Taylor & Francis
Taylor & Francis Group

CONNECTION . .
SCIENCE Connection Science

ISSN: 0954-0091 (Print) 1360-0494 (Online) Journal homepage: www.tandfonline.com/journals/ccos20

High-performance computing for static security
assessment of large power systems

Venkateswara Rao Kagita, Sanjaya Kumar Panda, Ram Krishan, P. Deepak
Reddy & Jabba Aswanth

To cite this article: Venkateswara Rao Kagita, Sanjaya Kumar Panda, Ram Krishan,

P. Deepak Reddy & Jabba Aswanth (2023) High-performance computing for static
security assessment of large power systems, Connection Science, 35:1, 2264537, DOI:
10.1080/09540091.2023.2264537

To link to this article: https://doi.org/10.1080/09540091.2023.2264537

8 © 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

@ Published online: 04 Oct 2023.

N
CJ/ Submit your article to this journal &

||I| Article views: 845

A
& View related articles &'

@ View Crossmark data &'

@ Citing articles: 1 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=ccos20

https://www.tandfonline.com/journals/ccos20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/09540091.2023.2264537
https://doi.org/10.1080/09540091.2023.2264537
https://www.tandfonline.com/action/authorSubmission?journalCode=ccos20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ccos20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/09540091.2023.2264537?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/09540091.2023.2264537?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/09540091.2023.2264537&domain=pdf&date_stamp=04%20Oct%202023
http://crossmark.crossref.org/dialog/?doi=10.1080/09540091.2023.2264537&domain=pdf&date_stamp=04%20Oct%202023
https://www.tandfonline.com/doi/citedby/10.1080/09540091.2023.2264537?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/09540091.2023.2264537?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=ccos20

CONNECTION SCIENCE)
2023, VOL. 35, NO. 1, 2264537 ’ Taylor & Francis
https://doi.org/10.1080/09540091.2023.2264537 Tayorrancs Group

8 OPEN ACCESS [l Checkforupdates‘

High-performance computing for static security assessment
of large power systems

Venkateswara Rao Kagita?, Sanjaya Kumar Panda?, Ram Krishan®, P. Deepak Reddy®
and Jabba Aswanth?
aDepartment of CSE, National Institute of Technology Warangal, Warangal, India; °Department of EE,

National Institute of Technology Warangal, Warangal, India; “Department of EE, Indian Institute of
Technology Kharagpur, Kharagpur, India

ABSTRACT ARTICLE HISTORY
Contingency analysis (CA) is one of the essential tools for the optimal Received 23 March 2023
design and security assessment of a reliable power system. However, Accepted 25 September 2023

its computational requirements rise with the growth of distributed KEYWORDS
generations in the .|ntercopnecte_d power system. As CA is a com- Contingency analysis;
plex and computationally intensive problem, it requires a fast and high-performance
accurate calculation to ensure the secure operation. Therefore, effi- computing; large power
cient mathematical modelling and parallel programming are key systems; N—1 contingency;
to efficient static security analysis. This paper proposes a parallel N—2 contingency; security
algorithm for static CA that uses both central processing units (CPUs) assessment

and graphical processing units (GPUs). To enhance the accuracy, AC

load flow is used, and parallel computation of load flow is done simul-

taneously, with efficient screening and ranking of the critical contin-

gencies. We perform extensive experiments to evaluate the efficacy

of the proposed algorithm. As a result, we establish that the proposed

parallel algorithm with high-performance computing (HPC) com-

puting is much faster than the traditional algorithms. Furthermore,

the HPC experiments were conducted using the national supercom-

puting facility, which demonstrates the proposed algorithm in the

context of N—1 and N—2 static CA with immense power systems,

such as the Indian northern regional power grid (NRPG) 246-bus and

the polish 2383-bus networks.

Nomenclature/Notation

BHU Banaras Hindu university

CA Contingency analysis

CPUs Central processing units

DC Direct current

FDLF Fast decoupled load flow

GOSF Generator outage sensitivity factors
GPUs Graphical processing units

HPC High-performance computing

CONTACT Sanjaya Kumar Panda @ sanjaya@nitw.ac.in Department of CSE, @ National Institute of Technology
Warangal, Warangal, 506004 India

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in
any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the
Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.aisb.org.uk/
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/09540091.2023.2264537&domain=pdf&date_stamp=2023-10-04
mailto:sanjaya@nitw.ac.in
http://creativecommons.org/licenses/by-nc/4.0/

2 (& V.RAOKAGITAETAL.

T Indian Institute of Technology
LOSF Line outage sensitivity factors
MPI Message passing interface

NRLF Newton-Raphson load flow
NRPG Northern regional power grid
PARAM PARAllel machine

Pl Performance index

PVM Parallel virtual machine

SIMD Single instruction multiple data
SISD Single instruction single data
SSA Static security assessment

1. Introduction

The power system has become vulnerable to disruptions due to fast network growth,
rising energy consumption and incorporation of renewable energy resources (Gholami
et al., 2020; Nayak et al., 2022a, 2022c¢). Subsequently, the power system'’s static security
assessment (SSA) encounters numerous challenges in these scenarios. More specifically,
the N—1 steady-state security of a power system CA is one of the most critical compo-
nents of power system design, planning and real-time operation (Mitra et al., 2016; Salem
etal., 2019). Forinstance, a transmission line or transformer contingency or outage can pro-
duce overloads in neighbouring lines, a rapid surge or a fall in node voltage, which may
lead to cascaded contingency. Note that contingency is an abnormal condition in power
systems, which puts the entire system, or a portion of it, under stress/blackout (Davis & Over-
bye, 2010; Ejebe & Wollenberg, 1979; Irisarri & Sasson, 1981; Mikolinnas & Wollenberg, 1981).
The line outage is one of the major aspects in determining the impact of significant contin-
gencies. As a result, providing possible preventative and corrective are the steps to resolve
system breaches (Mishra & Khardenvis, 2012). Therefore, high-performance computations
are needed for CA to guarantee the power system’s security and reliability (Li et al., 2009;
Li & Weng, 2009; Nayak et al., 2022b, 2021; Yang et al., 2005; Zhou et al., 2013). Generally,
load flow solutions are considered to evaluate the impacts of the component outage(s) in
CA. Hence, heavy computation is a critical issue in the context of CA.

Security assessment plays a significant role in the reliable power supply of wide-area
power systems. The SSA helps to make appropriate control and operational decisions
during the power system’s element outage(s). However, performing SSA using the conven-
tional approach (like sequential approach without HPC) is computationally challenging for
larger power systems. Alternatively, SSA is essential to determine the state and ensure the
power system'’s stable, reliable and steady operation. It performs repeated load flow analy-
sis, which provides a steady state solution of the power system, such as voltage magnitude,
angles, bus injection and power flows transmission lines (Burada et al., 2016). It is notewor-
thy to mention that load flow analysis is a non-linear and computationally intense tool in
the power system. There are various methods for load flow analysis, namely Gauss-Seidel,
Newton-Raphson load flow (NRLF), fast decoupled load flow (FDLF) and others (Grainger
et al., 2015; Kothari & Nagrath, 2003; Patra, 2015). Among these methods, the NRLF is the
most accurate but computationally intensive, whereas the FDLF is slightly less accurate,

CONNECTION SCIENCE (&) 3

with a significant reduction in computational burden. Therefore, the FDLF methods are
often used for SSA using CA (Grainger et al., 2015; Kothari & Nagrath, 2003).

Contingency in a power system is an outage or loss of an element or a component or
a combination of components in the power system, such as generators, transformers, or
transmission lines. The outage could be due to the system’s planned service maintenance
or unplanned failure (Patra, 2015). The load flow analysis determines the system’s state dur-
ing each component outage. Moreover, it is generally a software application that tests all
possible contingency cases for a particular system. On the other hand, CA observes and
records limit violations in transmission lines’ power flows or bus voltages for each out-
age. It is important for taking corrective actions to ensure the stable and reliable power
operations. For a system with N number of elements, N—1 CA refers to analysing the occur-
rence of any single element outage (Mitra et al., 2016; Salem et al,, 2019). Similarly, N—k
CA refers to a simultaneous outage of k different elements. Moreover, N—1—1 CA refers
to the sequential outage of two system elements, where the second outage occurs after
the necessary remedial/corrective action is taken for the first contingency (Mitra et al,
2016).

In N—1—1 contingency, the operator has prior knowledge about the critical N—1 out-
ages and corresponding actions to mitigate the effects of that outage. However, there can
be possibilities of another outage after corrective action, which is referred to as N—1—1
contingency. These sequential outages could impact the system, leading to severe black-
outs. To perform N—1—1 CA, we simultaneously perform an outage of two elements and
investigate the limit violations in the transmission lines. Generally, the number of possi-
ble two-element combinations in N-element system is Nx (N—1). Therefore, performing
N—1—1 CA is computationally intensive for large power systems. As a result, N—1—1 CA
requires computationally an efficient SSA algorithm (Zhang et al., 2021).

Researchers have proposed various algorithms in the literature to address the discussed
computation problem. Burada et al. (2016) have proposed a contingency screening and
ranking method using NRLF. Davis and Overbye (2010) have used line outage sensitiv-
ity factors (LOSF) and generator outage sensitivity factors (GOSF) for faster computation.
Chen and McCalley (2005) have investigated the network topology-based CA. Kumar
and Reddy (2015) have employed exact and precise methods to improve efficiency in terms
of computational time. These papers have focussed on efficiently ranking all possible con-
tingencies during SSA without omitting any critical case contingency. Various performance
indices are considered in the literature for N—1 CA to estimate outage severity using post
contingent values and approximate the limit violations (Brandwajn & Lauby, 1989; Ejebe
& Wollenberg, 1979; Irisarri & Sasson, 1981; Mikolinnas & Wollenberg, 1981; Zaborszky
et al., 1980). However, none of these papers has considered HPC to solve the N—1 and
N—1—1 CA. Currently, CA involves a heavy load flow computation which is very difficult
to update every few minutes, even with parallel computation. The requirement for faster
updates is crucial because power grids operate closer to the edge to fulfil the increasing
energy demand. Generally, contingency cases are relatively independent, so CA is inher-
ently a parallel process. Mathematically, there is a relatively straightforward parallelisation
path, but the issue with parallelisation schemes remains due to the uneven computation
time of individual cases.

There are several ways to reduce computational overhead. (1) Efficient mathematical
modelling (2) Parallel computations using HPC by dividing a large task into a set of smaller

4 (&) V.RAOKAGITAETAL.

tasks. HPC employs parallel computers to solve scientific and engineering problems. These
computers can range in various sizes, from a single high-performance workstation with
many processing units to massive systems with hundreds or thousands of processors. Many
significant works are initiated by considering power systems and HPC (i.e. distributed, grid,
multicore and GPU computing) (Green et al., 2011; Ramesh, 1996). Here, HPC approaches
enable faster analysis in various scenarios, even if a large set of variables exist.

This paper proposes parallel computation of N—1 and N—2 CAs and compares them
with sequential computation of N—1 and N—2 CAs. Moreover, the paper aims to develop a
fast and efficient HPC algorithm for large power systems’ SSA without compromising accu-
racy. The proposed parallel algorithm with HPC ensures large power systems’ security and
helps in reliable operations. In the above-discussed scenarios and taking advantage of the
independent nature of the contingencies, a strategy based on performance indices is pro-
posed for screening and ranking the severe contingencies. SSA is a crucial process that
ensures the reliable and stable operation of electric power systems by analysing their stabil-
ity, voltage profiles and power flow patterns under various operating conditions. With the
increasing size and complexity of modern power systems, HPC has become indispensable
in enhancing the accuracy and efficiency of these assessments. We highlight the significant
contributions of this paper as follows.

(1) We propose computationally efficient parallel algorithms for multicore HPC in a
message-passing interface (MPI) environment to perform a faster calculation with
acceptable accuracy in SSA. The algorithms are evaluated in the national supercomput-
ing facility available at the Indian Institute of Technology (IIT) (Banaras Hindu University
(BHU)), Varanasi.

(2) The proposed parallel algorithm enables the effective coordination among multicore
CPU and GPU combination for faster computation.

(3) A composite performance index considering both line flow and bus voltage indices is
proposed for efficient screening and ranking of the critical contingencies in large power
system.

(4) To avoid the inversion of Jacobian matrix in FDLF, Conjugate Gradient (CG) method is
implemented without compromisation of SSA accuracy.

(5) The proposed algorithms for N—1 and N—2 CA are evaluated in various standard test
systems and Indian power systems, namely IEEE 14, I[EEE 57, IEEE 118, NRPG 246-bus
and polish 2383-bus.

The remaining parts of this paper are organised as follows. Section 1 describes the related
work. Section 2 presents the mathematical formulation of the contingency screening and
ranking problem. The key algorithmic ideas of parallel computation for SSA are described
in Section 3. Section 4 shows the experimental results and discusses various test systems.
Section 5 presents the conclusion and future scope.

2. Related work

This section emphasises the state-of-the-art algorithms for CA and establishes the need
for an efficient algorithm. Performance index (Pl) based SSA methods compute post-
contingency to identify the severity of the outage (Mitra et al., 2016). The literature also

CONNECTION SCIENCE (&) 5

witnesses various contingency screening algorithms based on partial or approximate net-
work solutions that reveal the voltage and/or power flow violation levels (Brandwajn
& Lauby, 1989). However, due to approximation and high nonlinear impact, these algo-
rithms may provide an unrealistic severity (Zou etal., 2022). With the recent advancement of
computational resources, performing a complete alternating current power flow for large
systems has become computationally feasible and reliable (Salem et al., 2019). This moti-
vates us to develop parallel algorithms for a fast, reliable and accurate assessment of N—1
and N—2 CA using parallel computing infrastructure.

Balduino and Alves (2004) have used both MPI and parallel virtual machine (PVM) to
perform the SSA on the Brazilian power grid. Note that this power grid serves millions
of customers. Many paradigms, including synchronous and asynchronous master-slave
topologies, are used to sample massive contingencies. A pervasive grid method is used to
define user-friendly software architecture for gathering data from electrical networks. Sub-
sequently, the data is processed to mimic potential scenarios in a real electrical network
(Morante et al., 2006). Huang et al. (2009) have analysed the applicability of HPC for mas-
sive CA and focussed on load balancing. They have considered 3 lakh contingencies. Every
contingency case is simply a power flow analysis. Each contingency changes its admittance
matrix with an incremental change from the base case, given a solved base case. To man-
age case allocation and load balancing, one processor is designated as the master process
and the other processors as the slave processes. Green et al. (2011) have used both static
and dynamic load balancing strategies.

To formulate the real-time CA, both the DC load flow (DCLF) and AC load flow (ACLF)
have been used on HPC platforms, Zhou et al. (2016) and Roberge et al. (2017), respectively.
The DCLF is a linear model of non-linear power systems with large assumptions. Though
DCLF is constitutionally efficient, the accuracy and capability of the solution are insuffi-
cient, e.g. the inability to check voltage limit violations. On the contrary, the non-linear
ACLF is more accurate but constitutionally complex. In the literature, several sophisti-
cated methods have been implemented on GPU to address alternating current power flow
(ACPF)-based real-time CA (RTCA), such as the Newton-Raphson (NR) method and the Fast
Decoupled (FD) method (Huang & Dinavahi, 2018). In such complex power system prob-
lems, researchers have used methods using the latest technologies: artificial intelligence,
machine learning, deep learning and high-performance computing (Hailu et al., 2023) to
resolve the constraints associated with existing power system solutions. In Qian etal. (2022),
N—1 security assessment has been carried out using a deep learning algorithm, namely a
deep convolutional neural network, where the impact of renewable energy resources is
assessed. However, N—1—1 security assessment is not addressed due to computational
burden. Moreover, they have not used high-performance computing to reduce the com-
putational complexities. Hassan et al. (2022) have shown the impact of N - k contingencies
leading to cascading failure. They have used a stacked denoising auto-encoder to extract
the features of power systems and evaluated using the IEEE 118 bus test system, which may
not be faster for higher bus systems like Polish and Indian power systems. However, high-
performance computing makes it feasible to deal with such large power systems. Therefore,
this paper attempts to solve the problem using high-performance computing because it
can efficiently and accurately handle complex nonlinear problems.

A thorough CA procedure contains three steps, namely contingency selection, parallel
CA and post-processing of CA. Pattery and Hassainar (2013) have established the N—1 CA

6 . V.RAO KAGITAET AL.

Table 1. Summary of the related work.

Article Advantage Disadvantage

Mitra et al. (2016) Strategies for calculating performance Faster computation method like HPC is
indices to evaluate the N—1—1 not used.
contingency are given.

Zhou et al. (2016) HPC is implemented for DC load ACload flow-based security assessment
flow-based contingency analysis. is not considered.

Huang and Dinavahi (2018) Data structure and kernel function are The parallel compensation method
effectively used. using a GPU cluster is not considered.

Zou et al. (2022) An incidence matrix is proposed for The large power system is not
the parallel calculation of N—1 considered for evaluation.
contingency.

Qianet al. (2022) N—1 security assessment is only N—1—1 security assessment is not
performed. addressed. HPC is not used for

implementation.
Hassan et al. (2022) N—k contingencies is only addressed. The evaluation is limited to IEEE 118

bus test system. HPC is not used for
implementation.
Hailuet al. (2023) Advanced computational methods are Efficient system modelling is not
reviewed. focussed.

framework. They have explored and implemented computational load balancing strate-
gies. Gopal et al. (2007) have explored the parallel implementation of direct current (DC)
power flow-based CA on the GPU, which is quite faster than the CPU implementation. Ezhi-
larasi and Swarup (2009) have implemented a parallel processing methodology for faster
calculations of SSA. However, its performance for a small system like the 14-bus system
could be more efficient. The summary of the related work is shown in Table 1.

3. Contingency screening and ranking

Contingency ranking is based on the severity of the operational or element capacity limit
violations. The severity calculation requires an intensive load flow solution after every sin-
gle outage. Post-contingency load flow solution provides the bus voltage information and
the power flow over the transmission line parameters (Gopal et al., 2007). These two param-
eters are crucial to know the system’s operating condition. Given the line flow and voltage
values at a particular contingency case, system constraints can be checked to ensure reli-
able operation using two performance indices (Pls), namely line flow index (Pl,) and bus
voltage index (Pl,;). In this work, the system condition is estimated by PI., which considers
both Pl,; and Ply; indices. The calculations of these indices are stated as follows (Prabhakar
etal,, 2022).

2n
WP | p,
Ply=—|— 1
PL= on P ()
. |12n

WY | V-V
Pl = E W (2)
Plp; + PL,j = PI, 3)

where Plp; is the PI of branch power flow, which indicates violations in 1" branch flow an
outage, P is the power flow in /1 line during contingency, Pf is the base power flow value

CONNECTION SCIENCE (&) 7

for the /™" line, WIP is the weighting factor for " line, Pl,; is the voltage PI, which indicates
voltage violations at it bus, V; is the post contingency voltage at i bus, Vg is the base case
voltage obtained in pre-contingency load flow at it bus, W,-V is the weighting factor for ith
bus, AV!”"" is the change in voltage and n is the empirical experimental co-efficient. If Pl
> 1orPl,; > 1,then Pl. isincremented by 1.

The step-by-step procedure for ranking contingencies is as follows.

Step 1: Input line data and bus data of the test system.

Step 2: Perform FDLF analysis.

Step 3: Initialise all the possible contingencies in the network (say, j = 1).

Step 4: Run post-contingency load flow. Calculate Pl,; and Pl,; for every outage. If Pl,; >
TorPlyj > 1,thenPlj = Pl + 1.

Step 5: Rank all the contingencies from the higher PJ; value to the least PJ; value.

It is noteworthy to mention that the load flow is a non-linear problem. However, its CA
can be calculated by solving a set of linear equations Ax = b. In this paper, we use the
FDLF method, which is faster with acceptable accuracy. Due to the decoupling of active and
reactive power, the FDLF analysis is formulated with a constant Jacobian matrix and must
not be calculated in each iteration. The basic FDLF model is discussed in the next section,
and it is solved using a parallel programming approach.

4. Mathematical modelling and proposed algorithms using HPC

The convergence in the FDLF method is faster than the NRLF method and the Gauss-Seidel
load flow method. It is often necessary to perform two to five iterations to achieve practical
accuracy. The pace for iterations in the FDLF is nearly five times that of the NRLF method
and roughly two-thirds that of the Gauss-Seidel method.

With the assumed slack bus voltage (usually, V1 = 1 Z£0° per unit), the remaining (n—1)
bus voltages are found through an iterative process. The process is described as follows
(Prabhakar et al., 2022).

n
Pi= > VillVjl| Yyl cos(@y — & + &))
j=1

where P; is the power injection at i bus, Yjjis the admittance of line between ith and j™ bus,
0j is the angle of Yj; element of Ybus, §; is the voltage angle at it bus and 8j is the voltage
angle at j bus (Ahmadi et al., 2021).

n
Qi =— Y _ VillVjlIYyl sin(@; — 8 + &) (5)
j=1

where Q; is the reactive power injection at ith bus.
Equations (4) and (5) are called static load flow equations. The current injection /; at jth
bus can be evaluated using active and reactive injected powers, which is defined as follows.
_Pi—jQi

li= 7 (6)

1

8 @ V.RAO KAGITAET AL.

1

n
= |- YoV i=123...n (7)
1]

j=1,j#1

Vi

The voltage equation is formed with (k + 1) iteration (Ahmadi et al., 2021).

i—1 n

0 | o) - 3 ()

j=1 Jj=it1
The diagonal elements of Jacobian matrix is described as follows.

P . .
3% = 121) VIV Y51 sin(@; — 8 + &) — [Vil?|Yil sin(@) (©)

By considering Equation (5), the above Equation (9) can be rewritten as follows.

oP; ,
= o= = =0 = ViI*|Yil sin(6)) (10)
1

aP;
% = —Qi — |Vi|*Bji (11)

where Bj; is the imaginary part of diagonal elements of Ybus.
AsB;i > > Qjand |Vi|> & |V;i|, we can write

aP;
8_8: = —|VilBji (12)
and
aP;
35 —|VilBjj (13)

where Bj; is the imaginary part of off-diagonal elements of Ybus.

90 o _ .
B = D WVillVil1Yyl sin(@y; — 8 + &) — [Vill Vil sin(@i) (14)
j=1
As Bji = |Yii| sin(6;;), we can write

20, _

sy = &~ Will¥al sin@) (15)
2Q;

Sy = Q@ VilBi 16
= 3|V,| QI | l| 1l ()

In compare to Bj;, Q; is very less and can be neglected. Therefore, we can write

0

= |Vi|B;i 17
AVl IVilBi 7)

CONNECTION SCIENCE (&) 9

Again, assuming 0j; — §; + &; ~ 0, we can write

aQ;
—L = —|V|B; 18
3V |VilBjj (18)
and
AP A
— = —B'AS$, AQ = —B"A|V| (19)
Vil Vil

where B’ is the imaginary part of Ybus of order (n—1) x (n—1) and B" is the imaginary
part of Ybus of order (n—1—npy) x (n—1—npy,), where np, is the number of gen-
erator (PV) bus. Now, the value of A§ and A|V| is obtained as follows (Ahmadi et al.,
2021).

AP

AS = —[B]— 20
V| 20
AQ

AlV| = —[B'1— 21

[V []IVI (21)

We can solve voltage and delta from Equation (19), which are later used for computing
the Pl

Our proposed algorithms use both CPU and GPU parallelisation and nodes like mas-
ter, service and login. The rationality behind this is that it is based on three major fac-
tors. Firstly, MPI and CUDA are standardised, vendor-independent and portable libraries
that are built for efficiency and flexibility. Secondly, it corresponds to the proposed
algorithm implementation goal in real-world systems. Finally, it is simple to integrate with
C language, making it ideal for code reuse, reduced development time and faster time
to market.

4.1. Parallel computing with CPU and GPU

GPUs are single-instruction, multiple-data processors that have become a common charac-
teristic of high-end video cards installed on general-purpose computers (Gopal et al., 2007).
A computer strategy for attaining data level parallelisms (e.g. vector or array processor)
is called single instruction multiple data (SIMD). As the name implies, a single instruc-
tion is applied to all data streams. On the other hand, there are significant differences
between GPU and a CPU programming model. GPUs use SIMD processing, whereas the
traditional CPU programming model uses single instruction single data (SISD) processing.
Gopal et al. (2007) have investigated the parallel implementation of DC power flow-based
CA on GPUs. They solved the power flow equations using Gauss-Jacobi iterations. Moreover,
they have demonstrated that GPU implementation is significantly faster than CPU imple-
mentation. The GPU’s heavily pipelined parallel architecture, as opposed to the CPU’s serial
architecture, is responsible for increasing the speed. Ezhilarasi and Swarup (2009) have pre-
sented a method for CA in power system security studies that use a parallel processing
methodology. This methodology improves real-time experimentation by making it easier,
faster and more accurate. A high-performance Linux cluster is used to run the experimenta-
tion. The testing was carried out using various IEEE standard test systems, namely the |EEE

10 (&) V.RAOKAGITAETAL.

14 bus, IEEE 30 bus, IEEE 118 bus, IEEE 162 bus and IEEE 300 bus. However, single-line inter-
ruptions are only taken into account for experimentation. Their method performs admirably
in terms of speed and efficiency for large systems. However, they claim a performance
reduction for very small systems, such as the IEEE 14 bus system. The algorithm’s scala-
bility is demonstrated through case studies. Although the number of iterations involved
in the load flow process rises as the size of the system grows, this strategy still achieves a
considerable parallel speedup.

4.2. Parallel implementation of N—1 static CA

Here, we discuss the implementation of the proposed parallel programming algorithm.
The algorithm is shown in Algorithm 1, and the flow chart is depicted in Figure 1.
We initialise the MPI environment, and every process is assigned a task. On the other
hand, there is a process (called master) to coordinate all the tasks. Other processes are
called slaves/workers. The processes are divided into two sets, master and slave, using
MPI_COMM_WORLD. While the master is responsible for input and output, the slaves are
responsible for their corresponding input and output in coordination with the master.
The master process takes input bus data and line data from Ybus. On the contrary, the
master process produces output as Pl of contingencies. For this, the master performs pre-
contingency load flow. From the pre-contingency load flow, we find the base voltage of
buses, which is later used in the experimentation process of CA. Now, the master pro-
cess sends the bus data, line data, Ybus and Base_V to all the slave processes for further
experimentation process of CA. It is noteworthy to mention that rank is used to identify
each processor, and size is used to determine the number of processors. Then we use an
iterator i_contg, which is helpful to simulate all line outages and perform the load flow
analysis.

Now we discuss how the work is divided between all the processes. Once the master
process sends the required data to all the slave processes, the works are divided between
the processes using their rank. Note that rank determines the id of the process. In general,
a rank is an integer number, ranging from 0 to (size - 1), and the size is determined using
MPI_Commy_size. A rank of a specific process can be determined using MPI_Comm_rank.
All the processes iterate through i_contg. Here, we use an additional if statement to check
whether a particular process should do the work. More specifically, we use a condition
if (i_contg % size == rank). This condition determines whether the process should enter
inside and do the work. The line outage can be simulated by removing the line, performing
the load flow analysis, calculating the Pl and adding the removed line for the next experi-
mentation of load flow analysis as in the sequential algorithm. However, in this algorithm,
we see multiple contingencies simulating the load flow analysis of line outages in paral-
lel at the CPU level of parallelism. Similarly, we perform the generator outage by changing
the generator’s real power and reactive power to zero, i.e. removing, analysing and adding
the generator. We can calculate the Pl of the generator outage after performing the load
flow analysis. The master process receives Pls from each slave process. The above process
is repeated for each slave process, and finally, the slave process sends Pl to the master. We
can also see from Figure 1 that we formulate B’ and B” that are being computed in GPU.
Four kernels are used to form B and B due to dependency between diagonal and off-
diagonal elements. According to the Algorithm 1, we can see that the master process and

CONNECTION SCIENCE (&) 11

| MPLINIT()

Input bus data and line data

v

| Ybus formation |

'

| Pre-contigency load flow |

v

ﬁMaster (Rank = 0)—‘ LMaster (Rank != 09—

A 4

Send bus data, line data, [
Base_V and Ybus to slaves

Receive bus data, line data,
Base_Vand Ybus to master

Set i_contg = 0 and define N as
total number of contingencies

Set i_contg = 0 and define N as
total number of contingencies

if i_contg < number of
lines

if i_contg % size ==
rank

if i_contg < number of
lines

if i_contg % size ==
rank

|_’| B', B” formation

Remove line

No

No ’Tmo%me—'—v B', B” formation No |

FDLEF analysis,
calculate PI and AddLine()

FDLF analysis,
calculate PI and AddLine()

—>| i_contg =i_contg + 1 }— —>|

i_contg =i_contg + 1 l_

Receive PI from slaves }‘

Send PI to master ‘

if i_contg < number of

if i_contg % size ==
rank

if i_contg % size ==
rank

Set real power and reactive power
of generator to zero

Set real power and reactive power of
generator to zero

No l No

FDLF analysis and calculate PT

FDLF analysis and calculate PT ‘

v

v

Set real power and reactive power of
generator to original value

Set real power and reactive power of
generator to original value

v
—>| i_contg =i_contg + 1 }— _>l

i_contg =i_contg + 1 }_

Receive PI from slaves

Send PI to master ‘

'

|

le
| MPI_FINALIZE(Q) |”

| Ranking P }

Figure 1. Parallel implementation flowchart for N—1 CA.

) 4
m
=]
a

12 (&) V.RAOKAGITAETAL.

Algorithm 1: Parallel algorithm for N — 1 static CA

Input :Bus data and line data of power system

Output: Pl of contingencies

Begin master processor

// rank is used to identify each processor.
// size determines number of processors.

for each slave processor do
| Send bus data and line data

end
for each contingency i_contg do
if i_contg % size == rank then

Removeline() // Removes line i_contg
Perform load flow analysis and find Pl AddLine() // Adds line
i_contg
end

end
for each contingency i_contg do
if i_contg % size == rank then

RemoveGenerator() // Removes Generator j_contg
Perform load flow analysis and find Pl AddGenerator() // Adds
Generator i_contg
end
end

for each slave processor do
| Receive PlIs from slave

end

Begin slave processor

Receive bus data and line data

for each contingency i_contg do
if i_contg % size == rank then

Removeline() // Removes line i_contg
Perform load flow analysis and find Pl AddLine() // Adds line
i_contg
end

end
for each contingency i_contg do
if i_contg % size == rank then

RemoveGenerator() // Removes generator j_contg
Perform load flow analysis and find Pl AddGenerator() // Adds
generator i_contg
end
end

Send Pl to master

CONNECTION SCIENCE (&) 13

slave processes are sharing the workload and processing them parallelly. Moreover, we can
see the MPl implementation.

4.3. Parallel implementation of N—2 static CA

The proposed N—2 static CA algorithm is similar to the N—1 static CA and is shown in
Algorithm 2. But, we have to simulate an outage of two lines (i.e. one line and one generator
or two generators in the power system) in N—2 static CA. As we know, it is a very rare con-
dition that two components fail simultaneously. Therefore, we first perform the N—1 CA by
considering only the analysis’s top five percent severe contingencies. Those lines are further
considered for N—2 static CA. The rationality behind this is that we have a massive number
of lines, and analysing all the lines is time-consuming. However, we consider all the genera-
tors for the N—2 static CA in the experimentation process. We can observe that we perform
N—1 static CA (Algorithm 1) in the Algorithm 2 to find out the most severe cases. As we
can see from the Algorithm 2, after checking the condition if (i_contg % size == rank) and
removing one line, the process of N—2 contingencies is initiated. Note that it is represented
ini_contg_1andi_contg_2, respectively. Once the process is over, we add the removed line.
In a similar fashion, we perform the generator outage by removing, analysing and adding
the generator. Then we sort the Pl of the contingencies to pick out the severe contingencies
and only simulate the top five percent severe cases from the N—1 CA as part of the N—2 CA.
It is noteworthy to mention that N—2 Contingency is a rare condition, but the possibility is
high, mainly for the most severe cases from N—1 CA.

5. Experimental results

This section discusses the experiments of the N— 1 and N—2 contingency, performs the anal-
ysis, and compares the efficacy of the proposed parallel algorithms to the performance of
sequential algorithms. The experiments are performed on the PARAIllel Machine (PARAM)
Shivay supercomputing facility at the IIT (BHU), Varanasi. This facility contains Intel Xeon
Skylake processors with NVIDIA Tesla V100. It also contains two master nodes, four service
nodes, four login nodes and 223 CPU + GPU nodes and is assessed remotely. This facility is
capable of producing 838 TFLOPS performance. We test the efficiency of the proposed algo-
rithms for screening and ranking power system contingencies according to their expected
severity on various standard test systems, such as IEEE 14 bus system, IEEE 57 bus system,
IEEE 118 bus system, Polish 2383-bus system and NRPG 246-bus system (Kanpur, 2023).
These IEEE test systems are publicly available at matpower.org. The possible contingen-
cies range from 22 to 3025 for N—1 and 20 to 8335 for N—2, out of which it is important
to identify the severe contingencies. Alternatively, these contingencies are ranked to show
their severity. We used CUDA (version 11.4) and OpenMPI (version 4.1.2) to conduct the
experimentations. We perform the experimentations using 20 MPI processes on a 10-core
and 20-thread CPU. Table 2 (N—1 CA) and Table 3 (N—2 CA) present a comparative study
between sequential and proposed parallel programming algorithms. The pictorial com-
parisons are shown in Figures 2 and 3 in which x-axis represents the dataset and y-axis
represents the time in seconds. The dataset includes network parameters (line impedance
and their connection topology), bus or node data (power injections), maximum and min-
imum limits of line capacity, active and reactive power limits of generation and constant

http://matpower.org

14 V.RAO KAGITAET AL.

Algorithm 2: Parallel algorithm for N — 2 static CA

Input :Bus data and line data of power system

Output: Pl of contingencies

// rank is used to identify each processor.
// size determines number of processors.
Begin master processor

for each slave processor do

end

|
end

Send bus data and line data

//Perform N — 1 analysis, rank contingencies from N — 1 analysis, and only use top five percent most severe contingencies of N — 1
analysis for N — 2 analysis for each contingency i_contg do

end

if i_contg % size == rank then

Removeline()
for each contingency i_contg_1 do

Removeline()
Perform load flow analysis and find PI AddLine()

end
for each contingency i_contg_2 do

RemoveGenerator()
Perform load flow analysis and find PI AddGenerator()

end
AddLine()

end

for each contingency i_contg do

end

if i_contg % size == rank then
RemoveGenerator()
for each contingency i_contg_1 do

RemoveGenerator()
Perform load flow analysis and find PI AddGenerator()

end
AddGenerator()
end

for each slave processor do

end

Receive Pls from slave

Begin slave processor
Receive bus data and line data for each contingency i_contg do

end

end

if i_contg % size == rank then
Removeline()
for each contingency i_contg_1 do

Removeline()
Perform load flow analysis and find PI AddLine()

end
for each contingency i_contg_2 do

RemoveGenerator()
Perform load flow analysis and find Pl AddGenerator()

end
AddLine()
end

for each contingency i_contg do

end

if i_contg % size == rank then
RemoveGenerator()
for each contingency i_contg_1 do

RemoveGenerator()

Perform load flow analysis and find Pl AddGenerator()
end
AddGenerator()

end

Send Pl to master

// Removes line i_contg
// i_contg_1 > i_contg

// Removes line i_contg_1
// Adds line i_contg_1

// i_contg_2 > i_contg

// Removes generator i_contg_2
// Adds generator i_contg_2

// Adds line i_contg

// Removes generator i_contg
// i_contg_1 > i_contg

// Removes generator i_contg_1
// Adds generator i_contg_1

// Adds generator i_contg

// Removes line i_contg
// i_contg_1 > i_contg

// Removes line i_contg_1
// Adds line i_contg_1

// i_contg_2 > i_contg

// Removes generator i_contg_2
// Adds generator i_contg_2

// Adds line i_contg

// Removes generator i_contg
// i_contg_1 > i_contg

// Removes generator i_contg_1
// Adds generator i_contg_1

// Adds generator i_contg

CONNECTION SCIENCE (&) 15

T ‘
z 103 |- I Sequential 0@ Parallel 7
=
S}
3 In
% 100 [@ md |
e
@
-3 L |
_% 10 \ \ \ \ \
= A T) 6 3
AR o ut 24 933
168 o2 eEb NPRG poust
Dataset —
Figure 2. Logarithmic time comparison of N—1 sequential vs. parallel algorithm.
T 5 | |
% 10 I Sequential [0 Parallel |
=
S)
8 101 - I .
@ [§ 0
: I
o= —1 | N
o 10
g I I I
H A { 3 A6
‘EEE v ‘EEE 5 XEEE 1\ ?RG %
Dataset —
Figure 3. Logarithmic time comparison of N—2 sequential vs. parallel algorithm.
Table 2. N—1 static CA results.
N—1 Static CA
Time Elapsed (in seconds)
Test Case # of N—1 Contingencies Sequential Parallel Speedup
IEEE 14 0.002538 2.218843 0.001144
IEEE 57 0.133219 2.343192 0.056854
IEEE118 1.847536 2.498877 0.739347
NRPG-PGCIL 246 66.674126 5.791205 11.512997
Polish 2383 8213.167969 659.667243 12.450471

loads. We show that the proposed algorithms outperform the sequential algorithm in terms
of execution time for large power systems.

5.1. Test case: NRPG bus system

Indian NRPG system consists of five generators, 246 buses, 376 lines and 42 generating
units. The number of N—1 contingencies and N—2 contingencies are 418 and 87,153,
respectively. We test all the N—1 outages. The ranking of the top 10 contingenciesis given in
Table 4. The outages for which the Jacobian matrix is singular or unable to converge are con-
sidered as the most severe contingencies. Similarly, the top 10 critical N—2 contingencies
in the NRPG system are listed in Table 5. Note that this paper aims to show the effectiveness

16 (&) V.RAOKAGITAETAL.

Table 3. N—2 static CA results.

N—2 Static CA

Time Elapsed (in seconds)
Test Case # of N—2 Contingencies Sequential Parallel Speedup
IEEE 14 20 0.040291 2.37585 0.016959
IEEE 57 312 3.142429 2.576042 1.219867
IEEE 118 1845 68.636833 4.807695 14.276453
NRPG-PGCIL 246 8335 1366.535156 161.239768 8.475174

Table 4. Severe contingencies in Indian NRPG test System.

System Index

(Plpy + PLy; =
Contingency Type ID Flow Index (Pl,) Voltage Index (Pl,;) Plc) Severity Ranking
Line 140-144 925 1x107° 925 1
Generator 37 847 7 x 1072 847 2
Generator 20 632 6 x 1072 632 3
Line 140-143 608 3% 1072 608 4
Line 139-145 550 5% 107 550 5
Line 139-152 404 2x107* 404 6
Line 54-55 394 1%x1073 394 7
Line 121-122 381 6 x 1072 381 8
Generator 21 282 1x 1072 282 9
Generator 19 273 2 x 1072 273 10
Table 5. Ranking of sever N—2 critical contingencies of Indian NRPG test system.
N—2 contingency
Generator Outage (ID) Line Outage (ID) Flow Index Voltage Index System Index Pl Rank
37 165-170 916 0.08 916.08 1
37 165-37 874 0.07 874.07 2
37 165-171 858 0.07 858.07 3
37 175-177 857 0.07 857.07 4
37 169-170 854 0.07 854.07 5
37 181-230 850 0.07 850.07 6
37 238-230 847 0.07 847.07 7
37 166-175 846 0.07 846.07 8
37 166-167 846 0.06 846.07 9
37 181-37 792 0.07 792.07 10

of the parallel algorithm over the sequential algorithm in power system applications. Both
algorithms are tested using HPC clusters. Although other parallel algorithms can be used
for power system applications, we have demonstrated only one such parallel algorithm. It
can be further explored to select the most appropriate parallel algorithm in power system
applications.

It is noteworthy to mention that we used five standard test systems, consisting of
different complexities, such as topology, number of elements, nodes, thermal limit of trans-
mission lines and many more. Moreover, these systems range from small to large power
systems to show the elapsed time of the experiments. We observed the following impacts.
(1) For the small test systems, the performance of the parallel algorithm is less effective
than the sequential algorithm. (2) For the large test systems, the performance of the parallel

CONNECTION SCIENCE (&) 17

algorithm is noticeably better than the sequential algorithm. It is now clearly mentioned in
Section 5.1.

6. Conclusion and future work

This paper has proposed a screening and ranking strategy of extensive contingencies in
a faster mode of execution for the SSA of large power systems. A composite Pl based
on line flow and bus voltage performance under the contingency conditions has been
implemented for contingency screening and ranking. FDLF with conjugate gradient linear
equation solver has been implemented for the SSA of the large power system to achieve
acceptable result accuracy with faster calculation. Although real-time CA is a significant
energy management system component in many electric utilities, it has a huge computa-
tional overhead. We have proposed parallel algorithms for Multicore CPU and GPU-based
HPC systems that simultaneously achieve both process-level and thread-level parallelism to
cope with real-time requirements, i.e. fast calculation and accuracy. Accuracy and efficiency
have been validated with numerous case studies on standard test systems, IEEE 14,57, 118
and polish 2383 bus system, and field data of NRPG Indian 246 bus system. Further, calcula-
tion accuracy can be enhanced using the data volume for which an effective mathematical
model may be designed in future work. Depending on the severity of the contingency, one
can choose remedial action before considering a second outage. In summary, the parallel
HPC-based CA is promising for industrial applications since it can simulate the whole N—1
and N—2 static CA for larger power systems like the Polish 2383 bus system (8335 possible
contingencies) within a few minutes.

The proposed CA can play an essential role in the network design stages and in pro-
grammed maintenance or network expansion to detect network weaknesses. These weak-
nesses can be addressed by increasing transformer rating, transmission capacity and circuit
breaker rating etc. Further, operator can prevent limit violations due to element outages
by using appropriate remedial actions. The proposed strategy can be implemented for the
N—1—1 contingency with GPU to achieve higher parallelism in our future work. On the
other hand, the proposed algorithms are efficient only for larger power systems which may
not be efficient for small power systems because the parallelisation process in the master
processor and communication between GPU and CPU slaves take a considerably large time
in comparison to calculation.

Acknowledgments

The authors would like to thank IIT (BHU), Varanasi, for providing the PARAM Shivay supercomputing
facility to execute the HPC experimentations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was fully supported by the National Supercomputing Mission (NSM), Department of Sci-
ence and Technology (DST), Government of India (Reference No.: DST/NSM/R&D_HPC_Applications/
2021/03.31).

18 (&) V.RAOKAGITAETAL.

References

Ahmadi, A., Smith, M. C,, Collins, E. R., Dargahi, V., & Jin, S. (2021). Fast Newton-Raphson power flow
analysis based on sparse techniques and parallel processing. IEEE Transactions on Power Systems,
37(3), 1695-1705. https://doi.org/10.1109/TPWRS.2021.3116182

Balduino, L., & Alves, A. (2004). Parallel processing in a cluster of microcomputers with application
in contingency analysis. In IEEE/PES transmission and distribution conference and exposition: Latin
America (IEEE Cat. No. 04EX956) (pp. 285-290). IEEE.

Brandwajn, V., & Lauby, M. (1989). Complete bounding method for ac contingency screening. IEEE
Transactions on Power Systems, 4(2), 724-729. https://doi.org/10.1109/59.193806

Burada, S., Joshi, D., & Mistry, K. D. (2016). Contingency analysis of power system by using voltage and
active power performance index. In IEEE 1st international conference on power electronics, intelligent
control and energy systems (ICPEICES) (pp. 1-5). IEEE.

Chen, Q., &McCalley, J. D.(2005). Identifying high risk nk contingencies for online security assessment.
IEEE Transactions on Power Systems, 20(2), 823-834. https://doi.org/10.1109/TPWRS.2005.846065
Davis, C. M., & Overbye, T. J. (2010). Multiple element contingency screening. IEEE Transactions on

Power Systems, 26(3), 1294-1301. https://doi.org/10.1109/TPWRS.2010.2087366

Ejebe, G., & Wollenberg, B. (1979). Automatic contingency selection. IEEE Transactions on Power
Apparatus and Systems, 1,97-1009.

Ezhilarasi, G. A., & Swarup, K. (2009). Parallel contingency analysis in a high performance computing
environment. In International conference on power systems (pp. 1-6). IEEE.

Gholami, M., Sanjari, M. J., Safari, M., Akbari, M., & Kamali, M. R. (2020). Static security assessment
of power systems: A review. International Transactions on Electrical Energy Systems, 30(9), e12432.
https://doi.org/10.1002/etep.v30.9

Gopal, A., Niebur, D., & Venkatasubramanian, S. (2007). Dc power flow based contingency analysis
using graphics processing units. In IEEE Lausanne Power Tech (pp. 731-736). IEEE.

Grainger, J., Stevenson, W., & Stevenson, W. (2015). Power systems analysis, 2nd education.

Green, R. C,, Wang, L., & Alam, M. (2011). High performance computing for electric power systems:
Applications and trends. In IEEE power and energy society general meeting (pp. 1-8). IEEE.

Hailu, E. A., Nyakoe, G. N., & Muriithi, C. M. (2023). Techniques of power system static security
assessment and improvement: A literature survey. Heliyon, 9(3), 1-18.

Hassan, R., Sun, R, &Liu, Y.(2022). Online static security assessment for cascading failure using stacked
de-noising auto-encoder. International Journal of Electrical Power & Energy Systems, 137, 107852.
https://doi.org/10.1016/].ijepes.2021.107852

Huang, S., & Dinavahi, V. (2018). Real-time contingency analysis on massively parallel architectures
with compensation method. IEEE Access, 6, 44519-44530. https://doi.org/10.1109/Access.6287639

Huang, Z., Chen, Y., & Nieplocha, J. (2009). Massive contingency analysis with high performance
computing. In IEEE power & energy society general meeting (pp. 1-8). IEEE.

Irisarri, G., & Sasson, A. (1981). An automatic contingency selection method for on-line security anal-
ysis. IEEE Transactions on Power Apparatus and Systems, PAS-100(4), 1838-1844. https://doi.org/
10.1109/TPAS.1981.316524

Kanpur, 1. (2023). Northern regional power grid (NRPG) data. https://www.iitk.ac.in/eeold/facilities/
Research_labs/Power_System/NRPG-DATA.pdf. Online; accessed 28 February 2023.

Kothari, D. P., & Nagrath, I. (2003). Modern power system analysis. Tata McGraw-Hill Publishing Com-
pany.

Kumar, U., & Reddy, H. (2015). Contingency ranking in modern power system by exact and precise
method. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and
Control Engineering, 3(5), 229-237.

Li, K-C., Hsu, C.-H., Wen, C.-H., Wang, H.-H., & Yang, C.-T. (2009). A dynamic and scalable performance
monitoring toolkit for cluster and grid environments. International Journal of High Performance
Computing and Networking, 6(2), 91-99. https://doi.org/10.1504/1JHPCN.2009.027459

Li, K.-C,, & Weng, T.-H. (2009). Performance-based parallel application toolkit for high-performance
clusters. The Journal of Supercomputing, 48, 43-65. https://doi.org/10.1007/s11227-008-0204-2

https://doi.org/10.1109/TPWRS.2021.3116182
https://doi.org/10.1109/59.193806
https://doi.org/10.1109/TPWRS.2005.846065
https://doi.org/10.1109/TPWRS.2010.2087366
https://doi.org/10.1002/etep.v30.9
https://doi.org/10.1016/j.ijepes.2021.107852
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1109/TPAS.1981.316524
https://www.iitk.ac.in/eeold/facilities/Research_labs/Power_System/NRPG-DATA.pdf
https://doi.org/10.1504/IJHPCN.2009.027459
https://doi.org/10.1007/s11227-008-0204-2

CONNECTION SCIENCE (&) 19

Mikolinnas, T., & Wollenberg, B. (1981). An advanced contingency selection algorithm. IEEE Trans-
actions on Power Apparatus and Systems, PAS-100(2), 608-617. https://doi.org/10.1109/TPAS.1981.
316917

Mishra, V. J., & Khardenvis, M. D. (2012). Contingency analysis of power system. In [EEE Students’
conference on electrical, electronics and computer science (pp. 1-4). IEEE.

Mitra, P., Vittal, V., Keel, B., & Mistry, J. (2016). A systematic approach to n-1-1 analysis for power system
security assessment. I[EEE Power and Energy Technology Systems Journal, 3(2), 71-80.

Morante, Q., Ranaldo, N., Vaccaro, A., & Zimeo, E. (2006). Pervasive grid for large-scale power systems
contingency analysis. IEEE Transactions on Industrial Informatics, 2(3), 165-175. https://doi.org/
10.1109/T11.2006.877266

Nayak, S.K., Panda, S. K., &Das, S. (2022a). Constrained-based power management algorithm for green
cloud computing. International Journal of Computational Science and Engineering, 25(6), 657-667.
https://doi.org/10.1504/1JCSE.2022.127187

Nayak, S. K., Panda, S. K., & Das, S. (2022b). Unconstrained power management algorithm for green
cloud computing. In Advances in distributed computing and machine learning: Proceedings of ICAD-
CML (pp. 3-14). Springer.

Nayak, S. K., Panda, S. K, Das, S., & Pande, S. K. (2021). A renewable energy-based task consolidation
algorithm for cloud computing. In Control applications in modern power system: Select proceedings
of EPREC (pp. 453-463). Springer.

Nayak, S. K., Panda, S. K, Das, S., & Pande, S. K. (2022¢). A multi-objective renewable energy-based
algorithm for geographically distributed datacentres. International Journal of Embedded Systems,
15(2), 119-131. https://doi.org/10.1504/1JES.2022.123304

Patra, K.K.(2015). Contingency analysis in power system using load flow solution. International Journal
of Computer Applications, 975(2), 8887.

Pattery, J., & Hassainar, S. (2013). High performance computing for contingency analysis of power
systems. International Journal of Engineering Research and Technology, 2(9), 1993-1998.

Prabhakar, P. S. V., Krishan, R., & Pullaguram, D. R. (2022). Static security assessment of large power
systems under n-1-1 contingency. In 22nd National power systems conference (NPSC) (pp. 35-40).

Qian, T, Shi, F., Wang, K, Yang, S., Geng, J., Li, Y., & Wu, Q. (2022). N-1 static security assessment method
for power grids with high penetration rate of renewable energy generation. Electric Power Systems
Research, 211, 108200. https://doi.org/10.1016/j.epsr.2022.108200

Ramesh, V. (1996). On distributed computing for on-line power system applications. International
Journal of Electrical Power & Energy Systems, 18(8), 527-533. https://doi.org/10.1016/0142-0615(96)
00016-6

Roberge, V., Tarbouchi, M., & Okou, F. (2017). Parallel power flow on graphics processing units
for concurrent evaluation of many networks. IEEE Transactions on Smart Grid, 8(4), 1639-1648.
https://doi.org/10.1109/

TSG.2015.2496298

Salem, F.K. A., Jaber, M., Abdallah, C., Mehio, O., & Najem, S. (2019). A distributed spatiotemporal con-
tingency analysis for the lebanese power grid. IEEE Transactions on Computational Social Systems,
6(1), 162-175. https://doi.org/10.1109/TCSS.2018.2888689

Yang, C.-T., Shih, P.-C,, & Li, K.-C. (2005). A high-performance computational resource broker for grid
computing environments. In 79th International conference on advanced information networking and
applications (AINA'05) Volume 1 (AINA papers) (Vol. 2, pp. 333-336). IEEE.

Zaborszky, J., Whang, K.-W., & Prasad, K. (1980). Fast contingency evaluation using concentric relax-
ation. IEEE Transactions on Power Apparatus and Systems, PAS-99(1), 28-36. https://doi.org/10.1109/
TPAS.1980.319605

Zhang, Y., Guo, Q., Zhou, Y., & Sun, H. (2021). Online frequency security assessment based on ana-
lytical model considering limiting modules. CSEE Journal of Power and Energy Systems, 8(5), 1363-
1372.

Zhou, G., Zhang, X,,Lang, Y., Bo, R, Jia, Y., Lin, J., &Feng, Y. (2016). A novel GPU-accelerated strategy for
contingency screening of static security analysis. International Journal of Electrical Power & Energy
Systems, 83, 33-39. https://doi.org/10.1016/j.ijepes.2016.03.048

https://doi.org/10.1109/TPAS.1981.316917
https://doi.org/10.1109/TII.2006.877266
https://doi.org/10.1504/IJCSE.2022.127187
https://doi.org/10.1504/IJES.2022.123304
https://doi.org/10.1016/j.epsr.2022.108200
https://doi.org/10.1016/0142-0615(96)00016-6
https://doi.org/10.1109/TSG.2015.2496298
https://doi.org/10.1109/TCSS.2018.2888689
https://doi.org/10.1109/TPAS.1980.319605
https://doi.org/10.1016/j.ijepes.2016.03.048

20 V.RAO KAGITAET AL.

Zhou, R, Ai, Z., Yang, J,, Chen, Y., Li, J., Zhou, Q., &LLi, K.-C. (2013). A hypervisor for MIPS-based architec-
ture processors-a case study in Loongson processors. In [EEE 10th International conference on high
performance computing and communications & 2013 IEEE international conference on embedded and
ubiquitous computing (pp. 865-872). IEEE.

Zou, Q. Luo, F., & Zhang, T. (2022). An incidence matrix based analytical method of n-1 contingency

parallel analysis of main transformers in distribution networks. CSEE Journal of Power and Energy
Systems.

	1. Introduction
	2. Related work
	3. Contingency screening and ranking
	4. Mathematical modelling and proposed algorithms using HPC
	4.1. Parallel computing with CPU and GPU
	4.2. Parallel implementation of N-1 static CA
	4.3. Parallel implementation of N-2 static CA

	5. Experimental results
	5.1. Test case: NRPG bus system

	6. Conclusion and future work
	Acknowledgments
	Disclosure statement
	Funding
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

