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Abstract—A microgrid is a compact, localized power sys-
tem that independently generates, distributes, and regulates
electricity, either standalone or in sync with the main grid.
These microgrids are designed to ensure a dependable power
supply to specific areas. Intelligent microgrids have been made
possible through the use of advanced sensors and the most
recent grid communication standards. Nonetheless, when utilized
in microgrids, conventional protection methods do not yield
dependable results. This article presents a technique that employs
measurements of three-phase voltage, current, and angle during a
fault as input data for a module that classifies and locates faults.
This module, constructed using an artificial neural network
(ANN) technique, is part of the central protection system. The
effectiveness of the suggested approach is evaluated by taking into
account actual grid situations with different fault locations and
types. A 7-bus meshed AC Microgrid Test System, which includes
two Distributed Generators (DGs) and two grid sources, is simu-
lated in the Simulink platform. MATLAB-2021b’s data analytic
capabilities have been utilized for the development of ANN-based
fault classification and location modules for microgrids.

Index Terms—Distributed Generator, Fault Location, Micro-
grid, Artificial Neural Network.

I. INTRODUCTION

The idea of microgrids (MGs) has brought about a signif-
icant change in the current power system, propelled by the
swift increase in energy consumption. This idea is put into
practice to encourage the widespread use of distributed energy
resources (DERs) sourced from renewables, with the goal of
alleviating the pressure on the power grid that depends on
fossil fuels. The primary difficulties linked with the protection
of microgrids (MGs) are as follows:

o The occurrence of bidirectional power flow.

o There is a notable variation in the short circuit level when
operating in grid-connected and islanded modes.

o The output of renewable energy resources is characterized
by inconsistency.

o The constraint of inverter-based distributed generators
(DGs) in delivering fault current is acknowledged [1].

Hence, developing a unified protection scheme to address
these challenges remains a key research focus. The availability
of Intelligent Electronic Devices (IEDs), digital relays, Phasor
Measurement Units (PMUs), and high-speed communication
lines with the IEC61850-enabled protocol has enhanced the
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functionality of microgrids, making them smarter. As a re-
sult, numerous electrical parameters are measured and stored
simultaneously for future valuable analysis [1].

In the past few years, the complexity of electrical power
systems, encompassing distributed generation installations, has
seen a rise. This has rendered the incorporation of conventional
fault location methods, such as travelling wave and impedance-
based strategies, into intricate power systems more difficult.
However, alternative, cost-effective, and simpler methods for
fault location have been proposed, including knowledge-based
approaches like Artificial Neural Networks (ANN), fuzzy
logic, support vector machines, and deep learning. These
methods have proven to be highly accurate compared to
conventional approaches [2].

ANN have been extensively studied for their use in classify-
ing and locating faults in power systems. This literature review
will highlight a number of research works that utilize ANN for
the purpose of fault classification and localization, particularly
in the context of transmission and distribution networks.
The methodology for using ANN in fault localization and
classification in power systems will be discussed. The findings
indicate that ANN are fast and flexible, able to operate in real-
time situations and react promptly to alterations [3]- [4].

This paper is organized as follows: Section II details a
seven-bus AC microgrid in Simulink and discusses ANN
modeling, including feature selection and training. Section
IIT describes the result and discussion on hidden layers.
Ultimately, Section IV brings this paper to a close.

II. INTELLIGENT PROTECTION SYSTEM DESIGN FOR
MICROGRIDS

Consider a seven-bus meshed AC microgrid test system,
simulated in Simulink, that incorporates two distributed gener-
ators (DGs) and two sources from the grid. The AC microgrid
shown in Fig. 1 is a meshed network that includes four
energy sources operating at 50 Hz. The two primary grid
supplies are Gridl (G7) and Grid2 (Gs), along with two
synchronously based distributed generators, DG and DGos.
The MG is segmented into eight line segments, each measuring
10 km. The parameters used in the design of the test system
are detailed in Table I, Table II, and Table III. The linked
system of 7 buses, which operates at a medium voltage of
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33 kV, is modeled using the SIMULINK platform (MATLAB A. Collecting Data and Choosing Features

R2021b). Fig. 2 depicts the simulation setup, which is aimed
at generating a dataset for training an ANN model [3].

DG1 DG2
Load 1
480 V/33kV

480 V/33kv
Load 2

Load 7

Bus7 Bus 2

Line 6

Line 5

Load 3 o

132kV/33kV3

Grid 2
(G2)

Bus4
Load 4

Grid 1

(G1)

Fig. 1. Structure of the Meshed AC Microgrid [5].

132kV/33kV

TABLE I
LINE PARAMETERS OF THE MICROGRID TEST SYSTEM
. | Resistance (2/km) [ Inductance (H /km)
Tldn[slli\’hlghlml [ Ry RO I T LO
1 2.1416 6.4248 0.0142 0.0426
2 1.1526 3.4578 0.0073 0.0217
3 1.6549 4.9647 0.0110 0.0331
4 1.4297 4.2889 0.0107 0.0321
5 0.5543 1.6629 0.0141 0.0423
6 22148 6.6444 0.0149 0.0447
7 29782 8.9346 0.0193 0.0579
8 3.8494 11.5482 0.0110 0.0330

« Line: Capacitance of Positive Sequence = 12.74nF'/km,
R; = Resistance of Positive Sequence, Ry = Resistance
of Zero Sequence, L, = Inductance of Positive Sequence,
Ly = Inductance of Zero Sequence.

TABLE 11
GENERATOR AND TRANSFORMER PARAMETERS OF THE MICROGRID

Component Parameter

Grid Sources (G 1, G2)

Linc Voltage = 132KV Intenal resistance =
0.8929¢2, Internal inductance = 16.58 m H
Line Voltage = 480V Internal resistance=
0.8929, Internal inductance = 16.58m H

Ty and Ty 480V/33kV, Rpy = 0.002,
Xpu = 0.008, T'3 and T4 132kV/33kV,
Rpu = 0.002, Xpy = 0.008

DG Sources (DG'1, DG o)

Transformer (T, T, T3, T4)

TABLE III
LOAD PARAMETERS OF THE MICROGRID

Load [ Voltage (V) [ Real Power (MW) | Reactive Power (MVAR)

1 33 135 58
2 33 14.9 5.0
3 33 29.5 16.6
4 33 11.2 75
5 33 9 5.8
6 33 35 18
7 33 6.1 16
Protal = 8T-TMW Qtotal = 44.1MV AR
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The highest value of the current after a fault, in addition to
voltage and angle readings taken at four buses, are collected
as input attributes for model training. For the construction of
a durable and resilient model, it’s essential to educate it with
data encompassing all possible operational scenarios of the
microgrid.

TABLE IV
FAULT CASES CONSIDERED FOR DATA COLLECTION
Cases [ Location steps and fault type [ No. of cases
Fault Location | Every 0.5 km in each line 19 x 8
Fault Types AG, BG, CG, AB, BC, CA, ABG, BCG, 10

CAG, ABC

The measurement of three-phase voltages, currents, and
their respective angles from four buses results in 48 input
features (4 buses with 12 measurements) [4].

Therefore, based on Table IV, the total number of data
collected for the mentioned cases can be calculated as 48
(input features) multiplied by 19 (locations) multiplied by 8
(lines) multiplied by 10 (types of faults), resulting in 72,960
data points. The input matrix for the ANN consists of 1520
rows (data points) and 48 columns (features) derived from the
collected data (72,960). Each row represents a specific data
point, and each column represents a feature such as voltage,
current and angle measured at the four-generation buses. The
distance measurement of the fault location is taken from the
lower bus number to the higher bus number. Once all data were
collected, In this study the ANN tool is utilized for identifying
and categorizing faults. In the ANN tool, I utilized 48 input
values representing voltages, currents, and their corresponding
angles at four generation buses. The ANN model was trained
using a dataset consisting of 1520 rows and 48 columns for
the input set, and the output set comprised three components
i.e. The count of lines, the nature of the fault, and and the
fault location. The conditioned model is examined with a novel
input dataset to evaluate its efficiency and trustworthiness. The
following section thoroughly discusses the machine learning
technique of ANN.

B. Artificial Neural Network

The idea of ANN draws its inspiration from the biological
neurons present in animal brains. This biological influence is
Table V, as outlined in [6], highlighting the many similarities
in both structure and function between ANN and biological
neural networks.

TABLE V
BIOLOGICAL ARTIFICIAL NEURONS

Biological Neurons | Atificial Neurons

Dendrite
Cell nucleus or Soma
Synapses
Axon

Inputs
Nodes
‘Weights
Output

Restric8® apply.
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Fig. 2. Simulink model for fault detection and locations.

1) Structure: A biological neuron consists of a cell body,
or soma, that processes impulses, dendrites that accept these
impulses, and an axon that conveys them to other neurons.
Similarly, in ANNSs, the input nodes receive input signals, the
nodes in the hidden layer process these signals, and the nodes
in the output layer determine the final output by processing
the results from the hidden layers using activation functions.

2) Synapses: In biological neurons, the synapses form
connections that allow impulses to move from dendrites to the
cell body. In artificial neurons, these synapses are symbolized
by weights that link nodes from one layer to the nodes of the
next layer. The value of these weights signifies the intensity
of these connections.

3) Learning: In biological neurons, the learning process
takes place in the soma, or the cell body nucleus, which
contains a nucleus that aids in processing impulses. If the
impulses are strong enough to exceed the threshold, an action
potential is created and travels along the axons. This is
facilitated by synaptic plasticity—the capacity of synapses to
change their strength over time in response to variations in
their activity. In ANN, backpropagation is a learning technique
that modifies node weights based on differences or errors
between expected and actual results.

4) Activation: Biological neurons activate when impulses
surpass thresholds, similarly, in ANN, activation functions
determine neuron outputs based on inputs, introducing non-
linearity for pattern interpretation. Applied to weighted inputs
and biases, activation functions like Sigmoid, ReLU, Tanh,
and Softmax enable complex data pattern interpretation and
learning across network layers.

5) Feedforward Backpropagation Neural Network: 1 have
utilized a feed-forward backpropagation neural network, as
depicted in Fig. 3.

Hidden Layers

Fig. 3. Neural-Networks-Architecture.

A feed-forward backpropagation neural network is a type
of ANN where data moves in a single direction—from input
to output. Neurons in each layer apply an activation function
to their inputs and forward the outcome to the subsequent
layer. Backpropagation, the main learning algorithm, itera-
tively modifies network parameters (weights and biases) to
reduce the discrepancy between expected and actual outputs.
This procedure, encompassing both forward and backward
passes, allows the network to learn from training data and
make predictions. Owing to their efficiency, feed-forward
backpropagation neural networks are commonly employed for
supervised learning tasks such as classification and regression

[7].
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Table VI serves as a reference for the input and output
parameters chosen for ANN Model. It specifies the inputs as
voltage magnitudes (Va, Vb, Vc), voltage phase angles ( 0y,
Ovp, Ovc), current magnitudes (Ia, Ib, Ic), and current phase
angles (014, 011, 01c). The outputs are defined as the number
of lines, type of fault, and location of the fault in km along the
line. These parameters will be utilized for training and testing
your ANN model to predict fault-related information based on
the input data [8].

TABLE VI
INPUT-OUTPUT PARAMETERS CONSIDERED

Features (Input) [

Va, Vo, Ve, Ova, Ove, Ove
Lo, Ip, Ic, O1a, O1b, O1c

Targets (Output)

Line number, Fault type,
Fault location in km

III. RESULT AND DISCUSSION

The initial setup for the feedforward backpropagation neural
networks involved 1520 samples, each with 48 input features.
The outputs included fault type, line number, and fault lo-
cation. The training used 10 neurons and 1-4 hidden layers.
After training, the ANN model was tested with new data
points for voltage, current, and angles, generated at different
locations and not part of the training data. This fresh data
was utilized to assess the effectiveness of the conditioned
ANN model. Unfortunately, the testing phase did not yield
satisfactory results.

TABLE VII
PERFORMANCE OF ANN WITH 10 NEURONS IN EACH HIDDEN LAYER
) [ Faulty Line | Fault Type | Fault Location | -
990 [Actal  Prodoied | Acwal  Predoited | Actal _ Prediced | 0T ()
T 3 2 ABG CA 6 57719 395
2 3 3 ABG cA 6 5.829 293
3 3 3 ABG ABG 6 6.3206 5.07
4 3 3 ABG ABG 6 6.1667 27
TABLE VIII
PERFORMANCE OF ANN WITH 20 NEURONS IN EACH HIDDEN LAYER
] Faulty Line Fault Type | Fault Location |
z‘ngg'r“s“ | Actual Predcited | Actual Predcited | Actual Predicted | Error (%)
1 2 2 AB AB 5.123 47206 785
2 2 2 AB AB 5.123 53002 345
3 2 2 AB AB 5.123 4.8602 5.407
4 2 2 AB AB 5.123 5.049 1.4656
TABLE IX
PERFORMANCE OF ANN WITH 30 NEURONS IN EACH HIDDEN LAYER
. [ Faulty Line Fault Type Fault Location [ & -
éﬁ??s" [ Actual Predcited ] Actual Predcited ] ‘Actual Predicted 1 Error (%)
1 2 2 AB AB 5123 27999 6.73
2 2 2 AB AB 5.123 5.2253 1.95
3 2 2 AB AB 5.123 5.2267 1.98
4 2 2 AB AB 5.123 5.0632 118

These outcomes are observable in Table VII, Table VIII,
Table IX, Table X, and Table XI. At first, the results were
not up to the mark, prompting modifications in the count of
neurons and hidden layers in the neural network. It was then
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TABLE X
PERFORMANCE OF ANN WITH 48 NEURONS IN EACH HIDDEN LAYER
X [ Faulty Line Fault Type Fault Location |
é?g?s“ | Actual Predcited | Actual Predcited | Actual Predicted | Error (%)
1 2 3 AB AB 5.123 4.8966 4.62
2 2 2 AB AB 5.123 5.4054 5224
3 2 2 AB AB 5.123 5.004 245
4 2 2 AB AB 5.123 5.1739 1.09
TABLE XI
PERFORMANCE OF ANN WITH 55 NEURONS IN EACH HIDDEN LAYER
X [ Faulty Line Fault Type | Fault Location | .
é?g%" | Actual Predcited | Actual Predcited | Actual Predicted | Error (%)
1 2 3 AB AB 5.123 5.1913 1.33
2 2 2 AB AB 5.123 4.8664 5272
3 2 2 AB AB 5.123 5.2262 2.0144
4 2 2 AB AB 5.123 5.7911 11.53

tested for various configurations, ranging from 10 to 100 neu-
rons and 1 to 4 hidden layers. After thorough experimentation,
it was determined that the optimal configuration consisted of
80 neurons and 3 hidden layers.

Hence, I have opted for a configuration of 3 hidden layers,
with each layer consisting of 80 neurons, as this network struc-
ture delivers the most effective results. The ANN classifier for
fault detection and location, depicted in Figure 4, consists of 1
input layer with 48 neurons, 3 hidden layers with 80 neurons
each, and 1 output layer with 3 neurons. The transfer function
employed at the hidden layers is tan-sigmoid, whereas a linear
transfer function is utilized at the output layer. The training
algorithm employed was the Levenberg-Marquardt algorithm
(trainlm), which efficiently identifies and locates faults.

|
X

4\ MNeural Metwork Training (nntraintool)

Neural Network

Algorithms

Data Division: Randorn (dividerand)
Training: Levenberg-Marquardt (trainlm)
Performance: Mean Squared Error  (mse)
Calculations:  MEX
Progress
Epoch: (1] 6 iterations 1000
Time: 0:15:47
Performance: 0.115 | 0.0420 0.00
Gradient: 737 (N 5.34 1.00e-07
P 0.00100 0.00100 1.00e+10
Validation Checks: (1] 7] 6
Plots
Performance (plotperform)
Training State (plottrainstate)
Regression (plotregression]
Plot Interval: 1 epochs
v Opening Performance Plot
Trainin @ cCancel

Fig. 4. Neural network training status.

The training outcome is deemed satisfactory as the re-
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Fig. 5. Regression performance.

gression line aligns closely with the actual values, deviating
minimally, as depicted in Figure 5. This indicates that the ANN
has understood the intrinsic correlation between the target and
output variables, allowing it to generate accurate forecasts.

Table XII, Table XIII, and Table XIV display the research
findings concerning the Number of Lines, Types of Faults, and
Fault Locations in the Microgrid. Each line was 10 kilometers
long, and there were a total of eight lines. Consequently, five
arbitrary points were selected on distinct lines to assess the
effectiveness of the work across diverse kinds of faults. The
research findings are viewed as positive, as the tables show
that the computed fault locations align closely with the actual
fault locations, and the predicted number of lines and types of
faults are accurate.

TABLE XII
PREDICTED LINE NUMBER DURING TESTING

Actual line No. Predicted Line No. Remark

2 2 Correctly Identified
3 3 Correctly Identified
6 6 Correctly Identified
7 7 Correctly Identified
8 8 Correctly Identified

TABLE XIII
PREDICTED FAULT TYPE DURING TESTING

Actual Fault Type  Predicted Fault Type Remark

AB AB Correctly Identified
ABC ABC Correctly Identified
ABG ABG Correctly Identified

BG BG Correctly Identified
CAG CAG Correctly Identified

May, 27-29, 2024, Setubal, PORTUGAL

TABLE XIV
PREDICTED FAULT LOCATION DURING TESTING

Actual Fault Location (km) Predicted Fault Location (km) Error (%)

5.123 5.176 1.023
7.525 7.5905 0.862
4.25 4.1907 1.395

29 2.8729 0.934
8.215 8.2719 0.687

IV. CONCLUSION

The optimization of neural networks, particularly by ad-
justing the number of neurons and hidden layers, frequently
leads to improved performance as it allows them to capture
complex data patterns and relationships effectively. Employ-
ing 80 neurons and 3 hidden layers in my neural network
resulted in superior outcomes, demonstrating the significance
of architectural decisions in network design. This configuration
yielded promising results, with a minimum error of 0.687 %
and a maximum error of 1.395 % for fault location prediction,
showcasing the network’s ability to accurately identify fault
locations. These findings underscore the effectiveness of ANN
in fault classification and localization tasks. ANNs offer high
accuracy and robustness in identifying and pinpointing faults,
making them valuable tools in various applications, including
power systems and fault diagnosis.
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