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A B S T R A C T

Electricity is regarded as a basic human requirement. Electric demand is met using either the grid (online) or the 
off-grid (standalone) method. The electrification of loads in remote areas requires high investment costs for 
extending the transmission system. A standalone Microgrid (MG) system is a low-cost method of supplying 
electricity to remote areas where a grid connection is not possible. This study concentrates on designing an 
optimal MG model for rural electrification with different renewable energy resources. The performance of the 
system is evaluated by considering power system reliability, economic costs, and greenhouse gas emission ef
fects. To obtain the optimal design parameters (i.e., component sizing), different optimization techniques like 
Particle Swarm Optimization (PSO), Differential Evolution (DE), Manta Ray Foraging Optimization (MRFO), 
Shuffled Frog-Leaping Algorithm (SFLA), Reptile Search Algorithm (RSA) and RUNge Kutta Optimizer (RUN) are 
implemented and compared. The goal of these optimization methods is to find the most reliable and cost- 
effective model.

Introduction

Renewable Energy Sources (RES) such as wind, small hydro, bio
mass, geothermal and solar are decentralized, modular technologies, 
with low environmental impact, smaller in size, and have low opera
tional costs. RES is penetrating the power system more than ever due to 
the above-mentioned characteristics [1,2]. HRES, which consists of 
Wind Turbines (WT), solar Photo-Voltaic (PV), storage systems, etc., is 
available and used in remote areas as an off-grid system. The installed 
capacity of HRES will reach 7059 GW worldwide, covering 49.21% of 
the total energy demand by 2040 [3].

The capital costs of RES plants will be curtailed in the future due to 
improved technologies in component production and storage systems. 
The global price of electricity generated from coal declined by 2%, while 
wind got 70% and solar 89% cheaper in the decade of 2010–2019 [4]. So 
utilizing these resources is a promising way to develop a modern power 
system with the benefits of being economical, reliable, and safe [5].

Based on their connection with the grid, MG operations are classi
fied as grid-connected or standalone. The entity is not connected to the 
grid, is autonomous in operation, controls, and consumes the energy 
generated or stored in the MG, in standalone systems. Such a system is 
preferable for remote regions where extending the grid is not eco
nomically feasible. The main demerit of standalone systems is that the 

RES is stochastic in nature. This disadvantage can be mitigated by 
combining HRES with Energy Storage Systems (ESS). ESS is used for 
peak shaving or time-shifting operations, provides a spinning reserve, 
ancillary services, and storage, and improves power quality and relia
bility [6].

Economic cost, reliability, and environmental effects are all factors 
considered in the planning, design, and operation of HRES MG. An 
optimal combination of HRES components helps to realize these ob
jectives. To find the optimal combination of HRES components, opti
mization techniques like PSO, DE, SFLA, MRFO, RSA, and RUN are 
implemented. A step-by-step solution to such optimization techniques is 
given in [7].

This study investigates the most cost-effective and reliable, HRES 
options, for supplying electricity to Jarre Village. The contribution of 
gas emissions from these HRES is also considered and a penalty is in
troduced for polluting solutions. The objective is to design a 100% re
liable system, which further makes the problem, complex and in
feasible. Thus it also tests the optimization techniques for their ability 
to obtain feasible solutions.

The paper is arranged as: section II discusses optimization algo
rithms, and section III, deals with performance evaluation parameters 
for HRES. Problem formulation is discussed in Section IV. Section V is 
the result and discussion part, and the conclusion is the final section of 
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the paper.

Algorithms used for HRES Optimization

The algorithms presented in this section are implemented for opti
mally designing the MG system. The optimization techniques are se
lected based on the year in which they were introduced, their perfor
mance, robustness, etc.

Particle Swarm Optimization (PSO)

PSO tries to imitate the social behavior of birds flocking and was 
developed by R. C. Eberhart and J. Kennedy (1995) [8]. It is a robust 
method and has been implemented through different variations [9]. A 
velocity of a particle for a new iteration, Vt+1 is modified by using Eq 
(1). 
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The new position Xt+1 for ith particle are calculated as Eq. (2). 

Xi t Vi t Xi t( 1) ( 1) ( )+ = + + (2) 

where, Xi(t), Vi(t): current position and velocity of particle; pbest and gbest: 
particle and swarm best position; c1, c2: personal and social influence 
coefficients; ϕ = c1 + c2, ϕ >  4; K: constriction factor.

Differential Evolution (DE)

Storn and Price introduced DE in 1997 [10]. DE’s basic strategy and 
parameter updating method include mutation, crossover, and selection 
as explained below: In mutation, a vector termed as mutant vector 
(vi;G+1) is obtained as in Eq. 3: 

vi G xr G F xr G xr G; 1 1; ( 2; 3; )+ = + × (3) 

For r1; r2; r3: random indices ∈1; 2;.; NP and ir1 r2 r3; F: real 
and constant factor ∈ [0,2]; G: iteration number.

Crossover introduces increased diversity in perturbed parameter 
vectors. The trial vector ui;G+1, for crossover update is calculated in 
Eqs. 4 and 5. 
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j = 1, 2,…,D.
A random number generated through ’randb’ is used to decide the 

trial vector content.
In selection, the greedy criterion is used to compare the trial vector 

to the target vector, xi;G. If the trial vector yields a better cost function 
value than the target vector, then xi;G+1 is set to ui;G+1; otherwise, the 
old value xi;G is retained.

Manta Ray Foraging Optimization (MRFO)

MRFO was introduced by Zhao, et al. in 2020. It imitates the be
havior of the Manta rays [11]. To update the positions of variables, 
chain foraging, cyclone foraging, and somersault foraging are applied: 
The mathematical model for chain foraging can be represented through 
Eq. 6 and 7. 
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Where, r: random vector [0,1]; d: dimension; t: current iteration 
number; Xd 

i (t): the ith individual position; Xd 
best(t): a region with a 

high concentration of plankton; Xd 
i−1 (t): the position update of ith 

manta ray; α: weight coefficient.
The mathematical model of cyclone foraging is shown through Eqs. 

8 and 9 to extend.
the motion to an n-D space. 
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Where, Tmax: maximum iterations; β: a weight coefficient; r1: random 
number [0,1].

A new random position is generated considering the current best in 
the exploration phase, and is formulated through Eqs. 10 and 11: 
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Where, Lbd and Ubd: lower and upper boundary of dimension d, re
spectively; xd

rand: random position in search space.
To update the positions of variables around the higher plankton 

concentration area, each manta ray moves around the plankton and 
somersaults to a new position, which is calculated as Eq. 12. 
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Where, r2 and r3: random number [0,1]; S: the somersault factor, used 
to determine the somersault range of the manta rays, S= 2.

Shuffled Frog-Leaping Algorithm (SFLA)

SFLA was introduced by Eusuff and Lansey in 2000 and mimics the 
food-searching social behavior of frogs [12]. SFLA creates subdivisions 
within the population, which are termed memeplexes and sub
memeplexes. The frogs within the submemeplexes help each other to 
improve their positions. The population is again merged and the process 
is repeated. The step (S) and new position (XN) are computed for the frog 
with the worst performance in the submemeplexes using Eqs. 13 and 14. 

S r X X( )b w= (13)  

X X Sfor S S SN w max max= + < < (14) 

Where r: random number (0,1); Xw, Xb: worst and best frog position; Smax: 
maximum step.

If the new position is better than the old position, it is replaced; 
otherwise, it is discarded and a new solution is randomly determined.

Reptile Search Algorithm (RSA)

RSA was proposed by Abualigah et al. Abualigah et al., [13] to 
mimic the hunting behavior of Crocodiles. The mathematical model of 
RSA is updated through encircling and hunting phases: Each solution 
updates its position using Eq. 15 as proposed for the encircling phase. 
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Where, Bestj(t): best-obtained solution; rand: random number [0,1]; T: 
maximum iterations; t: current iteration; η(i,j): hunting operator; β: 
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controls exploration accuracy (0.1); R(i,j): reduce function; x(r1,j): 
random position of ith solution; r1: random number [1 N]; ES(t): prob
ability ratio takes randomly decreasing values between [− 2, 2]; η(i,j), 
R(i,j) and ES(t) are derived from other equations present in [13].

The hunting phase of the process is achieved through Eq. 16. 

X
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T T

j
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(t) (i,j)(t) 4 4

(t) (i,j)(t) (i,j)(t) 4 4

=
× × >

× × >
+

(16) 

RUNge Kutta optimizer (RUN)

Proposed by Ahmadianfar et al., it is a metaphor-free population- 
based optimization technique based on basic mathematics [14]. Its 
mathematical formulation is updated using i) Root of Search Me
chanism and ii) Enhanced Solution Quality.

For a position xn it will have the worst position (xw) and best posi
tion (xb) as neighbors in space. The Search Mechanism (SM) in this 
algorithm is given by Eqs. 17 and 18. 

SM X1
6 RK X= (17)  

X k k k k1 2 2 2 3 4RK = + × + × + (18) 

Where δx: position increment; k1, k2, k3 and k4: coefficient variables.
The use of ESQ is for improving the status of solutions and elim

inating local optima. In ESQ for creating a new solution (Xnew2), Eqs. 
19–22 are used. 

X X r w X X rn. |( ) |new new new avg2 1 1= + + (19)  

w rand (0, 2) c i
T( )= (20)  

X Xr1 Xr2 Xr3
3avg = + +

(21)  

X X X(1 )new avg best1 = × + × (22) 

Where, β: random number [0,1]; c: random number.

HRES Performance Evaluation

The proposed HRES system is designed as a standalone MG for rural 
electrification in this study and is evaluated through the commonly 
used performance parameters of economic cost and reliability. 
Reliability is fixed at 100% for all candidate solutions obtained by 
optimization techniques. A penalty is applied to solutions without 
100% reliability. This constraint increases the problem’s complexity 
and renders the majority of the possible solutions, infeasible. Thus, the 
problem at hand is more of a feasibility problem rather than optimi
zation.

Economic Cost

The economic performance of the power system is evaluated 
through Cost of Energy (COE) ($/kWh) and Total Annual Cost (TACc) 
($/yr)) as formulated in Eqs. 23 and 24. Abazari et al., [15]. 

COE TAC
E

c

L
=

(23) 

Where, EL: yearly demand energy (kWh/yr). 

TAC N C i(1 i)n
(1 i) n 1
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Where, Cc: total capital cost of component ($/kW); CO&M: annual op
erating and maintenance cost ($/kW/yr); Cr: total replacement cost 

($/kW); Ncop: number of components used; n: project lifetime (yr); LF: 
Components lifetime (yr); i: interest rate per year (%); K: components 
type.

Reliability

Loss of Power Supply Probability (LPSP) is all energy deficits to the 
total load demand within the time interval (T). LPSP is represented 
through Eqs. 25 and 26 [16]. 

P P P P
P

LPSP
( (t) ( (t) (t) (t)))

(t)
D PV WT PB

D

t 1
T

t 1
T=

+ ±=

= (25) 

Where, PPV, PWT and PPB: total generated power (W) from solar, wind 
and battery respectively; PL: total load demand (W).

The constraint of 100% reliability implies that LPSP should be zero 
and the power supply satisfies the demand at all times. So reliability is 
considered the main constraint for analysis whereas system cost and 
environmental emissions are the main objectives.

Gas emission

Starting from production to energy generation, there is some gas 
emission from every RE. GHG from different HRES components influ
ences the optimal solution. Daily Carbon-Dioxide Emission (DCE) (Kg/ 
day) is calculated using Eq. 26 [17]. 

C EDCE
n

N
n Tn1

=
= (26) 

Where, ET: total energy produced from a unit, (kWh/day); N: number of 
energy generation components; C: life cycle gas emission from a unit, 
(kg/kWh). The amount of CO2 gas emission to produce one kWh energy 
in HRES by PV, WT, BS, and converter is 0.011, 0.045, 0.0402, and 
0.0047 kg CO2/kWh, respectively, [18].

Total CO2 Emission Penalty Cost (TCEP), ($/year) is calculated 
using Eq. 27. 

TGE DCE PFc = × (27) 

Where, PF: penalty factor, (0.075$/kg) [19]; T: time period; k: number 
of components in the system.

Problem Formulation

The primary objective of this study is to obtain the optimal quantity 
of HRES components with minimal costs including GHG penalty, which 
is expressed as Eq. 28. 

F Minimize TAC( )T= (28) 

For 

TAC TACc TCEPcT = + (29) 

The constraints considered for analysis are formulated in Eqs. 
30–34. 

LPSP 0= (30)  

N P t N P t N P t P t( ) ( ) ( ) ( )PV PV WT WT BS BS D+ ± (31)  

N P t PPV0 ( ) maxPV PV (32)  

N P t PWT0 ( ) maxWT WT (33)  

SoC SoC t SoC( )min max (34) 

Where, PPV, PWT, PBS: power output from PV, WT, and BS, respectively; 
N: number of components; SoC(t): battery charge at time ‘t′; SoCmin and 
SoCmax: minimum and maximum allowable battery SoC.

The system is configured with PV and WT as energy sources and 
battery as ESS. The converter is considered, for configuring the gener
ated power to the required specification. DC charge controller is 
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considered to regulate the charging and discharging of ESS. In the vil
lage, there are 150 households with a proposed daily load of 3173 
kWh/day and a peak load of 285.5 kW. The daily load curve for the 
Jarre village is shown in Fig. 1a.

The hourly average RES output power is shown in Fig. 1b. The 
output power generated by PV and WT, is computed through equations 
presented in [20]. The cost of standalone hybrid power system com
ponents is listed in Table 1 and taken into account at current market 
prices. The considered algorithms: PSO, DE, MRFO, SFLA, RSA and 
RUN are executed to check the feasibility and obtain the optimal 
combination of system components, i.e., PV, WT, and ESS.

The process adopted by meta-heuristic methods to obtain the best 
solution includes the following steps: (i) required data is input and 
populations are generated randomly, (ii) feasibility check tests the 
ability of RE and BS for serving the demand during the specified time, 
(iii) the constraints are checked, and fitness value (with penalty) is 
obtained for each solution, (iv) the optimal results are printed when the 
stopping criterion is satisfied. The process is presented in Fig. 2.

Results and Discussion

The study is carried out for a village located at (9.690◦ N, 42.753 ◦ 
E), which is far away from the main grid, and extending the grid is 
infeasible. The analysis has the objective of supplying the load with the 
constraints of achieving zero LPSP and the minimum total system cost 
including the penalty. Each technique is coded in MATLAB. A 24-hour 
cycle is observed for the utilization of energy from RES and ESS. In case, 

the obtained combination of PV, WT, and ESS is able to supply the load 
for the full duration of the study, the economic evaluation is performed 
to derive the costs involved in installing the standalone MG.

The inverter and battery efficiency are taken as 90%, SOCmin, and 
SOCmax are taken as 20% and 90% respectively. The optimization 
techniques were executed 40 times to obtain the results. All the opti
mization techniques had a population size of 300 and the number of 
iterations was set to 500. The optimal combination of PV panels (NPV), 
wind turbines (NWT), and battery packs (NBAT) obtained for each 
technique are listed in Table 2. A single converter with a rating of 
300 kW is considered in all cases to tolerate the peak load value.

The combination of RES and battery packs is conditioned to result in 
zero LPSP (LPSP=0) or 100% reliable system, as a precondition. The 
combination of PV, WT, and BS was applied to calculate the source that 
shall supply the power during each hour of the day. The excess energy 
generated in a day from the optimized combination of the components 
is also evaluated. Excess energy is energy generated through renewable 
sources, which could not be utilized. The GHG gases emitted are ob
tained and converted to cost for each solution using Eqs. 27 and 28. The 
best solutions for different optimization techniques are shown in 
Table 2.

The TACT and excess energy results for MRFO and RUN are similar, 
however, MRFO performed better in run time. Similarly, the lowest 
COE is found with MRFO and RUN. A comparison of COE and excess 
energy for different optimization techniques is shown in Fig. 3.

The optimal component sizes obtained from the analysis are 247 PV 
panels, 46 WT, and 249 BS packs. The priorities allocated in selecting 

Fig. 1. Daily Load and RES Generation Pattern of Jarre Village. 

Table 1 
Component’s cost for Stand-alone system. 

Components Cc ($/kW) Cr ($/kW) COM ($/kW/yr) Life Span (yr)

WT, 10 kW 1500 0 10 20
Solar PV, 1 kW 1000 0 5 20
Converter, 300 kW 250 250 0 10
BESS, 100Ah 150 150 12 5

Fig. 2. Flowchart of Optimization Algorithms. 
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the best results are (i) 100% reliability, ii) minimizing COE, and iii) 
minimizing GHG emissions.

Conclusion

The feasibility of supplying electricity to the remote village of Jarre 
in Ethiopia is investigated. The village has a lower level of load, ac
companied by the availability of RES. An optimal combination of RES 
and battery packs is found with the objectives of reliability, economics, 
and low GHG emissions. The comparison of different algorithms shows 
that MRFO is the best technique with a COE of 0.1159 $/kWh and the 
lowest total cost of 134,275.8 $/yr.
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