
Connection Science

ISSN: 0954-0091 (Print) 1360-0494 (Online) Journal homepage: www.tandfonline.com/journals/ccos20

High-performance computing for static security
assessment of large power systems

Venkateswara Rao Kagita, Sanjaya Kumar Panda, Ram Krishan, P. Deepak
Reddy & Jabba Aswanth

To cite this article: Venkateswara Rao Kagita, Sanjaya Kumar Panda, Ram Krishan,
P. Deepak Reddy & Jabba Aswanth (2023) High-performance computing for static
security assessment of large power systems, Connection Science, 35:1, 2264537, DOI:
10.1080/09540091.2023.2264537

To link to this article: https://doi.org/10.1080/09540091.2023.2264537

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 04 Oct 2023.

Submit your article to this journal

Article views: 845

View related articles

View Crossmark data

Citing articles: 1 View citing articles

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ccos20

https://www.tandfonline.com/journals/ccos20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/09540091.2023.2264537
https://doi.org/10.1080/09540091.2023.2264537
https://www.tandfonline.com/action/authorSubmission?journalCode=ccos20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ccos20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/09540091.2023.2264537?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/09540091.2023.2264537?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/09540091.2023.2264537&domain=pdf&date_stamp=04%20Oct%202023
http://crossmark.crossref.org/dialog/?doi=10.1080/09540091.2023.2264537&domain=pdf&date_stamp=04%20Oct%202023
https://www.tandfonline.com/doi/citedby/10.1080/09540091.2023.2264537?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/09540091.2023.2264537?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=ccos20

CONNECTION SCIENCE
2023, VOL. 35, NO. 1, 2264537
https://doi.org/10.1080/09540091.2023.2264537

High-performance computing for static security assessment
of large power systems

Venkateswara Rao Kagitaa, Sanjaya Kumar Pandaa, Ram Krishanb, P. Deepak Reddyc

and Jabba Aswantha

aDepartment of CSE, National Institute of Technology Warangal, Warangal, India; bDepartment of EE,
National Institute of Technology Warangal, Warangal, India; cDepartment of EE, Indian Institute of
Technology Kharagpur, Kharagpur, India

ABSTRACT
Contingency analysis (CA) is one of the essential tools for the optimal
design and security assessment of a reliable power system. However,
its computational requirements rise with the growth of distributed
generations in the interconnected power system. As CA is a com-
plex and computationally intensive problem, it requires a fast and
accurate calculation to ensure the secure operation. Therefore, effi-
cient mathematical modelling and parallel programming are key
to efficient static security analysis. This paper proposes a parallel
algorithm for static CA that uses both central processing units (CPUs)
and graphical processing units (GPUs). To enhance the accuracy, AC
load flow is used, andparallel computationof load flow is done simul-
taneously, with efficient screening and ranking of the critical contin-
gencies. We perform extensive experiments to evaluate the efficacy
of theproposedalgorithm.As a result,weestablish that theproposed
parallel algorithm with high-performance computing (HPC) com-
puting is much faster than the traditional algorithms. Furthermore,
the HPC experiments were conducted using the national supercom-
puting facility, which demonstrates the proposed algorithm in the
context of N−1 and N−2 static CA with immense power systems,
such as the Indian northern regional power grid (NRPG) 246-bus and
the polish 2383-bus networks.

ARTICLE HISTORY
Received 23 March 2023
Accepted 25 September 2023

KEYWORDS
Contingency analysis;
high-performance
computing; large power
systems; N−1 contingency;
N−2 contingency; security
assessment

Nomenclature/Notation

BHU Banaras Hindu university
CA Contingency analysis
CPUs Central processing units
DC Direct current
FDLF Fast decoupled load flow
GOSF Generator outage sensitivity factors
GPUs Graphical processing units
HPC High-performance computing

CONTACT Sanjaya Kumar Panda sanjaya@nitw.ac.in Department of CSE, National Institute of Technology
Warangal, Warangal, 506004 India

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in
any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the
Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.aisb.org.uk/
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/09540091.2023.2264537&domain=pdf&date_stamp=2023-10-04
mailto:sanjaya@nitw.ac.in
http://creativecommons.org/licenses/by-nc/4.0/

2 V. RAO KAGITA ET AL.

IIT Indian Institute of Technology
LOSF Line outage sensitivity factors
MPI Message passing interface
NRLF Newton-Raphson load flow
NRPG Northern regional power grid
PARAM PARAllel machine
PI Performance index
PVM Parallel virtual machine
SIMD Single instruction multiple data
SISD Single instruction single data
SSA Static security assessment

1. Introduction

The power system has become vulnerable to disruptions due to fast network growth,
rising energy consumption and incorporation of renewable energy resources (Gholami
et al., 2020; Nayak et al., 2022a, 2022c). Subsequently, the power system’s static security
assessment (SSA) encounters numerous challenges in these scenarios. More specifically,
the N−1 steady-state security of a power system CA is one of the most critical compo-
nents of power system design, planning and real-time operation (Mitra et al., 2016; Salem
et al., 2019). For instance, a transmission line or transformer contingency or outage can pro-
duce overloads in neighbouring lines, a rapid surge or a fall in node voltage, which may
lead to cascaded contingency. Note that contingency is an abnormal condition in power
systems,whichputs theentire system,or aportionof it, under stress/blackout (Davis&Over-
bye, 2010; Ejebe&Wollenberg, 1979; Irisarri & Sasson, 1981;Mikolinnas&Wollenberg, 1981).
The line outage is one of themajor aspects in determining the impact of significant contin-
gencies. As a result, providing possible preventative and corrective are the steps to resolve
system breaches (Mishra & Khardenvis, 2012). Therefore, high-performance computations
are needed for CA to guarantee the power system’s security and reliability (Li et al., 2009;
Li & Weng, 2009; Nayak et al., 2022b, 2021; Yang et al., 2005; Zhou et al., 2013). Generally,
load flow solutions are considered to evaluate the impacts of the component outage(s) in
CA. Hence, heavy computation is a critical issue in the context of CA.

Security assessment plays a significant role in the reliable power supply of wide-area
power systems. The SSA helps to make appropriate control and operational decisions
during the power system’s element outage(s). However, performing SSA using the conven-
tional approach (like sequential approach without HPC) is computationally challenging for
larger power systems. Alternatively, SSA is essential to determine the state and ensure the
power system’s stable, reliable and steady operation. It performs repeated load flow analy-
sis, which provides a steady state solution of the power system, such as voltagemagnitude,
angles, bus injection and power flows transmission lines (Burada et al., 2016). It is notewor-
thy to mention that load flow analysis is a non-linear and computationally intense tool in
the power system. There are various methods for load flow analysis, namely Gauss-Seidel,
Newton-Raphson load flow (NRLF), fast decoupled load flow (FDLF) and others (Grainger
et al., 2015; Kothari & Nagrath, 2003; Patra, 2015). Among these methods, the NRLF is the
most accurate but computationally intensive, whereas the FDLF is slightly less accurate,

CONNECTION SCIENCE 3

with a significant reduction in computational burden. Therefore, the FDLF methods are
often used for SSA using CA (Grainger et al., 2015; Kothari & Nagrath, 2003).

Contingency in a power system is an outage or loss of an element or a component or
a combination of components in the power system, such as generators, transformers, or
transmission lines. The outage could be due to the system’s planned service maintenance
or unplanned failure (Patra, 2015). The load flow analysis determines the system’s state dur-
ing each component outage. Moreover, it is generally a software application that tests all
possible contingency cases for a particular system. On the other hand, CA observes and
records limit violations in transmission lines’ power flows or bus voltages for each out-
age. It is important for taking corrective actions to ensure the stable and reliable power
operations. For a systemwithN number of elements,N−1 CA refers to analysing the occur-
rence of any single element outage (Mitra et al., 2016; Salem et al., 2019). Similarly, N−k
CA refers to a simultaneous outage of k different elements. Moreover, N−1−1 CA refers
to the sequential outage of two system elements, where the second outage occurs after
the necessary remedial/corrective action is taken for the first contingency (Mitra et al.,
2016).

In N−1−1 contingency, the operator has prior knowledge about the critical N−1 out-
ages and corresponding actions to mitigate the effects of that outage. However, there can
be possibilities of another outage after corrective action, which is referred to as N−1−1
contingency. These sequential outages could impact the system, leading to severe black-
outs. To perform N−1−1 CA, we simultaneously perform an outage of two elements and
investigate the limit violations in the transmission lines. Generally, the number of possi-
ble two-element combinations in N-element system is N× (N−1). Therefore, performing
N−1−1 CA is computationally intensive for large power systems. As a result, N−1−1 CA
requires computationally an efficient SSA algorithm (Zhang et al., 2021).

Researchers have proposed various algorithms in the literature to address the discussed
computation problem. Burada et al. (2016) have proposed a contingency screening and
ranking method using NRLF. Davis and Overbye (2010) have used line outage sensitiv-
ity factors (LOSF) and generator outage sensitivity factors (GOSF) for faster computation.
Chen and McCalley (2005) have investigated the network topology-based CA. Kumar
and Reddy (2015) have employed exact and precisemethods to improve efficiency in terms
of computational time. These papers have focussed on efficiently ranking all possible con-
tingencies during SSAwithout omitting any critical case contingency. Various performance
indices are considered in the literature for N−1 CA to estimate outage severity using post
contingent values and approximate the limit violations (Brandwajn & Lauby, 1989; Ejebe
& Wollenberg, 1979; Irisarri & Sasson, 1981; Mikolinnas & Wollenberg, 1981; Zaborszky
et al., 1980). However, none of these papers has considered HPC to solve the N−1 and
N−1−1 CA. Currently, CA involves a heavy load flow computation which is very difficult
to update every few minutes, even with parallel computation. The requirement for faster
updates is crucial because power grids operate closer to the edge to fulfil the increasing
energy demand. Generally, contingency cases are relatively independent, so CA is inher-
ently a parallel process. Mathematically, there is a relatively straightforward parallelisation
path, but the issue with parallelisation schemes remains due to the uneven computation
time of individual cases.

There are several ways to reduce computational overhead. (1) Efficient mathematical
modelling (2) Parallel computations using HPC by dividing a large task into a set of smaller

4 V. RAO KAGITA ET AL.

tasks. HPC employs parallel computers to solve scientific and engineering problems. These
computers can range in various sizes, from a single high-performance workstation with
manyprocessing units tomassive systemswith hundreds or thousands of processors.Many
significant works are initiated by considering power systems and HPC (i.e. distributed, grid,
multicore and GPU computing) (Green et al., 2011; Ramesh, 1996). Here, HPC approaches
enable faster analysis in various scenarios, even if a large set of variables exist.

This paper proposes parallel computation of N−1 and N−2 CAs and compares them
with sequential computation of N−1 and N−2 CAs. Moreover, the paper aims to develop a
fast and efficient HPC algorithm for large power systems’ SSA without compromising accu-
racy. The proposed parallel algorithm with HPC ensures large power systems’ security and
helps in reliable operations. In the above-discussed scenarios and taking advantage of the
independent nature of the contingencies, a strategy based on performance indices is pro-
posed for screening and ranking the severe contingencies. SSA is a crucial process that
ensures the reliable and stable operation of electric power systemsby analysing their stabil-
ity, voltage profiles and power flow patterns under various operating conditions. With the
increasing size and complexity of modern power systems, HPC has become indispensable
in enhancing the accuracy and efficiency of these assessments. We highlight the significant
contributions of this paper as follows.

(1) We propose computationally efficient parallel algorithms for multicore HPC in a
message-passing interface (MPI) environment to perform a faster calculation with
acceptable accuracy in SSA. The algorithms are evaluated in the national supercomput-
ing facility available at the Indian Institute of Technology (IIT) (BanarasHinduUniversity
(BHU)), Varanasi.

(2) The proposed parallel algorithm enables the effective coordination among multicore
CPU and GPU combination for faster computation.

(3) A composite performance index considering both line flow and bus voltage indices is
proposed for efficient screeningand rankingof the critical contingencies in largepower
system.

(4) To avoid the inversion of Jacobian matrix in FDLF, Conjugate Gradient (CG) method is
implemented without compromisation of SSA accuracy.

(5) The proposed algorithms for N−1 and N−2 CA are evaluated in various standard test
systems and Indian power systems, namely IEEE 14, IEEE 57, IEEE 118, NRPG 246-bus
and polish 2383-bus.

The remainingparts of this paper areorganisedas follows. Section1describes the related
work. Section 2 presents the mathematical formulation of the contingency screening and
ranking problem. The key algorithmic ideas of parallel computation for SSA are described
in Section 3. Section 4 shows the experimental results and discusses various test systems.
Section 5 presents the conclusion and future scope.

2. Related work

This section emphasises the state-of-the-art algorithms for CA and establishes the need
for an efficient algorithm. Performance index (PI) based SSA methods compute post-
contingency to identify the severity of the outage (Mitra et al., 2016). The literature also

CONNECTION SCIENCE 5

witnesses various contingency screening algorithms based on partial or approximate net-
work solutions that reveal the voltage and/or power flow violation levels (Brandwajn
& Lauby, 1989). However, due to approximation and high nonlinear impact, these algo-
rithmsmayprovide anunrealistic severity (Zouet al., 2022).With the recent advancementof
computational resources, performing a complete alternating current power flow for large
systems has become computationally feasible and reliable (Salem et al., 2019). This moti-
vates us to develop parallel algorithms for a fast, reliable and accurate assessment of N−1
and N−2 CA using parallel computing infrastructure.

Balduino and Alves (2004) have used both MPI and parallel virtual machine (PVM) to
perform the SSA on the Brazilian power grid. Note that this power grid serves millions
of customers. Many paradigms, including synchronous and asynchronous master-slave
topologies, are used to sample massive contingencies. A pervasive grid method is used to
define user-friendly software architecture for gathering data from electrical networks. Sub-
sequently, the data is processed to mimic potential scenarios in a real electrical network
(Morante et al., 2006). Huang et al. (2009) have analysed the applicability of HPC for mas-
sive CA and focussed on load balancing. They have considered 3 lakh contingencies. Every
contingency case is simply a power flow analysis. Each contingency changes its admittance
matrix with an incremental change from the base case, given a solved base case. To man-
age case allocation and load balancing, one processor is designated as the master process
and the other processors as the slave processes. Green et al. (2011) have used both static
and dynamic load balancing strategies.

To formulate the real-time CA, both the DC load flow (DCLF) and AC load flow (ACLF)
have been used onHPC platforms, Zhou et al. (2016) and Roberge et al. (2017), respectively.
The DCLF is a linear model of non-linear power systems with large assumptions. Though
DCLF is constitutionally efficient, the accuracy and capability of the solution are insuffi-
cient, e.g. the inability to check voltage limit violations. On the contrary, the non-linear
ACLF is more accurate but constitutionally complex. In the literature, several sophisti-
catedmethods have been implemented on GPU to address alternating current power flow
(ACPF)-based real-time CA (RTCA), such as the Newton-Raphson (NR) method and the Fast
Decoupled (FD) method (Huang & Dinavahi, 2018). In such complex power system prob-
lems, researchers have used methods using the latest technologies: artificial intelligence,
machine learning, deep learning and high-performance computing (Hailu et al., 2023) to
resolve the constraints associatedwith existingpower systemsolutions. InQianet al. (2022),
N−1 security assessment has been carried out using a deep learning algorithm, namely a
deep convolutional neural network, where the impact of renewable energy resources is
assessed. However, N−1−1 security assessment is not addressed due to computational
burden. Moreover, they have not used high-performance computing to reduce the com-
putational complexities. Hassan et al. (2022) have shown the impact of N - k contingencies
leading to cascading failure. They have used a stacked denoising auto-encoder to extract
the features of power systems and evaluated using the IEEE 118 bus test system,whichmay
not be faster for higher bus systems like Polish and Indian power systems. However, high-
performance computingmakes it feasible todealwith such largepower systems. Therefore,
this paper attempts to solve the problem using high-performance computing because it
can efficiently and accurately handle complex nonlinear problems.

A thorough CA procedure contains three steps, namely contingency selection, parallel
CA and post-processing of CA. Pattery and Hassainar (2013) have established the N−1 CA

6 V. RAO KAGITA ET AL.

Table 1. Summary of the related work.

Article Advantage Disadvantage

Mitra et al. (2016) Strategies for calculating performance
indices to evaluate the N−1−1
contingency are given.

Faster computation method like HPC is
not used.

Zhou et al. (2016) HPC is implemented for DC load
flow-based contingency analysis.

AC loadflow-based security assessment
is not considered.

Huang and Dinavahi (2018) Data structure and kernel function are
effectively used.

The parallel compensation method
using aGPUcluster is not considered.

Zou et al. (2022) An incidence matrix is proposed for
the parallel calculation of N−1
contingency.

The large power system is not
considered for evaluation.

Qian et al. (2022) N−1 security assessment is only
performed.

N−1−1 security assessment is not
addressed. HPC is not used for
implementation.

Hassan et al. (2022) N−k contingencies is only addressed. The evaluation is limited to IEEE 118
bus test system. HPC is not used for
implementation.

Hailu et al. (2023) Advanced computational methods are
reviewed.

Efficient system modelling is not
focussed.

framework. They have explored and implemented computational load balancing strate-
gies. Gopal et al. (2007) have explored the parallel implementation of direct current (DC)
power flow-based CA on the GPU, which is quite faster than the CPU implementation. Ezhi-
larasi and Swarup (2009) have implemented a parallel processing methodology for faster
calculations of SSA. However, its performance for a small system like the 14-bus system
could be more efficient. The summary of the related work is shown in Table 1.

3. Contingency screening and ranking

Contingency ranking is based on the severity of the operational or element capacity limit
violations. The severity calculation requires an intensive load flow solution after every sin-
gle outage. Post-contingency load flow solution provides the bus voltage information and
the power flowover the transmission line parameters (Gopal et al., 2007). These twoparam-
eters are crucial to know the system’s operating condition. Given the line flow and voltage
values at a particular contingency case, system constraints can be checked to ensure reli-
able operation using two performance indices (PIs), namely line flow index (PIpl) and bus
voltage index (PIvi). In this work, the system condition is estimated by PIc, which considers
both PIpl and PIvi indices. The calculations of these indices are stated as follows (Prabhakar
et al., 2022).

PIpl = WP
l

2n

[
Pl
PBl

]2n

(1)

PIvi =
WV

i

2n

[
Vi − Vi

B

�Vlimit
i

]2n

(2)

PIPl + PLvi = PIc (3)

where PIpl is the PI of branch power flow, which indicates violations in lth branch flow an
outage, Pl is the power flow in lth line during contingency, PBl is the base power flow value

CONNECTION SCIENCE 7

for the lth line, WP
l is the weighting factor for lth line, PIvi is the voltage PI, which indicates

voltage violations at ith bus, Vi is the post contingency voltage at ith bus, Vi
B is the base case

voltage obtained in pre-contingency load flow at ith bus,WV
i is the weighting factor for ith

bus, �Vlimit
i is the change in voltage and n is the empirical experimental co-efficient. If PIpl

> 1 or PIvi > 1, then PIc is incremented by 1.
The step-by-step procedure for ranking contingencies is as follows.
Step 1: Input line data and bus data of the test system.
Step 2: Perform FDLF analysis.
Step 3: Initialise all the possible contingencies in the network (say, j = 1).
Step 4: Run post-contingency load flow. Calculate PIpj and PIvj for every outage. If PIpj >

1 or PIvj > 1, then PIj = PIj + 1.
Step 5: Rank all the contingencies from the higher PIj value to the least PIj value.
It is noteworthy to mention that the load flow is a non-linear problem. However, its CA

can be calculated by solving a set of linear equations Ax = b. In this paper, we use the
FDLFmethod,which is fasterwith acceptable accuracy. Due to the decoupling of active and
reactive power, the FDLF analysis is formulated with a constant Jacobian matrix and must
not be calculated in each iteration. The basic FDLF model is discussed in the next section,
and it is solved using a parallel programming approach.

4. Mathematical modelling and proposed algorithms using HPC

The convergence in the FDLFmethod is faster than the NRLFmethod and the Gauss-Seidel
load flowmethod. It is often necessary to perform two to five iterations to achieve practical
accuracy. The pace for iterations in the FDLF is nearly five times that of the NRLF method
and roughly two-thirds that of the Gauss-Seidel method.

With the assumed slack bus voltage (usually, V1 = 1 ∠0◦ per unit), the remaining (n−1)
bus voltages are found through an iterative process. The process is described as follows
(Prabhakar et al., 2022).

Pi =
n∑
j=1

|Vi||Vj||Yij| cos(θij − δi + δj) (4)

where Pi is the power injection at ith bus, Yij is the admittance of line between ith and jth bus,
θij is the angle of Yij element of Ybus, δi is the voltage angle at ith bus and δj is the voltage
angle at jth bus (Ahmadi et al., 2021).

Qi = −
n∑
j=1

|Vi||Vj||Yij| sin(θij − δi + δj) (5)

where Qi is the reactive power injection at ith bus.
Equations (4) and (5) are called static load flow equations. The current injection Ii at ith

bus can be evaluated using active and reactive injected powers, which is defined as follows.

Ii = Pi − jQi

V∗
i

(6)

8 V. RAO KAGITA ET AL.

Vi = 1
Yii

⎛
⎝Ii −

n∑
j=1, j �=1

YijVj

⎞
⎠ i = 1, 2, 3, . . . , n (7)

The voltage equation is formed with (k + 1)th iteration (Ahmadi et al., 2021).

V(k+1)
i = 1

Yii

⎡
⎣Pi − jQi

(Vk
i)

∗ −
i−1∑
j=1

(
YijV

k+1
j

)
−

n∑
j=i+1

(
YijV

k
j

)⎤
⎦ (8)

The diagonal elements of Jacobian matrix is described as follows.

∂Pi
∂δi

=
n∑
j=1

|Vi||Vj||Yij| sin(θij − δi + δj) − |Vi|2|Yii| sin(θii) (9)

By considering Equation (5), the above Equation (9) can be rewritten as follows.

⇒ ∂Pi
∂δi

= −Qi − |Vi|2|Yii| sin(θii) (10)

⇒ ∂Pi
∂δi

= −Qi − |Vi|2Bii (11)

where Bii is the imaginary part of diagonal elements of Ybus.
As Bii > > Qi and |Vi|2 ≈|Vii|, we can write

⇒ ∂Pi
∂δi

= −|Vi|Bii (12)

and
∂Pi
∂δi

= −|Vi|Bij (13)

where Bij is the imaginary part of off-diagonal elements of Ybus.

∂Qi

∂|Vi| =
n∑
j=1

|Vi||Vj||Yij| sin(θij − δi + δj) − |Vi||Yii| sin(θii) (14)

As Bii = |Yii| sin(θii), we can write

∂Qi

∂|Vi| = Qi − |Vi||Yii| sin(θii) (15)

⇒ ∂Qi

∂|Vi| = Qi − |Vi|Bii (16)

In compare to Bii, Qi is very less and can be neglected. Therefore, we can write

∂Qi

∂|Vi| = |Vi|Bii (17)

CONNECTION SCIENCE 9

Again, assuming θij − δi + δj ≈ θij, we can write

∂Qi

∂|Vj| = −|Vi|Bij (18)

and

�P

|Vi| = −B′�δ,
�Q

|Vi| = −B′′�|V| (19)

where B′ is the imaginary part of Ybus of order (n−1) × (n−1) and B
′′
is the imaginary

part of Ybus of order (n − 1 − npv) × (n − 1 − npv), where npv is the number of gen-
erator (PV) bus. Now, the value of �δ and �|V| is obtained as follows (Ahmadi et al.,
2021).

�δ = −[B′]
�P

|V| (20)

�|V| = −[B′′]
�Q

|V| (21)

We can solve voltage and delta from Equation (19), which are later used for computing
the PI.

Our proposed algorithms use both CPU and GPU parallelisation and nodes like mas-
ter, service and login. The rationality behind this is that it is based on three major fac-
tors. Firstly, MPI and CUDA are standardised, vendor-independent and portable libraries
that are built for efficiency and flexibility. Secondly, it corresponds to the proposed
algorithm implementation goal in real-world systems. Finally, it is simple to integrate with
C language, making it ideal for code reuse, reduced development time and faster time
to market.

4.1. Parallel computingwith CPU andGPU

GPUs are single-instruction, multiple-data processors that have become a common charac-
teristic of high-end video cards installed on general-purpose computers (Gopal et al., 2007).
A computer strategy for attaining data level parallelisms (e.g. vector or array processor)
is called single instruction multiple data (SIMD). As the name implies, a single instruc-
tion is applied to all data streams. On the other hand, there are significant differences
between GPU and a CPU programming model. GPUs use SIMD processing, whereas the
traditional CPU programming model uses single instruction single data (SISD) processing.
Gopal et al. (2007) have investigated the parallel implementation of DC power flow-based
CAonGPUs. They solved thepower flowequationsusingGauss-Jacobi iterations.Moreover,
they have demonstrated that GPU implementation is significantly faster than CPU imple-
mentation. The GPU’s heavily pipelined parallel architecture, as opposed to the CPU’s serial
architecture, is responsible for increasing the speed. Ezhilarasi and Swarup (2009) have pre-
sented a method for CA in power system security studies that use a parallel processing
methodology. This methodology improves real-time experimentation by making it easier,
faster andmore accurate. A high-performance Linux cluster is used to run the experimenta-
tion. The testing was carried out using various IEEE standard test systems, namely the IEEE

10 V. RAO KAGITA ET AL.

14 bus, IEEE 30 bus, IEEE 118 bus, IEEE 162 bus and IEEE 300 bus. However, single-line inter-
ruptions areonly taken into account for experimentation. Theirmethodperformsadmirably
in terms of speed and efficiency for large systems. However, they claim a performance
reduction for very small systems, such as the IEEE 14 bus system. The algorithm’s scala-
bility is demonstrated through case studies. Although the number of iterations involved
in the load flow process rises as the size of the system grows, this strategy still achieves a
considerable parallel speedup.

4.2. Parallel implementation of N−1 static CA

Here, we discuss the implementation of the proposed parallel programming algorithm.
The algorithm is shown in Algorithm 1, and the flow chart is depicted in Figure 1.
We initialise the MPI environment, and every process is assigned a task. On the other
hand, there is a process (called master) to coordinate all the tasks. Other processes are
called slaves/workers. The processes are divided into two sets, master and slave, using
MPI_COMM_WORLD. While the master is responsible for input and output, the slaves are
responsible for their corresponding input and output in coordination with the master.
The master process takes input bus data and line data from Ybus. On the contrary, the
master process produces output as PI of contingencies. For this, the master performs pre-
contingency load flow. From the pre-contingency load flow, we find the base voltage of
buses, which is later used in the experimentation process of CA. Now, the master pro-
cess sends the bus data, line data, Ybus and Base_V to all the slave processes for further
experimentation process of CA. It is noteworthy to mention that rank is used to identify
each processor, and size is used to determine the number of processors. Then we use an
iterator i_contg, which is helpful to simulate all line outages and perform the load flow
analysis.

Now we discuss how the work is divided between all the processes. Once the master
process sends the required data to all the slave processes, the works are divided between
the processes using their rank. Note that rank determines the id of the process. In general,
a rank is an integer number, ranging from 0 to (size – 1), and the size is determined using
MPI_Comm_size. A rank of a specific process can be determined using MPI_Comm_rank.
All the processes iterate through i_contg. Here, we use an additional if statement to check
whether a particular process should do the work. More specifically, we use a condition
if (i_contg% size == rank). This condition determines whether the process should enter
inside and do the work. The line outage can be simulated by removing the line, performing
the load flow analysis, calculating the PI and adding the removed line for the next experi-
mentation of load flow analysis as in the sequential algorithm. However, in this algorithm,
we see multiple contingencies simulating the load flow analysis of line outages in paral-
lel at the CPU level of parallelism. Similarly, we perform the generator outage by changing
the generator’s real power and reactive power to zero, i.e. removing, analysing and adding
the generator. We can calculate the PI of the generator outage after performing the load
flow analysis. The master process receives PIs from each slave process. The above process
is repeated for each slave process, and finally, the slave process sends PI to the master. We
can also see from Figure 1 that we formulate B′ and B

′′
that are being computed in GPU.

Four kernels are used to form B′ and B
′′
due to dependency between diagonal and off-

diagonal elements. According to the Algorithm 1, we can see that the master process and

CONNECTION SCIENCE 11

Figure 1. Parallel implementation flowchart for N−1 CA.

12 V. RAO KAGITA ET AL.

Algorithm 1: Parallel algorithm for N − 1 static CA
Input : Bus data and line data of power system
Output: PI of contingencies
Beginmaster processor

// rank is used to identify each processor.
// size determines number of processors.
for each slave processor do

Send bus data and line data
end
for each contingency i_contg do

if i_contg% size == rank then
RemoveLine() // Removes line i_contg
Perform load flow analysis and find PI AddLine() // Adds line
i_contg

end
end
for each contingency i_contg do

if i_contg% size == rank then
RemoveGenerator() // Removes Generator i_contg
Perform load flow analysis and find PI AddGenerator() // Adds
Generator i_contg

end
end
for each slave processor do

Receive PIs from slave
end

Begin slave processor
Receive bus data and line data
for each contingency i_contg do

if i_contg% size == rank then
RemoveLine() // Removes line i_contg
Perform load flow analysis and find PI AddLine() // Adds line
i_contg

end
end
for each contingency i_contg do

if i_contg% size == rank then
RemoveGenerator() // Removes generator i_contg
Perform load flow analysis and find PI AddGenerator() // Adds
generator i_contg

end
end
Send PI to master

CONNECTION SCIENCE 13

slave processes are sharing theworkload and processing themparallelly. Moreover, we can
see the MPI implementation.

4.3. Parallel implementation of N−2 static CA

The proposed N−2 static CA algorithm is similar to the N−1 static CA and is shown in
Algorithm2. But, we have to simulate an outage of two lines (i.e. one line and one generator
or two generators in the power system) in N−2 static CA. As we know, it is a very rare con-
dition that two components fail simultaneously. Therefore, we first perform theN−1 CA by
consideringonly the analysis’s top fivepercent severe contingencies. Those lines are further
considered for N−2 static CA. The rationality behind this is that we have a massive number
of lines, and analysing all the lines is time-consuming. However, we consider all the genera-
tors for theN−2 static CA in the experimentation process. We can observe that we perform
N−1 static CA (Algorithm 1) in the Algorithm 2 to find out the most severe cases. As we
can see from the Algorithm 2, after checking the condition if (i_contg% size == rank) and
removing one line, the process ofN−2 contingencies is initiated. Note that it is represented
in i_contg_1 and i_contg_2, respectively. Once the process is over, we add the removed line.
In a similar fashion, we perform the generator outage by removing, analysing and adding
the generator. Thenwe sort the PI of the contingencies to pick out the severe contingencies
and only simulate the top five percent severe cases from theN−1 CA as part of theN−2 CA.
It is noteworthy to mention that N−2 Contingency is a rare condition, but the possibility is
high, mainly for the most severe cases from N−1 CA.

5. Experimental results

This sectiondiscusses theexperimentsof theN−1andN−2contingency, performs theanal-
ysis, and compares the efficacy of the proposed parallel algorithms to the performance of
sequential algorithms. The experiments are performed on the PARAllel Machine (PARAM)
Shivay supercomputing facility at the IIT (BHU), Varanasi. This facility contains Intel Xeon
Skylake processors with NVIDIA Tesla V100. It also contains two master nodes, four service
nodes, four login nodes and 223 CPU+ GPU nodes and is assessed remotely. This facility is
capable of producing838TFLOPSperformance.We test the efficiencyof theproposedalgo-
rithms for screening and ranking power system contingencies according to their expected
severity on various standard test systems, such as IEEE 14 bus system, IEEE 57 bus system,
IEEE 118 bus system, Polish 2383-bus system and NRPG 246-bus system (Kanpur, 2023).
These IEEE test systems are publicly available at matpower.org. The possible contingen-
cies range from 22 to 3025 for N−1 and 20 to 8335 for N−2 , out of which it is important
to identify the severe contingencies. Alternatively, these contingencies are ranked to show
their severity. We used CUDA (version 11.4) and OpenMPI (version 4.1.2) to conduct the
experimentations. We perform the experimentations using 20 MPI processes on a 10-core
and 20-thread CPU. Table 2 (N−1 CA) and Table 3 (N−2 CA) present a comparative study
between sequential and proposed parallel programming algorithms. The pictorial com-
parisons are shown in Figures 2 and 3 in which x-axis represents the dataset and y-axis
represents the time in seconds. The dataset includes network parameters (line impedance
and their connection topology), bus or node data (power injections), maximum and min-
imum limits of line capacity, active and reactive power limits of generation and constant

http://matpower.org

14 V. RAO KAGITA ET AL.

Algorithm 2: Parallel algorithm for N − 2 static CA
Input : Bus data and line data of power system
Output: PI of contingencies
// rank is used to identify each processor.
// size determines number of processors.
Beginmaster processor

for each slave processor do
Send bus data and line data

end
//Perform N − 1 analysis, rank contingencies from N − 1 analysis, and only use top five percent most severe contingencies of N − 1
analysis for N − 2 analysis for each contingency i_contg do

if i_contg% size == rank then
RemoveLine() // Removes line i_contg
for each contingency i_contg_1 do // i_contg_1 > i_contg

RemoveLine() // Removes line i_contg_1
Perform load flow analysis and find PI AddLine() // Adds line i_contg_1

end
for each contingency i_contg_2 do // i_contg_2 > i_contg

RemoveGenerator() // Removes generator i_contg_2
Perform load flow analysis and find PI AddGenerator() // Adds generator i_contg_2

end
AddLine() // Adds line i_contg

end
end
for each contingency i_contg do

if i_contg% size == rank then
RemoveGenerator() // Removes generator i_contg
for each contingency i_contg_1 do // i_contg_1 > i_contg

RemoveGenerator() // Removes generator i_contg_1
Perform load flow analysis and find PI AddGenerator() // Adds generator i_contg_1

end
AddGenerator() // Adds generator i_contg

end
end
for each slave processor do

Receive PIs from slave
end

end
Begin slave processor

Receive bus data and line data for each contingency i_contg do
if i_contg% size == rank then

RemoveLine() // Removes line i_contg
for each contingency i_contg_1 do // i_contg_1 > i_contg

RemoveLine() // Removes line i_contg_1
Perform load flow analysis and find PI AddLine() // Adds line i_contg_1

end
for each contingency i_contg_2 do // i_contg_2 > i_contg

RemoveGenerator() // Removes generator i_contg_2
Perform load flow analysis and find PI AddGenerator() // Adds generator i_contg_2

end
AddLine() // Adds line i_contg

end
end
for each contingency i_contg do

if i_contg% size == rank then
RemoveGenerator() // Removes generator i_contg
for each contingency i_contg_1 do // i_contg_1 > i_contg

RemoveGenerator() // Removes generator i_contg_1
Perform load flow analysis and find PI AddGenerator() // Adds generator i_contg_1

end
AddGenerator() // Adds generator i_contg

end
end
Send PI to master

end

CONNECTION SCIENCE 15

Figure 2. Logarithmic time comparison of N−1 sequential vs. parallel algorithm.

Figure 3. Logarithmic time comparison of N−2 sequential vs. parallel algorithm.

Table 2. N−1 static CA results.

N−1 Static CA

Time Elapsed (in seconds)

Test Case # of N−1 Contingencies Sequential Parallel Speedup

IEEE 14 22 0.002538 2.218843 0.001144
IEEE 57 87 0.133219 2.343192 0.056854
IEEE 118 240 1.847536 2.498877 0.739347
NRPG-PGCIL 246 418 66.674126 5.791205 11.512997
Polish 2383 3025 8213.167969 659.667243 12.450471

loads.We show that the proposed algorithmsoutperform the sequential algorithm in terms
of execution time for large power systems.

5.1. Test case: NRPG bus system

Indian NRPG system consists of five generators, 246 buses, 376 lines and 42 generating
units. The number of N−1 contingencies and N−2 contingencies are 418 and 87,153,
respectively.We test all theN−1outages. The rankingof the top10 contingencies is given in
Table 4. Theoutages forwhich the Jacobianmatrix is singular or unable to convergeare con-
sidered as the most severe contingencies. Similarly, the top 10 critical N−2 contingencies
in the NRPG system are listed in Table 5. Note that this paper aims to show the effectiveness

16 V. RAO KAGITA ET AL.

Table 3. N−2 static CA results.

N−2 Static CA

Time Elapsed (in seconds)

Test Case # of N−2 Contingencies Sequential Parallel Speedup

IEEE 14 20 0.040291 2.37585 0.016959
IEEE 57 312 3.142429 2.576042 1.219867
IEEE 118 1845 68.636833 4.807695 14.276453
NRPG-PGCIL 246 8335 1366.535156 161.239768 8.475174

Table 4. Severe contingencies in Indian NRPG test System.

Contingency Type ID Flow Index (PIpl) Voltage Index (PIvi)

System Index
(PIPl + PLvi =

PIc) Severity Ranking

Line 140–144 925 1 × 10−5 925 1
Generator 37 847 7 × 10−2 847 2
Generator 20 632 6 × 10−2 632 3
Line 140–143 608 3 × 10−5 608 4
Line 139–145 550 5 × 10−5 550 5
Line 139–152 404 2 × 10−4 404 6
Line 54–55 394 1 × 10−3 394 7
Line 121–122 381 6 × 10−2 381 8
Generator 21 282 1 × 10−2 282 9
Generator 19 273 2 × 10−2 273 10

Table 5. Ranking of sever N−2 critical contingencies of Indian NRPG test system.

N−2 contingency
Generator Outage (ID) Line Outage (ID) Flow Index Voltage Index System Index PIci Rank

37 165–170 916 0.08 916.08 1
37 165–37 874 0.07 874.07 2
37 165–171 858 0.07 858.07 3
37 175–177 857 0.07 857.07 4
37 169–170 854 0.07 854.07 5
37 181–230 850 0.07 850.07 6
37 238–230 847 0.07 847.07 7
37 166–175 846 0.07 846.07 8
37 166–167 846 0.06 846.07 9
37 181–37 792 0.07 792.07 10

of the parallel algorithm over the sequential algorithm in power system applications. Both
algorithms are tested using HPC clusters. Although other parallel algorithms can be used
for power system applications, we have demonstrated only one such parallel algorithm. It
can be further explored to select the most appropriate parallel algorithm in power system
applications.

It is noteworthy to mention that we used five standard test systems, consisting of
different complexities, such as topology, number of elements, nodes, thermal limit of trans-
mission lines and many more. Moreover, these systems range from small to large power
systems to show the elapsed time of the experiments. We observed the following impacts.
(1) For the small test systems, the performance of the parallel algorithm is less effective
than the sequential algorithm. (2) For the large test systems, the performance of the parallel

CONNECTION SCIENCE 17

algorithm is noticeably better than the sequential algorithm. It is now clearly mentioned in
Section 5.1.

6. Conclusion and future work

This paper has proposed a screening and ranking strategy of extensive contingencies in
a faster mode of execution for the SSA of large power systems. A composite PI based
on line flow and bus voltage performance under the contingency conditions has been
implemented for contingency screening and ranking. FDLF with conjugate gradient linear
equation solver has been implemented for the SSA of the large power system to achieve
acceptable result accuracy with faster calculation. Although real-time CA is a significant
energy management system component in many electric utilities, it has a huge computa-
tional overhead. We have proposed parallel algorithms for Multicore CPU and GPU-based
HPC systems that simultaneously achievebothprocess-level and thread-level parallelism to
copewith real-time requirements, i.e. fast calculation and accuracy. Accuracy and efficiency
have been validated with numerous case studies on standard test systems, IEEE 14, 57, 118
and polish 2383 bus system, and field data of NRPG Indian 246 bus system. Further, calcula-
tion accuracy can be enhanced using the data volume for which an effective mathematical
model may be designed in future work. Depending on the severity of the contingency, one
can choose remedial action before considering a second outage. In summary, the parallel
HPC-based CA is promising for industrial applications since it can simulate the whole N−1
and N−2 static CA for larger power systems like the Polish 2383 bus system (8335 possible
contingencies) within a fewminutes.

The proposed CA can play an essential role in the network design stages and in pro-
grammedmaintenance or network expansion to detect network weaknesses. These weak-
nesses can be addressed by increasing transformer rating, transmission capacity and circuit
breaker rating etc. Further, operator can prevent limit violations due to element outages
by using appropriate remedial actions. The proposed strategy can be implemented for the
N−1−1 contingency with GPU to achieve higher parallelism in our future work. On the
other hand, the proposed algorithms are efficient only for larger power systemswhichmay
not be efficient for small power systems because the parallelisation process in the master
processor and communication betweenGPU and CPU slaves take a considerably large time
in comparison to calculation.

Acknowledgments

The authors would like to thank IIT (BHU), Varanasi, for providing the PARAM Shivay supercomputing
facility to execute the HPC experimentations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was fully supported by the National Supercomputing Mission (NSM), Department of Sci-
ence and Technology (DST), Government of India (Reference No.: DST/NSM/R&D_HPC_Applications/
2021/03.31).

18 V. RAO KAGITA ET AL.

References

Ahmadi, A., Smith, M. C., Collins, E. R., Dargahi, V., & Jin, S. (2021). Fast Newton-Raphson power flow
analysis based on sparse techniques and parallel processing. IEEE Transactions on Power Systems,
37(3), 1695–1705. https://doi.org/10.1109/TPWRS.2021.3116182

Balduino, L., & Alves, A. (2004). Parallel processing in a cluster of microcomputers with application
in contingency analysis. In IEEE/PES transmission and distribution conference and exposition: Latin
America (IEEE Cat. No. 04EX956) (pp. 285–290). IEEE.

Brandwajn, V., & Lauby, M. (1989). Complete bounding method for ac contingency screening. IEEE
Transactions on Power Systems, 4(2), 724–729. https://doi.org/10.1109/59.193806

Burada, S., Joshi, D., &Mistry, K. D. (2016). Contingency analysis of power system by using voltage and
active power performance index. In IEEE 1st international conference onpower electronics, intelligent
control and energy systems (ICPEICES) (pp. 1–5). IEEE.

Chen,Q., &McCalley, J. D. (2005). Identifying high risk nk contingencies for online security assessment.
IEEE Transactions on Power Systems, 20(2), 823–834. https://doi.org/10.1109/TPWRS.2005.846065

Davis, C. M., & Overbye, T. J. (2010). Multiple element contingency screening. IEEE Transactions on
Power Systems, 26(3), 1294–1301. https://doi.org/10.1109/TPWRS.2010.2087366

Ejebe, G., & Wollenberg, B. (1979). Automatic contingency selection. IEEE Transactions on Power
Apparatus and Systems, 1, 97–109.

Ezhilarasi, G. A., & Swarup, K. (2009). Parallel contingency analysis in a high performance computing
environment. In International conference on power systems (pp. 1–6). IEEE.

Gholami, M., Sanjari, M. J., Safari, M., Akbari, M., & Kamali, M. R. (2020). Static security assessment
of power systems: A review. International Transactions on Electrical Energy Systems, 30(9), e12432.
https://doi.org/10.1002/etep.v30.9

Gopal, A., Niebur, D., & Venkatasubramanian, S. (2007). Dc power flow based contingency analysis
using graphics processing units. In IEEE Lausanne Power Tech (pp. 731–736). IEEE.

Grainger, J., Stevenson, W., & Stevenson, W. (2015). Power systems analysis, 2nd education.
Green, R. C., Wang, L., & Alam, M. (2011). High performance computing for electric power systems:

Applications and trends. In IEEE power and energy society general meeting (pp. 1–8). IEEE.
Hailu, E. A., Nyakoe, G. N., & Muriithi, C. M. (2023). Techniques of power system static security

assessment and improvement: A literature survey. Heliyon, 9(3), 1–18.
Hassan, R., Sun, R., & Liu, Y. (2022). Online static security assessment for cascading failure using stacked

de-noising auto-encoder. International Journal of Electrical Power & Energy Systems, 137, 107852.
https://doi.org/10.1016/j.ijepes.2021.107852

Huang, S., & Dinavahi, V. (2018). Real-time contingency analysis on massively parallel architectures
with compensationmethod. IEEE Access, 6, 44519–44530. https://doi.org/10.1109/Access.6287639

Huang, Z., Chen, Y., & Nieplocha, J. (2009). Massive contingency analysis with high performance
computing. In IEEE power & energy society general meeting (pp. 1–8). IEEE.

Irisarri, G., & Sasson, A. (1981). An automatic contingency selection method for on-line security anal-
ysis. IEEE Transactions on Power Apparatus and Systems, PAS-100(4), 1838–1844. https://doi.org/
10.1109/TPAS.1981.316524

Kanpur, I. (2023). Northern regional power grid (NRPG) data. https://www.iitk.ac.in/eeold/facilities/
Research_labs/Power_System/NRPG-DATA.pdf. Online; accessed 28 February 2023.

Kothari, D. P., & Nagrath, I. (2003). Modern power system analysis. Tata McGraw-Hill Publishing Com-
pany.

Kumar, U., & Reddy, H. (2015). Contingency ranking in modern power system by exact and precise
method. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and
Control Engineering, 3(5), 229–237.

Li, K.-C., Hsu, C.-H., Wen, C.-H., Wang, H.-H., & Yang, C.-T. (2009). A dynamic and scalable performance
monitoring toolkit for cluster and grid environments. International Journal of High Performance
Computing and Networking, 6(2), 91–99. https://doi.org/10.1504/IJHPCN.2009.027459

Li, K.-C., & Weng, T.-H. (2009). Performance-based parallel application toolkit for high-performance
clusters. The Journal of Supercomputing, 48, 43–65. https://doi.org/10.1007/s11227-008-0204-2

https://doi.org/10.1109/TPWRS.2021.3116182
https://doi.org/10.1109/59.193806
https://doi.org/10.1109/TPWRS.2005.846065
https://doi.org/10.1109/TPWRS.2010.2087366
https://doi.org/10.1002/etep.v30.9
https://doi.org/10.1016/j.ijepes.2021.107852
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1109/TPAS.1981.316524
https://www.iitk.ac.in/eeold/facilities/Research_labs/Power_System/NRPG-DATA.pdf
https://doi.org/10.1504/IJHPCN.2009.027459
https://doi.org/10.1007/s11227-008-0204-2

CONNECTION SCIENCE 19

Mikolinnas, T., & Wollenberg, B. (1981). An advanced contingency selection algorithm. IEEE Trans-
actions on Power Apparatus and Systems, PAS-100(2), 608–617. https://doi.org/10.1109/TPAS.1981.
316917

Mishra, V. J., & Khardenvis, M. D. (2012). Contingency analysis of power system. In IEEE Students’
conference on electrical, electronics and computer science (pp. 1–4). IEEE.

Mitra, P., Vittal, V., Keel, B., &Mistry, J. (2016). A systematic approach to n-1-1 analysis for power system
security assessment. IEEE Power and Energy Technology Systems Journal, 3(2), 71–80.

Morante, Q., Ranaldo, N., Vaccaro, A., & Zimeo, E. (2006). Pervasive grid for large-scale power systems
contingency analysis. IEEE Transactions on Industrial Informatics, 2(3), 165–175. https://doi.org/
10.1109/TII.2006.877266

Nayak, S. K., Panda, S. K., &Das, S. (2022a). Constrained-basedpowermanagement algorithm for green
cloud computing. International Journal of Computational Science and Engineering, 25(6), 657–667.
https://doi.org/10.1504/IJCSE.2022.127187

Nayak, S. K., Panda, S. K., & Das, S. (2022b). Unconstrained power management algorithm for green
cloud computing. In Advances in distributed computing andmachine learning: Proceedings of ICAD-
CML (pp. 3–14). Springer.

Nayak, S. K., Panda, S. K., Das, S., & Pande, S. K. (2021). A renewable energy-based task consolidation
algorithm for cloud computing. In Control applications in modern power system: Select proceedings
of EPREC (pp. 453–463). Springer.

Nayak, S. K., Panda, S. K., Das, S., & Pande, S. K. (2022c). A multi-objective renewable energy-based
algorithm for geographically distributed datacentres. International Journal of Embedded Systems,
15(2), 119–131. https://doi.org/10.1504/IJES.2022.123304

Patra, K. K. (2015). Contingency analysis inpower systemusing load flowsolution. International Journal
of Computer Applications, 975(2), 8887.

Pattery, J., & Hassainar, S. (2013). High performance computing for contingency analysis of power
systems. International Journal of Engineering Research and Technology, 2(9), 1993–1998.

Prabhakar, P. S. V., Krishan, R., & Pullaguram, D. R. (2022). Static security assessment of large power
systems under n-1-1 contingency. In 22nd National power systems conference (NPSC) (pp. 35–40).

Qian, T., Shi, F.,Wang, K., Yang, S., Geng, J., Li, Y., &Wu,Q. (2022). N-1 static security assessmentmethod
for power grids with high penetration rate of renewable energy generation. Electric Power Systems
Research, 211, 108200. https://doi.org/10.1016/j.epsr.2022.108200

Ramesh, V. (1996). On distributed computing for on-line power system applications. International
Journal of Electrical Power & Energy Systems, 18(8), 527–533. https://doi.org/10.1016/0142-0615(96)
00016-6

Roberge, V., Tarbouchi, M., & Okou, F. (2017). Parallel power flow on graphics processing units
for concurrent evaluation of many networks. IEEE Transactions on Smart Grid, 8(4), 1639–1648.
https://doi.org/10.1109/
TSG.2015.2496298

Salem, F. K. A., Jaber, M., Abdallah, C., Mehio, O., & Najem, S. (2019). A distributed spatiotemporal con-
tingency analysis for the lebanese power grid. IEEE Transactions on Computational Social Systems,
6(1), 162–175. https://doi.org/10.1109/TCSS.2018.2888689

Yang, C.-T., Shih, P.-C., & Li, K.-C. (2005). A high-performance computational resource broker for grid
computing environments. In 19th International conferenceonadvanced informationnetworkingand
applications (AINA’05) Volume 1 (AINA papers) (Vol. 2, pp. 333–336). IEEE.

Zaborszky, J., Whang, K.-W., & Prasad, K. (1980). Fast contingency evaluation using concentric relax-
ation. IEEE Transactions onPowerApparatus andSystems, PAS-99(1), 28–36. https://doi.org/10.1109/
TPAS.1980.319605

Zhang, Y., Guo, Q., Zhou, Y., & Sun, H. (2021). Online frequency security assessment based on ana-
lytical model considering limiting modules. CSEE Journal of Power and Energy Systems, 8(5), 1363–
1372.

Zhou, G., Zhang, X., Lang, Y., Bo, R., Jia, Y., Lin, J., & Feng, Y. (2016). A novel GPU-accelerated strategy for
contingency screening of static security analysis. International Journal of Electrical Power & Energy
Systems, 83, 33–39. https://doi.org/10.1016/j.ijepes.2016.03.048

https://doi.org/10.1109/TPAS.1981.316917
https://doi.org/10.1109/TII.2006.877266
https://doi.org/10.1504/IJCSE.2022.127187
https://doi.org/10.1504/IJES.2022.123304
https://doi.org/10.1016/j.epsr.2022.108200
https://doi.org/10.1016/0142-0615(96)00016-6
https://doi.org/10.1109/TSG.2015.2496298
https://doi.org/10.1109/TCSS.2018.2888689
https://doi.org/10.1109/TPAS.1980.319605
https://doi.org/10.1016/j.ijepes.2016.03.048

20 V. RAO KAGITA ET AL.

Zhou, R., Ai, Z., Yang, J., Chen, Y., Li, J., Zhou, Q., & Li, K.-C. (2013). A hypervisor forMIPS-based architec-
ture processors-a case study in Loongson processors. In IEEE 10th International conference on high
performance computing and communications & 2013 IEEE international conference on embedded and
ubiquitous computing (pp. 865–872). IEEE.

Zou, Q., Luo, F., & Zhang, T. (2022). An incidence matrix based analytical method of n-1 contingency
parallel analysis of main transformers in distribution networks. CSEE Journal of Power and Energy
Systems.

	1. Introduction
	2. Related work
	3. Contingency screening and ranking
	4. Mathematical modelling and proposed algorithms using HPC
	4.1. Parallel computing with CPU and GPU
	4.2. Parallel implementation of N-1 static CA
	4.3. Parallel implementation of N-2 static CA

	5. Experimental results
	5.1. Test case: NRPG bus system

	6. Conclusion and future work
	Acknowledgments
	Disclosure statement
	Funding
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

