κ) plots, shown in Figures 6.14, 6.15 and 6.16, it is observed that ANNs results 

compare well with experimental results. Based on ANNs results, residual moment capacity and 

DI are calculated and plotted. It is observed that the DI is sensitive to the curvature. 

 

Figure 6.17 Damage Index (DI) vs Curvature for OR beams 
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Figure 6.18 Damage Index (DI) vs Normalized Curvature for OR beams 

 

Figure 6.19 Damage Index (DI) vs Curvature for UR beams 

 

Figure 6.20 Damage Index (DI) vs Normalized Curvature for UR beams 
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Figure 6.21 Residual Moment Capacity vs Curvature for RCC beams 

 
Figure 6.22 Residual Moment Capacity vs Damage Index for UR beams 

 

Figure 6.23 ANNs prediction of Damage Index (DI) vs Normalised Curvature for rectangular 

beams 
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Figures 6.17-6.23 show the relationship between curvature, residual moment capacity, DI, and 

Normalised curvature, where it is observed that the residual moment capacity converges to zero 

before reaching a curvature value of 0.065 m-1. As the value of the DI increases, the residual 

moment capacity of the flexural dominated member decreases linearly.   

Table 6.7 Comparison of experimental with ANNs results  

Designation 

Experimental ANNs Error in 

Moment 

(%) 

Error 

in 

Load 

(%) 

Deflection 

(mm) 

Moment 

(kN-m)  

Load 

(kN) 

Moment 

(kN-m) 

Load 

(kN)  

Curvature 

x10-3 m-1 

M30 (UR) 9.7 18.3 52.4 18.03 51.6 77 1.47 1.52 

M50 (UR) 4.3 34.5 98.6 34.6 98.7 47.8 0.28 0.1 

M70 (UR) 18.6 25.6 73.1 24.9 70.4 67.5 2.73 3.69 

M30 (OR) 12.3 52.6 150.4 57.4 164 45.9 9.12 9.04 

M50 (OR) 9.2 30.9 88.3 32.2 88.5 59 4.2 0.22 

M70 (OR) 10.8 73.2 209.2 70.8 216.8 51.8 3.27 3.38 

From the Table 6.7, it is clear that the error percentage is less than 5% for most of the samples.  

6.4 T-Beams Conventional  

To study the behaviour of the full-scale bridge girders, a scaled experimental study is 

conducted. An actual MoRTH bridge girder of span 24 m, is scaled down to 1:12 to enable 

testing under four-point flexural loading. From the experiment, moment-curvature is obtained, 

which helps in the calculation of DI based on which the condition of the girder is classified in 

terms of residual capacity. RCC T-beams of M30 grade of concrete for UR sections are cast 

and tested for deformations using dial gauges and LVDTs along with DIC technique. The cross-

section size and typical reinforcement details of T-beam are shown in Figure 6.24.  

 

Figure 6.24 Reinforcement details of T-section 

The supported length of the T-beam is 1800 mm. It was used to check the suitability of 

employing random speckle pattern and QR based random speckle pattern on either side of the 

test component. The component-level testing of RCC T-beam is performed under simply 

supported conditions and validated using SAP2000 software, as shown in Figure 6.25. 
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(a)      (b) 

Figure 6.25 Scaled T-beam (1:12) (a) Experimental specimen (b) SAP2000 model  

Three T-beam specimens are cast for experimental studies, and after validation of experimental 

T-beam using SAP2000, four standard MoRTH Bridge girders shown in Table 6.8 are 

considered for modelling (Figures 6.27-6.28). Experimentally obtained nonlinear compressive 

stress-strain behaviour of a prism (1:2 cement to sand ratio) is given as material property in 

SAP2000, as shown in Figure 6.26. Young’s modulus of the concrete material (M30) is 

considered as 5000√fck (IS 456:2000). 

 

Figure 6.26 Stress-Strain relation for scaled M30 concrete 

Table 6.8 Dimensions of standard MoRTH bridge girders used in SAP2000  

SPAN (m) Flange (b
f
) mm Flange (D

f
) mm Web (b

w
) mm Web (d) mm 

Beam-1 24 2800 350 625 2055 

Beam-2 24 2825 350 625 2055 

Beam-3 21 2650 400 625 2105 

Beam-4 21 2825 350 625 2055 
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(a)  Beam-1 (b) 

  

(a)  Beam-2 (b) 

Figure 6.27 MoRTH T-girder of 24 m span (a) Standard c/s drawings (b) SAP2000 model  
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(a)  Beam-3 (b) 

 
(a)  Beam-4 (b) 

Figure 6.28 MoRTH T-girder of 21 m span (a) Standard c/s drawings (b) SAP2000 model  

6.4.1 Analytical prediction of M-κ for standard MoRTH bridge girders 

Flexural behaviour of standard MoRTH bridge girders using analytical approach (MATLAB 

code) is estimated in this study, to generate more amount of data in addition to the experimental 

data for ANN training. A normal distribution of fck (characteristic compressive strength) is 

considered to generate M-κ curves in MATLAB as shown in Figure 6.29. A total number of 
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200 samples of full-scale MoRTH Bridge girders are used for training ANN, which are shown 

in Figure 6.30. Details of the MATLAB code are provided in Appendix-A. 

 

Figure 6.29 Normal distribution of fck values for M30 concrete 

 

Figure 6.30 Prediction of M-κ curves for standard MoRTH bridge girders using MATLAB  
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6.4.2 ANN modelling for T-beams 

Based on the simulation results of full-scale MoRTH bridge girders, ANN are trained, whose 

objective is to find out the DI. The typical ANN architecture for the T-beams is shown in         

Figure 6.31 

  

(a) 

 

(b) 

Figure 6.31 ANN architecture of full-scale T-beams (Ref: MATLAB R2018a neural 

fitting toolbox) 

Input vectors are span (m), breath of the flange bf  (mm), breath of the web bw (mm), depth of 

the flange Df (mm), effective depth d (mm), % of tension reinforcement %Ast, and curvature κ 

(m-1), load (kN) whereas the output is in DI (0 to 1). The predicted output mainly depends upon 

these eight input vectors for the T-beams. The transfer function from input to hidden layers is 

sigmoidal, and from hidden layer to output layer it is purelin. Feed-forward back-propagation 

neural network is used, and Levenberg-Marquardt algorithm is used for training the neural 

network. There are other input parameters which are also used in addition to these parameters 

for prediction of DI. By performing a number of trials with various input parameters. Figure 

6.32 shows that the neural networks stop training at 22nd Epoch. The mean squared error (mse) 

is below 10-3.  
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Figure 6.32 Performance graph of full-scale T-beams (Ref: MATLAB R2018a neural 

fitting toolbox) 

 
Figure 6.33 Regression plot for full-scale T-beams using ANN 

From Figure 6.33 the value of R is 0.9975, which means most of the points are lie on the 

regression plot, which is a good fit. 

6.4.3 Results obtained for T-beams using ANN 

The T-beam sections are considered from MoRTH standard bridge drawings, and T-beam 

samples (3 no’s) of scale (1:12) are cast and tested. Subsequently, FEM simulation for the 

reduced scale (1:12) is performed using SAP2000. The same material properties are used for 

Source: MATLAB R2018a 

neural fitting toolbox 
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simulating full-scale T-beam girders. Experimentally examined RCC T-beams using Ncorr 

v1.2.2 is shown in Figure 6.34. 

 
(a) 

 
(b) 

Figure 6.34 Deflection profile using Ncorr V1.2.2 for T-beams (a) Vertical displacement 

(mm) (b) Horizontal displacement (mm) 

6.4.4 Experimental results and FEA simulation of reduced scale T-beams 

From Figure 6.35 it is observed that simulation results compare well with experimental results. 

The same material properties are used in the simulation of full-scale T-beam girder. Later, 

ANN are trained for full-scale T-beam girder and then compared with FEA simulation results.          

Figure 6.36 shows the moment-curvature relationship for full-scale MoRTH bridges. Damage 

Index vs Curvature behaviour obtained from FEA simulation using SAP2000 is shown in 
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Figure 6.37 and Damage Index vs Curvature behaviour predicted using ANN shown in Figure 

6.38.  

 
Figure 6.35 Moment (M)-Curvature (κ) for Reduced Scale (1:12) T-beams (experimental) 

 
Figure 6.36 Moment (M)-Curvature (κ) for full-scale MoRTH bridges  

 
Figure 6.37 Damage Index (DI) vs Curvature for simulated (SAP2000) full-scale girders 
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Figure 6.38 ANN prediction of Damage Index (DI) vs Normalised Curvature for full-scale 

MoRTH T-beams 

 
Figure 6.39 Residual Moment Capacity vs Damage Index (DI) for Full-Scale girders using 

(SAP2000)  

Residual moment capacity vs DI for full-scale girders (Table 6.8) using (SAP2000) shown in 

Figure 6.39. Normalised Moment vs Curvature predicted for standard full-scale MoRTH 

bridges (backbone curve) shown in Figures 6.40 and 6.41. 
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Figure 6.40 Normalised Moment vs Curvature predicted for full-scale MoRTH bridges (24m)  

 

Figure 6.41 Normalised Moment vs Curvature predicted for full-scale MoRTH bridges(21 m) 

The damage indices Cao Vui (2014) is employed in this study and corresponding CRN mapping 

are shown in Figure 6.42 and Table 6.9. 

 

Figure 6.42 Mapping of Damage Index (DI) with Condition Rating Number (CRN)  
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Table 6.9 Proposed damage indices with CRN 

CRN DI 

Normalized 

Residual  

Moment Capacity 

Description Action 

1 0.75-1.0 0 
Rebuilding/ Rehablitation 

Immediately 
Collapse 

2 0.50-0.75 0.07 
Rebuilding/ Rehablitation on 

programed basis 
Severe 

3 0.25-0.50 0.23 Major/ Special Repair Moderate 

4 0.05-0.25 0.59 Routine Maintenance Minor 

5 0-0.05 1 Sound Condition 
No 

Damage 

6.5 Single ANN for flexural dominated beams 

Based on the experimental, analytical and simulation results of flexurally dominated beams 

(rectangular and T-beams), ANN are trained, whose objective is to find out the DI and relative 

residual moment capacity. The typical ANN architecture for flexural dominated beams is 

shown in Figure 6.43 

 

 

Figure 6.43  Schematic representation of ANNs architecture for flexural 

dominated beams (Ref: MATLAB R2018a neural fitting toolbox) 
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Input vectors are grade of concrete (fck), grade of steel (fy), moment of inertia (I), cross sectional 

area (A), % of steel (pt), L/d ratio, and relative curvature (κr), whereas the output is in DI (0 to 

1) and relative residual moment capacity (Mr/Mmax) . The predicted output mainly depends 

upon these seven input vectors for the beams. The transfer function from input to hidden layers 

is sigmoidal, and from hidden layer to output layer it is purelin. Feed-forward back-propagation 

neural network is used, and Levenberg-Marquardt algorithm is used for training the neural 

network. There are other input parameters which are also used in addition to these parameters 

for prediction of DI. By performing a number of trials with various input parameters. Figure 

6.44 shows that the neural networks stop training at 22nd Epoch. The mean squared error (mse) 

is below 10-3.  

 

Figure 6.44 Performance graph of flexural dominated beams (Ref: MATLAB 

R2018a neural fitting toolbox) 

 

Figure 6.45 Regression plot for flexural dominated beams using ANN 
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From Figure 6.45 the value of R is 0.9783, which means most of the points are lie on the 

regression plot, which is a good fit. 

 
Figure 6.46 Normalised Moment vs Normalised Curvature predicted for bridge 

components 

 
Figure 6.47 Damage Index (DI) vs Normalised Curvature predicted for experimental 

beams 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 2 4 6 8 10

N
o

rm
a

li
ze

d
 M

o
m

en
t 

M
/M

y

Normalized Curvature k/ky

Rectangular M30 OR Experimental Rectangular M30 UR Experimental
Rectangular M50 OR Experimental Rectangular M50 UR Experimental
Rectangular M70 OR Experimental Rectangular M70 UR Experimental
Rectangular M30 OR ANN Prediction Rectangular M30 UR ANN Prediction
Rectangular M50 OR ANN Prediction Rectangular M50 UR ANN Prediction
Rectangular M70 OR ANN Prediction Rectangular M70 UR ANN Prediction
T-Beam 1 Experimental (1:12) T-Beam 2 Experimental (1:12)
T-Beam 3 Experimental (1:12) Simulation T-Beam (1:12)
T-Beam 1 Experimental ANN Prediction (1:12) T-Beam 2 Experimental ANN Prediction (1:12)
T-Beam 3 Experimental ANN Prediction (1:12) Simulation M30 OR
Simulation M30 UR Simulation M50 OR
Simulation M50 UR Simulation M70 OR
Simulation M70 UR Simulation M30 OR ANN Prediction
Simulation M30 UR ANN Prediction Simulation M50 OR ANN Prediction

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16

D
a

m
a

g
e 

In
d

ex
 (

D
I)

Normalized Curvature k/ky

Rectangular M30 OR Experimental Rectangular M30 UR Experimental

Rectangular M50 OR Experimental Rectangular M50 UR Experimental

Rectangular M70 OR Experimental Rectangular M70 UR Experimental

Simulation M30 OR Simulation M30 UR

Simulation M50 OR Simulation M50 UR

Simulation M70 OR Simulation M70 UR

Rectangular M30 OR ANN Prediction Rectangular M30 OR ANN Prediction

Rectangular M50 OR ANN Prediction Rectangular M50 UR ANN Prediction

Rectangular M70 OR ANN Prediction Rectangular M70 UR ANN Prediction

Simulation M30 OR ANN Prediction Simulation M30 OR ANN Prediction

Simulation M50 OR ANN Prediction Simulation M50 UR ANN Prediction

Simulation M70 OR ANN Prediction Simulation M70 UR ANN Prediction

T Beam 1 ANN Prediction T Beam 2 ANN Prediction

T Beam 3 ANN Prediction T Beam FEA Simulation

T Beam 1 Experimental T Beam 2 Experimental

T Beam 3 Experimental



103 
 

 
Figure 6.48 Residual Moment Capacity vs Normalised Curvature predicted for 

Experimental beams 

 

 
Figure 6.49 Damage Index (DI) vs Normalised Curvature predicted for full-scale 

MoRTH bridges 
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Figure 6.50 Normalised Moment vs Normalised Curvature predicted for full-scale 

MoRTH bridges 

 

From Figures 6.46 to 6.50 it is observed that ANN results compare well with experimental, 

analytical and simulation results of flexurally dominated beams (rectangular and T-beams). 

6.6 Conclusions Drawn from the Study 

This part of the study presents the application of ANNs for image-based prediction of DI of 

reinforced concrete components. Based on the experiments, as well as FEA and ANN 

predictions, the following conclusions are drawn: 

 In comparison with other ANN training algorithms, such as Bayesian Regularization, 

and Scaled Conjugate Gradient, the Levenberg-Marquardt algorithm gives acceptable 

results with fewer iterations and better accuracy.  

 

 It is found that ANNs can correctly identify the magnitude of damage. DI for beams 

using ANNs is developed based on experimental and numerical simulation results 

obtained from Phase-I and Phase-II. 

 

 The shape of the normalized moment-curvature relationship (backbone curve) is similar 

for the flexure dominated beams. This finding can be used to generalize the results of 

this study to full-scale bridges components. 
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 As the damage index increases, the residual moment capacity of the section falls 

linearly. Initially, the damage index for simulated full-scale girder changes rapidly at 

small values of curvature. Hence, the curvature is a sensitive indicator of residual 

capacity and damage in flexure dominated beams. 
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CHAPTER 7 

Conclusions 

7.0. Brief Conclusions from Each Phase  

From the three phases of the study, it can be summarized that Quick Response (QR) code-based 

random speckle pattern compares well with conventionally obtained results. The more random 

the speckle pattern, the closer are the Digital Image Correlation (DIC) results in comparison 

with conventional measurements. An image-based damage prediction and classification 

methodology for condition assessment of Reinforced Cement Concrete (RCC) bridge girders 

is developed in this study. To assess the condition of structural components, a local damage 

index was developed. The development of a framework will enable global as well as localized 

measurements of structural deformation and provide data for periodic maintenance as well as 

condition classification of critical infrastructure. Based on the three phases of investigation, the 

following conclusions can be drawn. 

A schematic diagram of the research methodology adopted along with the variables 

considered in each phase and corresponding outcomes are shown in Figure 7.1.  

 

Figure 7.1 Schematic diagram of the research work 
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7.1. Phase-I 

The following conclusions are drawn based on the flexural response extracted using 

conventional measurements and DIC technique on RCC rectangular beams. 

 The M-κ relationships for RCC beams obtained from conventional curvature meters 

and deflections from crosshead readings compare well with DIC results obtained using 

different speckle patterns. An innovative approach to use QR code as a speckle pattern 

in the field of DIC is proposed with comparative results. Further, embedding data in a 

speckle pattern will enable integration with BIM. 

 The M-κ values extracted using QR code-based speckle pattern compare well with 

conventionally obtained M-κ results. The ultimate moment carrying capacity of RCC 

beams extracted from QR code-based speckle pattern is more accurate, with less scatter 

while compared with the ultimate values obtained from M-κ random speckle pattern. 

 The results of the FEA modelling procedures using CDP and non-linear geometry 

(NLGEOM) compare well with experimental results obtained for conventional methods 

as well as DIC. 

 The non-linear constitutive modelling adopted herein is a CDP model applied in the 

finite element code, ABAQUS. This constitutive model is used to predict the realistic 

flexural nonlinear behaviour of RCC beams, and it is observed that M-κ results 

extracted using QR code-based speckle pattern closely match FEM simulation results. 

 The more random the pattern is, the closer are the DIC results obtained from both FEM 

and conventional measurements. 

 QR code-based speckle pattern serves a dual purpose of having an additional advantage 

of data encryption and may be used as consistent non-contact optical sensor in real-time 

structure health monitoring techniques.  

7.2. Phase-II 

The following conclusions are drawn based on flexural response extracted using conventional 

measurements, numerical, analytical and DIC technique on T- beams. 
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 The M-κ relationships for T-beams obtained from conventional dial gauge and 

crosshead readings compare well with DIC results obtained using different speckle 

patterns.  

 The scaling factors are derived from the standard law of similitude procedure and their 

accuracy in satisfying the similarity conditions. 

 The designed scaled-down T-beam is cast and tested in a four-point bending test 

configuration under incremental loads while DIC cameras measured the displacement 

field and calculated the strain distribution of the T-beam. 

 Analytical stress-strain relationship for scaled (1:12) RCC T-beam is validated based 

on experimental results.  

 The QR code serves the dual purpose of embedding data in the structural component as 

well as functioning as a random pattern for DIC which is helpful for non-contact sensor-

based condition monitoring, as well as the integration of component-level data with 

BIM.  

7.3. Phase-III 

This part of the study presents the application of ANNs for image-based prediction of Damage 

Index (DI) of reinforced concrete components. Based on the experiments, as well as FEA and 

ANNs predictions, the following conclusions are drawn: 

 In comparison with other ANN training algorithms, such as Bayesian Regularization, 

and Scaled Conjugate Gradient, the Levenberg-Marquardt algorithm gives acceptable 

results with fewer iterations and better accuracy.  

 It is found that ANNs can correctly identify the magnitude of damage. DI for beams 

using ANNs is developed based on experimental and numerical simulation results 

obtained from Phase-I and Phase-II. 

 The shape of the normalized moment-curvature relationship (backbone curve) is similar 

for the flexure dominated beams. This finding can be used to generalize the results of 

this study to full-scale bridges. 
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 As the damage index increases, the residual moment capacity of the section falls 

linearly. Initially, the damage index for simulated full-scale girder changes rapidly at 

small values of curvature. Hence, the curvature is a sensitive indicator of residual 

capacity and damage in flexure dominated beams. 

7.4 Specific Contributions Made in this Research Work 

The following are the major contributions: 

 An innovative approach to using QR code as a speckle pattern in the field of DIC is 

established with comparative results. QR code-based speckle pattern may be used as an 

integrated non-contact optical sensor for Structural Health Monitoring (SHM) and data 

embedment for BIM.  

 An image-based condition assessment methodology is developed to enable 

quantification of existing damage and residual moment capacity based on curvature for 

flexure dominated RCC Bridge T-girder. 

 Correlation between mechanistic based superstructure Damage Index (DI) and bridge 

Condition Rating Number (CRN) is established. 

 The methodology presented in this study enables image-based condition assessment 

and damage quantification for flexure dominated structural components. 

7.5 Future Scope of the Investigation 

Further study may be attempted in the following focuses: 

 Development of ruggedized rig and data processing system utilizing two cameras for 

3D DIC as well as photogrammetry. 

 Behaviour of scaled RCC T-beams for Shear dominated and axial structural 

components using DIC.  

 Study on sensor instrumented buildings and bridges (field trials) in conjunction with 

painted (optimized) speckle patterns.  
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 For large input datasets deep learning algorithms like (convolution neural network, long 

short-term memory neural network) are preferred rather than normal ANNs, to reduce 

the computational burden. 
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Appendix 

Appendix-A 

MoRTH T-girder of 24 m span beam-1 

% Program for Moment-Curvature of T-Beam 

% Modified by: Dr.T.P.Tezeswi 

%====================================================================== 

clear all 

clc 

format long 

%----------------------------------------------------------------------

--- 

% Generate distribution of Concrete properties 

%----------------------------------------------------------------------

--- 

fck=30; % Characteristic strength of concrete 

ssigma=5 % Standard Deviation Ref: IS456, Table 8 

ftarg =1.65*ssigma+fck % mean value 

fdata=[fck,ftarg]'; 

pd=fitdist(fdata, 'Normal')% Fit normal distribution to the given data 

xx=0:1:1000;  

pdf =pdf (pd, xx); % Generate normally distributed samples of fc 

figure(1)  

plot(xx,pdf,'linewidth',2); 

rr=ftarg+ssigma.*randn(500,1);% Generate 1000 normally distributed 

samples of fc 

%----------------------------------------------------------------------

-- 

% Generate Moment-curvature based on stress block equilibrium 

%----------------------------------------------------------------------

-- 

eo=0.003; % Max strain in concrete   

fy=415;   % Yield Strength of Steel 

Ast=17981;% Area of Steel 

bf=2800;  % Width of Flange 

df=350;   % Depth of flange 

bw=625;   % Width of web  

dw=2055;  % Depth of web  

n=0.5*dw; % Thickness of layer  

z=1;      % 

pp=35     % number of strain increments 

for jj=1:500; 

fci(jj)=rr(jj); 

fc=fci(jj); 

    i=1; 

    for ii=[0.003 1:pp] 

        ecc=0.0001*ii; 

        check=0; 

        TS=0; 

        MTS=0; 

        while check==0             

            TC=0; 

            TMC=0; 

            for j=1:100         

                cstrip=(n/55)*j-(n/150); 
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                ec=cstrip*ecc/n; 

                CS=fck*(2*ec/eo-(ec/eo)^2); 

                CF=CS*bf*n/100; 

                MC=CF*cstrip; 

                TC=TC+CF; 

                TMC=TMC+MC; 

            end 

            est=(dw-n)*ecc/n; 

            if est>(fy/200000)         

                sst=fy;            

            else 

                sst=est*200000; 

            end 

            TS=sst*Ast; 

            MTS=TS*(dw-n); 

            TT=TS; 

            MT=MTS; 

            M=TMC+MT; 

            phi=ecc/n; 

            if TC>TT 

                n=n-0.1; 

            else if TC<TT 

                    n=n+0.1; 

                end 

            end 

            err=TC-TT; 

            perr=abs(100*err/TC); 

            if perr<1 

                check=1; 

            end 

        end 

        fperr(i)=perr; 

        fn(z,i)=n; 

        fTC(i)=TC; 

        fT(i)=TT; 

        fTMC(i)=TMC; 

        fMT(i)=MT; 

        fM(z,i)=M; 

        fphi(z,i)=phi; 

        i=i+1; 

    end 

   figure(2) 

   plot(fphi(z,:),fM(z,:), '-*') % Plot individual M-Phi curves 

   hold on 

   %Storage of data 

   fphijj(z,:,jj)=fphi(z,:);  

   fMjj(z,:,jj)=fM(z,:); 

end 
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MoRTH T-girder of 24 m span beam-2 

% Program for Moment-Curvature of T-Beam 

% Modified by: Dr.T.P.Tezeswi 

%====================================================================== 

clear all 

clc 

format long 

%----------------------------------------------------------------------

--- 

% Generate distribution of Concrete properties 

%----------------------------------------------------------------------

--- 

fck=30; % Characteristic strength of concrete 

ssigma=5 % Standard Deviation Ref: IS456, Table 8 

ftarg =1.65*ssigma+fck % mean value 

fdata=[fck,ftarg]'; 

pd=fitdist(fdata, 'Normal')% Fit normal distribution to the given data 

xx=0:1:1000;  

pdf =pdf (pd, xx); % Generate normally distributed samples of fc 

figure(1)  

plot(xx,pdf,'linewidth',2); 

rr=ftarg+ssigma.*randn(500,1);% Generate 1000 normally distributed 

samples of fc 

%----------------------------------------------------------------------

-- 

% Generate Moment-curvature based on stress block equilibrium 

%----------------------------------------------------------------------

-- 

eo=0.003; % Max strain in concrete   

fy=415;   % Yield Strength of Steel 

Ast=17981;% Area of Steel 

bf=2825;  % Width of Flange 

df=350;   % Depth of flange 

bw=625;   % Width of web  

dw=2055;  % Depth of web  

n=0.5*dw; % Thickness of layer  

z=1;      % 

pp=35     % number of strain increments 

for jj=1:500; 

fci(jj)=rr(jj); 

fc=fci(jj); 

    i=1; 

    for ii=[0.003 1:pp] 

        ecc=0.0001*ii; 

        check=0; 

        TS=0; 

        MTS=0; 

        while check==0             

            TC=0; 

            TMC=0; 

            for j=1:100         

                cstrip=(n/55)*j-(n/150); 

                ec=cstrip*ecc/n; 

                CS=fck*(2*ec/eo-(ec/eo)^2); 

                CF=CS*bf*n/100; 

                MC=CF*cstrip; 

                TC=TC+CF; 
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                TMC=TMC+MC; 

            end 

            est=(dw-n)*ecc/n; 

            if est>(fy/200000)         

                sst=fy;            

            else 

                sst=est*200000; 

            end 

            TS=sst*Ast; 

            MTS=TS*(dw-n); 

            TT=TS; 

            MT=MTS; 

            M=TMC+MT; 

            phi=ecc/n; 

            if TC>TT 

                n=n-0.1; 

            else if TC<TT 

                    n=n+0.1; 

                end 

            end 

            err=TC-TT; 

            perr=abs(100*err/TC); 

            if perr<1 

                check=1; 

            end 

        end 

        fperr(i)=perr; 

        fn(z,i)=n; 

        fTC(i)=TC; 

        fT(i)=TT; 

        fTMC(i)=TMC; 

        fMT(i)=MT; 

        fM(z,i)=M; 

        fphi(z,i)=phi; 

        i=i+1; 

    end 

   figure(2) 

   plot(fphi(z,:),fM(z,:), '-*') % Plot individual M-Phi curves 

   hold on 

   %Storage of data 

   fphijj(z,:,jj)=fphi(z,:);  

   fMjj(z,:,jj)=fM(z,:); 

end 
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MoRTH T-girder of 21 m span beam-3 

% Program for Moment-Curvature of T-Beam 

% Modified by: Dr.T.P.Tezeswi 

%====================================================================== 

clear all 

clc 

format long 

%----------------------------------------------------------------------

--- 

% Generate distribution of Concrete properties 

%----------------------------------------------------------------------

--- 

fck=30; % Characteristic strength of concrete 

ssigma=5 % Standard Deviation Ref: IS456, Table 8 

ftarg =1.65*ssigma+fck % mean value 

fdata=[fck,ftarg]'; 

pd=fitdist(fdata, 'Normal')% Fit normal distribution to the given data 

xx=0:1:1000;  

pdf =pdf (pd, xx); % Generate normally distributed samples of fc 

figure(1)  

plot(xx,pdf,'linewidth',2); 

rr=ftarg+ssigma.*randn(500,1);% Generate 1000 normally distributed 

samples of fc 

%----------------------------------------------------------------------

-- 

% Generate Moment-curvature based on stress block equilibrium 

%----------------------------------------------------------------------

-- 

eo=0.003; % Max strain in concrete   

fy=415;   % Yield Strength of Steel 

Ast=18419;% Area of Steel 

bf=2650;  % Width of Flange 

df=400;   % Depth of flange 

bw=625;   % Width of web  

dw=2105;  % Depth of web  

n=0.5*dw; % Thickness of layer  

z=1;      % 

pp=35     % number of strain increments 

for jj=1:500; 

fci(jj)=rr(jj); 

fc=fci(jj); 

    i=1; 

    for ii=[0.003 1:pp] 

        ecc=0.0001*ii; 

        check=0; 

        TS=0; 

        MTS=0; 

        while check==0             

            TC=0; 

            TMC=0; 

            for j=1:100         

                cstrip=(n/55)*j-(n/150); 

                ec=cstrip*ecc/n; 

                CS=fck*(2*ec/eo-(ec/eo)^2); 

                CF=CS*bf*n/100; 

                MC=CF*cstrip; 

                TC=TC+CF; 
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                TMC=TMC+MC; 

            end 

            est=(dw-n)*ecc/n; 

            if est>(fy/200000)         

                sst=fy;            

            else 

                sst=est*200000; 

            end 

            TS=sst*Ast; 

            MTS=TS*(dw-n); 

            TT=TS; 

            MT=MTS; 

            M=TMC+MT; 

            phi=ecc/n; 

            if TC>TT 

                n=n-0.1; 

            else if TC<TT 

                    n=n+0.1; 

                end 

            end 

            err=TC-TT; 

            perr=abs(100*err/TC); 

            if perr<1 

                check=1; 

            end 

        end 

        fperr(i)=perr; 

        fn(z,i)=n; 

        fTC(i)=TC; 

        fT(i)=TT; 

        fTMC(i)=TMC; 

        fMT(i)=MT; 

        fM(z,i)=M; 

        fphi(z,i)=phi; 

        i=i+1; 

    end 

   figure(2) 

   plot(fphi(z,:),fM(z,:), '-*') % Plot individual M-Phi curves 

   hold on 

   %Storage of data 

   fphijj(z,:,jj)=fphi(z,:);  

   fMjj(z,:,jj)=fM(z,:); 

end 
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MoRTH T-girder of 21 m span beam-4 

% Program for Moment-Curvature of T-Beam 

% Modified by: Dr.T.P.Tezeswi 

%====================================================================== 

clear all 

clc 

format long 

%----------------------------------------------------------------------

--- 

% Generate distribution of Concrete properties 

%----------------------------------------------------------------------

--- 

fck=30; % Characteristic strength of concrete 

ssigma=5 % Standard Deviation Ref: IS456, Table 8 

ftarg =1.65*ssigma+fck % mean value 

fdata=[fck,ftarg]'; 

pd=fitdist(fdata, 'Normal')% Fit normal distribution to the given data 

xx=0:1:1000;  

pdf =pdf (pd, xx); % Generate normally distributed samples of fc 

figure(1)  

plot(xx,pdf,'linewidth',2); 

rr=ftarg+ssigma.*randn(500,1);% Generate 1000 normally distributed 

samples of fc 

%----------------------------------------------------------------------

-- 

% Generate Moment-curvature based on stress block equilibrium 

%----------------------------------------------------------------------

-- 

eo=0.003; % Max strain in concrete   

fy=415;   % Yield Strength of Steel 

Ast=17981;% Area of Steel 

bf=2825;  % Width of Flange 

df=350;   % Depth of flange 

bw=625;   % Width of web  

dw=2055;  % Depth of web  

n=0.5*dw; % Thickness of layer  

z=1;      % 

pp=35     % number of strain increments 

for jj=1:500; 

fci(jj)=rr(jj); 

fc=fci(jj); 

    i=1; 

    for ii=[0.003 1:pp] 

        ecc=0.0001*ii; 

        check=0; 

        TS=0; 

        MTS=0; 

        while check==0             

            TC=0; 

            TMC=0; 

            for j=1:100         

                cstrip=(n/55)*j-(n/150); 

                ec=cstrip*ecc/n; 

                CS=fck*(2*ec/eo-(ec/eo)^2); 

                CF=CS*bf*n/100; 

                MC=CF*cstrip; 

                TC=TC+CF; 
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                TMC=TMC+MC; 

            end 

            est=(dw-n)*ecc/n; 

            if est>(fy/200000)         

                sst=fy;            

            else 

                sst=est*200000; 

            end 

            TS=sst*Ast; 

            MTS=TS*(dw-n); 

            TT=TS; 

            MT=MTS; 

            M=TMC+MT; 

            phi=ecc/n; 

            if TC>TT 

                n=n-0.1; 

            else if TC<TT 

                    n=n+0.1; 

                end 

            end 

            err=TC-TT; 

            perr=abs(100*err/TC); 

            if perr<1 

                check=1; 

            end 

        end 

        fperr(i)=perr; 

        fn(z,i)=n; 

        fTC(i)=TC; 

        fT(i)=TT; 

        fTMC(i)=TMC; 

        fMT(i)=MT; 

        fM(z,i)=M; 

        fphi(z,i)=phi; 

        i=i+1; 

    end 

   figure(2) 

   plot(fphi(z,:),fM(z,:), '-*') % Plot individual M-Phi curves 

   hold on 

   %Storage of data 

   fphijj(z,:,jj)=fphi(z,:);  

   fMjj(z,:,jj)=fM(z,:); 

end 
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Appendix-B 

Mix design for RCC scaled (1:12) T-beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trial

Mix Ratio    

(Cement : Fine 

Aggregate)

7 days lbs 7 Days MPa Avg MPa 28 days lbs 28 Days MPa Avg MPa

32000 6.32 49000 9.69

31000 6.13 51000 10.08

35000 6.92 49000 9.69

93000 18.39 174000 34.41

105000 20.76 172000 34.01

107000 21.16 184000 36.38

112000 22.15 170000 33.62

128000 25.31 187000 36.98

125000 24.72 182000 35.99

123000 24.32 195000 38.56

121000 23.93 199000 39.35

124000 24.52 192000 37.97

3 1:1.5 24.06 35.53

4 1:2 24.26 38.63

1:61 6.46 9.82

20.10 34.931:12
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Appendix-C 

Nonlinear Optimization used in DIC analysis 

The overall goal of DIC is to obtain displacement and strain fields within a region of interest 

(ROI) for a material sample undergoing deformation. DIC uses image-processing techniques 

in an attempt to solve this problem. Basically, images of a sample are taken as it deforms; these 

images are used as inputs to a DIC program. The idea is to somehow obtain a one-to-one 

correspondence between material points in the reference (initial un-deformed picture) and 

current (subsequent deformed pictures) configurations. DIC does this by taking small 

subsections of the reference image, called subsets, and determining their respective locations 

in the current configuration.   

For each subset, we obtain displacement and strain information through the transformation used 

to match the location of the subset in the current configuration. Many subsets are picked in the 

reference configuration, often with a spacing parameter to reduce computational cost (also note 

that subsets typically overlap as well). The end result is a grid containing displacement and 

strain information with respect to the reference configuration, also referred to as Lagrangian 

displacements/strains. The displacement/strain fields can then either be reduced or interpolated 

to form a "continuous" displacement/strain field. Further details are shown in section 4.2.2. 

To be more specific, subsets are essentially a group of coordinate points; the idea of subsets 

in the reference and current image is shown below: 

Correlation Coefficient (refer section 4.2.1) 

img1= rgb2gray(imread('DSC_0009.jpg')); 

img2= rgb2gray(imread('DSC_0022.jpg')); 

c = normxcorr2(img2,img1); 

figure, surf(c), shading flat 

[ypeak, xpeak] = find(c==max(c(:))); 

Correlation Process (Blaber et al. 2015) 
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Nonlinear Optimization used in DIC analysis 

 

Figure C-1 Details and formulations used in Ncorr V1.2.2 tool for nonlinear 

optimization 
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 The subset's coordinates are shown as red crosses in the above figure 
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Figure C-2 Calculation of correlation for each coordinate in the given image 
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Nonlinear Optimization 

Gauss-Newton nonlinear iterative least squares method 

The Gauss-Newton method is used to find the roots of a function in the case that an analytic 

solution is not available. This scenario can be extrapolated to optimization by finding the roots 

of the derivative of a function. Even further, it can be generalized to multivariate optimization 

by using the gradient in place of the derivative, and then determining where the norm of the 

gradient converges to zero. 

Forward additive method 

The FA-GN method is essentially the standard application of a Gauss-Newton iterative solver. 

In this situation, the final reference subset location remains constant and prr is set to 0 for every 

iteration. On the other hand, the final current subset location is allowed to deform and prc is set 

to pold at the beginning of every iteration, where pold is the deformation parameters found 

from the previous iteration, using the forward additive technique or the initial guess. 
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This is a graphical representation of the FA-GN method for image alignment. The reference 

image has a shear applied to it. The most important thing to note here is where the hessian is 

evaluated at the current image for every iteration. This quantity is the computational bottleneck 

of the algorithm and provides good insight to understanding the effectiveness of the IC-GN 

method. 

Inverse compositional method 

The act of doing this determines the direct transformation from the final reference subset to 

the final current subset. A graphical figure is shown below: 

 

This a graphical representation of the inverse compositional update. prr is equal to Δp and prc is 

equal to pold. As long as the translational component of Δp is small in magnitude, the 

composition of pold and the inverse of Δp should be closer to than pold. A detailed description 

is shown in Ncorr website. 

 

 

 

 

 

 

 



134 
 

Appendix-D 

Shannon entropy 

Entropy gives a statistical measure of randomness, which can be used to depict the texture of 

the image. Shannon entropy is given by the formula 

Entropy= -sum (p.*log2 (p)) 

Here, p corresponds to the normalized histogram counts. 

Shannon entropy can be used for global image assessment. An image with a high Shannon 

entropy needs a greater amount of ‘bits’ to form an adequate representation of a digital image. 

Higher entropy indicates broadness in grey scale distribution, high level of texture which are 

beneficial for maximizing the correlation peak for obtaining a correct match. The Shannon 

entropy for QR code printed pattern and randomly marked pattern is evaluated to be 6.343 and 

6.211 respectively for the same spatial resolution. This implies that image correlation with QR 

code printed pattern produces lesser computational errors compared to the randomly marked 

pattern.             

For both QR and Random speckle patterns, we adopted Ncorr software for analyzing the 

patterns. The size of the QR code is 150 mm by 150 mm, which was sprayed on the flexural 

portion of the beam. The minimum radius of the subset considered in this study is 1.5 mm 

escribed circle with a step size of 1.5 mm up to 21 mm (as there was no significant difference 

in the results after 18 mm until 21 mm). The optimal radius of subset was found to be 13 mm 

with a subset spacing of 6 based on the results obtained, which are in good agreement with 

conventional measurement technique (LVDTs/dial gauges). 
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Appendix-E 

Training and Simulated Test Data Generated from 200 Random Samples 

 

Figure E-1 Prediction of M-κ curves for standard MoRTH bridge girders of 24 m     

span 1 using MATLAB 

 
Figure E-2 Prediction of M-κ curves for standard MoRTH bridge girders of 24 m     

span 2 using MATLAB 
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Figure E-3 Prediction of M-κ curves for standard MoRTH bridge girders of 21 m     

span 1 using MATLAB 

 

Figure E-4 Prediction of M-κ curves for standard MoRTH bridge girders of 21 m     

span 2 using MATLAB 
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Figure E-5 Statistical distribution of compressive strength for M-30 concrete  

 

 

 
Figure E-6 Statistical distribution of yield strength for Fe-415 rebar steel 

Training and Test Data Sets for 222 Samples are incorporated in the attached CD copy 

along with the thesis. 
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Appendix-F 

Properties of QR code based speckle pattern 

The optimal size of the QR pattern depends upon several factors like: 

a) Distance from the target 

b) Optical zoom Lens 

c) Resolution of the camera 

d) Size of the component to be monitored 

Based on the above parameters one can calculate the size of the speckle as shown below. 

 

Figure F-1 Field of view for monitoring the structure 

For example, using nikon field of view simulator for the camera model AF-S DX NIKKOR 

18-55mm f/3.5-5.6G VR the angle of view for 18mm lens is 76° 10' and for 55mm lens is        

28o 501  (https://imaging.nikon.com/lineup/lens/simulator). 

i. 
𝐵

2⁄

𝐿
=  tan 𝜃

2⁄  

ii. No. of pixels = 6000 (width) x 4000 (depth) = 24 Mega Pixels 

Therefore minimum pixel size @ L meter = 
𝐵

6000
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Table F-1 Properties of QR code based speckle pattern 

Zoom Lens Type : 

AF-S DX NIKKOR 18-55mm 

f/3.5-5.6G VR 

AF-S DX NIKKOR 

18-140 mm F/3.5-5.6 G 

ED VR  

Focal length 
18 mm 55 mm 55 mm 140 mm 

Distance from camera 
2 m 2 m 100 m 100 m 

Field of view (𝜃) 
76° 10' 28° 50' 28° 50' 11° 30' 

Pixel size (mm) 
0.522 0.171 8.568 3.356 

Minimum speckle size (3 x 

Pixel size) (mm) 

1.567 0.514 25.706 10.069 

Min. Dimension of (n x n) 

QR pattern = (Min. Speckle 

size) x n (mm) 

45.450 14.909 745.492 292.01 
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Multi-Scale Speckle Pattern 

Innovation in this thesis work is to develop a multi-scale QR speckle pattern that can capture 

both local and global deformations. Speckle size, shape, and density heavily influence the 

randomness of a speckle pattern. Typically, in random speckle patterns, the smaller speckles 

are more similar in shape, and larger speckles have a greater number of shapes, uniquely 

defined within the pattern. There is a constraint on maximising the uniqueness, which is the 

number of speckles in a subset. 

 

Figure F-2 Multi-Scale speckle pattern 

Case-1: When structure is accessible 

In order to monitor full-scale structures from a short distance, there is no requirement to enlarge 

the multi-scale QR pattern. In this case, each pattern is representative of a particular critical 

region of the structure. A high level of unique features reduces the uncertainty in matching, 

thereby increasing the accuracy.  

Case-2: When structure is not accessible  

In order to monitor full-scale structures from a significant distance (~ 100 m), the multi-scale 

QR pattern need not be enlarged.  The larger position markers as well as alignment markers, 

serve the purpose of speckles at a large distance.  
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Appendix-G 

Details and formulations used in Ncorr V1.2.2 MATLAB tool stepwise procedure 

To load the images into Ncorr GUI, one of the ways to load reference images is to do it through 

the MATLAB terminal. The reference image can be set up by typing "handles_ncorr.set_ref" 

(data). The reference image will be stored here as an array. By following the above step, it will 

be convenient to load it directly than to save it, but there are few problems associated with it. 

Finally, when the reference image is loaded, it will appear as shown below.  

Note: The reference image can also be called an unstrained image.  

If this is the case, Ncorr has most likely installed correctly, and the installation should be 

completed. The next time you open MATLAB, you can open Ncorr again by typing" 

handles_ncorr=ncorr" into the MATLAB terminal, and the GUI should appear without having 

to repeat the installation process. If the installation proceeded correctly, then you can go to the 

user guides in section 2. 

The other way to load a reference image is to do it through the MATLAB terminal. You can 

set the reference image by typing "handles_ncorr.set_ref (data)," where "data" is a 2D matrix 

(of type double, uint16, or uint8) containing image grayscale values, as shown below:

 

Loading Reference Image and current images 

This feature is provided because sometimes the reference image is obtained through a series of 

images, which are averaged together or processed in some way. If this is the case, the reference 

image will be stored as an array in the base workspace, and it is much more convenient to load 

it directly than to save it as an image, which can also lead to loss of data through image 

compression or binning of grayscale values.  Lastly, when the reference image is loaded, it 

should appear as shown below: 
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There are two ways to set the reference image. The first way is to use the Ncorr GUI by the 

following steps.  

Go to File > Load reference image. The result is shown in the below image. 

 

Next step is to select the very first image among the above images.  
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When loading through the GUI, the following window must appear. 

 

The present images should be kept in order according to their numbers, and the last image in 

the sequence will appear initially by default. It's a good check to ensure the order accuracy. 

The current images should be appropriately ordered according to their number, and the last 

image in the sequence will appear initially by default. It's a good check to scroll through them 

to ensure the order is correct. 
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Start by setting the reference image to the first image of the set. Next, load the current images 

by using "Lazy Load". Finally, set the reference ROI to the ROI given in the image set. If 

successful, then GUI should appear as shown below. Also, in the program set,  reference image, 

current image options will be highlighted as "SET". 

 

Draw Region of Interest (ROI):   

Region of Interest is the part on the specimen (specimen can be a bar, beam, cable, etc.) where 

the parameters such as strain, displacement, angular distortions etc. are evaluated.  This size of 

ROI may vary depending on the type of specimen.  

The second way to set the ROI is to draw the ROI directly in MATLAB by using region of 

interest> set reference ROI> Press "Draw ROI option. This is the preferred method for 

preliminary analysis because it can be done quickly. An example ROI is shown below and was 

constructed using "+Poly" followed by "-Ellipse," where the "+" prefix indicates adding 

portions to the ROI; "-"subtracts regions: 
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Next step is to select "region" in the image obtained in GUI. 
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To get better precision when drawing ROI's, various drawing options like +rec, -rec etc. are 

available in draw ROI window. In addition, zoom pan is available to zoom in or zoom out of 

the image.  

 

After setting ROI, a region of interest option will be highlighted as SET. 
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Setting DIC Parameters 

 

Next step is to set DCI parameters. Put subset radius as 21, subset spacing as 3, a number of 

iterations can also be chosen as per the requirement. A green point is placed in the axes labelled 

"subset Location", which is draggable and is the centre point of the subset shown on the right 

side. This highlighted point is the position where the centre of the subset is located. 

There are several key components to this GUI. The first is obviously the menus on the left, but 

it is also important to note that the subset preview is interactive. A green point (highlighted by 

a red square) is placed in the axes labelled "Subset Location." This point is draggable and is 

the centre point of the subset shown on the right. The subset on the right gives an idea of what 

the subset spacing (space between the two dots within the red squares) and subsets will appear 

like. It's important to note that these highlighted points are where the subset locations will be, 

and not part of the speckle pattern in the uploaded image.  
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Now set seeds by clicking set seeds options on the right side. 

 

In the program state, DIC analysis will be highlighted as SET. 
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Unit options: Now open set seeds and then set up the units as mm, number of units as 10, and 

then select load calibration image. A line preview of the image is shown on the left side, i.e., 

GUI. These options are used to convert the displacements from pixels to real units. These 

options are used to convert the displacement from pixels to real units. You can either input the 

value directly if you know it, or you can click the "Get Unit Conversion" button in order to 

load an image with a known dimension. Most tests are done with a regular camera on a sample, 

so the easiest way to take advantage of this feature is to, after the experiment incomplete, 

replace the sample with a ruler so you can measure what the unit conversion is. An example of 

the GUI is shown below: 
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Notice that all the seed locations in the reference image seem to match appropriately with the 

locations in the current image. The reference subset and transformed the current subset look 

very similar. Lastly, Correlation coefficient, number of iterations are obtained below the image, 

and the low value of Correlation coefficient implies a good and correct seed placement. 



151 
 

 

After completion of the analysis, we can view the corresponding results, as shown above. 

 

After following all the above steps, the above image will be obtained. This shows a preview of 

U-displacement, V-displacement. U displacements are displacements in horizontal and V-

displacement are displacements in the vertical direction. 
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Plotting the results: 

Strain options: Now set strain parameters like strain radius as 15, choose Lagrangian with U- 

displacement as the option. The only parameter you can vary here is the strain radius. This is 

the radius of a circle, which selects a group of points to fit a plane to. A preview is provided so 

the user can visualise the plane fitting. The selection of the ideal strain radius is similar to the 

selection of the ideal subset radius, in that the smallest radius is desired, which does not result 

in noisy strain data. The default radius is set to 15, but it is up to the user to select the most 

optimal radius for their data. 

 

At this point, strains have been calculated. Plotting can be achieved by choosing plot> view 

displacement plots> view strain plots options in the main Ncorr GUI. This is the last step of 

the analysis. 
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From the above image, the data plot for Exx green Lagrangian and U-displacements are obtained 

and shown in the Ncorr GUI. 
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