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Abstract—Demand Response (DR) techniques are regarded as
the most economical and reliable way to smooth the load curve
in context of the rising energy demand. In this paper, using
Fuzzy Reasoning (FR) and Reinforcement Learning (RL), we
have proposed a cost-effective strategy for residential demand
response. This algorithm employs Q-learning, a reinforcement
learning technique based on a reward system, to schedule
shiftable/controllable loads optimally so that they are shifted
from peak to off-peak hours of tariff. This reduces the overall
electricity expenditure of a smart home while taking user comfort
into account. FR is used for reward matrix generation. The
suggested method works with one agent to operate 8 home
appliances and makes use of fuzzy logic for rewards functions
and a smaller number of state-action pairs to assess the action
taken for a specific state. The Smart Home Energy Management
System (SHEMS) demonstrates the application of the suggested
DR scheme through MATLAB. The findings indicate that the
cost of the electricity bill was reduced by 38.28%, showing the
efficacy of the suggested strategy.

Index Terms—Reinforcement learning, Demand response, Q-
learning, Smart home energy management system, Fuzzy reason-
ing

I. INTRODUCTION

The demand for power has been increasing continuously.
DR is regarded as an essential component that can assist
customers in managing their energy consumption. Consumer
participation in such strategies will lower power use at times of
high demand, i.e., peak hours, and result in lower electricity
costs. DR is characterised as a shift in end-users pattern of
electricity consumption in response to variations in tariff and
other monetary incentives provided by the energy supplier.

DR programs are categorised into: price-based programs and
incentive-based programs [1]. Consumers that participate in
an incentive-based DR strategy receive financial incentive for
switching their consumption from peak (high demand) hours
to off-peak (low demand) hours. In exchange for their partic-
ipation in the program, these customers receive a discounted
rate or bill credit payment. All tariff programs that offer clients
financial incentives or rebates in exchange for reducing their
electricity use during particular hours are considered price-
based programs. Such programs offer various electricity tariff
pricing to assist customers in obtaining optimized power. By
implementing tariff price programs like critical peak pricing
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(CPP), time of use (TOU) etc., consumers actively change the
amount of electricity used in their homes based on tariff [1].

SHEMS enables consumers to reduce their electricity costs
and utilize energy optimally. It can be considered a potential
system for realizing DR strategies. A detailed review on
SHEMS is compiled in [2]. A practical application of SHEMS
is demonstrated in [3]. In [4], authors have concentrated on
the HEMS algorithm while considering appliance priority, user
preferences and comfortable lifestyle. The development of
HEMS controllers using machine learning and computational
intelligence approaches has received a lot of interest recently.
Reinforcement Learning (RL) has recently come to light as
a promising machine learning method for decision-making,
control, and energy management. Due to its capability to solve
issues without requiring prior knowledge of the environment,
RL models offer exceptional decision-making abilities [5]. In
[6], reinforcement learning technique has been proposed, using
multiple agents where every appliance has its own agent and
environment. In [7], [8], authors have concentrated on schedul-
ing home appliances such that operating time of shiftable
devices is shifted using SARSA (State-Action- Reward-State-
Action) in Q-learning, but these methods slows down the Q-
values’ ability to converge.

This study proposes a flexible SHEMS which uses one
agent and a smaller number of state-action pairs where fuzzy
reasoning is used for the generation of reward function without
sacrificing user’s preferences and comfort.

II. PROPOSED SMART HOME ENERGY MANAGEMENT
SYSTEM

The suggested model installs a SHEMS at the consumer end
that can monitor, calculate, and optimize the use of energy and
minimize electricity bills. Fig. 1 shows different components
of the system considered. The system includes smart meter,
communication network (LAN), EV, and home appliances. We
consider that the smart meter gets the grid provided energy
pricing signals and communicates the values to SHEMS. A
particular SHEMS module’s fundamental functions are device
data collection, data processing, and load control. The strate-
gies for load control and the analysis of the collected data are
both parts of processing and intend to schedule the devices
using various optimization methods. Finally, the developed
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schemes serve as the basis for the HEMS load control. Existing
LAN access protocols, such as Wi-Fi and Zigbee, which can
accommodate a variety of communication applications, can
be used to facilitate communication between the devices and
HEMS for the purposes of data collection and load control

[9].
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Fig. 1. Proposed Smart Home Energy Management Framework

III. REINFORCEMENT LEARNING

One of the primary Machine Learning (ML) methods for
selecting the best decisions in a non-deterministic setting is
RL [10]. As shown in Fig. 2, an agent learns the appropriate
action based on the current state of the environment when
it interacts with it and a newly learnt action is delivered to
the environment. The environment in return, gives the agent a
reward and the updated state (next state) of the environment.
Until the agent optimizes the total cumulative rewards acquired
from the environment, this learning process will continue.
The agent’s main objective is to maximize the reward by
identifying the best policy. A policy is defined for the way
an agent behaves in a particular condition. A mapping from
the observation of the current environment to a probability
distribution of the actions to be taken is referred to as a
reinforcement learning policy.

Environment

Agent

Fig. 2. Reinforcement Learning Architecture

Q-learning determines the optimal policy v* of a
decision-making problem. In Q-learning technique, a Q-value

(Q(st, at)) is calculated where s; is state and a; is action at a
discrete time t and the Q-value is updated using the maximum
reward value using the Bellman equation as shown below:

Qu ¥ (st,a) =7 (s, a¢) + p - max @ (g1, ae41) (1)

According to Eq. (1), the best Q-value is obtained by
adding the maximum future reward which is discounted,
- max Q(Siy1,ai+1), and the present reward, r(s¢, ay),
depending on the most optimal policy, v+ where u is the
discounting factor and is given as p € [0,1] . When u=0,
suggests that only current reward is considered, while u=1
suggests that agent will focus on future rewards. The calcu-
lated or defined reward r (s, a;), will be obtained once the
action ay is executed in accordance with policy v*, and the
agent will then enter a new state (s;y1). Using the following
Eq. 2, the action value in Q(s,a;) is changed concurrently:
(s, ae) + J

Q (st;at) + (1-a)Q (st,a) +a - max Q (Sg41,041)

vk = argmax Q(sq, a;) 3)

where « is the rate of learning, which establishes the extent
to which the previous Q-value is influenced by the current
reward. a=0, indicates that agent has learned nothing and
makes use of the previous Q-value in the process of learning.
While when a=1 indicates the most recent information is
considered. Finally, by iteratively updating Q(s;, a;) using Eq.
(2), the Q-value (Q(s¢, a;)) will become bigger and bigger.The
agent will eventually acquire the optimal policy (v*) with the
biggest Q-value using Eq. (3).

IV. DEMAND RESPONSE STRATEGY USING Q LEARNING
MODEL

A. Home Energy Management Model

Typically, home appliances can be categorised into non-
shiftable & shiftable. Appliances categorized as shiftable are
washing machines, dishwashers, and clothes dryers that can be
operated at any time during the user’s specified time period.
Appliances like refrigerators, water heaters, and lighting that
require a constant supply of electricity to carry out their
functions are referred to as non-shiftable. The non-shiftable
load needs to be utilized only during predetermined times. As
a result, in DR schemes only the shiftable appliances may
participate.

In this study, 8 household appliances of a smart home
are chosen that will be managed using the best scheduling
model [11]. The Power Demand of shiftable appliances can
be defined as follows:

X
PDI = B« I} €

=1
where PD{° is the total power demand considering only the

shiftable loads for every hour, Ef°' is rated power of each
appliance, I is ON (1) or OFF (0) status of each appliance
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at a specific hour ¢ € [1,2,3....24], and X is the summation
of all shiftable appliances wherein z € [1,2.....X].

The data of shiftable household appliances in a smart home
are listed in Table I [11], including the rated power of each
appliance, required time period of operation, and the priority
of operation taking user’s comfort into account.

TABLE I
DATA OF SHIFTABLE HOME APPLIANCES
Appliance Rated Duration Priority
Power (W) | cycle (min) | Order

‘Washing Machine 500 60 1

Water Pump 1800 180 2

Dishwasher 800 60 3

Tumble dryer 750 120 4

Microwave 1200 60 5

Electric Water 2000 120 6

Heater(EWH)
EV1 6000 300 7
EV2 7000 300 8

B. Q Learning Model

An intelligent agent uses RL to make the best decision
possible in a particular stochastic setting with variable patterns
of energy usage and electricity prices. The dynamic system can
be controlled by the agent by carrying out a series of actions.
Such a system is defined by a financial incentive and state-
space.

The Power Demand (PD) and the Electricity Cost signal
(EC) for electricity serve as models of the state-space in this
case. PD is categorized into low, medium, and high. EC is
categorized into less and expensive as follows:

PDig, s if PDI" < 7.5 kW
PDgex = PDibgium > if 7.5 < PD < 9.24 kW
PDife, » it PD > 9.24 kW
)
index EO},ESS ; if EC’t S 1¥/kWh
ECt = expensive . (6)
EC; . if EC, > 1¥/kWh

Table. II shows state index that can be created from PD and
EC.

TABLE II
INDEX OF STATES BASED ON POWER DEMAND AND ELECTRICITY COST
Power Demand | Electricity Cost | State
PDlow Ecless 1
PDlow Ecexpensive 2
PDmedium Ecless 3
PDmedium Ecexpensive 4
PDhigh Ecless 5
PDhigh Ecea:pensive 6

One action is selected by the agent from action space; A as
given below:

A = [Transfer, Fill Valley, Stay Idle] @)

where Transfer action transfers the least priority load and this
action is taken during periods of high demand. The goal of Fill
Valley action is to switch on the home appliance of highest
priority that was shifted, typically during times of low demand.
When set to Stay Idle, the system operates normally, and no
appliance is shifted.

In Q-learning model, the reward’s (r(s¢, a;)) objective is to
assess the extent to which the action taken was appropriate for
a specific state. Fuzzy Reasoning deals with approximations
rather than precise values. In order to assess the action taken
for a particular state, fuzzy logic is utilized here. Fuzzy
inference is a technique that assigns values to the output
vector based on the interpretation of the input vector values,
using a set of rules. In this paper, Mamdani method is utilized
because it provides a smoother output. In this Fuzzy Inference
System(FIS), the input variables are PD and EC as shown in
Fig. 3 whereas the output variables are Transfer, Fill Valley,
Stay Idle. Table. III shows the fuzzy rules of FIS. Action taken
for each state is evaluated using FIS. The fuzzy sets are defined
as Poor Action (PA), Fine Action (FA) and Super Fine Action
(SFA) for each output(action), as shown in Fig. 4.
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Fig. 3. Input Variables to FIS (Power Demand, Electricity Cost)

TABLE I
Fuzzy RULES OF FIS
Power Electricity | Transfer | Fill- Stay
Demand | Cost Valley | Idle
Low Less PA SFA FA
Low Expensive PA FA FA
Medium Less PA FA SFA
Medium | Expensive PA FA SFA
High Less PA PA SFA
High Expensive SFA PA PA

V. Q LEARNING ALGORITHM FOR SHEMS

The [states*actions] dimension of the Q-matrix should be
initialized to zero. Once the agent has interacted with the
environment after taking action in a given state, it will update
each pair in the Q-matrix using Eq. (2). The optimal Q-
values will be achieved only after Q-matrix has converged.
In this paper, an adequate number of epochs are used to
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Fig. 4. Output Variables of FIS (Transfer, Fill Valley, Stay Idle)

investigate and update the values of Q(sy,a;). This is known
as “exploring” in which random action is taken at each step.
The algorithm for Q Learning model is given in Fig. 5.
The parameters p and o are assigned values 0.9 and 0.1
respectively.

Q Learning Algorithm

Initialise Q(s,, a,), sVS, avVA

Set wand o parametersand rewards in matrix as in Table 3.

for each time step t do

while hour=1:24

1
2
3.
4. Choose random initial state
5,
[

Determine all available actions and select random action for
current state.

7 Execute selected action a, and observe the state s,.; and numerical
reward r(s,, a,)

8. Determine the maximum Q-value for next state in Q-matrix.

9. Update the Q(s,, a,) using Equation (2)

10.

Set the next state as current state

i

End while

12.

End for

Fig. 5. Algorithm

VI. RESULT AND DISCUSSION

In SHEMS, smart meters collect power data from all home
appliances and get pricing signals from the grid. The electricity
price signals (TOU) in ¥/kWh is shown in Fig. 6 as received
from the grid. Fig. 7 shows the cumulative power demand
(Watts) of a smart home comprising of shiftable home appli-
ances. At each time step, the agent receives PD and EC values,
which define the state of the system. The converged Q-Matrix
shown in Table. IV is used by the SHEMS to make an optimal
decision. This involves shifting the lowest-priority appliance
operating time, during high demand hours and turning on
the highest-priority appliance that was shifted earlier, during
low demand hours. For the current state, depending on the

maximum Q-value in the converged Q-matrix, the chosen
action will be taken. The actions to be taken over 24 hours
is shown in Fig. 8. This method is based on the correlation
between the TOU pricing & the total power consumption of
all home appliances while accounting for consumer comfort
preferences, and the load priority.

Fig. 9 shows different states detected, based on PD and EC
at different hours. Like at 6:00 pm, the state index is 4 because
PD is medium (8.2 KW) and EC is expensive (1.1 ¥) in that
hour. Using the algorithm mentioned in Fig. 5 and Table. IV,
it can be observed that the maximum Q-value (10.1571) is
for Stay Idle, hence that action should be taken. Similarly, at
1:00 am, the state is 1, and from Table. IV it can be observed
that the maximum Q-value is for Fill Valley, hence load is
increased at this hour.

Fig. 10 shows the final power consumption profile of a
smart home considering all appliances over 24 hours after
using RL Algorithm for the management of loads, along with
PD. On calculating the electricity bill using the final power
consumption profile and TOU pricing, it is observed that there
is a 38.28% reduction in bill cost considering all the shiftable
appliances.

Price (¥)
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Fig. 6. TOU Pricing Signal
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Fig. 7. Power Demand Profile of Smart home

VII. CONCLUSION

This study proposed a DR strategy to shift load demand of a
smart home from peak hours to off-peak hours in response to
users’ priority of home appliances & electricity cost signal. In
this paper, a Q-learning-based SHEMS is created to manage
various power consumption patterns and fluctuating electricity
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prices without sacrificing the customers’ comfort. The sug-
gested method uses one agent to operate 8 home appliances
using fuzzy reasoning for reward generation for a specific

TABLE IV
CONVERGED Q MATRIX (10000 ITERATIONS)

State Action state. MATLAB is used for implementation and demonstration
I“‘liex T;‘g’g;’ F il;-;/géley Sg“%’g"’g’e of proposed DR strategy in a smart home. The findings indicate
5 30756 60733 6162 that t-he cost of the electricity bill was reduced by 38.28%,
3 23427 6.0723 10.5454 showing the efficacy of the suggested strategy.
4 3.4072 2.736 10.1571
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Fig. 10. Power Consumption profile after RL implementation
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