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The prediction of the wear rates and coefficient of friction of composite materials is relatively complex using
mathematical models due to the effect of the manufacturing process on the wear properties of the composite.
Therefore, this work presents a rapid reliable tool based on neural network modified with particle swarm
optimizer to predict the wear rates and coefficient of friction of Al-TiO, nanocomposite manufactured using
accumulative roll bonding (ARB). The wear rates and coefficient of the produced composites were computed
using pin-on-disc and correlated with the composite morphology, hardness and microstructure. Experimentally,
it was demonstrated that the hardness and wear rates reduce with increasing the number of ARB passes until a
plateau was achieved due to the uniform distribution of TiO, nanoparticles inside the composite and the satu-
ration of grain refinement in the Al matrix. The maximum hardness improvement was 153.7% for composite
containing 3% TiOy nanoparticles after 5 ARB passes. While the wear rates of the same composite tested at 5 N
load reduces from 3.7 x 1072 g/m for pure Al to 1.1 x 103 g/m. The proposed model was able to predict the
wear rates and coefficient of friction for all the produced composites tested at four different wear loads with
excellent accuracy reaching R2 equal 0.9766 and 0.9866 for the wear rates and coefficient of friction,

respectively.

1. Introduction

The materials we now utilize cannot keep up with the demands of
ever-evolving technologies. The fact that composite materials are
stronger and lighter than conventional materials like metal is one of
their most distinguishing qualities. Numerous properties of composite
materials, including tensile, improved impact strength, high chemical
resistance, and fatigue strength, have made it possible to employ them in
the building, manufacturing, aerospace, and automotive industries [1,
2].

The use of composite materials with metal and ceramic matrix is
increasing day by day, especially in the production of armor materials in
military fields. The studies on the production of armor with new ballistic
features that can resist against the ever-developing weapon systems
have gained momentum recently. The high impact performance of
ceramic composite materials compared to materials with monolithic
structure and the use of new features have made it inevitable to be used
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in armor production [3-5].

One benefit of a better method for producing MMNCs is the coupling
of severe plastic deformation (SPD) operations to manufacture the
nanocrystalline matrix material with suitably distributed ceramic
nanoparticles [6,7]. Surface composites (SCs) can be created using
friction stir processing (FSP), one of the SPD techniques, without
sacrificing the natural properties of the materials. However, due to
asymmetric material flow during FSP, generating defect-free and evenly
distributed composites in a single pass is a difficult challenge [8-10].
The capacity to form huge loads, the lack of a need for expensive
equipment, and the limitless output make cumulative roll bonding
(ARB) among the most promising methods [11]. The fundamental issue
addressed by the ARB procedure is that edge cracks in the sheet, espe-
cially at higher strains, might develop as a result of the absence of sig-
nificant hydrostatic compressive forces at the free edges [12].

Surface morphology research is a crucial component of material
science that can aid in identifying and assessing physical and chemical
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Fig. 1. ANN Structure for the considered problem.

responses such as wear, corrosion, and electrical behavior [13-15].
Utilizing ARP process for reinforcing different metals with several
reinforcement particles provide a huge variety of composites with
distinct properties including mechanical and electrical and wear prop-
erties [16-19]. Using the ARB method, numerous Al-based composites,
such as: Al/SiC [20,21], Al/Aly03 [22,23], Al/TiO [24], Al/SiO9 [25],
Al/W [26], Al/WC [27-30]. The sample’s significant plastic deforma-
tion during ARB is a key strengthening mechanism, which helps for
grain refinement and hence increases the strength.

Wear resistance is one of the most important criteria for selecting
materials especially for the materials with relative movement. The
laminated sheet structures created by the ARB technique should be
investigated for practical applications. ARB treated aluminum and
aluminum matrix composites have been studied previously [31,32].
However, the authors reported contradicting findings, claiming that the
ARB procedure increased and decreased wear resistance. In certain in-
stances, the wear rate of ARB—processed sheets was reduced for a limited
number of passes before being raised [33,34].

Recently, the applicability of machine learning in many industrial
applications proved its importance as a fast and reliable prediction tool.
The advantage of machine learning became more viable for problems
that cannot be solved using analytical models and cannot be simply
governed using mathematical formulations. This increases the applica-
bility of machine learning models in composite fields where complex
phenomenon could occur during manufacturing [35,36]. Some recent
works applied different machine learning models to predict the wear
rates of copper based composites, that showed good predictability of the
wear rates [37,38]. Also, it was used to predict different mechanical and
chemical properties of composites [39-44]. However, most of the
deployed model for prediction of mechanical and wear properties of
composite materials, consider complex machine learning model such as
long-short term memory model and dendritic neural and deep neural
networks, which require complex implementation and computation cost
[45].

Therefore, this work presents a simple model that uses conventional
neural network modified with particle swarm optimization algorithm to
fast and reliably predict the wear rates and coefficient of friction of Al-
TiO5 nanocomposites developed in this work. The Al-TiO, nano-
composites was manufactured using ARB technique at different passes.
The microstructural and morphology changes during the ARB process
were evaluated to optimize the microstructure of the composite. The
wear rates and coefficient of friction were evaluated using pin-on-disc

experiment and correlated with the material microstructure and the
hardness. Finally, the developed artificial neural network modified with
particle swarm optimization algorithm was employed to predict the
wear rates and coefficient of friction.

2. Modeling
2.1. Artificial neural network

It has a great potential to tune weights and biases of the ANN model
of any size. In the proposed work, the PSO algorithm is devised to tune a
generalized feed-forward Ann model considering multi neurons in the
hidden layer. The developed model is shown in the Fig. 1. Here, the
weight and biases of the network are represented by the position vector
of PSO. Thus, each particle represents a set of weights and biases of the
developed ANN model of the problem considered in this paper. After
solving the problem, the final weights and biases are obtained of the
feed-forward network that is well trained with the potential to predict
outputs of any unknown features.

Let us try to discuss the working principle of ANN in details with the
help of Fig. 1. The ANN model has a hidden layer of m neurons and the
output layer with two neurons. The input layer can receive dataset 2
data points in each input sample. In other words, this ANN structure is
for relating 2 independent variables to two single output or dependent
variable. Mathematically, it can be represented as:

[yl,y2} :f(xlvxbw’b) (@)

Where x; and x; are independent variables of a given sample and y1 and
y2 are the outputs dependent on them. Here, w and bare weight and bias
matrices of the ANN structure. In ANN, this relationship is represented
using a very complex mathematical equation based on the activation
function considered for each neuron. Normally, the same activation
function is considered for all the neurons of each layer of the network.
The activation function is also called a transfer function. Commonly,
Linearized transfer function is used in output layer whereas sigmoid or
hyperbolic tangent function is used in the hidden layer.

The output of a neuron is calculated based on the inputs, weights and
bias of the network. The relationship between them is expressed with the
help of the considered transfer function. Mathematically, the input and
output of a neuron is expressed as:
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Fig. 2. PSO Search Mechanism.
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Where gis the activation or transfer function of neuron. Through training
with the known values of inputs (x7, x3) and their corresponding outputs
(y1, y2), the weight matrix w and bias matrix b are updated. When a
large number of input vectors and output vectors are used in the
training, the optimal values of w and b are obtained. Once training is
completed the ANN model gets ready for giving output for any unknown
input vector (xj, x2). Training is not an easy task. Here, various algo-
rithms are used to obtain the optimum values of w and b so that least
possible error is obtained in the training phase. This problem can be
formulated as an optimization problem where objective function is
minimization of error square in target and the predicted output subject
to keeping weight and bias values within a fixed boundary. In this paper,
PSO algorithm is utilized to get the optimum values of w and b of ANN
model whose details are discussed subsequently.

2.2. Particle swarm optimization algorithm

Particle swarm optimization is a promising method for solving
complicated optimization problems in most areas. This method is
inspired by swarm intelligence displayed by fish schooling and birds
flocking. Mathematical, the method is guided primarily by two equa-
tions associated with velocity and positive updates of the swarm. To get
mathematical aspects of PSO, let us assume a matrix X and V, repre-
senting the swarm position and velocity of PSO in multi-dimensional
search space. Here, X and V can be expressed as follows;

X = [x,-,}fori =1,2,..mi=12,...,n 3)

V=[Vlfori=1,2,...m;i=1,2,...n (O]

Each row of X represents a particle whose velocity is represented by
the corresponding row of V in this m-dimensional search space having
the total number of particles n in the PSO algorithm. As the algorithm
iteration continues, the position and velocity of each particle and the
whole swarm are updated. This change always targets moving towards
the global optimal position where particles achieve their goals. In other
words, with fish schooling and birds flocking, the objective of getting
their food is achieved. Mathematically, position update of each particle
is dependent on three main components. These components are their
position, their personal memory-based best position and the whole
swarm memory-based position. Also, the next position is closely asso-
ciated with the velocity of each particle in each of the directions of the
components mentioned above. Thus, the velocity update of each particle
decides its next position. Fig. 2 shown the search mechanism in PSO
algorithm.

The velocity update of a particle is defined as
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Vf.‘j“ = ij +cin (Pbestf?]'. - Xf;) N <Gbestj].‘ —Xﬁ}) (5)

In the above equation, the first term is associated with the inertia of
the particle, the second term is associated with the personal memory of
the particle, and the third term is associated with the overall best
memory of the swarm. These factors give a new direction vector for the
particle to move accordingly. Here, c¢; and c, are called acceleration
factors of PSO associated to personal best and global best terms, while r;
and r, are two randomly generator numbers in [— 1,1]. The next posi-
tion of the particle is defined using the updated velocity as follows.

Xk+l — Xf/ + Vf}+] (6)

Once the new position and all particles, i.e., the swarm, are obtained,
personal memory and overall swarm or global memory of the swarm are
updated. The personal and global best is the position of the particle and
the swarm, which was the best until the current iteration. To update
Pbest and Gbest at each iteration, the fitness function is evaluated using
the position of each particle. In reality, each particle represents a solu-
tion vector that can solve an optimization problem by satisfying its
constraints. The fitness function represents the entire constrained opti-
mization problem whose value needs to be evaluated, and Pbest and
Gbest are updated using the following logic.

Iff (X)) < f(Pbest!)thenPbesti™ = X+ elsePbest:™" = Pbests; %)

Iff (X) < f(Gbest*)thenGbest*™! = X+ elseGbest!™ = Gbest*; ®)

It is to be noted that Pbest is related to each particle, whereas Gbest
is related to the swarm. The best is the same for each, while Pbest is
different.

After this, stopping criteria are checked and repeated from upgrading
the position vector of each particle until the global optimal solution is
achieved or stopping criteria are met. Usually, a predefined number of
iterations is set as the stopping criteria. Also, when the solution does not
improve for a subsequent fixed number of iterations, then the algorithm
is stopped. A combination of these two stopping criteria works well and
is usually adopted as is considered in this work.

2.3. Training ANN Model using PSO

The network needs to be trained after the ANN’s structure has been
established. Finding the ideal values for the network’s weights and
biases is the process of training the network. Finding the appropriate
weights and biases for the ANN often involves using a variety of stra-
tegies. In this work, PSO algorithm has been used to train the network.
Here, the training problem is defined as an optimization problem with
the objective to minimize the mean square error subject to keeping the
values of weights and biases within a range of [— 1.5, 1.5]. This range
can be different and be easily modified in the developed programs.

Here, weights and biases of considered ANN model is used to form a
vector called particle for PSO. Collection of many such particles forms a
swarm of PSO. Hence, any particle gives weights and biases of the ANN
model which once assigned to it, gives a prediction for any given set of
input. To obtain the optimum values of weights and biases, PSO is
applied on this randomly initialized swarm and optimal swarm is ob-
tained. The Gbest of this optimized swarm gives the optimized values
weights and biases which are used in the ANN model to form it ready for
prediction.

Mathematically, this problem is formulated as:

N
OF = min Z (rarger(i) — outpur(i))* ()]
i=1

Subject to

!
Wmin < Wi < Winax
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Table 1
Chemical composition of used Al1100 sheets.
Elements Zn Mg Cu Mn Si Fe Ti \4 Al
wt% 0.05 0.05 0.05 0.05 0.25 0.4 0.03 0.05 Balance
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Fig. 3. Schematic illustration of ARB process.

bmin S bj[ S bmax

Where target(i) is the know target value of a given input sample i while
output(i) is the output value of the ANN model when this given input
sample i is passed through the ANN model. Here, the main task is to find
out the values of weights and biases of the network in such a way that
objective function OFis minimized.

2.4. Prediction of wear rates and coefficient of friction using ANN-PSO
model

The ANN-PSO model developed in this work was used to predict the
wear rates of the Al-TiO, nanocomposite that was prepared and char-
acterized as detailed in the next section. The input to the model was the
number of rolling pass and the wear load. While the output was the wear
rates and coefficient of friction. The typical ANN model was used as well
to predict the wear rates and coefficient of friction. The accuracy of the
developed model was compared with typical ANN model and evaluated
using three measures, namely determination coefficient (RZ), root mean
square error (RMSE), and Mean absolute error (MAE) as:

my _ B 2
(Son-nw-n)
R = !

i=

:z“l(h,- R xS (ki —F)?

i=1

1] & 2
RMSE = | — h; — k; 11
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g

1
MAE = — hi —k; 12
— > i~k 12

s

(10
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where mg, h, and k are the number of experimental datasets, experi-

mental value and the computed value, respectively. While h and k are
the mean values of the experimental and computed data, respectively.

3. Materials and methods
3.1. Materials and samples preparation

The matrix of the composite was made entirely of commercial Al
1100. Table 1 provides the chemical make-up of the Al matrix. In order
to enhance the mechanical and surface qualities of the Al sheets, they
were heated to 275 degrees in a thermal furnace for over an hour before
being cooled to room temperature (the annealing process). The TiO»
nanoparticle powder reinforcement phase had particles that were, on
average, 70 nm in size. The creation of Al-TiO, composites using the
ARB method is shown in Fig. 3. To create rough surfaces, both sides of
aluminum sheets were wire brushed with wire having a diameter of
0.3 mm after being degreased with acetone to remove surface impu-
rities. The TiO3 nanoparticles were ultrasonically sonicated in acetone
for 90 s to prevent clustering/agglomerations. The cluster-free particles
were then sprayed uniformly on the scratch-brushed sheets’ surface
using a gas atomizer. The composites had TiO, nanoparticle concen-
trations ranging from 0 to 3 wt%, with a 1% step. In the first rolling pass,
the cross-section was reduced by 60%, and in succeeding passes, by
50%. The middle of the rolled samples was then removed. Only the first
pass of each rolling process, which might happen up to five times,
involved continually introducing TiO, powders.

3.2. Microscopic observations

The edges of the rolled sheets were cut and the samples were cut from
the central part in normal direction (RD - ND planes), then used SiC
emery sheets of varying grits and Keller’s reagent to polish and etch.
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Fig. 4. XRD of the Al — 3% TiO, nanocomposite sheets after 5 ARB passes.

Layer morphology and thickness of the samples were examined in an FEI
Quanta scanning electron microscope (SEM) equipped with an energy-
dispersive X-ray spectrometer (EDS). In order to show how the TiO,
nanoparticles dispersed and how the Al sheets adhered to one another,
scanning electron microscopy (SEM) and energy dispersive spectroscopy
(EDS) studies in the cross section of the rolled sheets were conducted.

3.3. Hardness and wear evaluations

A micro-Vickers device was used for the Vickers test, which was
carried out in accordance with ASTM-E384 standard, and a load of
0.1 kg was applied for 20s. For each specimen, the hardness was
assessed at five randomly chosen sites, and the average values were used
to calculate the microhardness of the sample. Utilizing a pin-on-disk
wear apparatus, the wear behavior of the generated composites was
evaluated. 120 mm length by 20 mm wide rectangular samples were the
ones we used. Between two surfaces that were in touch, there was a
linear velocity of 1 m/s. For a sliding distance of 200 m, each wear test

Materials Today Communications 35 (2023) 105743

was conducted three times. Wear tests were done with typical loads of 5,
10, 15, and 20 N to look at how normal load affected wear rate. SEM
analysis was used to identify the worn surface and examine wear track
features.

4. Results and discussion
4.1. Microstructural observation

Fig. 4 shows the XRD analysis of Al-3%TiO, nanocomposite pro-
duction after 5 passes. Only two phases were observed for TiO3 and Al
phases. The presence of only these two phases demonstrate the purity of
the produced composite and it was free of any intermetallic and
impurities.

In Fig. 5, SEM images of Al-TiOy nanocomposites with various
reinforcement contents are displayed. There were three layers of TiO2
nanoparticles sandwiched between four Al sheets. Ceramic nano-
particles may first collect in the aluminum matrix in clusters. This ten-
dency intensifies with the addition of reinforcement. After the initial
pass, the matrix-reinforcement relationship would become weak,
resulting in uneven reinforcement dispersal between matrixes.

Particle clumping is decreased by using more passes. In Fig. 5c, the
cross section of the composite made of Al and 3% TiO; is displayed,
which shows how the particles cluster less. With several passes, there is a
reduction in the distance between the sheet interfaces. When adjacent
metal surfaces are heated and rolled afterward, interatomic diffusion
(atom-to-atom bonding) takes place, improving adhesion (bond
strength) between them [46,47]. Finally, as seen in Fig. 5¢ and d, rolling
after annealing resulted in the contact becoming tightly bound, making
it challenging to find the interface even with SEM analysis.

4.2. Hardness

Fig. 6 shows the microhardness evolution and the improvement rates

Fig. 5. SEM micrograph ofAl - TiO, nanocomposite sheets after 5 ARB passes: (a) 1%, (b) 2%, (c) 3%, (d) larger magnification for sample with 3% TiO,.
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processed Al-3% TiO, nanocomposite samples in the different applied load.

for Al-TiO, nanocomposites with different TiO, content after 5 passes.
The hardness of all the produced composites were greater than the pure
Al. The Al-3%TiO nanocomposite had the highest hardness value. The
existence of a hard phase in the nanocomposite and the addition of TiOy
to the Al matrix both improved hardness as a result of the pore-closing
mechanism. Due to the increase in tensile strength in the fifth pass,
the microhardness in the fifth pass relative to other samples increased
suddenly. The findings of this experiment have been previously pub-
lished [48,49], and in general, the hardness of aluminum has grown
following accumulative rolling bonding. A nanocomposites made of
Al-3 wt% TiO2 have a hardness value of 116 HV compared to pure
aluminum’s 44 HV. Scratch brushing, cold working, grain refining, and
the addition of TiO2 nanoparticles were all credited with this significant
rise. Additionally, Al-3 wt% TiO; nanocomposites’ hardness was much
higher than that of the other two composites, Al-1 wt% TiO and Al-2 wt

Materials Today Communications 35 (2023) 105743

% TiO4, with improvement percentages of 53% and 153%, respectively.
This novel method significantly improves ARB by combining good
interfacial bonding between Al and TiO, with a homogenous dispersion
of TiOy nanoparticles within the Al matrix. The improvement was
brought about by the consistent dispersion of TiOy nanoparticles be-
tween the sheets, where there is little chance of agglomeration during up
to five cycles of rolling (see Fig. 6). On the other hand, strain hardening
and dislocation effects were produced as a result of dislocation density
and locked to stop dislocations [50]. The greatest improvement attained
in [51] is 68%, but the improvement rate for Al-TiO5 composites reaches
153% for composite with 3% reinforcement in both situations. As a
comparison reinforcement phase, SiO, has a substantially lower
improvement rate than Al-TiO, composites.

4.3. Wear behavior and ANN-PSO prediction

The wear rate of an Al-3 wt% TiO, nanocomposite treated for several
ARB passes is depicted in Fig. 7. As the number of ARB passes increased
for all the applied loads, the wear rates decreased. The material’s
hardness and strength are increased during the ARB process, resulting in
a decreased wear rate for ARBed Al. As a result, there are fewer plastic
deformations at the contact surface, which leads to less material removal
and lower wear rates. As a result, sample wear resistance gets better as
the number of ARB passes rises. The physical and mechanical charac-
teristics of the material affect the rate of wear [52-54]. This chart shows
that when the usual load increases, the wear rate of each sample under
examination also increases. This is because the pin penetrated the
sample more deeply, which causes larger rates of material removal.
Similar to the indentation experiment, where the depth of the indenta-
tion grows as the applied load decreases, the effect of the wear load
causes an increase in the indentation [55,56]. It was noted that the wear
rate was proportional to the normal applied load for Al-3 wt% TiO2
nanocomposite processed for different ARB passes, as stated by Arch-
ard’s law. In other words, uniform TiOy nanoparticle distribution re-
duces wear rate. This is owing to the Al matrix’s work hardening effect
and the TiO2 nanoparticles’ dislocation strengthening mechanism.
Additionally, higher passes result in lower porosities between TiOy
nanoparticles and the aluminum base matrix, which increases bonding
strength and reduces wear rate [57].

Fig. 8 shows the surface morphology of the worn surfaces of pure Al
and Al-3 wt% TiO, nanocomposite after five ARB passes. A compre-
hensive investigation revealed the usual characteristics of abrasive
wear, such as abrasion grooves generated in the sliding direction and
ploughing, for beginning aluminum. A large quantity of fine agglomer-
ated wear particles primarily filled the grooves on the worn surface. The
wear mechanism changes as the ARB passes and the layer count in-
creases; delamination wear occurs, and coarse flakes form with fine
particles. The delamination wear characteristics of the sample ARB-
processed by 5 passes were attributed to fracture by crack propagation
in the interlayer sub-worn surface. Finally, when compared to

Fig. 8. SEM images of worn surface of (a) Al/Al and (b) Al-3%TiO,.
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Fig. 10. Prediction of ANN-PSO model for the wear rates and coefficient of friction.

monolithic samples, composite samples supplemented with 3 wt% TiOy
nanoparticles exhibit greater wear resistance. Based on the foregoing
considerations, high temperature caused grain formation at the plasti-
cally deformed region (between the pin and the worn surface) following
the start of wear. Because of local work hardening of the aluminum

Table 2

Accuracy of the ANN-PSO model.
Particulars Output 1 Output 2
R-square 0.9766 0.9866
RMSE 0.0213 0.0066
MAE 0.0172 0.0052
SD 0.1405 0.0580

matrix around the particles, increasing the percent TiO, reduces the
width of wear grooves and enhances wear resistance.

Fig. 9 shows the perdition of the typical ANN model for the wear
rates and coefficient of friction at different wear loads and number of
passes for Al-TiOy nanocomposites. As shown in the figure, the ANN
model prediction deviates from the experimental results significantly,
especially at larger wear rates which was obtained at high wear loads.
The deviation is some of the data reaches more than 20%, which is
relatively large when considering the accuracy required for such mate-
rials and their applications. However, the prediction of ANN model is
better for the coefficient of friction with maximum deviation of 8%.

Fig. 10 shows the prediction of ANN-PSO model for the wear rates
and the coefficient of friction of the same material. As observed in the
figure, perfect prediction of both wear rates and coefficient of friction
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was obtained using the ANN-PSO model. The accuracy of the model was
confirmed with the R2, RMSE, and MAE for the model prediction, which
showed 0.9766,.0213, and 0.0172 for the wear rates and 0.9866,.0066,
and 0.0052 for the coefficient of friction, Table 2. Standard deviation
(SD) of the output corresponding to wear rates and coefficient of friction
is 0.1405 and 0.0580 respectively as can be observed from Table 2.

5.

Conclusions

This paper presents experimental and machine learning prediction of

wear rates of Al-TiO nanocomposite with different TiO5 content pro-
duced by accumulative roll bonding technique. The wear properties of

the

produced composites were evaluated using pin-on-disc experiment

and correlated with the morphology, microstructure, and hardness. A
machine learning model was developed based on neural network and

par
coe

ticle swarm optimization algorithm to predict the wear rates and
fficient of friction. Based on the result obtained the following con-

clusions can be drawn:

Al-3 wt% TiO, nanocomposites hardness reached 114 HV which was
much higher than that of pure Al achieving 153.7% improvement.
This composite showed higher hardness compared to the composites
reinforced with 1 and 2 wt% of TiO» nanoparticles.

The wear rate reduced significantly with increasing the number of
ARB passes reaching 1.1 x 107> g/m for Al-3 wt% TiO, nano-
composites compared to 3.7 x 10> g/m for pure Al due to the grain
refinement mechanisms and hardness increase.

The wear rates increases with increasing the wear load for at all
considered passes due to the larger contact are between the pin and
the disc, which increases plastic deformation during testing and the
material removal rate.

The developed model predicted the wear rates and coefficient of
friction much better than the conventional neural network. The ac-
curacy of the developed model for prediction reaching R2 values of
0.9766 and 0.9866 respectively.
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