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Abstract— Load forecasting, including classic time series 

analysis and more contemporary machine learning techniques, 

has emerged as one of the most prominent research domains. The 

primary emphasis of research in this field lies in predicting 

aggregated power usage. However, the significance of demand-

side energy management, encompassing individual load forecasts, 

is increasingly gaining prominence. This work proposes load 

forecasting models that rely on deep neural networks (DNNs). 

These models are applied to a demand-side load database for 

analysis. The forecasting accuracy of DNN-based load forecasting 

models is assessed by comparing them with Convolutional Neural 

Network (CNN), Long Short-Term Memory (LSTM), and 

Bidirectional Long-Short-Term Memory (B-LSTM) models.  The 

B-LSTM is a new recurrent artificial neural network 

recommended as the forecasting unit due to its ability to process 

information from both the past and present hidden layer using 

memory loops. Performance of the algorithm is check based on the 

mean absolute error, mean absolute percentage error, and root 

mean square error. 

Keywords—load forecasting, neural network, feature 

selection, machine learning, CNN, LSTM, B-LSTM. 

I. INTRODUCTION 

Short-term energy load forecasting (STLF) is a method for 
anticipating short-term electricity demand, often for a few 
hours to a few days. With the increased demand for renewable 
energy sources and the requirement to balance their sporadic 
nature with conventional energy sources, STLF has grown 
significantly. Because of the highly variable and dynamic 
nature of energy demand—influenced by various 
factors, including weather, holidays, economic activity, and 
social events—STLF is a problematic issue. Complex 
mathematical models and data analysis methods must be used 
to anticipate power consumption accurately.  

Deep learning's main benefit is its capacity to automatically 
learn features from unprocessed data without the requirement 
for manually engineered feature engineering. By using a precise 
forecasting technique, electrical energy-producing systems can 
operate more steadily and dependably [1]. When introducing 
Convolutional Neural Networks (CNN), a novel approach is 
adopted by applying the market wavelet function as an 
activation function instead of the traditional options.  

Nevertheless, due to a shortage of memory units and the 
incidence of gradient vanishing, this specific arrangement 
performs poorly in predicting issues [2]. 

Hence, the need for more understanding regarding deep 
learning approaches for predicting multi-step loads in 
commercial buildings. To achieve this, two conventional deep 
neural network models, the recurrent neural network (RNN) 
and the CNN, have been proposed and designed using recursive 
and direct multi-step techniques [3]. The deep neural network's 
latest version is the LSTM model that uses memory cells to 
store data about previous inputs to address the vanishing 
gradient issue that standard recurrent neural networks have, 
making it challenging for the network to learn long-term 
dependencies between inputs. By enabling information to be 
added to or withdrawn from memory cells selectively, LSTMs 
were created to address this problem and enable the network to 
retain information for extended periods [4]. Successful LSTM 
network-based applications have been described in numerous 
fields, including speech recognition, image captioning, and 
natural language translation [5-7]. The suggested framework is 
put to the test using a set of actual household smart meter data 
that is publicly available, and the results are thoroughly 
compared to several benchmarks, such as cutting-edge load 
forecasting [8]. 

With the processing of the input sequence both forward and 
backwards in time, B-LSTM improve the basic LSTM 
architecture. By analysing the input sequence in both ways, B-
LSTM models can capture bidirectional dependencies and 
increase prediction accuracy. Predicting future data multiple 
steps ahead, the B-LSTM emerges as a suitable approach. It 
utilises the forecasted outputs as input data for subsequent 
steps, thus maintaining a robust memory capable of accurately 
storing essential past and future features [9]. 

This paper proposes B-LSTM deep learning based short-
term load forecasting for the smart grid applications.  

II. PROPOSED BI-DIRECTIONAL LSTM ALGORITHM  

A. Convolution Neural Network (CNN) 

In CNN, the convolutional layer and pooling layer of a CNN 
can collect useful characteristics from the original input in order 
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to extract the local properties of the data in an automated 
manner. Moreover, CNN can create comprehensive and dense 
feature vectors using the retrieved features. Fig. 1 shows the 
block diagram of CNN as mentioned.   

In the convolutional layer, filters are used to extract 
important information from the input image, creating a feature 
map through element-wise multiplication and summation. The 
pooling layer reduces the spatial dimensionality of the feature 
maps and selects vital data using techniques such as max 
pooling or average pooling. The activation function layer adds 
non-linearity to the model by applying a function to each 
neuron's output, commonly using ReLU, sigmoid, or tanh. The 
fully-connected layer establishes connections between neurons 
in different layers to generate the final output. Lastly, the 
dropout layer randomly removes neurons to prevent overfitting. 

B. Long and short-term memory (LSTM) 

      LSTM networks have emerged as a viable solution for 
solving time series forecasting challenges, such as load 
forecasting, in recent years. LSTM networks, which are a type 
of RNNs, effectively identify long-term dependencies in time 
series data by incorporating memory cells and gating 
mechanisms. The introduction of forget gate, input gate, and 
output gate functions in LSTM networks has significantly 
enhanced their suitability for modelling time series data with 
long-term dependencies. These functions effectively address 
the issues of gradient explosion and gradient disappearance that 
commonly arise during RNN training. 
      Historical load data can be utilised as inputs to the network 
in order to apply LSTM networks for load forecasting. A 
supervised learning method can be used to train the network. In 
this method, the network is given a sequence of historical loads 
and asked to forecast the loads for a future time period. Many 
research has shown how well LSTM networks do load 
forecasting using LSTM networks to anticipate load in a power 
system with a significant concentration of renewable energy 
sources. Their findings demonstrated that the LSTM-based 
model performed better in terms of forecasting accuracy than 
conventional time series forecasting models. Fig. 2 show block 
diagram of the LSTM model.  
      Below, you can find the equations representing the different 
LSTM components. 

i�  =  �(W�i�� + Wℎiℎ�t-1 + �i)                                    (1) 

  ƒ� = �(W�ƒ�� + Wℎƒℎ�t-1 + �ƒ)                                   (2) 

��  = �(W���� + Wℎ �ℎ�t-1 + ��)                                  (3) 

�̃�  = ���ℎ ( W���� + Wℎ �ℎ�t-1 + ��)                            (4) 

          ��  = ƒ� * ��t-1 + i� * �̃�                            (5) 

               ℎ� = �� * ���ℎ ( ��)            (6) 

    Among them, it, ft, ot represents for t-th input, forget, and 
output gate. The weight values associated with the input, forget, 

output gate, and memory unit are symbolized by Wxi, Wxf, Wxo, 

Wxc . Whi, Whf, Who, Whc  are the notations used for the weight 
connections between the hidden and the input, forget, output 
gate, and memory unit, respectively. The terms for bias of each 
gate function are represented by bi, bf, bo, bc . The activation 

functions utilized in the LSTM network are � (·) sigmoid 

function for gating and Tanh hyperbolic tangent function for 
memory units. The point-by-point multiplication operation is 
denoted by the symbol *. 

C. Bi-Directional Long and short-term memory (B-LSTM) 

Bi-directional Long Short-Term Memory (B-LSTM) is a 
type of RNN that is frequently employed in natural language 
processing (NLP) tasks [10]. The traditional LSTM model, 
which can handle sequential data and maintain long-term 
dependencies, is expanded by the B-LSTM model. The 
performance of NLP tasks, including sentiment analysis, 
machine translation, and speech recognition, is enhanced using 
B-LSTM networks [11-12]. To perform better, B-LSTM 
networks take advantage of the bidirectional nature of LSTM 
networks. The B-LSTM network comprises two LSTM 
networks, where one input sequence is in a forward direction 
and the backward direction. The final output of the B-LSTM 
network is obtained by combining or concatenating the outputs 
from each individual B-LSTM network. 

Fig. 3 illustrates the block diagram representing the B-
LSTM network. In the B-LSTM network, the forward layer at 

 
Fig.  1. Block diagram of CNN. 

 
Fig.  2. Block diagram of LSTM. 

 

Fig.  3. A bidirectional long short-term memory unit. 
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time step t for the incoming data sequence Xt  and the previous 

hidden state value 
−→
ht−1. Using this information, the current 

hidden state value 
−→
ht  is computed. 

      Next, the internal equation shown below is applied to 
update and process the hidden state value. 

������⃗  = � � �������⃗  �ℎ�⃗ �−1, ���⃗ � + ��⃗ �!             (7) 

"���⃗  = � � �"����⃗  �ℎ�⃗ �−1, ���⃗ � + ��⃗ "!            (8) 

�����⃗  = � �������⃗  �ℎ�⃗ �−1, ���⃗ � + ��⃗ �!            (9) 

�̃$���⃗  = tanh��(�����⃗  �ℎ�⃗ $)*, �⃗$ + ��⃗ (!        (10) 

�$���⃗ = �$���⃗  * �⃗$)* * "���⃗  * �̃$���⃗          (11) 

ℎ$���⃗ = �$���⃗  * tanh(�$���⃗ )                         (12) 

      To summarize, this the output hidden layer of the forward 
layer LSTM at time step t can be expressed as follows. 
 

ℎ$���⃗  = ���⃗$ , ℎ�⃗ $)*, □�⃗ -./0!       (13) 

      

       In this context, the symbol □�⃗ -./0 represents the internal 
operation of the current state forward LSTM unit. Additionally, 

the hidden state value ℎ$�⃖�� of the backward layer in the B-LSTM 

network is updated by considering the present input data �⃗$  and 

the future hidden state value ℎ⃖�$)* . Following are all internal 
updates that occur inside a backward layer:  
 

�$�⃖�� =  � � �⃖���� � ℎ⃖�$2*, �$�⃖���  +  ���⃖��!         (14) 

"��⃖�  =  � � �⃖���3 � ℎ⃖�$2*, �$�⃖���  + �"�⃖�!         (15) 

���⃖��  =  � � �⃖���4 � ℎ⃖�$2*, �$�⃖���  +  �4�⃖���!         (16) 

�̃$�⃖�� = tanh� �⃖���( � ℎ⃖�$2*, �$�⃖���  + �(�⃖��!         (17) 

���⃖�� = �$�⃖�� * �⃖$)** "��⃖� * �̃$�⃖��             (18) 
ℎ⃖�$ = ���⃖�� * tanh(�$�⃖��)          (19) 

      The backward LSTM layer's output equation for the hidden 
state can be summed up as follows: 

ℎ⃖�$ = � ��$�⃖��� , ℎ⃖�$2*, □⃖�� -./0!                 (20) 
     

     In this context, the notation □ �⃖��LSTM signifies the collective 
internal operation of the backward LSTM layer. By applying an 
activation function, the hidden states of both the forward and 
backward layers in a B-LSTM network are combined to 
produce the output of the hidden state. Consequently, the 
influence of both previous and future data can be observed in 
the output of a B-LSTM network. 
III. THE LOAD FORECASTING MODEL'S OVERALL TECHNIQUE 

CONSISTS OF THE FOLLOWING STEPS: 

 
1) Data Collection: Gathering historical load data is crucial 

for training the model. 

2) Data Pre-processing and Feature Extraction: It needs to 

pre-process the acquired data and extract useful features 

from it. To do this, the data must be cleaned, normalised, 

and formatted into a time series. 

3) Model Selection: The next step is to choose an acceptable 

model for load forecasting after the data has been pre-

processed and the features have been retrieved. For load 

forecasting, models like CNN, LSTM, and Bi-directional 

LSTM are frequently utilised. The type of data and amount 

of precision needed will determine which model is used. 

4) Model Training: After the model has been chosen, the 

trained model will be applied to the pre-processed data. 

During the training phase, the parameters are iteratively 

adjusted to minimize the discrepancy between the 

predicted and actual load. This adjustment process takes 

place by feeding the pre-processed data into the model. 

5) Hyperparameter Tuning: Adjusting the hyperparameters 

of the model is necessary to increase the model's accuracy 

after it has been trained.  

6) Model Evaluation: After the hyperparameters have been 

fine-tuned, the model must be assessed on the test set. 

Several evaluation metrics are commonly employed to 

assess the performance of the model.  

7) Model Deployment: Lastly, the model can be used for 

load forecasting after it has been trained and assessed.  

IV. DATA PREPROCESSING AND FEATURE EXTRACTION 

      Building precise and effective machine learning models, 
such as CNN, LSTM, and Bi-directional LSTM for electrical 
load forecasting, requires the pre-processing of data and feature 
extraction. The procedures for feature extraction and data pre-
processing are as follows: 
1) Data Cleaning: The first step in cleaning the data is to 

eliminate any inconsistencies or missing information. 
Making sure the model can learn from reliable and 
consistent data is crucial. 

2) Data normalisation: It scaled the data to ensure that all 
variables have the same range. This enhances the model's 
functionality and strengthens its stability. 

3) Time Series Data Formatting: Electrical load forecasting 
is a time series problem, hence the data must be organised 
in a way that makes sense for time series analysis. This 
entails placing the information in a certain time-based 
chronological arrangement (hourly, daily, weekly, etc.). 

4) Feature Extraction: After the data has been prepared, 
pertinent features must be extracted from the data. Among 
the often-utilised elements for predicting electrical load 
are: 

• Whether it is a workday or a weekend.  

• The time of day: dawn, noon, dusk, or night 

• Data on the load from the previous week, month, or 
year 
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5) Feature Scaling: Following feature extraction, the 

features must be scaled to have the same range across the 

board. This is crucial to make sure the model can benefit 

evenly from each feature. 

6) Data Splitting: The data must be divided into training, 

validation, and test sets before being processed. 

      The data can be entered into the CNN, LSTM, or Bi-
directional LSTM model for electrical load forecasting when 
the feature extraction and data pre-treatment processes are 
finished.  
 

Algorithm 1: Algorithm for B-LSTM 

1: Initialization 
    def initialize weights randomly(): 
2: Training 
    def train(num_epochs, training_dataset, learning_rate): 
    for epoch in range(num_epochs): 
        for input_sequence, target_output in training_dataset: 
            # Forward pass 
         forward_hidden_state=initialize_forward_hidden_state() 
    backward_hidden_state=initialize_backward_hidden_state() 
            forward_outputs = [] 
            backward_outputs = []        
     # Forward pass of the forward LSTM layer 
     for input_timestep in input_sequence: 

forward_hidden_state=forward_lstm_cell(input_timestep, 
forward_hidden_state) 

     forward_output=get_output_from_hidden_state 
      (forward_hidden_state) 
     forward_outputs.append(forward_output)             
     # Forward pass of the backward LSTM layer 
     reversed_input_sequence = reversed(input_sequence) 
     for reversed_input_timestep in reversed_input_sequence: 

backward_hidden_state=backward_lstm_cell(reversed_inp
ut_timestep, backward_hidden_state) 

     backward_output=get_output_from_hidden_state 
     (backward_hidden_state) 
                backward_outputs.append(backward_output)             
3: Concatenate the forward and backward outputs 
     concatenated_outputs = torch.cat((forward_outputs,                

backward_outputs), dim=1)               
4: Calculate loss and update weights (Backward pass) 
     loss = calculate_loss(concatenated_outputs, target_output) 
            gradients = compute_gradients(loss) 
            update_weights(gradients, learning_rate) 

 

V. CASE STUDY 

A. Data Description     

      Data from the Canadian province of Ontario are used in this 
study as a case study [13]. According to linking several actors 
in the power market, the load data in Ontario exhibits a 
significant degree of dynamic behaviour. Ten years of load 
demand data are gathered, from January 1, 2013, to December 
30, 2022, at hourly intervals. 

 

      The ten years of load demand data gathered in the Ontario 

study at hourly intervals can be used to train and validate load 

forecasting models. By analysing historical data, load 

forecasting models can identify patterns and trends in energy 

demand, which can help predict future demand with a high 

degree of accuracy. 

VI. EXPERIMENTAL RESULT AND ANALYSIS    

      Three noteworthy error criteria—the mean absolute error 

(e6�e), the mean absolute percentage error (e6�7e), and the root 

mean square error (e869e) are taken into account to assess how 
well the various approaches perform. 

A. Evaluating Accuracy Measures for Predictive Analysis 

      The mean absolute error (e6 � e) (21), the mean absolute 

percentage error (e6 � 7 e) and the relative mean square error 

(e8 6 9 e) are utilised as evaluation indices. e6 � 7 e stands for the 

model error (22). It is utilized as a means to evaluate the 

accuracy of the model. The volatility of the model error is 

shown by the symbol e8 6 9 e (23). It is used to see the stability 

and robustness of the model. The formulas for e6 � 7 e and e8 6 9 e 
are in equations (22) and (23). 

     e6 � e = 
*

:;  ∑ �=>?@ −  >@=!:;AB*          (21) 

              e6 � 7 e =  
*

:;  ∑ CD >?@) >@
>?@EFGH

D × 100K:;AB*         (22) 

                e8 6 9 e = L *
:;  ∑ �=>?@ −  >@=!M:;AB*         (23) 

B. Short-Term Forecasting Results 

      The initial phase in this case study is data pre-processing, 
which includes numerous activities like filtering outliers and 
resolving missing values as well as scaling the data to make 
sure that all characteristics are on a similar scale. The data may 
need to be split into a time-lagged format after being cleaned 

 

Fig.  4. Detailed flowchart of the suggested approach. 
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and converted, which entails developing features and targets 
that may be utilised for modelling and forecasting.  
      With univariate time series data, this phase is particularly 
crucial since it enables us to examine trends and patterns over 
time and forecast future values. In every data analysis project, 
pre-processing the data is a crucial stage since it helps to 
guarantee that the data are correct, trustworthy, and appropriate 
for analysis. Fig. (4) presents a  flowchart illustrating the 
proposed method. 
      To build our model, we used the Python programming 
language together with the libraries Keras, TensorFlow, 
NumPy, and PyTorch. For both the LSTM and B-LSTM 
models, a portion of the learning set was aside for validation 
split. The data was divided, and a separate validation set was 
created. The model was learned using the "adam" optimizer and 
the "mae" loss function. By increasing the number of epochs, a 
more complicated forecasting model can be developed, 
improving the accuracy of the results. However, as the epoch 
increases, the problem of model overfitting becomes more 
critical.         
      The task involves using B-LSTM networks for forecasting, 
and these networks are trained with specific datasets. Each 
LSTM network has 20 hidden layers, which have been found to 
provide good performance. It is crucial to emphasize that the B-
LSTM network exhibits higher sensitivity to the learning rate 
values than the LSTM network, which can cause saturation 
during the training process. To avoid this, the LSTM network's 
initial learning rate is set to 0.01, while 0.005 for the B-LSTM 

network. In simpler terms, the B-LSTM network is trained 
using specific datasets, has 15 hidden layers in each LSTM 
network, and requires careful adjustment to avoid saturation 
during training. 
      In order to confirm the robustness of the suggested strategy, 
a thorough comparison of several methodologies over various 
time periods (daily and monthly samples) was conducted in 
December (Tables I and II), is considered. After the completion 
of training and testing using the complete ten years of data, 
Fig.5(a) depicts the effectiveness of all models and  is presented 
by comparing their outputs with the actual data and its 
associated values regression plot Fig.5(b) for December 31, 
2012, which serves as an example day. The peak around the 
31st day was selected as one of the days in December month, 
and Upon analysis, it was found that the CNN and LSTM 
models predicted the lowest and second-lowest peaks, 
respectively. Conversely, the B-LSTM models exhibited peaks 
that closely aligned with the actual data. The load profile has a 
straightforward trend without any significant spikes, as shown 
by the predicting findings.  

Fig. 6. displays the anticipated load demand and its 
accompanying regression plot for December. The load profile 
has a straightforward trend without any significant spikes, as 
shown by the predicting findings. While forecasting is similar 
to regression, In order to further validate the reliability of the 
case study, a widely recognized criterion is taken to measures 
the relation between projected and actual data. This criterion is 
illustrated in Fig.6(b) to provide additional evidence of the 

          (a) 
 

(b) 

 
Fig.  6. Forecasting results on December, 2022. (a) Load demand profiles 

(b) Regression plots for December month. 

(a) 
 

(b) 

 
Fig.  5. Forecasting results on December 31, 2022. (a) Load demand 

profiles. (b) Regression plots for 24 hrs. 
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study's robustness. Thus, load demand analysis has been carried 
out in order to compare the models overall, as shown in Table I 
and Table II. Nevertheless, deep neural network topologies 
have demonstrated superior performance in terms of RMSE and 
MAPE. Even though, Table I & II numerical study 
demonstrates that the B-LSTM error is very small (<2% 
MAPE). The B-LSTM demonstrates a remarkable level of 
accuracy in predicting results, this indicates that the model was 
successful in capturing and learning from the input data, leading 
to accurate and dependable predictions. The low MAPE value 
observed is evidence of the Bi-directional LSTM architecture's 
success in capturing both forward and backward temporal 
dependencies.  This promising finding suggests that the Bi-
directional LSTM model may be applied to similar forecasting 

applications. 

TABLE I.  FORECASTING RESULT ON DECEMBER 31, 2022 

Algorithm 
Load Demand 

MAPE (%) MAE (MW) RMSE (MW) 

CNN 2.73 457.79 532.39 

LSTM 1.96 366 410.5 

B-LSTM 1.42 340.63 396.34 

TABLE II.   FORECASTING RESULT ON DECEMBER, 2022 

Algorithm 
Load Demand 

MAPE (%) MAE (MW) RMSE (MW) 

CNN 2.88 544.43 711.49 

LSTM 2.2 460.52 562.83 

B-LSTM 1.78 378.23 453.72 

 

VII. CONCLUSION 

       This work describes implementing an STLF method for the 
Ontario case study using the B-LSTM. Using a specialized 
forecasting network for those sites, this B- LSTM technique 
includes detecting specific points with different fluctuation 
rates. The suggested strategy performs better than existing 
forecasting techniques. The method is shown to be both robust 
and accurate. It is compared to benchmark algorithms to 
demonstrate its superiority in terms of accuracy, complexity, 
training time, and ease of use. We used the deep learning 
algorithms LSTM and B-LSTM for the load forecasting job, 
with B-LSTM performing better than LSTM with a 98.22% 
accuracy rate. This is achieved using sequence networks, which 
behave like memory elements to retain information from past 
time steps and incorporate it into future predictions. In other 

words, the sequence network enables the model to consider the 
temporal dynamics of the data, allowing it to make more 
accurate and robust forecasts. The B-LSTM network has been 
proposed as a dependable approach for forecasting various 
time-series task-based findings of this work, especially when 
working with data that exhibits significant stochasticity and 
abrupt swings. Due to its financial and technical benefits, 
accurate forecasting is crucial in present-day power systems. 
With comprehensive knowledge, the distribution network 
operator may make more intelligent choices with fewer risks 
and errors. 
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