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Abstract. Artificial neuron networks (ANNs) are widely used for data 

analyticS in broad areas of engineering applications and commercial 

services. The ANN has one to two hidden layers. In advanced ANN, 

multiple-layer ANN is used where the network extracts different features 

until it can recognize what it is looking for through deep learning 

approaches. Usually, a backpropagation algorithm is used to train the 

network and fix weights and biases associated with each network neuron. 

This paper proposes a particle swarm optimization (PSO) based algorithm 

for training ANN for better performance and accuracy. Two types of ANN 

models and their training using PSO have been developed. The 

performance of the developed models has been analyzed on a standard 

dataset. Also, the effectiveness and suitability of the developed approach 

have been demonstrated through statistics of the obtained results. 

Index Terms. Activation function, hidden layer, input layer, output layer, 

transfer function, artificial neural networks, particle swarm optimization. 

1. INTRODUCTION 

Artificial neuron networks (ANNs) are one of the main tools used in machine learning [1]. 

In most engineering streams, ANN is used for curve fitting, classification and other data 

analytics. This tool is very effective in analytics, even on a complicated dataset and 

identifies relationships between input features and targets. Once the network is trained, it 

can predict output accurately and faster without any difficulty. This tool is widely used for 

online applications because of its fast response and straightforward concept [2]. In most key 

engineering fields, ANN has proven well accepted and adopted the tool for analysis, design 

and operation-related applications. 

The ANN replicate human learning processes and brain-inspired systems [3]. Its 

structure and functions are similar to biological neural networks inside human brains. The 

flow of information through ANN affects the structure because a neural network changes - 

or learns, in a sense - based on that input and output [4]. In this way, complex relationships 
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between inputs and outputs are identified through ANN. Usually, ANN has three layers, 

namely, the input layer, the hidden layer and the output layer. Hidden and output layers 

have neurons and are associated with weights and biases. These weights and biases are 

changed during training when inputs are passed through the input layer to give a targeted 

output in the ANN. These weights and biases are fixed during the training phase when 

inputs whose output is known are used. This training is done using different algorithms [5]. 

The backpropagation algorithm is a traditional method widely used for training ANN. Once 

training is done, the network gets ready for application. 

The backpropagation algorithm is one of the most widely used algorithms for training 

ANNs [6]–[9]. This technique allows networks to adjust their hidden layers of neurons in 

situations where the outcome doesn’t match what the creator hopes for. Neurons of one 

layer are connected to the neurons of the other layer through a connection link with a 

weighting factor. All neurons also have a bias to scale their output. All the training 

algorithms, including backpropagation, try to find suitable values of weights and biases of 

the ANN so that the required output can be obtained for a given input. The relationship 

between the input and output of ANN is very complex. Hence, training ANN properly is a 

challenging task requiring powerful algorithms. The backpropagation algorithm is not 

inspired by any biological process of neuron structure of the brain but is very efficient in 

training the ANN in most field applications. Despite being very efficient, the 

backpropagation algorithm gets trapped in local optima, and the obtained weights and 

biases do not always give a proper prediction for the unknown [10]. As a result, it is 

required to retrain the ANN repeatedly to get a better prediction for unknown inputs. 

Therefore, there is a scope for developing a more efficient algorithm to train ANN in a 

much better way so that the prediction of unknown inputs can be improved. 

To overcome the shortcomings of ANN training algorithms, this book chapter discusses 

metaheuristic particle swarm optimization-based optimal ANN [11]–[16]. In this chapter, 

the training problem of ANN is formulated as an optimization problem and solved using 

PSO based algorithm. Here, weights and biases of ANN are considered the decision 

variables and root-mean-square errors are regarded as the objective to be minimized. Also, 

weight and biases are scaled within [-1.5, 1.5], and inputs and outputs given to the ANN are 

scaled within the same range. Additionally, four different ANN models and PSO codes for 

training them in the MATLAB environment [17] have been discussed in detail. The Single 

and multiple input-output ANN models with single and multiple hidden layers have been 

considered. With the developed codes, all parameters tuning of PSO along with changing 

transfer functions of various layers of ANN and the number of neurons can vary. Therefore, 

the readers can adjust these parameters of ANN and PSO for their problems to get even 

better results. 

The rest of the paper is organized as follows. Section II gives details of ANN structures, 

their mathematical modelling and problem formulation of ANN. Section III gives details of 

the ANN-PSO algorithm devised for training ANN using PSO. Results and discussion are 

provided in Section IV. Finally, the conclusions are presented in Section V. 

2. ANN STRUCTURE AND MATHEMATICAL MODELING 

The ANN structure and mathematical representation provide a model that can relate highly 

complicated input and output datasets. Their performances are exceptionally good for very 

complex data sets, which usually are hard to predict using conventional mathematical 

modelling [6]–[9]. 
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2.1  Working Principle of ANN 

The ANN is a network of neurons connected through weights and biases in a fixed structure 

similar to human brain neural systems. A typical ANN model is shown in Fig. 1. This ANN 

model consists of one input layer, a hidden layer, and an output layer. Hidden and output 

layers have neurons. These neurons are interconnected through weights and have a bias 

associated with each. The hidden layer’s neurons are connected through each input data 

point of the input data sample. These can be observed in Fig 1. 

Fig. 1. A typical Structure of Artificial Neural Network. 

Fig. 1 shows that four inputs produce one output while passing through ANN, 

having five neurons in the hidden layer. Mathematically, the output of the above 

ANN structure can be expressed as: 

 

y = f(x1,x2,x3,x4,W,b) (1) 

where x1,x2,x3 and x4 are independent input features or variables, and y is the target or 

output of the given dataset. Here, matrix W represents the weights associated with the input 

and hidden layers and with the hidden layer and the output layer neurons of the ANN and 

matrix b represents biases associated with each neuron of the ANN structure. There is one 

activation function associated with each neuron. Usually, the same activation function is 

used in all hidden layer neurons. Also, the output layer neurons have the activation function 

in all the output neurons but differ from that of the hidden layer activation function. The 

activation function is called the transfer function. The sigmoid or hyperbolic tangent 

function is commonly used in the hidden layer neurons, and the linearized transfer function 

is used in the output layer neurons. 

The number of hidden layer neurons is independent of input size, whereas the number 

of output layer neurons is the same as the number of output variables in the dataset. 

The output of a neuron is calculated using the inputs, weights and bias of the network 

through the transfer function. Fig. 2 shows the input-output relationship of the dataset. 

Mathematically, the output of jth neuron are expressed follows: 

                                           

where g is the activation or transfer function of the neuron and n is the total number of 

inputs to the neuron. The most commonly used transfer functions are shown in Fig 3. 

(2) 
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Fig. 2. Activation function. 

Each input is multiplied by a weighting factor and added with a bias factor at each 

hidden neuron to produce output by that hidden layer neuron. The output of each hidden 

layer neuron is the input to the subsequent layer neurons. In a two-layer ANN structure, 

Fig. 3. Commonly used transfer function in ANN: (a) Linearized transfer function, (b) Sigmoid 

transfer function, and (c) Hyperbolic tangent transfer function. 

as shown in Fig. 1, the output of each hidden layer neuron is the input to the output 

layer neuron. Again, the output of each hidden layer neuron is multiplied by another 

weighting factor and added with another bias to give the final output of the ANN model. 

The final output y (of Fig. 1) depends on weights and biases associated with various 

network neurons. The primary task in the ANN model is to find suitable values of weights 

and biases of the network for a given dataset. These weights and biases are obtained 
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through training the structure so that for a known input-output set, the error in the output 

(which we call target) and the calculated output of the structure should be the least. 

2.2  Training ANN Model 

Once the ANN structure is formed, the next task is to train the network. The training task is 

associated with finding the optimum values of ANN parameters, which are weights and 

biases of the structure. Several techniques are used to find the suitable weights and biases 

of the ANN. In this work, the PSO algorithm is devised for training ANN. 

Here, the training problem is formulated as an optimization problem to minimize the 

root mean square error of the target and actual output of the ANN subject to keeping the 

values of weights and biases within an appropriate range. This range can be different for 

different problems. 

Mathematically, the ANN training problem is formulated as follows: 

   

Subject to 

wmin ≤ wijk ≤ wmax                    (4) 
wmin ≤ bkj ≤ wmax                     (5) 

 
where target(k) is the known target value of a given input sample and output(k) is the 

actual output value of the ANN model for data sample k. Here, this optimization problem 

aims to find the weights and biases of the ANN to minimise the error mentioned above 

between the target and output. 

2.3  Various ANN Models 

In this paper, we discuss two different types of ANN models based on their structure. 

The two structures are a) a single hidden layer and a single output, and b) Multiple hidden 

layers and a single output layer. Typically, the output layer is just one; however, hidden 

layers may be more than one in the ANN model. 

• One Hedden Layer with One Output (H1O1) 

• Two Hedden Layers with One Output (H2O1) 

2.3.1 One Hedden Layer with One Output (H1O1)  

The ANN structure with one hidden layer and one output for an n input sample is shown in 

Fig. 4. This network poses m neurons in the hidden layer and only one output neuron. This 

ANN structure is given for a relationship with multiple inputs and one output dataset. Most 

of the problems come under this category. 

(3) OF 
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Fig. 4. ANN model of one hidden layer with one output. 

Let us assume that the hidden layer’s neurons follow a hyperbolic tangent activation 

function, whereas the only output layer neuron follows a linear activation function. Then, 

the final output of this ANN model can be expressed as: 

   

The total number of variables (i.e., weights and biases) of this ANN model can be 

expressed as: 

           N = n × m + 2m + 1                                                            (7) 

Out of N number of variables n × m + m are weighting factors, and the remaining m + 1 

are biases. 

 

Fig. 5. ANN model of two hidden layers with one output. 

2.3.1 Two Hedden Layers with One Output (H2O1):  

The ANN structure with two hidden layers and one output for an n input sample is shown in 

Fig. 5. This network poses m1 and m2 numbers of neurons in the first and second hidden 

layers, respectively and only one output neuron. 

The output of this ANN model considers the same activation functions (hyperbolic 

tangent for hidden layers and linear for the output layer). The final output of H2O1 is 

expressed as: 

Input Layer 

Output  Layer 

Hidden  Layer 

w ij 

w j 1 

b j 

Hidden Layer Neurons  

Output Layer Neuron 

1 h 

2 h 

3 h 

4 h 

m h 
n x 

3 x 

2 x 

1 x 

y 1 o 

o b 

(6) 

(8) 
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In this model, the total number of weight variables is n × m1 + m1 × m2 + m2, and the 

total number of bias variables is m1 + m2 + 1. Therefore, the total number of variables (i.e., 

weights and biases) can be expressed as: 

N = n × m1 + m1× m2 + m1 + 2m2 + 1                                  (9) 

Once the network is formed as per the given input-output dataset, the next task is to 

train the ANN model to find suitable values of weights and biases so that the network can 

predict any unknown input of the same data type as has been used in training. 

3. DEVELOPED ANN-PSO ALGORITHM 

This work has obtained optimum network training through PSO. The details about the 

PSO can be found in [11]–[15]. The PSO algorithm used in this work is well explained in 

[16]. 

Particle Swarm Optimization: Basics 

Particle swarm optimization is one of the most popular nature-inspired metaheuristic 

optimization algorithms developed by James Kennedy and Russell Eberhart in 1995 [11]. 

Since its development, many variates have also been developed for solving practical issues 

related to optimization [18]–[20]. Recently, PSO has emerged as a promising algorithm for 

solving various optimization problems in science and engineering [21]– 

[30]. 

The PSO is inspired by social and cooperative behaviour displayed by various species to 

fill their needs in the search space. The PSO algorithm uses two mathematical equations, 

guided by personal experience (Pbest), overall experience (Gbest) and the present 

movement of the particles in the search space to decide their successive positions. Further, 

the experiences are accelerated by two factors, c1 and c2, and two uniformly generated 

random numbers in [0,1]. The present movement is weighted by a factor called inertia 

weight w varying between [wmin,wmax]. 

The initial population (swarm) of size N and dimension D is denoted as X = 

[X1,X2,...,XN]T , where T denotes the transpose operator. Each individual (particle) Xi(i = 

1,2,...,N) is given as Xi = [Xi1,Xi2,...,XiD]. Also, the initial velocity of the population is 

denoted as V = [V1,V2,...,VN]T . Thus, the velocity of each particle Xi(i = 1,2,...,N) is 

given as Vi = [Vi1,Vi2,...,ViD]. The index i varies from 1 to N, whereas the index j varies 

from 1 to D. Mathematically, the PSO updating mechanism is expressed using the 

following two sets of equations: 

Vijk+1 = wVijk + c1r1(Pijk − Xijk ) + c2r2(Gkj − Xijk )        (10) 

 

Xijk+1 = Xijk + Vijk+1                                                                                    (11) 

 
where Pijk represents the personal best j-th component of i-th individual, whereas Gkj 

represents j-th component of the best individual of the population up to iteration k. The 

inertia factor w varying between [wmin,wmax] are defined as follows: 

 

                            w = wmax − (wmax − wmin) × k/Maxite                              (12) 

where Maxite is the maximum iteration fixed, and k is the current iteration in operation. 
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B. Particle Swarm Optimization: Algorithm 

The steps of the ANN-PSO algorithm are given as Algorithm 1 in this section. 

1.1 C. Steps of ANN-PSO Algorithm 

The following seven steps are followed in the ANN-PSO algorithm for any given 

dataset. 

1) Collect data 

2) Create the network 

3) Configure the network 

4) Initialize the weights and biases 

5) Train the network using PSO 

6) Validate the network 

7) Use the network 

The developed approach is validated using chemical dataset. This is a fitting problem 

whose complete dataset is given in MATLAB [17]. This dataset has eight independent 

inputs to produce a single output. There are 498 data vectors in the dataset, which are 

challenging to include in the paper because of page limitations. A few data are given in 

Table 1. 

Table 1. Dataset for Eight Features and One Target 

Sl. No. Input Target 
x1 x2 x3 x4 x5 x6 x7 x8 y1 

1 157 9596 4714 376 2.58 407 564 510354 514 
2 155 9487 5049 381 2.28 411 567 504718 516 
3 154 9551 5070 374 2.98 406 563 456972 512 
4 154 9637 5087 382 2.57 408 565 512311 516 
5 152 9486 5065 380 3.04 408 567 489312 515 
6 153 9633 5319 377 2.72 408 565 495420 513 
7 151 9637 4987 379 3.07 408 563 474552 512 
. . . . . . . . . . 
. . . . . . . . . . 
. . . . . . . . . . 

498 164 9872 7252 386 2.08 420 589 537719 520 
 

Algorithm 1 ANN-PSO 

1: Read problem datasets 

2: Set parameters such as N, D, c1, c2, wmin, wmax 

3: Initialize population of particles having positions X where each vector of X represents 

the weight and biases of the network. 

4: Initialize velocity of the population V 
5: Set iteration count k = 1 and Maxite 

6: Calculate fitness of each particle Fik = f(Xki ),∀i and identify the best particle b among 

the population X 

7: Select personal and global bests 

Pijk = Xijk ,∀ij and G  
8: Update inertia weight factor 

w = wmax − (wmax − wmin) × k/Maxite 
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9: Update velocity and position of particles 

 
10: Evaluate fitness of each particle Fik+1 = f(Xki +1),∀i and identify new best particle bk 

11: Update Pbest of population ∀i 

12: if Fik+1 ≤ Fik then Pijk+1 = Xijk+1,∀j 

13: else  

14: end if 

15: Update Gbest of population 

then G  and set b = bk 

17: else Gk+1 = Gk 

18: end if 

19: Check stopping criteria 

20: if k ≤ Maxk then 

21: Goto step 8 

22: else 

23: Goto step 25 

24: end if 

25: Print Gk and update ANN weights and biases 

 

4.  RESULTS AND DISCUSSION 

The effectiveness and suitability of the developed approach-based ANN have been 

demonstrated by solving the fitting problem using H1O1 and H2O1 approaches. Fig. 6 

shows the regression plot of the problem considered using the H1O1 ANN model trained 

using PSO. Similarly, Fig. 7 shows the regression plot of the problem considered using the 

H2O1 ANN model trained using PSO. 

The R value case of H1O1 is over 0.96, and that for H2H1 is over 0.93. This indicates 

that the regression is quite good in both cases. Among these two, H1O1 performs better 

than H2O1. Table II gives the statistical details of the solution. 

Table 2. Statistics of Regression Performance 

ANN Model R2 MAE RMSE 
H1O1 0.9354 1.4251 1.8263 
H2O1 0.8756 2.5341 1.9245 

 

Table 2 shows that the coefficient of determination R2 values corresponding to the 

H1O1 ANN model are higher than that of H2O1, which indicates that the H1O1 model 
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Fig. 6. Regression plot for H1O1 ANN-PSO. 

 

Fig. 7. Regression plot for H2O1 ANN-PSO. 

trained using PSO is better. Similarly, the other statistics, such as mean average error 

(MAE) and root mean square error (RMSE), also confirm that the H1O1 model gives lower 

errors than the H2O1 model. 

For testing the performance of the ANN-PSO for the H1O1 and H2O1 models, 7 data 

samples (sl numbers - 50, 100, 150, 200, 250, 300, 350, 400, 450) have been selected. The 

regression plots for H1O1 and H2O1 are shown in Figs. 8 and 9, respectively. Also, the 

other statistics (R2, MAE, RMSE) are given in Table 3. 

Table 3. Statistics of Regression Performance on Testing Data 

ANN Model R2 MAE RMSE 
H1O1 0.9456 1.7167 2.0475 
H2O1 0.9071 2.4396 2.7194 

 

 From the testing results, it can be observed that the R values are relatively better than 

those of training data. Additionally, the coefficient of determination R2 values are better in 

the testing data than in training. However, the errors are slightly higher in the case of 

training data than in the testing data for both H1O1 and H2O1 models. 
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 Hence, for ANN, a single hidden layer-based network is superior when trained using 

the PSO algorithm. This study will be extended to real engineering problems such as fault 

location in power networks, load forecasting and data analytics in the future. 

 

 

Fig. 8: Regression plot for H1O1 ANN-PSO for testing data. 

 

Fig. 9: Regression plot for H2O1 ANN-PSO for testing data. 

5. CONCLUSION 

In this work, various artificial neural network models have been discussed. The training of 

these models using the metaheuristic particle swarm optimization algorithm has been 

discussed. Also, a detailed algorithm for the same has been given, making it easier to 

program the developed approach. Based on the results obtained, it is concluded that a single 

hidden layer-based artificial neural network performs better than two hidden layer networks 

when training is performed using particle swarm optimization. Also, the regression 

coefficient is 0.967 for the chemical dataset problem given in MATLAB. 
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