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Abstract. Artificial neuron networks (ANNs) are widely used for data
analyticS in broad areas of engineering applications and commercial
services. The ANN has one to two hidden layers. In advanced ANN,
multiple-layer ANN is used where the network extracts different features
until it can recognize what it is looking for through deep learning
approaches. Usually, a backpropagation algorithm is used to train the
network and fix weights and biases associated with each network neuron.
This paper proposes a particle swarm optimization (PSO) based algorithm
for training ANN for better performance and accuracy. Two types of ANN
models and their training using PSO have been developed. The
performance of the developed models has been analyzed on a standard
dataset. Also, the effectiveness and suitability of the developed approach
have been demonstrated through statistics of the obtained results.

Index Terms. Activation function, hidden layer, input layer, output layer,
transfer function, artificial neural networks, particle swarm optimization.

1. INTRODUCTION

Artificial neuron networks (ANNSs) are one of the main tools used in machine learning [1].
In most engineering streams, ANN is used for curve fitting, classification and other data
analytics. This tool is very effective in analytics, even on a complicated dataset and
identifies relationships between input features and targets. Once the network is trained, it
can predict output accurately and faster without any difficulty. This tool is widely used for
online applications because of its fast response and straightforward concept [2]. In most key
engineering fields, ANN has proven well accepted and adopted the tool for analysis, design
and operation-related applications.

The ANN replicate human learning processes and brain-inspired systems [3]. Its
structure and functions are similar to biological neural networks inside human brains. The
flow of information through ANN affects the structure because a neural network changes -
or learns, in a sense - based on that input and output [4]. In this way, complex relationships
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between inputs and outputs are identified through ANN. Usually, ANN has three layers,
namely, the input layer, the hidden layer and the output layer. Hidden and output layers
have neurons and are associated with weights and biases. These weights and biases are
changed during training when inputs are passed through the input layer to give a targeted
output in the ANN. These weights and biases are fixed during the training phase when
inputs whose output is known are used. This training is done using different algorithms [5].
The backpropagation algorithm is a traditional method widely used for training ANN. Once
training is done, the network gets ready for application.

The backpropagation algorithm is one of the most widely used algorithms for training
ANNSs [6]-[9]. This technique allows networks to adjust their hidden layers of neurons in
situations where the outcome doesn’t match what the creator hopes for. Neurons of one
layer are connected to the neurons of the other layer through a connection link with a
weighting factor. All neurons also have a bias to scale their output. All the training
algorithms, including backpropagation, try to find suitable values of weights and biases of
the ANN so that the required output can be obtained for a given input. The relationship
between the input and output of ANN is very complex. Hence, training ANN properly is a
challenging task requiring powerful algorithms. The backpropagation algorithm is not
inspired by any biological process of neuron structure of the brain but is very efficient in
training the ANN in most field applications. Despite being very efficient, the
backpropagation algorithm gets trapped in local optima, and the obtained weights and
biases do not always give a proper prediction for the unknown [10]. As a result, it is
required to retrain the ANN repeatedly to get a better prediction for unknown inputs.
Therefore, there is a scope for developing a more efficient algorithm to train ANN in a
much better way so that the prediction of unknown inputs can be improved.

To overcome the shortcomings of ANN training algorithms, this book chapter discusses
metaheuristic particle swarm optimization-based optimal ANN [11]-[16]. In this chapter,
the training problem of ANN is formulated as an optimization problem and solved using
PSO based algorithm. Here, weights and biases of ANN are considered the decision
variables and root-mean-square errors are regarded as the objective to be minimized. Also,
weight and biases are scaled within [-1.5, 1.5], and inputs and outputs given to the ANN are
scaled within the same range. Additionally, four different ANN models and PSO codes for
training them in the MATLAB environment [17] have been discussed in detail. The Single
and multiple input-output ANN models with single and multiple hidden layers have been
considered. With the developed codes, all parameters tuning of PSO along with changing
transfer functions of various layers of ANN and the number of neurons can vary. Therefore,
the readers can adjust these parameters of ANN and PSO for their problems to get even
better results.

The rest of the paper is organized as follows. Section II gives details of ANN structures,
their mathematical modelling and problem formulation of ANN. Section III gives details of
the ANN-PSO algorithm devised for training ANN using PSO. Results and discussion are
provided in Section IV. Finally, the conclusions are presented in Section V.

2. ANN STRUCTURE AND MATHEMATICAL MODELING

The ANN structure and mathematical representation provide a model that can relate highly
complicated input and output datasets. Their performances are exceptionally good for very
complex data sets, which usually are hard to predict using conventional mathematical
modelling [6]-[9].
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2.1 Working Principle of ANN

The ANN is a network of neurons connected through weights and biases in a fixed structure
similar to human brain neural systems. A typical ANN model is shown in Fig. 1. This ANN
model consists of one input layer, a hidden layer, and an output layer. Hidden and output
layers have neurons. These neurons are interconnected through weights and have a bias
associated with each. The hidden layer’s neurons are connected through each input data
point of the input data sample. These can be observed in Fig 1.

Hidden Layer Neurons

Output Layer

Input Layer

Hidden Layer

Fig. 1. A typical Structure of Artificial Neural Network.

Fig. 1 shows that four inputs produce one output while passing through ANN,
having five neurons in the hidden layer. Mathematically, the output of the above
ANN structure can be expressed as:

y = fx1,X2,x3,x4,W,b) m

where x1,x2,x3 and x4 are independent input features or variables, and y is the target or
output of the given dataset. Here, matrix W represents the weights associated with the input
and hidden layers and with the hidden layer and the output layer neurons of the ANN and
matrix b represents biases associated with each neuron of the ANN structure. There is one
activation function associated with each neuron. Usually, the same activation function is
used in all hidden layer neurons. Also, the output layer neurons have the activation function
in all the output neurons but differ from that of the hidden layer activation function. The
activation function is called the transfer function. The sigmoid or hyperbolic tangent
function is commonly used in the hidden layer neurons, and the linearized transfer function
is used in the output layer neurons.

The number of hidden layer neurons is independent of input size, whereas the number
of output layer neurons is the same as the number of output variables in the dataset.

The output of a neuron is calculated using the inputs, weights and bias of the network
through the transfer function. Fig. 2 shows the input-output relationship of the dataset.
Mathematically, the output of jth neuron are expressed follows:

n
z=9 (bj + E '11,7ij:1:1-) ©
i=1

where g is the activation or transfer function of the neuron and n is the total number of
inputs to the neuron. The most commonly used transfer functions are shown in Fig 3.
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Fig. 2. Activation function.

Each input is multiplied by a weighting factor and added with a bias factor at each
hidden neuron to produce output by that hidden layer neuron. The output of each hidden
layer neuron is the input to the subsequent layer neurons. In a two-layer ANN structure,
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Fig. 3. Commonly used transfer function in ANN: (a) Linearized transfer function, (b) Sigmoid
transfer function, and (c¢) Hyperbolic tangent transfer function.

as shown in Fig. 1, the output of each hidden layer neuron is the input to the output
layer neuron. Again, the output of each hidden layer neuron is multiplied by another
weighting factor and added with another bias to give the final output of the ANN model.
The final output y (of Fig. 1) depends on weights and biases associated with various
network neurons. The primary task in the ANN model is to find suitable values of weights
and biases of the network for a given dataset. These weights and biases are obtained
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through training the structure so that for a known input-output set, the error in the output
(which we call target) and the calculated output of the structure should be the least.

2.2 Training ANN Model

Once the ANN structure is formed, the next task is to train the network. The training task is
associated with finding the optimum values of ANN parameters, which are weights and
biases of the structure. Several techniques are used to find the suitable weights and biases
of the ANN. In this work, the PSO algorithm is devised for training ANN.

Here, the training problem is formulated as an optimization problem to minimize the
root mean square error of the target and actual output of the ANN subject to keeping the
values of weights and biases within an appropriate range. This range can be different for
different problems.

Mathematically, the ANN training problem is formulated as follows:

N

OF = minz (target(k) — outpuz‘,(/f))2 -
k=1
Subject to
Wmin £ Wijk < Wmax 4)
Wmin < bkj < Wmax ©)

where target(k) is the known target value of a given input sample and output(k) is the
actual output value of the ANN model for data sample k. Here, this optimization problem
aims to find the weights and biases of the ANN to minimise the error mentioned above
between the target and output.

2.3 Various ANN Models

In this paper, we discuss two different types of ANN models based on their structure.
The two structures are a) a single hidden layer and a single output, and b) Multiple hidden
layers and a single output layer. Typically, the output layer is just one; however, hidden
layers may be more than one in the ANN model.

« One Hedden Layer with One Output (H101)
« Two Hedden Layers with One Output (H201)

2.3.1 One Hedden Layer with One Output (H101)

The ANN structure with one hidden layer and one output for an n input sample is shown in
Fig. 4. This network poses m neurons in the hidden layer and only one output neuron. This
ANN structure is given for a relationship with multiple inputs and one output dataset. Most
of the problems come under this category.
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Output Layer

Fig. 4. ANN model of one hidden layer with one output.

Let us assume that the hidden layer’s neurons follow a hyperbolic tangent activation
function, whereas the only output layer neuron follows a linear activation function. Then,
the final output of this ANN model can be expressed as:

m n

y = b, + Z tanh (bj + Z wijxi)“’j’l ©

j=1 i=1

The total number of variables (i.e., weights and biases) of this ANN model can be
expressed as:
N=nxm+2m+1 @

Out of N number of variables n x m + m are weighting factors, and the remaining m + 1
are biases.

Fig. 5. ANN model of two hidden layers with one output.

2.3.1 Two Hedden Layers with One Output (H201):

The ANN structure with two hidden layers and one output for an n input sample is shown in
Fig. 5. This network poses ml and m2 numbers of neurons in the first and second hidden
layers, respectively and only one output neuron.

The output of this ANN model considers the same activation functions (hyperbolic
tangent for hidden layers and linear for the output layer). The final output of H201 is
expressed as:

mo ma n
y = b, + E tanh <b2k, + Z tanh (blj + E Uiijflfi)’ll)jk)wkl ®
=1

k=1 j=1
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In this model, the total number of weight variables is n x ml + m1 x m2 + m2, and the
total number of bias variables is m1 + m2 + 1. Therefore, the total number of variables (i.e.,
weights and biases) can be expressed as:

N=nxmi+mxmz+mi+2m+1 ©

Once the network is formed as per the given input-output dataset, the next task is to
train the ANN model to find suitable values of weights and biases so that the network can
predict any unknown input of the same data type as has been used in training.

3. DEVELOPED ANN-PSO ALGORITHM

This work has obtained optimum network training through PSO. The details about the
PSO can be found in [11]-[15]. The PSO algorithm used in this work is well explained in
[16].

Particle Swarm Optimization: Basics

Particle swarm optimization is one of the most popular nature-inspired metaheuristic
optimization algorithms developed by James Kennedy and Russell Eberhart in 1995 [11].
Since its development, many variates have also been developed for solving practical issues
related to optimization [18]—[20]. Recently, PSO has emerged as a promising algorithm for
solving various optimization problems in science and engineering [21]—

[30].

The PSO is inspired by social and cooperative behaviour displayed by various species to
fill their needs in the search space. The PSO algorithm uses two mathematical equations,
guided by personal experience (Pbest), overall experience (Gbest) and the present
movement of the particles in the search space to decide their successive positions. Further,
the experiences are accelerated by two factors, ¢l and c2, and two uniformly generated
random numbers in [0,1]. The present movement is weighted by a factor called inertia
weight w varying between [wmin,wmax].

The initial population (swarm) of size N and dimension D is denoted as X =
[X1,X2,....XN]T , where T denotes the transpose operator. Each individual (particle) Xi(i =
1,2,..,N) is given as Xi = [Xil,Xi2,...,XiD]. Also, the initial velocity of the population is
denoted as V = [V1,V2,...,VN]T . Thus, the velocity of each particle Xi(i = 1,2,...,N) is
given as Vi =[Vil,Vi2,...,ViD]. The index i varies from 1 to N, whereas the index j varies
from 1 to D. Mathematically, the PSO updating mechanism is expressed using the
following two sets of equations:

Vijk+1 = wVijk + cir1(Pijk — Xijk ) + c2r2(Gkj — Xijk ) (10)

Xijk+1 = Xijk + Vijk+1 (11)

where Pijk represents the personal best j-th component of i-th individual, whereas Gkj
represents j-th component of the best individual of the population up to iteration k. The
inertia factor w varying between [wmin,wmax] are defined as follows:

W = Winax = (Wmax — Wmin) x k/Maxite 12)

where Maxite is the maximum iteration fixed, and k is the current iteration in operation.
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1.1

B. Particle Swarm Optimization: Algorithm

The steps of the ANN-PSO algorithm are given as Algorithm 1 in this section.

C. Steps of ANN-PSO Algorithm

The following seven steps are followed in the ANN-PSO algorithm for any given
dataset.

1) Collect data

2) Create the network

3) Configure the network

4) Initialize the weights and biases
5) Train the network using PSO

6) Validate the network

7) Use the network

The developed approach is validated using chemical dataset. This is a fitting problem
whose complete dataset is given in MATLAB [17]. This dataset has eight independent
inputs to produce a single output. There are 498 data vectors in the dataset, which are
challenging to include in the paper because of page limitations. A few data are given in
Table 1.

Table 1. Dataset for Eight Features and One Target

SI. No. Input Target

x1 X2 X3 X4 X5 X6 X7 X8 y1

1 157 9596 4714 376 2,58 407 564 510354 514

2 155 9487 5049 381 2.28 411 567 504718 516

3 154 9551 5070 374 2.98 406 563 456972 512

4 154 9637 5087 382 2,57 408 565 512311 516

5 152 9486 5065 380 3.04 408 567 489312 515

6 153 9633 5319 377 2.72 408 565 495420 513

7 151 9637 4987 379 3.07 408 563 474552 512
498 164 9872 7252 386 2.08 420 589 537719 520

Algorithm 1 ANN-PSO
1: Read problem datasets

2: Set parameters such as N, D, cl, ¢2, wmin, wmax

3: Initialize population of particles having positions X where each vector of X represents
the weight and biases of the network.

: Initialize velocity of the population V

: Set iteration count k = 1 and Maxite

: Calculate fitness of each particle Fik = f(Xki ),Vi and identify the best particle b among

[Sa I

[&)]

the population X
7: Select personal and global bests
Pijk = Xijk,Vij and Gk = Xé
8: Update inertia weight factor
W = Wnax = (Wmax — Wmin) x k/Maxite
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9: Update velocity and position of particles
k+1 _ k . k k N k k
Vi'i-+1 = “"‘:ij + ciill(Pij — X,l-j) + (QIQ(GJ- — Xij)
Xy~ =Xij+ Vi
10: Evaluate fitness of each particle Fik+1 = f(Xki +1),Vi and identify new best particle bk

11: Update Pbest of population Vi

Fik+1 < F,-kthen p

k+1 _ vk
13: else PIJ - Xij’

14: end if

15: Update Gbest of population
s k+1 k k+1 _ pht+l
16: if [ < Fi'then G Pbu’ ’VJand set b = by

17: else Gk+1= Gk

18: end if

19: Check stopping criteria

20: if k < Maxithen

21: Goto step 8

22: else

23: Goto step 25

24: end if

25: Print Gkand update ANN weights and biases

ijk+1 = Xijk+ 1, Vj
Vij

12: if

4. RESULTS AND DISCUSSION

The effectiveness and suitability of the developed approach-based ANN have been
demonstrated by solving the fitting problem using H1O1 and H201 approaches. Fig. 6
shows the regression plot of the problem considered using the HIO1 ANN model trained
using PSO. Similarly, Fig. 7 shows the regression plot of the problem considered using the
H201 ANN model trained using PSO.

The R value case of H101 is over 0.96, and that for H2H1 is over 0.93. This indicates
that the regression is quite good in both cases. Among these two, H1O1 performs better
than H201. Table II gives the statistical details of the solution.

Table 2. Statistics of Regression Performance

ANN Model R2 MAE RMSE
H101 0.9354 | 1.4251 | 1.8263
H201 0.8756 | 2.5341 | 1.9245

Table 2 shows that the coefficient of determination R2 values corresponding to the
H10O1 ANN model are higher than that of H201, which indicates that the H1O1 model
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Fig. 7. Regression plot for H2O1 ANN-PSO.

trained using PSO is better. Similarly, the other statistics, such as mean average error
(MAE) and root mean square error (RMSE), also confirm that the H1O1 model gives lower
errors than the H201 model.

For testing the performance of the ANN-PSO for the H101 and H201 models, 7 data
samples (sl numbers - 50, 100, 150, 200, 250, 300, 350, 400, 450) have been selected. The
regression plots for HIO1 and H201 are shown in Figs. 8 and 9, respectively. Also, the
other statistics (R2, MAE, RMSE) are given in Table 3.

Table 3. Statistics of Regression Performance on Testing Data

ANN Model R2 MAE RMSE
H101 0.9456 | 1.7167 | 2.0475
H201 0.9071 | 2.4396 | 2.7194

From the testing results, it can be observed that the R values are relatively better than
those of training data. Additionally, the coefficient of determination R2 values are better in
the testing data than in training. However, the errors are slightly higher in the case of
training data than in the testing data for both H1O1 and H201 models.

10
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Hence, for ANN, a single hidden layer-based network is superior when trained using
the PSO algorithm. This study will be extended to real engineering problems such as fault
location in power networks, load forecasting and data analytics in the future.

: R=0.97243

[0 Data
Fit
515 | | Y=T

0.92*Target + 39
o o
& )
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Output ~

490 :
490 495 500 505 510 515
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Fig. 8: Regression plot for HIO1 ANN-PSO for testing data.
1 R=0.95242
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515 | |

a
=)

0.8*Target + 1e+02
8

500

Output ~

495 500 505 510 515
Target

Fig. 9: Regression plot for H2O1 ANN-PSO for testing data.

5. CONCLUSION

In this work, various artificial neural network models have been discussed. The training of
these models using the metaheuristic particle swarm optimization algorithm has been
discussed. Also, a detailed algorithm for the same has been given, making it easier to
program the developed approach. Based on the results obtained, it is concluded that a single
hidden layer-based artificial neural network performs better than two hidden layer networks
when training is performed using particle swarm optimization. Also, the regression
coefficient is 0.967 for the chemical dataset problem given in MATLAB.
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