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Abstract: Electric vehicles (EVs) are becoming increasingly popular due to their inexpensive mainte-
nance, performance improvements, and zero carbon footprint. The electric vehicle’s load impacts the
distribution system’s performance as the electric vehicle’s adoption rises. As a result, the distribution
system’s dependability depends on the precise location of the electric vehicle charging station (EVCS).
The main challenge is the deteriorating impact of the distribution system caused by the incorrect
placement of the charging station. The distribution system is integrated with the charging station
in conjunction with the distribution static compensator (DSTATCOM) and distributed generation
(DG) to reduce the impact of the EVCS. This paper presents a fuzzy classified method for optimal
sizings and placements of EVCSs, DGs, and DSTATCOMs for 69-bus radial distribution systems
using the RAO-3 algorithm. The characteristic curves of Li-ion batteries were utilized for the load
flow analysis to develop models for EV battery charging loads. The prime objective of the proposed
method is to (1) Reduce real power loss; (2) Enhance the substation (SS) power factor (pf); (3) Enhance
the distribution network’s voltage profile; and (4) Allocate the optimum number of vehicles at the
charging stations. The proposed fuzzified RAO-3 algorithm improves the substation pf in the distri-
bution system. The fuzzy multi-objective function is utilized for the two stages and simultaneous
placements of the EVCS, DG, and DSTATCOM. The simulation results reveal that the simultaneous
placement method performs better, due to the significant reduction in real power loss, improved
voltage profile, and the optimum number of EVs. Moreover, the existing system performances for
increased EV and distribution system loads are presented.

Keywords: electric vehicles; distribution system; distributed generators; distribution static
compensator; power factor

1. Introduction

Presently, EVs are preferred for road network transportation. Moreover, various gov-
ernment agencies and automobile industries are focusing on EVs due to their cheaper
operating costs and because they have less of an impact on climatic change when compared
to conventional engine vehicles [1,2]. As EVs are rapidly increasing, EVCSs are being inte-
grated into the distribution system (DST). Due to this, power demand is increasing, leading
to an increase in the load level in the distribution line and a system voltage drop. Increased
power losses and voltage instability cause power security problems in the distribution sys-
tem. The world’s perception of distributed renewable energy has changed significantly in
recent decades due to its added economic, political, and ecological benefits [3,4]. However,
the improper placements of DGs make the operation of a sustainable distribution network
more difficult and complex. DSTATCOMSs are routinely installed by utility engineers to
enhance the distribution system’s voltage profile. In order to mitigate this problem, this
paper includes simultaneous optimal sizing and citing of EVCSs, DGs, and DSTATCOMs
in the distribution system.
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1.1. Literature Review

The greater adoption of EVs may harm the performance of the distribution system.
Moghaddam et al. [5] listed the impact of inappropriate coordination of EV charging, such
as a rise in the peak demand of the load and an increase in power loss. Awasthi et al. [6]
proposed a metaheuristic hybrid algorithm to identify the optimal positioning of EVCSs
with initial investment costs and power quality variables of the city’s Allahabad distribution
system in India. Kongjeen et al. [7] presented different EV load models to examine the total
power loss, load voltage fluctuation, and load current.

The planning model used in the publications above merely assigned the EVCS. How-
ever, introducing EVs into the system may result in higher voltage drops, power losses,
and peak loads. In the research, dispersed sources of energy, particularly renewable energy,
are used as planning techniques to mitigate the power losses and voltage dips caused
by adding EVCS demands to the grid. If the EV load increases in the future, an updated
electrical aisle is required to meet the enhanced load, which is expensive. The effective
integration of an EVCS with renewable energy sources must be considered and encouraged
for EV businesses to expand sustainably.

Yang et al. [8] discussed EV applications in DST along with the pros and cons of
EVs integrated with DGs. Aljehane et al. [9] developed a model with real-time energy
management, where EVCSs and DGs were optimally allocated in the distribution system
using black widow optimization (BWO). Ajit et al. [10] proposed a method with a GWO
algorithm to integrate EVs with DGs in a distributed system. Roudbari et al. [11] sug-
gested a resilience-oriented operation to improve the distribution network’s resiliency and
economic benefits. In the recommended strategy, weather-based outages are modeled to
reschedule energy resources and EV management. Piazza et al. [12] proposed a technique
for defining and designing electric services for a local electricity community that obtained
its energy from a microgrid that used renewable energy sources and storage devices (by
using mixed-integer non-linear programming (MINLP)) . Palmiotto et al. [13] assessed the
possibility of load leveling and cost minimization for a district of residential users in the
presence of an aggregator while considering a realistic PV array and EV diffusion with
the help of Quadprog and Linprog optimization tools (QLT). Dekaraja et al. [14] used the
artificial flora algorithm (AFA) to construct a model for the optimum positioning of EV
and DG. Ahmad et al. [15] provided a comprehensive model for effectively positioning
solar-powered charging stations in a distribution system with an enhanced voltage pro-
file, minimal power loss, and lower costs, with the help of the improved chicken swarm
optimization (CSO). However, in this work, the substation power factor was ignored. Liu
et al. [16] suggested a bi-level optimal allocating framework for DGs and EVCSs that con-
sidered the EV charging load’s stochasticity, fluctuation, and output power, as well as the
traditional load. Dharavat et al. [17] suggested placing numerous DGs alongside EVs while
considering appropriate scheduling strategies to reduce the power loss and significantly
enhance the voltage level. Biswas et al. [18] discussed the advantages of metaheuristic
methods for determining the size and location of DG and shunted the capacitor in the DST
to reduce the real power loss (RPL) and voltage deviations (VDs), using a multi-objective
evolutionary algorithm based on decomposition (MEA /D). Bilal et al. [19] reviewed the
optimal placements of fast charging stations with capacitors, which reduced power loss
and enhanced the voltage profile of the DST. Gampa et al. [20] proposed a two-stage
methodology using the grasshopper optimization algorithm (GOA) for optimal placement
of EVCSs, DGs, and shunt capacitors. In the first stage, the DG and shunt capacitor were
optimally located. Later, in the second stage, the EV was placed, although the SS pf was
not considered at this stage. The above-mentioned literature [8-20] did not consider SS pf.

DGs, which include solar panels, fuel cells, and microturbines, are electrical sources
of energy that generate electricity at the unity power factor (as discussed in the literature
previously mentioned). DSTATCOM is employed in the distribution system to compensate
for reactive power requirements. Sirjani et al. [21] comprehensively analyzed several
research projects on the optimal sizings and positionings of DSTATCOM in the distribution
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system. It was shown that the goals of the D-STATCOM allocation problem could include
lowering power losses, minimizing voltage changes, strengthening voltage stabilities, and
raising reliability metrics. Jazebi et al. [22] minimized active power losses and bus voltage
fluctuations by employing a differential evaluation technique for DSTATCOM’s optimum
placement in the radial distribution system. DG was incorporated with DSTATCOM in
the DST to further reduce active power loss [23-25]. The active power loss and voltage
variation reported by Pratap et al. [26] were decreased by the simultaneous integration
of DSTATCOM and DG during EVCS-loading using the African vulture optimization
algorithm (AVO).

With the help of the metaheuristic technique, various optimization problems can be
solved. The literature now has a large number of metaheuristic algorithms. Safari et al. [27]
implemented a PSO algorithm to allocate EVs in the distribution system. Singh et al. [28]
presented a grey wolf optimizer (GWO) algorithm to reduce the smart grid’s power loss
when EVs are used. Ponnam et al. [29] implemented the TLBO algorithm to position EVCS
optimally in the distribution system. The JAYA algorithm was used to implement optimal
charging station allocation in the publication [30]. To obtain a near-global optimum, they
must change the parameters. Metaheuristic optimization techniques require significant
and time-consuming parameter adjustments to tackle particular optimization problems.
Therefore, to address the presented problem in this study, this work proposes a reliable
optimization method called the RAO algorithm [31]. Investigations were made into how
EV battery charging affects the effectiveness of the DST [32-34].

1.2. Contributions

Most of the literature studies surveyed only discuss the optimal allocation of EVCSs
in the distribution system, which deteriorate the voltage profile and pf. As stated earlier,
the DG [8-17] and shunt capacitor [18-20] are integrated into the system to mitigate this
effect. However, the research on allocating DSTATCOM in DST, along with EVCS and
DG into the substation power factor is still very scant [26]. Conventional multi-objective
methods for optimal siting of EVCS, DG, and DSTATCOM do not consider the substation
pf. As indicated in Table 1, few research studies have considered the substation power
factor components of the EVCS allotment challenge with DSTATCOM and DG. Therefore,
with the help of fuzzy [35,36] multi-objectives, SS pf can attain desired values. Hence,
in this paper, simultaneous EVCS, DG, and DSTATCOM were allocated in the electrical
distribution network, with a fuzzy multi-objective approach using the RAO-3 algorithm
for better performance in the distribution network, such as minimizing active power loss,
improving the voltage profile, and maintaining SS pf at the desired value. Results from
various traditional algorithms, including PSO, TLBO, GWO, and JAYA, are compared to
those from the suggested technique. Figure 1 depicts the proposed framework for the
positioning and sizing of EVCS, DG, and DSTATCOM.

Table 1. An overview of the research gap analysis and the authors’ contributions.

Ref. EVCS DG DSTATCOM Optimization Strategies RPL VD SS pf NEV
[9] v BWO v v
[10] v v GWO v v
[12] v v MINLP v v
[13] v v QLT v v
[14] v v AFA v
[15] v v CSO v v
[18] v v MEA/D v v
[19] v GWO-PSO v v
[20] v v GOA v v v
[26] v v v AVO v v v
In this work v v v RAO-3 v v v v
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Figure 1. Synergistic planning framework of EVCS, DG, and DSTATCOM in the distribution system.

The main contributions of this study that stand out when compared to the literature
are as follows:

1.  The first stage involves choosing the optimum size and position for DG and DSTAT-
COM in the distribution system to maintain SS pf to the desired value achieved.
Furthermore, in the second stage, the EVCS is optimally sized and located with the
optimal number of EVs.

2. Simultaneous optimal sizing and siting of the EVCS, DSTATCOM, and DG in the
distribution system to maintain SS pf to the desired value with the optimal number
of EVs.

3. The optimal siting of EVCS, DG, DSTATCOM, and the optimal number of EVs to
fulfill the current and future expanded EV population load.

4. In order to examine the impact of EV charging on the DST performance, load models
for charging batteries were built using the load flow analysis.

The rest of the paper is structured as follows: Section 2 explains the fuzzy multi-
objective problem formulation and its restrictions. In Section 3, from the battery charging
characteristics, the charging load models for EV batteries were developed for the load flow
analysis. Section 4 introduces the suggested fuzzy multi-objective RAO-3 method. Section 5
presents the results and analyses, and Section 6 presents the conclusions.
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2. Problem Formulation

This section presents fuzzy multi-objective functions for the optimal placements of
DG, DSTATCOM, and EVCS in various scenarios to improve the DST performance. This
section presents the multi-objective function that focuses on reducing real power loss,
enhancing the voltage profile of DST, enhancing the substation’s power factor, and the
optimum number of electric vehicles at the EVCS.

The fuzzy domain membership function is presented for each objective. The member-
ship function indicates the level of goal satisfaction. In the crisp domain, the membership
function values are either zero or unity, whereas, in the fuzzy domain, they range from
zero to unity. Consequently, the fuzzy set theory advances the classic style theory [35].
The membership function is a strictly monotonically declining continuous function with
lower and upper bound values for the various goals described below. The trapezoidal
memberships are used to obtain the desired multi-objective values, such as reduced power
loss and improved voltage limitations [36]. The triangular function is used for additional
objectives needed to mollify constraints, such as the SS power factor and DG penetration
limit [36].

2.1. Fuzzification of Real Power Loss of the DST
The real power losses of the distribution system is shown below:

nb—1
RPL= ) Pl 1)
j=1

2 2
x {P]’+1 + Qj+1}

Pl; = . @)

]

|Uj+1

Pl; is the assumed test distribution network’s branch real power loss, where P;, 1 is
the active power load and Q;1 is the reactive power load injected at the load (j + 1) node.
In the distribution network, resistance at the jth node is 7; and the voltage at the (j + 1)th
node is v; ;1. The real power loss index (RPLX) can be calculated as:

RPLpgsc
—_ 3
RPLBase ( )

RPLpgsc is the active power loss with DG and DSTATCOM. The active power loss
in the base situation is represented by RPLp,s,. The fuzzified real power loss index
(€ RPLX) [20] is shown in Figure 2. RPLX™% is considered unity. Based on utility ne-
cessity, RPLX™" was selected, such that the active power loss was reduced to the desired
value. The mathematical expression for the fuzzy set € R’LX is explained in Equation (4).

RPLX =

1 for RPLX < RPLX™n

RPLX __ RPLX™%* _RPLX max min
g RPLX_ § _RPLXUM_RPLX_ for RPLX"™™ < RPLX < RPLX )

0 for RPLX > RPLX™**
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RPLX

min max
RPLX RPLX

Figure 2. Reduction of real power loss.

2.2. Fuzzification of Voltage Nodes of the Distribution Network

The fuzzy membership function of voltage (€%) [20] of each node j in the distribution
network is explained in Figure 3; mathematically, it can be explained in Equation (5):
v = 0.94, v, = 0.95, Ve = 1.05 and v, = 1.06 are assumed. In this work, the fuzzy
voltage performance (€") is the minimum value of fuzzy membership of the voltage of
each node of the distribution network considered. It can be defined as €= min(€%).

0 for U]' <op
T for vy < 0 < U
Omin =011 n ] min
Gv/: 1 fOI' Z)mm S T)] S vmux (5)
Uj— Umax )
7012_2;"””( fOr vmux < ZJ] < Ulz
0 forv; > vpp
€Yj
1
=
Vi1 VUmin Vmax Vi2

Figure 3. Bus voltage.

2.3. Fuzzification of SS Power Factor

The DG must operate at a lagged pf of 0.95 to increase the SS power factor (pf). Itis
possible to determine the SS power factor:

sy
pf = cos SN (6)
nb ndg
Stw = Y. P +Pl—Y PPC @)
=1 k=1
ss & toad R S
Stvar = 2, QM+ Q=) Qu — ) P° x Dy 8)
j=1 m=1 k=1

SS 2 2
Stva = \VSiw T Sivar ©)
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PPG is the capacity of DG. ndg stands for the number of DGs installed in the DST. The
active power load connected to the jth bus is P}"”d, and the total number of buses in the
DST is nb. When DG, DSTATCOM, or EV charging stations are deployed, The distribution
network’s active power loss is termed Pl. The reactive power load linked to the jth bus is
Qé-"”d, the DSTATCOM rating is Q5€, and the total number of DSTATCOMs in the DST is
nsc. When DG or DSTATCOM are implemented, the distribution network’s reactive power
loss is QL.

The triangular fuzzy membership function [20] for the SS power factor (€Ff) is shown
in Figure 4 and the mathematical expression is shown in Equation (10).

Of ; forpf < pfum

pr—p mm

Epf: F;f p ”;7’ fOI' pfmin S pfg pfs (10)
Prnepfs 100 Pfe = PFS P
0 for pf < pfax

In the preceding equations, pf, =0.85, pfs =0.95, and pfuax = 1.0 are used. The
desired power factor level is denoted as pf..

évf

pf,., pf, P,

nun
Figure 4. SS power factor.

2.4. Fuzzification of DG Penetration

Penetration of the DG index in the distribution network can be defined as the ratio of
the number of DGs connected to the total real power load in the DST.

ang pds
DGPI = (11)
Z;IE pload

Figure 5 shows the triangular fuzzification of the DG penetration (€PCPT) [20] limit;
the mathematical expression is shown in the following Equation (12). DGPI,,;, = 0.4,
DGPI; = 0.5, DGPIlyux = 0.6, respectively. DGPI; are the desired penetration levels in
the distribution network. In this work, penetration is considered at 50%.

0 for DGPI < DGPI,;,

perr_ ) bopi—pepts  for DGPLy, < DGPI < DGPI;

Dep=PElL for DGPI; < DGPI < DGPlyay

0 fOI' DGPI S DGPImax

(12)
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2.5. Fuzzification of the EV Power Loss Index

With the EV index, the real power loss can be calculated as follows:

EVPIEVLD

EVPIEVLD s the active power loss with EV and other load losses. EVPILP is the load loss.
Here, the load can be DG, DSTATCOM, or any commercial load.

[y LELLLELLELLEELEY T

DGPI,;n, DGPI ¢ DGPI _ -
Figure 5. DG penetration.
The membership fuzzification of the EV power loss index (€EV!) [20] is shown in

Figure 6; the mathematical expression is shown in Equation (14).

0 for EVPI < EVPl,;,

FvpI_ FypL—rypfi  for EVPIl,y;, < EVPI < EVPI;
H for EVPI; < EVPI < EVPlyux
0 for EVPI < EVPIyax

(14)

EVPlL,i, =1, EVPI; =15, EVPly, = 2 respectively. EVPI is always greater than 1
because power loss increases with the addition of the EV load in the distribution network.

EVPI

EVPI EVPI EVPI

min max
Figure 6. EV real power index.

2.6. Multi-Objective Fuzzy Function for Optimal Sizing and Location of EVCS, DG,
and DSTATCOM

1.  Multi-objective fuzzy functions for simultaneous optimum allocation of EVCS, DSTAT-
COM, and DG are shown in the following equation:

1
T ERPLX 4 ¢ pf 1+ cv + € DGPI ¢ EVPI

(15)

FZS
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2. Inthe scenario where only DG and DSTATCOM are required to place optimally in the
DST, then the following equation depicts multi-objective fuzzy functions for the DG
and DSTATCOM optimum sites and sizings:

1
GRPLX+€Pf+€U+€DGPI

Frac = (16)
This multi-objective function is used; EVCS is not included. Only DG and DSTATCOM
are required to place optimally in the DST.

3. The following equation depicts the fuzzy objective functions for the optimum location

and sizing of EVCS:
1

Fre = (€ EVPI)

(17)

The multi-objective fuzzy functions, explained in Equations (15)-(17), are minimized

by using the RAO-3 algorithm subjected to different constraints. In this work, penetration

of DG in the distribution network is considered to be 50 % of the total active power load;
the reactive power injection is 50 % of the total reactive power.

0 < PPC < PRG wherek =1, 2, 3 (18)

max
0< Q5 < Qpeay wherek=1,2,3 (19)

PI? G and Q¢ are the DG power and DSTATCOM reactive power injection at the nodes in
the distribution network at optimal locations.

3. Modeling Battery Charging Load for EV

In this work, it is anticipated that EVs will be recharged from completely depleted
states. Figure 7 can be used to produce the equation for the load flow analysis using
the models for the battery charging loads [32]. The charging of a battery is shown in
Equation (20) for both transient and steady state conditions. As a result, the exponential
equations below can be used to estimate the battery power charging parameters.

E} L] L] L] L] L] L] L] L] L]

2 7 —wyo-o 100
2 6 Power Charging e : {50
2 § 5 SOC Lo E Q
éé 4 “_‘_¢"‘ E “ 608
£ 3 PPt ' 440 X
= 2 '

= 1 ] 420
U A A 'l A 'l i

. 2 .
ta t (h) tb
Figure 7. Li-ion battery charging characteristics.

v — By o<r<t
bEV ="="

PbEV(t) = P}?Eu& (t%axx:ti,) tb <t < tmax (20)

O t > tmgx

Pyey (t) represents the instantaneous EV battery charging load. The maximum battery

charging load for the substation is P}

—rxta

5P£ﬂ&=%“&(l—e( g >) @)
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v = —(t”>ln(1—(5) (22)
ty

ty =0.25h,t, = 45 h,and t;;;x = 5 h are in the preceding Equations (16) and (21), respectively,
taken from Figure 7. v and J are EV battery characteristic constants. Equation (22) (derived
from Equation (21)) can be used to find the value of y. The EV battery’s characteristic constants
are alpha and beta. The fraction of maximum charging load, expressed as 0.95, accounts for 95%
of P)fy; at time t,.

Equation (23) can be utilized to establish the power charging equation when the

batteries are charged from a zero-charge scenario Py,

—yxt —rxt
Pyey(t) = P (1 —e( feg )> + Py (e< feg >> 0<t< teg (23)

The t.g is the time it takes to charge a battery from its starting charge position fully.
The following equation can be used to describe the state of the power-charging battery.

SOC(t+1) = SOC(t) + Pypy () x A(t) (24)

Once reaching 100 % SOC, the batteries should be unplugged from the power supply
to minimize battery damage caused by overcharging.

4. Summary of RAO-3

The optimization algorithm Rao was recently created [31]. Rao-1, Rao-2, and Rao-3
are the three proposed Rao algorithms. This study chose it as a population-based ap-
proach because it is straightforward to employ in optimized applications. It also has fewer
control factors because there is no metaphorical explanation. Once the halt condition is
reached, only the swarm size needs to be changed. Compared to other algorithms, the
RAOQ algorithm performs better statistically because it can ensure exploration performance
while yielding superior exploitation, keeping an excellent balance between exploration
and exploitation.

The three RAO algorithms follow similar processes. However, as seen in the following
steps and shown in Figure 8, only the movement equation is different.

1.  Initialize the system data and load profile.
2. Initialize the population (algorithm parameter), iteration, and set the maximum iteration.
3. Randomly initialize the sizings and locations of EVCS, DG, and DSTATCOM.
4. The objective function’s indicated fitness function is put to the test.
5. Identify the best and worst solutions proposed by the population.
6.  The revised solution is updated for all populations under the selected RAO algorithm
as follows:
e RAO-IL:
Z:n,p,i = Zm,p,i + m”dl,m.i X (Zm,b,i - Zm,w,i) (25)
e RAO-2:
Z:n,p,i = Zm,p,i + randl,m.i X (Zm,b,i - Zm,w,i) (26)
+randy i X (| Zp,p,i O Zmai | — | Zmd,i O Zmp,i |)
e RAO-3:
Z;n,p,i = Zpi t1ra0d1 i X (Zpi — | Zmw,i |) @)

+randy i X (| Zu,p,i OF Zimai | — (Zmd,i OF Zmp,i))

Zm,p,i is the mth variable’s value for the pth candidate in the ith iteration. The best
solution is denoted by z,, ; ;, whereas the worst solution is denoted by z,, ,,;. The Rao
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algorithm can guarantee exploration performance while producing superior exploitation,
resulting in an excellent balance between exploitation and exploration, representing the
method’s higher statistical performance when compared to other algorithms.

{ Start ’

A 4
Read Distribution system data and
run the load flow for the base case.
Initialise the algorithm parameters such as population,
dimension (location and size), and itrmax.

Randomly initialise the EVCS, DG, and DSTATCOM
location and sizes within maximum and minimum
limits.

I Run the load flow. Determine the fitness values for every population. I

v

itr=1

N

Identify the best and worst solutions put forth by the population.

v

I Using the best and worst solutions, modify the solutions from Eq. (27) I

Accept the R
present Is ft true that the‘ updated Keep the current
solution and €Yes solutions are superior than the No=p» solution.
2
replace it. current ones?

itr=itr+1 jm——No:

Yes

¥

Print the best solution (Location and sizes ot EVCS, DG and
DSTATCOM )

End
Figure 8. RAO-3 algorithm implementation flow chart.

5. Results and Discussion

A 69-bus radial distribution system is considered for the present analysis. The system’s
base values are 100 MVA and 12.66 kV. The backward—forward sweep method has been used
for load flow studies. The proposed problem’s simulation was carried out via MATLAB
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2017a software installed on a computer with a processor Intel core i5 8th Gen, 8 GB RAM.
Initially, i.e., at the base case from the load flow, the following data were obtained: the total
real power load was 3082.19 kW, the reactive power load was 2796.77 kVAr, the minimum
voltage was 0.9092 p.u., and the overall real power loss was 225 kW. The algorithm made
the following assumptions: itrmax = 100 and population = 100.

The optimal positions and sizings of DG and DSTATCOM units were addressed in
this work in the distribution system, which included three bus nodes of DG units and three
bus nodes of DSTATCOM units. Moreover, for optimal planning of the EV charging station,
five bus nodes were assumed, which is approximately 13% of the assumed distribution
system bus nodes. In each charging station, a maximum of 50 EVs can be charged. The
characteristic charging curve is shown in Figure 7. Figure 7 shows that the Li-ion battery’s
maximum constant charge charging load is 6.5 kW.

5.1. Scenarios

Two different scenarios were considered in the given DST for optimal sizings and
locations of EVCS, DSTATCOM, and DG.

®  Scenario 1: In this first stage, DSTATCOM and DG are integrated with the distribution
network; in the second stage, EV charging stations are connected.
¢ Scenario 2: In the simultaneous EV charging station, DG and DSTATCOM are connected.

5.1.1. Scenario 1

In the first stage, optimum citing and sizing of DG and DSTATCOM are done, with
the help of a fuzzy multi-objective function, as shown in Equation (16). This fuzzy multi-
objective used in Equation (16) is considered to maintain the substation power factor desired
value, improve the voltage profile, and reduce the distribution system’s active power losses.
Optimum allocations of DG and DSTATCOM are done with the RAO-3 algorithm’s help, as
shown in Tables 2 and 3. From this work, it can be seen that in the proposed method, each
bus voltage moves closer to unity and the distribution system’s performance is enhanced.
The fuzzy RAO-3 method is compared with a two-stage methodology [20], fuzzy TLBO,
fuzzy GWO, and fuzzy PSO. The performance of the distributed system, voltage profile,
and convergence of fitness is better with RAO-3, as depicted in Table 4 and Figures 9 and 10.

Table 2. DG optimum location and sizing.

Fuzzy PSO Fuzzy GWO Fuzzy TLBO Fuzzy JAYA Fuzzy RAO-3
DG Node DGSizing DGNode DGSizing DGNode DG Sizing DGNode DG Sizing DG Node DG Sizing
location (kW) location (kW) location (kW) location (kW) location (kW)
13 481.9379 61 887.9736 61 900.0000 61 900.0000 13 561.1438
61 737.8022 13 335.7383 23 499.5148 11 626.7025 21 643.5554
20 680.9627 23 677.1779 10 501.1851 24 373.9975 61 696.0012
Table 3. DSTATCOM optimum location and sizing.
Fuzzy PSO Fuzzy GWO Fuzzy TLBO Fuzzy JAYA Fuzzy RAO-3
Node Sizing Node Sizing Node Sizing Node Sizing Node Sizing
location (kVAr) location (kVAr) location (kVAr) location (kVAr) location (kVAr)
64 573.4461 21 484.6605 65 654.9968 23 432.3735 22 483.9325
12 383.6421 64 549.4658 24 510.2932 69 422.2525 69 432.9390
21 495.0255 69 417.6416 12 284.7286 62 596.9364 64 538.5364

The EVCS is installed after the integration of the DG and DSTATCOM in the DST,
which is the second stage. In this work, five optimum locations are preferred for locating
the charging station. In each charging station, a maximum of 50 EVs are assumed. A fuzzy
multi-objective was used for achieving this optimal location, as shown in Equation (17).
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The optimum number of EVs and optimum locations of EVCSs are shown in Table 5. The
final distribution of the active power loss and minimum voltage with DG, DSTATCOM,
and EV are shown in Table 6. The single-line diagram of the 69-bus radial distribution
system with EVCS, DG, and DSTATCOM of scenario 1 is shown in Figure 11.

Table 4. Performance comparison of the 69-bus system.

Scenario 1 Base Case Two-Stage Fuzzy Fuzzy Fuzzy Fuzzy Fuzzy
Methodology [20] PSO GWO TLBO JAYA RAO-3
SS Active power (kW) 4027.19 1920.93 1921.6 1920.9 1920.8 1920.7 1920.4
SS Reactive power (kVAr) 2796.77 631.22 633.2409 631.2786 631.1990 631.0172 630.2859
SS pf 0.8214 0.95 lag 0.95 lag 0.95 lag 0.95 lag 0.95 lag 0.95lag
DG Penetration - 1900.11 1900.7 1900.7 1900.6997 1900.7 1900.7
RPL (kW) 224.56 27.34 28.9222 27.12 26.9835 26.7348 22.9920
Voltage minimum (p.u.) 0.902 0.9461 0.9717 0.9718 0.9728 0.9795 0.9811
1.02 T T T T T T
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Figure 9. Voltage Curve.
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Figure 10. Fitness Curve of DG and DSTATCOM.
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Table 5. Optimum number of EVs and optimum locations of EVCSs.

Fuzzy PSO Fuzzy GWO Fuzzy TLBO Fuzzy JAYA Fuzzy RAO-3

Optimumnode  Optimum  Optimumnode  Optimum  Optimumnode  Optimum  Optimumnode  Optimum  Optimumnode  Optimum
for EVCS no of EV for EVCS no of EV for EVCS no of EV for EVCS no of EV for EVCS no of EV

60 35 6 40 30 41 18 37 30 36

42 37 40 35 18 43 39 37 60 33

20 35 10 36 7 33 42 49 6 44

6 41 45 40 40 33 33 36 40 40

30 37 19 34 61 36 24 36 18 45

Total no. of EV 185 Total no. of EV 185 Total no. of EV 186 Total no. of EV 195 Total no. of EV 198

Table 6. Performance of the 69-bus radial distribution system after installation of the EVCS.

. Two-Stage Fuzzy Fuzzy Fuzzy Fuzzy Fuzzy

Scenario 1 Base Case  p tethodology [20] PSO GWO TLBO JAYA RAO-3

Real Power loss (kW) 224.56 41.01 43.383 40.6822 40.4744 40.1027 34.4876
Voltage minimum (p.u.) 0.902 0.9659 0.9671 0.9678 0.9689 0.9698 0.97653

36 37 38 39 40 41 42 43 44 45 46

[DSTATCOM]|

22123 24 25 26 27

I I [DSTATCOM] [DG] [DSTATCOM]

55 56 57 58 59 60 61 |62 63 64| 65

47 48 49 50

N

28 29 30 31 32 33 34 35

Figure 11. The single-line diagram of the 69-bus radial distribution system of scenario 1.
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5.1.2. Scenario 2

In this work, DG, DSTATCOM, and EVCS were simultaneously (and optimally) placed
via fuzzy multi-objective functions, as explained in Equation (15). In this scenario, the
overall real power loss of the DST is reduced to 21.6085 kW, the voltage profile is enhanced,
i.e., the minimum voltage of the DST is 0.988507 p.u. The optimum number of electric
vehicles is increased, i.e., 209.

The optimum locations and sizings of DG and DSTATCOM were conducted, as shown
in Tables 7 and 8. The optimal number of EVs and optimal locations of EVCSs were placed
in the distribution system, as shown in Table 9. The performance of the distribution system
can be analyzed in Table 10. The voltage profile curve and fitness function curves are shown
in Figures 12 and 13. The single-line diagram of the 69-bus radial distribution system with
EVCS, DG, and DSTATCOM of scenario 2 is shown in Figure 14.
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Figure 12. Voltage curve.
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Figure 13. Fitness curve.
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Table 7. DG optimum location and sizing.

Fuzzy PSO Fuzzy GWO Fuzzy TLBO Fuzzy JAYA Fuzzy RAO-3
DG Node DGSizing DGNode DGSizing DGNode DG Sizing DGNode DG Sizing DG Node DG Sizing
location (kW) location (kW) location (kW) location (kW) location (kW)
21 653.8921 21 484.88 61 721.5755 14 489.8753 13 468.1426
61 780.7009 61 875.5393 13 482.7538 23 574.7970 61 900.0000
16 466.1071 12 540.2767 22 696.3707 61 836.0277 21 532.5574
Table 8. DSTATCOM optimum location and sizing.
Fuzzy PSO Fuzzy GWO Fuzzy TLBO Fuzzy JAYA Fuzzy RAO-3
Node Sizing Node Sizing Node Sizing Node Sizing Node Sizing
location (kVAr) location (kVAr) location (kVAr) location (kVAr) location (kVAr)
69 361.1784 69 299.43 23 313.5098 68 462.5327 64 468.3387
21 488.7751 64 673.4 69 466.6435 64 673.4000 69 464.8292
64 506.5490 24 388.42 64 598.5872 22 239.8411 22 446.1719

36 37 38 39 40 41 42 43 44 45 46

DSTATCOM

9 10 11 12|13 1415 16 17 18 19 20 21|22|23 24 25 26 27

55 56 57 58 59 60 61 |62 63 64| 65

47 48 49 50

NN

28 29 30 31 32

33 34 35

Figure 14. The single-line diagram of the 69-bus radial distribution system of scenario 2.
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Table 9. Optimum number of EVs and optimum locations of EVCSs.

Fuzzy PSO Fuzzy GWO Fuzzy TLBO Fuzzy JAYA Fuzzy RAO-3
Optimumnode  Optimum  Optimumnode  Optimum  Optimumnode  Optimum  Optimumnode  Optimum  Optimumnode  Optimum
for EVCS no of EV for EVCS no of EV for EVCS no of EV for EVCS no of EV for EVCS no of EV
39 41 59 30 39 44 59 39 40 47
30 39 30 41 31 36 5 48 60 40
4 33 41 39 18 37 41 40 17 36
17 28 18 33 6 38 18 35 30 40
60 45 6 43 60 35 60 37 5 46
Total no. of EV 186 Total no. of EV 186 Total no. of EV 190 Total no. of EV 199 Total no. of EV 209
Table 10. Performance comparison of the 69-bus system.
Scenario 2 Base Case Fuzzy Fuzzy Fuzzy Fuzzy Fuzzy
PSO GWO TLBO JAYA RAO-3
SS Real power (kW) 4027.19 2220.7 2203.8 2163.3 2156.8 2119.1
SS Reactive power (kVAr) 2796.77 729.6046 724.4771 711.0508 708.7443 706.7995
SS Power factor 0.8214 0.95 lag 0.95 lag 0.95 lag 0.95 lag 0.95 lag
DG Penetration (kW) - 1900.7 1900.7 1900.6997 1900.7 1900.7
Active Power loss (kW) 224.56 26.5745 23.985 22.1920 221257 21.6085
Voltage minimum (p.u.) 0.902 0.974789 0.977643 0.978995 0.980217 0.988507

In scenario 2, the active power loss was reduced to 90.377%, 47.30%, and 37.341%
compared to the base case, two-stage methodology [20], and scenario 1. The minimum
voltage of the bus was enhanced to 0.988507 p.u. and 0.97653 p.u. in scenario 2 and scenario
1 compared to the base case minimum voltage of 0.902 p.u. The optimum number of vehicles
in scenario 2 increased to 10% and 5.56% compared to the two-stage methodology [20] in
scenario 1. Table 11 displays the comparison findings for all scenarios.

Table 11. Comparison results.

Cases Real Power Loss (kW) Voltage Minimum (p.u.) Total Number of EV
Scenario 2 21.6085 0.988507 209
Scenario 1 34.4876 0.97653 198
Two-stage methodology [20] 41.01 0.9461 190
Base Case 224.56 0.9020 -
5.2. Analysis of the Enhancement of Distribution Load Growth
In this section, with the initial EV charging load with a simultaneous approach (sce-
nario 2), the effect of enhancement of the distribution load is analyzed for the 69-bus
radial DST in Figure 15. Active power loss decreases immensely with the integration of
DSTATCOM and DGs in comparison to the base case. From Table 12, the real power loss
reduces with the proposed methodology.
Table 12. The impact of the increased distribution load on the 69-bus.
Load Factor Base-Case Two Stage Fuzzy Fuzzy Fuzzy Fuzzy Fuzzy
Methodology [20] PSO GWO TLBO JAYA RAO-3
1 224.8949 41.01 26.5745 23.985 22.1920 22.1257 21.6085
1.1 277.3206 59.22 44.7845 42.195 40.402 40.3357 39.8185
1.2 336.5602 89.22 67.8 65.195 63.402 63.34 62.82
1.3 403.0962 110.27 95.8345 93.245 91.452 91.3857 90.8685
1.4 477.4605 143.65 129.1845 126.6 124.842 124.7357 124.22
1.5 560.2671 182.66 168.1945 165.605 163.812 163.75 163.2285
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Figure 15. The impact of the rising DST system load on the performance of the 69-bus radial
distribution system.

5.3. Analysis of Enhancement of EV Load

In this section, the effect of the enhancement of an EV load is analyzed with a simul-
taneous approach (scenario 2) with different load factors of the distribution system. The
proposed method of scenario 2 has the best performance compared to other scenarios. The
EV load is increased up to 50 % of the initial load. Due to the enhancement of the EV load at
various load conditions in distribution systems shown in Table 13, the power loss rises with
rises in the EV load; however, with the fuzzy RAO-3 simultaneously proposed approach,
the power loss is compared less with the base case.

The impact of the active power and reactive power consumed from SS with the
enhancement of the EV load is depicted in Tables 14 and 15. Active power and reactive
power consumed from SS can meet the rise in the EV load; with a simultaneously proposed
approach, both active and reactive power consumed is less than the base case.

When the EV load increases, the impact on the minimum bus node voltage is analyzed
in Table 16. From Table 16, the minimum voltage reduces with a gradual enhancement
of the EV load, and with a fuzzy RAO-3 simultaneous approach, a minimum bus node
voltage remains within the standard limits.

Table 13. Impact on the active power loss (kW) in a 69-bus radial DST.

Load Factor Base Case Initial With 25% With 40% With 50%
EV Load Risein EV Load RiseinEV Load Risein EV Load

0.4 32.51 11.4535 13.652 18.943 20.5833
0.5 51.61 12.8789 15.0161 20.2530 21.2379
0.6 75.53 16.3617 18.2900 22.8646 23.5342
0.7 104.53 18.5627 20.7933 23.6172 26.2366
0.8 138.90 20.2054 22.0611 241741 28.5975
0.9 178.95 20.7181 23.432 25.5596 29.7692

1 225 21.6085 25.7404 26.8496 32.1375

Table 14. Impact on the active power (kW) consumed from SS in the 69-bus radial DST.

Load Factor Base Case Initial With 25% With 40% With 50%
EV Load Risein EVLoad RiseinEV Load RiseinEV Load
04 1553.39 1832.4 1954.38 2167.342 2239.6
0.5 1952.70 1928.1 2053.6 2207.3 2272.7
0.6 2356.84 1956.6 2155.5 2249.3 2316.2
0.7 2766.07 2015.1 2197 2283.1 2356.8
0.8 3180.66 2072.4 2200.8 2303.5 2379.9
0.9 3600.92 2104.3 2218.3 2331.0 2397.362

1 4027.19 2119.1 2247.8 2352.6 2405.1
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Table 15. Impact on the reactive power (kVAr) consumed from SS in the 69-bus radial DST.

Load Base Case Initial With 25% With 40% With 50%
Factor EV Load RiseinEV Load RiseinEV Load Increasein EV Load
0.4 1092.69 601.2 631.21 710.95 731.8654
0.5 1370.85 630.1 678.551 725.066 745.5750
0.6 1651.20 641.3 700.4033 738.028 758.9
0.7 1933.83 652.53 723.6628 759.084 767.6204
0.8 2218.88 678.56 731.396 763.02 779.3336
0.9 2506.48 693.68 738.963 770.873 788.2645
1 2796.77 706.79 743.377 775.829 793.3322
Table 16. Impact on the minimum distribution bus node 69-bus radial DST.
Load Factor Base Case Initial With 25% With 40% With 50%
EV Load Risein EV Load RiseinEV Load Risein EV Load
0.4 0.9656 0.9970 0.9943 0.9858 0.9883
0.5 0.9574 0.9899 0.9861 0.9841 0.9824
0.6 0.9476 0.9893 0.9848 0.9833 0.9812
0.7 0.9383 0.9891 0.9837 0.9824 0.9780
0.8 0.9288 0.9889 0.9831 0.9792 0.9777
0.9 0.9191 0.9887 0.9825 0.9778 0.9768
1 0.9092 0.9885 0.9820 0.9714 0.9667

5.4. Analysis of Transient Responses

Figure 16 depicts the impacts of EVs on EVCS node voltages. Batteries charge from a
fully depleted to a completely charged state for 69-bus radial distribution systems under
peak load conditions. It is also worth noting that, even with EV charging demand, the
voltage quality may be maintained at a deservedly high level due to the availability of the

complete DG capacity and DSTATCOM installations.

In summary, the suggested approach enhances the test distribution system’s perfor-
mance, such as in scenario 2; compared to the base case active power loss reducing to
90.377%, the voltage profile is enhanced to 0.988507 p.u.
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Figure 16. EVCS voltage transients.

6. Conclusions

3

Charging Time (h)

This article proposes a simultaneous fuzzy approach for optimally planning electric
vehicle charging stations, distributed generators, and shunt capacitors on 69-bus radial
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distribution systems. In this work, two-stage placements and simultaneous placements of
EVCS, DG, and DSTATCOM were performed using the RAO-3 algorithm. Li-ion character-
istic curves were used to develop P and Q load models for EV battery charging. Simulation
results show that SS can support an EV load up to its active power supply’s maximum
level after the impact of the EV load growth under various loading situations. With the
help of DG and DSTATCOM, the voltage profile can be kept at a reasonable level despite
an increase in the EV load. The node voltages at the EVCS are impacted by the transient
battery charging load, and at steady state charging, the node voltage maintains fair values
with the help of DG and DSTATCOM. We show that the proposed method outperforms the
stage-wise placement of various components in terms of (1) reducing active power loss,
(2) improving substation power factors, (3) enhancing distribution network voltage profiles,
and (4) allocating the optimum number of vehicles at the charging stations. The present
work can be extended to vehicle-to-grid technology.
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Abbreviations

The following abbreviations are used in this manuscript:

EVs Electrical Vehicles

EVCS Electric Vehicle charging stations

NEV Optimum number of electrical vehicles

DST Distribution System

DG Distributed Generators

DSTATCOM  Distribution Static Compensator

SS Substation

pf power factor

GWO Grey Wolf Optimizer

PSO Particle Swarm Optimization

TLBO Teaching-Learning-Based Optimization

RPLX Real power loss index

RPLpgsc Active power loss with DG and DSTATCOM

RPLpgse Real power loss with base case

pPe Capacity of DG

ndg Number of DG

P;"”d Active power load connected at jth bus

nb Total number of buses in the distribution network

Pl Active power loss of the distribution network when DG or DSTATCOM or
EV charging stations are installed

QI Reactive power loss of the distribution network when DG or
DSTATCOM are installed

EVPIEVLD Active power loss with EV and other load losses

EVPILP Load losses

F.ic Multi-objective fuzzy functions for optimum location and sizing of
DG and DSTATCOM

Fse Fuzzy objective functions for optimum location and sizing of EVCS

Fys Multi-objective fuzzy functions for simultaneous optimum location

and sizing of EV, DG, and DSTATCOM
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PIP G DG power injection at the nodes in the distribution network

Qs DSTATCOM reactive power injection at the nodes in the distribution network
itrmax Maximum iteration

itr Present iteration
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