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ARTICLE INFO ABSTRACT

Keywords: Electricity is regarded as a basic human requirement. Electric demand is met using either the grid (online) or the
Cost of Energy off-grid (standalone) method. The electrification of loads in remote areas requires high investment costs for
Reliability extending the transmission system. A standalone Microgrid (MG) system is a low-cost method of supplying

Hybrid Renewable Energy Source
Evolutionary Optimization Techniques
Micro-grid

electricity to remote areas where a grid connection is not possible. This study concentrates on designing an
optimal MG model for rural electrification with different renewable energy resources. The performance of the
system is evaluated by considering power system reliability, economic costs, and greenhouse gas emission ef-
fects. To obtain the optimal design parameters (i.e., component sizing), different optimization techniques like
Particle Swarm Optimization (PSO), Differential Evolution (DE), Manta Ray Foraging Optimization (MRFO),
Shuffled Frog-Leaping Algorithm (SFLA), Reptile Search Algorithm (RSA) and RUNge Kutta Optimizer (RUN) are
implemented and compared. The goal of these optimization methods is to find the most reliable and cost-

effective model.

Introduction

Renewable Energy Sources (RES) such as wind, small hydro, bio-
mass, geothermal and solar are decentralized, modular technologies,
with low environmental impact, smaller in size, and have low opera-
tional costs. RES is penetrating the power system more than ever due to
the above-mentioned characteristics [1,2]. HRES, which consists of
Wind Turbines (WT), solar Photo-Voltaic (PV), storage systems, etc., is
available and used in remote areas as an off-grid system. The installed
capacity of HRES will reach 7059 GW worldwide, covering 49.21% of
the total energy demand by 2040 [3].

The capital costs of RES plants will be curtailed in the future due to
improved technologies in component production and storage systems.
The global price of electricity generated from coal declined by 2%, while
wind got 70% and solar 89% cheaper in the decade of 2010-2019 [4]. So
utilizing these resources is a promising way to develop a modern power
system with the benefits of being economical, reliable, and safe [5].

Based on their connection with the grid, MG operations are classi-
fied as grid-connected or standalone. The entity is not connected to the
grid, is autonomous in operation, controls, and consumes the energy
generated or stored in the MG, in standalone systems. Such a system is
preferable for remote regions where extending the grid is not eco-
nomically feasible. The main demerit of standalone systems is that the
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RES is stochastic in nature. This disadvantage can be mitigated by
combining HRES with Energy Storage Systems (ESS). ESS is used for
peak shaving or time-shifting operations, provides a spinning reserve,
ancillary services, and storage, and improves power quality and relia-
bility [6].

Economic cost, reliability, and environmental effects are all factors
considered in the planning, design, and operation of HRES MG. An
optimal combination of HRES components helps to realize these ob-
jectives. To find the optimal combination of HRES components, opti-
mization techniques like PSO, DE, SFLA, MRFO, RSA, and RUN are
implemented. A step-by-step solution to such optimization techniques is
given in [7].

This study investigates the most cost-effective and reliable, HRES
options, for supplying electricity to Jarre Village. The contribution of
gas emissions from these HRES is also considered and a penalty is in-
troduced for polluting solutions. The objective is to design a 100% re-
liable system, which further makes the problem, complex and in-
feasible. Thus it also tests the optimization techniques for their ability
to obtain feasible solutions.

The paper is arranged as: section II discusses optimization algo-
rithms, and section III, deals with performance evaluation parameters
for HRES. Problem formulation is discussed in Section IV. Section V is
the result and discussion part, and the conclusion is the final section of
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the paper.
Algorithms used for HRES Optimization

The algorithms presented in this section are implemented for opti-
mally designing the MG system. The optimization techniques are se-
lected based on the year in which they were introduced, their perfor-
mance, robustness, etc.

Particle Swarm Optimization (PSO)

PSO tries to imitate the social behavior of birds flocking and was
developed by R. C. Eberhart and J. Kennedy (1995) [8]. It is a robust
method and has been implemented through different variations [9]. A
velocity of a particle for a new iteration, V.. is modified by using Eq

.

Vier + 1 =K X [V, + c1 X rand(0, 1) X (pbest — X)) + ¢2 X rand (0, 1)

X (gbest — Xix))] (1a)
K= 2
2—-¢— d?—4dl (1b)
The new position X, for i particle are calculated as Eq. (2).
Xi(t+ 1) =Vi(t+ 1) + Xi(t) (@3]

where, X, Vi: current position and velocity of particle; ppest and gpest:
particle and swarm best position; c1, c2: personal and social influence
coefficients; ¢ = c¢; + ¢y, ¢ > 4; K: constriction factor.

Differential Evolution (DE)

Storn and Price introduced DE in 1997 [10]. DE’s basic strategy and
parameter updating method include mutation, crossover, and selection
as explained below: In mutation, a vector termed as mutant vector
(Vig+1) is obtained as in Eq. 3:

Vi;G+1=xr1;G + F X (xr2;G — xr3;G) 3)

For r1; r2; r3: random indices €1; 2;.; NP and irl # r2 # r3; F: real
and constant factor € [0,2]; G: iteration number.

Crossover introduces increased diversity in perturbed parameter
vectors. The trial vector u;g+1, for crossover update is calculated in
Egs. 4 and 5.

U1 = (WiG+15 WisG+15+-5 UDisG+1) ©))

Vig+1if (rand b(j) < CR)or j = rnbr(i)
UiG+1 =

Xi.g+1if (r and b(j) > CR)and j # rnbr(i) (5)

j=1,2,..,D.

A random number generated through ’randb’ is used to decide the
trial vector content.

In selection, the greedy criterion is used to compare the trial vector
to the target vector, X;¢. If the trial vector yields a better cost function
value than the target vector, then ;1 is set to u;g41; otherwise, the
old value x; is retained.

Manta Ray Foraging Optimization (MRFO)

MRFO was introduced by Zhao, et al. in 2020. It imitates the be-
havior of the Manta rays [11]. To update the positions of variables,
chain foraging, cyclone foraging, and somersault foraging are applied:
The mathematical model for chain foraging can be represented through
Eq. 6 and 7.

d d d d Ry
xd Xi + TXbest ) — Xi(r) + 0Xbeseny — Xi)i =1
i(t+1) — d d d d d .
Xi(l) + r(Xi—l(t) - X,(t)) + a(Xbest([) - Xi([))l =2, ..N (6)
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a = 2r,/llog(r)| @]

Where, r: random vector [0,1]; d: dimension; t: current iteration
number; X9 o: the ith individual position; x4 best(n: @ region with a
high concentration of plankton; X% ;_; (: the position update of ith
manta ray; a: weight coefficient.

The mathematical model of cyclone foraging is shown through Eqgs.
8 and 9 to extend.

the motion to an n-D space.

Xd _ Xgest(t) + r(Xgesl(t) - Xid(t)) + S(Xges[(t) - Xid(t))i =1
i(t+1) — .
Xgest(l) + r(Xid—l(t) - Xid(t)) + B(Xges[(t) - Xid(t))l =2,..N

(8)
1 Tmax—t+1 .
B =2e T sin(2rl) 9
Where, T, maximum iterations; f3: a weight coefficient; r1: random
number [0,1].
A new random position is generated considering the current best in
the exploration phase, and is formulated through Eqs. 10 and 11:

X2,, = Lb® + r(Ub? — Lb%) (10)

xd X nacy + TXna — Xo) + BX i — Xip)i=1
D 7 xd X4, — X4 XL xd)i=2, N
randey + T(XiZ1¢) i) + BXrana( i) =2, ..

an
Where, Lb? and Ub®: lower and upper boundary of dimension d, re-
spectively; x4,.4: random position in search space.
To update the positions of variables around the higher plankton
concentration area, each manta ray moves around the plankton and
somersaults to a new position, which is calculated as Eq. 12.

d d d d y
Kiwrn = Xi + S(r2 x Kpest(ny — I3 X Xi(t)), i=1,..N 12)

Where, r, and r3: random number [0,1]; S: the somersault factor, used
to determine the somersault range of the manta rays, S= 2.

Shuffled Frog-Leaping Algorithm (SFLA)

SFLA was introduced by Eusuff and Lansey in 2000 and mimics the
food-searching social behavior of frogs [12]. SFLA creates subdivisions
within the population, which are termed memeplexes and sub-
memeplexes. The frogs within the submemeplexes help each other to
improve their positions. The population is again merged and the process
is repeated. The step (S) and new position (XN) are computed for the frog
with the worst performance in the submemeplexes using Eqgs. 13 and 14.

S=rX, — Xy) (13)
Xy =Xy + Sfor — Smax < S < Smax a4

Where r: random number (0,1); X,,, X;: worst and best frog position; S,
maximum step.

If the new position is better than the old position, it is replaced;
otherwise, it is discarded and a new solution is randomly determined.

Reptile Search Algorithm (RSA)

RSA was proposed by Abualigah et al. Abualigah et al., [13] to
mimic the hunting behavior of Crocodiles. The mathematical model of
RSA is updated through encircling and hunting phases: Each solution
updates its position using Eq. 15 as proposed for the encircling phase.

T

Best;() X _n(i,j)(t)ﬁ - R(i,j)(t) X rand, t < N

Xij+n) = d T4 T
Bestjy X X1,y X ESy X rand t < Zian t> N 15)

Where, Bestj(t): best-obtained solution; rand: random number [0,1]; T:
maximum iterations; t: current iteration; 7(j: hunting operator; f:
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controls exploration accuracy (0.1); Rgj: reduce function; Xqj:
random position of i™ solution; r1: random number [1 NJ; ES(: prob-
ability ratio takes randomly decreasing values between [— 2, 21; ),
R(;j and ES(t) are derived from other equations present in [13].

The hunting phase of the process is achieved through Eq. 16.

Bestj([) X P(i,j)(t) X rand, t < 3%3.1’1(1{ > 2%
Xijt+1) = T T
Best;m — Njo X € — Ry X randt < and t > 35

(16)

RUNge Kutta optimizer (RUN)

Proposed by Ahmadianfar et al., it is a metaphor-free population-
based optimization technique based on basic mathematics [14]. Its
mathematical formulation is updated using i) Root of Search Me-
chanism and ii) Enhanced Solution Quality.

For a position x, it will have the worst position (x,,) and best posi-
tion (xp) as neighbors in space. The Search Mechanism (SM) in this
algorithm is given by Eqs. 17 and 18.

1
SM = —Xpx S
6 KX a7

Xpxk = k1 +2 X k2 + 2 X k3 + k4 (18)

Where 8,: position increment; k1, k2, k3 and k4: coefficient variables.

The use of ESQ is for improving the status of solutions and elim-
inating local optima. In ESQ for creating a new solution (X;en2), Eqs.
19-22 are used.

chwz = Xnewl +r.w |(chwl - Xavg) +m | (19)
w = rand (0, 2)(6%) (20)
X = Xrl + Xr2 + Xr3

ag =T @1
Xnewr = 6 X Xavg +@1 - 6) X Xbest (22)

Where, 8: random number [0,1]; c: random number.
HRES Performance Evaluation

The proposed HRES system is designed as a standalone MG for rural
electrification in this study and is evaluated through the commonly
used performance parameters of economic cost and reliability.
Reliability is fixed at 100% for all candidate solutions obtained by
optimization techniques. A penalty is applied to solutions without
100% reliability. This constraint increases the problem’s complexity
and renders the majority of the possible solutions, infeasible. Thus, the
problem at hand is more of a feasibility problem rather than optimi-
zation.

Economic Cost

The economic performance of the power system is evaluated
through Cost of Energy (COE) ($/kWh) and Total Annual Cost (TAC,)
($/yr) as formulated in Eqs. 23 and 24. Abazari et al., [15].

TAC,
E. (23)

COE =

Where, E;: yearly demand energy (kWh/yr).
K i(1+i)n i
TAC = = N Cok——————+C + Cx—r
Ek:l compk( Ck (1+i) -1 O&Mk rk (1+i)1f _ 1)
@4

Where, C.: total capital cost of component ($/kW); Coga: annual op-
erating and maintenance cost ($/kW/yr); C,: total replacement cost
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($/kW); N,p: number of components used; n: project lifetime (yr); LF:
Components lifetime (yr); i: interest rate per year (%); K: components
type.

Reliability

Loss of Power Supply Probability (LPSP) is all energy deficits to the
total load demand within the time interval (T). LPSP is represented
through Eqgs. 25 and 26 [16].

ST (P () = By () + P (D) £ Pog(1)))
PP 25)

Where, Ppy, Pywr and Ppg. total generated power (W) from solar, wind
and battery respectively; P;: total load demand (W).

The constraint of 100% reliability implies that LPSP should be zero
and the power supply satisfies the demand at all times. So reliability is
considered the main constraint for analysis whereas system cost and
environmental emissions are the main objectives.

LPSP =

Gas emission

Starting from production to energy generation, there is some gas
emission from every RE. GHG from different HRES components influ-
ences the optimal solution. Daily Carbon-Dioxide Emission (DCE) (Kg/
day) is calculated using Eq. 26 [17].

N
DCE = Zn:l CylETyl (26)

Where, Er: total energy produced from a unit, (kWh/day); N: number of
energy generation components; C: life cycle gas emission from a unit,
(kg/kWh). The amount of CO2 gas emission to produce one kWh energy
in HRES by PV, WT, BS, and converter is 0.011, 0.045, 0.0402, and
0.0047 kg CO2/kWh, respectively, [18].

Total CO, Emission Penalty Cost (TCEP), ($/year) is calculated
using Eq. 27.

TGE, = DCE x PF 27)
Where, PF: penalty factor, (0.075$/kg) [19]; T: time period; k: number
of components in the system.

Problem Formulation

The primary objective of this study is to obtain the optimal quantity
of HRES components with minimal costs including GHG penalty, which
is expressed as Eq. 28.

F = Minimize(TACy) (28)
For
TACr = TACc + TCEPc 29

The constraints considered for analysis are formulated in Egs.
30-34.

LPSP =0 (30)
Ney Ppy () + NwrPwr (&) + NpsPps(t) > Pp(t) (€X9)]
0 < Npy Ppy (t) < PPV max (32
0 < Ny7Pyr(t) < PWT max (33)
S0Comin < SOC(t) < S0Crmax (34)

Where, Ppy, Py, Pps: power output from PV, WT, and BS, respectively;
N: number of components; SoC(t): battery charge at time ‘t’; SoCp;, and
S0Cpax: minimum and maximum allowable battery SoC.

The system is configured with PV and WT as energy sources and
battery as ESS. The converter is considered, for configuring the gener-
ated power to the required specification. DC charge controller is
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Fig. 1. Daily Load and RES Generation Pattern of Jarre Village.

Table 1
Component’s cost for Stand-alone system.

Components C. ($/kW) C, ($/kW) Com ($/kW/yr) Life Span (yr)
WT, 10 kW 1500 0 10 20
Solar PV, 1 kW 1000 0 5 20
Converter, 300 kW 250 250 0 10
BESS, 100Ah 150 150 12 5

For each solution
|

Read Input Generate ermdom check reasibiliey Obtain Fitness chatigeposition
Data Population Valueand Penalty
St i
Print Optimal / Y e
Haslk / Criterion
Satisfied?

Fig. 2. Flowchart of Optimization Algorithms.

considered to regulate the charging and discharging of ESS. In the vil-
lage, there are 150 households with a proposed daily load of 3173
kWh/day and a peak load of 285.5kW. The daily load curve for the
Jarre village is shown in Fig. 1a.

The hourly average RES output power is shown in Fig. 1b. The
output power generated by PV and WT, is computed through equations
presented in [20]. The cost of standalone hybrid power system com-
ponents is listed in Table 1 and taken into account at current market
prices. The considered algorithms: PSO, DE, MRFO, SFLA, RSA and
RUN are executed to check the feasibility and obtain the optimal
combination of system components, i.e., PV, WT, and ESS.

The process adopted by meta-heuristic methods to obtain the best
solution includes the following steps: (i) required data is input and
populations are generated randomly, (ii) feasibility check tests the
ability of RE and BS for serving the demand during the specified time,
(iii) the constraints are checked, and fitness value (with penalty) is
obtained for each solution, (iv) the optimal results are printed when the
stopping criterion is satisfied. The process is presented in Fig. 2.

Results and Discussion

The study is carried out for a village located at (9.6900 N, 42.753 o
E), which is far away from the main grid, and extending the grid is
infeasible. The analysis has the objective of supplying the load with the
constraints of achieving zero LPSP and the minimum total system cost
including the penalty. Each technique is coded in MATLAB. A 24-hour
cycle is observed for the utilization of energy from RES and ESS. In case,

the obtained combination of PV, WT, and ESS is able to supply the load
for the full duration of the study, the economic evaluation is performed
to derive the costs involved in installing the standalone MG.

The inverter and battery efficiency are taken as 90%, SOC,,;,, and
SOC,qx are taken as 20% and 90% respectively. The optimization
techniques were executed 40 times to obtain the results. All the opti-
mization techniques had a population size of 300 and the number of
iterations was set to 500. The optimal combination of PV panels (NPV),
wind turbines (NWT), and battery packs (NBAT) obtained for each
technique are listed in Table 2. A single converter with a rating of
300 kW is considered in all cases to tolerate the peak load value.

The combination of RES and battery packs is conditioned to result in
zero LPSP (LPSP=0) or 100% reliable system, as a precondition. The
combination of PV, WT, and BS was applied to calculate the source that
shall supply the power during each hour of the day. The excess energy
generated in a day from the optimized combination of the components
is also evaluated. Excess energy is energy generated through renewable
sources, which could not be utilized. The GHG gases emitted are ob-
tained and converted to cost for each solution using Eqs. 27 and 28. The
best solutions for different optimization techniques are shown in
Table 2.

The TACy and excess energy results for MRFO and RUN are similar,
however, MRFO performed better in run time. Similarly, the lowest
COE is found with MRFO and RUN. A comparison of COE and excess
energy for different optimization techniques is shown in Fig. 3.

The optimal component sizes obtained from the analysis are 247 PV
panels, 46 WT, and 249 BS packs. The priorities allocated in selecting
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Table 2
Optimal Solution of Multiple Optimization Techniques.
Methods Npy Nwr NBT TAC ($/yr) Excess Energy (kWh) Run time
(sec)
PSO 242 47 249 135,293.1 719 31
DE 227 52 204 137,981.9 971 19
MRFO 247 46 249 134,275.8 677 42
SFLA 243 48 224 135,029.2 786 12
RSA 243 49 208 135,358.8 837 33
RUN 247 46 249 134,275.8 677 67
0.1200 1500 F [2] G.R. Timilsina. 2020. Demystifying the costs of electricity generation technologies,
~—#—COE —+—Excess energy -3 . P . : .
. 0.1190 = [3] X.Deng, T. Lv, Power system planning with increasing variable renewable energy: a
g 01180 1000 E, review of optimization models, J. Clean. Prod. 246 (2020) 118962.
2 & [4] M. Roser. 2020. Why did renewables become so cheap so fast?, URL <https://
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