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Abstract— Load forecasting, including classic time series
analysis and more contemporary machine learning techniques,
has emerged as one of the most prominent research domains. The
primary emphasis of research in this field lies in predicting
aggregated power usage. However, the significance of demand-
side energy management, encompassing individual load forecasts,
is increasingly gaining prominence. This work proposes load
forecasting models that rely on deep neural networks (DNNs).
These models are applied to a demand-side load database for
analysis. The forecasting accuracy of DNN-based load forecasting
models is assessed by comparing them with Convolutional Neural
Network (CNN), Long Short-Term Memory (LSTM), and
Bidirectional Long-Short-Term Memory (B-LSTM) models. The
B-LSTM is a new recurrent artificial neural network
recommended as the forecasting unit due to its ability to process
information from both the past and present hidden layer using
memory loops. Performance of the algorithm is check based on the
mean absolute error, mean absolute percentage error, and root
mean square error.

Keywords—load forecasting, neural network, feature
selection, machine learning, CNN, LSTM, B-LSTM.

I. INTRODUCTION

Short-term energy load forecasting (STLF) is a method for
anticipating short-term electricity demand, often for a few
hours to a few days. With the increased demand for renewable
energy sources and the requirement to balance their sporadic
nature with conventional energy sources, STLF has grown
significantly. Because of the highly variable and dynamic
nature of energy demand—influenced by various
factors, including weather, holidays, economic activity, and
social events—STLF is a problematic issue. Complex
mathematical models and data analysis methods must be used
to anticipate power consumption accurately.

Deep learning's main benefit is its capacity to automatically
learn features from unprocessed data without the requirement
for manually engineered feature engineering. By using a precise
forecasting technique, electrical energy-producing systems can
operate more steadily and dependably [1]. When introducing
Convolutional Neural Networks (CNN), a novel approach is
adopted by applying the market wavelet function as an
activation function instead of the traditional options.
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Nevertheless, due to a shortage of memory units and the
incidence of gradient vanishing, this specific arrangement
performs poorly in predicting issues [2].

Hence, the need for more understanding regarding deep
learning approaches for predicting multi-step loads in
commercial buildings. To achieve this, two conventional deep
neural network models, the recurrent neural network (RNN)
and the CNN, have been proposed and designed using recursive
and direct multi-step techniques [3]. The deep neural network's
latest version is the LSTM model that uses memory cells to
store data about previous inputs to address the vanishing
gradient issue that standard recurrent neural networks have,
making it challenging for the network to learn long-term
dependencies between inputs. By enabling information to be
added to or withdrawn from memory cells selectively, LSTMs
were created to address this problem and enable the network to
retain information for extended periods [4]. Successful LSTM
network-based applications have been described in numerous
fields, including speech recognition, image captioning, and
natural language translation [5-7]. The suggested framework is
put to the test using a set of actual household smart meter data
that is publicly available, and the results are thoroughly
compared to several benchmarks, such as cutting-edge load
forecasting [8].

With the processing of the input sequence both forward and
backwards in time, B-LSTM improve the basic LSTM
architecture. By analysing the input sequence in both ways, B-
LSTM models can capture bidirectional dependencies and
increase prediction accuracy. Predicting future data multiple
steps ahead, the B-LSTM emerges as a suitable approach. It
utilises the forecasted outputs as input data for subsequent
steps, thus maintaining a robust memory capable of accurately
storing essential past and future features [9].

This paper proposes B-LSTM deep learning based short-
term load forecasting for the smart grid applications.

II. PROPOSED BI-DIRECTIONAL LSTM ALGORITHM

A. Convolution Neural Network (CNN)

In CNN, the convolutional layer and pooling layer of a CNN
can collect useful characteristics from the original input in order
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Fig. 1. Block diagram of CNN.

to extract the local properties of the data in an automated
manner. Moreover, CNN can create comprehensive and dense
feature vectors using the retrieved features. Fig. 1 shows the
block diagram of CNN as mentioned.

In the convolutional layer, filters are used to extract
important information from the input image, creating a feature
map through element-wise multiplication and summation. The
pooling layer reduces the spatial dimensionality of the feature
maps and selects vital data using techniques such as max
pooling or average pooling. The activation function layer adds
non-linearity to the model by applying a function to each
neuron's output, commonly using ReLU, sigmoid, or tanh. The
fully-connected layer establishes connections between neurons
in different layers to generate the final output. Lastly, the
dropout layer randomly removes neurons to prevent overfitting.

B. Long and short-term memory (LSTM)

LSTM networks have emerged as a viable solution for
solving time series forecasting challenges, such as load
forecasting, in recent years. LSTM networks, which are a type
of RNNs, effectively identify long-term dependencies in time
series data by incorporating memory cells and gating
mechanisms. The introduction of forget gate, input gate, and
output gate functions in LSTM networks has significantly
enhanced their suitability for modelling time series data with
long-term dependencies. These functions effectively address
the issues of gradient explosion and gradient disappearance that
commonly arise during RNN training.

Historical load data can be utilised as inputs to the network
in order to apply LSTM networks for load forecasting. A
supervised learning method can be used to train the network. In
this method, the network is given a sequence of historical loads
and asked to forecast the loads for a future time period. Many
research has shown how well LSTM networks do load
forecasting using LSTM networks to anticipate load in a power
system with a significant concentration of renewable energy
sources. Their findings demonstrated that the LSTM-based
model performed better in terms of forecasting accuracy than
conventional time series forecasting models. Fig. 2 show block
diagram of the LSTM model.

Below, you can find the equations representing the different
LSTM components.

it = 0(Wxixe + Whihte-1 + bi) (D
fr=0(Wxsxt + Wishee-1 + by) 2)
Ot = O'(onXt + Whohte-1 + ba) (3)
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Fig. 2. Block diagram of LSTM.

Ct = tanh(chxt + Whrchee-1 + bc) (4)
ce = ft* cre-1 +ie* Tt ()
ht = ot * tanh (ct) (6)

Among them, i, f;, or represents for z-th input, forget, and
output gate. The weight values associated with the input, forget,
output gate, and memory unit are symbolized by Wy;, W W,
Wee . Whi, Wity Who, Wie are the notations used for the weight
connections between the hidden and the input, forget, output
gate, and memory unit, respectively. The terms for bias of each
gate function are represented by b;, by, bo, be . The activation
functions utilized in the LSTM network are ¢ (-) sigmoid
function for gating and 7anh hyperbolic tangent function for
memory units. The point-by-point multiplication operation is
denoted by the symbol *.

C. Bi-Directional Long and short-term memory (B-LSTM)

Bi-directional Long Short-Term Memory (B-LSTM) is a
type of RNN that is frequently employed in natural language
processing (NLP) tasks [10]. The traditional LSTM model,
which can handle sequential data and maintain long-term
dependencies, is expanded by the B-LSTM model. The
performance of NLP tasks, including sentiment analysis,
machine translation, and speech recognition, is enhanced using
B-LSTM networks [11-12]. To perform better, B-LSTM
networks take advantage of the bidirectional nature of LSTM
networks. The B-LSTM network comprises two LSTM
networks, where one input sequence is in a forward direction
and the backward direction. The final output of the B-LSTM
network is obtained by combining or concatenating the outputs
from each individual B-LSTM network.

Fig. 3 illustrates the block diagram representing the B-
LSTM network. In the B-LSTM network, the forward layer at

Backward Layer <

Forward Layer = - 4=

Fig. 3. A bidirectional long short-term memory unit.
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time step t for the incoming data sequence X; and the previous
=
hidden state value #/,—i. Using this information, the current

N
hidden state value #; is computed.

Next, the internal equation shown below is applied to
update and process the hidden state value.

fe=0 (W [hs %]+ ) ™
ii=0 (W, [h_,X.] +b,) (8)
0, =0 (W, [h_y,X,] +B,) 9)
& = tanh(W, [he_y, X.] + b,) (10)
G=fi*Ca* ¥ G (11)
h; =0, * tanh () (12)

To summarize, this the output hidden layer of the forward
layer LSTM at time step t can be expressed as follows.

h—t) - f()?t, Ht—l’ ELSTM) (13)

In this context, the symbol SLSTM represents the internal
operation of the current state forward LSTM unit. Additionally,

the hidden state value E of the backward layer in the B-LSTM
network is updated by considering the present input data X + and

the future hidden state value Et_l. Following are all internal
updates that occur inside a backward layer:

fe= o (W[ hewr, Xc | + by) (14)
i = o (W;[ hesr, X | + b)) (15)
o = o (W, [ heyr, X | + bo) (16)
& =tanh(W, [ hevs, X; | + ) (17)
C=fe*Cor*ic* G (18)
he = 0; * tanh (&) (19)

The backward LSTM layer's output equation for the hidden
state can be summed up as follows:

he = f (X;, heyr, OLSTM) (20)

In this context, the notation & LSTM signifies the collective
internal operation of the backward LSTM layer. By applying an
activation function, the hidden states of both the forward and
backward layers in a B-LSTM network are combined to
produce the output of the hidden state. Consequently, the
influence of both previous and future data can be observed in
the output of a B-LSTM network.

III. THE LOAD FORECASTING MODEL'S OVERALL TECHNIQUE
CONSISTS OF THE FOLLOWING STEPS:

1) Data Collection: Gathering historical load data is crucial
for training the model.

2) Data Pre-processing and Feature Extraction: It needs to
pre-process the acquired data and extract useful features
from it. To do this, the data must be cleaned, normalised,
and formatted into a time series.

3) Model Selection: The next step is to choose an acceptable
model for load forecasting after the data has been pre-
processed and the features have been retrieved. For load
forecasting, models like CNN, LSTM, and Bi-directional
LSTM are frequently utilised. The type of data and amount
of precision needed will determine which model is used.

4) Model Training: After the model has been chosen, the
trained model will be applied to the pre-processed data.
During the training phase, the parameters are iteratively
adjusted to minimize the discrepancy between the
predicted and actual load. This adjustment process takes
place by feeding the pre-processed data into the model.

5) Hyperparameter Tuning: Adjusting the hyperparameters
of the model is necessary to increase the model's accuracy
after it has been trained.

6) Model Evaluation: After the hyperparameters have been
fine-tuned, the model must be assessed on the test set.
Several evaluation metrics are commonly employed to
assess the performance of the model.

7) Model Deployment: Lastly, the model can be used for
load forecasting after it has been trained and assessed.

IV. DATA PREPROCESSING AND FEATURE EXTRACTION

Building precise and effective machine learning models,
such as CNN, LSTM, and Bi-directional LSTM for electrical
load forecasting, requires the pre-processing of data and feature
extraction. The procedures for feature extraction and data pre-
processing are as follows:

1) Data Cleaning: The first step in cleaning the data is to
eliminate any inconsistencies or missing information.
Making sure the model can learn from reliable and
consistent data is crucial.

2) Data normalisation: It scaled the data to ensure that all
variables have the same range. This enhances the model's
functionality and strengthens its stability.

3) Time Series Data Formatting: Electrical load forecasting
is a time series problem, hence the data must be organised
in a way that makes sense for time series analysis. This
entails placing the information in a certain time-based
chronological arrangement (hourly, daily, weekly, etc.).

4) Feature Extraction: After the data has been prepared,
pertinent features must be extracted from the data. Among
the often-utilised elements for predicting electrical load
are:

e  Whether it is a workday or a weekend.

e The time of day: dawn, noon, dusk, or night

e Data on the load from the previous week, month, or
year
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5) Feature Scaling: Following feature extraction, the
features must be scaled to have the same range across the
board. This is crucial to make sure the model can benefit
evenly from each feature.

6) Data Splitting: The data must be divided into training,
validation, and test sets before being processed.

The data can be entered into the CNN, LSTM, or Bi-
directional LSTM model for electrical load forecasting when
the feature extraction and data pre-treatment processes are
finished.

Algorithm 1: Algorithm for B-LSTM
1: Initialization
def initialize weights randomly():
2: Training
def train(num_epochs, training_dataset, learning_rate):
for epoch in range(num_epochs):
for input_sequence, target output in training_dataset:
# Forward pass
forward hidden_state=initialize forward hidden_state()
backward_hidden_state=initialize backward hidden_state()
forward_outputs =[]
backward_outputs =[]
# Forward pass of the forward LSTM layer
for input_timestep in input_sequence:
forward hidden_state=forward_lstm_cell(input_timestep,
forward hidden_state)
forward output=get output from hidden state
(forward_hidden_state)
forward_outputs.append(forward output)
# Forward pass of the backward LSTM layer
reversed_input_sequence = reversed(input_sequence)
for reversed_input timestep in reversed input_sequence:
backward hidden_state=backward lstm_cell(reversed inp
ut_timestep, backward _hidden_state)
backward output=get output from hidden state
(backward hidden_state)
backward_outputs.append(backward output)

3: Concatenate the forward and backward outputs
concatenated outputs = torch.cat((forward _outputs,
backward_outputs), dim=1)

4: Calculate loss and update weights (Backward pass)
loss = calculate loss(concatenated outputs, target output)

gradients = compute gradients(loss)
update weights(gradients, learning_rate)

V. CASE STUDY

A. Data Description

Data from the Canadian province of Ontario are used in this
study as a case study [13]. According to linking several actors
in the power market, the load data in Ontario exhibits a
significant degree of dynamic behaviour. Ten years of load
demand data are gathered, from January 1, 2013, to December
30, 2022, at hourly intervals.

Model distinguish and
parameter estimation

Collect historical load data

Analysis and selection of Yes
load data

No

Pre- treatment of load data

l

Create load forecasting
model

Improve forecasting model

—1  Output value of load

Fig. 4. Detailed flowchart of the suggested approach.

The ten years of load demand data gathered in the Ontario
study at hourly intervals can be used to train and validate load
forecasting models. By analysing historical data, load
forecasting models can identify patterns and trends in energy
demand, which can help predict future demand with a high
degree of accuracy.

VI. EXPERIMENTAL RESULT AND ANALYSIS

Three noteworthy error criteria—the mean absolute error
(emae), the mean absolute percentage error (emape), and the root
mean square error (ermse) are taken into account to assess how
well the various approaches perform.

A. Evaluating Accuracy Measures for Predictive Analysis

The mean absolute error (emae) (21), the mean absolute
percentage error (emape) and the relative mean square error
(ermse) are utilised as evaluation indices. emape stands for the
model error (22). It is utilized as a means to evaluate the
accuracy of the model. The volatility of the model error is
shown by the symbol ermse (23). It is used to see the stability
and robustness of the model. The formulas for emape and ermse
are in equations (22) and (23).

emae:nio 2321“?9_ Ygl) €2y
emape= niOZZ‘;l<%9‘—Yé’ x 100) (22)
ermse:\/n—l0 Zgilﬂyg — Yg|)2 (23)

B. Short-Term Forecasting Results

The initial phase in this case study is data pre-processing,
which includes numerous activities like filtering outliers and
resolving missing values as well as scaling the data to make
sure that all characteristics are on a similar scale. The data may
need to be split into a time-lagged format after being cleaned
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Fig. 5. Forecasting results on December 31, 2022. (a) Load demand
profiles. (b) Regression plots for 24 hrs.

and converted, which entails developing features and targets
that may be utilised for modelling and forecasting.

With univariate time series data, this phase is particularly
crucial since it enables us to examine trends and patterns over
time and forecast future values. In every data analysis project,
pre-processing the data is a crucial stage since it helps to
guarantee that the data are correct, trustworthy, and appropriate
for analysis. Fig. (4) presents a flowchart illustrating the
proposed method.

To build our model, we used the Python programming
language together with the libraries Keras, TensorFlow,
NumPy, and PyTorch. For both the LSTM and B-LSTM
models, a portion of the learning set was aside for validation
split. The data was divided, and a separate validation set was
created. The model was learned using the "adam" optimizer and
the "mae" loss function. By increasing the number of epochs, a
more complicated forecasting model can be developed,
improving the accuracy of the results. However, as the epoch
increases, the problem of model overfitting becomes more
critical.

The task involves using B-LSTM networks for forecasting,
and these networks are trained with specific datasets. Each
LSTM network has 20 hidden layers, which have been found to
provide good performance. It is crucial to emphasize that the B-
LSTM network exhibits higher sensitivity to the learning rate
values than the LSTM network, which can cause saturation
during the training process. To avoid this, the LSTM network's
initial learning rate is set to 0.01, while 0.005 for the B-LSTM
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Fig. 6. Forecasting results on December, 2022. (a) Load demand profiles
(b) Regression plots for December month.

network. In simpler terms, the B-LSTM network is trained
using specific datasets, has 15 hidden layers in each LSTM
network, and requires careful adjustment to avoid saturation
during training.

In order to confirm the robustness of the suggested strategy,
a thorough comparison of several methodologies over various
time periods (daily and monthly samples) was conducted in
December (Tables I and II), is considered. After the completion
of training and testing using the complete ten years of data,
Fig.5(a) depicts the effectiveness of all models and is presented
by comparing their outputs with the actual data and its
associated values regression plot Fig.5(b) for December 31,
2012, which serves as an example day. The peak around the
31st day was selected as one of the days in December month,
and Upon analysis, it was found that the CNN and LSTM
models predicted the lowest and second-lowest peaks,
respectively. Conversely, the B-LSTM models exhibited peaks
that closely aligned with the actual data. The load profile has a
straightforward trend without any significant spikes, as shown
by the predicting findings.

Fig. 6. displays the anticipated load demand and its
accompanying regression plot for December. The load profile
has a straightforward trend without any significant spikes, as
shown by the predicting findings. While forecasting is similar
to regression, In order to further validate the reliability of the
case study, a widely recognized criterion is taken to measures
the relation between projected and actual data. This criterion is
illustrated in Fig.6(b) to provide additional evidence of the

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 27,2025 at 10:10:38 UTC from IEEE Xplore. Restrictions apply.



study's robustness. Thus, load demand analysis has been carried
out in order to compare the models overall, as shown in Table I
and Table II. Nevertheless, deep neural network topologies
have demonstrated superior performance in terms of RMSE and
MAPE. Even though, Table I & II numerical study
demonstrates that the B-LSTM error is very small (<2%
MAPE). The B-LSTM demonstrates a remarkable level of
accuracy in predicting results, this indicates that the model was
successful in capturing and learning from the input data, leading
to accurate and dependable predictions. The low MAPE value
observed is evidence of the Bi-directional LSTM architecture's
success in capturing both forward and backward temporal
dependencies. This promising finding suggests that the Bi-
directional LSTM model may be applied to similar forecasting
applications.

TABLE I. FORECASTING RESULT ON DECEMBER 31, 2022

Load Demand

Algorithm
MAPE (%) MAE (MW) RMSE (MW)
CNN 2.73 457.79 532.39
LST™M 1.96 366 410.5
B-LSTM 1.42 340.63 396.34

TABLE II. FORECASTING RESULT ON DECEMBER, 2022

Load Demand
Algorithm
MAPE (%) MAE (MW) RMSE (MW)
CNN 2.88 544.43 711.49
LSTM 2.2 460.52 562.83
B-LSTM 1.78 378.23 453.72

VII. CONCLUSION

This work describes implementing an STLF method for the
Ontario case study using the B-LSTM. Using a specialized
forecasting network for those sites, this B- LSTM technique
includes detecting specific points with different fluctuation
rates. The suggested strategy performs better than existing
forecasting techniques. The method is shown to be both robust
and accurate. It is compared to benchmark algorithms to
demonstrate its superiority in terms of accuracy, complexity,
training time, and ease of use. We used the deep learning
algorithms LSTM and B-LSTM for the load forecasting job,
with B-LSTM performing better than LSTM with a 98.22%
accuracy rate. This is achieved using sequence networks, which
behave like memory elements to retain information from past
time steps and incorporate it into future predictions. In other

words, the sequence network enables the model to consider the
temporal dynamics of the data, allowing it to make more
accurate and robust forecasts. The B-LSTM network has been
proposed as a dependable approach for forecasting various
time-series task-based findings of this work, especially when
working with data that exhibits significant stochasticity and
abrupt swings. Due to its financial and technical benefits,
accurate forecasting is crucial in present-day power systems.
With comprehensive knowledge, the distribution network
operator may make more intelligent choices with fewer risks
and errors.
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