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Abstract—This work presents the four types of short-term
photovoltaic (PV) power forecasting models using a 1D convolu-
tion neural network based on 4 types of data handling. Multi-
Timestamp Multi-Feature-2 (MTMF-2) forecasting model gives
satisfactory results compared to Single-Timestamp Multi-Feature
(STMF) forecasting, Multi-Timestamp Multi-Feature-1 (MTMF-
1) forecasting, and Multi-Timestamp Single-Feature (MTSF)
forecasting. Historical data taken from one of the PV stations
in China is used as input to these forecasting models. Data
contains all 6 features which are Power, Irradiance, Temperature,
Pressure, Wind Direction, and Wind Speed for every 15-minute
timestamp. TensorFlow libraries are used for model building, and
the results are taken from the VS code IDE.

Index Terms—Convolution neural network, Data handling,
Multi features, Photovoltaic, Short-Term, Timestamp

I. INTRODUCTION

The penetration of renewable energies has increased during
these last decades since it has become an effective solution to
the world’s energy challenges. Solar energy is the most promi-
nent energy source among all renewable energy sources [1].
By using PV technology, we are converting solar energy into
electrical energy. The generated electrical energy depends on
different factors like irradiance, temperature, wind direction,
wind speed, and pressure [2]. All these factors are intermittent,
so the power generated by PV stations is also intermittent.
The intermittent power penetration to the grid gives economic
and operational challenges to the power system. The accurate
forecasting of Renewable energy generation can help in Unit
commitment, regulate power, and power quality [3].

Today, the study of PV forecasting is becoming popular in
terms of prediction research territory. There are different types
of forecasting based on time period [2].

• Short-Term(1hour-24hours):Used for unit
commitment,control spring reserves.

• Medium-Term(1day-1week,1week-1month):Crucial for
efficient operation and maintenance.

• Long-Term(1month-1year):Important for planning and
design of generation transmission and distribution sys-
tems for future demand.

Many researchers focus on single-timestamp multi-feature
prediction [4], which involves predicting all features of next
timestamp. However, this approach typically does not in-
volve predicting exactly one day ahead. This work mainly
concentrates on multi-timestamp prediction by handling the
data for training and testing. This multi-timestamp prediction
gives more error compared to the single-timestamp prediction,
but practically multiple time stamp forecasting is the correct
way of forecasting the features and power. Data analysis,
convolution neural network model, training the model and
results are discussed in this paper.

II. DATA ANALYSIS

The power output of a photovoltaic (PV) system is in-
fluenced by weather conditions, so it is necessary to gather
historical power data and weather data at the same time.
The data is collected from the inverter and weather devices
simultaneously. In this work we used PVOD dataset [5], which
consists of data from 10 PV stations and includes features
such as irradiance, temperature, pressure, wind direction, wind
speed, and power, all recorded at 15-minute intervals. Data
from one of the PV stations was used for this work. Input
data was in the form of a time sequence. All 6 features of
time sequence data are shown in Fig. 1.

The data in this work consists of time series information,
which means that it is collected and recorded over time. To
prepare the data for model training and testing, the window
technique method [4] was used.In the window technique, a
sliding window of a fixed size is applied to the time series
data. The window moves step by step through the data, and at
each step, a subset of the data within the window is considered
as one input sample for the model.

All features were normalized and considered as one vector
’X’ [X=P(Power), T(Temperature), Pr (Pressure), WD (Wind
Direction), WS (Wind Speed)] at each timestamp (TS) is
shown in TABLE I at a particular date and time (DT). In
this work, four types of data patterns were created which are
shown below20
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TABLE I
SAMPLE DATA

TS DT I W/m2 T ◦C Pr hPa WD degrees WS m/s P MW
0 8/15/2018 16:00 0 25.90 1006.299988 353 1.1 0
1 8/15/2018 16:15 0 25.90 1006.200012 330 0.9 0

Figure 1. Data visualization

TS- Time Stamp, DT- Date Time, I- Irradiance, T- Temper-
ature, Pr- Pressure, WD- Wind direction, WS- Wind speed, P-
Power

A. Single-Timestamp Multi-Feature (STMF) forecasting data
preparation

STMF data handling is used for all features of single
timestamp data forecasting. The input data is taken as fixed
window-sized timestamps of all feature data. The predicted
output (all features) is only used for evaluation purposes, not
for subsequent predictions. This time sequence data handling
is shown in TABLE II for a window size of 5. After data
handling, some patterns are used for training and the remaining
patterns are used for testing. This data handling method is only
used for single time stamp multi-feature forecasting because
both training data pattern preparation and testing data pattern
preparation are same.

TABLE II
TYPE 1 TRAINING

Input Output
X0, X1, X2, X3, X4 X5

X1, X2, X3, X4, X5 X6

X2, X3, X4, X5, X6 X7

B. Multi-Timestamp Multi-Feature-1 (MTMF-1) forecasting
data preparation

This type of data handling is also used for time series
forecasting. Training data patterns are the same as STMF but
during testing, the predicted output is used as input for the next
prediction, forming a sequence of predictions. The preparation
of the testing data set is illustrated in TABLE III assuming
testing data starts from the Nth timestamp and here window
size is 5. Predicted output values are represented by X (bold
X).

TABLE III
TYPE 2 TESTING

Input Output
Xn, Xn+1, Xn+2, Xn+3, Xn+4 Xn+5

Xn+1, Xn+2, Xn+3, Xn+4,Xn+5 Xn+6

Xn+2, Xn+3, Xn+4,Xn+5,Xn+6 Xn+7

C. Multi-Timestamp Single-Feature (MTSF) forecasting data
preparation

MTSF data handling is also used for one feature time series
forecasting. The input data is window-sized timestamps of all
feature data, and the output is n time stamps of power (P). This
model can directly predict the required number of hours of
power. For instance, when the window size is 700, it represents
nearly one week of data as input. And if n is 100, it means
one day of power is given as output. This is demonstrated in
TABLE IV, where both the training and testing data sets are
prepared in the same way.

TABLE IV
TYPE 3 DATA SAMPLING

Input Output
X0, X1, X2, X3.....X698, X699 P700, P701, ......., P798, P799

X1, X2, X3, X4.....X699, X700 P701, P702, ......., P799, P800

X2, X3, X4, X5, ....X700, X701 P702, P703, ......., P800, P801

D. Multi-Timestamp Multi-Feature-2 (MTMF-2) forecasting
data preparation

This type of data preparation is also used for multi-feature
time series forecasting. In this type, a window size of past data
pointing at a particular time is used as input, and the output
is the next data point at the same time instant. For example, if
the window size is 2, the data preparation is shown in TABLE
V. This model also gives the multi-timestamp of all feature
output. Both training data pattern preparation and testing data
pattern preparation are same.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 26,2025 at 12:51:03 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V
TYPE 4 DATA SAMPLING

Time Input Output
16:00 X0(8/15/2018), X96(8/16/2018) X192(8/17/2018)
16:15 X1(8/15/2018), X97(8/16/2018) X193(8/17/2018)
16:30 X2(8/15/2018), X98(8/16/2018) X194(8/17/2018)

III. CONVOLUTION NUERAL NETWORK MODEL(CNN)

Convolutional Neural Network (CNN) is a powerful tool for
processing multi-dimensional data [6], particularly in image
recognition tasks. They consist of multiple layers includ-
ing convolutional, pooling, flattening, and dense layers, that
extract, and process features from the input data [7]. The
convolutional layer applies filters to the input data to extract
features, while pooling layers reduce the spatial dimensions of
the data for efficient feature extraction. The dense layers at the
end of the network make predictions based on the processed
features. The network is trained using the backpropagation
algorithm, updating the filter weights to minimize the error
between the predicted and target outputs.

A. Single-Timestamp Multi-Feature (STMF) forecasting Model

In this study, STMF data patterns were used, which are
shown in Table II for training and testing a model. The aim
of this model is to predict the next time instant of all features
(power, irradiance, pressure, temperature, wind direction, wind
speed). The model architecture is shown in Fig. 2. The model
has low error as it only predicts the next time instant. However,
it doesn’t provide forecasting one day ahead.

Figure 2. Single-Timestamp Multi-Feature (STMF) forecasting Model

B. Multi-Timestamp Multi-Feature-1 (MTMF-1) forecasting
Model

The architecture of the MTMF-1 model is same as that of
the STMF model. This model is trained as same as the STMF
model, but testing is done by the MTMF-1 testing data pattern
shown in TABLE III. However, the use of predicted values for
making the next prediction results in a higher error compared
to the STMF model. This is due to the accumulation of errors
from the previous predictions that deviate the model from the
original curve, as demonstrated by the results.

C. Multi-Timestamp Single-Feature (MTSF) forecasting model

The limitations of the STMF and MTMF-1 models are
addressed by using MTSF. The model uses MTSF data patterns
shown in TABLE IV for training and testing. For one-day
ahead prediction, 100-time stamps are used as outputs because
each timestamp is 15 minutes. This model results in an error
that is higher than that of the STMF model but lower than
that of the MTMF-1 model. It provides a sense of the one-day
ahead prediction. The model architecture is shown in Fig. 3.

Figure 3. Multi-Timestamp Single-Feature (MTSF) forecasting model

D. Multi-Timestamp Multi-Feature forecasting-2(MTMF-2)
Model

This model utilizes the STMF-2 data set and takes past data
into consideration from the same time to make predictions
for the next day’s output at the same time. The results of
our analysis showed by this model outperformed compared
to above MTSF. The architecture is shown in Fig. 4. This
model predicts all six features. This model gives a high error
compared to the STMF model, but it gives a practical sense
of forecasting.

Figure 4. Multi-Timestamp Multi-Feature forecasting-2(STMF-2) Model

IV. TRAINING THE MODEL

Training the models involves adjusting the hyperparameters
to optimize the learning parameters, leading to reduced error.
There are various types of hyperparameters that can be tuned.

A. Number of convolution layers

In a Convolutional Neural Network (CNN), the convolution
layer is one of the key hyperparameters that can significantly
impact the model’s performance. This layer performs a math-
ematical operation, called convolution, to extract important
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features from the input data. The hyperparameters that can
be adjusted in a convolution layer include the number of
filters, the size of filters, and the stride size. The number
of filters determines the depth of the layer and the number
of features that can be extracted. The size of filters controls
the scope of features captured by each filter, while the stride
size determines how the filters slide over the input data. By
adjusting these hyperparameters, the model can be fine-tuned
to improve its accuracy and efficiency.

B. Activation function

Activation functions play an important role in deep learning
as they introduce non-linearity in the model. The activation
function is used to determine the output of each neuron in a
neural network. The choice of activation function is a crucial
hyperparameter as it affects the network’s ability to learn
and make predictions. Common activation functions used in
deep learning include sigmoid, ReLU, tanh, and softmax. The
choice of activation function should be based on the specific
problem being solved and the properties of the data being used.
The ReLU activation function, for instance, is widely used for
its computational efficiency and the ability to handle sparse
data. The sigmoid activation function is useful for binary
classification problems, while the softmax activation function
is suitable for multiclass classification problems. Thus, the
selection of activation functions should be carefully considered
while tuning the hyperparameters in a deep learning model.

C. Learning rate

The learning rate is a scalar value that determines the step
size of the updates made to the model parameters during
training.The learning rate is a crucial hyperparameter that
influences the convergence and performance of a machine
learning model. A small learning rate results in slow conver-
gence while a large learning rate may cause overshooting of
the optimal solution.The appropriate learning rate is dependent
on the specific problem and the model architecture and must
be selected through experimentation and validation.

D. Loss function

The loss function is a crucial hyperparameter in machine
learning that measures the difference between the predicted
output and the true output. It is used to guide the optimization
process during training and determine the model’s perfor-
mance. The appropriate loss function depends on the specific
problem and the model architecture. Common loss functions
include mean squared error, categorical cross-entropy, and
binary cross-entropy. The squared error loss function was used
in this work.

E. Optimizer

An optimizer is an algorithm used to adjust the model
parameters during training in order to minimize the loss. The
choice of optimizer can significantly impact the convergence
and performance of a machine learning model. There are
various types of optimizers available, including gradient de-
scent, stochastic gradient descent, Adam [8], and many others.

Each optimizer has its own strengths and weaknesses,and the
appropriate optimizer depends on the specific problem and
model architecture. Some optimizers have hyperparameters
that can be adjusted to further fine-tune performance, such as
the learning rate and momentum. Optimizers are implemented
as part of the training process and are typically provided as
part of deep learning frameworks, such as TensorFlow. In this
model, we used the Adam optimizer for better performance.

V. RESULTS DISCUSSION

In this section, the results of each model were discussed and
compared. The performance of each model was evaluated and
analyzed, and the strengths and limitations of each model were
highlighted. The tables in this section represent the testing
results of each model for different hyperparameters. This
information was used to determine which model was the best
for given task of predicting power. STMF model predictions
have low error as only one instance is predicted. Fig. 5
represents the results of these predictions. The next instance
of all 6 features Power, temperature, Pressure, irradiance,
wind direction, and wind speed are predicted. TABLE VI
represents the results of different hyperparameters for the
STMF model. The results show the impact of changing the
values of hyperparameters on the performance of the model.
The table provides a comparison of the performance of the
model with different hyperparameters and helps to determine
the optimal set of hyperparameters for the problem being
considered.

Figure 5. STMF Prediction

Fig. 6 represents the test results of the MTMF-1 model.
In this model, the previous predicted value is used for the
next prediction. If the first prediction has some error, the
same prediction is used for the next prediction, resulting in
an increment in error. This figure illustrates the impact of
error accumulation on the performance of the model when
the previous predicted value is used in subsequent predictions.
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TABLE VI
STMF MODEL TESTING RESULTS FOR DIFFERENT HYPERPARAMETERS RELU AS ACTIVATION

Window Convolution Filters Learning rate activation Epoch RMSE Test
10 1 10 0.001 ReLU 200 0.2979
10 1 10 0.005 ReLU 80 0.3686
20 1 10 0.001 ReLU 200 0.3053
20 2 10,10 0.001 ReLU 80 0.3344
50 2 50,30 0.001 ReLU 80 0.3230
70 3 50,30,10 0.001 ReLU 80 0.3780
10 1 10 0.001 Tanh 80 0.3853
50 1 10 0.005 Tanh 80 0.3853
50 1 10 0.005 sigmoid 80 0.3588

TABLE VII
MTSF MODEL TESTING RESULTS FOR DIFFERENT HYPERPARAMETERS RELU AS ACTIVATION

Window Convolution Filters Learning rate activation Epoch RMSE Test
700 1 20 0.001 ReLU 150 0.9837
700 2 20,20 0.001 ReLU 150 1.0417
700 4 20,20,20,20 0.001 ReLU 80 1.6323
700 4 20,20,20,20 0.001 ReLU 80 0.6323
700 6 10,10,10,7,10,3 0.001 ReLU 150 0.8859
800 4 20,20,20,20 0.001 ReLU 805 01.040
500 1 20 0.001 ReLU 80 1.166
700 8 20,20,2,10,20,20,7,10,10 0.001 ReLU 100 0.633
700 11 10,10,10,10,10,7,10,10,7,10,7 0.001 ReLU 100 0.8514
700 8 5,10,10,5,10,7,10,17 0.001 ReLU 100 0.8216

TABLE VIII
MTMF 2 M ODEL T ESTING R ESULTS OR DIFFERENT HYPERPARAMETERS RELU AS ACTIVATION

Window Convolution Filters Learning rate activation Epoch RMSE Test
5 2 10,7 0.001 ReLU 100 0.551
5 4 4 0.001 ReLU 100 0.5913
8 4 10,7,5,3 0.001 ReLU 100 0.5358

14 4 10,7,5,3 0.001 ReLU 100 0.6019
8 2 10,7 0.0001 ReLU 150 0.6811

21 3 15,7,5 0.001 ReLU 200 0.4269
28 2 15,15 0.001 ReLU 200 0.4902
30 3 15,7,15 0.001 ReLU 200 0.5875

Figure 6. MTMF-1 Prediction

Fig.7 shows the results of the MTSF model. In this model,
power is predicted directly one day ahead. The graph repre-
sents the last three predictions, which are shown in TABLE
VII. This graph provides a visual representation of the model’s

Figure 7. MTSF Prediction

performance for predicting power one-day ahead and helps to
understand the accuracy of the predictions made by the model.
Fig.8 displays the results of the MTMF-2 model. TABLE VIII
describes test losses for various hyperparameters. This model
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Figure 8. MTMF-2 Prediction

gives a balance between accuracy and practical sense. MTMF-
1 and MTSF models also give a practical sense, but MTMF-1
is diverging at starting and MTSF gives more error compared
to MTMF-2 model.

VI. CONCLUSION

The paper proposes four models for power prediction using
Convolutional Neural Networks (CNNs) and different data
preparation methods. In the STMF model, all features of the
next time instant were predicted without incorporating the
previous prediction, leading to low error. In the MTMF-1
model, the predicted value of the current time was used for the
next prediction, resulting in a higher error. The MTSF model
directly predicted the power of the next time instant, which
resulted in an even higher error compared to the STMF model.
The MTMF-2 model predicted the power output for one day
by using past data at the same time. Thus, we conclude that the
MTMF-2 model is the best for predicting Photovoltaic (PV)
power output compared to the STMF, MTMF-1, and MTSF
models.
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