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A B S T R A C T   

The prediction of the wear rates and coefficient of friction of composite materials is relatively complex using 
mathematical models due to the effect of the manufacturing process on the wear properties of the composite. 
Therefore, this work presents a rapid reliable tool based on neural network modified with particle swarm 
optimizer to predict the wear rates and coefficient of friction of Al-TiO2 nanocomposite manufactured using 
accumulative roll bonding (ARB). The wear rates and coefficient of the produced composites were computed 
using pin-on-disc and correlated with the composite morphology, hardness and microstructure. Experimentally, 
it was demonstrated that the hardness and wear rates reduce with increasing the number of ARB passes until a 
plateau was achieved due to the uniform distribution of TiO2 nanoparticles inside the composite and the satu
ration of grain refinement in the Al matrix. The maximum hardness improvement was 153.7% for composite 
containing 3% TiO2 nanoparticles after 5 ARB passes. While the wear rates of the same composite tested at 5 N 
load reduces from 3.7 × 10− 3 g/m for pure Al to 1.1 × 10− 3 g/m. The proposed model was able to predict the 
wear rates and coefficient of friction for all the produced composites tested at four different wear loads with 
excellent accuracy reaching R2 equal 0.9766 and 0.9866 for the wear rates and coefficient of friction, 
respectively.   

1. Introduction 

The materials we now utilize cannot keep up with the demands of 
ever-evolving technologies. The fact that composite materials are 
stronger and lighter than conventional materials like metal is one of 
their most distinguishing qualities. Numerous properties of composite 
materials, including tensile, improved impact strength, high chemical 
resistance, and fatigue strength, have made it possible to employ them in 
the building, manufacturing, aerospace, and automotive industries [1, 
2]. 

The use of composite materials with metal and ceramic matrix is 
increasing day by day, especially in the production of armor materials in 
military fields. The studies on the production of armor with new ballistic 
features that can resist against the ever-developing weapon systems 
have gained momentum recently. The high impact performance of 
ceramic composite materials compared to materials with monolithic 
structure and the use of new features have made it inevitable to be used 

in armor production [3–5]. 
One benefit of a better method for producing MMNCs is the coupling 

of severe plastic deformation (SPD) operations to manufacture the 
nanocrystalline matrix material with suitably distributed ceramic 
nanoparticles [6,7]. Surface composites (SCs) can be created using 
friction stir processing (FSP), one of the SPD techniques, without 
sacrificing the natural properties of the materials. However, due to 
asymmetric material flow during FSP, generating defect-free and evenly 
distributed composites in a single pass is a difficult challenge [8–10]. 
The capacity to form huge loads, the lack of a need for expensive 
equipment, and the limitless output make cumulative roll bonding 
(ARB) among the most promising methods [11]. The fundamental issue 
addressed by the ARB procedure is that edge cracks in the sheet, espe
cially at higher strains, might develop as a result of the absence of sig
nificant hydrostatic compressive forces at the free edges [12]. 

Surface morphology research is a crucial component of material 
science that can aid in identifying and assessing physical and chemical 
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responses such as wear, corrosion, and electrical behavior [13–15]. 
Utilizing ARP process for reinforcing different metals with several 
reinforcement particles provide a huge variety of composites with 
distinct properties including mechanical and electrical and wear prop
erties [16–19]. Using the ARB method, numerous Al-based composites, 
such as: Al/SiC [20,21], Al/Al2O3 [22,23], Al/TiO2 [24], Al/SiO2 [25], 
Al/W [26], Al/WC [27–30]. The sample’s significant plastic deforma
tion during ARB is a key strengthening mechanism, which helps for 
grain refinement and hence increases the strength. 

Wear resistance is one of the most important criteria for selecting 
materials especially for the materials with relative movement. The 
laminated sheet structures created by the ARB technique should be 
investigated for practical applications. ARB treated aluminum and 
aluminum matrix composites have been studied previously [31,32]. 
However, the authors reported contradicting findings, claiming that the 
ARB procedure increased and decreased wear resistance. In certain in
stances, the wear rate of ARB–processed sheets was reduced for a limited 
number of passes before being raised [33,34]. 

Recently, the applicability of machine learning in many industrial 
applications proved its importance as a fast and reliable prediction tool. 
The advantage of machine learning became more viable for problems 
that cannot be solved using analytical models and cannot be simply 
governed using mathematical formulations. This increases the applica
bility of machine learning models in composite fields where complex 
phenomenon could occur during manufacturing [35,36]. Some recent 
works applied different machine learning models to predict the wear 
rates of copper based composites, that showed good predictability of the 
wear rates [37,38]. Also, it was used to predict different mechanical and 
chemical properties of composites [39–44]. However, most of the 
deployed model for prediction of mechanical and wear properties of 
composite materials, consider complex machine learning model such as 
long-short term memory model and dendritic neural and deep neural 
networks, which require complex implementation and computation cost 
[45]. 

Therefore, this work presents a simple model that uses conventional 
neural network modified with particle swarm optimization algorithm to 
fast and reliably predict the wear rates and coefficient of friction of Al- 
TiO2 nanocomposites developed in this work. The Al-TiO2 nano
composites was manufactured using ARB technique at different passes. 
The microstructural and morphology changes during the ARB process 
were evaluated to optimize the microstructure of the composite. The 
wear rates and coefficient of friction were evaluated using pin-on-disc 

experiment and correlated with the material microstructure and the 
hardness. Finally, the developed artificial neural network modified with 
particle swarm optimization algorithm was employed to predict the 
wear rates and coefficient of friction. 

2. Modeling 

2.1. Artificial neural network 

It has a great potential to tune weights and biases of the ANN model 
of any size. In the proposed work, the PSO algorithm is devised to tune a 
generalized feed-forward Ann model considering multi neurons in the 
hidden layer. The developed model is shown in the Fig. 1. Here, the 
weight and biases of the network are represented by the position vector 
of PSO. Thus, each particle represents a set of weights and biases of the 
developed ANN model of the problem considered in this paper. After 
solving the problem, the final weights and biases are obtained of the 
feed-forward network that is well trained with the potential to predict 
outputs of any unknown features. 

Let us try to discuss the working principle of ANN in details with the 
help of Fig. 1. The ANN model has a hidden layer of m neurons and the 
output layer with two neurons. The input layer can receive dataset 2 
data points in each input sample. In other words, this ANN structure is 
for relating 2 independent variables to two single output or dependent 
variable. Mathematically, it can be represented as: 

[y1, y2] = f (x1, x2,w, b) (1)  

Where x1 and x2 are independent variables of a given sample and y1 and 
y2 are the outputs dependent on them. Here, w and bare weight and bias 
matrices of the ANN structure. In ANN, this relationship is represented 
using a very complex mathematical equation based on the activation 
function considered for each neuron. Normally, the same activation 
function is considered for all the neurons of each layer of the network. 
The activation function is also called a transfer function. Commonly, 
Linearized transfer function is used in output layer whereas sigmoid or 
hyperbolic tangent function is used in the hidden layer. 

The output of a neuron is calculated based on the inputs, weights and 
bias of the network. The relationship between them is expressed with the 
help of the considered transfer function. Mathematically, the input and 
output of a neuron is expressed as: 

Fig. 1. ANN Structure for the considered problem.  
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z = g

(

b+
∑n

i=1
wixi

)

(2)  

Where gis the activation or transfer function of neuron. Through training 
with the known values of inputs (x1, x2) and their corresponding outputs 
(y1, y2), the weight matrix w and bias matrix b are updated. When a 
large number of input vectors and output vectors are used in the 
training, the optimal values of w and b are obtained. Once training is 
completed the ANN model gets ready for giving output for any unknown 
input vector (x1, x2). Training is not an easy task. Here, various algo
rithms are used to obtain the optimum values of w and b so that least 
possible error is obtained in the training phase. This problem can be 
formulated as an optimization problem where objective function is 
minimization of error square in target and the predicted output subject 
to keeping weight and bias values within a fixed boundary. In this paper, 
PSO algorithm is utilized to get the optimum values of w and b of ANN 
model whose details are discussed subsequently. 

2.2. Particle swarm optimization algorithm 

Particle swarm optimization is a promising method for solving 
complicated optimization problems in most areas. This method is 
inspired by swarm intelligence displayed by fish schooling and birds 
flocking. Mathematical, the method is guided primarily by two equa
tions associated with velocity and positive updates of the swarm. To get 
mathematical aspects of PSO, let us assume a matrix X and V, repre
senting the swarm position and velocity of PSO in multi-dimensional 
search space. Here, X and V can be expressed as follows; 

X =
[
xij
]
fori = 1, 2, ...,m; i = 1, 2, ..., n (3)  

V =
[
Vij
]
fori = 1, 2, ...,m; i = 1, 2, ..., n (4) 

Each row of X represents a particle whose velocity is represented by 
the corresponding row of V in this m-dimensional search space having 
the total number of particles n in the PSO algorithm. As the algorithm 
iteration continues, the position and velocity of each particle and the 
whole swarm are updated. This change always targets moving towards 
the global optimal position where particles achieve their goals. In other 
words, with fish schooling and birds flocking, the objective of getting 
their food is achieved. Mathematically, position update of each particle 
is dependent on three main components. These components are their 
position, their personal memory-based best position and the whole 
swarm memory-based position. Also, the next position is closely asso
ciated with the velocity of each particle in each of the directions of the 
components mentioned above. Thus, the velocity update of each particle 
decides its next position. Fig. 2 shown the search mechanism in PSO 
algorithm. 

The velocity update of a particle is defined as 

Vk+1
ij = Vkij+ c1r1

(
Pbestkij − X

k
ij

)
+ c2r2

(
Gbestkj − X

k
ij

)
(5) 

In the above equation, the first term is associated with the inertia of 
the particle, the second term is associated with the personal memory of 
the particle, and the third term is associated with the overall best 
memory of the swarm. These factors give a new direction vector for the 
particle to move accordingly. Here, c1 and c2 are called acceleration 
factors of PSO associated to personal best and global best terms, while r1 

and r2 are two randomly generator numbers in [− 1,1]. The next posi
tion of the particle is defined using the updated velocity as follows. 

Xk+1 = Xkij+V
k+1
ij (6) 

Once the new position and all particles, i.e., the swarm, are obtained, 
personal memory and overall swarm or global memory of the swarm are 
updated. The personal and global best is the position of the particle and 
the swarm, which was the best until the current iteration. To update 
Pbest and Gbest at each iteration, the fitness function is evaluated using 
the position of each particle. In reality, each particle represents a solu
tion vector that can solve an optimization problem by satisfying its 
constraints. The fitness function represents the entire constrained opti
mization problem whose value needs to be evaluated, and Pbest and 
Gbest are updated using the following logic. 

If f
(
Xk+1
i

)
< f
(
Pbestki

)
thenPbestk+1

i = Xk+1
i elsePbestk+1

i = Pbestki ; (7)  

If f
(
Xk+1
i

)
< f
(
Gbestk

)
thenGbestk+1 = Xk+1

i elseGbestk+1 = Gbestk; (8) 

It is to be noted that Pbest is related to each particle, whereas Gbest 
is related to the swarm. The best is the same for each, while Pbest is 
different. 

After this, stopping criteria are checked and repeated from upgrading 
the position vector of each particle until the global optimal solution is 
achieved or stopping criteria are met. Usually, a predefined number of 
iterations is set as the stopping criteria. Also, when the solution does not 
improve for a subsequent fixed number of iterations, then the algorithm 
is stopped. A combination of these two stopping criteria works well and 
is usually adopted as is considered in this work. 

2.3. Training ANN Model using PSO 

The network needs to be trained after the ANN’s structure has been 
established. Finding the ideal values for the network’s weights and 
biases is the process of training the network. Finding the appropriate 
weights and biases for the ANN often involves using a variety of stra
tegies. In this work, PSO algorithm has been used to train the network. 
Here, the training problem is defined as an optimization problem with 
the objective to minimize the mean square error subject to keeping the 
values of weights and biases within a range of [− 1.5, 1.5]. This range 
can be different and be easily modified in the developed programs. 

Here, weights and biases of considered ANN model is used to form a 
vector called particle for PSO. Collection of many such particles forms a 
swarm of PSO. Hence, any particle gives weights and biases of the ANN 
model which once assigned to it, gives a prediction for any given set of 
input. To obtain the optimum values of weights and biases, PSO is 
applied on this randomly initialized swarm and optimal swarm is ob
tained. The Gbest of this optimized swarm gives the optimized values 
weights and biases which are used in the ANN model to form it ready for 
prediction. 

Mathematically, this problem is formulated as: 

OF = min
∑N

i=1
(target(i) − output(i))2 (9) 

Subject to 

wmin ≤ wlij ≤ wmax 

Fig. 2. PSO Search Mechanism.  
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bmin ≤ blj ≤ bmax  

Where target(i) is the know target value of a given input sample i while 
output(i) is the output value of the ANN model when this given input 
sample i is passed through the ANN model. Here, the main task is to find 
out the values of weights and biases of the network in such a way that 
objective function OFis minimized. 

2.4. Prediction of wear rates and coefficient of friction using ANN-PSO 
model 

The ANN-PSO model developed in this work was used to predict the 
wear rates of the Al-TiO2 nanocomposite that was prepared and char
acterized as detailed in the next section. The input to the model was the 
number of rolling pass and the wear load. While the output was the wear 
rates and coefficient of friction. The typical ANN model was used as well 
to predict the wear rates and coefficient of friction. The accuracy of the 
developed model was compared with typical ANN model and evaluated 
using three measures, namely determination coefficient (R2), root mean 
square error (RMSE), and Mean absolute error (MAE) as: 

R2 =

(
∑ms

i=1
(hi − h)(ki − k)

)2

∑ms

i=1
(hi − h)2

×
∑ms

i=1
(ki − k)2

(10)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
ms

∑ms

i=1
(hi − ki)2

√

(11)  

MAE =
1
ms

∑ms

i=1
|hi − ki| (12)  

where ms, h, and k are the number of experimental datasets, experi
mental value and the computed value, respectively. While h and k are 
the mean values of the experimental and computed data, respectively. 

3. Materials and methods 

3.1. Materials and samples preparation 

The matrix of the composite was made entirely of commercial Al 
1100. Table 1 provides the chemical make-up of the Al matrix. In order 
to enhance the mechanical and surface qualities of the Al sheets, they 
were heated to 275 degrees in a thermal furnace for over an hour before 
being cooled to room temperature (the annealing process). The TiO2 
nanoparticle powder reinforcement phase had particles that were, on 
average, 70 nm in size. The creation of Al-TiO2 composites using the 
ARB method is shown in Fig. 3. To create rough surfaces, both sides of 
aluminum sheets were wire brushed with wire having a diameter of 
0.3 mm after being degreased with acetone to remove surface impu
rities. The TiO2 nanoparticles were ultrasonically sonicated in acetone 
for 90 s to prevent clustering/agglomerations. The cluster-free particles 
were then sprayed uniformly on the scratch-brushed sheets’ surface 
using a gas atomizer. The composites had TiO2 nanoparticle concen
trations ranging from 0 to 3 wt%, with a 1% step. In the first rolling pass, 
the cross-section was reduced by 60%, and in succeeding passes, by 
50%. The middle of the rolled samples was then removed. Only the first 
pass of each rolling process, which might happen up to five times, 
involved continually introducing TiO2 powders. 

3.2. Microscopic observations 

The edges of the rolled sheets were cut and the samples were cut from 
the central part in normal direction (RD - ND planes), then used SiC 
emery sheets of varying grits and Keller’s reagent to polish and etch. 

Table 1 
Chemical composition of used Al1100 sheets.  

Elements Zn Mg Cu Mn Si Fe Ti V Al 

wt%  0.05  0.05  0.05  0.05  0.25  0.4  0.03  0.05 Balance  

Fig. 3. Schematic illustration of ARB process.  
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Layer morphology and thickness of the samples were examined in an FEI 
Quanta scanning electron microscope (SEM) equipped with an energy- 
dispersive X-ray spectrometer (EDS). In order to show how the TiO2 
nanoparticles dispersed and how the Al sheets adhered to one another, 
scanning electron microscopy (SEM) and energy dispersive spectroscopy 
(EDS) studies in the cross section of the rolled sheets were conducted. 

3.3. Hardness and wear evaluations 

A micro-Vickers device was used for the Vickers test, which was 
carried out in accordance with ASTM-E384 standard, and a load of 
0.1 kg was applied for 20 s. For each specimen, the hardness was 
assessed at five randomly chosen sites, and the average values were used 
to calculate the microhardness of the sample. Utilizing a pin-on-disk 
wear apparatus, the wear behavior of the generated composites was 
evaluated. 120 mm length by 20 mm wide rectangular samples were the 
ones we used. Between two surfaces that were in touch, there was a 
linear velocity of 1 m/s. For a sliding distance of 200 m, each wear test 

was conducted three times. Wear tests were done with typical loads of 5, 
10, 15, and 20 N to look at how normal load affected wear rate. SEM 
analysis was used to identify the worn surface and examine wear track 
features. 

4. Results and discussion 

4.1. Microstructural observation 

Fig. 4 shows the XRD analysis of Al-3%TiO2 nanocomposite pro
duction after 5 passes. Only two phases were observed for TiO2 and Al 
phases. The presence of only these two phases demonstrate the purity of 
the produced composite and it was free of any intermetallic and 
impurities. 

In Fig. 5, SEM images of Al-TiO2 nanocomposites with various 
reinforcement contents are displayed. There were three layers of TiO2 
nanoparticles sandwiched between four Al sheets. Ceramic nano
particles may first collect in the aluminum matrix in clusters. This ten
dency intensifies with the addition of reinforcement. After the initial 
pass, the matrix-reinforcement relationship would become weak, 
resulting in uneven reinforcement dispersal between matrixes. 

Particle clumping is decreased by using more passes. In Fig. 5c, the 
cross section of the composite made of Al and 3% TiO2 is displayed, 
which shows how the particles cluster less. With several passes, there is a 
reduction in the distance between the sheet interfaces. When adjacent 
metal surfaces are heated and rolled afterward, interatomic diffusion 
(atom-to-atom bonding) takes place, improving adhesion (bond 
strength) between them [46,47]. Finally, as seen in Fig. 5c and d, rolling 
after annealing resulted in the contact becoming tightly bound, making 
it challenging to find the interface even with SEM analysis. 

4.2. Hardness 

Fig. 6 shows the microhardness evolution and the improvement rates 

Fig. 4. XRD of the Al – 3% TiO2 nanocomposite sheets after 5 ARB passes.  

Fig. 5. SEM micrograph ofAl - TiO2 nanocomposite sheets after 5 ARB passes: (a) 1%, (b) 2%, (c) 3%, (d) larger magnification for sample with 3% TiO2.  
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for Al-TiO2 nanocomposites with different TiO2 content after 5 passes. 
The hardness of all the produced composites were greater than the pure 
Al. The Al-3%TiO2 nanocomposite had the highest hardness value. The 
existence of a hard phase in the nanocomposite and the addition of TiO2 
to the Al matrix both improved hardness as a result of the pore-closing 
mechanism. Due to the increase in tensile strength in the fifth pass, 
the microhardness in the fifth pass relative to other samples increased 
suddenly. The findings of this experiment have been previously pub
lished [48,49], and in general, the hardness of aluminum has grown 
following accumulative rolling bonding. A nanocomposites made of 
Al-3 wt% TiO2 have a hardness value of 116 HV compared to pure 
aluminum’s 44 HV. Scratch brushing, cold working, grain refining, and 
the addition of TiO2 nanoparticles were all credited with this significant 
rise. Additionally, Al-3 wt% TiO2 nanocomposites’ hardness was much 
higher than that of the other two composites, Al-1 wt% TiO2 and Al-2 wt 

% TiO2, with improvement percentages of 53% and 153%, respectively. 
This novel method significantly improves ARB by combining good 
interfacial bonding between Al and TiO2 with a homogenous dispersion 
of TiO2 nanoparticles within the Al matrix. The improvement was 
brought about by the consistent dispersion of TiO2 nanoparticles be
tween the sheets, where there is little chance of agglomeration during up 
to five cycles of rolling (see Fig. 6). On the other hand, strain hardening 
and dislocation effects were produced as a result of dislocation density 
and locked to stop dislocations [50]. The greatest improvement attained 
in [51] is 68%, but the improvement rate for Al-TiO2 composites reaches 
153% for composite with 3% reinforcement in both situations. As a 
comparison reinforcement phase, SiO2 has a substantially lower 
improvement rate than Al-TiO2 composites. 

4.3. Wear behavior and ANN-PSO prediction 

The wear rate of an Al-3 wt% TiO2 nanocomposite treated for several 
ARB passes is depicted in Fig. 7. As the number of ARB passes increased 
for all the applied loads, the wear rates decreased. The material’s 
hardness and strength are increased during the ARB process, resulting in 
a decreased wear rate for ARBed Al. As a result, there are fewer plastic 
deformations at the contact surface, which leads to less material removal 
and lower wear rates. As a result, sample wear resistance gets better as 
the number of ARB passes rises. The physical and mechanical charac
teristics of the material affect the rate of wear [52–54]. This chart shows 
that when the usual load increases, the wear rate of each sample under 
examination also increases. This is because the pin penetrated the 
sample more deeply, which causes larger rates of material removal. 
Similar to the indentation experiment, where the depth of the indenta
tion grows as the applied load decreases, the effect of the wear load 
causes an increase in the indentation [55,56]. It was noted that the wear 
rate was proportional to the normal applied load for Al-3 wt% TiO2 
nanocomposite processed for different ARB passes, as stated by Arch
ard’s law. In other words, uniform TiO2 nanoparticle distribution re
duces wear rate. This is owing to the Al matrix’s work hardening effect 
and the TiO2 nanoparticles’ dislocation strengthening mechanism. 
Additionally, higher passes result in lower porosities between TiO2 
nanoparticles and the aluminum base matrix, which increases bonding 
strength and reduces wear rate [57]. 

Fig. 8 shows the surface morphology of the worn surfaces of pure Al 
and Al-3 wt% TiO2 nanocomposite after five ARB passes. A compre
hensive investigation revealed the usual characteristics of abrasive 
wear, such as abrasion grooves generated in the sliding direction and 
ploughing, for beginning aluminum. A large quantity of fine agglomer
ated wear particles primarily filled the grooves on the worn surface. The 
wear mechanism changes as the ARB passes and the layer count in
creases; delamination wear occurs, and coarse flakes form with fine 
particles. The delamination wear characteristics of the sample ARB- 
processed by 5 passes were attributed to fracture by crack propagation 
in the interlayer sub-worn surface. Finally, when compared to 

Fig. 6. Microhardness ofAl - TiO2 nanocomposite sheets after 5 ARB passes.  

Fig. 7. Variations of abrasive wear rate versus number of passes for ARB- 
processed Al–3% TiO2 nanocomposite samples in the different applied load. 

Fig. 8. SEM images of worn surface of (a) Al/Al and (b) Al–3%TiO2.  

I. Najjar et al.                                                                                                                                                                                                                                   



Materials Today Communications 35 (2023) 105743

7

monolithic samples, composite samples supplemented with 3 wt% TiO2 
nanoparticles exhibit greater wear resistance. Based on the foregoing 
considerations, high temperature caused grain formation at the plasti
cally deformed region (between the pin and the worn surface) following 
the start of wear. Because of local work hardening of the aluminum 

matrix around the particles, increasing the percent TiO2 reduces the 
width of wear grooves and enhances wear resistance. 

Fig. 9 shows the perdition of the typical ANN model for the wear 
rates and coefficient of friction at different wear loads and number of 
passes for Al-TiO2 nanocomposites. As shown in the figure, the ANN 
model prediction deviates from the experimental results significantly, 
especially at larger wear rates which was obtained at high wear loads. 
The deviation is some of the data reaches more than 20%, which is 
relatively large when considering the accuracy required for such mate
rials and their applications. However, the prediction of ANN model is 
better for the coefficient of friction with maximum deviation of 8%. 

Fig. 10 shows the prediction of ANN-PSO model for the wear rates 
and the coefficient of friction of the same material. As observed in the 
figure, perfect prediction of both wear rates and coefficient of friction 

Fig. 9. Prediction of ANN model for the wear rates and coefficient of friction.  

Fig. 10. Prediction of ANN-PSO model for the wear rates and coefficient of friction.  

Table 2 
Accuracy of the ANN-PSO model.  

Particulars Output 1 Output 2 

R-square  0.9766  0.9866 
RMSE  0.0213  0.0066 
MAE  0.0172  0.0052 
SD  0.1405  0.0580  
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was obtained using the ANN-PSO model. The accuracy of the model was 
confirmed with the R2, RMSE, and MAE for the model prediction, which 
showed 0.9766,.0213, and 0.0172 for the wear rates and 0.9866,.0066, 
and 0.0052 for the coefficient of friction, Table 2. Standard deviation 
(SD) of the output corresponding to wear rates and coefficient of friction 
is 0.1405 and 0.0580 respectively as can be observed from Table 2. 

5. Conclusions 

This paper presents experimental and machine learning prediction of 
wear rates of Al-TiO2 nanocomposite with different TiO2 content pro
duced by accumulative roll bonding technique. The wear properties of 
the produced composites were evaluated using pin-on-disc experiment 
and correlated with the morphology, microstructure, and hardness. A 
machine learning model was developed based on neural network and 
particle swarm optimization algorithm to predict the wear rates and 
coefficient of friction. Based on the result obtained the following con
clusions can be drawn:  

• Al-3 wt% TiO2 nanocomposites hardness reached 114 HV which was 
much higher than that of pure Al achieving 153.7% improvement. 
This composite showed higher hardness compared to the composites 
reinforced with 1 and 2 wt% of TiO2 nanoparticles.  

• The wear rate reduced significantly with increasing the number of 
ARB passes reaching 1.1 × 10− 3 g/m for Al-3 wt% TiO2 nano
composites compared to 3.7 × 10− 3 g/m for pure Al due to the grain 
refinement mechanisms and hardness increase.  

• The wear rates increases with increasing the wear load for at all 
considered passes due to the larger contact are between the pin and 
the disc, which increases plastic deformation during testing and the 
material removal rate.  

• The developed model predicted the wear rates and coefficient of 
friction much better than the conventional neural network. The ac
curacy of the developed model for prediction reaching R2 values of 
0.9766 and 0.9866 respectively. 
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